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ABSTRACT

In air traffic management, the primary goal is the safety and efficiency of airspace oper-

ations under the responsibility of air traffic controllers (ATCs). With the growing demand

of air traffic, it becomes critical to develop advanced techniques to support the decisions

made by ATCs, which include control and monitoring of air traffic. To reduce the workload

on ATCs in both control and monitoring, this thesis focuses on the development of decision

supporting tools for (i) aircraft conflict resolution in en-route airspace and (ii) conformance

monitoring in terminal airspace.

The first part of this thesis focuses on the development of a data-driven conflict resolution

tool which can aid the decision-making process of ATCs for air traffic conflict resolution. The

decision-making process can be viewed as a system that takes conflict situations as input

and generates corresponding conflict resolution methods as output. That is, each conflict

can be represented as a tuple of (Conflict Situation, Resolution Methods). To construct a

conflict data in this form from air traffic surveillance data, we first need to label each conflict

situation, or identify resolution methods (outputs) used for the conflict situation. The key

idea is that any complex maneuvers can be modeled as a sequence of simple or primitive

motions, called intents. Using the domain knowledge obtained from flight data and the intent

inference algorithm, a framework for the detection and characterization of aircraft resolution

maneuvers is proposed to identify resolution types and resolution parameters. Based on the

knowledge extracted from the constructed conflict data with the features representing conflict

situations (or inputs), a classification model is designed which determines the resolution type

for every two-aircraft conflict in the airspace. In addition to predicting the resolution type,

the proposed conflict resolution algorithm can also suggest appropriate resolution parameters

for the guaranteed safe separation. The combination of the resolution type prediction model

and resolution parameter suggestion model can sufficiently and safely resolve any two aircraft

conflict.

The second part of the thesis is for the development of a conformance monitoring method-

ology for the current and future time, to help enhance the situational awareness of ATCs.

To predict the future states of an aircraft, a trajectory prediction framework is developed
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by combining a data-driven prediction model, which generates expected states of an air-

craft learned from flight data, and a physics-based prediction method, which incorporates

the current motion of an aircraft. Since the estimated or predicted states of an aircraft are

stochastic, a stochastic version of anomaly detection and prediction algorithm for sequen-

tially updated aircraft trajectories is developed using a smooth approximation for numerical

integration.

All the proposed methods are demonstrated with real flight data to show their potentials

as decision supporting tools that can help reduce the workload on air traffic controllers and

enhance the safety of air traffic operations.
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1. INTRODUCTION

In air traffic management (ATM), the primary goal is the safety and efficiency of airspace

operations managed by air traffic controllers (ATCs). With the growing demand of air

traffic [  1 ], it becomes critical to develop advanced techniques to support the decisions made

by ATCs, which include control and monitoring of air traffic:

1. Control: Although airspace is efficiently divided into operational classes and

flight plans are scheduled to assure separation between airborne aircraft, ATCs

intentionally instruct deviations of aircraft from their flight plans for the tasks

such as aircraft conflict resolution, avoidance of weather cells, or sequencing and

scheduling [ 2 ].

2. Monitoring: Any deviations of an aircraft from its flight plan are monitored by

ATCs, or if ATCs instruct a deviation intentionally for the purpose of ATM,

ATCs should monitor whether the aircraft follows the instructed path or not.

Since any deviation against the intent of aircraft (following flight plan or the

instructions of ATCs) could compromise the safety and efficiency of the air traffic

operations, it is critical to monitor the aircraft’s behavior by understanding their

current status and predicting the futures states under the ATCs’ control.

In order to reduce the workload of ATCs in both control and monitoring by helping their

decision-making process, several tools have been developed. In this thesis, we focus on specific

kinds of such tools, that is, decision supporting tools for (i) aircraft conflict resolution in en-

route airspace (control) and (ii) conformance monitoring in terminal airspace (monitoring).

1.1 Background and motivation

In this section, a literature review of the aforementioned tools is presented along with

the motivation that drives the research presented in this thesis.
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1.1.1 Conflict resolution in en-route airspace

In the current practice, aircraft conflicts are resolved by ATCs by comparing the flight

plans and the predicted flight trajectories. There have been several automation tools devel-

oped for conflict resolution such as Center-TRACON Automation System (CTAS) [  3 ], [  4 ],

Traffic Alert and Collision Avoidance System (TCAS) [ 5 ], [ 6 ], and Autoresolver [ 7 ], [ 8 ].

In the research efforts, the conflict resolution has been posed as an optimal control prob-

lem. In [  9 ], [  10 ], the uncertainty due to wind is considered by using a stochastic optimal

control. In [  11 ], the wind uncertainty is modeled as stochastic variables and the conflict

intensity is computed by employing the probability transformation method. The conflict

resolution has also been posed as an optimization problem. The cost function to be min-

imized is set as the deviation from a flight plan with the constraint of the safe separation

between aircraft. The formulated optimization problems have been solved by using vari-

ous methods, such as Metaheuristic [ 12 ], [  13 ], Integer Linear Programming [  14 ], [  15 ], and

Constraint Satisfaction Program [ 16 ], [ 17 ].

The methods mentioned above can fall into flight dynamics (or physics)-based meth-

ods [ 18 ] which generate a static protocol. Updating such static protocols would be challeng-

ing because it requires a new model that can address the uncertainties due to weather and/or

pilot’s response. Also, for the increased air traffic demand or newly introduced concept for

airspace operations, scaling up the protocols can be challenging.

In this regard, data-driven approaches have been proposed to address these issues. By

learning from flight data, the data-driven approaches can handle the uncertainties which are

inherently embedded in flight data. Also, by learning from data that embed the human’s

decision making process, the learned data-driven models can increase the rate of acceptance

of the resolution methods by human, i.e., ATCs. The advanced data mining and machine

learning techniques along with large-scale aviation data enable the application of data-driven

approaches to conflict resolution. In [ 19 ], the data-driven models for supporting the decision

making of ATCs in a sector have been developed using the data collected from a Human-

In-The-Loop simulator. A resolution advisory in the horizontal dimension is generated by a

model learned by the data based on Convolutional Neural Networks. In [  20 ], a method has
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been proposed based on Reinforcement Learning that can assign a new trajectory change

point in the horizontal dimension to resolve aircraft conflict.

1.1.2 Conformance monitoring in terminal airspace

ATCs perform the task of conformance monitoring, i.e., the detection of deviations,

by comparing the observed states (such as position and speed) of an aircraft (e.g., from

surveillance radar) with its expected states based on the intent of the aircraft (following a

flight plan or deviating from the flight plan due to the instructions of ATCs). There have

been research interests in the topic of conformance monitoring.

In [ 21 ], an extensive literature survey on the existing decision support tools for con-

formance monitoring has been performed. The tools include Precision Runway Monitor

(PRM) [  22 ], Host Computer System (HCS) [ 23 ], and its recent versions, En Route Au-

tomation Modernization (ERAM) and Standard Terminal Automation Replacement System

(STARTS), and User Request Evaluation Tool (URET) [ 24 ], all of which have been de-

ployed in the United States. Conformance monitoring is performed by these tools based

on the comparison between the observed and expected states of an aircraft to detect any

excessive deviation, or non-conformance. A model-based fault detection technique has been

proposed [  25 ] for the investigation of the issues in these tools, based on which new tech-

niques can be guided in their development. Among the several identified challenges, the

uncertainties in trajectory deviations have been focused in the following methods: in [ 26 ],

[ 27 ], hybrid estimation methods have been proposed to estimate the continuous states such

as position and speed of an aircraft and the discrete states such as heading hold mode using

a stochastic hybrid system model; in [  28 ], [  29 ], probabilistic approaches have been developed

which computes the conformance probability; and in [  30 ], another probabilistic approach

has been proposed using adaptive time-series which can optimally represent the aircraft’s

time-varying deviation under uncertainty.

All the above methods can fall into physics-based approaches, in which a model describing

the normal behaviors of a system is developed based on the system’s dynamics or govern-

ing physics, in order to detect events that do not conform the model. Recently, aviation
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data become rich due to the advances in sensing and data collection technologies, which

enables the data-mining and modern machine learning techniques to be employed as a tool

for analyzing air traffic operations. With respect to the conformance monitoring problem,

data-driven approaches have been extensively investigated in aviation domain by identifying

flight data that does not conform to normal data, called anomaly, which could lead to the

degraded safety and efficiency of air traffic operations. Due to the inherent properties of

the aviation data, that is, (i) the states of aircraft in air traffic operations (i.e., flights) keep

changing along time and thus any collected datasets are recorded in the form of sequential or

time-series data; and (ii) since the information about whether a flight is normal or abnormal

is typically unavailable, most of the aviation data are unlabeled, which requires unsuper-

vised learning techniques, the anomaly detection in aviation domain is typically tackled by

unsupervised learning approaches for detecting anomalies in time-series data, which can be

broadly categorized as follows [ 31 ]:

• Distance-based methods are characterized by using the notion of distance be-

tween two data points. A well-known method in this category is the k-Nearest

Neighbors (kNN), which computes an anomaly score of a data point by com-

puting the distance to its k-Nearest Neighbors, and if it is larger than some

threshold, the data point is called anomaly [ 32 ]. Another method is clustering,

which groups similar data instances together based on the distance or similar-

ity. In [ 33 ], a clustering-based method is proposed to detect anomalies in Flight

Operations Quality Assurance (FOQA) dataset during take-off and approach

operations. The identified clusters detect various types of anomalies, such as

energy excess/deficiency and abnormal pitch angle and flap settings. For the

airport surface operations, a hierarchical clustering method [  34 ] is used to group

taxi paths in the spatio-temporal space. The detected anomalies are interpreted

as the paths unplanned/unexpected by the controllers, which therefore implies a

safety threat.

• Statistical methods are characterized by the use of the probability density esti-

mated from the data. The assumption for anomaly detection is that normal and
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abnormal data would reside in higher and lower probability regions, respectively.

For the methods based on regression model, a model is fitted to the training

data and the test data is fed into the trained model to compute the difference

between the actual value and the value predicted from the model, called residual.

If the residual is higher than some threshold, the test data is called anomaly. In

[ 35 ][ 36 ], a Vector Auto-Regressive (VAR) model is used to represent each flight

in a FOQA dataset and a residual is computed by applying the model learned

from one flight to another flight. Another approach is based on Gaussian Mix-

ture Models (GMM) which assumes that the data points are generated from

the mixture of Gaussian distributions (or components) with different weights

along the components. The GMM has been applied to instantaneous detection

of anomalies during a specific flight phase [ 37 ].

• Domain-based methods try to find a domain (or its boundary) that separates

normal and abnormal data. One-class Support Vector Machine (OCSVM) is a

widely used method in this category, based on the assumption that the training

data well represent normal data so that the learned domain would well define

the normal region. Thus, if a test instance falls outside of the domain, then it

is called anomaly. The separating boundary is defined in a feature space, which

is obtained by applying kernel, or mapping, to the data in its original space.

Based on OCSVM, the Multiple Kernel Anomaly Detection (MKAD) algorithm

[ 38 ] is developed to find operationally significant anomalies from heterogeneous

(both continuous and discrete) variables in data. The MKAD algorithm suc-

cessfully detects important anomalies such as high airspeed, flights under gusty

winds, go-around, and unusual approaches with high energy and under turbu-

lence. OCSVM is also applied to general aviation [ 39 ] with energy features such

as the specific total/potential/kinetic energies with their rates.

• Reconstruction-based methods transform/project the data in the input space

into a lower dimensional space, which is then reconstructed by projecting into

the original input space. It is assumed that anomalies will not be effectively
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reconstructed using the training data, which mostly consists of normal instances.

One of the most widely used method is Autoencoders, in which the input sequence

is projected into a smaller number of neurons and then reconstructed as the

output sequence whose number of elements is the same as the input sequence.

In [ 40 ][ 41 ][ 42 ], the reconstruction error (the difference between input and output

trajectories) is used as an anomaly score. From the distribution of the anomaly

scores, higher scores correspond to weather impact, while lower ones correspond

to usual intervention by the controllers, such as separation and sequencing.

• Temporal logic-based methods learn temporal logic expressions from the data.

The results of the methods mentioned above are typically represented as hy-

perplanes in high-dimensional feature spaces to separate normal and abnormal

data. This may lead to a higher accuracy but also to the lack of interpretability

by domain experts. Due to the unsupervised nature of aviation data, the feed-

back from domain experts is crucial to improve the performance of unsupervised

anomaly detection methods. In [ 43 ][ 44 ], a temporal logic-based anomaly detec-

tion algorithm (TempAD) is proposed to identify anomalous aircraft trajectories

in terminal airspace. The algorithm is tested with air traffic surveillance data

and is able to identify anomalies such as go-around, excessive total energy, and

above or below the glideslope. In [  45 ], TempAD is extended to an incremental

learning version, which can keep adjusting the changes in air traffic operations

on a daily basis. With the identified anomalies, a supervised learning method

for precursor detection [ 46 ] is also proposed by identifying events that precede

the occurrence of anomalies.

To enhance the situational awareness of ATCs, we propose a new conformance monitoring

algorithm that computes the conformity score of the current state of an aircraft, as well as

those of its future states. In predicting the future states of an aircraft, we develop a frame-

work that combines a data-driven approach and a physics-based method, which generates a

series of predicted track points that are stochastic. We then present a conformance moni-

toring algorithm for the current and future time based on a stochastic conformal prediction
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method which can sequentially compute the conformity scores of such stochastic predicted

track points.

1.2 Objectives and contributions

1.2.1 Conflict resolution in en-route airspace

In this thesis, we develop a framework for the generation of conflict resolution maneuvers

in en-route airspace by learning from aviation datasets that contain the decision-making

process of ATC. A decision-making process of ATC for conflict resolution can be viewed as

a system that takes conflict situations as input and generates corresponding conflict resolu-

tion methods as outputs. That is, each conflict can be represented as a tuple of {Conflict

Situation, Resolution Methods}. To construct a conflict data in this form from air traffic

surveillance data, we first need to label each conflict situation, or identify resolution meth-

ods (outputs) used for the conflict situation. The key idea is that any complex resolution

maneuvers can be represented as a sequence of simple motions, called intents in this paper.

Using the domain knowledge obtained from flight data and the intent inference algorithm

[ 47 ], we propose a framework for detection and characterization of aircraft resolution ma-

neuvers to identify resolution types (e.g., directly heading to a downstream waypoint by

skipping some next waypoints) and resolution parameters (e.g., how many next waypoints

are skipped). Based on the knowledge extracted from the constructed conflict data with the

features representing conflict situations (or inputs), we then design a classification model

which determines the resolution type for every two-aircraft conflict in the airspace. In ad-

dition to predicting the resolution type, the proposed conflict resolution algorithm will also

suggest resolution parameters for the guaranteed safety. The combination of the resolution

type prediction model and resolution parameter suggestion model can safely resolve any

two-aircraft conflict, and constitute the proposed data-driven resolution generator (D2RG)

model. For a conflict situation previously unseen to the model, the learned model can predict

the resolution type and suggest the corresponding resolution parameters for the guaranteed

safety.
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1.2.2 Conformance monitoring in terminal airspace

In this thesis, we develop a framework for conformance monitoring for the current and

future time using a predicted aircraft trajectory. For the trajectory prediction, if a physics-

based trajectory prediction method is used, since no measurements would be available for

the future time-steps, the future states of an aircraft can be obtained by simply propagating

the aircraft’s dynamics into the future without the correction by the measurements [ 48 ]

or by utilizing the intent information, such as following its flight plan or deviating due to

the instructions given by ATCs, if such intent can be inferred [ 47 ][ 49 ]. If there exist a large

enough number of trajectories representing such intents in dataset, we can learn a data-driven

trajectory prediction model that can represent sequential behaviors of an aircraft, e.g., RNN

[ 50 ] or LSTM [ 51 ]. Using the output of the data-driven model as a pseudo-measurement, a

physics-based estimation method, such as Kalman filter or its variants, can incorporate the

aircraft’s current dynamics (e.g., flying with a constant velocity or performing a coordinated

turn) with the expected states in the future, that is, the pseudo-measurements. With the

predicted trajectory of an aircraft under monitoring, we compute the conformity score of the

aircraft using a stochastic conformal prediction method. The conformal prediction [  52 ] is a

technique to provide a conformity score for a new data instance by computing how different

the new one is with respect to the existing data instances, which is called Non-Conformity

Measure (NCM). In our application, since the predicted trajectory is sequentially updated

along time (i.e., the number of track points grows) and it is not complete in the sense that it

does not reach its final point yet, the NCM is required to be applicable for such sequentially

updated, incomplete trajectories. To address this issue, the authors of [  53 ] used the directed

Hausdorff Distance (DHD) [  54 ] which can effectively capture the degree of how an incomplete

trajectory resembles another complete trajectory. This method can handle deterministic

trajectories only, however, the predicted track points of the aircraft under monitoring are

stochastic. In this regard, we extend the deterministic version in [  53 ] into a stochastic version

using an approximation method and numerical integration for efficient computation. The

proposed method, called Hybrid Data-driven and Physics-based Trajectory and Conformity
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Prediction, is demonstrated with surveillance data from the repository of real historical air

traffic surveillance datasets.

1.3 Outline of dissertation

This thesis is organized as follows: Chapter  2 presents a framework for detection and

characterization of aircraft resolution maneuvers, followed by the development and test of

the proposed data-driven resolution generator (D2RG). In Chapter  3 , the framework for

trajectory and conformity prediction using hybrid data-driven and physics-based approaches

is described and demonstrated. Final concluding remarks and potential future research

directions are presented in Chapter  4 .
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2. DATA-DRIVEN GENERATION OF CONFLICT

RESOLUTION MANEUVERS IN EN ROUTE AIRSPACE

This chapter is organized as follows: in Section  2.1 , we describe the framework for detection

and characterization of aircraft resolution maneuvers, to construct conflict data. In Sec-

tion  2.2 , the Data-Driven Resolution Generator (D2RG) framework using the conflict data

is presented. Each section consists of the details of each framework and the results of test

and validation with flight data.

2.1 Intent-based Detection and Characterization of Aircraft Maneuvers in En
Route Airspace

In this section, we propose a unified framework for the detection and characterization

of aircraft’s resolution maneuvers from flight data which consists of the following tasks: (i)

the time when an aircraft starts to deviate from its flight plan by taking a maneuver is first

detected, (ii) the maneuver type taken by the aircraft is then identified, and then (iii) the

maneuver is characterized based on how the aircraft performs the maneuver. The goal for

developing the framework is to represent conflict situations in an appropriate form for data-

mining, especially to identify the labels, or the resolution maneuvers, for a given conflict

situation, as discussed in Sec.  2.2 .

The framework shown in Figure  2.1 is proposed based on the underlying idea that any

complex maneuvers of an aircraft can be represented as a sequence of simple motions, or

called intents in this thesis), such as heading hold and heading change in the horizontal

plane, from which we construct the maneuver models. To identify a sequence of intents

of an aircraft from flight data, we first use a hybrid estimation method [ 55 ] in which the

aircraft’s motion is modeled as a stochastic linear hybrid system with the continuous states

(such as position and speed) and discrete states (or flight modes, such as heading hold and

heading change). The estimated continuous and discrete states are then incorporated with

flight plan to infer the aircraft’s intent by extending the intent inference algorithm [  47 ]. The

identified sequence of intents is then compared with the maneuver models to identify and

characterize the maneuver taken by the aircraft.
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2.1.1 Aircraft maneuver modeling

The operation in en route airspace is defined as the flight segment starting from the

departure fix (DF) to the arrival fix (AF) [  56 ] with the three phases: in the climb phase,

an aircraft climbs from the DF to the Top of Climb (TOC); the aircraft then performs

the cruise phase from the TOC to the Top of Descent (TOD); once reaching the TOD,

the aircraft descends to the arrival fix (AF) in the descent phase. The aircraft performs

the en route operation based on the flight plan that contains a series of waypoints in the

horizontal plane, cruise altitude, and planned airspeed values. In this thesis, we define any

deviations from the flight plan as maneuvers. Based on the domain knowledge [  7 ], [  8 ] and

flight data analysis, we identify that air traffic controllers or automated algorithms use a

finite number of maneuver types as shown in Table  2.1 . Note that Table  2.1 contains the

most commonly used ones in air traffic control and any other maneuver types that are not

included in Table  2.1 , such as the maneuver taken by unmanned aircraft, can be similarly

modeled to be included in Table  2.1 , if necessary. In this section, we construct the aircraft’s

maneuver models by representing a maneuver as a sequence of intents in the horizontal,

vertical, and speed dimensions, respectively.

Table 2.1. Maneuver Types
Dimension Maneuver Types

Horizontal (MH)
Direct To (DT)
Path Stretch (PS)
Route Offset (RO)

Vertical (MV )

Temporary Altitude, Climb (TA-C )
Step Altitude, Climb (SA-C )
Step Altitude, Descent (SA-D)
Temporary Altitude, Descent (TA-D)

Speed (MS)
Temporary Change in Cruise Speed (TC-CS)
Change in Cruise Speed (C-CS)
Change in Descent Speed (C-DS)

22



Horizontal Maneuvers

A flight plan in the horizontal dimension is given as a series of waypoints {WPi}NWP
i=0

where WPi = (ξi, ηi) is the horizontal position (ξi is the longitude and ηi is the latitude)

and NWP is the number of waypoints. We define current waypoint, WPic , as the waypoint

that an aircraft is currently flying to and all the waypoints after WPic are called downstream

waypoints, WPid where id > ic. Once an aircraft reaches the current waypoint, the current

waypoint’s index ic is updated as the next index, ic ← ic+1. If an aircraft deviates from the

flight plan by the command of air traffic controllers, there are three types of the horizontal

maneuvers in the current operations, as shown in Figure  2.2 .

Figure 2.2. Maneuvers in the horizontal dimension

• Direct To (DT): The current waypoint is skipped and then one of the downstream

waypoints is selected to take a shortcut. Since the aircraft returns to its flight

plan by reaching the selected downstream waypoint, it is called return waypoint.

• Path Stretch (PS): An aircraft starts to deviate from the flight plan by changing

its heading to a waypoint that was not included in the flight plan, or called

auxiliary waypoint, AuxWP1. Once reaching AuxWP1, the aircraft is heading

to one of the downstream waypoints (or return waypoint).

• Route Offset (RO): With this maneuver tpye, an aircraft passes two auxiliary

waypoints, AuxWP1 and AuxWP2, and then returns to one of the downstream
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waypoints (or return waypoint). The two auxiliary waypoints form a line that is

parallel to the planned path.

Vertical Maneuvers

A flight plan in the vertical dimension is given as a cruise altitude, hc. If an aircraft is

required to take a maneuver in the vertical dimension, there are four types of the vertical

maneuvers in the current operations, as shown in Figure  2.3 .

Figure 2.3. Maneuvers in the vertical dimension

• Temporary Altitude, Climb (TA-C). An aircraft in the climb phase levels off at

an altitude below hc, called assigned altitude, for some period of time and then

climbs to hc.

• Step Altitude, Climb or Descent (SA-C or SA-D). An aircraft in the cruise phase

climbs or descends to an assigned altitude, stays there for some period of time,

and then returns to hc.

• Temporary altitude, descent (TA-D). An aircraft in the cruise phase starts to

descend before reaching TOD to an assigned altitude that is below hc and above

the altitude of AF. After staying there for some period of time, it then descends

to the altitude of AF.
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Speed Maneuvers

A flight plan in the speed dimension is given as planned airspeed values: climb airspeed

(vCL), cruise airspeed (vCR), and descent airspeed (vDE). If an aircraft is required to take

a maneuver in the speed dimension, there are three types of the speed maneuvers in the

current operations, as shown in Figure  2.4 .

Figure 2.4. Maneuvers in the speed dimension

• Temporary change in cruise speed (TC-CS). An aircraft in the cruise phase

changes its airspeed to an assigned airspeed for some period of time.

• Change in cruise speed (C-CS). An aircraft in the cruise phase changes its air-

speed to an assigned airspace and maintains it until reaching the TOD.

• Change in descent speed (C-DS). An aircraft’s planned airspeed in the descent

phase is changed to an assigned airspeed.

Maneuver Models

As discussed above, the maneuvers can be modeled as a sequence of elementary motions

or intents, such as go to the current waypoint, WPic . The set of intents that constitute the

maneuver types in Table  2.1 are presented in Table  2.2 . The maneuvers are then modeled as
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a sequence of the intents as shown in Table  2.3 where the flight segment that deviates from

the flight plan is denoted within the brackets ([·]).

2.1.2 Hybrid Estimation

To identify the sequence of intents of an aircraft, we use a hybrid estimation algorithm.

The aircraft’s motion is modeled as a stochastic linear hybrid system (SLHS) as follows: let

x(k) and q(k) denote the continuous and discrete states at time step k, respectively. The

SLHS model for an aircraft is represented as

x(k + 1) = Aq(k)x(k) + Eq(k)wq(k)(k) (2.1)

z(k) = Cx(k) + v(k) (2.2)

where x is the continuous state, q ∈ Q is the discrete state (Q is a set of discrete states),

and z is the measurement. The process noise wq and the measurement noise v are assumed

to be white Gaussian noise with zero mean and the covariances Qq and R, respectively.

Horizontal Dynamics

The continuous state of an aircraft in the horizontal dimension is defined as

x = [ξ ξ̇ ξ̈ η η̇ η̈]T (2.3)

where ξ and η represent the longitude and latitude, respectively. The discrete state q ∈ Q =

{1, 2} is defined as q = 1 for heading hold mode and q = 2 for heading change mode. The

measurement is defined as z = [ξ η]T = Cx where

C =

 1 0 0 0 0 0

0 0 0 1 0 0

 (2.4)

With the sampling time Ts, the system matrices Aq and Eq are defined for each discrete

mode q ∈ Q = {1, 2} as follows:
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Heading hold mode (q = 1)

A1 =



1 Ts 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 Ts 0

0 0 0 0 1 0

0 0 0 0 0 0


, E1 =



T 2
s

2 0

Ts 0

0 0

0 T 2
s

2

0 Ts

0 0


(2.5)

Heading change mode (q = 2)

A2 =



1 Ts
T 2
s

2 0 0 0

0 1 Ts 0 0 0

0 0 1 0 0 0

0 0 0 1 Ts
T 2
s

2

0 0 0 0 1 Ts

0 0 0 0 0 1


, E2 =



T 2
s

2 0

Ts 0

1 0

0 T 2
s

2

0 Ts

0 1


(2.6)

Vertical and Speed Dynamics

The continuous states in the vertical and speed dimensions are defined as x = [h ḣ]T

and x = [v v̇]T , respectively, where ḣ is the altitude rate and v̇ is the airspeed rate. The

discrete state q ∈ Q = {1, 2} is defined as q = 1 for altitude/speed hold mode and q = 2

for altitude/speed change mode, respectively. The measurements are defined as z = h = Cx

and z = v = Cx, respectively, where

C =
[

1 0
]

(2.7)

The system matrices Aq and Eq are defined for each discrete mode q ∈ Q = {1, 2} as follows:
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Altitude/Speed hold mode (q = 1)

A1 =

 1 0

0 0

 , E1 =

 Ts

0

 (2.8)

Altitude/Speed change mode (q = 2)

A2 =

 1 Ts

0 1

 , E2 =

 Ts

1

 (2.9)

Hybrid Estimation

The hybrid estimation algorithm uses a bank of Kalman filters matched with a discrete

state (or mode), each of which estimates the continuous state x̂i(k) and its corresponding

error covariance Pi(k) conditioned on mode i ∈ Q, at time step k. With the probability

of mode i being correct at time k, denoted as αi(k), the continuous and discrete states are

estimated as:

x̂(k) =
∑
i∈Q

x̂i(k)αi(k) (2.10)

P (k) =
∑
i∈Q
{Pi(k) + [x̂i(k)− x̂(k)][x̂i(k)− x̂(k)]T}αi(k) (2.11)

q̂(k) = arg max
i∈Q

αi(k) (2.12)

where x̂(k) is the estimated continuous state with its error covariance P (k) and q̂(k) is the

estimated discrete state.

Note that the mode probability αj(k) is computed as

αj(k) = 1
c(k)Λj(k)

∑
i∈Q

πijαi(k − 1) (2.13)
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where πij is the mode transition probability from mode i at time step k − 1 to mode j at

time step k and c(k) is a normalizing constant. The likelihood of mode j, Λj(k), is given as

Λj(k) := N (rj(k); 0, Sj(k)) (2.14)

where rj(k) is the residual, or the difference between the actual and estimated measurements,

obtained by Kalman filter j with the corresponding covariance Sj(k) and N (a; b, c) is the

probability at a of a normal distribution with mean b and covariance c.

Since the discrete state estimates play a critical role in the inference of the aircraft’s

intents as discussed in Section  2.1.3 , it is desirable to reduce false estimate of the discrete

states. In this regard, we propose to use an algorithm called Residual-Mean Interacting

Multiple Model (RMIMM) [ 55 ]: if αj(k) is large, i.e., mode j is highly likely to be the

correct mode, then the corresponding residual mean r̄j(k) := E[rj(k)] has a small value. To

increase the difference of the likelihoods between the correct mode and the other modes, the

inverse of the residual mean is used as a weight, that is,

Λnew
j (k) =


Nj(k)Λj(k)∑N

i=1 Ni(k)Λi(k)
if r̄j(k) 6= 0

Λj(k) otherwise
(2.15)

where Ni(k) = ||r̄i(k)||−1 if ||r̄i(k)|| 6= 0; Ni(k) = 1, otherwise. The more distinct mode

probabilities are demonstrated in Figure  2.14 .

2.1.3 Intent Inference

With the estimated continuous and discrete states of an aircraft along with the flight

plan, we present how the aircraft’s intents can be inferred in this section.
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Horizontal Intents

From Table  2.2 , we can observe that the horizontal intents of go to a waypoint correspond

to the heading hold mode, q = 1, and the horizontal intents of turn to the heading change

mode (q = 2).

If the aircraft’s discrete state at time step k in the horizontal dimension is estimated as

q̂(k) = 2, the distance between the current waypoint and the aircraft’s current estimated

position is computed: WPic , d(k) =
∥∥∥(
ξ̂(k), η̂(k)

)
−WPic

∥∥∥: if d(k) ≤ δ for a distance

threshold δ which is a design parameter, then we infer the horizontal intent as turn at the

current waypoint; otherwise, turn not at the current waypoint.

If the aircraft’s discrete state at time step k in the horizontal dimension is estimated as

q̂(k) = 1, we need to identify the corresponding waypoint, either the known one (included in

the flight plan) or the unknown one (auxiliary waypoint). First, the intent likelihood λi(k)

[ 47 ] for the known waypoint is computed as

λi(k) = N
(
ψi(k); ψ̂(k), σ2

ψ

)
for i ∈ {ic, ic + 1, · · · , NWP} (2.16)

where ψi(k) is the heading angle of a unit vector êi(k) from the aircraft’s current estimated

position to the corresponding waypoint which represents intent Hi for i ∈ {ic, · · · , NWP},

ψ̂(k) is the aircraft’s current estimated heading which represents the aircraft’s current intent

represented as the heading of a unit vector, êψ(k), as shown in Figure  2.5 , and the standard

deviation σψ is a design parameter.

From Eq. ( 2.16 ), we can observe that an aircraft is flying to a known waypoint, WPI for

some I ∈ {ic, · · · , NWP} for time steps k− 1 and k, then the corresponding intent likelihood

will have the maximum value, i.e.,

λI(k) ' λI(k − 1) ' 1√
2πσψ

(2.17)

Hence, either of λi(k) 6' λi(k − 1) or λi(k) � 1√
2πσψ

holds for all i ∈ {ic, · · · , NWP},

the aircraft’s horizontal intent is inferred as go to AuxWP1. Furthermore, if the aircraft’s

previous sequence contains go to AuxWP1 and turn not at the current waypoint and the
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Figure 2.5. Intent inference

heading is parallel to the original planned path, the aircraft’s horizontal intent is inferred as

go to AuxWP2.

If Eq. (  2.17 ) holds, then the intent of the maximum likelihood is likely to represent the

current motion of an aircraft. However, the intent inferred this way could be false if two

known waypoints are closely collinear with the aircraft’s position [ 47 ]. In this regard, the

intent likelihood is modified by considering the likelihood in terms of time-to-go (TTG).

With the given waypoints and the cruise ground speed, vCR,g, the TTG to WPi for i ∈

{ic + 1, · · · , NWP} is obtained as

TTGi(k) = 1
vCR,g

∥∥∥(ξic , ηic)−
(
ξ̂(k), η̂(k)

)∥∥∥ +
NWP∑
n=ic+1

‖(ξn, ηn)− (ξn−1, ηn−1)‖
 (2.18)

and for i = ic, the TTG is obtained similarly, without the last term. The temporal likelihood

is then given as

τi(k) = N
(
TTGi(k); 0, σ2

τ

)
(2.19)

where στ is a design parameter. The aircraft’s intent is finally inferred as ÎH(k) = Hî(k) by

solving

î(k) = arg max
i∈{ic,··· ,NWP }

λi(k)τi(k) (2.20)
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Vertical Intents

The vertical intents of cruise at hc and hold an adjusted altitude correspond to the altitude

hold mode (q = 1) and the vertical intents of climb and descend correspond to the altitude

change mode (q = 2).

If q̂(k) = 1, the aircraft’s vertical intent is inferred as cruise at hc if the estimated altitude

of the aircraft is the same as the cruise altitude, hc; otherwise, hold an adjusted altitude.

If q̂(k) = 2, the aircraft’s vertical intent is inferred as climb if ˆ̇h(k) > 0; otherwise,

descend.

Speed Intents

The speed intents of hold correspond to the speed hold mode (q = 1), and the speed

intents of change correspond to the speed change mode (q = 2).

If q̂(k) = 1, we use the airspeed estimate, v̂(k): if v̂(k) = vCL, then ÎS(k) = SCL; if

v̂(k) = vCR, then ÎS(k) = SCR; if v̂(k) = vDE, then ÎS(k) = SDE; otherwise, ÎS(k) = Sa.

If q̂(k) = 2 and k ≤ kTOD, then the aircraft’s speed intent is inferred as change speed

before TOD; otherwise, change speed after TOD. The time step for TOD, kTOD, can be

computed by using the estimated states in the vertical dimension as the point where the

vertical intent changes from cruise at hc to descent within 20 minutes or 200 nautical miles

from the AF [ 8 ].

2.1.4 Maneuver Identification

We use the inferred intents to identify the maneuver, in which the time of starting

deviation, the type of maneuver, and the characteristics of the maneuver in Table  2.4 .

Identification of Horizontal Maneuvers

The horizontal maneuvers are modeled as a sequence of the inferred horizontal intents

based on the maneuver model in Table  2.3 , as shown in Figure  2.6 .
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Table 2.4. Characteristics of Maneuvers
Maneuver Characteristics

DT return WP
PS AuxWP1, return WP
RO AuxWP1, AuxWP2, returnWP

TA-C adjusted altitude, duration
SA-C adjusted altitude, duration
SA-D adjusted altitude, duration
TA-D adjusted altitude
TC-CS adjusted cruise airspeed, duration
C-CS adjusted cruise airspeed
C-DS adjusted descent airspeed

Figure 2.6. Maneuver models (horizontal)

If an aircraft is heading to the current waypoint and takes a turn before reaching the

current waypoint, the aircraft is either (i) taking a shortcut to a downstream waypoint or (ii)

changing its heading to an unknown waypoint. For the case of (i), the aircraft’s maneuver is

determined as Direct to. For the case of (ii), the aircraft’s maneuver can be either Path stretch

or Route offset, as shown in (a) in Figure  2.7 . The maneuver can be uniquely determined

after the aircraft’s intent is inferred as turn not at the current waypoint: if the aircraft’s

following intent is inferred as go to a downstream waypoint, then the maneuver is inferred as

Path stretch; otherwise, Route offset, as shown in (c) in Figure  2.7 . The auxiliary waypoints

for Path stretch and Route offset can be determined as the aircraft’s estimated position where

the intent is inferred as turn not at the current waypoint, as shown in (b) in Figure  2.7 .
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Figure 2.7. PS and RO

Identification of Vertical Maneuvers

The vertical maneuvers are modeled as a sequence of the inferred vertical intents based

on the maneuver model in Table  2.3 , as shown in Figure  2.8 .

Figure 2.8. Maneuver models (vertical)

If an aircraft’s intent was cruise at hc and it changes to descend, the aircraft’s maneuver

can be either SA-D or TA-D as shown in Figure  2.9 . The maneuver type can be uniquely

determined once the intent hold an adjusted altitude is completed: if the following intent is

inferred as climb, then the maneuver type is inferred as SA-D; if descend, then TA-D.
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Figure 2.9. SA-D and TA-D

Identification of Speed Maneuvers

The speed maneuvers are modeled as a sequence of the inferred speed intents based on

the maneuver model in Table  2.3 , as shown in Figure  2.10 .

Figure 2.10. Maneuver models (speed)

Similar to SA-D and TA-D in the vertical dimension, TC-CS and C-CS can be distin-

guished once the intent hold an adjusted speed is completed, as shown in Figure  2.11 .

Figure 2.11. C-CS and TC-CS
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2.1.5 Demonstration with Surveillance Data

The proposed framework is tested and demonstrated with the surveillance data. We use

the flight data generated by Airspace Concept Evaluation System (ACES) [ 57 ], which is

built for the simulation and evaluation of advanced air traffic control concepts [  8 ]. In ACES,

the aircraft’s maneuvers are generated by its internal model called autoresolver [ 7 ], [  8 ]. The

simulated data contains the ground truth about the maneuver’s type and characteristics,

so that we can readily validate the proposed method. The proposed method is tested with

ACES data that contains 9,286 flights where the total of 3,042 maneuvers are recorded. The

type and characteristics of maneuvers identified by the proposed method are compared with

the ones recorded in ACES data. As shown in Figure  2.12 , the proposed method correctly

identifies all of 3,042 maneuvers.

Figure 2.12. Overall performance results

As an illustrative example to show how the proposed algorithm works, consider an air-

craft’s flight plan and flight track shown in Figure  2.13 .

1. Hybrid estimation: By taking the flight track as input, we obtain the contin-

uous state estimates, the mode probabilities, and the discrete state (or mode)

estimates, as shown in Figure  2.14 (a).
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Figure 2.13. Illustrative case: Flight plan and track

2. Intent inference: By taking the estimated hybrid states along with the flight

plan as input, we obtain the intent likelihoods of the waypoints in the flight plan

are obtained as in the left of Figure  2.14 (b). Whenever the aircraft is heading

to one of the waypoints in the flight plan, the corresponding likelihood has the

constant, maximum value. For the time-steps between 114 and 143, however, the

likelihoods for the waypoints in the flight plan are neither constant nor maximum,

thereby the intents during this period being inferred as go to AuxWP1.

3. Maneuver identification: From the intent likelihoods, the intents are inferred as

shown in the right of Figure  2.14 (b), from which Path stretch is identified as the

maneuver type with its characteristics: the auxiliary waypoint and the return

waypoint in the left of Figure  2.14 (a).

In what follows, the results of applying the proposed algorithm to the rest of all the

maneuver types are presented, as shown in Figures  2.15 ,  2.16 , and  2.17 for the horizontal,

vertical, and speed maneuver types, respectively.
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(a) Hybrid estimation

(b) Intent inference (left) and maneuver identification (right)

Figure 2.14. Illustrative case: Results of the proposed algorithm
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(a) Direct to

(b) Route offset

Figure 2.15. Results of the proposed algorithm for the maneuver types in
the horizontal dimension
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(a) Temporary altitude, climb

(b) Step altitude, climb

(c) Step altitude, descent

(d) Temporary altitude, descent

Figure 2.16. Results of the proposed algorithm for the maneuver types in
the vertical dimension

41



(a) Temporary change in cruise speed

(b) Change in cruise speed

(c) Change in descent speed

Figure 2.17. Results of the proposed algorithm for the maneuver types in
the speed dimension
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2.2 Data-Driven Conflict Resolution Generator based on Supervised Learning

From the current standard by Federal Aviation Administration (FAA) [ 56 ], a conflict

between two aircraft is defined as the violation of the separation standard, which is in en-

route airspace 5 nm in the horizontal and 2,000 ft (above 29,000 ft) or 1,000 ft (below 29,000

ft) in the vertical. A conflict is resolved when the separation between two aircraft satisfies

the standard by taking a maneuver, called resolution.

In this section, an algorithm for generating a resolution by learning from flight data,

called Data-driven Resolution Generator (D2RG), whose framework is shown in Figure  2.18 

which consists of (i) learning a D2RG model from flight data and (ii) applying the learned

D2RG model to a conflict situation.

Figure 2.18. Proposed framework: Data-Driven Resolution Generator (D2RG)

From the discussion in Section  2.1 , a resolution maneuver is defined by its type and the

corresponding characteristics, which are called resolution type (RT) and resolution parameter

(RP), respectively, in this section. In this regard, the learning of a D2RG model from flight

data is performed as follows:

• Step 1: Construction of dataset. From flight data, a conflict dataset is con-

structed (Section  2.2.1 ).

• Step 2: Hierarchical classification of RTs. Models for generating RTs are learned

from the conflict dataset by using supervised learning techniques (Section  2.2.2 ).
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• Step 3: Parameter learning for RPs. For each RT, a model for generating RP

is learned from the conflict dataset by using supervised learning techniques with

the guaranteed separation assurance (Section  2.2.3 ).

Figure 2.19. Learning of D2RG

The application of the learned D2RG model to a conflict situation is presented in Sec-

tion  2.2.4 

2.2.1 Construction of Dataset

Considering that a conflict situation and the corresponding resolution method can be

viewed as an input-output relation, we construct a conflict dataset as a labeled data with

input (or a feature vector) and output (or a label), which naturally leads to the use of

supervised learning techniques. For N number of conflict situations in flight data, the conflict

dataset is denoted as, for {
F (k), L(k)

}N
k=1

(2.21)

where, for k-th conflict situation, F (k) is a feature vector (conflict situation) and L(k) is a

label (resolution method).
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Features

To construct a feature vector that represent a conflict situation, we utilize the domain

knowledge about how conflicts are resolved by air traffic controllers [  58 ] and the autore-

solver [ 7 ], [  8 ] which is an embedded tool for conflict resolution in the ACES. The features

in the constructed feature vector can be categorized into four types of information that

represent a conflict situation, as shown in Figure  2.20 and Table  2.5 :

• Primary conflict: The distance, relative speed and heading between two aircraft

involved in a given conflict situation are used.

• Flight plan: The flight plans of the two conflict aircraft are used.

• (Potential) secondary conflict: A secondary conflict happens when either of the

two conflicting aircraft that takes a resolution maneuver interrupts the other

aircraft’s path, which should be avoided when generating a resolution. The

information related to the neighboring aircraft around the conflicting aircraft is

used.

• Airspace structure: Air traffic controller’s decisions are affected by the structure

of an airspace, and hence the related information is used.

Labels

A resolution method, or its type (RT) and the corresponding parameter (RP), can be

identified by using the method presented in Section  2.1 . For a given conflict situation k, let

the identified RT be denoted as Z(k) and its corresponding dimension (the horizontal, vertical,

or speed) as Y (k), and then the label in Eq. ( 2.21 ) is constructed as L(k) = (Y (k), Z(k)).

By preprocessing (such as feature scaling), the constructed feature vector, F (k) = X(k), is

combined with the label so that we now construct a conflict dataset
{
X(k), (Y (k), Z(k))

}N
k=1

.
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Figure 2.20. Conflict situations

2.2.2 Resolution Type: Hierarchical Classification

By analyzing the flight data, we find that the importance of the features (input) and

the distribution of the labels (output) are dependent on the flight phases (climb, cruise, and

descent) of two conflicting aircraft at the time of the predicted conflict, or called conflict

type. In this regard, we first group the conflict situations based on the conflict type, which

consists of nine cases,MCT = {CL/CL, CL/CR, CL/DE, CR/CL, CR/CR, CR/DE, DE/CL,

DE/CR, DE/DE} where CL is climb, CR is cruise,DE is descent, and the first and second

elements in each type correspond to the flight phases of a maneuvering aircraft and a non-

maneuvering aircraft, respectively.

With the conflict type-matched conflict data, we propose a framework based on the

hierarchical classification-based supervised learning, as shown in Figure  2.21 .

Through flight data analysis and the literature review [ 59 ], we find that there exists the

flexibility in ATC’s conflict resolution by choosing any of the maneuvering dimension among

the horizontal, vertical, and speed and this flexibility is preferred by ATCs [  8 ]. In this regard,

we propose the hierarchical framework where the likelihood of a maneuvering dimension is

computed by the upper-level classifier C(i)
dim with the dataset {X(k), Y (k)}Nk=1 and for each
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Figure 2.21. RT: Hierarchical classification

maneuvering dimension, the likelihoods of RTs are then provided by the lower-level classifier

{X(k), Z(k)}Nk=1, and hence we train or learn 4 classifiers for each conflict type.

Any technique for multi-class classification can be used for learning, but considering

the highly nonlinear nature of the conflict data and the importance of the features varying

along the conflict types, we propose to use the feature-weighted support vector machine

(FWSVM) [ 60 ], [  61 ]. The important of each feature, or feature weight, is embedded in

learning the classifier, i.e., the feature weights and the classifier (SVM) are simultaneously

learned.

2.2.3 Resolution Parameter Learning

A resolution trajectory can be viewed as a two-step procedure: (i) the deviation from

the planned path by adjusting the heading, altitude, or speed and then (ii) maintaining

the deviated path until the conflict is safely resolved, followed by returning to the original

planned path. In this regard, for a given RT, a data-driven model for the first step, called

adjustment, C(j)
adj, is learned to determine the amount of deviations and a data-driven model

for the second step, called action, C(j)
act, is learned to determine a decision whether holding

the deviated path or returning to the original planned path, as shown in Figure  2.22 .

We illustrate with Path stretch as an example how to learn the two models.

Adjustment: In the learning of the adjustment parameter, we apply a data-driven method

with a check for the guaranteed safety in an iterative manner so that the resultant deviation
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Figure 2.22. Learning of RPs

of the maneuvering aircraft makes it pass the outside of the non-maneuvering aircraft’s pro-

tected zone. We assume that the non-maneuvering aircraft does not change its path during

the maneuvering aircraft’s resolution process. If the non-maneuvering aircraft deviates from

its path during the process, which leads to a secondary conflict, we regard this as a new

conflict and subsequently resolve it.

A data-driven method is used to learn the most likely value of the adjustment from the

data, for which a dataset (features and labels) is constructed for each RT, as follows:

• Features: Along with the features in Table  2.5 , we use (i) the maneuvering

aircraft’s distance to the non-maneuvering aircraft’s protected zone when the

resolution is issued and (ii) the remaining distance to the downstream waypoint

that is closest to the maneuvering aircraft.

• Label: The label is given as a deviation angle, φ, which is from −60◦ to +60◦

with the increment of 15◦, determined through analysis of the flight data.

For the guaranteed safety, the deviation angle, φ, should result in a trajectory that passes

outside of the protected zone of the non-maneuvering aircraft.

Action: In the learning of the action parameter, the label is given as Action-hold for

holding the deviated path and Action-return for returning to the planned path once the

conflict is safely resolved. At each time-step, we sequentially apply a classification model for

the decision between hold and return. An example is shown for Path stretch in Figure  2.23 .

49



After the adjustment (or the deviation angle) is determined by the adjustment model, we

first check if Action-return guarantees the safety (no conflict) or not: if not safe, Action-hold

becomes the action taken at the time-step; otherwise (both Action-hold and Action-return

are safe), a classification model is used to determine an action. The classification model is

learned with the dataset as follows:

• Features: We use (i) the maneuvering aircraft’s distance to the non-maneuvering

aircraft’s protected zone when the resolution is issued and (ii) the remaining

distance to the downstream waypoint that is closest to the maneuvering aircraft.

• Label: Action-hold represents the action of maintaining the deviated heading

and Action-return represents the action of changing the heading to the nearest

downstream waypoint.

Figure 2.23. RP-action: Path stretch

For the other RTs, the adjustment parameter and the action for hold and return are

summarized in Tables  2.6 ,  2.7 and  2.8 .

50



T
ab

le
2.

6.
R

Ps
fo

r
th

e
ho

riz
on

ta
lR

Ts
R

es
ol

ut
io

n
ty

pe
A

dj
us

tm
en

t
pa

ra
m

et
er

A
ct

io
n

-h
ol

d
A

ct
io

n
-r

et
ur

n

D
T

D
ow

ns
tr

ea
m

wa
yp

oi
nt

-
R

et
ur

n
to

fe
as

ib
le

wa
yp

oi
nt

PS
D

ev
ia

tio
n

an
gl

e
H

ol
d

de
vi

at
ed

pa
th

R
et

ur
n

to
do

w
ns

tr
ea

m
wa

yp
oi

nt

R
O

D
ev

ia
tio

n
an

gl
e

H
ol

d
de

vi
at

ed
pa

th
,H

ol
d

pa
ra

lle
lr

ou
te

R
et

ur
n

to
do

w
ns

tr
ea

m
wa

yp
oi

nt

T
ab

le
2.

7.
R

Ps
fo

r
th

e
ve

rt
ic

al
RT

s
R

es
ol

ut
io

n
ty

pe
A

dj
us

tm
en

t
pa

ra
m

et
er

A
ct

io
n

-h
ol

d
A

ct
io

n
-r

et
ur

n

TA
-C

Le
ve

lo
ff

al
tit

ud
e

H
ol

d
al

tit
ud

e
C

lim
b

to
cr

ui
se

al
tit

ud
e

SA
-C

/D
A

dj
us

tm
en

t
in

al
tit

ud
e

H
ol

d
al

tit
ud

e
D

es
ce

nd
/c

lim
b

to
cr

ui
se

al
tit

ud
e

TA
-D

D
es

ce
nt

al
tit

ud
e

H
ol

d
al

tit
ud

e
-

T
ab

le
2.

8.
R

Ps
fo

r
th

e
sp

ee
d

RT
s

R
es

ol
ut

io
n

ty
pe

A
dj

us
tm

en
t

pa
ra

m
et

er
A

ct
io

n
-h

ol
d

A
ct

io
n

-r
et

ur
n

T
C

-S
Sp

ee
d

de
vi

at
io

n
H

ol
d

de
vi

at
ed

sp
ee

d
R

et
ur

n
to

cr
ui

se
sp

ee
d

C
-C

S,
C

-D
S

Sp
ee

d
de

vi
at

io
n

H
ol

d
de

vi
at

ed
sp

ee
d

-

51



2.2.4 Applying D2RG to Unseen Conflict Situations

The learned classifiers for the RTs and the learned models for the RPs constitute the

proposed D2RG framework for an unseen conflict situation, as shown in Figure  2.24 .

Figure 2.24. Application of D2RG to an unseen conflict situation

Suppose that a feature vector is given as x for an unseen conflict situation. The advisory

list of most likely RTs for each dimension for the given x is obtained as follows:

1. The feature vector x is fed into Conflict-Type Matching to identify its conflict

type i ∈MCT .

2. For i, the classifier for the maneuvering-dimension, C(i)
dim, yields the likelihood of

each maneuvering dimension y ∈ {H, V, S} for x, i.e., P (y|x).
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3. Within each y, the RT classifier C(i)
y computes the likelihood of RT z ∈ My

within y for x, i.e., P (z|x, y).

4. The likelihood of RT z ∈My for x can then be computed as:

P (z|x) = P (y|x)P (z|x, y) (2.22)

The most likely RT z∗
y for each y,

z∗
y = arg max

z∈My

P (z|x) for y ∈ {H, V, S} (2.23)

and its likelihood P (z∗
y) form the RT advisory list.

For z∗
y in each y, the adjustment parameters and the action parameters are computed

from C
(z∗
y)

adj and C
(z∗
y)

act , respectively, in a way that the safety is guaranteed, as follows:

1. Adjustment: If C(z∗
y)

adj suggests an adjustment parameter that is not safe (i.e.,

passing through the non-maneuvering aircraft’s protected zone), the next most

likely adjustment parameter is examined, and this process is repeated until the

safety is guaranteed.

2. Action: Once the adjustment parameter is determined, C(z∗
y)

act determines if Action-

return is likely, as well as safe at each time-step. If Action-return is neither likely

nor safe, the model determines Action-hold until the next time-step. This pro-

cedure is repeated until reaching the time-step at which Action-return is both

likely and safe.

In summary, the proposed D2RG framework can learn the knowledge about how to resolve

aircraft’s conflicts embedded in flight data (both in RT and RP), as well as can guarantee

the safety (in RP).

2.2.5 Results and Discussion

The proposed framework is tested and demonstrated with the ACES data, which is

simulated for 38 hours and 26 minutes, over 21 United States continental Air Route Traffic
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Control Centers (ARTCCs). The total number of flights is 54,300, with the total of 14,599

two aircraft conflicts involved.

To determine the accuracy of the RT classification, we randomly split the conflict data

into 70% for learning and 30% for test and the random split of the data is performed 10 times.

For the conflict situation in the test set, the proposed D2RG is said to correctly classify the

RT if the true RT recorded in the ACES data is included in the output, i.e., the advisory list

of RTs. The prediction accuracy is measured as the ratio of the correctly classified conflict

situations to the number of conflict situations in the test set, which results in 84.12% with

a standard deviation of 3.02%. That is, the learned D2RG model can correctly imitate the

decisions embedded in the conflict data in the determination of the RTs.

We then check the safety of the RTs in the generated advisory list by comparing the

minimum distance between two conflicting aircraft by using the RPs generated by the pro-

posed D2RG with the FAA’s separation standard. In Figure  2.25 , the minimum distance

between two conflicting aircraft without a resolution maneuver (in red) and with a resolution

maneuver for the correctly classified cases (blue) and the misclassified cases (magenta). We

can observe that all the conflict situations are successfully resolved, even for the cases where

the RTs are misclassified, and hence the proposed D2RG can guranteed the safety.

(a) Horizontal maneuvers (b) Vertical maneuvers

Figure 2.25. Minimum distance between two conflicting aircraft
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As an illustrative example to show how the proposed D2RG works, we present a conflict

situation where two conflicting aircraft are in their cruise phases and at the same altitude,

as shown in Figure  2.26 . The conflict is predicted with the minimum distance of 2.18 nm.

In the ACES data, the recorded RT is Path stretch.

Figure 2.26. Illustrative case: Trajectories of two conflicting aircraft in the
horizontal dimension

The RT classifiers result in Table  2.9 , from which the advisory list of RTs is constructed

as shown in Table  2.10 where PS, SA-C/D, and TC-CS are suggested for the horizontal,

vertical, and speed dimensions, and hence the conflict situation is correctly classified.

For each RT in the advisory list, the adjustment and action parameters are obtained by

the corresponding models where the adjust parameter values obtained are presented in Ta-

ble  2.10 . The resultant flight trajectories by employing the obtained resolution methods are

shown in Figs.  2.26 ,  2.27 (a), and  2.27 (b) for the horizontal, vertical, and speed dimensions,

respectively.

As shown in Figure  2.28 , all the resolution methods obtained by the proposed D2RG can

safely resolve the conflict situation by guaranteeing that the minimum distance between the
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Table 2.9. Illustrative case: RT classification
Upper-level label
and P (y|XCL/CL)

Lower-level label
and P (yk|XCL/CL, y)

Likelihood
P (yk|XCL/CL)

Horizontal 56.64%
PS 69.16% 36.41%
RO 30.84% 17.46%
DT 0% 0%

Vertical 32.87%
TA-D 84.22% 27.68%
SA-C/D 15.78% 5.18%
TA-C 0% 0%

Speed 10.49%
C-CS 100.00% 10.49%
TC-CS 0% 0%

Table 2.10. Illustrative case: Advisory list of RTs and corresponding RPs
Maneuver in each dimension Likelihood Adjustment

PS (H) 36.41% +15◦

TA-D (V) 27.68% -2,000 feet
C-CS (S) 10.49% +10 knots

two conflicting aircraft never violates the separation standard in the horizontal and vertical

dimension simultaneously.
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(a) SA-D (b) TC-CS

Figure 2.27. Illustrative case: Trajectories with resolution maneuvers

(a) Horizontal separation (b) Vertical separation

Figure 2.28. Illustrative case: Separation between two conflicting aircraft
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3. DATA-DRIVEN CONFORMANCE MONITORING IN

TERMINAL AIRSPACE

In this chapter, we present a framework for conformance monitoring for a flight trajectory

at the current and future time, by (i) predicting its future track points using a trajectory

prediction algorithm and (ii) computing the conformity scores of the future track points

using a stochastic conformal prediction method, as shown in Figure  3.1 .

Figure 3.1. Framework for hybrid data-driven and physics-based trajectory
and conformity prediction

3.1 Hybrid Data-driven and Physics-based Trajectory Prediction

In this section, we present a framework for hybrid data-driven and physics-based tra-

jectory prediction. Suppose that there exist a large enough number of flight trajectories

recorded in a dataset that represent a known intent, e.g., following a flight plan, and, there-

fore, we can learn a data-driven trajectory prediction model that takes the track points up

to the current time-step t as input and generates a predicted track point at time-step t+ 1,

called data-driven prediction (which is discussed in Section  3.1.1 ), whose probability density

function (pdf) is given as a Gaussian distribution N (µt+1,Σt+1). By using the data-driven

prediction as a pseudo-measurement at t+ 1, we can employ an estimation algorithm, such

as Kalman filter or its variants, to predict the one-step ahead future track point at t + 1,

whose pdf is given as N (ẑt+1, Rt+1), as shown in Figure  3.2 .

Note that a data-driven prediction model for time-series data typically takes a point

input and generates a point output, and a physics-based prediction method takes the pdfs

of the estimate at t and the measurement at t + 1. Hence, in the proposed framework, the
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Figure 3.2. Framework for hybrid data-driven and physics-based trajectory prediction

pdf of the prediction at t is sampled as a sampled track point at t and then combine it with

the previous track points up to t− 1, which is then provided as an input to the data-driven

model. Similarly, since the output of the data-driven model is given as a point, we collect a

number of sampled track points at t+ 1 to obtain a pdf of the pseudo-measurement at t+ 1,

by fitting the points into an assumed pdf, which is then given as an input to the physics-

based method. In this thesis, we propose to use a hybrid estimation algorithm presented

in Section  2.1.2 to accurately model the aircraft’s behaviors. In the following, we describe

the development of the data-driven trajectory prediction model, which is then followed by

the demonstration of the proposed framework with air traffic surveillance data from the

repository of real historical datasets.

3.1.1 Data-driven trajectory prediction

Given a set of recorded trajectories for a given operational condition (e.g., following

a specific flight plan), a data-driven trajectory prediction model is learned based on the

Recurrent Neural Network (RNN) [  50 ], which is a kind of neural networks widely used for

time-series data due to its recurrent structure that can well capture temporal dependency

in the time-series data as well as spatial patterns, which leads to better performance in the

prediction of time-series data. Suppose we have an input time-series X = {xt}Tt=0 and an

output time-series Y = {yt}Tt=0 where xt ∈ Rnx and yt ∈ Rny . To compute the predicted

output ŷt, RNN captures the temporal dependency by using the current input element xt
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along with the past input elements x0, · · · , xt−1. This past information up to t − 1 can be

accounted for in generating ŷt by introducing a mechanism called hidden state, at−1 ∈ Rna

which contains all the past information. The hidden state at t, at is then updated with at−1

and xt, which is used in predicting the output yt

at = ga (waaat−1 + waxxt + ba)

yt = gy (wyaat + by)
(3.1)

where ga and gy are activation functions, such as hyper-tangent or sigmoid, and w’s and b’s

are the weight and bias parameters respectively which are computed by minimizing the sum

of the differences between the (true) output yt and the predicted output ŷt for t = 0, · · · , T .

This standard RNN is, however, limited in learning long-term dependency in time-series

data due to the gradient vanishing/exploding issue when the parameters w’s and b’s are com-

puted during the learning process. To address this issue, several variants of RNN has been

proposed, such as Long Short-Term Memory (LSTM) [  51 ]. In LSTM, additional mechanism

is introduced, called memory cell, ct, as shown in Figure  3.3 .

Figure 3.3. Structure of Long Short-Term Memory (LSTM)

The memory cell flows over time, during which the gates control how much to forget the

previous memory cell ct−1 and update a candidate of the current memory cell c̃t

c̃t = gc̃ (wc̃aat−1 + wc̃xxt + bc̃) (3.2)
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which is equivalent to at in the standard RNN, by adjusting the forget gate Γf ∈ [0, 1] and

update gate Γu ∈ [0, 1], i.e.,

ct = Γf ∗ ct−1 + Γu ∗ c̃t (3.3)

where ∗ is the element-wise multiplication, and the gates are given as, for (·) ∈ {f, u},

Γ(·) = g(·)
(
w(·)aat−1 + w(·)xxt + b(·)

)
. The current hidden state at is then updated by using

the current memory ct, an activation function ga, and the output gate Γo ∈ [0, 1],

at = Γoga (ct) (3.4)

where Γo = go (woaat−1 + woxxt + bo) with an activation function go. Finally, the predicted

output ŷt is computed from the current hidden state at, the same as the way in the standard

RNN.

Suppose that we have a set of trajectories for a given operational condition, {Z(i)}Ni=1

where N is the number of trajectories and Z(i) = {z(i)
t }T

′
t=0 is the i-th trajectory where z(i)

t

is a track point of the i-th trajectory at time-step t and T ′ is the final time-step. Since the

proposed framework in Figure  3.2 requires a one-step ahead prediction from the data-driven

prediction model, the input and output time-series are constructed as X = {{z(i)
t }T

′−1
t=0 }Ni=1

and Y = {{z(i)
t }T

′
t=1}Ni=1 with one-step shift. The parameters of LSTM are computed by

minimizing the difference between the (true) output and the predicted output from LSTM.

Since LSTM, or any existing neural networks, takes a point input and generates a point

output as noted above, the uncertainty of the data-driven prediction is not directly available

(which corresponds to the covariance Σt+1 in Figure  3.1 ). To obtain the uncertainty of

LSTM, we use a technique called Monte Carlo dropout (MCDO) [ 62 ], which is a widely

used scheme for learning the uncertainty of a neural network. With dropout, a connection

in LSTM is dropped, or disconnected, with a probability, called dropout rate, which is a

design parameter. By collecting the output of LSTM with MCDO for a number of input

samples and Monte Carlo runs, a Gaussian pdf is fitted to the collected output samples, thus

resulting in the pdf of the data-driven prediction, N (µ,Σ).
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3.1.2 Demonstration of the proposed trajectory prediction algorithm

In this section, we demonstrate the proposed algorithm with real Automatic Dependent

Surveillance-Broadcast (ADS-B) data. With ADS-B technology, an aircraft determines its

position through satellite navigation and broadcasts it to a ground station or other aircraft

in the proximity. The collected ADS-B used in this research was recorded from January to

June in 2020, around the two major airports in the Republic of Korea, Incheon International

Airport (ICN) and Gimpo International Airport (GMP).

For the illustration purpose, the proposed framework is applied to one arrival trajectory

and one departure trajectory, as shown in Figure  3.4 and Figure  3.5 , respectively. We

compare the proposed hybrid data-driven and physics-based trajectory prediction method

(in blue in each figure) with two baseline methods, the data-driven only (in red) and the

physics-based only (in green). The performance of each method is measured by the prediction

error, i.e., the difference between the predicted trajectory and the recorded trajectory (in

black). In each figure, the left shows the trajectories and the right represents the prediction

error. The prediction is performed at the last/initial part of arrival/departure trajectories

for the prediction horizon of 20 time-steps where the time interval is 5 seconds.

It is shown that the proposed method outperforms the baseline methods by incorporating

the aircraft’s current dynamics (physics-based) with the expected states in the future from

the learned LSTM (data-driven). In the next section, we use the proposed method to predict

the future track points of an aircraft under monitoring for predicting the conformity scores

of each future track point.
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Figure 3.4. Arrival trajectory prediction

Figure 3.5. Departure trajectory prediction

3.2 Conformance Monitoring with Stochastic Conformal Prediction

In this section, a method for computing the conformity scores of the future track points is

presented. Suppose that we have a set of similar trajectories, {Z(i)}Ni=1 where Z(i) = {z(i)
t }Tt=0

is an aircraft trajectory, zt is a track point at time-step t, and T is the final time-step. For the
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track points of a new, incoming trajectory observed up to time-step Tp, this new (N + 1)-th

trajectory is constructed as

Z(N+1) = {z(N+1)
t }Tpt=0 ∪ {ẑ

(N+1)
t }Tp+Th

t=Tp+1 (3.5)

with the track points observed up to Tp and the ones predicted for the future horizon of Th
that are obtained by the method described in Section  3.1 . We use conformal prediction [  63 ]

in order to compute the conformity score of Z(N+1) with respect to {Z(i)}Ni=1, which is given

as

p(N+1) = |α
(i) ≥ α(N+1), i = 1, · · · , N + 1|

N + 1 (3.6)

where α(i) for i = 1, · · · , N + 1 is a non-conformity measure (NCM) that represents how

different Z(i) is from {Z(j)}N+1
j=1,j 6=i. The smaller p(N+1), the more non-conforming Z(N+1)

to {Z(j)}Nj=1, and hence p(N+1) can be used as an conformity score, i.e., a measure of how

conforming the new trajectory is with respect to the set of similar trajectories. To compute

the NCM, α(i)’s, we use the directed Hausdorff distance (DHD) [  53 ][ 64 ], which measures how

the shape of a set of points A resembles some part of the shape of another set of points B,

defined as
~δH(A,B) = max

a∈A

{
min
b∈B
{d(a, b)}

}
(3.7)

where d(a, b) is a distance between two points a and b, by some metric, e.g., the Euclidean

distance. Note that the DHD is not symmetric, i.e., ~δH(A,B) 6= ~δH(B,A) in general.

Suppose that A = {a0, a1} is a new trajectory where a0 is deterministic and a1 ∼

N (ā1,Σ1) and B = {b0, b1, b2} is a trajectory from the set of trajectories where all the

track points b0, b1, b2 are deterministic. Due to the stochastic track point a1, the DHD,

δH(A,B), as well as the NCMs, α’s, also become stochastic variables. To handle this, we

compute the expectation of the DHD, which is given as

E
(
~δH(A,B)

)
=

∫
a1

~δH (A (a0, a1) , B (b0, b1, b2)) f(a1)da1 (3.8)

64



where f(a1) is the pdf of a1. However, due to the minimum and maximum in the DHD, the

numerical integration is not trivial to perform. In this regard, we propose to use an approx-

imated form of the DHD that can be numerically integrated. Among the several approxi-

mation methods for the minimum/maximum function (called smooth minimum/maximum),

such as the LogSumExp (LSE; also called RealSoftMax), p-norm, and the generalized mean

[ 65 ], we choose the LSE which is widely used for machine learning [ 66 ] and given as

max{x1, · · · , xn} ≈
1
ρ

log (exp (ρx1) + · · ·+ exp (ρxn)) (3.9)

where ρ is a large enough positive constant. The minimum can be similarly approximated

by replacing ρ with −ρ.

By applying the LSE technique twice, the DHD can be approximated as

~δH(A,B) = max
a∈A

{
min
b∈B
{d(a, b)}

}
≈ 1
ρM

log
{

1
|A|

[exp {ρMdm(a0)}+ exp {ρMdm(a1)}]
} (3.10)

where, for a ∈ A,

dm(a) = − 1
ρm

log
{

1
|B|

[exp {−ρmd(a, b0)}+ exp {−ρmd(a, b1)}+ exp {−ρmd(a, b2)}]
}

(3.11)

and ρm and ρM are large enough positive constants. By plugging Eq. (  3.10 ) and Eq. (  3.11 )

into Eq. ( 3.8 ), we can compute the expectation of the DHD, E
(
~δH(A,B)

)
, if trajectory A

contains one stochastic track point and trajectory B is entirely deterministic, and similarly

for E
(
~δH(B,A)

)
(the case where there are multiple stochastic track points is discussed in

Section  3.2.2 ). Note that if both trajectories A and B are deterministic, the expectation of

the DHD is simply equal to Eq. ( 3.7 ).

Once computing the expectations of the DHDs for all the pairs from {Z(i)}N+1
i=1 , the NCM

of the i-th trajectory, α(i) for i = 1, · · · , N + 1, is then obtained as

α(i) =
k∑
j=1

E
[
~δH

(
Z(i), NN

({
Z(l)

}N+1

l=1,l 6=i
\ Z(i), j

))]
(3.12)
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where NN
({
Z(l)

}N+1

l=1,l 6=i
\ Z(i), j

)
is the j-th nearest neighbor to Z(i) according to the expec-

tation of the DHD and k is a design parameter. With the computed NCMs, the conformity

score of the new trajectory, p(N+1), is computed using Eq. ( 3.6 ).

For the validation of the proposed method, we compare it with Monte Carlo simulation

to measure the performance in terms of computation time and accuracy. The computation

time is checked along the number of trajectories, N , and the number of track points in

each trajectory, T . As shown in Figure  3.6 , the propose method is significantly efficient

compared to Monte Carlo simulation. For a given N and T , the NCM value from Monte

Carlo simulation is 2.1908 (considered as a ground truth), while the proposed method has

2.2039, which has 0.60% error with respect to the ground truth. That is, the proposed

method using the smooth approximation can perform the computation effectively (in terms

of accuracy) and efficiently (in terms of computation time).

Figure 3.6. Comparison of the computation time: Monte Carlo simulation
and the proposed approximation

3.2.1 Conformance monitoring at the current time

In this section, the algorithm described in Section  3.2 is applied to conformance monitor-

ing for the current time. For a new incoming trajectory, the track points observed up to the

current time-step are used to detect if it is conforming to the set of similar trajectories. The
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states of a trajectory at the current time-step is estimated using the hybrid estimation algo-

rithm in Section  2.1.2 and all the past track points are considered deterministic (therefore

the new trajectory contains only one stochastic variable).

With the data used in Section  3.1.2 , we present the four abnormal cases of the new

trajectory:

1. Departure trajectory that performs Direct-to (deviating from the normal trajec-

tories and never returning to them), shown in Figure  3.7 

2. Departure trajectory that performs Path-stretch (deviating from the normal tra-

jectories and returning to them), shown in Figure  3.8 

3. Arrival trajectory that performs Direct-to, shown in Figure  3.9 

4. Arrival trajectory that performs Path-stretch, shown in Figure  3.10 

In each figure, the upper plot shows the set of normal trajectories (in black; the arrow

represents the moving direction) and the new trajectory where the red dots and blue ellipses

represent the mean and covariance (two standard deviation) of the estimated current states,

respectively, in the horizontal plane. The lower plot presents the time history of the con-

formity score of the new trajectory. The arrows with time in the upper plot represent the

initial position (0 sec) and the position where the conformity score first becomes 0.

For the departure trajectories, the Direct-to trajectory in Figure  3.7 is detected as an

anomaly within three time-steps, while the Path-stretch trajectory in Figure  3.8 is within

seven time-steps. Possible reasons for such detection delay in the Path-stretch include (i) that

the Path-stretch is very close to the normal trajectories at the initial time-steps so that its

conformity score is high, which means that it is considered as conforming during the period;

and (ii) that the set of normal trajectories for the Path-stretch case have a relatively wide

variations than the Direct-to case, which implies that the NCMs of the normal trajectories

and the new trajectory are comparable each other. Note that, however, although the Path-

stretch trajectory returns to the normal trajectories, its conformity score never increases (i.e.,

it is converged to 0), because the deviated part of the trajectory makes its shape different

from the normal trajectories.
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Figure 3.7. Conformance monitoring at the current time: Direct-to anomaly (departure)

Figure 3.8. Conformance monitoring at the current time of departure tra-
jectories with Path stretch anomaly (departure)

For the arrival trajectories, the Direct-to trajectory in Figure  3.9 is detected as an

anomaly within five time-steps, while the Path-stretch trajectory in Figure  3.10 is within

four time-steps. For the Direct-to, its conformity score starts from about 0.5 (in the middle

of conforming (1) and non-conforming (0)), it quickly decreases to about 0.05 in four time-

steps and then converges to 0 in the next time-step. For the Path-stretch, its conformity

score starts from very low value of about 0.037, possibly due to its direction before the initial

time-step which is different from the normal trajectories. It converges to 0 within four time-
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steps, which could be attributed to the wide variations of the normal trajectories, similar to

the departure Path-stretch case.

Figure 3.9. Conformance monitoring at the current time: Direct-to anomaly (arrival)

Figure 3.10. Conformance monitoring at the current time: Path stretch
anomaly (arrival)

3.2.2 Conformance monitoring at the future time

In this section, the algorithm described in Section  3.2 is applied to conformance moni-

toring at the future time.

Note that, for the trajectory prediction presented in Section  3.1 , it is supposed that

there exist a large enough number of trajectories recorded in a dataset corresponding to a
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known intent, such as following a flight plan or deviating due to ATC’s instructions. If a

new incoming trajectory is conforming to any known intents, its future track points can be

predicted by the trajectory prediction method presented in Section  3.1 . However, if it is

non-conforming to any of known intents, the method in Section  3.1 is not applicable. For

such cases where any information about the future is not available, the future trajectory

can only be predicted by propagating its current states into the future using a dynamics.

Note that, in the horizontal plane, the two types of anomaly, Direct-to and Path-stretch, can

be distinguished after an aircraft takes turning and then returns to the normal trajectories

(Path-stretch) or it reaches a known waypoint with a straight line motion (Direct-to). Direct-

to and Path-stretch, however, share a property that the part of the trajectory right after

the deviation starts is (almost) straight line. Through data analysis, it is identified that any

trajectory of Direct-to or Path-stretch maintains the straight line at least for 25 seconds. In

this regard, we propose the following: once a new incoming trajectory is determined that it is

not conforming to any known intent (by using the maneuver detection and characterization

method in Section  2.1 ), its current intent is considered as maintaining the heading of the

trajectory at the time of detection at least for 25 seconds, based on which the future track

points are predicted along this intent [ 47 ].

For the either of conforming or non-conforming cases, there are more than one future

track points predicted. For two trajectories, Z(i) and Z(j), suppose that Z(i) contains the

Ns number of stochastic track points, z(i)
1 , · · · , z(i)

Ns . Then, the expectation of the DHD in

Eq. ( 3.8 ) for a single stochastic variable becomes

E
(
~δH(Z(i), Z(j))

)
=

∫
z

(i)
Ns

· · ·
∫
z

(i)
1

~δH
(
Z(i), Z(j)

)
f(z(i)

1 ) · · · f(z(i)
N )dz(i)

1 · · · dz
(i)
Ns (3.13)

Since the computation time of numerical integration in Eq. ( 3.13 ) exponentially increases

with the number of the stochastic variables, it cannot be directly applicable in real-time

application. In this work, we use the method similar to the one discussed in Section  3.2.1 

by replacing the estimate of the current track point with a predicted track point for a

future time-step within a prediction horizon. That is, for the time when the prediction

is performed, Tp, and the prediction horizon, Th, the predicted track point at each future
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time-step Tp + i for i = 1, · · · , Th along with the past track points up to Tp are combined

to construct a new trajectory. We compare the conformity score computed by the proposed

conformance monitoring at the future time (that is, before observing the track point at Tp+i

for i = 1, · · · , Th) with the one by conformance monitoring at the current time (that is, once

observing the track point at Tp + i for i = 1, · · · , Th). The performance is measured by (i)

the accuracy, that is, the difference between the predicted conformity score and the one from

the conformance monitoring at the current time, and (ii) detection delay, i.e., the difference

between the time-steps when the anomaly is detected by the two methods.

For the illustration, we present three cases of a new trajectory, one normal and two

abnormal trajectories, as shown in Figure  3.11 to Figure  3.13 . In each figure, the upper plot

shows the set of normal trajectories (in grey for the normal case for the visibility and in black

for the abnormal cases; the arrow represents the moving direction) and the new trajectory

where the blue dots and ellipses represent the mean and covariance of the track points up

to the current time-step (represented as 0 sec) and the red dots and ellipses represent those

at the future time-steps. The lower plot presents the time history of the conformity score

of the new trajectory where the blue one is from the proposed conformance monitoring at

the future time (prediction) and the red one is from conformance monitoring at the current

time (estimation).

For the normal case in Figure  3.11 , the conformity score of the proposed conformance

monitoring at the future time does not converge to the one of the conformance monitoring

at the current time within the prediction horizon, but both scores are around or above 0.5,

which can be regarded as normal.

For the abnormal cases in Figure  3.12 and Figure  3.13 , the conformity scores converge

to 0 with delay in detection time of zero or one. The trajectory prediction with a straight

line and the use of a single stochastic variable work well for the cases shown in this section,

but it is required to significantly extend the proposed method to be useful in real-world

applications. The corresponding future research directions are discussed in Section  4.2 .
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Figure 3.11. Conformance monitoring at the future time: normal trajectory.

Figure 3.12. Conformance monitoring at the future time: abnormal trajectory no. 1

Figure 3.13. Conformance monitoring at the future time: abnormal trajectory no. 2
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4. CONCLUSION

Concluding remarks and possible directions of the research presented in this thesis are pre-

sented in this chapter.

4.1 Concluding remarks

This thesis focuses on the development of decision supporting tools for air traffic con-

trollers, especially focused on the safety of air traffic management. This effort is presented

in two-folds based on the two main tasks of air traffic controllers (ATCs): control and mon-

itoring.

For control, a data-driven conflict resolution tool which can aid ATCs in the decision-

making process for air traffic conflict resolution has been proposed. To achieve this objective,

first, an algorithm has been proposed for for the detection and identification of aircraft ma-

neuvers. The maneuver types have been represented as a sequence of simple motions, called

intents. Flight plans, flight tracks, and the maneuver models are used to infer the aircraft’s

intents based on an aircraft’s continuous and discrete states by using a hybrid estimation

algorithm, and the maneuvers are inferred based on the inferred intents. By testing with

flight data, it has been demonstrated that the proposed algorithm can successfully identify

the aircraft maneuvers. Second, a data-driven technique has been proposed for the devel-

opment of conflict resolution tool, which learns from flight data to extract the knowledge

about the resolution methods embedded in the data, thereby providing an advisory list of

resolution maneuvers that can guarantee the safety. For classification of resolution types, a

hierarchical form of supervised learning techniques has been used. For a classified resolution

type, the corresponding resolution parameters are also provided in a way that the separation

between two conflicting aircraft can be guaranteed.

For monitoring, a hybrid data-driven and physics-based trajectory and anomaly predic-

tion framework has been proposed to help enhance the situational awareness of ATCs, by

understanding the current status and predicting the future states of aircraft. To predict

the future states of an aircraft, a trajectory prediction framework has been developed by

combining a data-driven prediction model and a physics-based prediction method. Since the
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estimated or predicted states of an aircraft are stochastic, a stochastic version of anomaly

detection and prediction algorithm has been developed. The developed methods have been

demonstrated with a real surveillance data.

4.2 Future Work

For control, to further improve the performance of the conflict resolution generator, learn-

ing from large-scale real flight datasets for a specific airspace, such as a sector, would make

it more effective in mimicking the ATC response to aircraft conflicts. Also, the supervised

learning used in this work tries to learn the air traffic controller’s practices recorded in the

data, but there could be other performance measures such as time or fuel consumption. The

applicability of the algorithm would be improved by investigating the balancing between the

exploitation (use the current practice learned from the data) and the exploration (find more

efficient solution).

For monitoring, the proposed trajectory prediction requires a large enough number of

trajectories for a known intent. The known intent in this thesis is only the case where

the flight trajectories follow a known flight plan. This can be extended to a smaller set

of flight trajectories, such as vectoring patterns, i.e., the trajectory patterns formed by a

frequent instructions of ATCs for a specific traffic situation. Also, if the stochastic conformal

prediction can be further extended to a version that can account for more than one stochastic

variables, the performance of conformance monitoring for the future time would be improved.
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