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ABSTRACT

In air traffic management, the primary goal is the safety and efficiency of airspace oper-
ations under the responsibility of air traffic controllers (ATCs). With the growing demand
of air traffic, it becomes critical to develop advanced techniques to support the decisions
made by ATCs, which include control and monitoring of air traffic. To reduce the workload
on ATCs in both control and monitoring, this thesis focuses on the development of decision
supporting tools for (i) aircraft conflict resolution in en-route airspace and (ii) conformance
monitoring in terminal airspace.

The first part of this thesis focuses on the development of a data-driven conflict resolution
tool which can aid the decision-making process of ATCs for air traffic conflict resolution. The
decision-making process can be viewed as a system that takes conflict situations as input
and generates corresponding conflict resolution methods as output. That is, each conflict
can be represented as a tuple of (Conflict Situation, Resolution Methods). To construct a
conflict data in this form from air traffic surveillance data, we first need to label each conflict
situation, or identify resolution methods (outputs) used for the conflict situation. The key
idea is that any complex maneuvers can be modeled as a sequence of simple or primitive
motions, called intents. Using the domain knowledge obtained from flight data and the intent
inference algorithm, a framework for the detection and characterization of aircraft resolution
maneuvers is proposed to identify resolution types and resolution parameters. Based on the
knowledge extracted from the constructed conflict data with the features representing conflict
situations (or inputs), a classification model is designed which determines the resolution type
for every two-aircraft conflict in the airspace. In addition to predicting the resolution type,
the proposed conflict resolution algorithm can also suggest appropriate resolution parameters
for the guaranteed safe separation. The combination of the resolution type prediction model
and resolution parameter suggestion model can sufficiently and safely resolve any two aircraft
conflict.

The second part of the thesis is for the development of a conformance monitoring method-
ology for the current and future time, to help enhance the situational awareness of ATCs.

To predict the future states of an aircraft, a trajectory prediction framework is developed



by combining a data-driven prediction model, which generates expected states of an air-
craft learned from flight data, and a physics-based prediction method, which incorporates
the current motion of an aircraft. Since the estimated or predicted states of an aircraft are
stochastic, a stochastic version of anomaly detection and prediction algorithm for sequen-
tially updated aircraft trajectories is developed using a smooth approximation for numerical
integration.

All the proposed methods are demonstrated with real flight data to show their potentials
as decision supporting tools that can help reduce the workload on air traffic controllers and

enhance the safety of air traffic operations.
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1. INTRODUCTION

In air traffic management (ATM), the primary goal is the safety and efficiency of airspace
operations managed by air traffic controllers (ATCs). With the growing demand of air
traffic [1], it becomes critical to develop advanced techniques to support the decisions made

by ATCs, which include control and monitoring of air traffic:

1. Control: Although airspace is efficiently divided into operational classes and
flight plans are scheduled to assure separation between airborne aircraft, ATCs
intentionally instruct deviations of aircraft from their flight plans for the tasks
such as aircraft conflict resolution, avoidance of weather cells, or sequencing and

scheduling [2].

2. Monitoring: Any deviations of an aircraft from its flight plan are monitored by
ATCs, or if ATCs instruct a deviation intentionally for the purpose of ATM,
ATCs should monitor whether the aircraft follows the instructed path or not.
Since any deviation against the intent of aircraft (following flight plan or the
instructions of ATCs) could compromise the safety and efficiency of the air traffic
operations, it is critical to monitor the aircraft’s behavior by understanding their

current status and predicting the futures states under the ATCs’ control.

In order to reduce the workload of ATCs in both control and monitoring by helping their
decision-making process, several tools have been developed. In this thesis, we focus on specific
kinds of such tools, that is, decision supporting tools for (i) aircraft conflict resolution in en-

route airspace (control) and (ii) conformance monitoring in terminal airspace (monitoring).

1.1 Background and motivation

In this section, a literature review of the aforementioned tools is presented along with

the motivation that drives the research presented in this thesis.
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1.1.1 Conflict resolution in en-route airspace

In the current practice, aircraft conflicts are resolved by ATCs by comparing the flight
plans and the predicted flight trajectories. There have been several automation tools devel-
oped for conflict resolution such as Center-TRACON Automation System (CTAS) [3], [4],
Traffic Alert and Collision Avoidance System (TCAS) [5], [6], and Autoresolver [7], [8].

In the research efforts, the conflict resolution has been posed as an optimal control prob-
lem. In [9], [10], the uncertainty due to wind is considered by using a stochastic optimal
control. In [11], the wind uncertainty is modeled as stochastic variables and the conflict
intensity is computed by employing the probability transformation method. The conflict
resolution has also been posed as an optimization problem. The cost function to be min-
imized is set as the deviation from a flight plan with the constraint of the safe separation
between aircraft. The formulated optimization problems have been solved by using vari-
ous methods, such as Metaheuristic [12], [13], Integer Linear Programming [14], [15], and
Constraint Satisfaction Program [16], [17].

The methods mentioned above can fall into flight dynamics (or physics)-based meth-
ods [18] which generate a static protocol. Updating such static protocols would be challeng-
ing because it requires a new model that can address the uncertainties due to weather and /or
pilot’s response. Also, for the increased air traffic demand or newly introduced concept for
airspace operations, scaling up the protocols can be challenging.

In this regard, data-driven approaches have been proposed to address these issues. By
learning from flight data, the data-driven approaches can handle the uncertainties which are
inherently embedded in flight data. Also, by learning from data that embed the human’s
decision making process, the learned data-driven models can increase the rate of acceptance
of the resolution methods by human, i.e., ATCs. The advanced data mining and machine
learning techniques along with large-scale aviation data enable the application of data-driven
approaches to conflict resolution. In [19], the data-driven models for supporting the decision
making of ATCs in a sector have been developed using the data collected from a Human-
In-The-Loop simulator. A resolution advisory in the horizontal dimension is generated by a

model learned by the data based on Convolutional Neural Networks. In [20], a method has
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been proposed based on Reinforcement Learning that can assign a new trajectory change

point in the horizontal dimension to resolve aircraft conflict.

1.1.2 Conformance monitoring in terminal airspace

ATCs perform the task of conformance monitoring, i.e., the detection of deviations,
by comparing the observed states (such as position and speed) of an aircraft (e.g., from
surveillance radar) with its expected states based on the intent of the aircraft (following a
flight plan or deviating from the flight plan due to the instructions of ATCs). There have
been research interests in the topic of conformance monitoring.

In [21], an extensive literature survey on the existing decision support tools for con-
formance monitoring has been performed. The tools include Precision Runway Monitor
(PRM) [22], Host Computer System (HCS) [23], and its recent versions, En Route Au-
tomation Modernization (ERAM) and Standard Terminal Automation Replacement System
(STARTS), and User Request Evaluation Tool (URET) [24], all of which have been de-
ployed in the United States. Conformance monitoring is performed by these tools based
on the comparison between the observed and expected states of an aircraft to detect any
excessive deviation, or non-conformance. A model-based fault detection technique has been
proposed [25] for the investigation of the issues in these tools, based on which new tech-
niques can be guided in their development. Among the several identified challenges, the
uncertainties in trajectory deviations have been focused in the following methods: in [26],
[27], hybrid estimation methods have been proposed to estimate the continuous states such
as position and speed of an aircraft and the discrete states such as heading hold mode using
a stochastic hybrid system model; in [28], [29], probabilistic approaches have been developed
which computes the conformance probability; and in [30], another probabilistic approach
has been proposed using adaptive time-series which can optimally represent the aircraft’s
time-varying deviation under uncertainty.

All the above methods can fall into physics-based approaches, in which a model describing
the normal behaviors of a system is developed based on the system’s dynamics or govern-

ing physics, in order to detect events that do not conform the model. Recently, aviation
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data become rich due to the advances in sensing and data collection technologies, which
enables the data-mining and modern machine learning techniques to be employed as a tool
for analyzing air traffic operations. With respect to the conformance monitoring problem,
data-driven approaches have been extensively investigated in aviation domain by identifying
flight data that does not conform to normal data, called anomaly, which could lead to the
degraded safety and efficiency of air traffic operations. Due to the inherent properties of
the aviation data, that is, (i) the states of aircraft in air traffic operations (i.e., flights) keep
changing along time and thus any collected datasets are recorded in the form of sequential or
time-series data; and (ii) since the information about whether a flight is normal or abnormal
is typically unavailable, most of the aviation data are unlabeled, which requires unsuper-
vised learning techniques, the anomaly detection in aviation domain is typically tackled by
unsupervised learning approaches for detecting anomalies in time-series data, which can be

broadly categorized as follows [31]:

o Distance-based methods are characterized by using the notion of distance be-
tween two data points. A well-known method in this category is the k-Nearest
Neighbors (kNN), which computes an anomaly score of a data point by com-
puting the distance to its k-Nearest Neighbors, and if it is larger than some
threshold, the data point is called anomaly [32]. Another method is clustering,
which groups similar data instances together based on the distance or similar-
ity. In [33], a clustering-based method is proposed to detect anomalies in Flight
Operations Quality Assurance (FOQA) dataset during take-off and approach
operations. The identified clusters detect various types of anomalies, such as
energy excess/deficiency and abnormal pitch angle and flap settings. For the
airport surface operations, a hierarchical clustering method [34] is used to group
taxi paths in the spatio-temporal space. The detected anomalies are interpreted
as the paths unplanned/unexpected by the controllers, which therefore implies a

safety threat.

o Statistical methods are characterized by the use of the probability density esti-

mated from the data. The assumption for anomaly detection is that normal and

14



abnormal data would reside in higher and lower probability regions, respectively.
For the methods based on regression model, a model is fitted to the training
data and the test data is fed into the trained model to compute the difference
between the actual value and the value predicted from the model, called residual.
If the residual is higher than some threshold, the test data is called anomaly. In
[35][36], a Vector Auto-Regressive (VAR) model is used to represent each flight
in a FOQA dataset and a residual is computed by applying the model learned
from one flight to another flight. Another approach is based on Gaussian Mix-
ture Models (GMM) which assumes that the data points are generated from
the mixture of Gaussian distributions (or components) with different weights
along the components. The GMM has been applied to instantaneous detection

of anomalies during a specific flight phase [37].

Domain-based methods try to find a domain (or its boundary) that separates
normal and abnormal data. One-class Support Vector Machine (OCSVM) is a
widely used method in this category, based on the assumption that the training
data well represent normal data so that the learned domain would well define
the normal region. Thus, if a test instance falls outside of the domain, then it
is called anomaly. The separating boundary is defined in a feature space, which
is obtained by applying kernel, or mapping, to the data in its original space.
Based on OCSVM, the Multiple Kernel Anomaly Detection (MKAD) algorithm
[38] is developed to find operationally significant anomalies from heterogeneous
(both continuous and discrete) variables in data. The MKAD algorithm suc-
cessfully detects important anomalies such as high airspeed, flights under gusty
winds, go-around, and unusual approaches with high energy and under turbu-
lence. OCSVM is also applied to general aviation [39] with energy features such

as the specific total/potential /kinetic energies with their rates.

Reconstruction-based methods transform/project the data in the input space
into a lower dimensional space, which is then reconstructed by projecting into

the original input space. It is assumed that anomalies will not be effectively
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reconstructed using the training data, which mostly consists of normal instances.
One of the most widely used method is Autoencoders, in which the input sequence
is projected into a smaller number of neurons and then reconstructed as the
output sequence whose number of elements is the same as the input sequence.
In [40][41][42], the reconstruction error (the difference between input and output
trajectories) is used as an anomaly score. From the distribution of the anomaly
scores, higher scores correspond to weather impact, while lower ones correspond

to usual intervention by the controllers, such as separation and sequencing.

Temporal logic-based methods learn temporal logic expressions from the data.
The results of the methods mentioned above are typically represented as hy-
perplanes in high-dimensional feature spaces to separate normal and abnormal
data. This may lead to a higher accuracy but also to the lack of interpretability
by domain experts. Due to the unsupervised nature of aviation data, the feed-
back from domain experts is crucial to improve the performance of unsupervised
anomaly detection methods. In [43][44], a temporal logic-based anomaly detec-
tion algorithm (TempAD) is proposed to identify anomalous aircraft trajectories
in terminal airspace. The algorithm is tested with air traffic surveillance data
and is able to identify anomalies such as go-around, excessive total energy, and
above or below the glideslope. In [45], TempAD is extended to an incremental
learning version, which can keep adjusting the changes in air traffic operations
on a daily basis. With the identified anomalies, a supervised learning method
for precursor detection [46] is also proposed by identifying events that precede

the occurrence of anomalies.

To enhance the situational awareness of ATCs, we propose a new conformance monitoring

algorithm that computes the conformity score of the current state of an aircraft, as well as

those of its future states. In predicting the future states of an aircraft, we develop a frame-

work that combines a data-driven approach and a physics-based method, which generates a

series of predicted track points that are stochastic. We then present a conformance moni-

toring algorithm for the current and future time based on a stochastic conformal prediction
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method which can sequentially compute the conformity scores of such stochastic predicted

track points.

1.2 Objectives and contributions

1.2.1 Conflict resolution in en-route airspace

In this thesis, we develop a framework for the generation of conflict resolution maneuvers
in en-route airspace by learning from aviation datasets that contain the decision-making
process of ATC. A decision-making process of ATC for conflict resolution can be viewed as
a system that takes conflict situations as input and generates corresponding conflict resolu-
tion methods as outputs. That is, each conflict can be represented as a tuple of {Conflict
Situation, Resolution Methods}. To construct a conflict data in this form from air traffic
surveillance data, we first need to label each conflict situation, or identify resolution meth-
ods (outputs) used for the conflict situation. The key idea is that any complex resolution
maneuvers can be represented as a sequence of simple motions, called intents in this paper.
Using the domain knowledge obtained from flight data and the intent inference algorithm
[47], we propose a framework for detection and characterization of aircraft resolution ma-
neuvers to identify resolution types (e.g., directly heading to a downstream waypoint by
skipping some next waypoints) and resolution parameters (e.g., how many next waypoints
are skipped). Based on the knowledge extracted from the constructed conflict data with the
features representing conflict situations (or inputs), we then design a classification model
which determines the resolution type for every two-aircraft conflict in the airspace. In ad-
dition to predicting the resolution type, the proposed conflict resolution algorithm will also
suggest resolution parameters for the guaranteed safety. The combination of the resolution
type prediction model and resolution parameter suggestion model can safely resolve any
two-aircraft conflict, and constitute the proposed data-driven resolution generator (D2RG)
model. For a conflict situation previously unseen to the model, the learned model can predict
the resolution type and suggest the corresponding resolution parameters for the guaranteed

safety.
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1.2.2 Conformance monitoring in terminal airspace

In this thesis, we develop a framework for conformance monitoring for the current and
future time using a predicted aircraft trajectory. For the trajectory prediction, if a physics-
based trajectory prediction method is used, since no measurements would be available for
the future time-steps, the future states of an aircraft can be obtained by simply propagating
the aircraft’s dynamics into the future without the correction by the measurements [48]
or by utilizing the intent information, such as following its flight plan or deviating due to
the instructions given by ATCs, if such intent can be inferred [47][49]. If there exist a large
enough number of trajectories representing such intents in dataset, we can learn a data-driven
trajectory prediction model that can represent sequential behaviors of an aircraft, e.g., RNN
[50] or LSTM [51]. Using the output of the data-driven model as a pseudo-measurement, a
physics-based estimation method, such as Kalman filter or its variants, can incorporate the
aircraft’s current dynamics (e.g., flying with a constant velocity or performing a coordinated
turn) with the expected states in the future, that is, the pseudo-measurements. With the
predicted trajectory of an aircraft under monitoring, we compute the conformity score of the
aircraft using a stochastic conformal prediction method. The conformal prediction [52] is a
technique to provide a conformity score for a new data instance by computing how different
the new one is with respect to the existing data instances, which is called Non-Conformity
Measure (NCM). In our application, since the predicted trajectory is sequentially updated
along time (i.e., the number of track points grows) and it is not complete in the sense that it
does not reach its final point yet, the NCM is required to be applicable for such sequentially
updated, incomplete trajectories. To address this issue, the authors of [53] used the directed
Hausdorff Distance (DHD) [54] which can effectively capture the degree of how an incomplete
trajectory resembles another complete trajectory. This method can handle deterministic
trajectories only, however, the predicted track points of the aircraft under monitoring are
stochastic. In this regard, we extend the deterministic version in [53] into a stochastic version
using an approximation method and numerical integration for efficient computation. The

proposed method, called Hybrid Data-driven and Physics-based Trajectory and Conformity
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Prediction, is demonstrated with surveillance data from the repository of real historical air

traffic surveillance datasets.

1.3 Outline of dissertation

This thesis is organized as follows: Chapter 2 presents a framework for detection and
characterization of aircraft resolution maneuvers, followed by the development and test of
the proposed data-driven resolution generator (D2RG). In Chapter 3, the framework for
trajectory and conformity prediction using hybrid data-driven and physics-based approaches
is described and demonstrated. Final concluding remarks and potential future research

directions are presented in Chapter 4.
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2. DATA-DRIVEN GENERATION OF CONFLICT
RESOLUTION MANEUVERS IN EN ROUTE AIRSPACE

This chapter is organized as follows: in Section 2.1, we describe the framework for detection
and characterization of aircraft resolution maneuvers, to construct conflict data. In Sec-
tion 2.2, the Data-Driven Resolution Generator (D2RG) framework using the conflict data
is presented. Each section consists of the details of each framework and the results of test

and validation with flight data.

2.1 Intent-based Detection and Characterization of Aircraft Maneuvers in En
Route Airspace

In this section, we propose a unified framework for the detection and characterization
of aircraft’s resolution maneuvers from flight data which consists of the following tasks: (i)
the time when an aircraft starts to deviate from its flight plan by taking a maneuver is first
detected, (ii) the maneuver type taken by the aircraft is then identified, and then (iii) the
maneuver is characterized based on how the aircraft performs the maneuver. The goal for
developing the framework is to represent conflict situations in an appropriate form for data-
mining, especially to identify the labels, or the resolution maneuvers, for a given conflict
situation, as discussed in Sec. 2.2.

The framework shown in Figure 2.1 is proposed based on the underlying idea that any
complex maneuvers of an aircraft can be represented as a sequence of simple motions, or
called intents in this thesis), such as heading hold and heading change in the horizontal
plane, from which we construct the maneuver models. To identify a sequence of intents
of an aircraft from flight data, we first use a hybrid estimation method [55] in which the
aircraft’s motion is modeled as a stochastic linear hybrid system with the continuous states
(such as position and speed) and discrete states (or flight modes, such as heading hold and
heading change). The estimated continuous and discrete states are then incorporated with
flight plan to infer the aircraft’s intent by extending the intent inference algorithm [47]. The
identified sequence of intents is then compared with the maneuver models to identify and

characterize the maneuver taken by the aircraft.
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2.1.1 Aircraft maneuver modeling

The operation in en route airspace is defined as the flight segment starting from the
departure fix (DF) to the arrival fix (AF) [56] with the three phases: in the climb phase,
an aircraft climbs from the DF to the Top of Climb (TOC); the aircraft then performs
the cruise phase from the TOC to the Top of Descent (TOD); once reaching the TOD,
the aircraft descends to the arrival fix (AF) in the descent phase. The aircraft performs
the en route operation based on the flight plan that contains a series of waypoints in the
horizontal plane, cruise altitude, and planned airspeed values. In this thesis, we define any
deviations from the flight plan as maneuvers. Based on the domain knowledge [7], [8] and
flight data analysis, we identify that air traffic controllers or automated algorithms use a
finite number of maneuver types as shown in Table 2.1. Note that Table 2.1 contains the
most commonly used ones in air traffic control and any other maneuver types that are not
included in Table 2.1, such as the maneuver taken by unmanned aircraft, can be similarly
modeled to be included in Table 2.1, if necessary. In this section, we construct the aircraft’s
maneuver models by representing a maneuver as a sequence of intents in the horizontal,

vertical, and speed dimensions, respectively.

Table 2.1. Maneuver Types

Dimension Maneuver Types

Direct To (DT)
Horizontal (Mpy) Path Stretch (PS)
Route Offset (RO)
Temporary Altitude, Climb (TA-C )
Step Altitude, Climb (SA-C )
Step Altitude, Descent (SA-D)
Temporary Altitude, Descent (TA-D)
Temporary Change in Cruise Speed (TC-CS)
Speed (Mg) Change in Cruise Speed (C-CS)

Change in Descent Speed (C-DS)

Vertical (My)
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Horizontal Maneuvers

A flight plan in the horizontal dimension is given as a series of waypoints {W P} %"
where WP, = (&, ;) is the horizontal position (¢; is the longitude and 7; is the latitude)
and Ny p is the number of waypoints. We define current waypoint, W P;_, as the waypoint
that an aircraft is currently flying to and all the waypoints after W P;_ are called downstream
waypoints, W P;, where iq > i.. Once an aircraft reaches the current waypoint, the current
waypoint’s index . is updated as the next index, . < 7.+ 1. If an aircraft deviates from the
flight plan by the command of air traffic controllers, there are three types of the horizontal

maneuvers in the current operations, as shown in Figure 2.2.

WP, WP, WP,

WP,

Return waypoint Return waypoint

AuxWp,
AuxW Py

AuxW Py

WP 4

WP WP -1

Direct to Path stretch Route offset

Actually flown trajectory following flight plan
--------------- Planned but not actually flown trajectory
Actually flown trajectory deviating from flight plan

Figure 2.2. Maneuvers in the horizontal dimension

o Direct To (DT): The current waypoint is skipped and then one of the downstream
waypoints is selected to take a shortcut. Since the aircraft returns to its flight

plan by reaching the selected downstream waypoint, it is called return waypoint.

o Path Stretch (PS): An aircraft starts to deviate from the flight plan by changing
its heading to a waypoint that was not included in the flight plan, or called
auzxiliary waypoint, AuxW P;. Once reaching AuxW Py, the aircraft is heading

to one of the downstream waypoints (or return waypoint).

o Route Offset (RO): With this maneuver tpye, an aircraft passes two auxiliary

waypoints, AuzW P; and AuxW P,, and then returns to one of the downstream
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waypoints (or return waypoint). The two auxiliary waypoints form a line that is

parallel to the planned path.

Vertical Maneuvers

A flight plan in the vertical dimension is given as a cruise altitude, h.. If an aircraft is
required to take a maneuver in the vertical dimension, there are four types of the vertical

maneuvers in the current operations, as shown in Figure 2.3.

Step altitude, climb
P Assigned Tob

altitude

Cruise
altitude

..................

Assigned
altitude

f—
Step altitude, descent

Assigned
altitude

Assigned
altitude Temporary

Temporary altitude, descent
altitude, climb

AF

Actually flown trajectory following flight plan
--------------- Planned but not actually flown trajectory
Actually flown trajectory deviating from flight plan

altitude

DF

time

Figure 2.3. Maneuvers in the vertical dimension

o Temporary Altitude, Climb (TA-C). An aircraft in the climb phase levels off at
an altitude below h.., called assigned altitude, for some period of time and then

climbs to h,.

o Step Altitude, Climb or Descent (SA-C or SA-D). An aircraft in the cruise phase
climbs or descends to an assigned altitude, stays there for some period of time,

and then returns to h..

o Temporary altitude, descent (TA-D). An aircraft in the cruise phase starts to
descend before reaching TOD to an assigned altitude that is below h. and above
the altitude of AF. After staying there for some period of time, it then descends
to the altitude of AF.
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Speed Maneuvers

A flight plan in the speed dimension is given as planned airspeed values: climb airspeed

(vcr), cruise airspeed (vor), and descent airspeed (vpg). If an aircraft is required to take

a maneuver in the speed dimension, there are three types of the speed maneuvers in the

current operations, as shown in Figure 2.4.

airspeed

JDF

time

TOC

Temporary change in

cruise speed

Change
in descent speed

Change
in cruise speed

TOD

L.

AF

Actually flown trajectory following flight plan
Planned but not actually flown trajectory
Actually flown trajectory deviating from flight plan

Figure 2.4. Maneuvers in the speed dimension

o Temporary change in cruise speed (TC-CS). An aircraft in the cruise phase

changes its airspeed to an assigned airspeed for some period of time.

o Change in cruise speed (C-CS). An aircraft in the cruise phase changes its air-

speed to an assigned airspace and maintains it until reaching the TOD.
o Change in descent speed (C-DS). An aircraft’s planned airspeed in the descent
phase is changed to an assigned airspeed.
Maneuver Models

As discussed above, the maneuvers can be modeled as a sequence of elementary motions
or intents, such as go to the current waypoint, W P;_. The set of intents that constitute the

maneuver types in Table 2.1 are presented in Table 2.2. The maneuvers are then modeled as
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a sequence of the intents as shown in Table 2.3 where the flight segment that deviates from

the flight plan is denoted within the brackets ([-]).

2.1.2 Hybrid Estimation

To identify the sequence of intents of an aircraft, we use a hybrid estimation algorithm.
The aircraft’s motion is modeled as a stochastic linear hybrid system (SLHS) as follows: let
x(k) and ¢(k) denote the continuous and discrete states at time step k, respectively. The

SLHS model for an aircraft is represented as

x(k: + 1) = Aq(k)l‘(/{?) + Eq(k)wq(k)(k') (2.1)
z(k) = Cux(k)+v(k) (2.2)

where z is the continuous state, ¢ € @ is the discrete state (Q is a set of discrete states),
and z is the measurement. The process noise w, and the measurement noise v are assumed

to be white Gaussian noise with zero mean and the covariances ), and R, respectively.

Horizontal Dynamics

The continuous state of an aircraft in the horizontal dimension is defined as
p=l6 € € n on AT (2.3

where ¢ and 7 represent the longitude and latitude, respectively. The discrete state g € Q) =
{1,2} is defined as ¢ = 1 for heading hold mode and g = 2 for heading change mode. The

measurement is defined as z = [§¢ 7n]T = Cz where

100000
C = (2.4)
000100

With the sampling time T, the system matrices A, and £, are defined for each discrete

mode g € @ = {1, 2} as follows:
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Heading hold mode (¢ = 1)

17,00 0 0 CE
01 00 0 O T, 0
00 00 0 O 0 O
A1: E1: T2 (25)
00 01T 0 0
0O 000 1 0 0 T
00 00 0 O] 0 O
Heading change mode (¢ = 2)
[ I3 [ 12
17, % 0 0 0 Z g
0 1 7, 0 0 O T, 0
00 1 0 0 O 1 0
4y = o= 2.6)
00 0 1T, % 0 %
00 0 0 1 T 0 T
(000 000 1| 0 1|

Vertical and Speed Dynamics

The continuous states in the vertical and speed dimensions are defined as z = [h  7]T
and z = [v 9|7, respectively, where h is the altitude rate and © is the airspeed rate. The
discrete state ¢ € @ = {1,2} is defined as ¢ = 1 for altitude/speed hold mode and ¢ = 2
for altitude/speed change mode, respectively. The measurements are defined as z = h = Cz

and z = v = Cx, respectively, where

C:{1 o] (2.7)

The system matrices A, and E, are defined for each discrete mode ¢ € @ = {1, 2} as follows:
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Altitude/Speed hold mode (¢ = 1)

10 T
A = . Ei= (2.8)
0 0 0
Altitude/Speed change mode (¢ = 2)
1 T Ty
Ay = , Ey= (2.9)
0 1 1

Hybrid Estimation

The hybrid estimation algorithm uses a bank of Kalman filters matched with a discrete
state (or mode), each of which estimates the continuous state #;(k) and its corresponding
error covariance P;(k) conditioned on mode i € @, at time step k. With the probability
of mode i being correct at time k, denoted as a;(k), the continuous and discrete states are

estimated as:

B(k) = 3 du(k)oa(k) (2.10)

i€Q
P(k) = %{Pi(k)+[j7i(k) — &(k)][2i(k) — 2(k)]" Yoy (k) (2.11)
G(k) = argmaxai(k) (2.12)

where Z(k) is the estimated continuous state with its error covariance P(k) and ¢(k) is the
estimated discrete state.

Note that the mode probability «;(k) is computed as

1
(k) = %Aj(k) ie%mjai(k —1) (2.13)
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where 7;; is the mode transition probability from mode 7 at time step & — 1 to mode j at

time step k and c(k) is a normalizing constant. The likelihood of mode j, A;(k), is given as
Aj(k) == N (rj(k); 0,55(k)) (2.14)

where 7;(k) is the residual, or the difference between the actual and estimated measurements,
obtained by Kalman filter j with the corresponding covariance S;(k) and N (a;b,c) is the
probability at a of a normal distribution with mean b and covariance c.

Since the discrete state estimates play a critical role in the inference of the aircraft’s
intents as discussed in Section 2.1.3, it is desirable to reduce false estimate of the discrete
states. In this regard, we propose to use an algorithm called Residual-Mean Interacting
Multiple Model (RMIMM) [55]: if a;(k) is large, i.e., mode j is highly likely to be the
correct mode, then the corresponding residual mean 7;(k) := E[r;(k)] has a small value. To
increase the difference of the likelihoods between the correct mode and the other modes, the

inverse of the residual mean is used as a weight, that is,

_NiWAR) e F(k) £ 0
newgry = | S 107 .15

Aj(k) otherwise

where N;(k) = ||7;(k)||7Y if ||75(k)|] # 0; N;(k) = 1, otherwise. The more distinct mode

probabilities are demonstrated in Figure 2.14.

2.1.3 Intent Inference

With the estimated continuous and discrete states of an aircraft along with the flight

plan, we present how the aircraft’s intents can be inferred in this section.
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Horizontal Intents

From Table 2.2, we can observe that the horizontal intents of go to a waypoint correspond
to the heading hold mode, ¢ = 1, and the horizontal intents of turn to the heading change
mode (q = 2).

If the aircraft’s discrete state at time step k in the horizontal dimension is estimated as

G(k) = 2, the distance between the current waypoint and the aircraft’s current estimated

position is computed: WP, , d(k) = H(f(k),ﬁ(k)) — WP, |: if d(k) < § for a distance

threshold ¢ which is a design parameter, then we infer the horizontal intent as turn at the
current waypoint; otherwise, turn not at the current waypoint.

If the aircraft’s discrete state at time step k in the horizontal dimension is estimated as
G(k) = 1, we need to identify the corresponding waypoint, either the known one (included in

the flight plan) or the unknown one (auxiliary waypoint). First, the intent likelihood \;(k)

[47] for the known waypoint is computed as
)\z(kj) :N(Qﬁz(k)aqj}(k%a?p) for i€ {imic"i_la"' 7NWP} (216)

where 1;(k) is the heading angle of a unit vector é;(k) from the aircraft’s current estimated
position to the corresponding waypoint which represents intent H; for i € {i., -, Nwp},
(k) is the aircraft’s current estimated heading which represents the aircraft’s current intent
represented as the heading of a unit vector, é,(k), as shown in Figure 2.5, and the standard
deviation oy, is a design parameter.

From Eq. (2.16), we can observe that an aircraft is flying to a known waypoint, W Py for

some I € {i., -+, Nwp} for time steps k — 1 and k, then the corresponding intent likelihood

will have the maximum value, i.e.,

1

Ar(k) ~ Ap(k — 1) ~ Tom

(2.17)

Hence, either of \;(k) £ N(k — 1) or \(k) < \/%% holds for all i € {i., -+, Nwp},
the aircraft’s horizontal intent is inferred as go to AuxW P;. Furthermore, if the aircraft’s

previous sequence contains go to AuxW P, and turn not at the current waypoint and the

31



WP,

(55 +2. 10 +z)
North (1) c ‘
WP, 41 x
(fz‘c+1-7?a‘c+1)x_ £
\ 7
] h 7
\_ By 7

East (&)

(1)

Figure 2.5. Intent inference

heading is parallel to the original planned path, the aircraft’s horizontal intent is inferred as
go to AuxW Ps.

If Eq. (2.17) holds, then the intent of the maximum likelihood is likely to represent the
current motion of an aircraft. However, the intent inferred this way could be false if two
known waypoints are closely collinear with the aircraft’s position [47]. In this regard, the
intent likelihood is modified by considering the likelihood in terms of time-to-go (TTG).
With the given waypoints and the cruise ground speed, vor 4, the TTG to WP, for ¢ €
{ic+1,---, Nyp} is obtained as

TTGH) = o [[(6em) = (€0 W) + D )~ Enmnll] 218)

and for ¢ = i., the TTG is obtained similarly, without the last term. The temporal likelihood

is then given as

7i(k) = N (TTGi(k);0,0?2) (2.19)

where o, is a design parameter. The aircraft’s intent is finally inferred as I (k) = H; .,y by

solving

A

i(k) =arg max  N\(k)7i(k) (2.20)

i€{ic,,Nwp}
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Vertical Intents

The vertical intents of cruise at h. and hold an adjusted altitude correspond to the altitude
hold mode (¢ = 1) and the vertical intents of climb and descend correspond to the altitude
change mode (¢ = 2).

If G(k) = 1, the aircraft’s vertical intent is inferred as cruise at h, if the estimated altitude
of the aircraft is the same as the cruise altitude, h.; otherwise, hold an adjusted altitude.

If (k) = 2, the aircraft’s vertical intent is inferred as climb if ;L(k‘) > 0; otherwise,

descend.

Speed Intents

The speed intents of hold correspond to the speed hold mode (¢ = 1), and the speed
intents of change correspond to the speed change mode (¢ = 2).

If G(k) = 1, we use the airspeed estimate, 6(k): if 9(k) = vy, then Ig(k) = Sey; if
0(k) = vor, then fs(k) = Scg; if 9(k) = vpg, then fg(k:) = Spg; otherwise, fg(k) =5,.

If (k) = 2 and k < krop, then the aircraft’s speed intent is inferred as change speed
before TOD; otherwise, change speed after TOD. The time step for TOD, krop, can be
computed by using the estimated states in the vertical dimension as the point where the
vertical intent changes from cruise at h. to descent within 20 minutes or 200 nautical miles

from the AF [8].

2.1.4 Maneuver Identification

We use the inferred intents to identify the maneuver, in which the time of starting

deviation, the type of maneuver, and the characteristics of the maneuver in Table 2.4.

Identification of Horizontal Maneuvers

The horizontal maneuvers are modeled as a sequence of the inferred horizontal intents

based on the maneuver model in Table 2.3, as shown in Figure 2.6.
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Table 2.4. Characteristics of Maneuvers
Maneuver Characteristics

DT return WP
PS AuxWP1, return WP
RO AuxWP1, AuxWP2, returnWP
TA-C adjusted altitude, duration
SA-C adjusted altitude, duration
SA-D adjusted altitude, duration
TA-D adjusted altitude
TC-CS  adjusted cruise airspeed, duration
C-CS adjusted cruise airspeed
C-DS adjusted descent airspeed

celo+1
y Following . =
[ . . to :
H. H Flight Plan i- 80 L
< 'I_)f:c Hgciturn at WP,
i« ig(> i) Hg,: go to AuxWP;
Hg,: 8o to AuxWPp,
L Hy e H;, Diracess H; pe:turnnotat WP,
‘ T h " * [.: current waypoint index
Path stretc * 7 . R
Hg, H,_L_ﬂ i4: downstream waypoint index
| Route offset

Figure 2.6. Maneuver models (horizontal)

If an aircraft is heading to the current waypoint and takes a turn before reaching the
current waypoint, the aircraft is either (i) taking a shortcut to a downstream waypoint or (ii)
changing its heading to an unknown waypoint. For the case of (i), the aircraft’s maneuver is
determined as Direct to. For the case of (ii), the aircraft’s maneuver can be either Path stretch
or Route offset, as shown in (a) in Figure 2.7. The maneuver can be uniquely determined
after the aircraft’s intent is inferred as turn not at the current waypoint: if the aircraft’s
following intent is inferred as go to a downstream waypoint, then the maneuver is inferred as
Path stretch; otherwise, Route offset, as shown in (c) in Figure 2.7. The auxiliary waypoints
for Path stretch and Route offset can be determined as the aircraft’s estimated position where

the intent is inferred as turn not at the current waypoint, as shown in (b) in Figure 2.7.
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is go to AuxW P;, possible maneuver types ng (c) emn ert:e intent1s to goto a
are Path stretch and Route offset P/ known waypoint, then Path stretch;

otherwise, Route offset

(b) While go to AuxWP;, the aircraft

changes its heading (turn not at WP; )

=The location of AuxW P, is determined at
the point of change of intents

P4

Figure 2.7. PS and RO

Identification of Vertical Maneuvers

The vertical maneuvers are modeled as a sequence of the inferred vertical intents based

on the maneuver model in Table 2.3, as shown in Figure 2.8.

] SA-C
" Ver HVCR,a H VpE }“W
Following Flight Plan ‘ Ver: climb
¥ Verc: cruise at he
Ver (— Vere VpE VpEg: descent
T Vcr,a: cruise at hy
\
“MVera || TA-C - J : ZC: pl(;’:\.nnteddcrlL::edaltitude
: adjusted altitude
Vor FlVera H{ Ve | a: 20
SA-D
TA-D

Figure 2.8. Maneuver models (vertical)

If an aircraft’s intent was cruise at h. and it changes to descend, the aircraft’s maneuver
can be either SA-D or TA-D as shown in Figure 2.9. The maneuver type can be uniquely
determined once the intent hold an adjusted altitude is completed: if the following intent is

inferred as climb, then the maneuver type is inferred as SA-D; if descend, then TA-D.
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Cruise altitude

he Step altitude, descent
/VCL (SA-D)
Assigned altitude 7
he a VpE
Temporary altitude, descent

Until this point, SA-D and TA-D cannot be distinguished (TA-D)

Figure 2.9. SA-D and TA-D

Identification of Speed Maneuvers

The speed maneuvers are modeled as a sequence of the inferred speed intents based on

the maneuver model in Table 2.3, as shown in Figure 2.10.

Following Flight Plan

Scr: hold vep,
Sc1 PScL PSca 4{ TOC ]—' Scr 'I( TOD ]_. Sea Fr—{Soe SCR:_ hold v¢-p
. SDE' hold Upg

S4: hold adjusted speed
TC-CS = Sa S¢,1: change speed before TOD
S¢2: change speed after TOD
T15¢1 Sc1 [T ¢bs
’ * Ve planned climb speed
\ * Vcg: planned cruise speed

* vpg: planned descent speed
* TOC: Top-Of-Climb
* TOD: Top-Of-Descent

Figure 2.10. Maneuver models (speed)

Similar to SA-D and TA-D in the vertical dimension, TC-CS and C-CS can be distin-

guished once the intent hold an adjusted speed is completed, as shown in Figure 2.11.

Cruise speed ———————®&---------ooomomomsomomoosomoooosoooeoe oo
Ver s SC/' Temporary change in cruise speed (TC-CS)
Assigned speed Change in cruise speed (C-CS)

o Sa Sa
Until the end of S,;, C-CS and TC-CS

cannot be distinguished

Figure 2.11. C-CS and TC-CS
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2.1.5 Demonstration with Surveillance Data

The proposed framework is tested and demonstrated with the surveillance data. We use
the flight data generated by Airspace Concept Evaluation System (ACES) [57], which is
built for the simulation and evaluation of advanced air traffic control concepts [8]. In ACES,
the aircraft’s maneuvers are generated by its internal model called autoresolver [7], [8]. The
simulated data contains the ground truth about the maneuver’s type and characteristics,
so that we can readily validate the proposed method. The proposed method is tested with
ACES data that contains 9,286 flights where the total of 3,042 maneuvers are recorded. The
type and characteristics of maneuvers identified by the proposed method are compared with
the ones recorded in ACES data. As shown in Figure 2.12, the proposed method correctly

identifies all of 3,042 maneuvers.

NO. MANEUVER TYPES

W ACES data  wm Identified

il 1THN | BRTENT
DT Ps RO

TA-C SA-C SA-D TA-D TC-CS C-Cs C-Ds

Figure 2.12. Overall performance results

As an illustrative example to show how the proposed algorithm works, consider an air-

craft’s flight plan and flight track shown in Figure 2.13.

1. Hybrid estimation: By taking the flight track as input, we obtain the contin-
uous state estimates, the mode probabilities, and the discrete state (or mode)

estimates, as shown in Figure 2.14 (a).
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Figure 2.13. Illustrative case: Flight plan and track

2. Intent inference: By taking the estimated hybrid states along with the flight
plan as input, we obtain the intent likelihoods of the waypoints in the flight plan
are obtained as in the left of Figure 2.14 (b). Whenever the aircraft is heading
to one of the waypoints in the flight plan, the corresponding likelihood has the
constant, maximum value. For the time-steps between 114 and 143, however, the
likelihoods for the waypoints in the flight plan are neither constant nor maximum,

thereby the intents during this period being inferred as go to AuzW P.

3. Maneuver identification: From the intent likelihoods, the intents are inferred as
shown in the right of Figure 2.14 (b), from which Path stretch is identified as the
maneuver type with its characteristics: the auxiliary waypoint and the return

waypoint in the left of Figure 2.14 (a).

In what follows, the results of applying the proposed algorithm to the rest of all the
maneuver types are presented, as shown in Figures 2.15, 2.16, and 2.17 for the horizontal,

vertical, and speed maneuver types, respectively.
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(b) Intent inference (left) and maneuver identification (right)

Figure 2.14. Tlustrative case: Results of the proposed algorithm
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Figure 2.15. Results of the proposed algorithm for the maneuver types in
the horizontal dimension
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Figure 2.16. Results of the proposed algorithm for the maneuver types
the vertical dimension
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Figure 2.17. Results of the proposed algorithm for the maneuver types in
the speed dimension
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2.2 Data-Driven Conflict Resolution Generator based on Supervised Learning

From the current standard by Federal Aviation Administration (FAA) [56], a conflict
between two aircraft is defined as the violation of the separation standard, which is in en-
route airspace 5 nm in the horizontal and 2,000 ft (above 29,000 ft) or 1,000 ft (below 29,000
ft) in the vertical. A conflict is resolved when the separation between two aircraft satisfies
the standard by taking a maneuver, called resolution.

In this section, an algorithm for generating a resolution by learning from flight data,
called Data-driven Resolution Generator (D2RG), whose framework is shown in Figure 2.18
which consists of (i) learning a D2RG model from flight data and (ii) applying the learned
D2RG model to a conflict situation.

Learning D2RG
Flight Data

Learning
| Applying D2RG
' L N
[ Conflict Situation } D2RG { Resolution Method ]
(N J

Figure 2.18. Proposed framework: Data-Driven Resolution Generator (D2RG)

From the discussion in Section 2.1, a resolution maneuver is defined by its type and the
corresponding characteristics, which are called resolution type (RT) and resolution parameter
(RP), respectively, in this section. In this regard, the learning of a D2RG model from flight

data is performed as follows:

e Step 1: Construction of dataset. From flight data, a conflict dataset is con-

structed (Section 2.2.1).

e Step 2: Hierarchical classification of RTs. Models for generating RTs are learned

from the conflict dataset by using supervised learning techniques (Section 2.2.2).
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o Step 3: Parameter learning for RPs. For each RT, a model for generating RP
is learned from the conflict dataset by using supervised learning techniques with

the guaranteed separation assurance (Section 2.2.3).
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| Construction of Dataset |

(3 k) 70O
{X( ),(y( ), 70 ))}k=1

Learning of D2RG

Conflict-Type
Matching

Resolution-Type
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Hierarchical Classification for Parameter Learning for
Conflict Type i Resolution Type j
| |

Dim. Classifier
@
Cdim

I i ] Model for Model for D2RG
RT Classifier |( RT Classifier || RT Classifier A fime Asitrm

@ 10) @ ¢ c9
G Gy Cg act Y,
J

I
Resolutil)n Type Resolution Parameter

Figure 2.19. Learning of D2RG

The application of the learned D2RG model to a conflict situation is presented in Sec-

tion 2.2.4

2.2.1 Construction of Dataset

Considering that a conflict situation and the corresponding resolution method can be
viewed as an input-output relation, we construct a conflict dataset as a labeled data with
input (or a feature vector) and output (or a label), which naturally leads to the use of
supervised learning techniques. For N number of conflict situations in flight data, the conflict
dataset is denoted as, for

N

{F(k), L(k)} (2.21)

k=1

where, for k-th conflict situation, F*) is a feature vector (conflict situation) and L®* is a

label (resolution method).
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Features

To construct a feature vector that represent a conflict situation, we utilize the domain
knowledge about how conflicts are resolved by air traffic controllers [58] and the autore-
solver [7], [8] which is an embedded tool for conflict resolution in the ACES. The features
in the constructed feature vector can be categorized into four types of information that

represent a conflict situation, as shown in Figure 2.20 and Table 2.5:

o Primary conflict: The distance, relative speed and heading between two aircraft

involved in a given conflict situation are used.
o Flight plan: The flight plans of the two conflict aircraft are used.

o (Potential) secondary conflict: A secondary conflict happens when either of the
two conflicting aircraft that takes a resolution maneuver interrupts the other
aircraft’s path, which should be avoided when generating a resolution. The
information related to the neighboring aircraft around the conflicting aircraft is

used.

o Airspace structure: Air traffic controller’s decisions are affected by the structure

of an airspace, and hence the related information is used.

Labels

A resolution method, or its type (RT) and the corresponding parameter (RP), can be
identified by using the method presented in Section 2.1. For a given conflict situation k, let
the identified RT be denoted as Z*) and its corresponding dimension (the horizontal, vertical,
or speed) as Y*) and then the label in Eq. (2.21) is constructed as L*) = (Y0 Z(#)),

By preprocessing (such as feature scaling), the constructed feature vector, F*) = X®*) ig

N
combined with the label so that we now construct a conflict dataset {X &) (Y®) 7 (k))}kﬂ'
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Figure 2.20. Conflict situations

2.2.2 Resolution Type: Hierarchical Classification

By analyzing the flight data, we find that the importance of the features (input) and
the distribution of the labels (output) are dependent on the flight phases (climb, cruise, and
descent) of two conflicting aircraft at the time of the predicted conflict, or called conflict
type. In this regard, we first group the conflict situations based on the conflict type, which
consists of nine cases, Mcr = {CL/CL, CL/CR, CL/DE, CR/CL, CR/CR, CR/DE, DE/CL,
DE/CR, DE/DE} where C'L is climb, CR is cruise,DFE is descent, and the first and second
elements in each type correspond to the flight phases of a maneuvering aircraft and a non-
maneuvering aircraft, respectively.

With the conflict type-matched conflict data, we propose a framework based on the
hierarchical classification-based supervised learning, as shown in Figure 2.21.

Through flight data analysis and the literature review [59], we find that there exists the
flexibility in ATC’s conflict resolution by choosing any of the maneuvering dimension among
the horizontal, vertical, and speed and this flexibility is preferred by ATCs [8]. In this regard,
we propose the hierarchical framework where the likelihood of a maneuvering dimension is

computed by the upper-level classifier C’éﬁ»zn with the dataset {X® Y®1N —and for each
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Figure 2.21. RT: Hierarchical classification
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maneuvering dimension, the likelihoods of RTs are then provided by the lower-level classifier
{X®) Zz®AN and hence we train or learn 4 classifiers for each conflict type.

Any technique for multi-class classification can be used for learning, but considering
the highly nonlinear nature of the conflict data and the importance of the features varying
along the conflict types, we propose to use the feature-weighted support vector machine
(FWSVM) [60], [61]. The important of each feature, or feature weight, is embedded in
learning the classifier, i.e., the feature weights and the classifier (SVM) are simultaneously

learned.

2.2.3 Resolution Parameter Learning

A resolution trajectory can be viewed as a two-step procedure: (i) the deviation from
the planned path by adjusting the heading, altitude, or speed and then (ii) maintaining
the deviated path until the conflict is safely resolved, followed by returning to the original
planned path. In this regard, for a given RT, a data-driven model for the first step, called
adjustment, C(%, is learned to determine the amount of deviations and a data-driven model
for the second step, called action, C’CSQ, is learned to determine a decision whether holding
the deviated path or returning to the original planned path, as shown in Figure 2.22.

We illustrate with Path stretch as an example how to learn the two models.

Adjustment: In the learning of the adjustment parameter, we apply a data-driven method

with a check for the guaranteed safety in an iterative manner so that the resultant deviation
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Figure 2.22. Learning of RPs

of the maneuvering aircraft makes it pass the outside of the non-maneuvering aircraft’s pro-
tected zone. We assume that the non-maneuvering aircraft does not change its path during
the maneuvering aircraft’s resolution process. If the non-maneuvering aircraft deviates from
its path during the process, which leads to a secondary conflict, we regard this as a new
conflict and subsequently resolve it.

A data-driven method is used to learn the most likely value of the adjustment from the

data, for which a dataset (features and labels) is constructed for each RT, as follows:

o Features: Along with the features in Table 2.5, we use (i) the maneuvering
aircraft’s distance to the non-maneuvering aircraft’s protected zone when the
resolution is issued and (ii) the remaining distance to the downstream waypoint

that is closest to the maneuvering aircraft.

o Label: The label is given as a deviation angle, ¢, which is from —60° to +60°
with the increment of 15°, determined through analysis of the flight data.

For the guaranteed safety, the deviation angle, ¢, should result in a trajectory that passes
outside of the protected zone of the non-maneuvering aircraft.

Action: In the learning of the action parameter, the label is given as Action-hold for
holding the deviated path and Action-return for returning to the planned path once the
conflict is safely resolved. At each time-step, we sequentially apply a classification model for

the decision between hold and return. An example is shown for Path stretch in Figure 2.23.
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After the adjustment (or the deviation angle) is determined by the adjustment model, we
first check if Action-return guarantees the safety (no conflict) or not: if not safe, Action-hold
becomes the action taken at the time-step; otherwise (both Action-hold and Action-return
are safe), a classification model is used to determine an action. The classification model is

learned with the dataset as follows:

o Features: We use (i) the maneuvering aircraft’s distance to the non-maneuvering
aircraft’s protected zone when the resolution is issued and (ii) the remaining

distance to the downstream waypoint that is closest to the maneuvering aircraft.

o Label: Action-hold represents the action of maintaining the deviated heading
and Action-return represents the action of changing the heading to the nearest

downstream waypoint.

Non-maneuvering

. — Candidate initial adjustment
aircraft .
—> Action-hold
—> Unsafe action-return
. Maneuvering aircraft —> Safe action-return
Waypoint —>

trajectory without

maneuver \
N

Predicted Maneuvering aircraft
separation circle trajectory with maneuver

% L
Maneuvering
aircraft

Figure 2.23. RP-action: Path stretch

For the other RTs, the adjustment parameter and the action for hold and return are

summarized in Tables 2.6, 2.7 and 2.8.
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2.2.4 Applying D2RG to Unseen Conflict Situations

The learned classifiers for the RTs and the learned models for the RPs constitute the

proposed D2RG framework for an unseen conflict situation, as shown in Figure 2.24.

[ Unseen Conflict Situation ]

Contlict Type i

v } '

Dim. Classifier RT Classifier RT Classifier RT Classifier
@) i i (@)
Caom o ¢y C
v P v v v

[ P(y|x) } P(z|x,H) 1( P(z|x,V) 1 ( P(z|x,S) )

where y € {H,V, S} where z € My where z € My, where z € M
\ J A J J

Generation of Ranked RT List with Likelihoods

i i 1

D2RG Horizontal RT: zj Vertical RT: zy Speed RT: zy,
Likelihood: P(zy|x) Likelihood: P(zy|x) Likelihood: P(zg|x)
I I 1

(&) (e ) (@] (] (@] )
] ] ]

Figure 2.24. Application of D2RG to an unseen conflict situation

Suppose that a feature vector is given as x for an unseen conflict situation. The advisory

list of most likely RTs for each dimension for the given x is obtained as follows:

1. The feature vector x is fed into Conflict-Type Matching to identify its conflict
type 1 € Mcr.

2. For i, the classifier for the maneuvering-dimension, C’gzn, yields the likelihood of

each maneuvering dimension y € {H,V, S} for z, i.e., P(y|x).
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3. Within each y, the RT classifier Céi) computes the likelihood of RT z € M,
within y for z, i.e., P(z|x,y).

4. The likelihood of RT z € M, for x can then be computed as:
P(zlz) = P(ylz)P(z]x, y) (2.22)
The most likely RT z; for each y,
z, = arg max P(z|z) for ye{H,V,S} (2.23)

and its likelihood P(z;) form the RT advisory list.

*

, In each y, the adjustment parameters and the action parameters are computed

For z

from C(EZ;) and C'(gi%), respectively, in a way that the safety is guaranteed, as follows:

1. Adjustment: If é’:g) suggests an adjustment parameter that is not safe (i.e.,
passing through the non-maneuvering aircraft’s protected zone), the next most
likely adjustment parameter is examined, and this process is repeated until the

safety is guaranteed.

2. Action: Once the adjustment parameter is determined, C(ng?) determines if Action-
return is likely, as well as safe at each time-step. If Action-return is neither likely
nor safe, the model determines Action-hold until the next time-step. This pro-
cedure is repeated until reaching the time-step at which Action-return is both

likely and safe.

In summary, the proposed D2RG framework can learn the knowledge about how to resolve
aircraft’s conflicts embedded in flight data (both in RT and RP), as well as can guarantee
the safety (in RP).

2.2.5 Results and Discussion

The proposed framework is tested and demonstrated with the ACES data, which is

simulated for 38 hours and 26 minutes, over 21 United States continental Air Route Traffic
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Control Centers (ARTCCs). The total number of flights is 54,300, with the total of 14,599
two aircraft conflicts involved.

To determine the accuracy of the RT classification, we randomly split the conflict data
into 70% for learning and 30% for test and the random split of the data is performed 10 times.
For the conflict situation in the test set, the proposed D2RG is said to correctly classify the
RT if the true RT recorded in the ACES data is included in the output, i.e., the advisory list
of RTs. The prediction accuracy is measured as the ratio of the correctly classified conflict
situations to the number of conflict situations in the test set, which results in 84.12% with
a standard deviation of 3.02%. That is, the learned D2RG model can correctly imitate the
decisions embedded in the conflict data in the determination of the RTs.

We then check the safety of the RTs in the generated advisory list by comparing the
minimum distance between two conflicting aircraft by using the RPs generated by the pro-
posed D2RG with the FAA’s separation standard. In Figure 2.25, the minimum distance
between two conflicting aircraft without a resolution maneuver (in red) and with a resolution
maneuver for the correctly classified cases (blue) and the misclassified cases (magenta). We
can observe that all the conflict situations are successfully resolved, even for the cases where

the RTs are misclassified, and hence the proposed D2RG can guranteed the safety.
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Figure 2.25. Minimum distance between two conflicting aircraft
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As an illustrative example to show how the proposed D2RG works, we present a conflict
situation where two conflicting aircraft are in their cruise phases and at the same altitude,
as shown in Figure 2.26. The conflict is predicted with the minimum distance of 2.18 nm.

In the ACES data, the recorded RT is Path stretch.

Maneuvering aircraft
Non-maneuvering aircraft

36 - //
Trajectory with /./
maneuver (ACES) 4@/
/_,/-//
355 F T |
=) « ¥
% ) /,'/ y d
A= Trajectory with 4~
o 3
©T 35r / Y |
= maneuver ,f——;/ RN eparaton circe
a5 (D2RG) yau N
- e
;S Trajectory without maneuver
e
345 - /,/:,_\/ ]
Sk
;T Waypoint
34 |

-117.5 -117 -116.5 -116 -115.5 -115
Longitude (deg)

Figure 2.26. Illustrative case: Trajectories of two conflicting aircraft in the
horizontal dimension

The RT classifiers result in Table 2.9, from which the advisory list of RTs is constructed
as shown in Table 2.10 where PS, SA-C/D, and TC-CS are suggested for the horizontal,
vertical, and speed dimensions, and hence the conflict situation is correctly classified.

For each RT in the advisory list, the adjustment and action parameters are obtained by
the corresponding models where the adjust parameter values obtained are presented in Ta-
ble 2.10. The resultant flight trajectories by employing the obtained resolution methods are
shown in Figs. 2.26, 2.27 (a), and 2.27 (b) for the horizontal, vertical, and speed dimensions,
respectively.

As shown in Figure 2.28, all the resolution methods obtained by the proposed D2RG can

safely resolve the conflict situation by guaranteeing that the minimum distance between the
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Table 2.9. Illustrative case: RT classification
Upper-level label Lower-level label Likelihood

and P(y|XCL/CL) and P(Z/k\XCL/CL,y) P(?Jk|XCL/CL)

PS 69.16% 36.41%
Horizontal 56.64% | RO 30.84% 17.46%
DT 0% 0%
TA-D 84.22% 27.68%
Vertical ~ 32.87% | SA-C/D  15.78% 5.18%
TA-C 0% 0%
C-CS 100.00% 10.49%
Speed 10.49% ! !
TC-CS 0% 0%

Table 2.10. Illustrative case: Advisory list of RTs and corresponding RPs

Maneuver in each dimension Likelihood Adjustment

PS (H) 36.41% +15°
TA-D (V) 27.68%  -2,000 feet
C-CS (S) 10.49% +10 knots

two conflicting aircraft never violates the separation standard in the horizontal and vertical

dimension simultaneously.
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(b) Vertical separation

Separation between two conflicting aircraft
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3. DATA-DRIVEN CONFORMANCE MONITORING IN
TERMINAL AIRSPACE

In this chapter, we present a framework for conformance monitoring for a flight trajectory
at the current and future time, by (i) predicting its future track points using a trajectory
prediction algorithm and (ii) computing the conformity scores of the future track points

using a stochastic conformal prediction method, as shown in Figure 3.1.

Trajectory Prediction

If conforming Hybrid data-driven
e———————— and physics-based

Incomi.ng trajectory prediction L, Predicted ) Anomaly N Predicted
track pglnts i track points Prediction anomaly score
of aflight If non-conforming Intent-based

trajectory prediction

Figure 3.1. Framework for hybrid data-driven and physics-based trajectory
and conformity prediction

3.1 Hybrid Data-driven and Physics-based Trajectory Prediction

In this section, we present a framework for hybrid data-driven and physics-based tra-
jectory prediction. Suppose that there exist a large enough number of flight trajectories
recorded in a dataset that represent a known intent, e.g., following a flight plan, and, there-
fore, we can learn a data-driven trajectory prediction model that takes the track points up
to the current time-step ¢ as input and generates a predicted track point at time-step ¢ + 1,
called data-driven prediction (which is discussed in Section 3.1.1), whose probability density
function (pdf) is given as a Gaussian distribution N (41, Xs41). By using the data-driven
prediction as a pseudo-measurement at £ + 1, we can employ an estimation algorithm, such
as Kalman filter or its variants, to predict the one-step ahead future track point at ¢t + 1,
whose pdf is given as N (2;11, Riy1), as shown in Figure 3.2.

Note that a data-driven prediction model for time-series data typically takes a point
input and generates a point output, and a physics-based prediction method takes the pdfs

of the estimate at ¢ and the measurement at ¢t + 1. Hence, in the proposed framework, the
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Figure 3.2. Framework for hybrid data-driven and physics-based trajectory prediction

pdf of the prediction at ¢ is sampled as a sampled track point at £ and then combine it with
the previous track points up to t — 1, which is then provided as an input to the data-driven
model. Similarly, since the output of the data-driven model is given as a point, we collect a
number of sampled track points at £+ 1 to obtain a pdf of the pseudo-measurement at ¢+ 1,
by fitting the points into an assumed pdf, which is then given as an input to the physics-
based method. In this thesis, we propose to use a hybrid estimation algorithm presented
in Section 2.1.2 to accurately model the aircraft’s behaviors. In the following, we describe
the development of the data-driven trajectory prediction model, which is then followed by
the demonstration of the proposed framework with air traffic surveillance data from the

repository of real historical datasets.

3.1.1 Data-driven trajectory prediction

Given a set of recorded trajectories for a given operational condition (e.g., following
a specific flight plan), a data-driven trajectory prediction model is learned based on the
Recurrent Neural Network (RNN) [50], which is a kind of neural networks widely used for
time-series data due to its recurrent structure that can well capture temporal dependency
in the time-series data as well as spatial patterns, which leads to better performance in the
prediction of time-series data. Suppose we have an input time-series X = {x;}L, and an
output time-series Y = {y;}_, where 7, € R™ and y, € R™. To compute the predicted

output ¢;, RNN captures the temporal dependency by using the current input element x;
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along with the past input elements xg,--- ,x; 1. This past information up to t — 1 can be
accounted for in generating ¢, by introducing a mechanism called hidden state, a;_, € R"
which contains all the past information. The hidden state at ¢, a, is then updated with a;_;

and z;, which is used in predicting the output y,

at = (q (waaat—l + Wy + bzz)

(3.1)
Yt = Gy (wyaat + by)

where g, and g, are activation functions, such as hyper-tangent or sigmoid, and w’s and b’s
are the weight and bias parameters respectively which are computed by minimizing the sum
of the differences between the (true) output y; and the predicted output g, for t =0,--- , 7.

This standard RNN is, however, limited in learning long-term dependency in time-series
data due to the gradient vanishing/exploding issue when the parameters w’s and b’s are com-
puted during the learning process. To address this issue, several variants of RNN has been
proposed, such as Long Short-Term Memory (LSTM) [51]. In LSTM, additional mechanism

is introduced, called memory cell, ¢;, as shown in Figure 3.3.

Memory cell Forget Gate Memory cell
Ce—1 IF Ce
Update Gate Output Gate
Iy I,
Activation | Pseudo-Memory cell Activation
Ar_q @ a
Input Output

Xt Ve

Figure 3.3. Structure of Long Short-Term Memory (LSTM)

The memory cell flows over time, during which the gates control how much to forget the

previous memory cell ¢;_; and update a candidate of the current memory cell &

¢ = e (Wear—1 + Wezxy + bz) (3.2)
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which is equivalent to a, in the standard RNN, by adjusting the forget gate I'y € [0, 1] and
update gate T, € [0, 1], i.e.,
c=Tfr*xc1+T, %6 (3.3)

where x is the element-wise multiplication, and the gates are given as, for (-) € {f,u},
L'y =90 (w(.)aat_l + W) Ty + b(.)). The current hidden state a; is then updated by using

the current memory ¢;, an activation function g¢,, and the output gate I, € [0, 1],

ay = Foga (Ct> (34>

where 'y = ¢, (Woq@i—1 + Worxy + b,) with an activation function g,. Finally, the predicted
output ¢, is computed from the current hidden state a;, the same as the way in the standard
RNN.

Suppose that we have a set of trajectories for a given operational condition, {Z®}¥,
where N is the number of trajectories and Z() = {zﬁ“}f:’o is the i-th trajectory where 2\
is a track point of the i-th trajectory at time-step ¢ and 7" is the final time-step. Since the
proposed framework in Figure 3.2 requires a one-step ahead prediction from the data-driven
prediction model, the input and output time-series are constructed as X = {{z§i)}f;61 N
and Y = {{z{"}T}N with one-step shift. The parameters of LSTM are computed by
minimizing the difference between the (true) output and the predicted output from LSTM.

Since LSTM, or any existing neural networks, takes a point input and generates a point
output as noted above, the uncertainty of the data-driven prediction is not directly available
(which corresponds to the covariance ¥;;; in Figure 3.1). To obtain the uncertainty of
LSTM, we use a technique called Monte Carlo dropout (MCDO) [62], which is a widely
used scheme for learning the uncertainty of a neural network. With dropout, a connection
in LSTM is dropped, or disconnected, with a probability, called dropout rate, which is a
design parameter. By collecting the output of LSTM with MCDO for a number of input

samples and Monte Carlo runs, a Gaussian pdf is fitted to the collected output samples, thus

resulting in the pdf of the data-driven prediction, N (i, X).
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3.1.2 Demonstration of the proposed trajectory prediction algorithm

In this section, we demonstrate the proposed algorithm with real Automatic Dependent
Surveillance-Broadcast (ADS-B) data. With ADS-B technology, an aircraft determines its
position through satellite navigation and broadcasts it to a ground station or other aircraft
in the proximity. The collected ADS-B used in this research was recorded from January to
June in 2020, around the two major airports in the Republic of Korea, Incheon International
Airport (ICN) and Gimpo International Airport (GMP).

For the illustration purpose, the proposed framework is applied to one arrival trajectory
and one departure trajectory, as shown in Figure 3.4 and Figure 3.5, respectively. We
compare the proposed hybrid data-driven and physics-based trajectory prediction method
(in blue in each figure) with two baseline methods, the data-driven only (in red) and the
physics-based only (in green). The performance of each method is measured by the prediction
error, i.e., the difference between the predicted trajectory and the recorded trajectory (in
black). In each figure, the left shows the trajectories and the right represents the prediction
error. The prediction is performed at the last/initial part of arrival/departure trajectories
for the prediction horizon of 20 time-steps where the time interval is 5 seconds.

It is shown that the proposed method outperforms the baseline methods by incorporating
the aircraft’s current dynamics (physics-based) with the expected states in the future from
the learned LSTM (data-driven). In the next section, we use the proposed method to predict
the future track points of an aircraft under monitoring for predicting the conformity scores

of each future track point.
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Figure 3.5. Departure trajectory prediction

3.2 Conformance Monitoring with Stochastic Conformal Prediction

In this section, a method for computing the conformity scores of the future track points is

presented. Suppose that we have a set of similar trajectories, {Z®}Y, where Z0 = {z{"}T |

is an aircraft trajectory, z; is a track point at time-step ¢, and T is the final time-step. For the
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track points of a new, incoming trajectory observed up to time-step 7, this new (N + 1)-th
trajectory is constructed as
N+ Tp s(N+D)\Tp+Th
20D = (T U Ty (3.5)
with the track points observed up to 7, and the ones predicted for the future horizon of T},

that are obtained by the method described in Section 3.1. We use conformal prediction [63]

in order to compute the conformity score of Z(N+1) with respect to {ZW}¥ | which is given

as
p(N-H): |a(z) 2@<N+1),i:1,~-- 7N_|_1‘ (3 6)
N+1 '
where oV for i = 1,---, N + 1 is a non-conformity measure (NCM) that represents how

different Z® is from {Z\ ;V:’Lllﬁm The smaller p¥*1) the more non-conforming Z®™+Y

to {Z J)}] 1, and hence pN*D can be used as an conformity score, i.e., a measure of how
conforming the new trajectory is with respect to the set of similar trajectories. To compute
the NCM, aV’s, we use the directed Hausdorff distance (DHD) [53][64], which measures how
the shape of a set of points A resembles some part of the shape of another set of points B,
defined as

5y(A, B) = Iglgj{{mm{d(a b)}} (3.7)

where d(a,b) is a distance between two points a and b, by some metric, e.g., the Euclidean
distance. Note that the DHD is not symmetric, i.e., 6z (A, B) # d5(B, A) in general.
Suppose that A = {ag,a1} is a new trajectory where ay is deterministic and a; ~
N (a,%q) and B = {by, b1, by} is a trajectory from the set of trajectories where all the
track points by, by, by are deterministic. Due to the stochastic track point a;, the DHD,
(A, B), as well as the NCMs, a’s, also become stochastic variables. To handle this, we

compute the expectation of the DHD, which is given as

E (5u(A, B)) /5H (a0, a1), B (bo, b1, b)) f(a1)dar (3.8)
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where f(aj) is the pdf of a;. However, due to the minimum and maximum in the DHD, the
numerical integration is not trivial to perform. In this regard, we propose to use an approx-
imated form of the DHD that can be numerically integrated. Among the several approxi-
mation methods for the minimum/maximum function (called smooth minimum/maximum),
such as the LogSumExp (LSE; also called RealSoftMax), p-norm, and the generalized mean

[65], we choose the LSE which is widely used for machine learning [66] and given as

1
max{xy, -, Ty} ~ ;log (exp (pz1) + -+ - +exp (pzy)) (3.9)

where p is a large enough positive constant. The minimum can be similarly approximated
by replacing p with —p.
By applying the LSE technique twice, the DHD can be approximated as

5H(A, B) = max {min{d(a, b)}}

acA beB

(3.10)

~ /)L log {Ma [exp {prdim(ao)} + exp {pMdm(a1)}]}

where, for a € A,

(0) = = tog {1 o { b))+ o5 L=, )} + 5 {=pu )]
(3.11)

and p,, and py are large enough positive constants. By plugging Eq. (3.10) and Eq. (3.11)
into Eq. (3.8), we can compute the expectation of the DHD, E (EH(A, B)), if trajectory A
contains one stochastic track point and trajectory B is entirely deterministic, and similarly
for E (5 u(B, A)) (the case where there are multiple stochastic track points is discussed in
Section 3.2.2). Note that if both trajectories A and B are deterministic, the expectation of
the DHD is simply equal to Eq. (3.7).

Once computing the expectations of the DHDs for all the pairs from {Z® Y41 the NCM
of the i-th trajectory, a® for i = 1,--- , N + 1, is then obtained as

k
(@) — Y (i) @\ N+ W
o —;EPH <Z ,NN({Z Y jm (312)
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N+1

where NN <{Z(l)} .
I=1,1#1
tation of the DHD and k is a design parameter. With the computed NCMs, the conformity

\ 20, j> is the j-th nearest neighbor to Z® according to the expec-

score of the new trajectory, p(V+1)

, is computed using Eq. (3.6).

For the validation of the proposed method, we compare it with Monte Carlo simulation
to measure the performance in terms of computation time and accuracy. The computation
time is checked along the number of trajectories, N, and the number of track points in
each trajectory, T. As shown in Figure 3.6, the propose method is significantly efficient
compared to Monte Carlo simulation. For a given N and 7', the NCM value from Monte
Carlo simulation is 2.1908 (considered as a ground truth), while the proposed method has
2.2039, which has 0.60% error with respect to the ground truth. That is, the proposed

method using the smooth approximation can perform the computation effectively (in terms

of accuracy) and efficiently (in terms of computation time).
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Figure 3.6. Comparison of the computation time: Monte Carlo simulation

and the proposed approximation

3.2.1 Conformance monitoring at the current time

In this section, the algorithm described in Section 3.2 is applied to conformance monitor-
ing for the current time. For a new incoming trajectory, the track points observed up to the

current time-step are used to detect if it is conforming to the set of similar trajectories. The
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states of a trajectory at the current time-step is estimated using the hybrid estimation algo-
rithm in Section 2.1.2 and all the past track points are considered deterministic (therefore
the new trajectory contains only one stochastic variable).

With the data used in Section 3.1.2, we present the four abnormal cases of the new

trajectory:

1. Departure trajectory that performs Direct-to (deviating from the normal trajec-

tories and never returning to them), shown in Figure 3.7

2. Departure trajectory that performs Path-stretch (deviating from the normal tra-

jectories and returning to them), shown in Figure 3.8
3. Arrival trajectory that performs Direct-to, shown in Figure 3.9

4. Arrival trajectory that performs Path-stretch, shown in Figure 3.10

In each figure, the upper plot shows the set of normal trajectories (in black; the arrow
represents the moving direction) and the new trajectory where the red dots and blue ellipses
represent the mean and covariance (two standard deviation) of the estimated current states,
respectively, in the horizontal plane. The lower plot presents the time history of the con-
formity score of the new trajectory. The arrows with time in the upper plot represent the
initial position (0 sec) and the position where the conformity score first becomes 0.

For the departure trajectories, the Direct-to trajectory in Figure 3.7 is detected as an
anomaly within three time-steps, while the Path-stretch trajectory in Figure 3.8 is within
seven time-steps. Possible reasons for such detection delay in the Path-stretch include (i) that
the Path-stretch is very close to the normal trajectories at the initial time-steps so that its
conformity score is high, which means that it is considered as conforming during the period;
and (ii) that the set of normal trajectories for the Path-stretch case have a relatively wide
variations than the Direct-to case, which implies that the NCMs of the normal trajectories
and the new trajectory are comparable each other. Note that, however, although the Path-
stretch trajectory returns to the normal trajectories, its conformity score never increases (i.e.,
it is converged to 0), because the deviated part of the trajectory makes its shape different

from the normal trajectories.
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For the arrival trajectories, the Direct-to trajectory in Figure 3.9 is detected as an
anomaly within five time-steps, while the Path-stretch trajectory in Figure 3.10 is within
four time-steps. For the Direct-to, its conformity score starts from about 0.5 (in the middle
of conforming (1) and non-conforming (0)), it quickly decreases to about 0.05 in four time-
steps and then converges to 0 in the next time-step. For the Path-stretch, its conformity
score starts from very low value of about 0.037, possibly due to its direction before the initial

time-step which is different from the normal trajectories. It converges to 0 within four time-
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steps, which could be attributed to the wide variations of the normal trajectories, similar to
the departure Path-stretch case.
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3.2.2 Conformance monitoring at the future time

In this section, the algorithm described in Section 3.2 is applied to conformance moni-
toring at the future time.

Note that, for the trajectory prediction presented in Section 3.1, it is supposed that

there exist a large enough number of trajectories recorded in a dataset corresponding to a
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known intent, such as following a flight plan or deviating due to ATC’s instructions. If a
new incoming trajectory is conforming to any known intents, its future track points can be
predicted by the trajectory prediction method presented in Section 3.1. However, if it is
non-conforming to any of known intents, the method in Section 3.1 is not applicable. For
such cases where any information about the future is not available, the future trajectory
can only be predicted by propagating its current states into the future using a dynamics.
Note that, in the horizontal plane, the two types of anomaly, Direct-to and Path-stretch, can
be distinguished after an aircraft takes turning and then returns to the normal trajectories
(Path-stretch) or it reaches a known waypoint with a straight line motion (Direct-to). Direct-
to and Path-stretch, however, share a property that the part of the trajectory right after
the deviation starts is (almost) straight line. Through data analysis, it is identified that any
trajectory of Direct-to or Path-stretch maintains the straight line at least for 25 seconds. In
this regard, we propose the following: once a new incoming trajectory is determined that it is
not conforming to any known intent (by using the maneuver detection and characterization
method in Section 2.1), its current intent is considered as maintaining the heading of the
trajectory at the time of detection at least for 25 seconds, based on which the future track
points are predicted along this intent [47].

For the either of conforming or non-conforming cases, there are more than one future
track points predicted. For two trajectories, Z® and Z\), suppose that Z() contains the
N, number of stochastic track points, zy), e ,z](\z,z Then, the expectation of the DHD in

Eq. (3.8) for a single stochastic variable becomes
E (§4(2%, 29)) = /ZW .../Z(i) 5 (20,29 f(z0)- - F(e@)d=) - dz) (3.13)
N 1

Since the computation time of numerical integration in Eq. (3.13) exponentially increases
with the number of the stochastic variables, it cannot be directly applicable in real-time
application. In this work, we use the method similar to the one discussed in Section 3.2.1
by replacing the estimate of the current track point with a predicted track point for a
future time-step within a prediction horizon. That is, for the time when the prediction

is performed, 7T},, and the prediction horizon, 7T}, the predicted track point at each future
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time-step 1), + ¢ for ¢« = 1,--- , T} along with the past track points up to 7, are combined
to construct a new trajectory. We compare the conformity score computed by the proposed
conformance monitoring at the future time (that is, before observing the track point at 7,4+
fori=1,---,T),) with the one by conformance monitoring at the current time (that is, once
observing the track point at 7, + ¢ for ¢ = 1,--- ,T},). The performance is measured by (i)
the accuracy, that is, the difference between the predicted conformity score and the one from
the conformance monitoring at the current time, and (ii) detection delay, i.e., the difference
between the time-steps when the anomaly is detected by the two methods.

For the illustration, we present three cases of a new trajectory, one normal and two
abnormal trajectories, as shown in Figure 3.11 to Figure 3.13. In each figure, the upper plot
shows the set of normal trajectories (in grey for the normal case for the visibility and in black
for the abnormal cases; the arrow represents the moving direction) and the new trajectory
where the blue dots and ellipses represent the mean and covariance of the track points up
to the current time-step (represented as 0 sec) and the red dots and ellipses represent those
at the future time-steps. The lower plot presents the time history of the conformity score
of the new trajectory where the blue one is from the proposed conformance monitoring at
the future time (prediction) and the red one is from conformance monitoring at the current
time (estimation).

For the normal case in Figure 3.11, the conformity score of the proposed conformance
monitoring at the future time does not converge to the one of the conformance monitoring
at the current time within the prediction horizon, but both scores are around or above 0.5,
which can be regarded as normal.

For the abnormal cases in Figure 3.12 and Figure 3.13, the conformity scores converge
to 0 with delay in detection time of zero or one. The trajectory prediction with a straight
line and the use of a single stochastic variable work well for the cases shown in this section,
but it is required to significantly extend the proposed method to be useful in real-world

applications. The corresponding future research directions are discussed in Section 4.2.
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4. CONCLUSION

Concluding remarks and possible directions of the research presented in this thesis are pre-

sented in this chapter.

4.1 Concluding remarks

This thesis focuses on the development of decision supporting tools for air traffic con-
trollers, especially focused on the safety of air traffic management. This effort is presented
in two-folds based on the two main tasks of air traffic controllers (ATCs): control and mon-
itoring.

For control, a data-driven conflict resolution tool which can aid ATCs in the decision-
making process for air traffic conflict resolution has been proposed. To achieve this objective,
first, an algorithm has been proposed for for the detection and identification of aircraft ma-
neuvers. The maneuver types have been represented as a sequence of simple motions, called
intents. Flight plans, flight tracks, and the maneuver models are used to infer the aircraft’s
intents based on an aircraft’s continuous and discrete states by using a hybrid estimation
algorithm, and the maneuvers are inferred based on the inferred intents. By testing with
flight data, it has been demonstrated that the proposed algorithm can successfully identify
the aircraft maneuvers. Second, a data-driven technique has been proposed for the devel-
opment of conflict resolution tool, which learns from flight data to extract the knowledge
about the resolution methods embedded in the data, thereby providing an advisory list of
resolution maneuvers that can guarantee the safety. For classification of resolution types, a
hierarchical form of supervised learning techniques has been used. For a classified resolution
type, the corresponding resolution parameters are also provided in a way that the separation
between two conflicting aircraft can be guaranteed.

For monitoring, a hybrid data-driven and physics-based trajectory and anomaly predic-
tion framework has been proposed to help enhance the situational awareness of ATCs, by
understanding the current status and predicting the future states of aircraft. To predict
the future states of an aircraft, a trajectory prediction framework has been developed by

combining a data-driven prediction model and a physics-based prediction method. Since the
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estimated or predicted states of an aircraft are stochastic, a stochastic version of anomaly
detection and prediction algorithm has been developed. The developed methods have been

demonstrated with a real surveillance data.

4.2 Future Work

For control, to further improve the performance of the conflict resolution generator, learn-
ing from large-scale real flight datasets for a specific airspace, such as a sector, would make
it more effective in mimicking the ATC response to aircraft conflicts. Also, the supervised
learning used in this work tries to learn the air traffic controller’s practices recorded in the
data, but there could be other performance measures such as time or fuel consumption. The
applicability of the algorithm would be improved by investigating the balancing between the
exploitation (use the current practice learned from the data) and the exploration (find more
efficient solution).

For monitoring, the proposed trajectory prediction requires a large enough number of
trajectories for a known intent. The known intent in this thesis is only the case where
the flight trajectories follow a known flight plan. This can be extended to a smaller set
of flight trajectories, such as vectoring patterns, i.e., the trajectory patterns formed by a
frequent instructions of ATCs for a specific traffic situation. Also, if the stochastic conformal
prediction can be further extended to a version that can account for more than one stochastic

variables, the performance of conformance monitoring for the future time would be improved.
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