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ABSTRACT

Microelectromechanical systems (MEMS) depend on mechanical deformation to sense

their environment, enhance electrical circuitry, or store data. Nonlinear forces arising from

multiphysics phenomena at the micro- and nanoscale – van der Waals forces, electrostatic

fields, dielectric charging, capillary forces, surface roughness, asperity interactions – lead

to challenging problems for analysis, simulation, and measurement of the deforming de-

vice elements. Herein, a foundation for the study of mechanical deformation is provided

through computational and experimental studies of MEMS microcantilever capacitive switches.

Numerical techniques are built to capture deformation equilibria expediently. A compact

analytical model is developed from principle multiphysics governing operation. Experimental

measurements support the phenomena predicted by the analytical model, and finite element

method (FEM) simulations confirm device-specific performance. Altogether, the static multi-

stability and quasistatic performance of the electrostatically-actuated switches are confirmed

across analysis, simulation, and experimentation.

The nonlinear multiphysics forces present in the devices are critical to the switching

behavior exploited for novel applications, but are also a culprit in a common failure mode when

the attractive forces overcome the restorative and repulsive forces to result in two elements

sticking together. Quasistatic operation is functional for switching between multistable

states during normal conditions, but is insufficient under such stiction-failure. Exploration of

dynamic methods for stiction release is often the only option for many system configurations.

But how and when is release achieved? To investigate the fundamental mechanism of

dynamic release, an atomic force microscopy (AFM) system – a microcantilever with a

motion-controlled base and a single-asperity probe tip, measured and actuated via lasers – is

configured to replicate elements of a stiction-failed MEMS device. Through this surrogate,

observable dynamic signatures of microcantilever deflection indicate the onset of detachment

between the probe and a sample.
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1. INTRODUCTION

This chapter is provided to set up broad concepts encountered in the dissertation research

projects and to establish continuity across the body chapters which are published or submitted

research articles in their own right. First, a brief background is provided to introduce the

main topic. Next, motivation for specific research goals are outlined to address major

unsolved problems in the associated body of previous literature. Finally, a preview to the

chapters is included to describe how each stand-alone article-chapter fits together in the

larger dissertation narrative.

1.1 Background

Beam-based microelectromechanical systems (MEMS) have been employed in several

key application areas since their inception. As sensors, they are used to detect biological,

environmental, and physical information [ 1 ]–[ 4 ]. In high-speed wireless communications they

see use as capacitors, filters, switches, and resonators [ 5 ]–[ 9 ]. Possibly most interesting is

their presence in memory storage, offering an option for non-volatile memory cells for extreme

environments like outer space [ 10 ]. Examples of such beam-based device configurations are

shown in Figure  1.1 and  1.2 for reference.

Application areas are driven by utilization of the electromechanical coupling, converting

external energy input into mechanical deformation and in turn modifying electrical signals

for readout. The external energy input may be added mass [ 11 ], pressure changes [ 12 ],

acceleration [  3 ], [ 13 ], electrostatic attraction, or direct applied force. The mechanical beam

element of the MEMS device will then move and/or deform while under restriction of their

designed boundary conditions: clamped ends, cantilevers, or even freely moving as a rigid body.

When in different physical configurations due to such mechanical effects, the beam element

will lead to a change in the electrical signal running through the system for measurement or

information transfer.

Herein, the focus is on microcantilever capacitive switches, depicted in Figure  1.2 , which

operate at the intersection of many relevant multiphysics encountered at the micro- and

nanoscale. Beam deformation is often viewed under the assumptions and analysis methods
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of Bernoulli-Euler or the finite element method (FEM) [ 14 ], [ 15 ]. Electrostatic effects are

described as a continuous extension of the parallel plate model with the possibility for fringe

field effects up around the side walls of the beam element [  16 ]. Finally, surface interaction

forces, often adhesion, are of critical consideration at this scale from van der Waals forces

[ 17 ]–[ 20 ], capillary effects [ 21 ], or electrostatic charging during device operation [ 22 ]. When

all combined into a force balance with elastic restorative forces competing with actuation and

adhesion, these MEMS devices can exhibit exotic nonlinear behavior exploitable for novel

design.

The force balance, while integral to device operation profiles, can also lead to stiction-failure

when attractive forces between two contacting surfaces overwhelm competing restorative

forces from microbeam bending. Stiction-failure can be present in devices straight out of

fabrication, but can also arise through operation due to surface roughness changes, dielectric

charging, surface wetting due to humidity, and/or creep [ 21 ], [ 23 ]–[ 25 ]. Releasing a device

from stiction-failure is of concern for the MEMS community, which has approached it by

reducing adhesion or by excitation techniques to encourage detachment [ 26 ], [  27 ].

1.2 Motivation

Determining the particular relationship between external energy input and resulting

mechanical deformation of MEMS elements is the foundation for design and performance.

Thus, designers first need access to computational tools for straightforward evaluation of

static equilibria as a baseline for quasistatic device performance. Second, they need a compact

analytical model of the microcantilever capacitive switch which encompasses all operating

modes of the mechanical element shapes and multiphysics interactions. Hand-in-hand with

the modeling is the need for experimental validation of the mechanical performance under

relevant external actuation. Finally, when devices fail to stiction between contacting elements,

researchers need an observable signature of dynamic detachment to inform release from

contact.
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1.3 Preview

Chapter  2 addresses the aforementioned call for numerical tools to identify mechanical

deformation equilibria in MEMS devices. One software package, AUTO-07p, is introduced

as a benchmark for solving nonlinear equilibria from analytical models. Another, COMSOL

Multiphysics®, provides qualitatively and quantitatively similar performance on standard

device configurations while allowing for additional numerical power in exploring models with

complicated geometry – a struggle for analytical approaches. Several examples are explored

to showcase this approach.

Chapter  3 builds on the analytical component of the prior chapter, but digs into the

multistability present in a MEMS microcantilever capacitive switch. The existence of several

stable states is revealed for a compact multiphysics model, along with the quasistatic operation

limits governing the switching between configuration shapes of the deformable beam element.

Operation regions of mono-, bi-, and tristability are all identified for physically-relevant model

parameters, and an uncertainty quantification study is provided to determine the propagation

of fabrication uncertainty through the dynamical model.

Chapter  4 pulls from the COMSOL Multiphysics® portion of the numerical equilibria

solution methods and bolsters it with experimental validation through measurements of fabri-

cated MEMS microcantilever capacitive switches. The multistability predicted in Chapter  3 

is confirmed, while device-specific COMSOL Multiphysics® models provide device-specific

explanation for performance variability. Under such validation, it is confirmed that the multi-

physics phenomena are aptly captured by the modeling approach and is thus a suitable and

computationally expedient technique for MEMS design as well as performance monitoring.

Chapter  5 is a departure from strictly MEMS focus and seeks to elucidate the dynamic

nature of detachment between a vibrating microcantilever and a sample via an atomic force

microscopy (AFM) system. Isolating the dynamic detachment mechanism in a single-asperity

contact system of the AFM probe tip and the sample leads to observable signatures for release

from contact. For AFM users this informs of an upper limit to measurements in a popular

measurement mode, but for MEMS researchers it can inform of the initiation of detachment

for stiction-failed members.
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Chapter  6 summarizes the dissertation contributions and looks to the future for research

projects adjacent to and stemming from the completed works in the main chapters. Both

MEMS and AFM have unexplored phenomena relating to the precise nature of detachment

dynamics which could be explored through analytical approaches as well as numerical

computation.
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(a) Acceleration sensor [ 3 ].  

1
 (b) Resonator [ 28 ].  

2
 

(c) Clamped capacitive switch [ 29 ].  

3
 (d) Cantilever ohmic switch [ 30 ].  

4
 

(e) Nonvolatile memory cell [  31 ].  

5
 

Figure 1.1. Example beam-based MEMS devices.

1
 ↑ Republished with permission of Elsevier Science & Technology Journals, from Snapping microswitches

with adjustable acceleration threshold, Y.-H. Cho et al., vol. 54, issues 1-3, copyright © 1996, DOI:
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2
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(a)

(b)

Figure 1.2. MEMS cantilever capacitive switch (a) top view from optical
camera and (b) side view from rendered schematic.

no. 4, page 045009, 2013, DOI:  https://doi.org/10.1088/0960-1317/23/4/045009 . © 2013 IOP Publishing.
Reproduced with permission. All rights reserved.
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Reproduced with permission. All rights reserved.
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2. SOLVING MICROBEAM BOUNDARY VALUE PROBLEMS

VIA CONTINUATION IN NONLINEAR MEMS DESIGN

The study of microbeam steady state behavior is commonplace in microelectromechanical

system (MEMS) design, though only some simple devices are microbeams and have closed-

form analytical solutions for their deflection behavior. However, strong nonlinear interactions

in structural and multiphysics domains are pertinent for most interesting systems at this small

scale, leaving researchers to decide between approximating the nonlinear behavior, making

assumptions on the beam behavior, or exploring numerical modeling and solution algorithms.

Numerical solutions are also often included to replace or supplement experimental observations

even when they are not the basis of a research project. Thus, it is imperative for research

groups studying MEMS design to have a carefully laid out approach to numerically solving

microbeam boundary value problems (BVPs). The software package COMSOL Multiphysics®

is commonly used to some extent in MEMS design, but its efficacy as a tool for parametric

studies and continuation of solutions to determine static equilibria of these BVPs is much

less utilized. In this chapter, COMSOL’s numerical continuation capabilities are benchmarked

against the more traditionally accepted nonlinear analysis software AUTO and explore these

advanced functionalities through several relevant examples of increasing complexity.

2.1 Introduction

Microelectromechanical systems (MEMS) are powerful applications in modern engineering

systems that utilize capacitive, piezoresistive, electrostatic, or thermoelectric phenomena

involving devices for functioning and transducing at a small scale. Sensors benefit from the

electrical component to measure mass or acceleration of their moving parts, while switches

and memory cells benefit from the mechanical coupling to exploit deformation shapes or

small-scale forces for novel applications. Regardless of the application, most MEMS devices

experience nonlinear multiphysics phenomena and tend to have qualitative changes in system

behavior while quasistatically varying parameters – whether actuation, material property, or

geometry. Identifying this relationship between parameter modulation and system behavior
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is the backbone to MEMS design, but there are several approaches available for solving static

equilibria (final resting states) of their mechanically-deforming elements. MEMS devices can

operate in static or dynamic domain though flexible structural elements do contribute to

their dynamics. More and more operations of mems are in dynamic regime with fluctuating

time-dependent force or electric inputs. In this chapter, the focus is on steady state behavior

of MEMS, mostly for devices whose structural elements consist of beam-like elements.

An elementary approach to finding static equilibria in nonlinear MEMS is to assemble

a dynamical model and simulate it via time-integration for a specific set of parameters at

a particular actuation level until transient motions die out and the system settles to a rest

at an equilibrium. For developing an understanding of the effect of actuation, one needs to

then identify a neighboring equilibrium point, whereby the actuation level (or any system

parameter) is increased or decreased by a sufficiently small (incremental) amount and the

model is again simulated via time-integration until the system achieves equilibrium. This

process only identifies stable equilibria though it is continued to fill out a set of parameters

and the associated equilibria for the system. Unfortunately, there are drawbacks to this

approach. First, the increment of step-size in parameter(s) is often large or the computation

time tends to become prohibitively lengthy for systems with complicated models like multiple

beams, patterned elements, or nonlinear multiphysics phenomena. Coarse step-sizes can be

detrimental to identifying the location of novel equilibria features. Second, the solutions are

restricted only to stable equilibria that can be reached from ”quasistatic” changes to the

system parameters. While it is reasonable to argue that identification of unstable equilibria

is of lesser importance for many of the devices, it is the bifurcations and instabilities arising

from the points where unstable and stable segments connect that are crucial to performance

of systems with nonlinearities. An approach that solves for both stable and unstable solution

branch segments could fare better at locating the transition points.

Over the last few decades, many computational packages with increasing algorithmic as

well as multiphysics modeling sophistication have been developed for simulating and designing

MEMS. The most versatile is COMSOL Multiphysics® [ 32 ], a popular finite element method

(FEM) package championed for its expansive multiphysics module support.

23



In general, numerical continuation is the answer for this modeling; these techniques can

identify system equilibria (both stable and unstable) and uncover the relationship between

parameter changes and MEMS device behavior at a fraction of the computational cost of

direct time-integration. By excluding the dynamical terms of an analytical model, this

approach iteratively solves for equilibria directly. Herein is an introduction to the basics

of numerical continuation and how it is achieved in two software packages: AUTO-07p

Continuation and Bifurcation Software for Ordinary Differential Equations (AUTO) [ 33 ], a

flagship algorithm in nonlinear dynamics communities for solving nonlinear static and dynamic

parameter-dependent ordinary differential equation models for identifying static equilibria,

periodic solutions, and bifurcations; as well as COMSOL Multiphysics®. While AUTO

needs formulation of a model as a parametric boundary value problem (BVP), COMSOL

Multiphysics® can solve systems with complicated boundary conditions involving multiphysics

domains. This chapter collects and presents explorations into a variety of MEMS examples

with various complexities in multiphysics and geometry of COMSOL Multiphysics® modeling.

It is determined that COMSOL Multiphysics® is a suitable software package for numerical

continuation in MEMS design, with few drawbacks that can be addressed in practice.

2.2 Methods

In outlining numerical continuation basics, one may follow the structure of Beyn et al.

[ 34 ]. One starts with a dynamical system,

∂x(t)
∂t

= f (x(t), α) , x ∈ Rn, f(x, α) ∈ Rn, (2.1)

where x is a vector of length n, f is sufficiently smooth, and α denotes the continuation

parameter of interest. Though the latter can be extended to evaluate multiple parameters,

this chapter only covers the one-parameter family of solutions achieving codimension-1

bifurcations. The interest in continuation is to solve Equation ( 2.1 ) for equilibria,

f (x, α) = 0. (2.2)
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The two basic evaluation procedures are parameter continuation, which follows equilibria

through incremental steps in the parameter, and pseudo-arclength continuation, which follows

equilibria through incremental steps along the path itself. Diagrams of each procedure are

shown in Figure  2.1 .

Parameter continuation: start with a solution x0 of Eqn. ( 2.2 ) and its derivative
(
∂x
∂α

)
0

at

α0. To find solution x1 at a neighboring parameter α1 ≡ α0 + ∆α, one solves f(x1, α1) = 0

for x1 by Newton’s method,

fx
(
x

(ν)
1 , α1

)
∆x(ν)

1 = −f
(
x

(ν)
1 , α1

)
, x

(ν+1)
1 = x

(ν)
1 + ∆x(ν)

1 ,∀ ν = 0, 1, 2, ..., n, (2.3)

with x
(0)
1 = x0 + ∆α

(
∂x
∂α

)
0
. The successive derivative vector

(
∂x
∂α

)
1

can be found via

fx (x1, α1)
(
∂x

∂α

)
1

= −fα (x1, α1) (2.4)

to continue evaluating successive equilibrium points, where fx and fα denote partial derivatives

of function f with respect to x and α, respectively. The graphical representation of the

procedure is shown in Figure  2.1a . While this is sufficient in the example continuation step

from solution x0 to solution x1, the incremental stepping in parameter – as depicted by ∆α –

cannot continue to follow the equilibrium path once it reaches the point labeled TP .

Pseudo-arclength continuation: start with solution (x0, α0) of f(x, α) = 0 and the normal-

ized direction vector
((

∂x
∂s

)
0
,
(
∂α
∂s

)
0

)
at (x0, α0). To find solution (x1, α1), the equations of

Keller’s method can be employed [ 35 ],

f (x1, α1) = 0, (x1 − x0)T
(
∂x

∂s

)
0

+ (α1 − α0)
(
∂α

∂s

)
0
−∆s = 0, (2.5)

where s is the arclength of the solution path. This is solved by Newton’s method,

(f 1
x)(ν) (f 1

α)(ν)(
∂x
∂s

)
0

(
∂α
∂s

)
0


∆x(ν)

1

∆α(ν)
1

 = −

 f
(
x

(ν)
1 , α

(ν)
1

)
(
x

(ν)
1 − x0

)T (
∂x
∂s

)
0
−
(
α

(ν)
1 − α0

) (
∂α
∂s

)
0
−∆s

 , (2.6)
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and the direction vector for the next solution point can then be found via

 f 1
x f 1

α(
∂x
∂s

)T
0

(
∂α
∂s

)
0



(
∂x
∂s

)
1(

∂α
∂s

)
1

 =

0

1

 . (2.7)

The graphical representation of the procedure is shown in Figure  2.1b . Note the differences

between this and parameter continuation of Figure  2.1a . The most glaring of which is

through imagining what would happen at point TP . While parameter continuation falters,

pseudo-arclength continuation continues to march on solving equilibria along the path beyond

TP .

It is important to note that the resulting continuation curves are often comprised of both

stable and unstable segments [ 36 ], the latter of which are generally unidentifiable in basic

time-integration approaches to equilibria identification. However, the focus of this chapter is

solely on the identification of static equilibria and not the nature of stability, instead leaving

such a task for further dynamics analysis when necessary.

2.2.1 AUTO

Numerical continuation in AUTO is incorporated here as a benchmark to the following

section of continuation in COMSOL Multiphysics®. It can employ continuation for algebraic

systems, ordinary differential equations (ODEs), and some partial differential equations

(PDEs), and also includes bifurcation identification, stability analysis, as well as periodic

solutions when applicable. The software performs adaptive pseudo-arclength continuation

for equilibria, while adaptively discretizing BVPs via orthogonal collocation with piecewise

polynomials. From a user’s perspective, the development of a problem in AUTO stems

from a set of analytical functions; accessible for theory development yet cumbersome for

nontraditional geometry. Starting with a PDE, eliminating the time dependent terms while

maintaining the boundary conditions yields a boundary value problem (BVP) that can be

represented in first order form for AUTO input. This process is showcased using two examples

for benchmarking: a clamped-clamped microbeam actuated by a uniformly distributed
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load and a cantilever (clamped-free) microbeam actuated by electrostatic load with surface

interaction forces.

A clamped-clamped microbeam with initial curvature has the potential to exhibit bistabil-

ity [  36 ]. This is observed when the microbeam abruptly snaps through from one equilibrium

configuration to another during a continuous change in loading. To explore this behavior in

AUTO, one may start with a coupled PDE model [ 36 ], [  37 ],


ρA∂2u

∂t2
− EA∂2u

∂x2 = 1
2EA

∂
∂x

[
w0

∂w̄
∂x

∂w
∂x

+
(
∂w
∂x

)2
]

ρA∂2w
∂t2

+ EI ∂
4w
∂x4 = EA ∂

∂x

[(
∂w
∂x
− w0

∂w̄
∂x

) (
∂u
∂x
− w0

∂w̄
∂x

+ 1
2(∂w

∂x
)2
)]

+ P (x)
(2.8)

and associated clamped-clamped boundary conditions (see Figure  2.2a for schematic), with

lateral displacement w, initial shape w̄ (normalized such that the maximum value is 1),

maximum offset of initial shape w0, axial displacement u, longitudinal position x, time t,

Young’s modulus E, area moment I, density ρ, cross sectional area A, second area moment

of the cross section I, and uniformly distributed load P (x) = P0[H(x)−H(L− x)], where

H(x) is the Heaviside or step function and L is the length of the microbeam. Corresponding

parameter values are given in Table  2.1 , while the initial shape is chosen to be the first

eigenfunction of a flat, clamped-clamped beam of similar properties [  14 ]. Those who study

transverse deflection of clamped-clamped beams may be more familiar with an uncoupled

version of Equation (  2.8 ) where the axial stretching of the PDE for u is incorporated into the

PDE for w, but this is inconvenient for decomposition into a first order system for AUTO
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input. Isolating only the static terms, Equation ( 2.8 ) can be rewritten in its equivalent first

order form,



d
dx

u1 = u2

d
dx

u2 = w0
d2w̄
dx2 w2 + w0

dw̄
dx

w3 −w2w3

d
dx

w1 = w2

d
dx

w2 = w3

d
dx

w3 = w4

d
dx

w4 = −A
I

(
w0

d2w̄
dx2 −w3

) [
u2 − w0

dw̄
dx

w3 + 1
2 (w3)2

]
+ P0

(2.9)

where u =
[
u, ∂u

∂x

]
and w =

[
w, ∂w

∂x
, ∂

2w
∂x2 ,

∂w3

∂x3

]
. Numerical evaluation of static equilibria

stemming from the undeformed P, u, w = 0 solution is performed with P0 as the continuation

parameter.

In the interest of exploring nonlinear continuation with multiphysics relevant to many

MEMS devices, one may look at a microcantilever capacitive switch depicted in the schematic

of Figure  2.3a [ 38 ]. Though no longer including the axial stretching of the clamped-clamped

prior example, this switch can be modeled by the following PDE:

ρA
∂2w

∂t2
+ EI

∂4w

∂x4 = ε0bV
2

2(a+ d
εr
− w)2 + bH

6π(a− w)3

[
1−

(
z0

a− w

)6
]
, (2.10)

and associated cantilever boundary conditions (clamped base, free tip), with permittivity of

free space ε0, beam width b, voltage potential V , undeflected gap a, dielectric thickness d,

dielectric permittivity εr, Hamaker constant H, and zero pressure gap z0. As with the prior
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example, corresponding parameter values are given in Table  2.1 . The system of Equation ( 2.10 )

is rewritten without time-dependent terms in its equivalent first order form,



d
dx

w1 = w2

d
dx

w2 = w3

d
dx

w3 = w4

d
dx

w4 = ε0bV 2

2EI(a+ d
εr

−w1)2 + bH
6πEI(a−w1)3

[
1−

(
z0

a−w1

)6
]
.

(2.11)

Numerical evaluation of static equilibria stemming from the undeformed beam at zero applied

voltage is performed with V as the continuation parameter.

2.2.2 COMSOL Multiphysics®

Equilibrium analysis via COMSOL Multiphysics® is an accepted practice for nonlinear

MEMS design, yet it is often achieved through time-integration solutions run for significant

computation time until a system is deemed to reach ”steady state”. Understandably, this

only allows researchers to identify a limited set of stable steady states (equilibria) uncovered

by coarse steps in application of actuation voltage. COMSOL Multiphysics® is actually able

to calculate static solution branches (both stable and unstable, though without distinction)

via numerical continuation while drastically reducing computation time and revealing a more

complete representation of the nonlinear behavior [ 39 ]. The software then brings substantial

design space through the ability to analyze 1D, 2D, and 3D configurations containing

exotic geometry, boundary conditions, and dozens of built-in or custom multiphysics. For

the numerical continuation itself, it is most accessible to explore by way of parameter

continuation, as the functionality of pseudo-arclength continuation is only achieved with

additional algorithms [ 40 ].

The primary hurdle in setting up a COMSOL Multiphysics® model for parameter con-

tinuation is in finding a suitable continuation parameter to avoid any potential difficulties

like that following around a point TP in the graphical depiction of Fig.  2.1a . By way of

an additional constraint on the system, a monotonic function can be required to match an
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arbitrary parameter that is swept through a set of values, thus making the function itself

the guide through equilibria branches. This can be any function constructed within the vast

array of software options, and not strictly a choice of one value from the model. For MEMS

microbeam problems, it is often possible as to take the average displacement of the beam or

the displacement of a judiciously-identified point along the beam as the monotonic function

for an initial foray into static equilibria analysis. To implement this in the software, a global

equation is defined such that the difference between the function and the arbitrary parameter

is zero [ 39 ].

To benchmark against AUTO, numerical continuation is configured in COMSOL Multi-

physics® for the clamped-clamped microbeam under uniformly distributed load with parameter

values given in Table  2.1 . Beam deflection is modeled using 1D Bernoulli-Euler beam theory,

while the uniformly distributed load is assigned as a boundary load along the microbeam

length. The monotonic continuation function is assigned as the average displacement of the

microbeam.

In a follow-up to the microcantilever capacitive switch of the previous AUTO section,

similar models are constructed in COMSOL Multiphysics® using the 1D, 2D, and 3D domain

options [ 41 ]. Beam deformation in the 1D case is the usual Bernoulli-Euler, while electrostatics

and surface-interaction forces are added with manual functions as beam loads. In 2D and 3D,

the beam deformations are governed by evaluation of linear stress elements, electrostatic forces

are determined by the surface Maxwell stress tensor, and the surface-interaction between

the contacting features is still based on the same Lennard-Jones form of the final term in

Equation ( 2.10 ). For the three capacitive switch examples, the average displacement of the

microbeam is chosen as the continuation parameter.

As a final set of numerical continuation examples in COMSOL Multiphysics®, the inclusion

of complex geometry within a 2D microcantilever capacitive switch model allows for a glimpse

into the power of the approach beyond the benchmarking successes of prior examples. This

is explored through three different patterning options available to current microfabrication

processes: a patterned electrode, a patterned dielectric, and a patterned microcantilever

underside. All three manipulate the electrostatics, but the latter two offer stark changes

in the contact regions between the microcantilever and the dielectric layer. Patterns are
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implemented by alternating fifths of the cantilever along its length, with thicknesses of the

”removed” material pattern elements (for dielectric and microcantilever patterns) given in

Table  2.1 along with other essential model parameters.

2.3 Results and Discussion

Nonlinear equilibrium behavior is well captured by the COMSOL Multiphysics® 1D model

of the clamped-clamped microbeam with uniformly distributed load when compared to the

AUTO benchmark. Numerical continuation solutions are shown alongside the associated

schematic in Figure  2.2 for comparison. By imagining quasistatic operation of the system

beginning from the undeflected initial shape, the basic performance of the device is revealed:

continuous displacement increase with continuous uniformly distributed load up until the

snap-through point, where the beam abruptly switches into a lower configuration, then

the same situation but in reverse for the release back to the initial shape at zero applied

actuation. Both the AUTO and COMSOL Multiphysics® 1D modeling solutions are in good

agreement. Thus, COMSOL Multiphysics® has suitable qualitative and quantitative potential

for exploring nonlinear equilibria via numerical continuation.

Benchmarking COMSOL Multiphysics® numerical continuation to that of AUTO extends

to higher modeling dimensions with additional multiphysics phenomena. Solutions to the

MEMS capacitive switch in AUTO and COMSOL Multiphysics® 1D, 2D, and 3D are provided

in Figure  2.3d , while continuation step examples from the evaluation of 2D and 3D models are

shown in Figures  2.3b and  2.3c , respectively. Four switching thresholds (pull-in, pull-down,

pull-up, pull-out) are visible in this model versus only the two (snap-through, release) of the

previous clamped-clamped configuration. This additional multistable behavior is driven by the

nonlinear distributed force balance between the electrostatics and surface interaction forces

along the length of the beam, which becomes critical in the post-touchdown configurations

(i.e. microcantilever touching dielectric layer). When comparing the numerical continuation

curves of the trio of COMSOL Multiphysics® models to that of AUTO, it is clear that

the suitability of the COMSOL Multiphysics® approach extends to higher dimensions with

nonlinear multiphysics and a free microbeam end boundary condition.
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Finally, the real power and ease to using COMSOL Multiphysics® is evident when exploring

numerical continuation solutions of systems with complicated geometry elements. Rather

than finding suitable analytical elements to include in a PDE, material within the software

domain can effectively be added or removed akin to the real fabrication processes used to

create MEMS devices. The continuation solution curves for patterned electrodes, patterned

dielectric layer, and patterned microcantilever underside models (all done in 2D) are provided

in Figure  2.4 , preceded by representative continuation step examples for each patterning.

While some of the standard switch behavior presented in previous examples is still present,

each patterning scheme has unique additional multistability exhibited in the highest actuation

regime corresponding to the discontinuous nature of the relationship between the beam,

dielectric layer, and/or underlying electrode(s).

2.4 Conclusion

Numerical continuation schemes allow MEMS practitioners to explore the nonlinear

features present in the static equilibria of their devices, often with much greater speed than

other limited techniques can offer. While researchers may choose to write their own numerical

schemes to accomplish this task, the software packages of AUTO and COMSOL Multiphysics®

are both well suited for such analysis in MEMS design. With a few drawbacks, COMSOL

Multiphysics® can perform relevant numerical continuation for any multiphysics MEMS model

assembled from its array of modules and built-in functions across one, two, or three spatial

dimensions. Most device analysis and design benefit from understanding the underlying static

equilibria.

Supplementary Information

Additional continuation step depictions are provided in Figures  2.5 to  2.9 for COMSOL

Multiphysics® simulations of the microcantilever capacitive switch in 2D, the switch in 3D, the

electrode patterned switch, the dielectric patterned switch, and the microcantilever patterned

switch, respectively.
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Table 2.1. Parameter values for numerical simulations
Parameter Name Value

ρ Beam density (nickel) 8900 kg·m−3

E Beam elastic modulus (nickel) 219 GPa
Beam Poisson’s ratio (nickel) 0.31

L Beam length 100 µm
h Beam thickness 1 µm
b Beam width 10 µm
w0 Maximum value of initial shape 2 µm
H Hamaker constant 1x10−21 J
z0 Zero pressure gap 10 nm
a Beam-dielectric gap (at tip) 1 µm

Dielectric elastic modulus (silicon nitride) 250 GPa
Dielectric Poisson’s ratio (silicon nitride) 0.23
Dielectric density (silicon nitride) 3100 kg·m−3

εr Dielectric relative permittivity (silicon nitride) 3.7
d Dielectric thickness 100 nm

Surrounding relative permittivity (nitrogen) 1
Pattern element thickness 100 nm

ε0 Permittivity of free space 8.85x10−21 F·m−3
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(a) (b)

Figure 2.1. Graphical representations for (a) parameter and (b) pseudo-
arclength continuation based on similar figures of Beyn et al. [ 34 ].
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(a) (b)

Figure 2.2. Initially curved, clamped-clamped microbeam under uniformly
distributed load. (a) Schematic detailing variables, parameters, loading, and
boundary conditions. Variables indicate the uniformly distributed load P , the
longitudinal location x, longitudinal displacement u, transverse displacement
w, initial curvature w0w̄, density ρ, cross sectional area A, Young’s modulus
E, second area moment of cross section I, and beam length L. (b) Numerical
continuation static equilibria results for AUTO and COMSOL Multiphysics®

1D. Snap-through and release instabilities identified.
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(a) (b)

(c) (d)

Figure 2.3. MEMS microcantilever capacitive switch with electrostatics and
surface interaction forces [ 38 ], [ 41 ]. (a) Schematic indicating beam deflection,
properties, external distributed forces, and beam boundary conditions. Variables
denote the longitudinal position x, transverse displacement w, density ρ, cross
sectional area A, Young’s modulus E, second area moment of cross section I,
and beam length L. (b) Numerical continuation step example for COMSOL
Multiphysics® 2D model displaying microbeam deflection as well as (colored)
contours for the electrostatic field. (c) Continuation step example for the 3D
model showing (colored) displacements. (d) Collected static equilibria curves
for AUTO as well as COMSOL Multiphysics® 1D, 2D, and 3D models for the
capacitive switch, with additional labels for switching thresholds.
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(a) (b)

(c) (d)

Figure 2.4. Examples of complex geometry in COMSOL Multiphysics® 2D
models through patterned elements of the standard MEMS microcantilever
capacitive switch. (a)-(c) Patterning of electrodes, dielectric layer, and micro-
cantilever underside, respectively. (d) Collected static equilibria curves from
numerical continuation of the trio of patterning options; threshold indicator for
previously-identified behavior of a standard capacitive switch versus the higher
multistability regions of the patterned models.
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(a) Average displacement: 0.1 µm (floating) (b) Average displacement: 0.4 µm (arc-shaped)

(c) Average displacement: 0.6 µm (s-shaped)

Figure 2.5. Microcantilever capacitive switch at various solution steps of the
COMSOL Multiphysics® 2D model. Average displacement of the microcantilever
is chosen to be the monotonic function for numerical continuation. Colored
contour lines indicate electrostatic field between the microcantilever terminal
and the lower electrode terminal. Parenthetical configuration shape labeling is
consistent with that of Kalafut et al. [ 41 ].
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(a) Average displacement: 0.1 µm (floating) (b) Average displacement: 0.4 µm (arc-shaped)

(c) Average displacement: 0.6 µm (s-shaped)

Figure 2.6. Microcantilever capacitive switch at various solution steps of the
COMSOL Multiphysics® 3D model. Average displacement of the microcantilever
is chosen to be the monotonic function for numerical continuation. Colored
contour lines indicate electrostatic field between the microcantilever terminal
and the lower electrode terminal. Parenthetical configuration shape labeling is
consistent with that of Kalafut et al. [ 41 ].
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(a) Average displacement: 0.1 µm (b) Average displacement: 0.4 µm

(c) Average displacement: 0.6 µm (d) Average displacement: 0.75 µm

Figure 2.7. Microcantilever capacitive switch at various solution steps of
the COMSOL Multiphysics® 2D model with electrode patterning. Average
displacement of the microcantilever is chosen to be the monotonic function
for numerical continuation. Colored contour lines indicate electrostatic field
between the microcantilever terminal and the lower electrode terminal.
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(a) Average displacement: 0.1 µm (b) Average displacement: 0.4 µm

(c) Average displacement: 0.6 µm (d) Average displacement: 0.7 µm

(e) Average displacement: 0.75 µm

Figure 2.8. Microcantilever capacitive switch at various solution steps of
the COMSOL Multiphysics® 2D model with dielectric patterning. Average
displacement of the microcantilever is chosen to be the monotonic function
for numerical continuation. Colored contour lines indicate electrostatic field
between the microcantilever terminal and the lower electrode terminal.
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(a) Average displacement: 0.1 µm (b) Average displacement: 0.4 µm

(c) Average displacement: 0.6 µm (d) Average displacement: 0.7 µm

(e) Average displacement: 0.75 µm

Figure 2.9. Microcantilever capacitive switch at various solution steps of the
COMSOL Multiphysics® 2D model with microcantilever underside patterning.
Average displacement of the microcantilever is chosen to be the monotonic
function for numerical continuation. Colored contour lines indicate electrostatic
field between the microcantilever terminal and the lower electrode terminal.
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3. MULTISTABILITY OF CANTILEVER MEMS/NEMS

SWITCHES INDUCED BY ELECTROSTATIC AND SURFACE

FORCES  

1
 

MEMS/NEMS switches are ideally bi-stable, with one ON and one OFF state and a reliable

switching between the two induced by electrical actuation. Presented herein is an exploration

into non-ideal behavior, i.e. tri-stability, and parametric sensitivity of a generalization of

cantilever MEMS/NEMS switches. The representative system model employs multiphysics

features based on Euler-Bernoulli beam theory, parallel plate capacitance for electrostatics,

and a Lennard-Jones form of surface interaction. The geometry, material properties, and

surface features of the device are condensed into just a few dimensionless quantities, creating

a parameter space of low enough dimensionality to provide accessible representations of all

system equilibria within physically relevant ranges. Analysis of this system model offers insight

regarding conditions necessary for bi- and tri-stability in such systems, which are crucial for

informing studies on switching dynamics and various device performance metrics.

3.1 Introduction

Investigations into failure modes, switching time and velocity, device reliability, and

identification of critical actuation voltages for MEMS switches all require a sound knowledge

of switching dynamics. The dynamics of switching in turn strongly depends on whether or

not the switch behaves ideally, i.e. is bi-stable or tristable/multistable.

Prior literature is predominantly divided in emphasis between multistability and surface

forces. Many past works focus on multistability without explicit inclusion of surface forces

[ 15 ], [ 42 ]–[ 44 ], and tend to be interested in the relationship between the electrostatic forces

and equilibrium positions. It is possible to identify more than two equilibrium positions in a

capacitive switch model without surface forces, but the lack of such an attractive interaction

restricts the breadth of multistability exhibited. Most importantly, any occurrence of stiction
1

 ↑ The findings of this chapter have been disseminated by the paper Kalafut et al. [  38 ] published in the
International Journal of Non-Linear Mechanics.
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failure is unrealizable without adhesion. As shown in the current chapter, the precise nature

of the surface interactions relevant to a device can completely change the stability behavior.

Conversely, various studies have analyzed van der Waals forces relevant to MEMS/NEMS

switches, often in conjunction with Pauli repulsion in the Lennard-Jones potential, but

without directly relating the results to multistability [ 23 ], [ 45 ]–[ 48 ]. This class of investigation

aims to systematically understand the delicate balance of forces acting on the beam surface

when near/in contact with the substrate below, and in some cases relate this information

back to a specific instability. Independent implementations of these surface force models

could each have their own nuances when identifying resulting multistable behavior, but the

significance of their inclusion in capacitive switch modeling is universal.

More recently, some research groups have considered both surface forces and multistability

in the context of specific device configurations. For example, Stulemeijer and co-workers

analytically and experimentally identified equilibrium positions of a rectangular plate capaci-

tive MEMS switch suspended by four spring-like supports, using an exponential form for the

repulsive-only surface forces [  40 ]. Additionally, they explored a range of complexity in device

configuration, starting from a single degree of freedom representation. Results apply solely to

their fit of experimental surface forces for a device, which alone has sufficient complexity in

geometry and support configuration to restrict generality. Also, Ouakad and Younis studied

the influence of capillary forces on instabilities of cantilever and clamped-clamped beams

[ 21 ]. It is shown that capillary forces contribute to the attraction between the beam and the

substrate, in turn influencing transitions from one stable equilibrium position to another.

In this chapter, common geometries and multiphysics models are employed to explore a

dimensionless relationship between surface forces and multistability. The apparent simplicity

of formulation serves to identify and classify static behavior intrinsic to a wide variety of

cantilever capacitive switches. Furthermore, it serves as a foundation for continued modular

study, where additive effects arriving due to initial beam curvature, electrostatic field fringing,

finite electrodes, capillary forces, and surface roughness can be added conveniently. Also

included is a brief Monte Carlo simulations based probabilistic analysis of the effect of

parametric uncertainty on multistability, evaluated using independent realizations of random
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inputs to calculate statistical moments [ 49 ]. While the same broad features exist, many

critical points are highly susceptible to variation in parameters.

3.2 Theoretical Model

Cantilever MEMS/NEMS capacitive switches are fabricated with a small air gap between

the beam and the dielectric-coated substrate, as shown in Figure  3.1 (a) and Figure  3.2 (b).

Device operation is controlled by the electric potential applied between the metallic beam and

underlying electrode beneath the dielectric. An example electrode configuration is depicted in

Figure  3.1 (b). When a high enough potential is applied for a given configuration, it is possible

for the deflecting beam to come into contact with the dielectric. Thus, both electrostatic

and surface forces between the two solid materials play key roles in determining final resting

states and shapes of the cantilever, and, in turn, the overall capacitance of the device.

For each contributing force interaction in the model, a simple formulation is chosen to

capture the most basic behavior relevant to the analysis. Electrostatic interaction between

the beam and lower electrode is represented as a series of infinitesimal parallel plate capacitors

creating a force per unit length along the beam that depends on local gap. Here, as in

Figure  3.1 (a), ŵ(x̂, t̂) is the deflection at a given distance along the length of the beam x̂,

and at time t̂. The beam thickness b, applied voltage V̂ , undeflected/fabricated air gap

a, and dielectric thickness d can also be identified. Not shown are the dielectric constant

εr, and the permittivity of free space ε0, a known constant. The assumption with regard

to the parallel plate model is of greater validity for wider beams, as narrower ones will

have a larger proportion of their electrostatic fields affected by fringing. Various models

exploring the significance of this electrostatic field fringing due to both the beam geometry

and orientation of finite electrodes add complexity [ 16 ], [ 50 ], [ 51 ], and can easily be included

in the present analysis. In this chapter, fringing fields are not included since the general

features of multistability are not affected qualitatively by their inclusion. Additionally, it has

been noted that the contributions due to field fringing are small when the beam is close to

the dielectric, which is relevant to certain beam configurations [ 15 ]. This approach aligns

with the theme of exploring rich multistable behavior within a generalized model for this
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class of devices. Thus, the per-unit-length force representation of electrostatics is modeled as:

Felectrostatic = ε0bV̂
2

2(a+ d
εr
− ŵ(x̂, t̂))2

(3.1)

Surface interactions between the deflecting beam and the dielectric below are modeled

using an extension of the 9-3 Lennard-Jones potential [  52 ], [ 53 ], which is often used to model

attractive-repulsive interactions of two interacting solid surfaces. With two perfectly flat

surfaces interacting, the Ĥ and the ẑ0 represent material properties known as the Hamaker

constant and the zero-pressure gap, respectively. In literature, the zero-pressure gap is taken

to be 0.5 nm [ 53 ], and is described as the gap between two interacting solid surface elements

at which no net pressure is exerted. This notion is generalized to a per-unit-length interaction

force that is derived by assuming that these forces depend on the local gap [ 54 ]. Thus, the

per-unit-length force representation of the surface interaction is assumed as:

Fsurface = bĤ

6π(a− ŵ(x̂, t̂))3

1−
(

ẑ0

a− ŵ(x̂, t̂)

)6
 ; (3.2)

The dominant features of the force-gap curve are the attraction (positive values), the zero-

pressure gap (gap at which the curve crosses the zero-force axis), the repulsion (negative

values), and the dramatic reduction in force as the beam is further away from the dielectric.

More realistic effects, such as surface roughness and capillary adhesion, merit inclusion in

interaction models [ 18 ], [ 55 ]. Specifically, roughness serves to reduce the cumulative energy

of van der Waals adhesion [ 56 ], though the Lennard-Jones potential is still of significance

when tracking net interaction between the mean planes of rough surfaces [ 47 ]. Therefore, the

assumption of perfect smoothness of the interacting surfaces can be considered a worst-case

scenario with regard to dry stiction failures. Conversely, capillary forces work to increase

adhesion energy, and can be conveniently incorporated as an additional term to expand

the surface interaction model complexity [ 21 ]. It is assumed that both the beam and the

dielectric surfaces are smooth, since it provides a starting point for including surface forces

in a systematic way in MEMS/NEMS switch models. Alternatively, ẑ0 and Ĥ could be

viewed as fitting parameters to experimental force-gap curves to circumvent the addition of
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extra modules for other physical interactions, but the consequences of this approach are not

explicitly explored herein.

After combining suggested submodels in a force balance with Euler-Bernoulli beam theory,

appropriate for long, thin cantilevers [ 14 ], the resulting equation of motion for the cantilever

beam system is a PDE as follows:

EI
∂4ŵ

∂x̂4 + ρA
∂2ŵ

∂t̂2
= ε0bV̂

2

2(a+ d
εr
− ŵ)2 + bĤ

6π(a− ŵ)3

1−
(

ẑ0

a− ŵ

)6
 , (3.3)

which includes the elastic modulus E, area moment I = 1
12bh

3, density ρ, and beam cross-

sectional area A = b∗h. The beam length is assumed to be fixed throughout the comparatively

small deflections, so there is no inclusion of a geometric nonlinearity term for axial stretching..

By introducing nondimensional quantities

w = ŵ

a
, x = x̂

L
, t = t̂

T
, T =

√
ρAL4

EI
(3.4)

and

V = ε0bL
4V̂ 2

2EIa3 , g =
d/εr
a
, z0 = ẑ0

a
,H = bL4Ĥ

6πEIa4 , (3.5)

the resulting non-dimensional equation of motion is

∂2w

∂t2
+ ∂4w

∂x4 = V

(1 + g − w)2 + H

(1− w)3

[
1−

(
z0

1− w

)6
]
, (3.6)

with boundary conditions on the fixed end:

w|x=0 = 0, ∂w
∂x

∣∣∣∣∣
x=0

= 0, (3.7)

and those at the free end:
∂2w

∂x2

∣∣∣∣∣
x=1

= 0, ∂
3w

∂x3

∣∣∣∣∣
x=1

= 0. (3.8)

In Equations ( 3.6 ) to ( 3.8 ), it is assumed that the elastic modulus E and area moment I do

not vary along the length of the beam x, and thus do not contribute to respective partial
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derivatives stemming from evaluating the bending moment and shear force at the cantilever

tip. Furthermore, by only including terms relevant to statics, Equation ( 3.6 ) becomes

∂4w

∂x4 = V

(1 + g − w)2 + H

(1− w)3

[
1−

(
z0

1− w

)6
]
, (3.9)

with the same boundary conditions as in Equations ( 3.7 ) and ( 3.8 ). Notice how this final

form for the static behavior of the device is a BVP of an ODE, and only depends on the four

dimensionless quantities introduced in Equation (  3.5 ). This is the basis of further analysis.

3.3 Computational Approach

Multiple equilibria arise directly from solving Equations ( 3.7 ) to (  3.9 ), while an additional

parametric sensitivity analysis serves to quantify basic uncertainty in the findings. To

represent solutions concisely, a dimensionless capacitance is defined as:

C =
∫ 1

0

1
1 + g − w

dx, (3.10)

which is both a scalar metric for the deflection of the beam and the device output quantity

of interest. One-dimensional continuation in V of Equations ( 3.7 ) to ( 3.9 ) is handled in

AUTO, the Continuation and Bifurcation Analysis software, to provide equilibrium solutions

in terms of C [ 33 ]. Details regarding the equations, parameters, and tolerances used to run

the AUTO continuation are given in Appendix A, while a set of example results are shown in

Figure  3.2 (a).

The stable and unstable segments of a branch are marked in solid and dashed lines,

respectively, in the example of Figure  3.2 (a), with details of the analysis given in Appendix B.

With stability identified, it is clear that there are three stable solution segments isolated by

unstable sections and existing within separate bands of dimensionless capacitance; these are

the three configuration shapes depicted in Figure  3.2 (b). Though sourced in this continuation

solution methodology under distributed forces and fixed-free boundary conditions, these

configurations have a similar appearance to those found by varying tip boundary conditions

between free, pinned, and fixed [ 15 ]. As such, notation from literature is followed in denoting
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the stable equilibrium shapes as either floating (low C), arc-shaped (medium C), or s-shaped

(high C) [ 15 ], [  57 ].

Additionally, the turning points themselves are labeled in Figure  3.2 (a) with regard to

varying the dimensionless actuation. The pull-in instability refers to the loss of the floating

stable beam shape with increasing V , above which the only equilibria possible are the arc-

and s-shapes. Similarly, the pull-down instability corresponds to the loss of the arc-shape

equilibrium with increasing V . Then, on withdrawal, the pull-up and pull-out instabilities

describe the loss of s-shaped and arc-shaped equilibria, respectively, with decreasing V . This

understanding provides the basis upon which dynamic switching simulations would take

place.

As turning points are determined from a given set of parameters, their locations on the

C-V plane vary under any uncertainty embodied in the dimensionless parameters. To perform

a basic Monte Carlo analysis for investigating the effects of parameter variability, reasonable

distributions are assumed for geometric parameters a and d. Distributions and values chosen

are as follows:


a ∼ Normal distribution of 1 µm mean and 0.1 µm standard deviation,

d ∼ Normal distribution of 100 nm mean and 10 nm standard deviation,

z0 = 0.5 nm,

εr = 2.

(3.11)

Since these are combined in the dimensionless parameters of Equation (  3.5 ), other mathemat-

ically equivalent example sets could be chosen so long as the ratios between nominal values

as well as the ratios between the means and standard deviations are preserved. Independent

realizations from these distributions are used in separate continuation runs, and the outcomes

are collected to define the mean and standard deviations of the critical instability points.

3.4 Results

Across the wide parameter space discussed, the stable, static equilibrium shapes fall

into a variety of multistability categories – whether the given cantilever MEMS/NEMS
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capacitive switch is mono-, bi-, or tristable – depending on specific values of the dimensionless

parameters from Equation ( 3.5 ). Several sets of z0 and g values are shown in the multistability

diagrams of Figure  3.3 , where both the multistability regions and their instability boundaries

are labeled. For example, Figure  3.3 (a) depicts tri-stability between the pull-up and pull-in

boundaries, in which floating, arc-shaped, and s-shaped stable, static equilibria are realizable.

In the same figure, there exist various regions of mono- and bi-stability, depending on V and

H. To compare diagrams within Figure  3.3 , only z0 is increased by a factor of 10 between (a)

and (c), while their counterparts in (b) and (d) have double the value for g.

Following the example distributions outlined in Equation ( 3.11 ), results of the Monte

Carlo analysis are given in Figure  3.4 . Statistical means and standard deviations for the V

values of each instability point are calculated along fixed H values, or vertical lines, in the

chosen multistability diagram. Mean values (solid black) are labeled, and nominal values

(dashed white) are included, corresponding to z0 = 0.0005 and g = 0.05 as in Figure  3.3 (a).

The shaded regions represent two standard deviations both above and below respective

means, while the accompanying histogram insets depict cross sections of the 1000 Monte

Carlo realizations at several example points.

3.5 Discussion

As cantilever capacitive switches are clearly not simple ON/OFF devices under various

physically realizable conditions, identification of the pull-in instability alone is not necessarily

sufficient to inform switch closure – nor is that of the pull-up instability for switch opening.

This comes directly from the possibility of the intermediate arc-shaped equilibrium configura-

tion, whose effect on static behavior is substantial. This is best shown via Figure  3.2 (a). For

example, a device in the floating configuration at V = 0, which corresponds to zero applied

voltage, is at its lowest capacitance (OFF state). As V is increased past the pull-in point, the

device could switch into either the arc- or s-shaped configuration, depending on the transient

dynamics. If it does rest in the arc-shape, another transition occurs with increasing V after

the pull-down point, above which the device will come to rest in the s-shape configuration. A

similar set of behavior can take place on release with decreasing V crossing the pull-up and
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pull-out points, but it is possible to have sets of parameters for which one or both of these

instabilities exist at negative V values, which are not physically realizable. This corresponds

to stiction failure in either the arc- or s-shaped configuration, where the device does not

release into the lowest capacitance state, even as the electrostatic actuation is removed.

Extension of the stiction behavior across wider parameter variety can be seen in the

pull-up and pull-out intersections along the V = 0 axis of each plot in Figure  3.3 . By

comparing the top set to the bottom set, it is apparent in this example that an increase in z0

by an order of magnitude requires an increase in H values of approximately two orders of

magnitude for the same stiction failures. It is important to note that this is not a simple result

of the nondimensionalization in Equation ( 3.5 ). While the undeflected air gap a is common

to both z0 and H, the differences in stiction thresholds are not appropriately captured by

algebraic manipulation of this value.

Interestingly, many of the general multistability features exist as H → 0+. In examining

this left axis in the examples of Figure  3.3 , each of the three equilibrium configurations of

Figure  3.2 (b) are realizable under various parameter sets. Thus, the existence of equilibrium

shapes is a consequence of the nonlinear electrostatics and repulsion, but does not explicitly

require adhesion. There is no observance of stiction, though, which is understandably related

to adhesive forces in the absence of electrostatic actuation. Furthermore, a comparison of

the right sets of plots to the left in Figure  3.3 reveals the influence of doubling g on the

corresponding V values for each instability as H → 0. As d is unique to this dimensionless

parameter, the increase in V needed to transition across instability points could be attributed

to a doubling of this dielectric thickness.

Finally, the example uncertainty quantification results of Figure  3.4 provide insight into the

dependence of multistability on parameter variability. While the statistical mean lines of the

instability thresholds do not appear appreciably different than their nominal counterparts in

Figure  3.3 (a), the statistical variances contribute important information. The narrow regions

of two standard deviations above and below the pull-in and pull-out instabilities suggest

robustness against uncertain z0 and g. Conversely, the pull-down and pull-up instabilities

have much wider regions of parameter space covered by similar standard deviations, and

as such are more sensitive to z0 and g, as informed by the prescribed distributions for
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a and d in Equation ( 3.11 ). With regard to stiction failure at V = 0, the width of the

pull-up and pull-out standard deviation regions are prominent, suggesting strong sensitivity

to the uncertain parameters. Furthermore, while the nominal lines and inset histograms of

Figure  3.4 are provided for completeness, the slight non-Gaussian appearance of the results

may be attributed to the nonlinear nature of the system. A more exhaustive uncertainty

quantification study would be required for appropriate justification.

3.6 Conclusion

Multistability regions and instability boundaries are identified in dimensionless parameter

space, and the instability sensitivity for the dimensionless parameters is studied. Under the

defined methodology, cantilever MEMS/NEMS capacitive switches exhibit mono-, bi-, and

tri-stability in physically realizable conditions when even the most innate Lennard-Jones

surface interaction model is included and varied. Results provide an easily-expandable

framework for exploration of the coupling between multistability and surface interactions,

with relevance to the design and performance of such devices.

3.A Numerical Continuation Scheme

To implement Equations (  3.7 ) to ( 3.9 ) in AUTO, they are converted to a first-order form

as follows, where u1(x) = w(x, t), and denotes derivate with respect to x:



u1 = f1(u1, u2, u3, u4) = u2,

u2 = f2(u1, u2, u3, u4) = u3,

u3 = f3(u1, u2, u3, u4) = u4,

u4 = f4(u1, u2, u3, u4) = V

(1 + g − u1)2 −
H

(1− u1)3

[
1−

(
z0

1− u1

)6
]
,

(3.12)
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fB1(u1, u2, u3, u4) = u1(0),

fB2(u1, u2, u3, u4) = u2(0),

fB3(u1, u2, u3, u4) = u3(1),

fB4(u1, u2, u3, u4) = u4(1).

(3.13)

The four governing equations and associated four boundary equations in Equations ( 3.12 )

and (  3.13 ) can be reduced to a single expression that is solved via AUTO:

F (u1, u2, u3, u4) = 0, (3.14)

where F = [f1, f2, f3, f4, fB1, fB2, fB3, fB4]T . Following the prescribed framework for BVPs,

the ODE is discretized by the method of orthogonal collocation through the use of piece-

wise polynomials [ 58 ]. Stemming from the known, unactuated, (nearly) undeflected beam

configuration, computed solutions are iteratively driven to match at each of the collocation

points distributed along the length of the beam. Under minimal tolerances, the procedure

marches on to discover equilibrium beam shapes corresponding to V values. Results are

finally distilled onto into the C-V plane for convenience.

For proper execution, parameters and tolerances within AUTO must be tuned for the

specific model. Definitions of each term are provided in the software manual accompanying

AUTO distributions, but the values used for this analysis are as follows:

NDIM=4, IPS=4, IRS =0, ILP =1, SP=[’LP4’,’HB0’,’BP0’]

ICP=[1]

NTST=100, NCOL=4, IAD=3, ISP=2, ISW=1, IPLT=0, NBC=4, NINT=0

NMX=15000, NPR=0, MXBF=10, IID=2, ITMX=8, ITNW=5, NWTN=3, JAC=0

EPSL=1e-8, EPSU=1e-8, EPSS=1e-5

DS=1e-6, DSMIN=1e-20, DSMAX=1e-2, IADS=1

NPAR=15, THL={}, THU={}

UZR={}

UZSTOP={}
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3.B Stability of Equilibria

Stability of equilibrium solutions can be identified via an eigenvalue problem constructed

from a spatial discretization of Eqns.( 3.6 ) to ( 3.8 ). Here, the beam is divided into N

evenly-spaced finite difference nodes, denoted x1, x2, ..., xN , separated by ∆x, with associated

deflections wi = w(xi, t). Then, with designating derivatives with respect to x, finite

difference approximations are constructed as:



w2 = 1
(∆x)4

(
12w2 − 6w3 + 4

3w4
)

w3 = 1
(∆x)4 (−4w2 + 6w3 − 4w4 + w5)

wk = 1
(∆x)4 (wk−2 − 4wk−1 + 6wi − 4wk+1 + wk+2) , k = 4, 5, 6, ..., N − 2

wN−1 = 1
11(∆x)4 (12wN−3 − 48wN−2 + 60wN−1 − 24wN)

wN = 1
7(∆x)4 (12wN−2 − 24wN−1 + 12wN) .

(3.15)

While the wk equation is a common central difference scheme, the four remaining definitions

come from Taylor series expansions at the grid boundaries which are designed to include the

fixed and free boundary conditions of Equations ( 3.7 ) to ( 3.8 ) [ 59 ], [ 60 ]. Since there is no

motion at the point w1 of the fixed cantilever base, there is no need to evaluate a fourth-order

partial derivative at that location.

Substituting Equation ( 3.15 ) into Equation ( 3.6 ) results in:

d2wi

dt2
= −wi + V

(1 + g − wi)2 + H

(1− wi)3

[
1−

(
z0

1− wi

)6
]
, (3.16)

valid for i = 2, ..., N , which is a reduction from the infinite-dimensional spatial continuum to

a finite set of N nodes. Denoting the right hand side of Equation ( 3.16 ) as RHSi, a further

decomposition and linearization yields a system of first order linear ODEs as follows:

ẇ = Aw (3.17)

where

w =
{
w2 ẇ2 w3 ẇ3 · · · wN ẇN

}T
(3.18)
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and

A =



0 1 0 0 · · · 0 0
∂RHS2
∂w2
|w0 0 ∂RHS2

∂w3
|w0 0 · · · ∂RHS2

∂wN
|w0 0

0 0 0 1 · · · 0 0
∂RHS3
∂w2
|w0 0 ∂RHS3

∂w3
|w0 0 · · · ∂RHS3

∂wN
|w0 0

... ... ... ... . . . ... ...

0 0 0 0 · · · 0 1
∂RHSN

∂w2
|w0 0 ∂RHSN

∂w3
|w0 0 · · · ∂RHSN

∂wN
|w0 0



. (3.19)

Here, w0 refers to an equilibrium solution for the ensemble of finite difference nodes. Though

the continuation of the BVP of Equations ( 3.7 ) to ( 3.9 ) is handled in AUTO, the associated

equilibrium solution for the finite difference discretization is taken to be a cubic spline

interpolation of such continuation results for a chosen grid density.

Solutions to the eigenvalue problem λv = Av indicate the stability at each equilibrium

configuration. Any λ with a positive real component is associated with an unstable equilibrium,

while an equilibrium with purely imaginary components is considered neutrally stable under

this linearization.
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(a) (b)

Figure 3.1. (a) Generalized cantilever capacitive switch configuration, with a
fixed-free beam (metallic, suspended from fixed white anchor), dielectric (blue),
and underlying electrode (gold). Key parameters identified are: actuation
voltage V̂ , beam length L, beam width b, beam thickness h, beam deflection ŵ,
undeflected air gap a, and dielectric thickness d. (b) [Top view] SEM image
of a cantilever MEMS capacitive switch, fabricated by the PRISM center of
Purdue University [ 61 ]. The nickel beam (center) is anchored on the left, and
suspended over a silicon nitride dielectric and an actuation electrode (from top)
running along the length of the beam.
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(a) (b)

Figure 3.2. (a) Solutions to the BVP in Equation ( 3.9 ), with associated
boundary conditions (Equations ( 3.7 ) and (  3.8 )), on the CV plane. These
continuation lines are computed in AUTO using parameter values g = 0.067,
z0 = 0.005, and H = 0.1, 1.2, 11.2, and 14.2 × 10−4, from right to left (i.e.
14.2× 10−4 as bold, far left line), which exhibit fairly representative behavior
across MEMS/NEMS devices. Solid, labeled lines represent stable solutions,
while dashed lines represent unstable solutions. Turning points corresponding
to system instabilities are located at the transitions between stable and unstable
equilibria on a given solution branch. (b) Equilibrium shapes of the cantilever
capacitive switch model (anchored on the left), with dimensionless position
along length x and dimensionless deflection w. The equilibrium shapes are
called s-shaped (TOP), arc-shaped (MIDDLE), and floating (BOTTOM), which
are consistent with literature [ 15 ], [  57 ].
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(a) z0=0.0005, g=0.05 (b) z0=0.0005, g=0.1

(c) z0=0.005, g=0.05 (d) z0=0.005, g=0.1

Figure 3.3. Multistability diagrams windowed on parameters V and H,
showing all possible resting states (inset figures) in parameter regions bounded
by turning point instabilities (labeled lines); see Figure  3.2 for details. Top and
bottom diagram pairs correspond to z0 = 0.0005 and 0.005, respectively, while
left and right diagram pairs correspond to g = 0.05 and 0.1, also respectively.

58



Figure 3.4. Mean lines (solid black), nominal values (dashed white), shaded
statistical distributions of two standard deviations above and below the mean,
and histogram insets of multistability region boundaries from 1000 Monte Carlo
realizations of distributed parameters. Specifically, the figure corresponds to
Equation ( 3.11 ), where nominal values of z0 = 0.0005 and g = 0.05 align with
those in Figure  3.3 (a).
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4. TRISTABLE CAPACITIVE MICROCANTILEVER

SWITCHES: MEASUREMENTS AND SIMULATIONS 

1
 

Multistability is a ubiquitous utilization of nonlinear behavior; light switches, retractable

pens, and ratchets are just a few everyday examples. Today, micro- and nanomechanical

devices exploit mechanical multistability in circuitry elements to benefit electrical signal

manipulation. Multistability at these small scales arises from a competition of elastic, surface,

and electrostatic forces. For capacitive microcantilever switches, bistable operation is already

commonplace, but inherent tristability expands opportunities for switching, memory, and

mechanism applications. Herein, tristability is demonstrated experimentally for 20 capacitive

microcantilever switches, while measurement-enhanced simulations quantitatively capture

switching thresholds. This chapter goes beyond prior literature theoretically predicting the

tristability in switches to experimentally characterize this behavior in real microcantilever

devices, and also to present ways to better validate theoretical predictions with experimental

results.

4.1 Introduction

If only a single ON and OFF state are desired in MEMS devices, then any additional

stable orientation is taken as non-ideal behavior; a fault of design, fabrication, actuation

setup, or a mix of all three. This non-ideal behavior, or multistability, can instead drive

improvements in several application fields, as seen through novel design [ 62 ], [ 63 ]; combination

of bistable elements [ 64 ]–[ 66 ]; incorporation of latching mechanisms [  67 ]; or exploitation of

material properties [ 68 ]–[ 70 ].

Capacitive microcantilever switches, a cornerstone of MEMS device configurations, encom-

pass this multistability inherently. This can be summarized via previous works, where mono-,

bi-, and tristability is readily encountered in multiphysics mathematical models which include

beam mechanics, electrostatic actuation, and surface forces [  38 ], [ 71 ], [ 72 ]. In studying the

static solutions of one multiphysics model, it is shown that the transition points between
1

 ↑ The findings of this chapter have been disseminated by the paper Kalafut et al. [  41 ] published in the
International Journal of Non-Linear Mechanics.
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quasi-static switching come about due to saddle-node bifurcations, or turning points, as the

voltage is increased or decreased [ 38 ]. With regard to the devices considered in the present

chapter, shown with components labeled in Figure  4.1a , the resulting stable equilibrium

configurations of the microcantilever can be categorized into three cases: floating, arc-shaped,

and s-shaped; all depicted in Figure  4.1b .

Experimental evidence of multistability in microcantilevers with surface interactions

can be classified into three categories: capacitance measurements of capacitive switches

and zipping varactors [ 73 ]–[ 75 ], current measurements of Ohmic (metal-to-metal) switches

[ 76 ]–[ 79 ], and deflection measurements of adhered microbeams [ 27 ], [  80 ]–[ 82 ]. The capacitance

measurements are of direct interest as they are the MEMS configuration investigated by

the current chapter, but they lack associated deflection measurements to confirm nonlinear

mechanical behavior. Though Ohmic switches have a different operation profile, tristability in

these microcantilevers is important in predicting device failure (secondary pull-in of source to

gate). Again, as with capacitive switches, only electrical (current) measurements inform what

might be occurring mechanically. Studies of adhesion provide the deflection measurements

via interferometry or mechanical probes, however the focus on repairing stiction-failed

devices excludes electrostatic actuation. Herein, unequivocal proof of mechanical snap-

through behavior in capacitive microcantilever switches substantiates previous nonlinear

analysis claims on switching performance, and complements aforementioned works addressing

capacitance, (Ohmic) current, and adhesion.

In this chapter, deflection profiles are measured for 20 capacitive microcantilever switches

during electrostatic actuation, and a computational model is developed in COMSOL Multi-

physics® to explore device-to-device performance variability. Numerical continuation is

necessary to identify the quasi-static switching thresholds from stable and unstable branches

of the equilibrium solution to this model; time-marching simulations would, at best, only

provide an incomplete glimpse of stable behavior at a higher computational expense. While

several algorithms exist for numerical continuation in MEMS [ 40 ], [ 83 ]–[ 86 ], the use of

commercial software provides an accessible avenue for other MEMS researchers to explore

nonlinear behavior of arbitrary geometries and multiphysics. This analysis, developed
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in COMSOL Multiphysics®, provides device-specific features of nonlinear behavior which

quantitatively match experimental switching threshold measurements.

Section  4.2 of the proposed approach is focused on experimentally measuring the full

microcantilever deflection throughout actuation cycles to confirm that the expected switching

behavior (i.e. multistability) is occurring. Though the claim of multistability is substantiated,

there is as much as a 120 V deviation between experimentally identified switching thresholds

(turning point instabilities or saddle-node bifurcations) across the set of devices. In Section  4.3 ,

using a subset of the geometric dimensions accessible through the initial measurement section,

simulations of switching thresholds provide tools to investigate the underlying causes of

this variability. Specifically, quasi-static continuation performed in COMSOL Multiphysics®

reveals device-specific equilibrium curves in the plane of calculated voltage and capacitance

from which switching thresholds are determined. In the quantitative comparison between

the experimental and simulated switching thresholds of Section  4.4 , not only is the nonlinear

switching behavior evident, but the device-to-device differences in performance are well

captured and explained. The last section provides a brief set of conclusions. For reference,

a diagram previewing the major techniques employed throughout the following methods

sections is presented in Figure  4.2 .

4.2 Initial Device Measurements: Experimental Evidence of Multistability

The first round of device measurements target replication of the nonlinear behavior pre-

dicted in Kalafut et al. for a set of fabricated devices under voltage actuation in atmospheric

pressure [ 38 ]. A brief summary of the fabrication sequence is provided, followed by details

on the measurement procedure used to reconstruct the full profile of each individual micro-

cantilever throughout device switching. Microcantilevers are shown to exhibit the floating,

arc-shaped, and s-shaped configurations, as well as all four switching thresholds for dynamic

jumps between system equilibria, which are documented by their corresponding actuation

voltages during the slow ramps up and down.

62



4.2.1 Microcantilever Configurations During Switching Cycle

Capacitive microcantilever devices were fabricated for the PRISM Center in Discovery

Park at Purdue University [ 61 ], [ 87 ]. Beginning with an oxidized silicon substrate, gold is

sputter deposited, patterned, and etched to form two contact electrodes. A layer of silicon

nitride is then applied using a plasma-enhanced chemical vapor deposition process, and is

subsequently patterned and etched to a single dielectric patch over one segment of gold.

Next, a sacrificial photoresist layer is deposited, patterned, and baked to provide a base for

the microcantilever. After sputter depositing a thin layer of titanium to promote adhesion,

a thin nickel seed layer is evaporation deposited, which is patterned and electroplated to

form the microcantilever and anchor. Finally, the sacrificial layer is removed, while exposed

titanium and seed layers are etched away with HF and HCl, respectively. For actuation, one

probe grounds the dielectric-covered gold electrode, while a second probe provides a bias

to the other microcantilever-mounted gold electrode. An example switch, including such

actuation probes, is shown in Figure  4.1a with components labeled. Nominal dimensions for

the microcantilevers are 250 µm (length) by 120 µm (width) by 2 µm (thickness).

Velocity measurements during full switching cycles provide the first indication of multi-

stable behavior, and are the basis of further analysis. A wafer of devices is mounted within

a Suss PLV50 ProbeStation in order to control the environmental conditions and employ

the accompanying probes. The chamber is pumped down to approx. 1 × 10−3 Torr, and

pressurized back to atmospheric pressure (approx. 760 Torr) via a dry nitrogen gas line.

This step aids in the reduction of humidity to minimize the unwanted effects of dielectric

charging [  88 ], [ 89 ]; and capillary adhesion [ 21 ]; while maintaining ample pressure to dampen

out excessive ringing behavior. Triangular actuation waves, with alternating positive and

negative bias to reduce dielectric charging [ 5 ], are first generated via the connected Polytec

MSA-400 laser Doppler vibrometer (LDV) system. These are then fed through a Piezo

Systems EPA-104 linear amplifier (20x gain) before being applied to the microcantilever bias

electrode via the corresponding stage probe. Signal generation and acquisition details from

the accompanying LDV software are provided in Table  4.1 , where a list or range of settings

is shown for quantities that change between device scans.
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For each device, a rectangular grid of 105 scan points is defined on the top surface of the

microcantilever. The system measures each scan point during the application of an actuation

wave before moving onto the next scan point, repeating throughout the full grid. The final

output is a velocity measurement for each scan point at each sampled point in time. To

ascertain a reconstruction of the microcantilever configuration throughout the actuation, the

field of velocity data can be numerically integrated, but there is still a need for the initial

microcantilever curvature to initialize the resulting displacement field.

To provide the initial microcantilever profile, every device is imaged in a Bruker ContourGT-

K 3D optical microscope. In reference to the substrate plane of Figure  4.2 , this data directly

provides the out-of-plane microcantilever profile and its footprint within the plane, as well

as the out-of-plane heights of the gold electrodes and underlying oxidized silicon substrate.

An example representation of the height data, after leveling to the flat substrate within the

Vision64® Operation and Analysis Software, is shown in the MATLAB plot of Figure  4.3 .

The one drawback to the white light interferometry technique is that it is not sufficient

in capturing the translucent silicon nitride dielectric, which, as an artifact, appears lower

than the gold electrode it rests upon. Even without the dielectric layer information, there

is enough contribution from these scans to ascertain the undeflected microcantilever profile.

This is used to initialize the numerically integrated LDV velocity data and obtain the full

microcantilever configurations throughout an actuation cycle.

4.2.2 Results

Both the velocity channel and the corresponding positions are shown in Figure  4.4 for

an example device at a scan point along the microcantilever centerline and approximately

50 µm from the tip. In this figure, negative velocity values (decreasing position) correspond

to the point moving toward the dielectric layer, while positive velocity values (increasing

position) correspond to the point moving away. Thus, there are two sharp transitions

towards the dielectric layer during the (absolute) voltage ramp up, and two transitions away

during the (absolute) voltage ramp down. This is reflected in the position data as well,

where three distinct configurations manifest. The nature of the multistable configurations,
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though, is best captured in the switching cycle reconstructions. The three markers for

example reconstructions in Figure  4.4 at time instants 0, 4, and 5 ms correspond to the

three microcantilever reconstructions of Figure  4.5a (floating), Figure  4.5b (arc-shaped), and

Figure  4.5c (s-shaped), respectively. These three shapes appear in the same predictable

sequence across hundreds of switching cycles for each device tested.

The actuation voltages at the four high-velocity transitions during a single ON-OFF cycle

designate the switching thresholds for a device. During a ramp up of microcantilever bias

voltage magnitude (whether positive or negative), the first switching threshold encountered

is associated with the pull-in phenomenon, where the microcantilever snaps down from the

floating configuration into either the arc-shaped or the s-shaped configuration. If it the former,

then the next switching threshold is related to the pull-down, where the microcantilever snaps

down from the arc-shaped to the s-shaped configuration. On retraction, pull-up and pull-out

refer to the release from the s-shaped and arc-shaped configurations, respectively, and are

affiliated with the final two switching thresholds. This is consistent with the instability

terminology from Kalafut et al. [  38 ]. These switching thresholds are collected and displayed

in Figure  4.6 , with devices sorted in ascending order according to the microcantilever bias

voltages at which the pull-in phenomenon occurs. Though slight differences (<2 V for devices

1-5; <6 V for devices 6-10; <11 V for devices 11-20) are present between the device-specific

switching thresholds identified via positive and negative microcantilever bias voltages, the

two magnitudes are averaged for their presentation in Figure  4.6 .

4.3 Computational Approach: Capturing Nonlinear Behavior in Simulations

The use of numerical simulations is motivated by the need to explain the device-to-device

variability in the experimentally measured switching thresholds. In order to create such

simulations, the unknown dielectric layer and microcantilever thickness must be identified

for each device. Once obtained, a quasi-static continuation solver is configured in COMSOL

Multiphysics® to calculate the full solution branch (both the stable and unstable segments from

Kalafut et al. [ 38 ]). The nonlinear tristable behavior is not only observed computationally;
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device-to-device switching thresholds are quantitatively similar to experimental performance,

indicating that the variability is aptly captured through measured differences in geometry.

4.3.1 Device Geometry

To circumvent the imaging artifact of the optical microscope, an Asylum Research MFP-

3D-BIO AFM can directly determine the dielectric layer thickness. In order to access the

scan region indicated in Figure  4.2 with enough clearance for the AFM equipment, the

microcantilever is removed manually (tweezers) for a small set of representative devices. The

chosen silicon AFM cantilevers are model CSC38 from MikroMasch (Wilsonville, OR), with

350 µm length, 32.5 µm width, 1 µm thickness, and a nominal spring constant of 0.03 N
m .

Images are created at a scan rate of 1 Hz and a force setpoint of approximately 1 nN in

contact mode. For an example device in this set, Figure  4.7 depicts a leveled reconstruction

of the 256 px by 256 px scan data (50 µm by 50 µm), while the inset is the associated

histogram of pixel heights. From these AFM measurements on five separate devices whose

microcantilever have been removed, an average dielectric thickness is calculated from a single

peak-to-peak difference on each AFM scan histogram, like that of the inset in Figure  4.7 ,

with results shown in Table  4.2 . An average layer thickness of 559 nm from this set of

five microcantilever-less devices is used for further analysis and interpretation across the 20

devices used in switching measurements.

The four critical features of the device geometry are the microcantilever profile, the

microcantilever thickness, the gap between the microcantilever and the dielectric, as well as

the dielectric layer thickness. From direct measurements, the microcantilever top surface

profile (optical microscope) and dielectric layer thickness (AFM) are known. Additionally,

the tip gap can be found by the maximum distance traveled by the free microcantilever tip

(LDV), leaving just the microcantilever thickness unknown. Subtraction of the electrode

thickness, dielectric layer thickness, and tip gap from the height of the microcantilever top

surface results in the microcantilever thickness at the tip, which is assumed to be uniform

throughout its profile. In brief, all but the dielectric layer thickness are obtained uniquely for
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each device, allowing for a device-to-device assessment of the relationship between geometry

and multistable switching behavior.

4.3.2 COMSOL Multiphysics® Simulations

Once identified, all four critical features of device geometry are imported into COMSOL

Multiphysics® along with relevant material properties and physics models to best account

for device-to-device variability in switching performance. The computation is set up as a

2D simulation within a vertical, centerline cross-section along the length of the microcan-

tilever, using an assumed out-of-plane depth corresponding to the microcantilever width

(see Figure  4.2 for orientation). In order to quantitatively capture the switching thresholds,

three primary physics models are included for computation: linear elastic solid deformations,

electrostatics, and a Lennard-Jones form of an attractive-repulsive boundary interaction

between the microcantilever and dielectric layer from Kalafut et al. [ 38 ]. An example

representation of computational domains is included in Figure  4.8 , while associated material

definitions and other settings for the multiphysics computational model are accumulated

within Tables  4.3 and  4.4 . A synopsis of boundary definitions for the computational domains

is as follows (domains correspond to those in Figure  4.8 :

• Microcantilever (domain 2): nickel

– Fixed (zero) displacement at boundary of computational domain associated

with anchor

– Electromechanical coupling (Maxwell stress tensor) at all boundaries with

surrounding nitrogen gas

– Attractive-repulsive boundary interaction at underside and tip with respect

to distance from dielectric layer

– Voltage potential bias on boundaries with surrounding nitrogen gas

• Surrounding atmosphere (domain 1,3,6): nitrogen

– Prescribed deformation to coincide with microcantilever and dielectric layer

deformations

67



– Zero charge (electrostatic) at computational domain edges

• Dielectric layer (domain 4,7): silicon nitride

– Fixed (zero) displacement at boundaries of computational domain

– Attractive-repulsive boundary interaction at top surface with respect to

distance from microcantilever

– Zero charge (electrostatic) at computational domain edges

• Electrode (domain 5,8): gold

– Fixed (zero) displacement at boundaries of computational domain

– Grounded (electrostatic) at boundary with dielectric layer

For the computation sequence itself, a procedure is configured to calculate the static

equilibrium solutions via continuation from the undeflected, unactuated configuration. As

the voltage bias applied to the microcantilever is expected to both increase and decrease

throughout the solution steps, the continuation within COMSOL Multiphysics® is accom-

plished by defining a separate monotonically increasing parameter driving the step direction.

In all simulations, the continuation parameter is the average, absolute displacement of the

underside of the microcantilever. Additionally, the capacitance between the grounded gold

electrode and the biased nickel microcantilever at each computation step is calculated within

the software to construct a representation of the solution output on the capacitance-voltage

(CV) plane. As with prior descriptions of the simulations, details on the solution method

specific to COMSOL Multiphysics® settings are collected in Tables  4.3 and  4.4 .

4.3.3 Results: Device-Specific Capture of Switching

The tristability observed in experimental reconstructions of microcantilever configurations

is also captured in the COMSOL Multiphysics® simulations, built using the device geometries

found during the measurement steps. To assess the COMSOL Multiphysics® results, quasi-

static switching thresholds are identified as the four vertical tangents on the CV plane,

as shown in the example plot of Figure  4.9 . Due to the limitations of the continuation

method employed within COMSOL Multiphysics®, the precise nature of stability is not
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calculated explicitly for each step, but rather assumed for the similarity in features from

Kalafut et al. [ 38 ]. The four switching thresholds are collected for each device and plotted in

Figure  4.10a for COMSOL Multiphysics® continuation solutions, sorted in ascending order by

experimental microcantilever bias voltages at which pull-in occurs. Furthermore, the inferred

microcantilever thicknesses as well as the tip gaps are plotted in Figure  4.10b .

4.4 Discussion

For all 20 devices in the measurement set, which excludes the 5 additional microcantilever-

less devices used for AFM scans, the same tristability from theoretical capacitive microcan-

tilever switch studies appear in the experimental reconstructions [ 15 ], [ 38 ]. Additionally,

when the device material properties and geometries are loaded into COMSOL Multiphysics®

simulations, the continuation solutions (Figure  4.10a ) capture the device-to-device variability

in measured switching thresholds (Figure  4.6 ). Of the 80 total simulated switching thresholds

(pull-in, pull-out, pull-up, and pull-down for each of the 20 devices), 22 of them are within

±10% of their corresponding experimental measurements, 72 are within ±50%, and all are

within ±70%. So, device-specific switching performance can be predicted from this predomi-

nantly non-destructive method, requiring no more input than the brief list of materials used

in fabrication.

As the predictive capability of this method is strong with regard to switching thresholds,

the measured and inferred geometries are assumed to provide all of the device-to-device

variation. The critical geometries that differ between devices are the microcantilever thickness

(assumed to be uniform along microcantilever length) and the microcantilever profile, which

is reduced to just the gap of nitrogen gas between the microcantilever and the dielectric layer

at the free end. Comparing the geometries of Figure  4.10b to the experimental and simulated

switching thresholds of Figure  4.6 and Figure  4.10a , respectively, the microcantilever thickness

appears to be the governing contribution to the switching threshold variation.

At first glance, a shortcoming of the proposed method is the lack of a direct thickness

measurement of the microcantilever, but the approach for indirectly determining this geometry

is found to be robust with respect to the identification of switching thresholds. Between
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the top surface of the gold electrode and the top surface of the microcantilever (a height

measured by the optical microscope), there exists the dielectric layer, a small expanse of

nitrogen gas, and the microcantilever itself. While the gas region geometry is calculated

on a device-to-device basis from switch performance monitoring, the dielectric layer is an

assumed value across each device in the set. If it is over predicted, the microcantilever

thickness is under predicted, and vice versa. As a brief exploration, Figure  4.11 summarizes

the change in switching thresholds as the example device from Figure  4.9 is further simulated

with a wide range of dielectric layer thicknesses and the corresponding microcantilever

thicknesses. None of the four critical switching thresholds show any appreciable sensitivity

across the span of thicknesses considered, though it is not determined whether the source of

the apparent robustness is the small scale of the thickness variability relative to the system

as a whole, or a benefit from the additive inverse relationship between dielectric layer and

microcantilever thickness errors. For further detail on the relationship between modeling

parameters and multistability, the work of Kalafut et al. provides a theoretical investigation

using a multiphysics mathematical model [  38 ].

Justification for the computational methodology resides in the degree of quantitative

matching with experimental switching thresholds, but many unincorporated mechanical

intricacies could be included for higher prediction accuracy. At the micro scale, it can be

important to identify material properties (Young’s modulus, Poisson’s ratio, inhomogeneity,

and grain size effects) and clamping compliance on a case-by-case basis to adjust bending

stiffness of the microcantilever. Also due to the length scale of the problem, surface roughness

between the microcantilever and dielectric layer can reduce the effective contact area, and

in turn require an adjustment of the Lennard-Jones form of the surface interaction model

used in the study. Finally, due to the choice of constructing a 2D simulation in COMSOL

Multiphysics®, there is no explicit inclusion of lateral effects: double curvature, electrostatic

field fringing around the sides of the microcantilever, and switching due to microcantilever

twisting (no appreciable evidence of this twisting behavior is present in the experimental

measurements). If a quantitative improvement to this study is critical, then many of these

considerations should be revisited.
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4.5 Conclusion

Tristable behavior is now experimentally confirmed with deflection measurements (full

profile reconstructions throughout device operation) across 20 capacitive microcantilever

switches. Also, the numerical continuation scheme implemented in COMSOL Multiphysics®

captures the complete set of stable and unstable equilibria, while quantitatively matching

the experimental switching thresholds. Capacitive microcantilever switches with tristability

expand options for multistable mechanism design, provide a foundation for bidirectional

acceleration threshold sensing, increase cantilever-based memory cell storage density, and

alter the current usage of such devices in RF circuitry.
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Table 4.1. Polytec Scanning Vibrometer Software: Acquisition Settings
Tab Option Setting

General Measurement mode Time
Averaging Off

Channels Vibrometer range 200 mV, 500 mV,
1 V, 2 V, 5 V, 10 V

Vibrometer impedance 1 MOhm
Vibrometer quantity Velocity

Reference range 5 V, 10 V
Reference impedance 1 MOhm

Filters N/A No filters
Time Sample frequency 102.4 MHz

Samples 2097152
Trigger External (TTL) Rising

Pre-trigger 0% of Sample time
Vibrometer Velocity (VD-02) 5, 25, 125, 1000 mm/s/V

Tracking filter Off
Low Pass filter 1.5 MHz
High Pass filter Off

Generator Waveform Triangular
Amplitude (pre-20x gain) 4 to 10 V

Offset 0 V
Frequency 50 Hz
Amplifier On (checked)

Wait for steady state 0 s
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Table 4.2. AFM Measurements of Dielectric Thickness on Five Microcantilever-
less Devices

Device 21 552 nm
Device 22 606 nm
Device 23 585 nm
Device 24 539 nm
Device 25 511 nm

Mean 559 nm
Std. Dev. 38 nm
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(a)

(b)

Figure 4.1. (a) Diagram of an individual device with actuation probes, gold
electrodes, nickel microcantilever, silicon nitride dielectric layer, and oxidized
silicon substrate labeled. (b) Floating, arc-shaped, and s-shaped equilibrium
configurations for a tristable capacitive microcantilever switch; microcantilever
configurations (black curves) are anchored on the left, while suspended over
the dielectric (blue box) and electrode (gold box).
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Figure 4.2. Schematic of the experimental setup at device-level, with measure-
ment processes and 2D simulation domain identified. COMSOL Multiphysics®

simulation domain is represented by a rectangular pane intersecting the micro-
cantilever along its vertical centerline, laser Doppler vibrometer (LDV) scans
are indicated by a red laser beam, optical microscope scans are depicted as an
interference pattern superposed on the top surface of the microcantilever, and
the AFM scans are illustrated by an exaggerated AFM cantilever.
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Figure 4.3. Bruker optical microscope scan data reconstruction for a single
device, zeroed and leveled to the substrate. The gold electrodes and micro-
cantilever, labeled in Figure  4.1a , are visible with correct heights, while the
dielectric layer is not imaged accurately via this white light interferometry
technique.
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Figure 4.4. LDV velocity measurement for an example device, with normalized
actuation voltage waveform and numerically processed position included. The
example reconstructions correspond to Figure  4.5 .
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(a)

(b)

(c)

Figure 4.5. Three microcantilever configurations from an example device,
corresponding to the example reconstruction markers in Figure  4.4 : (a) floating
at 0 ms, (b) arc-shaped at 4 ms, and (c) s-shaped at 5 ms.
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Figure 4.6. Four experimental switching thresholds (microcantilever bias
voltages corresponding to pull-in, pull-down, pull-out, and pull-up) for each of
the 20 measured devices. .

81



Figure 4.7. Scan data from the Asylum Research MFP-3D-BIO AFM in
contact mode for a single dielectric layer over a gold electrode, from the location
shown in Figure  4.2 . The 256 px by 256 px domain corresponds to a 50 µm by
50 µm region, and the image is zeroed and leveled to the grounded electrode.
Inset depicts the histogram (1 nm bin widths) of scan data pixel heights.
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Figure 4.8. 2D COMSOL Multiphysics® geometry initialization for an example
device, with domain identifiers indicated for use in Tables  4.3 and  4.4 . Domain
2 is nickel (microcantilever); domains 1,3, and 6 are nitrogen gas; domains 4 and
7 are silicon nitride (dielectric layer); and domains 5 and 8 are gold (electrode).
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Figure 4.9. COMSOL Multiphysics® quasi-static continuation results for an
example device with displayed continuation steps (circles), though even more
intermediate steps are used in the calculation process. Switched thresholds
(turning point instabilities) are labeled accordingly.
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(a)

(b)

Figure 4.10. (a) Four switching thresholds (microcantilever bias voltages
corresponding to pull-in, pull-down, pull-out, and pull-up) for each device,
as calculated in COMSOL Multiphysics® continuation computations. Device
labeling is consistent with that of Figure  4.6 . (b) Experimentally identified
microcantilever thickness and tip gap for each device, sorted as in (a), which
explains the geometrical parameter contributions to the differences in device
performance.
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Figure 4.11. Switching thresholds for the example device from Figure  4.9 when
simulated with a range of dielectric thicknesses (bottom axis) and associated
microcantilever thicknesses (top axis). For reference, the dielectric thickness
for the original simulation is 559 nm.
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5. CANTILEVER SIGNATURE OF DYNAMIC RELEASE

FROM CONTACT IN ATOMIC FORCE MICROSCOPY

Contact resonance atomic force microscopy, piezoresponse force microscopy, and electrochem-

ical strain microscopy are atomic force microscopy modes in which the cantilever is held in

contact with the sample at a constant average force while monitoring a small superimposed

vibrational signal. Detailed analytical models and clear experimental observables that indicate

when the limit of small vibration permanent contact is violated are lacking. Additionally,

higher operating amplitudes tend to yield better signal-to-noise ratio, so users may inadver-

tently reduce their experimental accuracy by inducing tip-sample detachment in an effort to

improve their measurements. This issue is solved by deliberately pushing both experimental

equipment and numerical simulations to the point of tip-sample detachment to uncover a

useful and observable threshold feature in the cantilever response. This is a critical feature

identification which assists experimentalists in finding an upper bound for operating amplitude

when needing to satisfy the small vibrational amplitude permanent contact assumption in

different atomic force microscopy imaging modes. Numerical simulations of the analytical

model also allow exploration into cantilever dynamics such as full-length deflection and slope

behavior which can be challenging or unobtainable in a standard equipment configuration.

5.1 Introduction

Contact resonance atomic force microscopy (CR-AFM) [  90 ], [ 91 ], piezoresponse force

microscopy (PFM) [ 92 ], and electrochemical strain microscopy (ESM) [ 93 ] are atomic force

microscopy (AFM) [ 94 ] methods where the probe tip is held in contact with the sample

at a constant average force while a small superimposed vibrational response is monitored.

CR-AFM can measure the viscoelastic properties of a sample [ 95 ] and observe subsurface

features in some biological and electronics samples [ 96 ]–[ 101 ]. PFM can measure a sample’s

piezoelectric and ferroelectric properties [ 102 ]–[ 105 ]. ESM can measure the ion diffusion

in battery materials [  93 ], [ 106 ]–[ 108 ]. These different AFM methods provide important

mechanical and electrical properties across a wide variety of samples.
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CR-AFM, PFM, and ESM are built upon the fundamental assumption that as the

cantilever is excited, the probe tip remains in contact with the sample. Signal-to-noise

ratios in these measurements can be improved by increasing the magnitude of the drive

amplitude. However, clear limits on the maximum drive amplitude are poorly defined. Early

CR-AFM works suggested that as users operate with high enough drive excitation amplitude,

nonlinearity occurs in the response [ 109 ]–[ 111 ]. Unfortunately, they were not able to either

connect the feature to a physical phenomenon or a reproducible characteristic of their model.

The mechanical and dynamic processes involving the probe tip detaching from a surface have

not been systematically studied.

Presented in this chapter is a systematic analytical, numerical, and experimental study of

the process of a probe tip detaching from a sample in CR-AFM. It connects the experientially

observed nonlinear response feature to the onset of tip-sample detachment in numerical

simulations. The simulations allow for deeper insight into the interaction between the AFM

probe tip and the sample, which in turn allows identification and characterization of three

different operating regimes: linear, nonlinear softening, and tip-sample detachment. This

result provides clear guidance on amplitude limits in CR-AFM, PFM, and ESM measurements.

5.2 Results

Experimental measurements and numerical simulations of cantilever response amplitude as

a function of drive frequency at different drive amplitudes are shown in Figure  5.1 . Figure  5.1a 

shows the experimental photodiode amplitude signal as recorded with the AFM’s lock-in

amplifier in units of volts. Figure  5.1b compares the photodiode amplitude signal in units

of µrad to a numerical simulation of the cantilever response driven by moment-couples of

different magnitudes. Figure  5.1c shows the maximum deflection of the cantilever about

static equilibrium for the numerical simulations. The dashed grey line in this figure indicates

the location of the undeformed sample surface. These results directly compare the numerical

simulations with experimental measurements.

Detailed breakdowns of the numerical simulations for two different moment couples are

shown in Figure  5.2 . The lowest bending moment couple amplitude of 1 N·m is shown
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in the left column (a,c,e,g), and highest bending moment couple amplitude of 15 N·m is

shown in the right column (b,d,f,h). Figures  5.2a and  5.2b represent stroboscopic depictions

of cantilever deflection and Figures  5.2c and  5.2d represent stroboscopic depictions of the

cantilever slope. For each period of steady-state oscillation, ten equispaced snapshots about

the cantilever’s static equilibrium are provided. The deflection plots include additional shapes

for the analytical first eigenfunction of the cantilever-sample system. Figures  5.2e and  5.2f are

plots of the steady-state oscillation position of the probe tip versus time, with the undeflected

sample surface location provided for reference. Figures  5.2g and  5.2h are the accompanying

Fast Fourier Transform (FFT) data for the steady-state oscillation slope response of the

cantilever at the location above the probe tip. Note that the first harmonic amplitude (i.e.

the FFT amplitude corresponding to the applied drive frequency) is the value plotted for the

simulations in Figure  5.1b since it corresponds to the response amplitude of the photodiode

detector from the lock-in amplifier in the experimental measurements.

The aggregate numerical simulation data of Figure  5.1 is also explored by way of the phase

space representation in Figure  5.3 . The phase space has as many dimensions as state variables,

but the viewing is restricted to the dominant contributors of the first three basis function

modal coordinates q1, q2, q3 and their respective time derivatives q̇1, q̇2, q̇3. Figures  5.3a to  5.3d 

are all plotted with q1 and q̇1 in the horizontal plane along with q2, q̇2, q3, and q̇3 on the

vertical axis, respectively. Each closed loop is a steady-state periodic orbit corresponding to

an operating amplitude and frequency.

5.3 Discussion

The experimental measurements in Figure  5.1a reveal interesting features in the dynamic

behavior of the cantilever as it is driven by increasing harmonic excitation amplitude. At the

lowest drive amplitude, the response amplitude frequency sweep displays linear behavior: a

symmetric resonance peak over the first contact resonance frequency. With increasing drive

amplitude, the response amplitude of the resonance peak increases, but the frequency of

the resonance peak decreases – a nonlinear softening effect. Once a certain drive amplitude

threshold is crossed ( 3.0 mW blueDrive input amplitude), the response amplitude of the
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resonance peak itself climaxes and then decreases with increasing drive amplitude. Explaining

this final feature is the main target of this investigation.

Simulations of the cantilever-sample system in Figures  5.1b and  5.1c allows one to

look behind the AFM measurement features and into the accompanying dynamics at play.

The cantilever slope first harmonic amplitude frequency sweeps in Figure  5.1b match the

on-resonance behavior shown in the experimental measurements (black background lines).

There is a linear response at low drive amplitude, a nonlinear softening at moderate drive

amplitude, and a climax followed by a decrease in response amplitude at high drive amplitude.

Comparing this to the features of the maximum displacements in Figure  5.1c throughout the

same simulated frequency sweeps, one may notice that the climax of the cantilever slope first

harmonic amplitude coincides with the onset of tip-sample detachment. Furthermore, though

the linear and nonlinear softening features are represented in the maximum deflection, the

climax and decrease in response amplitude is not.

To understand why this difference in features between slope and deflection exist, one

may first look to the deflection and slope shapes of Figures  5.2a to  5.2d . The low operating

amplitude deflection shapes (blue solid lines) in Figure  5.2a appear to be nearly identical to

the analytical first eigenfunction of the cantilever-sample system (red dashed lines). When

compared to the slope shapes of Figure  5.2c , one might expect that a scalar quantity could

be assigned to map from slope to deflection at any point along the length of the cantilever.

This is the standard approach for extracting deflection measurements in most AFM operating

modes. However, at high operating amplitudes of Figures  5.2b and  5.2d , such a scalar

connection is no longer preserved. Interestingly, the slope values near the free end of the

cantilever have the same sign at both extremes of the steady state motion, so a mapping

from slope to deflection at points in this region is no longer unique.

Further explanation of the discrepancy between slope and displacement is found through

the frequency space breakdown of cantilever motion at the location of the probe tip shown in

Figures  5.2e to  5.2h . The low operating amplitude probe tip path in Figure  5.2e appears to be

a single sinusoid, and since it has been shown that deflection and slope about static equilibrium

share a scalar relationship, this is confirmed in the frequency domain (FFT) of the slope

response in Figure  5.2g . At high operating amplitude near resonance in Figure  5.2f , the probe
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tip motion is more complex and even paths above the sample surface. Not surprisingly, the

frequency domain of the slope amplitudes echo the complexity and reveal higher harmonics,

or dynamics at multiples of the operating frequency, at play. This is crucial because the

lock-in amplifier used to monitor the photodiode output during frequency sweeps is set to

only observe dynamics coinciding with the drive frequency. In the standard measurement

configuration, any other frequency content, for example higher harmonics of cantilever motion,

are not observed.

Finally, one can turn to nonlinear dynamics for an additional perspective on the behavior.

In a recent unification of nonlinear normal mode (NNM) definitions, Haller and Ponsioen

state that a NNM is a “recurrent motion with a discrete Fourier spectrum of [...] frequencies”

for general dissipative systems [  112 ]. This is a relaxation of prior NNM definitions from

Rosenberg [ 113 ] and Shaw and Pierre [ 114 ] which applies to a broader scope of dynamical

systems and encompasses fixed points, periodic orbits, and invariant tori realizations of

NNMs. In the simulations of Figure  5.1 projected onto the phase space sets of Figure  5.3 , each

steady-state periodic orbit is a NNM corresponding to a specific operating amplitude and

frequency. One can consider the collection of simulated NNMs as a family of periodic orbits

(FPO), which appears to be constrained to a manifold in phase space that can be parametrized

by the state variables q1, q̇1 of the first basis function. While NNM analysis in prior literature

can be employed to investigate the transient dynamics settling to individual NNMs of the

FPO, the FPO itself may be a useful tool in model order reduction for steady-state periodic

orbit analysis to reduce a model from many degrees of freedom (e.g. 10 in simulations of

Figures  5.1 and  5.3 ) to few or one (e.g. the first basis function of state variables q1 and q̇1).

Tip-sample detachment is detrimental to CR-AFM measurements and imaging. Techniques

which attempt to use cantilever amplitude to predict material properties depend on a unique

mapping between the photodiode detector amplitude and the cantilever deflection amplitude,

which is seen to erode at increasing operating amplitude near resonance. Even when resonance

frequency is the only observable of interest, tracking of it via both phase-locked loops

(PLL) and dual A/C resonance tracking (DART) suffer from the presence of detachment

by incorrectly identifying the fundamental contact resonance frequency due to the severe

nonlinearities present. Lastly, the AFM probe tip likely deforms at an expedited rate as it is
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hammering against the surface during tip-sample detachment cycles, which negatively affects

property measurements depending on constant tip geometry.

5.4 Conclusion

In summary, CR-AFM users must be aware of the potential for detachment of the tip from

the sample. Figure  5.4 provides a guide for the different regimes of linear, nonlinear softening,

and tip-sample detachment that can be observed while taking measurements or imaging. In

the linear regime of low operating amplitude, the probe tip remains indented into the sample;

it oscillates as a single-frequency sinusoid, and resonance peaks do not shift in frequency

with varying operating amplitudes. At moderate operating amplitude, though the probe

tip may remain in contact with the sample, the presence of higher harmonics and nonlinear

softening of the resonance peak distorts measurements and should be taken as a signal of

caution. If operating amplitude continues to increase, it may exceed a threshold above

which detachment can occur. This tip-sample detachment regime is observable in-situ by

the characteristic climax and decrease of resonance peak in the slope response first harmonic

amplitude frequency sweeps, and is likely coupled to probe tip damage and standard CR-AFM,

PFM, or ESM analysis techniques cannot be applied for data interpretation.

5.5 Materials and methods

5.5.1 AFM measurements

An AFM utilizes a nanometer-scale microscopy technique that consists of a sharp tip

mounted on a microcantilever to probe a sample surface, as shown in Figure  5.5 . Measurements

were conducted using a Cypher S AFM microscope (Asylum Research, an Oxford Instruments

Company, Santa Barbara, CA, USA) with a NCLAu AFM cantilever (NANOSENSORS,

Neuchatel, Switzerland) on a silicon sample. This AFM system is equipped with Asylum

Research’s blueDrive Photothermal Excitation module for laser-based excitation of the

cantilever.

The optical lever sensitivity (OLS) corresponding to the static cantilever beam shape

with a point load at the tip was calculated from a force displacement curve [ 115 ] on the
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silicon sample. The thermal method [ 116 ] was then used to calculate the static cantilever

bending stiffness. To study the process of tip detachment, the measurement algorithm sweeps

through drive frequencies (low to high, then high to low) at selected drive amplitudes near

the first contact resonance frequency of the cantilever-sample system. The cantilever position

was recorded with an optical lever system consisting of a detection laser and a quadrant

photodiode. The photodiode signal was converted into amplitude and phase at the drive

frequency using a lock-in amplifier.

The OLS resulting from the above calibration procedure is only valid for quasistatic

bending of the cantilever or the very similar shape of the first freely vibrating eigenmode. It

does not apply to the surface coupled resonances that are the focus of this study. Optical lever

systems are predominantly sensitive to changes in cantilever slope. Since the cantilever is

deforming in a known shape during the OLS calibration, it is only a matter of multiplying the

observed OLS by a ratio of the deflection to slope for a cantilever deforming under a point load

applied at the location of the probe tip (assumed from manufacturer specifications) to extract

a calibration parameter that can convert between photodiode voltage and cantilever slope.

This provides a calibration parameter that remains valid in all measurement circumstances.

5.5.2 Analytical model

The core of the computational exploration is the partial differential equation (PDE)

governing the dynamics of the AFM cantilever. At rest, the equilibrium indentation ∆* is

defined as:

∆* = −w*(L1)− Z, (5.1)

where w*(L1) is the equilibrium deflection of the cantilever at the location of the probe tip

L1, and Z is the undeflected tip position (upward) relative to the undeformed sample surface.

While vibrating, the dynamic indentation ∆dyn is defined as:

∆dyn = ∆*− u(L1, t), (5.2)
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where u(L1, t) is the deflection of the cantilever about the equilibrium at the location of the

probe tip. The tip-sample interaction FTS is rooted in the Derjaguin, Muller, and Toporov

(DMT) model of adhesive contact between particles [ 117 ], but modified via works by Shaik et

al. [ 118 ] to linearize the adhesive regime and Labuda et al. [ 119 ] to replace the standard

Hertzian indentation model by a generalized Sneddon law interaction for a variety of tip

geometries [ 120 ]. It is defined as:

FTS(∆dyn) =



0 −∆dyn ≥ gadh

−Fadh + Fadh

gadh
(−∆dyn) gadh > −∆dyn ≥ 0

−Fadh + αTS∆dyn
P ∆dyn > 0,

(5.3)

where Fadh is the maximum adhesive force, gadh is the range of the linear attractive region,

αTS is the indentation coefficient, and P is the parameter controlling the probe tip geometry.

Asylum Research’s blueDrive Photothermal Excitation of the AFM cantilever is approximated

as a harmonic bending moment couple of amplitude MbD and frequency ΩbD separated by

double the laser spot radius rbD and centered at the laser spot location LbD, measured from

the base of the cantilever. Altogether, the equation of motion PDE is assembled as:

ρAü(x, t) + ccantileveru̇(x, t) + EI [u(x, t) + w*(x)]

= MbD sin(ΩbDt) [δ(x− LbD − rbD)− δ(x− LbD + rbD)] + FTS (∆dyn) δ(x− L1), (5.4)

where u(x, t) is the cantilever deflection at position x and time t about equilibrium, w*(x) is

the equilibrium shape of the cantilever, ρA is the mass per unit length, ccantilever is the linear

viscous damping coefficient, and EI is the cantilever flexural rigidity. Dots over variables

refer to time derivatives, while primes denote partial derivatives with respect to the position

along the cantilever length.
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5.5.3 Parameter identification

Careful identification of system parameters is critical for a meaningful comparison of

simulations to measurements. Fortunately, much of what is needed is common practice to

AFM users, and the following sequence steps through extraction of relevant of quantities

predominantly via techniques implemented in Hurley et al. [ 90 ]. These are collected for

reference in Table  5.1 . First, linear vibration cantilever modes are chosen as an orthogonal

basis set upon which to project the PDE, defined as [ 14 ]:

Φi(x) = Ci

[
sin βix− sinh βix−

(
sin βiL+ sinh βiL

cos βiL+ cosh βiL

)
(cos βix− cosh βix)

]
, (5.5)

and normalized by Φi(L1) = 1 ∀ i = 1, 2, 3, ..., N , where N is the number of basis functions

used in the discretization set, and Ci is the basis coefficient used to satisfy such normalization.

The basis set is used to separate the deflection variable into spatial and temporal portions as

follows:

u(x, t) ≈
N∑
i

Φi(x)qi(t), (5.6)

where qi(t) is the time-varying modal coefficient of the ith basis function. This discretization

step is pertinent not only to parameter identification, but also the dynamic simulations.

Measurements of the resonance frequencies for both the free and contact cases allows the

identification of critical stiffness quantities required for converting raw experimental output

into physical quantities. The dispersion relation for wave number and frequency is given as:

(βnL)2 = 2πfn

√
ρAL4

EI
, (5.7)

where βn and fn are the wavenumber and resonance frequency of the nth mode, respectively

[ 14 ]. Note that this is also valid for the cantilever in contact with the sample using the contact

wavenumber βcn and contact resonance frequency f cn of the nth mode. As such, a ratio can be

constructed between the first free vibration mode and the first contact vibration mode:

(βcnL) = (β1L)
√
f cn
f1
. (5.8)
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This is used to back out βc1L and βc2 from the measured frequencies f1, f c1 , and f c2 as well as

the known β1L = 1.875 from free vibration theory of cantilevers [ 14 ]. By defining the relative

tip position ratio as:

γ = L1

L
, (5.9)

and the relative spring constant ratio as:

kratio = ksample
kcantilever

, (5.10)

where ksample and kcantilever are the equivalent linear spring constants of the sample at

equilibrium and the cantilever, respectively, the characteristic equation is assembled as [ 121 ]:

kratio = 2
3(βcnLγ)3 1 + cos βcnL cosh βcnL

Dr

(5.11)

where

Dr = [sin βcnL(1− γ) cosh βcnL(1− γ)− cos βcnL(1− γ) sinh βcnL(1− γ)] ∗

(1− cos βcnLγ cosh βcnLγ)− (sin βcnLγ cosh βcnLγ − cos βcnLγ sinh βcnLγ) ∗

[1 + cos βcnL(1− γ) cosh βcnL(1− γ)] . (5.12)

This relationship has a unique physically-relevant solution valid for both the first and second

contact modes, thus determining kratio and γ for the system. The cantilever spring constant

is defined as [ 90 ]:

kcantilever = 3EI
L1

3 , (5.13)

and the first free vibrating mode stiffness as [ 122 ]:

k1,free = EI
∫ L

0
Φ1(x)Φ1(x)dx, (5.14)

allowing one to solve for kcantilever and the flexural rigidity EI. Combining these with previous

parameter results allow for the calculation of the sample stiffness ksample and the mass per
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unit length ρA. Next, combining the latter term with the quality factor Q of the first contact

mode, the linear viscous cantilever damping is defined as:

ccantilever = 2πf c1
ρAQ

. (5.15)

Remaining system parameters relating to the tip-sample indentation model of Equa-

tion ( 5.3 ) are defined in conjunction with experimental observables. The adhesion force Fadh*

and adhesion gap gadh are identified from the retraction force-distance curve taken just before

vibration sweeps. While gadh is observed directly, Fadh requires multiplication with kcantilever

and the inverse OLS to convert from voltage to force. Similarly, the equilibrium tip-sample

force FTS* uses the same conversion to interpret the setpoint voltage as a force. Finally, the

indentation power P is tuned to match the softened resonance frequency at the response

amplitude climax of Figure  5.1a , allowing the subsequent calculation of the coefficient αTS,

equilibrium indentation ∆*, and undeflected tip position Z.

Simulations

All simulations were conducted in MATLAB using an ordinary differential equation solver

to evaluate time-marching integration. For each frequency sweep set in Figure  5.1 , the system

was simulated at a selected bending moment couple drive amplitude until steady-state, at

which point the frequency was stepped incrementally up or down using final state variable

values from the previous simulation point as initial conditions. A fast Fourier transform of the

steady-state time-domain slope response of the AFM cantilever at the location of the probe

tip is used to extract the first harmonic amplitude for comparison with measurements. Using

the full cantilever response, stroboscopic sampling throughout a period provides explanation

of the shapes experienced during simulations. Lastly, orbits of the state variables qi and q̇i

for i = 1, 2, 3 are plotted to examine evidence and behavior of NNMs.
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Supplementary information

Additional AFM measurements identifying the tip-sample detachment signature are

provided in Figure  5.6 . These were performed using the same Cypher S AFM microscope

with an ACLA AFM cantilever (Applied NanoStructures, Inc., Mountain View, CA, USA)

on a silicon sample, but driven by a piezoelectric actuator under the sample instead of via

photothermal excitation. This leads to less ideal (”forest of peaks”) transfer functions and

can complicate parameter identification [ 123 ], [  124 ].

A second simulation-only example with hypothetical parameter values of Table  5.2 is

provided in Figure  5.7 . The associated NNMs collected into a FPO is shown in Figure  5.8 .
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Table 5.1. Parameter identification from AFM measurements
Parameter Measured Parameter Assumed Parameter Calculated
k1,free 32.8 N/m L1 225 µm βc1L 3.413
f1 163 kHz β1L 1.875 βc2L 5.180
f c1 540 kHz LbD 0.1 · L L (γ = L1/L) 227 µm (0.99)
f c2 1244 kHz rbD 1 µm kratio 16.4

Setpoint 0.2 V kcantilever 31.9 N/m
InvOLS 1.27e−7 m/V Parameter Tuned EI 1.2e−10 N·m2

Q 174 P 1.4 ksample 524.0 N/m
gAdh 14 nm ρA 5.4e−7 kg/m
FAdh 9.2 nN ccantilever 0.018 N·s/m
FTS* 810 nN αTS 1.1e6 N/mP

∆* 2.19 nm
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Table 5.2. Parameter values for hypothetical simulation example
Parameter Value

L (γ = L1/L) 300 µm (0.97)
LbD 0.1·L
h 4 µm
b 20 µm
ρ 2330 kg·m−3

E 169 GPa
ν 0.278
R 10 nm

Esample 10 GPa
νsample 0.3
FAdh 20 nm
gadh 10 nm
P 1.5 (Hertz)
Q 100
FTS 200 nN
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(a) (b) (c)

Figure 5.1. (a) AFM frequency sweep measurements depicted by photodiode
detector amplitudes versus blueDrive excitation frequency. Colored curves
(sweep up and down) identify various blueDrive input amplitudes. (b)-(c)
Dynamic simulations of cantilever driven about contact resonance frequency
using ten free cantilever eigenfunctions as a basis set. Measurement data is
converted to slope response and depicted as black curves. Simulation data
points are shown as colored circles, closed for increasing frequency sweep and
open for decreasing, with lines connecting to elucidate jumps between periodic
solution branches for both slope response first harmonic amplitudes (b) and
maximum probe deflection about equilibrium (c). Undeformed sample surface
location is indicated as a threshold for tip-sample detachment.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.2. Detailed dynamic behavior of two numerical simulations at steady-
state and at resonance: low bending moment amplitude of 1 N·m at 540 kHz
(left column), and high bending moment amplitude of 15 N·m at 508.7 kHz
(right column). Stroboscopic depiction of cantilever deflection (a),(b) and slope
(c),(d) shapes about static equilibrium (blue, solid), with linear eigenfunction
of cantilever-sample system (red, dashed) overlay. Probe tip path in time (e),(f)
with depiction of undeformed sample surface location for reference. Frequency
domain (FFT) of slope response (g),(h) to connect with direct observables in
CR-AFM measurements.
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(a) (b)

(c) (d)

Figure 5.3. Steady-state periodic orbits (nonlinear normal modes) from
simulations in Figure  5.1 projected onto phase space comprised of state variables.
Second basis function displacement q2 (a) and velocity q̇2 (b), as well as third
basis function displacement q3 (c) and velocity q̇3 (d) are plotted against first
basis function displacement q1 and velocity q̇1.
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Figure 5.4. Infographic for summary of linear, nonlinear softening, and
tip-sample detachment regimes for qualitative AFM cantilever behavior corre-
sponding to low, moderate, and high drive amplitude excitation, respectively.
Top plots depict representations of AFM probe tip path in time indented below
sample surface, middle plots show representations of harmonic contributions
to slope response amplitude of cantilever above probe tip, and bottom plots
provide representations of slope response first harmonic amplitudes versus drive
frequencies at various drive amplitudes.
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Figure 5.5. CR-AFM schematic for equipment layout depicting the key
components for excitation and measurement. The latter of which is performed
with a laser reflecting off of the top surface of the cantilever and onto a
photodiode detector. Transparent AFM cantilever shapes are included to
suggest the motion of the device during vibration response. Though the laser
spot change on the detector appears to the naked eye as a resultant of the
cantilever deflection, the vertical scaling is greatly exaggerated for clarity; it is
actually the slope change of the cantilever which significantly dominates the
detection.
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(a) (b)

(c) (d)

Figure 5.6. Additional evidence of tip-sample detachment on silicon samples at
various piezoelectric drive amplitudes, shown as photodiode detector amplitude
vs drive frequency.
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Figure 5.7. Similar to simulations from Figure  5.1 , dynamic simulations of a
hypothetical cantilever system (parameter values in Table  5.2 ) driven about
contact resonance frequency using only three free cantilever eigenfunctions as
a basis set. Slope response first harmonic amplitude versus drive frequency
(upper) and maximum probe displacement versus drive frequency (lower).

107



(a) (b)

(c) (d)

Figure 5.8. Steady-state periodic orbits (nonlinear normal modes) from hypo-
thetical simulations (parameter values in Table  5.2 ) in Figure  5.7 projected onto
phase space comprised of state variables. Second basis function displacement
q2 (a) and velocity q̇2 (b), as well as third basis function displacement q3 (c)
and velocity q̇3 (d) are plotted against first basis function displacement q1 and
velocity q̇1.
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6. CONCLUSION

In closing, this chapter provides final thoughts on the dissertation projects as well as a look

forward to future research work building on the previous chapters.

6.1 Summary

Chapter  2 provides the framework for solving MEMS device equilibria expediantly in

commercially available software packages. Numerical computation in COMSOL Multiphysics®

is shown to quantitatively match the results of AUTO for microbeam examples under

various multiphysics loadings, but really displays its FEM power when solving for equilibria

solutions to devices with complex geometry in 2D and 3D – a necessity in MEMS design.

Even as a precursor to dynamical operation, all MEMS research benefits from fundamental

understanding of the relationship between quasistatic loading and deformation. There is no

quicker or more comprehensive way to solve such equilibria than by numerical continuation,

and no more accessible or communicable implementation than through commercial software.

Chapter  3 succeeds in developing a compact analytical model for a MEMS microcantilever

capacitive switch and predicting the possible multistability present across the associated set

of all physically-realizable system parameter values. The deforming beam element of the

devices exhibits three unique (defined via equilibrium solution branches, not by observation)

configuration shapes corresponding to three tiers of output capacitance. Depending on system

properties and device geometry, operable regions of each configuration may overlap with one,

two, or none of the others, and all three can possibly occur with zero actuation. The compact

model is a critical contribution to device literature through its capture of all configurations

without the need to swap boundary conditions and restric static or dynamic analysis about

one configuration at a time.

Chapter  4 brings device-specific simulations and experimental validation of switching be-

havior to support the previous multistability predictions of the compact model. Experimental

reconstructions of microcantilever deformation are the first clear mechanical observation of

the multistability in depicting the floating, arc-shaped, and s-shaped configurations. The

switching performance of each individual device reconstruction – and moreso the difference
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between each one – is shown to be well-captured by simulations in COMSOL Multiphysics®

when modeled with individual device geometry measurements. Both the measurements of

mechanical deformations as well as the computational approach are contributions to MEMS

device research.

Chapter  5 identifies a long-standing nonlinear feature of CR-AFM resonance peaks as a

signature of tip-sample detachment at high operating amplitude. Though strictly explored via

AFM, this observation is relevant to the MEMS community interested in dynamic methods

of stiction release as it is a dynamical indicator of the onset of detachment. For the CR-AFM

community, it denotes an observable operating amplitude ceiling to measurement techniques

which assume sustained contact between tip and sample.

6.2 Future Work: Dynamic Switching in MEMS Microcantilever Capacitive
Switches

Chapters  2 through  4 are concerned with the static equilibria and, to a limited extent,

the quasistatic operation of MEMS microcantilever capacitive switches. A more complicated

phenomenon is the dynamic switching between stable states and, more specifically, release

of a device stiction-failed in the arc- or s-shaped configuration to the floating configuration.

Preliminary numerical investigation suggests that there may be valuable insight gained from

harmonic electrostatic actuation of the devices, while experimental measurement indicate

that there may be a higher-harmonic signature in connection to the CR-AFM detachment

studied in Chapter  5 .

In the context of electrostatic excitation-induced switching, the knowledge of switching

thresholds is often sufficient for normal operation. However, when devices fail due to stiction

(i.e. adhesive forces overpower restorative forces), this mechanism for actuation can also

be exploited to release devices back into their undeflected state. Primary contributions to

stiction repair come from the field of fracture mechanics, where periodic excitation interacts

with the energy balance between beam bending and adhesion to propagate a ”crack tip”

through the seemingly-laminated microcantilever and underlying layer [ 27 ], [  125 ].

To best replicate literature results using the foundation presented in earlier chapters,

a process is first followed to reconcile the differences in modeling of physical phenomena
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based on a similar set of driving assumptions. Next, time-marching simulations provide

a preliminary glimpse into the model behavior, and then a nonlinear analysis approach is

proposed to describe such computational results. The aim is to identify features of stiction

release inaccessible through past approaches.

6.2.1 Modeling

Commonplace in MEMS, the stable equilibria are a resultant of a force-balancing act:

electrostatics and adhesion attract the beam to the dielectric-coated electrode, while internal

restorative forces and surface repulsion work to push the two objects apart. Now, in a

return to governing equations of motion, a reinstatement of time-varying terms provide yet

another layer of complexity to the study of system response. The following is a return to

Equation ( 3.3 ) with associated cantilever boundary conditions, except the voltage actuation

is allowed to vary in time, and a linear viscous damping term is present:

EI
∂4ŵ

∂x̂4 + c
∂ŵ

∂t̂
+ ρA

∂2ŵ

∂t̂2
=

ε0b
[
V̂ (t)

]2
2(a+ d

εr
− ŵ)2 + bĤ

6π(a− ŵ)3

1−
(

ẑ0

a− ŵ

)6
 . (6.1)

To look at a static, stiction-failed device, the continuation technique from Chapter  3 is

employed with parameters given in Table  6.1 which are chosen specifically to match earlier

works [ 27 ], [ 125 ]. The first ten parameters are direct connections to literature in order to

establish the same geometric layout and material properties. The final two parameters,

however, are unique to the surface interaction force definition followed in this report, and are

designed to enforce an s-shaped configuration at zero applied electrostatic actuation (stiction).

This exact s-shaped condition, determined through a similar continuation approach to that of

Appendix  3.A , has approximately half its length unstuck from the dielectric layer, as depicted

in Figure  6.1 . Herein, unstuck refers to region(s) of the microcantilever whose interaction

with the surface interaction force is purely adhesive, while stuck refers to those region(s) in

pure repulsion. Thus, the zero pressure gap ẑ0 is crossed at nearly half the microcantilever

length.
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6.2.2 Harmonic and pulse loading simulations

Time-integration solutions to the PDE of Equation  6.1 provide an initial tool to explore

system response to dynamic electrostatic actuation. These simulations, carried out using the

ode45 function in MATLAB, follow a similar finite difference spatial discretization scheme

to that of Appendix  3.A . Each evaluation of the model begins with initial conditions of

Figure  6.1 , and step sequentially forward in time until either a stop condition or the maximum

time (0.5 ms) is met. In this case, the stop condition is a release criterion, where the algorithm

halts if each of the hundreds of finite difference nodes are all at least 100 nm away from

the dielectric surface. It provides a soft restriction on the complexity of dynamic solutions

in order to examine a binary classification of the results: the device remains stiction-failed

under the prescribed loading conditions for the duration considered, or it releases from the

s-shaped stiction configuration.

Harmonic and (half-sine) pulse electrostatic actuation are the two dynamic loading

conditions considered in an attempt to release stiction-failed devices. For the case of harmonic

loading, the voltage term of Equation  6.1 becomes

V̂harmonic(t) = V̂0sin(Ωt) =⇒
[
V̂harmonic(t)

]2
= V̂ 2

0
2 [1− cos(2Ωt)] , (6.2)

where V̂0 is the voltage amplitude and Ω is the drive frequency. Alternatively, in the case of

the pulse loading, the voltage term of Equation  6.1 becomes

V̂pulse(t) =

 V̂0sin( π

Tp
t), 0 ≤ t < Tp

0, t ≥ Tp,
(6.3)

where Tp is the duration of the pulse. Though the pulse loading is unexplored, early results

for harmonic loading are shown in Figure  6.2 . Contrasting the more assumption-laden

approaches from literature, complex features of the boundaries between released and stiction-

failed conditions are apparent.
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6.2.3 Goals and remaining challenges

Several important topics remain unsolved in the preliminary steps outlined for dynamic re-

lease from stiction-failure. Damping, electrostatic loading, experimentation, and foundational

analysis are all enticing directions for future research.

Damping: the linear viscous term in Equation (  6.1 ) is sufficient to match with specific

literature results, but any discussion of equilibria release or final resting states in dynamic

operation will likely have a sensitive dependence on the choice of damping model. Previous

MEMS analysis indicates the need to consider the squeeze-film damping phenomenon, in

which fluid flow models are incorporated to understand how the surrounding medium flows out

(in) as the microcantilever approaches (retracts from) the dielectric surface [ 126 ]. A compact

squeeze-film damping model may take the place of the linear viscous term in Equation ( 6.1 )

as a precursor to any rigorous practical comparison. As research output, two main inquiries

remain: what is the minimum damping complexity needed to explore switching behavior,

and can one use this model choice to extract parameters experimentally?

Harmonic and pulse loading simulations: discussions of loading, stiction release criteria,

and final resting states are all crucial to success of the dynamic electrostatic actuation project.

As mentioned, the preliminary results of Figure  6.2 are strictly for harmonic electrostatic

actuation. Successive periods of the harmonic loading continue to intermittently pull the

microcantilever toward the substrate, against the intended motion of stiction release, but

with the aim of building energy for the system to jump to another stable equilibrium.

Alternatively, pulse (half-sine) loading might be an attractive option for a quicker transition,

though possibly at the expense of a higher peak voltage requirement. Exploring either loading

condition requires a clear directive for articulating when a microcantilever has released from

stiction failure, and where it rests afterward. The simulations of Figure  6.2 end when the

microcantilever has separated a sufficient distance from the dielectric layer below, but it is

unknown if it, through the breadth of dynamic behavior accessible to the model, returns

to the failed configuration after some amount of time. A larger scope of this concern is

of determining all final resting states for various loading conditions. An understanding in
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this perspective will guide experimental measurement choices, as well as inform analytical

approaches through comparison.

Experimentation: as a complement to the simulation-driven search through dynamic

electrostatic loading considerations, experimental measurements of device stiction and release

will be performed. The same batch of devices from the prior switching threshold investigation

contains many that come out of fabrication already stiction failed, as shown for an example

device in Figure  6.3 . These optical microscope scans can be used in conjunction with the

LDV system to identify stiction-failed devices from the microcantilever shape, repair them via

dynamic electrostatic actuation, and then reimage each one to be sure that stiction release

is successful. By mapping the microcantilever profile and tracking the electrostatic loading,

broad regions of harmonic loading simulations according to Figure  6.2 , as well as the pulse

loading counterpart, can be confirmed.

Two critical challenges remain with regard to experimental contributions to this project:

imposing stiction failure on released devices, and the ability to connect results from device

measurements back to simulation and analysis results. With regard to the former, manual

manipulation via pointed probes is an option, but it comes with a risk of partial damage

or even complete destruction of the microcantilever. Alternatively, electrostatic actuation

(DC) could enforce the s-shaped configuration of the microcantilever, though dielectric

charging is a significant concern to manage. Even if reliable access to stiction-failed devices

is ascertained, failed either from manipulation or from the original fabrication process, a

comparison between measurements and either simulations or analysis remains a research

hurdle. Microcantilever failure may be in arc-shaped configurations rather than s-shaped,

the failure may be asymmetric with regard to the lateral position, and the unstuck segment

found through measurement may contrast that of the mathematically ideal scenario.

Analytical explanation: the results from simulations and experiments are of strong interest,

but require some semblance of analytical justification in order to have applicability outside

a narrow set of system and loading parameters. Using Equations ( 6.1 ) and ( 6.2 ) along

with the preliminary results of Figure  6.3 as motivation, the root of the dynamic switching

behavior may be accessible if treated as an extension of a parametric instability problem from
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nonlinear dynamics. This may need to be completed in conjunction with a strong reduced

order approach to the spatial discretization of the PDE models.

6.3 Future Work: Nonlinear Normal Modes and Order Reduction in CR-AFM
Detachment Dynamics

Many interesting dynamical features have been observed in the numerical simulations of

CR-AFM tip-sample detachment in Chapter  5 with potential for analytical explanation and

order reduction. By simulating the PDE of Equation  5.4 and plotting the resulting stable

periodic orbits corresponding to a sweep of drive frequencies at various drive amplitudes, a

family of periodic orbits (FPO) is shown in Figure  5.3 . Following the same process but with

only three cantilever eigenfunction basis functions, Figures  6.4 to  6.11 detail not only the

FPO, but also two examples of trajectories from two selected initial conditions in phase space:

one on-manifold and another off-manifold. The on-manifold example of Figures  6.4 to  6.7 

show the trajectory broken up into thirds (beginning, middle, and end) in four representations

of the six-dimensional phase space of state variables stemming from an initial condition set

coinciding with the FPO. The off-manifold example of Figures  6.8 to  6.11 show the same for

an initial condition set off of the FPO.

It is clear from the results of Chapter  5 that the FPOs presented seem to fill out a 2D

manifold that can be parametrized by the lowest basis function state variables, but the on-

and off-manifold initial condition trajectory examples show additional information. From

the former, it appears that the trajectory starting on the FPO remains on the FPO as it

dynamically transitions to its stable periodic orbit for the applied drive conditions. For the

latter, it appears that the trajectory starting off of the FPO quickly approaches the FPO

before settling. These are early simulation-based suggestions of invariance and local stability.

If evolutions of the system from initial conditions on the FPO stay for all time and those off

the FPO approach the FPO quickly, then it is plausible for all pertinent dynamics of the

system to be captured by a single-degree-of-freedom (SDOF) nonlinear oscillator constrained

to the FPO. It may be possible to use this feature as a tool for order reduction in the

exploration of tip-sample detachment in CR-AFM.
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6.3.1 Goals and Remaining Challenges

Significant opportunities for future projects are available for constructing and exploring

FPOs.

Numerically-constructed FPO for order reduction: stable periodic orbits from numerical

simulations have been shown to fill out an FPO when modulating the drive amplitude and

frequency. Such numerical FPO could feasibly be applied back to the original PDE as a

constraint to reduce it to a SDOF system through parametrizing each state variable by that

of the lowest basis function. If successful, this SDOF nonlinear oscillator construction would

be an impressive reduction in order for modeling purposes.

Analytically-constructed FPO for order reduction: though more challenging of a conceptual

approach, an analytical construction of the FPO would be valuable for design of experiments as

there could be a formulaic relationship between system parameters and tip-sample detachment

without lengthy time-integration solutions to find stable periodic orbits. It may be possible to

build an FPO analytically through local approximation of the nonlinear PDE, and successively

relax local restriction to approach large drive amplitude behavior and tip-sample detachment.

Exploration into persistence of FPO properties: an exhaustive investigation into varying

system parameters (AFM cantilevers, samples, and actuation methods) would be valuable

to CR-AFM detachment research. To this end, generation of FPOs from either suggested

previous method as well as their manifold, stability, and invariance properties should hopefully

apply for a broad set of system parameters. This would allow for the order reduction goal to

be solved robustly.
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Table 6.1. Parameters for stiction-failed device analysis
E 160 GPa
I 1

12bh
3

ρ 2300 kg m−3

A b ∗ h
ε0 8.8542× 10−12 m−3 kg−1 s4 A2

b 30 µm
a 2 µm
d 300 nm
εr 3.9
c 1.89× 10−4 kg s−1 m−1

Ĥ 6× 10−19 J
ẑ0 10 nm
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Figure 6.1. Initial deflection of the microcantilever used for stiction-release
analysis. Microcantilever is in black with length of 1000 µm and anchored on
the left at an undeflected gap of 2 µm. It has approximately 500 µm of length
in close proximity (contact/near-contact) to the dielectric layer (imagined to
coincide with the 0 µm mark on the vertical axis).
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Figure 6.2. Preliminary simulation-based investigation into the dynamic
electrostatic actuation release of the stiction-failed microcantilever presented in
Figure  6.1 , showing failed (microcantilever maintains contact with dielectric
layer) and released (microcantilever releases from contact with the dielectric
layer) regions. AC Amplitude refers to the magnitude of the sinusoidal voltage
input, while the drive frequency Ω is divided by ω1, the fundamental frequency
for a clamped-clamped beam of length corresponding to the unstuck region of
the microcantilever.
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Figure 6.3. Example output from the Bruker ContourGT-K 3D optical
microscope for a switch is failed in the ON state due to stiction between the
microcantilever and the dielectric layer.
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(a) (b)

(c) (d)

Figure 6.4. Phase space representation of the FPO and a simulated trajectory
for state variables q1, q̇1, and q2. Trajectory for 500 drive periods is divided up
into thirds (beginning, middle, and end) to indicate its path toward the final
stable periodic orbit. Initial conditions correspond to a point on the FPO.
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(a) (b)

(c) (d)

Figure 6.5. Phase space representation of the FPO and a simulated trajectory
for state variables q1, q̇1, and q̇2. Trajectory for 500 drive periods is divided up
into thirds (beginning, middle, and end) to indicate its path toward the final
stable periodic orbit. Initial conditions correspond to a point on the FPO.
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(a) (b)

(c) (d)

Figure 6.6. Phase space representation of the FPO and a simulated trajectory
for state variables q1, q̇1, and q3. Trajectory for 500 drive periods is divided up
into thirds (beginning, middle, and end) to indicate its path toward the final
stable periodic orbit. Initial conditions correspond to a point on the FPO.
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(a) (b)

(c) (d)

Figure 6.7. Phase space representation of the FPO and a simulated trajectory
for state variables q1, q̇1, and q̇3. Trajectory for 500 drive periods is divided up
into thirds (beginning, middle, and end) to indicate its path toward the final
stable periodic orbit. Initial conditions correspond to a point on the FPO.

124



(a) (b)

(c) (d)

Figure 6.8. Phase space representation of the FPO and a simulated trajectory
for state variables q1, q̇1, and q2. Trajectory for 500 drive periods is divided up
into thirds (beginning, middle, and end) to indicate its path toward the final
stable periodic orbit. Initial conditions correspond to a point away from the
FPO.
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(a) (b)

(c) (d)

Figure 6.9. Phase space representation of the FPO and a simulated trajectory
for state variables q1, q̇1, and q̇2. Trajectory for 500 drive periods is divided up
into thirds (beginning, middle, and end) to indicate its path toward the final
stable periodic orbit. Initial conditions correspond to a point away from the
FPO.
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(a) (b)

(c) (d)

Figure 6.10. Phase space representation of the FPO and a simulated trajectory
for state variables q1, q̇1, and q3. Trajectory for 500 drive periods is divided up
into thirds (beginning, middle, and end) to indicate its path toward the final
stable periodic orbit. Initial conditions correspond to a point away from the
FPO.
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(a) (b)

(c) (d)

Figure 6.11. Phase space representation of the FPO and a simulated trajectory
for state variables q1, q̇1, and q̇3. Trajectory for 500 drive periods is divided up
into thirds (beginning, middle, and end) to indicate its path toward the final
stable periodic orbit. Initial conditions correspond to a point away from the
FPO.
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