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ABSTRACT

Model-based clustering, with its flexibility and solid statistical foundations, is an impor-

tant tool for unsupervised learning, and has numerous applications in a variety of fields.

This dissertation focuses on nonparametric Bayesian approaches to model-based clustering

under structural restrictions. These are additional constraints on the model that embody

prior knowledge, either to regularize the model structure to encourage interpretability and

parsimony or to encourage statistical sharing through underlying tree or network structure.

The first part in the dissertation focuses on the most commonly used model-based clus-

tering models, mixture models. Current approaches typically model the parameters of the

mixture components as independent variables, which can lead to overfitting that produces

poorly separated clusters, and can also be sensitive to model misspecification. To address

this problem, we propose a novel Bayesian mixture model with the structural restriction

being that the clusters repel each other. The repulsion is induced by the generalized Matérn

type-III repulsive point process. We derive an efficient Markov chain Monte Carlo (MCMC)

algorithm for posterior inference, and demonstrate its utility on a number of synthetic and

real-world problems.

The second part of the dissertation focuses on clustering populations with a hierarchical

dependency structure that can be described by a tree. A classic example of such problems,

which is also the focus of our work, is the phylogenetic tree with nodes often representing

biological species. The structure of this problem refers to the hierarchical structure of the

populations. Clustering of the populations in this problem is equivalent to identify branches

in the tree where the populations at the parent and child node have significantly different

distributions. We construct a nonparametric Bayesian model based on hierarchical Pitman-

Yor and Poisson processes to exploit this, and develop an efficient particle MCMC algorithm

to address this problem. We illustrate the efficacy of our proposed approach on both synthetic

and real-world problems.
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1. INTRODUCTION

1.1 Model-based clustering

Cluster analysis or clustering is a fundamental unsupervised learning tool for data explo-

ration and analysis that aims to identify groups of homogeneous objects within the data. It

has been extensively studied for decades [ 1 ]–[ 4 ] and has found wide applications in multiple

disciplines, including topic modeling [ 5 ], [ 6 ], genetics [ 7 ]–[ 9 ], computer vision [ 10 ], and pat-

tern recognition [ 11 ]. Early clustering approaches, such as the K-means algorithm [ 2 ], [ 12 ],

are mainly based on heuristic or geometric procedures that rely heavily on similarity mea-

sures and symmetry assumptions. For modern clustering problems, the model-free nature

can make such methods extremely limited. Further, these often do not possess the capacity

to handle data with complicated underlying structures, and it is hard to incorporate prior

knowledge and missing data into the clustering process. Lastly, there are no mathematically

concrete model assessment and model selection criteria available.

The development of probabilistic models in cluster analysis dates back at least to the work

of Wolfe [ 13 ] in 1963. In the literature, such approaches are often referred to as model-based

clustering methods. With enhanced capacity, interpretability, and the ability to provide sta-

tistical insights into the model fit, such approaches have since become increasingly popular in

both practice and academic research [ 14 ]–[ 19 ]. In particular, thanks to recent advancements

in technology, computationally-intensive Bayesian clustering methods, especially those based

on finite and infinite mixture models, have shown promising results in a wide range of ap-

plications (see, for instance, Yeung, Fraley, Murua, et al. [ 20 ], Fraley and Raftery [ 21 ], and

Melnykov, Maitra, et al. [ 22 ]).

1.2 Structural restrictions in clustering problems

Model-based clustering through mixture models is a powerful class of models with great

flexibility in characterizing sub-populations in the data, capable of approximating increas-

ingly complex distributions as the number of mixture components increases. However, the

flexibility of mixture models often comes at the cost of interpretability and parsimony. For

14



computational tractability, the parameters of the mixture components (the cluster param-

eters) are typically modeled as independent and identically distributed draws from some

“base distribution”. This can result in overlapping clusters, i.e. unless the clusters are very

widely separated, the posterior will typically assign probability to multiple clusters in some

neighborhood. The nearly identical locations of these clusters leads to redundancy, and

lack of interpretability, as large interpretable clusters are broken into smaller meaningless

groups. Since mixture models are typically composed of simple parametric components,

even if the data exhibits clear clustered structure, any deviation of individual clusters from

the parametric form will again result in overlapping components. Rousseau and Mengersen

[ 23 ] discussed the overfitting behavior in asymptotics for finite mixture models, and Miller

and Harrison [ 24 ] and Miller and Harrison [  25 ] demonstrated the inconsistency in number of

components for the most commonly used infinite mixture model, Dirichlet process mixtures

[ 26 ], [  27 ], and its extension, Pitman-Yor process [ 28 ], [  29 ] mixtures.

To directly address the lack of interpretability, we propose to introduce a structural

restriction to the model. Rather than being sampled independently from the base measure,

cluster locations are jointly sampled from a prior distribution that penalizes realizations

where clusters are situated too close to each other. We refer to such restrictions as structural

restrictions, and the corresponding priors as repulsive priors. This serves as a means of

regularization, to enforce separability between clusters and hence improve interpretability.

In the first part of the dissertation, we focus on the problem of clustering observations

with a repulsive mixture model. To be specific, motivated by the work of Rao, Adams, and

Dunson [  30 ], we proposed a nonparametric Bayesian framework that introduces repulsion

between clusters with a generalized Matérn type-III repulsive point process model [  31 ], [  32 ],

obtained through a dependent sequential thinning scheme on a primary Poisson point process

[ 33 ]. We develop a novel and efficient Gibbs sampler for posterior inference of the proposed

Matérn repulsive mixture model (MRMM). We provide a collection of synthetic and real

data studies to demonstrate the flexibility of MRMM and the superiority of our proposed

algorithm. Our algorithm achieves comparable performance (goodness-of-fit) with fewer

mixture components and is proven to be robust to model misspecifications. We also updated
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the derivation of an essential Gibbs update step in Rao, Adams, and Dunson [ 30 ] using

Campbell’s theorem [ 33 ]. This part of work is included in Sun, Zhang, and Rao [ 34 ].

Most of the cluster analysis tools focus on clustering of individual instance/observation.

However, there is another type of application where the goal is to group populations with

common features (see, for instance, Nielsen, Nock, and Amari [ 35 ] and Henderson, Gallagher,

and Eliassi-Rad [ 36 ]). Take topic modeling as an example. Documents are often regarded as

collections of words (bag-of-word assumption) [  5 ], and the quantity of interest is document-

level similarities rather than that among words. If we extend the definition and in turn

treat documents as populations with different word frequencies, clustering documents will

then become a problem of clustering populations, a problem that seeks to group those with

similar word distributions together.

In the second part of the dissertation, we extend our analysis to population clustering

with structural constraints. Modern datasets often possess rich underlying structures, origi-

nating from their mechanistic, spatio-temporal generative processes. Trees are a widely used

structures, representing a hierarchical organization of observations into partially overlapping

sets at multiple granularities. A classic example, and one that is the focus of our work, are

phylogenetic trees, showing relationships between various entities evolving from a common

ancestor. The entities in a phylogenetic tree are typically biological species, though we take

a broader view, and also consider evolving languages and other social norms. Internal and

leaf nodes of the tree represent different populations (distributions), and one or multiple i.i.d.

observations are obtained from some nodes in the tree. In this work, we focus on the case

when the populations are characterized by discrete distributions, and the goal is to cluster

populations with similar distributions. In this problem, the structural restriction refers to

the natural dependency structure described by the tree. Naturally, the clustering problem

can be rephrased into detecting branches where the distributions at the parent and child

node significantly differ form each other. Motivated by the work of Ansari and Didelot [ 37 ],

we develop a nonparametric Bayesian model with hierarchical Pitman-Yor process (HPYP)

that takes advantages of a convenient marginalization property that it possess to enable

efficient computation. A novel particle MCMC [ 38 ] algorithm is developed for the posterior
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inference, and a number of synthetic and read empirical experiments are conducted to show

the efficacy of our proposed approach.

In summary, structural restrictions in clustering problems can either serve as a mean of

regularization to encourage interpretability and parsimony, or reflect the prior knowledge or

underlying structure of the problem. This dissertation focuses on both of these.

1.3 Dissertation Organization

We organize the rest of the dissertation as follows. Chapter  2 provides a brief review of

a few preliminary topics, including mixture models, Dirichlet processes, hierarchical Dirich-

let processes (HDPs), Chinese restaurant processes (CRPs), Chinese restaurant franchises

(CRFs), and Pitman-Yor processes.

In chapter  3 , we start with an introduction to Matérn type-III repulsive point processes.

Then we describe our first main contribution, the Matérn repulsive mixture model (MRMM),

and the inference algorithm in section  3.2 and  3.3 , respectively. For simplicity, when no

confusion can be raised, we will use MRMM to refer to the model and the inference method

interchangeably. Chapter  4 evaluates the performance of the Python3 package mrmm we

developed for MRMM inference. We study the effect of hyperparameters in the model,

and also apply MRMM to various real-world tasks, including clustering on a torus (protein

structural data) to show the flexibility of the model and two additional comparisons with

existing repulsive mixture models to illustrate the superior performance of our model.

Starting from chapter  5 , we switch to our second main contribution, clustering popula-

tions with a hierarchical structure. The proposed model is described in detail in section  5.1 ,

and section  5.2 fully outlines the particle MCMC inference algorithm (algorithm  5 ). Chap-

ter  6 includes a collection of empirical results, including synthetic studies on the identifia-

bility and robustness to model misspecification of our approach, and real data analyses to

demonstrate the efficacy and practicality of our algorithm.

We conclude in chapter  7 with a summary of the dissertation and a discussion of potential

future directions.
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2. PRELIMINARIES

2.1 Mixture models

Mixture model is a powerful and flexible class of models, capable of approximating in-

creasingly complex distributions as the number of mixture components increases. Such

models are useful both in density modeling applications [ 39 ], as well as in clustering appli-

cations [  14 ], [ 16 ], [ 40 ]. In this section, we will briefly introduce finite mixture models mainly

as a reference to our discussions later in the dissertation. A more comprehensive review can

be found in McLachlan, Lee, and Rathnayake [ 41 ].

Denote n random samples from a finite mixture model with C components as X =

(x1, . . . , xn). For an observation xi, there is a latent cluster assignment zi ∈ {1, . . . , C}

associating with it. Assume the mixture components come from a family of probabilistic

distributions pX (· ; θ) parameterized by θ ∈ Θ. Write θ = (θ1, . . . , θC)> for the collection of

parameters for mixture components, and let πππ = (π1, . . . , πC)> be the corresponding mixture

weights, such that πj ∈ [0, 1] and ∑
j πj = 1. Then the generative model of the data X is

given by
zi | πππ

i.i.d.∼ Multinomial (π1, . . . , πC) i = 1, . . . , n

xi | zi,θ
i.i.d.∼ pX (· ; θzi)

(2.1)

Figure 2.1. (left) An illustration of a Gaussian mixture model with three
mixture components. (right) Parameters for mixture components θ and mix-
ture weights w as a collection of points in the product space Θ×W . Although
the parameter space Θ is illustrated as one dimensional, it can represent a
higher dimensional space. The mixture weights, on the other hand, are posi-
tive (non-negative) real numbers, i.e., W = R+.
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In Bayesian framework, priors are placed on πππ and θ. For the mixture weights, a common

choice of the prior is the conjugate flat Dirichlet distribution πππ ∼ Dirichlet(α/C, . . . , α/C).

For the mixture parameter θj’s, conjugate prior, if exists, are often preferred. For instance,

in a Gaussian mixture model where pX (· ; θ) represents a unit Gaussian distribution centered

at θ, the conjugate prior of θ is also a Gaussian distribution. With conjugate priors, the

posterior inference is straightforward.

Let us further explore the prior on the mixture weights. Notice that Dirichlet distribu-

tion can be constructed from normalizing independent Gamma random variables [ 42 ]. This

suggests that instead of using the normalized weights πππ, we could instead use a collection of

unnormalized weights w = (w1, . . . , wC)> where wj ≥ 0 and πj = wj/
∑

j wj. Then the flat

Dirichlet prior placed over the mixture proportions is equivalent to independent Gamma(α, 1)

priors on the unnormalized weight wj’s. This leads to an i.i.d. prior on the parameter and

weights pairs (θj, wj) of mixture components. Figure  2.1 (right) illustrates how to represent

a mixture model with a collections of points in the product space Θ×W , where W denotes

the positive half of the real line.

When the number of mixture components C is unknown, one might place a Poisson

distribution over the number of components. As mixture models can be defined with a

collection of points on Θ ×W , this prior is equivalent to have a Poisson point process [ 33 ]

prior over the collection of pairs {(θ1, w1), . . . , (θC , wC))}. This specifies a completely random

measure [ 43 ]. Let X be a complete and separable metric space endowed with the Borel σ-

field B(X ). A completely random measure (CRM) µ is a random element taking values on

the space of boundedly finite measures on X such that, for any disjoint measurable subsets

A1, . . . , An in B(X ), with Ai ∩ Aj = ∅ for i 6= j, the random variables µ(A1), . . . , µ(An) are

mutually independent [ 44 ]. This nature of Poisson point processes motivates our work on

repulsive mixture models in section  3.2 .

2.2 Dirichlet Processes

Dirichlet processes (DPs) [ 26 ] are widely used as a nonparametric model that provides

a measure on all (discrete) distributions. It is parameterized by a concentration parameter
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α > 0 and a base distribution H on some space X . We write G for a realization of DP,

G ∼ DirichletProcess (α,H), then G is almost surely a discrete distribution with infinite

number of components on X . The base distribution H serves as the “center” for generating

random measure G, and the concentration parameter α describes how close the sample G

would be to the “center”. Specifically, for any H-measurable set A,

E [G(A)] = H(A)

Var(G(A)) = H(A)(1−H(A))
1 + α

.

In practice, DP is often used to model the underlying distribution of observations xi |G ∼

G, i = 1, 2, . . . . There are two approaches to obtain i.i.d. sample xi’s from the generative

process: simulating from the stick-breaking representation of G [ 45 ] or sequentially producing

observations with G marginalized out through the Chinese restaurant process (CRP).

Stick-breaking representation

An instantiation G from DirichletProcess (α,H) can be constructed with the following

stick-breaking process.
β̃j

i.i.d.∼ Beta(1, α) j = 1, 2, . . .

βj := β̃k

j−1∏
j=1

(
1− β̃j

)
yj

i.i.d.∼ H

G :=
∞∑

j=1
βjδyj

(2.2)

where δy is the Dirac distribution that has probability 1 to be y. Truncated stick-breaking

representation of G serves as an approximation to G, and simulating observations x ∼ G is

straightforward, P{x = yj} = βj.
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Chinese restaurant process

A sequence of i.i.d. samples xj ∼ G, j = 1, 2, . . . , can be generated from the Chinese

restaurant process (CRP) associated with the DP [ 46 ] with the distribution G marginalized

out. To start the process, the first sample x1 is simulated directly from the base measure H.

At step j when j samples {x1, . . . , xj} have been generated, the next sample xj+1 is going to

be simulated from the following distribution,

xj+1 | {x1, . . . , xj}, α, H ∼
j∑

j̃=1

1
α + jδxj̃

+ α

α + jH. (2.3)

With probability j/(α + j) it will randomly take the value of an existing sample, and with

probability α/(α + j), it will take a new value directly from the base measure. In the

“restaurant” context, we use “tables” to refer to the clusters where samples take value from

the same existing sample. The table assignment of sample xj is denoted by tj, and it is

defined as the index of the first sample in the cluster xj joins. We say that the (j + 1)-st

sample joins an existing table with probability proportional to the table size (the number of

samples assigned to the table), and joins a new (empty) table with probability proportional

to α. With more and more samples being generated, there is a “rich gets richer” effect that

reinforces the larger clusters (tables). The more a sample is drawn, the more likely it will

be drawn in the future.

Furthermore, although the observations are generated sequentially, CRP is actually in-

variant under permutations, which is formally known as the exchangeability. This property,

along with the fact that CRP marginalizes out instantiation of the distribution G, makes

CRP a computational efficient generative process for the observations.

2.3 Hierarchical Dirichlet process (HDP)

Teh, Jordan, Beal, et al. [ 47 ] proposes the hierarchical Dirichlet process (HDP) to extend

DPs to model a collection of distributions with a hierarchical dependency structure, such as

a tree. The idea is to model the child distribution with a DP centered at the distribution

its parent. Figure  2.2 shows a simple hierarchical relationship between three populations
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Figure 2.2. Illustration of an example of HDP model.

(distributions), the base measure H, and its offspring G0 and G1. The corresponding HDP

model is given by
G1 |H ∼ DirichletProcess (α,H)

G2 |G1 ∼ DirichletProcess (α,G1)
(2.4)

Following from the construction of CRP in equation ( 2.3 ), Teh, Jordan, Beal, et al. [ 47 ]

develops the Chinese restaurant franchise (CRF) as coupling of CRPs, which is also a ex-

changeable process that integrates out all the distributions in the generative process and se-

quentially obtains i.i.d. observations from the HDP model. The idea of CRF is to construct

observations at the child node iteratively as a CRP from a sequence of i.i.d. observations

from the parent node. Consider the HDP model described in figure  2.2 and equation ( 2.4 )

as an example. Let x(i,j) denote the j-th sample of Gi, i = 0, 1. Due to the exchangeability

of samples, the actual sequence of generating those samples does not affect the correctness

of the process. Let us start with x(1,1), the first sample of the child node G1. According

to CRP, it is generated directly from the base measure of G1, i.e., x(1,1) ∼ G0. As there is

no sample at G0 at this moment, according to CRP, simulating the first sample from G0

(x(0,1)) is equivalent to generate a sample from the base H. Therefore, the initial step of this
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generative process simulates x(2,1) = x(1,1) ∼ H. Then consider the distribution of x(1,j+1)

conditioning on the previous samples x(1,1), . . . , x(1,j) and G0. Following equation ( 2.3 ),

x(1,j+1)

∣∣∣ {x(1,1), . . . , x(1,j)}, α, G0 ∼
j∑

j̃=1

1
α + jδx(1,̃j) + α

α + jG0. (2.5)

This is a mixture between reinforcing existing samples and requesting new sample from G0.

Here G0 can further be integrated out by reusing the CRP stated in equation (  2.3 ) again.

The CRF process provides a simplification of the generative process of HDP. When

generating samples from it, there is no need to simulate any of the distributions as long as

we keep track of all the samples being created along the way. However, even with CRF,

HDP still may not be the ideal model certain tasks. In the example of figure  2.2 , if the

intermediate distribution G0 is marginalized out, the distribution of the child G1 given the

base H is no longer a Dirichlet process. Therefore, if only samples from certain nodes are

of interest, we still need to simulate all the samples associated with their ancestors. Lacking

of a nice marginalization property make the inference with HDP model computationally

difficult in this kind of questions.

This is a brief introduction to HDP and CRF with information tailored to our need in

the dissertation. For more detailed and comprehensive description of this model, including

the extension of stick breaking process, we will direct the readers to the work of Teh, Jordan,

Beal, et al. [ 47 ].

2.4 Pitman-Yor process and hierarchical Pitman-Yor process (HPYP)

Pitman-Yor process Pitman and Yor [ 48 ] is an extension of Dirichlet processes, and is

also a nonparametric prior that can be used in model distributions. Besides a concentration

parameter α and the base probability measure H on the space X , specifying a Pitman-Yor

process requires an additional parameter, the discount parameter d ∈ (0, 1). A realization

from the Pitman-Yor is a discrete probability measure G on X , and we write it as

G |α, d,H ∼ Pitman-Yor (α, d,H) . (2.6)
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The same as DPs, the base distribution H serves as the center of the Pitman-Yor process

prior, with E[G] = H. The concentration and discount parameter control the shape and

spread of this prior around H, where α ≥ −d. When the discount d = 0, this process

degenerates to a Dirichlet process [  26 ].

As with the DPs, we can also associating a Chinese restaurant process (CRP) with the

Pitman-Yor process. The generating rule of the (j + 1)-st observation xj+1 conditioning on

previous observations is

xj+1 | {x1, . . . , xj}, α, d, H ∼
K∑
k=1

nk − d
α + j δyk + α +K · d

α + j H, (2.7)

where K = K(j) denotes the total number of clusters (tables) formed by the first j observa-

tions, and nk and yk are the cluster size and the first observation of cluster k, respectively.

Similar to DPs, Pitman-Yor processes can also be used in modeling distributions with

a hierarchical dependency structure, which results in the hierarchical Pitman-Yor process

(HPYP). The reason why this is particularly interesting to us is that unlike the DPs, Pitman-

Yor processes have a convenient marginalization property when the concentration parameter

is zero. Specifically, consider the hierarchical model in figure  2.2 :

G0 |H ∼ Pitman-Yor (0, d,H)

G1 |G0 ∼ Pitman-Yor (0, d, G0) .
(2.8)

It turns out that marginalizing out the intermediate distribution G0, the distribution G1

continues to follow a Pitman-Yor process, albeit with different parameters [ 49 ]–[ 51 ]:

G1 |H ∼ Pitman-Yor
(
0, d2, H

)
(2.9)

This marginalization property can result in significant savings in computation when not all

intermediate distributions are of interest. With the concentration being zero, the discount

parameter itself controls the spread of the distribution around the base measure. To be

specific, a large discount parameter (close to one) results amplifies the similarity between a

realizations of the process G and the base measure H.
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3. REPULSIVE CLUSTERING WITH MATÉRN POINT

PROCESSES

As statistics and machine learning methods find wide application in real world problems,

practitioners are increasingly seeking to balance statistical fidelity and predictive accuracy

with interpretability, parsimony and fairness. Popular instances of these trade-offs include

introducing smoothness, sparsity or low-dimensional structure into statistical models. In this

work, we focus on interpretability and diversity, through the use of repulsive priors in mixture

modeling applications. Such models are useful in both density modeling and clustering

applications, with goals for the latter typically including data exploration, visualization, and

summarization (see section  2.1 for a brief review).

As stated in chapter  1 , the flexibility of mixture models often comes at the cost of inter-

pretability and parsimony. One approach towards addressing this problem is to control the

number of clusters through an appropriate prior. However, trying to induce interpretability

in this indirect fashion can make model specification quite challenging, especially in nonpara-

metric applications where the number of clusters depends on the dataset size. Further, this

approach is still sensitive to any misspecification of the form of the individual components.

Another approach is to use more flexible (e.g. nonparametric) densities for each component

of a mixture model [ 52 ], though once again this raises problems with model specification,

identifiability and computation. A more modern approach is to directly address the problem

of overlapping clusters, enforcing diversity through repulsive priors. Here, rather than being

sampled independently from the base measure, cluster locations are jointly sampled from

a prior distribution that penalizes realizations where clusters are situated too close to each

other. Such priors typically draw from the point process literature, examples including Gibbs

point processes [ 53 ] and determinantal point processes [  54 ], [ 55 ]. Mixture models built on

such priors have been shown to provide simpler, clearer and more interpretable results, often

without too much loss of predictive performance [ 56 ]–[ 58 ]. Nevertheless, they present com-

putational challenges, since the the repulsive models often involve normalization constants

that are intractable to evaluate. Our work replaces the Gibbs point process with the Matérn

type-III process, though one can use other underdispersed point processes. In [ 58 ], the au-
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thors use a determinantal point processes (DPP) [ 54 ], [ 55 ], [ 59 ]. While mathematically and

computationally elegant, DPPs are not as intuitive and mechanistic as Gibbs-type models,

or our thinning mechanism. In our experiments, we compare with the models of Xie and Xu

[ 60 ] and Bianchini, Guglielmi, Quintana, et al. [ 58 ].

Work on repulsive mixture models dates back to at least Dasgupta [ 61 ]. While that work

did not propose a new model for repulsion, it demonstrated the importance of separated

components for learning mixture models. An early Bayesian mixture model with repulsion

was proposed in [ 56 ]. Here, repulsion was induced through a Gibbs point process mechanism:

specifically, the prior probability of any configuration of cluster locations was proportional

to the product of individual cluster probabilities multiplied by a term that penalizes nearby

components. The authors there considered two types of penalties, one corresponding to a

product of penalty terms for each pair of components, and one depending on the minimum

separation between components, before deriving an MCMC sampler, and proving posterior

consistency. Xie and Xu [ 60 ] and Quinlan, Page, and Quintana [ 62 ] generalized this model

slightly, and also derived posterior rates of convergence. Fúquene, Steel, and Rossell [ 63 ]

considered a similar approach to Petralia, Rao, and Dunson [ 56 ], though they framed their

work in the more general setting of non-local priors. Here, given a collection of nested models,

parameter configurations in a more complex model that result in an identical density to some

configuration in a simpler model are given zero probability. All these works however face

computational challenges: the Gibbs interaction term results in intractable normalization

constants. This is especially severe when trying to infer parameters of the repulsive penalty,

or switch between models with different numbers of components.

Finally, another line of work takes a post-processing approach, deliberately using over-

fitted mixtures with a large number of components, and then discarding unoccupied clusters

[ 64 ], [ 65 ], and merging nearby clusters together [ 66 ]. Unlike model-based approaches like

ours, these are a bit ad hoc, making it difficult to coherently calibrate uncertainty, especially

in more complicated hierarchical models.

In this work, we propose a new class of repulsive priors based on the Matérn type-III

point process. Matérn point processes are a class of repulsive point processes first studied

in Matérn [ 31 ], [  32 ]. More recently, Rao, Adams, and Dunson [ 30 ] developed a simple and
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efficient Markov chain Monte Carlo (MCMC) sampling algorithm for a generalized Matérn

type-III process (see section  3.1 ). In this work, we bring this process to the setting of mixture

models, using them as a repulsive prior over the number of clusters and their locations.

Treating the Matérn realization as a latent, rather than a fully observed point process,

raises computational challenges that the algorithm from Rao, Adams, and Dunson [ 30 ] does

not handle. We develop an efficient MCMC sampler for our model and demonstrate the

practicality and flexibility of our proposed repulsive mixture model on a variety of datasets.

Our proposed algorithm is also useful in Matérn point process applications with missing

observations, as well as for mixture models without repulsion, as an alternative to often hard-

to-tune reversible jump MCMC methods [ 67 ] to sample the unknown number of components.

3.1 Introduction to Matérn repulsive point processes

The Poisson process [  33 ] is a completely random point process, where events in disjoint

sets are independent of each other. To incorporate repulsion between events, Matérn [ 31 ],

[ 32 ] introduced three spatial point process models that build on the Poisson process. The

three models, called the Matérn hardcore point process of type I, II and III, only allow

point process realizations with pairs of events separated by at least some fixed distance η,

where η is a parameter of the model. The three models are constructed by applying different

dependent thinning schemes on a primary homogeneous Poisson point process. Despite being

theoretically more challenging than the other two processes, the type-III process has the

most natural thinning mechanism, and supports higher densities of points. [  30 ] showed how

this can easily be generalized to include probabilistic thinning and spatial inhomogeneity.

Furthermore, Rao, Adams, and Dunson [  30 ] showed that posterior inference for a completely

observed type-III process can be carried out in a relatively straightforward manner. These

advantages make the generalized Matérn type-III process superior to the other two as a prior

for mixture models. For simplicity, we will refer to this process as the Matérn process in the

rest of this work.

Formally, the Matérn process is a finite point process defined on a space Θ, parameterized

by a thinning kernel Kη : Θ × Θ → [0, 1] and a nonnegative intensity function λΘ : Θ →
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Figure 3.1. The generative process of a one-dimensional Matérn process
with a hardcore thinning kernel Kη. (1) A primary Poisson point process FΘ
with intensity λΘ(θ) is simulated on Θ, (2) Events in FΘ are assigned random
birth times uniformly from T = [0, 1], (3) Events in the shadow (i.e. within
horizontal distance η) of earlier surviving events are thinned, (4) Surviving
events are projected onto Θ to form the Matérn realization GΘ.

[0,∞). We will find it convenient to decompose the function λΘ(θ) as λΘ(θ) = λ̄ ·pΘ(θ), for a

finite normalizing constant λ̄ > 0 and some probability density pΘ(θ) on Θ. Simulating this

process proceeds in four steps: (1) Simulate the primary process FΘ =
{
θ1, . . . , θ|FΘ|

}
from

a Poisson process with intensity λΘ(·) on Θ. (2) Assign each event θj in FΘ an independent

random birth-time uniformly on the interval T = [0, 1]. (3) Sequentially visit events in the

primary process according to their birth-times (from the oldest to the youngest) and attempt

to thin (delete) them. Specifically, at step j, the jth oldest event (θ, t) is thinned by each

surviving older primary event (θ, t), t < t with probability Kη(θ, θ). (4) Write GΘ and G̃Θ for

the elements of FΘ that survive and are thinned from the previous step, respectively. The

set GΘ forms the Matérn process realization.

For a hardcore Matérn process (figure  3.1 ), the thinning kernel satisfies Kη (θ, θj) =

1‖θ−θj‖<η, where η is the thinning radius, so that thinning is deterministic: newer events

within distance η of a previously survived event are thinned with probability 1. Other

approaches are probabilistic thinning [ 30 ], where Kη (θ, θj) = η11‖θ−θj‖<η2 (with η1 ∈ [0, 1]),

or the smoother squared-exponential thinning, where Kη (θ, θj) = exp(−‖θ−θj‖
2

2η ). Huber and

Wolpert [ 68 ] propose soft-core thinning, where each event θj has its own thinning radius ηj

drawn from some distribution, and Kη (θ, θj) = 1‖θ−θj‖<ηj .

Observe that since each event θj has an independently and uniformly distributed birth-

time tj associated with it, the set of pairs
{

(θ1, t1), . . . , (θ|FΘ|, t|FΘ|)
}

is itself distributed as
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a Poisson process on Θ × T , with intensity λ(θ, t) = λΘ(θ)1[0,1](t). We write this extended

primary process as F . Consistent with our use of FΘ to represent the set of locations of each

point in F , we will use FT to represent the set of birth-times. Similarly, we will use G for

the extended Matérn events, and GT for the associated birth-times (and G̃ and G̃T for their

thinned counterparts).

Following Rao, Adams, and Dunson [ 30 ], we will specify the thinning process through a

shadow function Hη : Θ×T → [0, 1] parameterized by a possibly vector-valued η. This gives

the probability that an event (θ∗, t∗) ∈ Θ× T is thinned by a collection of events G as

Hη ((θ∗, t∗) ;G) = 1−
∏
g∈G

[1−Hη ((θ∗, t∗) ; g)] , (3.1)

where for a single event g = (θ, t), Hη ((θ∗, t∗) ; (θ, t)) = 1[t,1](t∗)Kη (θ∗, θ). Note that the

1[t,1](t∗) formalizes the fact that an event (θ∗, t∗) can only be thinned by earlier events. We

will write MatérnThinK (F, η) for the sequential thinning process that assigns elements of

F to one of G or G̃ according to thinning kernel Kη (algorithm  1 ), and ProjA(·) for the

operator that projects elements of a set on to some subspace A. The generative process of

GΘ ∼ MatérnProcessK (λ, η) can be written as

F |λ ∼ PoissonProcess (λ(·, ·)) ,

G, G̃
∣∣∣F,Kη ∼ MatérnThinK (F, η) , GΘ = ProjΘ(G).

With a Matérn model of point pattern data, one seeks to infer the intensity function

λΘ(θ) and the thinning parameters η from a realization GΘ. Observe that for the Matérn

type-III process, an event can only be thinned by a surviving event, so that the probability

of thinning at any location depends only on the set G. Rao, Adams, and Dunson [ 30 ] showed

that in fact, conditioned on G, the events in G̃ are distributed as an inhomogeneous Poisson

process with intensity λΘ(θ)Hη ((θ, t) ;G). This allowed them to develop an efficient Gibbs

sampler when Matérn events GΘ are fully observed. This proceeds by sequentially updating

the thinned events G̃, the Matérn birth times GT , the Poisson intensity λΘ and thinning

kernel parameter η, each conditioned on the rest. The fact that the thinned events G̃ can
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be jointly sampled avoids the need for any birth-death steps in the MCMC algorithm, both

simplifying the algorithm and improving its efficiency. We adapt this sampler for our MCMC

algorithm, where the fact that the Matérn events are hidden or partially observed will create

new challenges. In the next section, we first describe our model that uses the Matérn process

to impose repulsion between clusters of a finite mixture model.

Algorithm 1: Details of the function MatérnThinK (F, η)
Function MatérnThinK (F, η):

Input : Extended primary Poisson process F and thinning kernel Kη
Output: Extended Matérn events G and thinned events G̃

1 Write −→F =
(
f1, . . . , f|F |

)
for F sorted in ascending order of birth times (so that

ProjT (fj) < ProjT (fj) if j < j).
2 for j← 1 to |F | do
3 Set (θ, t)← (ProjΘ(fj),ProjT (fj))
4 Draw u ∼ Unif[0, 1]
5 if u < Hη ((θ, t) ;G) then // Assign fj to G w.p.Hη ((θ, t) ;G)
6 G← G ∪ fj
7 else
8 G̃← G̃ ∪ fj

9 return G, G̃

3.2 Matérn repulsive mixture model (MRMM)

We start with a primary Poisson process F that includes mixture weights, defining it on

an extended space Θ×W × T with T = [0, 1],W = [0,∞). Write its intensity function as

λ(θ, w, t) = λ̄ · pΘ (θ) · pW (w) · 1[0,1](t). (3.2)

We set pW (w) = Gamma(w ;α, 1), while pΘ (θ) is a problem-specific prior over cluster pa-

rameters. Unlike the Matérn process, we model F as a Poisson process conditioned to have at

least one event. Given F , we will produce a Matérn realizationG =
{

(θ1, w1, t1), . . . , (θ|G|, w|G|, t|G|)
}

by applying the function MatérnThinK (F, η) for some kernel K on Θ with parameter η. Each

element (θ, w, t) ∈ G will form a component of a mixture model, with θ and w representing
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Figure 3.2. Illustration of the Matérn prior for mixture models. (1) Primary
Poisson events F =

{
(θ1, w1, t1), . . . , (θ|F |, w|F |, t|F |)

}
thinned by a hardcore

thinning kernel with thinning radius R. The surviving events are projected to
the parameter space of the mixture model Θ×W . (2) The resulting mixture
model, consisting of a collection of mixture component parameters θ ∈ Θ and
their corresponding unnormalized mixture weights w ∈ W .

the parameter and unnormalized weight of that component; see also figure  3.2 . Our model

thus serves as a prior over both the number of components in a mixture model, as well as the

component weights and locations. Since events in F can only be thinned by surviving events,

our modified Matérn prior on F ensures the mixture model has at least one component.

For a set A, write ∑A for the sum of its elements. Consistent with the notation of GΘ and

GT , we write GW for ProjW(G). Then, given G, the observed data X = {xi, i = 1, . . . , n} is

modeled as follows:

xi |G ∼
∑

(θ,w,t)∈G

w∑
GW

pX (· ; θ), i = 1, . . . , n. (3.3)

Here, pX (· ; θ) represents some family of probability densities parameterized by θ ∈ Θ. As an

example, if the observations lie on a Euclidean space, pX (· ; θ) could be a normal distribution,

with θ representing the location and variance of a cluster in a Gaussian mixture model. In

this case, the density pΘ (θ) might be a Normal-Inverse-Wishart distribution.

Note that when the w’s are independent Gamma(α, 1) variables, the vector of normalized

weights
(
w1
/∑

GW , . . . , w|G|
/∑

GW
)

follows a symmetric Dirichlet distribution with con-
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centration parameter α [ 42 ]. If the thinning kernel Kη equals 0, our model then reduces to a

standard mixture model, with i.i.d. cluster parameters, Dirichlet-distributed cluster weights,

and a conditional Poisson distribution on the number of clusters. Different settings of Kη
(hardcore, probabilistic or squared-exponential thinning) allow different kinds of repulsion

between the cluster parameters. Observe that repulsion is only between the cluster parame-

ters θ (and not the cluster weights w). Further, in many settings we allow Kη to only depend

on a subset of the components of θ. For instance, writing θ = (θµ, θσ) where θµ is the cluster

location and θσ is the cluster variance, a common requirement is to enforce repulsion only

between the cluster locations, but not their variances. This can easily be achieved by setting

Kη to depend only on θµ.

All that is left to complete a Bayesian model is to specify hyperpriors on the hyperpa-

rameters λ̄ and η, as well as any hyperparameters of the density pΘ(θ). The last is problem

specific, and is no different from models without repulsion. A natural prior for λ̄ is the

Gamma distribution, while the choice of the hyperprior on η will depend on the type of thin-

ning kernel. In general, we recommend at least a mildly informative prior on the thinning

parameter, as otherwise, the posterior can settle on a model without any repulsion. For the

hardcore process, where η is the thinning radius, or for the squared-exponential thinning

kernel, where η is the lengthscale parameter, we can use a Gamma hyperprior. For proba-

bilistic thinning, where η = (R, p), we can use a Beta prior on the thinning probability p,

and a Gamma prior on the thinning radius R. We include further discussion of the choice

of hyperpriors in chapter  4 .

Write z = (z1, . . . , zn) for the collection of latent cluster assignments of the data in

equation ( 3.3 ), with zi ∈ {1, . . . , |G|}. Following notation in section  3.1 , with hyperpriors

omitted for simplicity, the generative process of MRMM is

F |λ ∼ PoissonProcess (λ(·))
∣∣∣|F | > 0,

G, G̃
∣∣∣F,Kη ∼ MatérnThinK (F, η) ,

zi |G ∼ Multinomial
(

w1∑
GW

, . . . ,
w|G|∑
GW

)
,

xi | zi, G ∼ pX (· ; θzi), i = 1, . . . , n.

(3.4)
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Note that for convenience, in the last line above we have imposed an arbitrary ordering on

the elements of G, and thus the cluster identities, though the cluster indicators zi really

take values in some categorical space. The proposition below gives the joint density of all

variables, and will be useful for deriving our posterior sampling algorithm.

Proposition 3.2.1. Write Pλ for the measure of a rate-λ(·) Poisson process on Θ×W × T .

Then the tuple X, G, G̃ has joint density with respect to Pλ × dxn given by

p
(
X, G, G̃

∣∣∣λ, η) = 1(|G ∪ G̃| > 0)
1− e

∫
Θ×W×T −λ(θ,w,t) dθ dw dt∏

g∈G
[1−Hη (g ;G)]

∏
g̃∈G̃

Hη (g̃ ;G)
n∏

i=1

∑
(θ,w,t)∈G

w∑
GW

pX (xi ; θ). (3.5)

3.3 Posterior inference for MRMM

Given a dataset X = {x1, . . . , xn} from MRMM, we are interested in the posterior distri-

bution p
(
G, z, λ̄, η

∣∣∣X)
, summarizing information about the cluster weights and locations

(through G), and the cluster assignments (through z). We construct a Markov chain Monte

Carlo (MCMC) sampler to simulate from it. Our sampler is an auxiliary variable Gibbs

sampler, that for computational reasons, also imputes the thinned events G̃. The sampler

proceeds by sequentially updating the latent variables λ̄, η, G, G̃ and z according to their

conditional posterior distributions. Among these, the most challenging steps are updating

G and G̃: both of these are variable-dimension objects, where not just the values but also

the cardinality of the sets must be sampled. Given Matérn events G, sampling G̃ resembles

the sampling problem from Rao, Adams, and Dunson [  30 ], where the Matérn realization

was completely observed. However, our modified prior on F (where |F | must be greater

than 0) requires some care, and we provide a different and cleaner derivation of this update

step using Campbell’s theorem [ 33 ]. Updating G given the rest is more challenging, and we

further augment our MCMC state space with an independent Poisson process F̃ , and then

update the triplet (G, G̃, F̃ ) to (G∗, G̃∗, F̃ ∗) using a ‘relabeling’ process that keeps the union

unchanged. This approach is simpler than reversible-jump or birth-death approaches, with
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the augmented Poisson intensity trading-off mixing and computation, and forming the only

new parameter. Below, we present full details of the Gibbs steps.

1) Updating thinned events G̃

Given G, the thinned events G̃ are independent of the observations: p(G̃ | λ̄, η, G, z,X) =

p(G̃ | λ̄, η, G). Furthermore, events in G̃ can only be thinned by events in G, suggesting that

conditioned on G, λ̄, η, the events within G̃ do not interact with each other, and form a

Poisson process. The result below formalizes this:

Proposition 3.3.1. Given all other variables, the conditional distribution of the thinned

events G̃ is a Poisson process with intensity λ(·)Hη (· ;G).

This result resembles that of Rao, Adams, and Dunson [  30 ], though our derivation in sec-

tion  3.4 exploits proposition  3.2.1 and works with densities with respect to the rate-λ Poisson

measure, and is simpler and cleaner. Simulating such a Poisson process is straightforward:

simulate a Poisson process with intensity λ(·) on the whole space Θ×W × T , and then keep

each event g̃ in it with probability Hη (g̃ ;G) [ 69 ]. This makes jointly updating the entire set

G̃ easy and efficient, without any tuning parameters.

2) Updating the Matérn events G

This step is significantly more challenging, since unlike the thinned events, the Matérn

events interact with each other, and with the clustering structure of the data. Consequently,

we cannot simply discard G and sample a new realization. Instead, we produce a dependent

update of G, through a Markov kernel that targets this conditional distribution.

We first discard the cluster assignments z; note these can easily be resampled (see step 3

below). A naive approach is then to make a pass through the elements of G∪ G̃, reassigning

each to either G or G̃ based on the appropriate conditional. This forms a standard sequence

of Gibbs updates, and does not involve any reversible jump or stochastic process simulation.

At the end of this pass, we have an updated pair (G∗, G̃∗), with G∗ possibly having different

number of elements from G. While this keeps the union G ∪ G̃ unchanged, our ability to

efficiently update G̃ might suggest fast mixing.
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In our experiments however, we observed poor mixing, especially with hardcore thinning.

The latter setting forbids elements of G∗ from lying within each others’ shadow, and also

requires G̃∗ to lie in the shadow of G∗, making it hard to switch an event from the Matérn

set to thinned set, or vice versa. To address this, we begin this step by augmenting our

MCMC state-space with an independent rate-γλ(·) Poisson process F̃ ⊂ Θ×W × T :

F̃
∣∣∣ γ, λ ∼ PoissonProcess (γλ(·)) . (3.6)

We call γ > 0 the augmentation factor, which forms a parameter of our MCMC algorithm.

Since F̃ is simulated independently of all other variables, the joint distribution of (G, G̃, F̃ )

conditioned on all other variables has the conditional distribution of (G, G̃) as its marginal.

Having simulated F̃ , we cycle through the elements of G∪G̃∪F̃ , sequentially relabeling each

event as “survived”, “thinned” or “augmented” to produce a new triplet G∗ ∪ G̃∗ ∪ F̃ ∗. This

relabeling is carried to preserve the joint conditional of G∗, G̃∗, F̃ ∗, so that after discarding

F̃ ∗, we have updated (G, G̃) while maintaining their conditional distribution.

The augmented Poisson process F̃ more easily allows events to be introduced into, and

removed from G, especially in the hardcore setting. Each relabeling step is straightforward,

and requires computing a 3-component probability. For each e ∈ G ∪ G̃ ∪ F̃ , write G\e, G̃\e

and F̃ \e for the sets resulting from removing e (only one of these will change). Write S\e

for the sum of the unnormalized mixture weights after removing e: S\e = ∑ProjW(G\e).

For an observation xi ∈ X and event g = (θ, w, t) ∈ G, write lgi = wpX (xi ; θ). Write

L
\e
i = ∑

g∈G\e l
g
i , this is the unnormalized likelihood of observation i with event e taken out,
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and with its cluster assignment marginalized out. Then, following proposition  3.2.1 , and

with eW = ProjW(e), the probabilities of “survived”, “thinned” or “augmented” are

P (e ∈ G|−) ∝
n∏

i=1

lei +L
\e
i

S\e+eW
∏

g∈G\e∪{e}

[
1−Hη(g ;G\e∪{e})

] ∏
g̃∈G̃

Hη(g̃ ;G\e∪{e}),

P (e ∈ G̃|−) ∝
n∏

i=1

L
\e
i

S\e
∏

g∈G\e

[
1−Hη(g ;G\e)

] ∏
g̃∈G̃\e∪{e}

Hη(g̃ ;G\e), (3.7)

P (e ∈ F̃ |−) ∝ γ
n∏

i=1

L
\e
i

S\e
∏

g∈G\e

[
1−Hη(g ;G\e)

] ∏
g̃∈G̃\e

Hη(g̃ ;G\e).

Having cycled through all elements of G∪ G̃∪ F̃ , we have a new partition (G∗, G̃∗, F̃ ∗), after

which the augmented Poisson events F̃ ∗ are discarded; see also algorithm  2 and figure  3.3 .

The augmented factor γ in this procedure governs the cardinality of augmented events F̃ . A

larger γ results in faster mixing, but higher computational cost. Our experiments suggests

that a moderate augmentation factor (somewhere between 5 to 10) adequately balances

mixing and computation.

3) Updating cluster assignments z and cluster weights GW

Given X and mixture parameters GΘ and GW , we can easily resample the cluster as-

signments z that were discarded at the start of the previous step. This is no different from

standard mixture models; for observation i: p(zi = g|−) ∝ lgi , ∀g ∈ G. Clusters assignments

for all observations are conditionally independent, so that these assignments can be carried

out in parallel.

Given cluster assignments z and the number of mixture components |G|, the mixture

weights GW = {wj, j = 1, . . . , |G|} are independent of the other variables. A priori, the wj’s

are independent Gamma(α, 1) random variables, or equivalently, are obtained by multiplying

a sample from a Dirichlet(α, . . . , α) distribution (the normalized weights) with an indepen-

dent sample from a Gamma(|G|α, 1) distribution (the sum of the weights) [ 42 ]. We work

with the latter representation, and seek to simulate from the posterior distribution of the

normalized weights and the sum of the weights. It is easy to see that these continue to be
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Figure 3.3. Illustration of the relabeling step. (1) Before relabeling, the state
of the surviving events G, thinned events G̃ and auxiliary events F̃ , and the
shadow cast by G, Hη (· ;G). (2-3) The first event (After random shuffling of
all events in G ∪ G̃ ∪ F̃ ) is relabeled as “auxiliary”. The event is first removed
from its original set G (and the shadow is affected accordingly) in (2). Then,
in (3), it is relabeled as “auxiliary” according to the posterior conditional
probabilities in equation (  3.7 ). Notice that with the hardcore thinning kernel,
it is impossible for the event to be relabeled to “thinned”, as it is not under the
shadow of a previously surviving event. (4-5) The second event is relabeled
as “thinned”. Similarly, the event is removed from the collection of augmented
events F in (4) and then relabeled as “thinned” in (5). Notice that it is under
the shadow of a surviving event, and hence, with the hardcore thinning kernel,
it can only be labeled as “thinned” or “auxiliary”. (6) The final state for G,
G̃, F̃ , after all events are relabeled.
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independent under the posterior. The sum of the weights plays no role in the likelihood, and

continues to follow a Gamma(|G|α, 1) distribution, while the Dirichlet-multinomial conju-

gacy implies that the normalized weights follow a Dirichlet(α+n1, . . . , α+n|G|), with nj the

number of observations in cluster j.

4) Updating cluster locations GΘ and Matérn birth-times GT

Updating the cluster locations GΘ and birth-times GT is not strictly necessary given the

relabeling step, nevertheless, we find doing it improves mixing. With the number of Matérn

events G and thinned Matérn events G determined, updating these is straightforward, if a

little tedious. Unlike standard mixture models, because of repulsion, clusters locations are

not conditionally independent. Write θj for the location of j-th cluster, and write Xj for the

observations assigned to this cluster. Then, the conditional distribution of θj is

p
(
θj

∣∣∣G−j
Θ , GT , G̃, λ, η,Xj

)
∝ p

(
G, G̃

∣∣∣λ, η) pΘ (θj)
∏
x∈Xj

pX (x ; θj). (3.8)

The term p(G, G̃ |λ, η) accounts for how changing the jth event’s location changes the

shadow, and therefore the probability of the current Matérn and thinned events. The other

two terms are the prior and likelihood of θj under a mixture model without repulsion. A

simple way to simulate from this is with a Metropolis-Hastings step, and when the prior pθ
is conjugate to the likelihood p(x | θ), a natural choice for the proposal distribution is the

posterior distribution if there were no repulsion: qj (θj) ∝ pΘ (θj)
∏
x∈Xj pX (x ; θj).

Like the cluster locations, the birth-times GT of the Matérn events can also be updated

one at a time. Given the cluster locations, GT is independent of the observations or their

cluster assignments, and one only needs to consider their impact on the shadow (proposi-

tion  3.2.1 ). Specifically, if tj is the birth time of the j-the event, then

p (tj | −) ∝ p
(
G, G̃

∣∣∣λ, η) ∝ ∏
g∈G

[
1−Hη (g ;G)

] ∏
g̃∈G̃

Hη (g̃ ;G).
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Since tj ∈ [0, 1], simulating from this is straightforward, though it is possible to simplify this

further. When the thinning kernel is symmetric, this first product term does not depend on

tj, and can be dropped. Next, the birth-times of the thinned events g̃j = (θ̃j, w̃j, t̃j) ∈ G̃ can

be used to partition the interval T = [0, 1] into segments [t̃j, t̃j+1), j = 1, . . . , |G̃| − 1. If the

thinning probability is a function only of separation in space (as is the case with all kernels

we have considered), then the probability of tj within each segment is constant, depending

only on the number of thinned events born before and after the interval [t̃j, t̃j+1). Specifically,

for any time t, define G̃≤t as the subset of events in G̃ that were born before or at t, and

define G̃>t similarly. Then

p
(
tj ∈ [t̃j, t̃j+1)

∣∣∣−) ∝ ∏
g̃∈G̃≤tj

Hη

(
g̃ ;G−j

) ∏
g̃∈G̃>tj

Hη (g̃ ;G). (3.9)

Having picked a segment, the exact value of tj is drawn uniformly within the segment.

5) Updating hyperparameters

Hyperparameters include the primary Poisson process intensity, and those in the thinning

kernel. The mean intensity λ̄ controls the cardinality of the primary process F , and it is easy

to show that with a Gamma(a, b) prior, and with the constraint |F | > 0, the conditional

posterior is p
(
λ̄
∣∣∣−) ∝ 1

1−e−λ̄Gamma(λ̄ ; a+ |F |, b+ 1).

Next, write ν for any parameters of the normalized Poisson intensity pΘ(θ | ν) = λΘ(θ)/λ̄.

For a prior pν(ν), the conditional distribution simplifies as p(ν | −) ∝ pν(ν)∏θ∈FΘ pΘ(θ | ν).

Finally, writing pη for the prior for the thinning parameter η, the posterior is p (η | −) ∝

pη(η)∏g∈G [1−Hη (g ;G)]∏g̃∈G̃Hη (g̃ ;G). All three distributions above can be updated us-

ing any standard MCMC kernel.
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Algorithm 2: The relabeling step to update Matérn events G
Function Relabel(λ, γ, G, G̃, X):

Input : Primary Poisson intensity λ, augmentation factor γ, current state of
the surviving events G and the thinned events G̃, the data X.

Output: Updated Matérn events G and thinned events G̃.
1 Sample augmented F̃ ∼ PoissonProcess (γλ(·))
2 Impute non-locational parameters of G̃ from the prior (if presents in the model)
3 Obtain shuffled indices J = RandomShuffle({1, . . . , |G ∪ G̃ ∪ F̃ |})
4 Compute likelihood related objects: n× |J | matrix L = (wjpX (xi ; θj) : i, j) and

n-dim vector l =
(∑

g∈G l
g
1, . . . ,

∑
g∈G l

g
n

)
5 Compute the normalizing constant S = ∑

GW
6 foreach j in J do
7 if event j in G then
8 if |G| = 1 then // G contains only event j
9 next

10 else
11 S ← S − wj
12 l← l− L·j

13 Remove event j from its original event set
14 Assign event j to G, G̃ or F̃ with probability P (e ∈ G|−), P (e ∈ G̃|−) and

P (e ∈ F̃ |−) in equation ( 3.7 ), respectively,
15 return G, G̃
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Algorithm 3: Bayesian inference of MRMM
Input : Data X = {x1, . . . , xn}, number of MCMC iterations M , model of cluster

components pX (· ; θ), augmentation factor γ, prior on cluster locations pθ,
shape parameter of the Gamma prior on weights α, shape and rate
parameter of the Gamma prior on mean intensity (a, b), and prior on
thinning kernel parameter pη.

Output: Posterior samples of mean intensity λ̄, thinning parameter η, Matérn
events GΘ, GT , GW , thinned events G̃, and cluster assignments z.

1 Initialize λ̄ ∼ Gamma(a, b), η ∼ pη
2 Initialize G, G̃ ∼ MatérnProcessK (λ,Kη)
3 Initialize z from z |X, G : zi ∼ Multinomial (wj · pX (Xi ; θj), j = 1, . . . , |G|)
4 for m← 1 to M do
5 Update λ̄ according to 1

1−e−λ̄Gamma(a+ |F |, b+ 1) using Metropolis-Hastings
6 Update η according to p(η |G, G̃)
7 Update G̃: (Poisson thinning) simulate from PoissonProcess (λ) and discard

event g̃ with probability 1−Hη (g̃ ;G)
8 Update GT one at a time according to equation ( 3.9 )
9 Update GW ← S ·GW where S ∼ Gamma(|G|α, 1) and

GW ∼ Dirichlet
(
α + n1, . . . , α + n|G|

)
(nj = ∑n

i=1 1(zi = j))
10 Update GΘ one at a time according to equation ( 3.8 ) using Metropolis-Hastings
11 G, G̃←Relabel(λ, γ, G, G̃, X)
12 Update z one at a time: zi ∼ Multinomial (wj · pX (Xi ; θj), j = 1, . . . , |G|)
13 return Posterior MCMC samples of λ̄, η, G, G̃ and z
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3.4 Proofs

Proposition ( 3.2.1 ). Write Pλ for the measure of a Poisson process on Θ×W × T with

intensity λ(θ, w, t). Then the tuple X, G, G̃ has joint density with respect to Pλ × dxn

given by

p
(
X, G, G̃

∣∣∣λ, η) =
(

1(|G ∪ G̃| > 0)
1− e

∫
Θ×W×T −λ(θ,w,t) dθ dw dt

)
∏
g∈G

[1−Hη (g ;G)]
∏
g̃∈G̃

Hη (g̃ ;G)
 n∏

i=1

∑
(θ,w,t)∈G

w∑
GW

pX (xi ; θ)
 .

Proof. First note that the set F = G ∪ G̃ follows a Poisson process with rate λ(θ, w, t),

conditioned to have at least 1 event. The probability that such a Poisson process produces

1 or more events is 1− exp(−
∫
λ(θ, w, t)dθdwdt). It follows that conditioning on this event,

F has density with respect to Pλ given by the ratio in the first parentheses. Each element f

of F is assigned to either G or G̃, with probability 1−Hη (f ;G) or Hη (f ;G) respectively.

This gives the terms in the second parentheses. Finally, the ith observation is assigned to

cluster (θ, w, t) ∈ G with probability w/GW , with its value having density pX (xi ; θ) with

respect to dx. Marginalizing over cluster assignments, and considering all n observations,

we get the final terms. The result then follows easily from Lemma  3.4.1 .

To prove proposition  3.3.1 , we start with the following useful (and not new) result:

Lemma 3.4.1. Consider two Poisson processes on some space Y, with intensities λ(y) and

µ(y). Then the former has density with respect to the latter given by

dPλ

dPµ

(M) := pµ(M |λ) = e
∫
Y µ(y)−λ(y) dy ∏

m∈M

λ(m)
µ(m) (3.10)

Proof. Consider a function h : Y → Re. For a point process M on Y , we overload notation,

and define the linear functional h(M) = ∑
m∈M h(m). Write EM [h(M)] for the expectation of

h(M) when M is distributed as a point process with measure M . Recall that Pλ corresponds
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to a rate-λ(·) Poisson process on Y , and Pµ, to a rate-µ(·) Poisson process.We first note

that from Campbell’s theorem [  33 ], for a rate-µ(·) Poisson process, we have

EPµ [ exp(h(M))] = EPµ

[
exp

( ∑
m∈M

h(m)
)]

= exp
(∫

(eh(y) − 1)µ(y) dy
)
. (3.11)

Now write M λ
µ for the probability measure of a point process with density pµ(M |λ) with

respect to a rate-µ(·) Poisson process. Then

EMλ
µ

[ exp(h(M))] = EPµ [pµ(M |λ) exp(h(M))]

= EPµ

[
e
∫
Y (µ(y)−λ(y)) dy

( ∏
m∈M

λ(m)
µ(m)

)
exp(h(M))

]

= e
∫
Y (µ(y)−λ(y)) dy EPµ

[
exp

∑
m∈M

(h(m) + log λ(m)− log µ(m))
]

= exp
(∫
Y

(eh(y) − 1)λ(y) dy
)

(from equation ( 3.11 ))

= EPλ
[ exp(h(M))]. (3.12)

This confirms that M λ
µ equals Pλ a.e., proving our result.

Proposition ( 3.3.1 ). Given all other variables, the conditional distribution of the thinned

events G̃ is a Poisson process with intensity λ(·)Hη (· ;G).

Proof. With respect to a rate-λ(·) Poisson process,

p(G̃|−) ∝ p
(
G, G̃,X

∣∣∣λ, η)
=
(

1(|G ∪ G̃| > 0)
1− e

∫
Θ×W×T −λ(θ,w,t) dθ dw dt

) ∏
g∈G

[1−Hη (g ;G)]
∏
g̃∈G̃

Hη (g̃ ;G)

∝
∏
g̃∈G̃

Hη (g̃ ;G).

In the last equation, we dropped all terms that do not depend on G̃, and used the fact that

since |G| > 0, 1(|G ∪ G̃| > 0). The result now follows from Lemma  3.4.1 .
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4. EMPIRICAL RESULTS OF MRMM

In this chapter we evaluate different settings of our MRMM model and MCMC algorithm

described in chapter  3 , and compare with two other repulsive models: the DPP-based method

of Bianchini, Guglielmi, Quintana, et al. [ 58 ] and the repulsive Gaussian mixture model of Xie

and Xu [ 60 ]. We implemented our method as a Python3 package mrmm. An R implementation

of the method of Bianchini, Guglielmi, Quintana, et al. [ 58 ] was acquired directly from the

authors, while a MATLAB implementation of the method of Xie and Xu [ 60 ] was obtained

from their supplementary material.

For all experiments, we placed a Gamma(1, 1) prior on the unnormalized mixture weights

wj in our model, resulting in a flat Dirichlet prior on the mixing proportions. Unless oth-

erwise specified, we placed a Gamma(1, 0.1) prior on the mean intensity of the primary

Poisson process, λ̄. We considered three Matérn thinning kernels, the hardcore, probabilistic

and squared-exponential kernel (see table  4.1 for details). Recall that with zero repulsion,

MRMM reduces to an independent mixture model with a prior on the number of compo-

nents. As stated earlier, it is important to have a relatively informative hyperprior on the

parameters of the repulsive kernel, otherwise the model can revert to no repulsion. For

most experiments, the thinning strength (thinning radius in the hardcore and probabilistic

kernels, and lengthscale in the squared-exponential kernel) had a Gamma(4, 2) prior, which

had mean 2 and variance 1.

We evaluated model and sampler performance along three dimensions: computational

efficiency, goodness-of-fit and parsimony. For computational efficiency, we first computed

the effective sample size (ESS) of a number of posterior statistics (for simplicity, we reported

only one of them, the number of clusters). ESS estimates the number of uncorrelated samples

that a sequence of dependent MCMC samples corresponds to, and to compute this, we used

the effectiveSize function from the R package coda [ 70 ]. Dividing this by the total run

CPU runtime of the MCMC sampler, we get the ESS per second (ESS/s), an estimate of the

cost of producing one independent sample. We use this as our measure of sampler efficiency.

To evaluate the goodness-of-fit and predictive accuracy, we reported the predictive likelihood

ln p (Xtest |X) of a held-out test dataset Xtest, as well as the log pseudo-marginal likelihood
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Table 4.1. Thinning kernels used in experiments
Thinning Kernel Thinning Parameter Expression
Hardcore η = R Radius R > 0 KR (θ, θ) = 1‖θ−θ‖<R
Probabilistic η = (R, p) Radius R > 0 K(R,p) (θ, θ) = p1‖θ−θ‖<R

Probability p ∈ [0, 1]
Squared-exponential η = l Lengthscale l > 0 Kl (θ, θ) = exp

{
−‖θ−θj‖

2

2l

}
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Figure 4.1. The impact of augmentation factor on (left) MCMC mixing (ESS
out of 20,000 iterations), (middle) MCMC mixing rate (ESS/s) and (right)
computational cost (CPU time). A tiny perturbation is added to γ’s to ensure
visibility.

LPML = ∑
i log p (xi |X−i) where X−i denotes the dataset without the i-th observation [see

 58 ]. To assess the parsimony and interpretability of inferred model, we reported the posterior

mean and variance of the number of clusters (E [C |X ] and Var (C |X)), as well as a central

estimate of the posterior clustering structure (a ‘median’ posterior clustering). The latter

was obtained by minimizing the posterior expectation of Binder’s loss function under equal

misclassification costs [ 58 ], [  71 ]. We denote the number of clusters in this estimate as ĈB.

4.1 Synthetic studies

4.1.1 Study of augmentation factor

We focus here on MRMM with hardcore thinning, the most challenging setting for MCMC

mixing. We applied MRMM to synthetic data generated from two-dimensional Gaussian

mixture models, with minimum cluster separation of 4.0 and with varying number of clusters.

The models to generate the datasets are illustrated in figure  4.2 .
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Figure 4.2. Mixtures of equally weighted Gaussian distributions for the study
of augmentation factor γ in section  4.1.1 . From left to right, number of clusters
C = 2, 4, 6, 9, respectively. Each cluster is a standard bivariate Gaussian with
covariance being the 2×2 identity matrix I2. The minimum distances between
cluster centers is 4.
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Figure 4.3. Visualization for assessing mixing of posterior number of clusters
(|G|) in one run with augmentation factor γ = 5 on the dataset with two
clusters as illustrated in figure  4.2 . In this run, ESS = 5624; ESS/s = 6.97;
CPU Time (s) = 806.80. (Left) The trace plot of the first 1,000 updates of
|G|. (Right) The autocorrelation function of posterior samples of |G|.
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For each model, we simulated 50 training datasets, each consisting of 20 observations

per cluster. The number of clusters C thus quantifies both model complexity and dataset

size. We modeled each dataset as a hardcore MRMM with the thinning radius fixed to 2.

The covariance of each cluster was set to the 2 × 2 identity matrix I2, and the normalized

intensity pΘ(θ) was set to N(0, 10I2). For each dataset, we ran our MCMC sampler for

20,000 iterations, with γ ranging from 1 to 500.

Figure  4.1 plots the raw ESS (left), ESS/s (center) and CPU run-time (right) against

the augmentation factor γ, with each curve representing a different generative model. The

right panel shows that, as expected, increasing γ results in an increase in CPU time, as

the number of events in the augmentation Poisson process increases. At the same time, the

leftmost panel shows that this added computational cost comes with the benefit of faster

mixing, as more augmented Poisson events more easily allows events to be switched into

and out of the Matérn events G. For small values for γ, this improvement is significant,

before plateauing out as γ crosses 50. The middle panel shows that this improvement easily

compensates for the added computational burden. We see similar results for other thinning

kernels, but do not include them. In practice, based on these results, we recommend setting

γ somewhere in the range of 5 to 10. In the rest of our experiments, we fix it to 5. Figure  4.3 

visualizes assessments for the mixing of one run.

4.1.2 Study of thinning kernels and thinning strengths

Having established that our MCMC sampler mixes well, we now proceed to study the

effect of different thinning kernels and thinning strengths on MRMM inferences. Table  4.1 

lists all thinning kernels are corresponding parameters used in this study, specifically, for the

probabilistic thinning kernel, the thinning probability p = 0.95.

We consider a series of two-dimensional Gaussian mixture models shown in figure  4.4 .

Each model consists of four equally weighted, unit-variance Gaussian components, located at

(−d/2, 3d/2), (d/2, d), (d,−d), (−3d/2,−3d/2), where d = 1, 2, 3, 4 quantifies the separation

level. A training dataset of size 200 and a test data with 100 observations were simulated

independently for each model.
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Figure 4.4. Synthetic study in section  4.1.2 : The ground truth model M0
with different separation levels.
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Figure 4.5. Contour and cluster assignments of the synthetic study in sec-
tion  4.1.2 with hardcore MRMM.
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Figure 4.6. Contour and cluster assignments of the synthetic study in sec-
tion  4.1.2 with probabilistic MRMM.

For MRMM, we set the prior pΘ(θ) to a Gaussian with mean zero and covariance 10I2.

We placed an inverse-Wishart prior with 2 degrees of freedom and a scale matrix I2 on the

covariances. When learning the thinning strength (thinning radius R for both hardcore and

probabilistic MRMM, or the lengthscale l for the squared-exponential MRMM), we placed

a Gamma(4, 2) prior with mean 2.0 and variance 1.0. All results were obtained from 2,000

iterations of MRMM after discarding the first 1,000 samples as burn-in.

Figure  4.5 ,  4.6 and  4.7 are the inferred posterior contours and the ‘median’ clustering re-

sults obtained with the three kernels. Heatmaps in figures  4.8 to  4.12 compare the parsimony

and the goodness-of-fit of different thinning kernels with a variety of thinning strengths. As

expected, increasing repulsion strength results in greater parsimony, with both the posterior
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Figure 4.7. Contour and cluster assignments of the synthetic study in sec-
tion  4.1.2 with squared-exponential MRMM.

mean and variance of the number of clusters dropping. Interestingly, moderate values of

repulsion do not significantly harm the model fit. However, a strong repulsion strength does

result in a drop in predictive power, especially for the hardcore MRMM.

4.2 Real Data Analysis

4.2.1 Chicago 2019 homicide data

We next consider a dataset of homicide recordings, collected in Chicago, Illinois in the

year 2019  

1
 . The data consists 501 entries, and we randomly split these into 416 (85%)

training data points and 85 (15%) testing data points. Figure  4.14 shows the training data,
1

 ↑ obtained from  https://data.cityofchicago.org/Public-Safety/Crimes-2019/w98m-zvie 
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Figure 4.8. Synthetic study in section  4.1.2 : Posterior mean of the number
of clusters E [C |X ].
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Figure 4.9. Synthetic study in section  4.1.2 : Posterior variance of the number
of clusters Var (C |X).
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Figure 4.11. Synthetic study in section  4.1.2 : The difference between poste-
rior testing likelihood and the testing likelihood under the ground truth model
M0, i.e. ln p (Xtest |X)− ln p (Xtest |M0).
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R = 0.0 (no repulsion) R = 0.1 R = 0.2 R Gamma(40, 200)

Figure 4.13. Contours and cluster assignments of Chicago crime data with
hardcore MRMM in section  4.2.1 .
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Figure 4.14. Chicago 2019 homicide data.

consisting of the latitude and longitude of each homicide, superimposed on a map of Chicago.

These range from (−87.8066,−87.5293) to (41.6572, 42.0208), and we modeled these with

MRMM, specifically, a two-dimensional Gaussian mixture model with hardcore repulsion

between cluster locations. We set pΘ(θ) to a Gaussian density, with mean (−87.6727, 41.8180)

(centered in Chicago), and with variance set to 7 × 10−3I2 (to cover the entire city). We

placed an inverse-Wishart prior with 2 degrees of freedom and scale matrix 3.5× 10−3I2 on

the covariance of each Gaussian mixture component. In settings where we wished to learn

the thinning radius R, we placed a Gamma(40, 200) prior on R, corresponding to a prior

mean of 0.2 and standard deviation of 0.001. For all simulations, we ran 5,000 iterations of

our MCMC sampler, and discarded the first 2,500 samples as burn-in.

Figure  4.13 and table  4.2 show the results from the hardcore MRMM with different thin-

ning radii. Across all posterior samples, there were 3 dominant clusters, with the remaining

clusters accounting for a small portion of observations. The leftmost panel in figure  4.13 

shows the median clustering without any repulsion: here the observations to the south of

Chicago are assigned to three clusters. Increasing the repulsion radius to .1 simplifies these

three clusters into a single large cluster, even though the observations here deviate slightly

from the Gaussian assumption. This is a clear illustration of MRMM being robust to model

misspecification. Table  4.2 shows that this simpler model does not come at the cost of a seri-

ous loss in predictive power. Increasing the thinning radius to .2 on the other hand causes a

steep drop in predictive performance, with a majority of the data points now being assigned

to a single cluster (with a few observations to the north-east assigned to their own cluster).

Inferring the thinning radius results in a posterior mean and variance E [R |X ] = 0.08,
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Table 4.2. Posterior summaries of hardcore MRMM on Chicago crime dataset
in section  4.2.1 .
Repulsion strength E [C |X ] Var (C |X) ĈB ln p (Xtest |X) LPML

R = 0.0 (no repulsion) 5.20 0.4028 5 252.54 1349.08
R = 0.1 3.51 0.2859 3 248.72 1312.30
R = 0.2 2.00 0.0000 2 232.95 1223.68

R ∼ Gamma(40, 200) 3.68 0.2416 4 248.51 1318.73

Table 4.3. Posterior summaries of probabilistic MRMM on Chicago crime
dataset in section  4.2.1 . Inferring the thinning radius yields the posterior
mean and variance E [R |X ] = 0.15, Var (R |X) = 0.0001.

Repulsion strength E [C |X ] Var (C |X) ĈB ln p (Xtest |X) LPML
R = 0.0 (no repulsion) 5.26 0.3914 6 252.20 1351.28

R = 0.1 4.39 0.2703 5 251.21 1341.60
R = 0.2 3.00 0.0000 3 247.43 1321.11

R ∼ Gamma(40, 200) 3.00 0.0040 3 246.73 1324.53

R = 0.0 (no repulsion) R = 0.1 R = 0.2 R Gamma(40, 200)

Figure 4.15. Contour plot and clustering of Chicago crime data from proba-
bilistic MRMM in section  4.2.1 .

Var (R |X) = 0.0001, and achieves a good trade-off between parsimony and goodness-of-fit.

Here again, south Chicago is covered by a single cluster instead of multiple clusters as in the

no-repulsion case.

Similar results were obtained using probabilistic thinning; see figure  4.15 and table  4.3 .

One takeaway of this and subsequent experiments is that the more complicated probabilistic

and softcore thinning mechanisms discussed in Rao, Adams, and Dunson [  30 ] are not nec-

essary in mixture modeling applications. This is largely due to the fact that the number

of mixture components is orders of magnitude smaller than the number of observations or

54



- - /2 0 /2
-

- /2

0

/2

Figure 4.16. The Malate dehydrogenase protein data in section  4.2.2 , plotted
(Left) on a torus. (Right) as a Ramachandran plot, where the torus is
flattened to 2-d.

events in a point processes. Consequently, the simple hardcore thinning mechanism will

typically suffice.

4.2.2 Protein structure data

Our next experiment deals with the Malate dehydrogenase protein dataset, publicly avail-

able as 7mdh in the protein data bank [ 72 ]. This consists of 500 pairs of torsion angles, each

pair x = (φ, ψ) ∈ [− π, π)× [− π, π) forming a point on a torus. Figure  4.16 plots this data,

with the right panel showing a planar representation of the data known as the Ramachan-

dran plot [ 73 ]. While the latter shows the underlying clustering structure more clearly, it

ignores the fact that the edges wrap back to each other. Consequently, modeling this data

with common distributions on two-dimensional Euclidean spaces (e.g. mixture of normals or

Betas) is not appropriate. Instead, we model this data as a mixture of uncorrelated bivariate

von Mises distributions [ 74 ].

The univariate von Mises distribution is widely used to model one-dimensional angular

variables. For φ ∈ [ − π, π), its density is p (φ |µ, κ) = 1
2πI0(κ) exp {κ cos(φ− µ)} , where µ is

the center of the distribution (mean and mode), κ > 0 measures concentration around this,

and the normalization constant Im(·) is the modified Bessel function of the first kind of order

m. This distribution is analogous to the univariate Gaussian distribution in the Euclidean
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Figure 4.17. Contours and cluster assignments of the protein data from
hardcore MRMM in section  4.2.2 .

Table 4.4. Posterior summaries of hardcore MRMM on the Malate protein
dataset in section  4.2.2 .
Repulsion strength E [C |X ] Var (C |X) ĈB ln p (Xtest |X) LPML
R = 0 (no repulsion) 12.29 4.1242 14 -177.43 -644.23

R = π/4 10.22 1.6658 12 -177.52 -646.58
R = π/2 5.55 0.3999 6 -199.78 -703.62

R ∼ Gamma(5, 1) 11.13 2.5746 9 -177.76 -647.00

space, though it captures the periodicity of the angular variables. It converges to the uniform

distribution on [ − π, π) when κ → 0. Writing each observation as x = (φ, ψ), we model

these using a Matérn repsulsive mixture model, where under each mixture component, the

angles φ and ψ are independent von Mises variables. Write the parameters of each mixture

component as θ = (µ1, µ2) and κ = (κ1, κ2), then observations from that component have

density pX (x = (φ, ψ) ; θ, κ) ∝ exp {κ1 cos(φ− µ1) + κ2 cos(ψ − µ2)} . We set pΘ(θ) to the

bivariate uniform distribution on [−π.π]× [−π, π], and placed a Gamma(10, 1) prior on the

concentration parameter κ. To induce Matérn thinning, we computed distances on the torus

as d2((φ, ψ), (φ, ψ)) =
√
d1(φ, φ)2 + d1(ψ, ψ)2, where d1(φ, φ) = min {|φ− φ|, π− |φ− φ|}.

This distance was used in a standard harcore or probabilistic thinning kernel. We note that

we can easily extend our model to more sophisticated geodesic distances, or model each

component as a bivariate von Mises distribution with correlations (see Mardia [ 74 ] and

Mardia, Taylor, and Subramaniam [  75 ]).

We ran 5,000 MCMC iterations on the hardcore MRMM model and discarded the first

half as burn-in. Figure  4.17 and table  4.4 show the results with different levels of repulsion.
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Figure 4.18. Contour plot and clustering of the protein data from probabilis-
tic MRMM in section  4.2.2 .

Table 4.5. Posterior summaries of probabilistic MRMM on the protein dataset
in section  4.2.2 . Inferring the thinning radius yields the posterior mean and
variance E [R |X ] = 0.18π, Var (R |X) = 0.0017π2.

Repulsion strength E [C |X ] Var (C |X) ĈB ln p (Xtest |X) LPML
R = 0 (no repulsion) 12.15 3.5369 13 -142.15 -610.94

R = π/4 10.14 1.5298 9 -142.36 -618.13
R = π/2 7.37 0.4056 7 -145.14 -625.13

R ∼ Gamma(5, 1) 10.85 1.9969 11 -143.64 -622.55

Observe from figure  4.16 that the data consists three large clusters of observations, with a

couple of smaller clusters. Our model without repulsion returns about 12 clusters on average

under the posterior distribution, with the leftmost panel of figure  4.17 showing the median

clustering. As with the Euclidean setting, increasing repulsion strength results in fewer

clusters, simpler posterior distributions (indicated by smaller posterior variance) and more

interpretable results. A strong repulsion (R = π/2) produced around 5 clusters, agreeing

with the findings in Mardia, Taylor, and Subramaniam [ 75 ], though resulting in a drop in

model fit and predictive power. Placing a Gamma(5, 1) prior (mean 5, variance 5) on the

thinning radius infers weaker repulsion (a posterior mean and variance for R equal to 0.19π

and 0.017π2), and thus more clusters (11 on average). These results are partly because

of our choice of cluster likelihoods, where the the two angles are independent under each

cluster. The cluster near the origin on the other hand exhibits strong correlation between the

angles, and our MRMM model has to split this into two (figure  4.17 , right). As stated earlier,

extending our model to allow correlated clusters is conceptually straightforward using the the
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bivariate von Mises distribution. This however introduces normalization constants for each

cluster that can be quite challenging to compute, requiring techniques from Rao, Lin, and

Dunson [ 76 ] and Lin, Rao, and Dunson [ 77 ]. To avoid unnecessary complications, we have not

followed this path. We emphasize though that modeling repulsion on non-Euclidean spaces

using existing models is a less straightforward proposition. We also apply the probabilistic

MRMM and have similar results on this dataset (see figure  4.18 and table  4.5 ).

4.2.3 Old Faithful dataset

The Old Faithful geyser eruption dataset [ 78 ] is a well-known dataset, recording eruption

lengths of the Old Faithful geyser in the Yellowstone National Park. In Xie and Xu [ 60 ], the

authors evaluated their model on this dataset, and in this section, we use it to compare our

model with theirs. Following Xie and Xu [  60 ], we paired each observed eruption duration

time with the time length of the next eruption, resulting in 271 bivariate observations. We

split this into training and test sets, with size 219 and 52 respectively.

Consistent with the setup of Xie and Xu [ 60 ], we used a Gaussian distribution for pΘ(θ),

centered at (0, 0), and with covariance 10I2. For the covariance matrix of each mixture

component, Xie and Xu [  60 ] assumed independence between the two dimensions and placed

truncated inverse Gamma(1, 1) priors on the diagonal elements. For MRMM, we used the

more natural inverse-Wishart prior with 2 degrees of freedom and scale matrix I2 on the

covariance matrices. We set the repulsive parameter of Xie and Xu [  60 ] to its default setting

of their code (also the setting in their experiments) below. For different settings of the

thinning radius of hardcore MRMM, we ran 5,000 MCMC iterations. Because of issues with

MCMC mixing, we had to run the model of Xie and Xu [ 60 ] for 10,000 iterations. For both

models, we discarded the first half of the samples as burn-in, and report posterior summaries

of both approaches in table  4.6 and Figure  4.19 .

First, observe that this dataset consists of four clearly separated clusters, and for all

models, the posterior mean of the number of clusters was around this value. MRMM returns

slightly higher estimates of this quantity compared to Xie and Xu [  60 ], but with a much

smaller sample variance, suggesting that the posterior is simpler and more concentrated. So
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Figure 4.19. Contours and cluster assignments of Old Faithful dataset with
hardcore MRMM in section  4.2.3 .

Table 4.6. Posterior summaries of hardcore MRMM on the Old Faithful
geyser eruption data in section  4.2.3 .

Model E [ C |X ]Var (C |X) ĈB ln p (Xtest |X) LPML Runtime (s) ESS/s
Xie et al. 3.71 0.2116 4 -104.32 -464.22 225.6 0.01
MRMM:
R = 0 4.02 0.0177 4 -95.80 -421.17 266.5 0.67
R = 2 3.00 0.0000 3 -114.84 -489.83 251.1 5.54
R ∼ Gamma(4, 2) 4.01 0.0119 4 -95.77 -420.54 279.4 0.07

long as the thinning radius is not forced to too large a value, MRMM also returns much

better fits, both in terms of predictive likelihood and LPML. Observe that both the model

of Xie and Xu [ 60 ] and MRMM with R = 2 merge the two top clusters into a large cluster,

whereas other settings of MRMM keep them clearly separated. In these settings, instead

of compromising model fit, MRMM tends to simplify the posterior by concentrating around

this solution, and avoiding additional extraneous clusters. This is also the case with a

Gamma(4, 2) prior on R, here the thinning radius has posterior mean E [R |X ] = 1.40 and

variance Var (R |X) = 0.1864, with an average of 4 clusters.

We also reported the CPU run time to produce 5000 samples in table  4.6 , with both

requiring roughly the same time per iteration (note though that Xie and Xu [ 60 ] implemented

their approach in Matlab and MRMM was written in Python). As we noted earlier, mixing

in their case was poorer, and we had to run their algorithm for twice the number of iterations

as ours to get stable results. This can also be seen in the reported ESS/s numbers, where
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Figure 4.20. Contour plot and clustering of the Old Faithful geyser eruption
data from probabilistic MRMM in section  4.2.3 .

Table 4.7. Posterior summaries of probabilistic MRMM on the Old Faithful
geyser eruption data in section  4.2.3 . Inferring the thinning radius yields the
posterior mean and variance E [R |X ] = 1.39, Var (R |X) = 0.1540.

Model E [ C |X ] Var (C |X) ĈB ln p (Xtest |X) LPML Runtime(s) ESS/s
Xie et al. 3.71 0.2116 4 -104.32 -464.22 225.6 0.01
MRMM:
R = 0 (no repulsion) 4.02 0.0157 4 -95.83 -420.53 257.8 14.31
R = 2 4.00 0.0000 4 -95.93 -419.85 297.6 0.38
R ∼ Gamma(4, 2) 4.01 0.0138 4 -95.96 -420.94 287.0 2.66

our sampler shows larger (often much larger) values. Running probabilistic MRMM yields

similar results, as shown in figure  4.20 and table  4.7 .

4.2.4 Galaxy dataset

The Galaxy dataset [ 79 ] is publicly available as part of the DPpackage in R, and contains

82 measured velocities of different galaxies from six well-separated conic sections of space.

In Bianchini, Guglielmi, Quintana, et al. [ 58 ], the authors evaluated their model on this

well-known dataset, using LPML as their goodness-of-fit criteria. We do the same in this

section. Following the same preprocessing steps described in Bianchini, Guglielmi, Quintana,

et al. [ 58 ], we centered the data and rescaled it by a factor of 10−3, which resulted in

a dataset ranged from −11.65 to 13.45. Like Bianchini, Guglielmi, Quintana, et al. [ 58 ],

we set pΘ(θ) to place a mean 0 and standard deviation 10 Gaussian prior on the cluster

locations, and an inverse-Gamma(3, 3) prior on the variance of each mixture component.
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Figure 4.21. Contour plot and cluster assignments of the Galaxy data for
hardcore MRMM in section  4.2.4 .

Table 4.8. Posterior summaries for the Galaxy dataset inferred with hardcore
MRMM in section  4.2.4 .

Model E [C |X ] Var (C |X) ĈB LPML Runtime (s) ESS/s
Bianchini et al. 6.00 1.2180 7 -207.94 600.4 0.02
MRMM:
R = 0 (no repulsion) 7.69 4.0819 6 -210.13 772.9 0.83
R = 5 3.37 0.3046 3 -212.05 448.2 4.50
R ∼ Gamma(4, 2) 5.51 0.9339 6 -208.83 501.2 0.03

We ran both samplers for 10,000 iterations, and discarded the first 5,000 iterations as burn-

in. Figure  4.21 and table  4.8 present the results of MRMM with hardcore thinning, along

those of with Bianchini, Guglielmi, Quintana, et al. [ 58 ].

The left-most panel in figure  4.21 dispays the mean posterior density for the model with-

out any repulsion. For this model, the posterior mean number of clusters is around 8, with

a relatively large variance of 4. The two rightmost panels show the corresponding densi-

ties for MRMM (with a Gamma prior on the thinning radius), and the model of Bianchini,

Guglielmi, Quintana, et al. [ 58 ]. Both models have about 6 clusters, though the posterior

density or the predictive performance is not significantly different from the model without

repulsion. By forcing the thinning radius to 5, the clusters around the origin merge into a

single cluster. Whether this is an appropriate amount of repulsion must be determined by

the practitioner, though we note that even here, the drop in performance, while noticeable,

is not very large. With a Gamma(4, 2) prior on R, we get a posterior mean E [R |X ] = 1.54

and variance Var (R |X) = 0.5305, with the posterior mean of the number of clusters about
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Figure 4.22. Contour plot and clustering of the Galaxy data from probabilis-
tic MRMM in section  4.2.4 .

Table 4.9. Posterior summaries of probabilistic MRMM on the Old Faithful
geyser eruption data in section  4.2.4 . Inferring the thinning radius yields the
posterior mean and variance E [R |X ] = 1.87, Var (R |X) = 0.3228.

Model E [C |X ] Var (C |X) ĈB LPML Runtime (s) ESS/s
Bianchini et al. 6.00 1.2180 7 -207.94 600.4 0.02
MRMM:
R = 0 (no repulsion) 7.53 4.2370 6 -209.66 734.4 46.9
R = 5 3.47 0.3772 3 -212.36 410.4 172.4
R ∼ Gamma(4, 2) 6.23 1.8120 6 -209.43 498.2 13.0

5.5. With the caveat that Bianchini, Guglielmi, Quintana, et al. [ 58 ] was written in R, and

our model in Python, we report the CPU run times and ESS/s of both methods in table  4.8 .

These are comparable. With probabilistic MRMM, we obtained similar results, and they are

reported in figure  4.22 and table  4.9 .
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5. CLUSTERING POPULATIONS WITH HIERARCHICAL

STRUCTURES

In the previous two chapters, we discussed the Matérn repulsive mixture model, where

structural restrictions of cluster separation were introduced to encourage interpretability

and parsimony of the results. In the following two chapters, we consider another setting of

clustering under structural restrictions, in this case incorporating prior knowledge about an

underlying tree-structure to encourage statistical sharing among clusters.

Modern datasets are characterized by rich underlying structure, resulting from the mech-

anistic, spatio-temporal processes that led to their generation. Trees are a widely used

example, representing a hierarchical organization of observations into partially overlapping

sets at multiple granularities. A classic example, and one that is the focus of this work, are

phylogenetic trees, showing relationships between various entities evolving from a common

ancestor. The entities in a phylogenetic tree are typically biological species, though in this

work we take a broader view, and also consider evolving languages and other social norms.

Accounting for the underlying tree structure is important to understand relationships be-

tween and variations among the different entities in the tree, and allows practitioners to

share statistical strength between different sets of observations.

A number of existing approaches model evolution on the tree at the individual level, with

each leaf corresponding to a single measurement. In phylogenetic applications where each

node corresponds to a species, this would correspond to each species having an associated

phenotype. This phenotype then evolves along the tree, either gradually according to some

diffusion processes (e.g. Brownian motion [  80 ], [  81 ]), or abruptly through a series of jumps,

the latter modelled by the pure jump part in a Levy processes (often a compound Poisson

process) [  82 ]–[ 84 ].

In the setting of population genetics, the assumption of a single phenotype for each

species implies an assumption of complete heritability. In reality, the measured phenotype

can vary among individuals of the same species due to environmental factors [ 85 ], [ 86 ]. Now,

to understand the influence of genetic as well as environmental factors on the expression of

phenotypes, one needs models that operate at the population-level [ 87 ]. Such models allow
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multiple measurements at each leaf, corresponding for instance to a number of non-identical

individuals from each species. Population-level models also arise in other social contexts

where individuals of the population at each leaf can exhibit varying values.

A simple statistical approach to population-level modeling treat observations from each

population (i.e. at each leaf) as independent and identical draws from the distribution associ-

ated with that node, with the distributions at each leaf linked by the the tree structure. The

latter is typically achieved by allowing the phenotype distribution to evolve along the tree.

Modeling general dependent probability distributions presents statistical and computational

challenges, and instead, it is common to model the distribution at each node as an element

of some parametric family of probability distributions, e.g. the Gaussian distribution. The

parameters of this distribution then evolve along the tree as before, again either gradually

or through a jump process.

Parametric modeling approaches, while simple to work with, come with strong assump-

tions on the distributions of observations at each node, assumptions that are typically not

satisfied in practice. A more flexible approach models these distributions with nonparamet-

ric priors that have much larger support over the space of probability distributions, and

that allow modelers to approximate arbitrary distributions. An early work in this direction

is that of Ansari and Didelot [ 37 ], who considered categorical measurements, and modeled

these by associating a Dirichlet distribution with each node. While the Dirichlet distribution

is strictly speaking a parametric density summarized by a finite number of parameters, under

mild conditions, it support includes all distributions on some categorical space. This opens

the path to truly nonparametric priors like the Dirichlet process that can approximate ar-

bitrary probability distributions. The work of Ansari and Didelot [ 37 ] models the evolution

of the node distributions with a series of Poisson distributed jumps, each jump triggering a

new distribution drawn independently from a Dirichlet distribution. This assumption that

the distributions before and after each jump are completely independent with each other

considerably weakens the connection between species within the phylogenetic tree, and can

result in overfitting with nodes with few observations.

In this work, we take a fully nonparametric hierarchical Bayesian approach to model

evolving distributions on a phylogenetic tree. Our work uses the Pitman-Yor process as its
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nonparametric workhorse because of a convenient marginalization property that it possesses,

a property that allows us to integrate out intermediate clusters. In this chapter, we describe

the model, as well as the associated MCMC sampler, while the next chapter evaluates these

on real and synthetic datasets.

5.1 Phylogenetic HPYP model

We consider data consisting of groups of measurements organized along a given tree. Two

specific examples are phenotype distributions of different species, or behavioral patterns of

different human populations. In the former, the tree represents the evolutionary history of

the species under consideration, and the in the latter, it might represent migration patterns

of different human subpopulations. The branch lengths quantify the statistical dissimilarity

between parent and child distributions. Each node in the tree, whether an internal node

or a leaf, represents a population, and has associated with it a collection of zero or more

observations. Denote the observed dataset as D =
{
x(i,j), i = 1, . . . , N, j = 1, . . . , ni

}
, where

N is the number of nodes and ni is the number of observations at node i. In practice,

observations are often present only at the leaf nodes (e.g. measured traits from today species

at the leaf nodes), but our model allows observations at internal nodes (e.g. measurements

from fossil data).

We model each set of observations as independent and identical draws from a correspond-

ing probability distribution, with the hierarchical dependence among these distributions de-

termined by the tree structure. We will use Gi to denote the distribution at node i. The

distributions Gi and Gj at two distinct nodes i and j may or may not be identical. Specifi-

cally, in this work, we aim to detect significant changes of the evolution of the distributions,

which we represent as “jumps” distributed over the tree. Starting from the root, and moving

towards the leaves, the distribution remains constant until a jump is encountered, after which

a new distribution is sampled, and the process recurses. We model the jumps as a realization

of a Poisson process, so that there might be zero, one or multiple jumps on each branch of

the tree. If there are no jumps between two nodes i and j, then the associated distributions

Gi and Gj are identical. It follows then that the shorter the separation between two nodes
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is, the more likely their associated distributions are identical. In the event of a jump, Ansari

and Didelot [ 37 ] models the new distribution Gnew as independent of the old distribution

Gold (specifically they model it as a draw from a fixed-parameter Dirichlet distribution). A

more realistic assumption is that the new distribution is generated from some distribution

centered at the old one. This hierarchical modeling approach has two advantages. First,

under the approach of Ansari and Didelot [ 37 ], conditioned on there being at least one jump

between two nodes, the distribution of the child node is independent of the actual number of

jumps. By contrast, by centering the new distribution on the old one, the similarity decreases

as the number of jumps increases (specifically, the new distribution continues to be centered

at the old one, with variance increasing with the number of jumps). Secondly, a hierarchical

modeling approach is useful in data-scarce settings, where individual nodes might have only

a few observations, and it is important to pool information across multiple nodes. Under the

approach of Ansari and Didelot [ 37 ], since the new distribution is independent of the old, it

can only be informed by the observations directly associated with it. This can result in over-

fitting if only a few observations are associated with a complex nonparametric distribution.

By contrast, organizing all distributions together in a hierarchical fashion models distribu-

tions separated by fewer jumps as more similar, so that observations associated with other

distributions have a non-zero influence that diminishes with jump-separation. By shrinking

the distributions towards each other, we can avoid overfitting, and allow better predictions.

Since the distribution only changes when a jump occurs, the jump structure specifies a

clustering of nodes, with nodes having the same distribution belonging to the same cluster.

As a consequence, tree nodes in the same cluster can be collapsed into a single node, with

all associated observations assigned to it, a process we call pruning. Figure  5.1 (a) provides

an abstract example of such structure with nine populations, the root population G0, five

leaf populations G1, . . . , G5 and three internal populations G6, G7 and G8. It also shows the

clustering (color blocks) introduced by the jumps (red crosses) at two branches in the tree.

Here, the distribution at root G0 is the same as G7 and G3. There are two jumps at the

left branch of the root, but only one jump at the right branch of G7, which means that the

left cluster (G1, G2 and G6) has a weaker dependence on the root distribution compared to

the right cluster (G4, G5 and G8). Figure  5.1 (b) demonstrates the simplified tree introduced
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Figure 5.1. An example of tree node clustering introduced by jumps (red
crosses) and the corresponding Chinese restaurant franchise (CRF) process in
action. (a) Color coded clustering of distributions (nodes). The bar graphs
shows the distributions at corresponding leaf nodes. (b) The simplified tree
induced by the jumps in (a), with each cluster represented by one node. Spe-
cially, G′1 represents the intermediate distribution between the two jumps on
the left branch. The underlying distributions are shown by bar graphs. (c)
A step in CRF when all samples (observations) belongs to the brown cluster
G1 and the white cluster G0 as well as the first sample from the yellow cluster
G4 are all seated. Five more samples from the yellow cluster are still waiting
to be seated (assigned to tables). The tables are color-coded according to the
categories in the bar plots. This is a valid representation only when G′1 can be
marginalized out. (b) The final seating chart of all samples (observations).
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by these jumps and the distributions associating to it. Note that there is a intermediate

distribution G′1 between the root and the left cluster G1, though as we will see below, our

modeling does not require us to instantiate the intermediate distributions. In this figure, like

in the rest of this work, we focus on the situation where the distributions are discrete, with

the bar graphs denoting discrete distributions at leaf nodes, and from which observations

are drawn independently.

In what follows, we formalize the intuition above into a mathematical model.

Hierarchical Pitman-Yor process (HPYP) for the simplified tree

A key component of our model is the Pitman-Yor process Pitman and Yor [ 48 ], a non-

parametric prior that we use to model the distributions Gi (see section  2.4 for a brief review).

Recall that a Pitman-Yor process is specified by a concentration parameter α, a discount

parameter d ∈ (0, 1) and a base probability measure H on some space. A realization from

it is a discrete probability measure G on the space, G |α, d,H ∼ Pitman-Yor (α, d,H) . The

base distribution H serves as the center of the prior, with E[G] = H. The concentration and

discount parameter satisfy α ≥ −d and control the shape and spread of this prior around H.

The Chinese restaurant process (CRP), describing the distribution of observations drawn

i.i.d. from G (with G marginalized out) is defined as follows. The first observation x1 is

generated directly from the base H. Conditioning on the first j observations, the (j + 1)-st

observation is generated from

xj+1 | {x1, . . . , xj}, α, d, H ∼
K∑
k=1

nk − d
α + j δyk + α +K · d

α + j H, (5.1)

where K = K(j) denotes the total number of clusters (tables) formed by the first j observa-

tions, and nk and yk are the cluster size and the first observation of cluster k, respectively.

This is a mixture of joining an existing cluster and start a new cluster (simulating from the

base H) at node i.

We model the root distribution G0 as a sample from a Pitman-Yor process. Since we

focus mostly on discrete spaces, we set the base distribution to the uniform distribution;
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on Euclidean spaces, one might set it to the Gaussian distribution. We will also use the

Pitman-Yor process to model the change in distribution after each jump. Specifically, if the

distribution before a jump is Gold, then the new distribution after the jump is sampled from

a Pitman-Yor process whose base measure is Gold, thereby ensuring it is centered at the old

distribution.

Gnew |α, d,Gold ∼ Pitman-Yor (α, d,Gold) .

This forms a hierarchical Pitman-Yor process (HPYP) on the simplified tree.

We choose the general Pitman-Yor process rather than the more well-known Dirichlet

process because of a convenient marginalization property it possesses when the concentration

parameter α is zero (see section  2.4 for details). This marginalization property can result

in significant savings when there are multiple jumps in a branch. For instance, see the left

branch in figure  5.1 (b). With the marginalization property, G1 |G0 still forms a Pitman-Yor

process, G1 |G0 ∼ Pitman-Yor (0, d2, G0), and hence, there is no need to instantiate the

CRP corresponding to the intermediate G′1. In general, on a branch with b jumps, the child

distribution Gchild is a realization of a Pitman-Yor process centered at the parent distribution

Gparent, with discount parameter being db,

Gchild |Gparent ∼ Pitman-Yor
(
0, db, Gparent

)
. (5.2)

Thanks to this property, instead of having to instantiate all the associated measures, we can

marginalize out those without any associated observations, only keeping track of the number

of jumps in each branch. In Ansari and Didelot [ 37 ], the authors do not face this issue since

the new distribution is independent of the old one, so that it does not matter whether there

is one or more than one jumps on a branch. We have already stated the limitations of this

approach.

Chinese restaurant franchise (CRF) to generate observations

To generate observations D =
{
x(i,j), i = 1, . . . , N, j = 1, . . . , ni

}
from HPYP, we use the

Chinese restaurant franchise (CRF). This is essentially a coupling of the CRPs associated
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with the Pitman-Yor process on every tree node. Consider the node i and its parent i′ in the

simplified tree. According to CRP, generating new samples at node i results in a mixture of

joining an existing table (taking the same value of a previous sample at node i) and opening

a new table generated from the base measure (equation ( 5.1 )). As Gi′ is the base measure of

node i, opening a new table will request a new sample from the parent Gi′ . This can again

be simulated with the CRP associated with the parent node i′, which might again need a

new sample from the parent node of i′.

In general, generating a new observation at a node can result in a sequence of new samples

being generated along ancestors of the node. Following the notation of observations, let x(i,j)

denote the j-th sample at node i in the CRF generative process of the data. This is either

an observation itself or a sample that is generated when a child node of it forms a new table

(requires a new sample from the current node). Denote the table assignment of x(i,j) by an

integer t(i,j), which represents the cluster joined by x(i,j) at node i. Because of the construction

of CRF, generating one sample may lead (through the creation of new tables) to multiple

samples being generated at ancestor nodes. To describe this behavior, we define the the

table configuration of sample (i, j), c(i,j), which is a vector of varying length, to represent

the series of table assignments driven by the sample x(i,j) in the generative process. The

table configuration vector is of the form c(i,j) = (t(i,j), t(i′,j′), t(i′′,j′′), ...), where i′, i′′, . . . are the

ancestor nodes of node i, and t(i′,j′), t(i′′,j′′), . . . represent the table assignments of the samples

generated when new clusters are formed. To be specific, the first element, t(i,j), denotes the

cluster joined by x(i,j) at node i. If t(i,j) represents an existing cluster, the table configuration

c(i,j) will be of length 1, as there is no new clusters to be generated at the parent node.

When t(i,j) represents a new cluster, a new sample will be simulated from the parent node i′,

x(i′,j′), and its table assignment t(i′,j′) forms the second element of c(i,j). The dimensionality

of c(i,j) continues to grow if x(i′,j′) creates new clusters which leads to a new sample at the

parent node of node i′. This process stops when a sample joins an existing cluster. The

length of c(i,j) varies according to the number of new clusters generated in the process and

the maximum length is the depth of node i.
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The table configuration fully describes the generative process of one single observation.

Taking this procedure to all observations in the simplified tree forms the full CRF process

in generating the data.

The only parameter to tune in this model is the discount parameter d. Our experiment

in section  6.1.1 shows that as long as it does not take values close to one, our model will

perform well.

Inhomogeneous Poisson process for the jumps

As stated before, we model the jumps or changepoints as a realization of a rate-λ Poisson

process, The Poisson process can be homogeneous (with λ a constant) or inhomogeneous,

with λ(p) varying with position p on the tree. In either event, the probability of a jump in an

infinitesimal interval (p, p+∆p) on the tree is λ(p)∆p. A special choice of the inhomogeneous

rate that is very natural in many settings involves the use of evolutionary time. Here, every

point p on the tree has an associated time t, with t increasing along each branch, and

with the root having t = 0. Now, the Poisson intensity is indexed by t, and might reflect

global events (e.g. climate shifts) that modulate the rate of jumps. Observe that for a

balanced tree, the number of branches increases exponentially with evolutionary time, and

for a homogeneous Poisson process, so does the average number of jumps. Thus, a time-

varying intensity function λ(t) is also useful to control the number of jumps: by allowing

it to decrease appropriately with time, one can ensure that the probability of a jump is

constant over time. Note that our model only cares about the number of jumps in each

branch, and not their exact positions along the branch, As a consequence, we can also keep

the probability of a jump constant by modeling the jumps as a homogeneous Poisson process,

but first rescaling the branch lengths. This is the approach we take in our experiments: it

is computationally slightly simpler than simulating from an inhomogeneous Poisson process,

and also allows prior distributions on the Poisson rate to be specified more easily. When

learning the jump rate, we place an exponential distribution prior over it. The synthetic

study in section  6.1.2 further investigates the performance of our model with different prior

settings of the jump rate, and we find that it is generally robust to model misspecification.
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Let b = (b1, . . . , b|b|) denote the vector of number of jumps on each branch of the tree.

The full generative process for observing the data D =
{
x(i,j)

}
at the nodes i = 1, . . . , N is

as follows,

1. Rescale the tree branches to have a constant jump rate over time (as described above).

2. Simulate the Poisson intensity λ from the prior.

3. Instantiate b from a rate-λ Poisson process on the rescaled tree.

4. Prune the tree according to the jumps to obtain the simplified tree, where each node

represent a cluster of populations in the original tree.

5. Construct HPYP according to the jumps on the simplified tree.

6. Generate observations sequentially according to the Chinese restaurant franchise (CRF)

associated with the HPYP of the simplified tree.

5.2 Posterior inference for phylogenetic HPYP model

Given the data D =
{
x(i,j), i = 1, . . . , N, j = 1, . . . , ni

}
, we aim to determine whether

there are jumps in the tree, and to locate the branches with jumps if they exist. Given the

jumps, the posterior distribution over the node distributions follows from the CRF. Thus,

the key quantity of interest is the posterior distribution p (b, λ | D). Before describing the

full details of the Gibbs sampler we proposed for posterior inference, we will first introduce

a little notation below.

Observations generated with HPYP are exchangeable, i.e. observing the data in any

order will not change the model. Without loss of generality, write the sequence of obser-

vations being considered as x(i1,j1), x(i2,j2), . . . , x(in,jn), where n = ∑
i ni is the total number

of observations. We use symbols ‘−’ and ‘+’ on the superscript of the index to represent

the indices of the preceding and succeeding observations, i.e. (ik, jk)− = (ik−1, jk−1) and

(ik, jk)+ = (ik+1, jk+1). Let D(i,j) and C(i,j) be the collection of data observed until observation

(i, j) (included) and their corresponding table configurations. Similarly, we use D(i,j)− and
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C(i,j)− for the collection of data and associated table configurations prior to observation (i, j),

and D(i,j)+ and C(i,j)+ for their counterparts until the succeeding observation (i, j)+ (included).

The posterior inference of jump locations b is done using a Gibbs sampler (algorithm  5 ).

In what follows, we will first give details of the updating rules and then describe how an

estimation of the jumps b can be produced given the posterior samples.

1) Updating the jumps

Jumps in the tree are initialized according to the prior distribution. At each step of our

Gibbs iteration, we will use a Metropolis-Hastings algorithm to update the jumps, i.e. given

current number of jumps b, a new proposal b∗ is generated from a proposal distribution

q (b∗ | b) and the acceptance rate of the proposal is min{1, A(b, b∗)}, where

A(b, b∗) = p (b∗ |λ,D) q (b | b∗)
p (b |λ,D) q (b∗ | b) = p (b∗ |λ,D) p (D |λ) q (b | b∗)

p (b |λ,D) p (D |λ) q (b∗ | b)

= p (D | b∗)
p (D | b) ·

p (b∗ |λ) q (b | b∗)
p (b |λ) q (b∗ | b) (5.3)

Evaluating the acceptance rate requires accessing three quantities, the prior distribution

of jumps p (b |λ), the proposal distribution q (b∗ | b) and the data likelihood p (D | b).

The prior distribution p (b |λ) is simply a product of independent Poisson densities, which

is easy to evaluate.

A natural way to propose a new vector of number of jumps b is to first randomly select a

branch and then propose the number of jumps from the prior. However, due to the fact that

it is very hard for a jump to move upwards or downwards in the tree under this proposal

scheme, it does not mix well in practice. To address this issue, we further implemented

a swap step, which swaps the number of jumps between a randomly selected branch and

its parent. Taking the two kinds of proposals in turns helps the mixing of our algorithm

dramatically.

Now all that is left is the likelihood term. The likelihood of the data given the jumps,

p (D | b), is not tractable, however, we could circumvent it through a pseudo-marginal ap-

73



proach [ 88 ]. To be specific, when the likelihood p (D | b) has an unbiased estimator p̂ (D | b),

accepting the proposal with

A(b, b∗) = p̂ (D | b∗)
p̂ (D | b) ·

p (b∗ |λ) q (b | b∗)
p (b |λ) q (b∗ | b) (5.4)

still yields a valid Metropolis-Hastings update. To construct the unbiased estimator, we

rewrite the likelihood as

p (D | b) =
∑
C
p (D, C | b)

= p
(
x(1,1)

∣∣∣ b)∑
C

∏
(i,j)

p
(
x(i,j)+

∣∣∣D(i,j), C(i,j), b
)
p
(
c(i,j)

∣∣∣D(i,j), C(i,j)− , b
)

= H(x(i,j))
∑
C

∏
(i,j)

p
(
x(i,j)+

∣∣∣D(i,j), C(i,j), b
)
p
(
c(i,j)

∣∣∣D(i,j), C(i,j)− , b
)

(5.5)

where C(1,1)− := ∅ and p
(
x(i,j)+

∣∣∣D(i,j), C(i,j), b
)

:= 1 if (i, j) is the index of the last observation.

The form of equation ( 5.5 ) suggests that particle filtering [ 38 ] is the desired tool to produce

an unbiased estimator efficiently. The particles are realizations of the latent collection of

table configurations driven by the data, and are constructed sequentially by considering one

observation at a time. Following previous notations, we denote the particles associated with

data up until observation (i, j) by Cs(i,j), s = 1, . . . , S, where S is the total number of particles.

The particle filtering procedure starts with considering the first observation (i1, j1). As

there is no cluster existing in the tree, new clusters with the same label have to be created

at the current node i1 and all its ancestors. Hence, all particles are initialized as Cs(i1,j1) ={
c(i1,j1)

}
, s = 1, . . . , S. At step (i, j), particle s is expanded from the previous step by

including cs(i,j), a simulated table configuration of x(i,j) from the conditional distribution

p
(
c(i,j)

∣∣∣x(i,j),D(i,j)− , C(i,j)− = Cs(i,j)− , b
)
. This simulation is the same as a posterior update

step described by Teh [ 89 ], and is easy to implement. After all particles are updated, an
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importance sampling step is required to ensure unbiasedness. According to equation (  5.5 ),

the importance weight of particle s is

ws(i,j) = p
(
x(i,j)+

∣∣∣ Cs(i,j),D(i,j), b
)

=
∑
c(i,j)+

p
(
x(i,j)+

∣∣∣ c(i,j)+ , Cs(i,j),D(i,j)
)
p
(
c(i,j)+

∣∣∣ Cs(i,j),D(i,j)
)

(5.6)

Although a full bottom to top travel of the tree is required to compute the weights, ws(i,j) is

not hard to evaluate, as p
(
x(i,j)+

∣∣∣ c(i,j)+ , C(i,j),D(i,j)
)

= 0 when the table configuration of the

succeeding observation c(i,j)+ does not agree with its label. After evaluating the importance

weights, the particles are sampled with replacement according to the importance weights to

form the collection of particles at step (i, j). The weights at this step also gives an unbiased

estimator of the partial likelihood p
(
x(i,j)

∣∣∣D(i,j)− , b
)
,

p̂
(
x(i,j)

∣∣∣D(i,j)− , b
)

= 1
S

S∑
s=1

ws(i,j).

When all the observations have been considered, an unbiased estimator of the likelihood is

simply the product of all the sequential estimators.

p̂ (D | b) =
∏
(i,j)

p̂
(
x(i,j)

∣∣∣D(i,j)− , b
)

Algorithm  4 fully states the particle filtering algorithm.

2) Updating the jump rate

A conditional updating rule for the Poisson rate is required when it is unknown in the

problem. Given the jumps b, the posterior of λ is independent of the data and follows a

Gamma distribution.

λ | b,D ∼ Gamma(1 +
|b|∑
i=1

bi, ρ+ |b|) (5.7)
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5.2.1 Posterior estimation of the jumps

With posterior samples of the jump locations, we propose to use the Bayes factor to

determine whether jumps actually occurred in the tree. The Bayes factor performs as an

index of evidence when comparing alternative statistical models [ 90 ]. Let M0 be the null

model with no jumps and M1 be the model with at least one jump. Then the Bayes Factor

K = p (D |M1)
p (D |M0) = p (M1 | D)

p (M0 | D)

/
p(M1)
p(M0) .

A larger Bayes factor suggests strong evidence towards M1. As suggested by Jeffreys [  91 ],

log10K < 1 implies substantial to no evidence towards M1, while log10K ∈ [1, 2) indicates

a strong evidence and log10K ≥ 2 represents a decisive evidence supporting M1.

All that is left is to construct an estimation of the jump locations. Examining one branch

at a time to determine whether jumps occurred is not a proper approach, as jumps on

different branches are heavily correlated with each other. Therefore, we propose to produce

an estimation of the vector of jumps b directly. To do this, we reframe the problem into

a clustering problem instead. Given jumps, each node in the simplified tree represents a

cluster of tree nodes (see, for instance, figure  5.1 (b)). A pair of nodes in the tree belong

to the same cluster if there is no jump on the path connecting them. Considering the

clustering introduced by posterior samples of jumps, we obtain an estimation by minimizing

the posterior expectation of Binder’s loss function under equal misclassification costs [  58 ],

[ 71 ]. This is a central estimate of the posterior clustering structure (a ‘median’ posterior

clustering). The vector of jumps b suggested by the estimated clustering serves as our

estimation of the jumps.
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Algorithm 4: Particle Filtering
Function ParticleFilter(b, S, D, d, T ):

Input : Number of particles S, dataset D =
{
x(i,j)

}
, Pitman-Yor process

discount parameter d, the phylogeny tree T and number of jumps on
each branch b.

Output: The estimated likelihood p̂ (D | b).
1 for s← 1 to S do
2 T s ← TrimTree(T , b) // the simplifed tree
3 Equip an empty restaurant at each node of T s
4 Initialize T s with the first observation x(1,1)
5 Cs(1,1) ← table configurations of T s

6 for x(i,j) ∈ D, (i, j) > (1, 1) do
7 for s← 1 to S do
8 Sample c̃s(i,j), seating arrangement for observation x(i,j)

9 Calculate the weight of the sample, w̃s(i,j), from equation ( 5.6 )
10 C̃s(i,j) ← c̃s(i,j) ∪ Cs(i,j)−

11
{
Cs(i,j)

}
← S samples from

{
C̃s(i,j)

}
with weights

{
w̃s(i,j)

}
12 ws(i,j) ← the original resampling weight of Cs(i,j), s = 1, . . . , S

13 return p̂ (D | b) = ∏
(i,j)

[
1
S

∑S
s=1w

s
(i,j)

]

Algorithm 5: Particle Markov Chain Monte Carlo
Function ParticleMCMC(S, D, d, T , M):

Input : Number of particles S, dataset D =
{
x(i,j)

}
, Pitman-Yor process

discount parameter d and the phylogeny tree T , number of iterations
M .

Output: A chain of posterior samples of the jump rate λ and jump locations b.
1 Initialize λ← sample from exp (L−1)
2 Given λ, initialize b← sample from Poisson (λLi), i = 1, . . . , B
3 Estimate the likelihood L ← ParticleFilter(b, S,D, d, T )
4 for l← 1 to M do // Metropolis-Hastings within Gibbs
5 Given b, λ← sample from equation ( 5.7 )
6 Given λ, propose b∗ from q (b∗ | b)
7 Estimate the likelihood L∗ ← ParticleFilter(b∗, S,D, d, T )
8 Compute A(b, b∗) = L∗

L ·
p(b∗ |λ)q(b | b∗)
p(b |λ)q(b∗ | b)

9 With probability min{1, A(b, b∗)}, b← b∗ and L ← L∗.
10 return posterior samples of λ and b

77



6. EMPIRICAL RESULTS OF PHYLOGENETIC HPYP

MODEL

In this chapter, we carry out several several synthetic and real data studies to evaluate

our model and algorithm in chapter  5 . Our main comparison is the treeBreaker approach

proposed by Ansari and Didelot [ 37 ]. Our algorithm is implemented in Python3 and a C++

implementation of treeBreaker is publicly available in Github 

1
 . Most of the experiments in

this chapter focus on the situation of a binary dataset with exactly one observation at each

leaf node, as this is the only case treeBreaker can handle. However, our implementation

can be used in more complicated situations, such as when the data is not binary, when

observations exist in internal nodes or when multiple observations are obtained at a node.

We demonstrate the efficacy of our approach on one of the above situations in the last real

data analysis where we detect changes of distribution in a non-binary post-marital residence

data.

For all experiments, the tree is first rescaled as described in section  5.1 to allow us to

keep the intensity of jumps constant over time. To be specific, every point on the tree is

associated with a time: the distance from the root. If there are k points in the tree that

share the same time tag (i.e. k branches), the jump rate at each of them needs to be scaled

down by a factor of k in order to have a constant jump intensity over time. Adjusting

the intensity is equivalent to scaling branch lengths, especially as we are only interested in

the number of jumps at a branch, not the exact locations of the jumps. The collection of

starting and ending times of branches in the tree partition the time interval from the root

to the furthest leaf node into segments. At any time within a segment, there are the same

amount of branches of the tree associated with it. Rescaling a segment associated with k

fragments of branches is equivalent to shrunk all associated branch fragments in the tree

by a factor of k. Having a Poisson process with constant intensity on the rescaled tree is

equivalent to having an inhomogeneous Poisson process on the original tree such that the

intensity over time is constant.
1

 ↑  https://github.com/ansariazim/treeBreaker 
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Unless otherwise specified, we place an exponential prior on the Poisson rate (jump rate)

λ of our model such that the prior mean rate results in having on average one jump in the

rescaled tree. For most of the experiments, we set the discount parameter of our model to be

0.5, as we find that the choice of the discount parameter does not have a significant impact

on the result (see section  6.1.1 ). In general, we do not recommend using a too large discount

parameter, as it models very small changes in the distribution. It could introduce redundant

jumps and lead to identifiability issues. We set the base measure H to be a multinomial

distribution with equal probability to take all possible values. For all experiments, we run

50,000 MCMC iteration of our methods with the first half discarded as burn-in. We include

the total CPU runtime and effective sample size (ESS) of jump rate of our algorithm in

the result of real-data studies to assess the MCMC mixing. ESS is computed with the

effectiveSize function from the R package coda [ 70 ] and is an estimation of the number

of uncorrelated samples corresponding to the MCMC samples. Dividing it by the total CPU

runtime of the algorithm yields ESS per second (ESS/s) for the time efficiency of producing

independent samples.

6.1 Synthetic studies

We designed three synthetic studies to evaluate performance when a ground truth is

known. An essential variable for this assessment is the amount of change in the distribution

introduced by a jump, which we will refer to as “jump size”. The jump size is quantified by

the total variation (TV) and empirical total variation (EmpTV) between the two clusters of

nodes before and after a jump. To be specific, for a jump (the ground truth) existing in the

tree, the size of it is described by the total variation between the distributions before and

after it. With data simulated from the two clusters, we can also obtain the empirical total

variation between the two sets of observations. The empirical measure is important, as it

reflects the variability in the simulating the data.

The first synthetic study compares different choices of the discount parameter, and ex-

amines the identifiability of the target jump with various jump sizes. The second synthetic
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Figure 6.1. Synthetic study results of section  6.1.1 . (left) Estimated prob-
ability of identifying the target jump (and the 95% confidence band) versus
the empirical total variation. The probability is estimated by fitting a logistic
regression to he indicator of identifying the target jump. (right) Bayes factor
(mean and the 95% percentile band) versus the total variation. The Bayes
factor is truncated at 104 to make the plot. The horizontal lines marks the
conventional decision boundaries of Bayes factor described in section  5.2.1 .

study focus on the robustness of our model to misspecification of the jump rate λ and the

third synthetic study aims to compare our approach with treeBreaker.

6.1.1 Identifiability of jumps

This study is a sanity check of our model, and also investigates the effect of the discount

parameter. For this experiment, we randomly generated a binary tree with 100 leaf nodes

using the function rtree in R package ape [ 92 ]. For each replication, we limited ourselves

to branches that have 10% to 50% leaves in the subtree below, and uniformly assigned a

jump to one of these branches. Since we are considering the case with only one observation

at each leaf node, the size requirement of the subtree guarantees that sufficient observations

are affected by the jump. Figure  6.3 (left) shows a tree used in this study and a branch

randomly selected to have a jump. All that is left is to generate data is to assign two

Bernoulli distributions, one before before and one after the jump. Let p denote the total

variation distance between these two, and we use this to set the two distributions to be
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Figure 6.2. Synthetic study results of section  6.1.1 when the jump rate is
known. (left) Estimated probability of identifying the target jump (and the
95% confidence band) versus the empirical total variation. The probability is
estimated by fitting a logistic regression to he indicator of identifying the target
jump. (right) Bayes factor (mean and the 95% percentile band) versus the
total variation. The Bayes factor is truncated at 104 to make the plot. The
horizontal lines marks the conventional decision boundaries of Bayes factor
described in section  5.2.1 .

symmetric about 0.5. To be specific, one of the distribution has (0.5 + p) probability to

be 1, whereas the other one takes 1 with (0.5 − p) probability. The total variation p takes

values of 0.2, 0.4, 0.6 and 0.8 in this study. We also vary the discount parameter d, setting

d to values in {0.1, 0.3, 0.5, 0.7, 0.9}. For each setting of the total variation and discount

parameter, we ran 20 replications, assigning a jump to a branch as described earlier, and

generating corresponding datasets from the designed distributions.

We evaluate performance using two quantities, the Bayes factor and an indicator of

whether the branch with jump is correctly identified. The Bayes factor compares the model

with at least one jump to the null model with no jump (see section  5.2.1 for details) and

shows how confident we are of the existence of jumps. Following the conventional decision

rule (see section  5.2 for details), a Bayes factor greater than 102 suggests decisive evidence

towards the existence of jumps in the tree. After obtaining the posterior “median” estimation

of the jumps as described in section  5.2.1 , the indicator, which we refer to as “target jump

identified”, takes value one when our posterior estimation of jumps matches exactly with the
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1 1

Figure 6.3. The simulated tree for (left) the first two synthetic studies in
section  6.1.1 and  6.1.2 , and (right) the third synthetic study in section  6.1.3 .
Color shading highlights the subtrees affected by branches with jumps.

ground truth, i.e. when the target branch and only the target branch is identified by our

algorithm. Then, so see how accurately jumps are identified as a function of total variation,

for all replications, we fit a logistic regression model on the indicator with the empirical total

variation as the covariate variable.

Figure  6.1 summarizes the result. The left panel plots the estimated probability of

identifying the target jump versus the empirical total variation, and the right panel plots

the Bayes factor (truncated at 104) versus the total variation. When the total variation is

small (0.2 and 0.4), there is little evidence in the data to support the existence of a jump,

and thus, as we expected, both the Bayes factor and the probability of identifying the target

is small. When the data strongly suggests a jump (TV = 0.8), it is captured by the Bayes

factor, and the probability of detecting the jump is also close to 1.

Different choices of the discount parameter do not strongly impact the decision to deter-

mine the existence of jumps, but a very large discount parameter slightly harms the ability of

correctly locating the jump in the tree. In the left panel, when the empirical total variation

is large, the probability of identifying the target jump when the discount is 0.9 is consistently
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below other choices of d. This is as expected, as with a high discount parameter, the model

generates jumps with smaller sizes, and hence, besides the target branch, our algorithm

tends to also detect false positives. Therefore, in practice, we recommend the user to choose

a moderate discount parameter, and in the rest of experiments, we fix it to 0.5.

We further evaluate our algorithm when the jump rate is fixed to have on average one

jump in the tree, λ = 1/L. The results are shown in figure  6.2 . Similar to the case when

the jump rate is learnt, our algorithm performs well when there is a large change in the

distribution before and after the jump. Interestingly, the effect of the discount parameter

vanishes in this case, as fixing the jump rate discourages introducing redundant jumps in

the model.

6.1.2 Robustness to misspecification of jump rate

In this study, we seek to evaluate how sensitive our approach is to misspecifications in

the jump rate. We used similar settings as in the previous study (section  6.1.1 ), except here,

we fix the discount parameter to be 0.5. We investigated the performance of our model when

the prior mean jump rate corresponds to on average 0.5, 1, 2, 5, or 10 jumps in the tree,

whereas the ground truth corresponded to exactly one branch with jumps.

The results are shown in figure  6.4 . The left panel shows that the choices of prior number

of jumps does not have a significant impact on the probability of identifying the target branch,

as the estimated probabilities with different prior number of jumps are consistent with each

other. In other words, the prior of the jumps rate has little impact to inference of the jump

locations. This result shows that when learning the jump rate, our model is very robust to

potential misspecification of the prior on jump rate.

We also investigate performance when the jump rate is fixed to have also on average 0.5,

1, 2, 5, or 10 number of jumps in the tree, and the result is shown in figure  6.5 . In this

case, fixing the jump rate in the prior has a stronger impact on the result compared to the

previous case. The right panel of figure  6.5 shows that with a high prior number of jumps

(5 or 10), the Bayes factor stays very high even when the data provides weak support to the
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Figure 6.4. Synthetic study results of section  6.1.2 . (left) Estimated prob-
ability of identifying the target jump (and the 95% confidence band) versus
the empirical total variation. The probability is estimated by fitting a logistic
regression to he indicator of identifying the target jump. (right) Bayes fac-
tor (mean and the 95 percentile band) versus the total variation. The Bayes
factor is truncated at 104 to make the plot. The horizontal lines marks the
conventional decision boundaries of Bayes factor described in section  5.2.1 .
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Figure 6.5. Synthetic study results of section  6.1.2 when the jump rate is
known. (left) Estimated probability of identifying the target jump (and the
95% confidence band) versus the empirical total variation. The probability
is estimated by fitting a logistic regression to he indicator of identifying the
target jump. (right) Bayes factor (mean and the 95 percentile band) versus the
total variation. The Bayes factor is truncated at 104 to make the plot. The
horizontal lines marks the conventional decision boundaries of Bayes factor
described in section  5.2.1 .
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existence of jumps. Comparing the two sets of results, we recommend that users infer the

jump rate when there is no strong prior knowledge of the number of jumps in the tree.

6.1.3 Comparison with treeBreaker [ 37 ]

This study compares the performance of treeBreaker with our algorithm. Recall that

the main difference between the two approaches is that treeBreaker assumes independence

between the distributions before and after a jump while our approach captures the similarity

between them by centering the new one on the old one. As a consequence, we expect that

for trees with multiple moderate-sized jumps, our model can better leverage the dependency

structure between the distributions, and hence outperform treeBreaker. The advantages of

our approach are clearest with moderate sized jumps because when the jump size is too small,

both approaches will not be able to detect any jumps, and when it is too large, one could be

able to identify the jumps even without considering the dependency structure. Given this

intuition, we design our study as follows. We simulated a binary tree with 200 leaves in the

same way as the first two synthetic studies, and selected 3 branches to have jumps nested

with each other. figure  6.3 (right) shows the simulated tree and the locations of those jumps.

The branches are selected to have about 75%, 50% and 25% leaves in the subtrees, so that

the four clusters (with different color shadings in figure  6.3 (right)) of nodes have roughly

the same number of observations. The observation distributions of these four clusters are

designed to reflect the nested structure of the jumps, with all the three jumps in the “same

direction” and of the same size. To be specific, let p denote the total variation between the

distributions before and after a jump. The Bernoulli distribution at the root takes 1 with

probability (0.5−1.5p), whereas the following ones have probability (0.5−0.5p), (0.5+0.5p),

(0.5 + 1.5p) respectively. With this design, the total variation takes values between 0 and

1/3, and we simulate 100 datasets for p set to {0.05, 0.15, 0.25} each.

To compare the performance with treeBreaker, we report the average receiver operating

characteristic (ROC) curves and area under curve (AUC) for both approaches in figure  6.6 .

The ROC curve plots the true positive rate against the false positive rate, and AUC mea-

sures the area under a ROC curve. The diagonal line (dotted lines in figure  6.6 ) represents
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Figure 6.6. Average ROC curve (with 95 percentile band) and AUC results
of section  6.1.3 .

random guessing with AUC = 0.5. The rule of thumb is that the more a ROC curve is

bending towards the top left corner, the better the performance is, and a high AUC also

implies a sound performance of the algorithm. In this study, every run of our algorithm

and treeBreaker infers a set of branches with jumps, consisting of the true positives and

false positives. Aggregating all the results gives the average ROC curve and the correspond-

ing AUC shown in figure  6.6 . As we expected, when the jump size is relatively small, our

approach produces a higher AUC than treeBreaker and performs better. When the total

variation is 0.05, the treeBreaker has an average AUC of 0.5 with the ROC curve almost

lie exactly on the diagonal line, which suggests that it cannot differentiate branches with

jumps from the rest of branches in the tree. Our model performs much better under this

situation, as we obtained an average AUC of 0.67. This case is the most difficult one, as

the small total variation really cannot provide much evidence to support the existence of

jumps. The reason why our approach behaves better in this case is that our model utilizes

the shared statistical strength in the dependency structure between the populations, which

gives us additional power in detecting jumps. When the jump size increases to (TV=0.15),

the difference in AUC of the two models reduces to 0.05, and the ROC curves lie much closer

to each other. Although our model still performs better in this case, the edge is not as clear

as in the case with a smaller jump size. When the jump size is relatively large (TV = 0.25),

our ROC and AUC agree with those of treeBreaker, which suggests that our algorithm has

a comparable performance with treeBreaker.
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6.2 Real Data Analysis

6.2.1 Detecting cytotoxic T-lymphocytes (CTLs) escape mutations in HIV

This section aims to demonstrate that our approach is able to produce similar results

with treeBreaker on a real world problem. Human leukocyte antigen (HLA) type I genes

are very important to the human immune system, encoding proteins on the surface of human

cells which bring epitopes (segments of viral proteins) to the surface when a cell is infected

by a virus [ 93 ]. Thanks to this functionality, cytotoxic T lymphocytes (CTLs), also known

as T-cells, can identify the infected cells by recognizing the epitopes and destroy them.

Therefore, HLA-driven mutations of the virus that result in weak binding of epitopes with

HLA-encoded proteins can lead to virus escaping the immune response of the host.

In the work of Ansari and Didelot [  37 ], treeBreaker is applied to the problem of de-

tecting HLA-driven evolution of HIV to determine whether host HLA alleles are randomly

distributed on the tips of the virus phylogenetic tree or whether there are clades where the

distributions are distinct from each other. The dataset used is from a cohort with 261 sub-

jects (leaf nodes in the tree) published by Carlson, Brumme, Rousseau, et al. [ 94 ]. The whole

genome of the viruses are aligned and divided into 10 segments of 1000 nucleotides, and a

phylogenetic tree are inferred from each of these alignments. This results in 10 different

trees to describe the dependency structure of these 261 populations. The distribution of

alleles is of interest. To be specific, whether an allele of HLA presents or not forms a binary

distribution and observations are available on the leaf nodes of every estimated phylogenetic

tree. A number of alleles are studied by Ansari and Didelot [ 37 ] to detect subgroups in the

cohort with a distinct distribution of alleles, and a jump associated to the distribution of

HLA allele B57 in the first phylogenetic tree is identified.

The dataset is available online 

2
 . Although it slightly differs from the one described in

Ansari and Didelot [ 37 ], the difference is too small to affect the final result. We ran our

algorithm on this dataset and found that the existence of jumps is strongly supported, as

the Bayes factor is estimated to be +∞. Figure  6.7 shows the branch with jumps we detected.

This finding agrees with the result in Ansari and Didelot [ 37 ]; both methods identify the
2

 ↑ obtained from  https://www.hiv.lanl.gov/content/immunology/hlatem/study5/index.html  
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Figure 6.7. The data and result of the real data study to detect human leuko-
cyte antigen (HLA)-driven evolution of HIV (section  6.2.1 ). Dots at leaf nodes
represent whether allele B57 exists (black) or not (light grey) in the subject.
The Bayes factor we obtained is +∞ suggesting strong evidence towards hav-
ing jumps in the tree. The color shaded area marks the jump we detected using
our algorithm, which is consistent with the findings of Ansari and Didelot [  37 ].
The total runtime of our algorithm is 2098.8s, and it produces ESS/s = 9667.
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same clade where 9 out of the 12 hosts have the B57 allele (10 out of 12 in Ansari and Didelot

[ 37 ] as their data slightly differs from the one we use), which is a much higher proportion

compared to the rest of the tree, where only 7 hosts have allele B57.

6.2.2 Detecting changes in post-marital residence patterns

Unlike treeBreaker, our implementation also works on more complex scenarios, includ-

ing the case where the data is not binary. In this study, we apply our approach to detect

changepoints in the distribution of post-marital residence patterns within the Uto-Aztecan

language family, a dataset where observations take one of four values. The measurements

correspond to where newly-wed couple might live after marriage: with the family of the

husband (patrilocality), of the wife (matrilocality), of either the husband or the wife (am-

bilocality) or a new residence separated from their families (neolocality). Moravec, Atkinson,

Bowern, et al. [ 95 ] studied the post-marital residence patterns in five different language fam-

ilies. We note that their work focused on how the post-marital residence state transits on

individuals, whereas our model focuses on the distributional change in the populations, and

therefore, cannot directly compare the two approaches.

We requested the dataset directly from the authors and only explore the Uto-Aztecan

language family, the smallest among the five. This language family forms a language tree with

node representing language communities. There are 26 communities at leaf of the tree, and

the primary social norm of post-marital residence is obtained for each of them. Running our

algorithm on this dataset produces a Bayes factor of 908.76 which strongly suggests changes

of distributions happening in the tree. In total, we locate two branches with jumps in the

tree, and figure  6.8 shows the data and our results. Professor Murray Cox, a domain expert,

helped us gain insight into the result. For the cluster at the root (above both jumps), new

couples in the population prefer to reside with the husband (patrilocality). The first jump

at the top portion of the tree creates a cluster at the subtree of Guarijio and Tarahumara,

where new couples tend to seek new residence (neolocality). These two languages are spoken

in a region with quite poor soil, so newly married couples have to move to a new location

to find productive farming land. The second jump at the bottom portion of the tree instead
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Figure 6.8. The data and result of the real data study to detect changes in
post-marital residence patterns (section  6.2.2 ). Dots at the leaf nodes represent
the data where the four categories are patrilocality (blue), matrilocality (red),
ambilocality (purple) and neolocality (green). We obtain a Bayes factor of
908.76 and locate two branches with jumps as shown with color shading in the
tree. The runtime of our algorithm is 208.8s, and it produces ESS/s = 10.
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switches towards a distribution that strongly favors matrilocality and ambilocality. This is

probably due to the change of practices result from transitioning into more desert-plains

environment.
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7. SUMMARY AND FUTURE WORK

7.1 Summary

This dissertation studies Bayesian nonparametric clustering under structural restrictions

in two distinct problems. In the first part, we proposed a Matérn repulsive mixture model

(MRMM), a novel approach to repulsive mixture modeling through the Matérn type-III re-

pulsive point process. The structural restriction of this problem – repulsion between clusters

– encourages interpretability and makes the inference robust to model misspecification. We

derive a novel, simple and efficient MCMC sampling algorithm and evaluate performance on

a number of synthetic and real datasets.

In the second part, we focus on the problem of clustering populations with a hierarchical

dependency structure described by a tree. This structural restriction embodies prior domain

knowledge and enables statistical sharing through the underlying structure of the problem.

We perform clustering in this case by introducing “jumps” as locations in the tree where

the distribution changes significantly. For this problem, we build a novel nonparametric

Bayesian framework based on hierarchical Pitman-Yor processes and Poisson processes, and

developed an efficient particle MCMC algorithm to handle the problem. The efficacy of our

approach is demonstrated through various synthetic and real data analyses.

7.2 Future Work

For the first topic, there are a number of open avenues for future investigation. One

involves introducing Matérn repulsive mechanisms into more general latent variable models

such as latent feature models. Another class of models are time series models such as self-

avoiding Markov models. Even restricting ourselves to mixture models, problems arise when

working with high-dimensional parameter spaces. Possible approaches include projecting

down to a lower-dimensional space before carrying out Matérn thinning. From a theoretical

viewpoint, it is of interest to investigate asymptotic consistency of this class of repulsive

mixture models, and also quantify rates of posterior convergence. This will follow much

along the lines of Xie and Xu [ 60 ], though the specifics of the Matérn repulsion will require
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some care. It is also of interest to quantify the rate of MCMC mixing, and conditions under

which it exhibits desirable properties like geometric ergodicity.

For the second topic, there are also a few potential future directions. A natural extension

to develop our model to work with continuous distributions. Carrying this out is relatively

straightforward, and requires framing each node density Gi as a mixture model specified

by a Pitman-Yor prior. Another direction is to extend the dependency structure from a

tree to a network so that it finds a much wider applications in real-world problems. As

for the theoretical direction, we are interested in the asymptotic behavior of the model, as

well as assessing the mixing of the MCMC. Also, finding new applications of our approach,

especially beyond the scope of evolution trees, can be very exciting.
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