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ABSTRACT

Various fault models such as stuck-at, transition, bridging have been developed to better

model possible defects in manufactured chips. However, over the years as device sizes have

shrunk, the probability of systematic defects occurring in chips has increased. To predict the

sites of occurrence of such defects, Design-for-Manufacturability (DFM) guidelines have been

established, the violations of which are modelled into DFM faults. Nonetheless, some faults

corresponding to DFM as well as other fault models are undetectable, i.e., tests cannot

be generated to detect their presence. It has been seen that undetectable faults usually

tend to cluster together, leaving large areas in a circuit uncovered. As a result, defects

occurring there, even if detectable, go undetected because there are no tests covering those

areas. Hence, this becomes an important issue to address, and to resolve it, we utilize gate-

exhaustive faults to cover these areas. Gate-exhaustive faults provide exhaustive coverage

to gates. They can detect any defect which is not modelled by any other fault model.

However, the total number of gate-exhaustive faults in a circuit can be quite large and may

require many test patterns for detection. Therefore, we use procedures to select only those

faults which can provide additional coverage to the sites of undetectable faults. We define

parameters that determine whether a gate associated with one or more undetectable faults

is covered or not, depending on the number of detectable and useful gate-exhaustive faults

present around the gate. Bridging faults are also added for extra coverage. These procedures

applied to benchmark circuits are used for obtaining the experimental results. The results

show that the sizes of clusters of undetectable faults are reduced, upon the addition of

gate-exhaustive faults to the fault set, both in the case of single-cycle and two-cycle faults.

9



1. INTRODUCTION

The detection of defects occurring in a chip constitutes a significant and vital step in the

chip manufacturing process. Defects can be in the form of bridges and opens among others.

To effectively detect different kinds of defects, various fault models have been developed to

represent the physical defects as logical faults. Efforts have been made to ensure most defects

are accounted for, so that they can be detected if they occur. Apart from modelling possible

defects in a chip, fault models also make the test generation problem easier to handle, by

creating specific targets for which test patterns can be generated. Once a particular fault

related to any fault model is defined, a test for detecting the fault can be generated by a

commercial test generation tool.

With changing technologies, new defects have emerged in fabricated chips. The scaling

of devices over the last few years has increased the complexity of circuits to large extents.

On one hand, the decreasing transistor sizes has complicated functionality and significantly

increased frequency of operation. On the other hand, this has resulted in more variations,

and consequently, the possibility of systematic defects occurring due to the manufacturing

process has increased [1 ], [2 ], [3 ] . The defects-parts-per-million (DPPM) has taken a hit.

It has therefore, become important to generate test patterns specifically targeting defects

occurring as a result of imperfections in the silicon during chip manufacture. To that extent,

Design-for-Manufacturability (DFM) guidelines have been laid down, the violations of which

are considered to be sites of possible defects. These defects are then modelled into faults

referred to as DFM faults [4 ], and tests are generated for their detection. According to the

defect they are modelling, DFM faults may pertain to various fault models.

The difficulty in covering a circuit arises due to the fact that tests cannot be generated

for every fault in the circuit. There are some faults which are undetectable, i.e. a tool

cannot generate tests for detecting the presence of those faults. A fault in a circuit may be

undetectable due to logic redundancy, resulting in the erroneous value at the fault site not

being propagated to a point under observation. For activating a fault, a test pattern applies

specific input patterns at a gate, and undetectable faults sometimes occur due to it being

impossible to apply the required input pattern at the gate. Thus, defects at the site of an
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undetectable fault may not have specific tests for their detection. They might accidentally

get detected by another pattern, however, there is a chance that they might go undetected

altogether. Therefore, it is always beneficial to have test patterns covering as much of the

circuit as possible, so that defects in the actual chip do not go undetected.

In our work, we attempt to solve the problem of inadequate coverage of circuits by using

different fault models complementing each other. Faults corresponding to DFM, stuck-at

[5 ] and transition [6 ] fault models are used to directly generate tests for the circuit. The

undetectable faults from these fault models leave uncovered areas. These areas, also referred

to as holes in the circuit, are sites which do not have specific test patterns covering them.

Hence, gate-exhaustive faults [7 ] around the holes are used to generate test patterns which

provide extra coverage for these sites. Utilizing all these fault models and tests together, we

develop a procedure which aims at giving as much coverage to the circuits as possible, so

that defects in chips do not go undetected.

The chapter Literature Review explains and reviews previous work on different fault

models, generation and detection of DFM faults, clustering of undetectable faults in a circuit,

and gate-exhaustive faults. The next chapter, Methodology, explains the procedure for finding

holes in circuits and subsequently covering them with gate-exhaustive faults, in detail. It

also presents few examples to better demonstrate the methods used for covering the sites

of undetectable faults. The fourth chapter Results and Discussion shows the data obtained

from carrying out our procedure on benchmark circuits, and provides justification for the

experimental results. Finally, Conclusion concludes the thesis with comments about the

effectiveness of the procedure in decreasing the size of uncovered areas in a circuit.
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2. LITERATURE REVIEW

2.1 Fault Models

Physical faults that could occur in a chip are modelled as logical faults representing their

effects. This makes fault analysis feasible and makes testing technology-independent. A

single fault model is not enough to encompass all kinds of defects that might be observed

on a chip. Over the years several fault models have been developed to represent the actual

defects more and more accurately. Some of them are listed below.

2.1.1 Single Stuck Fault Model

The single stuck fault (SSF) model is the first fault model that was studied and used

to generate tests. It models a defect as a single line stuck at value 0 or 1. The rest of the

circuit functions as it is. The concept of a single line stuck at a value is fairly simple and can

represent many different physical defects [5 ]. The number of single stuck faults in a circuit is

relatively small as well. SSFs are modelled on inputs and outputs of a cell and each fan-out

branch is considered a separate line. The total number of faults in the circuit is therefore,

twice the number of lines (each line can be stuck at either 0 or 1).

A fault is detected by generating a test pattern for it. If a line l is stuck at a, the fault is

denoted by l/a. A test for the fault l/a activates it by assigning value ā to l. Since l is stuck

at a, it does not take up the value ā, and an error is generated. The test pattern ensures

that the error is propagated to an observable point p by making all lines in a path between

l and p have faulty values. This path is said to be sensitized to fault l/a.

2.1.2 Transition Fault Model

Transition faults model defects that cause delayed transitions in the circuit. A line is

said to have a transition fault when there is a more than acceptable delay in the time taken

for it to change its value from high to low or from low to high. Similar to stuck-at faults,

they too are modelled on the inputs and outputs of a cell. Two types of transition faults are
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mentioned in [6 ], slow-to rise and slow-to fall. The slow-to-rise faults behave like stuck-at 0

faults while the slow-to-fall ones behave like stuck-at 1 faults.

Since transition faults model delays in transitions on a line, they require two-pattern

tests for their detection [6 ]. The first pattern initializes the fault line with a logic value while

the second pattern creates a transition (assigns 1 if the initialization pattern assigned 0 and

vice-versa) on the line. If this transition is delayed for more than the desired time interval,

an error is generated. The second pattern then propagates this error to an observable point

and the transition fault is detected.

Two types of tests widely used to detect transition faults are skewed-load and broadside

tests. In skewed-load tests ([8 ],[9 ]), the second test pattern is obtained by shifting the first

pattern by one bit through the scan chain. Broadside tests [10 ], on the other hand, scan

in only the first pattern and apply the response of the combinational circuit as the second

pattern. Fig 2.1 and Fig 2.2 illustrate the timing diagrams of the two types of tests. Skewed-

load tests are fast and effective, have a low complexity, and have been experimentally seen to

provide significant coverage in benchmark circuits [9 ]. The broadside method, on the other

hand generates limited tests and cannot guarantee a minimum coverage. However, it eases

the restriction on scan enable signal timing. The scan enable signal, when high, activates

the scan chain to function as a shift register. The signal does not need to be a critical

signal in broadside tests as it is not activated when the second pattern is generated, unlike

in skewed-load tests. Both types of tests are included in an effective transition test set.

Figure 2.1. Timing Waveform for Skewed-Load Tests
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Figure 2.2. Timing Waveform for Broadside Tests

2.1.3 Bridging Fault Model

Bridging faults occur when two lines, unconnected in the fault free circuit, are accidentally

shorted together. One way of modelling this connection is by considering that wired logic

is performed at the connection such as wired AND or wired OR [11 ]. Another way is by

considering that one of the two connected nets is the dominant net and the other is the

follower net. As a result of the short, the follower net is driven to the logic value of the

dominant net. This is the 4-way bridging fault model described in [12 ]. In a fault between

two nets, the following four cases arise:

• Net 1 is dominant and has value 0, Net 2 is driven to value 0

• Net 1 is dominant and has value 1, Net 2 is driven to value 1

• Net 2 is dominant and has value 0, Net 1 is driven to value 0

• Net 2 is dominant and has value 1, Net 1 is driven to value 1

In each case, the follower net is considered to be stuck-at the value of the dominant net.

Hence, the bridging faults can be detected in the same manner as stuck-at faults. For

example, if there is a bridging fault corresponding to case 1, the fault is reduced to Net 2

being stuck-at 0, with the additional condition that Net 1 is also set to 0.
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2.1.4 Cell-Aware Fault Model

The stuck-at, transition and bridging fault models described above consider faults only on

the inputs and outputs of cells. They are referred to as external faults. Test patterns based

on these fault models often tend to miss some defects internal to a cell. This approach, hence,

becomes inadequate to keep up with an increasing demand to lower the defect rates. The

cell-aware fault model was thus developed, to address defects internal to the cell explicitly.

Experimental results with industrial designs in [13 ] show that the defect coverage of cell-

aware test patterns is significantly better than stuck-at and transition fault patterns.

The methodology of converting an internal defect into a cell-aware fault is described in

[14 ]. The paper proposes a layout extraction of the netlist and possible defects, followed

by an analog simulation to obtain cell-input combinations for activating a particular defect.

It also includes a synthesis step to create an optimized library containing multiple input

patterns for each internal defect. The final step involves generating test patterns based on

the input conditions stored in the library for each defect.

The cell-aware fault model defines input patterns on a cell that would excite a certain

internal defect and produce a logical error on the output of the cell. The test for the defect

assigns required values on the input lines of the cell and propagates the faulty output value

to an observable point for fault detection. Tests for cell-aware faults can be single-cycle for

static internal faults, or two-cycle for delay internal faults [15 ]. The two-cycle tests consist

of two pattern tests similar to the tests used to detect transition faults.

2.2 Design-For-Manufacturability

With designs becoming more complex and process technology decreasing to sizes lesser

than available wavelengths, the number of systematic defects is increasing rapidly. It is

recommended, therefore, to follow some manufacturability guidelines that reduce the prob-

ability of defects occurring due to the manufacturing process. Design-for-Manufacturability

(DFM) rules consist of such guidelines. They differ from design rules in that they need not

be strictly followed and are applied when possible, in conformation with area and power con-
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straints. The results reported in [16 ] show that correcting DFM guideline violations result

in significant increase in yield.

Fixing all DFM violations is impossible in an actual layout. Moreover, it is usually

not possible to know the fabrication issues in advance due to design constraints and the

decreasing time to market. Therefore, there is an attempt to have tests for detecting defects

that could result from DFM guideline violations. Some potential causes for systematic defects

such as non-redundant p-diffusion contact and single via are defined in [4 ], and a procedure

to identify affected transistors and translate the defects into gate level logic faults using

switch-level simulation is described. The paper shows that targeting potential systematic

defect sites resulting from DFM guidelines could improve the quality of tests significantly. A

more extensive list of DFM guidelines categorized into four sub-groups, namely Via, Metal,

Poly and Density is specified in [17 ]. This paper also briefly elucidates how the guideline

violations are converted into faults conforming to stuck-at, transition and bridging fault

models. Targeting cell internal DFM violations with cell-aware faults is proposed in [18 ].

The paper describes steps for obtaining cell input patterns for activating potential internal

defects and generating tests for them using an ATPG (Automatic Test Pattern Generation)

tool.

2.3 Clustering

There exist some faults, internal and external, for which no tests can be generated. These

faults are said to be undetectable. Undetectable faults might occur for various reasons, one

of which is logic redundancy. In such a case, it is not possible to propagate the faulty value

on a line to a point of observation. Previous work has shown that undetectable faults tend to

cluster together in the circuit. It was shown in [19 ] that for benchmark circuits, undetectable

single stuck faults formed clusters in certain areas. Later, it was reasoned in [20 ] that an

undetectable transition fault would definitely exist at the site of an undetectable single stuck

fault. Furthermore, there would be some two-cycle skewed-load and broadside tests which

could not be applied to the circuit resulting in more undetectable transition faults. An

increased number of faults not being detected would mean bigger clusters forming in case of
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transition faults as compared to single stuck faults. Similar clustering was observed in [21 ]

for undetectable DFM faults. The faults were found to be concentrated in a few areas of the

circuits.

Large clusters of undetected faults leave uncovered areas in the circuit, which lead to other

detrimental effects. A defect in such an uncovered area might be detectable even though

it is surrounded by undetectable faults. There is a possibility that tests don’t exist for the

particular defect in the test set, so it has a chance of going undetected. Moreover, it has been

seen from [22 ] how defects at the site of undetectable faults invalidate tests for otherwise

detectable faults, thus amplifying the negative effects of leaving uncovered areas. Also, faults

resulting from DFM violations may not always accurately model an actual defect. In such

cases, an undetectable fault leaves a potential detectable systematic defect uncovered. The

above reasons provide the motivation behind attempts at covering test holes and reducing

the sizes of undetectable fault clusters in a circuit.

2.4 Gate-Exhaustive Fault Model

First mentioned in [7 ], a gate-exhaustive test set was defined as one which applied all

possible input patterns to cells, and observed the faulty response at a primary output. This

approach ensured that any unexpected internal defect or a defect not modelled by any other

fault set was accounted for.

Gate-exhaustive faults are similar to cell-aware faults in that they are defined as input

patterns of a cell. The only difference is that these faults are not tied to any particular

internal defect, rather, all input patterns are considered, and any of them are expected to

produce a faulty value on the output line. Such an exhaustive test set is generated in an

attempt to increase the defect coverage. It was demonstrated in [23 ], [24 ] and [25 ] that

gate-exhaustive tests are more effective in detecting defective chips as compared to test sets

from other fault models such as stuck-at and transition.

Since gate-exhaustive faults related to a particular gate include all possible input patterns

that could be applied to the gate, the number of gate-exhaustive faults grows exponentially

with the number of inputs and so do the number of tests for detecting them. Considering
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all the faults at once is thus not feasible. Various papers have proposed the idea of utilizing

a subset of the gate-exhaustive faults to generate tests for improving the fault coverage

of a circuit. In [26 ], an iterative procedure for test generation of gate-exhaustive faults in

benchmark circuits is described, to provide additional coverage to sites of undetectable stuck-

at faults. For covering each undetectable fault, gate-exhaustive faults are added according

to specified conditions, and the number is increased step-wise. The process is continued

until a coverage metric for the fault is met. A more recent work on gate-exhaustive faults

[27 ] proposes a Multiple Target Test Generation procedure for gate-exhaustive faults using

Partial MaxSAT, which is a variation of the MaxSAT problem. It generates test patterns

that can detect the maximum number of target gate-exhaustive faults by utilizing the Partial

MaxSAT algorithm.
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3. METHODOLOGY

In this chapter, we describe the method by which we attempt to utilize different fault models

to reduce coverage holes in a circuit. The chapter is divided into three major sections. Section

3.1 describes clustering, the parameter we use to determine the coverage of a circuit. Section

3.2 explains gate-exhaustive faults, and how we select them to cover undetectable faults. In

Section 3.3 the complete algorithm applied to benchmark circuits is elucidated step-wise.

3.1 Clustering

It was mentioned in the previous chapter that undetectable faults tend to cluster to-

gether in a circuit, leaving large areas uncovered. Defects occurring at these sites might be

detectable even if the faults are not, hence it becomes detrimental to leave a significant area

in a circuit uncovered. We intend to break these clusters of undetected faults by adding

faults to the fault set and checking the coverage around the clusters, and subsequently gen-

erating additional tests where required. In the rest of this section, we provide our definition

of adjacent gates and describe how we use it to form a cluster of gates.

Suppose we consider a fault set FS that includes faults corresponding to any of the pre-

viously discussed fault models, and apply ATPG to it to generate tests for fault detection.

As a result, a test set T is generated and the set of undetectable faults U is obtained. Each

fault in U corresponds to a gate. In case of an undetectable stuck-at, transition or bridg-

ing fault, it corresponds to the gate on whose input or output nets the fault is present.

An undetectable cell-aware fault is related to the gate whose internal defect it addresses.

We define any two gates G1 and G2 as adjacent if there is a net connecting the two gates.

This occurs in any of the following three cases:

• G1 and G2 each have one or more inputs that are fan-out branches of the same stem

• The output of G1 is connected to an input of G2

• An input of G1 is driven by the output of G2
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If any one of the conditions is satisfied, the gates G1 and G2 are considered adjacent to

each other. A cluster is formed when multiple gates are adjacent to each other. For example,

if G1 and G2 are adjacent to each other, and G3 is adjacent to either G1 or G2 or both, G1,

G2 and G3 form a cluster.

We obtain the set of gates G associated with the set of undetected faults U. Clus-

ters are formed out of G to determine how large an area is left uncovered in the circuit.

The procedure for obtaining clusters from a set of gates was described in [19 ], and has

been explained here to provide a detailed representation. Initially each gate is a sepa-

rate cluster Ci. If the gates in Ci and Cj are adjacent to each other, the two are merged

together to form a cluster Ci, and Cj is removed. The process is repeated until there

is no change in the remaining clusters, and therefore, the largest clusters have been ob-

tained. The pseudo-code for forming clusters out a set of gates G is shown in Algorithm 1 .

Algorithm 1: Procedure for forming Clusters out of Gates

Obtain set of gates G corresponding to undetected faults;

for every gate gi in G do

Ci = gi ;

add Ci to C [C is the set of clusters] ;

end

do

for every Ci in C do

if gate gi in Ci is adjacent to gj in Cj [j != i] then

Ci = Ci + Cj ;

remove Cj ;

end

end

while there is any change in C ;

20



It is important to break the large clusters of gates associated with undetected faults.

Therefore, faults are added to the fault set, to check for coverage, as well as to improve it when

not sufficient, by adding tests. Additional test patterns generated for these faults provide

direct coverage to the uncovered sites and increase the chances of detecting defects around

those areas. As more and more tests are added and coverage is checked, gates associated

with undetected faults which qualify as covered are removed from the large clusters, and

consequently the clusters are broken into smaller groups.

Table 3.1. : Single Cycle Input Patterns for NAND Gate

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

Table 3.2. : Two-Cycle Input Patterns for NAND Gate

A B Y

01 01 10

01 11 10

11 01 10

10 10 01

10 11 01

11 10 01

3.2 Selection of Gate Exhaustive Faults for Coverage

There might be detectable defects in and around the clusters of undetectable faults in

a circuit. Therefore, it is preferred to have a test set that does not leave the cluster sites
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uncovered. To check for coverage at the undetectable fault sites and close test holes, we use

gate exhaustive faults.

As described in the previous chapter, gate-exhaustive faults apply all possible input

patterns on a gate, and propagate the erroneous value at the output of the gate to an

observable point. The methods used to select gate-exhaustive faults for covering the sites of

undetectable faults corresponding to different fault models is explained in this section, citing

the example of a two-input NAND gate. Single-cycle gate-exhaustive faults of a NAND gate

include the input patterns listed in Table 3.1 and two-cycle gate-exhaustive faults include

those listed in Table 3.2 . Columns A and B represent the two inputs of the gate. Column Y

represents the output of the gate in fault free condition. In a faulty circuit with single-cycle

gate-exhaustive faults, for a fault in Table 3.1 , a test pattern assigns the values in columns A

and B to the input nets of the gate, and propagates the faulty output value to an observable

point. In case of a circuit with two-cycle gate-exhaustive faults, the test pattern for a fault

assigns two values in two cycles to each input net of the gate, as shown in Table 3.2 . The

transition, which would have been brought about as a result of the change in input pattern,

is delayed due to the fault, and the error value is transmitted to an observable point by the

test.

The selection methods described in the following paragraphs are with respect to a two-

input NAND gate.

3.2.1 Stuck-at

Let us consider the undetectable fault A stuck at 0. We need to assign the value A = 1 to

excite the fault. The gate-exhaustive faults with input patterns that assign A = 1, namely

the last two in Table 3.1 , are added to the fault set and used to generate tests for covering

the undetectable fault.

In general, if the input of a gate is stuck at a, the faults with input patterns assigning ā to

the input can be utilized to generate tests to provide additional coverage to the gate. If the

undetectable stuck-at fault is on the output of a gate, the faulty value cannot be propagated
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to an observable point due to logic redundancy. Hence, it is not possible to provide coverage

even with gate-exhaustive faults.

3.2.2 Transition

The coverage of undetectable transition faults with gate-exhaustive faults is similar to

stuck-at faults, except we use two-cycle faults for this. If input A has a slow-to-rise transition

fault, a gate-exhaustive fault that causes A to make a low to high transition (0→1) is added

to the fault set.

In our example of NAND gate, if A has a slow-to-rise transition fault, the first two input

patterns listed in Table 3.2 are added to the fault set to generate tests.

3.2.3 Bridging

We use the 4-way bridging fault model in our work which labels one of the connected

nets as dominant and the other as follower. The dominant net has a specific value, and this

value is taken up by the follower net. Therefore, the follower net acts as if it is stuck at the

value of the dominant net. Hence, for covering bridging faults with gate-exhaustive faults,

we use the same procedure as for stuck-at faults. We add those gate-exhaustive faults to the

fault set which have input patterns that activate the error at the follower net, and generate

tests for them.

3.2.4 Cell-Aware

Cell-Aware faults consist of single cycle and two-cycle faults. They are modelled just like

gate-exhaustive faults with a particular input pattern being assigned to a gate to activate a

fault. The only difference is that in cell-aware faults, an input pattern is expected to excite a

particular defect within the gate, whereas gate-exhaustive faults consider all possible input

patterns. If a cell-aware fault is undetectable, it is either because it is impossible to assign the

particular input pattern to the gate or because the faulty output value cannot be propagated

to an observable point. Naturally, the gate-exhaustive fault with the same input pattern as
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the undetectable cell-aware fault is also undetectable. Hence, we search for faults with input

patterns in the logical neighborhood of the undetectable fault pattern.

Let us consider an undetectable single cycle cell aware fault which assigns A=0, B=0 as

inputs of the NAND gate. Clearly, the gate-exhaustive fault with the same input pattern

will also be undetectable. Hence, we consider those faults which are logically near the input

pattern ‘00’, i.e., ‘01’ and ‘10’. In other words, we use those gate-exhaustive faults to generate

tests whose input pattern differs by one bit from that of the undetectable fault. We try to

cover the fault site by incorporating tests which excite all but one of the inputs of the gate

in the same way as the original fault attempted to.

For two-cycle cell-aware faults, we use a similar procedure to obtain additional gate-

exhaustive faults to generate tests. Suppose the undetectable fault has A=10, B=10 as

the input pattern, indicating that inputs transitioning to 0 is the fault detection condition.

Since, the gate-exhaustive fault with the same input pattern is undetectable, we add those

faults which have inputs in the logical neighborhood of the undetectable fault pattern. Thus,

the gate-exhaustive faults having input patterns A=10, B=11 and A=11, B=10 are added

to the fault set for test generation.

If the faults with inputs in the near neighborhood of the undetectable fault pattern do

not provide the required coverage, we use gate-exhaustive faults whose input patterns differ

by more than one bit from those in the undetectable fault. We progressively move farther

away from the logical proximity, if necessary, and if the faults exist, to provide adequate

coverage to the particular gate. An example of the same is shown below.

Example: 1

Circuit: b15

Gate - U6566

Faults associated with the gate – 13 internal static faults

Undetectable faults associated with the gate – 4

No. of detectable gate-exhaustive faults required to cover the gate (for k = 2) – 4 ∗ 2 = 8

No. of detectable gate-exhaustive faults with one bit input pattern change – 6

No. of detectable gate-exhaustive faults with two bit input pattern change – 4
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The above example presents the data for gate U6566 in benchmark circuit b15. The gate

has thirteen internal static DFM faults associated with it, out of which four are undetectable.

As described in Section 3.3, the number of gate-exhaustive faults required to cover a gate is

k * No. of undetectable faults. For k = 2, the number of gate-exhaustive faults needed is

eight. However, the number of detectable gate-exhaustive faults whose input patterns differ

from the fault pattern by one bit is only six. Hence, we use two of the four detectable gate-

exhaustive faults whose input patterns differ by two bits to provide the required coverage.

If the input pattern of a particular gate-exhaustive fault differs by more than one bit

from the pattern of undetectable fault U1 and by one bit from that of U2, (U1 and U2 being

internal faults of the same gate), the fault will be counted only once while calculating the

number of gate-exhaustive faults added for that gate.

Figure 3.1. Algorithm for improving Coverage of a circuit for Single-cycle Faults
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3.3 Procedure for Improving Coverage

For improving the coverage of a circuit, we use different fault models to complement each

other. The procedure is carried out separately for single-cycle faults (stuck-at, bridging and

single-cycle cell-aware and gate-exhaustive) and two-cycle faults (transition and two-cycle

cell-aware and gate-exhaustive).

Figure 3.2. Algorithm for improving Coverage of a circuit for Two-cycle Faults

In the process of improving coverage, we consider the set of DFM, stuck-at and transition

faults as the target set. We generate tests for these faults and obtain the undetectable faults

from the ATPG process. The gate-exhaustive faults are then utilized to cover those areas

left uncovered by the already generated test set. The overview of the procedure is outlined

in Figure 3.1 and Figure 3.2 for single-cycle and two-cycle faults respectively. The detailed

steps are elucidated below.

Step-I

The initial set of target faults are the DFM faults denoted by FDF M . FDF M is obtained

by converting DFM violations in the layout of the circuit into faults, and it includes stuck-at,

transition, bridging and cell-aware faults. The set of single-cycle faults consisting of stuck-at,

bridging and single-cycle cell-aware faults is denoted by F1−DF M , and the set of two-cycle
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faults consisting of transition and two-cycle cell-aware faults is denoted by F2−DF M . A

single-cycle test set T1−DF M is generated using ATPG. From this test generation procedure,

a set of faults U1−DF M is obtained, consisting of undetectable faults and faults for which

the test generation procedure was aborted during ATPG. The set of all stuck-at faults in

the circuit is then simulated with T1−DF M and a new set of undetected faults is obtained,

consisting of U1−DF M ∪ U ′
stuck. A set of clusters C ′

1, of gates associated with these unde-

tected faults is formed, using the definition of adjacency stated in Section 3.1. The size of

the largest cluster in C ′
1 gives us an estimate of the area left uncovered by the test set T1−DF M .

Step-II

To expand the test set further, patterns are generated for the undetected stuck-at faults

in U ′
stuck. The newly generated test set is denoted by Tstuck. Tstuck detects those stuck-at

faults which are detectable but were left undetected by the DFM test set T1−DF M . As a

result of adding these tests, a new set of undetectable faults Ustuck is obtained. Ustuck is a

subset of U ′
stuck. A new set of clusters C1 is created out of gates associated with faults in the

set U1−DF M ∪ Ustuck.

Step-III

The large size of clusters at this point indicate that significant portions of the circuits

are not yet covered. Hence, we use gate-exhaustive faults for providing the added coverage.

For each stuck-at, bridging and single-cycle cell-aware fault in U1−DF M ∪ Ustuck, additional

faults are added as described in Section 3.2. The set of single-cycle gate-exhaustive faults

added for coverage is denoted by F1−GE. F1−GE is first simulated with the existing test set

T1−DF M ∪ Tstuck. ATPG is carried out for the faults remaining undetected after simulation

for test generation.

The procedure elucidated in Steps I, II and III are for single-cycle faults. Two-cycle

faults are handled in a similar way. In Step I, transition faults are simulated with T2−DF M ,

and U2−DF M ∪ U ′
tran is obtained. New tests are generated for the undetected transition

faults in the circuit in Step II. The set of undetectable faults after this step is denoted by

U2−DF M ∪ Utran , and the set of clusters formed from these faults is denoted by C2. The
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undetectable transition and internal delay faults in U2−DF M ∪ Utran are then covered with

additional gate-exhaustive faults F2−GE. These added faults are first simulated with the

existing test set T2−DF M ∪ Ttran, and then ATPG is carried out for test generation.

The number of detectable and undetectable gate-exhaustive faults obtained after the test

generation procedure is noted, and is used to determine which gates should be removed from

the cluster of gates corresponding to undetectable faults. The parameters used to classify a

gate as covered or uncovered are described below.

Let us suppose that gate G has NUndet number of undetectable faults associated with

it after Step II. We add NGE number of gate-exhaustive faults in Step III for the NUndet

undetectable faults, out of which NGE−Det are detectable. If NUndet ∗ k <= NGE−Det, then

the gate is considered covered and removed from the appropriate cluster (single-cycle or two-

cycle). k is a multiplicative factor that relates the number of undetectable faults associated

with a gate and the number of additional detectable faults required to cover the gate. The

value of k determines the target number of detectable gate-exhaustive faults required for

coverage.

Some gates associated with undetectable bridging faults are not covered according to the

conditions stated above. Their coverage is complemented by adding extra bridging faults

to the fault set. Suppose the undetectable bridging fault is between dominant net N1 with

value a and follower net N2. Additional bridging faults are considered between the dom-

inant net N1 with value a and nets adjacent to N2. These faults are first simulated with

T1−DF M ∪ Tstuck, and then tests are generated for the undetected faults after simulation. If

NUndet ∗ k <= NDet, NDet being the total number of detectable gate-exhaustive and bridging

faults added for the gate corresponding to the fault, it is removed from the cluster. An

example where additional bridging faults along with gate-exhaustive faults give coverage to

a gate is demonstrated below.
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Example: 2

Circuit: b15

Gate – U5173

Faults associated with the gate – 3 4-way bridging faults

Undetectable bridging faults with gate as follower – 1

No. of detectable faults required to cover the gate (for k = 2) – 1 ∗ 2 = 2

No. of detectable gate-exhaustive faults – 1

No. of detectable bridging faults added – 1

The above example presents data for gate U5173 of circuit b15. The gate has three

4-way bridging faults associated with it out of which one fault with net U5173/Y as the

follower is undetectable. To cover the undetectable fault with k = 2, we need two detectable

gate-exhaustive faults. However, we have only one such fault, hence we try to cover it with

a bridging fault. We add one additional bridging fault to the fault set to obtain the required

coverage.

While adding gate-exhaustive faults to cover undetectable internal faults for a gate, it

may happen that the number of faults required for coverage, i.e., NUndet ∗ k do not exist. In

such a case, we mark the gate as covered if all the gate-exhaustive faults that are selected

to be added are detectable. An example of such a case is shown below.

Example: 3

Circuit: b15

Gate – FE_OFC55_CLOCK

Undetectable faults associated with the gate – 1

No. of detectable gate-exhaustive faults required to cover the gate (for k = 2) – 1 ∗ 2 = 2

Total no. of gate-exhaustive faults possible to be added –1

No. of detectable gate-exhaustive faults – 1

The above example presents data for gate FE_OFC55_CLOCK of circuit b15. The gate

has one undetectable fault associated with it, and we require two additional faults to cover
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the gate when the value of k is 2. The number of faults possible to be added is one, and

it is detectable, hence we designate the gate as covered, as the two required faults do not exist.

New clusters C1−NEW and C2−NEW are formed from the remaining gates which are not

covered even after the addition of gate-exhaustive faults. The sizes of these clusters are

noted, and found to be significantly smaller than C1 and C2.

Among the gate-exhaustive faults added for coverage, some are detected by patterns from

existing test sets (T1−DF M ∪ Tstuck for single-cycle faults, and T2−DF M ∪ Ttran for two-cycle

faults), and some need additional patterns to be generated through ATPG. Hence, there are

two ways in which we can choose gate-exhaustive faults to provide coverage:

• The number of additional tests generated can be maximized by selecting those gate-

exhaustive faults which are not detected by existing test sets, where possible. This

provides extra coverage to the circuit.

• The gate-exhaustive faults for additional coverage can be selected from among those

that are detected by existing test sets, where possible. This ensures that the necessary

coverage of the circuit is achieved without increasing the number of tests more than

required.

We have implemented the second method while presenting results in the following chapter.

The examples below demonstrate two cases where the added gate-exhaustive faults are de-

tected by the existing test sets and hence, do not require additional patterns to be generated.
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Example: 4

Circuit: s38584

Gate – U10374

Number of undetectable single-cycle faults associated with the gate – 3

Number of detectable gate-exhaustive faults required for coverage – 3 (for k = 1), 6

(for k = 2)

There exist 6 gate-exhaustive faults detected by T1−DF M ∪ Tstuck

Example: 5

Circuit: s38584

Gate – U11944

Number of undetectable two-cycle faults associated with the gate – 1 (transition fault at

U11944/B)

Number of detectable gate-exhaustive faults required for coverage = 1 (for k = 1), 2

(for k = 2)

There exist 2 gate-exhaustive faults detected by T2−DF M ∪ Ttran

The above examples demonstrate cases where the required coverage is provided by gate-

exhaustive faults which are detected by the existing test sets. Example 4 exhibits an instance

for single-cycle faults and Example 5 exhibits that for two-cycle faults. In both the examples,

all faults required for the cases k = 1 and k = 2 are detected by existing patterns and do

not require additional tests to be generated.
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4. RESULTS AND DISCUSSION

The procedure for improving the coverage of a circuit by adding gate-exhaustive and bridging

faults at the sites of undetectable faults is described in the previous chapter. The algorithm

as demonstrated in Figure 3.1 and Figure 3.2 is applied to benchmark circuits. The analysis

for single-cycle faults and two-cycle faults is carried out separately.

Commercial tools are used for identifying DFM guideline violations and for test genera-

tion. We have used Calibre for detecting DFM violations in a layout. Encounter has been

used to generate layout from a netlist. Fastscan has been used to carry out ATPG for all

fault sets, and consequently to identify undetectable faults.

Two values of parameter k have been used for our analysis, k = 1 (results demonstrated

in Tables 4.1 and 4.2 ), and k = 2 (results demonstrated in Tables 4.3 and 4.4 ). The required

coverage for each gate associated with undetectable faults changes with the value of k. With

k = 2, the number of detectable faults required for coverage is twice than that with k = 1.

For Tables 4.1 and 4.2 , and Tables 4.3 and 4.4 , the first column Benchmark Circuits

lists the benchmark circuits to which our algorithm was applied. The data obtained from

the evaluation of each circuit is presented in three rows corresponding to each circuit. The

first row shows results related to DFM tests, according to the procedure described in Step-

I in Section 3.3. The second row adds stuck-at fault tests (in Tables 4.1 and 4.2 ) and

transition fault tests (in Tables 4.3 and 4.4 ) to single-cycle and two-cycle DFM fault tests

respectively (Step-II ). The third row presents the data after gate-exhaustive faults (for single-

cycle and two-cycle faults) and bridging faults (only for single-cycle faults) have been added,

for covering the sites of undetectable faults, and tests have been generated for them, in each

circuit (Step-III ).

The third column Single/Two cycle Test Patterns lists the total number of test patterns

utilized for detecting the faults considered in each row. The number of new test patterns

added in each row is the difference between the value in that row and the previous row.

Column four, Gates corresponding to Undetected Faults shows the number of gates associated

with undetected faults in each particular row. The fifth column Largest Cluster Size lists the
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sizes of the biggest clusters formed from the gates in column four. Finally, the last column,

Run Time lists the running time for the procedure in each row.

From the column Largest Cluster Size in each table, we see that for a circuit, the size of

the largest cluster decreases from row one to row two, and either decreases or stays the same

from row two to row three. The data in row three of each benchmark circuit indicates the

size of the largest cluster after we have used additional gate-exhaustive and bridging faults

to cover the sites of undetectable faults. The clusters for k = 1 are smaller than those for

k = 2, because of a less strict target for gate coverage in case of k = 1. For similar reasons,

the tests required for k = 2 are more than those necessary for k = 1.

Table 4.1. Single-cycle Faults for k = 1

Benchmark

Circuits

Single-cycle

Test

Patterns

Gates

corresponding to

Undetected Faults

(DFM+Stuck-at)

Largest

Cluster Size
Run Time

b04 DFM (1-cycle) 167 81 65 2

DFM (1-cycle) + Stuck-at 171 79 63 0.7

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
171 22 9 0.7

b14 DFM (1-cycle) 539 425 335 7.8

DFM (1-cycle) + Stuck-at 608 340 260 0.6

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
609 9 2 4.3

b15 DFM (1-cycle) 925 1117 1015 66.1

DFM (1-cycle) + Stuck-at 1000 1035 924 19.5

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
1004 19 8 4.9

b20 DFM (1-cycle) 647 878 315, 364 11.7

DFM (1-cycle) + Stuck-at 713 754 256, 313 1.6

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
715 28 2 5.9

sparc_ffu DFM (1-cycle) 490 1722 1627 12

DFM (1-cycle) + Stuck-at 514 1692 1460 1.6

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
517 817 782 5.1

sparc_exu DFM (1-cycle) 890 4138 3929 36.1

DFM (1-cycle) + Stuck-at 950 4039 3843 3.4

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
956 1214 1170 11.4
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Table 4.1. Continued..

s9234 DFM (1-cycle) 210 108 68 3.9

DFM (1-cycle) + Stuck-at 227 86 55 0.7

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
228 8 1 1.6

s13207 DFM (1-cycle) 102 118 19 2.6

DFM (1-cycle) + Stuck-at 109 92 14 0.6

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
109 73 13 1.6

s38417 DFM (1-cycle) 383 619 196,116 12.8

DFM (1-cycle) + Stuck-at 407 539 167, 107 1.1

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
408 59 4,2 5.6

s35932 DFM (1-cycle) 164 630 518 11.4

DFM (1-cycle) + Stuck-at 164 630 518 3.2

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
164 74 72 5.3

s38584 DFM (1-cycle) 296 578 323 10.4

DFM (1-cycle) + Stuck-at 308 487 269 1.4

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
309 81 4 6

Table 4.2. Two-cycle Faults for k = 1

Benchmark

Circuits

2-cycle

Test

Patterns

Gates

corresponding to

Undetected Faults

(DFM+tran)

Largest

Cluster Size
Run Time

b04 DFM (2-cycle) 109 100 96 1.6

DFM (2-cycle) + Transition 156 24 8 0.8

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
158 15 6 1.6

b14 DFM (2-cycle) 260 578 556 4.1

DFM (2-cycle) + Transition 484 39 26 3.1

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
487 33 25 2.1

b15 DFM (2-cycle) 609 1709 1649 105.9

DFM (2-cycle) + Transition 1057 486 228 43.4

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
1170 171 132 3.5

b20 DFM (2-cycle) 340 1044 544, 436 7.9

DFM (2-cycle) + Transition 594 123 52, 50 10.7
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Table 4.2. Continued..

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
600 64 25,25 2.9

sparc_ffu DFM (2-cycle) 223 1544 1449 6.6

DFM (2-cycle) + Transition 378 561 527 4.1

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
380 557 525 3.3

sparc_exu DFM (2-cycle) 346 2878 2537 17.5

DFM (2-cycle) + Transition 705 950 937 9.4

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
706 942 932 6.5

s9234 DFM (2-cycle) 105 164 125 2.5

DFM (2-cycle) + Transition 191 22 7 1.0

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
191 20 7 1.6

s13207 DFM (2-cycle) 62 278 61, 33 2.2

DFM (2-cycle) + Transition 84 206 41, 28 0.8

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
96 157 23,11 1.6

s38417 DFM (2-cycle) 145 1026 528 7.1

DFM (2-cycle) + Transition 265 191 31, 20 2.9

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
270 165 31, 17 3.6

s35932 DFM (2-cycle) 98 214 133 7.0

DFM (2-cycle) + Transition 110 49 31 1.7

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
111 31 31 3.5

s38584 DFM (2-cycle) 120 1246 943 6.2

DFM (2-cycle) + Transition 232 262 28,27 2.4

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
242 181 27,15 3.0

Table 4.3. Single-cycle Faults for k = 2

Benchmark

Circuits

Single-cycle

Test

Patterns

Gates

corresponding to

Undetected Faults

(DFM+stuck-at)

Largest

Cluster Size
Run Time

b04 DFM (1-cycle) 167 81 65 2.0

DFM (1-cycle) + Stuck-at 171 79 63 0.7

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
171 37 15 0.7
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Table 4.3. Continued..

b14 DFM (1-cycle) 539 425 335 7.8

DFM (1-cycle) + Stuck-at 608 340 260 0.6

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
612 91 16 3.8

b15 DFM (1-cycle) 925 1117 1015 66.1

DFM (1-cycle) + Stuck-at 1000 1035 924 19.5

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
1011 203 92 5.6

b20 DFM (1-cycle) 647 878 315, 364 11.7

DFM (1-cycle) + Stuck-at 713 754 256, 313 1.6

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
720 208 34,16 6.0

sparc_ffu DFM (1-cycle) 490 1722 1627 12.0

DFM (1-cycle) + Stuck-at 514 1692 1460 1.6

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
531 899 860 5.0

sparc_exu DFM (1-cycle) 890 4138 3929 36.1

DFM (1-cycle) + Stuck-at 950 4039 3843 3.4

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
978 1644 1477 15.5

s9234 DFM (1-cycle) 210 108 68 3.9

DFM (1-cycle) + Stuck-at 227 86 55 0.7

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
231 44 18 2.4

s13207 DFM (1-cycle) 102 118 19 2.6

DFM (1-cycle) + Stuck-at 109 92 14 0.6

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
109 78 13 2.4

s38417 DFM (1-cycle) 383 619 196,116 12.8

DFM (1-cycle) + Stuck-at 407 539 167, 107 1.1

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
411 305 52, 37 4.7

s35932 DFM (1-cycle) 164 630 518 11.4

DFM (1-cycle) + Stuck-at 164 630 518 3.2

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
164 81 73 5.2

s38584 DFM (1-cycle) 296 578 323 10.4

DFM (1-cycle) + Stuck-at 308 487 269 1.4

DFM (1-cycle) + Bridging +

Gate-Exhaustive(1-cycle)
323 213 68 6.3
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Table 4.4. Two-cycle Faults for k = 2

Benchmark

Circuits

2-cycle

Test

Patterns

Gates

corresponding to

Undetected Faults

(DFM+tran)

Largest

Cluster Size
Run Time

b04 DFM (2-cycle) 109 100 96 1.6

DFM (2-cycle) + Transition 156 24 8 0.8

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
159 19 7 1.6

b14 DFM (2-cycle) 260 578 556 4.1

DFM (2-cycle) + Transition 484 39 26 3.1

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
488 34 26 2.1

b15 DFM (2-cycle) 609 1709 1649 105.9

DFM (2-cycle) + Transition 1057 486 228 43.4

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
1273 246 155 5.1

b20 DFM (2-cycle) 340 1044 544, 436 7.9

DFM (2-cycle) + Transition 594 123 52, 50 10.7

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
604 115 50,50 2.9

sparc_ffu DFM (2-cycle) 223 1544 1449 6.6

DFM (2-cycle) + Transition 378 561 527 4.1

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
382 559 526 3.3

sparc_exu DFM (2-cycle) 346 2878 2537 17.5

DFM (2-cycle) + Transition 705 950 937 9.4

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
709 947 935 4.9

s9234 DFM (2-cycle) 105 164 125 2.5

DFM (2-cycle) + Transition 191 22 7 1.0

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
191 20 7 1.6

s13207 DFM (2-cycle) 61 278 61, 33 2.2

DFM (2-cycle) + Transition 84 206 41, 28 0.8

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
103 178 23, 16 1.6

s38417 DFM (2-cycle) 145 1026 528 7.1

DFM (2-cycle) + Transition 265 191 31, 20 2.9

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
276 169 31,17 3.1

s35932 DFM (2-cycle) 98 214 133 7.0

DFM (2-cycle) + Transition 110 49 31 1.7
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Table 4.4. Continued..

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
112 31 31 3.6

s38584 DFM (2-cycle) 120 1246 943 6.2

DFM (2-cycle) + Transition 232 262 28,27 2.4

DFM (2-cycle) +

Gate-Exhaustive (2-cycle)
245 206 27,15 3.2

It is observed that for both single-cycle and two-cycle faults, very few additional test

patterns are required to detect all the gate-exhaustive faults used for coverage of gates

associated with undetectable faults. A major percentage of the additional gate-exhaustive

and bridging faults are already detected by the test patterns from the previous row.

This observation is explained through Table 4.5 and 4.6 . In Table 4.5 , the second column

shows the number of undetected single-cycle gate-exhaustive faults after simulating them

with T1−DF M ∪ Tstuck, while the third column lists the actual number of undetectable single-

cycle gate-exhaustive faults in the circuit. The data presented in Table 4.5 shows that only

a small percentage of detectable single-cycle gate-exhaustive faults is left undetected by the

test set T1−DF M ∪ Tstuck. Few or none of the faults from this small percentage are actually

used for providing coverage to a gate. Most of the faults used are already detected by the

existing test set, and hence we see a very small increase in the number of test patterns from

row two to row three in Tables 4.1 and 4.3 . An example of such a case is shown in the

previous chapter (Example 4).

Table 4.6 presents similar data for two-cycle faults. Here we see that a significant number

of detectable gate-exhaustive faults are left undetected by the existing test patterns. Nev-

ertheless, we do not see a significant increase in the number of test patterns in row three

except in circuit b15. This can be explained by the data in columns four and five in Table

4.6 . Column four indicates that except b15, all the circuits have few or no undetectable DFM

internal delay faults. Most of the gates belonging to these circuits only have undetectable

transition faults associated with them, and as was the case in Example 5 in the previous

chapter, the number of undetectable transition faults associated with a gate is less than

or equal to two. Moreover, transition faults are easier to cover than internal delay faults

38



because they require less strict input pattern conditions (explained in Section 3.2). Hence,

most of the gate-exhaustive faults required to cover these gates can be obtained from those

detected by existing test patterns. Example 5 shows such a case in circuit s38584. However,

in case of circuit b15, we have a significant number of undetectable internal delay faults as

well. The number of internal delay faults per gate could exceed two, and they require stricter

input patterns to cover them. Therefore, in case of circuit b15, we require a larger number

of gate-exhaustive faults to be selected for coverage, and hence we see a significant increase

in the number of additional tests required to be generated (Tables 4.2 and 4.4 ).

Table 4.5. Single-cycle Gate-exhaustive Faults

Benchmark

Circuits

Undetected 1-cycle

Gate-Exhaustive faults

simulated with

T1−DF M ∪ Tstuck

Actual undetectable

1-cycle Gate-Exhaustive

faults

b04 524 511

b14 3431 3277

b15 6160 6068

b20 7935 7670

sparc_ffu 12103 12001

sparc_exu 27629 27058

s9234 863 816

s13207 720 663

s38417 6479 6009

s35932 5690 5683

s38584 5651 5271

Table 4.6. Two-cycle Gate-exhaustive Faults

Benchmark

Circuits

Undetected 2-cycle

Gate-Exhaustive faults

simulated with

T2−DF M ∪ Ttran

Actual undetectable

2-cycle Gate-Exhaustive

faults

Undetectable

Internal

Delay faults

Undetectable

Transition

faults

b04 6065 4134 20 86

b14 38986 28898 0 50

b15 85421 66138 354 435

b20 88375 66616 0 147

sparc_ffu 149378 114591 0 620

39



Table 4.6. Continued..

sparc_exu 332754 247345 0 970

s9234 11664 8379 0 35

s13207 6867 5788 0 433

s38417 95536 62207 1 254

s35932 58263 45188 18 62

s38584 68957 47973 1 501

The circuits listed above consist of gates which have a maximum of four inputs. The

number of inputs of a gate determines the number of gate-exhaustive faults associated with

it. If we have circuits with larger gates, or treat small sub-circuits as gates, the number of

internal faults associated with these gates will be higher. Consequently, the undetectable

internal faults (single-cycle and two-cycle) per gate would increase, and so would the required

number of gate-exhaustive faults necessary to cover them. In such a case, we might have

a larger increase in the number of test patterns added in the third row, i.e., after adding

gate-exhaustive faults for covering the sites of undetectable faults.
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5. CONCLUSION

Undetectable faults from different fault models including Design-for-Manufacturability (DFM)

tend to cluster together in a circuit. This leaves large areas of the circuit uncovered, and

defects occurring in those areas have a chance of going undetected. Therefore, we attempted

to cover these areas using gate-exhaustive faults. The total number of gate-exhaustive faults

in a circuit can be very large, so we utilized only those faults which helped us specifically

cover those areas with undetectable faults.

We developed procedures to select gate-exhaustive faults which could provide coverage to

such areas. We also defined conditions for a gate associated with undetectable faults, which

designated it as covered or uncovered, in relation to the number of detectable gate-exhaustive

faults around it. We applied the developed procedures on benchmark circuits, separately

for single-cycle and two-cycle faults. The size of the largest cluster of gates associated with

undetectable faults was used as a measure of the area of a circuit left uncovered.

We also varied the parameters in our definition of gate coverage to observe the changes in

the final coverage of circuits. From the data obtained, we observed that the size of clusters

decreased as we included gate-exhaustive faults in our fault set. The reduction in cluster

size was seen for single-cycle and two-cycle faults, even when the parameters were varied.

The increase in the number of test patterns added due to gate-exhaustive faults was small,

due to always having selected as many faults as possible from those already detected by

existing test sets. Overall, the selection of gate-exhaustive faults from around the clusters

and generation of tests for detecting them facilitated checking and increasing the coverage

of circuits, and subsequently the probability of detecting defects occurring at the sites of

undetectable faults increased.
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