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circle represents filled grids from (C) and blue circle represents surrounding grids. (F) If there is 

an overlap between surrounding grids from two clusters, the clusters are combined. Then, number 

of clusters is found. Different colors represent different clusters. .............................................. 100 

Figure 4.7. Network contraction depending on density of actin cross-linking proteins (ACPs). (A-

C) Results from experiments G-actin (3 M), myosin (RM = 0.33), anillin (RA = 0.03-0.3), ATP 

(100 M), and the ATP-regenerating system. (A) Representative fluorescence microscope images 

of networks with various RA. A scale bar corresponds to 100 m. (B, C) Cluster size, contraction 

speed, and moving speed depending on RA (0.03-0.2). (D-F) Results from simulations with actin 

(100 M) motor (RM = 0.16), and ACPs (RACP = 0.01-0.3). (D) Network morphology in simulation 

at 15s depending on RACP with RM = 0.16. Actins (cyan), myosin motors (red), and ACPs (yellow) 

are shown. (E) Contraction speed, and moving speed depending on RACP. Data during initial 8s 

was used to calculate contraction speed and moving speed. In both experiments and simulations, 

networks show slower contraction into larger clusters as crosslinker density increases. (F) Average 

tensile force exerting on selected actin segments. Throughout simulation, ten actin segments with 

highest tensile force were selected. Note: (A)-(C) are from Kyohei Matsuda and Junichiro Yajima 

at the University of Tokyo. ......................................................................................................... 102 

Figure 4.8. Network contraction depending on density of actin cross-linking proteins (ACPs). (A-

B) Representative time-lapse images of networks prepared under two different conditions 

correspond to two cases in Fig. 4.7A. A scale bar indicates 100 m. (C) The probability of cluster 

formation. The probability is calculated as the ratio of the number of experiments with cluster 

formation to the total number of performed experiments. The probability is calculated with a 

variation in anillin density. RA is 0.033 (green), 0.067 (yellow), 0.1 (red), and 0.2 (blue). (D) 
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Change of area covered by clusters over time. (E) Ensemble average of actin speed as a function 

of time. Note: (A)-(C) are from Kyohei Matsuda and Junichiro Yajima at the University of Tokyo.

..................................................................................................................................................... 103 

Figure 4.9. Effects of filament length on network contraction. (E) Network morphology in 

simulation at 15 s depending on filament length. Actins (cyan), myosin motors (red), and ACPs 

(yellow) are shown. (B) Contraction speed and moving speed depending on filament length. With 

shorter filament length, networks contract more rapidly. ........................................................... 104 

Figure 4.10. Effects of density of motors (RM) on network contraction at various anillin density. 

(A-D) Results from experiments G-actin (3 M), myosin (RM = 0.03-0.67), anillin (RA = 0.03-0.2), 

ATP (100 M), and the ATP-regenerating system. (A) Representative fluorescence microscope 

images of networks with various RM at RA = 0.1. A scale bar indicates 100 m. (B-D) Dependence 

of cluster size, contraction speed, and moving speed on RM at RA = 0.03 (green), 0.07 (orange), 0.1 

(red), and 0.2 (blue). (E-G) Results from simulations with F-actin (100 M), motor (RM = 0.008-

0.4), and ACP (RA = 0.1). (E) Network morphology in simulation 15s depending on RM with RACP 

= 0.1. Actins (cyan), myosin motors (red), and ACPs (yellow) are shown. (F) Contraction speed, 

and (G) moving speed depending on RM. In both experiments and simulations, with more motors, 

networks contract into larger clusters more rapidly. Data at initial 8s was used to calculate 

contraction speed and moving speed. (H) Average tensile force exerting on selected actin segments. 

Throughout simulation, ten actin segments with highest tensile force were selected. Note: (A)-(D) 

are from Kyohei Matsuda and Junichiro Yajima at the University of Tokyo. ........................... 105 

Figure 4.11. Influences of motor and crosslinker density on network morphology. (A) Network 

morphology in simulation. Higher motor density facilitates network contraction into clusters, 

which is more pronounced at higher crosslinker density. (B) The probability of cluster formation. 

The probability is calculated as the ratio of the number of experiments with cluster formation to 

the total number of performed experiments. RA is 0.033 (green), 0.067 (yellow), 0.1 (red), and 0.2 

(blue). (C-E) Change of area covered by clusters over time. (F-H) Ensemble average of actin speed 

as a function of time. Data during initial 8 s was used. Note: (A) is from Kyohei Matsuda and 

Junichiro Yajima at the University of Tokyo. ............................................................................ 106 

Figure 4.12. Network contraction with a wide range of ATP concentration. (A-D) Results from 

experiments G-actin (3 M), myosin (RM = 0.33), anillin (RA = 0.03-0.2), ATP (0.5-1000 M), 

and the ATP-regenerating system. (A) Representative fluorescence microscope images of 

networks with different ATP concentration (CATP) at RA = 0.1. A scale bar corresponds to 100 m. 

(B-D) Dependence of cluster size, contraction speed, and moving speed on CATP at RA = 0.03 

(green), 0.07 (orange), 0.1 (red), and 0.2 (blue). (E-G) Results from simulations with F-actin (100 

M), motor (RM = 0.16), and ACP (RA = 0.1). We varied ATP-the dependent unbinding rate of 

motors to mimic a change in CATP (k20). (E) Network morphology in simulation at 15 s depending 

on k20 with RACP = 0.1. Actins (cyan), myosin motors (red), and ACPs (yellow) are shown. (F) 

Contraction speed, and (G) moving speed depending on k20. In both experiments and simulations, 

network contraction speed and moving speed show biphasic dependence on ATP concentration. 

Data during initial 8s was used to calculate contraction speed and moving speed. (H) Average 

tensile force exerting on selected actin segments. Throughout simulation, ten actin segments with 

highest tensile force were selected. Note: (A)-(D) are from Kyohei Matsuda and Junichiro Yajima 

at the University of Tokyo. ......................................................................................................... 108 



 

 

 15  

Figure 4.13. Effects of ACP density and k20 on network morphology. (A, B) Cases shown in 3A. 

(C) The probability of cluster formation. The probability is calculated as the ratio of the number 

of experiments with cluster formation to the total number of performed experiments. RA is 0.033 

(D) Network morphology in simulation. (E-G) Change of area covered by clusters over time. (H-

J) Ensemble average of actin speed as a function of time. Note: (A)-(C) are from Kyohei Matsuda 

and Junichiro Yajima at the University of Tokyo. ...................................................................... 109 

Figure 4.14. Triggering contraction of mechanically stable networks via severing of F-actins. 

Networks were assembled with G-actin (3 M), rhodamine phalloidin (1 M), myosin (RM = 0.33), 

anillin (RA = 0.2), ATP (50 M), and the ATP-regenerating system. Since a network is densely 

cross-linked, significant contraction does not occur. (A, B) Sequential images of networks with a 

scale bar indicating 100 m. In (A), the actin-severing protein, gelsolin, is introduced to the 

network after assembly (t = 360 s) in order to shorten F-actins. Soon after addition of the gelsolin 

(final concentration, 0.02 M), the network contracts into medium-size clusters. In (B), a buffer 

containing 50 M ATP was injected as a control experiment. After addition of the buffer 

contraction does not occur. (C) A change in contraction speed with different gelsolin concentration. 

The number of experiments is 3 for 0 M, 3 for 0.002 M (RGelsolin = 0.00066), 4 for 0.005 M 

(RGelsolin = 0.0017), and 4 for 0.02 M (RGelsolin = 0.0066). Note: This figure is from Kyohei 

Matsuda and Junichiro Yajima at the University of Tokyo. ....................................................... 111 

Figure 4.15. Observation of fragmentation of F-actins during network contraction. Networks were 

prepared with G-actin (3 M), phalloidin (1 M), myosin (RM = 0.33), anillin (RA = 0.2), ATP 

(1000 M), and the ATP-regenerating system. A small number of F-actins labeled by rhodamine 

phalloidin (0.1 %) were included in the networks. (A) Time-lapse images of the labeled F-actins 

with time points from the initiation of observation. The observation began 6 min after mixing. 

White arrowheads indicate a traced fragment. A scale bar indicates 5 m. (B) The speed of a F-

actin fragment (black dot and line) indicated by orange arrowheads in (A), and the length of the 

fragment (gray open circle) over time. Red lines denote the fragmentation followed immediately 

by a jump in the speed (212 s, 218 s, and 390 s), meaning retraction of tensed F-actin. A blue line 

on the left denotes F-actin fragmentation without a significant increase in the speed (40 s), which 

is likely to be buckling-induced fragmentation. Inset: An example of the trajectory of F-actin 

fragments. (C) The sharp increase in the speed occurred right after fragmentation in 8 experiments 

out of 10. Note: This figure is from Kyohei Matsuda and Junichiro Yajima at the University of 

Tokyo. ......................................................................................................................................... 113 

Figure 4.16. Actin fragmentation dependent on ATP concentration. (A) Actin fragmentation assay 

in bulk containing 3 M G-actin, 1 M myosin and various concentration of ATP with ATP 

regenerating system. In this experiment, after network contraction, excessive amount of ATP (5 

mM) was added. The clusters were loosened, and the length of the actin filament was measured. 

(B) CATP = 1 M; 1.9 ± 1.0 m (magenta, n = 658), CATP = 10 M; 3.6 ± 1.2 m (green, n = 708), 

CATP = 100 M; 5.0 ± 1.4 m (blue, n = 622), CATP = 1000 M; 8.9 ± 1.9 m (black, n = 372). 

Note: This figure is from Kyohei Matsuda and Junichiro Yajima at the University of Tokyo. . 114 

Figure 4.17. Differential effects of F-actin fragmentation under different conditions. (A, B) 

Network morphology of simulation at 15 s with or without tensile force-induced F-actin 

fragmentation (frag) with (A) short (<Lf>=1 μm) and (B) long F-actins (<Lf>=2.6 μm). RACP was 

0.1. F-actin (cyan), motors (red), and ACPs (yellow) are shown. F-actin fragmentation facilitates 
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network contraction when filament length is long (2.6 µm) and motor density is high (RM = 

0.32~0.4) (C, D, F, G) Contraction speed and moving speed during initial 8 s calculated in the 

cases shown in (A, B). (E, H) Time-averaged number of severing events. ................................ 116 

Figure 4.18. Differential effects of F-actin fragmentation under different conditions. (A-C) 

Network morphology of simulation under different conditions. Actins (cyan), myosin motors (red), 

and ACPs (yellow) are shown. (B, C, E, F) Contraction speed and moving speed averaged at initial 

8 s. (D, G) Time-averaged number of severing events. .............................................................. 117 

Figure 4.19. Contraction speed and moving speed depending on F-actin fragmentation. Network 

contraction over time and ensemble average of actin speed in the cases with (red curve) or without 

(blue curve) F-actin fragmentation. With fragmentation, network contracts faster. .................. 118 

Figure 4.20. Contraction speed and moving speed with or without F-actin fragmentation. (A, C) 

Network contraction over time in the cases with (red curve) or without (blue curve) F-actin 

fragmentation. With fragmentation, network contracts faster. (B, D) Ensemble average of actin 

speed as a function of time in the cases with or without F-actin fragmentation. With fragmentation, 

actins move faster. Data was averaged during initial 8 s. ........................................................... 119 

Figure 4.21. Relative importance of F-actin severing and ACP unbinding on network contraction 

depends on initial network connectivity. (A) Snapshots of networks with RACP =0.1 where F-actin 

severing is inactivated (first column), ACP unbinding is inactivated (second column), and both F-

actin severing and ACP unbinding is activated (third column). (B) Time-averaged number of 

severing events per second, which is calculated in the cases shown in (A). (C-E) Network area 

over time in the cases shown in (A). ........................................................................................... 121 

Figure 5.1. Analysis of motor motions using an agent-based computational model. (A) Actin 

filaments (F-actins, blue) are modeled as serially connected cylindrical segments. Adjacent 

segments are connected by elastic hinges. Actin cross-linking proteins (ACPs, yellow) and two-

arm motors (red, bottom) are modeled as two segments connected by elastic hinges. One-arm 

motors (red, top) are modeled as one segment. ACPs can bind to a pair of F-actins to form a 

functional cross-link. One-arm motors can bind to only one F-actin unlike two-arm motors that 

can bind to a pair of F-actins simultaneously. Arms of motors walk toward the barbed ends of F-

actins. Bending (κb) and extensional (κs) stiffness govern mechanical behaviors of these segments. 

(B) An example of movement of a motor walking on a thin cortex-like network. A periodic 

boundary condition is applied in x and y directions. A trajectory of a motor measured in a 

simulation is visualized using a red line. A red circle represents the initial position of the motor.

..................................................................................................................................................... 128 

Figure 5.2. Force-dependent behaviors of motors. (A) Walking and (B) unbinding rates of a motor 

arm as a function of a force acting on the arm. Nh is the number of heads represented by each motor 

arm. Since the unbinding rate decreases with higher applied force, the motor arm behaves as a 

catch bond. .................................................................................................................................. 131 

Figure 5.3. (A) τ-MSD with lag time (τ) ranging from 1 s to 20 s for a case shown by a red solid 

curve in Fig. 5.5B. As τ is higher, values of τ-MSD tend to be larger. Overall, the shape of the 

curves is similar to each other. We chose 10 s for a fixed value of τ (τ = 10s) used for calculating 

τ-MSD in all other figures. ......................................................................................................... 133 
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Figure 5.4. TE-MSD of one-arm motors in networks with (A) low, (B) medium, and (C) high 

connectivity. In each simulation, there were 5 motors (NM = 5) in the absence of ACP unbinding 

and F-actin turnover. Cyan curves show TE-MSD of individual motors. Blue curves represent the 

ensemble average of all cyan curves, corresponding to red, blue, and green dashed lines shown in 

Fig. 5.5B. Gray dashed lines indicate the slope of MSD corresponding to diffusive motions (~ τ1) 

and ballistic motions (~ τ2). ........................................................................................................ 134 

Figure 5.5. Motions of one-arm and two-arm motors in networks with different connectivity. In 

each simulation, 5 motors were used (NM = 5), and ACP unbinding and F-actin turnover were not 

incorporated. (A) TE-MSD (time- and ensemble-averaged mean squared displacement) of actins 

in networks with low, medium, and high connectivity. Networks with higher connectivity exhibit 

much lower TE-MSD, implying that movements of F-actins are confined more if connectivity is 

higher. (B) TE-MSD of one-arm and two-arm motors. Gray dashed lines indicate the slope of MSD 

corresponding to diffusive motions (~τ1) and ballistic motions (~τ2). Two-arm motors show much 

lower TE-MSD in networks with medium and high connectivity, whereas one-arm motors exhibit 

similar TE-MSD regardless of network connectivity. (C) Average force exerted on each myosin 

head in motor arms, which is the ensemble average of time average of forces acting on motor arms, 

divided by the number of heads represented by each motor arm (Nh). One arm motors bear very 

small force (~0.1 pN) because they cannot generate force on F-actins. By contrast, two-arm motors 

bound to relatively antiparallel F-actins can generate high force. (D) The fraction of stalling 

indicating how long motors are stalled during a simulation run up to t = 1000 s. One-arm motors 

do not experience force-induced stalling due to very small force acting on their arms, whereas two-

arm motors are stalled significantly. ........................................................................................... 135 

Figure 5.6. Quantification of the extent of network heterogeneity. (A) A schematic diagram 

showing how the radial distribution function, g(r), is calculated. (B) An example of g(r) calculated 

using a network with low connectivity. Two dashed lines indicate the range of r used for 

calculation of the average value, ( )g t . ....................................................................................... 136 

Figure 5.7. TE-MSD of two-arm motors in networks with low, medium, and high connectivity and 

NM = 5, 30, and 100 without ACP unbinding and F-actin turnover. Cyan curves show TE-MSD of 

individual motors. Blue curves represent the ensemble average of all cyan curves, corresponding 

to 9 curves shown in Fig. 5.10A. Gray dashed lines indicate the slope of MSD corresponding to 

diffusive motions (~τ1) and ballistic motions (~τ2). .................................................................... 139 

Figure 5.8. Motions of one-arm and two-arm motors in networks with different connectivity.  In 

each simulation, 5 motors were used (NM = 5), and ACP unbinding and F-actin turnover were not 

included. (A) Magnitude and (B) slope of TE-MSD of motors averaged at τ = 0.1-100 s. Unlike 

one-arm motors, the magnitude and slope of TE-MSD of two-arm motors are inversely 

proportional to network connectivity. (C) τ-MSD and (D) E-MSD of motors. In cases with one-

arm motors, τ-MSD does not change significantly over time, and the slope of E-MSD does not 

depend much on τ. For two-arm motors, the magnitude of τ-MSD and the slope of E-MSD 

noticeably decrease from ~50 s in a low- connectivity network and decrease between ~1s and ~10 

s in networks with medium and high connectivity. This indicates that motor stalling takes place 

earlier in the cases with medium and high network connectivity. .............................................. 140 

Figure 5.9. E-MSD of one-arm motors with different number of heads (Nh) and different network 

connectivity. Gray dashed lines indicate the slope of MSD corresponding to diffusive motions (~τ1) 
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and ballistic motions (~τ2). Motors with Nh = 10 in a high-connectivity network show ballistic 

movement (~τ 2). Motors with Nh = 4 in a low-connectivity network exhibit the slope of MSD 

smaller than 2. More frequent unbinding of motors with lower Nh (i.e. less processive) leads to 

more hopping or diffusion of motors, thus hindering ballistic motions. In addition, in the low-

connectivity network, larger motions of F-actins (Fig. 5.5A) hinder ballistic motions. ............ 141 

Figure 5.10. Motions of two-arm motors in networks with different connectivity and different 

number of motors (NM). ACP unbinding and F-actin turnover were not considered in these 

simulations. (A) TE-MSD (time- and ensemble-averaged mean squared displacement) of motors. 

Gray dashed lines indicate the slope of MSD corresponding to diffusive motions (~τ1) and ballistic 

motions (~τ2). In a network with low connectivity, higher NM leads to lower TE-MSD. (B) Average 

force exerted on each myosin head in motor arms, which corresponds to the ensemble average of 

time average of forces acting on motor arms, divided by the number of heads represented by each 

motor arm (Nh). For NM > 10, the average force increases with NM in a network with low 

connectivity, resulting in higher average force at NM =100 than that in networks with medium and 

high connectivity. (C) The fraction of stalling indicating how long motors are stalled during a 

simulation run up to t = 1000 s. Motors are mostly stalled in networks with medium and high 

connectivity, regardless of NM. In a network with low connectivity, the fraction of stalling 

increases at NM > 10, which is consistent with the increase in the average force shown in (B). (D) 

Visualization of networks at 800 s. Blue, white, and red represent low, intermediate, and high 

forces, respectively. Only actins and motors bearing high forces (> 25 pN) are visualized. In a 

network with low connectivity and high NM, adjacent motors are connected via force-bearing F-

actins, indicating force transmission between the motors. ......................................................... 143 

Figure 5.11. Motions of two-arm motors in networks with different connectivity and different 

number of motors (NM). In these simulations, ACP unbinding and F-actin turnover were not 

included. (A) τ-MSD and (B) E-MSD of motors. The magnitude of τ-MSD and the slope of E-

MSD for a low-connectivity network start decreasing later than those for medium- and high-

connectivity networks. The case with NM = 100 and low network connectivity shows much lower 

values of τ-MSD and E-MSD compared to those with NM = 5 and 30, indicating much slower 

motor motions resulting from global force transmission as explained in the text. ..................... 145 

Figure 5.12. Motions of two-arm motors in networks with different connectivity and different 

number of motors (NM). In these cases, ACPs are allowed to unbind from F-actins with the 

reference unbinding rate. F-actin turnover is not considered (kt,A = 0). (A) TE-MSD (time- and 

ensemble-averaged mean squared displacement) of motors. Gray dashed lines indicate the slope 

of MSD corresponding to diffusive motions (~τ1) and ballistic motions (~τ2). In a network with 

low connectivity, higher NM leads to lower TE-MSD after ~5 s. (B) Average force exerted on each 

myosin head in motor arms, which is the ensemble average of time average of forces acting on 

motor arms, divided by the number of heads represented by each motor arm (Nh). Motors in 

networks with medium and high connectivity experience much higher forces. (C) The fraction of 

stalling indicating how long motors are stalled during a simulation run up to t = 1000 s. Motors in 

networks with higher connectivity are stalled for a longer time, which is consistent with higher 

forces exerted on motor arms shown in (B). (D) Network heterogeneity quantified using the radial 

distribution function from positions of actins. Networks with low/medium connectivity high NM 

exhibit aggregating behaviors. (E) TE-MSD of motors walking in reconstituted F-actin networks 

with low motor density. Cross-linking density is 0 (blue) or 0.1 (red). (F) A correlation between 
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adjacent image frames showing only motors in (black and red) experiments and in (cyan and green) 

simulations. Cross-linking density is high in two cases represented by black and cyan and low in 

the other cases. ............................................................................................................................ 146 

Figure 5.13. Motions of two-arm motors in networks with different connectivity and different 

number of motors (NM) in the presence of ACP unbinding with the reference unbinding rate. F-

actin turnover was not incorporated. (A) τ-MSD and (B) E-MSD of motors. For the low-

connectivity network, the case with NM = 100 shows lower values of τ-MSD and E-MSD at t > 

~100 s compared to the cases with NM = 5 and 30. This is indicative of confined motor motions 

induced by network aggregation. (C) Visualization of networks at 800 s. Blue, white, and red 

represent low, intermediate, and high forces, respectively. Networks with NM ≥ 30 and 

low/medium connectivity exhibit severe aggregation of F-actins and motors. (D) Heat maps 

showing spatial distributions of the barbed ends of F-actins and motors in a case with a low-

connectivity network with NM = 100 shown in (C), at t = 200 s and 1000 s. Density is calculated 

by counting the number of elements in each grid of the computational domain and then dividing 

those numbers by the total number of elements. Motors and barbed ends are aggregated at the 

center of the aster-like structure, thus leading to confinement of motors without significant force 

generation. ................................................................................................................................... 147 

Figure 5.14. Motion of two-arm motors in networks with different connectivity and different 

number of motors (NM) with slower ACP unbinding. Compared to the reference ACP unbinding 

rate (
0*

u,ACPk = 0.115 s-1), 
0

u,ACPk  is (A-C) 10-fold or (D-F) 100-fold smaller. F-actin turnover is not 

incorporated (kt,A = 0). (A, D) TE-MSD of motors. (B, E) Average force exerted on each myosin 

head in motor arms. (C, F) Network heterogeneity quantified using a radial distribution function 

generated from positions of motors. Among cases with a low-connectivity network shown in (A-

C), TE-MSD is lower, and network heterogeneity is higher with NM = 100. This implies that motor 

confinement induced by network aggregation still takes place with a 10-fold smaller ACP 

unbinding rate. By contrast, with a 100-fold smaller unbinding rate, dependences of TE-MSD and 

network heterogeneity on NM become much weaker. It indicates global force-induced stalling or 

motor confinement induced by network aggregation do not occur in these cases. ..................... 149 

Figure 5.15. Phase diagram showing three mechanisms of motor stalling or confinement in a three-

dimensional parametric space consisting of network connectivity, motor density (NM), and ACP 

unbinding rate ( 0

u,ACPk ). It is assumed that F-actins do not undergo turnover. ............................. 152 

Figure 5.16. Effects of a F-actin turnover rate (kt,A) on motions of two-arm motors. All of the 

simulations used for this figure have 100 motors (NM = 100). (A) TE-MSD of motors in a network 

with high connectivity in the absence of ACP unbinding. Gray dashed lines indicate the slope of 

MSD corresponding to diffusive motions (~τ1) and ballistic motions (~τ2). With higher kt,A, TE-

MSD (time- and ensemble-averaged mean squared displacement) is higher, which indicates less 

motor stalling. (B) Average force exerted on each myosin head in motor arms and the fraction of 

stalling decrease with higher kt,A. (C) TE- MSD of motors in a network with low connectivity 

without ACP unbinding. (D) Average force acting on each myosin head in motor arms and the 

fraction of stalling decrease with higher kt,A. (E) TE- MSD of motors in a network with low 

connectivity. ACPs were allowed to unbind from F-actins with the reference unbinding rate. (F) 

Network heterogeneity and average force acting on ACPs decrease with higher kt,A. For evaluating 
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network morphology, we calculate the radial distribution function, g(r), every 10 s. Then, the 

average value of g(r) at 0.1 µm < r < 1 µm, ( )g t , is calculated for each time point. The maximum 

value of ( )g t  normalized by its initial value, 
max init/g g , is used as a measure for network 

heterogeneity. All of the results shown here imply that F-actin turnover prevents motors from being 

stalled or confined. ...................................................................................................................... 154 

Figure 5.17. Effects of F-actin turnover on motions of two-arm motors. (A) Visualization of 

networks at 800 s under the same condition as that used for Figs. 5.16C, D. An only difference is 

that F-actins in the center and right cases undergo turnover (i.e. treadmilling). Blue, white, and red 

represent low, intermediate, and high forces, respectively. Only actins and motors bearing 

relatively high forces (> 50 pN) are visualized. With faster F-actin turnover, force transmission 

between motors decreases, resulting in a reduction of global force-induced stalling. (B) Time 

evolution of network heterogeneity in three cases shown in Figs. 5.16E, F. The averaged value of 

the radial distribution function was calculated every 10 s. There were 100 motors (NM = 100) in a 

low-connectivity network, and ACP unbinding was allowed to occur with the reference rate. With 

kt,A = 70 s-1, a network remains relatively homogeneous compared to networks with lower kt,A.

..................................................................................................................................................... 155 
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ABSTRACT 

Mechanical forces play a crucial role in cell functions. Cells can generate force, change 

their shape, and sense external mechanical stimuli, which allows diverse cell functions such as cell 

migration, cytokinesis, and morphogenesis. Mechanics of cells mainly come from the molecular 

interactions between actin filaments and diverse actin-binding proteins in the actin cytoskeleton. 

Actin-crosslinking proteins connect actin filaments to form actin structures; myosin, a molecular 

motor, generates force on the actin filaments. Due to the complex geometry of the actin structures 

in non-muscle cells, it has not been well understood how the actin cytoskeleton generates force 

and remodels itself. To better understand the molecular interactions, many in vitro studies 

employed a minimal system composed of actin filaments, actin-crosslinking proteins, and myosin 

motors. For example, myosin motility assays have been used to understand the self-organization 

and collective behavior of actin filaments, which enable the formation of diverse actin structures 

in cells. Reconstituted actomyosin networks have been used to understand myosin-induced 

contraction of the cell cortex, which allow cell shape change. A computational model can give 

additional information that is critical for understanding the mechanics of the cytoskeleton which 

in vitro assay cannot offer, such as the location or force of each molecule. Most of the previous 

models lack some mechanical details that could potentially be critical in the mechanics of the actin 

cytoskeleton. In this study, we used an agent-based computational model based on Brownian 

dynamics for simulating the motility assay and actomyosin network. The model describes the 

detailed mechanics and dynamics, thus enabling the investigation of previously unexplored aspects 

of cytoskeleton mechanics. 

In the first study, we investigated how the properties of actin filaments and motors affect 

gliding motions and the self-organization of actin filaments on the motility assay. We found that 

the length of actin filaments, the average spacing between neighboring motors, and the processivity 

of motors regulate the gliding speed of actin filaments. We also demonstrated that cross-linking 

proteins could lead to contractile behaviors of actin networks on the motility assay.  

In the second study, we showed that volume-exclusion effects between actin filaments can 

induce self-organization and collective motion of actin filaments. Bands and ring-like patterns 
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were formed through self-organization; the patterns could be regulated by bending stiffness of 

filaments, actin concentration, and actin filament length. 

In the third study, we sought to understand an alternative mechanism of contraction of 

actin networks by myosin motors. Previously, unbinding of cross-linkers and severing of actin-

filaments by buckling have been identified as important regulators of actin network contraction. 

We investigated how F-actin fragmentation by stretching, which has not been studied but could 

potentially regulate contraction dynamics, contributes to the contraction of actin networks. In in 

vitro experiments, we observed that some actin filaments are indeed fragmented due to tensile 

forces. Using the computational model, we demonstrated that F-actin fragmentation is particularly 

important for the contraction of networks composed of long actin filaments with numerous motors, 

whereas cross-linker unbinding is more important for the contraction of networks with short actin 

filaments. 

In the fourth study, we investigated how actin network remodeling by myosin activity 

regulates the motions of motors in turn. We demonstrated that myosin motions can be confined 

due to force generation or force transmission; we identified conditions where each of the two 

mechanisms is dominant. We also found that turnover of cross-linking proteins can trap motors 

and verified it in an in vitro experiment. On the other hand, turnover of actin filaments was shown 

to promote motor movement and inhibit confinement.  

This study gives new biophysical insights into the self-organization, contraction, and transport 

in actin networks, which enable a more complete understanding of cellular processes regulated by 

the dynamics and mechanics of actin networks. 
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 INTRODUCTION 

1.1 Introduction 

Cells’ ability to reproduce, grow, move, and secrete hormones is essential for the everyday 

life of organisms. Almost all cell functions rely on the activity of actin, one of the most abundant 

protein in cells [1]. Actin forms diverse structures along with actin-binding proteins, which are 

called the actin cytoskeleton. The actin cytoskeleton has a remarkable ability to self-organize, 

reorganize, and generate force. This ability enables cellular processes which require dynamic cell 

shape change, such as migration, morphogenesis, and cell division. In addition, the actin 

cytoskeleton serves as an intracellular track on which motor proteins can transport cellular cargoes. 

Thus, understanding the dynamics of the cytoskeleton is crucial for understanding these cell 

functions.  

For understanding the dynamics of the actin cytoskeleton, it is essential to investigate: (1) 

what molecules are involved in the cellular processes and (2) how these molecules interact with 

each other to drive the cellular processes. For investigating these two, three types of studies are 

performed by researchers: in vivo, in vitro, and computational. In vivo studies are essential to 

determine what molecules are involved in cellular processes. For example, an in vivo study found 

that formin and myosin II are important to form the contractile machinery of the cell cortex [2, 3]. 

Due to the dense structure of the cell cortex, only a surface of the cortex can be visualized in in 

vivo studies, making it not suitable for observing how molecules interact [4]. In vitro reconstituted 

systems are used to study the interaction between proteins since it has minimal components which 

can be easily visualized. Computational studies can give further insights on the interaction between 

proteins by enabling measurement of values that are not measurable in in vitro or in vivo 

experiments. 

The goal of this research is to use a computational model of the actin cytoskeleton to explore 

and identify interactions between actin and actin-binding proteins that crucially govern the 

dynamics of the actin cytoskeleton. This research will give new insights into the understanding of 

cellular processes governed by the actin cytoskeleton.  
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1.2 Background 

 Actin filaments (F-actins) are filamentous protein that are composed of actin monomer, G-

actin. G-actin polymerizes into actin filaments. Actin has a polarity, with one end called barbed 

end and the other end called pointed end. Actin filaments can assemble and disassemble at both 

ends, with assembly primarily occurs at the barbed end and disassembly primarily occurs at the 

pointed end. When actin has the same assembly and disassembly rate at the barbed and the pointed 

ends, respectively, it is called treadmilling, which aids remodeling of the actin cytoskeleton [1].  

 Numerous actin-binding proteins bind to actin filaments and regulate the mechanics and 

dynamics of the actin cytoskeleton. Motor protein is one of the important actin-binding proteins. 

The myosin family, a family of motor proteins ranging from Myosin I to Myosin XVIII is 

associated with the actin cytoskeleton [5]. Myosin II can walk on the filaments and generate 

contractile force that drives cell shape change and cell movement [5]. Myosin II is non-processive, 

meaning that the duty ratio is not big enough for a single motor to stay on filaments and move 

forward. Myosin II self-assembles into a thick filament, whose length varies depending on the cell 

type [5]. Unlike myosin II, Myosin V is processive. A single myosin V molecule can transport 

cellular cargo along F-actins without frequent unbinding [5].  

 Actin-crosslinking proteins (ACPs, cross-linkers) have two binding sites which can bind 

to F-actin, thus connecting F-actins pairs. Different kinds of ACPs differ in geometry and 

mechanical properties, thus leading to distinct actin structures depending on ACP types. α-actinin 

and small ACPs such as fimbrin, scruin, fascin, or espin tend to form bundles, whereas Arp 2/3 

complex and larger ACPs such as filamin form networks [2, 6].   

 Understanding the interaction between actin-binding proteins and actin filaments is key to 

understand various cellular processes [2]. In this dissertation, we studied three cellular processes: 

self-organization of actin networks, contraction of actin networks by myosin, and myosin transport 

in actin networks. 

1.2.1 Self-organization of actin structures 

 Self-organization is a process by which macroscopic order emerges from local interactions 

between components in a disordered system. Actin filaments and actin-crosslinking proteins form 

higher-ordered actin structures, such as cytokinetic rings, cortex, and lamellipodia, through self-
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organization. What drives the self-organization of actin structures is the dynamics of and 

interactions between actin filaments and actin-binding proteins. Self-organizing actin structures at 

the correct time and place is crucial for cellular processes including cell migration and division [7].  

 An effective and widely used approach to study self-organization is a bottom-up approach: 

an approach of building a self-organized structure from several components of the structure [8]. In 

vitro motility assay is one of the bottom-up approaches that has been widely used to study self-

organization of actin filaments [9]. In motility assay, actin filaments slide on motors that are fixed 

on the glass surface or lipid bilayer (Fig. 1.1A). It was originally used with low actin density where 

a single actin filament can be visualized, to measure the mechanochemistry of motors or 

mechanical properties of actin filaments [10]. More recent research observed that with a high 

enough density of actin, crowding effects induce collective behavior and self-organization of actins 

due to repulsive interaction between them [11]. Many diverse structures, including bands, flocks, 

and swirls, have been observed [9, 12] (Fig. 1.1B, C). When cross-linkers were added, contractile 

or ring-like structures were formed depending on the cross-linker type [13]. Motility assay is 

suitable for understanding the interactions among motors, actins filaments, and cross-linkers due 

to the easiness of visualizing patterns formed by the interactions.  

 

Figure 1.1. Myosin-based motility assay. (A) A schematic diagram showing motility assay. 

Myosin is fixed on the glass surface, and actin glides on myosin. Polyethylene glycol (PEG) is a 

crowding agent used to control repulsive interaction between filaments. (B) Formation of actin 

bands on motility assay on a glass surface. Scale bars, 100 µm. (C) Formation of transient bands 

(left) and ring-like structures (right) on a lipid bilayer. Scale bars, 20 µm.  (A) and (B) are adopted 

from [9] and (C) is adopted from [12]. 

 Simulation of in vitro motility assay is useful in that one can control and measure values 

that are not measurable in an experiment, such as repulsive interaction between filaments [14], to 

identify the physical origin of the interactions that leads to self-organization. A computational 

study found that repulsion between filaments promotes alignment between them, thus forming 
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structures such as bands and swirls depending on other parameters such as filament concentration 

[14]. Most computational studies simplified motors into force exerting on filaments, thus not 

considering unbinding and binding of motors to the filaments [14].  

Possible importance of motor binding and unbinding is demonstrated by a microtubule 

motility assay. Studies have shown that dynein aligns microtubules, whereas kinesin cannot unless 

a crowding agent is added [15, 16]. With kinesin being processive (i.e. high duty ratio) and dynein 

non-processive, it was suggested that frequent unbinding and binding of dynein reorient the 

filaments [15, 16]. Thus, there is a need to use a computational model that explicitly describes 

motor unbinding and binding, which could offer additional information on the interaction between 

actin filaments and binding proteins during self-organization. 

1.2.2 Contraction of actin structures 

A cell dynamically changes its shape, and it is attributed to the force generation by myosin 

in the cell cortex, a thin actin network located underneath and adhere to the plasma membrane. 

Myosin II generates a tension gradient in the cell cortex due to the heterogeneity of the cortical 

architecture and myosin concentration within the cortex [4]. The gradient of tension induces 

contraction or rupture of the cell cortex [17] (Fig. 1.2). Such morphological change in the cell 

cortex drives diverse cell functions. Cell shape change driven by cortex rupture drives the 

amoeboid migration of cells [18]. During morphogenesis, contraction of the cell cortex induces 

cell intercalation and axis elongation, leading to tissue formation [19]. Moreover, cortex rupture 

was shown to drive angiogenesis [20].  

 

Figure 1.2. Rupture of cortex due to tension gradient generated by myosin. Cortical rupture can 

further induce blebbing of cells. Blue rods: actin filaments, red dumbbells: myosin, green dots: 

membrane adhesion. Adopted from [17]. 



 

 

 27  

Until recently, studying cortex contraction in vivo was difficult due to spatiotemporal 

limitation in imaging [21]. Thus, in vitro studies have been widely used to understand myosin-

induced contraction of the actin networks (Fig. 1.3). Researchers found, in both in vitro and in vivo, 

that initial connectivity of actin networks, determined by actin filament length and cross-linker 

density, governs network contraction and tension generation [22, 23]. For contraction of an 

initially well-connected network, decreasing connectivity of the network is pivotal [24]. An in 

vitro study showed that myosin motors contract a crosslinked actin network into multiple clusters 

due to unbinding events of cross-linkers [24]. Actin filaments fragmentation by buckling has been 

identified to induce contraction of networks in both in vitro and computational studies [25-27]. 

Although there are two mechanisms by which filaments can be severed – buckling and stretching 

– no current in vitro or computational research addresses the latter. It was suggested that if one 

part of filaments is buckled, there is a part of filaments that is stretched [25]. Thus, to better 

understand cortical contraction, it is necessary to investigate how filament stretching affects the 

contraction of the actomyosin network. 

     

              

Figure 1.3. Contraction of in vitro actomyosin network due to myosin activity. (A) Schematic of a 

reconstituted actomyosin on lipid bilayer. (B) Initially homogeneous network contracts into (C) 

clusters due to myosin activity. Adapted from [25]. 

1.2.3 Transport along actin structures 

 Cellular cargoes, such as synthesized proteins, are transported within cells to the place 

where they are needed, which is called intracellular transport. Intracellular transport plays a pivotal 

role in organism functions, by allowing the delivery of proteins to organelles and secretion of 

hormones and neurotransmitters. Microtubules and actin filaments are involved in intracellular 
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transport. Kinesin and dynein transport cargoes on microtubules, whereas myosin V transport 

cargoes on the actin filaments in the cell cortex (Fig. 1.4). Transport inside the cell cortex has been 

suggested as an important step for secretion [28]. 

 

Figure 1.4. Schematic diagram of intracellular transport. Cellular cargoes are transported along 

microtubules and within actin network by molecular motors. Adopted from [29]. 

Due to the complex and dense structure of the cell cortex, it is not trivial to understand how 

transport is regulated in the cell cortex. One useful approach is single-particle tracking. From 

single-particle tracking, researchers can retrieve the trajectory of individual cargo from which they 

can infer interaction between cargo and environment [30]. For example, the slope (α) of the mean 

squared displacement (MSD) calculated from the trajectory shows if the cargo motion is 

subdiffusive (α<1) or superdiffusive (1<α<2). It was shown that subdiffusive motion indicates 

cargoes are trapped in the cytoskeleton [29], whereas superdiffusive motion indicates directed 

motion by molecular motors [31]. On microtubules, cargoes exhibited directed motion, whereas 

they showed subdiffusive behaviors on actin structures [32, 33].  

Subdiffusive motion of cargoes in the actin cortex can be attributed to myosin V, which 

can bind to multiple filaments at once, termed tug-of-war [29]. Indeed, it was shown that unlike in  

bundles and networks with filaments of similar polarity, cargo motion was inhibited in bundles 

and isotropic networks where filaments have mixed polarity [29, 34]. There is a possibility that 

tug-of-war can remodel actin networks by force generation. In addition, myosin II can remodel the 

actin network due to its contractile activity. It is not clear how the remodeling of the actin network 

by myosin affects in turn the myosin-based transport.  
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 If we understand how myosin transport is regulated by remodeling, it will enable ways to 

regulate remodeling and transport in situations where inefficient transport becomes a problem [35]. 

We sought to understand how feedback between cargo transport and cell cortex remodeling 

regulate the transport efficiency of cargoes.  

1.3 Significance of the study 

Cells are highly mechanical; they can generate force, remodel themselves, and sense 

mechanical stimuli. Mechanical behavior of cells come from the mechanics of the actin 

cytoskeleton [36], which is governed by the complex interplay of myosin, actin-crosslinking 

proteins, and actin filaments. Mutations in myosin and actin-crosslinking proteins have been 

associated with many types of diseases [19, 37-39]. There have been many studies on 

understanding the machinery of the actin cytoskeleton [4, 8]. While in vivo experiments are crucial 

for understanding how the cytoskeleton regulates whole cell behavior, they are not suitable for 

measuring mechanical parameters of individual proteins or interaction between them inside the 

cytoskeleton. In vitro experiments [8] and single-molecule experiments [40, 41] are more suitable 

for measuring mechanical parameters and observing interactions between proteins. A 

computational model can serve as a useful tool to predict cytoskeleton behavior when calibrated 

by data from in vitro or single-molecule studies. However, many computational models simplify 

important mechanical parameters or response that would crucially affect predicted cytoskeleton 

behavior [14, 42]. We bridge the gap by using a computational model that incorporates mechanics, 

dynamics, and geometry of the cytoskeleton in detail to unravel interactions that have not been 

identified in previous studies. Thus, this research contributes to a more complete understanding of 

the cellular processes that rely on the mechanical and dynamical aspects of the actin cytoskeleton.  

1.4 Dissertation objectives 

 To understand cellular processes governed by the actin cytoskeleton, we investigate how 

proteins interact during the morphological change of the actin network and how the remodeling of 

actin networks governs the transport of motors. The following specific aims will be addressed: 

1. To understand how actin filaments self-organize into diverse structures in myosin-based motility 

assay  
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2. To understand how force generation by myosin governs contraction and fracture of cortex-like 

actin networks 

3. To understand how remodeling of cortex-like actin networks governs transport by myosin 

1.5 Methods 

 In this dissertation, we use an agent-based model that faithfully incorporates dynamics and 

mechanics of actin filaments and actin-binding proteins which are modeled as elastic cylindrical 

segments with extension and bending stiffness [43]. The position of each segment is updated by 

the Langevin equation. Dynamic events such as actin treadmilling, actin severing, cross-linker 

unbinding, and motor walking were incorporated. Details of the model and parameter values are 

included in each chapter of the dissertation. 

1.6 Organization of the dissertation 

 This dissertation is composed of four studies. In the first study (Chapter 2), parameters in 

motility assay that are important for gliding speed and self-organization of actin filaments were 

identified. In the second study (Chapter 3), self-organization of actin structures in the motility 

assay depending on repulsive force, bending stiffness of actin, actin concentration, and filament 

length was investigated. We identified parameter values that lead to different patterns formed by 

actin filaments, including flocks, bands, and swirls. In the third study (Chapter 4), we evaluated 

the effects of filament stretching in the contraction of the actomyosin network. In the fourth study 

(Chapter 5), we investigated the effects of actin network remodeling on myosin-based transport in 

cortex-like networks. We identified three mechanisms by which motors can be trapped.   
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 COLLECTIVE AND CONTRACTILE FILAMENT MOTIONS IN THE 

MYOSIN MOTILITY ASSAY 

The work described in this chapter has been published in [44]. 

2.1 Introduction 

The actin cytoskeleton within animal cells is responsible for a variety of functions. 

Interactions between F-actin, actin cross-linking protein (ACP), and molecular motors within the 

cytoskeleton generate mechanical forces that regulate physiological functions, such as cell 

migration, cytokinesis, wound healing, and morphogenesis [45, 46]. It is known that F-actins in 

cells carry tensile forces that are generated due to myosin motor proteins interacting with the F-

actins. Dimers of myosin II assemble themselves into thick filaments. These thick filaments then 

walk toward the barbed end of the F-actin by using their motor heads [47]. This walking is often 

explained by the cross-bridge cycle with multiple states[48]. The transitions between these states 

are described by their mechanochemical rates[48]. 

In vitro myosin motility assays have been used in the past to better study the interactions 

between F-actin and myosins. In these motility assays, F-actins move along a surface covered with 

immobilized myosin motor heads [11, 49]. When F-actin density is high in the presence of strong 

crowding effects, ordered motions of F-actins were observed. This is attributed to severe volume-

exclusion effects between F-actins [50-54]. Above critical F-actin density, F-actins moved together 

as clusters, interconnected bands, and swirls. When ACPs were present, these motions became 

more or less collective [13, 55, 56]. For example, inclusion of fascin in the motility assay resulted 

in formation of rings, elongated fibers, and polar structures depending on conditions. However, α-

actinin led to contractile patches, and filamin A induced formation of a more stable network. Other 

ACPs, such as α-EPLIN, cortexillin, and anillin, also induced formation of unique structures. Some 

of these studies suggested hypotheses about how interactions between F-actin, ACP, and myosin 

motors facilitate collective motions at both filament and network levels. 

To provide more insights into understanding of microscopic origins, myosin motility 

assays have been also studied via computational and theoretical models. One study employed a 

stochastic model to show how twirling motions of F-actins are caused by myosin motors [57]. An 



 

 

 32  

agent-based model based on Brownian dynamics was developed to determine an expression that 

can accurately predict how long gliding F-actins remain bound to myosin motors before 

dissociation [58]. Another model based on Brownian dynamics modeled F-actins as worm-like 

chains and cross-linkers and motors as springs with force-dependent kinetics [59]. This model 

demonstrated that the persistency and velocity of a gliding filament increase as a larger number of 

motors are bound to the filament due to an increase in either motor density, motor duty ratio, or 

filament length. In addition, a bead-rod model was employed to simulate single F-actin interacting 

with stationary motors simplified by springs [60]. This model demonstrated that higher ATP 

concentration leads to faster F-actin movement, whereas a change in motor density does not affect 

F-actin speed. Also, this study demonstrated that the gliding motion can be guided by chemical 

cues at probability directly affected by processivity of myosin motors. However, most of the 

previous models had limitations. For example, to reduce computational costs, the mechanics of F-

actin was drastically simplified, or motors were considered implicitly by directly applying 

propelling forces to F-actin. In studies with explicit consideration of motors, gliding motion of 

only one F-actin was simulated, or mechanochemical cycles of myosin were not incorporated in a 

rigorous manner. Due to these critical limitations, it is difficult to rigorously investigate collective 

and contractile behaviors of multiple F-actins or how they emerge from molecular interactions 

between motors and F-actins.  

To overcome these hurdles, we employed a well-established agent-based computational 

model based on Brownian dynamics with the Langevin equation [61, 62]. First, we ran simulations 

in the absence of ACPs and volume-exclusion effects between F-actins to focus on pure gliding 

motions of individual F-actins as a base study. We evaluated effects of a variation in the average 

length of F-actin and the density and mechanochemical rate of motors. Then, we investigated 

influences of volume-exclusion effects between F-actins on behaviors of F-actins by varying the 

strength of volume-exclusion effects acting between neighboring F-actins. Lastly, we added ACPs 

with a wide range of density and unbinding rates to identify the effects of ACPs on contractile 

behaviors of F-actins in the motility assay. 
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2.2 Methods 

2.2.1 Model overview 

We used an agent-based computational model based on Brownian dynamics, as in our 

previous studies [27, 61-63]. F-actin, ACP, and motor are coarse-grained by cylindrical segments 

(Fig. 2.1A).  F-actin is simplified by cylindrical segments of 140 nm in length with polarity (i.e. 

barbed and pointed ends) serially connected by elastic hinges. Note that the length of the actin 

cylindrical segment is determined with consideration of both computational efficiency and realistic 

description of bending deformation of F-actins as in our previous studies [61, 63, 64]. Each ACP 

consists of two arms connected at its center point by elastic hinges. In this chapter, one-arm motor, 

which can bind to only one F-actin was used. All parameter values are listed in Tables 2.1 and 2.2. 

Most of the parameter values are inherited from our previous models that successfully 

recapitulated various mechanical and dynamic behaviors of actin networks [27, 61-63].  

2.2.2 Brownian dynamics via the Langevin equation 

Displacement of each cylindrical segment constituting actin, motor, and ACP is governed 

by the Langevin equation with inertia neglected: 
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where δij is the Kronecker delta, Δt = 1.5×10-5 s is a time step, and δ is a unit second-order tensor. 
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where µ is viscosity of the medium, and rc,i and r0,i are the diameter and length of a segment, 

respectively. At each time step, position of each segment is updated using the Euler integration 

scheme: 
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2.2.3 Deterministic forces 

The deterministic force, Fi, includes extensional, bending, and repulsive forces. 

Extensional and bending forces involved with F-actin, ACP, and motor are calculated based on 

harmonic potentials: 
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where κs and κb are extensional and bending stiffness, respectively, r is length of a segment, θ is 

an angle formed by segments, and the subscript 0 represents an equilibrium value. Extensional 

(κs,A) and bending stiffness (κb,A) of F-actin maintain the length of each actin segment at an 

equilibrium length (r0,A) and an angle between adjacent actin segments at an equilibrium angle 

(θ0,A), respectively. Similarly, extensional (κs,ACP) and bending stiffness (κb,ACP) of ACPs maintain 

the length of each ACP arm and an angle formed by two ACP arms at their equilibrium values 

(r0,ACP and θ0,ACP), respectively. Extensional stiffness of motors (κs,M) maintains an equilibrium 

length of the motor arm (r0,M). Forces exerted on binding sites of an actin segment by motors and 

ACPs are distributed to two end points of the segment as explained in our previous work [61].  

Repulsive forces between actin segments located closely are calculated based on the 

harmonic potential: 
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where r12 is a minimum distance between a pair of actin segments, and κr is strength of the repulsive 

force. 

2.2.4 Dynamics of F-actin 

Formation of F-actin is initiated by appearance of one cylindrical segment occurring at a 

given nucleation rate (kn,A). The segment is quickly elongated into a filament by addition of 

cylindrical segments to the barbed end at a given assembly rate (k+,A). Depolymerization of F-actin 

is simulated by removal of cylindrical segments from the pointed end at a given disassembly rate 

(k-,A). In cases without F-actin turnover, k-,A is zero, so F-actins do not undergo any dynamic event 

after all actin segments are consumed for formation of F-actins. By contrast, in cases with F-actin 

turnover, k-,A is equal to k+,A, leading to treadmilling with a balance between polymerization at the 

barbed end and depolymerization at the pointed end. Thus, the average length of F-actin does not 

change over time after the number of free actin segments reaches a steady state. An actin turnover 

rate, kt,A (= k-,A = k+,A), indicates how fast the treadmilling takes place. 

2.2.5 Dynamic behaviors of ACPs  

ACPs bind to binding sites located on actin segments without preference of a contact 

angle. We modeled both permanent and transient ACPs. Permanent ACPs do not unbind after 

binding to F-actins, which mimic kinetic behaviors of ACPs like scruin [36]. Transient ACPs can 

unbind from F-actins in a force-dependent manner, following Bell’s law [67]: 
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where 0

u,ACPk  is a zero-force unbinding rate constant, λu,ACP represents sensitivity to the magnitude 

of applied spring force ( s,ACPF ), and kBT is thermal energy. Note that we employed a positive 

value for λu,ACP to mimic the response of a slip bond, so 
u,ACPk  exponentially increases with a 
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higher applied force. The reference values of 0

u,ACPk  and λu,ACP are determined based on those of 

filamin A [68].  

Table 2.1. List of parameters employed in the model. 

Symbol Definition Value 

r0,A Length of an actin segment 1.4×10-7 [m]  

rc,A Diameter of an actin segment 7.0×10-9 [m][69] 

θ0,A Bending angle formed by adjacent actin segments 0 [rad]  

κs,A Extensional stiffness of F-actin 1.69×10-2 [N/m]  
*

b,A  Reference bending stiffness of F-actin 2.64×10-19 [N·m][70] 

r0,ACP Length of an ACP arm 2.35×10-8 [m][71] 

rc,ACP Diameter of an ACP arm 1.0×10-8 [m]  

θ0,ACP Bending angle formed by two ACP arms 0 [rad]  

κs,ACP Extensional stiffness of ACP 2.0×10-3 [N/m]  

κb,ACP Bending stiffness of ACP  1.04×10-19 [N·m]  

r0,M Length of a motor arm 1.35×10-8 [m]  

rc,M Diameter of a motor arm 1.0×10-8 [m]  

κs,M Extensional stiffness of a motor arm 1.0×10-3 [N/m] 
*

20k  Reference ATP-dependent unbinding rate of myosin heads 20 [s-1] 

Nh Number of heads represented by a motor arm 8 

Na Number of arms in a motor 1 

kn,A Nucleation rate of actin 0.000125 – 1 [μM-1s-1] 

k+,A Polymerization rate of actin at the barbed end 60 [μM-1s-1] 
0*

u,ACPk  Reference zero-force unbinding rate constant of ACP 0.115 [s-1][68] 

λu,ACP Sensitivity of ACP unbinding to an applied force 1.04×10-10 [m] 

κ*
r,A Reference strength of a repulsive force 1.69×10-3 [N/m] 

Δt Time step 1.15×10-5 [s]  

μ Viscosity of surrounding medium 8.6×10-1 [kg/m·s] 

kBT Thermal energy 4.142×10-21 [J] 

CA Actin concentration 15 – 240 [μM] 

RM Motor density (= Ratio of motor concentration to CA) 0.008 – 0.8 

RACP ACP density (= Ratio of ACP concentration to CA) 0 – 0.1 

<Lf> Average length of F-actins  0.62 – 5.06 [μm]  
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Table 2.2. List of parameter values used for adopting “parallel cluster model.” [72, 73] 

Symbol Definition Value 

k01 A rate from unbound to weakly bound state 40 [s-1]  

k10 A rate from weakly bound to unbound state 2 [s-1] 

k12 A rate from weakly bound to post-power-stroke state 1000 [s-1] 

k21 A rate from post-power-stroke to weakly bound state 1000 [s-1] 

k20 A rate from post-power-stroke to unbound state 5-640 [s-1] 

F0 Constant for force dependence 5.04×10-12 [N] 

Epp Free energy bias toward the post-power-stroke state -60×10-21 [J] 

Eext External energy contribution 0 [J] 

d Step size 7×10-9 [m] 

km Spring constant of the neck linkers 1.0×10-3 [N/m] (= κs,M) 

 

2.2.6 Dynamic behaviors of motors 

In this model, it is assumed that a motor arm represents cooperative behaviors of a small 

number of myosin heads in terms of kinetic behaviors. To avoid confusion, we name it one-arm 

motors rather than one-headed motors. Each motor arm can bind only to one binding site on actin 

segments at a rate of 40Nh s
-1, where Nh is the number of myosin heads represented by each motor 

arm. We assume Nh = 8, resulting in slightly more processive motors and higher stall forces, as 

opposed to one myosin head in general. Walking (kw,M) and unbinding rates (ku,M) of the motor 

arms are determined by the parallel cluster model (PCM) to reflect the mechanochemical cycle of 

myosin motors [72, 73]. In the PCM, three mechanochemical states are defined, and there are five 

mechanochemical rates between the states (Table 2.2). Details of implementation and 

benchmarking of the PCM in our model were explained in detail in our previous study [61]. We 

vary one of the mechanochemical rates, ATP-dependent unbinding rate of myosin heads (k20), to 

probe its influences. kw,M and ku,M generated by PCM are proportional to k20 and lower with higher 

applied force, regardless of k20, which corresponds to the catch-bond behavior of myosin motors. 

The stall force is inversely proportional to k20. Although we used the value of Nh higher than 1, the 

ranges of kw,M, ku,M, and stall force explored in this study enable us to account for more or less 

processive motors. With the reference value of k20 = 20 s-1, the unloaded walking velocity of motors 

is 140 nm/s. This value is similar to the walking velocity of non-muscle myosin II [74, 75], whereas 
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it is ~2 μm/s with the highest value of k20 used in this study, which is larger than the walking 

velocity of smooth muscle myosin II [74, 76].  

2.2.7 Initial simulation setup 

 We used a thin computational domain (10×10×0.1 μm) with a periodic boundary condition 

in the x and y directions (Fig. 2.1). F-actins are formed by the self-assembly of actin segments 

located at the same z position. ACPs are included only in a portion of the simulations. ACPs bind 

to F-actin to form functional cross-links between pairs of F-actins. Motors are distributed at 

random x and y coordinates at the same z position. A difference between z positions of F-actins 

and motors corresponds to the equilibrium length of motor arms (= 13.5 nm). Therefore, binding 

of a motor arm to F-actin is possible if they are located at similar x and y coordinates. While F-

actins are assembled, a fraction of the motor arms binds to F-actin with no walking motion. After 

all F-actins are assembled, motors start walking toward the barbed ends of F-actins.  

 

Figure 2.1. Agent-based computational model used for simulations in this study. (A) A schematic 

diagram showing a network consisting of F-actin (cyan), actin cross-linking protein (ACP, yellow), 

and motor (red). Each element is simplified by cylindrical segments. Bending (κb) and extensional 

stiffnesses (κs) maintain equilibrium angles formed by adjacent cylindrical segments (indicated by 

bent arrows) and equilibrium lengths of cylindrical segments (indicated by springs), respectively. 

(B) An example of networks formed by self-assembly of the three elements in a very thin 

computational domain (10×10×0.1 μm) with a periodic boundary condition in x and y directions.  
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2.2.8 Quantification of F-actin motions  

Velocities of endpoints of all actin segments, vi,A(t), are calculated every two seconds. We 

quantified the distribution of 
,Aiv  measured at all time points to show speed distribution of all F-

actins. To evaluate how fast F-actins are displaced by motors on average, the average speed of F-

actins for each simulation is obtained by averaging 
,Aiv  over all endpoints and all time points. 

In addition, persistency of motions of F-actins is evaluated by calculating the average of 

autocorrelation of velocity vectors: 
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where T is the duration of simulations, and τ is time lag. If F-actins hardly change a direction 

during displacement for τ, cos ( )   is close to 1. In cases with F-actins propelled only by motors, 

cos ( )   exponentially decays.  

We also evaluated the extent of collective motions by measuring a correlation between 

velocities of endpoints located on neighboring F-actins. As shown in previous studies, F-actins 

can exhibit collective motions by aligning with each other if there is a volume-exclusion effect 

between neighboring F-actins. During such collective motions, F-actins tend to move in a parallel 

or anti-parallel manner to avoid frequent collisions. For this calculation, we identify all pairs of 

endpoints on F-actins located at a distance between r and r + Δr and then calculate the average of 

correlations between velocities of all pairs: 
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where α is an angle between two velocity vectors, and the pair of endpoints i and j satisfies

,A ,A( ) ( )i jr t t r r −  +r r , and they should not belong to the same F-actin. This calculation is 

performed for different r and t to measure the extent of collective motions of F-actins as a function 

of distance and time. Then, we calculated the time-averaged value of cos ( , )r t  to plot 
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cos ( )r . To account for collective motions which emerge later in simulations, the time-

averaging was done for last 50 s. We set Δr to 0.2 µm, and a maximum distance that we considered 

for the calculation is 1 µm. 

2.2.9 Quantification of F-actin curvature  

Persistence length of F-actin can be calculated directly using the following relationship: 

b,A 0,A

p

B

r
l

k T


=        (2.10) 

where κb,A is the bending stiffness of F-actin in N·m. However, F-actins interacting with motors 

can have a curvature leading to a different persistence length. We evaluated the actual curvature 

of F-actin by measuring a correlation between unit tangential vectors along the contour of F-actin, 

u(s): 

cos ( ) ( )s s s =  +u u                                                      (2.11) 

where s is a position along the contour of F-actin, and Δs is a distance between two positions where 

the correlation is calculated. This measurement is often used for evaluating the persistence length 

of polymers. cos  is plotted as a function of Δs to evaluate the curvature of F-actins. A faster 

decrease in cos  is indicative of F-actins with a higher curvature. 

2.2.10 Evaluation of network morphology  

We evaluated heterogeneity of network morphology by measuring spatial distribution of 

F-actins. For the measurement, the computational domain is divided into NG×NG grids in the x and 

y directions, where NG represents the number of grids in each direction. Each grid has its own 

coordinate, (i, j). We measured the number of actin segments located in each grid, ,

A

i j . Then, the 

standard deviation of ,

A

i j  is calculated over grids with constant i or j (i.e. in x or y direction). By 

averaging all the standard deviations, heterogeneity of F-actin, QA, is calculated like the following: 
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Since the heterogeneity calculated in this method depends on the choice of NG, we carefully 

determined the optimal value of NG at 20. We also calculated the time-average of QA for last 50 s 

to account for network morphology at later times. 

 In addition, using 30×30 grids, we evaluated how network morphology evolves over time 

in each simulation. We calculated a correlation between 
,

A

i j  in grids at the end of a simulation 

and 
,

A

i j  in grids at each time point. If network morphology quickly reaches a steady state and 

does not vary significantly at later times, the correlation also increases fast and then remains near 

1 till the end. If network morphology keeps changing over time, the correlation increases gradually. 

To quantify how dynamically a network changes its morphology, we calculated duration which 

the correlation is larger than 0.5. Larger duration indicates more static or “frozen” network 

morphology. 

2.2.11 Analysis of forces on F-actins and motors 

We calculated the average of spring forces acting on all chains of F-actins at each time 

point. It has been shown previously that motor activities induce tensile forces on F-actins because 

the compressive forces are relaxed due to buckling. Thus, dominance of tensile forces on F-actins 

can be an indicator for contractile (i.e. tensile) stress on networks. To show a correlation between 

local stress and network morphology, we calculated the distribution of spring energy density in a 

network at the end of a simulation. We divided a computational domain into 30 × 30 grids in the 

x and y directions. In each grid, we calculated the sum of spring energy of all actin segments and 

divided the sum by the volume of each grid to obtain spring energy density of each grid in J/m3. 

Since most of the F-actins are subjected to tensile forces, the contribution from F-actins under 

compression to spring energy is negligible. The distribution of spring energy density is visualized 

using heat maps with color scaling. 

In addition, forces exerted by motor arms that are interacting with F-actins were 

monitored. The average of the forces was calculated over time to estimate how much force motors 

generated at each time point on average.  
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2.2.12 Volume-exclusion effects between F-actins 

 Repulsive force between F-actins depends on the distance between actin segments and 

represented by a harmonic potential: 
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where κr,A is strength of the repulsive force, r12 is a minimum distance between two actin segments, 

and rc,A is the diameter of an actin segment. 

2.3 Results 

2.3.1 Effects of properties of F-actin and motor 

Before investigating roles of volume-exclusion effects and ACPs, it is necessary to 

determine more basic properties of F-actin and motor. Thus, we tested effects of three parameters 

in the absence of ACPs (i.e. zero ACP density, RACP = 0) and volume-exclusion effects (κr,A = 0): 

average length of F-actin (<Lf>), motor density (RM), and ATP-dependent unbinding rate of motors 

(k20). Note that without ACPs and volume-exclusion effects, F-actins move independently without 

physical interactions with other F-actins. For a reference condition, <Lf> is ~1.5 μm, RM is 0.8, 

and k20 is 20 s-1. Under the reference condition, F-actins move relatively fast and quite persistently 

as observations in the myosin motility assay experiments. We varied one of the three parameters 

with others fixed in order to evaluate the influences of each parameter. 

 First, we changed RM between 0.008 and 0.8. Note that it is hard to evaluate the dependence 

of F-actin behaviors on RM if models consider motors in an implicit manner. With fewer motors, 

F-actins move slower and change their directions more often (Figs. 2.2 and 2.3). If motors are 

sparsely distributed in space, it is much harder for F-actins to maintain connection to motors. 

Therefore, there are a larger portion of F-actins diffusing without connection to any motor and F-

actins bound to only one motor at lower RM, resulting in much lower speed and persistency (Fig. 

2.2). In addition, with fewer motors, a correlation between unit tangential vectors measured along 

the contour of F-actins deviates more from that corresponding to their persistence length because 

F-actins may need to bend more to bind to sparsely distributed motors (Fig. 2.3B). Spatial 

distribution of F-actins is homogeneous regardless of RM (Figs. 2.3C-D).  
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Figure 2.2. Motor density (RM) and average length of F-actins (<Lf>) affect the gliding speed of F-

actins. (A, C) Distribution of speed of F-actins. (B, D) Fraction of F-actins that are bound to only 

one motor or not bound to any motor. In these cases, volume-exclusion effects between F-actins 

were not incorporated. With smaller RM or <Lf>, speed of F-actin tends to be lower due to a larger 

number of free F-actins and F-actins bound to only one motor. If F-actins are long enough 

compared to average spacing between adjacent motors determined by RM, most F-actins can keep 

moving at speed close to the unloaded walking speed of motors (~0.14 µm/s). 
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Figure 2.3. Effects of motor density (RM). (A) Autocorrelation of velocities of F-actins with various 

RM. With smaller RM, persistency of F-actin movement tends to be lower due to a larger number 

of free F-actins and F-actins bound to only one motor. (B) A correlation between unit tangential 

vectors along contour of F-actins. A dotted line indicates the correlation corresponding to the 

persistence length of F-actin. (C) Morphology of networks with different RM at the last time point, 

t = 100 s. (D) Heterogeneity of F-actin spatial distribution (QA). RM hardly affects the heterogeneity.  

 

 Second, we altered <Lf> between 0.62 μm and 5.06 μm. In these cases, we used RM = 0.08 

which is 10-fold smaller than the reference condition because we found that effects of <Lf> with 

RM = 0.8 are not significant. With larger <Lf>, the frequency of F-actins moving faster increases 

(Fig. 2.2C). Short F-actins are more likely to lose all connections to motors. Then, more F-actins 

diffuse in space with lower <Lf> (Fig. 2.2D). In addition, the number of F-actins bound to only 

one motor that can move slower due to possible rotation also increases. These F-actins result in 

tails at low speed in the speed distribution. The range of <Lf> for being these F-actins is 

determined largely by average distance between adjacent motors fixed in space. With lower RM, 

the average distance increases, so more F-actins move slower. If F-actins are long, they can 

maintain connectivity to more than one motor despite a long distance between adjacent motors, so 

the speed can be relatively faster. By contrast, if motors are located very densely, effects of <Lf> 

become negligible. Longer F-actins tend to be more curved since such F-actins are bound to many 
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of the sparsely distributed motors via bending (Fig. 2.4B). Despite their higher curvature, longer 

F-actins tend to move more persistently in one direction at a short timescale because very short F-

actins can rotate due to lack of connectivity to motors (Fig. 2.4A). Regardless of <Lf>, F-actins 

show quite homogeneous distribution overall (Figs. 2.4C-D). 

 

Figure 2.4. Influences of average length of F-actins (<Lf>). (A) Autocorrelation of velocities of F-

actins. (B) A correlation between unit tangential vectors along contour of F-actins. A dotted line 

indicates the correlation corresponding to the persistence length of F-actin. With lower <Lf>, F-

actins are less curvy because of a larger number of free F-actins and F-actins bound to only one 

motor. (C) Morphology of networks with various <Lf> at the last time point, t = 100 s. (D) 

Heterogeneity of spatial distribution of F-actins (QA). In all cases, networks are very homogeneous.  

Lastly, we varied k20 between 5 s-1 and 640 s-1. As k20 increases, both unbinding and 

walking rates of motors measured in simulations are higher, consistent with imposed walking (kw,M) 

and unbinding rates (ku,M) of motors (Fig. 2.5A). The enhanced walking rate increases speed of F-

actins in general (Fig. 2.5B). In addition, due to significantly higher unbinding rate, connections 

between F-actins and motors become very unstable. A higher unbinding rate leads to a lower 

number of active motors bound to F-actins at equilibrium (Fig. 2.5C), and F-actins frequently 

change their directions during movement (Fig. 2.5D). However, the curvature of F-actin and the 

heterogeneity of F-actin spatial distribution are not affected by k20 (Figs. 2.6A-C). F-actins 
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experience slightly larger tensile forces only at lower k20 because motors with high k20 mostly walk 

at unloaded velocity due to their high unbinding rate (Figs. 2.5A and 2.6D).  

 

Figure 2.5. A mechanochemical rate in the cross-bridge cycle of myosin motors has a great effect 

on gliding motions of F-actins. We varied one of mechanochemical rates of myosin heads 

employed in the parallel cluster model, the ATP-dependent unbinding rate of motors (k20). In these 

cases, volume-exclusion effects between F-actins were not included. (A) Unbinding and walking 

rates of motors measured from simulations. (B) Distribution of speed of F-actins. (C) Fraction of 

active motors that are bound to F-actins. With higher k20, F-actins tend to move faster, but the 

speed is reduced at the highest k20 because the unbinding rate of motors is too high for the motors 

to walk stably on F-actins. (D) Autocorrelation of velocities of F-actins with various k20. F-actins 

propelled by motors with higher k20 move much faster and therefore change directions more 

frequently during the same time interval. 

 



 

 

 47  

 

Figure 2.6. Influences of one of mechanochemical rates of myosin heads employed in the parallel 

cluster model, the ATP-dependent unbinding rate of motors (k20). (A) A correlation between unit 

tangential vectors along contour of F-actin. A dotted line indicates the correlation corresponding 

to the persistence length of F-actin. (B) Heterogeneity of F-actin spatial distribution (QA). (C) 

Morphology of networks with various k20 at the last time point, t = 100 s. Networks are quite 

homogeneous, regardless of k20. (D) Average tensile force exerted on F-actins. Motors with lower 

k20 exert slightly larger forces on F-actins due to higher stall force. 

2.3.2 Collective behaviors of F-actins in the presence of volume-exclusion effects 

In simulations described above, we ignored volume-exclusion effects to focus only on 

interactions between F-actins and myosin motors. However, in the motility assay experiments, F-

actins can feel the existence of other F-actins via their physical volumes because F-actins are 

located at similar height. The degree of volume-exclusion effects between F-actins can be varied 

by altering crowding effects that push F-actins down toward a surface coated with myosin motors. 

Several motility assay experiments have demonstrated the emergence of collective behaviors of F-

actins in the presence of strong volume-exclusion effects [50-54, 56].  

We investigated roles of volume-exclusion effects between F-actins in gliding behaviors 

of F-actins by imposing high repulsive forces (κr,A = κ*
r,A). It was observed that most of F-actins 

are aligned with each other when they collide, but they can still cross over each other if they 

encounter with a very large contact angle. With the reference actin concentration (CA = 60 μM), 
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F-actins form thin bundles soon after they start moving (Fig. 2.7A). These bundles are merged into 

thicker bundles over time, and some of the bundles form ring-like structures. Some of the ring-like 

structures last till the end of simulations, whereas the others disappear after some time.  

 

Figure 2.7. Volume-exclusion effects between F-actins lead to collective motions of F-actins. 

Actin concentration (CA) is varied with reference strength of repulsive forces (κr,A / κ*
r,A = 1). (A) 

Time evolution of network morphology with CA = 60 μM. Thin bundles emerge first, and then 

thick bundles and ring-like structures are formed later. (B) Final network morphology with 

different CA. (C) A correlation between network morphology at the end of simulations (100 s) and 

that at each time point. For example, a correlation value at 50 s represents a correlation between 

network morphology at 50 s and that at 100 s. Higher correlation values at later times in cases with 

large CA indicate that network morphology does not change significantly near the end. (D) A 

correlation between velocities of pairs of endpoints on F-actins located at a distance r, which is 

averaged for last 50 s. 

When CA is reduced, ring-like structures emerge less frequently, and F-actins move in a 

more persistent manner and show less curvature because collisions between F-actins occur less 

frequently at lower CA (Figs. 2.7B and 2.8A-B). At the lowest CA (15 μM), ring-like structures are 

not formed anymore, whereas transient formation of bundles still takes place. By contrast, as CA 

increases, thick and long bundles are formed over time. Persistency of F-actin motions decreases, 

and the curvature of F-actins increases (Figs. 2.7B and 2.8A-B). In all cases, there is no significant 

temporal change in the ensemble average of F-actin speed, indicating consistent motions of F-
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actins regardless of the frequency of collision events (Fig. 2.8C). Heterogeneity of network 

morphology gradually increases and reaches a plateau to a different extent (Fig. 2.8D). With high 

CA, network morphology does not vary much at later times (Fig. 2.7C). This observation is quite 

interesting in that the network forms a time-invariant frame along which F-actins can glide 

dynamically. Due to collision events, it is expected that neighboring F-actins move in a parallel 

manner in all cases. Indeed, we found that F-actins glide in a collective fashion by measuring a 

correlation between velocities of neighboring F-actins (Fig. 2.7D). Interestingly, the correlation at 

a distance smaller than 0.5 µm is maximal in a case with 120 µM. In this case, two large, thick 

ring-like structures are formed by behaving like a “sink” for F-actins; a number of F-actins are 

sucked into these structures and then trapped. In addition, distances between thick bundles and 

ring-like structures are relatively long. Thus, the correlation becomes very large in this case. With 

CA = 240 µM, the distances become smaller, so the correlation includes many pairs of F-actins 

located within different bundles or ring-like structures. These F-actins do not necessarily move in 

the same direction, resulting in a lower correlation than that with CA = 120 µM. 

 

Figure 2.8. Effects of actin concentration (CA) on motions of F-actins and network morphology in 

the presence of volume-exclusion effects (κr,A = κ*
r,A). (A) Autocorrelation of velocities of F-actins 

with various CA.  (B) A correlation between unit tangential vectors along contour of F-actins. A 

dotted line indicates the correlation corresponding to the persistence length of F-actin. (C) Average 

speed of F-actins. (D) Heterogeneity of F-actin spatial distribution (QA). 
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 We also probed influences of the extent of volume-exclusion effects on motions of F-actins 

with high CA (= 120 μM) by varying the strength of repulsive forces acting between neighboring 

pairs of F-actins (κr,A). With 3-fold lower κr,A, ring-like structures are not formed anymore (Fig. 

2.9A). Bundle-like structures still emerge, but bundle formation is not as clear as that in the 

reference case. With 10-fold lower κr,A, bundle formation is not obvious, becoming closer to cases 

without volume-exclusion effects shown earlier. By contrast, with 3-fold higher κr,A, a large 

number of ring-like structures are formed. Thus, with higher κr,A, network morphology tends to be 

more heterogeneous (Figs. 2.9A-B and 2.10A). The frozen network morphology emerging at later 

times is more apparent with higher κr,A (Figs. 2.9C and 2.10B). At CA ≤ 60 µM, the correlation 

between velocities of neighboring F-actins is higher with larger κr,A, meaning that collective 

behaviors of F-actins are determined by the extent of volume-exclusion effects at lower actin 

concentration (Figs. 2.10C-D). However, at CA = 120 µM, the correlation becomes maximal with 

the reference value of κr,A. Thick bundles and large ring-like structures in the case explained above 

lead to a higher correlation than many of smaller ring-like structures.  
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Figure 2.9. The extent of volume-exclusion effects between F-actins highly affects network 

morphology. The strength of repulsive forces (κr,A) is varied. (A) Final network morphology with 

different κr,A at CA = 120 μM. With stronger volume-exclusion effects, more ring-like structures 

appear. (B) Heterogeneity of final network morphology, (C) Duration during which a correlation 

between final network morphology and morphology at a time point is larger than 0.5, depending 

on CA and κr,A. With larger κr,A, network morphology becomes more heterogeneous and does not 

change much at later times. Effects of κr,A are weaker if CA is smaller. (D) A schematic diagram 

showing differences in behaviors of F-actins after collisions with other F-actins. If volume-

exclusion effects are very weak, F-actins cross over each other easily. If volume-exclusion effects 

are relatively strong, F-actins can align with each other if a contact angle at the moment of collision 

is small. However, they cross over each other if the angle is large. This behavior results in 

formation of thick, large bundles. With very strong volume-exclusion effects, F-actins cannot cross 

over each other regardless of whether the contact angle is large or small. Such a frequent change 

in the direction leads to formation of many, small ring-like structures. 
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Figure 2.10. Impacts of the extent of volume-exclusion effects on network morphology and 

collective motions of F-actins with three different actin concentrations (CA = 30, 60, and 120 µM). 

(A) Heterogeneity of F-actin spatial distribution (QA). (B) A correlation between final network 

morphology at 100 s and morphology at each time point, t. (C-D) A correlation between velocities 

of two points on different F-actins located (C) near a distance r or (D) within 0.2 µm. The 

correlation values are averaged for last 50 s.  

 

The dependence of F-actin motions and network morphology on volume-exclusion effects 

can be explained by what happens to F-actins when they encounter at a large or small contact angle. 

If volume-exclusion effects are very weak, F-actins cross over each other with a slight change in 

their gliding direction caused by weak repulsive forces (Fig. 2.9D, left). With relatively strong 

volume-exclusion effects, F-actins can align with each other if they encounter with a small contact 
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angle, but they cross over each other if the angle is large (Fig. 2.9D, center). This behavior can 

lead to the formation of thick, large bundles by allowing F-actins to move at longer distances until 

they encounter other F-actins with similar orientations. If the volume-exclusion effects are very 

strong, F-actins cannot cross over each other regardless of the contact angle (Fig. 2.9D, right). This 

results in a frequent change in their gliding directions and higher curvature, leading to the 

formation of ring-like structures.  

2.3.3 Impacts of the density and unbinding rate of ACPs 

 Most of the traditional motility assay experiments were performed without ACPs that 

cross-link pairs of F-actins. More recently, several experiments demonstrated how different types 

of ACPs lead to distinct network morphology and F-actin movements at very high actin 

concentration (CA) [13, 55, 56]. In addition, a myriad of experimental and computational studies 

have demonstrated that the amount of ACPs highly affects the contraction of actomyosin networks 

with myosin thick filaments (i.e. mobile motors) [22, 63, 77]. It is expected that even with lower 

CA and immobile motors, the density and property of ACPs will still regulate contractile behaviors 

of networks. Among various ACP properties, we focus on the unbinding rate of ACPs that is 

expected to vary, depending on types of ACPs. For example, while scruin is known to form 

permanent cross-links between F-actins [36], most of the ACPs unbind from F-actins at distinct 

force-dependent rates [68]. We evaluated effects of density (RACP) and zero-force unbinding rate 

constant (
0

u,ACPk ) of ACPs by varying them over wide ranges: 0.001 ≤ RACP ≤ 0.1 and 0 ≤
0

u,ACPk /

0*

u,ACPk ≤ 10, where 
0*

u,ACPk = 0.115 s-1 is a reference value of 
0

u,ACPk . We did not include repulsive 

forces between F-actins in these simulations. 

We observed that F-actins move slower and change their directions more frequently with 

higher RACP than those with lower RACP (Figs. 2.11A and 2.12A-B). This suggests that ACPs 

prevent F-actins from persistently moving via formation of cross-linking points between F-actins. 

If 
0

u,ACPk  is increased with RACP fixed, the fraction of ACPs in an active state (i.e. bound to a pair 

of F-actins) is reduced (Fig. 2.13A), and also it becomes much easier for motors to displace F-

actins because each cross-linking point exerts lower effective friction to F-actin due to more 

frequent unbinding events. Because of these two effects, F-actins move faster and more 
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persistently with higher 
0

u,ACPk  (Figs. 2.11A and 2.12A-B). In addition, in a case with RACP = 0.03 

and 
0

u,ACPk = 0, the average speed of F-actins is nearly zero (Fig. 2.11A), indicating that ACPs 

corresponding to ~3% of actins are sufficient enough to cross-link all F-actins into a network at 

CA = 60 μM.  

 

Figure 2.11. Motions and properties of F-actins drastically change depending on density (RACP) 

and zero-force unbinding rate constant ( 0
u,ACPk ) of ACPs. (a) Average speed of F-actin averaged for 

last 50 s. (b) Heterogeneity of F-actin spatial distribution and (c) network morphology measured 

in all cases at the last time point, t = 100 s. F-actins and ACPs are visualized by cyan and yellow, 

respectively. White dashed lines in (a-b) are drawn to include cases with 0
u,ACPk  = 0 in a log scale, so 

there is a discontinuity between the cases separated by the white dashed line.  
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Figure 2.12. Influences of density (RACP) and zero-force unbinding rate constant ( 0
u,ACPk ) of ACPs. 

(A) Speed distribution of F-actins. (B) Autocorrelation of velocities of F-actins. A spike at low τ 

in some curves originates from severe confinement of F-actins. (C) Heterogeneity of F-actin spatial 

distribution (QA). (D) Time evolution of average tensile force acting on F-actins. (E) A correlation 

between unit tangential vectors along contour of F-actins. Dotted lines indicate the correlation 

corresponding to the persistence length of F-actin. 

Network morphology exhibits interesting dependence on RACP and 
0

u,ACPk  (Figs. 2.11B-C 

and 2.12C). If there is no ACP unbinding (
0

u,ACPk = 0), the heterogeneity of network morphology is 

slightly higher at RACP = 0.003-0.03. In addition, at this range of RACP, F-actins experience the 

largest tensile force (Figs. 2.12D and 2.13B). If ACPs form permanent cross-linking points, two 

populations of F-actins exist: cross-linked population and free population. Note that the latter 
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hardly affects heterogeneity of network morphology because they do not aggregate as shown 

earlier in cases without ACPs. Due to the absence of unbinding, there is no change in states of F-

actins over time. Thus, in this case, RACP determines the number of F-actins in the two populations. 

If a network is cross-linked too loosely (RACP = 0.001), most F-actins glide on motors freely at 

speed close to the unloaded walking speed of motors (Fig. 2.11A), leading to homogeneous F-

actin spatial distribution (Fig. 2.11B). Accordingly, tensile forces acting on F-actins and those 

exerted by motors are quite low (Figs. 2.12D and 2.13B-C). By contrast, if F-actins in a network 

are cross-linked too heavily (RACP > 0.01), most of F-actins cannot move far from their initial 

locations as seen in nearly zero average speed (Fig. 2.11A), resulting in relative homogeneous 

morphology (Figs. 2.11B-C). In addition, although forces generated by motors are similar in all 

cases with RACP > 0.001, net tensile forces acting on F-actins are smaller with RACP = 0.1 since 

much larger motor forces are required for buckling of short segments between numerous cross-

linking points (Figs. 2.12D and 2.13B-C). Thus, under these two extreme conditions with high and 

low RACP, motors are not able to aggregate F-actins or generate large net tensile forces on F-actins. 

However, at intermediate level of RACP, motors can deform a network consisting of F-actins cross-

linked relatively well by generating larger tensile forces originating from F-actin buckling.  
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Figure 2.13. Effects of the density (RACP) and zero-force unbinding rate constant ( 0
u,ACPk ) of ACPs. 

(a) The fraction of active ACPs, which are ACPs that are bound to two F-actins. The fraction was 

averaged for last 50 s. (b) Tensile force acting on F-actins averaged for last 50 s. (c) Force exerted 

by motor arms averaged for last 50 s. White dashed lines in (a-c) are drawn to include cases with 
0
u,ACPk  = 0 in a log scale, so there is a discontinuity between the cases separated by the white dashed 

line. (d) Visualization of spatial distribution of spring energy density in networks measured at t = 

100 s via color scaling.  

If ACPs can unbind from F-actins (i.e. 
0

u,ACPk > 0), highly heterogeneous networks with 

several clusters are observed because F-actins can be displaced significantly (Figs. 2.11B-C, 

2.12C). Such high heterogeneity appears at a specific range of density of active ACPs, ~0.005 ≤

active

ACPR ≤ ~0.05 (Fig. 2.13A), where active

ACPR  is the density of active ACPs, equal to the fraction of active 

ACPs times RACP (Fig. 2.13A). Interestingly, the average tensile force exerted on F-actins tends to 
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be proportional to RACP, unlike cases without ACP unbinding (Figs. 2.12D and 2.13B). Only one 

case (RACP = 0.1 and 
0

u,ACPk /
0*

u,ACPk = 0.01) that exhibits less heterogeneous F-actin spatial 

distribution shows sustainable tensile force on F-actins (Figs. 2.12C-D). This is attributed to small 

loads on each ACP and stable cross-linking points with large effective friction. This implies that 

tensile stress in the presence of ACP unbinding is generated and sustained only in these networks 

when most of F-actins are cross-linked stably. By contrast, in all other cases, average tensile forces 

acting on F-actins reach a peak and then relax to non-zero asymptote. Both peak and equilibrium 

levels are inversely proportional to 
0

u,ACPk .  

Spring energy density in networks tends to be proportional to RACP but inversely 

proportional to 
0

u,ACPk  in general (Fig. 2.13D), which is consistent with our previous study [63]. If 

0

u,ACPk  is very small, and if RACP is very high, similar levels of spring energy emerge across the 

network because almost all F-actins are cross-linked stably throughout the network as seen in very 

homogeneous network morphology (Figs. 2.11B-C). By contrast, in cases where a network 

aggregates into clusters, high spring energy is concentrated mostly on the clusters since the clusters 

are not connected to each other (Figs. 2.11C and 2.13D).  

2.4 Discussion 

Since the 1980s, the in vitro motility assay has been used to study interactions between 

F-actins and myosin motors. By measuring gliding motions of a few F-actins propelled by myosin 

motors fixed on a surface, several properties of myosin motors, such as duty ratio and 

mechanochemical cycles, have been estimated [76, 78]. The system of in vitro myosin motility 

assay has advanced recently. When F-actin concentration was significantly increased with strong 

crowding effects, interesting collective motions of F-actins were observed [49]. In addition, 

inclusion of different types of ACPs resulted in formation of distinct structures [13]. Compared to 

experimental efforts, the motility assay has not been studied very actively via a computational 

model although a rigorous model can provide more insights than experiments. In this study, we 

investigated motions of F-actins in the motility assay, using our well-established agent-based 

computational model.   
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First, we investigated motions of F-actins without ACPs and volume-exclusion effects 

between F-actins. We showed how the average length of F-actin and the density and 

mechanochemical rate of motors affect motions of F-actins. Morphology of the network was very 

homogeneous in all cases regardless of a change in those parameters. However, it was observed 

that F-actins may move with different speed, persistency, and curvature depending on the 

properties of F-actin and motor. In particular, if continuous interactions between motors and F-

actins are hindered due to either large spacing between motors or short filament length, many of 

F-actins cannot glide at speed close to the unloaded walking velocity of motors (Fig. 2.2). Indeed, 

other in vitro study showed that F-actins move slower at low motor density [79], and a 

computational study also showed that the movement of F-actins is much slower and less persistent 

if motor density is too low because the number of myosin heads bound to F-actins at a given time 

becomes too low[59], By contrast, in experiments and simulations performed with long F-actins 

and high motor density (i.e. small spacing between motors), the dependence on motor density and 

F-actin length has not been observed. For example, an in vitro study showed that the gliding speed 

of F-actin hardly depends on the length of F-actin varied between ~1 µm and ~17 µm with motor 

density of ~600 motors/µm2  [80]. If these motors are uniformly distributed on a surface, average 

spacing between them is ~42 nm. In addition, a computational study reported that F-actin motility 

is independent of motor density varied between ~1,500 and ~6,000 motors/µm2 which corresponds 

to average spacing of ~ 13nm to ~26 nm [60]. Under such high motor density, spacing between 

motors is much shorter than F-actins, so F-actins are likely to be bound to several motors unless 

F-actins are extremely short. In contrast to these studies, we reduced motor density substantially 

and found that the gliding speed of F-actins can depend significantly on F-actin length with motor 

density corresponding to average spacing of ~0.33 µm (RM = 0.08). We also observed that 

dependence of the gliding speed on F-actin length is much weaker if motor density is 10-fold 

higher (data not shown). It is anticipated that dependence of F-actin gliding speed on F-actin length 

will be also observed in experiments if motor density is lowered significantly. 

We also found that the gliding speed of F-actin shows biphasic dependence on one of the 

mechanochemical rates, the ATP-dependent unbinding rate (Fig. 2.5). As the rate increases, motors 

walk on F-actin faster and are detached from F-actin more frequently. As long as walking takes 

place more frequently than detachment from F-actin, the gliding speed of F-actins also increases 

in proportion to an increase in the ATP-dependent unbinding rate. However, if the rate becomes 
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too high, detachment from F-actin dominates walking, resulting in lower net gliding speed of F-

actin than walking speed of motors. It is expected that a discrepancy between the gliding speed of 

F-actins and walking speed will be less even with very high ATP-dependent unbinding rate if F-

actins are very long, or if motor density is very high as in experiments. As long as F-actins can 

interact with a few motors at each time point, F-actins can keep moving without significant delay 

even with a small duty ratio. This is reminiscent of a strategy that a thick filament consisting of 

skeletal muscle myosin motors with a very small duty ratio employs to stay on F-actins [76]. 

Indeed, previous computational [60] and in vitro studies [75, 79] with high motor density showed 

that F-actin gliding speed increases with higher ATP concentration and reaches a plateau, rather 

than showing a biphasic dependence on ATP concentration. This can be attributed to higher motor 

density used in the previous experiments [79] (~150 motors /µm2 which corresponds to average 

spacing of ~ 81 nm) and simulations [60] (~1,500 to ~6,000 motors /µm2 which corresponds to 

average spacing of ~ 13- 26 nm) than that used in our simulation(RM = 0.008 to RM = 0.8 which 

corresponds to average spacing of ~0.11 µm to ~1.1 µm). In addition, longer F-actin used in the 

previous experiments and simulations can prevent the gliding speed from decreasing at high ATP 

concentration. If these simulations and experiments are repeated with much lower motor density 

and shorter F-actins, the biphasic dependence of F-actin speed on ATP concentration would 

emerge.  

Then, we showed volume-exclusion effects between F-actins affect motions of F-actins 

in the motility assay, thus resulting in bundles or ring-like structures (Figs. 2.7 and 2.9). If F-actins 

are aligned only when they encounter other F-actin at a small contact angle due to low κr,A, large, 

thick bundles are formed at high actin concentration. If F-actins are aligned with other F-actin at 

most of the collision events regardless of a contact angle due to high repulsive force, small ring-

like structures dominantly emerge. Once the bundles and ring-like structures are formed in our 

simulations, network morphology does not change significantly over time. However, the thick 

bundles are comprised of consistently moving F-actins that enter, leave, or stay within the 

structures. It means that the system reached a steady state at network level in terms of morphology, 

but it is still very dynamic at filament level. However, if actin concentration becomes lower, F-

actins transiently form thin bundles, resulting in a dynamic change in network morphology over 

time. 
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Formation of bundles has been suggested in previous studies where volume-exclusion 

effects between F-actins were modulated by varying concentration of crowding agents, such as 

methylcellulose (MC) and polyethylene glycol (PEG). With higher MC concentration, F-actins 

showed collective motions and formed bundles and ring-like structures at larger length-scales [49, 

80].  It was also shown that F-actins move in a bidirectional manner along bundles, implying a 

dynamic steady state [49, 80]. However, formation of small ring-like structures has not been 

observed in previous experiments. If motility assay experiments are performed with very strong 

crowding effects and lower motor density, small ring-like structure may emerge. Emergence of 

large-scale flow of numerous F-actins was shown in other experiments [50-54]. The flow is 

initiated from seeds with a few F-actins, and the seeds gradually increase in size over time, 

becoming clusters with the large-scale flow [53]. These clusters are also in a dynamic steady state, 

maintaining relatively constant size by continuously losing and recruiting F-actins [53]. Because 

we employed a small computational domain (10×10×0.1 μm) and short F-actins, it is not likely to 

recapitulate such large dynamics structures. It is feasible to simulate a large system with long F-

actins for directly comparing simulation results with experimental observations, by imposing a 

more computational resource to each simulation. However, it is beyond the scope of this study. In 

a future study, we will attempt to simulate large-scale dynamic structures and analyze collective 

behaviors of F-actins in greater depth.  

Interestingly, it was reported in a recent study that F-actins form steady-state thick bundle 

structures even without myosins if crowding effects are strong [49]. In this study, F-actins are 

displaced because they grow rapidly from a surface via formin activities. Similarity in results 

implies that F-actins at high density can form the thick bundles as long as they keep moving 

somehow in the presence of strong volume-exclusion effects. In addition, collective behaviors 

were observed in experiments performed in a different setup. The ring-like structures were shown 

in an experiment with ACPs called fascin, and they were named “frozen steady states” [56]. Note 

that we observed them in simulations without any ACP, but they are much smaller than those 

observed in the experiment that are as large as ~30 μm in radius. We would be able to reproduce 

large-scale rings with both volume-exclusion effects and ACPs that connect only parallel F-actins, 

but this is beyond the scope of the current study. A computational study demonstrated that volume-

exclusion effects between microtubules result in ordered structures composed of bundles [81]. In 
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addition, formation of ring-like structures and large-scale collective behaviors of microtubule were 

observed due to physical interactions between microtubules [15, 16, 82]. 

Lastly, we showed that inclusion of ACPs in a network without volume-exclusion effects 

between F-actins can significantly enhance the spatial heterogeneity of network morphology (Fig. 

2.11). If there are too many ACPs, or if the unbinding rate of ACPs is too low, motors cannot 

readily break cross-linking points, resulting in a homogenous network with frozen or slowly 

moving F-actins. By contrast, if there are only a few ACPs, or if ACPs unbind from F-actins very 

frequently, F-actins move mostly freely due to unstable cross-linking points that can break by 

applied loads, leading to a homogenous network. At intermediate density and unbinding rate of 

ACPs, networks become quite heterogeneous because both good connectivity between F-actins 

and deformability via breakage of cross-linking points are achieved. A fraction of the weak cross-

linking points break due to applied forces while the other stable ones keep holding pairs of F-actins. 

Note that an increase in the amount of ACPs or a decrease in the unbinding rate of ACPs results 

in a larger number of active ACPs bound to two F-actins at dynamic equilibrium, but there is a 

difference between the two cases. Even if two systems have the same amount of active ACPs at 

dynamic equilibrium, F-actins in a system with higher ACP unbinding rate can move faster 

because more transient cross-linking points lead to lower effective friction between two cross-

linked F-actins.  

This overall observation is consistent with previous studies showing the highest 

contractility of networks at intermediate density of ACPs [13, 22, 27, 55, 83]. A network cross-

linked by ACPs in our model became heterogeneous only above the critical amount of active ACPs 

that corresponds to a percolation threshold, as suggested by [24, 84]. If there are too many active 

ACPs, contraction was reduced because buckling of F-actin is suppressed, which is consistent with 

the importance of buckling for contraction suggested by previous studies [25, 85, 86]. In addition, 

emergences of clusters at lower ACP density and meshes at higher ACP density are consistent with 

results of previous simulations for cytokinetic rings although we did not observe ring formation at 

intermediate ACP density due to immobile motors [87].  

In this study, we proposed a computational model designed for simulating myosin motility 

assays in a more rigorous fashion than previous models. The model successfully recapitulated 

previous experimental observations and also showed new interesting behaviors of F-actins under 

various conditions. We demonstrated effects of each parameter on behaviors of F-actins and 
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networks by varying values of many parameters beyond the capability of experiments. In particular, 

volume-exclusion effects and ACPs play a very important role in the motions of F-actins and 

network morphology. In the near future, we will simulate the motility assay system in the presence 

of both volume-exclusion effects and ACPs. In addition, using the power and flexibility of our 

model, we will simulate a larger system for direct comparison with in vitro experiments as well as 

a motility assay with microtubules and kinesin motors that were employed in many recent studies.   
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 EMERGENCE OF DIVERSE PATTERNS DRIVEN BY MOLECULAR 

MOTORS IN THE MOTILITY ASSAY  

3.1 Introduction 

The actin cytoskeleton continuously reorganizes and generates forces in cells, driving 

various cellular processes including cell migration and cytokinesis [88]. The dynamic and 

mechanical behaviors of the actin cytoskeleton, such as contractile motions, force generation, and 

cortical flows, are facilitated partly by myosin which is a molecular motor protein that walks 

toward the barbed ends of actin filaments (F-actins) [89-91]. It has been extensively studied how 

myosin motors generate forces and drive a morphological change in the actin cytoskeleton [92, 

93]. Various types of in vitro experiments using reconstituted actomyosin network have been 

popularly used as a handy tool because interactions between F-actins and myosin can be probed 

without influences of other actin-associated proteins [24, 94].  

One of widely used in vitro experimental systems is the motility assay in which myosin 

motors are attached to a glass surface with F-actins gliding on the surface due to interactions with 

the myosin heads [9, 95, 96]. the walking velocity and mechanochemistry of myosin motors have 

been discovered [74, 76, 78]. It has been also shown that F-actins can move in a collective fashion 

due to steric interactions between neighboring F-actins. One study found that F-actins are aligned 

better when filaments are longer and denser [11]. It was also demonstrated that F-actins form 

clusters, density waves, and swirls when actin concentration is above critical level [52]. Another 

study found that collisions between two F-actins approaching each other with acute angles result 

in the formation of patterns, such as polar clusters, nematic/polar bands, and rings [54]. 

Interestingly, some of these patterns exhibited active steady states with hardly changing global 

patterns despite consistently gliding F-actins. For example, after emergence of ring-like structures, 

F-actins kept entering, exhibiting swirling motions, and then leaving although overall ring shapes 

were maintained for a long time. The strength of steric interactions between neighboring F-actins 

can be controlled by the concentration of crowding agents that lead to depletion forces, such as 

methylcellulose (MC) or polyethylene glycol (PEG). It was shown that adding more MC leads to 

more noticeable alignment of F-actins [49]. The addition of PEG induced a change in the direction 
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of bundle movement; with low PEG level, bundles tend to move in their transverse directions, 

whereas they move in their longitudinal direction with high PEG level [9].  

Several computational studies have been employed to better understand how various 

factors govern the collective motions of filaments in the motility assay. For example, a model 

based on Brownian dynamics simulated semiflexible filaments gliding on a surface to show 

different patterns emerging depending on the magnitude of active forces exerted by motors and 

the persistence length of filaments [97]. Filaments exhibit the flow of bundles with higher 

persistence length and lower Péclet number, where the Péclet number represents the rate of 

advection (affected by active forces) to the rate of diffusion (affected by viscosity and thermal 

forces). By contrast, they form swirls and spirals with shorter persistence length and higher Peclet 

number. A more recent computational study showed the effects of strength of repulsive forces and 

the rigidity and density of filaments on the formation of patterns, such as isotropic networks, 

bundles, and rings [14]. They found that both repulsive forces and filament rigidity contribute to 

collective motions by enhancing collision-induced alignment and altering the persistence of 

filament orientations, respectively. Although these studies provided insights into understanding 

the influences of parameters on diverse pattern formation in motility assay, implicit description of 

myosin motors using a constant force applied to filaments may limit the physiological relevance 

of the insights and lead to artifacts in results. Indeed, an agent-based model with explicit 

description of motors demonstrated that a distance between motors highly affects the velocity and 

persistency of filaments [59]. 

In this study, we employed an agent-based computational model of the motility assay with 

explicit immobile motors interacting with filaments. We rigorously incorporated the kinetics of 

motors including the force-velocity relationship and the binding and unbinding behaviors. We 

evaluated the influences of the length, rigidity, and concentration of filaments and the strength of 

repulsive forces on collective movements and the formation of various patterns. We found that 

four types of structures – homogeneous networks, flocks, bands, and rings – emerge as a result of 

subsequent collisions between gliding filaments. The frequency and morphology of the structures 

and the curvature, alignment, and rotational motions of filaments were analyzed to understand 

when and how these structures were formed. 
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3.2 Methods 

3.2.1 Model overview 

We used the agent-based model built introduced in Chapter 2 and used in our previous 

studies [27, 61-63]. Model parameters are shown in Table 3.1 and 3.2.  

Table 3.1. List of parameters employed in the model. 

Symbol Definition Value 

r0,A Length of an actin segment 1.4×10-7 [m]  

rc,A Diameter of an actin segment 7.0×10-9 [m] [69] 

θ0,A Bending angle formed by adjacent actin segments 0 [rad]  

κs,A Extensional stiffness of F-actin 1.69×10-2 [N/m]  

*

b,A  Reference bending stiffness of F-actin 2.64×10-19 [N·m] [70] 

r0,ACP Length of an ACP arm 2.35×10-8 [m] [71] 

rc,ACP Diameter of an ACP arm 1.0×10-8 [m]  

θ0,ACP Bending angle formed by two ACP arms 0 [rad]  

κs,ACP Extensional stiffness of ACP 2.0×10-3 [N/m]  

κb,ACP Bending stiffness of ACP  1.04×10-19 [N·m]  

r0,M Length of a motor arm 1.35×10-8 [m]  

rc,M Diameter of a motor arm 1.0×10-8 [m]  

κs,M Extensional stiffness of a motor arm 1.0×10-3 [N/m] 

*

20k  Reference ATP-dependent unbinding rate of myosin heads 20 [s-1] 

Nh Number of heads represented by a motor arm 8 

Na Number of arms in a motor 1 

kn,A Nucleation rate of actin 0.000125 – 1 [μM-1s-1] 

k+,A Polymerization rate of actin at the barbed end 60 [μM-1s-1] 

0*

u,ACPk  Reference zero-force unbinding rate constant of ACP 0.115 [s-1] [68] 

λu,ACP Sensitivity of ACP unbinding to an applied force 1.04×10-10 [m] [68] 

κr,A Strength of a repulsive force 1.69×10-3 [N/m] 

Δt Time step 1.15×10-5 [s] or 2.875×10-6 [s] 

μ Viscosity of surrounding medium 8.6×10-1 [kg/m·s] 
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Table 3.1 continued 

kBT Thermal energy 4.142×10-21 [J] 

CA Actin concentration 60 [μM] 

RM Motor density (= Ratio of motor concentration to CA) 0.008 – 0.8 

RACP ACP density (= Ratio of ACP concentration to CA) 0 – 0.1 

<Lf> Average length of F-actins  0.69 – 3.02 [μm]  

 

Table 3.2. List of parameter values used for adopting “parallel cluster model.” [72, 73] 

Symbol Definition Value 

k01 A rate from unbound to weakly bound state 40 [s-1]  

k10 A rate from weakly bound to unbound state 2 [s-1] 

k12 A rate from weakly bound to post-power-stroke state 1000 [s-1] 

k21 A rate from post-power-stroke to weakly bound state 1000 [s-1] 

k20 A rate from post-power-stroke to unbound state 5-640 [s-1] 

F0 Constant for force dependence 5.04×10-12 [N] 

Epp Free energy bias toward the post-power-stroke state -60×10-21 [J] 

Eext External energy contribution 0 [J] 

d Step size 7×10-9 [m] 

km Spring constant of the neck linkers 1.0×10-3 [N/m] (= κs,M) 

 

In the model, filaments are modeled as serially connected cylindrical segments with 

polarity defined by pointed and barbed ends, and motors are modeled as one cylindrical segment 

whose end is fixed on the surface (Fig. 3.1). The other end of the motor segments binds to binding 

sites located on filaments and walks toward the barbed end, resulting in the gliding motions of 

filaments. The motors unbind from filaments when they walk beyond the barbed ends and can also 

unbind from anywhere on filaments in a force-dependent manner. The walking and unbinding rates 

of motors are determined by the parallel cluster model (Fig. 3.2). The displacements of filaments 

at each time step are calculated by the Langevin equation. For deterministic forces in the Langevin 

equation, we consider extensional and bending forces and repulsive forces acting between 

overlapping filaments.  
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Figure 3.1. Schematic of Model Setup. (A) Computational domain of the model setup. (B) 

Representation of interactions between actin and myosin. 

 

Figure 3.2. Myosin and Unbinding Rate depend on Force. (A) Walking rate of myosin heads in 

terms of the applied force. (B) Unbinding rate between myosin heads and f-actin in terms of the 

applied force. 

We employed a thin three-dimensional computational domain (10×10×0.1 μm) with the 

periodic boundary condition in the x and y directions (Fig. 3.1A). Motors are allocated randomly 

on the x-y plane with one end located in the same z position (z = 0 μm). Filaments are formed by 

the nucleation and polymerization of cylindrical segments located in the same z position (z = 13.5 

μm). The distance of 13.5 nm between filaments and motors corresponds to the equilibrium length 

of motor cylindrical segments. The nucleation event was simulated by the emergence of one 

filament segment in randomly selected x, y positions at a given nucleation rate. The polymerization 

event was simulated by adding segments to existing filament segments at a given polymerization 

rate. During filament assembly, some of the motors bind to filaments if they are proximal enough 

to bind to the filaments. After the completion of filament assembly, motors start walking toward 
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the barbed ends of filaments. We disabled fluctuation of filaments in the z-direction, meaning that 

all filaments stay in the same z-position throughout the simulation.  

3.2.2 Evaluation of average speed and collective behaviors of filaments 

First, the velocity of endpoints of all filament segments, vi,A(t), is calculated every two 

seconds to minimize the influence of thermal fluctuation on velocity calculation. Then, the average 

speed of filaments is calculated by averaging 
,Aiv  over all endpoints and all time points. As in 

our previous study [44], a correlation between the velocities of neighboring endpoints is quantified 

for evaluating the extent of collective motions of filaments:  
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where i and j are the indices of two endpoints, and α is an angle between two velocity vectors. 

Only pairs of endpoints for last 20 s whose distance is smaller than 0.4 μm are considered for this 

calculation; collective behaviors tend to emerge at late times, and the threshold distance of 0.4 μm 

was selected because it results in quite different correlation values from distinct network 

morphology.  

3.2.3 Quantification of ring formation 

 The extent of formation of ring-like structures was evaluated by manually counting the 

number and size of rings and by the curl of a velocity field representing filament motions. For the 

manual counting, we identified circle-shaped closed loops consisting of filaments as rings via 

ImageJ. Loops with raindrop shapes were not considered rings. The size of the rings corresponds 

to the longest distance that can be measured between any two points on the circumference of the 

rings.   

 The curl serves as a tool for indirectly estimating the extent of ring formation. To calculate 

the velocity field, the computational domain was first divided into NG×NG grids in the x and y 

directions. For filament concentration > 15 μM, NG was set to 50, whereas for filament 

concentrations ≤ 15 μM, NG was set to 40 because the number of filament segments in each grid 

is substantially lower. These values for NG were carefully determined by comparing curl values 
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with various grid sizes (Fig. 3.3). Velocities of filament segments located within each grid are 

averaged to calculate for a velocity vector in the field. Then, the curl of the velocity field was 

calculated every 2 seconds using data for the last 50 s. The absolute value of each curl value for 

every grid was averaged across all time points. Larger average curl values are indicative of greater 

rotational motions of filaments. 

 

 

Figure 3.3. Velocity correlation and grid size at different radius and grid size, respectively, for 

various strength of volume-exclusion effects. (A) Velocity correlation found using F-actin within 

a different distance. (B) Curl found using different grid sizes for various strength of the volume-

exclusion effect. 

3.2.4 Apparent persistence length of filaments 

The persistence length of filaments (lp) is proportional to their bending stiffness or flexural 

rigidity: 

b,A 0,A

p

B

r
l

k T


=                                                        (3.2) 

where κb,A is the bending stiffness, r0,A is the equilibrium length of a filament segment, and kBT is 

thermal energy. However, filaments with identical bending stiffness may show a different 

curvature depending on inter-filament interactions or interactions between filaments and motors. 

To calculate “apparent” persistence length (lap) that represents the actual curvature of filaments, 

we first evaluated a correlation between unit tangential vectors defined along the contour of 

filaments, u(s): 

cos ( ) ( ) ( )s s s s  =  +u u                                                (3.3) 
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where s is a contour coordinate along filament contour. Apparent persistence length (lap) is 

calculated by fitting an exponentially decreasing function, exp (-Δs/lap) to cos ( )s  .  

3.2.5 Evaluation of network morphology 

For evaluating network morphology, we divided the computational domain into NG×NG 

grids and then counted the number of filament segments in each grid (ρi,j), where (i, j) represents 

the x and y positions of each grid. First, we quantified how early a network reaches a steady state 

by calculating a correlation between a matrix comprised of ρi,j at the end of simulations and that at 

each time point. We found duration for which the correlation is greater than 0.8. Longer duration 

means that network morphology reaches a steady state earlier.  

In addition, as in our previous study [44], we quantified homogeneity of network 

morphology (Q) using the following:  
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where std stands for standard deviation, and NG is set to 30. For this calculation, we used data after 

Q reaches 0.8 to focus on network heterogeneity at a steady state. 

3.2.6 Explicit and implicit motor description 

Most of the previous computational models for the motility assay employed implicit 

motors, which means constant propulsion force is applied to filaments to mimic active forces 

exerted by motor activities. Such an approach has been popular because it can reduce the 

computational cost of simulations substantially. However, it is not clear whether implicit and 

explicit methods can produce similar results in the motility assay. To compare the effects of 

implicit and explicit motors, we ran a few simulations with implicit motors (Fig. 3.4). To determine 

the appropriate value of a propulsion force that represent the activities of implicit motors, we 

compared the average gliding speed of filaments in simulations with explicit and implicit motors 

(Fig. 3.4A). For this comparison, repulsive forces between filaments were not included in order to 

avoid a change in filament speed due to collisions between filaments. We found the propulsion 
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force that results in similar average gliding speed. When we ran simulations with the selected 

propulsion force, it was observed that filaments do not form rings unlike cases with explicit motors 

(Fig. 3.4C, D). In addition, it was noticeable that a larger fraction of filaments exhibits lower 

gliding speed in cases with implicit motors than those in cases with explicit motors (Fig. 3.4B). 

We explained the origins of different filament behaviors caused by implicit motors in 

Supplementary Text. Observation of such differences imply that our model with explicit motors 

can generate more rigorous results that may not be recapitulated by models with implicit motors.  

 

 

Figure 3.4. Difference between implicit and explicit motors on collective behavior of F-actin. (A-

B) Distribution of f-actin speed with implicit and explicit motors with a low (A) and high (B) 

strength of the volume-exclusion effect. (C-D) Snapshots showing the collective behavior of f-

actin with explicit motors (C) and implicit motors (D). (E-H) Snapshots showing the collective 

behavior of f-actin with implicit motors at force of 0.15 pN (E), 0.20 pN (F), 0.30 pN (G), and 1 

pN (H).   

3.3 Results 

Previous in vitro studies have shown that collective motions of filaments are governed by 

i) the strength of repulsive forces between filaments, ii) bending stiffness, iii) filament 

concentration, and iv) average filament length [9, 12, 54]. In addition, a recent computational study 

showed that repulsive forces and bending stiffness affect pattern formation by enhancing or 
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reducing alignment between filaments [14]. We first validated the ability of our computational 

model to simulate the motility assay by probing effects of repulsive forces and bending stiffness. 

Then, we further investigated influences of filament concentration and length on the collective 

motions of filaments. With variations in the four parameters, we observed four types of patterns: 

homogeneous network, flocking, band, and ring. The homogeneous network indicates a structure 

with uniformly distributed filaments maintained for the entire duration of simulations. The 

flocking refers to loose, short bundles that keep disappearing after short time and appearing in 

different locations. The band means dense, thick bundles that are sustained till the end of 

simulations after formation. The ring represents closed loops within which filaments rotate. 

3.3.1 Repulsive force and bending stiffness governed collective motions 

First, we varied the strength of repulsive forces (κr,A) and bending stiffness (κb,A). With 

weak repulsive forces and high bending stiffness, homogeneous networks were formed without 

noticeable alignment of filaments (Figs. 3.5A, B); rigid filaments hardly change their gliding 

directions by weak repulsive forces from collision with other filaments. If the strength of repulsive 

forces increases or bending stiffness decreases, a transition from the homogeneous networks to 

flocks or bands occurs because filaments can change their gliding directions by repulsive forces 

under such a condition. The bands are formed when filaments can be bent enough to result in good 

alignment after collisions. The flocks arise when weak volume-exclusion effects cannot change 

their directions enough to form tight bands after collisions but enough to induce loose alignment 

of filaments. If filaments become softer and repulsive forces become stronger simultaneously, 

more rings with smaller size start emerging as a result of severe bending deformation and 

alignment of filaments (Figs. 3.2A, B). Rings always coexisted with bands because both of them 

originate from aligned motions of a large number of filaments. The average curvature of filaments 

was also greater with smaller bending stiffness and stronger repulsive forces (Fig. 3.2C). The 

curvature tends to decrease in the order of ring (largest), band, flock, and homogeneous network 

(smallest), so there is a correlation between the average curvature and the dominant types of 

structures. Structures formed by collective behaviors of filaments tended to last longer if they are 

rings and bands that resulted from alignment of numerous filaments (Fig. 3.2D). Overall 
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morphology was more heterogeneous with rings and bands, but if rings become very small, it 

became less heterogeneous (Fig. 3.2E).  

 

Figure 3.5. Collective behaviors of F-actins depending on bending stiffness (κb,A) and the strength 

of volume-exclusion effects (κr,A). (A) Snapshots taken at 100 s. (B) Emergence of different types 

of structures: rings (circles), bands (triangles), and swarms (crosses). (C) Correlation of velocities 

of neighboring F-actins averaged between 50 s and 100 s. Higher correlation values mean more 

collective motions of F-actins. (D) The curl of a velocity field calculated by averaging velocities 

of F-actins. The curl values indicate the extent of rotational movements. Larger curl values imply 

formation of more ring structures. 

The extent of collective behaviors of filaments was quantified by calculating a correlation 

between velocities between neighboring filaments (Fig. 3.5C). The velocity correlation was the 

highest under conditions at which bands predominantly appear; in bands, a large number of 

filaments move in a parallel or anti-parallel manner, increasing the velocity correlation 

substantially. If there are many rings, filament bundles forming the rings were thinner, resulting in 

lower velocity correlation. The curl of the velocity field was also calculated to evaluate the degree 

of rotational motions of filaments. (Fig. 3.5D). It showed larger values when more rings were 

formed because filaments belonging to the rings rotate along the circular shape of the rings, leading 

to greater rotational motions on average.  
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3.3.2 High filament concentration significantly affected collective motions of filaments  

It was shown that collective behaviors of filaments occur only above critical filament 

concentration [52]. Also, a previous computational study showed the emergence of different types 

of structures with various filament concentrations [14]. To better understand how the importance 

of volume-exclusion effects varies depending on the number of filaments, we ran simulations with 

various filament concentrations and repulsive force strength values. When the concentration of 

filaments decreased below the reference level (CA < 60 μM), thick bands disappeared, and more 

flocks appeared (Figs. 3.6A, B). In addition, all of flocks, bands, and rings became thinner since 

the average number of filaments forming those structures was reduced. The number of rings 

decreased significantly. Interestingly, when the repulsive force was not weak (
*

r,A r,A/  ≥ 1), the 

size of rings did not increase noticeably with lower filament concentration (Figs. 3.3A, B). We 

initially expected that lower filament concentration provides more space between filaments on 

average and thus would lead to formation of larger rings. However, based on these results, the 

strength of repulsive forces and bending stiffness are major governing factors for the ring size 

rather than filament concentration. The average curvature of filaments and the stability of 

structures tended to be greater under conditions where rings and bands were formed dominantly, 

so the decrease in the filament concentration reduced those quantities (Fig. 3.3C, D). Overall 

morphology was more heterogeneous when the number of filaments was reduced (Fig. 3.3E); in 

the sparse condition, structure formed by collective filament behaviors emerged in only a few 

locations, which contributes to substantial enhancement of heterogeneity. Velocity correlation was 

the highest when thick, tight bands were formed (Fig. 3.6C). The correlation was also high at the 

lowest filament concentration with repulsive forces equal to or stronger than the reference level 

because most of filaments were used for forming a few structures under the conditions. The range 

of repulsive force strength for high velocity correlation values was higher with lower filament 

concentration since it is hard to keep filaments together under a sparser condition. The curl of the 

velocity field showed the largest values when many rings were formed (Fig. 3.6D). The curl value 

was relatively high when flocking behaviors emerged with weak repulsive forces and filament 

concentration below the reference level. We observed that flocks showed rotational motions at 

larger scale under these conditions, which is reminiscent of a flock of bird circling around in sky. 

This large-scale rotational movement led to the large curl value.  
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Figure 3.6. Effects of the strength of volume-exclusion effects (κr,A) at different actin concentration 

(CA) on collective behaviors of F-actins. (A) Snapshots taken at 100 s. (B) Formation of different 

kinds of structures: rings (circles), bands (triangles), and swarms (crosses). (C) Velocities 

correlation of neighboring F-actins averaged between 50 s and 100 s. Larger correlation values 

indicate greater collective motions of F-actins. (D) The curl of a velocity field calculated using F-

actin velocities. The curl values represent the degree of rotational motions. Higher curl values 

indicate the greater extent of ring formation. 

In addition, we probed the significance of filament concentration depending on bending 

stiffness. In general, the effects of a change in the filament concentration are very similar to 

observations described above. Fewer filaments resulted in thinner structures. At the lowest 

concentration, structures became too thin to be categorized as bands, so they were considered as 

flocks (Figs. 3.7A, B). Interestingly, the velocity correlation tended to be higher with lower 

filament concentration (Fig. 3.7C). As the spatial distribution of filaments became sparser, a 

smaller number of filaments formed a few flocks, resulting in high velocity correlation. The curl 

of a velocity field showed high values under conditions with the formation of many, small rings 

(Fig. 3.7D).  
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Figure 3.7. Influences of bending stiffness (κb,A) with different F-actin concentration (CA) on 

collective motions of F-actins. (A) Snapshots taken at 100 s. (B) Appearance of distinct types of 

structures: rings (circles), bands (triangles), and swarms (crosses). (C) Correlation of velocities of 

adjacent F-actins averaged between 50 s and 100 s. Higher correlation values represent more 

collective motions of F-actins. (D) The curl of a velocity field calculated by averaging velocities 

of F-actins. The curl values indicate the extent of rotational movements. Larger curl values 

represent formation of more ring structures. 

3.3.3 Longer filaments enhanced collective filament motions 

Shorter filament length was shown to reduce filament alignment in previous in vitro 

motility assays [11]. Also, a former computational study investigated the effects of filament length 

on pattern formation [14]. Here, we evaluated how a variation in filament length affects pattern 

formation and collective filament behaviors, depending on repulsive force strength, bending 

stiffness, and filament concentration. We varied average filament length (<Lf>) between 0.5 μm 

and 4 μm.   

First, we probed the effects of filament length with varied repulsive force strength. Overall, 

longer filaments induced the formation of rings and bands (Figs. 3.8A, B). The number of rings 

was proportional to the filament length. (Fig. 3.4A). When filaments were very short, flocks 

emerged instead of bands and rings. However, a change in the filament length hardly affected the 
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size of rings (Fig. 3.4B) The filament curvature was lower with shorter filaments in cases with 

strong repulsive forces although it hardly changed due to a change in the filament length with 

weaker repulsive forces (Fig. 3.4C). With shorter filaments, the stability of structures and the 

heterogeneity of morphology reduced because the short filaments are less likely to form tight bands 

or rings (Figs. 3.4D, E). The velocity correlation showed relatively high values at a wider range of 

repulsive force strength values when filaments were shorter (Fig. 3.8C); to form bands or rings 

leading to high velocity correlation, stronger volume-exclusion effects are necessary if filaments 

are shorter. The curl of the velocity field showed a tendency to decrease with shorter filaments due 

to formation of fewer rings (Fig. 3.8D).  

 

Figure 3.8. Collective motions of F-actins with different average F-actin lengths (<Lf>) and various 

strengths of the volume-exclusion effects (κr,A). (A) Snapshots taken at 100 s. (B) Emergence of 

different types of structures: rings (circles), bands (triangles), and swarms (crosses). (C) 

Correlation of velocities of neighboring F-actins averaged between 50 s and 100 s. Higher 

correlation values mean more collective motions of F-actins. (D) The extent of rotational 

movements indicated by the curl of a velocity field calculated from F-actin velocities. Higher curl 

values imply more ring formations. 

Next, we evaluated the effects of a change in filament length with different bending 

stiffness values. For this part, we used repulsive force strength slightly higher than the reference 

level (
*

r,A r,A/  = 3.2) because the influences of filament length ware not obvious with the reference 
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strength. Like the cases explained above, a decrease in the filament length decreased the number 

of rings (Figs. 3.9A, B and 3.10A). By contrast, bands were observed in all tested cases. With 

shorter filaments, there was no noticeable change in the heterogeneity of morphology and the size 

of rings (Figs. 3.10B, E), but structures were less stable (Fig. 3.10D). The filament curvature 

tended to be smaller in cases with the shortest filaments because of less ring formation (Fig. 3.10C). 

Values of the velocity correlation showed a tendency to increase, and the curl of the velocity field 

showed lower values with shorter filament length because fewer rings and more bands were 

formed as filaments were shorter (Figs. 3.9C, D).  

 

 

Figure 3.9. Effects of average F-actin length (<Lf>) and bending stiffness of F-actins (κb,A) on 

collective behaviors of F-actins. (A) Snapshots taken at 100 s. (B) Appearance of different kinds 

of structures: rings (circles), bands (triangles), and swarms (crosses). (C) Correlation of velocities 

of adjacent F-actins averaged between 50 s and 100 s. Larger correlation values represent greater 

collective behaviors of F-actins. (D) The curl of a velocity field calculated by averaging F-actin 

velocities. The curl values indicate the degree of rotational movements. Higher curl values imply 

formation of more rings. 
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Figure 3.10. Schematic diagram of the force applied for implicit and explicit motors. (A-B) Force 

from myosin heads over time with implicit motors (A) and explicit motors (B). (C-D) 

Representation of a collusion between F-actin with implicit motors (C) and explicit motors (D).  

Last, we varied filament length with various filament concentrations and slightly high 

repulsive force (
*

r,A r,A/  = 3.2). Effects of a change in the filament length was more conspicuous 

at low filament concentration; if average distance between filaments is long, longer filaments can 

have better interactions with other filaments than short filaments. As the filament length decreased, 

bands and rings disappeared more, and flocks emerged with an increase in the average filament 

curvature (Figs. 3.11A, B and 3.12A, C) although the ring size did not change noticeably (Fig. 

3.12B). As results shown above, structures tended to be less stable with shorter filaments (Fig. 

3.12D). 
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Figure 3.11. Influences of average F-actin length (<Lf>) and actin concentration (CA) on collective 

motions of F-actins. (A) Snapshots taken at 100 s. (B) Formation of distinct types of structures: 

rings (circles), bands (triangles), and swarms (crosses). (C) Correlation of velocities of neighboring 

F-actins averaged between 50 s and 100 s. Higher correlation values mean more collective motions 

of F-actins. (D) The degree of rotational movements represented by the curl of a velocity field 

calculated by averaging F-actin velocities. Larger curl values indicate formation of more rings. 
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Figure 3.12. Collective behaviors of F-actin depending on bending stiffness (κb,A) and the strength 

of volume-exclusion effects (κr,A). (A) Snapshots taken at 100 s. (B-C) Discrete heatmap showing 

the number of rings that formed (B) and the normalized average ring diameter (C). (D) Heatmap 

showing the duration of f-actin. Higher duration values mean f-actin remain in bands longer (E) 

Heatmap showing the heterogeneity of f-actin. (F) Order parameter for various bending stiffness 

and strength of volume-exclusion effects. 

3.4 Discussion 

Emergence of patterns in motility assay has been widely studied in both in vitro and 

computational works [12, 14]. In this study, we observed all patterns observed in the previous 

studies, including flocks, bands, and rings. Unlike previous models [14, 97], we used explicit 

motors that can bind to, unbind from, and walk on filaments. We demonstrated that explicit motors 

can result in quite different collective behaviors of filaments from implicit motors. Using the model 

with explicit motors, we investigate how filaments propelled by explicit motors interact with other 

filaments under various conditions in order to show what governs collective behaviors. We varied 

two of the four parameters – the strength of repulsive forces and the bending stiffness, 

concentration, and length of filaments – with the other two fixed. Then, in all the possible two-
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dimensional parametric spaces consisting of varied two parameters, we quantified the types, 

stability, and morphology of emerging structures and the curvature, velocity correlation, and 

rotational movements of filaments.  

We found that all four parameters highly affected the extent of collective behaviors of 

filaments and pattern formation in different manners. The strength of repulsive forces governs how 

strongly filaments will be pushed away after collisions or how frequently they will cross over each 

other. The bending stiffness determines how easily filaments will be bent by collisions with other 

filaments as well as the length scale of structures. Filament concentration controls average distance 

between filaments, so lower concentration reduces the frequency of collision events. Filament 

length can make a difference in collective behaviors and pattern formation if it is very low. If 

filaments are too short compared to the average distance between filaments, they cannot make 

collisions well. In addition, with such short filaments, loop structures or long bundles are hardly 

formed even if filaments are aligned. Overall, it was observed that the relative importance and role 

of one parameter varies depending on the values of other parameters. 

We found that rings and bands are formed when long filaments at high concentration 

experience enough volume-exclusion effects to divert them after collisions. The bands consist of 

a large number of tightly aligned filaments moving in a parallel or anti-parallel manner, so cases 

with many thick bands tended to show high velocity correlations and heterogeneous morphology. 

It was observed that more, smaller rings appeared when the collision-induced diversion of 

filaments was more severe due to either strong repulsive force or low filament rigidity. High 

filament concentration and length also helped ring formation. The size of rings was determined 

mostly by filament rigidity and the strength of volume-exclusion effects between filaments, not by 

the two other parameters. These rings facilitated rotational motions of filaments due to their 

circular shapes and also increased the velocity correlation of filaments and the heterogeneity of 

morphology. However, in cases with a large number of small rings, the velocity correlation and 

the heterogeneity were reduced. The rings and bands were very stable once they were formed, so 

they lasted for long time. When the diversion of filaments after collisions was not strong enough 

to form the bands or the rings due to high filament rigidity or too weak repulsive forces, filaments 

formed homogeneous networks or flocks that are loose, transient bundles. Too short filaments and 

too low filament concentration can also prevent filaments from forming the bands and the rings. 
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In such cases, filaments showed no or poor collective behaviors in terms of velocity correlations 

and rotational motions.  

Our findings are similar to observations reported by previous studies in many aspects. 

Effects of the extent of volume-exclusion effects between gliding filaments on structure formation 

were similar to observations in [14]: homogeneous networks at weak repulsive forces, flocks at 

intermediate repulsive forces, and rings and bands at high repulsive forces. Rings that reached a 

steady state in our study are reminiscent of a frozen steady state observed in [56]. The formation 

of more rings with longer filaments that we showed at low filament concentration is consistent 

with in vitro experiments showing filament alignment is facilitated better by longer filaments [11]. 

Effects of filament length was also tested in the computational study [14]. In this study, filament 

rigidity was defined as the ratio of persistence length to filament length. They found that increasing 

rigidity (i.e., decreasing filament length) can induce bundle formation due to higher directional 

persistence of shorter filament. We also observed that an increase in the persistent movement of 

filaments due to either short filaments or high bending stiffness can lead to formation of large 

bundles rather than rings.  

There are some differences between our study and previous ones. Although the in vitro 

study reported that filament length decreases over time due to motor-induced severing of the 

filaments [11], we did not observe a change in filament length during simulations because of the 

absence of severing events. It will be interesting to study how severing of actin filament affects 

collective behaviors in the future. In addition, in a previous study, swirls, which exhibit swarming 

flocks that can self-interact, were observed at higher filament concentration, low bending stiffness, 

and high repulsive force [14]. We did not observe swirls with the ranges of tested parameter values. 

It is possible that filaments in our simulations were not long enough to form rings and self-interact. 

One previous in vitro study showed that filaments in the motility assay formed millimeter-sized 

belt-like patterns, and the curvature of the structure is smaller with shorter filaments [80]. Although 

we observed that the curvature was smaller with shorter filaments, a direct comparison between 

our results and the previous findings is hard because of a large difference in the filament 

concentration; they used much higher concentration in the in vitro experiments than ours.  



 

 

 85  

 MYOSIN-DRIVEN F-ACTIN FRAGMENTATION FACILITATES 

CONTRACTION OF ACTIN NETWORKS 

4.1 Introduction 

In non-muscle cells, the actin cytoskeleton is responsible for a wide range of vital 

processes, such as cell migration and cytokinesis. The actin cytoskeleton is comprised of 

disordered actin filaments (F-actins), myosin motor proteins, actin cross-linking proteins (ACPs) 

that interconnect pairs of F-actins, and other actin-binding proteins. Actomyosin contractility 

originating from interactions between F-actin and myosin motors drives many of physiological 

processes [88, 98, 99]. Non-muscle myosin II, which walks toward the barbed ends of F-actins, 

plays the most important role in the actomyosin contractility in non-muscle cells [100-102]. 

Single-molecule experiments have shown that non-muscle myosin II is non-processive or weakly 

processive, meaning that it spends only a small fraction of its lifetime in a bound state [103, 104]. 

To remain bound to F-actins for a longer time, non-muscle myosin II self-assembles into a thick 

filament with a bipolar structure having myosin heads on both ends [105, 106]. The bipolarity of 

the myosin thick filament allows F-actins with opposite polarities to slide toward each other [107, 

108]. 

To better investigate the actomyosin contractility, researchers have employed an in vitro 

minimal system consisting of purified actin, myosin II, and various types of ACPs [22, 24, 109]. 

Since it is hard to directly measure mechanical stress exerted on reconstituted networks, the 

contractile behaviors of networks have been a primary interest in the in vitro studies. It was shown 

that reconstituted actin networks exhibit spontaneous contraction into multiple small clusters (local 

contraction) or a single cluster (global contraction), depending on network connectivity [22, 24, 

27]. Such local/global network contraction was successfully recapitulated in several computational 

studies [110]. With sufficient ACPs, networks could show global contraction due to superior 

connectivity between F-actins. However, in both experiments and simulations, it was also shown 

that a very large number of ACPs can inhibit network contraction by inhibiting the buckling of F-

actins [27, 94]. Motor activities generate both tensile and compressive forces on F-actins, but 

buckling breaks the balance between the two forces by relaxing compressive forces, leading to net 

contraction [25]. With much higher ACP density, the length of buckling units between ACPs 
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becomes shorter, increasing a critical buckling force. Thus, buckling is eventually inhibited, so 

networks are unable to contract.  

Initial network connectivity can be varied over time by the dynamics of F-actins and ACPs. 

Several computational studies demonstrated that the force-dependent unbinding of ACPs from F-

actins is able to induce network contraction by reducing effective frictions and connections 

between F-actins [24]. However, if the unbinding takes place too frequently, networks hardly 

contract due to poor physical coupling between F-actins. This would result in the biphasic 

dependence of network contraction on the unbinding rate of ACPs. However, the unbinding rate 

of ACPs in cells or in vitro experiments does not vary significantly [111] unless the temperature 

of a system changes substantially unlike that of myosin motors highly influenced by ATP 

concentration and drugs [112]. This implies that ACP unbinding with a physiologically relevant 

rate may not be able to facilitate the contraction of networks with heavily cross-linked F-actins. 

The other potential mechanism for the reduction of network connectivity is the 

fragmentation of F-actins [27, 113]. Our previous study demonstrated that F-actins can be 

fragmented or severed during network contraction due to an increase in their bending angle caused 

by buckling [27]. It was also shown that too frequent buckling-induced F-actin fragmentation can 

lead to the formation of multiple small clusters as a result of network contraction rather than a 

single large cluster because network connectivity is severely deteriorated by the fragmentation. 

However, this type of fragmentation occurs after network contract is initiated, so buckling-induced 

F-actin fragmentation cannot be a mechanism for reducing connectivity of networks with heavily 

cross-linked F-actins that do not spontaneously contract.  

F-actins can be fragmented by a tensile force as well. A single-molecule experiment 

showed that F-actins are fragmented if they are subjected to large tensile forces above ~500 pN 

[114]. F-actins can experience such large tensile forces if numerous motors walk on F-actins tightly 

cross-linked to each other. Then, a small fraction of F-actins supporting the largest tensile forces 

may undergo fragmentation, resulting in a decrease in network connectivity. If this event occurs 

in series, even a network with highly cross-linked F-actins may reach a low level of connectivity 

sufficient for network contraction. Despite this possibility, the role of tension-induced F-actin 

fragmentation in network contraction has not been investigated in any of the previous studies, to 

our knowledge.  
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In this study, we employed in vitro reconstituted actomyosin networks and a well-

established agent-based computational model to investigate the effects of force-induced F-actin 

fragmentation on network contraction. As a base study, we evaluated how the concentrations of 

motors, ACPs, and ATP affect network contraction. Then, we showed that F-actin fragmentation 

induced by either severing proteins or large tensile forces can lead to the contraction of an 

otherwise stable network.  

4.2 Methods 

4.2.1 Preparation of proteins  

Note: This section is from Kyohei Matsuda and Junichiro Yajima at the University of Tokyo. 

Actin was purified from the rabbit skeletal muscle [115]. Actin was stored in the G buffer 

[2 mM Tris-HCl (pH 8.0), 0.2 mM ATP, 0.2 mM CaCl2, and 0.2 mM DTT] in liquid nitrogen. To 

prepare F-actin, G-actin was polymerized in an F buffer [5 mM Tris-HCl (pH 8.0), 1 mM MgCl2, 

100 mM KCl, 0.1 mM CaCl2, and 0.5 mM DTT] with 10 M rhodamine phalloidin and 100 M 

ATP for 1 h at room temperature. The mixture was then centrifuged for 1 h at 355,000g and 4C 

(Optima MAX, Beckman), and the pellet was suspended in the F buffer with 1 M ATP. 

Myosin II was also purified from the rabbit skeletal muscle [115]. Myosin II was stored 

in 600 mM KCl and 1 mM DTT in liquid nitrogen. To create myosin II thick filaments, myosin II 

was diluted in the assay buffer [50 mM PIPES-Na (pH 7.4), 50 mM KCl, 1 mM CaCl2, 1 mM 

MgCl2, and 1 mM EGTA] at room temperature (24 ± 1 °C). The final buffer contained 33 mM 

PIPES-Na, 233 mM KCl, 0.66 mM CaCl2, 0.66 mM MgCl2 and 0.66 mM EGTA.   

Recombinant human anillin was prepared as follows [111]. First, coding sequence of the 

mfGFP was attached to the 3 end of the human anillin 231-711 amino acid. The construct encoding 

anillin was cloned into pColdIII vector. The pColdIII-anillin-GFP were next transformed into 

Escherichia coli BL21 Star (DE3) cells. Anillin was expressed for 24 h at 15°C. Expressed proteins 

were purified by immobilized metal affinity chromatography using a HisTrap HP column (Cytiva) 

and then further purified using gel filtration chromatography (Superose 6, Cytiva) and stored in 

liquid nitrogen. 
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Recombinant human gelsolin was prepared as follows. First, a hexa histidine-tag was 

attached to the 3 end of human gelsolin DNA sequence [116]. The gelsolin-His construct was 

cloned into pCold III vector for expression in Escherichia coli BL21 Star (DE3) cells. The pCold-

gelsolin-His was next transformed into the cell. Gelsolin-His was expressed for 24 h at 15°C; the 

cells were collected by centrifugation and resuspended in a lysate buffer [20 mM imidazole-HCl, 

300 mM KCl, 1 mM DTT, and 10 mM CaCl2] containing the protease inhibitor cocktail (Roche), 

and sonicated for 20 min on ice. Next, the lysate was centrifuged for 20 min at 305,000g and at 

4°C. Ni-NTA resin (Bio-Rad) was added, and the mixture was gently stirred for 1 h at 4°C. The 

Ni-NTA beads were washed with a buffer [20 mM imidazole-HCl, 300 mM KCl, 1 mM DTT and 

10 mM CaCl2] by centrifuging several times. Gelsolin-His was then eluted with another buffer 

[200 mM imidazole-HCl, 300 mM KCl, 1 mM DTT and 10 mM CaCl2], desalted on a NAP5-

culumn (Cytiva), and stored in a gelsolin buffer [10 mM Tris-HCl (pH 7.4), 10 mM CaCl2, 150 

mM NaCl, 1mM DTT and 50 M ATP] in liquid nitrogen.  

4.2.2 Estimation of concentrations of proteins 

Note: This section is from Kyohei Matsuda and Junichiro Yajima at the University of Tokyo. 

The concentrations of actin, meromyosin, and myosin were estimated based on ultraviolet 

absorbance of their solution. We used the absorption coefficients of full-length myosin II (A280nm 

= 0.53 /mg/ml/cm), heavy-meromyosin (HMM) (A280nm = 0.6 /mg/ml/cm), and G-actin (A290nm = 

0.63 /mg/ml/cm) and also used molecular masses of full-length myosin II (470 kDa), HMM (350 

kDa), and G-actin (42 kDa). The concentrations of anillin and gelsolin were estimated by SDS-

PAGE on 10% acrylamide gels using BSA standards (Thermo Scientific) loaded on the same gel. 

Gels were stained with Quick-CBB PLUS (Wako) and imaged using a CCD camera (CSFX36BC3, 

Toshiba). The bands containing anillin, gelsolin, and BSA standards were quantified using ImageJ 

(NIH). 

4.2.3 Microscope images of F-actin 

Note: This section is from Kyohei Matsuda and Junichiro Yajima at the University of Tokyo. 
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F-actins were observed using a fluorescence microscope (IX70, Olympus) with a stable 

stage (KS-N, ChuukoshaSeisakujo) and a stage controller (QT-CM2-35, Chuo Precision Industrial) 

with illumination from a mercury lump (U-HGLGPS, Olympus); 20/ NA, UPlanFl objective lens 

(Olympus); and U-MWIG filter set (Olympus). Images were recorded by sCMOS camera (Zyla 

4.2 PLUS USB3.0, Andor). Shutter was controlled using SSH-C (Sigma-koki). In the actin 

fragmentation assay, 100/ NA 1.40 oil immersion UPlanApo objective lens (Olympus) was used.  

4.2.4 Actomyosin network contraction assay  

Note: This section is from Kyohei Matsuda and Junichiro Yajima at the University of Tokyo. 

In the network contraction assay, G-actin, skeletal muscle myosin II thick filaments, and 

ACPs were mixed and self-organized into a disordered actin network. For ACPs, we employed 

anillin that is known to be localized at a contractile ring during cytokinesis [117]. The formation 

of actomyosin networks was initiated by mixing myosin II thick filaments, anillin, and G-actin (3 

M) in an assay buffer [50 mM PIPES-Na (pH 7.4), 50 mM KCl, 1 mM CaCl2, 1 mM MgCl2, and 

1 mM EGTA] containing 2 mg/ml BSA, 1.0 M rhodamine phalloidin, 0.5 mM DTT, and various 

concentrations of ATP. To prevent photobleaching, 0.2% catalase, 1.5 mg/ml glucose, and 50 U/ml 

glucose oxidase as the oxygen scavenger were added [116]. To maintain constant ATP 

concentration in the assay, 20 mM creatine phosphate and 0.3 mg/ml creatine kinase were added 

to the solution as an ATP regenerating system [116]. The assay was performed in flow chambers 

assembled from two coverslips, 1818 mm and 2436 mm (Matsunami), attached via a double-

sided tape (NW-25, Nichiban). The glass surface was blocked with 2 mg/ml BSA to prevent glass-

protein interactions. The assay mixture was placed in the chamber, and the observation 

commenced 30 s after mixing. For the assay, both ends of the chamber were sealed with nail polish. 

Images of F-actins were recorded as described above, every 10 s, with 0.5-s exposure time (Fig. 

4.1). 
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Figure 4.1. A schematic diagram explaining the setup of in vitro experiments. The assay was 

performed in flow chambers assembled with two coverslips, 18×18 mm and 24×36 mm, attached 

via a double-sided tape. Formation of actomyosin networks was initiated by mixing actin (red), 

myosin minifilaments (green), and anillin (blue) in an assay buffer [50 mM PIPES-Na pH 7.4, 50 

mM KCl, 1 mM CaCl2, 1 mM MgCl2, and 1 mM EGTA] containing 2 mg/ml BSA, 1.5 M 

rhodamine phalloidin, 0.5 mM DTT, and various ATP concentrations of ATP in the presence of 

the ATP-regenerating system. Note: This figure is from Kyohei Matsuda and Junichiro Yajima at 

the University of Tokyo. 

 To confirm that anillin does not induce network contraction by itself, we performed 

experiments with various concentrations of anillin without myosin II thick filaments. With RA (the 

ratio of anillin concentration to actin concentration) = 0.1 or 0.2, morphology of networks remains 

homogenous with uniform meshes, whereas relatively heterogeneous networks with bundles were 

formed with RA = 0.3. However, as expected, cluster formation was not observed in these passive 

networks without myosin II thick filaments (Fig. 4.2). 
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Figure 4.2. Actin networks with various densities of anillin in the absence of myosin. Networks 

were assembled with G-actin (3 M), rhodamine phalloidin (1 M), anillin (RA = 0-0.3), and ATP 

(1 mM) without the ATP-regenerating system. A scale bar indicates 100 m. Without anillin, F-

actins exist as individual filaments, so they are hardly visible in the image. With intermediate 

anillin density (RA = 0.12 and 0.24), cross-linked actin networks with homogenous meshes were 

formed. With the highest anillin density (RA = 0.3), a highly bundled network was formed. Note: 

This figure is from Kyohei Matsuda and Junichiro Yajima at the University of Tokyo. 

4.2.5 Measurement of myosin II thick filament length using electron microscopy 

Note: This section is from Kyohei Matsuda and Junichiro Yajima at the University of Tokyo. 

A 10-nM myosin II thick filament solution was applied onto carbon-coated copper grids 

and negatively stained with 1.0% (w/v) uranyl acetate [118]. The specimens were examined using 

an electron microscope (Hitachi High-Technologies, H-7500) operated at 80 kV with 

magnification of 12,000 (Fig. 4.3A, B). The length of myosin thick filaments was evaluated 

visually by using the built-in “segmented-line” tool in ImageJ. 
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Figure 4.3. Measurement of the length of myosin minifilaments. (A) An electron microscopy 

image showing two negatively stained myosin minifilaments. A scale bar indicates 100 nm. (B) 

Distribution of the length of 154 myosin minifilaments. The mean and standard deviation were 

derived from a Gaussian fitting. Note: This figure is from Kyohei Matsuda and Junichiro Yajima 

at the University of Tokyo. 

4.2.6 Triggering network contraction via addition of gelsolin 

Note: This section is from Kyohei Matsuda and Junichiro Yajima at the University of Tokyo. 

 To induce fragmentation of F-actins in a prestressed network, 1 l of 0.02-0.20 M 

gelsolin diluted in a gelsolin buffer [10 mM Tris-HCl (pH 7.4), 10 mM CaCl2, 150 mM NaCl, 

1mM DTT, and 50 M ATP] was loaded into the glass chamber. The final concentration of 

gelsolin was 0.002-0.020 M. Images were recorded by sCMOS camera every 10 s, with 0.5-s 

exposure time. 

4.2.7 Assay for observation of myosin-induced F-actin fragmentation in networks 

Note: This section is from Kyohei Matsuda and Junichiro Yajima at the University of Tokyo. 

To better observe F-actin fragmentation induced by myosin, a network with partly labeled 

actin was prepared, containing 3 M G-actin, 1 M dark phalloidin, 0.1% rhodamine-labeled F-

actin, 0.5 M anillin-GFP, 1 M myosin II thick filament, the oxygen scavenger, 2 mg/ml BSA, 
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and 1 mM ATP in the assay buffer. The images of partly labeled F-actins were recorded as 

described above, every 2 s with 0.5-s exposure time. The retracting speed of fragmented F-actins 

was quantified using an automated tracking program Mark2 (Ken’ya Furuta, NICT). Fluorescence 

images of F-actin fragments were fitted using a 2D Gaussian function to determine the position of 

the fluorescence intensity peak, corresponding to the center of the fragments [119]. Displacements 

of the actin fragments were calculated using the x and y coordinates of the fragments in each frame. 

The speed was calculated based on displacement for a time interval of 10 s corresponding to five 

frames. 

4.2.8  Agent-based computational model for simulating network contraction  

To simulate the contraction of actomyosin networks, we used the agent-based model built 

introduced in Chapter 2 and used in our previous studies [27, 61-63]. Parameter values are listed 

in Table 4.1 and 4.2. Many of the parameter values employed in simulations are inherited from 

our previous studies which recapitulated a wide variety of the contractile behaviors of actin 

networks [61, 62]. 
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Table 4.1. List of parameters employed in the model. 

Symbol Definition Value 

r0,A Length of an actin segment 1.4×10-7 [m]  

rc,A Diameter of an actin segment 7.0×10-9 [m] [69] 

θ0,A Bending angle formed by adjacent actin segments 0 [rad]  

κs,A Extensional stiffness of F-actin 1.69×10-2 [N/m]  

*

b,A  Reference bending stiffness of F-actin 2.64×10-19 [N·m] [70] 

r0,ACP Length of an ACP arm 2.35×10-8 [m] [71] 

rc,ACP Diameter of an ACP arm 1.0×10-8 [m]  

θ0,ACP Bending angle formed by two ACP arms 0 [rad]  

κs,ACP Extensional stiffness of ACP 2.0×10-3 [N/m]  

κb,ACP Bending stiffness of ACP  1.04×10-19 [N·m]  

r0,M Length of a motor arm 1.35×10-8 [m]  

rc,M Diameter of a motor arm 1.0×10-8 [m]  

κs,M Extensional stiffness of a motor arm 1.0×10-3 [N/m] 

*

20k  Reference ATP-dependent unbinding rate of myosin heads 20 [s-1] 

Nh Number of heads represented by a motor arm 8 

Na Number of arms in a motor 4 

kn,A Nucleation rate of actin 0.000125 – 1 [μM-1s-1] 

k+,A Polymerization rate of actin at the barbed end 60 [μM-1s-1] 

0*

u,ACPk  Reference zero-force unbinding rate constant of ACP 0.115 [s-1] [68] 

λu,ACP Sensitivity of ACP unbinding to an applied force 1.04×10-10 [m] [68] 

κr,A Strength of a repulsive force 1.69×10-3 [N/m] 

Δt Time step 1.15×10-5 [s] or 2.875×10-6 [s] 

μ Viscosity of surrounding medium 8.6×10-1 [kg/m·s] 

kBT Thermal energy 4.142×10-21 [J] 

CA Actin concentration 100 [μM] 

RM Motor density (= Ratio of motor concentration to CA) 0.008 – 0.8 

RACP ACP density (= Ratio of ACP concentration to CA) 0 – 0.1 

<Lf> Average length of F-actins  0.69 – 3.02 [μm]  
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Table 4.2. List of parameter values used for adopting “parallel cluster model.” [72, 73] 

Symbol Definition Value 

k01 A rate from unbound to weakly bound state 40 [s-1]  

k10 A rate from weakly bound to unbound state 2 [s-1] 

k12 A rate from weakly bound to post-power-stroke state 1000 [s-1] 

k21 A rate from post-power-stroke to weakly bound state 1000 [s-1] 

k20 A rate from post-power-stroke to unbound state 5-640 [s-1] 

F0 Constant for force dependence 5.04×10-12 [N] 

Epp Free energy bias toward the post-power-stroke state -60×10-21 [J] 

Eext External energy contribution 0 [J] 

d Step size 7×10-9 [m] 

km Spring constant of the neck linkers 1.0×10-3 [N/m] (= κs,M) 

 

Briefly, F-actin, motor, and ACP in the model are coarse-grained by interconnected 

cylindrical segments (Fig. 4.4A). F-actins consist of serially connected segments with polarity (i.e., 

barbed and pointed ends). ACPs are comprised of two arm segments connected at their center point. 

Each motor consists of a backbone structure with 8 arms, mimicking the geometry of myosin II 

thick filaments. Each motor arm represents 8 myosin heads kinetically. The displacements of all 

the cylindrical segments at each time step are determined using the Langevin equation. The model 

accounts for extensional and bending forces that maintain equilibrium distances and angles formed 

by cylindrical segments, respectively, as well as a repulsive force representing volume-exclusion 

effects between neighboring actin segments.  
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Figure 4.4. Agent-based computational model. (A) A schematic diagram showing an actomyosin 

network consisting of F-actin (blue), motor (red), and ACP (yellow) simplified by interconnected 

cylindrical segments. F-actins are coarse-grained by serially connected segments with barbed and 

pointed ends. ACPs consist of two arm segments. Each motor is comprised of a backbone structure 

with motor arms. One motor arm represents eight myosin heads kinetically. (B) An example of an 

actomyosin network assembled in a thin computational domain (20200.1 µm) with the periodic 

boundary condition in the x and y directions.  

A network is formed in a thin computational domain (20200.1 µm) with the periodic 

boundary condition in the x and y directions (Fig. 4.4B). A repulsive boundary condition is applied 

in the z-direction. During network formation, actin undergoes slow nucleation and relatively fast 

polymerization events to form F-actins. ACPs can bind to a pair of F-actins at a constant rate to 

form functional cross-links and also unbind from F-actins in a force-dependent fashion obeying 

Bell’s law [67]. Motor arms self-assemble into a thick filament and then bind to F-actin without 

walking motion. After the network assembly, motors start walking toward the barbed end of F-

actins, based on the mechanochemistry rates of myosin II. In part of simulations, it is assumed that 

F-actin is fragmented in a deterministic manner if it is subjected to a tensile force greater than 500 

pN [114].  

4.2.9 Quantification of network contraction in experiments and simulations 

 To evaluate how fast networks contract, contraction speed was calculated in experiments 

as follows. First, background intensity was subtracted using a built-in “subtract background” 

plugin in ImageJ. We binarized fluorescence images of actin networks using the ImageJ threshold-
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plugin (Fig. 4.5A, B). In binarized images, we calculated the total area occupied by actin and 

plotted the total area over time (Fig. 4.5C). An increase in the total area at early times indicates 

network formation, whereas a decrease in the total area at later times is indicative of network 

contraction. A linear fit was used to estimate contraction speed in a contraction regime (Fig. 4.5C). 

In addition, to represent how fast F-actins are displaced during contraction, we calculated the 

average of the magnitude of moving speeds that were estimated via the PIV plug-in in ImageJ (Fig. 

4.5D, E). We also quantified the maximum cluster size as follows. First, background intensity was 

subtracted in the same way. To determine cluster size, a built-in “analyze particle” plugin in 

ImageJ was used. We define clusters as an actin structure with intensity higher than 150 a.u. and 

with a long axis shorter than 200 m. Maximum cluster size was defined as the size of the largest 

cluster size in the final image in the entire glass chamber area. 
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Figure 4.5. Quantification of contractile behaviors of networks. (A-C) Estimation of contraction 

speed. (A)  Time-lapse images taken during network contraction. F-actins are shown in white. 

(B)  Binarization of the time-lapse images using the ImageJ threshold plug-in. (C) Time evolution 

of the total area in black in the binarized images. An initial increase in the area indicates formation 

of a network (0 – 1000 s), whereas a decrease in the area at later times means network contraction 

(1000 – 1300 s). Contraction speed was determined from a linear fit to the decreasing part after 

reaching the peak. (D-E) Estimation of moving speed. (D)  Speed vector plots drawn via the 

ImageJ PIV plug-in. (E)  Plots showing the magnitudes of velocity vectors. The average of the 

magnitudes is considered to be moving speed. Note: This figure is from Kyohei Matsuda and 

Junichiro Yajima at the University of Tokyo. 
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 Network contraction speed in simulations was measured in a similar manner. Images in 

simulations showing the positions of F-actins at each time point were used to calculate the area of 

the network (Fig. 4.6A). Each image was divided into 70×70 grids. The area is defined as the 

number of grids that are occupied by more than one actin segment, divided by total number of 

grids. The average decreasing rate of area for first 8 s was used as network contraction speed. 

Ensemble- and time-averaged speed of each actin segment for first 8 s was used as moving speed. 

Due to the computational cost, we used 20 μm as a domain width in simulations which is much 

smaller than the width of observed area in the experiments, ~300 μm. Due to such a difference in 

length-scales, we observed many simulations where networks contract into a single connected 

network, whereas experiments often show network contraction into multiple separate clusters. In 

the connected networks observed from simulations, we identified regions with much higher actin 

density compared to other regions and considered them to be clusters. To detect the clusters, we 

employed images used for the area calculation (Fig. 4.4A). Then, we filtered the images by 

excluding grids where the number of actin segments is smaller than 3 times the average number of 

actin segments per grid. (Fig. 4.6B). K-means clustering was used to detect clusters in the filtered 

image (Fig. 4.6C) [120]. If more than one grid are adjacent to each other, they are treated as one 

cluster by finding all grids along the boundary of those neighboring grids (Fig. 4.6D, E). If the 

boundary grids from two clusters overlap with each other, the two clusters are merged and treated 

as a single cluster (Fig. 4.6F).   
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Figure 4.6. Quantification of network area and cluster number in simulation. (A) Network was 

divided by 70 by 70 grids. A grid is considered filled (red circle) if there is a single or more actin 

in a grid. Then the area of the network at a given timepoint was determined as (number of filled 

grids)/(number of total grids) (B) A grid was considered filled (red circle) if the number of actins 

in the grid is higher than 3(Total number of actins in the network)/(Total number of grids) and 

considered empty if not. (C) K-means clustering was used to detect clusters in (B). Different colors 

represent different clusters. Black circle represents the center of each cluster. (D) Grids 

surrounding filled grids from (B) were found. Red circle represents filled grids from (B) and blue 

circle represents surrounding grids. (E) Grids surrounding filled grids from (D) were found. Red 

circle represents filled grids from (C) and blue circle represents surrounding grids. (F) If there is 

an overlap between surrounding grids from two clusters, the clusters are combined. Then, number 

of clusters is found. Different colors represent different clusters. 

4.3 Results 

 To investigate network contraction driven by the actomyosin contractility, we conducted 

in vitro experiments and computer simulations. Note that there are notable differences in two 

approaches, in terms of system size, average filament length, and mechanochemistry of motors. 

Despite the difference, we acquired qualitatively similar results and will present them together to 

discuss similarities and differences between experiments and simulations.  
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4.3.1 ACPs modulates network contraction by varying connectivity between F-actins 

Using the network contraction assay, we conducted experiments with myosin II (1 M) 

and various anillin densities (RA) in the presence of ATP (100 M) and ATP-regenerating system. 

Distinct self-organizing structures resulting from myosin activity at different length-scales were 

reproducibly observed (Figs. 4.7A and 4.8A, B), which is consistent with previous experiments 

[24] and theoretical studies [27, 84]. With a moderate amount of anillin (RA = 0.033-0.1), a cross-

linked actin network is broken into multiple clusters with mean maximum cluster size ranging 

between 100 m2 and 1000 m2 (Fig. 4.7A, B). With a large amount of anillin (RA = 0.2), a network 

was condensed into multiple large clusters with mean maximum cluster size greater than 1000 m2 

(Fig. 4.7A, B). When there was an excessive amount of anillin (RA = 0.3), network contraction 

hardly occurred. We observed that time required for reaching the steady state is longer if the final 

cluster size is larger. However, it typically takes less than 1 h to reach the steady state after proteins 

are mixed. In addition, with higher RA, clusters were formed more slowly as indicated by lower 

contraction and moving speeds of actins (Fig. 4.7C). However, the probability of contraction and 

cluster formation was lower because it is harder for motors to break highly cross-linked networks 

into clusters (Fig. 4.8C), which is consistent with previous studies [94, 110]. 
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Figure 4.7. Network contraction depending on density of actin cross-linking proteins (ACPs). (A-

C) Results from experiments G-actin (3 M), myosin (RM = 0.33), anillin (RA = 0.03-0.3), ATP 

(100 M), and the ATP-regenerating system. (A) Representative fluorescence microscope images 

of networks with various RA. A scale bar corresponds to 100 m. (B, C) Cluster size, contraction 

speed, and moving speed depending on RA (0.03-0.2). (D-F) Results from simulations with actin 

(100 M) motor (RM = 0.16), and ACPs (RACP = 0.01-0.3). (D) Network morphology in simulation 

at 15s depending on RACP with RM = 0.16. Actins (cyan), myosin motors (red), and ACPs (yellow) 

are shown. (E) Contraction speed, and moving speed depending on RACP. Data during initial 8s 

was used to calculate contraction speed and moving speed. In both experiments and simulations, 

networks show slower contraction into larger clusters as crosslinker density increases. (F) Average 

tensile force exerting on selected actin segments. Throughout simulation, ten actin segments with 

highest tensile force were selected. Note: (A)-(C) are from Kyohei Matsuda and Junichiro Yajima 

at the University of Tokyo. 
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Figure 4.8. Network contraction depending on density of actin cross-linking proteins (ACPs). (A-

B) Representative time-lapse images of networks prepared under two different conditions 

correspond to two cases in Fig. 4.7A. A scale bar indicates 100 m. (C) The probability of cluster 

formation. The probability is calculated as the ratio of the number of experiments with cluster 

formation to the total number of performed experiments. The probability is calculated with a 

variation in anillin density. RA is 0.033 (green), 0.067 (yellow), 0.1 (red), and 0.2 (blue). (D) 

Change of area covered by clusters over time. (E) Ensemble average of actin speed as a function 

of time. Note: (A)-(C) are from Kyohei Matsuda and Junichiro Yajima at the University of Tokyo. 

We also used the computational model to run simulations with various ACP densities 

(RACP) with other parameter values fixed. When ACP density was very low, many loose clusters 

were formed with short distance between them, indicative of low contractility (Fig. 4.7D). With 

such low cross-linking density, the long-range transmission of forces generated by motors is 

prohibited, so local contraction occurs. As ACP density increases, fewer, tight clusters were 

formed as a result of strong contractility. However, if there are too many ACPs, network 

contraction was inhibited as observed in our experiments, so clusters did not emerge. With more 

ACPs, actins tended to move slower and networks contracted more slowly due to the high network 

connectivity except in the case with the lowest RACP (Figs. 4.7E and 4.8D, E). If the cross-linking 

density is too low, network contraction and F-actin movements are hard to be significant due to 
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inefficient transmission of force generated by motors. Network connectivity can also be enhanced 

by an increase in average length of F-actins. When average filament length (<Lf>) was increased, 

network contraction slowed down as well (Fig. 4.9).   

 

Figure 4.9. Effects of filament length on network contraction. (E) Network morphology in 

simulation at 15 s depending on filament length. Actins (cyan), myosin motors (red), and ACPs 

(yellow) are shown. (B) Contraction speed and moving speed depending on filament length. With 

shorter filament length, networks contract more rapidly. 

4.3.2 A larger amount of motors enables a network to contract faster into larger clusters  

 To understand the effects of myosin-driven force generation on network contraction, we 

performed experiments with different molar ratios of myosin (RM) and four different anillin density 

(RA) in the presence of G-actin (3 M), ATP (100 M), and ATP-regenerating system. With higher 

RM, networks contracted to larger clusters at a faster rate with faster F-actin movements (Fig. 

4.10A-D). As explained earlier, a network cross-linked by more anillin (i.e., higher RA) exhibited 

slower contraction into larger clusters, regardless of RM. With higher RM, the probability of cluster 

formation was higher because a larger number of myosins can generate larger forces required for 

breaking down a well cross-linked network into clusters (Fig. 4.11A). In general, with more anillin, 
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more myosin motors were necessary to transform the network into clusters. However, with the 

largest amount of myosins and anillin (RM = 0.67, RA = 0.2), the probability of cluster formation 

was quite low because the critical buckling force could be very large with such high RA.  

 

Figure 4.10. Effects of density of motors (RM) on network contraction at various anillin density. 

(A-D) Results from experiments G-actin (3 M), myosin (RM = 0.03-0.67), anillin (RA = 0.03-0.2), 

ATP (100 M), and the ATP-regenerating system. (A) Representative fluorescence microscope 

images of networks with various RM at RA = 0.1. A scale bar indicates 100 m. (B-D) Dependence 

of cluster size, contraction speed, and moving speed on RM at RA = 0.03 (green), 0.07 (orange), 0.1 

(red), and 0.2 (blue). (E-G) Results from simulations with F-actin (100 M), motor (RM = 0.008-

0.4), and ACP (RA = 0.1). (E) Network morphology in simulation 15s depending on RM with RACP 

= 0.1. Actins (cyan), myosin motors (red), and ACPs (yellow) are shown. (F) Contraction speed, 

and (G) moving speed depending on RM. In both experiments and simulations, with more motors, 

networks contract into larger clusters more rapidly. Data at initial 8s was used to calculate 

contraction speed and moving speed. (H) Average tensile force exerting on selected actin segments. 

Throughout simulation, ten actin segments with highest tensile force were selected. Note: (A)-(D) 

are from Kyohei Matsuda and Junichiro Yajima at the University of Tokyo. 
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Figure 4.11. Influences of motor and crosslinker density on network morphology. (A) Network 

morphology in simulation. Higher motor density facilitates network contraction into clusters, 

which is more pronounced at higher crosslinker density. (B) The probability of cluster formation. 

The probability is calculated as the ratio of the number of experiments with cluster formation to 

the total number of performed experiments. RA is 0.033 (green), 0.067 (yellow), 0.1 (red), and 0.2 

(blue). (C-E) Change of area covered by clusters over time. (F-H) Ensemble average of actin speed 

as a function of time. Data during initial 8 s was used. Note: (A) is from Kyohei Matsuda and 

Junichiro Yajima at the University of Tokyo. 

Results from simulations also showed that networks with higher motor density tended to 

show faster contraction into fewer larger clusters (Figs. 4.10E-G and 4.11B-H). We found a single 
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cluster forms at high RACP (= 0.1) and RM (= 0.4) in simulation. Due to computational cost, we did 

not increase RACP above 0.1, but we expect that contraction would be suppressed even with high 

RM if there are numerous ACPs, as observed in experiments. With RM ≤ 0.16, more ACPs result in 

slower contraction at the same motor density, which is also consistent with results shown in Fig. 

4.7. Interestingly, at high RM, contraction and moving speeds were higher in cases with more ACPs. 

Because a large number of motors generate forces, the resistance of a network to contraction 

becomes less important, but higher connectivity resulting from ACPs enables motors to contract 

networks faster. This is also supported by observation that contraction and moving speeds with the 

lowest RACP did not increase much due to a further increase in RM if RM is already high enough, 

which was also shown in experimental results.  

4.3.3 ATP concentration highly affects the length-scale of contraction and cluster size  

 During the cross-bridge cycle of myosin, the unbinding of a myosin head from F-actin 

requires the binding of an ATP molecule to the head. Thus, with higher ATP concentration (CATP), 

the unbinding rate becomes higher, which decreases processivity but increases walking speed. In 

addition, due to a decrease in the duty ratio, forces generated by one thick filament may decrease 

with higher CATP. It is not clear how these changes would affect network contraction. Thus, we 

conducted experiments with a wide range of CATP at different RA (Figs. 4.12A and 4.13A, B). At 

the lowest RA = 0.03, networks formed larger clusters more rapidly as CATP increases from 1 M 

to 100 M (Fig. 4.12B-D). Although the duty ratio and forces of myosin decrease with higher CATP, 

loosely cross-linked networks can still contract into clusters because large, long-lasting forces are 

not necessary for the contraction of such a network. Thus, network contraction speed is determined 

largely by the walking speed of myosin heads. However, with the highest CATP = 1000 M, 

networks did not show noticeable contraction (Fig. 4.12B) and showed slower F-actin movements 

(Fig. 4.12D) because the duty ratio and forces of myosin became too small. As a result, both 

contraction and moving speeds show biphasic dependence on CATP (Fig. 4.12C, D), which is 

consistent with a previous study that employed reconstituted networks consisting of actin, myosin 

II, and fascin [121]. With higher RA, we still observed the biphasic dependence, but optimal CATP 

yielding maximum contraction and moving speeds was lower as RA was larger (Fig. 4.12C, D); 

greater forces from lower CATP are required to contract networks with more cross-linking points. 



 

 

 108  

The probability of cluster formation also showed biphasic dependence on CATP and was mostly 

larger with smaller RA (Fig. 4.13C).  

 

Figure 4.12. Network contraction with a wide range of ATP concentration. (A-D) Results from 

experiments G-actin (3 M), myosin (RM = 0.33), anillin (RA = 0.03-0.2), ATP (0.5-1000 M), 

and the ATP-regenerating system. (A) Representative fluorescence microscope images of 

networks with different ATP concentration (CATP) at RA = 0.1. A scale bar corresponds to 100 m. 

(B-D) Dependence of cluster size, contraction speed, and moving speed on CATP at RA = 0.03 

(green), 0.07 (orange), 0.1 (red), and 0.2 (blue). (E-G) Results from simulations with F-actin (100 

M), motor (RM = 0.16), and ACP (RA = 0.1). We varied ATP-the dependent unbinding rate of 

motors to mimic a change in CATP (k20). (E) Network morphology in simulation at 15 s depending 

on k20 with RACP = 0.1. Actins (cyan), myosin motors (red), and ACPs (yellow) are shown. (F) 

Contraction speed, and (G) moving speed depending on k20. In both experiments and simulations, 

network contraction speed and moving speed show biphasic dependence on ATP concentration. 

Data during initial 8s was used to calculate contraction speed and moving speed. (H) Average 

tensile force exerting on selected actin segments. Throughout simulation, ten actin segments with 

highest tensile force were selected. Note: (A)-(D) are from Kyohei Matsuda and Junichiro Yajima 

at the University of Tokyo. 
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Figure 4.13. Effects of ACP density and k20 on network morphology. (A, B) Cases shown in 3A. 

(C) The probability of cluster formation. The probability is calculated as the ratio of the number 

of experiments with cluster formation to the total number of performed experiments. RA is 0.033 

(D) Network morphology in simulation. (E-G) Change of area covered by clusters over time. (H-

J) Ensemble average of actin speed as a function of time. Note: (A)-(C) are from Kyohei Matsuda 

and Junichiro Yajima at the University of Tokyo. 
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In simulations, to mimic a variation in CATP, we varied the ATP-dependent unbinding rate 

of myosin heads (k20) used in the parallel cluster model [72, 73], which was incorporated in our 

agent-based model. With higher k20, the duty ratio and stall force of motors are reduced, but the 

walking rate increases, which corresponds to changes in myosin due to an increase with ATP 

concentration. As in experiments, contraction and moving speeds showed biphasic dependence on 

k20 (Figs. 4.12F-G and 4.13D-J). In addition, optimal k20 level for maximum contraction/moving 

speeds tended to be smaller with higher RACP like experiments. 

4.3.4  The contraction of mechanically stable networks can be triggered by F-actin 

fragmentation 

So far, we have shown how forces generated from motors contract networks by competing 

with resistance from ACPs. One of the observations was that networks with a very large amount 

of anillin did not exhibit noticeable contraction due to mechanical stability originating from high 

network connectivity. We attempted to induce the contraction of such stable networks by 

perturbing network connectivity via a protein called gelsolin which severs F-actins [122]. First, 

we assembled a prestressed network with G-actin (3 M), myosin (RM = 0.33), and anillin (RA = 

0.2) in the presence of ATP (50 M) and the ATP-regenerating system. After network assembly, 

we added gelsolin and monitored the emergence of contraction. Soon after the addition of gelsolin, 

the prestressed network began to contract locally, and then the contraction was propagated to a 

whole network, resulting in multiple medium-sized clusters (Fig. 4.14A). A control experiment 

with the addition of a buffer solution without gelsolin did not show noticeable contraction (Fig. 

4.14B). This difference in two experiments demonstrates that the contraction was induced by the 

severing activity of gelsolin. We also found that contraction speed was larger with higher gelsolin 

concentration (Fig. 4.14C). These results imply that F-actin fragmentation can facilitate network 

contraction by perturbing the mechanical stability of networks.  
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Figure 4.14. Triggering contraction of mechanically stable networks via severing of F-actins. 

Networks were assembled with G-actin (3 M), rhodamine phalloidin (1 M), myosin (RM = 0.33), 

anillin (RA = 0.2), ATP (50 M), and the ATP-regenerating system. Since a network is densely 

cross-linked, significant contraction does not occur. (A, B) Sequential images of networks with a 

scale bar indicating 100 m. In (A), the actin-severing protein, gelsolin, is introduced to the 

network after assembly (t = 360 s) in order to shorten F-actins. Soon after addition of the gelsolin 

(final concentration, 0.02 M), the network contracts into medium-size clusters. In (B), a buffer 

containing 50 M ATP was injected as a control experiment. After addition of the buffer 

contraction does not occur. (C) A change in contraction speed with different gelsolin concentration. 

The number of experiments is 3 for 0 M, 3 for 0.002 M (RGelsolin = 0.00066), 4 for 0.005 M 

(RGelsolin = 0.0017), and 4 for 0.02 M (RGelsolin = 0.0066). Note: This figure is from Kyohei 

Matsuda and Junichiro Yajima at the University of Tokyo. 

However, the fragmentation by severing proteins is external perturbation applied to 

prestressed stable networks. We further investigated whether F-actin fragmentation plays an 

important role in network contraction even without severing proteins. We introduced a small 

amount of F-actins labeled by rhodamine phalloidin (0.1%) to a network with unlabeled G-actin 

(3 M), myosin (RM = 0.33), anillin (RA = 0.2), and ATP (1 mM) in the absence of the ATP-

regenerating system (Fig. 4.15). We found that F-actins were frequently fragmented during 

network contraction, and then the fragments moved in opposite directions, forming small clusters 

in most cases (Fig. 4.15A). We measured the speed of labeled F-actin segments over time (Fig. 
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4.15B). The speed initially fluctuated over a small range but occasionally showed a rapid jump. 

We found that such a sharp increase in the speed appeared right after F-actin fragmentation. The 

speed showed two-fold increase in ~80% of fragmented F-actins (Fig. 4.15C). These results imply 

that F-actins were fragmented by tensile forces rather than buckling because they showed rapid 

retraction in the opposite directions right after fragmentation, which is reminiscent of the retraction 

of stress fibers in cells observed right after laser ablation [123]. We also found that F-actin 

fragmentation takes place most severely at the lowest CATP = 1 M in which motors generate larger 

forces (Fig. 4.16). It is likely that the formation of small clusters at CATP = 1 M (Fig. 4.12A, B) 

is attributed to severe F-actin fragmentation facilitated by large tensile forces generated from 

stronger motors. 
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Figure 4.15. Observation of fragmentation of F-actins during network contraction. Networks were 

prepared with G-actin (3 M), phalloidin (1 M), myosin (RM = 0.33), anillin (RA = 0.2), ATP 

(1000 M), and the ATP-regenerating system. A small number of F-actins labeled by rhodamine 

phalloidin (0.1 %) were included in the networks. (A) Time-lapse images of the labeled F-actins 

with time points from the initiation of observation. The observation began 6 min after mixing. 

White arrowheads indicate a traced fragment. A scale bar indicates 5 m. (B) The speed of a F-

actin fragment (black dot and line) indicated by orange arrowheads in (A), and the length of the 

fragment (gray open circle) over time. Red lines denote the fragmentation followed immediately 

by a jump in the speed (212 s, 218 s, and 390 s), meaning retraction of tensed F-actin. A blue line 

on the left denotes F-actin fragmentation without a significant increase in the speed (40 s), which 

is likely to be buckling-induced fragmentation. Inset: An example of the trajectory of F-actin 

fragments. (C) The sharp increase in the speed occurred right after fragmentation in 8 experiments 

out of 10. Note: This figure is from Kyohei Matsuda and Junichiro Yajima at the University of 

Tokyo. 
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Figure 4.16. Actin fragmentation dependent on ATP concentration. (A) Actin fragmentation assay 

in bulk containing 3 M G-actin, 1 M myosin and various concentration of ATP with ATP 

regenerating system. In this experiment, after network contraction, excessive amount of ATP (5 

mM) was added. The clusters were loosened, and the length of the actin filament was measured. 

(B) CATP = 1 M; 1.9 ± 1.0 m (magenta, n = 658), CATP = 10 M; 3.6 ± 1.2 m (green, n = 708), 

CATP = 100 M; 5.0 ± 1.4 m (blue, n = 622), CATP = 1000 M; 8.9 ± 1.9 m (black, n = 372). 

Note: This figure is from Kyohei Matsuda and Junichiro Yajima at the University of Tokyo. 

4.3.5 F-actin fragmentation is particularly important for the contraction of networks with 

high connectivity 

 Previous studies demonstrated that network contraction necessitates the unbinding of ACPs 

if network connectivity is high [24]. Each ACP unbinding event breaks one cross-linking point 

between a pair of F-actins. If subsequent unbinding events occur rapidly, mechanically stable 

networks may be able to contract. However, ACPs may bind back to F-actin soon after they unbind 

from F-actin, meaning that many of the unbinding events could be insignificant for network 

contraction. In addition, as mentioned earlier, the unbinding rate of ACPs is not varied over a wide 

range in cells unlike the ATP-dependent unbinding rate of myosin motors. Thus, if a network 
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consists of long F-actins and many ACPs, the ACP unbinding might not be sufficient for breaking 

down the network into clustering structures. Unlike ACP unbinding, F-actin fragmentation is 

mostly an irreversible process unless F-actin turns over or is annealed [124], which are inhibited 

or hardly occurs in in vitro experiments. In addition, since network connectivity is more sensitive 

to average F-actin length than to ACP density [27], F-actin fragmentation may facilitate network 

contraction better than ACP unbinding. However, since an F-actin can support a tensile force up 

to ~500 pN before it is fragmented [114], large forces should be generated across a network.  

We ran a set of simulations with or without force-induced F-actin fragmentation in order 

to identify conditions under which F-actin fragmentation plays an important role in network 

contraction. We first varied RM and average length of F-actin (<Lf>) in the presence of ACP 

unbinding with RACP = 0.1 and k20 = 20 s-1. We increased <Lf> above the value used in the 

simulations presented earlier (<Lf> = 1 m) since tensile force didn’t reach ~500 pN in those 

simulations with <Lf> = 1 m (Fig. 4.7F, 4.10H, 4.12H). F-actin fragmentation affected network 

morphology and contraction/moving speeds significantly only when RM and <Lf> were very high 

where fragmentation occurred frequently (Figs. 4.17 and 4.19). When either RM or <Lf> was low, 

sufficiently large forces could not be developed, so F-actin fragmentation did not occur frequently. 

Under the condition causing frequent F-actin fragmentation (RM = 0.4) and (<Lf> = 2.6 m), we 

varied RACP and k20 to understand how these variables affect the role of fragmentation for network 

contraction. When RACP was low, or when k20 was high, the network showed similar morphology 

and contraction/moving speeds, regardless of the presence of F-actin fragmentation (Figs. 4.18 and 

4.20). In these cases, low connectivity or low duty ratio of motors hindered large force generation 

by motors, thus causing fragmentation to less likely to occur. 
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Figure 4.17. Differential effects of F-actin fragmentation under different conditions. (A, B) 

Network morphology of simulation at 15 s with or without tensile force-induced F-actin 

fragmentation (frag) with (A) short (<Lf>=1 μm) and (B) long F-actins (<Lf>=2.6 μm). RACP was 

0.1. F-actin (cyan), motors (red), and ACPs (yellow) are shown. F-actin fragmentation facilitates 

network contraction when filament length is long (2.6 µm) and motor density is high (RM = 

0.32~0.4) (C, D, F, G) Contraction speed and moving speed during initial 8 s calculated in the 

cases shown in (A, B). (E, H) Time-averaged number of severing events. 
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Figure 4.18. Differential effects of F-actin fragmentation under different conditions. (A-C) 

Network morphology of simulation under different conditions. Actins (cyan), myosin motors (red), 

and ACPs (yellow) are shown. (B, C, E, F) Contraction speed and moving speed averaged at initial 

8 s. (D, G) Time-averaged number of severing events. 
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Figure 4.19. Contraction speed and moving speed depending on F-actin fragmentation. Network 

contraction over time and ensemble average of actin speed in the cases with (red curve) or without 

(blue curve) F-actin fragmentation. With fragmentation, network contracts faster.  
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Figure 4.20. Contraction speed and moving speed with or without F-actin fragmentation. (A, C) 

Network contraction over time in the cases with (red curve) or without (blue curve) F-actin 

fragmentation. With fragmentation, network contracts faster. (B, D) Ensemble average of actin 

speed as a function of time in the cases with or without F-actin fragmentation. With fragmentation, 

actins move faster. Data was averaged during initial 8 s.  

From these results, we conclude that F-actin fragmentation can facilitate the contraction 

of networks where motors can develop sufficiently high forces on F-actins, such as networks with 

high network connectivity (high RACP and <Lf>), high RM, and high duty ratio of motors (low k20).  

4.3.6 F-actin fragmentation can solely induce network contraction or enhance contraction 

caused by ACP unbinding 

We studied the relative importance of ACP unbinding and F-actin fragmentation for 

network contraction by running additional simulations under three conditions: i) with F-actin 

fragmentation and ACP unbinding, ii) with F-actin fragmentation without ACP unbinding, and iii) 
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with ACP unbinding without F-actin fragmentation (Fig. 4.21). When average filament length and 

RM were low, the case without ACP unbinding shows long time delay (~15 s) before contraction 

(Fig. 4.21A-C). Once main contraction started, network contraction speed (i.e., the decreasing rate 

of area over time) was higher than the two other cases with ACP unbinding, implying catastrophic 

fragmentation events. The first fragmentation event was hard to occur under this condition because 

motors cannot generate large force and forces are uniformly distributed on the network with 

permanent cross-links, leading to the time delay. However, once a few fragmentation events 

occurred, force distribution became heterogeneous in short time scale due to perturbed network 

connectivity, resulting in the accumulation of large forces on some of the other F-actins and thus 

more F-actin fragmentation. By contrast, two cases with ACP unbinding showed similar 

morphology and contraction dynamics, regardless of whether F-actin can be fragmented or not. If 

ACPs unbind from F-actins, forces acting on networks are relaxed, which prevents F-actins from 

being fragmented by tensile forces. Indeed, the frequency of F-actin fragmentation with ACP 

unbinding was very low (Fig. 4.21B). This indicates that ACP unbinding plays a more crucial role 

in network contraction than F-actin fragmentation under the condition with low network 

connectivity and low motor density.  
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Figure 4.21. Relative importance of F-actin severing and ACP unbinding on network contraction 

depends on initial network connectivity. (A) Snapshots of networks with RACP =0.1 where F-actin 

severing is inactivated (first column), ACP unbinding is inactivated (second column), and both F-

actin severing and ACP unbinding is activated (third column). (B) Time-averaged number of 

severing events per second, which is calculated in the cases shown in (A). (C-E) Network area 

over time in the cases shown in (A).  

We repeated simulations with higher RM = 0.4 (Fig. 4.21A, B, D). A noticeable difference 

is that time delay in the case only with F-actin fragmentation is much shorter (< 3 s) than that 

observed in the cases with fewer motors. If there are more motors, F-actin fragmentation can be 

fragmented much easier even without ACP unbinding since F-actins experience larger forces. The 

case with both ACP unbinding and F-actin fragmentation started showing contraction earlier, but 

the initial contraction speed was similar to that in the case only with F-actin fragmentation, which 

is higher than contraction speed in the case only with ACP unbinding. It was found that F-actin 

fragmentation still occurred in the presence of ACP unbinding. These observations indicate that 

under the condition with short filaments and a large number of motors, F-actin fragmentation can 

solely induce fast network contraction without ACP unbinding or enhances network contraction 

to some extent with ACP unbinding.  
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With higher RM and longer filaments, the case only with ACP unbinding exhibited the 

slowest contraction with a gradual decrease in the area whereas two other cases with F-actin 

fragmentation showed a sharp drop in the area due to catastrophic fragmentation events (Fig. 

4.21A, B, E). In the presence of fragmentation, more frequent fragmentation occurred in the case 

without ACP unbinding (Fig. 4.21B). Interestingly, the case only with F-actin fragmentation 

overtook that with F-actin fragmentation and ACP unbinding although contraction started late. 

These imply that F-actin fragmentation is much more important for network contraction than ACP 

unbinding in the network with long filaments. In such a network, fragmentation can reduce 

network connectivity more effectively compared to ACP unbinding.  

4.4 Discussion 

The contractile behaviors of actomyosin networks have been investigated actively during 

recent decades using a number of in vitro experiments and theoretical/computational models. In 

early studies, researchers focused mainly on interactions between F-actins and myosin motors 

[125]. Later, the importance of the dynamic behaviors of other cytoskeletal components has been 

discovered in several studies. For example, it was shown that the unbinding of ACPs is of great 

importance for the viscoelastic responses of actomyosin networks, such as stress relaxation, creep, 

plastic deformation, and frequency-dependent shear moduli [24, 126-128]. More recent modeling 

studies demonstrated that the turnover of F-actins can help networks sustain generated stress and 

homogeneous morphology for long time [129] and that buckling of F-actins is crucial for network 

contraction and force generation [27].  

 However, none of these studies paid attention to F-actin fragmentation that can result from 

large tensile forces developed during network contraction. In this study, we investigated the role 

of force-induced F-actin fragmentation using reconstituted actomyosin networks and 

computational models. First, as a base study, we showed how network contraction is governed by 

the amount of motors, ACPs, and ATP. The effects of the densities of motors and ACPs were 

consistent with observations in previous experiments and simulations [94, 110]. In general, with 

more motors, networks contracted faster to a greater extent, and network contraction was maximal 

at intermediate ACP density. ATP influenced the contractile behaviors of networks in a biphasic 

manner, meaning that the contraction was faster and greater at optimal intermediate ATP 
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concentrations that depends on network connectivity. The biphasic dependence of contraction and 

moving speeds was consistent with a previous in vitro experiment [121].  

 In our experiments, we observed several fragmentation events of F-actins during network 

contraction. Such fragmentation events were observed in a previous in vitro experiment [25], but 

it was suggested that F-actins were fragmented due to buckling. However, careful examination of 

time-lapse images implied that a large fraction of F-actin fragmentation events observed in our 

experiments resulted from tensile forces. We ran simulations in the presence of force-induced F-

actin fragmentation under various conditions. It was found that force-induced F-actin 

fragmentations can facilitate network contraction especially when both network connectivity and 

contractility are high. If the contractility is not high enough, F-actin fragmentation is less important 

for network contraction than ACP unbinding.  

In cells, F-actin turns over rapidly, which can prevent motors from generating very large 

forces as our previous study showed [64]. Then, force-induced F-actin fragmentation can be less 

important for network contraction in cells. Further, the constant structural fluctuation of actin 

network might be controlled by other F-actin fragmentation induced by different mechanisms, 

such as F-actin buckling by non-muscle myosin IIB [130, 131] or F-actin twisting by the binding 

of cofilin [124]. However, in the regions of cells with slow F-actin turnover without many other 

proteins causing F-actin fragmentation, force-induced F-actin fragmentation could be quite 

important for the contractile behaviors of actomyosin networks.  

 Although we found the significance of the F-actin fragmentation induced internally by 

motors, we expect that F-actins in passive networks with permanent or less transient ACPs (i.e., 

without motors) subjected to external large strain or stress can undergo fragmentation events 

because some of them would support very large tensile forces as shown in many previous studies 

[132, 133]. In a broader context, any kind of network structures consisting of cross-linked semi-

flexible or rigid polymers can undergo catastrophic force-induced polymer fragmentation under 

high loads and thus show rapid rupture or fracture because if the polymers are severed by tensile 

forces without significant yielding. 

 In this study, we demonstrated that F-actins are fragmented by tensile forces during the 

contraction of actomyosin networks, and that the F-actin fragmentation can indeed play a 

significant role for inducing the contraction of otherwise non-contractile networks, which has been 

neglected to date. In the near future, we will include F-actin turnover and F-actin fragmentation 
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induced by both buckling and large tensile forces to evaluate their relative significance for the 

contractile behaviors of actomyosin networks in more physiologically relevant circumstances. 
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 DYNAMIC MOTIONS OF MOLECULAR MOTORS IN THE ACTIN 

CYTOSKELETON  

The work described in this chapter has been published in [134]. 

5.1 Introduction 

Cells move cellular cargos by a process called intracellular transport. Intracellular transport 

plays a crucial role in a wide variety of cellular functions [135, 136]. For example, during the 

development of neural systems, neurotransmitters and mRNAs are transported, which facilitates 

neuronal functions including neurogenesis and morphogenesis [135]. In addition, cholesterol 

levels in cell membranes, which affect membrane properties and signal transduction processes, are 

regulated via intracellular transport [136].  

To understand how cells regulate intracellular transport, many researchers have 

characterized motions of cargos via single particle tracking [30]. By tracking and analyzing the 

motions of vesicles or microspheres inside cells, it has been discovered that they undergo 

dynamically distinct motions [32]. The slope of the mean square displacement (MSD) calculated 

from their trajectories in log-log scale (α) provides information about the nature of the motions. 

Vesicles attached to cellular components, such as a membrane, tend to show stalled or highly 

subdiffusive motions (α << 1) [31, 137-139]. When cargos are not connected physically to any 

cellular component, they are transported within the cytosol primarily via diffusion [140]. Due to 

crowded environments of cytoplasm, they exhibit subdiffusive motions (α < 1) [141]. Cargos can 

be transported by molecular motors along the cytoskeleton, which is called active transport. Cargos 

undergoing active transport show ballistic (α ~ 2) or superdiffusive (1 < α < 2) motions [31, 142]. 

Cargos can also show a subdiffusive or stationary behavior when multiple molecular motors are 

bound to a single cargo and attempt to move in different directions [29], which is called tug-of-

war [143]. 

Traditional studies regarding active transport focused mainly on transport of cargos driven 

by two types of molecular motors, kinesin and dynein, along radially oriented microtubules. This 

active transport is responsible for long-distance transport between a cell nucleus and a membrane 

[144, 145]. For example, cargos are transported from the nucleus to the membrane for secretion 



 

 

 126  

by kinesin, and from the membrane to the nucleus for endocytosis by dynein [146]. However, 

cargo transport along actin structures is also of great importance for local transport and cooperates 

with microtubule-based transport. For example, in neuronal growth cones, transport is dependent 

on both microtubules in the axon and F-actin in the soma [147, 148]. In addition, myosin V helps 

regulation of secretory processes by preventing a majority of secretory vesicles in cortical actin 

networks from reaching a membrane [149, 150]. Due to structural differences between 

microtubules and the actin cytoskeleton, motions of cargos are quite different depending on where 

they are moving. Cargos exhibit directed motions on microtubules, whereas they show more 

diffusive and slower behaviors on actin structures [32, 33, 151]. Studies demonstrated that MSD 

of myosin motors walking on random actin networks decays as measurement time increases, which 

corresponds to the aging process in glassy dynamics [152, 153].  

Since actin networks in cells are highly disorganized, it is not obvious how myosin motors 

walk along the actin networks. One study found that MSD of myosin II is quite different depending 

on network architecture and types of cross-linkers [34]; motors walking on mixed polarity bundles 

formed by fimbrin and α-actinin can be trapped, whereas polarity-sorted bundle structures formed 

by fascin lead to highly directional motions. Another study using liposomes linked to multiple 

myosin V molecules showed that motions of the liposomes tend to be stalled more in unbranched 

actin networks, compared to those in branched networks formed by Arp2/3 [29]. These 

experimental studies suggest that motors that can bind to more than one F-actin can be stalled or 

slow down due to tug-of-war. 

Computational models have also been widely used to identify governing factors for the 

motions of motors in actin networks. It was found that cargos are transported from a nucleus to a 

membrane most efficiently when actin is densely distributed near the nucleus [154]. Also, it was 

shown that the length and number of F-actins significantly affect transport efficiency [155, 156]. 

In addition, several studies showed that specific geometry of actin networks can trap motors. For 

example, it was demonstrated that stalling of myosin motors walking on an actin network may 

originate from a cycling state in which motors keep circulating within a geometrical trap formed 

by more than two F-actins [157]. Another study showed that motors can be trapped near the center 

of clusters formed by motor-driven polarity sorting of F-actins [158]. These computational studies 

have provided valuable insights into understanding of how myosin motors move in disorganized 

actin structures. However, some of the assumptions used in those studies were less biologically 
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relevant in that the mechanics and dynamics of cytoskeletal components were neglected or 

oversimplified. For example, load-dependent velocity of motors have not been incorporated in 

many previous models [154-156]. In addition, it was assumed that a network is completely rigid, 

meaning that filaments constituting a network were not allowed to be displaced or deformed [157].  

We hypothesized that motions of motors can be quite different if assumptions are closer to 

real actin networks. We employed an agent-based computational model to investigate motions of 

motors in disorganized actin networks with more physiologically relevant assumptions. The model 

accounts for the mechanics and dynamics of cytoskeletal components, such as the force-dependent 

walking velocity of motors and deformability of actin networks. We quantitatively analyzed 

motions of myosin motors in actin networks under various conditions. We found that motor 

motions can be confined due to three different reasons in the absence of F-actin turnover. Two of 

the reasons were verified via in vitro experiments using reconstituted actomyosin networks. 

However, in the presence of F-actin turnover, motors consistently move for a long time without 

significant confinement.  

5.2 Methods 

5.2.1 Model Overview 

 We used the agent-based model built introduced in Chapter 2 and used in our previous 

studies [27, 61-63]. Parameter values used in this research are listed in Tables 5.1 and 5.2. Values 

of most parameters are adopted from our previous studies [43, 61, 63, 64].  

  



 

 

 128  

 

Figure 5.1. Analysis of motor motions using an agent-based computational model. (A) Actin 

filaments (F-actins, blue) are modeled as serially connected cylindrical segments. Adjacent 

segments are connected by elastic hinges. Actin cross-linking proteins (ACPs, yellow) and two-

arm motors (red, bottom) are modeled as two segments connected by elastic hinges. One-arm 

motors (red, top) are modeled as one segment. ACPs can bind to a pair of F-actins to form a 

functional cross-link. One-arm motors can bind to only one F-actin unlike two-arm motors that 

can bind to a pair of F-actins simultaneously. Arms of motors walk toward the barbed ends of F-

actins. Bending (κb) and extensional (κs) stiffness govern mechanical behaviors of these segments. 

(B) An example of movement of a motor walking on a thin cortex-like network. A periodic 

boundary condition is applied in x and y directions. A trajectory of a motor measured in a 

simulation is visualized using a red line. A red circle represents the initial position of the motor. 

Table 5.1. List of parameters employed in the model. 

Symbol Definition Value 

r0,A Length of an actin segment 1.4×10-7 [m]  

rc,A Diameter of an actin segment 7.0×10-9 [m] [69] 

θ0,A Bending angle formed by adjacent actin segments 0 [rad]  

κs,A Extensional stiffness of F-actin 1.69×10-2 [N/m]  

κb,A Bending stiffness of F-actin 2.64×10-19 [N·m] [70] 

r0,ACP Length of an ACP arm 2.35×10-8 [m] [71] 

rc,ACP Diameter of an ACP arm 1.0×10-8 [m]  

θ0,ACP Bending angle formed by two ACP arms 0 [rad]  

κs,ACP Extensional stiffness of ACP 2.0×10-3 [N/m] 

κb,ACP Bending stiffness of ACP  0 [N·m] 

r0,M Length of a motor arm 1.35×10-8 [m]  

rc,M Diameter of a motor arm 1.0×10-8 [m]  

κs,M Extensional stiffness of a motor arm 1.0×10-3 [N/m] 

Nh Number of heads represented by a motor arm 4 

Na Number of arms in each motor 1 or 2 
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Table 5.1 continued 

kn,A 
Nucleation rate of actin for network formation 0.0022 [μM-1s-1] 

Nucleation rate of actin for networks with turnover 0.15 [μM-1s-1] 

k+,A 

Polymerization rate of actin at the barbed end for 

network formation 
60000 [μM-1s-1] 

Polymerization rate of actin at the barbed end for 

networks with turnover 
0.1-70 [μM-1s-1] 

k-,A 

Depolymerization rate of actin at the pointed end for 

network formation 
0 [s-1] 

Depolymerization rate of actin at the pointed end for 

networks with turnover 
0.1-70 [s-1] 

0*
u,ACPk  Reference value of the zero-force unbinding rate 

constant of ACP 
0.115 [s-1] [68, 71] 

λu,ACP Sensitivity of ACP unbinding to applied force 1.04×10-10 [m] [68] 

κr Strength of repulsive force 1.69×10-3 [N/m] 

Δt Time step 1.5×10-5 [s] 

μ Viscosity of medium 8.6×10-1 [kg/m·s]  

kBT Thermal energy 4.142×10-21 [J] 

CA Actin concentration 100 [μM] 

NM Number of motors in a network 0-100 

RACP Ratio of ACP concentration to actin concentration 0.01-0.1 

<Lf> Average length of F-actins  1.2-3.9 [μm]  

Table 5.2. List of parameter values used for adopting “parallel cluster model.” [72, 73] 

Symbol Definition Value 

k01 A rate from unbound to weakly bound state 40 [s-1]  

k10 A rate from weakly bound to unbound state 2 [s-1] 

k12 A rate from weakly bound to post-power-stroke state 1000 [s-1] 

k21 A rate from post-power-stroke to weakly bound state 1000 [s-1] 

k20 A rate from post-power-stroke to unbound state 5-640 [s-1] 

F0 Constant for force dependence 5.04×10-12 [N] 

Epp Free energy bias toward the post-power-stroke state -60×10-21 [J] 

Eext External energy contribution 0 [J] 

d Step size 7×10-9 [m] 

km Spring constant of the neck linkers 1.0×10-3 [N/m] (=
s,M ) 
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5.2.2 Dynamics of motors 

Two types of motors are used in this study: one-arm motors can bind to only one F-actin, 

whereas two-arm motors can bind to a pair of F-actins. Two-arm motors can represent a cargo 

transported by more than one myosin motor in context of active transport and also represent 

myosin thick filaments that can bind to more than one F-actin [159]. Indeed, effects of connectivity 

between a motor and multiple F-actins on active transport have been considered in a recent study 

[157]. 

After binding to F-actin, each motor arm can either unbind from F-actin or walk toward 

the barbed end of F-actin in force-dependent manners. The force-dependent unbinding (ku,M) and 

walking (kw,M) rates of motor arms are determined by the parallel cluster model (PCM) which 

accounts for cooperative behaviors of several myosin heads with consideration of 

mechanochemical cycles [72, 73]. The implementation and benchmark of PCM into our model are 

explained in detail in our previous study [61]. In general, ku,M and kw,M generated from PCM have 

tendency to decrease as forces exerted on motor arms increase (Fig. 5.2). Thus, a motor arm 

eventually stops walking if motor arms experience forces beyond stall level which is ~3.8 pN per 

myosin head. If motor arms reach the barbed end of F-actin, they slide off from F-actin by a next 

walking event. After slide-off or unbinding, motor arms can bind to different F-actin, resulting in 

hopping from one F-actin to the other. If all arms of a motor lose connection to F-actin, the motor 

diffuses in the medium until one of its arms binds to another F-actin. We explicitly account for 

such diffusion in a free state because diffusion may play a significant role in motor motions as 

suggested in a previous study [140]. 

One-arm motors cannot generate large forces because drag forces acting on the center of 

the motors are not strong enough to resist reaction forces from F-actins, as one cannot exert a large 

force on a rope by pulling it on a slippery surface. On the contrary, two-arm motors can develop 

large forces on F-actins if they are bound to relatively anti-parallel F-actins, as one can exert large 

forces on two ropes by pulling them with both hands in opposite directions even on a very slippery 

surface.   
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Figure 5.2. Force-dependent behaviors of motors. (A) Walking and (B) unbinding rates of a motor 

arm as a function of a force acting on the arm. Nh is the number of heads represented by each motor 

arm. Since the unbinding rate decreases with higher applied force, the motor arm behaves as a 

catch bond. 

5.2.3 Network assembly 

 In each simulation, motors walk on a pre-assembled network. If motors walk during 

network assembly, network morphology can become highly different at the beginning of 

measurement of motor motions. Then, it is hard to compare cases in different conditions since 

motors in those cases walk on a different structure from the beginning. To avoid this issue, we 

assembled networks without motors, then imported the pre-assembled network into each 

simulation with motors. Note that preassembly of networks without motor activities has been 

employed in previous in vitro experiments [160].  

For network formation, a cross-linked actin network is assembled via dynamic events of 

F-actins and ACPs in a three-dimensional thin rectangular domain (5×5×0.2µm) with a periodic 

boundary condition only in x and y directions (Fig. 5.1b). In all simulations, nucleation of F-actins 

takes place in a random direction perpendicular to the z direction at equal probabilities, followed 

by fast polymerization. This initially results in formation of a cortex-like network with randomly 

oriented F-actins. ACPs bind to a pair of F-actins to form a functional cross-link between F-actins.  

By varying cross-linking density (RACP) and average F-actin length (<Lf>), we are able to 

control network connectivity. Larger RACP and <Lf> lead to formation of networks with higher 

connectivity. If ACPs cannot unbind from F-actins, a network remains homogeneous until the end 

of simulations. By contrast, with transient ACPs that can unbind, it was observed that F-actins tend 

to gradually form bundles over time under conditions of high connectivity, which is consistent 



 

 

 132  

with previous in vitro studies [161, 162] and a computational study [163]. In general, it takes a 

while for such a network to reach a steady-state configuration. If the slow transition to a bundled 

network occurs while motors walk on the network, patterns of motor motions inevitably become 

time-variant because geometry of a network where motors walk keeps changing over time. In 

addition, it is computationally inefficient to delay activation of motor walking in each simulation 

until a network reaches a steady state. Thus, we ran a few simulations in the absence of motors for 

1000 s to generate networks that reached a steady state in terms of network morphology. Then, we 

imported these steady-state networks at the beginning of the simulations in order to quantify 

motions of motors without significant influences of F-actin bundling.  

5.2.4 Evaluation of motions of motors 

We evaluate motions of motors in a network in three ways. First, we calculate time-

averaged, ensemble-averaged mean squared displacement (TE-MSD):  
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where N is the number of motors, T is the duration of a simulation, τ is the lag time, ri is the position 

vector of the ith motor, and t is time. TE-MSD(τ) indicates how far motors are displaced for τ on 

average.  

Second, we calculate ensemble-averaged mean squared displacement (E-MSD) that 

represents how far motors are displaced on average for τ from an initial position at t = 0: 
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If the nature of motor motions is almost time-invariant (i.e. ergodic), TE-MSD would be very 

similar to E-MSD [157]. By comparing E-MSD and TE-MSD with reference curves indicating ~τ1 

and ~τ2 , we estimate the local power-law exponent α which is indicative of the nature of motions. 

α < 1, α = 1, 1 < α < 2, and α = 2 indicate subdiffusive, diffusive, superdiffusive, and ballistic 

motions, respectively.  
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Third, we fix the lag time (τ) and calculate ensemble-average mean squared displacement 

during the lag time at each time point t, which is named τ-MSD: 
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τ-MSD provides information about motor motions at each time point.  

TE-MSD and E-MSD have been used in previous studies with different names [153, 157, 

164]. τ-MSD was often averaged from the beginning to different time points (i.e. measurement 

time) to determine whether motions undergo an aging process induced by confinement or trapping 

[153, 157, 164]. Unlike the previous studies, we used τ-MSD at each time point to understand 

when motor motions start slowing down. In the previous studies, τ used for calculating τ-MSD 

ranges between 5 s and 15 s [153]. We found that with higher τ, τ-MSD is larger, but the shape of 

all curves does not change significantly (Fig. 5.3). Thus, we set τ to 10 s for calculating τ-MSD. 

We calculated TE-MSD, E-MSD, and τ-MSD using 10-100 motor trajectories (Figs. 5.4, 5.7). and 

took the average. 

 

Figure 5.3. (A) τ-MSD with lag time (τ) ranging from 1 s to 20 s for a case shown by a red solid 

curve in Fig. 5.5B. As τ is higher, values of τ-MSD tend to be larger. Overall, the shape of the 

curves is similar to each other. We chose 10 s for a fixed value of τ (τ = 10s) used for calculating 

τ-MSD in all other figures.  
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Figure 5.4. TE-MSD of one-arm motors in networks with (A) low, (B) medium, and (C) high 

connectivity. In each simulation, there were 5 motors (NM = 5) in the absence of ACP unbinding 

and F-actin turnover. Cyan curves show TE-MSD of individual motors. Blue curves represent the 

ensemble average of all cyan curves, corresponding to red, blue, and green dashed lines shown in 

Fig. 5.5B. Gray dashed lines indicate the slope of MSD corresponding to diffusive motions (~ τ1) 

and ballistic motions (~ τ2). 

5.2.5 Evaluation of F-actin confinement 

 To indirectly estimate elasticity of actin networks, we calculate TE-MSD of all actin 

segments (e.g. Fig. 5.5A). In our previous study, we showed a correlation between TE-MSD of F-

actins and network elasticity [43]. If F-actins are well connected due to more ACPs or longer F-

actins, F-actins cannot move freely, resulting in lower TE-MSD which implies higher network 

stiffness [43, 165]. By contrast, if F-actins are loosely connected, F-actins can move more freely, 

leading to higher TE-MSD which implies lower network stiffness. We evaluate TE-MSD of actin 

segments only in cases with 5 motors to avoid network stiffening induced by many motors so that 

TE-MSD is determined largely by network connectivity regulated via RACP and <Lf>. 
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Figure 5.5. Motions of one-arm and two-arm motors in networks with different connectivity. In 

each simulation, 5 motors were used (NM = 5), and ACP unbinding and F-actin turnover were not 

incorporated. (A) TE-MSD (time- and ensemble-averaged mean squared displacement) of actins 

in networks with low, medium, and high connectivity. Networks with higher connectivity exhibit 

much lower TE-MSD, implying that movements of F-actins are confined more if connectivity is 

higher. (B) TE-MSD of one-arm and two-arm motors. Gray dashed lines indicate the slope of MSD 

corresponding to diffusive motions (~τ1) and ballistic motions (~τ2). Two-arm motors show much 

lower TE-MSD in networks with medium and high connectivity, whereas one-arm motors exhibit 

similar TE-MSD regardless of network connectivity. (C) Average force exerted on each myosin 

head in motor arms, which is the ensemble average of time average of forces acting on motor arms, 

divided by the number of heads represented by each motor arm (Nh). One arm motors bear very 

small force (~0.1 pN) because they cannot generate force on F-actins. By contrast, two-arm motors 

bound to relatively antiparallel F-actins can generate high force. (D) The fraction of stalling 

indicating how long motors are stalled during a simulation run up to t = 1000 s. One-arm motors 

do not experience force-induced stalling due to very small force acting on their arms, whereas two-

arm motors are stalled significantly.  

5.2.6 Quantification of heterogeneity and aggregation of networks 

 Under certain conditions, a network tends to aggregate due to motor activity, resulting in 

heterogeneous network morphology. We analyzed the extent of aggregation and network 

heterogeneity using the radial distribution function, g(r), that represents density of particles as a 

function of a radial distance from a particle [158]. First, a particle density ρ is calculated by 

assuming that all particles are uniformly distributed throughout an entire region. Then, at a distance 
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r from a particle, the number of particles in a donut-shaped region with small thickness Δr is 

counted (Fig. 5.6A). Note that the area of the donut-shaped region is approximately 2πrΔr, and the 

number of particles in the donut-shaped region, P(r), is normalized by 2πrΔrρ. The normalized 

value at the distance r is calculated with respect to all particles, and all normalized values are 

averaged into g(r).  
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     (5.4) 

If particles are distributed uniformly, g(r) is close to one. Conversely, g(r) > 1 represents 

aggregation of particles near the distance r, and g(r) < 1 indicates the sparse distribution of particles 

near the distance r. At every 100 s, we calculate g(r) using instantaneous positions of actin 

segments with Δr = 20 nm (Fig. 5.6B). Then, we average values of g(r) at 0.1 µm < r < 1 µm to 

obtain ( )g t . The lower limit (0.1 µm) is an approximate distance at which g(r) becomes higher 

than 1, and the upper limit (1 µm) is an approximate distance beyond which g(r) shows no 

significant change. Then, the highest value of ( )g t  found in a simulation (
maxg ) is divided by the 

initial value calculated at the beginning of the simulation (
initg ) as a measure of network aggregation. 

Higher “
max init/g g ” indicates more severe network aggregation.  

 

Figure 5.6. Quantification of the extent of network heterogeneity. (A) A schematic diagram 

showing how the radial distribution function, g(r), is calculated. (B) An example of g(r) calculated 

using a network with low connectivity. Two dashed lines indicate the range of r used for 

calculation of the average value, ( )g t .  
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5.2.7 Experimental methods 

To verify some of the hypotheses derived from simulations, we employ an in vitro 

experimental model of the cell cortex. Unlike simulations where non-muscle myosin II was 

modeled, we used skeletal muscle myosin in experiments. Since we are interested in tracking 

individual motors, we could not use non-muscle myosins in experiments due to a limitation in 

tagging those myosins.  

The in vitro model followed the method previously described [166]. On a plasma-cleaned 

glass coverslip, we generate a lipid bilayer consisting of a mixture of 100:1 egg 

phosphatidylcholine:Oregon Green 488 DHPE lipids. F-actins are pre-polymerized at 

concentration of 2.64 µM G-actin in F-buffer (50 mM KCl, 1 mM MgCl2, 10 mM Imidazole, 200 

µM EGTA, and 500 µM ATP at pH 7.5) and stabilized with 1.32 µM phalloidin. We use 75:25 as 

a ratio of dark to fluorescently labeled G-actin. Pre-polymerized F-actins are crowded onto the 

lipid bilayer with 0.25% 14kDa MW methylcellulose, and then glucose oxidase (0.25% mg/mL), 

catalase (0.05 mg/mL), and glucose (25 mM) are added to the imaging chamber to minimize 

photobleaching. 

α-actinin aliquots and fluorescently labeled myosin are snap frozen and freshly thawed 

immediately before use. We centrifuge myosins immediately before use in the presence of 

stabilized pre-polymerized F-actins and high ATP to remove inactive motors. α-actinin and myosin 

are added to the imaging chamber after F-actins are fully crowded onto the lipid bilayer. 

5.3 Results 

In this study, we investigated effects of several factors on motions of motors, such as 

network connectivity, reversibility of cross-links, F-actin turnover, the number of motors, and 

connectivity between motors and F-actins. For network connectivity, we used three different 

conditions: low, medium, and high. Average filament length (<Lf>) for low, medium, and high 

connectivity is 1.2 µm, 2.3 µm, and 3.9 µm, respectively. Cross-linking density (RACP) for low, 

medium, and high connectivity is 0.01, 0.04, and 0.1, respectively.  
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5.3.1 Motors are stalled by locally generated forces in networks with high connectivity 

First, we analyzed motions of one-arm and two-arm motors in networks with three 

different connectivity levels. It was assumed that ACPs form permanent cross-links without the 

possibility of unbinding (i.e. 0

u,ACPk = 0), and F-actins do not undergo turnover (i.e. kt,A = 0). 

Although this condition is less physiologically relevant since F-actins and most kinds of the ACPs 

turn over in cells, we used this condition as a control case to understand effects of ACP unbinding 

and F-actin turnover on motor motions.  

F-actins in networks with higher connectivity show much lower TE-MSD of actins, 

implying that F-actins are confined more (Fig. 5.5A). As shown in our previous study [43], highly 

confined F-actins are indicative of larger network elasticity. We found that the magnitude of TE-

MSD of one-arm motors is larger than that of two-arm motors in general (Fig. 5.5B, 5.8A). In 

addition, at τ < 100 s, the slope of TE-MSD of one-arm motors is higher than that of two-arm 

motors (Fig. 5.8B). One-arm motors cannot generate large forces because they can bind to only 

one F-actin (Fig. 5.5C). Thus, they are able to walk along F-actins for a long time without force-

induced stalling (Fig. 5.5D). It is noteworthy that TE-MSD and E-MSD measured from motions 

of one-arm motors are similar to each other, meaning that motions are more “ergodic” (Figs. 5.5B, 

5.7D). Interestingly, in the case with one-arm motors, the magnitude and slope of TE-MSD are 

lower in a network with low connectivity at τ > 100 s, compared to networks with medium and 

high connectivity (Fig. 5.5B). At this time range, the slope is smaller than one, indicating 

subdiffusive motions. With a small number of ACPs and short F-actins, thermal fluctuation of F-

actins and forces exerted on F-actins by motors can make F-actins move substantially as high TE-

MSD values of F-actins imply (Fig. 5.5A). Therefore, movement of F-actins can cause motor 

movement to deviate from ballistic motions even when motors are walking along F-actins without 

stalling, thus resulting in lower magnitude and slope of TE-MSD at τ > 100 s.  
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Figure 5.7. TE-MSD of two-arm motors in networks with low, medium, and high connectivity and 

NM = 5, 30, and 100 without ACP unbinding and F-actin turnover. Cyan curves show TE-MSD of 

individual motors. Blue curves represent the ensemble average of all cyan curves, corresponding 

to 9 curves shown in Fig. 5.10A. Gray dashed lines indicate the slope of MSD corresponding to 

diffusive motions (~τ1) and ballistic motions (~τ2). 

 TE-MSD of two-arm motors in all cases is smaller than those of one-arm motors. As 

network connectivity increases, the magnitude and slope of TE-MSD in cases with two-arm motors 

noticeably decrease (Figs. 5.5B, 5.8A, 5.8B). This can be explained by force-induced stalling. 

Unlike one-arm motors, two-arm motors can generate large forces if they bind to two F-actins 

oriented in relatively anti-parallel directions. Forces are generated better by motors in networks 

with high connectivity (Fig. 5.5C) because F-actins are confined tightly (Fig. 5.5A); two-arm 

motors can easily develop forces on tightly confined F-actins by pulling them. As a result, two-

arm motors in networks with medium and high connectivity spend most of time in a stalling state 

(Fig. 5.5D). Since TE-MSD is calculated by averaging squared displacements over an entire time 

range, it is hard to estimate how long motors walk on average before force-induced stalling. τ-

MSD and E-MSD can provide useful information about this (Figs. 5.8C, D). In the network with 
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low connectivity, the slope of E-MSD and the magnitude of τ-MSD become smaller after t ~ 50 s, 

implying that two-arm motors walk for ~50 s on average before stalling. In the networks with 

medium and high connectivity, such changes in E-MSD and τ-MSD start between ~ 1 s and ~10 s, 

indicating that it takes less time for two-arm motors to be stalled in these networks.  

 

 

Figure 5.8. Motions of one-arm and two-arm motors in networks with different connectivity.  In 

each simulation, 5 motors were used (NM = 5), and ACP unbinding and F-actin turnover were not 

included. (A) Magnitude and (B) slope of TE-MSD of motors averaged at τ = 0.1-100 s. Unlike 

one-arm motors, the magnitude and slope of TE-MSD of two-arm motors are inversely 

proportional to network connectivity. (C) τ-MSD and (D) E-MSD of motors. In cases with one-

arm motors, τ-MSD does not change significantly over time, and the slope of E-MSD does not 

depend much on τ. For two-arm motors, the magnitude of τ-MSD and the slope of E-MSD 

noticeably decrease from ~50 s in a low- connectivity network and decrease between ~1s and ~10 

s in networks with medium and high connectivity. This indicates that motor stalling takes place 

earlier in the cases with medium and high network connectivity.  

From the slope of E-MSD, we found that both one-arm and two-arm motors do not show 

ballistic movement even at short time scale (τ < 1 s). This is attributed to frequent unbinding of 

motors from F-actins which leads to diffusion of motors and hopping to other F-actin (Fig. 5.2B). 

In addition, in cases with a low-connectivity network, relatively large movement of F-actins can 

make the trajectory of motors less straight even when motors are very processive. To confirm this 
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hypothesis, we analyzed motions of one-arm motors with much less frequent unbinding within a 

network with high connectivity (Fig. 5.9). We found that motors show nearly ballistic movement 

at an early time range (τ < 10 s). 

 

Figure 5.9. E-MSD of one-arm motors with different number of heads (Nh) and different network 

connectivity. Gray dashed lines indicate the slope of MSD corresponding to diffusive motions (~τ1) 

and ballistic motions (~τ2). Motors with Nh = 10 in a high-connectivity network show ballistic 

movement (~τ 2). Motors with Nh = 4 in a low-connectivity network exhibit the slope of MSD 

smaller than 2. More frequent unbinding of motors with lower Nh (i.e. less processive) leads to 

more hopping or diffusion of motors, thus hindering ballistic motions. In addition, in the low-

connectivity network, larger motions of F-actins (Fig. 5.5A) hinder ballistic motions.  

In summary, we found that the amount of forces exerted on motors highly affects motions 

of motors in disordered networks. If motors can bind to only one F-actin, they tend to consistently 

walk for a long time without stalling because they cannot generate large forces. If motors can bind 

to two F-actins, motors can be stalled by locally generated forces to an extent proportional to 

confinement of F-actins to the network.  

5.3.2 Motors can be stalled due to global force transmission through a network 

It was shown that networks with more motors generate larger stress and show stronger 

contractile behaviors [63]. We probed effects of the number of motors (NM) on motions of two-

arm motors in the same three networks with different connectivity. All other conditions are the 

same as above. TE-MSD of motors walking in a network with low connectivity shows strong 

dependence on NM (Fig. 5.10A); with a smaller number of motors, TE-MSD is higher. Such 

dependence of TE-MSD on NM is consistent with changes in average force generated by motors 

and the fraction of motor stalling. As NM increases, the average force becomes larger than the stall 
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force, and the fraction of stalling is much higher (Fig. 5.10B, C). This implies that motors are 

stalled by high forces even in a network with low connectivity if there are a larger number of 

motors. Although motors may contribute to enhancement of cross-linking level by acting as a 

tentative cross-linker, 100 motors cannot make the cross-linking density high enough to reduce 

TE-MSD. Note that the number of ACPs in a network with low connectivity is 1,504, which is 

much larger than 100.  
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Figure 5.10. Motions of two-arm motors in networks with different connectivity and different 

number of motors (NM). ACP unbinding and F-actin turnover were not considered in these 

simulations. (A) TE-MSD (time- and ensemble-averaged mean squared displacement) of motors. 

Gray dashed lines indicate the slope of MSD corresponding to diffusive motions (~τ1) and ballistic 

motions (~τ2). In a network with low connectivity, higher NM leads to lower TE-MSD. (B) Average 

force exerted on each myosin head in motor arms, which corresponds to the ensemble average of 

time average of forces acting on motor arms, divided by the number of heads represented by each 

motor arm (Nh). For NM > 10, the average force increases with NM in a network with low 

connectivity, resulting in higher average force at NM =100 than that in networks with medium and 

high connectivity. (C) The fraction of stalling indicating how long motors are stalled during a 

simulation run up to t = 1000 s. Motors are mostly stalled in networks with medium and high 

connectivity, regardless of NM. In a network with low connectivity, the fraction of stalling 

increases at NM > 10, which is consistent with the increase in the average force shown in (B). (D) 

Visualization of networks at 800 s. Blue, white, and red represent low, intermediate, and high 

forces, respectively. Only actins and motors bearing high forces (> 25 pN) are visualized. In a 

network with low connectivity and high NM, adjacent motors are connected via force-bearing F-

actins, indicating force transmission between the motors.  

We hypothesized that this can be attributed to mechanical interactions via force 

transmission between motors. Tensile forces generated by motors can be transmitted to other 
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motors through taut F-actins and ACPs that physically connect the motors, which can result in an 

increase in forces acting on the other motors. This is similar to mechanical interations between 

myosin molecules occurring within a thick filament; a power stroke motion of one myosin 

molecule on F-actin can develop forces on other myosin molecules bound to different or the same 

F-actin via the backbone of the thick filament. To confirm this hypothesis, we visualized large 

forces (> 25 pN) acting on F-actins and motors (Fig. 5.10D). In the low-connectivity network with 

NM = 100, F-actins between neighboring motors bear a large amount of forces, which clearly 

demonstrates mechanical interactions between the neighboring motors. Motors create a web-like 

structure bearing large forces, and such large forces are not observed in other parts of the network 

(Fig. 5.10D).  

In networks with medium and high connectivity, dependence of TE-MSD on NM is much 

weaker (Fig. 5.10A). In addition, forces exerted on motors and the fraction of motor stalling do 

not vary due to a change in NM (Figs. 5.10B, C). Forces acting between motors increase with larger 

NM, but the degree of the increase is less than that observed in the low-connectivity network (Fig. 

5.10D). Indeed, fewer neighboring motors mechanically communicate (i.e. fewer motors 

connected by F-actin with high forces) compared to those in the low-connectivity network, so the 

web-like structure is not observed in networks with medium and high connectivity. This indicates 

that motors in networks with medium and high connectivity tend to exert forces to their vicinity 

rather than other motors located distantly. τ-MSD and E-MSD show that it takes ~10 s on average 

for 100 motors to be stalled in the low-connectivity network (Figs. 5.11A, B). By contrast, in 

networks with higher connectivity, motors are stalled soon (~ 1 s) after they start walking. In 

networks with higher connectivity, motors can be stalled quickly by reaction forces from F-actin 

at cross-linking points or between anti-parallel F-actins located near their initial positions. On the 

other hand, in networks with low connectivity, motors keep moving until they find one of a few 

positions where they can generate large forces and feel forces transmitted from other motors to 

form the web-like structure, thus resulting in a longer time before being stalled.  
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Figure 5.11. Motions of two-arm motors in networks with different connectivity and different 

number of motors (NM). In these simulations, ACP unbinding and F-actin turnover were not 

included. (A) τ-MSD and (B) E-MSD of motors. The magnitude of τ-MSD and the slope of E-

MSD for a low-connectivity network start decreasing later than those for medium- and high-

connectivity networks. The case with NM = 100 and low network connectivity shows much lower 

values of τ-MSD and E-MSD compared to those with NM = 5 and 30, indicating much slower 

motor motions resulting from global force transmission as explained in the text.  

In summary, two-motors walking in the low-connectivity network without ACP unbinding 

and F-actin turnover can be stalled by global force transmission between motors if the number of 

motors is large. However, in networks with higher connectivity, motors are stalled quickly by 

locally generated forces, so global force transmission plays an insignificant role in motor stalling. 

5.3.3 Motions of motors can be confined by F-actin aggregation 

 Unlike the assumption used above, most of ACPs existing in cells form transient cross-

links because they unbind stochastically from F-actins in a force-dependent manner [68, 167]. We 

ran simulations under the same conditions as above but incorporated the force-dependent 

unbinding of ACPs (Eq. 1). TE-MSD of two-arm motors in networks with medium and high 

connectivity is not dependent on the number of motors (NM) as strongly as in the cases without 

ACP unbinding (Fig. 5.12A). However, the magnitude of TE-MSD is much higher, and the average 

force exerted on motors and the fraction of stalling are significantly lower compared to the cases 

without ACP unbinding (Figs. 5.12A-C). In addition, in networks with medium and high 

connectivity, τ-MSD decreases from ~5 s but reaches a plateau at later times (Fig. 5.13A). The 

slope of E-MSD is also reduced at ~5 s but increases later (Fig. 5.13B). These imply that motors 

did not remain in the stalling state for a long time. Since forces acting on a network are relaxed 
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consistently by ACP unbinding, motors stalled by high local forces have an opportunity to resume 

walking. Although motors are stalled less, they still experience forces close to the stall force and 

thus walk more slowly than motors in the low-connectivity network, as seen in TE-MSD, E-MSD, 

and τ-MSD. 

 

Figure 5.12. Motions of two-arm motors in networks with different connectivity and different 

number of motors (NM). In these cases, ACPs are allowed to unbind from F-actins with the 

reference unbinding rate. F-actin turnover is not considered (kt,A = 0). (A) TE-MSD (time- and 

ensemble-averaged mean squared displacement) of motors. Gray dashed lines indicate the slope 

of MSD corresponding to diffusive motions (~τ1) and ballistic motions (~τ2). In a network with 

low connectivity, higher NM leads to lower TE-MSD after ~5 s. (B) Average force exerted on each 

myosin head in motor arms, which is the ensemble average of time average of forces acting on 

motor arms, divided by the number of heads represented by each motor arm (Nh). Motors in 

networks with medium and high connectivity experience much higher forces. (C) The fraction of 

stalling indicating how long motors are stalled during a simulation run up to t = 1000 s. Motors in 

networks with higher connectivity are stalled for a longer time, which is consistent with higher 

forces exerted on motor arms shown in (B). (D) Network heterogeneity quantified using the radial 

distribution function from positions of actins. Networks with low/medium connectivity high NM 

exhibit aggregating behaviors. (E) TE-MSD of motors walking in reconstituted F-actin networks 

with low motor density. Cross-linking density is 0 (blue) or 0.1 (red). (F) A correlation between 

adjacent image frames showing only motors in (black and red) experiments and in (cyan and green) 

simulations. Cross-linking density is high in two cases represented by black and cyan and low in 

the other cases.  
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Figure 5.13. Motions of two-arm motors in networks with different connectivity and different 

number of motors (NM) in the presence of ACP unbinding with the reference unbinding rate. F-

actin turnover was not incorporated. (A) τ-MSD and (B) E-MSD of motors. For the low-

connectivity network, the case with NM = 100 shows lower values of τ-MSD and E-MSD at t > 

~100 s compared to the cases with NM = 5 and 30. This is indicative of confined motor motions 

induced by network aggregation. (C) Visualization of networks at 800 s. Blue, white, and red 

represent low, intermediate, and high forces, respectively. Networks with NM ≥ 30 and 

low/medium connectivity exhibit severe aggregation of F-actins and motors. (D) Heat maps 

showing spatial distributions of the barbed ends of F-actins and motors in a case with a low-

connectivity network with NM = 100 shown in (C), at t = 200 s and 1000 s. Density is calculated 

by counting the number of elements in each grid of the computational domain and then dividing 

those numbers by the total number of elements. Motors and barbed ends are aggregated at the 

center of the aster-like structure, thus leading to confinement of motors without significant force 

generation. 

 TE-MSD of motors walking in the low-connectivity network shows dependence on NM  at 

τ > ~5 s. With higher NM, TE-MSD tends to be lower although forces exerted on motors are lower 

(Figs. 5.12A, B). τ-MSD and the slope of E-MSD show a noticeable drop after ~100 s, meaning 

that motors walked relatively fast regardless of NM before ~100 s (Fig. 5.13A, B). We found that 
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confinement of motor movements at high NM is attributed to aggregation of a network. If many 

motors walk in a network with low connectivity, F-actins tend to form an aster-like structure (Figs. 

5.12D, 5.13C). Additionally, it was shown that barbed ends are located near the center of the aster-

like structure via polarity sorting [110]. Our results also shows that at the center of the aster-like 

structure, motors and barbed-ends are distributed more densly at later times (Fig. 5.13D). Then, 

once motors walk into the center, they cannot escape because there are few tracks oriented radially 

outward. However, they continuously move around the center region without force-induced 

stalling (Fig. 5.12B, C). In the aster-like structure, many of F-actins are oriented in a relatively 

parallel configuration due to the polarity sorting, and they are highly curved due to buckling 

occurring during aster formation [25]. Thus, a region near the center of the aster-like structure is 

not a favorable environment for two-arm motors to generate significant tensile forces. Thus, they 

rather keep walking along F-actins without stalling. 

 

 With 10-fold lower 0

u,ACPk  (= 0.0115 s-1), network aggregation still takes place in the low-

connectivity network with high NM (Fig. 5.14C), and similar dependences of TE-MSD and average 

motor forces on NM were observed (Figs. 5.14A, B). However, with 100-fold lower 0

u,ACPk  (= 

0.00115 s-1), the network does not aggregate significantly (Fig. 5.14F), and TE-MSD is almost 

independent of NM (Fig. 5.14D). The average force exerted on motors increases with higher NM 

(Fig. 5.14E), but it is not high enough to induce motor stalling for a long time. This implies that 

even slow ACP unbinding can prevent motor stalling induced by the global force transmission by 

slowly relaxing forces on a network.  

 



 

 

 149  

 

Figure 5.14. Motion of two-arm motors in networks with different connectivity and different 

number of motors (NM) with slower ACP unbinding. Compared to the reference ACP unbinding 

rate, (A-C) 10-fold or (D-F) 100-fold smaller unbinding rate were used. F-actin turnover is not 

incorporated (kt,A = 0). (A, D) TE-MSD of motors. (B, E) Average force exerted on each myosin 

head in motor arms. (C, F) Network heterogeneity quantified using a radial distribution function 

generated from positions of motors. Among cases with a low-connectivity network shown in (A-

C), TE-MSD is lower, and network heterogeneity is higher with NM = 100. This implies that motor 

confinement induced by network aggregation still takes place with a 10-fold smaller ACP 

unbinding rate. By contrast, with a 100-fold smaller unbinding rate, dependences of TE-MSD and 

network heterogeneity on NM become much weaker. It indicates global force-induced stalling or 

motor confinement induced by network aggregation do not occur in these cases. 

 In sum, two-arm motors in networks with force-dependent unbinding of ACPs are not 

stalled permanently even with very high network connectivity because forces are relaxed 

consistently by ACP unbinding. If the network has low connectivity and a sufficient number of 

motors, it can severely aggregate. This can induce confinement of motors at the center of 

aggregates for a long time although the motors keep walking around the center. 

5.3.4 Experimental measurements support the hypotheses for motor stalling and 

confinement 

 We qualitatively verified our hypotheses regarding the stalling and confinement of motors 

induced by force generation and aggregation, using reconstituted two-dimensional networks with 
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F-actin stabilized by phalloidin, α-actinin which transiently cross-links F-actins, and skeletal 

muscle myosin (SKMM). Skeletal muscle myosin is a highly non-processive motor which spends 

only ~4% of its lifetime in a bound state [76]. Hundreds of them are assembled into a long thick 

filament structure to stay on F-actin while they walk along F-actin fast [168]. Thus, admittedly, 

motors used in our in vitro experiments are quite different from those used in simulations in terms 

of the number of F-actins that they can bind simultaneously and total maximum force generated 

by one motor. In simulations, we can mimic behaviors of thick filaments consisting of skeletal 

muscle myosins by imposing the high ATP-dependent unbinding rate and the large number of 

myosin heads represented by each motor arm. In addition, our model can simulate a thick filament 

structure with multiple motor arms [61]. However, large forces generated by such motors 

prevented us from focusing mainly on motor motions without a significant change in network 

morphology. Thus, we decided to employ slightly non-processive, weak motors. However, due to 

the universal tendency of force-dependent walking and unbinding of different myosin isoforms, 

we can still make a qualitative comparison between some results from experiments and simulations 

to verify hypothesis. 

First, with low motor density (0.5 nM SKMM), we conducted experiments with many 

ACPs (10:1 G-actin:-actinin) and without any ACP. TE-MSD of motors is much lower in the 

case with high cross-linking density (Fig. 5.12E), which is consistent with simulation results (Fig. 

5.12A). Note that values of TE-MSD measured in experiments are higher than those evaluated in 

simulations, which can be attributed to a large difference in walking velocity between SKMM (< 

~5 μm/s) [76] and motors in simulations (< 140 nm/s) that intend to mimic behaviors of non-

muscle myosins [74]. Still, the decrease in TE-MSD with high cross-linking density is consistent 

with our observation of force-induced motor stalling occurring at high RACP.  

We repeated experiments with higher motor density (≥150 nM SKMM). Since many 

motors are closely located under this condition, tracking individual motors in images is not feasible. 

Thus, instead of quantifying MSD, we calculated a correlation between adjacent image frames 

showing only myosin motors in order to evaluate the extent of motions during each time interval. 

A correlation close to 1 indicates that motors hardly move between frames, whereas a lower 

correlation value is indicative of faster myosin movements between frames. With high connectivity 

(10:1 G-actin:-actinin, 220 nM SKMM) (i.e. high cross-linking density), the correlation slightly 
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decreases at the beginning and then remains at ~1 (Fig. 5.12F). The correlation calculated using 

the simulation under similar conditions (NM = 100 and high network connectivity) shows a 

qualitatively similar tendency. It implies that motors in both the experiments and the simulations 

hardly move over time. In the presence of only myosin motors (150 nM), severe network 

aggregation was observed as in the simulation (Fig. 5.13C). In both the experiment and the 

simulation, the correlation significantly drops at the beginning and is recovered to 1 after ~400 s 

(Fig. 5.12F). This implies that the network aggregates mostly at t < 400 s. Overall, correlations 

calculated in the experiments with high and low cross-linking density are consistent with our 

hypotheses for local force-induced stalling and confinement due to network aggregation.  

5.3.5 Motor motions without F-actin turnover can be confined or stalled due to three 

reasons 

The results that we have shown so far suggest three reasons for which motor motions are 

stalled or confined (Fig. 5.15): local force-induced stalling, global force-induced stalling, and 

confinement by network aggregation. First, local force-induced stalling occurs in networks with 

high connectivity without dependence on motor density (Fig. 5.15, blue). If there is no unbinding 

at all, motors can be stalled permanently in one location. As ACPs unbind more frequently, 

network connectivity needs to be higher to achieve motor stalling induced by locally generated 

forces. Even if ACP unbinding takes place very slowly, motors repeat walking and stalling over 

time without permanent stalling.  
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Figure 5.15. Phase diagram showing three mechanisms of motor stalling or confinement in a three-

dimensional parametric space consisting of network connectivity, motor density (NM), and ACP 

unbinding rate ( 0

u,ACPk ). It is assumed that F-actins do not undergo turnover. 

Second, global force-induced stalling occurs in networks with low connectivity, many 

motors, and ACPs that unbind very slowly (Fig. 5.15, green). The ACP unbinding rate needs to be 

very low to keep the motors stalling for a long time. As network connectivity increases, more 

motors are required to achieve network-level force transmission between neighboring motors 

because it becomes harder to transmit forces over a long distance in a network with higher 

connectivity. Otherwise, with higher network connectivity, slightly faster ACP unbinding is 

necessary for bringing effective network connectivity to lower level so that global force-induced 

stalling can arise.  

Lastly, motor motions can be confined by network aggregation if motor density and ACP 

unbinding rate are high, but network connectivity is low (Fig. 5.15, red). We do not call it stalling 

because motors consistently walk near the center of aggregated structures even after severe 

network aggregation. As connectivity increases, more motors or faster ACP unbinding events are 

required for confinement of motor motions via network aggregation.  
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5.3.6  F-actin turnover can rescue motors from confinement or stalling 

The three mechanisms mentioned above were identified without F-actin turnover. Such a 

condition is similar to many in vitro studies where F-actin does not undergo turnover due to 

stabilization of F-actin via phalloidin. However, during most of the cellular processes, F-actin turns 

over very fast via various modes of actin dynamics [169]. Recent computational studies have 

shown that F-actin turnover can regulate force generation/dissipation and contractile behaviors in 

actin networks [42, 64, 128, 170, 171]. Common observations in those studies are that F-actin 

turnover keeps relaxing forces, prevents motors from generating large forces, and suppresses 

severe network aggregation. To evaluate effects of F-actin turnover on the three mechanisms of 

motor confinement/stalling, we incorporated F-actin treadmilling by imposing identical 

polymerization (k+,A) and depolymerization rates (k-,A) of F-actin. Then, the turnover rate of F-

actin, kt,A, is equal to k+,A and k-,A. 

First, we repeated simulations under conditions for local force-induced stalling. We used 

a network with the highest connectivity, NM = 100, and without ACP unbinding. As the turnover 

rate of F-actin increases, TE-MSD of two-arm motors becomes larger, and the fraction of stalling 

and average force exerted on motors are reduced, resulting in enhanced motor motions (Figs. 

5.16A, B). With kt,A = 20 s-1, TE-MSD, average motor force, and the fraction of stalling become 

very similar to those of two-arm motors walking in the low-connectivity network (Figs. 5.5B-D). 

If actin segments disappear due to depolymerization, all ACPs and motors that were bound to the 

segments are likely to lose connection to F-actin permanently because they cannot rebind to the 

same segments. Thus, the turnover (i.e. treadmilling) is able to facilitate force relaxation more 

efficiently than ACP unbinding, which can prevent local force-induced stalling from taking place. 

Note that these simulations imported a network without noticeable bundle formation unlike other 

simulations because we found that relatively fast actin turnover changes network morphology 

substantially if the network initially has bundles formed without actin turnover. 
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Figure 5.16. Effects of a F-actin turnover rate (kt,A) on motions of two-arm motors. All of the 

simulations used for this figure have 100 motors (NM = 100). (A) TE-MSD of motors in a network 

with high connectivity in the absence of ACP unbinding. Gray dashed lines indicate the slope of 

MSD corresponding to diffusive motions (~τ1) and ballistic motions (~τ2). With higher kt,A, TE-

MSD (time- and ensemble-averaged mean squared displacement) is higher, which indicates less 

motor stalling. (B) Average force exerted on each myosin head in motor arms and the fraction of 

stalling decrease with higher kt,A. (C) TE- MSD of motors in a network with low connectivity 

without ACP unbinding. (D) Average force acting on each myosin head in motor arms and the 

fraction of stalling decrease with higher kt,A. (E) TE- MSD of motors in a network with low 

connectivity. ACPs were allowed to unbind from F-actins with the reference unbinding rate. (F) 

Network heterogeneity and average force acting on ACPs decrease with higher kt,A. For evaluating 

network morphology, we calculate the radial distribution function, g(r), every 10 s. Then, the 

average value of g(r) at 0.1 µm < r < 1 µm, ( )g t , is calculated for each time point. The maximum 

value of ( )g t  normalized by its initial value, 
max init/g g , is used as a measure for network 

heterogeneity. All of the results shown here imply that F-actin turnover prevents motors from being 

stalled or confined. 

Then, we investigated influences of F-actin turnover on global force-induced stalling by 

imposing different turnover rates on a network with low connectivity, NM =100, and without ACP 

unbinding. Even with a slight increase in the turnover rate, TE-MSD significantly increases, 

whereas average motor force and the fraction of stalling drop significantly, resulting in enhanced 

motor motions (Figs. 5.16C, D). Spatial distributions of actin segments and motors with very high 

force (>50 pN) clearly show that force transmission between neighboring motors diminishes as 
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the turnover rate increases (Fig. 5.17A). This indicates that global force-induced stalling of motors 

is much more sensitive to force relaxation occurring in a network than local force-induced stalling. 

Indeed, we have shown that global force-induced stalling does not appear even with slow ACP 

unbinding (Fig. 5.6D), indicating high sensitivity to force relaxation.  

 

 

Figure 5.17. Effects of F-actin turnover on motions of two-arm motors. (A) Visualization of 

networks at 800 s under the same condition as that used for Figs. 5.16C, D. An only difference is 

that F-actins in the center and right cases undergo turnover (i.e. treadmilling). Blue, white, and red 

represent low, intermediate, and high forces, respectively. Only actins and motors bearing 

relatively high forces (> 50 pN) are visualized. With faster F-actin turnover, force transmission 

between motors decreases, resulting in a reduction of global force-induced stalling. (B) Time 

evolution of network heterogeneity in three cases shown in Figs. 5.16E, F. The averaged value of 

the radial distribution function was calculated every 10 s. There were 100 motors (NM = 100) in a 

low-connectivity network, and ACP unbinding was allowed to occur with the reference rate. With 

kt,A = 70 s-1, a network remains relatively homogeneous compared to networks with lower kt,A. 

 Lastly, we repeated simulations under conditions for severe network aggregation. We 

used a network with low connectivity, NM = 100, and ACP unbinding ( 0

u,ACPk = 0.115 s-1). As the 

turnover rate increases, TE-MSD of motors increases, and network is more homogeneous without 

severe aggregation (Figs. 5.16E, F, 5.17B). To explain effects of the turnover rate, we quantified 

loads acting on ACPs at t < 100 s in each case. Since it is expected that only a small portion of 
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ACPs support large loads, we focused on the largest forces (top 5%) supported by ACPs. F-actin 

turnover reduces the amount of loads on ACPs (Fig. 5.16F). As a result, the ACP unbinding rate 

does not exponentially increase, so network connectivity is not disrupted significantly by too 

frequent ACP unbinding events. In addition, clusters formed by network aggregation can be 

disassembled if the turnover is fast enough. Because of these two effects, network aggregation is 

suppressed by F-actin turnover, resulting in consistent movements of motors without noticeable 

confinement.  

Overall, with sufficiently fast F-actin turnover, three regimes for confinement and stalling 

of motors in the phase diagram shown in Fig. 5.15 disappear, implying that myosin motors in cells 

can keep moving in a superdiffusive, ergodic fashion. It is expected that cells regulate motor 

motions differently for various physiological functions by controlling F-actin turnover rates. 

5.4 Discussion 

  A myriad of studies showed that cortical actin network and the myosin super family play 

a very important role in transport of secretory carriers, which are either vesicles or granules, near 

a plasma membrane [159]. Unconventional myosin proteins 1c, 1e, Va, VI and the non-muscle 

myosin II are of particular importance [172]. Myosin molecules walking on F-actins transport the 

carriers actively as their cargos. If there are more than one myosin molecule bound to the cargo, it 

will be easier for the cargo to maintain connection to F-actins and to hop from one F-actin to the 

other. However, there can be a tug-of-war between myosin molecules bound to different F-actins 

oriented in relatively opposite directions. By contrast, if there is only one myosin molecule bound 

to the cargo, the cargo may keep moving in a unidirectional manner, but it will be harder to 

maintain connectivity to F-actins for a long time.  

Thus, understanding motions of myosin motors in disordered actin networks is very 

important for defining mechanisms of active transport. Motions of myosin motors have been 

investigated in a plethora of studies [34, 153, 157, 158]. For example, confinement of myosin 

motions (i.e. limited mobility) in F-actin networks has been reported in several experimental 

studies [157, 173]. Various computational studies have suggested possible mechanisms of the 

motor confinement [157, 158]. In this study, to show how motor motions are confined or restored, 

we investigated motions of myosin motors in cross-linked F-actin networks using an agent-based 
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model. The model rigorously accounts for mechanics and dynamics of F-actin, ACP, and motor, 

including network deformability, force-dependent walking of motors, ACP unbinding, and F-actin 

turnover. 

First, we showed that motors that can bind to one F-actin walk freely in a network 

regardless of network connectivity because they cannot generate large forces that can make the 

motors slow down. However, if motors can bind to more than one F-actin, motors can be stalled 

or slow down due to local force generation. The extent of the local force-induced motor stalling is 

higher if F-actins in a network are better connected to other F-actins via more ACPs or longer F-

actins; motors can develop larger forces on F-actins by pulling them if movement of F-actins is 

restricted more, but the motors will feel the same amount of forces as reaction forces. Thus, in 

networks with higher connectivity between F-actins, most of the motors are stalled shortly after 

they start walking. This is consistent with previous experimental studies showing that motors 

bound to several filaments exhibit confined movements due to tug-of-war [29]. However, a 

previous computational study reported that there is no significant difference in motor motions 

between a bundled network with high connectivity and a homogeneous network with low 

connectivity [158]. In this study, a few additional tracer motors were put on an actomyosin network 

that reached a steady-state morphology. Although it was not explained in detail, it is likely that the 

tracer motors interact with the network in a different way compared to pre-existing motors that 

drove a change in network morphology. Otherwise, the tracer motors should have been stalled in 

the bundled network like the pre-existing motors. 

 We also demonstrated that the tug-of-war may occur at network level, leading to stalling 

of motors in a network with low connectivity. It was shown in a previous study that forces 

generated by contractile elements within a network can be transmitted to other contractile elements 

[174]. If there are a sufficient number of motors so that an average distance between neighboring 

motors is short enough, forces generated by motors can be transmitted to adjacent motors. Motors 

initially walk relatively freely, but as a result of mechanical interactions between them, motors 

eventually find locations where they form a web-like structure that bear large tensile forces at 

network scale. Then, they are stalled and remain in relatively the same locations for a long time. 

This network-scale force transmission arises in networks with relatively low connectivity because 

long-range force transmission through a polymeric network is unlikely to occur in densely cross-

linked networks where motors are stalled by local force generation.  
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In addition, we found that motor motions can be confined due to network aggregation. 

Motors are not stalled but keep moving around the center of aggregated structures. This is 

consistent with the previous computational study which demonstrated that aggregation of motors 

inhibits mobility of motors [158]. Based on these results, we suggested a phase diagram showing 

how and when motor motions can be confined in disordered networks.  

Our study shows that F-actin treadmilling can prevent motors from being stalled or 

confined, resulting in superdiffusive motions of motors, regardless of motor density, F-actin length, 

and the density and unbinding rate of ACPs. F-actin turnover induces relaxation of forces acting 

on motors and ACPs by removing a portion of F-actins. This force relaxation can prevent force-

induced stalling of motors and aggregation of F-actins more effectively than ACP unbinding. 

Suppression of network aggregation via F-actin turnover was demonstrated in previous 

computational study [42, 64, 128]. In addition, this result is consistent with previous experimental 

results showing that stabilization of F-actins leads to lower myosin mobility [173]. Since the cell 

cortex consists of F-actins with fast turnover, it is likely that the stalling and confinement of motors 

in the cortex are rare events under most physiological conditions. However, motors would walk 

slower than their unloaded walking velocity since they still bear a certain amount of forces from 

prestress residing in the cortex. In addition, when the cortex shows aggregating behaviors, such as 

formation of cytokinetic rings, it is expected that motor motions are confined.  

Interestingly, we did not observe a cycling state in which motors are trapped in a network 

by walking along a closed loop-like structure formed by a few F-actins [157]. The previous study 

found the cycling state by tracing motors walking on a frozen network structure that may have 

such a closed loop-like structure permanently. However, in our model, a network cannot have 

long-lasting loop-like structures because F-actins keep thermally fluctuating or move actively due 

to forces generated by motors. In cases with F-actin turnover, network morphology changes even 

more rapidly. Thus, although motors in our model can be trapped in a closed loop-like structure 

for a short time period, it would not be able to affect motor motions for a longer time. 

 Some of the results in this study may look similar to previous computational works. For 

example, a change in network morphology induced by motors has been studied actively during 

recent decades. In particular, aggregation (i.e. cluster formation) in actomyosin networks has been 

shown in several studies [25, 110]. Effects of network connectivity or the unbinding rate of ACPs 

on aggregation have been studied before [158, 175]. However, to our knowledge, these studies did 
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not investigate and analyze motions of motors as deeply as this study. Compared to those previous 

works, novelty of this study is quantitative analysis of motor motions under various conditions. In 

addition, it was shown that movement of F-actins driven by motors is the greatest with intermediate 

F-actin turnover rates [42], which may look similar to our last results with F-actin turnover. 

Although we calculated MSDs of F-actins for some cases, our main focus is motions of motors in 

disordered networks. The extent of active transport can be estimated properly by motions of motors, 

not by F-actin motions. We also showed clearly how motions can be confined depending on 

conditions, which has not done in other previous studies in a quantitative manner. 

In conclusion, our study demonstrated how motions of myosin motors in cortex-like 

networks can be regulated by network connectivity, local force generation, network-scale force 

transmission, and the turnover of ACPs and F-actins. The results from our study provide valuable 

insights into understanding mechanisms of intracellular transport driven by myosin motors in the 

actin cytoskeleton beyond those shown in previous studies.  
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 CONCLUSIONS AND FUTURE WORK 

In this study, we explored the self-organization, contraction, and myosin motion that occurs 

in the actin cytoskeleton using an agent-based computational model along with in vitro 

experiments. We explored parameters relevant to dynamics and mechanics of the actin 

cytoskeleton that have not been explored in previous studies and identified important factors that 

affect self-organization, contraction, and myosin transport. 

In Chapter 2, we employed a computational model designed for simulating myosin 

motility assays with an explicit description of motors that has not been incorporated in previous 

models. We performed calibration of parameters and showed that the model successfully 

recapitulated previous experimental observations. We found that repulsive force between filaments 

and cross-linking play an important role in the motions of F-actins and network morphology.    

In Chapter 3, we demonstrated that repulsive forces and bending stiffness of filaments 

govern the collective motion of filaments as well as pattern formation by determining how easily 

filaments will be bent upon collisions with other filaments. We showed that high filament 

concentration and long filaments induce collective behavior, forming rings and band. On the other 

hand, the bands or the rings could not form with high filament rigidity or too weak repulsive forces. 

In this case, filaments formed homogeneous networks or flocks, which are loose, transient bundles.  

In Chapter 4, we demonstrated that F-actins are fragmented by tensile forces during the 

contraction of actomyosin networks. We found that F-actin fragmentation can induce contraction 

of highly connected networks composed of long filaments, which would otherwise not contract. 

In such cases, the network ruptured catastrophically. On the other hand, in networks composed of 

short filaments, cross-linker unbinding played an important role and induced gradual contraction 

of networks. In cells, the catastrophic fracture may not occur due to actin filaments binding to the 

membrane, which would prevent large force build-up. 

In Chapter 5, our study demonstrated how motions of myosin motors in cortex-like 

networks can be regulated by network connectivity. We found that motor motion can be inhibited, 

by local force generation and network-scale force transmission. We found that the turnover of 

ACPs trap motors while F-actin turnover aid motor motion.  In cells where F-actin turnover occurs 

within a few tens of seconds [169], significant trapping of motors would be prevented.  
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This research, combined with other research endeavors, has the potential to solve 

challenging problems in biology and engineering. Understanding how the morphology and 

dynamics of actin are regulated can contribute to identifying new therapeutic targets for diseases 

resulting from abnormal regulation of actin cytoskeleton dynamics [176]. In tissue engineering, 

understanding how myosin activity generates force and drives the morphological change of the 

cortex is important in understanding tissue morphogenesis [177]. Combined with a tissue-level 

computational model [178], knowledge on actomyosin machinery would enable controlling 

myosin activity to create tissue with the desired shape. In addition, results from the motility assay 

study can be utilized in the design of nanorobots, which is a motility assay that can be used to 

transport and sort molecules [179]. Parameters we identified for the movement and pattern 

formation of actin filaments can be used to tune the speed and location of transported molecules.  

There are ample opportunities for future research through the expansion of the current 

research. In our study for contraction of cortex-like networks, membrane adhesion of the network 

was not considered. An In vitro experiment shows that actomyosin networks built on lipid bilayers 

and glass surfaces show different behavior [25]. In a previous study with a lipid bilayer, filaments 

were mostly buckled due to motor activity [25], whereas our study with a glass surface showed 

the predominant stretching of filaments. In cells, due to cortex adhesion to the membrane, 

catastrophic fracture of the actomyosin network found in our study may be prevented. However, 

it would be also possible that dense cross-linking in the cell cortex prefers stretching over buckling. 

A computational model of the actomyosin network adhered to the membrane can reveal the role 

of the membrane and cross-linking in regulating cortical tension and morphology. Another way to 

expand the current research is incorporating mechanosensitive binding of an actin-binding protein 

to an actin filament [180]. For example, it has been shown that tension on actin filaments enhances 

the binding of α-catenin, an actin-binding protein [181]. α-actinin, another actin-binding protein, 

was shown to exhibit catch-bond behavior, meaning that the protein can accumulate on actin 

filaments under high tension [182]. Incorporating membrane and other binding proteins with 

mechanosensitivity into the model would lead to an interesting and more physiologically relevant 

discovery of the mechanical properties of the actomyosin networks.  
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