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ABSTRACT 

Most engineering curricula in the United States include some form of major design project 

experiences for students, such as capstone courses or design-build-fly projects. Such courses are 

examples of project-based learning (PBL). Part of PBL is to prepare students—and future 

engineers—to deal with and prevent common project failures such as missing requirements, 

overspending, and schedule delays. But how well are students performing once they join the 

workforce? Unfortunately, despite our best efforts to prepare future engineers as best we can, the 

frequency of failures of complex projects shows no signs of decreasing. In 2020 only 53% of 

projects were on time, 59% within budget, and 69% met their goal, as reported by the Project 

Management Institute. If we want to improve success rates in industry projects, letting students 

get the most out of their PBL experience and be better prepared to deal with project failures before 

they join the workforce may be a viable starting point.  

 

The overarching goal of this dissertation is to identify and suggest improvements to areas that PBL 

lacks when it comes to preparing students for failure, to investigate student behaviors that lead to 

project failures, and to improve these behaviors by providing helpful feedback to students.  

 

To investigate the actions and behaviors that lead to events that cause failures in student projects, 

I introduced “crowd signals”, which are data collected directly from the students that are part of a 

project team. In total, I developed 49 survey questions that collect these crowd signals. To 

complete the first part of the dissertation, I conducted a first experiment with 28 student teams and 

their instructors in two aerospace engineering PBL courses at Purdue University. The student 

teams were working on aircraft designs or low-gravity experiments. 

 

Does PBL provide sufficient opportunities for students to fail safely, and learn from the experience? 

How can we improve? To identify areas that PBL may lack, I compared industry failure cause 

occurrence rates with similar rates from student teams in PBL courses, and then provided 

recommendations to PBL instructors. Failure causes refer to events that frequently preceded 

budget, schedule, or requirements failures in industry, and are identified from the literature. 

Through this analysis, I found that PBL does not prepare students sufficiently for situations where 
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the failure cause missing a design aspect occurs.  The failure cause is fundamentally linked to 

proper systems engineering: it represents a scenario where, for example, students failed to consider 

an important requirement during system development, or did not detect a design flaw, or 

component incompatibility. I provided four recommendations to instructors who want to give their 

students more opportunities to learn from this failure cause, so they are better prepared to tackle it 

as engineers.  

 

Is crowdsourced information from project team members a good indicator of future failure 

occurrences in student projects? I developed models that predict the occurrence of future budget, 

schedule, or requirements failures, using crowd signals and other information as inputs, and 

interpreted those models to get an insight on which student actions are likely to lead to project 

failures. The final models correctly predict, on average, 73.11±6.92% of budget outcomes, 

75.27%±9.21% of schedule outcomes, and 76.71±6.90% of technical requirements outcomes. The 

previous status of the project is the only input variable that appeared to be important in all three 

final predictive models for all three metrics. Overall, crowdsourced information is a useful source 

of knowledge to assess likelihood of future failures in student projects.  

 

Does targeted feedback that addresses the failure causes help reduce failures in student projects? 

To improve student behaviors that lead to project failures, I used correlations between failure 

measures and the crowd signals as a guide to generate 35 feedback statements. To evaluate whether 

the feedback statements help reduce project failures in the student teams, I conducted a second 

experiment at Purdue University with 14 student teams and their instructors. The student teams 

were enrolled in aircraft design, satellite design, or propulsion DBT courses. The student teams 

were split in two treatment groups: teams that received targeted feedback (i.e., feedback that aimed 

to address the failure causes that the specific team is most prone to) and teams that received non-

targeted feedback (i.e., feedback that is positive, but does not necessarily address the failure causes 

the specific team is most prone to). Through my analysis, I found that my targeted feedback does 

not reduce the failure occurrences in terms of any metrics, compared to the non-targeted feedback. 

However, qualitative evaluations from the students indicated that student teams who received 

targeted feedback made more changes to their behaviors and thought the feedback was more 

helpful, compared to the student teams who received non-targeted feedback.  
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 INTRODUCTION 

1.1 Research Background and Motivation 

Most engineering curricula in the United States include some form of major design project 

experiences for students, such as capstone courses or design-build-fly projects. Such courses are 

examples of project-based learning (PBL). Project-based learning is the theory and practice of 

using real-world projects that have time restrictions, engineering constraints, specific objectives, 

and aim to facilitate individual and collective learning [DeFillippi, 2001]. PBL is a learner-

centered approach that allows students to engage with an ill-defined project to promote research, 

teamwork, critical thinking, and synthesis of multidisciplinary technical knowledge [Mills and 

Treagust, 2003; Savery, 2006]. The instructor usually acts as a facilitator who guides the students 

through the learning experience as necessary, while allowing them to take responsibility for their 

project decisions [Atman et al., 2007]. PBL is widely considered to be successful, with students 

positively evaluating the approach and suggesting that it helps them develop their engineering 

intuition, makes them responsible for their decisions, and to become flexible thinkers [Hall et al., 

2012; Frank et al., 2003]. Researchers and faculty also consider PBL an integral part of education 

that teaches students to handle complex problems that require diverse thinking and integration 

skills [Lehmann et al., 2008].  

 

Despite the abundance of literature about PBL (e.g., see Kokotsaki et al. (2016) for a review), 

research does not appear to have influenced PBL in practice [McCormick et al., 2013; Cottrell, 

2006]. One reason for this disparity is that research studies focus on theoretical problems designed 

by education professionals to exactly meet PBL criteria, while faculty create design projects based 

on subject-matter expertise, likely without exposure to most recent PBL research on how to 

maximize students’ conceptual understanding of engineering design [John and Thomas, 2000]. 

Researchers in the field also question whether we have been evaluating the effectiveness of PBL 

correctly, emphasizing that instead of evaluating PBL based on student exam scores, we need 

strategies to identify whether particular aspects of PBL help educators cater to specific student 

learning outcomes [Hmelo-Silver, 2004]. 
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Some of these learning outcomes specifically refer to students being capable of applying 

engineering design knowledge to produce solutions that meet needs in regard to safety, 

requirements, and economic factors (ABET criterion 3.2, 2019–2020). Therefore, part of PBL is 

to also prepare students—and future engineers—to deal with and prevent common project failures 

such as missing requirements, overspending, and schedule delays. The first part of this dissertation 

evaluates whether PBL provides sufficient opportunities for students to fail safely, learn from the 

experience, and thereby be more prepared to avoid failure in professional practice.  

 

If engineering training in general, and PBL in particular, was achieving its mission, we would hope 

to see a decrease in project failures. Unfortunately, despite our best efforts to prepare future 

engineers as best we can, the frequency of failures of complex engineering projects shows no signs 

of decreasing. Of the 72 major United States defense programs in progress in 2008, only eleven of 

them were on time, on budget, and met performance criteria [Charette, 2008]. The problems for 

U.S. aerospace and defense programs have only worsened since then: total cost overruns “have 

risen from 28 percent to 48 percent, from 2007 through 2015” [Lineberger and Hussein, 2016]. In 

a recent assessment of U.S. Defense Acquisitions, the U.S. Government Accountability Office 

(GAO) found that these programs were “not yet fully following a knowledge-based acquisition 

approach”, which will result in “cost growth or schedule delays” [GAO, 2017]. The consumer 

goods sector has also had many examples of product failures, such as the Xbox 360 “Red Rings 

of Death” [Takahashi, 2008] or the Ford Explorer rollover problems [Bradsher, 2000]. 

 

Figure 1 shows historical information on project success rates since 2011, confirming that project 

performance has not improved much in recent years. In 2020 only 53% of projects were on time, 

59% within budget, and 69% met their goals [Project Management Institute, 2020, p.12].  
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Figure 1: Historical project success rates for 2011–2020, adapted from Project Management Institute 

(PMI) Pulse of the Profession yearly reports. The most prominent problem for projects is completing their 

milestones on time, with almost half of them failing in terms of this metric. The success rates for all metrics 

have not improved much since 2011, perhaps indicating that we may have reached a plateau. 

 

The high frequency of failures has long served as a motivation of systems engineering research to 

investigate the root causes of these phenomena. Part of the systems engineering process involves 

assessing risk of project failures like cost overruns, schedule slips, and failure to meet technical 

requirements [Bahill and Dean, 1996]. Sorenson and Marais (2016) looked for the underlying 

causes (referred to as “failure causes”) of 62 systems engineering failures and accidents, and found 

that even in new, one-of-a-kind high-tech systems, failures do not involve previously unknown 

phenomena or black swans, but rather prosaic and predictable white swans.  

 

Given the occurrences of these failure causes in industry and the need to improve engineering 

training overall, PBL may be a viable starting point to study and improve the behavioral patterns 

of students before they join the workforce and default to actions that lead to project failures.   

 

To further understand why these failure causes happen, I leverage the idea that the actions and 

behaviors of students in project teams may relate to the occurrences of failure causes, which 

eventually lead to project failures. Therefore, asking project members directly about what they are 

doing or thinking may be a valid approach to predict and prevent future failures. My approach 
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introduces “crowd signals” to capture the human actions and behaviors that lead to failure causes 

and eventually to failures. Crowd signals are data collected directly from the students that are part 

of a project team. By collecting risk information directly from team members, the goal is to capture 

project risk that comes from humans at its source, and to do so frequently, continuously, and in an 

efficient manner.  

 

I use the crowd signals to (a) predict upcoming failures and (b) identify which behaviors, actions, 

biases, or other characteristics correlate with specific failure causes, which helps in developing 

feedback statements (Figure 2). 

 

Figure 2: Failures and failure causes are represented as a causal relationship (solid line). Crowd signals 

correlate with the occurrence of failure causes and failures (dashed line). I use the correlation relationship 

(a) to build predictive models that alert of future failures in student teams and correlation relationship (b) 

to develop targeted feedback to reduce failures by addressing the underlying failure causes.  

 

The crowd signals, together with observations of failure from the instructor, provide all the 

necessary information to train models that predict the probability of occurrence of a project failure. 

The crowd signals are also useful to find correlations between specific human actions or behaviors 

and the occurrence of failure causes, which motivates the development of targeted feedback to 

address these failure causes before they lead to failures. For example, if we knew that more 

frequent team meetings correlate with reduced occurrences of the failure cause Inadequate 
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Communication, then we could provide recommendations to a student team that does not meet 

often to help them improve their communication and avoid this failure cause.  

 

Machine learning techniques can help process the crowd signals, build predictive models, and find 

correlations between the crowd signals, failures, and failure causes. Machine learning can combine 

inputs from multiple sources and uncover hidden patterns, not all of which may be predictable a 

priori, and some of which may differ between teams or settings. In this dissertation, I used logistic 

regression to investigate all the correlations and build all necessary models shown in Figure 2. 

 

The main goal of the dissertation is to identify and suggest improvements to areas that PBL lacks 

when it comes to preparing students for failure, to evaluate whether crowdsourced information 

from the project team members can help to predict future failures, and to test whether targeted 

feedback can prevent these failures in student projects.  

 

The dissertation considers three main research questions: 

1. Does PBL provide sufficient opportunities for students to fail safely, and learn from the 

experience? How can we improve? 

To answer this question, I compared failure cause occurrence rates from industry project failures 

with similar rates from student teams in PBL courses. Then, I used the correlations between the 

crowd signals and the underrepresented failure cause to provide four recommendations to 

instructors. 

 

2. Is crowdsourced information from project team members a good indicator of future failure 

occurrences in student projects?  

To answer this second question, I developed models that predict the occurrence of future failures, 

using crowd signals and other information as inputs, and evaluated those models. 

 

3. Does targeted feedback that addresses the failure causes help reduce failures in student 

projects?  

To answer the last question, I used the correlations between all of the failure causes and crowd 

signals as a guide to generate targeted feedback that aimed to address the failure causes that the 
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specific team is most prone to. Then, I compared the occurrence of failures between student teams 

that received the targeted feedback and student teams that received non-targeted feedback. Also, I 

used qualitative evaluations from the students to gauge their opinions between the targeted and 

non-targeted feedback.   

 

To answer the research questions, I conducted two separate experiments in PBL courses that 

include complex engineering projects (i.e., senior design, capstone, or design-build-fly) at Purdue 

University. The experiments involved surveying both instructors and students. The students were 

the project team, and provided the crowd signal inputs during the time they worked on their design 

projects. The instructors played the role of management for the student teams because they were 

the primary stakeholders and (should) closely monitor the student projects. 

 

Figure 3 shows an overview of the crowd-based failure prediction and prevention prototype that I 

developed as part of answering research questions (ii) and (iii) of this dissertation. The heart of the 

prototype is a family of logistic regression machine learning algorithms (Predictive Logistic 

Regression Algorithms) that process the collected signals from the project teams (Crowd Signals) 

and make predictions about future failures (function a). The crowd signals are collected using 

mobile- and web-accessible surveys (Qualtrics survey). With knowledge of future risk, the 

prototype provides feedback to address the project and team actions before they lead to failure 

(function b). 

 

Figure 3: The Crowd-based Risk Assessment Prototype that uses the crowd signals as inputs to predict 

future failures and then suggests targeted feedback, based on correlations between the failure causes and 

crowd signals. 

1.2 Risk, Systems Engineering Failures, and Failure Causes: Overview 

The dissertation builds on literature and terminology from project risk management and systems 

engineering. To provide context for the reader, this section summarizes notable literature on these 

topics.  
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The word “risk” is a prime example of a word humans frequently use in our daily conversations, 

but that each of us understands, interprets, and reacts to differently [Sjöberg, 2000]. There are 

multiple different uses of the word in the literature [Al-Bahar and Crandall, 1990]. My focus for 

this research is on risk associated with project performance (“project risk”), primarily regarding 

the likelihood of systems engineering failures. Table 1 shows seven definitions of project risk from 

literature. Definitions 1–5 come from project management handbooks or standards, while 

definitions 6–8 come from research articles.  

 

Table 1: Definitions of project risk found in literature. 

# Definition of project risk Sources 

1 “Effect of uncertainty on objectives” 

International Organization for Standardization 

ISO 31000:2018, 2018, Risk Management—

Principles and Guidelines (section 3.1) 

2 

“An uncertain event of condition that, if it 

occurs, has a positive or negative affect on a 

project’s objectives.” 

Hillson, 2014 

3 

“Events with a negative impact represent 

risks, which can prevent value creation or 

erode existing value.” 

Committee of Sponsoring Organizations of the 

Treadway Commission (COSO), 2004, (p. 1) 

4 

“A possible occurrence which could affect 

(positively or negatively) the achievement of 

the objectives for the investment. 

Institution of Civil Engineers, Risk Analysis and 

Management for Projects (RAMP), 2014, 

(Appendix 1, p. 74) 

5 

“The chance of something happening that will 

have an impact upon objectives. It is measured 

in terms of consequences and likelihood.” 

Joint Australian/New Zealand Standard AS/NZS 

4360:1999, 1999, (p.3) 

6 

“Undesired events that may cause delays, 

excessive spending, unsatisfactory project 

results, safety or environmental hazards, and 

even total failure […]” 

Raz et al. 2002 

7 

“A set of factors or conditions that can pose a 

serious threat to the successful completion of 

a software project.” 

Wallace et al. 2004 

8 

A project activity with high likelihood of 

adverse result, small ability to influence it, 

and severe consequences. 

Keizera et al. 2002 
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“Systemic risk” originated in the financial sector to describe catastrophic events that could collapse 

an entire sector or market. Kaufman and Scott (2003) generalized the term in the context of a 

complex project as “a risk that originates from multiple sources, affects multiple agents and 

propagates quickly among individual parts or components of the network.” Systemic risk goes 

beyond the more traditional narrow view of risk and includes additional aspects. Perhaps this 

definition is more suitable in the context of today’s large and complex technical projects (e.g., 

construction or aerospace engineering projects) that include risk from a variety of sources that 

correlate with unknown mechanisms [Gandhi and Gorod, 2012; Kremljak and Kafol, 2014]. 

 

There are three main approaches that researchers and professionals follow to assess risk: 

qualitative, quantitative, and semi-quantitative. Perhaps the most widely known quantitative 

method is to evaluate risk as the product of the likelihood and impact, also known as expected 

value theory [Al-Bahar and Crandall, 1990; Williams, 1996]. Others have used different formulas 

as part of a quantitative calculation, such as including a discrimination factor to represent the 

impact of the risk to the overall project [Cervone, 2006], including a detection factor to represent 

the likelihood of correctly identifying risk [Carbone and Tippett, 2004], or other deterministic 

approaches [Muriana and Vizzini, 2017]. Qualitative methods for risk communication include 

Failures Modes and Effects Analysis (FMEA) [Bouti and Kadi, 1994], risk matrices that describe 

the likelihood and impact in qualitative terms, and fuzzy logic [Carr and Tah, 2001]. Some authors 

have pointed out that sometimes qualitative methods can be vague because they use definitions 

such as “high” or “low” that may not mean the same thing when evaluated by different parties 

[Tah and Carr, 2001]. Lastly, semi-quantitative methods include both quantitative and qualitative 

elements. For example, qualitative matrices of risk dimensions followed by some form of 

numerical calculations for ranking and assessing risk [Cooper et al., 2005; Yoon et al., 2014], or 

Bayesian Belief Networks (BBNs) [Fan and Yu, 2004; Lee et al., 2009], or computational decision 

frameworks [Fang and Marle, 2012]. 

 

When discussing project performance, it is common practice to form a set of project success 

criteria that determine how to evaluate a project. There is no universal agreement on what the 

project success criteria should be, in fact, success criteria have changed over the years [Lim and 

Mohamed, 1999; Ika, 2009]. Projects can differ in so many ways from one another (industry, 
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stakeholders, size, scope, budget, schedule, location, etc.) that it is near impossible to come up 

with a unique set of success criteria that applies to all projects. Also, deciding which group of 

stakeholders selects the success criteria is not straightforward: the CEO, customers, the 

government, and external contractors are just some of the viable candidates. For example, the 

government may consider a project successful if it adheres to all regulations and policy, while 

customers may give more weight to the quality and functionality of the product. Lastly, project 

success may change during different project phases. For example, the design phase of a large 

aerospace vehicle might be evaluated based on technical objectives, while the manufacturing phase 

might be evaluated mainly on cost, schedule, and quality. In the literature, the most common basis 

of project success is the “iron triangle”, which considers project cost, schedule, and quality [Chua 

et al., 1999]. Others have incorporated client satisfaction [White and Fortune, 2002; Aloini et al., 

2007; Zwikael and Ahn, 2011], or technical and project performance [Shenhar et al., 2002] in their 

criteria. For this work, like PMI, I consider three criteria of project evaluation: cost, schedule, and 

technical requirements. 

 

Current risk assessment approaches have not helped as much to reduce the project success rates in 

recent years, as shown earlier (Figure 1). It is difficult to identify and properly assess risk in a 

timely manner for a wide range of reasons, including system complexity [Abt et al., 2010], lack of 

management insight [Yoon et al., 2014], and lack of past evidence [Apostolakis, 2004]. Also, 

existing risk assessment methods often rely on intuition, hindsight, and experience of failures, 

which may not always be trustworthy or available [Frosdick, 1997].  

 

When investigators study past failures in complex systems, they often encounter multiple and 

interrelated causes that may not necessarily cause a failure on their own [Paté‐Cornell, 1993; 

Rasmussen 1997]. To demonstrate the variety and interrelation of failure causes in complex 

projects, consider the Boeing 787. The project was three years behind schedule and over budget 

before delivery to the launch customer. Investigation revealed issues with improper testing of the 

batteries, ineffective outsourcing, supply chain communication issues, and poor management 

decisions [Denning (for Forbes), 2013]. Previous research has identified some of the more frequent 

causes that lead to these types of failures [Sorenson and Marais, 2016]. In this work, I consider 10 

failure causes that are observable in student projects (shown in Table 2).  
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Table 2: Common causes of systems engineering failures that are observable in student projects.  

Adapted from (Sorenson and Marais, 2016) and (Aloisio, 2019). 

 Systems Engineering Failure Causes Explanation 

FC1 Failed to consider design aspect 

Students failed to consider an aspect in the system design. In 

many cases, this causal action describes a design flaw, such 

as a single-point failure or component compatibility. 

FC2 Used inadequate justification Students used inadequate justification for a decision. 

FC3 Failed to form a contingency plan 
Students failed to form a contingency plan to implement if an 

unplanned event occurred. 

FC4 Lacked experience Students’ lack of experience or knowledge led to the failure. 

FC5 Kept poor records 
Students did not review documentation or other work 

sufficiently to capture errors and deficiencies. 

FC6 Inadequately communicated 

Students failed to communicate with each other such that 

they were confused with the information they were given, 

had to “fill in the gaps” in the information they were given, 

or were not notified about important information at all. 

FC7 Subjected to inadequate testing 

One or more students subjected a component or subsystem to 

inadequate testing. This causal action captures inadequate 

tests as well as adequate tests performed inadequately. 

FC8 Managed risk poorly 
Students failed to identify, assess, formulate, or implement a 

proper mitigation measure. 

FC9 Violated procedures 
Students violated a procedure pertaining to the system, such 

as a maintenance or operation procedure. 

FC10 
Did not allow system aspect to 

stabilize 

Students did not allow a system aspect like design or 

requirements to stabilize before moving forward with an 

action. 

 

I consider these failure causes to contribute to the overall risk of a student project by increasing 

the likelihood of a project failure occurring. For example, a project may remain “on schedule” for 

months, until the occurrence of several of these failure causes delay the project. In this manner, 

the reader can think of these failure causes as “increasing risk events”: events that increase the 

overall failure risk of a project. Apart from the causal relationship between failures and failure 

causes, researchers also recognize that human behavior and characteristics are in some way 

responsible for the occurrences of most failure causes and failures, but we may not know exactly 

how, depending on the situation. People (usually) do not willfully conduct inadequate testing or 
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omit important design aspects but can be careless or lose focus while performing a critical design 

or testing task. Research has identified activities, behaviors, and even personality characteristics 

that can lead to poor habits and performance. For example, Halfhill et al. (2005) found that military 

teams with high levels of both conscientiousness and agreeableness received higher performance 

ratings than other teams.  

1.3 Dissertation Outline and Contributions 

The remaining of this dissertation is organized as follows. Chapter 2 is an overview of the first 

experiment and includes the experimental design and recruiting process, the student crowd signals, 

and the instructor questions. Chapter 3 is an evaluation of project-based learning based on the data 

from the first experiment and failure cause data from industry. Chapter 3 also includes 

recommendations to instructors to better prepare students based on areas that I identified PBL is 

lacking. Chapter 4 provides information on the logistic regression failure prediction models and 

rationale, and discusses model validation and model selection. Chapter 5 focuses on the second 

experiment and describes the procedures, the targeted feedback process, and the findings on 

whether the targeted feedback is helpful in reducing failures in student projects. Chapter 6 shows 

descriptive statistics of the student responses to the questionnaire that collected the crowd signals, 

showing some comparisons between the two experiments. The document concludes with Chapter 

7, which is a summary of the research conclusions, the limitations, and some ideas for future work. 
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Figure 4: Dissertation outline and contents. 
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 EXPERIMENT I: CROWD-BASED RISK ASSESSMENT IN STUDENT 

PROJECTS 

In this chapter, I describe the first experiment to collect crowd signals from the student teams and 

project failure data from the instructors. I used the collected data to compare the occurrence of 

failure causes between project-based learning and industry (see Chapter 3). I also used the 

occurrences of project failures, together with the crowd signals, to train the family of failure 

prediction models (see Chapter 4). The experimental procedures were approved as an exempt study 

by Purdue's Institutional Review Board (IRB) with protocol #1803020344 and title “Wisdom-of-

the-Crowd Signals in Student Engineering Projects” in 2018. The data for the first experiment 

were collected during the academic year 2018–19. Chapter 2 is organized as follows: Section 2.1 

provides a description of the experimental setup and design. Sections 2.2 and 2.3 introduce the 

crowd signals and instructor questions.  

2.1 Experimental Setup and Design 

During the recruiting process, I asked the students of design-based courses to volunteer as 

respondents to a brief survey at the end of each week, answering a set of questions (student crowd 

signals). The criterion for student recruitment in the study was to be enrolled in a senior-level 

engineering course that includes a team design project. I visited the courses in person to briefly 

present the research purposes to the students directly, while the instructor was absent from the 

classroom. As part of the recruiting process, I created a flyer which included a QR-code and link 

to the weekly survey (Figure 5).  

 

I provided a gift card incentive for the students. The number of gifts cards and value of each 

changed per semester: initially (Summer 2018) I included two gift cards of $50 that were 

distributed at the end of the semester to two students that responded every week in the semester. 

In subsequent semesters (Fall 2018/Spring 2019) I switched to a weekly $20 gift card model 

because I wanted to encourage participation every week. In communication with the instructors, I 

also sent some reminders to encourage participation.  
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Apart from the students, I also asked the instructors of each course to respond to a separate survey 

at the end of each week, to determine the progress of each student project. The criterion for 

instructor recruitment was to monitor student teams closely, so they were able to accurately 

provide the progress of each project.  

 

For confidentiality purposes, the survey was distributed via an anonymous link through Qualtrics, 

which ensured no student identifiable information was obtained or stored. Instead, I followed an 

approach where each student used a username of their choice when responding to the survey for 

the duration of the semester. I informed the students that they should not use their Purdue career 

account as their username or a username that could make them identifiable to the researchers in 

any way. The instructors were willingly identified when they agreed to allow me to collect data in 

their course, but none of their identifiable information was saved in any database.  

 

 

Figure 5: Recruitment flyer as distributed to the students during the recruitment process of the first 

experiment. The number of gifts cards (X) and value of each (Y) changed per semester: initially (Summer 

2018) I included two gift cards of $50 that were distributed at the end of the semester once. In subsequent 

semesters (Fall 2018/Spring 2019) I switched to a weekly $20 gift card model because I wanted to 

encourage participation every week. 
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In total, I collected data from 28 different design project teams. The student teams were enrolled 

in two different courses at Purdue University. All data collection occurred during the academic 

year 2018–2019. The 28 student teams worked on 18 projects. Some projects spanned multiple 

semesters, but there was a new student team taking over each semester, so I considered these 

student teams separately. I collected 240 observations from the two instructors, and 304 

observations from the 74 students that participated. For these courses, the student teams worked 

on either low-gravity fluid experiments or aircraft designs.  

Table 3 shows a summary of the number of observations and projects per semester. 

 

Table 3: Summary of data collection during academic year 2018–19. Student teams typically included 4-6 

team members. The projects included both hardware and software deliverables as well as progress and 

final reports. 

Semester # of projects 
Duration in 

weeks 

# student 

observations 
# instructor observations 

Summer 2018 6 6 56 36 (6 projects for 6 weeks) 

Fall 2018 12 (8 new + 4 prev.) 12 218 
144 (12 projects for 12 

weeks) 

Spring 2019 10 (4 new + 6 prev.) 6 30 60 (10 projects for 6 weeks) 

2.2 Student Crowd Signals 

The crowd signals collect human-centric information (e.g., actions, behaviors, and habits) during 

the project. Such information may correlate to individual or team performance and therefore to 

project failures and failure causes as discussed previously in Figure 2. To arrive at a successful set 

of crowd signals, I surveyed literature that included factors that affect team, project, and individual 

performance. I included a wide range of literature from the following research areas in the search: 

human factors, systems engineering, project management, engineering education, psychology, and 

social sciences. Each factor I identified, led to one or more student questions that applied 

specifically to the specialized context of student projects. When possible, I phrased the questions 

so they are hard-to-game, meaning they did not have obvious “correct” answers. I should note that 

the set of questions I developed are just one way of identifying the presence of a corresponding 

factor. I also included nine indirect questions that were directly related to project outputs and habits 
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that may affect time allocation to project work, which have not been studied in previous research 

work.  

 

In summary, the questions I developed were in the following eight categories: 

1. 9 Performance questions (Q1–Q9) from factors that relate to team performance and/or 

project success, as identified by human factors, engineering education, and systems 

engineering literature. 

2. 5 Critical Success Factors questions (Q10–Q14) from the “critical success factors” as 

identified from project management literature. 

3. 5 Individual Personality questions (Q15–Q19) that include individual personality 

characteristics that affect team performance as identified from social sciences and 

psychology literature. 

4. 6 Student Estimation questions (Q20-Q25) that include the students’ own estimations of 

the project performance. 

5. 4 Safety Archetypes questions (Q26–Q29) that include organizational safety archetypes 

which relate to dysfunctional team practices that may lead to failures. 

6. 9 Indirect signals questions (Q30–Q38) that include indirect phenomena or habits that 

may relate to project outcome. 

7. 2 Risk Perception questions (Q39–Q40) that include current risk perception of the team 

members and may relate to current project status. 

8. 9 Individual Actions & Decisions questions (Q41–Q49) that include cognitive biases of 

the team members that may show as tendency to particular actions or decisions. 

 

To demonstrate the development process, I describe two examples of hard-to-game questions. 

 

Proactivity is a factor that is associated with project performance because proactive people are 

willing to take action to affect their environment, in contrast to non-proactive individuals who are 

less likely to act [Kirkman and Rosen, 1999]. Rather than asking students directly whether they 

think they are proactive (where the answer would most likely be “yes”), I asked “During the past 

week, how many times did you attempt to get involved with a project-related task that was outside 

your immediate responsibility?” (Q2). 

 

The bandwagon effect is a cognitive bias where people do or believe things because many other 

people do or believe the same. Rather than asking members directly whether everyone does or 

believes the same, I asked “During the past week, did you have any arguments with your team 
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about the next project actions/tasks?” (Q42). The question is just one way of identifying the 

presence of the bandwagon effect.  

 

Table 4 shows the complete list of the 49 crowd signals, their coded names in the data, and the 

sources from literature, organized by category. 

Table 4: The questions that collected the crowd signals from the students. Each question was based on the 

definitions of corresponding literature. 

Performance 

Q1 
Individual 

Experience (EXP) 

The level of proficiency as 

well as the collective ability to 

exchange knowledge [Reagans 

et al., 2005]. 

How many engineering projects have you 

participated in so far? Include all engineering 

projects from coursework, internships, or 

extracurricular activities. (Integer answer) 

Q2 Proactivity (PRO) 

Proactive individuals show 

initiative, are willing to act 

and affect their environment, 

and show perseverance 

[Kirkman and Rosen, 1999]. 

During the past week, how many times did you 

attempt to get involved with a project-related 

task that was outside your immediate 

responsibility? 

(Integer answer) 

Q3 Stress level (SL) 

High level of stress is 

associated with increased 

anxiety, negative emotions, 

distraction, conflict, and loss 

of team orientation [Dietz et 

al., 2017]. 

During the past week, how often were you 

unable to focus on this project? 

(Likert scale answer: Never (1) to Always (5)) 

Q4 
Coordination (1) 

(COO1) 

The unification, integration, 

synchronization of the efforts 

of group members to provide 

unity of action in the pursuit 

of common goals [Salas et al., 

2008]. 

During the past week, how often did you 

interact with your team members while 

completing separate project tasks? 

(Likert scale answer: Never (1) to Always (5)) 

Q5 Team Impact (IMP) 

Teams have been shown to 

impact the productivity and 

performance of a project 

[Hamilton et al., 2003]. 

During this past week, how often did you think 

that your team made progress that was 

meaningful for the success of this project? 

(Likert scale answer: Never (1) to Always (5)) 

Q6 
Coordination (2) 

(COO2) 

The unification, integration, 

synchronization of the efforts 

of group members to provide 

unity of action in the pursuit 

of common goals [Salas et al., 

2008]. 

During the past week, for roughly what 

percentage of your team do you know exactly 

what they worked on? 

(Continuous percentage answer) 
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Table 4 continued 

Q7 
Standardized work 

(STND) 

Standardized work practices 

detail how work should be 

performed [Gilson et al., 

2005]. 

During the past week, rate the level of freedom 

you felt you had on how to complete your 

project tasks. 

(Likert scale answer: No freedom (1) to 

Complete freedom (5)) 

Q8 
Team Autonomy 

(AUTO) 

High team autonomy has been 

linked to increased 

productivity, quality of 

performance, innovativeness, 

job satisfaction, decreased 

turnover, and fewer accidents 

[van Mierlo et al., 2006; 

Cordery et al., 2010]. 

Assume that the course instructor is unavailable 

for the remaining of the semester. What do you 

think is the chance your team will successfully 

complete all the assigned tasks without any 

oversight for the rest of the semester? 

(Continuous percentage answer) 

Q9 Creativity (CREA) 

Teams that explore alternative 

ways to accomplish their work 

also should be better able to 

meet the needs of their 

customers [Dorst and Cross, 

2001; Gilson et al., 2005]. 

During the past week, which of the following 

attributes/adjectives relating to creativity do 

you feel apply to your team’s project work? 

(Multiple answer between 6 adjectives that 

relate to creativity and 6 that do not) 

CSF (Critical Success Factors) [Pinto and Slevin, 1987; Chua et al. 1999] 

Q10 
Modularization 

(MODU) 

Modular design, or 

"modularity in design", is a 

design approach that 

subdivides a system into 

smaller parts called modules 

or skids, that can be 

independently created and 

then used in different systems. 

During the past week, roughly what percentage 

of the tasks you performed could be done 

independently of the rest of the project? 

(Continuous percentage answer) 

Q11 
Clear objectives 

(COBJ) 

To have effective tasks, it is 

important to plan and pen 

clearly defined objectives that 

can deliver desired results. 

During the past week, how clearly defined were 

your team’s objectives? 

(Likert scale answer: Not clear at all (1) to 

Completely clear (5)) 

Q12 
Commitment 

(COMT) 

The state of being dedicated to 

a cause. 

If your team announced to you today that they 

all quit, would you be willing to continue 

working on the project with a completely new 

team? 

(Likert scale answer: Definitely not (1) to 

Definitely yes (5)) 
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Table 4 continued 

Q13 
Availability of 

resources (RESO) 

Availability means capable of 

being used or the extent to 

which resources are available 

to meet the project's needs. 

During the past week, rate your team’s 

availability of resources 

(tools/space/software/funds) for you to use. 

(Likert scale answer: Very low availability (1) 

to Very high availability (5)) 

Q14 
Communication 

(COMM) 

Communication is the act of 

conveying intended meanings 

from one entity or group to 

another through the use of 

mutually understood signs and 

semiotic rules. 

During the past week, how often did you notice 

a “silent room” while you were working with 

your team? 

(Likert scale answer: Never (1) to Always (5)) 

Individual Personality [Judge and Bono, 2000; Vîrgă et al., 2014; Peeters et al., 2006] 

Q15 Neuroticism (NEUR) 

Neurotic individuals are 

associated with low emotional 

stability, experience 

frustration, anxiety, 

depression, and negative 

emotions. 

During the past week, how often did you feel 

frustrated by your team members or your 

team’s performance?  

(Likert scale answer: Never (1) to Always (5)) 

Q16 
Openness to 

experience (OPEN) 

Openness reflects the degree 

of intellectual curiosity, 

creativity and a preference for 

novelty and variety a person 

has. 

During the past week, how often did you come 

up with or agree to a new idea for your project? 

(Likert scale answer: Never (1) to Always (5)) 

Q17 
Conscientiousness 

(CONS) 

Conscientiousness implies a 

desire to do a task well, and to 

take obligations to others 

seriously. Conscientious 

people tend to be efficient and 

organized as opposed to easy-

going and disorderly. 

During the past week, how often did you skip, 

delay, postpone, or cancel a 

task/activity/obligation you were required to 

do/attend?  

(Likert scale answer: Never (1) to Always (5)) 

Q18 Extraversion (EXTR) 
Indicates how outgoing and 

social a person is. 

During the past week, how often did you find 

yourself being the center of the attention of 

your team?  

(Likert scale answer: Never (1) to Always (5)) 

Q19 
Agreeableness 

(AGREE) 

Agreeableness manifests itself 

in individual behavioral 

characteristics that are 

perceived as kind, 

sympathetic, cooperative, 

warm, and considerate. 

During the past week, how often did your team 

members share detailed about their life with 

you?  

(Likert scale answer: Never (1) to Always (5)) 
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Table 4 continued 

Student Estimation [adapted from Nolan et al., 2018; Georgalis and Marais, 2019b] 

Q20 
Project spending 

estimate (PROJS) 

Students give a qualitative 

estimate of how much they are 

spending. 

Which of the following reflects your current 

estimate about your project spending? 

(Multiple choice: Under/Over/On budget) 

Q21 

Confidence in project 

spending estimate 

(PROJSC) 

Confidence in the spending 

estimate. 

How confident are you in your estimate?  

(Continuous percentage answer) 

Q22 
Project timeline 

estimate (PROJT) 

Students give a qualitative 

estimate of whether they are 

staying on schedule. 

Which of the following reflects your current 

estimate about your project’s timeline?  

(Multiple choice: Ahead of/Behind/On 

schedule) 

Q23 

Confidence in project 

timeline estimate 

(PROJTC) 

Confidence in the timeline 

estimate. 

How confident are you in your estimate?  

(Continuous percentage answer) 

Q24 

Project technical 

performance estimate 

(PROJP) 

Students give a qualitative 

estimate of whether they are 

satisfying their requirements. 

Which of the following reflects your current 

estimate about your project’s technical 

performance? 

(Multiple choice: satisfying fewer/more/as 

planned requirements) 

Q25 

Confidence in project 

technical 

performance estimate 

(PROJPC) 

Confidence in technical 

performance estimate. 

How confident are you in your estimate?  

(Continuous percentage answer) 

Team Actions & Archetypes [Marais et al., 2006] 

Q26 

Unintended side 

effects of fixes 

(UNEFF)  

Poorly thought-out fixes may 

have unintended side effects. 

If new problems occurred this week, do you 

think they were handled appropriately? 

(Multiple choice: Yes/No/Does not apply) 

Q27 
Stagnant risk 

management (STRM) 

When technological advances 

are not accompanied by 

concomitant understanding of 

the associated risks, risk may 

increase. 

During the past week, did your team consider 

new potential risks as a result of any new 

project tasks or updates? 

(Multiple choice: Yes/No/Does not apply) 

Q28 

Fixing symptoms 

rather than root 

causes (FSYM) 

Fixes to problems that only 

address the symptoms may 

worsen or prolong the original 

problem. 

During the past week, were you disappointed 

because a problem that your team thought had 

been fixed, had instead continued or gotten 

worse? 

(Multiple choice: Yes/No/Does not apply) 
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Q29 

The vicious cycle of 

bureaucracy 

(BUREAU) 

When organizations respond 

to problems with more rules 

and bureaucracy, employees 

may become apathetic or 

alienated. 

During the past week, were you frustrated 

about any rule or bureaucracy that was out of 

your control? 

(Multiple choice: Yes/No/Does not apply) 

Indirect Signals 

Q30 

Number of material 

outputs (OUTP) 

 

An increase or decrease in 

hardcopy or electronic files 

may indicate how much 

progress the team is making 

and therefore relate to project 

performance. 

During the past week, did you notice a change 

in project outputs (hardcopy documents, 

electronic files, scrap paper to sketch ideas etc.) 

from your team? 

(Likert scale answer: Large decrease (1) to 

Large increase (5)) 

Q31 

Social media 

engagement 

(SMENG) 

Time spent on social media 

may be related to distracted 

individuals are while working 

on a project. 

During the past week, how much time on 

average per day did you spend on social media 

platforms? 

(Multiple choice: <1/ 1-2/ 2-3/ 3-4/ >4 hours) 

Q32 
Eating habits (1) 

(EAT1) 

Eating habits impact overall 

individual health and therefore 

may relate to how individuals 

perform. 

During the past week, which of the following 

statements best describes your eating habits this 

week? 

(Multiple choice: Fast food/ Restaurants/ 

Home/ Dining Halls) 

Q33 
Eating habits (2) 

(EAT2) 

Eating habits impact overall 

individual health and therefore 

may relate to how individuals 

perform. 

During the past week, did you have breakfast 

before coming in for class? 

(Multiple choice: No/Before some/ Before all 

class times) 

Q34 

Time spent thinking 

the project 

(TSPENT) 

How long an individual 

spends thinking about the 

project may be correlated to 

much they contribute to the 

project. 

During the past week, what percent of your 

working time did you spent thinking about this 

project or working on this project? 

(Continuous percentage answer) 

Q35 
Unscheduled team 

meetings (TMEET) 

Unscheduled team meetings 

may indicate team effort to 

meet performance 

requirements during crunch 

times. 

During the past week, how many times did you 

and other members of your team arrange to 

meet and work on the project outside the 

regular class time? 

(Integer answer) 

Q36 
New equipment 

(NTOOL) 

Ordering new supplies may be 

related to how a project is 

progressing and are related to 

project spend. 

During the past week, how many items 

(tools/supplies/project equipment) did your 

team order? 

(Integer answer) 
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Q37 
Exercising habits 

(EXERC) 

Exercising habits are related to 

overall individual health and 

may be related to how 

individuals perform on a 

project. 

During the past week, how often did you 

physically exercise?  

(Multiple choice: 0/ 1-2/ 3-4/>4 times) 

Q38 
Financial pressure 

(FPRES) 

Financial pressure arises from 

any situation where money 

worries are causing stress, 

which may relate to lack of the 

individual’s focus on a project. 

During the past week, how often did you turn 

down a fun activity because you thought it was 

too expensive? 

(Integer answer) 

Risk perception [Sjöberg, 1999; Rockenbach et al. 2007] 

Q39 
Risk perception 

(RPERC) 

Students rank three 

hypothetical scenarios from 

the one they consider the 

highest risk to the one they 

consider the lowest risk. The 

scenarios are related to a cost, 

schedule, or requirements 

mishap. 

Which of the following events do you consider 

the highest risk for your project’s overall 

success? 

(Ranking between a cost/schedule/requirements 

risk) 

Q40 
Outcome preference 

(OUTP) 

In the scenario that a failure is 

bound to happen, students 

provide the one they think 

would have the lowest impact. 

If you had to choose one of the following 

failures for your project at the end of the 

semester, which would have the lowest impact? 

(Multiple choice cost/schedule/requirements 

failure) 

Individual Actions & Decisions [Lehner et al., 1997; Montibeller and Winterfeldt, 2015; Baybutt, 2018] 

Q41 
Ambiguity effect 

(AMBI) 

The tendency to avoid options 

for which missing information 

makes the probability seem 

"unknown". 

During the past week, did you disagree with an 

idea or decision because you thought you did 

not understand all potential implications? 

(Multiple choice: Yes/No/Does not apply) 

Q42 
Bandwagon effect 

(BANDW) 

Tendency to do or believe 

what others do or believe. As 

more people come to believe 

in something, others do too, 

regardless of the underlying 

evidence. 

During the past week, did you have any 

arguments with your team about the next 

project actions/tasks? 

(Multiple choice: Yes/No/Does not apply) 

Q43 
Focusing effect 

(FOCUS) 

The tendency to place too 

much importance on one 

aspect of an event. 

During the past week, can you single out one 

project decision by your team as the most 

important? 

(Multiple choice: Yes/No) 
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Table 4 continued 

Q44 
Normalcy bias 

(NORM) 

The refusal to plan for, or 

react to, a disaster which has 

never happened before. 

During the past week, did you spend any time 

thinking about how things might go wrong for 

this project? 

(Multiple choice: Yes/No) 

Q45 
Not invented here 

(NIH) 

Aversion to contact with or 

use of products, research, 

standards, or knowledge 

developed outside a group. 

During the past week, did you get any new 

ideas about your project from other teams or 

people? (Multiple choice: Yes/No) 

Q46 
Confirmation bias 

(CONF) 

The tendency to search for, 

interpret, focus on, and 

remember information in a 

way that confirms one's 

preconceptions. 

During the past week, did you learn any new 

things that surprised you, because of your 

involvement with this project? 

(Multiple choice: Yes/No/Does not apply) 

Q47 
Parkinson’s Law of 

Triviality (PARKL) 

The tendency to give 

disproportionate weight to 

trivial issues. 

During the past week, did your team spend 

significant time discussing what you thought as 

trivial matters about the project? 

(Multiple choice: Yes/No/Does not apply) 

Q48 
Anchoring 

(ANCHOR) 

The tendency to rely too 

heavily, or "anchor", on one 

trait or piece of information 

when making decisions 

(usually the first piece of 

information acquired on that 

subject). 

For any new project decisions that you had to 

make this week, did you think through all 

viable solutions or go with the one that you 

thought of first? 

(Multiple choice: Think through/First 

thought/Does not apply) 

Q49 
Overconfidence 

effect (OVERC) 

Excessive confidence in one's 

own answers to questions. 

How confident do you feel about the accuracy 

of your answers to this questionnaire? 

(Continuous percentage answer) 

2.3 Instructor Questions 

The instructors provided answers to a total of 14 questions, as shown in Table 5. Three of the 

questions captured failure in terms of three project metrics: budget, schedule, and technical 

performance. Ten questions captured whether a student team showed signs of any of the ten failure 

causes I considered. Lastly, there was one question to rate each team’s productivity for the week. 

I originally intended for the productivity measure to be part of the crowd signals, as it is an 

important factor in team performance [Hamilton et al., 2003], but I was unable to find a way to 

collect the information in an unbiased way from the students. Therefore, I elected for the instructor 

to provide this productivity evaluation. I treat the productivity measure as a crowd signal for 
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purposes of future failure prediction as discussed later in Chapter 4.1. I did not consider the 

productivity measure in the failure cause correlations, as the goal was to identify how the student 

responses and actions impact the failure cause occurrences, without including any external 

measures. 

Table 5: The questions to the instructors. Three questions captured occurrences of project failures and 

ten questions captured occurrences of failure causes. 

Project Failures 

I1 Budget status 

What is currently true about the project budget, compared to what you initially 

planned?  

(Multiple choice: Under/On/Over budget) 

I2 Schedule status 

What is currently true about the project schedule, compared to what you initially 

planned?  

(Multiple choice: Ahead of/On/Behind schedule) 

I3 

Technical 

requirements 

status 

What is currently true about meeting the technical requirements for the project, 

compared to what you initially planned?  

(Multiple choice: Meeting fewer/as planned/more requirements) 

Productivity [Hamilton et al., 2003] 

I4 Productivity 
Rate each team’s productivity. 

(Likert scale answer: Not productive at all (1) to Extremely productive (5)) 

Failure causes [Sorenson and Marais, 2016]  

(Binary choice for each team: Occurrence/Not occurrence) 

I5 Indicate whether a team “Failed to consider an aspect in the system design” this past week. 

I6 Indicate whether a team “Made a decision or action that was not well justified” this past week. 

I7 
Indicate whether a team “Did not consider redundant components or measures for their actions” this 

past week. 

I8 Indicate whether a team “Made a mistake because members lack experience” this past week. 

I9 Indicate whether a team “Did not properly document their progress” this past week. 

I10 Indicate whether a team “Run into communication issues” this past week. 

I11 Indicate whether a team “Did not run adequate tests for their equipment” this past week. 
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Table 5 continued 

I12 Indicate whether a team “Managed risk poorly” this past week. 

I13 Indicate whether a team “Violated rules or procedures” this past week. 

I14 
Indicate whether a team “Rushed into action without fully understanding the impacts to the system” this 

past week. 

 

Regarding the budget and schedule metrics from the instructors, I classified any project that is not 

progressing as planned as a failure for that metric in the given week since there was a divergence 

from the initial project plan. Regarding the technical requirements metric, if a team is satisfying 

fewer requirements than planned, I considered it a failure. 

 

I used the instructor data in a variety of ways, depending on the goal. I used the observed instances 

of failure causes (I5-I14) to compare their occurrence with industry (see Chapter 3.1) and their 

correlations with the crowd signals to develop the feedback statements (see Chapter 5.4). I used 

the observed project failures (collected via questions I1-I3), the productivity measure (I4), and 

crowd signals from the students to train the predictive models for future failures in student projects 

(see Chapter 4.1).  
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 EVALUATION OF PROJECT-BASED LEARNING (PBL) AND 

RECOMMENDATIONS FOR IMPROVEMENT1 

In this chapter, I evaluate the effectiveness of PBL by questioning how well it prepares students 

for a frequent engineering phenomenon in professional practice—failure. Does PBL provide 

sufficient opportunities for students to fail safely, and learn from the experience? How can we 

improve? To answer the question, I compared failure cause occurrence rates from industry, found 

in literature, with the failure cause occurrence rates from the student teams in Experiment I. I 

examined ten failure causes as shown earlier in Table 2. The goal was to identify which of the ten 

failure causes are underrepresented in PBL compared to industry, and therefore areas that 

instructors can have more impact by making improvements. 

 

Using crowd signals from the students and failure cause occurrences from the instructors 

(Experiment I), I built logistic regression models to find correlations between specific crowd 

signals and the occurrence of the underrepresented failure causes. By interpreting the regression 

coefficients, I suggested specific improvements that instructors could use to give their students 

more opportunities to learn from specific failure causes during PBL. 

 

Chapter 3 is organized as follows: Section 3.1 provides the statistical result of comparing failure 

cause occurrences between industry and PBL and identifying the underrepresented failure causes. 

Section 3.2 focuses on suggestions for PBL improvements to instructors, based on regression 

models of the crowd signals with the underrepresented failure causes.  

3.1 Failure Cause Occurrence: Comparing with Industry 

To compare PBL with industry, I identified which of the ten failure causes are underrepresented 

in student projects by comparing the occurrence rate of the failure causes between two samples: 

the student (“PBL”) and industry (“IND”) projects.  

 
1A preliminary version of the research and results in this chapter were originally published in:  

Georgalis, G. and Marais, K. (2019a) ‘Assessment of Project-Based Learning Courses using Crowd Signals’, In ASEE 

2019 Annual Conference & Exposition, Tampa, FL. 
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The null hypothesis was that the occurrence rate of the failure causes in student projects was greater 

than or equal to the equivalent rate for the industry projects. The null hypothesis was based on two 

assumptions. First, I assumed that PBL-inspired projects are successful from an educational 

perspective (i.e., offer sufficient opportunities for the students to experience a particular failure 

cause before they graduate and join the workforce). Second, I assumed that failure causes are more 

likely to occur in amateur teams, such as student teams, compared to professional teams. The end 

goal is to evaluate whether PBL provides sufficient exposure in areas that are useful for students 

to experience before they join the workforce, and not necessarily to “match” the failure cause 

occurrences between PBL and industry teams. 

 

To test the hypothesis, I used Barnard’s exact statistical test [Barnard, 1945], which can handle 

sample proportions. Barnard’s statistical test is a proportion test that has more power than other 

exact tests and is more accurate for small sample sizes than a chi-squared test [Röhmel and 

Mansmann, 1999; Suissa and Shuster, 1985]. The test assumes that the two samples “PBL” and 

“IND” are binomial experiments, which means that each student project and industry project is 

independently equally likely to show signs of a failure cause. The “PBL” sample included the 

occurrences of failure causes from the 28 student teams I observed over one academic year 

(Experiment I). The “IND” sample included failure cause data from 32 industry project failures 

from literature [Sorenson and Marais, 2016; Aloisio, 2019] that identified and categorized 

occurrences of failure causes on various non-accident project failures. 

 

To conduct the exact test, I created an estimated occurrence measure for both samples. The 

measure describes the proportion of student and industry projects that included a particular failure 

cause i. The quality of the PBL occurrence measures is based on the ability of the instructor to 

identify the failure causes and report them accordingly.  

 

I computed the occurrence measure separately for the two samples. For the industry sample, the 

estimated occurrence is: 

𝑂̂(𝐼𝑁𝐷)𝑖 =
∑ 𝑇𝑅𝑈𝐸(𝐼𝑁𝐷)𝑖,𝑗|𝐹𝑎𝑖𝑙𝑢𝑟𝑒
𝑛1
𝑗=1

𝑛1
 (Equation 1) 
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Where i is one of the ten failure causes, 𝑛1 is the number of industry project failures equal to 32, 

and 𝑇𝑅𝑈𝐸(𝐼𝑁𝐷)𝑖,𝑗|𝐹𝑎𝑖𝑙𝑢𝑟𝑒 is a binary variable that is equal to 1 if failure cause i occurred during 

industry project failure j or 0 if not.  

 

For the “PBL” sample, the estimated occurrence for PBL is: 

𝑂̂(𝑃𝐵𝐿)𝑖 =
∑ 𝑇𝑅𝑈𝐸(𝑃𝐵𝐿)𝑖,𝑗|𝐹𝑎𝑖𝑙𝑢𝑟𝑒
𝑛2
𝑗=1

𝑛2
 (Equation 2) 

 

Where i is one of the ten failure causes, 𝑛2 is the number of student projects equal to 28, and 

𝑇𝑅𝑈𝐸(𝑃𝐵𝐿)𝑖,𝑗|𝐹𝑎𝑖𝑙𝑢𝑟𝑒 is a binary variable that is equal to 1 if failure cause i occurred during 

student project j or 0 if not, conditioned on the instructor also observing a project failure in the 

same week as failure cause i. 

 

With the estimated occurrence measures defined for the two binomial samples “PBL” and 

“industry”, I conducted Barnard’s exact statistical test with the null hypothesis that the actual 

failure cause occurrence rate 𝑂𝑃𝐵𝐿,𝑖  in student projects is equal to or greater than the actual 

occurrence rate 𝑂𝐼𝑁𝐷,𝑖 in industry projects. I rejected the null hypothesis for any 𝑝𝑖 ≤
𝛼

𝑚
=

0.05

10
=

0.005 (Bonferroni correction for ten comparisons).  

𝐻0: 𝑂𝑃𝐵𝐿,𝑖 ≥ 𝑂𝐼𝑁𝐷,𝑖 

𝐻𝑎: 𝑂𝑃𝐵𝐿,𝑖 < 𝑂𝐼𝑁𝐷,𝑖 
(Equation 3) 

 

To conduct the test, I first created a 2x2 contingency table for each failure cause i (the contingency 

tables for each failure cause are included in Appendix B): 

Table 6: Generic contingency table for each of the ten failure causes i. 

Failure cause i “PBL” sample “IND” sample Total 

Occurrence 𝑥𝑃𝐵𝐿,𝑖 𝑥𝐼𝑁𝐷,𝑖 𝑥𝑃𝐵𝐿,𝑖 + 𝑥𝐼𝑁𝐷,𝑖 

Not occurrence 28 − 𝑥𝑃𝐵𝐿,𝑖 32 − 𝑥𝐼𝑁𝐷,𝑖 60 − 𝑥𝑃𝐵𝐿,𝑖 − 𝑥𝐼𝑁𝐷,𝑖 

Total 28 32 60 
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Based on the previous definitions, the estimated occurrence measure for both samples is: 

𝑂̂(𝑃𝐵𝐿)𝑖 =
𝑥1,𝑖
28

 (Equation 4) 

𝑂̂(𝐼𝑁𝐷)𝑖 =
𝑥2,𝑖
32

 (Equation 5) 

 

Under the null hypothesis, the common probability responding to the two groups is p. Then, the 

probability of obtaining the contingency table, Mo, is the product of two binomials: 

𝑃(𝑀0|𝑝) = (
28
𝑥1,𝑖

) (
32
𝑥2,𝑖

) 𝑝𝑥1,𝑖+𝑥2,𝑖(1 − 𝑝)60−𝑥1,𝑖−𝑥2,𝑖 (Equation 6) 

 

To obtain the p-value for the test, I considered the critical region that contains all contingency 

tables that represent an outcome at least as extreme the observed table. Then, the significance level 

α(p) can be obtained by summing the above probabilities over all the tables in the critical region 

(CR). The p-value is obtained by maximizing the significance level function α(p) [Mato and 

Andrés, 1997]: 

𝑎(𝑝) =∑𝑃(𝑀0|𝑝)

𝐶𝑅

 (Equation 7) 

𝑎∗ = max0<𝑝<1(𝑎(𝑝)) (Equation 8) 

 

After the completion of the statistical test for all ten failure causes, I identified which of the failure 

causes are underrepresented in PBL compared to industry projects (i.e., the ones that the null 

hypothesis is rejected with a p-value less than the 0.005). Table 7 shows the results of the statistical 

test.  
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Table 7: Occurrence measures and Barnard’s statistical test results for the failure causes. 1 out of 10 

failure causes are underrepresented in the 28 student projects I studied compared to the 32 industry 

projects from [Sorenson and Marais, 2016 and Aloisio, 2019]. 

Failure cause 𝒙𝟏,𝒊 𝒙𝟐,𝒊 𝑶̂(𝑷𝑩𝑳)𝒊 𝑶̂(𝑰𝑵𝑫)𝒊 
Barnard’s test  

one-tailed 

p-value 

H0 rejected? 

Failed to consider design aspect 10 29 35.7 90.6 0.000002811 Yes 

Used inadequate justification 9 11 32.1 34.4 0.456342494 No 

Failed to form a contingency plan 7 8 25.0 25.0 1.000000000 No 

Lacked experience 8 15 28.6 46.9 0.096511165 No 

Kept poor records 5 4 17.9 12.5 0.655108668 No 

Inadequately communicated 6 11 21.4 34.3 0.148450314 No 

Subjected to inadequate testing 5 15 17.9 46.9 0.009647157 No 

Managed risk poorly 5 12 17.9 37.5 0.054538892 No 

Violated procedures 3 5 10.7 15.6 0.347870305 No 

Did not allow system aspect to 

stabilize 
6 16 21.4 50.0 0.012635167 No 

 

The statistical test shows that of the 10 failure causes, failed to consider a design aspect  

statistically appears less frequently in the student projects compared to industry. This failure cause 

is fundamentally linked to proper systems engineering: it represents a scenario where for example, 

the students failed to consider an important requirement during system development, or did not 

detect a design flaw, or component incompatibility. 

3.2 PBL Improvement Recommendations 

After I identified failure to consider a design aspect (FC1, Table 2) as underrepresented in PBL, I 

used logistic regression to find the correlations between the crowd signals and the occurrence of 

FC1 and used that information as a guide to suggest improvements to instructors. The goal is for 

the improvements to provide students with more experiences of missing a design aspect, to learn 

to overcome this type of failure cause before they join the workforce.  

 

I followed a 3-step process: 

1. I identified which of the student questions are actionable from the instructor (i.e., an 

instructor action may impact how students respond to that particular question). 
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2. I found the correlations of each of the crowd signals with FC1 failure to consider a 

design aspect. 

3. I used the correlations of the actionable crowd signals to suggest improvements. 

 

Even if the crowd signals are collected from the students, the instructors do have a direct or indirect 

capability to alter the course environment in such a way that the student experience is different 

(and as a result the student answers to our questions). Therefore, as a first step I start by identifying 

which of the crowd signals can be influenced by the instructor.  

 

For example, Q1: “How many engineering projects have you participated in so far? Include all 

engineering projects from coursework, internships, or extracurricular activities.”, is a crowd signal 

that the instructor may influence directly. The instructor could split students into teams based on 

their experience level or could make the course available only to students with a particular 

prerequisite that provides the necessary experience, or change the student class the course is 

offered at. Table 8 summarizes the student questions that the instructor can influence and the 

justification for each, organized by question category. 

Table 8: The student questions that are actionable from the instructor with associated justification. 

Q* Question  Justification 

Q1 How many engineering projects have you 

participated in so far? Include all engineering 

projects from coursework, internships, or 

extracurricular activities. (Integer answer) 

 The instructor can change how teams are formed 

based on experience, allow students to enroll with 

pre-requisites, or change which student class the 

course is offered at. 

Q4 During the past week, how often did you interact 

with your team members while completing 

separate project tasks? 

(Likert scale answer: Never (1) to Always (5)) 

 The instructor can change the course setting and 

location to promote or inhibit frequent interaction 

among team members. For example, some separate 

tasks may need to be completed at different 

locations, which makes interacting frequently less 

likely. 

Q6 During the past week, for roughly what 

percentage of your team do you know exactly 

what they worked on? 

(Continuous percentage answer) 

 The instructor can have an impact on how often and 

for how long the team meets together. For example, 

they can have different settings and timelines for 

different tasks, which makes it hard for team 

members to know what each other is working on. 
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Table 8 continued 

Q* Question  Justification 

Q7 During the past week, rate the level of freedom 

you felt you had on how to complete your 

project tasks. 

(Likert scale answer: No freedom (1) to 

Complete freedom (5)) 

 The instructor can directly impact how much 

freedom the students think they have: an instructor 

can be more open to ideas outside of what they had 

thought, or reject any student suggestions. 

Q8 Assume that the course instructor is unavailable 

for the remaining of the semester. What do you 

think is the chance your team will successfully 

complete all the assigned tasks without any 

oversight for the rest of the semester? 

(Continuous percentage answer) 

 The instructor can impact the students’ autonomy 

perception by altering the way and type of oversight 

they provide. An instructor can be very involved 

with all student decisions and review everything in 

detail or let the students be more autonomous by 

proceeding with their own decisions without strict 

oversight. 

Q10 During the past week, roughly what percentage 

of the tasks you performed could be done 

independently of the rest of the project? 

(Continuous percentage answer) 

 The instructor can directly impact modularity of a 

project by how they have split up the various tasks.  

Q11 During the past week, how clearly defined were 

your team’s objectives? 

(Likert scale answer: Not clear at all (1) to 

Completely clear (5)) 

 The instructor can influence how clear the students 

think their objectives are by changing in what way 

the objectives are communicated, how specific they 

are, or how often they change. 

Q13 During the past week, rate your team’s 

availability of resources 

(tools/space/software/funds) for you to use. 

(Likert scale answer: Very low availability (1) to 

Very high availability (5)) 

 The instructor can directly change the availability of 

resources by allowing students to spend more, use 

additional rooms, computers, or tools. 

Q20 Which of the following reflects your current 

estimate about your project spending? 

(Multiple choice: Under/Over/On budget) 

 The instructor may influence what the students think 

about the current project metrics by giving them 

feedback about their progress. The level of 

information the instructor shares on these metrics, 

may also impact the confidence of the students’ 

answers.  

For example, the instructor can make a comment 

about a team being late with their delivery in a 

particular week, which also makes the students 

know that they are behind schedule with high 

confidence. 

Q21 How confident are you in your estimate?  

(Continuous percentage answer) 

 

Q22 Which of the following reflects your current 

estimate about your project’s timeline?  

(Multiple choice: Ahead of/Behind/On schedule) 

 

Q23 How confident are you in your estimate?  

(Continuous percentage answer) 
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Table 8 continued 

Q* Question  Justification 

Q24 Which of the following reflects your current 

estimate about your project’s technical 

performance? 

(Multiple choice: satisfying fewer/more/as 

planned requirements) 

  

Q25 How confident are you in your estimate?  

(Continuous percentage answer) 

 

Q27 During the past week, did your team consider 

new potential risks as a result of any new project 

tasks or updates? 

(Multiple choice: Yes/No/Does not apply) 

 The instructor can actively encourage students to re-

evaluate previous risk considerations when they 

make new updates to their project. 

Q29 During the past week, were you frustrated about 

any rule or bureaucracy that was out of your 

control? 

(Multiple choice: Yes/No/Does not apply) 

 The instructor can have procedures in place that 

increase the bureaucratic burden on the students 

(e.g., specific documentation of certain tasks or 

processing times in ordering of parts) 

Q36 During the past week, how many items 

(tools/supplies/project equipment) did your team 

order? 

(Integer answer) 

 The instructor can give the students more budget 

allowance in ordering parts, which can directly 

impact how many new supplies they order. 

Q40 If you had to choose one of the following 

failures for your project at the end of the 

semester, which would have the lowest impact? 

(Multiple choice cost/schedule/requirements 

failure) 

 The instructor can influence risk perception by 

verbally putting more emphasis into one outcome 

over another.  

Q45 During the past week, did you get any new ideas 

about your project from other teams or people? 

(Multiple choice: Yes/No/Does not apply) 

 The instructor can impact how often different teams 

communicate by altering the course environment. 

For example, multiple teams working in the same 

room would facilitate the exchange of ideas between 

teams. 

Q46 During the past week, did you learn any new 

things that surprised you, because of your 

involvement with this project? 

(Multiple choice: Yes/No/Does not apply) 

 The instructor’s teaching approach can impact how 

much a student learns in a course. For example, a 

course may include lectures and training on top of 

the design work. 
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To find the correlations of each of the crowd signals with FC1: Failure to consider a design aspect, 

I used the individual student responses to the 49 questions (crowd signals) as the independent 

features 𝑋𝑖,𝑡  of the failure cause FC1, during a project week t. The dependent variable 𝑌𝐹𝐶1,𝑡 

expresses the binary occurrence of failure cause FC1, i.e.,  𝑌𝐹𝐶1,𝑡 = 1 when FC1 occurred, and 

𝑌𝐹𝐶1,𝑡 = 0 when FC1 did not occur. 

 

For this classification problem (i.e., binary dependent variables: occurrence or not), I used a 

logistic regression model. I considered and attended to some of the logistic regression assumptions. 

The data from the crowd signals was in panel form: it included repeated measurements from partly 

the same students. Regression models are built on the assumption that observations are 

independent, which does not hold here, as the responses from the same student at different times 

are not independent. One common way to account for non-independence of panel observations in 

logistic regression models is to include random effects [Harrison et al., 2018]. Random effects 

account for non-independence of the multiple responses coming from a single subject and allow 

estimation of variance between different students. With random effects, each student has their own 

intercept term in the model. Models with random effects assume that uncontrolled person-specific 

effects (e.g., age or gender) are not correlated with the predictors. The random effects take a 

different value for each student i and appear in the model as 𝑐𝑖.  

 

Based on these considerations, the models were of the following form when predicting failure 

cause FC1: 

log (
𝑝̂𝐹𝐶1,𝑡(𝑌̂𝐹𝐶1,𝑡 = 1)

1 − 𝑝̂𝐹𝐶1,𝑡(𝑌̂𝐹𝐶1,𝑡 = 1) 
) = 𝑎 + 𝑏𝑋𝑖,𝑡

𝑇 + 𝑐𝑖 + 𝜀𝑖𝑡 (Equation 9) 

 

Where 𝑎 is the intercept constant, 𝑏 is a column vector of slopes for each feature, 𝑋i,𝑡
𝑇is a row 

vector of the 49 predictors at week t, 𝑐i~𝑁(0, 𝜎𝑖
2)  are individual random effects, and 

𝜀𝑖𝑡~𝑁(0, 𝜎𝜀
2) is the observation-specific random error. 𝑝̂𝐹𝐶1,𝑡(𝑌̂𝐹𝐶1,𝑡 = 1) is the probability of 

failure cause FC1 occurring during week t. 
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I built the linear mixed effects models using the computational package lme4 for R [Bates et al., 

2007] and blme for R, which provides a wrapper to lme4 by adding the maximum penalized 

likelihood approach developed by Chung et al. (2013), to account for singularities in complex 

mixed models. Since the features 𝑋𝑖,𝑡 are the crowd signals and express different data forms, I used 

coding schemes and scaling to normalize them. Table 9 summarizes the coding schemes for all 

crowd signals. For this model, I discarded observations with missing values. 

Table 9: Coding schemes for the 49 crowd signals , based on data type. 

Data type Applicable questions Coding scheme 

5-point full Likert scale Q3, Q4, Q5, Q7, Q11–Q19, Q30 Coded as integer 1–5 for each level 

Integer Q1, Q2, Q35, Q36, Q38 Not coded, treated as integer 

Continuous percentage 
Q6, Q8, Q10, Q21, Q23, Q25, Q34, 

Q49 
Not coded, treated as continuous 

Categorical  
Q20, Q22, Q24, Q26–Q29, Q31–Q33, 

Q37, Q39–Q48 

Coded as categorical (using one-hot 

encoding) 

Character multiple answer Q9 

Adjectives associated with creative 

designs count as +1, and their opposite 

adjectives as -1. The sum value is then 

in the range: 

 −6 ≤ ∑𝑎𝑑𝑗 ≤ 6. 

Then code the sum as categorical with 

the balanced scheme: 

𝐶𝑟𝑒𝑎𝑡𝑖𝑣𝑖𝑡𝑦 =  

{
 
 

 
 Low,∑𝑎𝑑𝑗 ≤ −2,

High,∑𝑎𝑑𝑗 ≥ 2

Moderate, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Table 10 shows the model coefficients for failure cause FC1.  

 

The coefficients of the predictor variables from the logistic regression models are interpreted in 

terms of the log-odds of failure cause. For example, the coefficient for experience 𝑏1 = −0.086 is 

the expected change in the log-odds of failing to consider a design aspect for a one-unit increase 

in experience, while keeping all other predictors at fixed values. Equivalently, the odds ratio can 

be calculated by exponentiating the coefficient value to get 0.917 which means we expect to see 
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about 8.3% decrease in the odds of missing a design aspect, for a one-unit increase in experience, 

while keeping all other variables at fixed values. The coefficients with p-values < 0.05 are bolded 

in the resulting model table as the model determines these coefficients are non-zero (i.e., there is 

enough evidence in the data about the existence of a correlation between the particular crowd 

signal and the specific failure cause). 

 

The resulting model for FC1 shows that the likelihood of occurrence for this failure cause increases 

when students respond “No” (relative to “Does not apply) to whether they were frustrated with 

rules that they can’t control (Q29, 𝑏36 = 3.992). The result may indicate that the absence of 

important rules or thorough reporting procedures makes it more likely for a project team to miss 

an important design aspect.  

 

To the contrary, when students interact frequently with each other when completing independent 

tasks (Q4, 𝑏4 = −0.636), knowing what most of their team worked on (Q6, 𝑏6 = −0.524), are 

not disappointed from previous problems continuing (Q28, 𝑏34 = −3.380 ), ordering more 

equipment (Q36, 𝑏50 = −2.053), and not having arguments (Q42, 𝑏61 = −2.447), the likelihood 

of failing to miss a design aspect decreases. These results all support positive practices for a team 

project such as increasing communication, interaction, and making progress. The model also 

shows that when students think new problems are not handled properly (Q26, 𝑏30 = −2.331, the 

failure cause occurrence likelihood also decreases, possibly hinting that when a team puts some 

thought and effort into new problems (even if they fail to find a solution), it is less likely to miss 

a design aspect. Lastly, when students consider a requirements failure as preferable and less 

impactful for the project than a cost failure (Q40, 𝑏57 = −3.093), the likelihood of missing a 

design aspect also decreases. My interpretation of this correlation was that for the context of short-

term student projects, teams may consider a requirements problem fixable, whereas schedule or 

cost failure would cause permanent problems to the project and perhaps a lower grade. Teams that 

thought like that, may have generally been more careful about delivering, reducing the likelihood 

of FC1.  
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Table 10: Mixed-effects logistic regression model coefficients for FC1: Failure to consider a design 

aspect. 

Coefficient 
Estimate 

(error) 
Coefficient Estimate (error) Coefficient Estimate (error) 

𝑎 -1.770 (2.992) 𝒃𝟑𝟎(Q26 = No) -2.331 (1.081)* 𝑏60(Q41 = Yes) 1.308 (1.130) 

𝑏1(Q1) -0.086 (0.241) 𝑏31(Q26 = Yes) -0.257 (0.959) 𝒃𝟔𝟏(Q42 = No) -2.447 (1.14)* 

𝑏2(Q2) -0.046 (0.233) 𝑏32(Q27=No) 0.154 (1.109) 𝑏62(Q42 = Yes) -2.120 (1.183)^ 

𝑏3(Q3) 0.336 (0.236) 𝑏33(Q27=Yes) 0.269 (1.023) 𝑏63(Q43 = Yes) -0.107 (0.578) 

𝒃𝟒(Q4) 
-0.636 

(0.257)* 
𝒃𝟑𝟒(Q28=No) -3.380 (1.293)** 𝑏64(Q44 = Yes) -0.178 (0.470) 

𝑏5(Q5) 0.395 (0.231)^ 𝑏35(Q28=Yes) -2.076 (1.349) 𝑏65(Q45 = Yes) 0.114 (0.507) 

𝒃𝟔(Q6) 
-0.524 

(0.237)* 
𝒃𝟑𝟔(Q29=No) 3.992 (1.537)** 𝑏66(Q46 = No) -1.509 (1.214) 

𝑏7(Q7) -0.280 (0.243) 𝑏37(Q29=Yes) 2.918 (1.606)^ 𝑏67(Q46 = Yes) -1.302 (1.194) 

𝑏8(Q8) -0.143 (0.252) 𝑏38(Q30) 0.408 (0.216)^ 𝑏68(Q47 = No) 1.092 (1.545) 

𝑏9(Q9 = 

Low) 
-0.404 (1.781) 𝑏39(Q31 =2-3h) -0.658 (0.606) 𝑏69(Q47 = Yes) 0.407 (1.602) 

𝑏10(Q9 = 

Moderate) 
0.269 (0.441) 𝑏40(Q31 = 3-4h) -0.157 (1.037) 

𝑏70(Q48 = First 

thought) 
0.373 (0.803) 

𝑏11(Q10) 0.235 (0.219) 𝑏41(Q31 = <1h) 0.021 (0.58) 
𝑏71(Q48 = Think 

through) 
0.525 (0.704) 

𝑏12(Q11) 0.052 (0.226) 𝑏42(Q31 = >4h) -0.870 (1.069) 𝑏72(Q49) -0.110 (0.242) 

𝑏13(Q12) 0.069 (0.238) 
𝑏43(Q32 = 

Dining hall) 
0.910 (1.029) 

^ p <  .01 

∗ p <  .05 

∗∗ p <  .01 

∗∗∗ p <  .001 

 

Median scaled residual: -0.2351 

Random effects c𝑖~𝑁(0, 0.311
2) 

Occurrence ratio in data: 0.211  

𝑏14(Q13) 0.233 (0.228) 
𝑏44(Q32 = 

Restaurants) 
1.473 (0.986) 

𝑏15(Q14) 0.010 (0.227) 
𝑏45(Q32 = 

Home) 
0.115 (0.743) 

𝑏16(Q15) 0.111 (0.242) 𝑏46(Q33=No) 0.559 (0.586) 

𝑏17(Q16) 0.213 (0.223) 𝑏47(Q33=Some) 0.011 (0.598) 

𝑏18(Q17) 0.292 (0.266) 𝑏48(Q34) -0.144 (0.254) 

𝑏19(Q18) -0.247 (0.249) 𝑏49(Q35) 0.026 (0.251) 

𝑏20(Q19) -0.382 (0.228)^ 𝒃𝟓𝟎(Q36) -2.053 (1.028)* 

𝑏21(Q20 = 

Over budget) 
0.303 (0.715) 𝑏51(Q37 = >3-4) -0.334 (0.64) 

𝑏22(Q20 = 

Under 

budget) 

-0.167 (0.548) 𝑏52(Q37 = >4) -0.139 (0.698) 

𝑏23(Q21 = 

Behind 

sched.) 

1.153 (1.018) 
𝑏53(Q37 = 

None) 
-0.805 (0.609) 

𝑏24(Q21 = 

On sched.) 
1.049 (0.954) 𝑏54(Q38) 0.035 (0.248) 

𝑏25(Q22 = 

More reqs) 
0.966 (0.831) 𝑏55(Q39=Reqs) -0.415 (0.660) 

𝑏26(Q22=reqs 

as planned) 
-0.433 (0.585) 𝑏56(Q39=Sched) -0.035 (0.530) 

𝑏27(Q23) -0.041 (0.261) 𝒃𝟓𝟕(Q40=Reqs) -3.093 (1.578)* 

𝑏28(Q24) 0.330 (0.297) 𝑏58(Q40=Sched) 0.250 (0.531) 

𝑏29(Q25) 0.094 (0.279) 𝑏59(Q41 = No) 1.785 (1.111) 
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For the last step, I synthesize the previous information (knowing which crowd signals are 

actionable and which crowd signals correlate with FC1: Q4, Q6, Q29, Q36, and Q40) to suggest 

recommendations for the instructors that want to improve PBL. Given that FC1 is 

underrepresented, the suggestions aim to increase the experience of that failure cause among 

student teams, to prepare them better for industry, by giving them good chances to learn from it in 

an educational setting.   

Table 11: Instructor recommendations to improve student preparation in dealing with failure cause FC1: 

“Missing a design aspect” in PBL. 

Q* Correlation to FC1 (from Table 10)  Instructor recommendation 

Q4 Negative correlation. More frequent interaction 

while completing independent project tasks, 

reduces the likelihood of FC1.  

 

 The instructor could arrange the course so that 

specific tasks happen in settings where students 

do not interact with each other as much. For 

example, the manufacturing of a component does 

not happen in the same room as the electrical wiring 

testing. In that setting, students are possible to miss 

on a detail that they then must communicate better 

to fix, learning that interacting within the team and 

knowing what each other is working on is key to 

success. 

Q6 Negative correlation. Knowing more about what 

other team members are working on reduces the 

likelihood of FC1.  

 

Q29 Positive correlation. Not being frustrated 

because of a rule or bureaucracy increases the 

likelihood of FC1. 

 I interpreted this correlation to signal that the 

instructors’ rules or processes (if they exist) are 

simple and therefore do not cause frustration to the 

students, but also do not enhance the learning 

process in any way. The instructor could 

introduce reporting rules and processes that 

resemble industry standards, but are simple for 

the students. Even if students complain about such 

rules, the learning benefit is likely worth it when 

they familiarize with these processes.   

Q36 Negative correlation. The larger number of 

ordered parts, the likelihood of FC1 decreases. 

 The correlation may indicate that student teams with 

ample resources and lack of constraints when it 

comes to tool or equipment usage, are less likely to 

miss a design aspect. The instructor could 

implement realistic equipment/tool usage and 

expense constraints to the student teams. From a 

learning perspective, it is helpful for the students to 

familiarize with such constraints before joining the 

workforce. 

Q40 Negative correlation. When students consider a 

requirements failure as lower impact and prefer 

to miss requirements (compared to a budget 

failure), the likelihood of FC1 decreases. 

 The instructor could put more emphasis on the 

requirements of the project, the importance of 

them, and how they clearly relate to project 

success. 
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 CROWD-BASED FAILURE PREDICTION IN STUDENT PROJECTS2 

Chapter 4 focuses on building the failure prediction models to accomplish process (a) of the 

prototype (see Figure 3). In total, there are three models, one for each performance metric: budget, 

schedule, and requirements. I trained the models with the data collected from the students and 

instructors during Experiment 1. 

 

Chapter 4 is organized as follows: Section 4.1 discusses the training process for the three prediction 

models and associated conclusions. Section 4.2 is an evaluation of the initial models using cross-

validation. Section 4.3 applies stepwise reduction and a best subsets approach to reduce the model 

inputs and improve prediction accuracy. 

4.1 Prediction Model Training 

To accomplish the goal of predicting future project failures in student projects, I used the following 

information from a given project week t: 

1. the individual student responses to the 49 questions (crowd signals), 

2. the current state of the project as provided by the instructor, and 

3. the current productivity measure of the team as provided by the instructor, 

as the independent predictors 𝑋𝑖,𝑡 of a failure j during the next project week t+1. There are three 

types of failures: j=1 corresponds to cost failure, j=2 corresponds to schedule failure, and j=3 

corresponds to requirements failure. The dependent variable 𝑌𝑗,𝑡+1 expresses the binary occurrence 

of the three failure types, i.e.,  𝑌𝑗,𝑡+1 = 1 when a failure occurs, and 𝑌𝑗,𝑡+1 = 0 when a failure does 

not occur.  

 

For this classification problem, I follow a similar mixed effects logistic regression process as 

discussed previously in Section 3.2. The main difference in this formulation is the inclusion of the 

two additional instructor inputs at week t (current state of project and productivity) as predictors, 

 
2Part of the research and results in this chapter were originally published in:  

Georgalis, G. and Marais, K. (2021) ‘Predicting failure events from crowd-derived inputs: schedule slips and missed 

requirements’, In INCOSE International Symposium, Vol. 31, No. 1. 
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and that the goal of these models is prediction of the project state at week t+1. I included these 

two additional inputs due to the justification from industry that project performance history 

impacts future performance (i.e., a project that is behind schedule for a few weeks is more likely 

to stay behind schedule compared to a project that is on schedule), and because team productivity 

is a factor on team performance [Hamilton et al., 2003].   

 

Based on these considerations, the models are of the following form when predicting the three 

types of failure (𝑗 = 1, 2, 3): 

log (
𝑝̂𝑗,𝑡+1(𝑌̂𝑗,𝑡+1 = 1)

1 − 𝑝̂𝑗,𝑡+1(𝑌̂𝑗,𝑡+1 = 1) 
) = 𝑎 + 𝑏𝑋𝑖,𝑡

𝑇 + 𝑐𝑖 + 𝜀𝑖𝑡 (Equation 10) 

 

Where 𝑎 is the intercept constant, 𝑏 is a column vector of the slopes for each predictor, 𝑋i,𝑡
𝑇is a 

row vector of the 51 predictors at week t, 𝑐i~𝑁(0, 𝜎𝑖
2)  are individual random effects, and 

𝜀𝑖𝑡~𝑁(0, 𝜎𝜀
2)  is the observation-specific random error. 𝑝̂𝑗,𝑡+1  is the probability of failure j 

occurring during week t+1. 

 

Table 12 summarizes the variables for the three failure prediction models. 

Table 12: Predictors and dependent variables for student project failure prediction. I built three models 

(one for each failure: budget, schedule, and technical requirements), from 51 predictors. 

Independent variables (predictors) 𝑿𝒊,𝒕 at week t 

(1) Crowd signals 𝑋1–49,𝑡 Came from the student responses to Q1–Q49 

(2) 
Current state of the 

project 
𝑋50,𝑡 

Came from the instructor’s response to I1–I3 (see Table 5), 

depending on the metric  

(3) 
Productivity of the 

team 
𝑋51,𝑡 Came from the instructor’s response to I4 (see Table 5). 

Dependent variable 𝒀𝒋,𝒕+𝟏 at week t+1 

Predicting failure in terms 

of metric j at week t+1 
𝑌𝑗,𝑡+1 

Came from the instructors’ response to I1–I3 from the 

following week. 

j = 1 corresponds to the budget metric 

j = 2 corresponds to the schedule metric 

j = 3 corresponds to the technical performance metric 
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I coded the input crowd signals for the prediction models as described before for the failure cause 

correlation model (see Table 9). In addition to the crowd signals, I also coded the additional 

instructor measures as shown in Table 13. 

Table 13: Coding schemes for the input instructor measures, based on data type. 

Data type Applicable questions Coding scheme 

5-point full Likert scale I4 Coded as integer 1–5 for each level 

Categorical  I1–I3 
Coded as categorical (using one-hot 

encoding) 

 

The following tables show the predictive models for the three types of project failures. The 

coefficients with p-values < 0.05 are bolded in the tables. The requirements model shows a larger 

variance in the random effects compared to the other two models.  

 

The model that predicts budget failure indicates that when students perceive they have increased 

freedom on what to do with the project (Q7, 𝑏7 = −0.843), think they are satisfying requirements 

more requirements planned (Q22, 𝑏25 = −1.755), and do not have problems continue or become 

worse (Q28, 𝑏34 = −3.716), the likelihood of a cost failure reduces. In contrast, budget failure 

likelihood increases when students perceive a schedule failure as higher risk compared to a cost 

failure (Q39, 𝑏56 = 1.716 ), when they disagree because of lack of understanding decision 

implications (Q41, 𝑏60 = 2.711), when they single out a decision as most important (Q43, 𝑏63 =

1.815), and when having a budget failure the previous week (I1, 𝑏73 = 1.225).  

 

The model that predicts schedule failure indicates that when students are sharing about their lives 

(Q19, 𝑏20 = −0.538), think they are spending more funds than they should (Q20, 𝑏21 = −1.949), 

are turning down activities that they consider fun (Q38, 𝑏54 = −0.784 ), and understand all 

potential implications of an action (Q41, 𝑏59 = −2.202), a schedule failure is less likely. For Q48, 

both the “yes” and “no” options correlate to lower likelihood of a schedule failure compared to the 

“Do not apply” option. Coming up with solutions either by looking through many options or 

considering only the first one is better than coming up with no solutions. Going with the first 
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solution saves time and so for avoiding schedule failure is a better option (larger negative 

coefficient). On the contrary, with increasing student confidence in their success without oversight 

(Q8, 𝑏8 = 0.726), coming up with or agreeing to more project ideas (Q16, 𝑏17 = 0.483), thinking 

they are satisfying requirements as planned (Q22, 𝑏26 = 1.551 ), having previous problems 

resurface due to poor previous solutions (Q28, 𝑏35 = 3.469), spending more than 4 hours on social 

media per day (Q31, 𝑏39 = 1.28), perceiving schedule as the highest risk for the project (Q39, 

𝑏56 = 2.21), not learning any new things (Q46, 𝑏66 = 4.459), and having a schedule failure the 

previous week (I2, 𝑏73 = 1.286), all increase the likelihood of a schedule failure.  

 

The model that predicts failure regarding the technical requirements indicates that not exercising 

at all during the week (Q37, 𝑏53 = −2.405), discussing trivial matters during the project (Q47, 

𝑏68 = −3.827) and being increasingly confident in one’s answers to the questions (Q49, 𝑏72 =

−0.759) reduce the likelihood of a failure. In contrast, when students are increasingly unable to 

focus on the project (Q3, 𝑏3 = 0.907), show low creativity (Q9, 𝑏9 = 3.683), introduce new ideas 

to the project (Q16, 𝑏17 = 0.667), skip or postpone required tasks (Q17, 𝑏18 = 0.906), think they 

are spending less than they should (Q20, 𝑏22 = 1.773), report their cost estimate with high 

confidence (Q23, 𝑏27 = 0.870), and having a requirements failure the previous week (I3, 𝑏73 =

2.186), the likelihood of a future requirements failure increases. 
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Table 14: Mixed-effects logistic regression model for prediction of budget failure. 

Coefficient 
Estimate 

(error) 
Coefficient 

Estimate 

(error) 
Coefficient Estimate (error) 

𝑎 -5.471 (3.418) 𝑏30(Q26 = No) 0.077 (1.361) 𝒃𝟔𝟎(Q41 = Yes) 2.711 (1.373)* 

𝑏1(Q1) 0.060 (0.271) 𝑏31(Q26 = Yes) 0.986 (1.345) 𝑏61(Q42 = No) -0.927 (1.307) 

𝑏2(Q2) -0.173 (0.374) 𝑏32(Q27=No) -0.544 (1.148) 𝑏62(Q42 = Yes) -0.327 (1.394) 

𝑏3(Q3) 0.512 (0.282)^ 𝑏33(Q27=Yes) -0.259 (1.091) 𝒃𝟔𝟑(Q43 = Yes) 1.815 (0.727)* 

𝑏4(Q4) -0.5 (0.284)^ 𝒃𝟑𝟒(Q28=No) -3.716 (1.463)* 𝑏64(Q44 = Yes) 0.411 (0.571) 

𝑏5(Q5) 0.067 (0.267) 𝑏35(Q28=Yes) -2.668 (1.406)^ 𝑏65(Q45 = Yes) -0.724 (0.554) 

𝑏6(Q6) 0.109 (0.275) 𝑏36(Q29=No) 1.336 (1.424) 𝑏66(Q46 = No) 0.690 (1.460) 

𝒃𝟕(Q7) 
-0.843 

(0.296)** 
𝑏37(Q29=Yes) 2.471 (1.482)^ 𝑏67(Q46 = Yes) 0.359 (1.441) 

𝑏8(Q8) -0.177 (0.31) 𝑏38(Q30) 0.424 (0.275) 𝑏68(Q47 = No) 1.652 (2.052) 

𝑏9(Q9 = 

Low) 
3.341 (1.76)^ 𝑏39(Q31 =2-3h) -0.629 (0.684) 𝑏69(Q47 = Yes) 0.221 (2.086) 

𝑏10(Q9 = 

Moderate) 
0.906 (0.526)^ 𝑏40(Q31 = 3-4h) -0.677 (1.344) 

𝑏70(Q48 = First 

thought) 
-1.411 (0.995) 

𝑏11(Q10) -0.24 (0.258) 𝑏41(Q31 = <1h) -1.282 (0.700)^ 
𝑏71(Q48 = Think 

through) 
-1.064 (0.793) 

𝑏12(Q11) 0.012 (0.258) 𝑏42(Q31 = >4h) -0.663 (1.102) 𝑏72(Q49) 0.252 (0.259) 

𝑏13(Q12) 0.005 (0.278) 
𝑏43(Q32 = 

Dining hall) 
1.132 (1.177) 

𝒃𝟕𝟑(I1 = 

Failure) 
1.225 (0.574)* 

𝑏14(Q13) 0.092 (0.247) 
𝑏44(Q32 = 

Restaurants) 
1.403 (1.335) 𝑏74(I4) -0.519 (0.268)^ 

𝑏15(Q14) 0.024 (0.287) 
𝑏45(Q32 = 

Home) 
-0.392 (0.943) 

^ p <  .01 

∗ p <  .05 

∗∗ p <  .01 

∗∗∗ p <  .001 

 

Median scaled residual: -0.1273 

Random effects c𝑖~𝑁(0, 0.567
2) 

Occurrence ratio in data: 0.254  

𝑏16(Q15) -0.387 (0.301) 𝑏46(Q33=No) 0.024 (0.722) 

𝑏17(Q16) -0.375 (0.251) 𝑏47(Q33=Some) -0.084 (0.663) 

𝑏18(Q17) 0.434 (0.317) 𝑏48(Q34) -0.170 (0.295) 

𝑏19(Q18) -0.072 (0.276) 𝑏49(Q35) -0.435 (0.308) 

𝑏20(Q19) 0.119 (0.264) 𝑏50(Q36) -1.860 (1.251) 

𝑏21(Q20 = 

Over budget) 
-2.045 (1.066)^ 𝑏51(Q37 = 3-4) -0.241 (0.714) 

𝑏22(Q20 = 

Under 

budget) 

0.020 (0.626) 𝑏52(Q37 = >4) 0.246 (0.774) 

𝑏23(Q21 = 

Behind 

sched.) 

0.267 (1.213) 𝑏53(Q37 = None) 0.668 (0.739) 

𝑏24(Q21 = 

On sched.) 
0.976 (1.098) 𝑏54(Q38) -0.392 (0.28) 

𝒃𝟐𝟓(Q22 = 

More reqs) 
-1.755 (0.875)* 𝑏55(Q39=Reqs) 0.196 (0.823) 

𝑏26(Q22=reqs 

as planned) 
1.422 (0.836)^ 𝒃𝟓𝟔(Q39=Sched) 1.716 (0.652)** 

𝑏27(Q23) 0.515 (0.315) 𝑏57(Q40=Reqs) -1.863 (1.477) 

𝑏28(Q24) 0.198 (0.32) 𝑏58(Q40=Sched) 0.279 (0.599) 

𝑏29(Q25) 0.394 (0.311) 𝑏59(Q41 = No) 1.815 (1.25) 
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Table 15: Mixed-effects logistic regression model for prediction of schedule failure. 

Coefficient 
Estimate 

(error) 
Coefficient Estimate (error) Coefficient Estimate (error) 

𝑎 -3.732(2.927) 𝑏30(Q26 = No) 1.18(1.089) 𝑏60(Q41 = Yes) -0.865(1.058) 

𝑏1(Q1) -0.008(0.242) 𝑏31(Q26 = Yes) 1.335(1.003) 𝑏61(Q42 = No) 0.346(1.218) 

𝑏2(Q2) 0.047(0.205) 𝑏32(Q27=No) -0.659(1.192) 𝑏62(Q42 = Yes) -0.611(1.238) 

𝑏3(Q3) 0.392(0.249) 𝑏33(Q27=Yes) 0.003(1.097) 𝑏63(Q43 = Yes) -0.921(0.559)^ 

𝑏4(Q4) -0.387(0.244) 𝑏34(Q28=No) 2.179(1.331) 𝑏64(Q44 = Yes) 0.238(0.518) 

𝑏5(Q5) -0.159(0.228) 𝒃𝟑𝟓(Q28=Yes) 3.469(1.405)* 𝑏65(Q45 = Yes) 0.845(0.509)^ 

𝑏6(Q6) 0.139(0.231) 𝑏36(Q29=No) -2.513(1.488)^ 𝒃𝟔𝟔(Q46 = No) 4.459(1.545)** 

𝑏7(Q7) -0.042(0.23) 𝑏37(Q29=Yes) -1.654(1.455) 𝑏67(Q46 = Yes) 2.337(1.391)^ 

𝒃𝟖(Q8) 0.726(0.291)* 𝑏38(Q30) 0.271(0.23) 𝑏68(Q47 = No) -1.329(1.441) 

𝑏9(Q9 = Low) 3.051(1.574)^ 𝒃𝟑𝟗(Q31 =2-3h) 1.280(0.63)* 𝑏69(Q47 = Yes) 0.045(1.462) 

𝑏10(Q9 = 

Moderate) 
-0.124(0.478) 𝑏40(Q31 = 3-4h) 1.758(1.014)^ 

𝒃𝟕𝟎(Q48 = 

First thought) 
-4.231(0.985)*** 

𝑏11(Q10) 0.016(0.211) 𝑏41(Q31 = <1h) 1.04(0.613)^ 
𝒃𝟕𝟏(Q48 = 

Think through) 
-2.677(0.745)*** 

𝑏12(Q11) -0.033(0.252) 𝒃𝟒𝟐(Q31 = >4h) 3.007(1.151)** 𝑏72(Q49) 0.496(0.263)^ 

𝑏13(Q12) -0.148(0.239) 
𝑏43(Q32 = 

Dining hall) 
1.268(1.162) 

𝒃𝟕𝟑(I2 = 

Failure) 
1.286(0.525)* 

𝑏14(Q13) 0.056(0.240) 
𝑏44(Q32 = 

Restaurants) 
-0.052(1.18) 𝑏74(I4) 0.006(0.238) 

𝑏15(Q14) -0.070 (0.253) 
𝑏45(Q32 = 

Home) 
1.459(1.02) 

^ p <  .01 

∗ p <  .05 

∗∗ p <  .01 

∗∗∗ p <  .001 

 

Median scaled residual: -0.1266 

Random effects c𝑖~𝑁(0, 0.521
2) 

Occurrence ratio in data: 0.374  

 

𝑏16(Q15) -0.506(0.303)^ 𝑏46(Q33=No) 0.153(0.604) 

𝒃𝟏𝟕(Q16) 0.483(0.235)* 𝑏47(Q33=Some) 0.063(0.602) 

𝑏18(Q17) 0.416(0.296) 𝑏48(Q34) -0.135(0.248) 

𝑏19(Q18) 0.408(0.255) 𝑏49(Q35) -0.097(0.252) 

𝒃𝟐𝟎(Q19) -0.538(0.26)* 𝑏50(Q36) -0.173(0.177) 

𝒃𝟐𝟏(Q20 = 

Over budget) 
-1.949(0.895)* 𝑏51(Q37 = 3-4) -0.766(0.619) 

𝒃𝟐𝟐(Q20 = 

Under 

budget) 

-1.374(0.577)* 𝑏52(Q37 = >4) -0.653(0.676) 

𝑏23(Q21 = 

Behind sched.) 
-0.991(0.914) 

𝑏53(Q37 = 

None) 
-0.500(0.616) 

𝑏24(Q21 = On 

sched.) 
0.015(0.835) 𝒃𝟓𝟒(Q38) -0.784(0.264)** 

𝑏25(Q22 = 

More reqs) 
0.577(0.601) 𝑏55(Q39=Reqs) 0.927(0.757) 

𝒃𝟐𝟔(Q22=reqs 

as planned) 
1.551(0.721)* 

𝒃𝟓𝟔(Q39=Sche

d) 
2.210(0.700)** 

𝑏27(Q23) 0.306(0.253) 𝑏57(Q40=Reqs) 1.537(1.096) 

𝑏28(Q24) -0.03(0.274) 
𝑏58(Q40=Sched

) 
-0.505(0.662) 

𝑏29(Q25) -0.224(0.278) 𝒃𝟓𝟗(Q41 = No) -2.202(1.029)* 
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Table 16: Mixed-effects logistic regression model for prediction of technical requirements failure. 

Coefficient 
Estimate 

(error) 
Coefficient Estimate (error) Coefficient Estimate (error) 

𝑎 -5.444 (3.574) 𝑏30(Q26 = No) 1.117 (1.358) 𝑏60(Q41 = Yes) 0.22 (1.295) 

𝑏1(Q1) 0.169 (0.318) 𝑏31(Q26 = Yes) 1.821 (1.262) 𝑏61(Q42 = No) 2.313 (1.602) 

𝑏2(Q2) 0.081 (0.265) 𝒃𝟑𝟐(Q27=No) -3.054 (1.397)* 𝑏62(Q42 = Yes) 0.795 (1.64) 

𝒃𝟑(Q3) 
0.907 

(0.329)** 
𝑏33(Q27=Yes) -1.607 (1.286) 𝑏63(Q43 = Yes) -0.944 (0.692) 

𝑏4(Q4) -0.126 (0.299) 𝑏34(Q28=No) 1.967 (1.786) 𝑏64(Q44 = Yes) 0.181 (0.667) 

𝑏5(Q5) -0.494 (0.323) 𝑏35(Q28=Yes) 2.167 (1.825) 𝑏65(Q45 = Yes) 0.986 (0.666) 

𝑏6(Q6) 0.29 (0.31) 𝑏36(Q29=No) -0.294 (1.864) 𝑏66(Q46 = No) 1.642 (1.766) 

𝑏7(Q7) -0.386 (0.3) 𝑏37(Q29=Yes) 0.361 (1.815) 𝑏67(Q46 = Yes) -0.98 (1.79) 

𝑏8(Q8) 0.53 (0.355) 𝑏38(Q30) -0.418 (0.312) 𝒃𝟔𝟖(Q47 = No) -3.827 (1.871)* 

𝒃𝟗(Q9 = 

Low) 
3.683 (1.807)* 𝑏39(Q31 =2-3h) 1.517 (0.774)^ 𝑏69(Q47 = Yes) -3.131 (1.932) 

𝑏10(Q9 = 

Moderate) 
0.343 (0.606) 𝑏40(Q31 = 3-4h) 1.7 (1.269) 

𝑏70(Q48 = First 

thought) 
-0.155 (0.987) 

𝑏11(Q10) 0.2 (0.274) 𝑏41(Q31 = <1h) 1.471 (0.818)^ 
𝑏71(Q48 = 

Think through) 
-0.725 (0.848) 

𝑏12(Q11) 0.229 (0.31) 𝑏42(Q31 = >4h) -0.824 (1.397) 𝒃𝟕𝟐(Q49) -0.759 (0.349)* 

𝑏13(Q12) -0.264 (0.329) 
𝑏43(Q32 = 

Dining hall) 
1.542 (1.331) 

𝒃𝟕𝟑(I3 = 

Failure) 
2.186 (0.763)** 

𝑏14(Q13) -0.249 (0.308) 
𝑏44(Q32 = 

Restaurants) 
1.476 (1.504) 𝑏74(I4) 0.019 (0.297) 

𝑏15(Q14) 0.084 (0.33) 
𝑏45(Q32 = 

Home) 
0.755 (0.98) 

^ p <  .01 

∗ p <  .05 

∗∗ p <  .01 

∗∗∗ p <  .001 

 

Median scaled residual: -0.1108 

Random effects c𝑖~𝑁(0, 1.128
2) 

Occurrence ratio in data: 0.254 

𝑏16(Q15) 
-0.667 

(0.352)^ 
𝑏46(Q33=No) -0.288 (0.746) 

𝒃𝟏𝟕(Q16) 0.667 (0.333)* 𝑏47(Q33=Some) -0.869 (0.793) 

𝒃𝟏𝟖(Q17) 0.906 (0.37)* 𝑏48(Q34) 0.154 (0.319) 

𝑏19(Q18) -0.17 (0.331) 𝑏49(Q35) -0.535 (0.361) 

𝑏20(Q19) 0.099 (0.342) 𝑏50(Q36) 0.105 (0.204) 

𝑏21(Q20 = 

Over budget) 
-0.082 (0.901) 𝑏51(Q37 = 3-4) -1.252 (0.811) 

𝒃𝟐𝟐(Q20 = 

Under 

budget) 

1.773 (0.739)* 𝑏52(Q37 = >4) -0.444 (0.899) 

𝑏23(Q21 = 

Behind 

sched.) 

1.569 (1.38) 
𝒃𝟓𝟑(Q37 = 

None) 
-2.405 (0.972)* 

𝑏24(Q21 = 

On sched.) 
2.031 (1.301) 𝑏54(Q38) -0.571 (0.351) 

𝑏25(Q22 = 

More reqs) 
0.455 (0.766) 𝑏55(Q39=Reqs) -0.414 (0.875) 

𝑏26(Q22=reqs 

as planned) 
0.209 (0.855) 𝑏56(Q39=Sched) 0.489 (0.716) 

𝒃𝟐𝟕(Q23) 0.87 (0.351)* 𝑏57(Q40=Reqs) -3.311 (2.042) 

𝑏28(Q24) 0.16 (0.347) 𝑏58(Q40=Sched) -0.17 (0.743) 

𝑏29(Q25) 0.646 (0.377)^ 𝑏59(Q41 = No) 0.577 (1.26) 
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4.2 Prediction Model Validation 

To investigate the ability of the predictive models to make accurate predictions of failure outcomes, 

I used k-cross validation [Arlot and Celisse, 2010] with k=10 folds. Cross-validation is a technique 

to evaluate the ability of the model to generalize, that is, make accurate predictions from unknown 

data. To complete the validation process, I split the dataset into 10 folds. I used 9 of the folds as 

the training set to build the corresponding logistic regression model, and the last fold as the testing 

set to record the number of correct outcome predictions in that last fold. I repeated the process 10 

times for each of the failure prediction models, having all folds get a chance to be the testing set, 

as shown in Figure 6.  

 

Figure 6: 10-fold cross validation process. The 267 data points (initial observations were 304, including 

37 NAs) were split in 10 folds of 27 or 26. At each iteration, 240 or 241 data points were used as the 

training set for the logistic regression models and then the remaining 27 or 26 data points as the testing 

set. I recorded how many correct predictions (of the 27 or 26) the algorithm correctly identified in each 

iteration. I repeated the process until all observations had the chance to be included in the testing fold. 

 

Because the true outcomes of the data points in the testing set are known, I evaluated the accuracy 

measure 𝑒𝑖 in each iteration. If the model returns a predicted probability of failure greater than 

50%, then I classified that as a failure. For each of the training folds, I used a confusion matrix 

with the predicted and actual outcomes (Table 17): 
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Table 17: Generic confusion matrix for logistic regression models. 

 
Predicted: 

Failure 

Predicted: 

Not failure 

Actual: 

Failure 
𝑛1 𝑛2 

Actual: 

Not failure 
𝑛3 𝑛4 

 

The accuracy measure is the ratio of correct outcomes identified by the model in the particular 

testing set, over the total outcomes: 

𝑒𝑖 =
𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑛𝑡𝑜𝑡𝑎𝑙

=
𝑛1 + 𝑛4
∑ 𝑛𝑖
4
𝑖=1

 (Equation 11) 

 

Figure 7 shows the results of the model validation process, that is, the percentage of correct 

predictions for each model and fold. The budget model predicted correctly, on average, 64.50±9.96% 

of outcomes, the schedule model 60.38±13.64%, and the technical requirements model 

66.31±10.32%. 

 

Figure 7: All three prediction models correctly predicted, on average, 60 to 65% of outcomes of unknown 

data. The schedule model had the highest variance of the three between the folds. 

4.3 Prediction Model Reduction and Selection 

In the model training so far, I considered 51 predictor variables as inputs (49 crowd signals, 1 

productivity measure, and previous project state), resulting in models that show non-zero 
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correlations between certain inputs and specific failures, confirming that the crowd signals do have 

some merit in failure prediction. However, there is a drawback about the model formulation so far: 

the large number of inputs make the application of the predictive models not practical. If this 

method of predicting failures were to ever be used in an industry environment, or in a setting with 

larger teams, or as an app, practitioners are unlikely to expect team members to respond reliably 

to a 49-question-long survey every week. Therefore, as a last step in model development, I wanted 

to reduce the burden on the team members as much as possible, by reducing the models (i.e., 

arriving at a “best” model for each failure, that requires a smaller number of predictor variables). 

Model reduction not only reduces computational cost (because the models have fewer degrees of 

freedom), but also may improve how well models do at predictions (because variables that do not 

carry useful information for prediction are discarded).  

 

In literature, there are a variety of methods for model reduction and selection (e.g., see [Halinski 

and Feldt, 1970] for a review of stepwise methods such as forward and backward selection). For 

these stepwise methods, a single variable is added or removed from the model at each step, 

according to some criterion (often R-squared or p-value). Another option is the best subsets 

approach [Hosmer et al. 1989]. The best subsets approach considers all possible models from all 

possible combinations of predictor variables and ranks them according to some criterion (i.e., if 

there are 10 predictor variables under consideration, best subsets will compute all possible models, 

that is, 210 different models in this example). 

 

In the failure prediction problem, which includes 51 predictor variables, I followed a hybrid 

approach: I used stepwise backwards elimination until the predictor variables were reduced to 15 

(i.e., removing a maximum of 36 variables), and then a best subsets approach to arrive at the best 

model. The reason behind this hybrid approach was the very large number of initial variables 

making best subsets computationally very demanding to do from the beginning and because R 

includes packages that can carry out the best subsets approach with 15 variables (e.g., bestglm). 

As the criterion for my selection during both approaches, I used AIC (Akaike Information Criterion) 

as proposed by [Lawless and Singhal, 1987]. Table 18 shows the algorithm behind my hybrid 

approach for model reduction to arrive at a final best prediction model. 
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Table 18: Hybrid approach for model reduction and selection 

𝐴𝐼𝐶0 ← 𝐴𝐼𝐶(𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑜𝑑𝑒𝑙) 
𝐴𝐼𝐶1 ← 𝐴𝐼𝐶0 

 

𝑝𝑟𝑒𝑑_𝑣𝑎𝑟𝑠 ← 𝑐𝑜𝑙𝑛𝑎𝑚𝑒𝑠(𝑑𝑓) 
𝐴𝐼𝐶ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ← 𝐴𝐼𝐶0 

𝑅𝑒𝑚𝑜𝑣𝑒𝑑 ← "𝑆𝑡𝑎𝑟𝑡" 
𝒘𝒉𝒊𝒍𝒆 {(𝐴𝐼𝐶1 − 𝐴𝐼𝐶0 ≤ 0.5)𝐴𝑁𝐷(𝑚𝑎𝑥(𝑅𝑒𝑚𝑜𝑣𝑒𝑑))

≤ 36)} 
𝐴𝐼𝐶0 ← 𝐴𝐼𝐶1 

𝒇𝒐𝒓 (𝑖 = 1,2, … , 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑟𝑒𝑑𝑣𝑎𝑟𝑠) 
𝑓 ←    𝑌̂ 𝑡+1 ~ 𝑎 + b𝑋𝑡(𝑝𝑟𝑒𝑑𝑣𝑎𝑟𝑠[−𝑖]) + 𝑐𝑖

+ 𝜀𝑖𝑡 
𝑛𝑒𝑤𝑚𝑜𝑑𝑒𝑙 ← 𝑙𝑚𝑒4. 𝑔𝑙𝑚𝑒𝑟 (𝑓)   
𝑖𝑛𝑓𝑜𝑡𝑎𝑏𝑙𝑒[𝑖, 1] ← 𝐴𝐼𝐶(𝑛𝑒𝑤𝑚𝑜𝑑𝑒𝑙) 
𝑖𝑛𝑓𝑜𝑡𝑎𝑏𝑙𝑒[𝑖, 2] ← 𝑝𝑟𝑒𝑑𝑣𝑎𝑟𝑠[𝑖] 

 

 

𝑏𝑒𝑠𝑡𝑚𝑜𝑑𝑒𝑙 ← min(𝑖𝑛𝑓𝑜𝑡𝑎𝑏𝑙𝑒[, 1]) 
𝑅𝑒𝑚𝑜𝑣𝑒𝑑 ← 𝑐(𝑅𝑒𝑚𝑜𝑣𝑒𝑑, 𝑖𝑛𝑓𝑜𝑡𝑎𝑏𝑙𝑒[,2]) 
𝑝𝑟𝑒𝑑_𝑣𝑎𝑟𝑠 ← 𝑝𝑟𝑒𝑑_𝑣𝑎𝑟𝑠(𝑏𝑒𝑠𝑡𝑚𝑜𝑑𝑒𝑙) 
𝐴𝐼𝐶1 ← 𝐴𝐼𝐶(𝑏𝑒𝑠𝑡𝑚𝑜𝑑𝑒𝑙) 
𝐴𝐼𝐶ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ← 𝑐(𝐴𝐼𝐶ℎ𝑖𝑠𝑡𝑜𝑟𝑦 , 𝐴𝐼𝐶1) 

 

𝑏𝑒𝑠𝑡𝑔𝑙𝑚(𝑏𝑒𝑠𝑡𝑚𝑜𝑑𝑒𝑙_𝑑𝑓 , 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 𝐴𝐼𝐶, 𝑇𝑜𝑝𝑀𝑜𝑑𝑒𝑙𝑠
= 15) 

(initial model refers to the models shown in 4.1) 

 

 

(start with all 51 predictor variables) 

(keep history of best AIC) 

(keep history of removed variables) 

(while loop continues with improving tolerance on 

AIC and a max. of 36 removed variables) 

 

 

(for loop removes one variable at a time to feed 

into the new model [stepwise selection]) 

(glmer computes the model according to f) 

(infotable keeps history of AIC and the prediction 

variable that was removed at each model) 

 

 

(bestmodel chosen based on max. AIC reduction) 

(Update history of AIC, removed variables, and 

remaining prediction variables) 

 

 

 

(After while loop is complete, I used bestglm to 

find the 15 best models with the lowest AIC) 

 

For each of the three predictive models, the remaining tables and figures in this chapter show the 

iterations of the stepwise removal and the results of the best subsets approach, with the final 

selected models.  

 
For the budget model, the stepwise approach removed 36 predictor variables, achieving a reduction 

in AIC of 68, compared to the initial model (Table 19). After the best subsets approach, the best 

budget model includes just 10 predictor variables from the initial 51 (Table 20). Those variables 

correspond to questions about inability to focus on the project (SL, Q3), freedom on project tasks 

(STND, Q7), creativity (CREA, Q9), student spending estimate (PROJS, Q20) and confidence 

(PROJSC, Q23), student estimate of satisfying requirements (PROJP, Q21), previous problems 

resurfacing (FSYM, Q28), financial pressure (FPRES, Q38), risk perception (RPERC, Q39), and 

whether there was a failure in terms of budget the previous week (Y_t0, I1). The final best budget 

model is, on average, more accurate (73.11±6.92%) and predicts correctly with less variance than 

the initial budget model (64.50±9.96%) (Figure 9).  
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For the schedule model, the stepwise approach removed 36 predictor variables, achieving a 

reduction in AIC of 51.7, compared to the initial model (Table 22). After the best subsets approach, 

the best schedule model includes 15 predictor variables from the initial 51 (Table 23). The 

variables correspond to questions about openness to new ideas (OPEN, Q16), postponing or 

delaying obligations (CONS, Q17), sharing details about one’s life with team members (AGREE, 

Q19), student spending estimate (PROJS, Q20), previous problems resurfacing (FSYM, Q28), 

number of material outputs (OUTP, Q30), financial pressure (FPRES, Q38), risk perception 

(RPERC, Q39), team members having arguments (BANDW, Q42), important project decisions 

(FOCUS, Q43), discussing ideas with other teams (NOTIH, Q45), learning new things (CONF, 

Q46), discussing unimportant matters about the project (PARKL, Q47), how project decisions were 

made (ANCHOR, Q48), and whether there was a failure in terms of schedule the previous week 

(Y_t0, I2). The final best schedule model is, on average, more accurate (75.27%±9.21%) and 

predicts correctly with less variance than the initial model. (60.38%±13.64%) (Figure 10). 

 

For the technical requirements model, the stepwise approach removed 36 predictor variables 

achieving a reduction in AIC of 61.26 (Table 25), compared to the initial model. After the best 

subsets approach, the best technical requirements model includes 12 predictor variables from the 

initial 51(Table 26). The variables correspond to questions about inability to focus on the project 

(SL, Q3), making meaningful progress (IMP, Q5), students thinking they can do progress without 

oversight (AUTO, Q8), creativity (CREA, Q9), feeling frustration by the team members (NEUR, 

Q15), student confidence in spending estimate (PROJSC, Q23), handling new problems correctly 

(UNEFF, Q26), exercising habits (EXERC, Q37), team members having arguments (BANDW, 

Q42), learning new things (CONF, Q46), student confidence in their answers (OVERC, Q49), and 

whether there was a failure in terms of technical requirements the previous week (Y_t0, I3). The 

final best technical requirements model is, on average, more accurate (76.71±6.90%) and predicts 

correctly with less variance than the initial model (66.31±10.32%) (Figure 11). 

 

Overall, the previous status of the project was the only input variable that appeared in all three 

final predictive models for budget, schedule, and technical requirements, which confirms that 

previous project performance is a good indicator of future performance.  
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Figure 8: Relative question importance based on their inclusion in the three final reduced models. Light 

grey-coded inputs appeared in 1/3 final models and dark-grey coded inputs appeared in 2/3 final models. 

Previous project status was the only input variable that appeared in all three final predictive models. 

 

Table 19: Budget model stepwise predictor variable removal. The process reduced the initial AIC by 68. 

Iteration Removed variable 
Model AIC after removal 

(initial model AIC = 338.96) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

SMENG 

EAT2 

EXERC 

STRN 

BANDW 

CONF 

OPREF 

COMT 

EXTR 

COBJ 

TSPENT 

COO2 

RESO 

AUTO 

EXP 

PRO 

PROJTC 

COMM 

NORM 

IMP 

OUTP 

UNEFF 

MODU 

OVERC 

COO1 

BUREAU 

ANCHOR 

PROJT 

PROJPC 

NTOOL 

CONS 

NEUR 

NOTIH 

PARKL 

AMBI 

AGREE 

334.57 

330.65 

326.73 

323.09 

319.66 

316.55 

314.05 

312.06 

310.06 

308.07 

306.08 

304.11 

302.15 

300.23 

298.32 

296.42 

294.56 

292.71 

290.89 

289.10 

287.62 

286.06 

284.40 

283.11 

282.09 

281.02 

279.71 

278.46 

277.63 

276.59 

275.77 

274.62 

274.00 

273.04 

271.68 

270.98 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30
Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40
Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49 I4 I1-3
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Table 20: Budget model best subsets results. The table shows the best 15 models by AIC, from best to worst. The best model includes 10 predictor 

variables with the final model having an AIC of 264.75. 

 

 

SL STND CREA OPEN PROJS PROJP PROJSC FSYM EAT1 TMEET FPRES RPERC FOCUS Y_t0 PROD AIC

In In In Out In In In In Out Out In In Out In Out 264.7529

In In In Out In In In In Out Out In In Out In In 264.8493

In In In Out In In In In Out Out In In In In In 265.1073

In In In Out In In In In Out Out In In In In Out 265.1871

In In In In In In In In Out Out Out In In In In 265.2358

In In In In In In In In Out Out In In Out In In 265.2936

In In In In In In In In Out Out In In In In In 265.3058

In In In In In In In In Out Out Out In Out In In 265.3061

In In In In In In In In Out Out In In Out In Out 265.403

In In In Out In In Out In Out Out In In In In In 265.4171

In In In Out In In In In Out Out Out In Out In In 265.4737

In In In Out In In Out In Out Out In In Out In In 265.5386

In In In In In In In In In Out In In Out In In 265.5576

In In In In In In In In Out Out In In In In Out 265.61

In In In Out In In In In In Out In In Out In In 265.6319
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Table 21: Final budget model correlation coefficients.  

Coefficient Estimate (error)  

𝑎 -0.711 (0.714) 

^ p <  .01 

∗ p <  .05 

∗∗ p <  .01 

∗∗∗ p <  .001 

 

Median scaled residual: -0.273 

Random effects c𝑖~𝑁(0, 0.541
2) 

Occurrence ratio in data : 0.254 

 

𝑏1(Q3) 0.352 (0.188)^ 

𝒃𝟐(Q7) -0.563 (0.179)** 

𝑏3(Q9=Low) 2.090 (1.225)^ 

𝒃𝟒(Q9=Moderate) 0.869 (0.368)* 

𝒃𝟓(Q20=Over budget) -2.184 (0.867)* 

𝑏6(Q20 = Under budget) 0.133 (0.403) 

𝒃𝟕(Q21 =Fewer reqs.) -1.746 (0.63)** 

𝑏8(Q21 = More reqs.) 0.025 (0.497) 

𝑏9(Q23) 0.335 (0.194) 

𝒃𝟏𝟎(Q28 = No) -1.452 (0.639)* 

𝑏11(Q28=Yes) -0.982 (0.675) 

𝑏12(Q38) -0.343 (0.185)^ 

𝑏13(Q39=Reqs) -0.449 (0.475) 

𝑏14(Q39 =Sched.) 0.845 (0.463)^ 

𝒃𝟏𝟓(I1=Failure) 1.261 (0.369)*** 

 

 

Figure 9: The final best budget model is, on average, more accurate (73.11±6.92%) and predicts correctly 

with less variance than the initial budget model (64.50±9.96%). 
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Table 22: Schedule model stepwise predictor variable removal. The process reduced the initial AIC by 

51.7. 

Iteration Removed variable 
Model AIC after removal 

(initial model AIC = 371.20) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

EXERC 

EAT2 

STRM 

STND 

PROJTC 

PROD 

MODU 

COBJ 

EXP 

COMM 

RESO 

PRO 

TMEET 

PROJPC 

UNEFF 

IMP 

COMT 

TSPENT 

COO2 

SMENG 

EAT1 

BUREAU 

OPREF 

EXTR 

COO1 

PROJP 

NEUR 

PROJSC 

NORM 

NTOOL 

OVERC 

AMBI 

PROJT 

AUTO 

SL 

CREA 

367.03 

363.20 

360.27 

358.27 

356.27 

354.28 

352.28 

350.30 

348.38 

346.47 

344.56 

342.66 

340.85 

339.09 

337.53 

336.06 

334.63 

333.39 

332.10 

330.84 

328.37 

326.24 

324.65 

324.17 

323.62 

322.83 

322.03 

321.33 

320.81 

320.44 

320.53* 

320.71* 

319.66 

319.68 

319.74 

319.50 

*Even if AIC slightly increased in these iterations, it is within acceptable tolerance for the 

algorithm to continue searching further to arrive at models with lower AIC. 
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Table 23: Schedule model best subsets results. The table shows the best 15 models by AIC, from best to worst. The best model includes 15 

predictor variables with the final model having an AIC of 315.5. 

 

 

OPEN CONS AGREE PROJS FSYM OUTP FPRES RPERC BANDW FOCUS NOTIH CONF PARKL ANCHOR Y_t0 AIC

In In In In In In In In In In In In In In In 315.4983

In In In In In Out In In In In In In In In In 316.2376

In In In In In In In In In In In In Out In In 316.6819

In Out In In In In In In In In In In In In In 317.3208

In In In In In Out In In In In In In Out In In 317.5584

In Out In In In Out In In In In In In In In In 318.0073

In Out In In In In In In In In In In Out In In 318.0829

Out In In In In Out In In In In In In In In In 318.6929

In In In In Out Out In In In In In In In In In 318.7417

In In In Out In In In In In In In In Out In In 318.7477

Out In In In In In In In In In In In In In In 318.7962

In In In In Out In In In In In In In In In In 318.7989

Out In In In In In In In In In In In Out In In 318.8702

Out In In In In Out In In In In In In Out In In 318.8939

In Out In In In Out In In In In In In Out In In 318.9099
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Table 24: Final schedule model correlation coefficients. 

Coefficient Estimate (error)  

𝑎 0.773 (1.509) 

^ p <  .01 

∗ p <  .05 

∗∗ p <  .01 

∗∗∗ p <  .001 

 

Median scaled residual: -0.279 

Random effects c𝑖~𝑁(0, 0.316
2) 

Occurrence ratio in data : 0.374 

 

𝒃𝟏(Q16) 0.379 (0.164)* 

𝑏2(Q17) 0.341 (0.177)^ 

𝒃𝟑(Q19) -0.413 (0.172)* 

𝒃𝟒(Q20=Over budget) -1.291 (0.629)* 

𝒃𝟓(Q20 = Under budget) -0.791 (0.388)* 

𝑏6(Q28 = No) 0.494 (0.661) 

𝒃𝟕(Q28=Yes) 1.346 (0.685)* 

𝑏8(Q30) 0.271 (0.165) 

𝒃𝟗(Q38) -0.464 (0.176)** 

𝑏10(Q39=Reqs) 0.677 (0.451) 

𝒃𝟏𝟏(Q39 =Sched.) 1.265 (0.448)** 

𝑏12(Q42 = No) -1.053 (0.735) 

𝒃𝟏𝟑(Q42=Yes) -1.915 (0.802)* 

𝒃𝟏𝟒(Q43=Yes) -1.025 (0.372)** 

𝒃𝟏𝟓(Q45=Yes) 0.838 (0.362)* 

𝑏16(Q46 = No) 2.057 (1.062)^ 

𝑏17(Q46=Yes) 0.976 (1.029) 

𝑏18(Q47 = No) -1.707 (1.071) 

𝑏19(Q47=Yes) -1.027 (1.066) 

𝒃𝟐𝟎(Q48=First thought) -2.387 (0.620)*** 

𝒃𝟐𝟏(Q49=Think through) -1.821 (0.478)*** 

𝒃𝟐𝟐(I2=Failure) 1.069 (0.333)** 

 

 

Figure 10: The final best schedule model is, on average, more accurate (75.27%±9.21%) and predicts 

correctly with less variance than the initial model (60.38%±13.64%).  
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Table 25: Technical requirements model stepwise predictor variable removal. The process reduced the 

initial AIC by 61.26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iteration Removed variable 
Model AIC after removal 

(initial model AIC = 337.82) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

EAT1 

EAT2 

PROJP 

AMBI 

BUREAU 

FSYM 

ANCHOR 

COO1 

NORM 

TSPENT 

EXP 

COMM 

PROJTC 

NTOOL 

PROD 

MODU 

AGREE 

COBJ 

RESO 

PRO 

FOCUS 

NOTIH 

SMENG 

PROJT 

FPRES 

STRM 

STND 

EXTR 

COMT 

RPERC 

COO2 

OUTP 

OPREF 

PARKL 

CONS 

OPEN 

333.96 

330.24 

326.60 

323.56 

320.83 

318.27 

316.21 

314.21 

312.22 

310.26 

308.38 

306.51 

304.65 

302.79 

300.92 

299.13 

297.42 

295.74 

294.14 

292.66 

291.55 

290.15 

288.97 

287.42 

285.99 

284.62 

282.98 

281.73 

280.83 

280.21 

279.24 

278.48 

278.69* 

277.98 

277.24 

276.56 
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Table 26: Technical requirements model best subsets results. The table shows the best 15 models by AIC, from best to worst. The best model 

includes 12 predictor variables with a final model with an AIC of 271.12. 

  

 

SL IMP AUTO CREA NEUR PROJS PROJSC PROJPC UNEFF TMEET EXERC BANDW CONF OVERC Y_t0 AIC

In In In In In Out In Out In Out In In In In In 271.1275

In In In In In Out In Out In Out In Out In In In 271.4494

In In In Out In Out In Out In Out In Out In In In 271.61

In In In In In Out In Out In In In In In In In 271.7896

In In In In In Out In Out In In In Out In In In 271.8617

In In In Out Out Out In Out In Out In In In In In 271.9288

In In In Out In Out In Out In Out In In In In In 271.9909

In In In Out In Out In Out In In In Out In In In 272.0609

In In In In Out Out In Out In Out In In In In In 272.3482

In In In In In In In Out In Out In In In In In 272.4131

In In In Out Out Out In Out In In In In In In In 272.4686

In In In Out Out Out In Out In Out In Out In In In 272.4806

In In Out In In Out In Out In Out In Out In In In 272.4978

In In In Out Out Out In Out In In In Out In In In 272.5251

In In In In In In In Out In In In In In In In 272.5362
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Table 27: Final technical requirements model correlation coefficients. 

Coefficient Estimate (error)  

𝒂 -3.755 (1.531)* 

^ p <  .01 

∗ p <  .05 

∗∗ p <  .01 

∗∗∗ p <  .001 

 

Median scaled residual: -0.247 

Random effects c𝑖~𝑁(0, 0.811
2) 

Occurrence ratio in data: 0.254  

 

𝒃𝟏(Q3) 0.697 (0.212)** 

𝒃𝟐(Q5) -0.405 (0.197)* 

𝒃𝟑(Q8) 0.472 (0.204)* 

𝒃𝟒(Q9=Low) 2.672 (1.168)* 

𝑏5(Q9=Moderate) 0.43 (0.39) 

𝑏6(Q15) -0.284 (0.212) 

𝒃𝟕(Q23) 0.651 (0.22)** 

𝑏8(Q26=No) 1.419 (0.856)^ 

𝒃𝟗(Q26=Yes) 2.336 (0.785)** 

𝑏10(Q37=3-4) -0.85 (0.465)^ 

𝑏11(Q37=>4) -0.603 (0.523) 

𝒃𝟏𝟐(Q37=None) -1.726 (0.55)** 

𝑏13(Q42=No) 0.86 (0.855) 

𝑏14(Q42=Yes) -0.134 (0.937) 

𝑏15(Q46=No) 0.574 (1.255) 

𝑏16(Q46=Yes) -0.674 (1.274) 

𝒃𝟏𝟕(Q49) -0.458 (0.195)* 

𝒃𝟏𝟖(I3=Failure) 1.479 (0.408)*** 

 

 

Figure 11: The final best technical requirements model is, on average, more accurate (76.71±6.90%) and 

predicts correctly with less variance than the initial model (66.31±10.32%). 
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 EXPERIMENT II: TARGETED FEEDBACK TO PREVENT FAILURES 

IN SYSTEMS ENGINEERING 

This chapter describes the second experiment to provide targeted feedback to the student teams 

and evaluate whether the feedback was helpful at reducing failure occurrences in student projects. 

The experimental procedures were approved as an exempt study by Purdue's Institutional Review 

Board (IRB) with protocol #2020-1393 and title “Targeted Feedback to Prevent Systems 

Engineering Failures”. I collected the data for the second experiment during the Spring semester 

of 2021. Chapter 5 is organized as follows: Section 5.1 provides a description of the experimental 

setup and design. Section 5.2 discusses the feedback process. Section 5.3 shows a derivation for 

the overall probability of failure for a project team, which is part of the feedback. Section 5.4 

focuses on the development of the feedback statements and their associated rules. Section 0 

concludes with the evaluation of the feedback using statistical testing and qualitative survey 

metrics. 

5.1 Experimental Setup and Design 

For the second experiment, I followed a similar recruiting process as for experiment I: I asked the 

students of engineering design courses to volunteer as respondents to a brief survey at the end of 

each week, answering a set of questions (student crowd signals). I provided a weekly $20 gift card 

incentive for one randomly selected student each week. There were two additions to the student 

survey, compared to the one from experiment I. The additions were the weekly feedback 

statements and three additional questions for the students to provide their evaluation of the 

feedback. At the same time, the instructors of each course responded to a separate survey at the 

end of each week since I needed their assessment of the project status to use my predictive models.  

The criterion for student recruitment in the study was to be enrolled in an engineering course that 

includes a team design project and to be above 18 years of age. The criterion for instructor 

recruitment was to monitor student teams closely, to be able to accurately provide the progress of 

each project.  
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Due to the COVID-19 restrictions at the time of the experiment, I handled all recruiting processes 

and data collection entirely online. To motivate the students and to explain the research in an 

approachable way, I created a recruiting video and flyer. The video was 2 minutes and 50 seconds 

long, and introduced me, as well as the process the students should follow. The flyer (Figure 12) 

was similar to the one used for Experiment I, and included contact details as well as the QR code 

for students to access the survey with their mobile devices. In communication with the instructors, 

I was also able to send some email reminders to encourage participation of the students. For 

confidentiality purposes, I followed the same approach with student usernames as in Experiment 

I (anonymous link for the survey, and no identifiable information collected from the students).  

 

 

Figure 12: Recruitment flyer as distributed to the students during the recruitment process of Experiment II. 

10 random students won a $20 gift card. 

 

The experiment included two treatment groups: the student teams that received targeted feedback 

statements and teams that received non-targeted feedback statements. I used two treatment groups 

because I wanted to isolate the effect of the targeted feedback statements on failure occurrences, 

and I had to use a valid comparison. Comparing to teams that received no feedback would not 

make a valid comparison because any statistical significance could be because of the effect of 
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feedback statements in general, rather than the targeted feedback statements I developed. 

Comparing failure rates to teams that received non-targeted feedback, however, would isolate the 

effect of my targeted feedback process against feedback statements that do not necessarily address 

the failure causes the team is more prone to. The feedback statements were all positive, 

encouraging, and promoted good team practices for both treatment groups. 

 

The teams that received targeted feedback got three statements from those that corresponded to 

specific rules that I explain in detail in section 5.4. The rules help distinguish between feedback 

statements that address the failure causes the team is prone to (“targeted feedback”) and those 

statements that do not necessarily do so (“non-targeted feedback”). The teams that received the 

non-targeted feedback got three feedback statements from the ones that did not apply to them based 

on the rules. Both treatment groups received the truthful predicted probabilities of failure that the 

predictive models output based on their responses.  

 

 

Figure 13: The two treatment groups used in Experiment II. The difference was the process for the feedback 

statements: one group received from statements that applied to them based on the rules, whereas the other 

group received from statements that did not apply to them based on the rules.  

 

In total, I collected data from 14 different design project teams. The student teams were enrolled 

in three different courses at Purdue University. All data collection occurred during the same 9-

week period. For these courses, the student teams worked on aircraft design, propulsion design-

build-test, or spacecraft design. In total, 53 students participated at least one time in the survey. 

Table 28 shows a summary of the data collected per course. 
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Table 28: Summary of data collection for experiment II during the Spring ’21 semester. Student teams 

typically included 4-6 team members. The projects included both hardware and software deliverables as 

well as progress and final reports. 

Course # projects 

# student 

observations 

(excl. NAs) 

# instructor observations 

Aerospace #1 8 69 72 (8 projects for 9 weeks) 

Aerospace #2 2 26 4 (2 projects for 2 weeks) 

Aerospace #3 4 37 36 (4 projects for 9 weeks) 

5.2 Feedback process 

The feedback included two parts: the first part to alert the project team of upcoming failures and 

the second part to provide the feedback statements.  

 

For the alert part, I provided the predicted failure probability from the reduced models discussed 

earlier in Section 4.3. Given an input set of crowd signals from the students and the state of the 

project from the instructor during a given week, the models can predict the likelihood of the team 

to have a budget, schedule, or technical requirements failure the following week.  

 

For the statement part, I provided recommendations based on the treatment group each project 

team belonged to, as described earlier.  

 

I developed the feedback statements based on the idea discussed in the introduction (Figure 2): to 

use the correlations between failure causes and crowd signals to generate feedback statements that 

attempt to improve student behavior to address a particular failure cause. In Section 3.2, I discussed 

the process of finding such correlations for the failure cause FC1: Failed to consider a design 

aspect. I used the exact same process for the remaining failure causes and created a matrix (the 

“Crowd Signal─Failure Cause” or “CS─FC” matrix) to guide the feedback statement generation 

process. For every crowd signal + failure cause pair that had an existing correlation, I created an 

associated feedback statement based on the type of correlation.  
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Each statement came with a rule that distinguishes whether the statement is applicable (“targeted”) 

to a particular student team (i.e., addresses an area they may be weak at, based on their responses). 

The rules were in place to remove any potential bias caused by my ability to make judgments as 

to which statement is a good fit for each team, due to my knowledge of how student teams work. 

The rules were expressed in relation to the associated crowd signal. The rules also enable the 

process for the two treatment groups. The “TF” group gets statements when their responses satisfy 

the rules (i.e., statements that address the failure causes the team is more prone to), whereas the 

“NTF” group gets statements from those that their responses do not satisfy the rules (i.e., 

statements that are positive and encouraging, but do not necessarily address the failure causes the 

team is more prone to). 

 

The feedback, in general, was different for every team and every week, because the inputs were 

different for the predictive models (and therefore the predicted probabilities and applicable rules 

that were satisfied). The only reason the feedback would remain the same, is if the students of a 

particular team did not provide new responses for that week (so there was no updated predictions 

or feedback). To generate the first feedback statement, one week’s data collection was required in 

the beginning. The following steps summarize the process: 

1. Week 1: Collected data from students/instructors. 

2. Week 2: Students saw 1st feedback message; collected new data from students/instructors. 

3. Week 3: Students saw new feedback message and evaluated previous feedback message; 

collected new data from students/instructors. 

4. Repeat until Week 9 and record final project performance from instructors. 

 

To ensure each team sees the correct feedback message that applies to them, I used a Qualtrics 

feature that allowed me to display particular messages conditional on which team the student 

selects when they respond to the survey. The feedback message had the following format for both 

treatment groups:  

“Based on models we built with data from previous teams that received no feedback 

and the responses from your team members from last week: We predict that you have 

[𝑃̂𝑖,𝑡+1
(𝑘)

%] chance of having a failure in terms of [metric 𝑖]. To improve your team’s 

chances of success, we suggest [𝑅𝑄–𝐹𝐶
(𝑘)

] ”. 
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The measures in brackets were edited for the different teams during the duration of the experiment. 

The index 𝑖 of the probability 𝑷̂𝒊,𝒕+𝟏
(𝒌)

 reflects one of the success metrics: 𝑖 = 1 corresponds to a 

budget failure, 𝑖 = 2  to a schedule failure, and 𝑖 = 3 to a technical requirements failure. The 

superscript reflects the team k the prediction corresponded to. 𝑹𝑄–𝐹𝐶
(𝑘)

 was the set of feedback 

statements that applied to team k. Figure 14 shows the steps to generate the necessary measures to 

provide feedback to the project teams. 

 

 

Figure 14: The dynamic feedback process. At each week t, through the failure predictive models, I 

calculated the probability of failure for each metric and team for the following week t+1. Using this 

probability and the associated feedback rules, I provided recommendations to the team members.  

5.3 Calculation of Overall Probability of Failure for a Project Team 

Figure 14 shows a process of calculating the probability of failure for a metric for the entire team, 

given the failure probabilities calculated from the individual student responses (~). The way I built 

the models, responses from different students who are in the same team will output different 

predicted probabilities of failure for the same project. However, the goal of the alert part of the 

feedback is to provide one overall probability of failure for the entire team. I show here the 

derivation of the overall probability of failure for the entire project, given the individual and 

independent responses of students that are part of the team.  
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If I had built a model based on grouped student responses by team using some arbitrary grouping 

scheme, that model would output the predicted probability of failure in terms of metric j given the 

grouped responses from the team: 

𝑃̂(𝑌𝑗,𝑡+1 = 1|𝑄1
(1…𝑁) = 𝑔1, 𝑄2

(1…𝑁) = 𝑔2, ⋯ , 𝑄𝑛
(1…𝑁)

= 𝑔𝑛)

= 𝑃̂(𝑌𝑗,𝑡+1 = 1|𝑄1…𝑛
(1…𝑁)

= 𝑔1...𝑛) 
(Equation 12) 

Where 𝑌𝑗,𝑡+1 corresponds to a failure in terms of metric 𝑗 for week 𝑡 + 1. 𝑄1
(1…𝑁)

 represents the 

student responses to the first question that are grouped according to some scheme 𝑔(∙)  with value 

𝑔1, 𝑄2
(1…𝑁)

 represents the grouped student responses to the second question with value 𝑔2, etc. for 

all N students. I use 𝑄1…𝑛
(1…𝑁)

= 𝑔1...𝑛  as a shortened notation for the grouped responses to all 

questions.  

 

From Bayes’ theorem and the law of total probability (by conditioning the probability that forms 

in the denominator using the two possible failure outcomes): 

𝑃̂(𝑌𝑗,𝑡+1 = 1|𝑄1…𝑛
(1…𝑁)

= 𝑔1...𝑛) 

=
𝑃̂(𝑌𝑗,𝑡+1 = 1,𝑄1…𝑛

(1…𝑁)
= 𝑔1...𝑛 )

𝑃̂(𝑌𝑗,𝑡+1 = 1,𝑄1…𝑛
(1…𝑁)

= 𝑔1...𝑛) + 𝑃̂(𝑌𝑗,𝑡+1 = 0,𝑄1…𝑛
(1…𝑁)

= 𝑔1...𝑛)
 

(Equation 13) 

 

Since the grouped responses come from the individual student responses and the probability of 

overall project failure comes from the failure per each individual student, the enumerator of the 

RHS of equation (13) becomes: 

𝑃̂(𝑌𝑗,𝑡+1 = 1,𝑄1…𝑛
(1…𝑁)

= 𝑔1...𝑛 ) = 𝑃̂ 

(

 
 

{𝑌𝑗,𝑡+1
(1) = 1}

{𝑌𝑗,𝑡+1
(2) = 1}

⋮

{𝑌𝑗,𝑡+1
(𝑁) = 1}

,  

{𝑞1...𝑛
(1)

= 𝑄1…𝑛
(1)

}

{𝑞1...𝑛
(2)

= 𝑄1…𝑛
(2)

}
⋮

{𝑞1...𝑛
(𝑁)

= 𝑄1…𝑛
(𝑁)

})

 
 

 (Equation 14) 

 

Where 𝑞1...𝑛
(1)

 represents the answers of the first student to questions 𝑄1…𝑛 , 𝑞1...𝑛
(2)

 represents the 

answers of the second student to questions 𝑄1…𝑛 etc.  
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Assuming that the responses and failure probability of each student is independent of the other 

students (which is reasonable because the questions primarily capture the individual student’s 

opinions, behaviors, and actions), the RHS of equation (14) becomes: 

𝑃̂ 

(

 
 

{𝑌𝑗,𝑡+1
(1) = 1}

{𝑌𝑗,𝑡+1
(2) = 1}

⋮

{𝑌𝑗,𝑡+1
(𝑁) = 1}

,  

{𝑞1...𝑛
(1)

= 𝑄1…𝑛
(1)

}

{𝑞1...𝑛
(2)

= 𝑄1…𝑛
(2)

}
⋮

{𝑞1...𝑛
(𝑁)

= 𝑄1…𝑛
(𝑁)

})

 
 
=∏𝑃̂(𝑌𝑗,𝑡+1

(𝑖) = 1, 𝑞1...𝑛
(𝑖)
)

𝑖=𝑁

𝑖=1

 (Equation 15) 

 

Using Bayes’ theorem for the individual student probabilities inside the product: 

∏𝑃̂(𝑌𝑗,𝑡+1
(𝑖) = 1, 𝑞1...𝑛

(𝑖)
)

𝑖=𝑁

𝑖=1

=∏𝑃̂(𝑌𝑗,𝑡+1
(𝑖) = 1|𝑞1...𝑛

(𝑖)
)𝑃(𝑞1...𝑛

(𝑖)
)

𝑖=𝑁

𝑖=1

 (Equation 16) 

 

And equivalently for the scenario a failure did not occur (𝑌𝑗,𝑡+1 = 0): 

𝑃̂(𝑌𝑗,𝑡+1 = 0,𝑄1…𝑛
(1…𝑁)

= 𝑔1...𝑛 ) =∏𝑃̂(𝑌𝑗,𝑡+1
(𝑖) = 0, 𝑞1...𝑛

(𝑖)
)

𝑖=𝑁

𝑖=1

=∏𝑃̂(𝑌𝑗,𝑡+1
(𝑖) = 0|𝑞1...𝑛

(𝑖)
)𝑃(𝑞1...𝑛

(𝑖)
)

𝑖=𝑁

𝑖=1

 

(Equation 17) 

 

Back-substituting equations 16 and 17 in equation 13 gives: 

𝑃̂(𝑌𝑗,𝑡+1 = 1|𝑄1…𝑛
(1…𝑁)

= 𝑔1...𝑛)

=
∏ 𝑃̂(𝑌𝑗,𝑡+1

(𝑖) = 1|𝑞1...𝑛
(𝑖)
)𝑖=𝑁

𝑖=1

∏ 𝑃̂ (𝑌𝑗,𝑡+1
(𝑖) = 1|𝑞1...𝑛

(𝑖)
)𝑖=𝑁

𝑖=1 +∏ 𝑃̂ (𝑌𝑗,𝑡+1
(𝑖) = 0|𝑞1...𝑛

(𝑖)
)𝑖=𝑁

𝑖=1

 
(Equation 18) 

 

The quantities on the RHS of equation 18 can be calculated from the regression models, since for 

each student the model gives the probability of failure given their individual responses 𝑞1...𝑛
(𝑖)

 for all 
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questions and for all N students that are in the same team. The complement case, when 𝑌𝑗,𝑡+1 = 0, 

can also be calculated from the regression models by using the law of total probability since there 

are only two outcomes in each prediction: failure or no failure.  

 

The formulation in equation 18 represents the overall probability of failure in terms of any of the 

three metrics for a project, given individual responses from various team members each week. 

5.4 Feedback Statement Development and Rules 

To develop the feedback statements in a structured and consistent manner, I used the correlations 

between failure causes and crowd signals to guide the process. The goal was for the targeted 

feedback statements to recommend actions and behaviors that may improve the underlying failure 

causes a team is most prone to, and therefore reduce the occurrences of project failures (for the 

“TF” group). To find these correlations between failure causes and crowd signals, I used the same 

modeling approach as described for FC1: Failed to consider a design aspect in Section 3.2. The 

detailed coefficients values for each model can be found in Appendix A. 

 

With 10 failure causes and 49 crowd signals, to best facilitate the feedback statement generation 

process, I summarized the information I needed in a matrix form, which I named the “Crowd 

Signal─Failure Cause” or “CS─FC” matrix (Figure 15). The rows of the matrix are the 49 crowd 

signals questions, the columns are the failure causes FC1 to FC10, and each cell shows the type of 

correlation (“+” indicates a positive correlation, “–” indicates a negative correlation, and “0” 

indicates no correlation). Positive correlation means the corresponding model included a positive 

coefficient with a p-value of 0.05 or less, negative correlation means the model included a negative 

coefficient with a p-value of 0.05 or less, and no correlation means the p-value for the 

corresponding coefficient was more than 0.05. FC3: Failed to form a contingency plan (occurrence 

ratio = 0.107) and FC9: Violated procedures do not have a model (occurrence ratio = 0.064) 

because they did not occur enough times for the models to converge and therefore, I excluded them 

from the feedback generation process.  
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Figure 15: The crowd signal–failure cause correlation matrix. “+” indicates a positive correlation, “-” 

indicates a negative correlation, and “0” indicates no correlation. When the questions have categorical 

answers, the correlation is labeled with the answer that it corresponds to. FC3 and FC9 are excluded due 

to low occurrence ratios in the corresponding model training data sets. 

FC1 FC2 FC3 FC4 FC5 FC6 FC7 FC8 FC9 FC10

Q1 0 0 ~ 0 0 - + 0 ~ 0

Q2 0 + ~ 0 0 + 0 0 ~ 0

Q3 0 0 ~ 0 0 0 + + ~ 0

Q4 - 0 ~ 0 0 0 - 0 ~ 0

Q5 0 0 ~ 0 0 + 0 0 ~ 0

Q6 - 0 ~ 0 0 0 0 0 ~ 0

Q7 0 0 ~ 0 0 0 0 0 ~ 0

Q8 0 0 ~ 0 0 0 0 0 ~ 0

Q9 0 0 ~ 0 0 (Mod) - 0 0 ~ 0

Q10 0 0 ~ 0 + 0 0 0 ~ +

Q11 0 0 ~ 0 - 0 0 0 ~ 0

Q12 0 + ~ 0 0 0 0 0 ~ 0

Q13 0 0 ~ 0 0 0 0 - ~ 0

Q14 0 0 ~ 0 0 0 0 0 ~ 0

Q15 0 0 ~ 0 - 0 0 0 ~ 0

Q16 0 0 ~ 0 0 - + 0 ~ 0

Q17 0 0 ~ 0 0 + 0 0 ~ 0

Q18 0 0 ~ 0 0 0 0 0 ~ 0

Q19 0 0 ~ 0 0 0 - 0 ~ 0

Q20 0 0 ~ 0 (Over) - 0 0 0 ~ 0

Q21 0 (Behind, On) - ~ 0 0 0 (Behind) - (Behind, On) - ~ 0

Q22 0 0 ~ 0 (As plan) - 0 0 0 ~ 0

Q23 0 0 ~ 0 + 0 0 0 ~ 0

Q24 0 0 ~ + + 0 0 + ~ 0

Q25 0 0 ~ 0 0 0 + 0 ~ 0

Q26 (No) - 0 ~ 0 0 (No) - 0 0 ~ 0

Q27 0 0 ~ 0 0 0 0 (Yes) + ~ 0

Q28 (No) - 0 ~ 0 0 0 0 0 ~ 0

Q29 (No) + 0 ~ 0 0 0 0 0 ~ 0

Q30 0 0 ~ 0 0 0 + 0 ~ 0

Q31 0 (<1h) - ~ 0 (3-4h) - 0 (2-3h) - 0 ~ (2-3h) -

Q32 0 0 ~ 0 (Home) - (Hall) - 0 0 ~ (Home) +

Q33 0 (Some) + ~ 0 (Some) + 0 (No, Some) + 0 ~ (Some) +

Q34 0 0 ~ 0 - 0 0 0 ~ 0

Q35 0 + ~ + 0 + 0 + ~ 0

Q36 - 0 ~ 0 + 0 0 0 ~ 0

Q37 0 0 ~ 0 0 0 0 (>4) - ~ 0

Q38 0 0 ~ 0 0 0 0 0 ~ 0

Q39 0 0 ~ 0 (Reqs, sched) - 0 0 (Reqs) - ~ 0

Q40 (Reqs) - (Reqs) + ~ 0 0 0 (Reqs, sched) - 0 ~ 0

Q41 0 (Yes) + ~ 0 + 0 0 (Yes) + ~ 0

Q42 (No) - 0 ~ 0 0 (No)- 0 (No) - ~ 0

Q43 0 0 ~ 0 0 0 0 0 ~ 0

Q44 0 0 ~ 0 0 0 0 0 ~ 0

Q45 0 (Yes) - ~ 0 0 0 0 0 ~ 0

Q46 0 0 ~ (No) - 0 0 0 0 ~ 0

Q47 0 (No) + ~ 0 0 (Yes) - 0 0 ~ 0

Q48 0 0 ~ 0 (Think) + 0 0 0 ~ (Think) +

Q49 0 0 ~ 0 + 0 0 + ~ 0

Failure causes
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The process of developing the feedback statements is to create a statement for each question/failure 

cause cell that includes a non-zero value in the “CS─FC” matrix. 

 

To illustrate the development process, I provide here one example for the feedback statements that 

I created from the second row of the CS─FC matrix (Q2). Q2 measures proactivity by asking 

“During the past week, how many times did you attempt to get involved with a project-related task 

that was outside your immediate responsibility?”. Q2 has a positive correlation with FC2: Used 

inadequate justification and FC6: Inadequately communicated. The interpretation of the positive 

correlation means that the more times students attempt to get involved with tasks outside their 

responsibilities, we should expect more occurrences of poor communication or inadequate 

justification of a decision.  

 

The recommendation in this case, starts by putting the student in the situation addressed by Q2, 

and then makes a suggestion to avoid FC2 and FC6: “When you offer to get involved or help with 

a task that another team member works on: make sure that you communicate well about the level 

of your involvement, specify exactly what is expected of you, and let them know of your thought 

process for any decisions you make.” 

 

The rule associated with this recommendation was “Provide recommendation if average team 

response to Q2 is more than 2 times”. Q2 is an integer and the reasoning behind this rule was to 

try and help teams where their members become involved outside their tasks, making them 

vulnerable to FC2 and FC6. The remaining rules followed a similar thought process: if the 

correlation was positive (i.e., as the crowd signal increases, the failure cause likelihood increases), 

then the rule is given once the crowd signal exceeds a value. If the correlation was negative (i.e., 

as the crowd signal increases, the failure cause likelihood decreases), then the rule was given once 

the crowd signal drops below a value. The rule threshold values reflect the median possible 

response where possible (e.g., for Likert-scale answers that value is 2.5). For the categorical 

answers, the values reflect a majority response and depend on which answer showed the correlation 

(e.g., if there is a negative correlation associated with “Moderate and low creativity” in Q9, then 

the threshold value is “High creativity”). 
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I developed all the feedback statements in a similar manner (Table 29). In some cases, even if there 

is a correlation, a feedback statement is not possible, either because of the question itself or because 

the student does not have control over that measure in the project timeframe. For example, Q1 

measures how many previous projects the student has been a part of, which is not possible for them 

to change during the progress of a project, and so Q1 did not generate any feedback statements 

(marked as N/A). 
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Table 29: The 35 feedback statements and associated rules for each existing correlation in the crowd 

signal–failure cause correlation matrix.  

Correlation 

Matrix Cell 
 

Feedback Statement Rule 

Q1–FC6/Q1–

FC7 
 N/A N/A 

Q2–FC2/Q2–

FC6 
R1 

When you offer to get involved or help with a task that another team 

member works on: make sure that you communicate well about the level 

of your involvement, specify exactly what is expected of you, and let them 

know of your though process for any decisions you make. 

Average team 

response ≥ 2 

Q3–FC7/Q3–

FC8 
R2 

When you find yourself unable to focus and you have upcoming testing or 

important updates that are related to the safety of the project, ask your 

teammates for assistance to minimize mistakes. 

Average team 

response ≥ 2.5 

Q4–FC1/Q4–

FC7 
R3 

When you are in the design or testing phase of a component or part, discuss 

with your teammates to confirm you have thought of all potential features 

or requirements that are crucial, especially if the component is to be 

integrated with other systems. 

Average team 

response ≤ 2.5 

Q5–FC6 R4 
When you made a lot of progress in a week, make sure everyone is aware 

about the accomplishments and the completed work.  

Average team 

response ≥ 2.5 

Q6–FC1 R5 

Try to have some discussion about what your teammates worked and 

achieved every week, as this will help you understand the whole system 

better and reduce the chance of missing a key design aspect. 

Average team 

response ≤ 50% 

Q7  N/A N/A 

Q8  N/A N/A 

Q9–FC6 R6 

If you find your team proposing a lot of ideas about a project design, make 

an attempt to communicate well and think through these options with each 

other instead of simply listing many of them. 

Majority 

response = High 

creativity 

Q10–

FC5/Q10–

FC10 

R7 

When you have to do mostly independent work during the week, keep good 

documentation about what you are doing so it is clear to the entire team 

how all the resulting work is to be integrated. 

Average team 

response ≥ 50% 

Q11–FC5 R8 
In the beginning of the week, have a discussion with all team members 

present and clarify exactly what the objectives are for the week.  

Average team 

response ≤ 2.5 

Q12–FC2 R9 

If you find that you are not working well with each other, start by 

discussing about the reasoning behind all your technical work, which may 

allow you to jumpstart your teamwork. 

Average team 

response ≥ 2.5 
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Table 29 continued 

Correlation 

Matrix Cell 
 

Feedback Statement Rule 

Q13–FC8 R10 

Ask your instructor for any necessary resources you need to ensure the 

safety of the project, such as to come up with a mitigation measure or a 

redundant component. 

Average team 

response ≤ 2.5 

Q14  N/A N/A 

Q15–FC5 R11 

When there is lack of arguments in the team, make sure you are not 

becoming complacent and put effort into properly recording everything you 

do as a team.  

Average team 

response ≤ 2.5 

Q16–FC6 R12 
Try to spend some time every week in idea-generation sessions where 

everyone proposes a new idea about how to improve your project design. 

Average team 

response ≤ 2.5 

Q16–FC7 R13 

While discussing new ideas or decisions for your project with your team, it 

is important that you are spending enough time and effort on project-critical 

activities such as testing. 

Average team 

response ≥ 2.5 

Q17–FC6 R14 
If you have many obligations in a given week, communicate those with 

your team so everyone knows when you will not be available or too busy. 

Average team 

response ≥ 2.5 

Q18  N/A N/A 

Q19–FC7 R15 

Make an effort to get to know your teammates, especially those that you 

frequently have to collaborate with on time-consuming processes such as 

testing. 

Average team 

response ≤ 2.5 

Q20–FC5 R16 

When you spend money on the project, make sure you properly record 

everything related to the purchase. 

Majority 

response = On 

budget 

Q21–

FC2/Q21–

FC7/ 

Q21–FC8 

R17 

Make sure you are not rushing with your reasoning behind design 

decisions, safety decisions, or testing.  

Majority 

response = 

Ahead of 

schedule 

Q22–FC5 R18 

If you think you are not satisfying technical requirements well, try to better 

record what you are doing and how it relates to the technical objectives. 

Majority 

response = Less 

requirements 

satisfied 

Q23  N/A N/A 

Q24  N/A N/A 

Q25  N/A N/A 
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Table 29 continued 

Correlation 

Matrix Cell 
 

Feedback Statement Rule 

Q26–

FC1/Q26–FC6 
R19 

When you solve a problem that came up, discuss as a team how your 

solution affects the rest of the design. 

Majority 

response = Yes 

Q27–FC8 R20 

When you discuss how to prevent new risks in your project, do so in a 

structured and thorough way to properly account for all the things that 

could go wrong. 

Majority 

response = Yes 

Q28–FC1 R21 

If a previous problem you had fixed is recurring, think about how other 

parts of the design have an impact on the problem and find a solution that 

addresses the root causes. 

Majority 

response = Yes 

Q29–FC1 R22 
Come up with a thorough way for the team to report updates or changes for 

your designs, and do so every time, even if it seems inconvenient. 

Majority 

response = No 

Q30–FC7 R23 
When there are a lot of outputs for the project in a week, put extra effort to 

thoroughly test all necessary components related to these new outputs. 

Average team 

response ≥ 2.5 

Q31  N/A N/A 

Q32  N/A N/A 

Q33  N/A N/A 

Q34–FC5 R24 

Consider allocating more time each week to document your project work 

and to think about how you can manage risk (technical, budget, or 

schedule) for your project. 

Average team 

response ≤ 50% 

Q35–

FC2/Q35–

FC4/Q35–

FC6//Q35–

FC8 

R25 

During unscheduled team meetings retain your formal processes when it 

comes to communicating with everyone and justifying on your actions. 

Working outside class time is a good opportunity to get involved with tasks 

that you are less familiar with. 

Average team 

response ≥ 2 

Q36–FC1 R26 
Think about whether you need to purchase any tools or equipment that 

could facilitate your design. 

Average team 

response = 0 

Q36–FC5 R27 
When purchasing new tools or equipment, keep detailed records about 

where and how the purchased items are going to be used in the project. 

Average team 

response ≥ 2 

Q37  N/A N/A 

Q38  N/A N/A 
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Table 29 continued 

Correlation 

Matrix Cell 
 

Feedback Statement Rule 

Q39–

FC5/Q39-FC8 
R28 

When considering risks to your project, make sure that you are taking into 

account implications that are of technical nature (such as a component that 

does not follow your requirements and could disrupt the system).  

Majority 

response = 

Budget 

Q40  N/A N/A 

Q41–

FC2/Q41–

FC5/Q41-FC8 

R29 

Make sure you discuss as a team and in detail the implications your design 

decisions have, especially when it comes to safety features, and make sure 

everyone understands the justification behind them. 

Majority 

response = Yes 

Q42–

FC1/Q42–

FC6/Q42–FC8 

R30 

When having arguments about a topic related to the project with the team, 

focus on the more complex aspects that benefit from multiple perspectives 

such as identifying the project risks. 

Majority 

response = Yes 

Q43  N/A N/A 

Q44  N/A N/A 

Q45–FC2 R31 

When thinking about the proper design for a component, talk to other teams 

that may have dealt with a similar problem to get ideas or learn the risks of 

using such a component. 

Majority 

response = No 

Q46–FC4 R32 

Your involvement with this project is an opportunity to learn about many 

new topics, so make an effort to get involved with tasks you may not be 

familiar with. 

Majority 

response = No 

Q47–

FC2/Q47–FC6 
R33 

Make a conscious effort to discuss with your team as a group why you are 

doing certain things, even if they appear trivial. 

Majority 

response = No 

Q48–

FC5/Q48–

FC10 

R34 

When making decisions on how to proceed with your project, do not 

reinvent the wheel if not necessary, but use readily accessible solutions. 

Pre-existing solutions can be easier for you to record, and have likely been 

evaluated previously as to how they impact your system. 

Majority 

response = 

Think through 

Q49–

FC5/Q49–FC8 
R35 

Once you have some experience with proper reporting of your progress and 

thinking about risks for your projects, you may find yourself skipping steps 

during these processes due to overconfidence. Make a conscious effort to 

always have complete reports and risk analyses as they often can lead to 

problems later, if they are not done properly. 

Average team 

response ≥ 50% 

 

Table 30 shows a summary of the feedback statements provided to the project teams during 

experiment II. 
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Table 30: Summary of feedback statements provided to each of the project teams during experiment II, for all weeks. Each team received three 

feedback statements from a pool of recommendations dependent on the treatment group they were a part of. The statements were repeated if the 

team did not provide new answers for a given week. 

  

Project Treatment Grp Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9

Project 1 TF R11/R22/R25 R1/R13/R29 R1/R13/R29 R19/R25/R33 R19/R25/R33 R19/R25/R33 R19/R25/R33 R19/R25/R33

Project 2 GF R14/R24/R27 R17/R24/R31 R16/R24/R31 R7/R12/R17 R15/R25/R27 R5/R17/R21 R8/R11/R17 R8/R11/R17

Project 3 TF R7/R9/R13 R9/R16/R25 R4/R14/R25 R15/R25/R35 R9/R14/R27 R2/R7/R14 R10/R13/R19 R10/R13/R19

Project 4 GF R6/R19/R27 R6/R19/R32 R6/R19/R32 R6/R13/R27 R6/R13/R27 R1/R5/R10 R3/R8/R12 R3/R8/R12

Project 5 GF R8/R18/R22 R8/R22/R29 R5/R11/R21 R7/R21/R27 R7/R21/R27 R13/R21/R25 R13/R21/R25 R13/R21/R25

Project 6 TF R1/R20/R28 R5/R14/R28 R5/R14/R28 R2/R13/R29 R11/R22/R25 R7/R16/R19 R7/R16/R19 R7/R16/R19

Project 7 GF R5/R19/R24 R5/R19/R24 R5/R19/R24 R21/R32/R33 R21/R32/R33 R10/R17/R20 R12/R24/R27 R12/R24/R27

Project 8 TF R9/R23/R35 R6/R14/R33 R6/R14/R33 R11/R16/R23 R11/R16/R23 R9/R23/R30 R13/R16/R26 R13/R16/R26

Project 9 GF R13/R18/R28 R12/R18/R27 R12/R18/R27 R12/R18/R27 R3/R15/R28 R3/R15/R28 R5/R19/27 R10/R16/R25

Project 10 TF R11/R19/R24 R7/R19/R28 R15/R23/R32 R15/R23/R32 R22/R29/R30 R13/R19/R24 R13/R19/R24 R13/R19/R24

Project 11 TF R9/R16/R35 R16/R25/R30 R8/R9/R16 R14/R24/R32 R14/R24/R32 R14/R21/R30 R2/R9/R21 R7/R20/R35

Project 12 GF R3/R21/R32 R10/R17/R28 R14/R30/R34 R6/R15/R17 R15/R17/R28 R3/R18/R28 R12/R19/R21 R5/R10/R22

Project 13 GF R20/R28/R34 R20/R28/R34 R13/R18/R25 R13/R18/R25 R10/R25/R34 R14/R15/R24 R12/R24/R26 R12/R24/R26

Project 14 TF R13/R23/R31 R13/R23/R31 R13/R23/R31 R4/R16/R31 R4/R16/R31 R14/R23/R27 R14/R23/R27 R14/R23/R27
Aerospace #3

Aerospace #2

Aerospace #1
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5.5 Feedback Effectiveness Evaluation 

As described earlier, I assigned the student teams to two treatment groups based on the feedback 

they received: targeted feedback (“TF”) or non-targeted feedback (“NTF”). I conducted two types 

of analyses to test whether the targeted feedback was helpful at reducing failures in student projects: 

two quantitative proportions statistical tests and a qualitative evaluation from student responses. I 

conducted the statistical tests using the project failure rates as reported by the instructors at the end 

of the semester. I included the qualitative measures as three separate questions in the student survey 

during Experiment II.  

 

For the quantitative tests, I used two Barnard’s exact tests, similarly to Section 3.1. For the first 

test, I considered the three separate tests for each of the failure metrics (budget, schedule, 

requirements) separately. In this first case, each statistical test answered whether the feedback 

improved the student projects in terms of a specific failure metric. For the second test, I assumed 

that the failure metrics are independent and can be considered together as “failure metrics”. The 

assumption is common in literature (e.g., see Nan and Harter, 2009) as those metrics are considered 

independent measures of project success. In this second case, the statistical test answered whether 

the targeted feedback improved the student projects in terms of any failure metric. The motivation 

behind running both tests was because of the small sample of projects potentially limiting the 

power of the separate tests. For the budget test only, the instructor of the “Aerospace #1” course 

was not able not provide any budget data due to the nature of the projects. Table 31 shows the 

instructor project evaluations at the end of the semester for each project. 
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Table 31: Instructor evaluations at the end of semester during Experiment II. Instructors provided failure 

metrics for the 14 student projects. The project numbers do not correspond to the actual project team names 

for confidentiality purposes. One course was not viable for budget evaluation. “1” corresponds to failure 

and “0” to success. 

Course 
Project 

# 
Treatment 

Group 
Budget 
Failure 

Schedule Failure Requirements 
Failure 

Aerospace #1 

1 TF ─ 1 0 

2 NTF ─ 1 0 

3 TF ─ 0 0 

4 NTF ─ 1 0 

5 NTF ─ 0 1 

6 TF ─ 1 1 

7 NTF ─ 1 0 

8 TF ─ 1 0 

Aerospace #2 

9 NTF 0 1 0 

10 TF 0 0 0 

11 TF 1 1 1 

12 NTF 0 1 0 

Aerospace #3 

13 NTF 0 0 0 

14 TF 1 0 0 
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Using the instructors’ assessment of each project at the end of the semester (Table 31), I computed 

the sample estimate of failure proportion for each metric and group as follows: 

𝐹̂(𝑇𝐹),𝑗 =
∑ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑖,𝑘
𝑛1
𝑘=1

𝑛1
 (Equation 19) 

 

Where j is one of the three failure metrics, 𝑛1 is the number of student projects in the targeted 

feedback group, and 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑖,𝑘 is a binary variable that is equal to 1 if project team k failed in 

terms of metric j at the end of the semester or 0 if not.  

 

For the non-targeted feedback group, the sample estimate of failure proportion is defined similarly: 

𝐹̂(𝑁𝑇𝐹),𝑗 =
∑ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑖,𝑘
𝑛1
𝑘=1

𝑛1
 (Equation 20) 

 

Where j is one of the three failure metrics, 𝑛2 is the number of student projects in the non-targeted 

feedback group, and 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑖,𝑘 is a binary variable that is equal to 1 if project team k failed in 

terms of metric j at the end of the semester or 0 if not.  

 

Based on the previous definitions and data, the estimated failure proportions are: 

Table 32: Estimated sample failure proportions for budget, schedule, and requirements based on the 

instructor evaluation at the end of Experiment II. 

Treatment 
Group 

Budget Schedule Requirements Combined failure metrics 

TF 𝐹̂(𝑇𝐹),1 = 2/3 𝐹̂(𝑇𝐹),2 = 4/7 𝐹̂(𝑇𝐹),3 = 2/7 𝐹̂(𝑇𝐹),𝑐𝑜𝑚𝑏 = 8/17 

NTF 𝐹̂(𝑁𝑇𝐹),1 = 0/3 𝐹̂(𝑁𝑇𝐹),2 = 5/7 𝐹̂(𝑁𝑇𝐹),3 = 1/7 𝐹̂(𝑁𝑇𝐹),𝑐𝑜𝑚𝑏 = 6/17 

 

Based on these results, the targeted feedback teams appear to have performed worse in terms of 

budget and requirements compared to the non-targeted feedback teams. For the schedule metric, 

targeted feedback teams did slightly better (1 more successful project compared to non-targeted 

feedback teams). There are at least two possible reasons for these observations: 
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1. The students of targeted feedback teams may not have known how to turn the feedback 

into an action that would positively impact their project (e.g., for R1, they may not have 

known how to communicate better). 

2. Although the non-targeted feedback statements did not necessarily address a team’s weak 

areas, they may nevertheless have been more effective because they addressed a wider 

range of potential failure causes, resulting in better team overall performance. 

 

To statistically quantify the results, I used Barnard’s exact test with the null hypothesis that the 

failure rate of groups that received targeted feedback in terms of metric j is equal to or more than 

the failure rate of groups that received non-targeted feedback in terms of metric j. I selected a 

significance level α equal to 0.05 and I repeated the test for all three independent metrics. 

𝐻0: 𝐹𝑇𝐹,𝑗 ≥ 𝐹𝑁𝑇𝐹,𝑗 

𝐻𝑎: 𝐹𝑇𝐹,𝑗 < 𝐹𝑁𝑇𝐹,𝑗 
(Equation 21) 

 

 

Overall, the failure rates show that the targeted feedback does not reduce the failure occurrences 

in terms of any metrics, compared to the non-targeted feedback. 

 

Table 33: Barnard’s statistical test results for the targeted feedback. The statistical test suggests that the 

targeted feedback statements do not reduce the occurrence of failures in student projects, compared to the 

non-targeted feedback statements. 

Failure metric 𝑭̂(𝑻𝑭),𝒋 𝑭̂(𝑵𝑻𝑭),𝒋 
Barnard’s test  

one-tailed 

p-value 

H0 rejected? 

Budget 2/3 0/3 0.958367742 No 

Schedule 4/7 5/7 0.288499581 No 

Requirements 2/7 1/7 0.742586144 No 

Combined 8/17 6/17 0.757077341 No 

 

Apart from the statistical test, I also added three questions to the student survey, to gauge: whether 

the students actually change their behavior due to the feedback, how they receive it, and whether 

they think it actually helps them. The added questions are shown below (Table 34).  
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Table 34: The three additional questions that were part of the student survey during Experiment II to 

gauge how they received the feedback. 

Feedback Evaluation 

F1 Did you do anything differently during the past week because of the feedback we gave you for your 

project? (Yes/No) 

F2 How helpful do you think the feedback was? (Likert scale answer: Not helpful at all (1) to Very helpful 

(5)) 

F3 How likely do you think it is for the feedback to improve your project’s performance in any way? 

(0─25%, 25─50%, 50─75%, 75─100%) 

 

Students in the teams that received targeted feedback appear to have responded better to the 

feedback by learning something and changing how they go about their project. 68% of the 

responses from the targeted feedback teams show that students did something differently, 

compared to 34.8% from the teams that received non-targeted feedback (Figure 16). Regarding the 

question on how helpful the students thought the statements were to them, teams that received non-

targeted feedback had normally distributed responses to the question, with the majority (39.1%) 

rating the feedback as a 3 on a scale of 1–5. On the contrary, teams that received targeted feedback 

have skewed responses towards higher ratings, with “very helpful” being the most frequent answer 

(30%) (Figure 17). In the last question, both treatment groups show similar number of responses 

in the categories covering 25-75% of positive impact. Most of the students saying the feedback is 

“>75%” likely to positively impact their project performance come from targeted feedback group 

responses.  

 

Overall, the evaluations from the students indicate that the targeted feedback is better received by 

the students compared to non-targeted feedback: they are more likely to change their behavior, 

they find it more helpful, and they believe it can help them with their project performance. 
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Figure 16: 68% of the responses (34 out of 50) from teams that received targeted feedback show that the 

students changed their behavior, compared to 34.8% of the responses (16 out of 46) from teams that 

received the non-targeted feedback. 

 

 

Figure 17: Teams that received non-targeted feedback rated, most of the time, the feedback statements as 

moderately helpful, with more responses (15) scoring it as 1 or 2 than 4 or 5 (13). Responses from teams 

that received targeted feedback are towards higher ratings, with most responses  (15 out of 50) rating the 

statements as very helpful. 
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Figure 18: Both treatment groups thought the feedback would have some positive impact on their project, 

possibly due to the positive nature of the statements. The responses from the targeted feedback teams had 

a larger representation in the >75% chance of positive impact answer and smaller representation in the 

<25% positive impact answer, compared to the non-targeted treatment group. The “TF” group had 4 more 

answers than the “NTF” group, which contributes to the observation.  

 

Synthesizing the results between the quantitative and qualitative comparison of the feedback, I 

found that: 

1. Students who received the targeted feedback statements said they were more likely to 

change their behavior. However, the overall project success rates did not improve, 

suggesting that the students either did not make any changes or whatever changes they 

made were ineffective, perhaps because they did not know how to change their behavior 

appropriately. 

2. Students said the targeted feedback was more helpful than the non-targeted feedback, but 

the project success rates indicate that they were only able to improve in terms of the 

schedule metric. 

3. More students in the targeted feedback group said that the feedback statements would have 

a positive impact on their projects, but end-of-semester success rates do not agree with 

these responses. It is possible that the feedback contributes positively to the student projects, 

but is not enough to have an impact on project success. 
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 COMPARISON OF CROWD SIGNALS BETWEEN EXPERIMENTS I 

AND II 

This chapter shows some descriptive statistics for the student responses to the questions that collect 

the crowd signals, and compares the student answers between Experiment I and II. The main 

difference between the two experiments was the presence of feedback (Experiment II) or not 

(Experiment I). Therefore, I wanted to further investigate any differences in the student responses 

due to the presence of feedback. The second experiment also included fewer questions because 

some of the original crowd signals were removed during the model reduction process (see Section 

4.3). 

 

Figures 19 to 29 show descriptive statistics for the responses to the Performance questions (Q1 to 

Q8). 

  

The majority of the 74 students who participated in the first experiment had previous experience 

ranging from 1–4 engineering projects before joining the courses from which I collected data 

(Figure 19). Experiences include projects from other coursework, internships, and extracurricular 

activities. The projects I monitored come from senior-level courses, and so it is expected that some 

students will have more experience than others. Q1 was not included in Experiment II. 

 

Figure 19: Experience level of the N = 74 students that have participated in experiment I. I measured 

experience based on the number of engineering projects the students have been part of in the past. Most 

students had previous experience from 1–4 projects. 
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I measured proactivity by asking how many times the students got involved with other tasks 

outside their immediate responsibility (Q2) and present here the averaged the responses per 

individual student. For Experiment I, 34 students attempted to get involved with other tasks a 

maximum of once in a given week, and 27 of them attempted to get involved twice (Figure 20). 

Very few made more than three attempts. There is a similar result for the proactivity measure for 

Experiment II, however a larger percentage of students attempted to get involved between 1 to 2 

times per week (Figure 21). Getting involved 1 time per week may appear quite low, but 

considering that students have their own project tasks to complete and they only meet for a total 

of about 2.5 hours of laboratory work every week, there may not be too many opportunities to get 

involved with tasks outside their immediate responsibilities.  

 

 

Figure 20: Most of the N = 74 students that 

participated in Experiment I, got involved, on 

average, at most one time with tasks outside their 

immediate responsibilities. 

Figure 21: Most of the N = 53 students that 

participated in Experiment II, got involved, on 

average, between 1 to 2 times with tasks outside 

their immediate responsibilities. 

 

Figure 22Figures 22 to 24 compare the responses for question Q3 (stress level), Q4 (coordination), 

and Q5 (team impact) between the two experiments. For these statistics, because the answers can 

change weekly based on the students’ and project activities, I did not average by individual student. 

Instead, I collectively averaged all the responses by the total number of observations (N = 304 for 

Experiment I and N = 132 for Experiment II) to find the answers that are most frequent.  

 



 

 

 

For Q3, the majority of responses showed that students were sometimes unable to focus on their 

projects for both experiments. 40% of students in Experiment II said they “rarely” had problems 

focusing, compared to 34% of students in Experiment II.   

 

For Q4, most responses showed that students interacted at least sometimes with their team when 

working on separate tasks, which suggests that there was some level of coordination between them. 

Only 1 response in Experiment II indicated no interacted with the team. A larger percentage of 

responses in Experiment II showed that students “very often” interacted with their team members 

when working separately (51%, compared to 28% Experiment I), possibly due to the COVID-19 

restrictions, forcing students to meet virtually a lot more frequent to make progress even when 

working in separate physical locations. 

 

Most responses to Q5 showed that students made meaningful progress towards their project goals 

during a typical week. The teams met two or three times during the week and had to make progress 

every time to meet their milestones. The majority of the students said they very often made a 

meaningful progress (44% for Experiment II compared to 28% for Experiment I). The responses 

to Q4 and Q5 indicate that feedback helps students in interacting with each other and making 

meaningful progress more often. 

 

 

Figure 22: Statistics of the student responses to Q3. The majority of responses showed that students were 

sometimes unable to focus on their projects.  



 

 

 

 

Figure 23: Statistics of the student responses to Q4. For both experiments most showed that there was some 

level of coordination even when working on separate tasks, but students in Experiment II interacted more 

often with each other. 

 

 

 

 

Figure 24: Statistics of the student responses to Q5. For both experiments most responses showed there 

was some level of meaningful progress during a typical week, but students in Experiment II made such 

progress more frequently. 

 



 

 

 

 

Figure 25 and Figure 26 show what percentage of their team’s activities the students knew. During 

Experiment I, most students knew what at least half of their team members were working on. 

Considering that most teams include 3–5 people with overlapping tasks, this percentage indicates 

that the students were mostly familiar with their team members’ work, excluding one or two people, 

who may be the ones with separate and independent responsibilities (e.g., manufacturing a 

component). Experiment II responses indicated that students knew less about their team members’ 

tasks, compared to Experiment I. Safety measures imposed due to the COVID-19 pandemic may 

have been responsible for that, given students had to follow capacity limits in their workspaces so 

they could not work in the same room as much. 

 

 

Figure 25: Of the N = 74 students who participated 

in Experiment I, most knew at least what half of 

their team members were working on. 

 

 

Figure 26: During experiment II, students did 

not know as much about their team members’ 

activities as during Experiment I. Hybrid 

learning and safety measures due to the 

COVID-19 pandemic may be responsible for 

that, given students have to follow capacity 

limits in their workspaces so they could not 

work in the same room as much. 
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Q7 asked the students to rate how much freedom the instructors gave them when completing 

project tasks. The most frequent response during both experiments was “much freedom” (35.85% 

during experiment I and 43.93% for experiment II (Figure 27)).  

 

 

Figure 27: Statistics of the responses to Q7. Only two responses during Experiment II indicated students 

had no freedom at all when completing a project task. More than 75% of responses showed that the 

instructors for the courses in both experiments gave students at least moderate freedom on how to complete 

their project objectives. 

 

 

Figure 28 and Figure 29 show for each student, the average chance of success they thought they 

had if there were no instructor oversight for the remainder of the semester. If a student gave a high 

chance to their team, that would be one indication of a team member who had confidence in the 

team’s capabilities to work autonomously. For Experiment I, students gave varying chances of 

success if their teams would have to complete the projects without supervision for the remaining 

of the semester. For experiment II, responses appear to collect around confident students (>70% 

chance of success without instructor) and less confident students (30–60% chance of success 

without instructor). 
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Figure 28: During Experiment I, students gave 

varying chances of success if their teams would 

have to complete the projects without supervision 

for the remaining of the semester. The responses to 

this question likely depend on the project phase, the 

student’s confidence in their own and their team’s 

capabilities, and overall knowledge about the 

project’s next steps. 

Figure 29: During Experiment II, the majority 

of the responses from students appear to get 

grouped around two options: 1) students that 

think they need the instructor supervision and 

would only have 30–60% of success without it, 

and 2) students that think they could be 

successful (>70%) without the instructor.   

 

For Q9 (“During the past week, which of the following attributes/adjectives relating to creativity 

do you feel apply to your team’s project work?”), I do not show any statistics as the responses 

include a number of adjectives that are associated with creative or uncreative designs from 

literature. I used the information when building the predictive models to classify creativity, which 

is one of the predictors, between three levels (low, medium, or high). I describe how I came up 

with the coding scheme in Table 9 (Chapter 3.2). 
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Figures 30 to 35 show descriptive statistics for the responses to the CSF questions (Q10 to Q14).  

For Experiment I and II, the percentage of tasks that can be performed independently of the rest of 

the project, indicating the level of modularity in the design of the project, shows a uniform profile 

(Figure 30 and Figure 31). The number of these modular tasks depends on the project phase and 

the current technical requirements that change week to week.  

 

 

 

 

Figure 30: The percentage of tasks that can be 

performed independently of the rest of the project 

resembles a uniform profile for Experiment I. The 

degree of modularity in a project is likely dependent 

on project phase and current requirements that 

continuously change and get updated throughout 

the semester. 

Figure 31: Similar to Experiment I, the 

percentage of tasks that can be performed 

independently of the rest of the project 

resembles a uniform profile for Experiment II.
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Most of the responses (more than 70% for Experiment I, more than 87% for Experiment II) show 

that for the majority of projects, the objectives were at least moderately clear, which suggests that 

most of the time the students knew what the next steps were for the project (Figure 32). The 

instructors who managed the projects likely told the students exactly what the needs were for a 

specific task, which made the objectives quite clear.  

 

 

 

Figure 32: Statistics of the responses to Q11. More than 75% responses indicate that the project objectives 

were at least moderately clear for both experiments. The objectives were likely set by the instructor, who 

directly asked for a task to be completed and gave specific milestones for the students. Also, some teams 

may have set their own objectives, since they may have some freedom on how to complete the project tasks. 
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Responses to Q12 showed that the majority of students would definitely continue to work on the 

project with a completely new team (41% for Experiment I and 36% for Experiment II) if the rest 

of their team quit (Figure 33). Commitment to project success may be related to the quality of the 

courses and the learning opportunity during these projects.  

 

 

 

 

 

Figure 33: Statistics of the responses to Q12. More than 80% of responses indicate that students would at 

least consider working on the project with an entirely new team for both experiments. 12% of responses for 

Experiment II show that students would definitely abandon the project (compared to only 5% in Experiment 

I). The results are likely related to the quality of the courses, the value the students saw in participating, 

and how long they were part of the project. 
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For both experiments, more than 85% of responses indicated that students had at least moderate 

availability of resources to use during a given week (Figure 34). Such resources are often software 

for designing parts before manufacturing or running simulations, lab equipment and tools, and 

funds. Very few responses (only 1%) point to very low availability of resources, suggesting that 

students generally had access to the resources they needed to succeed.  

 

 

 

 

Figure 34: Statistics of the responses to Q13. More than 85% of responses indicate at least moderate 

availability of resources to use in a given week. The quality of the laboratories and campus resources are 

likely related to the response profile for this question. Very few responses communicated very low 

availability, perhaps due to a specific need or request for the project that was not met. 
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Lastly, 41.1% said that they noticed lack of communication with their team while working on their 

project during Experiment I (Figure 35). 6.9% of responses show that students always noticed a 

silent room, which can be concerning as it may be a sign of poor team cohesion and correlate with 

failure, but may also happen if students were working on their own. Q14 was not included in 

Experiment II. 

 

 

 

 

Figure 35: Statistics of the responses to Q14 (averaged by all N = 304 responses) during Experiment I. 

41.1% of responses indicate that sometimes there is lack of communication while students work together. 

6.9% said that they always noticed a silent room, which may be a sign of poor team cohesion. Poor 

communication is a frequent problem amongst teams in engineering projects, and student projects also 

confirm that. 
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Figures 36 to 40 summarize the responses to the Individual Personality questions (Q15 to Q19) 

for the two experiments.  

 

Responses show that the majority of students rarely get frustrated with each other and their team 

(35.5% for Experiment I, 40.7% for Experiment II), closely followed by getting frustrated 

sometimes (30.2% for Experiment I, 25.7% for Experiment). 2–3% of responses come from 

students who said they were always frustrated during a particular week, which perhaps happens 

during the duration of a project because of disagreements, failure, or poor teamwork.  

 

 

Figure 36: Statistics of the responses to Q15. The majority of students rarely get frustrated with each 

other and their team. 

 

  



 

 

114 

For Experiment I, 44.7% of responses show occasions where students were open to new ideas, 

either by suggesting them or by agreeing to someone else’s. The response to the question (Q16) 

may change depending on the project activities for a given week. For example, if there were 

mundane tasks to complete then perhaps students did not discuss new ideas, but rather completed 

the work. For Experiment II, Q16 showed a more balanced profile of responses compared to 

Experiment I (each of the “rarely”, “sometimes”, “very often” options received close to 25% of 

responses). 

 

 

 

Figure 37: Statistics of the responses to Q16. For Experiment I, the majority of responses reflected that 

students “sometimes” come up with or agree to new ideas for the projects. For Experiment II, the responses 

showed a more balanced profile compared to Experiment I. 
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The majority of responses for Q17 (62% for Experiment I, 42% for Experiment II) showed that 

students would rarely or never skip or cancel an obligation or task in a given week, while some 

indicated they always did (9.8% for Experiment I, 1.5% for Experiment II). There are some 

circumstances that would force students to skip on all required activities, perhaps due to personal 

matters, and the frequency of these occurrences may be correlated with how well the team performs 

without the individual. During Experiment II, it is likely students would overall need to skip more 

activities due to reasons external to the team. 

 

 

Figure 38: Statistics of the responses to Q17. The majority of students would rarely or never skip or cancel 

an obligation or task in a given week. 
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For Q18, 14.8% of responses for Experiment I and 30% for Experiment II show that students never 

felt that they were the center of attention, while 11.1% for Experiment I and 2% for Experiment 

said they always did. The responses to this question likely have to do with the personality of the 

student, and whether their task or responsibility was the focus in a given week. Also, the COVID-

19 restrictions during Experiment II perhaps have an impact on how the teams worked together, 

not allowing perhaps much room for one member to become the center of attention. 

 

 

Figure 39: Statistics of the responses to Q18. A relatively small number of responses showed a student to 

always be the center of attention. 
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For Q19, 19.1% of responses in Experiment I and 13% in Experiment II that students never had 

one of their team members share important things about their life with them, while only 6.2% for 

Experiment I and 2% for Experiment II said they always did. Students sharing details about their 

lives may be an indication of a friendly working environment. 

 

 

 

 

Figure 40: Statistics of the responses to Q19. 19.1% of responses in Experiment I and 13% in Experiment 

II that students never had one of their team members share important things about their life with them, 

while only 6.2% for Experiment I and 2% for Experiment II said they always did. 
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Figures 41 and 42 show histograms of student confidence in their spending estimates during 

Experiments I and II, respectively. Very few students admitted low confidence in their spending 

estimate. For Experiment I, most responses concentrated around 40−50% and 70−100%, perhaps 

representing students who were moderately confident and very confident respectively. For 

Experiment II, the confidence profile appears to be more uniform in the 40−90% range with a large 

increase in the 90−100% range indicating absolute confidence.  

 

 
  

Figure 41: Student confidence in their spending 

estimate for Experiment I. Most responses 

concentrated around 40−50% and 70−100%. 

Figure 42: Student confidence in their spending 

estimate for Experiment II. In 38 instances, 

students gave a spending estimate with 

absolute confidence.
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Figures 43 to 46 show statistics for the responses to the Team Actions and Archetypes questions 

(Q26–29).  

 

59.2% of students in Experiment I said problems were handled properly by their teams, with that 

number increasing to 71.9% in Experiment II.  

 

 

Figure 43: Statistics of the responses to Q26. The majority of students said their teams handled problems 

appropriately. 
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For Q27, there was a very close split (43.1% and 48%) during Experiment I between teams that 

considered new risks with new project updates and teams that did not, respectively. The results 

were quite different for Experiment II: 65.9% of students said they considered new potential risks 

in their projects. It is possible that the feedback statements, a lot of which guide students to avoid 

the failure causes, may have contributed to this statistic.  

 

 

 

Figure 44: Statistics of the responses to Q27. Students during Experiment II did better risk management 

than students during Experiment I, by considering new risks to project updates. The feedback statements 

during Experiment II, a lot of which guide students to avoid the failure causes, may have contributed to this 

result. 

 

During Experiment II, 60% of responses indicated that there were no issues with resurfacing 

problems, compared to 50% for Experiment I.  
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Figure 45: Statistics of the responses to Q28. At least 35% of responses indicated that students were limited 

by processes or rules outside their control.  

 

Nearly 50% of students said they were frustrated by bureaucracy during experiment I, compared 

to 34% during Experiment II.  

 

 

Figure 46: Statistics of the responses to Q29. During Experiment I, students were frustrated more frequently 

due to bureaucracy or rules. 
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Figures 47 to 57 show descriptive statistics for the responses to the Indirect Signals questions (Q30 

to Q38).  

 

40% of responses in experiment I and 45% in Experiment II show that students did not notice any 

change in the number of project outputs they produced. It is unsurprising that “no change” is the 

majority answer, given that most of the time student teams do not have vastly different number of 

outputs unless close to a major milestone or mishap.   

 

 

 

Figure 47: Statistics of the responses to Q30. Most teams likely went through all three options (decrease, 

no change, increase) related to the number of outputs they produced, depending on project phase. The 

responses show some balanced split between some increase (23% for Experiment I, 25% for Experiment 

II) and some decrease (14% for Experiment I and 18% for Experiment II). 
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Some of the indirect signals were only included in experiment I to capture some of the habits of 

the students in their daily lives, which may be related to how they perform during class and team 

meeting times. Most responses (85%) show students spent between 1 to 3 hours on social media 

every day, while the remaining 15% spent more than 3 hours (Figure 48). Most responses (69%) 

came from students who primarily ate home-prepared food, while the rest ate fast food, at Purdue’s 

dining halls, or at restaurants (Figure 49). Most responses (55%) show students ate breakfast the 

day they worked on their projects and 27% did not (Figure 50). 

 

 

 

 

Figure 48: Statistics of the responses to Q31 during Experiment I. 85% of responses came from students 

who spent between 1 to 3 hours on social media, while the remaining 15% spent more than 3 hours. 
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Figure 49: Statistics of the responses to Q32 during Experiment I. Based on the responses, students chose 

to eat fast food slightly more frequently than dining halls. The majority opted for home-prepared meals.  

 

 

Figure 50: Statistics of the responses to Q33 during Experiment I. 72% of responses indicate that students 

had breakfast, at least a few times in a given week. The courses we collected data from were held in the 

morning, and occur 2–3 times per week. 
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Figures 51 and 52 show that most of the students that participated in the experiments thought about 

their projects 20–50% of the time, which is reasonable if one considers that they were also taking 

other courses.  

 

 

 

 
  

Figure 51: Most students thought about their 

projects between 20–50% of their working time 

during Experiment I, on average. 

Figure 52: Similarly to Experiment I, most 

students thought about their projects between 

20–50% of their working time during 

Experiment II, on average.
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Figures 53 and 54 indicate that most students met up to 2 times with some members of their team 

outside regular class time to work on their project during Experiment I. A larger number of teams 

met 2 or more times during Experiment II. Design courses can be quite demanding during crunch 

time (e.g., preparing for equipment testing) and students need to spend more time outside class to 

complete their tasks.  

 

 

 

 

   

Figure 53: Most students, on average, met up to 2 

times with their teams to work on their project 

outside regular class times during Experiment I, 

which is often necessary to complete demanding 

tasks. 

Figure 54: For Experiment II, there was larger 

number of teams that met outside class time for 

2 or more times in a week. It is possible that 

students were making up for the lack of on-

campus access due to COVID-19 restrictions.
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Responses to Q36 show that most teams ordered between 0–5 new parts on average for most 

weeks during both experiments, with some occasions where a larger order was necessary. 

 

 

 

Figure 55: Most students ordered, on average, 

between 0–5 new parts during Eexperiment I, with 

some occasions where a larger order was 

necessary. These larger orders were likely sets of 

equipment like screws or bolts. 

Figure 56: For Experiment II, the number of 

ordered parts per week is similar to Experiment 

I. Most teams ordinarily do not need to order 

new tools frequently.
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The student responses show varying habits with respect to how often the students had physical 

exercise. Around 25% said they did not exercise in a particular week, while at least 74% said they 

exercised at least once during experiments I and II (Figure 57). 

 

 

 

 

 

Figure 57: Majority of responses (75%) indicate that students exercised at least one time in a given week. 

Frequent physical exercise may correlate with improved individual performance and intellectual ability, 

that may influence how well students do on technical projects. 
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Figures 58 and 59 show descriptive statistics for the responses to the Risk Perception questions 

(Q39 to Q40).  

 

For Q39, students were given three possible mishaps that would affect only one of the three project 

metrics, and they chose which one they consider the highest risk for their success at that time. 42% 

(Experiment I) and 37% (Experiment II) of responses show that students found a mishap in terms 

of technical requirements to be the highest risk. A cost mishap was considered the lowest risk of 

the three.  

 

 

 

Figure 58: When ranking possible mishaps from highest to lowest risk, students considered missing their 

technical requirements as the highest risk during Experiment I and Experiment II, followed by a schedule 

mishap, and lastly a cost mishap. Budget likely mattered the least for them because they did not monitor it 

closely and likely did not know what the overall budget was. In contrary, they knew the timeline and 

requirements they had to meet, and they likely suspected they are also evaluated based on these two metrics 

more than how well they follow a budget. 
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For Q40, given the option to choose a project failure, the vast majority of responses (72% for 

Experiment I and 54% for Experiment II) showed preference towards budget failure, with failing 

to satisfy requirements the failure that the students would prefer to avoid the most. 

 

 

 

 

Figure 59: When asked to pick a failure they would prefer associated with the three metrics, the students 

gave more weight on avoiding a technical requirements failure, and most said they would rather have a 

budget failure. 
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Figures 60 to 67 show statistics for the responses to the Individual Actions & Decisions questions 

(Q41–49).  

 

For Q41, more students said they disagreed to new ideas because of not understanding implications, 

indicating that students during Experiment I may have been more cautious overall, compared to 

Experiment II. Students not able to interact as much in the same room during Experiment II may 

also have contributed to the result. 

 

 

Figure 60: Statistics of the responses to Q41. 35% of responses during Experiment I indicated disagreement 

to new ideas when lacking understing about potential implications, compared to 23% during Experiment 

II. 
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63% and 69% of students said they did not have arguments with their teammates (Q42) for the two 

experiments, respectively. We observed an almost 50%-50% split between students who singled 

out a decision as most important (Q43).  

 

 

Figure 61: Statistics of the responses to Q42. Responses were similar during both experiments, majority of 

responses showed students not arguing during 2/3 typical weeks. 

 

 

Figure 62: Statistics of the responses to Q43. Responses were similar during both experiments, with an 

almost perfect split between students who did and did not identify a single project decision as the most 

important. 
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Showing the value of such design courses, 57% (Experiment I) and 68% (Experiment II) of 

responses show students spent time thinking about what might go wrong (Q44).  

 

 

 

Figure 63: Statistics of the responses to Q44. 7% (Experiment I) and 68% (Experiment II) of responses 

show students spent time thinking about what might go wrong in their project, indicating PBL helped 

students develop risk management skills. 
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45% (Experiment I) and 68% (Experiment II) talked with other colleagues and got ideas from other 

teams (Q45). It may be possible that communicating with other teams was easier during 

Experiment II because of ease of scheduling virtual meetings between students. 

 

 

Figure 64: Statistics of the responses to Q45. 45% (Experiment I) and 68% (Experiment II) talked with 

other colleagues and got ideas from other teams. 

 

51% (Experiment I) and 49% (Experiment II) of responses showed that students learned something 

that surprised them (Q46). 

 

Figure 65: Statistics of the responses to Q46. Almost for half their time involed in the projects, students 

learned something new. 
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65% of responses during Experiment II (compared to 58% during Experiment I) indicated that 

students did not spend time discussing what they thought as trivial matters to the project. The 

results show mostly equal time efficiency between the two experiments. 

 

 

Figure 66: Statistics of the responses to Q47. The results show mostly equal time efficiency between the 

two experiments. 
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More than 67% said they thought through all solutions before proceeding with an action (Q48).  

 

 

Figure 67: More than 2/3 of the responses come from students who said they thought through all solutions 

before making a decision during both experiments, with some indicating the question did not apply for a 

particular week, suggesting that there was no project decision for them to make. 

 

Overall, many questions have similar response patterns between the two experiments with a few 

exceptions. When questioned on meaningful progress and interaction with their team, students 

from Experiment II appeared to do better than the responses from Experiment I, which may 

indicate that feedback (targeted or not) helps students improve their coordination when working 

together and as a result make meaningful progress. During Experiment II, students did not know 

as much about their team members activities as they did during Experiment I. Hybrid learning and 

safety measures due to the COVID-19 pandemic may be responsible for that, given students have 

to follow capacity limits in their workspaces so they cannot work together as much. During 

Experiment I, the students thought that the objectives for the projects were a lot more clearly 

defined with less room of ambiguity. During Experiment II, the courses and instructors were 

different than those for Experiment I, which may be a contributing factor to the clarity of the 

objectives. In Experiment II, 12% of responses showed that students would definitely abandon the 

project (compared to only 5% in Experiment I) if they had to start with a completely new team, 

which shows less commitment from them.  
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 CONCLUSIONS AND FUTURE WORK 

The research work discussed in this dissertation is an effort to improve multiple facets of project-

based learning (PBL) courses, with the goal of better preparing engineering students to learn to 

deal with failures before they join the workforce. Industry projects going over budget, missing 

schedule milestones, or falling short of meeting requirements is a frequent phenomenon, and 

making better future engineers may be one of the most effective means we have to remedy such 

trends. To improve PBL courses I followed two main pathways: 1) find areas that PBL could 

improve at preparing students for failures and suggest improvements to instructors, and 2) 

understand student behaviors that lead to PBL project failures and provide helpful feedback so 

students can improve. 

 

To investigate the actions and behaviors that lead to failure events in student projects, I introduced 

“crowd signals”, which is crowdsourced information collected directly from the students that are 

part of a project team. To arrive at a successful set of crowd signals, I surveyed literature looking 

for factors that affect team, project, and individual performance and developed 49 questions to 

collect the crowd signals. Each factor then led to one or more student questions that applied 

specifically to the specialized context of student projects. The crowd signal inputs together with 

project performance information from instructors were necessary to complete the research work 

discussed here. To collect the necessary data and analysis, I completed two experiments at Purdue 

University including student teams from PBL courses: the first included 28 student teams from 

two courses and the second included 14 student teams from three courses. 

 

The first part of this dissertation (Chapter 3) identified potential areas that PBL could improve 

upon, and suggested specific recommendations to instructors that want to enhance the educational 

value of their PBL courses. I compared industry failure cause occurrence rates with similar rates 

from student teams. Failure causes refer to events that frequently caused budget, schedule, or 

requirements failures in industry, and were identified from previous research. My analysis showed 

that of the 10 failure causes I measured, failed to consider a design aspect statistically appears less 

frequently in the student projects compared to industry. I then built logistic regression models to 

find the correlations between the crowd signals and the occurrence of the failure cause failed to 
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consider a design aspect and used that information as a guide to suggest improvements to 

instructors. I provided four suggestions to instructors that want to provide their students with more 

opportunities to learn from the failure cause: 

1. The instructor could arrange the course so that specific tasks happen in settings where 

students do not interact with each other as much.  

2. The instructor could introduce reporting rules and processes that resemble industry 

standards.  

3. The instructor could implement realistic equipment/tool usage and expense constraints to 

the student teams.  

4. The instructor could put more emphasis on the requirements of the project, the importance 

of them, and how they clearly relate to project success. 

 

My goal for the recommendations is to help students get more out of their education by getting 

more opportunities to experience failure safely before they join industry projects. To some 

instructors, depending on how they evaluate their courses, these changes may appear as negative. 

Despite the seemingly negative notion of failure, these changes may increase the effectiveness and 

educational value of PBL. Instructors can integrate such changes in a controlled manner to retain 

a fair grading scheme for their course (e.g., consistently applying changes across all projects or 

evaluating students based on effort or evidence of learning from the failure and improvement, 

rather than a project metric).  

 

The second part of this dissertation (Chapter 4) stems from an effort to understand which student 

behaviors lead to which types of project failures in PBL courses, and to gauge whether the crowd 

signals are good predictors of future project performance. I developed logistic regression models 

that predict the occurrence of future budget, schedule, or requirements failures, using crowd 

signals and other information as inputs, and evaluated those models to get an insight on which 

student actions are likely to lead to project failures. The models predict, on average, 73.11±6.92% 

of budget failures, 75.27%±9.21% of schedule failures, and 76.71±6.90% of technical 

requirements failures after reducing the inputs via a hybrid approach of stepwise elimination and 

best subsets.  

 

The initial model that predicts budget failure indicated that when students perceive they have 

increased freedom on what to do with the project and do not have problems continue or become 
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worse, the likelihood of a cost failure reduces. In contrast, budget failure likelihood increases when 

students perceive a schedule failure as higher risk compared to a cost failure, when they disagree 

because of lack of understanding decision implications, when they single out a decision as most 

important, and when having a budget failure the previous week.  

 

The initial model that predicts schedule failure indicated that when students are sharing about their 

lives, think they are spending more funds than they should, are turning down activities that they 

consider fun, and understand all potential implications of an action, a schedule failure is less likely. 

On the contrary, with increasing student confidence in their success without oversight, coming up 

with or agreeing to more project ideas, thinking they are satisfying requirements as planned, having 

previous problems resurface due to poor previous solutions, spending more than 4 hours on social 

media per day, perceiving schedule as the highest risk for the project, not learning any new things, 

and having a schedule failure the previous week, all increase the likelihood of a schedule failure.  

 

The initial model that predicts failure regarding the technical requirements indicated that not 

exercising at all during the week, discussing trivial matters during the project and being 

increasingly confident in one’s answers to the questions reduce the likelihood of a failure. In 

contrast, when students are increasingly unable to focus on the project, introduce new ideas to the 

project, skip or postpone required tasks, think they are spending more than they should, report their 

cost estimate with high confidence, and having a requirements failure the previous week, the 

likelihood of a future requirements failure increases. 

 

Lastly, the last contribution (Chapter 5) focused on improving student behaviors to potentially 

improve PBL project performance. To accomplish this goal, I generated 35 feedback statements, 

guided from the correlations between failure measures and the crowd signals. The student teams 

were split in two treatment groups: teams that received targeted feedback (i.e., feedback that aimed 

to address the failure causes that the specific team is most prone to) and teams that received non-

targeted feedback (i.e., feedback that is positive but does not necessarily address the failure causes 

the specific team is most prone to). I used the second experiment to evaluate whether the targeted 

feedback helps reduce the occurrences of project failures in the student teams. 
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Through my analysis, I found that my targeted feedback does not reduce the failure occurrences 

in terms of any metrics. The quantitative and qualitative results indicated that student teams who 

received the targeted feedback statements said they were more likely to change their behavior, but 

the project success rates did not improve overall, suggesting that the students either did not make 

any changes or whatever changes they made were ineffective, perhaps because they did not know 

how to change their behavior appropriately. Students also said the targeted feedback was more 

helpful than the non-targeted feedback, but the project success rates indicate that they were only 

able to improve in terms of the schedule metric. Lastly, more students in the targeted feedback 

group said that the feedback statements would have a positive impact on their projects, but end-

of-semester success rates did not confirm their responses. It is possible that the feedback does 

contribute positively to the teams, but is not enough to have an impact on project success. 

7.1 Limitations 

The research presented here comes with some limitations. A major source of these limitations 

relates to the truthfulness in the responses of the respondents (students and instructors) as well as 

their capability to provide good responses to the questions. I assumed instructors to be in a position 

where they are able to detect occurrences of failures and failure causes occurring in the teams. For 

the courses included in my experiments, the instructors are heavily involved in what happens with 

the teams and monitor them multiple times a week. However, I had no way of enforcing the 

frequency or depth of such interactions. Also, the students who responded to my surveys indirectly 

impact the capability of the models and feedback evaluation, which was a major part of my 

research. I had no way of monitoring whether a student would willingly respond untruthfully, 

although I do not have a valid reason to expect that.   

 

Another source of limitations for the research comes due to the experiments including instructors 

and courses from the same department, potentially resulting in skewed conclusions. It is possible 

that if the study were to be repeated in other courses or departments, the results would differ in 

some way. My intention with the conclusions of this research work is not to generalize into other 

applications or settings, but rather to simply report my findings. 
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Lastly, the quantitative and qualitative results of the feedback evaluation, particularly due to the 

small number of observed projects, are dependent to the types of projects and ability of the student 

teams, as well as the effects of randomly assigning teams in the two treatment groups. 

7.2 Suggestions for Future Research 

I made an initial attempt at understanding the failure mechanisms in project-based learning and 

suggesting improvements to instructors (as PBL improvement recommendations) and to students 

(as feedback). The current section discusses improvements and viable areas of future research. 

7.2.1 Extension to student projects in multiple disciplines 

For both experiments, I collected data from teams that were working on aerospace-themed projects, 

because of my experience and involvement with the department in which I was a graduate student. 

One suggestion would be to expand the data collection to student projects in other engineering 

disciplines at first, and then to disciplines outside engineering. Mechanical, electrical, and 

industrial engineering disciplines would be viable since the projects do resemble those offered in 

aerospace engineering. For this first step, it would be of value to see how similar, or different, the 

project failure mechanisms are for student teams among engineering courses. As for the second 

step, computer science or other projects that do not involve building equipment could be a viable 

option. In that case, some of the research would need to change (e.g., removing hardware-related 

feedback). The goal with this second step, would be to identify key differences for failure in 

projects that are equally complex as engineering projects, but without hardware-related activities 

such as manufacturing. 

7.2.2 Automated feedback process 

With decreasing instructor time and increasing student enrollment, my approach of targeted 

feedback can be of benefit to instructors and students. However, the feedback generation process 

is currently semi-automated, as I updated the surveys and ran the prediction models every week 

and for every team. Removing any kind of human input by writing the appropriate algorithms to 

receive the necessary data, run the models, and update the feedback on the survey would 
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completely automate the process. An entirely automated process could be an attractive option for 

instructors who want to help their students with supplementary feedback.  

7.2.3 Improving predictive models 

For the predictive models, I used logistic regression, which served the purpose of allowing 

interpretation of the correlations between crowd signals and failure measures, which was a 

necessary step for the research. There are many other classification methods, including neural 

network architectures, that potentially have much stronger capability at capturing the correlations 

of the problem and therefore make stronger predictions. With the knowledge that there is some 

merit to crowdsourced information and its usefulness to failure prediction, I recommend that future 

efforts focus on classification methods that can produce much more reliable predictions. 

7.2.4 Development of an integrated app environment 

A significant portion of the research involved simple survey tools and researcher intervention (e.g., 

for updating the feedback statements for the student teams). A future project would be to migrate 

all these functions into an app that can be accessed as a web environment, which would allow for 

more interactive features for the predictions and the feedback.  

7.2.5 Industry setting 

Another viable research question is to determine whether the results from the student teams are 

similar to professional engineering teams and to assess whether the risk assessment approach 

discussed in this dissertation can help organizations deal better with and reduce failures. Industry 

partners could extract value by leveraging the predictive capability of the prototype and generating 

feedback to decision makers, alerting them of upcoming failures, and suggesting corrective actions 

that are tailored to the organization. The approach outlined in this dissertation provides the added 

benefit of giving insight into the mechanisms of risk at the specific organization (since the 

predictive models would be trained with internal employee data).  

 

In the industry application, it would also be relevant to add additional inputs that come from 

traditional risk management tools that are used in industry (e.g., financial software or product 
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quality tracking software), to the predictive models. An industry setting would also allow for more, 

and more consistent data, if combined with a user-friendly app setting (Figure 68).  

 

 

Figure 68: Industry prototype for project failure prediction and prevention. 

7.2.6 Introducing quantitative metrics of failure 

One potential improvement is to also consider specific quantitative metrics in addition to the binary 

failure outcomes that I used in this work. Industry projects are over budget by a specific percentage, 

behind schedule by a certain number of months, and are missing a specific number of requirements. 

Therefore, it would be helpful to consider by how much more or less a particular crowd signal 

contributes towards a specific failure compared to the present status, to be able to predict, for 

example how many more months is a project going to be behind schedule given the performance 

of the team for the past few weeks. 

7.2.7 Causal mechanisms between crowd signals and failure measures 

The work presented here focused on the correlations between crowd signals (that aim to measure 

specific factors) and failure metrics. It would be worthwhile for future research to focus on whether 

causation between these underlying factors and failures is also true, as knowledge about such 

relationships can directly impact project management decisions.  

 

For example, I included agreeableness as a factor that may impact team performance. I formed one 

possible question to measure agreeableness (Q19), which asked whether team members share 

information about each other’s lives. The schedule model showed that with increasing frequency 

of team members sharing more about each other’s lives, the likelihood of schedule failures reduces. 

The result indicates that schedule failure and the responses to Q19 are dependent, but do not 

necessarily have a causal relationship. In a hypothetical student team where team members are not 
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spending much time together discussing various topics about their lives, we do not know with 

certainty that the project will be late. Also, if I used a different question to measure agreeableness, 

I may not have arrived at the same result. 

 

Therefore, there are two main areas of valid research in the topic of causal mechanisms between 

crowd signals and failure measures: 

1. Find the types of questions that measure the factors I considered well (get the right crowd 

signal to measure the factor) and 

2. Conduct targeted experiments to investigate whether these specific factors cause failure 

(does the factor cause failure). 
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APPENDIX A. CS–FC (“CROWD SIGNAL─FAILURE CAUSE”) 

CORRELATIONS 

Appendix A includes the logistic regression correlation coefficients that I used in the CS–FC 

matrix referred to in Section 5.4. The coefficient values were the guides to developing the feedback 

statements for Experiment II. I built the models presented here using the exact same approach as 

described for FC1: Failed to consider a design aspect in Section 3.2, and correspond to the 

remaining failure causes FC2 to FC10. 

FC3: Failed to form a contingency plan does not have a model as it did not occur enough times 

for the model to converge (occurrence ratio in model training dataset = 0.107) and therefore, I 

excluded it from the feedback generation process. I also excluded FC9: Violated procedures 

(occurrence ratio in model training dataset = 0.064) for the same reason. 
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Table 35: Mixed-effects logistic regression model coefficients for FC2: Used inadequate justification. 

Coefficient Estimate (error) Coefficient 
Estimate 

(error) 
Coefficient Estimate (error) 

𝑎 -1.845 (2.889) 𝑏30(Q26 = No) 0.220 (0.986) 𝒃𝟔𝟎(Q41 = Yes) 2.162 (1.066) * 

𝑏1(Q1) -0.328 (0.226) 𝑏31(Q26 = Yes) -0.690 (0.918) 𝑏61(Q42 = No) -1.642 (1.118) 

𝒃𝟐(Q2) 0.382 (0.193)* 𝑏32(Q27=No) -0.146 (1.100) 𝑏62(Q42 = Yes) -1.443 (1.150) 

𝑏3(Q3) 0.423 (0.223)^ 𝑏33(Q27=Yes) 0.186 (1.022) 𝑏63(Q43 = Yes) 0.297 (1.455) 

𝑏4(Q4) 0.026 (0.226) 𝑏34(Q28=No) 1.849 (1.241) 𝑏64(Q44 = Yes) 1.737 (1.795) 

𝑏5(Q5) 0.090 (0.223) 𝑏35(Q28=Yes) 0.522 (1.272) 𝒃𝟔𝟓(Q45 = Yes) -4.503 (2.274) * 

𝑏6(Q6) 0.418 (0.245)^ 𝑏36(Q29=No) 0.601 (1.498) 𝑏66(Q46 = No) 0.483 (1.214) 

𝑏7(Q7) 0.257 (0.230) 𝑏37(Q29=Yes) 0.472 (1.584) 𝑏67(Q46 = Yes) 0.178 (1.214) 

𝑏8(Q8) -0.088 (0.237) 𝑏38(Q30) -0.074 (0.210) 𝒃𝟔𝟖(Q47 = No) 3.530 (1.630) * 

𝑏9(Q9 = 

Low) 
0.016 (1.758) 𝑏39(Q31 =2-3h) -0.744 (0.553) 𝑏69(Q47 = Yes) 3.142 (1.692) ^ 

𝑏10(Q9 = 

Moderate) 
0.703 (0.437) 𝑏40(Q31 = 3-4h) 0.217 (0.862) 

𝑏70(Q48 = First 

thought) 
-0.57 (0.793) 

𝑏11(Q10) 0.337 (0.213) 𝒃𝟒𝟏(Q31 = <1h) 
-1.206 

(0.582)* 

𝑏71(Q48 = 

Think through) 
-0.089 (0.649) 

𝑏12(Q11) -0.239 (0.228) 𝑏42(Q31 = >4h) 
-1.544 

(0.934)^ 
𝑏72(Q49) 0.515 (0.264) ^ 

𝒃𝟏𝟑(Q12) 0.598 (0.245)* 
𝑏43(Q32 = Dining 

hall) 
-0.567 (0.924) 

^ p <  .01 

∗ p <  .05 

∗∗ p <  .01 

∗∗∗ p <  .001 

 

Median scaled residual: -0.2104 

Random effects c𝑖~𝑁(0, 0.513
2) 

Occurrence ratio in data: 0.232  

𝑏14(Q13) -0.242 (0.214) 
𝑏44(Q32 = 

Restaurants) 
-1.711 (0.97)^ 

𝑏15(Q14) 0.074 (0.227) 𝑏45(Q32 = Home) 
-1.378 

(0.704)^ 

𝑏16(Q15) -0.349 (0.253) 𝑏46(Q33=No) 0.471 (0.563) 

𝑏17(Q16) -0.258 (0.215) 𝒃𝟒𝟕(Q33=Some) 
1.500 (0.570) 

** 

𝑏18(Q17) -0.393 (0.27) 𝑏48(Q34) -0.385 (0.247) 

𝑏19(Q18) 0.302 (0.246) 𝒃𝟒𝟗(Q35) 
0.813 (0.259) 

** 

𝑏20(Q19) -0.415 (0.221)^ 𝑏50(Q36) -0.053 (0.239) 

𝑏21(Q20 = 

Over budget) 
0.273 (0.693) 𝑏51(Q37 = >3-4) 0.109 (0.607) 

𝑏22(Q20 = 

Under 

budget) 

-0.428 (0.534) 𝑏52(Q37 = >4) 0.868 (0.640) 

𝒃𝟐𝟑(Q21 = 

Behind 

sched.) 

-2.206 (0.836)** 𝑏53(Q37 = None) 0.592 (0.608) 

𝒃𝟐𝟒(Q21 = 

On sched.) 
-1.949 (0.733)** 𝑏54(Q38) -0.352 (0.243) 

𝑏25(Q22 = 

More reqs) 
1.261 (0.84) 𝑏55(Q39=Reqs) 

-1.164 

(0.617)^ 

𝑏26(Q22=reqs 

as planned) 
0.340 (0.662) 𝑏56(Q39=Sched) -0.439 (0.53) 

𝑏27(Q23) 0.112 (0.253) 𝒃𝟓𝟕(Q40=Reqs) 2.820 (1.181) * 

𝑏28(Q24) -0.185 (0.281) 𝑏58(Q40=Sched) 0.643 (0.508) 

𝑏29(Q25) 0.350 (0.276) 𝑏59(Q41 = No) 1.216 (1.026) 
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Table 36: Mixed-effects logistic regression model coefficients for FC4: Lacked Experience 

Coefficient 
Estimate 

(error) 
Coefficient 

Estimate 

(error) 
Coefficient Estimate (error) 

𝑎 3.698 (2.385) 𝑏30(Q26 = No) -1.012 (1.089) 𝑏60(Q41 = Yes) 0.012 (1.096) 

𝑏1(Q1) 0.048 (0.248) 𝑏31(Q26 = Yes) -1.181 (0.925) 𝑏61(Q42 = No) -0.689 (1.122) 

𝑏2(Q2) -0.424 (0.311) 𝑏32(Q27=No) 0.03 (1.032) 𝑏62(Q42 = Yes) -1.506 (1.223) 

𝑏3(Q3) 0.076 (0.238) 𝑏33(Q27=Yes) -0.217 (0.996) 𝑏63(Q43 = Yes) 
0.146 (1.488) 

 

𝑏4(Q4) -0.164 (0.245) 𝑏34(Q28=No) 1.661 (1.397) 𝑏64(Q44 = Yes) 
0.199 (1.598) 

 

𝑏5(Q5) 0.137 (0.223) 𝑏35(Q28=Yes) 1.194 (1.49) 𝑏65(Q45 = Yes) 
0.683 (2.29) 

 

𝑏6(Q6) 0.23 (0.223) 𝑏36(Q29=No) -1.201 (1.423) 𝒃𝟔𝟔(Q46 = No) -2.91 (0.994)** 

𝑏7(Q7) -0.267 (0.229) 𝑏37(Q29=Yes) -1.174 (1.452) 𝒃𝟔𝟕(Q46 = Yes) -2.439 (0.95)* 

𝑏8(Q8) 0.097 (0.229) 𝑏38(Q30) -0.148 (0.216) 𝑏68(Q47 = No) -0.795 (1.399) 

𝑏9(Q9 = 

Low) 
0.889 (1.481) 𝑏39(Q31 =2-3h) -0.828 (0.597) 𝑏69(Q47 = Yes) -1.586 (1.473) 

𝑏10(Q9 = 

Moderate) 
0.127 (0.457) 𝑏40(Q31 = 3-4h) 1.439 (0.924) 

𝑏70(Q48 = First 

thought) 
0.57 (0.742) 

𝑏11(Q10) 0.224 (0.214) 𝑏41(Q31 = <1h) -0.166 (0.562) 
𝑏71(Q48 = Think 

through) 
-0.074 (0.659) 

𝑏12(Q11) -0.019 (0.221) 𝑏42(Q31 = >4h) -0.188 (0.889) 𝑏72(Q49) 0.257 (0.233) 

𝑏13(Q12) 0.087 (0.238) 
𝑏43(Q32 = 

Dining hall) 
-0.234 (1.01) 

^ p <  .01 

∗ p <  .05 

∗∗ p <  .01 

∗∗∗ p <  .001 

 

Median scaled residual: -0.245 

Random effects c𝑖~𝑁(0, 0.468
2) 

Occurrence ratio in data: 0.217  

𝑏14(Q13) 0.081 (0.233) 
𝑏44(Q32 = 

Restaurants) 
-0.008 (0.95) 

𝑏15(Q14) -0.436 (0.233)^ 
𝑏45(Q32 = 

Home) 
-0.144 (0.744) 

𝑏16(Q15) -0.128 (0.252) 𝑏46(Q33=No) -0.464 (0.585) 

𝑏17(Q16) 0.08 (0.219) 𝑏47(Q33=Some) 1.001 (0.6)^ 

𝑏18(Q17) 0.07 (0.239) 𝑏48(Q34) 0.132 (0.236) 

𝑏19(Q18) -0.242 (0.226) 𝒃𝟒𝟗(Q35) 0.642 (0.234)* 

𝑏20(Q19) -0.225 (0.217) 𝑏50(Q36) 0.126 (0.238) 

𝑏21(Q20 = 

Over budget) 
-1.089 (0.817) 𝑏51(Q37 = >3-4) 0.572 (0.595) 

𝑏22(Q20 = 

Under 

budget) 

-0.401 (0.557) 𝑏52(Q37 = >4) -1.332 (0.829) 

𝑏23(Q21 = 

Behind 

sched.) 

-0.619 (0.831) 𝑏53(Q37 = None) 0.745 (0.596) 

𝑏24(Q21 = 

On sched.) 
-0.229 (0.772) 𝑏54(Q38) 0.046 (0.238) 

𝑏25(Q22 = 

More reqs) 
-0.845 (0.943) 𝑏55(Q39=Reqs) 

-1.099 

(0.644)^ 

𝑏26(Q22=reqs 

as planned) 
-0.429 (0.616) 𝑏56(Q39=Sched) 0.235 (0.546) 

𝑏27(Q23) -0.011 (0.254) 𝑏57(Q40=Reqs) 0.312 (1.083) 

𝒃𝟐𝟖(Q24) 0.657 (0.277)* 𝑏58(Q40=Sched) -0.252 (0.558) 

𝑏29(Q25) -0.448 (0.285) 𝑏59(Q41 = No) -0.238 (1.055) 
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Table 37: Mixed-effects logistic regression model coefficients for FC5: Kept poor records. 

Coefficient 
Estimate 

(error) 
Coefficient 

Estimate 

(error) 
Coefficient Estimate (error) 

𝑎 2.787 (7.117) 𝑏30(Q26 = No) 0.232 (2.306) 𝒃𝟔𝟎(Q41 = Yes) 3.942 (1.459) ** 

𝑏1(Q1) 0.389 (0.456) 𝑏31(Q26 = Yes) -3.266 (2.174) 𝑏61(Q42 = No) -5.433 (2.856) ^ 

𝑏2(Q2) -0.742 (0.651) 𝑏32(Q27=No) -0.139 (2.228) 𝑏62(Q42 = Yes) -2.530 (2.406) 

𝑏3(Q3) 0.358 (0.428) 𝑏33(Q27=Yes) 2.174 (2.262) 𝑏63(Q43 = Yes) -4.183 (2.621) 

𝑏4(Q4) 0.920 (0.495)^ 𝑏34(Q28=No) 7.084 (3.65) ^ 𝑏64(Q44 = Yes) 0.171 (1.027) 

𝑏5(Q5) 0.431 (0.451) 𝑏35(Q28=Yes) 3.542 (3.057) 𝑏65(Q45 = Yes) 0.417 (1.190) 

𝑏6(Q6) 0.386 (0.497) 𝑏36(Q29=No) -1.364 (3.703) 𝑏66(Q46 = No) -3.889 (2.440) 

𝑏7(Q7) -0.788 (0.495) 𝑏37(Q29=Yes) -1.036 (3.37) 𝑏67(Q46 = Yes) -3.739 (2.555) 

𝑏8(Q8) 0.213 (0.416) 𝑏38(Q30) -0.554 (0.421) 𝑏68(Q47 = No) 0.700 (3.513) 

𝑏9(Q9 = Low) 2.761 (4.543) 𝑏39(Q31 =2-3h) 0.234 (1.032) 𝑏69(Q47 = Yes) 0.881 (3.645) 

𝑏10(Q9 = 

Moderate) 
0.816 (0.992) 𝒃𝟒𝟎(Q31 = 3-4h) 

-8.489 

(3.531)* 

𝑏70(Q48 = First 

thought) 
2.663 (2.088) 

𝒃𝟏𝟏(Q10) 1.202 (0.527)* 𝑏41(Q31 = <1h) 1.320 (1.065) 
𝒃𝟕𝟏(Q48 = 

Think through) 
4.905 (2.039) * 

𝒃𝟏𝟐(Q11) 
-1.76 

(0.635)** 
𝑏42(Q31 = >4h) 2.459 (1.841) 𝒃𝟕𝟐(Q49) 1.654 (0.737) * 

𝑏13(Q12) -0.725 (0.456) 
𝑏43(Q32 = 

Dining hall) 
0.353 (1.707) 

^ p <  .01 

∗ p <  .05 

∗∗ p <  .01 

∗∗∗ p <  .001 

 

Median scaled residual: -0.008 

Random effects c𝑖~𝑁(0,0) 
Occurrence ratio in data: 0.150  

𝑏14(Q13) 0.286 (0.535) 
𝑏44(Q32 = 

Restaurants) 
-2.400 (1.623) 

𝑏15(Q14) 0.151 (0.483) 
𝒃𝟒𝟓(Q32 = 

Home) 

-2.947 

(1.334)* 

𝒃𝟏𝟔(Q15) 
-1.509 

(0.607)* 
𝑏46(Q33=No) 2.245 (1.366) 

𝑏17(Q16) -0.098 (0.453) 𝒃𝟒𝟕(Q33=Some) 
5.605 (1.725) 

** 

𝑏18(Q17) -0.937 (0.573) 𝒃𝟒𝟖(Q34) 
-1.487 (0.605) 

* 

𝑏19(Q18) 0.617 (0.456) 𝑏49(Q35) -0.572 (0.524) 

𝑏20(Q19) -1.089 (0.588)^ 𝒃𝟓𝟎(Q36) 0.836 (0.363) * 

𝒃𝟐𝟏(Q20 = 

Over budget) 

-4.823 

(2.034)* 
𝑏51(Q37 = >3-4) 1.239 (1.163) 

𝑏22(Q20 = 

Under budget) 
1.676 (1.221) 𝑏52(Q37 = >4) -2.386 (1.707) 

𝑏23(Q21 = 

Behind sched.) 
-0.657 (1.806) 𝑏53(Q37 = None) 1.747 (1.159) 

𝑏24(Q21 = On 

sched.) 
-1.068 (1.711) 𝑏54(Q38) -0.696 (0.468) 

𝑏25(Q22 = 

More reqs) 
-0.914 (1.534) 𝒃𝟓𝟓(Q39=Reqs) -8.005 (2.318) 

𝒃𝟐𝟔(Q22=reqs 

as planned) 
-3.529 (1.54)* 𝒃𝟓𝟔(Q39=Sched) -2.639 (1.217) 

𝒃𝟐𝟕(Q23) 1.387 (0.584)* 𝑏57(Q40=Reqs) 1.341 (1.771) 

𝒃𝟐𝟖(Q24) 
2.355 

(0.845)** 
𝑏58(Q40=Sched) -1.156 (1.239) 

𝑏29(Q25) -0.411 (0.564) 𝑏59(Q41 = No) -4.230 (2.618) 
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Table 38: Mixed-effects logistic regression model coefficients for FC6: Inadequately communicated. 

Coefficient 
Estimate 

(error) 
Coefficient 

Estimate 

(error) 
Coefficient Estimate (error) 

𝑎 7.068 (3.557) 𝒃𝟑𝟎(Q26 = No) -3.264 (1.5)* 𝑏60(Q41 = Yes) 0.167 (1.13) 

𝒃𝟏(Q1) 
-1.190 

(0.351)*** 
𝑏31(Q26 = Yes) -0.835 (1.302) 𝒃𝟔𝟏(Q42 = No) -3.457 (1.516)* 

𝒃𝟐(Q2) 0.591 (0.253)* 𝑏32(Q27=No) -2.068 (1.419) 𝒃𝟔𝟐(Q42 = Yes) -3.874 (1.573)* 

𝑏3(Q3) 0.193 (0.282) 𝑏33(Q27=Yes) -1.015 (1.35) 𝑏63(Q43 = Yes) -0.729 (0.658) 

𝑏4(Q4) -0.121 (0.297) 𝑏34(Q28=No) 1.759 (1.863) 𝑏64(Q44 = Yes) -0.854 (0.572) 

𝒃𝟓(Q5) 0.695 (0.291)* 𝑏35(Q28=Yes) 3.132 (2.042) 𝑏65(Q45 = Yes) 1.496 (0.638) 

𝑏6(Q6) 0.107 (0.28) 𝑏36(Q29=No) 2.638 (3.175) 𝑏66(Q46 = No) -0.991 (1.124) 

𝑏7(Q7) -0.331 (0.299) 𝑏37(Q29=Yes) 2.842 (3.227) 𝑏67(Q46 = Yes) -1.119 (1.102) 

𝑏8(Q8) 0.212 (0.26) 𝑏38(Q30) -0.273 (0.243) 𝑏68(Q47 = No) -2.318 (1.411) 

𝑏9(Q9 = 

Low) 
-1.025 (1.026) 𝑏39(Q31 =2-3h) -0.2 (0.671) 𝒃𝟔𝟗(Q47 = Yes) -3.122 (1.554)* 

𝒃𝟏𝟎(Q9 = 

Moderate) 
-1.296 (0.596)* 𝑏40(Q31 = 3-4h) 0.156 (1.479) 

𝑏70(Q48 = First 

thought) 
-0.777 (0.923) 

𝑏11(Q10) 0.184 (0.246) 𝑏41(Q31 = <1h) -0.946 (0.642) 
𝑏71(Q48 = Think 

through) 
-0.787 (0.843) 

𝑏12(Q11) 0.076 (0.272) 𝑏42(Q31 = >4h) 0.551 (1.013) 𝑏72(Q49) -0.271 (0.285) 

𝑏13(Q12) 0.031 (0.269) 
𝒃𝟒𝟑(Q32 = 

Dining hall) 

-3.366 

(1.493)* 

^ p <  .01 

∗ p <  .05 

∗∗ p <  .01 

∗∗∗ p <  .001 

 

Median scaled residual: -0.164 

Random effects c𝑖~𝑁(0, 0.954
2) 

Occurrence ratio in data: 0.200 

 

𝑏14(Q13) -0.039 (0.273) 
𝑏44(Q32 = 

Restaurants) 
-0.472 (1.036) 

𝑏15(Q14) -0.339 (0.269) 
𝑏45(Q32 = 

Home) 
-0.832 (0.882) 

𝑏16(Q15) -0.277 (0.3) 𝑏46(Q33=No) -1.22 (0.703)^ 

𝒃𝟏𝟕(Q16) -0.521 (0.251)* 𝑏47(Q33=Some) -0.516 (0.728) 

𝒃𝟏𝟖(Q17) 0.571 (0.294)* 𝑏48(Q34) -0.352 (0.288) 

𝑏19(Q18) 0.057 (0.28) 𝒃𝟒𝟗(Q35) 0.573 (0.283)* 

𝑏20(Q19) -0.29 (0.261) 𝑏50(Q36) 0.036 (0.307) 

𝑏21(Q20 = 

Over budget) 
0.797 (0.721) 𝑏51(Q37 = >3-4) -0.292 (0.67) 

𝑏22(Q20 = 

Under 

budget) 

-1.045 (0.709) 𝑏52(Q37 = >4) -0.086 (0.792) 

𝑏23(Q21 = 

Behind 

sched.) 

-1.718 (0.963)^ 𝑏53(Q37 = None) -0.693 (0.709) 

𝑏24(Q21 = 

On sched.) 
-0.961 (0.864) 𝑏54(Q38) 0.333 (0.3) 

𝑏25(Q22 = 

More reqs) 
-0.588 (0.953) 𝑏55(Q39=Reqs) 0.554 (0.712) 

𝑏26(Q22=reqs 

as planned) 
-0.458 (0.702) 𝑏56(Q39=Sched) 

-1.167 

(0.641)^ 

𝑏27(Q23) -0.294 (0.302) 𝑏57(Q40=Reqs) 0.29 (1.275) 

𝑏28(Q24) -0.117 (0.296) 𝑏58(Q40=Sched) 0.003 (0.618) 

𝑏29(Q25) -0.543 (0.337) 𝑏59(Q41 = No) 0.747 (1.149) 
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Table 39: Mixed-effects logistic regression model coefficients for FC7: Subjected to inadequate testing. 

Coefficient 
Estimate 

(error) 
Coefficient 

Estimate 

(error) 
Coefficient Estimate (error) 

𝑎 -8.212 (5.143) 𝑏30(Q26 = No) 5.478 (3.288)^ 𝑏60(Q41 = Yes) 5.894 (3.053)^ 

𝒃𝟏(Q1) 1.328 (0.481)** 𝑏31(Q26 = Yes) 3.848 (3.004) 𝑏61(Q42 = No) -0.200 (0.671) 

𝑏2(Q2) -0.772 (0.48) 𝑏32(Q27=No) -2.76 (1.95) 𝑏62(Q42 = Yes) 1.516 (0.989) 

𝒃𝟑(Q3) 0.967 (0.408)* 𝑏33(Q27=Yes) -1.64 (1.86) 𝑏63(Q43 = Yes) -0.711 (1.122) 

𝒃𝟒(Q4) 
-1.764 

(0.555)** 
𝑏34(Q28=No) -4.274 (2.585)^ 𝑏64(Q44 = Yes) -0.95 (0.896) 

𝑏5(Q5) 0.693 (0.449) 𝑏35(Q28=Yes) -4.058 (2.706) 𝑏65(Q45 = Yes) 0.391 (1.082) 

𝑏6(Q6) 0.675 (0.45) 𝑏36(Q29=No) 4.225 (2.564)^ 𝑏66(Q46 = No) 1.581 (2.614) 

𝑏7(Q7) 0.41 (0.472) 𝑏37(Q29=Yes) 3.28 (2.787) 𝑏67(Q46 = Yes) 1.111 (2.588) 

𝑏8(Q8) -0.773 (0.428)^ 𝒃𝟑𝟖(Q30) 1.463 (0.529)* 𝑏68(Q47 = No) -1.513 (3.137) 

𝑏9(Q9 = 

Low) 
1.38 (1.346) 𝒃𝟑𝟗(Q31 =2-3h) -1.94 (1.129)* 𝑏69(Q47 = Yes) -2.219 (3.356) 

𝑏10(Q9 = 

Moderate) 
-1.415 (0.952) 𝑏40(Q31 = 3-4h) -3.239 (2.196) 

𝑏70(Q48 = First 

thought) 
-2.836 (1.834) 

𝑏11(Q10) 0.304 (0.438) 𝑏41(Q31 = <1h) -0.338 (0.946) 
𝑏71(Q48 = 

Think through) 
-2.404 (1.517) 

𝑏12(Q11) 0.717 (0.457) 𝑏42(Q31 = >4h) -2.048 (1.622) 𝑏72(Q49) -0.405 (0.488) 

𝑏13(Q12) 0.5 (0.427) 
𝑏43(Q32 = 

Dining hall) 
-0.556 (1.686) 

^ p <  .01 

∗ p <  .05 

∗∗ p <  .01 

∗∗∗ p <  .001 

 

Median scaled residual: -0.022 

Random effects c𝑖~𝑁(0,0) 
Occurrence ratio in data: 0.150  

𝑏14(Q13) -0.893 (0.477)^ 
𝑏44(Q32 = 

Restaurants) 
0.493 (1.694) 

𝑏15(Q14) 0.196 (0.403) 
𝑏45(Q32 = 

Home) 
0.207 (1.123) 

𝑏16(Q15) -0.25 (0.473) 𝒃𝟒𝟔(Q33=No) 3.236 (1.349)* 

𝒃𝟏𝟕(Q16) 1.046 (0.506)* 𝒃𝟒𝟕(Q33=Some) 2.573 (1.131)* 

𝑏18(Q17) -0.161 (0.472) 𝑏48(Q34) 0.327 (0.461) 

𝑏19(Q18) -0.344 (0.36) 𝑏49(Q35) 0.819 (0.523) 

𝒃𝟐𝟎(Q19) -1.319 (0.514)* 𝑏50(Q36) -1.684 (1.342) 

𝑏21(Q20 = 

Over budget) 
-1.687 (1.388) 𝑏51(Q37 = >3-4) 0.41 (1.163) 

𝑏22(Q20 = 

Under 

budget) 

-0.073 (1.138) 𝑏52(Q37 = >4) -0.525 (1.491) 

𝒃𝟐𝟑(Q21 = 

Behind 

sched.) 

-3.712 (1.473)* 𝑏53(Q37 = None) -0.048 (1.212) 

𝑏24(Q21 = 

On sched.) 
1.691 (1.158) 𝑏54(Q38) -0.966 (0.502)^ 

𝑏25(Q22 = 

More reqs) 
-4.117 (3.182) 𝑏55(Q39=Reqs) -1.351 (1.261) 

𝑏26(Q22=reqs 

as planned) 
1.651 (1.241) 𝑏56(Q39=Sched) -0.047 (1.023) 

𝑏27(Q23) -0.169 (0.475) 𝒃𝟓𝟕(Q40=Reqs) -6.069 (2.879)* 

𝑏28(Q24) -0.116 (0.529) 𝒃𝟓𝟖(Q40=Sched) -2.935 (1.333)* 

𝒃𝟐𝟗(Q25) 1.622 (0.518)** 𝑏59(Q41 = No) 4.376 (2.64)^ 
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Table 40: Mixed-effects logistic regression model coefficients for FC8: Managed risk poorly. 

Coefficient 
Estimate 

(error) 
Coefficient 

Estimate 

(error) 
Coefficient Estimate (error) 

𝑎 9.811 (7.686) 𝑏30(Q26 = No) 0.099 (0.247) 𝒃𝟔𝟎(Q42 = No) -10.712 (4.633)* 

𝑏1(Q1) 0.132 (0.599) 𝑏31(Q26 = Yes) -4.839 (2.705)^ 𝒃𝟔𝟏(Q42 = Yes) -12.751 (5.461)* 

𝑏2(Q2) -1.144 (0.874) 𝑏32(Q27=No) 7.657 (4.349)^ 𝑏62(Q43 = No) -2.640 (3.730) 

𝒃𝟑(Q3) 2.233 (0.875)* 𝒃𝟑𝟑(Q27=Yes) 8.157 (4.071)* 𝑏63(Q43 = Yes) -0.746 (3.555) 

𝑏4(Q4) 0.944 (0.722) 𝑏34(Q28=No) 1.598 (4.784) 𝑏64(Q44 = Yes) -0.039 (1.222) 

𝑏5(Q5) -0.5 (0.49) 𝑏35(Q28=Yes) -1.349 (4.119) 𝑏65(Q45 = Yes) -3.095 (1.748)^ 

𝑏6(Q6) 0.711 (0.683) 𝑏36(Q29=No) 0.664 (4.575) 𝑏66(Q46 = No) 2.012 (1.341) 

𝑏7(Q7) 1.332 (0.824) 𝑏37(Q29=Yes) 0.007 (4.17) 𝑏67(Q47 = Yes) -2.708 (1.672) 

𝑏8(Q8) 0.967 (0.673) 𝑏38(Q30) -1.012 (0.673) 
𝑏68(Q48 = First 

thought) 
2.364 (1.871) 

𝑏9(Q9 = 

Low) 
-1.238 (3.483) 𝑏39(Q31 =2-3h) -2.285 (1.411) 

𝑏69(Q48 = Think 

through) 
2.295 (1.524) 

𝑏10(Q9 = 

Moderate) 
0.606 (1.159) 𝑏40(Q31 = 3-4h) 0.784 (2.026) 𝒃𝟕𝟎(Q49) 2.562 (1.142)* 

𝑏11(Q10) 0.347 (0.543) 𝑏41(Q31 = <1h) -0.395 (1.669) 

^ p <  .01 

∗ p <  .05 

∗∗ p <  .01 

∗∗∗ p <  .001 

Median scaled residual: -0.0135 

Random effects c𝑖~𝑁(0, 0.539
2) 

Occurrence ratio in data: 0.140  

𝑏12(Q11) 0.593 (0.684) 𝑏42(Q31 = >4h) -6.732 (4.691) 

𝑏13(Q12) 0.333 (0.585) 
𝑏43(Q32 = 

Dining hall) 
0.805 (2.942) 

𝒃𝟏𝟒(Q13) -1.957 (0.792)* 
𝑏44(Q32 = 

Restaurants) 
-6.901 (4.022)^ 

𝑏15(Q14) -0.829 (0.603) 
𝑏45(Q32 = 

Home) 
-2.733 (2.467) 

𝑏16(Q15) 0.015 (0.732) 𝑏46(Q33=No) -2.783 (1.594)^ 

𝑏17(Q16) 1.083 (0.784) 𝑏47(Q33=Some) 0.704 (1.497) 

𝑏18(Q17) -0.598 (0.711) 𝑏48(Q34) -0.963 (0.671) 

𝑏19(Q18) -0.236 (0.696) 𝒃𝟒𝟗(Q35) 1.745 (0.778)* 

𝑏20(Q19) -0.565 (0.608) 𝑏50(Q36) -0.475 (0.643) 

𝑏21(Q20 = 

Over budget) 
-2.298 (2.106) 𝑏51(Q37 = >3-4) -0.21 (1.214) 

𝑏22(Q20 = 

Under 

budget) 

1.975 (1.407) 𝒃𝟓𝟐(Q37 = >4) -5.177 (2.335)* 

𝒃𝟐𝟑(Q21 = 

Behind 

sched.) 

-5.752 (2.383)* 𝑏53(Q37 = None) -2.303 (1.827) 

𝒃𝟐𝟒(Q21 = 

On sched.) 
-4.271 (1.811)* 𝑏54(Q38) -0.732 (0.587) 

𝑏25(Q22 = 

More reqs) 
5.153 (3.046)^ 𝒃𝟓𝟓(Q39=Reqs) -5.774 (2.391)* 

𝑏26(Q22=reqs 

as planned) 
1.232 (1.489) 𝑏56(Q39=Sched) 1.461 (1.465) 

𝑏27(Q23) 0.271 (0.696) 𝑏57(Q40=Reqs) 3.012 (3.952) 

𝒃𝟐𝟖(Q24) 2.395 (0.927)** 𝑏58(Q40=Sched) -1.534 (1.735) 

𝑏29(Q25) -0.252 (0.763) 𝑏59(Q41 = Yes) 2.74 (1.637)* 
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Table 41: Mixed-effects logistic regression model coefficients for FC10: Did not allow system aspect to 

stabilize. 

Coefficient Estimate 

(error) 

Coefficient Estimate 

(error) 

Coefficient Estimate (error) 

𝑎 -1.811 (3.312) 𝑏30(Q26 = No) -0.221 (1.126) 𝑏60(Q41 = Yes) 1.476 (1.064) 

𝑏1(Q1) -0.225 (0.244) 𝑏31(Q26 = Yes) -0.118 (0.994) 𝑏61(Q42 = No) -1.302 (1.191) 

𝑏2(Q2) 0.199 (0.297) 𝑏32(Q27=No) -0.847 (1.291) 𝑏62(Q42 = Yes) -1.32 (1.19) 

𝑏3(Q3) -0.14 (0.255) 𝑏33(Q27=Yes) -0.176 (1.199) 𝑏63(Q43 = Yes) -1.186 (1.626) 

𝑏4(Q4) 0.322 (0.253) 𝑏34(Q28=No) -0.311 (1.012) 

 

𝑏64(Q44 = Yes) -0.544 (0.482) 

𝑏5(Q5) -0.061 (0.234) 𝑏35(Q28=Yes) 0.061 (0.696) 𝑏65(Q45 = Yes) -0.351 (0.556) 

𝑏6(Q6) -0.236 (0.278) 𝑏36(Q29=No) 0.366 (1.455) 

 
𝑏66(Q46 = Yes) 0.859 (0.56) 

𝑏7(Q7) -0.432 (0.261)^ 𝑏37(Q29=Yes) -0.742 (0.636) 
𝑏67(Q47 = Yes) 

-0.501 (0.611) 

 

𝑏8(Q8) -0.118 (0.284) 𝑏38(Q30) -0.065 (0.238) 𝑏68(Q48 = First 

thought) 
1.126 (0.922) 

𝑏9(Q9 = 

Low) 

-0.835 (1.622) 𝒃𝟑𝟗(Q31 =2-3h) -1.886 

(0.668)** 

𝒃𝟔𝟗(Q48 = 

Think through) 
1.646 (0.828)* 

𝑏10(Q9 = 

Moderate) 

-0.985 (0.517)^ 𝑏40(Q31 = 3-4h) 0.789 (0.854) 
𝑏70(Q49) 0.114 (0.261) 

𝒃𝟏𝟏(Q10) 0.572 (0.244)* 𝑏41(Q31 = <1h) -0.885 (0.647)  

 

 

 

^ p <  .01 

∗ p <  .05 

∗∗ p <  .01 

∗∗∗ p <  .001 

Median scaled residual: -0.2532 

Random effects c𝑖~𝑁(0, 0.416
2) 

Occurrence ratio in data: 0.205 

 

𝑏12(Q11) -0.035 (0.258) 𝑏42(Q31 = >4h) 0.837 (0.962) 

𝑏13(Q12) 0.487 (0.26)^ 𝑏43(Q32 = 

Dining hall) 

2.355 (1.538) 

𝑏14(Q13) -0.077 (0.258) 𝑏44(Q32 = 

Restaurants) 

1.289 (1.635) 

𝑏15(Q14) -0.083 (0.241) 𝒃𝟒𝟓(Q32 = 

Home) 

2.859 (1.43)* 

𝑏16(Q15) 0.37 (0.269) 𝑏46(Q33=No) -0.224 (0.635) 

𝑏17(Q16) -0.104 (0.243) 𝒃𝟒𝟕(Q33=Some) 1.161 (0.579)* 

𝑏18(Q17) -0.293 (0.307) 𝑏48(Q34) -0.226 (0.274) 

𝑏19(Q18) 0.149 (0.294) 𝑏49(Q35) -0.286 (0.289) 

𝑏20(Q19) -0.184 (0.248) 𝑏50(Q36) -0.203 (0.353) 

𝑏21(Q20 = 

Over budget) 

0.352 (0.719) 𝑏51(Q37 = >3-4) 0.002 (0.654) 

𝑏22(Q20 = 

Under 

budget) 

0.013 (0.544) 𝑏52(Q37 = >4) -0.62 (0.755) 

𝑏23(Q21 = 

Behind 

sched.) 

-0.435 (0.878) 𝑏53(Q37 = None) -0.359 (0.697) 

𝑏24(Q21 = 

On sched.) 

-0.889 (0.832) 𝑏54(Q38) 0.085 (0.293) 

𝑏25(Q22 = 

More reqs) 

-0.189 (0.937) 𝑏55(Q39=Reqs) 0.082 (0.757) 

𝑏26(Q22=reqs 

as planned) 

-0.471 (0.623) 𝑏56(Q39=Sched) 1.083 (0.662) 

𝑏27(Q23) 0.129 (0.283) 𝑏57(Q40=Reqs) 0.353 (1.242) 

𝑏28(Q24) -0.253 (0.3) 𝑏58(Q40=Sched) 0.597 (0.64) 

𝑏29(Q25) -0.274 (0.288) 𝑏59(Q41 = No) 0.953 (1.001) 
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APPENDIX B. CONTINGENCY TABLES OF FAILURE CAUSES 

Appendix B includes the contingency tables for each failure cause i that I used in the statistical 

test in Section 3.1 to compare failure cause occurrences between the “PBL” and “IND” samples.  

 

Table 42: Contingency table for FC1: Failed to consider a design aspect. 

Failure cause 1 “PBL” sample “IND” sample Total 

Occurrence 10 29 39 

Not occurrence 18 3 21 

Total 28 32 60 

 

Table 43: Contingency table for FC2: Used inadequate justification. 

Failure cause 2 “PBL” sample “IND” sample Total 

Occurrence 9 11 20 

Not occurrence 19 21 30 

Total 28 32 60 

 

Table 44: Contingency table for FC3: Failed to form a contingency plan. 

Failure cause 3 “PBL” sample “IND” sample Total 

Occurrence 7 8 15 

Not occurrence 21 24 45 

Total 28 32 60 

 

Table 45: Contingency table for FC4: Lacked experience. 

Failure cause 4 “PBL” sample “IND” sample Total 

Occurrence 8 15 23 

Not occurrence 20 17 37 

Total 28 32 60 
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Table 46: Contingency table for FC5: Kept poor records. 

Failure cause 5 “PBL” sample “IND” sample Total 

Occurrence 5 4 9 

Not occurrence 23 28 51 

Total 28 32 60 

 

Table 47: Contingency table for FC6: Inadequately communicated. 

Failure cause 6 “PBL” sample “IND” sample Total 

Occurrence 6 11 17 

Not occurrence 22 21 43 

Total 28 32 60 

 

Table 48: Contingency table for FC7: Subjected to inadequate testing. 

Failure cause 7 “PBL” sample “IND” sample Total 

Occurrence 5 15 20 

Not occurrence 23 17 40 

Total 28 32 60 

 

Table 49: Contingency table for FC8: Managed risk poorly. 

Failure cause 8 “PBL” sample “IND” sample Total 

Occurrence 5 12 17 

Not occurrence 23 20 43 

Total 28 32 60 

 

Table 50: Contingency table for FC9: Violated procedures. 

Failure cause 9 “PBL” sample “IND” sample Total 

Occurrence 3 5 8 

Not occurrence 25 27 52 

Total 28 32 60 
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Table 51: Contingency table for FC10: Did not allow system aspect to stabilize. 

Failure cause 10 “PBL” sample “IND” sample Total 

Occurrence 6 16 22 

Not occurrence 22 16 38 

Total 28 32 60 
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