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ABSTRACT

Shock-wave/turbulent boundary-layer interactions (SWTBLIs) are characterized by low-

frequency unsteadiness, amplified aerothermal loads, and a complex three-dimensional flow-

field. Presence of a broad range of length and time-scales associated with compressible

turbulence generates additional gasdynamic features that interact with different parts of the

flowfield via feedback mechanisms. Determining the physics of such flows is of practical im-

portance as they occur frequently in different components of a supersonic/hypersonic aircraft

such as inlets operating in both on- and off-design conditions, exhaust nozzles, and control

surfaces. SWTBLIs can cause massive flow separation which may trigger unstart by choking

the flow in an inlet. On control surfaces, fatigue loading caused by low-frequency shock

unsteadiness, coupled with high skin-friction and heat transfer at the surface, can result in

failure of the structure.

The objective of this study is twofold. The first aspect involves examining the causes

of unsteadiness in SWTBLIs associated with two geometries – a backward facing step flow

reattaching on to a ramp, and a highly confined duct flow. Signal processing and statisti-

cal techniques are performed on the results obtained from Delayed Detached-Eddy Simula-

tions (DDES) and Implicit Large-Eddy Simulations (ILES). Dynamic Mode Decomposition

(DMD) is used as a complement to this analysis, by obtaining a low-dimensional approxi-

mation of the flowfield and associating a discrete frequency value to individual modes.

In case of the backward facing step, Fourier analysis of wall-pressure data brought out

several energy dominant frequency bands such as separation bubble breathing, oscillations

of the reattachment shock, shear-layer flapping, and shedding of vortices from the recircu-

lation zone. The spectra of reattachment shock motion suggested a broadband nature of

the oscillations, wherein separation bubble breathing affected the low-frequency motion and

shear-layer flapping, and vortex shedding correlated well at higher frequencies. A similar

exercise was carried out on the highly confined duct flow which featured separation on the

floor and sidewalls. In addition to the low-frequency shock motions, the entire interaction

exhibited a cohesive back-and-forth in the streamwise direction as well as a left-right motion
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along the span. Mode reconstruction using DMD was used in this case to recover complex

secondary flows induced by the presence of sidewalls.

For the final aspect of this study, a flow-control actuator was computationally modeled

as a sinusoidally varying body-force function. Effects of high-frequency forcing at F+ = 1.6

on the flowfield corresponding to a backward facing step flow reattaching on to a ramp

were examined. Conditionally averaged profile of streamwise velocity fluctuations, based

on reattachment shock position, was used for the formulation of spatial distribution of the

actuator. The forcing did not change the mean and RMS profiles significantly, but affected

the unsteadiness of the interaction significantly. The effects of forcing were localized to

the recirculation zone and did not affect the evolution of the shear-layer. The acoustic

disturbances propagating through the freestream and recirculation zone drove the motion of

the reattachment shock, and did not alter the low-frequency dynamics of the interaction.
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1. INTRODUCTION

1.1 General Overview of Shock-Wave/Turbulent Boundary-Layer Interactions

Shock-wave/turbulent boundary-layer interactions (SWTBLIs) are ubiquitous in high-

speed flows. They are characterized by large-scale separation, low-frequency unsteadiness,

and amplified aerothermal loads in addition to a complex three-dimensional flowfield [1 ]–

[3 ]. Such interactions occur commonly on both external and internal aircraft components

such as inlets, control surfaces, and overexpanded exhaust nozzles. Extensive studies carried

out on this phenomena have effectively highlighted the low–frequency unsteadiness of shock-

motion by examining the spectral nature of fluctuating quantities [4 ]–[8 ], using reduced order

modeling [9 ]–[12 ], or via linear stability analysis [11 ], [13 ], [14 ].

A typical SWTBLI strong enough to cause separation can be described in terms of the

following components: incoming turbulent boundary layer, separation shock, recirculation

bubble, free shear layer, and reattachment shock. These individual components represent

have varying degrees of contribution to its overall unsteadiness. The low-frequency shock

motion, typically of time-scale two orders of magnitude lower than the turbulence in the

incoming boundary layer, is especially of practical interest in the aerospace community. In

high-speed vehicles, this phenomenon can cause severe fatigue loading, ultimately resulting

in failure of the structure. The corresponding design implications for high-speed vehicles are

elaborated by Zuchowski [15 ]. Therefore, determining its causes can aid in designing efficient

flow control techniques to inhibit some, if not all of its adverse effects.

Before discussing the causes of unsteadiness in SWTBLI, the models of amplifier, oscilla-

tor, and weakly-damped global mode are briefly introduced here. Huerre and Monkewitz [16 ]

classified different types of flows into these categories based on the qualitative nature of their

dynamical behaviour. The spatial evolution of boundary layers is sensitive to the character-

istics of external excitations and therefore behave as frequency-selective amplifiers. These

types of flows are typically convectively unstable. On the other hand, flows which are abso-

lutely unstable (such bluff-body wakes) exhibit inherent instabilities that grow temporally

and therefore behave as oscillators. These types of flows are self-sustaining and do not re-

quire any external perturbations. Finally, some flows can be classified into a third category of
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marginally globally stable flows wherein the global modes are weakly damped in time. These

three categories can be used to model separation unsteadiness in a SWTBLI [17 ]. This type

of flow could be called a resonator because it responds very strongly to disturbances that

match the marginally stable global mode. Owing to the complexity of a SWTBLI, a specific

combination of the three categories may be required to account for multiple phenomena [18 ].

We continue the discussion on the causes of SWTBLI unsteadiness by first reviewing up-

stream effects. Plotkin [19 ] proposed a simple model in which the shock motion was driven

by velocity fluctuations in the turbulent boundary layer with a linear restoring mechanism.

The spectra derived from his analytical model agreed well with experimental data. Poggie

et al. [18 ] validated this model with the spectra of separation shock motion obtained from

experimental data and their LES calculations across a broad range of Mach numbers. Gana-

pathisubramani et al. [20 ] confirmed the presence of superstructures in the logarithmic region

of the turbulent boundary layer with a streamwise length as long as 40δ, where δ corresponds

to the boundary–layer thickness. In their subsequent work [21 ], these large–scale structures

were found to affect the low–frequency unsteadiness of the separation shock based on the

frequency scale U∞/40δ, as well as using correlation measurements. Such flows are therefore

sensitive to external perturbations and are potentially receptive to forcing in the vicinity of

the global-mode frequency.

Beresh et al. [8 ] also confirmed this observation by carrying out conditional averages of

upstream velocity profiles based on the instantaneous separation shock location. A down-

stream shock movement was associated with positive velocity fluctuations causing a “fuller”

boundary layer profile, while negative velocity fluctuations were found to correlate well with

an upstream shock movement. The shock motion exhibited selective response to the velocity

fluctuations in the boundary layer, i.e. low and high-frequency aspects of the shock motion

were responsive to velocity fluctuations of similar time-scales. These observations were con-

sistent with the results of implicit LES simulations of a SWTBLI on a 24 deg. compression

ramp carried out by Porter and Poggie [22 ] at Mach 2.25. Poggie [6 ] then used the condi-

tionally averaged perturbation profile as the wall-normal profile for designing a streamwise

body-force for flow control scheme. On incorporating this body-force in the ILES simulations,

and driving at the St = 0.03 characteristic frequency, it was observed that the separation
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shock and bubble were locked–in with the forcing frequency and the power spectral den-

sities of wall–pressure fluctuations in the separated region displayed a low-frequency peak

that scaled with the amplitude of forcing. These results support the amplifier model of a

SWTBLI, wherein certain disturbances in the incoming flow are selectively amplified by the

shock-separation bubble system.

Dupont et al. [23 ], [24 ] identified low–frequency motion in the interaction zone of an

impinging SWTBLI with a similar time–scale as of the reflected shock motion. Based on the

coherence and phase plots between wall–pressure measurements in the vicinity of the shock

and downstream, these motions showed a quasi–linear dependence and were out of phase

with respect to each other. Additionally, they also observed large–scale vertical flapping

motions of the separated region, which correlated well with the reflected shock movements.

Piponniau et al. [25 ] formulated a model to describe the low–frequency unsteadiness of the

interaction. Using conditional averages, they showed that the reflected shock motion was

affected by the variation in the size of the bubble. This variation was caused by the shedding

of vortical structures from the bubble and entrainment of fluid by the mixing layer. Their

experimental findings did not indicate any significant upstream effects. Wu and Martin [4 ]

also observed downstream effects to play a dominant role in the low-frequency shock motion,

and proposed a model entailing a feedback loop between the separation bubble, separated

shear-layer, and the shock system.

Thomas et al. [5 ] investigated a weak SWTBLI generated by a compression ramp inclined

at 6, 9, and 12 deg at Mach 1.5. It was noted that, irrespective of the strength of the inter-

action, upstream events did not play a role in modulating the shock motion. The latter was

instead found to be affected by the motion of the separation bubble. Pirozzoli and Grasso [26 ]

performed a DNS study on an impinging SWTBLI at Mach 2.25. They concluded that the

unsteadiness of the separation bubble as well as the flapping motion of the reflected shock

is a result of the upstream propagation of acoustic waves, generated by the interaction of

coherent structures with the incident shock. Based on this model, they proposed an acoustic

resonance mechanism in the interaction region, which is subsequently responsible for the

large-scale low–frequency unsteadiness. This agrees with the oscillator model of a SWTBLI,

in which any disturbances generated in the interaction are amplified through positive feed-
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back, leading to self-excited oscillations. Poggie [6 ] argues that models based on upstream

mechanism (amplifier, convective instability) and downstream mechanisms (oscillator, ab-

solute instability) can be reconciled if in many cases the separation bubble is subject to a

weakly-damped global mode. In that case, both amplifier and oscillator characteristics may

be present.

These results are used as a foundation to perform data analysis and interpret the re-

sults associated with the two flowfields considered in this study: a compressible reattaching

shear-layer and a compression ramp flow with sidewalls. These flowfields were chosen to

investigate certain phenomena in SWTBLI that have not received significant investigation

efforts in previous studies. The first case is used to study the unsteadiness of reattachment

shock motion in a SWTBLI. The literature review mentioned in the previous paragraphs

address the causes of unsteadiness of the separation shock motion, wherein the motion of

reattachment was not the subject matter in most of these studies.

This study discusses the characteristics of SWTBLI corresponding to two flowfields –

compressible reattaching shear-layers and compression ramp flow with sidewalls. Reattaching

shear-layers occur in practical applications such as engine exhaust reattaching onto a surface,

cavity flameholders, or an open bay for store release in an aircraft [27 ], [28 ]. Confined

SWTBLIs are usually featured in high-speed engine inlets and wind tunnels, and nozzles

operating at off-design conditions. In both the cases, the Reynolds number of the flow is

∼ O(106) and the flowfield is characterized by regions of massive separation. Additionally,

both upstream and downstream events elaborated in the previous paragraphs are present in

the flowfield. Existing literature on both experimental and computational studies of cases

similar to these two flowfields is expanded on in the upcoming sections.

1.2 Compressible Reattaching Shear-Layers

We start by reviewing literature on reattaching flows. Most of the studies referred to ex-

amine subsonic flows unless otherwise mentioned. This flowfield consists of a separated shear

layer that is generated at the edge of a step, and flows downstream over a large recirculation

zone in the cavity region, followed by reattaching on to a ramp. In the supersonic flow case,
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a reattachment shock is generated to align the flow along the ramp surface. This flowfield

comprises of almost all of the features found in a conventional SWTBLI – a separated shear

layer, large recirculation zone, a reattachment shock, and a redeveloping flow downstream of

the interaction. The only features absent in this flow are a separation shock and a moving

separation zone (separation location fixed), which instead is replaced by a weak expansion

fan at the step edge. The absence of a separation shock and separation motion enables one

to focus solely on the dynamics of the reattachment shock as well as the recirculation zone.

Therefore identifying the concomitant spectral characteristics could be helpful in analyzing

results from interactions associated with other geometries. Also, Dupont et al. [29 ] showed

that the shear-layer formed post separation follows the properties of a canonical mixing

layer. The values of mean turbulent stress, spreading rate, and entrainment velocity follow

the classical laws for turbulent transport in compressible shear-layers.

The adverse effects of the low-frequency unsteadiness mentioned previously are repro-

duced in this specific flowfield. Experiments on compressible reattaching shear-layers were

carried out by Settles et al. [30 ] and Hayakawa et al. [31 ], in which measurements of mean

and turbulent statistics were obtained. An experiment investigating the unsteadiness of

this flowfield was carried out by Poggie and Smits [7 ] in which artificial disturbances were

introduced in the boundary layer upstream of the step edge, which highlighted the role of

upstream events. Increased intensity of pressure fluctuations and amplitude of shock-motion,

as well as a distinct shift towards lower frequencies in the power spectra of pressure fluctu-

ations at reattachment, were observed. The spectra for the baseline and control case scaled

well with the vorticity thickness and RMS of pressure fluctuations in the shear layer.

Common unsteady features shared by both compressible and incompressible reattach-

ing flows include shear-layer flapping and shedding of vortices from the recirculating zone.

These events were also observed in the SWTBLI studies mentioned previously. Consider-

able research has been devoted to studying these phenomena in subsonic reattaching flows

on backward and forward–facing steps. One of the promising hypothesis for the cause of

flapping motion was propounded by Eaton and Johnston [32 ], [33 ] who carried out an ex-

periment on a backward-facing step in a low-speed flow. They observed a flapping motion

which possessed a long time-scale and led to broad movements in the instantaneous reat-
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tachment point. The authors attributed the flapping motion to an instantaneous imbalance

between shear–layer entrainment from the recirculating zone and re-injection of fluid near

the reattachment point. In the experiment conducted by Spazzini et al. [34 ] on a backward-

facing step, cyclical expansion and contraction of the separation bubble was observed. The

frequency of this motion was comparable to the flapping frequency of the entire separated

region. Additionally, formation and shedding of vortices occurred at a higher frequency.

Scarano et al. [35 ] found vortices of varying size based on PIV measurements of a backward-

facing step flow. The time–scale was directly proportional to the diameter of the vortical

structure. Ma and Schröder [36 ] carried out SVD and POD analysis of a backward–facing

step flow at a Reynolds number of 2×104. They noticed a change in the recirculating region

caused by feedback from the flapping motion.

Apart from the backward-facing step geometry, subsonic flow reattachment was also

studied on a blunt flat plate and forward-facing step. Kiya and Sasaki [37 ] focused on the

unsteadiness of the turbulent separation bubble formed along the sides of a blunt flat plate.

Using statistical techniques, they deduced the length scale and the convection velocity of

large-scale vortical structures, as well as their shedding frequency. The breathing motion

of the separation bubble was accompanied by shear-layer flapping, and large accumulation

of vorticity in the separation bubble led to shedding of vortices. In an extension of their

work [38 ], they observed large-scale vortices with a hairpin geometry, with each end rotating

in the opposite direction while simultaneously lifting fluid between them. They also con-

structed a mathematical model for unsteady flow at reattachment based on two governing

factors: high-frequency vortex shedding and large-scale, low-frequency unsteadiness of the

interaction.

In the case of a forward-facing step flow, Largeau and Moriniere [39 ] obtained wall pres-

sure measurements and found evidence of shear-layer flapping and organized structures in

the separation bubble using space-time correlations. The flowfield consisted of three regions:

a separation bubble at the step front, a recirculation bubble at the upper edge of the step

front, and a reattachment point downstream. Camussi et al. [40 ] performed a similar ex-

periment and investigated wall pressure statistics over a forward-facing step. Their results

agreed with Largeau and Moriniere [39 ]. Pearson et al. [41 ] showed the dependence of growth
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and decay cycle of the separation bubble on elongated structures in the upstream flow using

conditional averaging.

Organized vortical structures are also present in the shear–layer. Based on the experi-

ments of Brown and Roshko [42 ], the mixing layer consists of large coherent spanwise rollers

generated due to the Kelvin-Helmholtz instability. These structures grow in size by en-

training fluid, or by the process of amalgamation of two smaller structures. Bernal and

Roshko [43 ] state that the secondary streamwise vortices originate from an internal insta-

bility of the primary vortices. These streamwise vortices loop back and forth around the

spanwise rollers and occur in counter-rotating pairs. Dimotakis and Brown [44 ] carried out

similar experiments at higher Reynolds numbers up to 3 × 106. Although the flow dynamics

were different, the braid like structures observed in the experiments of Brown and Roshko [42 ]

persisted at these Reynolds numbers.

Samimy et al. [45 ] investigated the effects of compressibility on structures in the mixing

layer with moderate to high convective Mach numbers. At higher convective Mach numbers,

the structures were highly three-dimensional with good spatial, but poor temporal organi-

zation. Based on the space-time correlations, the structures resembled a horse-shoe type

vortex with its head on the low-speed side of the mixing layer, and inclined in both x–y and

x–z planes. Poggie and Smits [27 ] observed coherent structures in a high-speed mixing layer

with a convective Mach number of 1.1 using two-point correlations. The angle of the these

structures varied between 40–50 deg and streamwise elongation was observed downstream.

Similar inclined structures were also found by Helm et al. [46 ] in a shear-layer associated with

a Mach 3 SWTBLI on a compression ramp. Hu et al. [47 ], [48 ] investigated the mechanisms

of unsteadiness of a SWTBLI over a backward facing step flow. They observed low-frequency

motions associated with a breathing motion of the separation system and interaction between

the shock wave and separated shear-layer. Interactions between shedding of vortices from the

shear-layer and reattachment occurred at mid-frequencies. Additionally, Görtler like vortices

caused by centrifugal instability originating from the shear-layer curvature were correlated

well with the low-frequency dynamics of the interaction.
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1.3 Compression Ramp Flow with Sidewalls

The second flowfield investigated in this study is a compression ramp flow with sidewalls.

Most of the previous studies carried out on SWTBLI’s associated with a compression ramp

used a quasi two-dimensional approximation by incorporating aerodynamic fences or taking

measurements along the centerline of the wind tunnel in experiments; or using periodicity

on the side boundaries in numerical calculations. With recent advances in computational

power, it has become feasible to incorporate the effect of sidewalls in SWTBLI calculations.

Sidewalls introduce additional no-slip conditions which, when combined with the adverse

pressure gradient of the shock, result in additional separated regions. These separated regions

have a significant effect on the structure of centerline separation and eliminate the 2D nature

of the interaction.

The highly non-uniform surface flow pattern of such flowfields was determined in the

experimental studies on effects of sidewalls on reflected SWTBLI’s, carried out by Reda and

Murphy [49 ], [50 ]. Burton and Babinsky [51 ] studied the coupling between the corner and

centerline separation in a Mach 1.5 normal SWTBLI by modifying the former using either

vanes or suction. They found that the corner separation alters the structure of the λ-shock

foot, which in turn affects the main separation bubble. Additionally, compression waves

from the sidewall separation smeared the adverse pressure gradient at the corner. Bruce

et al. [52 ] conducted a similar experiment at Mach 1.4 and 1.5 where they quantified the

importance of effective aspect ratio δ∗/w (displacement thickness relative to width) on the

onset of three-dimensional effects on quasi-2D interactions. In a similar study carried out

by Xiang and Babinsky [53 ], the influence of corner separation on the tunnel centerline was

illustrated by estimating the position of the corner shock crossing point. This location was

found by extrapolating the compression waves along a straight line. When the crossing point

lies downstream of the interaction, the interaction is unaffected by the sidewalls and retains

its quasi-two-dimensional nature. The main separation increases as the crossing point moves

inside the interaction in the upstream direction. The separation extent decreases when the

crossing point falls upstream.
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Eagle and Driscoll [54 ] carried out detailed velocity and vorticity measurements using PIV

in a rectangular channel flow at Mach 2.75. The surface streamline pattern on the sidewalls

and the centerline region indicated certain similarities with Type-1 and Type-2 separation

respectively, as described by Tobak and Peake [55 ]. Funderburk and Narayanaswamy [56 ]

performed experiments on a 12 deg compression corner at Mach 2.5. Both the primary and

corner SWTBLI were investigated by surface streakline flow visualization and wall static

pressure measurements. The pressure spectra in the intermittent region of the primary in-

teraction was broadband in nature with a peak at St = fLsep/U∞ ≈ 0.01, consistent with

the canonical 2D version. On the other hand, the spectrum corresponding to the intermit-

tent region of the corner interaction was biased towards higher frequencies and displayed a

peak at St ≈ 0.05. Cross-coherence measurements indicated that pressure fluctuations in

the incoming boundary layer drive the unsteadiness of corner SWTBLI, while the primary

SWTBLI was more responsive to disturbances originating downstream. Morajkar et al. [57 ]

analyzed a SWTBLI in a low-aspect-ratio duct using stereoscopic-PIV measurements in a

Mach 2.75 flow. The swept interactions on the sidewalls and the incident interaction on

the bottom wall were coupled via a complex three-dimensional vortical flowfield. Using the

method of triple decomposition, three systems of vortices were identified: the corner vortex

pair, swept-shock vortex on the sidewall, and a horseshoe-like vortex associated with the

bottom wall interaction.

Wang et al. [58 ] carried out LES calculations on a reflected SWTBLI at Mach 2.7, includ-

ing the effect of sidewalls in the domain. They tested the effect of tunnel aspect ratio (w/h)

— where h is the tunnel height — and the sidewall boundary layer thickness on the interac-

tion characteristics. The flowfield was highly three-dimensional for smaller aspect ratios and

displayed spanwise uniformity at higher values. A swept SWTBLI, quasi-conical in nature,

was formed on the sidewalls and distorted the main shock. The main shock was weakened

at locations close to the shock foot and strengthened away from it. They also constructed a

model based on the effective aspect ratio to estimate the complexity of the flowfield. Bermej-

Moreno et al. [59 ] carried out wall-modeled large-eddy simulations (WMLES) of a flowfield

characterized by multiple oblique SWTBLIs at Mach 2, in the presence of sidewalls. They

considered three increasing strengths of the incident shock. The effect of confinement on the
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mean flowfield resulted in the presence of a singular shock intersection (presence of a Mach

stem between the incident and separation shock) in the first SWTBLI, as compared to a

regular shock intersection in case of the spanwise-periodic simulation. Spectral analysis of

wall-pressure fluctuations highlighted low-frequency content in the vicinity of the separation

shocks. The low-frequency motions associated with different interactions in the flowfield

were coupled by a non-linear mechanism.

Lushner and Sandham [60 ] carried out a numerical investigation of a three-dimensional

laminar shock-wave boundary-layer interaction (SBLI) at Mach 2. Critical point analysis

close to the wall revealed streamline patterns that resembled an owl-face pattern of the first

kind, as introduced by Perry and Hornung [61 ]. A swept conical SBLI present between the

shock generator and sidewalls was responsible for the strengthening of the interaction down-

stream. Presence of high-speed streaks downstream of the interactions near the centerline

and in the corner suggested streak instability as a possible transition mechanism in a con-

fined SBLI. Rabey et al. [62 ] used results from large-eddy simulations and high-frequency

pressure measurements from experiments to examine the off-centerline behaviour in a SWT-

BLI with sidewall effects. They observed asymmetry about the spanwise centre with peak

unsteadiness occurring off-centre. Using wall-pressure measurements, they were not able to

find significant correlation between separations at the corner and centre. Garnier [63 ] carried

out Stimulated Detached-Eddy Simulations (SDES) of an oblique SWTBLI, who also found

strongest wall-pressure fluctuations present in the corner flows. He was not able to correlate

the unsteadiness of the corner separations with that of the main separation.

Bisek [64 ] investigated sidewall interaction on a 24 deg compression ramp with a large

spanwise extent at Mach 2.25. In addition to the highly three–dimensional shock front, he

observed a separation vortex at each sidewall junction upstream of the ramp. Both the ramp

induced separation shock and leading foot of the λ-shock structure on the sidewall exhibited

the characteristic low–frequency oscillations, but interestingly, the vortex induced separation

bubble was nearly stationary. Poggie and Porter [65 ] extended this work by decreasing the

spanwise extent to explore the effect of a very small (near choking) domain width parameter

δ/w on the flow structure. Large scale symmetric and asymmetric motions were deter-

mined using conditional averaging. The curvilinear variation of centerline separation length
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scale with the domain width parameter δ/w was verified. The onset of three-dimensional

behaviour is dictated by the confinement ratio, δ∗/w where δ∗ is the boundary layer displace-

ment thickness in the center of the tunnel and w is the tunnel width [52 ]. Depending on

the confinement ratio, the dynamics of the centerline and corner separations can be either

independent or coupled. Additionally, the low-frequency shock motion observed in quasi

two-dimensional cases was not affected by the presence of sidewalls.

1.4 High-Frequency Forcing of Shear-Layers

Linear stability analyses of mixing layers have provided a great deal of insight into their

response to various excitation frequencies, which have in turn provided insights into their

basic mechanisms such as vortex roll-up, vortex pairing, dynamics of large-scale structures.

This has prompted many exploratory studies on different flow-control applications. A de-

tailed review article documenting the effects of periodic perturbations in the shear-layer is

provided by Ho and Huerre [66 ]. As a final aspect of this thesis, a brief study on the effects

of high-frequency forcing on compressible reattaching shear-layers is carried out.

Some prior studies on perturbed shear-layers at high Reynolds numbers (and high con-

vective Mach numbers) is reviewed. Samimy et al. [67 ] provide a comprehensive review on

the usage Localized Arc Filament Plasma Actuators (LAFPAs) to excite natural instabili-

ties in the shear-layer. The experiments were carried out on a exhaust jet from an nozzle

for Re ∼ O(106). The evolution of large-scale structures and as a consequence, the acoustic

farfield, were dramatically altered by the introduction of thermal and acoustic perturbations.

The shear-layer was found to be most receptive close to its inception, i.e. at the nozzle exit.

Additionally, forcing at frequency representing the preferred mode of a jet led to significant

lower levels of noise [68 ]. Dandois et al. [69 ] performed Direct Numerical Simulations (DNS)

and Large-Eddy Simulations of synthetic jet forcing applied on a separated flow for a low-

and high-frequency case. In case of low-frequency forcing, they observed reduced separation

length caused primarily due to increased entrainment by the separated shear-layer.

Wiltse and Glezer [70 ] explored the effect of direct excitation of small scales in free shear

flow, which lie within the dissipation regime of turbulence cascade. They observed enhanced
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energy transfer from large scales to small scales, leading to increase in dissipation and rate

of decay of turbulent kinetic energy. Vukasinovic et al. [71 ] carried out a similar study to

investigate the effects of high-frequency actuation on the evolution of large- and small-scale

motions in a subsonic turbulent shear-layer, using synthetic jets. Varying the vorticity flux

introduced in the shear-layer led to changes in its growth and entrainment rates. The spectral

plots showed broadband increase in the high-frequency regime accompanied by decrease in

energy within the large-scale structures. Stanek et al. [72 ], [73 ] have demonstrated the

effectiveness of high-frequency forcing in acoustic suppression of Rossiter modes in a cavity

flow. The strategies for flow-control of high Reynolds number flow over open cavities were

reviewed by Rowley and Williams [74 ].

1.5 Thesis Summary

This thesis consists of five additional chapters, the details of which are provided below:

1. Chapter 2: This chapter begins by examining the limitations of performing high-

fidelity CFD computations of a high Reynolds number flow, in the context of multi-

scale nature of turbulence. Concepts of turbulence modeling — Delayed-Detatched

Eddy Simulations (DDES) and Implicit Large Eddy Simulations (ILES) — used in

this study to overcome these limitations are discussed briefly. The details of numerical

schemes, grid spacings and time-steps, and locations of data extraction are specified.

The chapter concludes by presenting the techniques used for data analysis.

2. Chapter 3: In this chapter, the flowfield unsteadiness corresponding to a compressible

shear-layer reattaching on to a ramp is discussed in detail. Wall-pressure spectra and

correlations are used to delineate different time- and length-scales, respectively. The

effect of events in the shear-layer and recirculation zone on the reattachment shock mo-

tion is evaluated by calculating the estimates of correlation, coherence, and conditional

averages. Additionally, a comparative study between the DDES and ILES approach is

performed to discuss the efficacy of each approach in resolving the unsteadiness of the

flowfield.
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3. Chapter 4: A pattern similar to the previous chapter is followed here. This flow-

field is particularly characterized by massive separation and presence of complicated

gas-dynamics structures. The dominant time-scales in the flowfield are extracted us-

ing spectral analysis, with emphasis on the low-frequency shock motion. Estimates of

correlation and coherence are then used to explore the causes of unsteady shock mo-

tion. Finally, Dynamic Mode Decomposition is used to recover complicated secondary

motions using the process of mode reconstruction.

4. Chapter 5: Effects of high-frequency forcing on compressible reattaching shear-layer

are elaborated in this chapter. Comparison of both frequency and wavenumber spec-

tra corresponding to the forced case with those of the baseline case are carried out.

Changes in the reattachment shock motion as well as other mid- to high-frequency

events are investigated.

5. Chapter 6: This chapter presents the conclusions of this study.
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2. METHODOLOGY

This chapter presents the details of numerical modeling employed in the study of SWTBLI

associated with compressible reattaching shear-layers and a highly confined compression-

ramp flow. Initially, the challenges in accurately resolving the physics of high-Reynolds

number flows are discussed briefly. In this context, the methods of hybrid RANS/LES and

ILES which were used to perform high-fidelity simulations are introduced in Sec. 2.1 and 2.2 ,

respectively. This is followed by elaborating the approach to data analysis of the simulation

results.

Turbulence is inherently a multi-scale phenomenon, with eddy sizes ranging from the

order of boundary-layer thickness (δ) down to the Kolmogorov length-scale (η.) According

to the energy cascade model of Richardson [75 ], the turbulent kinetic energy is produced in

the large-scales and is eventually dissipated in the smaller scales by the action of viscosity.

For wall-bounded flows, the length-scale of these smaller eddies (for isotropic flows) was

estimated by Kolmogorov [76 ] as η = (ν3/ε)1/4, where ν is the kinematic viscosity and ε is the

dissipation rate of turbulent kinetic energy. The scale separation becomes a prominent factor

in turbulence at high Reynolds numbers flows, and is quantified by the friction Reynolds

number Reτ = δuτ/ν = δ+, which is the ratio of boundary-layer thickness (representing

eddies in the outer layer) and viscous length-scale (representing eddies in the dissipative

range.) Additionally, the fraction of total turbulent kinetic energy within the large-scale

structures increases with Reynolds number, indicating their importance in the transport of

turbulence properties. Details on the nature of turbulence in high Reynolds number are

documented in the reviews by Jiménez [77 ], Smits et al. [78 ], [79 ], and Marusic et al. [80 ].

For a Direct Numerical Simulations (DNS), Chapman [81 ] derived an estimate for the

required number of grid points – N ∼ Re9/5
Lx

, where Lx is the flat-plate length in the stream-

wise direction. These estimates were then revised to N ∼ Re37/14
Lx

by Choi and Moin [82 ],

who used updated correlations of skin-friction coefficient and displacement thickness in the

derivation process, specifically for high Reynolds number boundary layer flow. As is evident

from the Re scaling, a Reynolds number of O(106) requires a grid size of ∼ O(1015) points.

Since the problem size of this order of magnitude is not feasible for current supercomputers,
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small-scales in a turbulent flow which generate bulk of the computational cost, are modeled

under the assumption of local isotropy and sufficient scale separation at high Reynolds num-

bers. Although DNS runs of grid sizes over O(1010) cells are expensive, they are possible at

present [83 ], and demonstrations at the O(1012) cell scale have been carried out [84 ], [85 ].

There are numerous modeling strategies used to determine effective turbulent eddy vis-

cosity due to the contribution of unresolved scales, each with a different degree of fidelity

in a hierarchical sense. The most popular approach is the Reynolds Averaged Navier-Stokes

Equations (RANS), supplemented with either a one-equation or a two-equation turbulence

model to calculate the turbulent eddy viscosity (More complex models, with an equation for

each component of the Reynolds stress tensor such as the SSG model [86 ], LRR model [87 ],

and Wilcox Stress-ω model [88 ], are also available.) In this approach, all the turbulent scales

are modeled, thus making it extremely adaptable for industrial applications. This study

deals with two different modeling approaches: Delayed Detached-Eddy Simulations (DDES)

and Implicit Large-Eddy Simulation (ILES), both of which lie on a significantly higher level

in the trade of computational cost vs. resolution in turbulence modeling.

2.1 Delayed Detached-Eddy Simulations

The versatility of RANS turbulence models is limited to the applications that its empiri-

cal constants were tuned for. Outside of their respective domains of application — especially

in case of unsteady separated flows — these models break down and typically lead to non-

physical results and/or estimates that lie outside the bounds of their respective epistemic

uncertainties. Recent advances in computational power have made wall-resolved LES possi-

ble for low to moderate Reynolds numbers and wall-modeled LES feasible at high Reynolds

numbers.

Conventional hybrid RANS/LES models capitalize on the advantages of both RANS and

LES methods, wherein the model switches between the two modes depending on whether

the flow is either attached or separated and whether the grid is sufficiently resolved. This

approach was designed primarily to circumvent the high computational cost associated with

separated flows at high Reynolds number. The original formulation of DES by Spalart
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involved setting a length-scale (d̃) to determine if the model functions in the RANS mode or

LES mode. Within the RANS mode, the eddy viscosity (ν̃) is calculated by the corresponding

turbulent transport equations, whereas in the LES mode, the eddy viscosity is determined

by a sub-grid scale (SGS) model. The length-scale d̃, which acts as a switch between the

two modes, is a function of wall distance (d) and grid spacings (∆x, ∆y, and ∆z.) In the

Spalart-Allmaras (S-A) turbulence model, the eddy viscosity scales with the deformation rate

(S) and d: ν ∝ Sd2, when the production and destruction terms are balanced. Similarly

in the Smagorinsky Sub-Grid-Scale (SGS) model, the SGS eddy viscosity scales with S and

the grid spacing: νSGS ∝ S∆2, where ∆ = max (∆x,∆y,∆z) is the chosen measure of grid

spacing [89 ]. Since the eddy viscosity scales differently in the RANS mode than in the LES

mode, the DES length-scale d̃ is responsible for controlling the same and is defined by

d̃ = min (d, CDES∆). (2.1)

wherein the DES model switches to the RANS mode when d � ∆ and to the LES mode

when d � ∆.

Unlike the zonal DES approach, where d̃ is set by the user, the concept elaborated in the

previous paragraph is categorized as the “seamless” approach, which entails setting d̃ based

on the grid and/or solution without user intervention [90 ]. The seamless approach can be

more robust and can be applied to complex flowfields with relative ease. In case of ambiguous

grids wherein the wall-parallel grid spacings (∆x, ∆z) are sufficiently small to trigger the

LES branch of the model, but are not fine enough the resolve the LES content, a phenomenon

called Modeled Stress Depletion (MSD) [91 ] can occur. Modeled Stress Depletion can lead

to premature separation (also known as grid-induced separation) due to under-prediction

of the Reynolds stresses by the SGS eddy viscosity, and occurs when the boundary layer

thickness is a significant percentage of some macro length-scale such as the step height or

airfoil chord (such as in the vicinity of flow separation.)

The issue of MSD can be circumvented by correctly identifying the boundary-layer region,

in order to treat it purely as RANS and prevent the switch to LES. Several proposed alter-

natives to the original formulation of DES and their shortcomings are discussed by Spalart
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et al. [91 ] and are not reiterated here. A common feature shared amongst these alternatives

is their lack of ability to adapt to grids corresponding to complex geometries, thereby gen-

erating suspect solutions. In order to overcome the dependency of DES length-scale on the

grid, Spalart et al. [91 ] formulated a modified DES length-scale that also depends on the

local eddy viscosity. Additionally, blending functions – akin to the shielding functions used

by Menter and Kuntz – are used to preserve the RANS mode within the boundary layer.

In case of the S-A based DDES model, a parameter rd incorporates the local eddy viscosity

and is defined as,

rd = νt + ν√
Ui,jUi,jκ2d2

(2.2)

where rd is a modified version of the parameter r in the original S-A turbulence model

(r = ν/Sκ2d2.) In the above equation, ν, νt are the molecular and turbulent kinematic eddy

viscosity respectively, Ui,j is the velocity gradient, κ is the Kármán constant, and d is the

distance to the wall. The shielding function fd is defined as,

fd = 1 − tanh (8rd)3. (2.3)

For rd � 1 (away from the wall and lower νt), fd equals 1 and the LES mode is activated.

On the other hand when rd � 1 close to the wall, fd switches to zero and the RANS mode is

activated. Finally, the modified DES length-scale that enters the turbulence model is given

by,

d̃ = d− fd max (0, d− CDES∆) (2.4)

where CDES is a model constant which is calibrated by examining the behaviour at small

scales in homogeneous turbulence. Therefore close to wall, the length-scale d̃ = d as

d < CDES∆, activating the RANS mode with the eddy-viscosity determined by the S-A

model (see Sec. 2.3.2 .) Away from the wall, d̃ = CDES∆ as d > CDES∆, the LES mode

is triggered with the Smagorinsky SGS model (see Sec. 2.3.3 ) used to determine the eddy-

viscosity from the unresolved scales. Additional details on the common issues encountered

in DES calculations are elaborated by Spalart [92 ]. As the computationally intensive turbu-
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lence is modeled by RANS, the grid requirements for DDES scale as ∼ Re0.9
Lx

[93 ] (roughly

proportional to Reτ [94 ].)

2.2 Implicit Large-Eddy Simulations

Large Eddy Simulations (LES) of high Reynolds number flows are contingent upon the

the accuracy of the sub-grid scale (SGS) model to model the near wall turbulence. An SGS

model prone to errors may lead to issues like insufficient dissipation of turbulent kinetic

energy, resolution of the energy cascade from larger scales to smaller scales, and incorrect

prediction of sub-grid stresses, which result in erroneous values of skin-friction and wall heat

transfer. Increasing complexity in SGS modelling may address some of these issues but are

inevitably more computationally intensive.

Implicit Large Eddy Simulations (ILES) on the other hand, do not use an explicit SGS

model to treat the unresolved scales. Instead, the energy at high wavenumbers is treated

implicitly by the inherent dissipative nature of the numerical scheme. Numerical approxi-

mations of partial differential equations (PDEs) generate truncation terms, which have the

same order of magnitude as the SGS terms in LES [95 ]. Since this approach does not rely

on the formulation of an explicit SGS model, it is computationally efficient and easy to

implement. This method is particularly valuable in the case where the numerical scheme is

stabilized by an explicitly applied filter, which can be precisely tailored to obtain desired

spectral properties and overall dissipation [96 ].

The first formulation of this approach was done by Boris et al. [97 ], who termed it as

Monotone ILES (MILES.) A non-oscillatory finite volume (NFV) scheme is used to dis-

cretize the Navier-Stokes equations. The numerical schemes that fall in this class display

properties of numerical stability, monotonicity , efficient shock capturing, and suppression

of numerical oscillations. Grinstein et al. [98 ] use the Modified Equation Analysis (MEA)

approach to assess the stability and accuracy of NFV based ILES methods and examine the

effects of different NFV schemes. They concluded that the leading truncation-error terms

are instrumental in determining the dissipation properties provided by a particular NFV

scheme.
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ILES has been shown to reproduce the 4/5 law of Kolmogorov by Margolin et al. [99 ]

who used MPDATA — an NFV algorithm — to simulate decaying turbulence, wherein

the energy-dissipation characteristics depended on the order of accuracy of the NFV scheme

which implicitly provides the SGS model. Simulation of the Taylor-Green Vortex by Drikakis

et al. [100 ] using ILES captured the processes vortex stretching, instability, and production

of small-scale eddies, which are typically involved in boundary layer transition to turbulence.

Fuerby et al. [101 ] used MILES for a variety of compressible turbulent shear flow cases such

as, supersonic flat-plate boundary layers, compression ramp SWTBLI, and supersonic base

flows. They obtained reasonable agreement of surface properties (like skin-friction coefficient)

as well as first and second order moments with DNS and experimental data.

Visbal et al. [102 ] implemented compact finite differences instead of an upwind biased

finite volume discretization for spatial derivatives. Compact finite differences approach the

resolution of spectral methods with increasing order of accuracy. Unlike MILES, wherein the

dissipation at small scales is implicitly provided by the dissipative nature of the numerical

scheme, this approach applies an explicit high-order low-pass filter to the conserved variables

at every time-step. This filter is specifically selected to damp out the under-resolved high-

frequency content in the flowfield.

Discretization of spatial derivatives using high-order compact finite differences are elab-

orated in the work by Lele [103 ]. Some of the previous efforts on formulating Padé type

compact differencing schemes were carried out by Orszag and Israeli [104 ] and Hirsh [105 ].

For a particular flow variable f , its spatial derivative is determined by an approximate gen-

eralization of the Padé-type scheme of the form:

βfi−2+αfi−1+fi+αfi+1+βfi+2 = c

(
fi+3 − fi−3

6h

)
+b

(
fi+2 − fi−2

4h

)
+a

(
fi+1 − fi−1

2h

)
(2.5)

where the fi denotes the spatial derivative at node i and h = xi+1 − xi is the mesh spacing

between two consecutive nodes. The relationship between coefficients a, b, c, α, and β can

be obtained by matching the Taylor series coefficients of various orders of accuracy, in order

to obtain the desired order of accuracy. This scheme is convenient to implement on a non-
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uniform, curvilinear, and stretched meshes by incorporating coordinate transformations in

the governing equations, using appropriate Jacobians. As α, β −→ 0, the family of equations

in Eq. (2.5 ) describes the class of commonly used central difference schemes. For the sixth

order compact difference scheme used in this study, the coefficients are: a = 14/9, b = 1/9,

c = 0, α = 1/3, and β = 0. Similar coefficients for both compact finite difference and central

difference scheme are derived in Refs. [103 ], [106 ].

Lele [103 ] used Fourier wave number analysis of the discretization scheme in Eq. (2.5 )

to derive a relationship between the wavenumber (k) and the modified wavenumber (k̂), as

shown in Eq. (2.6 ),

k̂ = a sin (k) + (b/2) sin (2k) + (c/3) sin (3k)
2β cos (2k) + 2α cos k + 1 . (2.6)

Using the coefficients corresponding to compact and central difference scheme of various

orders of accuracy, a plot of the relationship between k and k̂ is illustrated in Fig. 2.1 . The

exact solution, k = k̂ is also included in the figure as a black solid line.

0 /4 /2 3 /4

0

/4

/2

3 /4

Figure 2.1. Fourier wave number analysis of central and compact discretiza-
tion schemes. Black solid line represents the exact solution, k̂ = k.
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In the legend nomenclature within this figure, the first letter stands for the type of

discretization – “E” for explicit central differences and “C” for compact differences, while

the number represents the order of accuracy of that particular scheme. As is evident from

the figure, discretization schemes with higher order of accuracy match the exact solution

for a wider domain of wavenumbers. Lower order compact difference schemes are still more

accurate than the higher order explicit central difference schemes. Dispersion error at high

wavenumbers is present in all the cases. For any given compact difference scheme of order

N , the stencil on the RHS of Eq. (2.5 ) consists of 2N + 1 points. Therefore the sixth-order

compact difference scheme used in this study offers a reasonable compromise between the

resolution capability and incurred computational cost. A tighter stencil also facilitates an

efficient parallel implementation of the scheme.

2.3 Governing Equations

2.3.1 Compressible Navier-Stokes Equations

The compressible, three-dimensional Navier-Stokes equations under the assumption of

calorically perfect gas shown in Eq. (2.7 ) are used in this study.

∂ρ

∂t
+ ∂

∂xj
(ρuj) = 0 (2.7)

∂

∂t
(ρui) + ∂

∂xj
(ρuiuj) = − ∂p

∂xi
+ ∂

∂xj
(τji) + fi i, j ∈ {1, 2, 3}

∂E

∂t
+ ∂

∂xj
[(E + p)uj] = ∂

∂xj

(
k
∂T

∂xj

)
+ ∂

∂xk

(τjkuj) + fkuk

where (x1, x2, x3) = (x, y, z) represent streamwise, wall-normal, and spanwise direction and

fi indicates an applied body-force. Under the assumption of a calorically perfect gas, the

total energy (E) is calculated as,

E = p

γ − 1 + 1
2ρuiui, (2.8)
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and using the ideal gas equation of state, the temperature is defined as,

T = p

ρR
(2.9)

where R is the gas constant for air. The shear stress tensor (τij) and the turbulent heat flux

( ~qT ) are shown in Eqs. (2.10 ) and (2.11 ), respectively:

τji = µ1
tot

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3δji
∂uk

∂xk

)
; µ1

tot = µdyn + µtur (2.10)

~qT = µ2
totcp

Pr
∇T ; µ2

tot = µdyn

Prd

+ µtur

Prt

(2.11)

where µ1
tot, µ2

tot represent the effective dynamic viscosity and thermal conductivity and Prd,

Prt are the dynamic and turbulent Prandtl numbers, respectively. The molecular viscosity

follows the Sutherland’s law in Eq. (2.12 ),

µ = µ◦

(
T

T◦

)3/2 (T◦ + S

T + S

)
(2.12)

where µ◦ = 1.716 × 10−5 kg/ms, T◦ = 273.15 K, and S = 110.4 K. The turbulent viscosity

µt is determined from a suitable turbulence model. For DDES computations, the turbulent

viscosity contribution from the unresolved scales is determined via a combination of the one-

equation S-A turbulence model (close to the wall) and the Smagorinsky SGS model (away

from the wall.) Their formulation is described in Sec. 2.3.2 and 2.3.3 , respectively. In case

of ILES computations, no explicit SGS model is used and instead, the physics of unresolved

scales is handled by the elimination of unresolved scales by a sharp, low-pass filter function.

2.3.2 S-A turbulence model

In a RANS approach, the unknown mean Reynolds stresses (uiuj) are modeled using the

Boussinesq hypothesis,

−u′
iu

′
j = 2νtSij − 2

3kδij, Sij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, k = 1

2u
′
ku

′
k (2.13)
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where φ denotes the Reynolds time-average of φ, φ′ denotes the fluctuating component of φ,

Sij is the mean strain-rate, k is the mean turbulent kinetic energy, and νt is the turbulent

eddy viscosity. The S-A turbulence model [107 ] computes the turbulent eddy viscosity as

follows:

νt = µt/ρ = ν̂fv1, fv1 = χ3

χ2 + c3
v1
, χ = ν̂

ν
, ν = µ

ρ
(2.14)

where ν is the molecular kinematic viscosity and the variable ν̂ is obtained by solving a

transport equation,

Dν̂

Dt
= cb1Ŝν̂ − cw1fw1

(
ν̂

d

)2
+ 1
σ

∂

∂xk

[
(ν + ν̂) ∂ν̂

∂xk

]
+ cb2

σ

∂ν̂

∂xk

∂ν̂

∂xk

. (2.15)

The production term Ŝ and other auxiliary relations are shown below,

Ŝ = S + ν̂

κ2d2fv2, fv2 = 1 − χ

1 + χfv1
, fv1 = χ3

χ2 + c3
v1
, fw = g

[
1 + C6

w3
g6 + C6

w3

]1/6

(2.16)

where S = |~ω|, g = r + cw2(r6 − r), and r = ν̂/Ŝκ2d2. The model coefficients required for

closure are given by,

cb1 = 0.1355, cb2 = 0.622, cv1 = 7.1, σ = 2
3 ,

cw1 = cb1

κ2 + 1 + cb2

σ
, cw2 = 0.3, cw3 = 2, κ = 0.41.

(2.17)

In the SU2 code [108 ], the variable ν̂ is set to zero at the wall, implying the absence of

significant turbulent eddies near the wall. A fraction of laminar viscosity is imposed in the

far-field.
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2.3.3 Smagorinsky Sub-Grid Scale Model

Within the LES mode in a DDES calculation, the unresolved sub-grid shear-stress tensor

can be decomposed in a isotropic and a deviatoric component, τ sgs
ji = τ iso

ji + τ dev
ji . The

isotropic and deviatoric components of the shear-stress tensor are defined as,

τ iso
ji = 1

3τ
sgs
kk

τ dev
ji = τji − 1

3τ
sgs
kk .

(2.18)

The Smagorinsky SGS model [109 ] defines the deviatoric sub-grid shear-stress as,

τ dev
ji = −2νtS̃ji, S̃ji = 1

2

[
∂ũi

∂xj
+ ∂ũj

∂xi

]

νt = (Cs∆)2 |S̃|, l = CDES∆, q = l|S̃|
(2.19)

where S̃ =
√

2S̃jiS̃ji, Cs is the Smagorinsky constant, and ˜ denotes quantities filtered im-

plicitly by the imposed grid spacing. The implicit filtering approach leads to a solution that

is sensitive to any variations in grid spacings, which in turn affects the statistics of resolved

turbulence [110 ].

2.3.4 Padé-type Non-Dispersive Spatial Filters

As mentioned in Sec. 2.2 , the ILES approach depends on the inherent dissipation of

the numerical scheme to act as a suitable SGS model. Compact differences are used in

a portion of the present project to calculate the spatial derivatives due to their “spectral-

like” resolution characteristics. Since the compact differencing approximation presented in

Sec. 2.2 is typically of central difference form with an even order of accuracy, the leading

order truncation error is of the dispersive type, i.e. there is no dissipation built-in the

scheme [103 ]. Hence it is necessary to introduce external dissipation in the flowfield to

counteract the accumulation of dispersion error at high wavenumbers [111 ].
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The Padé-type non-dispersive spatial filters act as low-pass filters and are used to selec-

tively damp out the high frequency content in the solution, specifically the under-resolved

scales. For a conserved variable φ, the filtered variable φ̂ is given as,

αf φ̂i−1 + φ̂i + αf φ̂i+1 =
N∑

m=0

am

2 (φi+m + φi−m) (2.20)

where N is the order of accuracy of the filter and am are the filter coefficients. The filtering

of conserved variables is carried out at every time-step (or after every sub-iteration) along

each direction, and entails solving a tridiagonal set of equations (for αf 6= 0.) A filter with

an order of accuracy N would generate a stencil consisting of 2N+1 points on the RHS. This

formulation is analogous to the compact differencing stencil elaborated in Sec. 2.2 . The free

parameter αf determines the degree of dissipation introduced by the filter. The primary

constraint of αf is that |αf | ≤ 0.5 for proper behaviour of the filter [112 ]. Higher values αf

correspond to a less dissipative filter. As in the approach used in compact differencing, the

filter coefficients are determined by matching terms in the Taylor series. These coefficients

are documented in Ref. [106 ].

The filter transfer function following a Fourier analysis is shown in Eq. (2.21 ),

SF (k) = b̂n

bn

=
∑N

m=0 am cos (mk)
1 + 2αf cos (k) (2.21)

where bn and b̂n are the Fourier coefficients for the original and filtered functions, respectively.

Following the low-ordered centered (LOC) approach by Gaitonde and Visbal [113 ], the filter

order is gradually reduced as one approaches a boundary, in order to compensate for the

reduced available stencil size. In this study, the filter order is gradually reduced from eighth

order (in the interior) to second order (at one point off the boundary.) No filtering is carried

out at the boundary point. This filter template can be represented as F8-F6-F4-F2-F0,

where “F” stands for filter and the following number represents its order.

In this study, the value of αf = 0.4 at the interior points where an eighth order filter is

applied. For filters of lower orders (F2, F4, and F6), the value of αf is increased to 0.49.

Using a value of the coefficient closer to 0.5 increases the sharpness of the filter, partially
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Figure 2.2. Filter transfer function. Black dashed line represents no filtering
of the variables.

compensating for the reduced order of the filter. Note that at αf = 0.5, Eq. (2.21 ) reduces

to an identity and no filtering is carried out. Using these values and Eq. (2.21 ), the resulting

filter gain function is shown in Fig. 2.2 .

According to the trends observed in this figure, there is a negligible effect on amplitude

for the range of wavenumbers, k ≤ π/2. Increasing the filter order from F8 to F10 pre-

serves a slightly wider band of wavenumbers at a higher computational cost. Therefore, this

observation justifies the usage of an eighth order filter for the interior points. Also for the

consistency of the numerical formulation, the filter order needs to be the compact difference

order plus two. Hence a combination of C6+F8 is used in this study.

In case of lower order filters, the dissipation at high wavenumbers is significantly reduced

due to a higher value of αf . In case of a shock wave, the filter template switches to F8-F6-

F4-F2-F0-F0-F0-F0-F0-F2-F4-F6-F8, wherein the shock point is located at the center of the

template. At locations where the filter is switched off, the discretization scheme switches

from compact differencing to an upwind biased scheme with an appropriate limiter to prevent

spurious oscillations. Upwind biased schemes introduce the necessary dissipation required for
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numerical stability in the vicinity of shocks. The shock detector uses a simple Jameson-type

pressure switch. It is always off for M < 1.05 and always on for M > 2.43. These threshold

Mach numbers are based on standard practice which aim for the shock detector to turn off

for localized subsonic flows, but simultaneously capture the shock crisply in the supersonic

freestream.

2.4 Computational Setup

This report presents the results from statistical analysis carried out on two flowfields:

the compressible reattaching shear-layer (Case 1) and compression ramp flow with sidewalls

(Case 2.) For each case, details of the grid spacings, flow conditions, numerical method,

and data sampling are provided. Both of these cases represent a specific type of SWTBLI;

Case 1 describes a SWTBLI that occurs in reattaching flows and Case 2 examines the effects

of confinement on a quasi two-dimensional SWTBLI.

2.4.1 Case 1: Compressible Reattaching Shear-Layer

Most of the results presented for the first case were obtained from data analysis of DDES

calculations carried out using the NASA OVERFLOW code by Leger, Bisek, and Pog-

gie [28 ], on the geometry shown in Fig. 2.3 (this computation was made possible by a grant

of computer hours from a DoD HPCMP Frontier Project and DoD Supercomputing Re-

source Center.) Two additional runs on the same geometry were carried out by the author

via DDES calculations in SU2 and ILES calculations in HOPS (Higher Order Plasma Solver),

an in-house code. These three runs are listed in Table 2.1 . The grids used for each code

were slightly different. The SU2 calculations were run in-part by Deshpande on the Stam-

pede2 cluster of Texas Advanced Computing Center (TACC), under an XSEDE grant. The

remaining calculations were carried out by Poggie on AFRL’s Mustang and Narwahl HPC

systems.

The SU2 code was originally developed by the Aerospace Design Lab (ADL) at Stan-

ford University and is currently under active development by many international collabo-

rators [114 ]. SU2 is an open-source unstructured finite volume solver implemented with

47



Table 2.1. List of calculations for Case 1.
Code Run by
SU2 Deshpande and Poggie
HOPS Poggie
OVERFLOW Leger, Bisek, and Poggie [28 ]

object-oriented class architecture in C++ and high level Python scripts. The SU2 suite con-

sists of several modules which are C++ executables, each designed for a specific task. The

recent version of SU2 (SU2 v.7.0.2 - Blackbird) has both LES and DDES capability [108 ].

HOPS was originally developed for multi-fluid plasma calculations, but is also capable of

single fluid gas dynamics [83 ]. The new, overset grid version of the code is called Wabash.

This code is written in modern Fortran, and employs the MPI and OpenMP libraries. The

computational approach employs multi-level parallelism. The computational domain is de-

composed into blocks, each of which is handled by one MPI rank. Each block, in turn, is

handled by several OpenMP threads which divide the work of outer loops. Inner loops are

designed to be vectorizable by most modern compilers. Input and output are handled using

derived data types and calls to MPI-IO.

Figure 2.3. Geometry used in experiments [28 ].

This geometry shown in Fig. 2.3 was based on the model used for experiments conducted

at Princeton University [7 ], [30 ], [31 ] in the 1980s and 1990s in the 8 in by 8 in, Mach 3,

high Reynolds number wind tunnel. It consisted of a backward-facing step with a height of

25.4 mm, followed by a cavity region about 61.9 mm long. Downstream of the cavity, a ramp
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inclined at 20 deg and extending 160 mm was present. For the calculations, OVERFLOW

2.2K, an overset grid computational fluid dynamics solver developed by NASA was used with

a hybrid RANS/LES approach and the S-A turbulence model. The freestream conditions

were chosen to correspond to the reported experimental values. Their respective values are

shown in Table 2.2 , where δ◦ is the boundary layer thickness on the step close to separation.

As mentioned previously, the DDES approach allows the numerical solution to be carried

out at the true experimental Reynolds number, which is quite high.

Table 2.2. Flow conditions for Case 1.
Parameter Value
u∞ 572 m/s
ρ∞ 0.77 kg/m3

T∞ 95 K
Tw 266 K
ρ∞u∞/µ∞ 67 × 106 m−1

M∞ 2.92
Mc 1.1
δ◦ 3 mm

For the calculations in OVERFLOW, the x–y plane was divided into three regions. The

first region lied upstream of the backward-facing step, the second region consisted of the

cavity and redeveloping zone, with the third region lying directly on top of it. Following

grid generation, the first, second, and third region consisted of 191 × 129, 1669 × 161, and

1669 × 129 points, respectively. This plane was extruded in the spanwise z-direction and

discretized uniformly with 321 points. Overall, the problem size composed of ≈ 1.6 × 108

grid points. In terms of wall units, the grid size corresponds to ∆x+ ≈ 25, ∆z+ ≈ 22.5 and

∆y+
w ≤ 1 throughout the domain. These quantities were calculated using the conventional

inner variable scaling: ∆x+
i = ∆xiuτ/νw, where uτ =

√
τw/ρw is the friction velocity; νw,

τw, and ρw are the kinematic viscosity, shear-stress, and density at the wall respectively.

Streamwise clustering was done in the regions characterized by high gradients.

For the calculations using SU2 and HOPS, the grid dimensions of the x–y plane are

consistent with that used in OVERFLOW (1701 × 289 cells.) Therefore the ∆x+ value is

≈ 25, with ∆y+
w ≤ 1 everywhere. The spanwise extent of the domain is truncated to 30 mm to
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(a) (b)

Figure 2.4. Extracted data locations (Case 1.) (a) Sampling stations [28 ]
(Reprinted with permission from the author) (b) Division of grid on the cen-
terplane.

reduce the computational cost. This value is equivalent to three times of the boundary layer

thickness at mean reattachment (δR = 10 mm) measured in the experiments [30 ], [31 ]. The

domain width for these calculations should be sufficient to achieve spanwise decorrelation

in the shear-layer, but not necessarily in the recirculation zone. The span was discretized

using 181 points and 501 points for grids corresponding to SU2 and HOPS, respectively.

The corresponding ∆z+ values are ≈ 23.6 and 8.5, respectively. The grid spacings for the

DDES runs follow the criteria specified for LES mesh sizing by Georgiadis et al [115 ] and

Spalart [107 ]. According to the criteria for DNS grids in Ref. [115 ], the ∆x+ ≈ 25 value

used for ILES runs is slightly higher than the upper limit of ∆x+ = 20. But the ∆x+ value

lies within the recommended bounds. The resulting grid sizes consisted of ≈ 90 million grid

points in case of SU2 and 246.3 million grid points in case of HOPS. The grid details for all

the three runs are summarized in Table 2.3 .

Table 2.3. Grid details for Case 1.
Case Grid points

(Nx ×Ny ×Nz)
Domain Width Grid spacings

(∆x+,∆z+)
Total points

SU2 1669 × 289 × 181 0.03 m 25, 23.6 90 × 106

HOPS 1669 × 289 × 501 0.03 m 25, 8.5 246.3 × 106

OVERFLOW 1669 × 289 × 321 0.0508 m 25, 22.5 160 × 106
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For the DDES calculations in OVERFLOW, a boundary layer profile computed from a

two-dimensional RANS computation was imposed at the inlet. The momentum thickness

was matched with the corresponding experimental value. No-slip isothermal condition was

set on the walls and flow properties were extrapolated on the upper surface and the outlet.

Sponge layers at the domain exit and the top boundary prevented spurious wave reflections.

A converged steady state RANS solution was used as the initial condition for DDES calcu-

lations. The improved Harten, Lax, van Leer, and Einfeldt (HLLE++) upwind scheme was

used with successive symmetric overrelaxation (SSOR) [116 ], [117 ]. Third-order spatial accu-

racy achieved with Monotone Upstream Centered Schemes for Conservation Laws (MUSCL)

approach [118 ]. The S-A turbulence model was implemented and the time-stepping was

carried out with second-order accuracy. Based on a time-resolution study, a time-step of

∆t = 0.25µs with three sub-iterations was chosen. The calculations in OVERFLOW were

run for a physical time of 0.5 s, or a total of 2 × 106 iterations.

The DDES calculations in SU2 were set up in a similar manner, with the exception

that the Jameson-Schmidt-Turkel scheme [119 ] was used to discretize the spatial derivatives,

with second-order spatial accuracy. The addition of a blend of second-order and fourth-order

artificial dissipation ensured monotonicty in the vicinity of shocks. The shear-layer adapted

SGS model suggested by Shur et al. [120 ] was used to alleviate the difficulty encountered by

DES methods in capturing the initial region of mixing layer development. They proposed a

new sub-grid length-scale called the Shear-Layer Adapted (SLA) scale that takes into account

the anisotropy of grid cells in the vicinity of shear-layer inception. A dual time-stepping

strategy [121 ], [122 ] with 20 sub-iterations was used to achieve second-order accuracy in time,

with a time-step similar to the one used for OVERFLOW calculations (∆t = 0.25µs.) Based

on the time-resolution study carried out by Leger et al. [28 ], a physical run-time of 0.05 s was

sufficient achieve convergence in a statistical sense. The available computational resources

allowed for a physical run-time of ≈ 0.042 s (169596 iterations) for DDES calculations in

SU2, which is close to the target value of 0.05 s.

For the ILES calculations in HOPS, the boundary layer profile corresponding to a two-

dimensional RANS calculation is imposed at the inlet, and turbulence was allowed to evolve

naturally until the separation point. The spatial derivatives were computed using a sixth-
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order compact difference scheme described in Sec. 2.2 . The scheme was dropped to fifth- and

fourth-order towards the boundaries. In the vicinity of a shock, the discretization switches

to a second-order Roe scheme with the continuous limiter of Anderson et al. [118 ] defined

as,

s = 2∆+∆− + ε

∆2
+ + ∆2

− + ε
(2.22)

where ∆+ = fi+1 − fi, ∆− = fi − fi−1, fi is a conserved variable, and ε = 10−12 is an

arbitrary small value to prevent singularities. In order to introduce dissipation at small

scales, a Padé-type, non-dispersive filter elaborated in Sec. 2.3.4 , with the shock capturing

scheme of Visbal and Gaitonde [96 ] was used. A second-order implicit Euler scheme was

used for time integration with quasi-Newton sub-iterations. Additional details are provided

in Ref. [123 ]. The calculations in HOPS were run for a physical time of ≈ 5 ms (2880600

iterations.)

Table 2.4. Time-stepping details for Case 1.
Case Run-time Time-step Sampling rate(s)
SU2 0.042 s 0.25 × 10−6 s 4 MHz
HOPS 0.005 s 1.72 × 10−9 s 572 MHz

2.86 MHz
OVERFLOW 0.5 s 0.25 × 10−6 s 4 MHz

0.4 MHz

The numbers in the table denote the number of iterations between consecutive samples

data. The highest sampling rate for SU2 and OVERFLOW is fs = 4 MHz. The undersam-

pled rate for the OVERFLOW run is fs = 400 kHz. In case of HOPS, the highest sampling

rate and the undersampled rates are fs = 572 MHz and 2.86 MHz, respectively. A table sum-

marizing the time-step, sampling rate (both the higher and lower values), and the physical

run-time is shown in Table 2.4 . The details of locations of data extraction for all the cases

are summarized in Table 2.6 .
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2.4.2 Case 2: Compression Ramp Flow With Sidewalls

The results for Case 2 were obtained from data analysis of ILES calculations carried out

by Poggie and Porter [65 ], using the HOPS code (this computation was made possible by

the DoE INCITE program at the Argonne Leadership Computing Facility; additional cal-

culations and postprocessing were carried out at the AFRL DoD Supercomputing Resource

Center.) The compressible Navier-Stokes equations were solved under the assumption of

thermally and calorically perfect gas.

Table 2.5. Flow conditions for Case 2.
Parameter Value

U∞ 588 m/s
M∞ 2.25
T∞ 170 K
Tw 323 K
p∞ 2.383 × 104 Pa
δ0 6.096 × 10−4 m

A second-order implicit Euler scheme was used for time integration with quasi-Newton

sub-iterations. A sixth-order compact differencing scheme described briefly in Sec. 2.2 was

used for spatial discretization of internal points, which was dropped to fifth- and fourth-order

for points nearest to the boundaries. A Padé-type, non-dispersive filter was used to ensure

numerical stability (see Sec. 2.3.4 .) A shock capturing routine based on the approach of

Visbal and Gaitonde [96 ] was implemented, which is elaborated in that same section. For

cells in the vicinity of the shock, a third-order upwind Roe scheme with a continuous limiter

of Anderson et al. [118 ] shown in Eq. (2.22 ) was used. The spatial discretization switches

back to the original compact scheme away from the shock. Additional details of the numerical

schemes are presented in Refs. [65 ], [83 ]. No sub-grid turbulence model was implemented,

but instead any unresolved scales were eliminated by the filter. More information about the

details of the discretization schemes used in the HOPS code can be found in the papers by

Poggie et al. [17 ], [83 ].
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Figure 2.5. Computational grid; every 32nd point shown for clarity.

The computational mesh is shown in Fig 2.5 . Its streamwise extent is X = x/δ◦ = 130,

where δ◦ is the boundary layer thickness at X = 80. The ramp begins at X = 100 and

is inclined at 24 deg. The spanwise width of the domain is Z = z/δ◦ = 20. The grid

consisted of 4711 × 1420 × 1401 points in the x, y, and z directions respectively, totalling

approximately to 9.4 × 109 cells. The corresponding grid spacing in wall units is ∆x+ = 7.9,

∆y+ = 0.51, and ∆z+ = 0.51. The grid was gradually stretched away from the floor and

sidewalls towards the top boundary and center of the domain. At the inlet, a boundary-layer

profile corresponding to the laminar-flow similarity solution for Mach 2.25 flow was imposed.

The flow properties were extrapolated at the end and top of the domain.

Transition to turbulence was achieved by means of an artificial body-force implemented

on the floor (at X = 2.5, Y = 0) and sidewalls (at X = 2.5, Z = 0, 20). On the floor,

the trip was uniform along the span and was set to zero close to the corners. The body-

force consisted of both streamwise and wall-normal components. It was oriented in the

upstream direction, with a larger magnitude than the wall-normal component. The body-

force on the sidewalls was composed of streamwise and spanwise components, oriented in

the upstream direction. The spanwise component was reversed on the sidewall at Z = 20.
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The mathematical expressions for implementation of the artificial trip model can be found

in Ref. [65 ].

Figure 2.6. Sampled planes (near surface omitted).

The calculations were run for 2.39 × 105 iterations with a non-dimensional time step of

U∞t/δ0 = 5 × 10−3. This corresponds to an overall simulation time of U∞t/δ0 = 1195. The

calculation was initially run for about two flow-through times to establish a statistically

steady state. The flow data were then saved for about seven flow-through times. The data

were extracted at six different planes (see Fig. 2.6 ): the three no-slip walls (Planes 1–3), the

X = 80 plane (Plane 4), the ramp-normal plane at X ≈ 116 (Plane 5), and the portion

of the centerplane (Z = 10) downstream of X = 80 (Plane 6). These planes were saved

every 200 iterations which corresponds to a sampling frequency of fs ≈ 965 kHz. The total

duration of the data set corresponds to about 5.3 cycles of the low-frequency shock motion

and breathing of the separation bubble (St ≈ 0.03) and about 50-60 cycles of the shear layer

flapping and low-mid oscillations of the separation bubble (St ≈ 0.1) and Kelvin-Helmholtz

vortex shedding (St ≈ 0.5.) The authors acknowledge that the integration time limits the

analysis of the low-frequency events, but assert that those in the mid-frequency range are

time-resolved.
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2.5 Data Analysis

2.5.1 Statistical Methods

Statistical estimates of space-time correlations and two-point correlations were used to

analyze the data. Their respective expressions are given in Eq. (2.23 ) and (2.24 ) respectively.

Rαβ(x, y, τ) = α(x, y, t)β(x+ rx, y + ry, t+ τ)
σασβ

(2.23)

Rαβ(x, y) = α(x, y, t)β(x+ rx, y + ry, t)
σασβ

(2.24)

In the above equations, Rαβ is the estimate of correlation magnitude between two time

histories α(t) and β(t), with an RMS value of σα and σβ respectively. Conditional averages of

flow properties based on a reference quantity were also carried out. The data were segregated

into bins, each representing a physically meaningful event. For a given number of samples

N , the conditional average of a flow quantity Φ was calculated using Eq. (2.25 ).

〈Φ〉 = 1
N

N∑
i=1

Φi(x) (2.25)

Spectral characteristics of turbulence were examined by calculating the power spectral

density. The auto-spectral and cross-spectral densities were calculated using Eqs. (2.26a )

and (2.26b ) shown below [124 ].

Sαα(f) =
∫ ∞

−∞
Rαα(τ)e−i2πfτ dτ (2.26a)

Sαβ(f) =
∫ ∞

−∞
Rαβ(τ)e−i2πfτ dτ (2.26b)

To determine the degree of linear correlation at a given frequency between the signals α(t)

and β(t), the coherence magnitude (γ2
αβ) between the two was calculated using Eq. (2.27 ),

γ2
αβ(f) =

Sαβ(f)S∗
αβ(f)

Sαα(f)Sββ(f) (2.27)
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where Sαα, Sββ are the auto-spectral densities of the signals α(t) and β(t), and Sαβ, S
∗
αβ are

the respective cross–spectral densities with the superscript ∗ denoting a complex conjugate.

The statistical estimates mentioned above, with the exception of conditional averages in

Eq. (2.25 ), were calculated using the process of segment averaging. The individual samples

were extracted by using a Hanning window to create an ensemble. The spectral density

estimates were calculated using Welch’s method with 50% overlap between each segment.

The segment lengths were long enough to resolve the lowest frequency fl and were an integer

multiple of 2k, k ∈ I for efficient execution of the FFT algorithm. Depending on the sampling

frequency, the window segment size Nw = max(fs/fl, 2k).

Filtering of signals was carried using the Butterworth filter in MATLAB. For Case 1, the

mean reattachment location was calculated using a metric called reverse flow intermittency

(γ.) This metric measures the amount of time the flow is travelling upstream, as a fraction

of total time. The location at which γ ≈ 0.5 is typically considered to be where the flow reat-

taches. This is especially useful when the instantaneous flowfield is characterized by multiple

zones of separation. Case 2 is characterized by an open separation bubble at the centerline

wherein the fluid does not recirculate upstream as observed in conventional 2D interactions.

Hence the mean reattachment location in this case was determined by monitoring the sign

of the skin-friction coefficient.

2.5.2 Dynamic Mode Decomposition

In addition to statistical analysis, Dynamic Mode Decomposition (DMD) [125 ], [126 ] is

used to analyze the flowfields corresponding to both the cases. DMD is a process which finds

the best linear operator that acts as a map between two flowfields at different instances in

time. The eigenvalues and eigenvectors of this linear operator are used to compute the DMD

modes. The resulting modes obtained from this technique occur as complex conjugates.

Each mode is associated with a discrete value of frequency, which occurs as the imaginary

part of the eigenvalue. This technique has been successfully used, for example, to analyze

the unsteadiness in SBLIs by Grilli et al. [10 ], Nichols et al. [11 ], Pirozzoli et al. [127 ],

Pasquariello et al. [128 ], and Statnikov et al. [129 ].
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In order to determine the modes that have a significant influence on the flowfield, the

Sparisity-Promoting DMD (SPDMD) algorithm formulated by [130 ] is used. A brief descrip-

tion of the procedure is described in this section. The snapshots of data are arranged such

that each column of the matrix corresponds to the flowfield at a particular instant in time,

as shown below,
X = [x(t1) x(t2) · · · x(tm)] ∈ Rn×m

Y = [x(t2) x(t3) · · · x(tm+1)] ∈ Rn×m
(2.28)

where n and m are the number of data-points and snapshots, respectively. The relationship

between flowfields at instants with a constant time displacement is approximated by a linear

operator A as follows,

Y = AX =⇒ A = Y X+ (2.29)

where X+ denotes the Moore-Penrose pseudo-inverse of the matrix X. The DMD eigen-

values and modes are determined from the eigendecomposition of matrix A. A low-rank

approximation for the matrix A is obtained by performing reduced SVD (Singular Value

Decomposition) on X, i.e. X = UΣV T , where the superscript T denotes the transpose. This

approximation is represented as follows,

Ã = UTAU (2.30)

which can be interpreted as the projection of A onto the implicit POD basis contained in U .

Substituting A = Y X+ and X+ = V Σ−1UT in the above equation, the approximation for

the linear operator reduces to,

Ã = UTY V Σ−1 ∈ Rr×r (2.31)

where r is the rank of Ã. The ith DMD mode ψi ∈ Cn following the eigendecomposition of

Ã, i.e. Ãφi = λiφi is calculated as,

ψi = Uφi (2.32)
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where φi ∈ Cn, λi are the ith eigenvector and eigenvalue of Ã, respectively. The numerical

snapshots x(t) ≡ xt can be expressed as a linear combination of DMD modes in the r-

dimensional subspace as,

xt ≈ ψt =
r∑

i=1
φiλ

t
iαi, t = k∆t; k ∈ {0, 1, · · · ,m− 1} (2.33)

and in matrix form as,

X ≈
[
ψ0 ψ1 · · · ψr

]
︸ ︷︷ ︸

Ψ

=
[
φ0 φ1 · · · φr

]
︸ ︷︷ ︸

Φ



α1

α2
. . .

αr


︸ ︷︷ ︸

Dα



1 λ1 · · · λm
1

1 λ2 · · · λm
2

... ... . . . ...

1 λr · · · λm
r


︸ ︷︷ ︸

Vand

. (2.34)

In the equation above, Dα is a diagonal matrix of the modal amplitudes, which are

indicative of the influence of a mode on the approximation of a flowfield as given by the

expression in Eq. (2.33 ). The Vandermonde matrix Vand consists of r complex eigenvalues

of Ã that determine the temporal evolution of the modes and encode their frequency and

growth/decay rates. For each mode, they are obtained by examining the imaginary and real

component of λj, where

µj = 1
∆t log(λj), j = 1, r (2.35)

The unknown amplitudes αi; i = 1, r are determined by solving the following optimization

problem,

minimize
α

||X − ΦDαVand||2F (2.36)

where ||.||F denotes the Frobenius norm and the resulting amplitudes αi,opt optimally ap-

proximate the entire dataset. In order to determine the optimal subset of the DMD modes,

the SPDMD algorithm entails solving a convex optimization problem by inducing sparsity
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via a penalty term, which is the l1 norm of the vector αi. The corresponding expression is

shown in the equation below,

minimize
α

||X − ΦDαVand||2F + γ
r∑

i=1
|αi| (2.37)

where γ is a positive regularization parameter. Larger values of γ encourage sparser solutions

from Eq. (2.37 ), while for γ = 0, the conventional optimization problem in Eq. (2.36 ) is

recovered.

The subset of dynamically significant modes extracted by the SPDMD algorithm was

chosen such that it captured frequencies within all the three bands. For a particular mode,

only the oscillatory part is reconstructed by following the process described in [11 ] and [128 ].

For a non-linear statistically stationary system, the growth rate tends to zero in the limit of

infinitely many snapshots [127 ]. Therefore, the effect of the oscillatory part of a DMD mode

on the mean flowfield can be determined using the expression shown in Eq. (2.38 ),

f(x, t) = f(x) + af Re
[
αi,opt

˜fi(x) exp (jωit)
]

(2.38)

where j =
√

−1, af is a suitable amplification factor, f(x), f̃i(x) represent the mean and

the ith spatial mode respectively, and ωi is the associated frequency. The oscillatory modes

mentioned previously appear in complex conjugate pairs. Hence the contribution of the

complex conjugate portion of a particular oscillatory mode is incorporated in the am-

plification factor af . The reconstructed modes were evaluated at discrete time values:

tk = kπ/16; k = 0, 1, · · · , 31.
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Table 2.6. Locations of data extraction for Case 1.
Location OVERFLOW HOPS SU2
Spanwise Lines
SH1 1 1 N/A
SH2 1 1 N/A
SH3 1 1 N/A
RZ1 1 N/A N/A
RZ2 1 N/A N/A
Wall (x/D = 1.07) N/A 1 N/A
Wall (x/D = 2.44) N/A 1 N/A
Wall (x/D = 3.81) N/A 1 N/A
Wall (x/D = 5.19) N/A 1 N/A
Wall (x/D = 8.35) N/A 1 N/A
C 1 1 N/A
D 1 1 N/A
E 1 1 N/A
F 1 N/A N/A
G 1 N/A N/A
H 1 N/A N/A
Surface streamwise Lines
Ramp + Cavity (z/D = 0.29) N/A 1 N/A
Ramp + Cavity (z/D = 0.59) N/A 1 N/A
Ramp + Cavity (z/D = 0.89) N/A 1 N/A
Ramp (z/D = −0.75) 1 N/A N/A
Ramp (z/D = −0.5) 1 N/A N/A
Ramp (z/D = −0.25) 1 N/A N/A
Ramp (z/D = 0) 1 N/A N/A
Ramp (z/D = 0.25) 1 N/A N/A
Ramp (z/D = 0.5) 1 N/A N/A
Ramp (z/D = 0.75) 1 N/A N/A
Planes
Centerplane (z/D = 0) 10 200 1
Wall (y/D = 0) N/A 200 1
Plane 1 (x/D = 1.07) N/A 200 1
Plane 2 (x/D = 2.44) N/A 200 1
Plane 3 (x/D = 3.81) N/A 200 1
Plane 4 (x/D = 5.19) N/A 200 1
Plane 5 (x/D = 8.35) N/A 200 1

61



3. COMPRESSIBLE REATTACHING SHEAR-LAYER

In this chapter, the physics associated with a compressible reattaching shear-layer is dis-

cussed. Three different runs listed in Table 2.1 were used to perform time-resolved calcula-

tions of this flowfield. Initially, the mean and statistical quantities obtained from DDES cal-

culations in OVERFLOW and SU2, as well as ILES calculations using HOPS are compared.

This is followed by spectral analysis in the frequency and wavenumber domain, which high-

lights events corresponding to different time-scales and quantifies the various length-scales

in the flowfield. Comparison of spectra obtained from the three runs are also shown at select

locations. Finally, causality amongst these events is established using statistical estimates

of correlations and coherence. Time-resolved data from DDES calculations in OVERFLOW

is used for this purpose. The results of data analysis of the OVERFLOW case carried out

previously by Deshpande and Poggie [131 ] are reproduced from [131 ], with permission from

AIP publishing.

3.1 Flowfield structure

This section characterizes the compressible mixing layer that is formed downstream of

the backward facing step. The contours of mean density are shown in Fig. 3.1 . The density is

non-dimensionalized by its freestream value. The mean reattachment location (xR/D ≈ 4.69)

is highlighted by a red dashed line. The axes are scaled by the step height and the mean

streamlines are included in this figure.

The flow separates at the edge of the backward-facing step resulting in a free shear-layer

that turns downwards before reattaching on the ramp. The recirculation zone is characterized

by a large vortex, and a smaller corner vortex is present close to the bottom of the step.

The flow is aligned along the ramp surface through a reattachment shock. Notice that the

reattachment shock foot is highly smeared, and composed of multiple compression waves.

At the end of the ramp, the flow accelerates via an expansion fan.

The resolved Reynolds stresses are plotted in Fig. 3.2 . In this figure, 〈 〉 denotes the

RMS of a particular quantity. Only the R33 component of the normal stress is shown in

Fig. 3.2a , as the other two Reynolds normal stress components are qualitatively similar, but
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Figure 3.1. Mean density field (from OVERFLOW.) The mean reattachment
location is marked at xR/D = 4.69 for reference.

(a) (b)

Figure 3.2. Resolved Reynolds stresses (from OVERFLOW.) (a) R33 = 〈w′〉2

component (b) R12 = 〈u′v′〉 component. The mean reattachment location is
marked at xR/D = 4.69 for reference.

lower in magnitude. The peak magnitude occurs in the vicinity of the mean reattachment

location for both the stress components. Their magnitudes start to increase prior to the mean

reattachment location, and continue with this trend downstream. A similar observation was

noted in the experiments of Hayakawa et al. [31 ] who attributed this behaviour to the

mean dilation rate after examining the turbulent kinetic energy equation. The shear-stress

component (R12) shown in Fig. 3.2b has a large magnitude in the neighborhood of the mean

reattachment location, which includes some part of the recirculation zone. Lower values are
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observed in the remaining portion of the cavity, as well as farther downstream on the ramp

in the redeveloping zone.

(a) (b) . (c) (d)

Figure 3.3. Comparison of mean velocity profiles in the shear-layer at (a)
x/D = 0.5 (b) x/D = 1.5 (c) x/D = 2.5 (d) x/D = 3.5.

Figure 3.3 compares the non-dimensional streamwise velocity profiles obtained from the

three runs at various streamwise locations in the shear-layer. Overall the profiles show rea-

sonable agreement with each other. In all the cases, the velocity gradient: ∂u/∂y becomes

less steep, indicating increased turbulence production downstream caused by the entrain-

ment of external flow by the mixing layer. The velocity profile corresponding to the SU2

runs deviates from its counterparts progressively downstream. This may be a result of the

difference in the numerical method or the turbulence model between SU2 and OVERFLOW,

which leads to different predictions of the shear-layer spreading rate - dθ/dx, where θ is the

shear-layer momentum thickness.
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(a) (b)

Figure 3.4. Comparison of shear-layer growth rates between SU2 (—),
OVERFLOW (—), and HOPS (—) for (a) Momentum thickness (b) Vorticity
thickness.

The evolution of shear-layer momentum and vorticity thickness is shown in Fig. 3.4 for

all the three cases. The expressions used to calculate the momentum and vorticity thickness

are shown in Eq. (3.1 ) [132 ],

θ =
∫ ∞

−∞

ρ

ρ1
U∗ [1 − U∗] dy

δw = U1 − U2

(∂U/∂y)max

(3.1)

where U∗(y) = (U(y) − U2)/(U1 + U2), U1, U2 and ρ1, ρ2 are the freestream velocity and

density values of the high-speed and low-speed side of the mixing layer, respectively. The

growth rates for DDES calculations in SU2 and OVERFLOW are higher than those for the

ILES calculation. All the plots follow a similar trend i.e., initial linear growth signifying

merging of spanwise vortices followed by the non-linear regime where growth rate saturates

and small-scale breakdown occurs. The difference in the growth rates may be a result of

difference in the dissipation of the numerical method, the nature of boundary layer before

separation, or some combination of both. Also, HOPS is using an ILES model, whereas SU2

and OVERFLOW include a sub-grid scale model (or may be still in RANS mode.) Bell

65



and Mehta [133 ] observed higher growth rates for tripped boundary layer as compared to

untripped boundary layers. Also, it is worth mentioning that the growth rates determined

from Fig. 3.4 are much larger than those of a classical mixing layer generated by a splitter

plate. The increased turbulence in the recirculation zone is responsible for this behaviour [69 ],

[134 ].

(a) (b)

Figure 3.5. Surface quantities of (a) Wall-pressure (b) Skin-friction coefficient.

The comparison of wall-pressure and skin-friction coefficient plots between the computa-

tional results and experiments is shown in Figs 3.5a and 3.5b respectively. Error bars with

an experimental uncertainty of 5% for wall-pressure for and 10% skin-friction coefficient are

included in the plots. The data are plotted along the ramp surface, starting from the cavity-

ramp junction (see Fig. 2.4a .) In case of wall-pressure, the computational plots agree well

with experimental results. The plots corresponding to the DDES runs in SU2 and OVER-

FLOW show a slightly larger deviation from the experiments as compared to the ILES runs

in HOPS. The plots for skin-friction coefficient corresponding to the computational results

lie on top of each other prior to reattachment. Downstream of reattachment, the plots cor-

responding to HOPS and OVERFLOW relax to a lower value skin-friction coefficient in the

recovery region. On the other hand, the plot associated with SU2 follows the trend of ex-

perimental data and shows better agreement. The difference in the skin-friction distribution
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between the SU2 and HOPS case can be attributed to the approach used in sub-grid scale

modeling. Similar difference between the SU2 and OVERFLOW case is most likely caused

due to higher domain width and wall-spacing (∆y+
w ) on the ramp for the OVERFLOW case.

(a) x/D = 0.5. (b) x/D = 1.5. (c) x/D = 2.5.

Figure 3.6. Comparison of normalized mean-squared streamwise momentum
fluctuations in the shear-layer between SU2 (—), HOPS (—), OVERFLOW
(5), and experimental data (©) [31 ].

Figure 3.6 shows the comparison of mean-squared streamwise momentum fluctuations

(〈(ρu)′〉2), normalized by the reference streamwise momentum flux (ρ∞U
2
∞) in the shear-layer,

between computations and experimental data. The computational results display significant

deviation from the experimental results at all the streamwise locations. Close to the shear-

layer origin at x/D = 0.5, the wall-normal location of the peaks are relatively closer, though

the peak values in the computations are under-predicted. Farther downstream at x/D = 1.5

and x/D = 2.5, the predicted computational peak values along with their respective wall-

normal locations are different for each case. Overall, the results from OVERFLOW show

better agreement with results from HOPS, as compared to the results from SU2. This may

be due to the fact that OVERFLOW computations used an upwind method of high-order

of accuracy (3rd order) as compared to SU2, wherein the convective fluxes were discretized
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using the JST scheme, which is 2nd order accurate. Additionally, differences in the domain

width and grid spacings (see Sec. 2.4.1 ) could also contribute to this result.

Figure 3.7 shows the flowfield at a specific instant in time for the all the three cases.

The structures in the shear-layer and the recirculation zone are highlighted using a constant

value of Q-criterion. These iso-surfaces are colored using the magnitude of non-dimensional

streamwise velocity. An x–y plane at z/D = −1 is colored with the contours of the quantity

~u.∇p. This quantity is effective in highlighting regions in which a strong pressure gradi-

ent is aligned with the flow direction. An iso-surface of this quantity is used to show the

reattachment shock. All the flowfields are qualitatively similar as with the structure of the

shear-layer immediately downstream of the step and towards the reattachment location.

Based on the work carried out by Lasheras and Choi [135 ], we suggest that the mixing

layer, via the Kelvin-Helmholtz instability, distributes the vorticity in the incoming boundary

layer between regions of high and low vorticity. The regions of strong vorticity correspond to

the spanwise coherent vortices, with residual vorticity concentrated in the braids connecting

these structures. The strain field between the spanwise rollers, coupled with vortex stretching

along its principal axes leads to the amplification of streamwise vorticity in the braids. As a

consequence, these braids loop over the spanwise rollers, and are characterized by a counter-

rotating pair of vortices.

A similar interpretation can be applied to Figs. 3.7a –3.7c . Immediately downstream

of the separation point, spanwise coherent vortices are observed which persist for a short

distance. Non-linear interaction between the streamwise braids and the spanwise vortices

causes breakdown to yield fine scale turbulence. Note that in DDES, there is no resolved

turbulence until after this breakdown. Farther downstream, structures resembling hairpin

vortices are observed. It seems that many such instances of hairpin vortices are stacked

together in the streamwise direction, forming superstructures akin to the ones commonly

observed in the logarithmic region of the boundary layer. This observation is consistent

with studies of Samimy et al. [45 ] and Dimotakis and Brown [44 ]. The reattachment shock,

highlighted as a white surface, is highly corrugated along the span. On the x–y plane at

z/D = −1, shocklets emanating from the eddies in the shear-layer can be observed. The

convective Mach number for this flow is Mc = 1.1 (see Table 2.2 ), which indicates that the
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(a) (b)

(c)

Figure 3.7. Snapshots of instantaneous flowfields for (a) OVERFLOW case
(b) SU2 case (c) HOPS case.

convection velocity of large-scale structures is supersonic, leading to the observed shocklets.

They have also been observed experimentally in planar laser scattering data (eg., Figs. 3

and 4 of Poggie and Smits [7 ]). These shocklets form a complex wave pattern which extends

up to the boundary demarcated by the expansion wave at the step edge. These shocklets

form a complex wave pattern which extends up to the boundary demarcated by the expansion

wave at the step edge.
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3.2 Unsteadiness of the interaction

This section elaborates the dominant time-scales in the interaction, primarily through the

highly time-resolved data obtained from OVERFLOW calculations. Comparison of spectra

among the OVERFLOW, SU2, and HOPS cases are shown at select locations in the domain.

Before discussing the spectral characteristics, an attempt to justify the choice of length scale

to non-dimensionalize frequency is made. Note that in Fig. 3.8b , all the spectra have two

local maxima in nature. These results agree qualitatively with the plots obtained in the

study on incompressible turbulent separation bubbles carried out by Kiya and Sasaki [37 ],

[38 ] as well as Hillier and Cherry [136 ]. The peak at lower frequency is a signature of shear-

layer flapping, whereas the peak at higher frequency represents the turbulent eddies. The

second peak consists of multiple sub-peaks which may correspond to Rossiter modes. From

previous studies, the flapping frequency when non-dimensionalized by reattachment length

and freestream velocity, lay in the range 0.12 < fxR/U∞ < 0.16. In order to be consistent

with previous studies, the cavity length Lc = 0.0619 m was chosen as the length scale, which

resulted in a Strouhal number (St = fLc/U∞) of St ≈ 0.16. Based on this formulation,

the energy associated with flapping is concentrated at frequencies St ≤ 1. Henceforth, the

spectra are non-dimensionalized using the cavity length Lc and freestream velocity U∞ unless

mentioned otherwise.

We start with the cavity region. The corresponding data were obtained from the cen-

terplanes sampled at fs = 400 kHz. The spectra are plotted in the premultiplied semi-log

form. The two-dimensional contour plot for the streamwise variation of premultiplied en-

ergy density is shown in Fig. 3.8a . In the region between 0 < x/D ≤ 1.2, there are two

energy-dominant frequency bands, 0.1 ≤ St ≤ 0.2 and 1.25 ≤ St ≤ 10. As mentioned previ-

ously, the first band is representative of shear-layer flapping, whereas energy corresponding

to turbulent eddies is present in the second band. Additionally, the cavity region seems to

be characterized by events of frequency scale which are an order of magnitude lower than

the first band (0.02 ≤ St ≤ 0.1). This is suggested by the relatively lower magnitude of

energy present in that range. Based on previous studies on SWTBLI [4 ], [5 ], [25 ] frequencies
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in this range most likely represent separation bubble breathing. A more detailed analysis is

presented in Sec. 3.4 .

A detailed view of the spectral plots at streamwise locations lying in the range 0 <

x/D ≤ 1.2 is shown in Fig. 3.8b . All the plots consist of two peaks. The magnitude

of the peak at lower frequency increases initially from x/D = 0.05 to x/D = 0.1, and

decreases monotonically downstream of x/D = 0.1. Another feature that was not apparent

from the contour plot is the presence of discrete local peaks within the second peak at the

higher frequency. They are labeled as P1, P2, and P3 in Fig. 3.8b . These local peaks may

(a) (b)

(c) (d)
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(e)

Figure 3.8. Pre-multiplied wall pressure spectra in the cavity region for the
OVERFLOW case in parts (a)–(c). (a) Contour plot (b) Spectral plots in
the first half of the cavity; the local peaks that may correspond to Rossiter
modes are labeled as P1, P2, and P3 (c) Spectral plots in the second half of the
cavity (d) Comparison of spectra at x/D ≈ 1.07 (e) Comparison of spectra
at x/D ≈ 2.44. For reference, the ramp starts at xR/D = 2.44 and mean
reattachment occurs at xR/D = 4.69.

correspond to Rossiter modes [137 ]. A more rigorous analysis to establish this point is carried

out. Rossiter developed an analytical expression to predict the resonant modes generated

by flow-induced cavity oscillations in subsonic and transonic flows. This model is based on

the coupling between vortex shedding at shear-layer impingement and acoustic modes in the

cavity, creating a feedback loop. Heller and Bliss [138 ] used a modified expression in case of

high-speed flows, which is shown in Eq. (3.2 ). The length and velocity scales in this case are

Lc and U∞ respectively.

Stm = fmLc

U∞
= m− α

M∞/
√

1 +M2
∞(γ − 1)/2 + 1/kv

(3.2)

In the above equation, m is an integer representing a specific resonant mode, α, kv are

empirical constants, γ is the ratio of specific heats, and M∞ is the freestream Mach number.

In the plot at x/D = 0.05, there are four local peaks at St ≈ 1.50, 2.16, 2.75, and 3.58 respec-

tively. Based on the aspect ratio of the cavity (Lc/D ≈ 2.44 > 1), shallow cavity behaviour
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can be expected in which longitudinal standing waves may be present [139 ]. Assuming that

these frequencies represent the resonant modes, the empirical constants calculated using

Eq. (3.2 ) with St1 = 1.50 and St2 = 2.16 are α = −1.27, kv = −3.82. The frequencies

of resonant modes at m = 3 and m = 4 corresponding to these empirical constants turn

out to be St3 ≈ 2.82 and St4 ≈ 3.48. These values are reasonably close to the frequencies

corresponding to the third and fourth local peak in the spectra at x/D = 0.05. A slight

discrepancy occurs on account of the assumption of a purely rectangular cavity in the orig-

inal theory, which is not the case in this study. The purpose of this analysis was to verify

the possibility of feedback mechanism in the recirculating zone. The details of the complex

acoustic wave-structure in the cavity is not discussed in this study.

Downstream of x/D ≈ 0.05, the peaks at higher resonant modes (m = 3, 4) are smeared

out, while the peaks at lower modes (m = 1, 2) persist up to x/D ≈ 1.2. The energy

associated with shear-layer flapping decreases substantially downstream of x/D = 1.2 as

seen in Fig. 3.8c . The energy at higher frequencies increases concurrently from x/D = 1.2 to

x/D = 1.6. A distinct shift of the spectra towards lower frequencies is observed downstream

of x/D = 1.6, accompanied by reduction of the peak at higher frequencies. At x/D = 2.4

(close to the ramp-cavity junction), a smaller peak occurs at St ≈ 0.85 which may correspond

to the shedding of vortical structures from the recirculation zone. A similar observation was

noted by Kiya and Sasaki [37 ] who observed that the shedding frequency was six times the

shear-layer flapping frequency.

Comparison of wall-pressure spectra between the three computational cases in the cavity

region is shown in Figs. 3.8d and 3.8e , respectively. The spectrum corresponding to the

HOPS run was obtained by averaging over three windows with segment size of Nw = 220

samples, resulting in a frequency resolution of ∆St ≈ 0.06. The spectra corresponding to the

SU2 and OVERFLOW runs were obtained by averaging over 8 and 37 windows respectively,

with same segment sizes of Nw = 215 (∆St ≈ 0.013) and Nw = 213 samples (∆St ≈ 0.0053.)

At x/D ≈ 1.07, the wall-pressure spectra corresponding to the DDES runs in SU2 and

OVERFLOW agree well for St ≥ 1. The peaks corresponding to the Rossiter modes are

more pronounced for the SU2 case. The peak corresponding to the flapping frequency for

the SU2 case is not as prominent as the one in the OVERFLOW case, owing to a smaller
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total run-time. The wall-pressure spectrum corresponding to the HOPS case indicates less

energy in high-frequency domain. This is most likely caused due to a shorter run-time. Also,

the normalization of the spectra by variance of the signal could result in lower amplitudes.

Figure 3.8e compares the spectra at x/D ≈ 2.44, which lies at the ramp-cavity junc-

tion. The overall disagreement between the spectra persists at this location. The spectrum

corresponding to the OVERFLOW run resolves more peaks in the high-frequency range

(St ≤ 1) as compared to the other two cases. The spectra corresponding to both SU2 and

OVERFLOW seem to capture the peaks (highlighted as St1 and St2 in the figure), wherein

the lower peak represents the flapping frequency and higher peak is indicative of passage of

large-scale structures. The spectrum corresponding to the HOPS run fails to capture these

details accurately. Again, this can be attributed to insufficient run-time.

A similar exercise was carried out to examine the spectral characteristics on the ramp.

Wall pressure fluctuations on the ramp surface sampled at a higher frequency (fs = 4 MHz)

were used for this purpose. For both the SU2 and HOPS cases, the window segment sizes

(and corresponding the frequency resolutions) are consistent with the ones used to calculate

the spectra shown in Figs. 3.8d and 3.8e . For the OVERFLOW case, the window segment

size was increased to 216 segments (averaging over 45 windows) resulting in a frequency

resolution of ∆St ≈ 0.006. The contour plot of premultiplied spectra is shown in Fig 3.9a .

In this figure, the logarithm of Strouhal number is plotted on the y-axis and non-dimensional

streamwise coordinate is shown on the x-axis, with contours of the quantity fG(f)/σ2
p. The

resulting spectrum was averaged across seven spanwise locations. The mean reattachment

location is indicated by a white dashed line.

The energy-dominant frequency scales over the entire ramp extent lie in the range 0.63 ≤

St ≤ 7.94. At the ramp-cavity junction (x/D = 2.41), a significant amount of energy is also

present in the band 0.1 ≤ St ≤ 0.31. This region persists up to x/D = 3.5. In contrast

to the cavity region, low-frequencies of the order St ≈ O(10−2) are not dominant in this

region of the flow. Most of the energy is present at frequencies St > 0.1. (Nonetheless, some

low-frequency content is detectable.) This observation is consistent with the spectra in a

SWTBLI associated with a compression ramp or an impinging SWTBLI [141 ], [142 ]. The
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energy dominant low-frequencies are present only a short distance in the separation bubble,

downstream of the separation line.

A detailed view of the evolution of spectra, upstream of the mean reattachment line is

shown in Fig. 3.9b . Shortly downstream of the ramp-cavity junction at x/D = 2.52, the

spectra exhibit multiple peaks. The peak at lowermost frequency is present at St ≈ 0.15,

which is close to the shear-layer flapping frequency. The peak with the highest magni-

tude occurs at St ≈ 0.75, which corresponds to the vortex-shedding frequency. This fre-

quency is approximately five times of the flapping frequency. The peaks lying above St > 1

(St ≈ 1.66, 2.46, 5.45) may represent eddies of different length scales, with higher frequen-

cies corresponding to a smaller eddy size. At x/D = 3.5, almost all the peaks above St > 1

disperse and instead, a single peak at St ≈ 1.12 is observed.

Additionally, a peak at St ≈ 5.45 originally present at x/D = 2.52 now occurs at a

slightly lower frequency (St ≈ 4.97) at this location, but with a decreased magnitude. Close

to the mean reattachment (x/D = 4) and downstream (see Fig. 3.9c ), this peak diminishes

resulting in a broadband spectrum, which gradually shifts towards higher frequencies in

the redeveloping region. The spectrum at x/D = 5.21 shows good agreement with the

corresponding experimental result of Shen et al. [140 ]. The experimental spectrum rolls

off prematurely at higher frequencies because the measured signals were band-pass filtered

(a) (b)
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(c) (d)

Figure 3.9. Premultiplied wall pressure spectra on the ramp for the OVER-
FLOW case in parts (a)–(c). (a) Contour plot (b) Spectral plots upstream
of mean-reattachment (c) Spectral plots downstream of mean-reattachment
(d) Comparison of spectra at x/D ≈ 3.81. The ramp starts at xR/D = 2.44
and the mean reattachment location is marked at xR/D = 4.69 for reference.
Symbols indicate experimental results of Shen et al. [140 ] at x/D = 5.21.

between 50 Hz and 80 kHz (5.4 × 10−3 ≤ St ≤ 8.66). Figure 3.9d compares the spectra

between the three runs at x/D ≈ 3.81, which lies upstream of mean reattachment. The

spectra corresponding to the HOPS and SU2 runs were averaged over the span. As with

the comparison of wall-pressure spectra in the cavity region (shown in Figs. 3.8d and 3.8e ),

the peak amplitudes differ for each case. The spectra corresponding to HOPS and SU2

runs show reasonable agreement, but both differ from the spectrum corresponding to the

OVERFLOW run. Although such disagreements were also observed by Weston et al. [143 ],

[144 ], the observations noted from the comparison of wall-pressure spectra underscore the

sensitivity of surface quantities on the total run-time and the SGS modelling approach.

Based on the results in this section, the flowfield seems to be characterized by large-scale

structures present both in the shear-layer and recirculation zone. Evidence of shear-layer

flapping was obtained from the two maxima present in the spectral plot close to the step.

Based on the pressure spectra on the ramp, the effect of flapping persists up to the mean

reattachment location. Also, the same spectral plot indicated a low-frequency band with
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St ≈ O(10−2). The rest of this chapter will focus on studying these aspects individually, as

well as investigating their effect on the unsteadiness of the reattachment shock, and at the

mean reattachment location.

Finally, the pressure spectra at locations within the shear-layer (SH-1, SH-2, and SH-3)

and the recirculation zone (RZ-1 and RZ-2) for the three runs are compared in Fig. 3.10 

(see Fig. 2.4a for details of these locations.) The spectra are plotted in log-log coordinates

with the Strouhal number plotted on the x-axis and the normalized power spectral density

plotted on the y-axis. The window segment sizes for all the three cases are similar to the

ones used in Fig. 3.9d .

(a) (b)

(c) (d)
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(e)

Figure 3.10. Comparison of Pressure spectra between SU2 (—), OVER-
FLOW (—), and HOPS (—) at (a) SH-1 (b) SH-2 (c) SH-3 (d) RZ-1 (e)
RZ-2.

The number of segments corresponding to the OVERFLOW case are much larger due

to the associated higher sampling frequency (see Table 2.6 .) The smoothness of the spectra

corresponding to the HOPS and OVERFLOW run relative to the SU2 run can be attributed

to the additional spanwise averaging. Unlike the wall-pressure spectra shown in Figs. 3.8 

and 3.9 , good agreement amongst the spectra is obtained here. Slight mismatch at lower

frequencies is present at SH-1 (in Fig. 3.10a ), SH-3 (in Fig. 3.10c ), and RZ-1 (in Fig. 3.10d .)

But the overall roll-off to higher frequencies is captured well in all the cases. The observations

suggest sufficient run-time for the SU2 case. On the other hand, the HOPS case needs a

longer run-time to sufficiently resolve the frequencies lying in St ≤ 0.06 using additional

samples of data. Figures 3.10d and 3.10e do not plot the spectrum corresponding to the

HOPS case as the data was not sampled at those locations (see Table 2.6 .)

3.3 Large-scale structures

To investigate the presence of organized structures, two-point correlations corresponding

to the OVERFLOW case (using the expression in Eq. (2.24 )) are carried out for locations

lying within the shear-layer. Time-series of streamwise velocity fluctuations are used for
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this purpose. In the data presented in Fig. 3.7 , the large-scale structures were observed at

locations in the vicinity of the reattachment shock. Hence Sub-planes 1 to 5 (see Fig. 2.4b )

were used to extract the signals, with the flow reattachment occurring in the latter. The

reference points used to calculate the correlations were (x/D, y/D)ref = (1.77,−0.12) in

Sub-plane 3 (Case I), and (x/D, y/D)ref = (2.76,−0.12) in Sub-plane 4 (Case II). The

streamwise location of the reference points correspond to the midpoint of the sub-planes,

and their respective wall-normal locations lie close to the shear-layer center. The correlation

plots for the OVERFLOW case, obtained for two cases corresponding to the two reference

points mentioned earlier are shown in Fig. 3.11a .

The contours of correlation for Case I are shown as solid black lines over the flooded

contours of Case II. The contour levels for both the cases are similar. The first two levels

(R = 0.1, R = 0.3) are labeled for Case I. The contours of non-dimensional mean u-velocity

are used to highlight the shear-layer and recirculation zone. For both cases, the plots are

roughly elliptical in shape and are slightly inclined within the shear-layer. A representative

length scale of large-scale structures corresponding to the contour value of R = 0.1 was

calculated. The average length scale for structures in Sub-plane 3 is approximately 10δ◦,

where δ◦ = 3 mm is the boundary layer thickness in the vicinity of separation. It increases

to 12δ◦ downstream in Sub-plane 4.

Correlations of density fluctuations with reference points (x/D, y/D)ref = (2.66,−0.012)

and (x/D, y/D)ref = (2.66, 0.055) are shown in Figs. 3.11b and 3.11c , respectively. The

(a) (b)
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(c)

Figure 3.11. Two-point correlations for the OVERFLOW case on the cen-
terplane (z/D = 0) using (a) Streamwise velocity fluctuations (u); colored
dashed lines are contours of non-dimensional mean u-velocity. (b) Den-
sity fluctuations (x/D, y/D)ref = (2.66,−0.012). (c) Density fluctuations
(x/D, y/D)ref = (2.66, 0.055). Dashed lines indicate experimental correlations
obtained by Poggie and Smits [145 ]; y0 is the height of zero mean velocity line
and δ is the thickness of the undisturbed shear-layer at x/D = 2.79.

vertical axis shows the wall-normal distance from the zero mean velocity line (y0/D =

0.8) at x/D = 2.79, and the horizontal axis plots the distance from the abscissa of the

reference point. Both of these quantities are normalized by the undisturbed shear-layer

thickness (δ/D = 0.42) at x/D = 2.79. Experimental correlations obtained by Poggie

and Smits [145 ] are included in the same figures as dashed lines. The data were obtained

via planar laser scattering, and are representative of the density of scattering particles.

The experimental planar laser scattering procedure records the intensity of light scattered

from particles of condensate in the flow, which was then used to obtain correlations shown

in Figs. 3.11b and 3.11c . Only the contour levels R = 0.55 and R = 0.75 are shown,

with the latter used to calculate the length scale in experiments. Overall, the shape of

experimental and computational correlations show good agreement. Scattering intensity is

roughly proportional to gas density, except in regions of the flow where the temperature is

high enough to vaporize the condensate [146 ]. Since the correlations of the computational
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data are not carried out using exactly the same variable, the contour levels for computational

and experimental results do not match exactly.

Figure 3.12. Space-time correlation of streamwise velocity fluctuations in
the shear-layer for the OVERFLOW case.

Space-time correlation of streamwise velocity fluctuations for the OVERFLOW case were

used to calculate the convection velocities of these structures. In the shear-layer, correla-

tions between SH-1, SH-2, and SH-3 (see Fig. 2.4b ) are plotted in Fig 3.12 . The time-

delay is non-dimensionalized by the distance between the location of two signals (∆x =√
(x− xref )2 + (y − yref )2) and the freestream velocity U∞. The reciprocal of the optimum

time-delay results in the non-dimensional convection velocity (∆x/(∆tU∞) = Uc/U∞). The

signals were spanwise averaged to reduce statistical noise. The correlation plots in Fig. 3.12 

show of a peak at approximately the same non-dimensional time-delay. A positive value of

time-delay indicates that the event occurred first at an upstream location. The average value

of the convection velocity calculated from the these plots is about Uc ≈ 0.61U∞. The local

mean velocity increases from ≈ 0.25U∞ at SH-1 to ≈ 0.4U∞ at SH-3. The smaller peaks on

either side of the primary peak could be a manifestation of longer time-scale motions origi-

nating upstream/downstream of the reference point (St ≈ O(10)−2) or through shear-layer

flapping (St ≈ 0.12–0.16).
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(a) (b)

Figure 3.13. Spanwise space-time correlations for the OVERLFOW case of
(a) streamwise velocity fluctuations between SH-1 (dashed red lines) and SH-3
(flooded contours) (b) RZ-1 (dashed red lines) and RZ-2 (flooded contours).

Contours of spanwise space-time correlations for the OVERFLOW case using pressure

fluctuations in the shear-layer are shown in Fig. 3.13a . The reference point for these corre-

lations lay midway on the spanwise line. The flooded contours correspond to SH-3, whereas

the dashed red lines represent SH-1. The contour labels for the latter are included in the

figure. The time-delay is shown in milliseconds. The contours consist of a large region of

positive correlation in an elliptical shape, and smaller regions of negative correlation. These

correlation plots point towards a hairpin vortex packet [147 ] which induces velocity fluctua-

tions in the flow direction between the legs, and in the opposite direction on its either side.

As one progresses downstream from SH-1 to SH-3, both the spanwise length scale and time-

scale increase, corresponding to the growth of the mixing layer. The rise in the spanwise

length scale is higher. This region of the flow is characteristic of the presence of hairpin

vortices wherein the velocity induced between its legs is along the same direction and in the

opposite direction on either sides [147 ].

The wavenumber spectra of spanwise velocity fluctuations (E33(kz)) within the shear-

layer are shown in Fig. 3.14 in log-log coordinates. The dimensional wavenumber is plotted

on the x-axis and the power spectral density is shown on the y-axis. The arrow in the figure

82



Figure 3.14. Comparison of spanwise wavenumber spectra of (a) streamwise
velocity fluctuations between OVERFLOW (—) and HOPS (—) at SH-1 (—),
SH-2 (– – –), and SH-3 (–·–). Arrow indicates the downstream direction.

points the direction while moving downstream from SH-1 to SH-3. For all the locations in the

shear-layer, the wavenumber spectra corresponding to the OVERFLOW run indicates higher

energy content residing within lower wavenumbers (large-scale structures.) These spectra

also show signs of energy saturation as one approaches the Nyquist wavenumber. The spec-

tra corresponding to the HOPS run resolve a wider range of wavenumbers. On traversing

downstream from SH-1 to SH-3, the energy content amongst the large-scale structures in-

creases, which is accompanied by decrease in the energy content amongst the small-scale

structures. A similar trend was observed by Pirozzoli et al. [148 ] in the wavenumber spectra

of streamwise velocity fluctuations, obtained from DNS calculations of a spatially evolving

compressible mixing layer. Unlike the spanwise velocity spectra shown in that study, the

spectra in this case do not follow the Kolmogorov’s inertial range scale of −5/3, presumably

on account of strong anisotropy in the turbulent field caused by the high Reynolds number

of the flow or streamwise shear-layer development.

Similar to Fig. 3.13 , spanwise correlations of wall pressure fluctuations were carried out

in the recirculation zone. The resulting plots are shown in Fig. 3.13b , wherein the same
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unit is used for time-delay. The dashed red lines correspond to RZ-1 and the flooded con-

tours correspond to RZ-2. Both the length and time scales increase substantially at RZ-2,

which lies well within the cavity region unlike RZ-1, which lies relatively close to the shear-

layer. Compared to the correlation plots in the shear-layer, larger spanwise length scales and

time-scales are observed in the recirculation zone. Between RZ-1 and RZ-2, the time-scale

increases substantially. The spanwise length scale at RZ-1, corresponding to the R = 0.75

contour level, is lz ≈ 2.2 mm. This agrees with the length scale derived from the same

contour level of the correlation plot in Fig. 10 of [145 ].

(a) (b)

Figure 3.15. (a) Space-time correlations of wall pressure fluctuations for the
OVERFLOW on the ramp at Pos-1 (flooded contours) and Pos-2 (dashed red
lines). (b) Convection velocities on the ramp. (Bottom-left) Nested hairpin
model [147 ] (Reproduced with permission from J. Fluid Mech. (2000), 422,
pp.1-54. Copyright 2000 Cambridge University Press).

Using wall pressure fluctuations on the ramp, space-time correlations were carried out

for the OVERFLOW case using data sampled at fs = 4 MHz. The reference signal was

extracted at the midpoint of each spanwise segment at Pos-1 and Pos-2 on the ramp surface,

followed by spanwise averaging of the signals across the seven spanwise locations. Recall

that Pos-1 and Pos-2 are streamwise lines on the ramp surface, placed at seven equidistant

spanwise locations (see Fig. 2.4b .) The resulting correlations are shown in Fig. 3.15a . In
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this figure, the time-delay in milliseconds is plotted on the y-axis and the distance from the

reference point (∆x/D = (xref − x)/D) is shown on the x-axis. The flooded contours and

the red dashed lines correspond to the correlations at Pos-1 and Pos-2 respectively. Selected

contour levels are shown for the latter. The streamwise length scale is lx/D ≈ 0.63. In both

the cases, the length scale was calculated using the R = 0.1 contour level. The nature of the

correlation plot does not change significantly at Pos-2.

Bernardini and Pirozzoli [149 ] investigated effects of compressibility on the characteristics

of wall pressure field in case of supersonic adiabatic turbulent boundary layers. From the

space-time correlations, they determined convection velocity corresponding to each discrete

value of time-delay. Duan et al. [150 ] followed a similar methodology to calculate the speed

of propagation of pressure fluctuations in a hypersonic boundary layer at Mach 6. This

concept was also adapted in the current work. Figure 3.15b illustrates the resulting plot,

which highlights the scale dependence of convection velocity. The reciprocal of time-delay

(τ), non-dimensionalized by the cavity length (Lc) and freestream velocity (U∞), is shown

on the x-axis. The non-dimensional convection velocity (Uc/U∞) is plotted on the y-axis.

Low-frequency events on the ramp have a higher non-dimensional convection velocity,

with latter decreasing rapidly at higher frequencies. This trend is consistent with the ob-

servation of Bernardini and Pirozzoli [149 ] in which convection velocities increased with

time-delay. This led to the conclusion that large-scale structures move faster and are located

farther away from the wall as compared to the smaller eddies, which applies here as well.

At the beginning of the ramp, the convection velocity of large-scale structures lies in the

range 0.48U∞ ≤ Uc ≤ 0.5U∞. This result is consistent with the previous studies of Largeau

and Morinere [39 ], Camussi et al [40 ], and Kiya and Sasaki [37 ]. Downstream at Pos-2, this

range increases to 0.62U∞ ≤ Uc ≤ 0.68U∞.

A physical picture associated with this analysis is best illustrated by the nested hairpin

model, proposed by Adrian et al. [147 ]. The model schematic is shown in the bottom left

corner of Fig. 3.15b . In this schematic, zones I, II, and III consist of packets of eddies with

convection velocities, Uc1 , Uc2 , and Uc3 respectively. The convection velocity increases as one

progresses from zone I to zone III, i.e. away from the wall. The features of this model that

may pertain to this flowfield are reiterated here. Groupings of individual hairpin vortices
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called packets, move together with a specific convection velocity. Smaller packets are formed

most recently and propagate with a lower convection velocity than the larger, older packets.

They co-exist within packets of larger hairpin vortices, which may be overtaken by the latter,

causing a constantly changing flow pattern.

(a) (b)

Figure 3.16. Space-time correlations of wall pressure fluctuations on the
ramp for the OVERFLOW case at (a) (x/D, y/D)ref = (4.83,−0.13) (b)
(x/D, y/D)ref = (6.24, 0.38); δR is the experimentally measured boundary
layer thickness at the mean reattachment location. Symbols indicate experi-
mental results of Shen et al. [140 ].

Figure 3.16 shows additional space-time correlations of wall pressure fluctuations on the

ramp for the OVERFLOW case. The reference point for the plot in Fig. 3.16a , (x/D, y/D)ref =

(4.83,−0.13), lies close to the mean reattachment location. In case of the plot in Fig. 3.16b ,

the reference point, (x/D, y/D)ref = (6.24, 0.38), lies farther downstream in the redevelop-

ing boundary layer. Correlations obtained from the experiments of Shen et al. [140 ] with

high-frequency wall-pressure transdicers are included in the figures. They were carried out

for three longitudinal distances from the reference points mentioned above; the same ap-

proach was used in this study. The time-delay on the horizontal axis is non-dimensionalized

by the freestream velocity and experimental value of boundary layer thickness at the mean

reattachment location, δR = 10 mm.
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Overall, the correlation curves show good agreement with the experimental results. In

case of Fig. 3.16a , the peaks in the correlation plot align well with the experimental data.

Slight disagreements are observed away from the peaks. The magnitude of peaks in Fig. 3.16b 

are lower than the experiments, but the values of corresponding optimal time-delays are

almost equal. The mismatch in the peak magnitude can be attributed to the difference in

the averaging process — instantaneously averaged over the transducer surface in experiments

vs. averaged over the span after calculating the correlation in this study — and uncorrelated

high frequency components in case of correlations carried out using computational results.

According to Shen et al. [140 ] higher peak correlation magnitude farther downstream of

reattachment (in Fig. 3.16b ) is indicative of wall pressure field that quickly relaxes towards

an equilibrium turbulent boundary layer.

(a) (b)

Figure 3.17. Comparison of spanwise wavenumber spectra (Ep(k3)) of wall-
pressure fluctuations between SU2 (—) and HOPS (—) at (a) x/D = 1.07
(—) and x/D = 2.44 (– – –) (b) x/D = 3.81 (–·–) and x/D = 5.18 (–··–).
Arrow indicates the downstream direction.

Figure 3.17 characterizes the spanwise length-scales in the cavity (see Fig. 3.17a ) and

on the ramp (see Fig. 3.17b ) at various streamwise locations in log-log coordinates. The

dimensional wavenumber is shown on the x-axis with power spectral density plotted on the

y-axis. The results from DDES calculations in SU2 are compared with the ILES calcula-
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tions from HOPS. In the latter, the width of the domain was discretized using 501 points,

thereby resulting in a higher Nyquist wavenumber as compared to the former, wherein the

width of the domain was discretized using 181 points. The wavenumber spectra for the SU2

results at all the streamwise show saturation of energy at higher wavenumbers, caused as a

result of poor-resolution of small-scale structures. In the cavity region at x/D = 1.07, the

wavenumber spectra for SU2 suggests more energy residing within the large-scale structures

as compared to HOPS. This trend is consistent with that in Fig. 3.17 , which compared

spanwise wavenumber spectra of streamwise velocity fluctuations in the shear-layer, between

the OVERFLOW (DDES) run and HOPS (ILES) run. The spectra show good agreement

farther downstream at x/D = 2.44, in the initial portion of the inertial subrange. Slight

disagreement still persists in the low wavenumber regime.

The spectra on the ramp at x/D = 3.81 (in Fig. 3.17b ) show reduced energy content

amongst the large-scale structures with increased energy content amongst the mid- to high-

wavenumbers. At this streamwise location, the spectra for both the cases show good agree-

ment across the entire wavenumber domain. At x/D − 5.18 which lies downstream of the

mean reattachment location, compared to the spectrum corresponding to the ILES run, the

spectrum corresponding to the DDES run shows significantly higher energy content in the

intertial subrange. This is most likely caused due to poor resolution of high-wavenumbers,

resulting in insufficient dissipation. The HOPS spectra at both the streamwise locations

are similar and display a characteristic slope in the inertial range, which indicates gradual

return to locally isotropic behavior. On the other hand, the variation in the SU2 spectra

prior to and post reattachment suggests that DDES is error-prone in capturing the statistics

of redeveloping flows.

3.4 Shear-layer flapping, separation-bubble breathing, and reattachment shock
motion

This section elaborates on the events corresponding to energy dominant frequencies ob-

served in the premultiplied pressure spectra in Figs. 3.8a and 3.9a . We start with shear-layer

flapping. This phenomenon can be viewed as a vertical motion of the shear-layer causing

wall-normal velocity perturbations (v) about the mean. Therefore evidence of such motion
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can be obtained by correlating wall-normal velocity fluctuations with other relevant quanti-

ties. To investigate the effect of flapping on the recirculation zone, correlations of pressure

fluctuations at RZ-2 and wall-normal velocity in the shear-layer (SH-1 to SH-3) were carried

out for the OVERFLOW case, with the results plotted in Fig. 3.18 . The time-delay is non-

dimensionalized by the distance between the reference points and freestream velocity. In the

same figure, a contour plot of non-dimensional local speed of sound (aloc/U∞) is included on

the top-left corner.

Figure 3.18. Space-time correlations of p and v for the OVERFLOW case.
(Top-left) Contour plot of local speed of sound.

The extrema occur at positive time delays, indicating that the event occurred first in

the shear-layer. The correlation plot for SH-3/RZ-2 shows a broad peak with the highest

correlation magnitude. The curve drops slowly towards zero at large time-delay, probably

on account of large-time scales associated with the combined effect of flapping motion and

separation bubble breathing. The magnitude of peak correlation drops sharply in case of

SH-2/RZ-2, with the appearance of a valley. A similar trend occurs for SH-1/RZ-2, where

the wall-normal velocity fluctuations are negatively correlated with pressure fluctuations in

the recirculating zone.
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The physical nature of these correlations can be interpreted as follows. During the flap-

ping motion, an upward movement of the shear-layer causes a positive wall-normal velocity

fluctuation (v > 0) and vice-versa for a downward movement. At SH-3, the optimal time-

delay is very close to zero. The effect of flapping is almost instantaneous at RZ-2 as it shares

the same streamwise location with SH-3. The velocity scales associated with the optimal

time delays in case of SH-2 and SH-1 are Uc/U∞ = 0.56 and Uc/U∞ = 0.68 respectively. In

case of SH-2, the local speed of sound aloc lies within the range 0.54U∞ < aloc < 0.6U∞ (see

top-left in Fig. 3.18 ). Therefore the flapping motion at SH-2 may affect the local pressure at

RZ-2 via acoustic disturbances. In case of SH-1, a different mechanism may be responsible

for the same, as the corresponding velocity scale lies outside this range. Similar correlations

with pressure at RZ-1 did not indicate any significant effect of flapping at that location.

Hence the corresponding plots are not included for brevity.

From the spectral plot in Fig. 3.8a , the peak corresponding to shear-layer flapping was

obtained by examining wall pressure fluctuations close to the step. This result indicates

a possible causality between the wall pressure fluctuations and the velocity fluctuations in

the shear-layer. In order to verify this hypothesis, two-point correlations of these quantities

at the same streamwise station were calculated for the OVERFLOW case. The resulting

contour plot is shown in Fig. 3.19 .

The contours are shown on the centerplane up to the location of mean reattachment,

i.e. Sub-planes 1 to 5. The contours of non-dimensional density shown as dashed lines are

superimposed on the correlation contours. High absolute values of correlation are observed

in the region close to the step (0 ≤ x/D ≤ 1) and on the ramp (3.4 ≤ x/D ≤ 4.8). At the

separation point, alternating regions of positive and negative correlations occur on account

of oscillations of the expansion fan at the separation point, caused by the flapping motion.

Within the recirculation zone, a positive correlation suggests that an upward motion of the

shear-layer (v > 0) is associated with a higher instantaneous pressure (p > 0) at the same

streamwise location, and vice-versa. The streamwise extent of this region (0 ≤ x/D ≤ 1)

is consistent with the domain wherein spectral energy corresponding to shear-layer flapping

is dominant (see Fig. 3.8a ). The ramp surface is characterized with regions of negative
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Figure 3.19. Two-point correlations of pw at a given streamwise station x/D
and v in the shear-layer at the same station for the OVERFLOW case. Colored
dashed lines are contours of non-dimensional mean density.

correlation values. Physically, they may be representative of large-scale turbulent structures

on the ramp.

In the spectra of Fig. 3.8a , energy corresponding to the flapping motion is observed to be

concentrated at St ≤ 1. Based on this threshold, the centerplane data were low-pass filtered

to highlight the flapping motion. Four frames from the reconstructed movie are shown in

Fig. 3.20 . The contours of non-dimensional u-velocity are plotted on the centerplane. Three

contour levels are specifically highlighted: u/U∞ = 0.7, u/U∞ = 0.15, and u/U∞ = −0.1 to

illustrate the breathing and flapping motions. These three contour levels will be referred to

as C1, C2, and C3 respectively. The black solid lines represent the instantaneous contour

levels and the red dashed lines are the respective time-mean values. The location of mean

reattachment is also shown for reference.

Figure 3.20a shows the recirculation zone and the shear-layer approximately at their

time-mean location. In Fig. 3.20b , the recirculating zone enveloped by C3 shrinks in size

with respect to the mean, thereby depicting the contraction phase of the breathing motion.

At the same instant in the shear-layer, C2 moves below its mean value while the position of
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C1 remains relatively unchanged. After the contraction phase, the separation bubble and the

shear-layer revert back to their respective time-mean locations in Fig. 3.20c . Figure 3.20d 

illustrates the expansion phase of the breathing motion wherein the bubble expands in size.

This is accompanied by an upward movement of C2. Similar to the contraction phase, the

position of C1 does not change significantly.

To investigate the breathing motion highlighted by the results presented in Fig. 3.20 ,

the mass history of the separation zone was examined. At any given instant, the separation

bubble is characterized by pockets of positive and negative u-velocity, instead of a homo-

geneous region of upstream flowing fluid. A few causes that result in the variation of the

mass of the separation bubble include vortex shedding, reinjection of fluid, and entrainment

(a) (b)

(c) (d)

Figure 3.20. Contours of u/U∞ describing the shear-layer flapping motion
and separation bubble breathing cycle for the OVERFLOW case. (a) Mean lo-
cation/Equilibrium. (b) Downward movement/Bubble contraction. (c) Mean
location/Equilibrium. (d) Upward movement/Bubble expansion. Dashed line
indicates the mean reattachment location.
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of fluid by shear-layer to support its growth rate. Accounting for these factors, the mass of

the separation bubble at any given instant can be calculated as:

m(t) =
∫∫∫

V
ρ(x, t)f(x, t) dx dy dz (3.3)

where m is the instantaneous mass, V is the control volume, and ρ is the instantaneous

density. The centerplane data (with fs = 400 kHz) were used for this purpose, assuming

unit length in the spanwise direction. The integration was carried out numerically using the

trapezoidal rule. To exclude regions of downstream flow from the calculations, the following

weighting function was used for numerical integration:

f(x, t) =


1 u(x, t) < 0

0 u(x, t) ≥ 0
(3.4)

where u is the instantaneous streamwise velocity. The resulting time history was Fourier

transformed to calculate the spectra of the mass of the separation bubble, shown in Fig. 3.21 

for the DDES runs in SU2 and OVERFLOW. The spectrum corresponding to the ILES run

in HOPS is not included as the samples of centerplane data were not recorded for long enough

time to achieve sufficient low-frequency resolution. The spectra are shown in premultiplied

semi-logarithmic form with the magnitude normalized by the variance of the signal. The

Strouhal number is plotted on the x-axis. The spectra from the SU2 and OVERFLOW runs

show good agreement and peak at approximately the same Strouhal number, St ≈ 0.02.

Note that the data used to compute the SU2 spectrum were sampled at a higher frequency.

The energy corresponding to separation bubble breathing is seen to be concentrated in the

frequency band 0.01 ≤ St ≤ 0.05. This range lies within the low-frequency range indicated

by spectra of wall pressure in the cavity region (see Fig. 3.8a ). This phenomenon may also be

responsible for the large time-scales observed in the spanwise correlation plot corresponding

to RZ-1 (see Fig. 3.13b ).

The movement of instantaneous reattachment location due to shear–layer flapping and

separation bubble breathing is also evident in Fig. 3.20 . This phenomenon can be inferred

93



Figure 3.21. Spectrum of separation bubble mass for SU2 (—) and OVERFLOW (—).

by tracking the movement of C2, where C2 is the contour level of u/U∞ = 0.15. At the

mean position, C2 approximately ends at the mean reattachment location (indicated by the

black dashed line). During the contraction phase, C2 shows a downward movement leading

to a slight decrease in the separation extent and upstream movement of the instantaneous

reattachment point. During the expansion phase, C2 moves above its mean position, re-

sulting in an increased separation extent and downstream movement of the instantaneous

reattachment point. The low–frequency motions associated with separation bubble breath-

ing and shear–layer flapping are aperodic and asymmetric. This observation is consistent

with previous studies carried out on low–frequency unsteadiness in SWTBLI’s [25 ], [141 ].

Additional analysis on this phenomena is carried out in the next section.

In this study, it was difficult to determine the reattachment shock position history using

wall-pressure data. Unlike a compression ramp or an incident SWTBLI, the reattachment

shock foot was composed of multiple compression waves and weak shocks (see Fig. 3.1 ).

Therefore conventional pressure threshold methods were not effective in determining the

shock location history. To overcome this limitation, the shock position was obtained at a

certain height in the freestream. It was assumed that the low-frequency shock motion at
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the wall and away from it is similar in nature. Priebe and Martín [141 ] determined the

shock indicator signal using pressure fluctuations in the freestream. Based on its phase with

respect to the location of separation, they concluded that shock in the freestream and the

separation point at the wall move almost synchronously.

Agostini et al. [142 ], [151 ] also determined the shock location history at an elevation in

order to perform statistics. They used the location of maximum pressure gradient normal to

the shock as an indicator to determine its instantaneous streamwise location. Pirozzoli and

Bernardini [152 ] used a modified Ducros sensor in their DNS calculations for shock capturing,

which compares the local dilation with the vorticity magnitude and a large–scale velocity

gradient. A combination of these two methods was used in this study. At a specific instant,

the location of maximum pressure gradient normal to the ramp surface was determined. The

value of the Ducros sensor corresponding to that location was then chosen as the threshold

for detecting a shock. Using this approach, the spectra of shock position is shown in Fig. 3.22 .

(a) (b)

Figure 3.22. Spectra of shock location and separation bubble mass for the
OVERFLOW case in (a) log-log coordinates (b) semilog coordinates.

The spectrum of shock location is compared with the spectrum of mass-history of the

separation bubble (calculated using Eq. (3.3 )) in log-log coordinates and semilog coordinates

in Figs. 3.22a and 3.22b , respectively. The Strouhal number is shown on the x-axis. In

95



Fig. 3.22a , the spectrum of separation bubble mass has a steeper roll-off as compared to the

spectrum of shock position. This may be a result of the averaging and low-pass filtering

process inherent in integration. From the spectrum of shock motion, it is evident that the

low-frequency band (O(10−2) ≤ St ≤ O(10−1)) is dominant in energy. But the relative

magnitudes in this band are higher for the separation bubble mass spectrum that for the

shock position spectrum. Also note that at higher frequencies (St ≥ 0.18), the spectrum of

shock position has more energy than that of separation bubble mass. This suggests that the

reattachment shock motion comprises both low-frequency St ≈ O(10−2) and mid-frequency

St ≈ O(10−1) motion. Based on the spectra shown in premultiplied coordinates in Fig. 3.22b ,

energy content in the low-frequency regime of the spectrum of shock position is significantly

lower than the same in the spectrum of mass-history of the separation bubble. This suggests

dominant mid-frequency motion of the reattachment shock.

3.5 Unsteadiness of the reattachment shock

This section attempts to relate the unsteady shock motion with shear-layer flapping

and separation bubble breathing by examining coherence between the respective signals.

Only data from the DDES runs in OVERFLOW are used here, owing to the need for a

long physical run time to fully capture the low-frequency shock motion. The time history

of shock location used for the spectral calculation presented in Fig. 3.22 was used as the

reference signal. Note that the results in this section are derived from the centerplane data

(with fs = 400 kHz). We start with shear-layer flapping, and assume that the wall-normal

velocity of the shear-layer is representative of this phenomenon. The signals are extracted

at locations in the shear-layer that correspond to the coordinates of spanwise lines shown in

Fig. 2.4b . The resulting coherence plot is shown in Fig. 3.23a .

The Strouhal number is shown on the x-axis on a logarithmic scale, and the magnitude

of coherence (γ2
xy) is plotted on the y-axis. The upper limit of the x-axis is maintained at

St = 1 in order to focus on the events of interest in the low-frequency range (St ≈ O(10−2))

and the mid-frequency range (O(10−1)). Given the low coherence and statistical uncertainty

evident in the data, conclusions must be drawn with some caution. Nonetheless, a coherent
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(a) (b)

Figure 3.23. Coherence of shock position relative to (a) SH-1 (—), SH-2
(—), and SH-3 (—) (b) RZ-1 (—) and RZ-2 (—) for the OVERFLOW case.

behaviour is believed to lie within a random background signal. In case of SH-1, two local

peaks are observed in the low-frequency range at St ≈ 0.02 and 0.05 respectively, which

correspond to the energy-dominant frequencies in the spectra of separation bubble breathing

(see Fig. 3.21 ). In the mid-frequency range (St ≈ O(10−1)), the peaks occur at St ≈ 0.1 and

St ≈ 0.22. A similar trend in the case of low-frequency range is observed at SH-2, where

the contribution of separation bubble breathing is evident. The mid-frequency range seems

to be broadband in nature; relative contributions from large-scale structures and shear-layer

flapping cannot distinguished. This broadband behaviour extends to the low-frequency range

at SH-3.

Figure 3.23b plots the coherence between pressure fluctuations in the recirculation zone

and the shock-position. At RZ-1, which lies close to the shear-layer, a distinct peak at

St ≈ 0.045 is observed in the low-frequency range. The mid-frequency range is composed

of broadband frequencies, analogous to SH-2 and SH-3. At RZ-2, apart from a peak at

St ≈ 0.045, additional peaks occur in the low-frequency range. Hence it seems that almost all

of the energy-dominant frequencies in the spectra of separation bubble breathing contribute

towards the low-frequency motion of the reattachment shock.
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Figure 3.24. Coherence of shock position with the mass history of separation
bubble for the OVERFLOW case.

With Fig. 3.24 the effect of separation bubble breathing on reattachment shock motion

is investigated. The mass history of separation bubble derived in Sec. 3.4 was used for this

purpose. In this figure, the coherence plot shows multiple peaks in the low-frequency range

(although some of these may reflect statistical uncertainty). The highest peak occurs at

St ≈ 0.03, with the second highest peak at St ≈ 0.02. Similar to the coherence plots in

Fig. 3.23 , these frequencies belong to the set of energy dominant frequencies of separation

bubble breathing. Peaks in the mid-frequency range are also noted, but higher magnitudes

of the peaks at lower frequencies indicate a stronger effect of events in this range time-scales.

Figure 3.25 shows conditionally averaged streamwise component of the density gradient

(∂ρ/∂x), based on the instantaneous mass of the separation bubble m̃sep. The corresponding

time history was divided into four bins, with each bin containing about 50 000 samples. The

first bin was composed of samples wherein the instantaneous mass was less than the mean

(msep) (bubble contraction phase). Both the second and third bin contained samples in which

the bubble was in the equilibrium phase. Hence the conditional mean for only the second

bin is shown. In the final bin, instantaneous mass of the separation bubble was higher than

the mean (bubble expansion phase). Specific features such as reattachment shock, expansion
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fan, and shear-layer curvature, which undergo a distinct change during the breathing cycle

are labeled in Fig. 3.25a .

Consider the flow condition shown in Fig. 3.25a as the reference state. The expansion fan

can be identified as a region of negative density gradient close to the step. The shear-layer

curvature close to the ramp surface shows slight concavity as it curves downwards during

the bubble contraction phase. This concavity results in local expansion of the flow, which is

implied by the negative density gradient in the region marked by a dotted circle. The flow

compression occurs farther downstream via multiple compression waves, which coalesce in

the freestream to form the reattachment shock. The latter can be identified as a thin region

of positive density gradient.

In Fig. 3.25b as the bubble expands towards equilibrium, a noticeable change is observed

in the shear-layer curvature and the region of negative density gradient dissipates gradually.

The reattachment shock begins to move upstream from its location in the reference state. In

Fig. 3.25c the bubble is seen to have completely expanded, while the shear-layer curvature

shows a distinct convexity, i.e. it curves upwards. Note the change of sign of the gradient

relative to the dotted oval region of Fig. 3.25a . This causes local compression of the flow,

leading to a positive density gradient in that region. In this phase the flow compression

occurs upstream, which may likely cause an upstream movement of the reattachment shock.

(a) (b)
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(c)

Figure 3.25. Conditionally averaged streamwise component of the density
gradient on the centerplane (z/D = 0) for the OVERFLOW case, based on
instantaneous mass of the separation bubble. (a) Bubble contraction phase.
(b) Equilibrium phase. (c) Bubble expansion phase.

A negative density gradient close to reattachment indicates influx of fluid in the recirculation

zone.

3.6 Unsteadiness at the mean reattachment location

The previous section discussed the effect of upstream events — namely large-scale struc-

tures, shear-layer flapping, and separation bubble breathing — on the reattachment shock

motion. A similar exercise on the unsteadiness of the instantaneous reattachment loca-

tion/shock system (IRSS) is carried out in this section by examining coherence between

various physical quantities. Similar to Sec. 3.5 , only data from the DDES runs in OVER-

FLOW is used here. Data extracted at the higher sampling frequency (fs = 4 MHz) are

used for the analysis, thereby providing a higher frequency resolution.

For the purpose of signal analysis, it is assumed that IRSS moves as a single unit about

the mean reattachment location. When this system moves downstream of the mean, xR(t)

falls upstream of the reattachment shock foot and within the recirculating zone, causing

wall pressure fluctuations at the mean reattachment, pxR
< 0. Similarly when it moves
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upstream of the mean, xR(t) falls downstream of the reattachment shock foot and outside

the recirculating zone, causing pxR
> 0.

Figure 3.26 plots the coherence of pressure fluctuations on the ramp surface and recir-

culation zone (RZ-1, RZ-2), as well as wall-normal velocity fluctuations in the shear-layer

(SH-1, SH-2, and SH-3) with the wall pressure fluctuations at the mean reattachment for the

OVERFLOW case. Figure 3.26a shows the 2D contour plot of coherence between wall pres-

sure fluctuations on the ramp at a specific streamwise location with pxR
. The logarithm of

the Strouhal number is plotted on the vertical axis with non-dimensional streamwise location

on the horizontal axis. The mean reattachment location is highlighted by a black dashed

line. High values of coherence are observed at low-frequencies, specifically in the range

0.01 ≤ St ≤ 0.03. As mentioned previously, this frequency band corresponds to separation

bubble breathing which seems to have a strong relationship with the motion of IRSS, and

affects the same via pressure perturbations. This is also consistent with the coherence plot

shown in Fig. 3.24 . This region of high coherence extends from x/D ≈ 2.41 to x/D ≈ 3.4.

Downstream of x/D = 3.4, the coherence for this specific band plummets to low values.

This region of low coherence was also observed by Agostini et al. [151 ] in an impinging SWT-

BLI. The magnitude of coherence increases in the vicinity of the mean reattachment location

x/D ≈ 4.2. This region of high coherence persists for a significant distance downstream of

(a) (b)
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(c) (d)

(e) (f)

Figure 3.26. Plots of coherence of wall pressure fluctuations at mean reat-
tachment for the OVERFLOW case with (a) wall pressure fluctuations on
the ramp, (b) Wall-normal velocity fluctuations in the shear-layer, and (c)
Pressure fluctuations in the recirculation zone. Phase plots of wall pressure
fluctuations at mean reattachment with (d) wall pressure fluctuations on the
ramp, (e) Wall-normal velocity fluctuations in the shear-layer, and (f) Pressure
fluctuations in the recirculation zone. In parts (b) and (e) SH-1 (—), SH-2
(—), and SH-3 (—). In parts (c) and (f) RZ-1 (—) and RZ-2 (—).

reattachment, extending up to x/D ≈ 6.6. The physical phenomena associated with this

region is most likely a combined effect of low-frequency motion of the IRSS and large-scale

structures shed from the separation bubble. Farther downstream on the ramp, a brief region
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of low coherence is encountered before it increases again towards the end. This specific re-

gion of high coherence may be a result of the unsteadiness associated with the expansion fan

present at the ramp exit (see Fig. 3.1 ). Structures lying in the frequency range 0.2 ≤ St ≤ 1

have a localized effect on the movement of IRSS.

The corresponding phase plot is shown in Fig. 3.26d . The phase is scaled by π rad.

Focusing on the low-frequencies, an interesting trend is observed. In the vicinity of the ramp-

cavity junction (2.41 ≤ x/D ≤ 3.4), the pressure fluctuations are approximately 180 deg out

of phase (φ = π) with those at the mean-reattachment for lower frequencies. At x/D ≈ 3.5,

the non-dimensional phase magnitude switches to zero from one, and persists up to x/D ≈

6.7. This trend agrees with the results of Agostini et al. [151 ] Downstream of x/D ≈ 6.7,

the pressure fluctuations on the ramp and at mean reattachment are 180 deg out of phase.

No definitive phase relationship is observed for higher frequencies.

3.7 Summary

This chapter has described the unsteadiness involved in a compressible shear-layer reat-

taching on to a ramp by means of statistical analysis. Data from three cases — DDES

calculations carried out be Leger at al. [28 ] using OVERFLOW, SU2 and ILES calculations

using HOPS — was used to investigate the effects of sub-grid scale modeling approach.

The DDES calculations in OVERFLOW were highly resolved in time. The mean quanti-

ties corresponding to the three cases showed good agreement. Significant differences in the

mean-squared profiles of fluctuating quantities within the shear-later were observed. The

instantaneous flowfields were consistent across all the cases and resolved the flow structures

(such as hairpin-like vortices) in the shear-layer. The pressure spectra in the resolved region

showed reasonable agreement, but deviated significantly on the surface. Time-resolved data

from DDES calculations in OVERFLOW was used for any forthcoming analysis.

Premultiplied wall-pressure spectra highlighted events such as low-frequency separation

bubble breathing, shear-layer flapping, shedding of vortical structures from the recircula-

tion zone. The spatially evolving large-scale structures in the shear-layer were character-

ized by space-time correlations and the spanwise wavenumber spectra. The spectrum of
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reattachment shock motion and separation bubble breathing indicated dominant mid- and

low-frequency motion, respectively. Based on the coherence plots and conditional averaged

density gradient, separation bubble breathing contributed to the secondary low-frequency

motion of the reattachment shock. Shear-layer flapping and upstream turbulence drove its

dominant mid-frequency motion. The unsteadiness of reattachment was strongly affected by

the motion of the recirculation zone and large-scale structures in its vicinity. The flapping

motion of the shear-layer had a weak effect on the same.
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4. COMPRESSION RAMP FLOW WITH SIDEWALLS

This chapter elaborates on the flowfield corresponding to a compression ramp flow, in the

presence of no-slip sidewalls. The computations were carried out by Poggie and Porter [22 ],

[65 ] and data analysis of the results was performed by Deshpande. In addition to a brief

discussion on the mean and instantaneous flowfields, a critical point analysis is presented to

characterize the secondary flows induced by the presence of sidewalls. This is followed by

a detailed discussion on the flowfield unsteadiness by examining the wall-pressure spectra.

Unlike the previous chapter, a different approach in visualizing the spectra is used here,

wherein the contours of premultiplied spectral energy density is shown for a single frequency

component. The frequency components are chosen based on the dominant bands of un-

steadiness commonly observed in SWTBLI. A similar approach is used while examining the

coherence estimates. This chapter concludes with a detailed modal analysis of this flowfield

using Sparsity Promoting Dynamic Mode Decomposition (SPDMD.) The results of data

analysis carried out previously by Deshpande and Poggie [153 ], [154 ] are reiterated in this

chapter. The results of statistical analysis in [153 ] are reproduced here with permission from

APS publishing.

4.1 Flowfield structure

In this section, the features of mean and instantaneous flowfield are discussed. This is

followed by a spectral analysis of wall-pressure fluctuations. Figure 4.1a shows the mean non-

dimensional wall-pressure on the floor and left sidewall. The limiting streamlines (shown as

black solid lines) and mean zero skin-friction contours (cfx = 0, shown as white solid lines)

are included in the figure.

The mean flowfield on the floor shown in Fig. 4.1b is approximately symmetric about

the spanwise center. The shock front, characterized by an abrupt pressure rise, is highly

curved due to the influence of sidewalls. Based on the cfx = 0 contour, the flow separation

at the corners occurs earlier than at the centerline. This occurs because the net momentum

of the flow is lower due to the presence of two no-slip boundaries, making it more suscep-

tible to the adverse pressure gradient imposed by the shock front. Across the span, the
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separation extent decreases away from the sidewalls, before increasing again close to the

midspan. The compression waves generated due to sidewall separation regions modify the

three-dimensional shock structure, thereby moderating the pressure gradient which lowers

the separation extent [51 ], [52 ], [155 ].

(a)

(b) . (c)

Figure 4.1. Contours of mean wall-pressure (a) Three-dimensional view (b)
Projection on the ramp surface (Plane 1) (c) Projection on the left-sidewall
(Plane 2). The ramp corner lies at X = 100..
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Critical points deduced from the limiting streamlines are also highlighted in order to gain

insight on the nature of separation and attachment of primary and corner flows. Shortly

upstream of the separated zones between the midspan and sidewalls, the flow rolls up into

two foci: F1 and F2. Based on previous studies [52 ], [54 ], [156 ], these foci are expected

to be the source of tornado vortices, lifting up fluid from the wall. The separation and

reattachment in the vicinity of the centerline are characterized by a combination of nodes

and saddle points (see Fig. 5(f) in Ref. [157 ]). These regions are marked by red dashed lines

and are indicative of two-dimensional separation and reattachment [157 ]. A separation node

Ns and two attachment nodes Na are included for clarity. Additionally, two saddle points:

SP1 and SP2 are present close to the left and right sidewall respectively. Two reattachment

lines: R2a and R2b are a signature of corner vortices reattaching on to the ramp.

The mean flow features on the left sidewall in Fig. 4.1c are reminiscent of a swept SWTBLI

caused by the compression ramp shock [158 ]. Surface flow features such as the upstream

influence line UI, separation line S1, and reattachment line R1 are noted in the figure. The

incoming flow on the left sidewall begins to turn at UI and separates at S1. The flow

downstream of S1 is believed to turn into a separation vortex and follow a helical trajectory.

As a result an open type of separation exists, wherein the flow does not recirculate upstream,

as in a two-dimensional separation. Note that the separation extent grows downstream, as

indicated by the cfx = 0 contour. The flow reattaches along the reattachment line R1. This

region is characterized by amplified aerothermal loads.

Figure 4.2 shows the mean density contours on the centerplane (Z = 10), streamwise

plane at X = 80, and ramp-normal plane at X ≈ 116. On the centerplane in Fig. 4.2b , a

flow analogous to a classical two-dimensional interaction is present wherein the compression

ramp shock splits into a λ-shock foot due to viscous effects. Within the separated zone, the

focus point F suggests the presence of a horseshoe vortex. Combined with the results of

the critical point analysis associated with Fig. 4.1 , this interaction is judged to resemble an

owl-face pattern of the second kind, as described by Perry and Chong [159 ] (see Fig. 22 in

that reference). Although the centerline region resembles a quasi-two-dimensional SWTBLI,

the flow does not recirculate upstream, but is swept away from the midspan by the horseshoe

vortex originating at the focus point F . In Fig. 4.2c , a pair of corner vortices are observed
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on the streamwise plane, upstream of the interaction. This feature was also present in the

work of Bermejo-Moreno et al. [59 ], Wang and Sandham [58 ], Eagle and Driscoll [54 ], and

Morajkar et al. [57 ].

(a) (b) .

(c) (d)

Figure 4.2. Contours of mean density. (a) Three-dimensional view (b) Pro-
jection on the centerplane at Z = 10 (Plane 6) (c) Projection on the streamwise
plane at X = 80 (Plane 4) (d) Projection on the ramp-normal plane (Plane 5).
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On the ramp-normal plane in Fig. 4.2d , specific features of the swept interaction described

earlier can be visualized. Note that the direction normal to the ramp surface, labelled as

N = n/δ◦, is shown on the vertical axis. The compression ramp shock labelled as CS

(shown as a solid blue line) bifurcates into λ-shock feet on both the sidewalls on account of

the influence of sidewall boundary layers. The corresponding separation and reattachment

shocks are labelled as SS and RS respectively as solid red and white lines. (From the

perspective of the sidewall, the flow is analogous to a fin interaction, with the freestream

coming in opposite the N-axis.) The streamlines close to the right sidewall highlight the

separation vortex present downstream of the primary separation line S1 (see Fig. 4.1 ). This

region extends from the foot of the separation shock and ends slightly above the ramp surface,

downstream of the reattachment shock.

Figure 4.3. Contours of RMS pressure. Black solid lines represent the cfx = 0
contour level.
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As mentioned previously, the separation on the sidewalls is of the open type wherein the

entrapped fluid follows a helical path downstream instead of recirculating upstream. Notice

the drastically reduced spanwise extent of the compression ramp shock (highlighted using a

solid red line) caused due to the growing separation extent on the sidewall. Following the

outermost streamline over the separation vortex, the flow is compressed through the λ-shock

foot. Downstream of the reattachment shock, it accelerates across the local expansion fan

curving downwards and reattaching at R1 as an impinging jet. Such flows fall under the

category of Edney Type-IV interaction wherein the reattachment location is characterized

by high aerothermal loads [160 ]. The vortex system observed in this figure — a pair of corner

vortices upstream of the interaction, a horseshoe vortex originating at the focus point F ,

and the swept sidewall vortices — is consistent with the results of Eagle and Driscoll [54 ]

and Morajkar et al. [57 ].

The variation of RMS of pressure fluctuations on the floor and left sidewall are shown in

Fig. 4.3 . The contour of mean cfx = 0 is shown as a black solid line on both the surfaces.

The RMS pressure shows a steep rise across the shock front from its undisturbed value. The

amplification of this quantity is higher across the primary interaction as compared to the

corner interactions. This occurs most likely on account of reduced shock strength away from

the centerline, which in turn is caused by the smearing effect of corner interactions mentioned

previously. Within the separated zone on the floor, the RMS pressure fluctuations decrease

in magnitude before increasing dramatically downstream of reattachment on the ramp. The

peak value occurs approximately at X = 117. Farther downstream, the fluctuations gradu-

ally decrease and approach the undisturbed level towards the end of the domain. A similar

pattern is observed on the left sidewall, with peak values lying along the reattachment line

R1 (see Fig. 4.1 ).

Figure 4.4 shows the instantaneous snapshot of the flowfield. In order to exclude the right

sidewall for visualization purposes, the domain is truncated at Z = 16. Contours of density

gradient magnitude (|∇ρ|) on four y-z planes highlight the evolution of the shock structure

along the streamwise direction. Additionally, contour lines of the same quantity are shown on

the centerplane (Z = 0) to visualize the centerline shock structure. The iso-surfaces of zero
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streamwise velocity (u/U∞ = 0), colored by non-dimensional pressure (p/p∞) distinguish the

separated regions on the left sidewall and the floor.

The contour plot of |∇ρ| on the streamwise plane at X ≈ 95 is shown in Fig. 4.4 (b). The

contours consist of a distinct compression ramp shock, spanning almost the entire domain

width. Close to both the sidewalls, the viscous effects cause it to bifurcate into a λ-shock

structure. On the planes lying at X ≈ 103 and X ≈ 110 in Figs. 4.4 (c) and (d) respec-

tively, the spanwise extent of the compression ramp shock gradually decreases on account of

increasing separation extent on the sidewalls.

This phenomenon also pushes the λ-shock structures closer to each other and towards

the center of the domain. The strength of the reattachment shock — within the λ-shock

foot — is higher than the separation shock, which is smeared closer to the left sidewall. Also

notice the slip-surfaces emanating from the triple-points. At X ≈ 117 in Fig. 4.4 (e), the

two λ-shock structures intersect, leading to reflected shock waves downstream. This event is

most likely responsible for the regions of high RMS pressure values on the floor in the range

110 ≤ X ≤ 120, downstream of reattachment (see Fig. 4.3 ).

The iso-surfaces of u/U∞ = 0 indicate earlier separation at the sidewalls, consistent with

the mean flowfield shown in Fig. 4.1 . On the centerplane, the shock structure resembles

that of a quasi-two-dimensional interaction. The separation shock is distinct and higher

in strength compared to the reattachment shock, which is relatively smeared. Compression

waves emanating from the eddies within the separated shear-layer as well as the redeveloping

boundary layer coalesce to form shocklets. The compression ramp shock seems to split into

multiple shock waves downstream of the intersection location of sidewall λ-shock structures

(X ≥ 110) and towards the top boundary. Regions lying above the compression ramp shock

are populated by unsteady waves.

The downstream evolution of the shock structure is shown in Fig. 4.5 using contours

of density gradient magnitude. The contours are plotted on four x-z planes at different

wall-normal coordinates as shown Fig. 4.5a , with the respective top views presented in

Figs. 4.5b –4.5e . At the lowermost wall-normal location in Fig. 4.5b , the compression ramp

shock spans a major portion of the domain width. Viscous effects at the sidewalls lead to

bifurcation of the shock into a λ-shock foot. Notice the bending of the compression ramp
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(a)

(b) . (c)
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(d) (e)

Figure 4.4. Instantaneous flowfield. (a) Iso-surfaces of u = 0 colored with
the magnitude of non-dimensional pressure. Contours of density gradient mag-
nitude are shown on the centerplane (Z = 0) and colored streamwise planes
at (b) X = 95 (red) (c) X = 103 (green) (d) X = 110 (blue) (e) X = 117
(orange).

shock caused by sidewall effects. Wang and Sandham [58 ] and Bermejo-Moreno et al. [59 ]

also observed a similar bending of the incident shock in their study of a reflecting SWTBLI

with sidewalls. The latter attributed this to the presence of corner shocks and strong lateral

motions. Flow separation on the sidewalls caused by the imposed adverse pressure gradient

is also evident from the figure. In each of the subfigures, a complex wave pattern, mostly

composed of compression waves emanating from the eddies in the boundary layer, is present

in the core flow both upstream and downstream of the shock. These waves correspond to

those apparent in the y-z sections in Fig. 4.5 .

Figure 4.5c shows the shock structure on the plane j = 750. At this height, the spanwise

extent of the compression ramp shock is reduced significantly, while strength of the λ-shock

feet is higher. There are two sets of slip-lines originating from the triple-points. One is
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oriented towards the floor (see the plane at X ≈ 102 in Fig. 4.4 ), and the other is aligned

with the core flow. At j = 1000 in Fig. 4.5d , the λ-shock structures on the sidewall are

on the verge of intersection. The resulting wave structure towards the domain exit (shown

in Fig. 4.5e ) resembles a bow-shock, with a clutter of compression waves lying immediately

upstream.

(a)

(b) . (c)
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(d) (e)

Figure 4.5. Contours of instantaneous density gradient magnitude (|∇ρ|) on
inclined planes (at constant j-values) (a) Location of extracted planes in the
domain (b) j = 620 (red) (c) j = 750 (green) (d) j = 1000 (blue) (e) j = 1270
(orange).

Figure 4.6 describes the length and time-scale of large-scale structures present in the

upstream boundary layer. Two-point and space-time correlations of streamwise velocity

fluctuations are used for this purpose. Superstructures in the logarithmic region of a turbu-

lent boundary layer were observed in the experiments carried out by Ganapathisubramani

et al. [21 ], [161 ], who later showed that the time-scales involved matched closely with that of

the low-frequency shock oscillations. Beresh et al. [8 ], Porter and Poggie [17 ], and Pirozzoli

and Grasso [162 ] arrived at similar conclusions. For the two-point correlations, the reference

signal was extracted at (X,Y ) ≈ (85.02, 0.28), which was correlated with streamwise velocity

fluctuations within the boundary layer and upstream of the interaction.

The contours in Fig. 4.6a are elliptical in shape whose major axes are inclined with re-

spect to the streamwise direction. This angle increases for contours associated with higher

correlation magnitude. The nature of the contour plot agrees with the results of experiments

of Ganapathisubramani et al. [21 ], [161 ]. Based on the R = 0.5 contour level, the streamwise

length scale is lx ≈ 1.29δ◦. This scale hardly matches the 100δ◦ scale found by Ganapathisub-

ramani et al. [21 ], [161 ]. Space-time correlations of the same quantity were used to deduce

the convection velocity of these structures. The reference point was same as the previous

case, and the signal corresponding to that location was correlated with similar signals along

the streamwise direction, while maintaining the wall-normal coordinate. The resulting plot
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(a)

(b) .

Figure 4.6. Characterization of large-scale structure by correlations of
streamwise velocity fluctuations (a) Two-point correlations (b) Space-time cor-
relations of streamwise velocity fluctuations.

is shown in Fig. 4.6b . Time delay scaled by the separation extent at the centerline (Lsep)

and freestream velocity (U∞) is plotted on the y-axis with the streamwise coordinates on the

x-axis. The contour plot exhibits regions of high correlation magnitude along a straight line.

The corresponding slope leads to a non-dimensional convection velocity of Uc/U∞ = 0.78.
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4.2 Unsteadiness of the flowfield

This section presents a map of unsteadiness in the flowfield by plotting wall-pressure

spectra for individual frequency components. Based on previous studies [11 ], [14 ], [151 ], [162 ],

a SWTBLI is typically characterized by mid-frequency motion of the bubble (St ≈ 0.1) and

high frequency Kelvin-Helmholtz shedding (St ≈ 0.5), in addition to low-frequency shock

motion and bubble breathing (St ≈ 0.03). Grilli et al. [10 ] used DMD to analyze the unsteady

modes in a SWTBLI. Using the first four dominant modes occurring at low-frequency, they

were able to reproduce the pulsating motion of the separation bubble and low-frequency

streamwise oscillations of the shock. The presence of similar events in this flowfield was

investigated by examining the wall-pressure spectra. The spectra were calculated using

Welch’s method with 50% overlap between each segment. Based on the net simulation time

mentioned in Sec. 2.4.2 , a total 908 samples of data at select planes in the domain were

available. To estimate the power spectral density, an ensemble of two signals with 454

samples each was created. An additional sample obtained from the overlap process was used

for averaging, in conjunction with the original two samples.

The contours of premultiplied spectral energy are plotted initially on the floor (Plane 1),

left sidewall (Plane 2), and ramp-normal plane (Plane 5), followed by the centerplane

(Plane 6). In the following figures, fG(f)/σ2
p is the premultiplied spectral energy, f is

the frequency, G(f) is the power spectral density, and σ2
p is the variance. Based on the win-

dow segment size, a frequency resolution of ∆St = ∆fLsep/U∞ ≈ 0.03 was obtained. The

contours are plotted for St1 = 0.03, St4 = 0.12, and St18 = 0.54, where Stk = fkLsep/U∞ =

kfsLsep/NwU∞. The results for the first case are shown in Fig. 4.7 . The domain size was

reduced by calculating the spectra at every 10th point in the streamwise direction and every

5th point in the wall-normal and spanwise directions respectively. Mean limiting streamlines,

as well as the cfx = 0 contours are superimposed on the floor and left sidewall. Contours of

mean density (shown as white lines) are shown on the ramp-normal plane.

We start from the lowest frequency component in Fig. 4.7a . The spectral energy on the

floor is higher along a narrow band present at the separation line. As we are dealing with

the frequency component typically associated with shock oscillations, this region most likely
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corresponds to its intermittent length. Similar regions were also observed by Rabey et al. [62 ]

(a) (b) .

(c)

Figure 4.7. Premultiplied pressure spectra on the floor, left sidewall, and
ramp-normal plane (a) St = 0.03 (b) St = 0.12 (c) St = 0.54. The cfx = 0
contour is shown as a white solid line. Limiting streamlines in orange are
included for reference. Mean density contours (white lines) are shown on the
ramp-normal plane.

for the case of a reflecting SWTBLI. The contours are asymmetric across the centerline, with

higher energy magnitude close to the right sidewall. We expect that such asymmetry would
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disappear with averaging over long simulated times. The streamwise extent of this band

varies along the span. It is higher close to the sidewalls and decreases progressively towards

the centerline. This observation agrees with the results of Rabey et al. [62 ] which suggest

a stronger prevalence of low-frequency content close to the sidewalls for cases with smaller

aspect ratios. It is possible that the compression waves generated by the corner separations

are locked in with the oscillations of the shock front, thereby resulting in larger regions with

dominant low-frequency content.

Moderate magnitudes of spectral energy are observed in a localized region on the ramp

(110 ≤ X ≤ 125), downstream of reattachment. This region is also characterized by high

values of RMS pressure (see Fig. 4.3 ), which were a result of reflection of the λ-shock feet

on the sidewalls. Hence the moderate to high values of spectral energy can be attributed

to the low-frequency oscillations of the shock system post reflection. On the left sidewall,

the intermittent length of the swept shock oscillations in the vicinity of the separation line

S1 is distinguished by high magnitudes of energy. The peak value occurs away from the

wall at Y ≈ 15 and decreases dramatically at higher wall-normal coordinates. Farther

downstream on the left sidewall, the presence of lower magnitudes suggests that events at

higher frequencies occur in these regions.

In the ramp-normal plane, λ-shock feet on both the sidewalls are composed of regions

with high energy magnitudes. This observation suggests coherent streamwise oscillations of

the entire shock system in the domain. Additionally, moderate magnitudes of energy are also

present in the region between the λ-shock feet. This may be a result of a local compression

wave system locked in with the oscillations of the shock system. Within the core flow region,

the spectral energies increase progressively as the ramp surface is approached. This region

consists of several gasdynamic features present in an Edney Type-IV interaction, namely

slip surfaces, expansion fans, and impinging jets, and seem to possess similar unsteady

characteristics.

Figure 4.7b illustrates the contours of premultiplied energy density associated with the

mid-frequency component: St = 0.12. On the floor, features such as the narrow band of

high spectral energy in the vicinity of separation, as well as a similar localized region present

downstream of reattachment on the ramp surface are no longer visible. Instead, both the
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sidewall junctures are interspersed with relatively smaller regions characterized by events of

this time-scale. Based on their location, it is possible that these events are associated with

the corner vortices. On the left sidewall, high magnitudes of spectral energy tracing the

intermittent length of the λ-shock foot suggest a mid-frequency component, in addition to

a low-frequency component.

Additionally, regions in the vicinity of the cfx = 0 contour as well as along the reattach-

ment line R1 are characterized by events at mid-frequencies. Physically these events may

be representative of the vortex roll-up process, flapping of the separated shear-layer in the

vicinity of separation, and unsteadiness of the impinging jet at R1. On the ramp-normal

plane, regions close to the triple-points are highlighted by high magnitudes of spectral en-

ergy. These regions include the λ-shock feet as well as the compression fan system between

their legs. Presence of high energy magnitudes over the separation vortex may be indica-

tive of unsteadiness associated with the expansion fan, which typically occurs in the Edney

Type-IV interaction.

The contours of premultiplied energy density for a high frequency component (St18 =

0.54) are shown in Fig. 4.7c . Notice that the bands of high energy magnitudes charac-

terizing shock oscillations on both the floor and left sidewall are no longer present in this

case. Instead, regions within the separated zone (delineated by the cfx = 0 contour) are

representative of events at this frequency. These zones most likely correspond to the un-

steadiness associated with small-scale turbulence. Also, bands of high magnitude of spectral

energy are observed at locations in the vicinity of centerline reattachment. Based on the

frequency component in consideration, these bands are most likely associated with vortex

shedding from the separated shear-layer. A similar trend is observed on the left sidewall. On

the ramp-normal plane, the λ-shock feet are no longer distinguished by high energy magni-

tudes. Following the pattern on the floor and left sidewall, such regions now occur within

the separation vortex.

Figure 4.8 illustrates the premultiplied pressure spectra for individual frequency compo-

nents (used in Fig. 4.7 ) on the centerplane. Spectral estimates were calculated by adapting

the same procedure employed to determine the wall-pressure spectra in Fig. 4.7 , with the

same frequency resolution. The black solid and dashed lines represent the mean dividing
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streamline (u/U∞ = 0) and the sonic line, respectively. The dashed-dotted line in Fig. 4.8c 

highlights the incoming boundary layer. Starting from the lowermost frequency component

(St = 0.03) in Fig. 4.8a , the entire extent of the compression ramp shock is characterized

by high magnitudes of spectral energy, signifying its low-frequency streamwise oscillations.

This region ends approximately at the sonic line. The spectral magnitude drops signifi-

cantly within the centerline separation region. Regions of moderate energy magnitudes are

also present above and below the compression ramp shock. Such regions may be caused

by oscillations of certain features of the sidewall interaction, i.e. local compression waves

above the shock and expansion fans, slip surfaces below the shock (see Figs. 4.4 and 4.5 ).

Post reattachment, the spectral energy magnitude increases approximately in the range,

116 ≤ X ≤ 120. This observation — consistent with the results in Fig. 4.7a — can be

attributed to the reflection of sidewall λ-shock feet.

In case of the second frequency component (St = 0.12), the contours of premultiplied

spectral density shown in Fig. 4.8b exhibit a significantly lower energy magnitude along the

trace of the reflected shock foot. Farther away from the floor, high energy magnitudes persist

along the remainder of the shock. Hence it seems that motion of the reflected shock foot is

dominated by the low-frequency component, while motion of the shock away from the wall

is characterized by both low and low-mid frequency components. The sidewall shock system

follows a similar trend (see Fig. 4.7b ). Contours of premultiplied energy density for the final

frequency component (St = 0.54) are shown in Fig. 4.8c . In this case, the region within

the centerline separation consists of events associated with this time-scale. The compression

ramp shock is no longer highlighted by high energy magnitudes. Moderate magnitudes of

energy are observed upstream of the interaction, aligned approximately along the Mach lines

emanating from the incoming boundary layer. In both the figures, the region of high energy

density is present approximately in the top–right corner of the centerplane may be related to

the presence of the sponge layer (not included in the figure), and is physically not relevant

for this analysis.
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(a) (b) .

(c)

Figure 4.8. Contours of premultiplied pressure spectra (fG(f)/σ2
p) on the

centerplane (Z = 10) (a) St = 0.03 (b) St = 0.12 (c) St = 0.54. Solid and
dashed black lines indicate the mean dividing streamline (u/U∞ = 0) and
the sonic line, respectively. The dashed-dotted line in part (c) highlights the
boundary layer edge upstream of the interaction.

4.3 Unsteadiness of the shock front

This section discusses the spectral characteristics of oscillations of the compression ramp

shock and the λ-shock feet on the sidewalls. Henceforth these two features will be collectively
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referred to as the “shock front.” The time-histories of shock location are extracted at the

centerline and the juncture at the left sidewall. A pressure based threshold method devised

by Porter and Poggie [17 ] was used for this purpose. At every time-step, the instantaneous

pressure (p̃) at the desired location was monitored. The shock location at a particular instant

was assigned the streamwise value at which p̃ ≥ p∞ + 10σp, where p∞ is the freestream

pressure and σp is the RMS of pressure fluctuations in an undisturbed boundary layer.

The spectral estimates were calculated using Welch’s method. In order to resolve frequen-

cies lower than St = 0.03, no windowing was carried out, i.e. the segment size was Nw = 908.

The corresponding lowermost frequency component is St1 = fsLsep/NwU∞ ≈ 0.015. In the

case of the centerline shock history, to compensate for the lack of ensemble averaging, the

spectra were instead averaged across the span in order to improve the signal to noise ratio.

Based on the critical point analysis in Fig. 4.1b , the centerline interaction shows quasi-two-

dimensional behaviour for 7.23 ≤ Z ≤ 12.63 (marked by red dashed lines in the figure).

The aforementioned spanwise averaging was carried out within this domain. In case of the

left juncture, spanwise averaging was not possible as that region is characterized by strong

three-dimensional effects. The resulting shock spectra are shown in Fig. 3.22 .

Figure 4.9. Spectra of shock oscillations.
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The spectra are shown in premultiplied coordinates, with Strouhal number on the x-

axis. In case of the centerline shock, a distinct peak is present St ≈ 0.04, consistent with

the observations in spectra shown in Fig. 4.7 . A spectral plot characterizing shock motion

at the left juncture shows a peak at a slightly higher frequency (St ≈ 0.08), but is of the

same order of magnitude. A second peak of almost similar magnitude occurs at St ≈ 0.11,

which might be caused by the presence of corner vortices or could be a statistical artifact.

A similar trend was observed in the experiments of Funderburk and Narayanaswamy [56 ],

who obtained a higher peak Strouhal number for the corner interaction – StL ≈ 0.05 as

compared to the primary interaction – StL ≈ 0.01, where StL = fLsep/U∞. The spectrum

for the centerline shock oscillations is slightly smoother at higher frequencies on account of

spanwise averaging. Using these respective time-histories, the causes and effects of shock

unsteadiness on the entire domain were investigated by calculating the coherence magnitude

(see Eq. (2.27 )) with pressure fluctuations.

The template used to present the results in Sec. 4.2 is reproduced here, wherein contours

of coherence magnitude are shown for individual frequency components. The coherence

magnitude was estimated by averaging over an ensemble of two segments, each consisting

of 454 samples, resulting in a frequency resolution of ∆St = 0.03. Figure 4.10 displays

the contours of coherence on the floor, left sidewall, and ramp-normal plane, as well as on

the centerplane. The time-history of centerline shock oscillations was used as the reference

signal. Limiting streamlines on the floor and left sidewall are illustrated using solid black

lines. On the centerplane, the black solid and dashed lines represent the mean dividing

streamline (u/U∞ = 0) and the sonic line, respectively; the mean separation (xS ≈ 92) and

reattachment locations (xR ≈ 112) are also highlighted for reference. Contours of mean

density (see Fig. 4.2 ) are shown on the ramp-normal plane. The corresponding contour

labels are not included to reduce clutter. Since the low-frequency unsteadiness associated

with shock oscillations is of primary interest, the coherence plots corresponding only to the

first two frequency components, i.e. St1 = 0.03 and St2 = 0.06 are discussed. The coherence

plots can be interpreted as follows: the red region represents high values coherence (strong

linear relationship), the yellow-green region represents moderate values of coherence (weakly-
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linear relationship), and the blue region is comprised of low coherence magnitudes (weak or

non-linear relationship).

In case of the lowermost frequency component shown in Fig. 4.10a , a band of high

coherence magnitude on the floor, lying approximately at X = 90 is indicative of the pressure

fluctuations induced by the low-frequency shock motion. This band is slightly skewed in the

upstream direction towards the left sidewall. Small patches of moderate to high coherence

are observed within the centerline separation, suggesting an overall weakly-linear relationship

of shock motion with the corresponding events. Similar regions are present downstream of

reattachment. It is possible that they are associated with the unsteadiness of the centerline

separation bubble, which in turn affect the shock motion via a feedback mechanism.

On the left sidewall, high to moderate coherence magnitudes present along the primary

separation line are caused by the oscillations of λ-shock feet, which are coupled with those

of the centerline shock. Any events downstream of the primary separation line seem to

be uncorrelated with the centerline shock motion. On the ramp-normal plane, moderate

coherence magnitudes are observed shortly downstream of the separation shock foot (of the

λ-shock structure), which persist only for a short distance. The portion of the separation

shock foot closer to the sidewalls is characterized by low coherence magnitudes. This suggests

that the concomitant oscillations are not strongly coupled with the centerline shock motion,

and may be caused by a different phenomenon. Regions close to the triple-points consisting

of slip-surfaces, as well as on the upper boundary of the separation vortex are well correlated

with the centerline shock motion.

On the centerplane in Fig. 4.10b , nearly the entire trace of the compression ramp shock

is highlighted by high coherence magnitude. It decreases to low values towards the top-right

corner of the domain. Additionally, high values of coherence below the compression ramp

shock (xR ≤ X ≤ 125) may be indicative of low-frequency oscillations of the shock front

formed due to interaction between the sidewall λ-shock feet (see Fig. 4.4 ). Moderate values of

coherence are present in the vicinity of the mean reattachment location, which is consistent

with the results of Thomas et al. [5 ], Priebe and Martin [141 ], and Agostini et al. [151 ].

Figure 4.10c shows the trend of coherence for the frequency component St = 0.06. On

the floor, the previously observed band of high coherence does not extend across the entire
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(a) (b)

(c) (d)

Figure 4.10. Coherence of centerline shock oscillations with pressure fluctu-
ations for frequency component: (a,b) St = 0.03 (c,d) St = 0.06. In parts (a)
and (c), the solid black and white lines on the floor and left sidewall represent
the limiting streamlines and cfx = 0 contour, respectively. Solid black lines on
the ramp-normal plane indicate the mean density contours. Solid and dashed
black lines on the centerplane in parts (b) and (d) indicate the mean dividing
streamline (u/U∞ = 0) and the sonic line, respectively.

span. Instead, it begins from the left juncture and ends at Z ≈ 16. Akin to the previous case,

this region is skewed in the upstream direction towards the left sidewall, though the skew

angle is comparatively higher. The coherence decreases to moderate magnitudes towards the

right sidewall. Based on the limiting streamlines, the events at the foci F1 and F2 display a
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weakly-linear relationship with the shock motion. Increased coherence magnitudes are also

observed for events within the separated zone and downstream of reattachment.

On the left sidewall, coherence increases along the primary separation line as well as

downstream of this location. A similar pattern is noted on the ramp-normal plane, with

the exception that the motion of λ-shock feet are not well correlated with the centerline

shock oscillations at this particular frequency. The coherence contours on the centerplane

for this frequency component follow a similar pattern as that in the case of St = 0.03. A

similar exercise was carried out with the left sidewall shock location history as the reference

signal (not shown here for brevity). The coherence contours for the lowermost frequency

components (St = 0.03 and 0.06) mostly followed the trend present in Fig. 4.10 . Some

notable differences were manifested as increased coherence magnitudes as well as a higher

skew angle of the band of high coherence on the floor. Additionally, the coherence plots

indicated that the left sidewall shock oscillations were in-phase with those of the centerline

shock.

Based on these results, we make some inferences regarding the nature of oscillations of

the shock front. Figure 4.10 highlighted a band of high coherence on the floor, skewed in

the upstream direction at the left sidewall. This observation suggests that the portion of

the shock front lying on the left of the centerplane (Z = 10) translates upstream. This up-

stream movement may be caused by the expansion of the sidewall separation region. Similar

phenomenon can be expected to occur at the right sidewall, resulting in the alternate back

and forth movement of the interaction. Porter and Poggie [65 ] used conditional averaging

to observe similar large-scale asymmetric motion. In case of the lowermost frequency com-

ponent (St = 0.03), the coherence magnitude along the separation shock foot (within the

λ-shock structure) suggests a non-linear coupling with the centerline shock oscillations. On

the other hand, the motion of the reattachment shock foot and slip surfaces are locked in

with the centerline shock motion.

Figure 4.11 shows the space-time correlations of streamwise velocity fluctuations up-

stream of the interaction, with the centerline shock oscillations. The correlations estimates

were calculated by averaging over an ensemble of two signals with 454 samples each. The

signals are extracted along the wall-normal direction at X ≈ 85.02. The contour plot in
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Figure 4.11. Upstream influence of large–scale structures on separation shock motion.

this figure shows variation of the correlation magnitude along the wall-normal direction,

corresponding to various values of non-dimensional time delay. The edge of the boundary

layer lies at Y ≈ 1.1. In this figure, localized regions of high correlation magnitude are

observed both within and outside the boundary layer edge. They occur at positive values

time delay, which lie in the range 20 ≤ ∆tLsep/U∞ ≤ 30. Therefore any event occurs first

in the upstream boundary layer, which then affects the shock motion. Additionally, positive

correlations suggest that a downstream movement of the shock foot (xshk > 0) is associated

with a higher net momentum in the upstream boundary layer (u > 0), and vice-versa. This

observation is consistent with the results of Ganapathisubramani et al. [161 ], Beresh et al. [8 ],

and Porter and Poggie [17 ]. The Strouhal numbers corresponding to the optimal values of

time delay (St = 1/T ) lie approximately in the range 0.03 ≤ St ≤ 0.05, which includes the

dominant frequency of centerline shock oscillation (see Fig. 4.9 ). Localized region of high

correlation magnitude outside the boundary layer edge may be representative of Mach waves

locked-in with the shock oscillations.
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4.4 Unsteadiness of the centerline separation bubble

In this section, we focus only on the centerline separation. The unsteadiness of separation

bubble breathing is characterized in terms of its spectral content. Coherence magnitudes are

used to determine the relationship with other events in the domain, which is analogous to the

approach used in Sec. 4.3 . We begin by estimating the spectra of separation bubble breathing

using the procedure described in Eq. 3.3 in Sec. 3.4 . Once the mass-history was obtained, the

spectra were calculated using Welch’s method without segment averaging in order to resolve

the lower frequencies. The resulting spectrum is shown in Fig. 4.12 . The premultiplied

spectral density is plotted on the vertical axis and the Strouhal number is shown on the

horizontal axis in a logarithmic scale. The spectrum displays a peak at St ≈ 0.11, with

significant energy present in the lower frequencies. Previous studies on SWTBLI highlighted

both the low-frequency breathing mode as well as the mid-frequency mode [4 ], [128 ]. The

latter is typically the response of the separation bubble to shear-layer flapping or shedding

of vortical structures.

Figure 4.12. Spectra of centerline separation bubble unsteadiness.

The influence of separation bubble unsteadiness on the domain is examined by calcu-

lating coherence with the pressure fluctuations. The corresponding contours are shown for
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individual frequency components. The coherence estimation technique was similar to the one

used in Sec. 4.3 , wherein the time-series was divided in two segments with 454 samples each.

The corresponding frequency resolution is ∆St ≈ 0.03. In this case, the second frequency

component: St = 0.12, lies close to the dominant frequency obtained from the spectrum in

Fig. 4.12 . The first frequency component is similar to the one used in Fig. 4.10 . Limiting

streamlines and the cfx = 0 contour are shown on the floor and left sidewall using solid

black and white lines, respectively. The contours of mean density (shown in Fig. 4.2 ) on the

ramp-normal plane as well as the locations of mean separation and reattachment are also

included. The corresponding contour labels are not shown to reduce clutter.

Figure 4.13a shows the trend of coherence magnitude for the lowermost frequency com-

ponent: St = 0.03. The separation bubble breathing shows a strong linear relationship

with events inside the separated zone (indicated by the cfx = 0 contour) as expected. The

coherence magnitude decreases along the span, both towards the left and right sidewall. It

is significantly lower along the intermittent length of the shock oscillations (compare with

Fig. 4.10a ). On the left sidewall, moderate to high values of coherence (in green) are observed

within and close to sidewall separation, based on the cfx = 0 contour. Therefore it seems

that the breathing motion of sidewall separation zones — hypothesized in Sec 3.3 — are

affected by the dynamics of centerline separation. On the ramp-normal plane, the λ-shock

structure is characterized by low values of coherence. The region between the shock system

and ramp surface is well correlated with the separation bubble motion. On the centerplane

in Fig. 4.13b , the trace along the compression ramp shock is characterized by low-coherence

magnitudes, suggesting a weak correlation between shock oscillations and breathing motion

of the separation bubble at this particular frequency. On the other hand, high coherence

magnitudes are present within the centerline separation.

In case of St = 0.12 shown in Fig. 4.13c , the coherence magnitude increases along the in-

termittent length, closely resembling the band of high coherence observed in Fig. 4.10 . This

result indicates the response of the centerline shock to bubble oscillations at the dominant

frequency. Within the separated region on the floor, the coherence magnitude is compara-

tively lower for this component. Post reattachment, streaks of high coherence approximately

aligned with the streamlines on the ramp surface are observed. These streaks are most likely
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(a) (b)

(c) (d)

Figure 4.13. Coherence of oscillations of centerline separation bubble with
pressure fluctuations for (a,b) St = 0.03 (c,d) St = 0.12. In parts (a) and
(c), the solid black and white lines on the floor and left sidewall represent the
limiting streamlines and cfx = 0 contour, respectively. Solid black lines on
the ramp-normal plane indicate the mean density contours. Solid and dashed
black lines on the centerplane in parts (b) and (d) indicate the mean dividing
streamline (u/U∞ = 0) and the sonic line, respectively.

a manifestation vortical structures shed from the bubble. On the left sidewall, a small region

along the trace of the sidewall shock foot oscillations, lying close to the floor, is distinguished

by high values of coherence. The λ-shock structures on the ramp-normal plane are charac-

terized by similar regions. Hence from these observations, it can be said that the bubble
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oscillations at this frequency partly drive the motion of the shock front. On the centerplane

in Fig. 4.13d , the motion of the compression ramp shock shows a strong linear relationship

with the separation bubble breathing motion, suggesting that the latter drives the former at

this frequency.

The coherence plot in Fig. 4.10 suggested an asymmetric back and forth motion of the

interaction, most likely occurring at low-frequency. From Fig. 4.12 , the frequencies corre-

sponding to bubble breathing and shock motion are concentrated at frequencies St ≤ 0.21.

Hence to visualize the motion suggested by the coherence plots, a movie of low-pass filtered

velocity field was made (this movie is available on our research group’s website.) A box filter

with a cut-off frequency of St = 0.21 was used for this purpose. The movies clearly high-

lighted the spanwise motion of the interaction caused due to alternate breathing motions of

the separation bubbles on the left and right sidewalls. Four clips from the movie are shown

in Fig. 4.14 .

Figure 4.14. Contours of low-pass filtered streamwise velocity field (u/U∞)
on the ramp-normal plane at (a) t ≈ 145µs; larger right separation bubble (b)
t ≈ 332µs; mean location/equilibrium (c) t ≈ 798µs; larger left separation
bubble (d) t ≈ 871µs; mean location/equilibrium. Black and white solid lines
indicate instantaneous and mean contour levels of: u/U∞ = 0.2, 0.8, and 0.9,
respectively.

In this figure, the contours of instantaneous streamwise velocity are shown on the ramp-

normal plane at X ≈ 116. The instantaneous contour levels u/U∞ = 0.2 (C1), 0.8 (C2),

and 0.9 (C3) are highlighted using black solid lines, with the appropriate labels included.
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In order to describe the bubble expansion and contraction process, the mean contours levels

(shown as white solid lines) corresponding to the aforementioned values are also included.

The spanwise center (Z = 10) is shown as a white dashed line.

The contour levels u/U∞ = 0.2 is assumed to be the upper boundary of the sidewall

separation bubbles. On the other hand, the contour levels u/U∞ = 0.8 and 0.9 are considered

to represent the separation and reattachment shock foot respectively. Figure 4.14 (a) shows

the expansion of the separation bubble on the right sidewall. Notice that the instantaneous

contour level C1 lies above its mean counterpart. This expansion motion is associated with

the dilation of the separation bubble on the left sidewall. Hence the interaction moves

effectively towards the left and the resulting asymmetry is manifested across the dashed

centerline. The instantaneous λ-shock structures lie below their respective mean locations.

In Fig. 4.14 (b), the separation bubbles on the sidewalls are approximately at their mean

location.

Figure 4.14 (c) shows the expansion process of the separation bubble on the left side-

wall. The interaction moves effectively towards the right, while the separation bubble on

the right sidewall contracts below the contour level C1. At this instant, the instantaneous

λ-shock structures move above their respective mean locations, possibly as a result of down-

stream movement of the interaction. The interaction returns to the mean position again in

Fig. 4.14 (d). The movement of the λ-shock structures seems to be affected by the breathing

motion of sidewall separated regions. Also another interesting feature observed in the movies

is the presence of localized regions of non-dimensional velocity with magnitude ≥ 0.8. These

regions are present approximately in the range 10 ≤ Y ≤ 15, at spanwise locations Z ≈ 5, 15.

Based on Fig. 4.1 , these regions are most likely representative of tornado vortices emanating

from the focus points F1 and F2 respectively (see Fig. 4.1 ).

To investigate the influence of events originating within the separation bubble in this

interaction, space-time correlations of the mass history of the separation bubble and the

shock position histories at the centerline and left sidewall juncture were carried out. Similar

to Figs. 4.6b and 4.11 , the time delay is non-dimensionalized by Lsep and U∞. Its reciprocal

translates to the Strouhal number. The correlation plots are shown in Fig. 4.15 .
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Figure 4.15. Space-time correlation of centerline shock oscillations and sep-
aration bubble breathing.

The correlation estimates were calculated without the process of segment averaging in

order to resolve higher time-scales. The trend of the correlation curves is almost identical

for both the shock location histories. Multiple peaks are observed at negative values of

time delay (∆tU∞/Lsep ≈ −32,−18, and −2) indicating that an event in the time-history

of separation bubble mass precedes a similar event in the time-history of shock motion.

The corresponding Strouhal numbers are representative of low-frequency shock oscillations

(St ≈ 0.03, 0.06) and vortex shedding from the separated shear-layer (St ≈ 0.5). A local

peak occurs at a positive value (∆tU∞/Lsep ≈ 32, St ≈ 0.03) of time delay which suggests

that certain shock motions trigger the motion of the separation bubble. These observations

agree with the results of Dupont et al. [23 ], [24 ], Piponniau and Dussauge [25 ], and Wu and

Martin [4 ].

4.5 Coupling between centerline, corner, and sidewall interactions

This section investigates the extent to which the dynamics of the centerline separation

affects the corner and sidewall interactions. Previous studies on confined SWTBLI [62 ], [65 ]
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have examined the spanwise variation of two-point correlations of wall-pressure fluctuations

in the vicinity of the mean separation line. Rabey et al. [62 ] analyzed the flowfield associated

with a reflecting SWTBLI with a confinement ratio δ/w = 0.069. They observed that when

the reference point was located at the centerline, the correlations diminished beyond 20% of

the half-span. When the reference point was moved towards the sidewalls, the correlation

magnitudes decreased beyond the foci. Based on these results, they concluded that the

corner and centerline separations did not influence each other significantly.

Poggie and Porter [65 ] carried out a similar procedure in case of a compression ramp

with a confinement ratio – δ/w = 0.12. When the reference point was located at the

centerline, high correlation magnitudes persisted up to the sidewall, indicating a relationship

between the centerline and corner separations. This is caused by a higher confinement ratio,

which translates to higher three dimensionality in the flowfield. On moving the reference

point towards the sidewalls, the resulting correlation plot showed no indication of affecting

the centerline separation. High correlation magnitudes were localized, thereby suggesting

response local events such as asymmetric back-and-forth motion of the interaction or passing

of corner vortices.

For the same case, space-time correlations of wall-pressure fluctuations are shown in

Fig. 4.16 . Segment averaging over an ensemble of two signals (with 454 samples each)

was used to calculate the correlation estimates. The spanwise variation of correlations is

examined at X ≈ 92, which lies close to the mean separation line. Time delay plotted on the

y-axis is scaled by U∞ and Lsep. The spanwise coordinates are shown on the x-axis. Following

the approach Rabey et al. [62 ], the contour levels lying in the range: −0.2 < R < 0.2 are

suppressed to mitigate noise.

Figure 4.16a illustrates the correlations with the reference point located at the center-

line. Using the threshold mentioned earlier, the extent of well correlated region is Lz ≈ 15,

covering 75% of the span. Starting from the left, the width of this well correlated region

decreases across the span. Physically, it represents the time-scale of an event at a particular

location. The Strouhal number(s) across the span range from 0.05 ≤ St ≤ 0.07, indicat-

ing that the pressure fluctuations are caused by the low-frequency shock oscillations. In

Fig. 4.16b when the reference point is moved towards the left sidewall (Z ≈ 1.5), the length
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(a) (b)

(c)

Figure 4.16. Space-time correlations with reference point at X ≈ 92 and (a)
at the centerline (Z = 10) (b) close to the left sidewall (Z ≈ 1.5) (c) close to
the right sidewall (Z ≈ 19.2). Solid lines represent the R = 0.25 contour level.
Dotted lines in (b) and (c) represent the R = 0.25 contour level in (a).

of the well correlated region (Lz) is ≈ 7, thereby covering about 35% of the span. The

corresponding region is roughly elliptical in shape. The Strouhal numbers calculated from

the width lie in the range 0.25 ≤ St ≤ 0.33. At the right sidewall (Z ≈ 20), a similar well

136



correlated region occurs at a non-dimensional time delay ∆T ≈ 4. Since this region occurs

at a negative value, the event at the left sidewall is preceded by a similar event at the right

sidewall. Based on the Strouhal number (St ≈ 0.25), these events most likely correspond to

the alternate passing of the corner vortices.

The well correlated region delineated by the R = 0.25 contour level in Fig. 4.16a is also

included in this figure. Notice that there is a significant overlap between the well correlated

regions in Figs. 4.16a and 4.16b , suggesting that the dynamics of corner separation at the

left sidewall extend well into the domain affected by the dynamics of centerline separation.

This trend is repeated in Fig. 4.16c , wherein the reference point is located close to the right

sidewall. The spanwise extent and shape of the well correlated region is same as the one in

Fig. 4.16b , and similar events at the right sidewall occur at the same non-dimensional time

delay ∆T ≈ 4.

(a) (b)

Figure 4.17. Space-time correlation between (a) pressure fluctuations on
the centerline and left sidewall (b) pressure fluctuations on the left and right
sidewall.

Figure 4.17 illustrates the plots of space-time correlations which determine the relation-

ship between the centerline and sidewall interactions. For the plot shown in Fig. 4.17a ,

the reference signal was constructed using pressure fluctuations extracted on the floor at

(X,Z) = (90.2, 10). This signal is correlated with pressure fluctuations on the left sidewall
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along various wall-normal locations, at the same streamwise station. In case of Fig. 4.17b ,

the reference signal was composed of pressure fluctuations at (X,Y ) = (90.2, 8.55). It was

then correlated with pressure fluctuations on the right sidewall along various wall-normal

locations at the same streamwise location. The correlations estimates were calculated by

averaging over an ensemble of two signals with 454 samples each. The non-dimensional time

delay used in the previous figure is plotted on the x-axis and the correlation magnitude is

shown on the y-axis.

Figure 4.17a determines the relationship between interactions at the centerline and on the

left sidewall. For all the cases, there exists a broad region of positive correlation, suggesting

in-phase pressure fluctuations (p). At Y = 0.98, this region starts at T ≈ −19.8. Since the

time delay is negative, the event first occurs on the left sidewall and is most likely caused

by an upstream movement of the corresponding λ-shock structure (p > 0). This event is

correlated with a similar upstream movement of the centerline shock (p > 0) after ∆T ≈ 19.8,

leading to a positive correlation. The peak at T = 0 suggests that the centerline shock and

λ-shock structure on the left sidewall are at their most upstream location.

For positive time delays, the event first occurs at the centerline. Downstream movement

of the centerline shock leads to the drop in correlation magnitude. At T ≈ 17, the correlation

plot switches signs as the centerline shock moves downstream of the reference station (p <

0), while the λ-shock structure is still upstream (p > 0). A valley is expected to occur

either at the edge of the correlation plot (T = 25) or beyond it. This particular feature

is representative of the centerline shock at its most downstream location. The elapsed

time between when the centerline shock is at its most upstream location (at T = 0) and

when it reaches its most downstream location (T = 25) translates to a Strouhal number of

St = 1/∆T = 0.04. This value corresponds to the centerline shock oscillation frequency and

is consistent with the spectrum in Fig. 4.9 . In presence of a longer window segment that

resolves higher values of time delay, the correlation plot can be expected to trend towards

positive value as the λ-shock structure on the left sidewall would have moved downstream

of the reference station (p < 0), while the centerline shock is still downstream of its mean

but is translating upstream.
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This trend persists at Y = 3.85, but changes slightly at Y = 9.64. For this case, upstream

motion of the left sidewall λ-shock structure occurs later at T = −13.67 since at this height,

it is farther away from the reference station (along the streamwise direction). Again, the

plot peaks at T = 0. Interestingly, this upstream movement occurs earliest at Y = 15.57. A

possible explanation for this can be attributed to an increased separation extent at higher

heights, due to the nature of swept interactions. This in turn causes the separation shock foot

(within the λ-shock structure) to reach the corresponding reference station earlier. Notice

that for all wall-normal locations, the valley occurs at approximately the same value of

positive time delay.

Figure 4.17b inspects the relationship between the interactions on the left and right

sidewall. As mentioned previously, the reference signal for this case was extracted at (X,Y ) =

(90.2, 8.55) on the left sidewall. At negative time delays, the event occurs first on the right

sidewall. At Y = 0.98, it seems that the plot switches sign to negative values at some value

of time delay < −25. This instant can be interpreted as the λ-shock structure on the right

sidewall moving downstream of its reference station (p < 0), while that on the left sidewall

moving upstream (p > 0). The valley at T ≈ −20 corresponds to the λ-shock structure on

the right sidewall at its most downstream location and beginning its upstream motion. This

confirms the asymmetric motion deduced from the coherence plots in Fig. 4.10 . Poggie and

Porter [65 ] carried out conditional averaging in their analysis of the same flowfield, which

highlighted similar asymmetric motions. (See Figs. 16 and 17 in that reference.)

At T = −13.75, the right sidewall shock structure moves upstream of the reference

station (p > 0). The resulting region of positive correlation peaks at T = 0 and extends up

to T = 14.28. Note that at positive time delays, any particular event occurs first on the left

sidewall. The latter may correspond to a downstream movement of the left sidewall shock

structure (p < 0). A valley occurs at T ≈ 20, after which the plot immediately switches back

to positive values of correlation at T = 24.45, possibly caused by downstream movement of

the right sidewall shock structure. At this instant, both the shock structures lie downstream

of their respective reference stations. Considering the shock structure on the right sidewall,

the elapsed time between its upstream (at T = −13.75) and downstream movement (at

T = 24.45) is 38.2. This translates to a Strouhal number of ≈ 0.026, which seems to be a

139



representative frequency scale of the asymmetric motion of sidewall interactions described

earlier.

4.6 Dynamic Mode Decomposition

This section presents the dynamics of dominant modes obtained from the SPDMD pro-

cess on five planes mentioned in Sec. 2.4.2 : wall (Plane 1), sidewalls (Planes 2 and 3),

ramp-normal plane (Plane 5), and centerplane (Plane 6). The primitive variables used to

construct the data matrix are specified for each case. The results for each of these cases

are elaborated in different subsections. The mean and instantaneous flowfields, as well as

the details of spectral analysis are presented in Ref. [163 ], and hence only select results are

included here in order to orient the reader. Typically, SBLI’s are characterized by low-

frequency oscillations of the shock and breathing of separation bubble, low-mid frequency

flapping of the separated zone, and high-frequency vortex shedding. The dominant modes

corresponding to representative frequencies from each of these bins are analyzed individually

for each plane.

4.6.1 Centerplane

The flowfield in Figure 4.2b is analogous to a quasi-two dimensional SBLI, wherein the

compression-ramp shock in the freestream bifurcates into a λ-shock foot close to the wall

due to boundary layer separation. The separated zone that occurs between the two shock

feet is of the “open” type, wherein the fluid is swept away from the mid-span instead of

recirculating upstream as in the infinite span case. Figures 4.9 and 4.12 show the spectra of

compression-ramp shock location history and mass history of the separation bubble, respec-

tively in premultipled coordinates. The former peaks in the low-frequency range at St ≈ 0.04

and the latter peaks in the low-mid frequency range at St ≈ 0.12.

For this case, the data matrix used to perform SPDMD was: {ρ, u, v}T . Due to mem-

ory constraints, the domain size was reduced by skipping points in steps of 10 points in

the streamwise direction and 5 points in the wall-normal direction, resulting in a total of

3 × 238 × 281 data points. The eigenspectrum as well as the mode amplitudes are shown
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(a) (b)

Figure 4.18. DMD modes on the centerplane (a) Eigenspectrum (b) Mode
amplitudes. Red markers indicate dominant modes obtained from SPDMD.

in Fig. 4.18 . In Fig. 4.18a , all the eigenvalues lie on the unit circle suggesting that the cor-

responding modes are neutral, i.e. neither damped nor amplified. Such a flow is receptive

to forcing (via external disturbances or internal non-linear mechanisms) corresponding to

the weakly damped global mode, thus displaying both amplifier and oscillator characteris-

tics, as demonstrated by Poggie and Porter [6 ]. The optimal mode amplitudes are shown in

Fig. 4.18b on the y-axis. The Strouhal number is shown on the x-axis in a log scale. The red

markers in both these figures indicate the dynamically significant modes as determined from

the SPDMD algorithm. The size of this subset is Nz = 68, with the maximum frequency of

St ≈ 0.83. The modal amplitudes decrease monotonically with increasing Strouhal numbers,

with the dominant modes lying in the low and low-mid frequency range. Based on the spec-

tra shown in Figs. 4.9 and 4.12 as well as the plot of mode amplitudes shown previously in

Fig. 4.18b , choices of representative frequencies from the low and low-mid frequency bands

are St = 0.03 and St = 0.12 respectively. In case of the mid-frequency band, a value of

St = 0.6 was chosen due its relatively higher amplitude amongst other frequencies in the

same band. These values are kept consistent in all the following subsections for simultaneous

interpretation of results.
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(a) φ = 0 (b) φ = π/2

(c) φ = π (d) φ = 3π/2

Figure 4.19. Contours of û/U∞ describing the low-frequency breathing of
the separated zone and oscillations of the compression-ramp shock. Orange
and white solid lines represent the mean and instantaneous mean dividing
streamline (û/U∞ = 0).

Figure 4.19 shows four instances of the low-frequency mode at St = 0.03 for equidis-

tant phase angles: φ = 0, π/2, π, and 3π/2 via the contours of û/U∞. The superscript ̂
denotes a reconstructed mode. In this figure, boundary of the separated zone is differenti-

ated using the dividing streamline (û/U∞ = 0). Mean and instantaneous locations of the

same are highlighted using orange and white solid lines respectively. Starting from φ = 0

in Fig. 4.19a , the overall extent of the instantaneous separated zone is larger than its mean

counterpart, indicating the bubble expansion phase. The compression-ramp shock — which

can be identified as a region of low values of û/U∞ — is at its most upstream location.

At φ = π/2 in Fig. 4.19b , the boundary of the instantaneous separated zone lies ap-

proximately on the mean dividing streamline. Concurrently, the compression-ramp shock
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translates in the downstream direction. Figure 4.19c shows the contour plot at φ = π,

wherein the instantaneous separated zone expands again, most likely following a contraction

phase in π/2 < φ < π. Notice that the compression-ramp shock translates upstream at this

instant. The contraction phase of the breathing motion can be visualized in Fig. 4.19d at

φ = 3π/4, as indicated by shrinking of the instantaneous separated zone below its mean and

downstream movement of the compression-ramp shock. This behaviour is consistent with the

observations of Nichols et al. [11 ] and Pasquariello et al. [128 ] for the low-frequency mode.

The dynamics of other DMD modes at low-frequencies exhibit similar breathing motion of

the separated zone and streamwise oscillations of the shock.

The dynamics of the mode at low-mid frequency (St = 0.12) are shown in Fig. 4.20 . Four

instances of this mode are shown for phase angles φ = 0, π/2, π, and 3π/2. This frequency

is typically associated with the flapping motion of the shear layer/separated zone. In order

to highlight the same, mean and instantaneous contour levels of û/U∞ ∈ [0.3, 0.6] which lie

within the shear layer are used. For the purpose of analysis, the shear layer is divided into

the aft portion, which lies upstream of the ramp corner (at X = 100) and the rear portion,

which lies downstream of it.

In Fig. 4.20a at φ = 0, the overall aft portion of the shear layer lies above its mean

location while the rear portion lies below it. This seems to correlate with the size of the

instantaneous separated zone and may represent the entrainment of low-momentum fluid

into the aft portion of the shear layer. This is followed by a downward movement of the

same at φ = π/2 in Fig. 4.20b . At the same instant, the rear portion is at its lowermost

position and begins its upward movement. Note the increased separation extent downstream

of the ramp corner as compared to Fig. 4.20a . In Fig. 4.20c , the aft portion of the shear layer

continues its downward movement. As the separation extent downstream of the ramp corner

continues to increase, the rear portion of the shear layer moves upwards. This phase most

likely represents the re-injection of fluid into the separated zone. The aft portion of the shear

layer begins its upward movement at φ = 3π/2 in Fig. 4.20d , while the rear portion starts

moving below its mean position. Based on the description, this frequency does represent

the flapping motion of the separated zone. A similar phenomenon was also observed by

Stantikov et al. [129 ].
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(a) φ = 0 (b) φ = π/2

(c) φ = π (d) φ = 3π/2

Figure 4.20. Contours of û/U∞ depicting the low-mid frequency flapping
of the separated zone. Red and black solid lines represent the mean and
instantaneous contour levels of û/U∞ = 0.3, 0.4, 0.5, and 0.6.

The flapping motion is asymmetric in nature and seems to conform to the hypothesis

proposed by Eaton and Johnston [33 ], which attributes the same to an instantaneous imbal-

ance between the re-injection of fluid in the separated zone and entrainment of fluid by the

shear layer. Additionally in Fig. 4.12 , the spectrum of the mass-history of the instantaneous

separated zone peaks at St ≈ 0.12. Since the flowfield is highly three-dimensional with an

open separation (as indicated by the focus point F in Fig. 4.2b ), spanwise transport of fluid

away from the centerline may also contribute towards the observed flapping motion.

For the final frequency component, we study the dynamics associated with the mode

corresponding to St = 0.6 in Fig. 4.21 by examining the contours of ρ̂/ρ∞. This frequency

typically represents vortex shedding from the separated zone. The mean is not added while

reconstructing the mode in order to view the vortical structures as density perturbations.
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(a) φ = 0 (b) φ = π/2

Figure 4.21. Contours of ρ̂/ρ∞ showing the mid-frequency vortex shedding.
The black solid line represents the instantaneous dividing streamline (û/U∞ =
0).

Only two phases: φ = 0, π of the reconstructed mode are shown. The instantaneous dividing

streamline is shown as a black solid line in order to examine the effect of vortex shedding

on the instantaneous reattachment location. Alternating regions of positive and negative

density perturbations on the ramp are observed in the figure. In Fig. 4.21a at φ = 0, a

region of ρ̂/ρ∞ > 0 is present immediately downstream of reattachment. This is substituted

by a region of ρ̂/ρ∞ < 0 at φ = π in Fig. 4.21b , suggesting the presence of a vortical

structure. The separation extent is smaller as compared to the one in Fig. 4.21a . Therefore

it seems that the instantaneous reattachment location moves upstream after the shedding

process and downstream before it begins.

4.6.2 Ramp-normal plane

This section discusses the characteristics of DMD modes on the ramp-normal plane.

We start by examining the mean density contours shown in Fig. 4.2d . The sidewalls are

characterized by λ-shock structures generated by the bifurcation of the compression-ramp

shock, labelled as CS. The separation and reattachment shock are labelled as SS and RS

respectively. The right-sidewall separation vortex is highlighted via the streamlines. Farther

downstream, the λ-shock structures undergo shock reflection, resulting in a complex wave

pattern. From the spectral analysis carried out by Deshpande and Poggie [163 ], the λ-shock
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structures undergo low-frequency oscillations at St = 0.03 (see Fig. 5 in that reference).

Regions of high spectral energy density at St = 0.12 and St = 0.6 were present within the

separation vortex. Figure 4.22 shows a magnified view of Fig. 4.2d , focused on the bottom-

left corner. The corner vortex corresponding to the left-sidewall can be clearly observed.

The mean flowfield is approximately symmetric across the centerline (Z = 10.)

Figure 4.22. Corner vortex at the left-sidewall. See Fig. 4.2d for reference.

The data matrix for this case consisted of {ρ, u, w}T . The domain size was reduced by

selecting every fifth point in the wall-normal and spanwise directions, resulting in a total of

3×281×281 data points. The size of the subset of dynamically significant modes is Nz = 88,

and consists of the representative frequencies used in Sec. 4.6.1 . The eigenspectrum as well

as the plot of mode amplitudes are shown in Fig. 4.23 . In Fig. 4.23a , all the eigenvalues

lie on the unit circle indicating neutral modes. The spectrum of mode amplitudes shown in

Fig. 4.23b is similar to the one for the centerplane case in Fig. 4.18b , wherein high amplitudes

are biased towards lower frequencies.

Figure 4.24 shows the reconstructed low-frequency DMD mode of û/U∞ at three equally

spaced phase angles: φ = π/2, π, and 3π/2. In order to demonstrate the breathing process,

the contour value of û/U∞ ≈ 0.5 is considered the boundary of the separated zone. The mean

and instantaneous counterparts are highlighted using solid white and red lines respectively.

Additionally, contour lines corresponding to ŵ/U∞ ≈ −0.1, 0.1 are highlighted using solid

and dashed black lines, respectively. They are used to monitor the spanwise motion of
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(a) (b)

Figure 4.23. DMD modes on the ramp (a) Eigenspectrum (b) Mode ampli-
tudes. Red markers indicate dominant modes obtained from SPDMD.

the separation and reattachment shock feet (within the λ-shock structure; see Fig. 4.2d )

for varying phase angles. At each instant, the approximate direction that is followed by a

particular shock foot is indicated by an arrow in the figure.

Both the separated zones lie approximately below their mean positions at φ = 0 in

Fig. 4.24a . Note that the reattachment shock-system (ensemble of shock structures post-

reattachment) translates in the downstream direction at this instant, as evidenced by high

magnitudes of û/U∞ along its trace. The separation shock feet move towards the wall while

the reattachment shock feet move away and towards the mid-span. In Fig. 4.24b , the sep-

arated zones approach their respective mean locations at φ = π/2 while the reattachment

shock-system begins to move in the upstream direction. The angular span between the sep-

aration and reattachment shock feet increases in a forceps-like fashion due to trend reversal

in spanwise velocities of the separation shock feet. At φ = π in Fig. 4.24c , expansion of

the separated zones occurs simultaneously as the reattachment shock-system translates up-

stream. The reattachment shock feet now move towards the wall while the separation shock

feet continue moving towards the centerline. From the snapshots in this figure, the breathing

of the sidewall separated zone occurs in-phase (symmetrically). An expansion of the same is

concurrent with the upstream translation of the reattachment shock-system and vice-versa.
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(a) φ = 0 (b) φ = π/2

(c) φ = π

Figure 4.24. Contours of û/U∞ describing the low-frequency breathing of the
sidewall separated zones. Red and white solid lines indicate the instantaneous
and mean contour levels of û/U∞ = 0.5. Solid and dashed black lines highlight
instantaneous contour levels of ŵ/U∞ = −0.1 and 0.1 respectively.

148



Additionally, the spanwise movement of the individual λ-shock feet seem to be coupled with

the low-frequency breathing motion.

Dynamics of the DMD mode at St = 0.12 are described in Figure 4.25 using the con-

tours of û/U∞. The template used in this figure is adapted from Fig. 4.24 . In order to

examine the spanwise motion of the reattachment shock-system at this frequency, contour

levels corresponding to ŵ/U∞ = −0.08 and 0.08 are highlighted using solid and dashed

black lines respectively. Starting from φ = π/2 in Fig. 4.25a , both the separated zones lie

approximately on their mean locations. At φ = π in Fig. 4.25b , the separation size on the

right-sidewall increases, while that on the left-sidewall contracts below its mean position.

This causes an effective leftward movement of the core flow and the resulting asymmetry

can be observed across the centerline. The angular span between the λ-shock feet on the

left-sidewall decreases, while that on the right-sidewall increases. Figure 4.25c illustrates a

similar phenomenon occurring at φ = 3π/2 wherein the left-sidewall is characterized by a

larger separated region while that on the right-sidewall decreases, resulting in the rightward

movement of the core flow.

Contours of streamwise velocity perturbations û/U∞ shown in Fig. 4.26 are used to study

the mode associated with the mid-frequency component, St = 0.6. The reconstructed mode

does not include contribution from the mean flowfield. Two instances of this mode are shown

for phase angles, φ = 0 and φ = π in Figs. 4.26a and 4.26b , respectively. Based on these

figures, the vortical structures on the floor move away from the centerline due a strong

spanwise velocity component. They are then transported away from the wall, possibly by a

combined influence of the sidewall separation vortex and the corner vortex (see Figs. 4.2d 

and 4.22 ). This process can be visualized by tracking the encircled structure, which moves

towards the left-sidewall at φ = 0 and is swept upwards at φ = π as indicated by arrows in

the respective figures.

4.6.3 Wall and sidewalls

This section discusses the modes on the wall and sidewalls corresponding to representative

frequencies used in the previous sections. The SPDMD algorithm was applied separately on
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(a) φ = 0 (b) φ = π/2

(c) φ = π

Figure 4.25. Contours of û/U∞ describing the low-mid frequency motion the
sidewall separated zones. Red and white solid lines indicate the instantaneous
and mean contour levels of û/U∞ = 0.5. Solid and dashed black lines highlight
instantaneous contour levels of ŵ/U∞ = −0.08 and 0.08 respectively.
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(a) φ = 0 (b) φ = π/2

Figure 4.26. Contours of û/U∞ describing the mid-frequency dynamics of
the sidewall separated zones.

the wall and each sidewall, using a data matrix consisting of only wall pressure fluctuations.

The domain size was reduced by selecting every tenth point in the streamwise direction and

every fifth point in the wall-normal and spanwise directions. Total data points on the wall

and both the sidewalls were 238 × 281 and 281 × 281 respectively. The size of the subset of

dynamically significant modes is Nz = 76 for all the cases. Since the plots of eigenspectrum

and mode amplitudes obtained for all the cases were identical, they are only shown for the

case of wall in Fig. 4.27 . These plots share similar characteristics to those described in

Figs. 4.18 and 4.23 .

Figure 4.28 highlights the low-frequency motion of the compression-ramp shock as well

as that of the reattachment shock-system formed downstream of mean reattachment at

St = 0.03. The reconstructed modes are shown at four equidistant phase angles φ = 0, π/2, π,

and 3π/2. In this figure, the mean and instantaneous levels of p̂/p∞ = 0.2 and 0.4 are

shown using red and black solid lines respectively. The former tracks the movement of
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(a) (b)

Figure 4.27. DMD modes on the ramp (a) Eigenspectrum (b) Mode ampli-
tudes. Red markers indicate dominant modes obtained from SPDMD.

the compression-ramp shock and the latter monitors oscillations of the reattachment shock-

system.

Figure 4.28 highlights the low-frequency motion of the compression-ramp shock as well

as that of the reattachment shock-system formed downstream of mean reattachment at

St = 0.03. The reconstructed modes are shown at four equidistant phase angles φ = 0, π/2, π,

and 3π/2. In this figure, the mean and instantaneous levels of p̂/p∞ = 0.2 and 0.4 are

shown using red and black solid lines respectively. The former tracks the movement of

the compression-ramp shock and the latter monitors oscillations of the reattachment shock-

system.

Initially at φ = 0 in Fig. 4.28a , the compression-ramp shock lies upstream of its mean

location on the wall, while the reattachment shock-system lies downstream. Note the cor-

rugated nature of the latter, wherein the extremities of the contour level (lying in the range

0 ≤ Z ≤ 5 and 15 ≤ Z ≤ 20) are displaced slightly downstream as compared to the contour

level in the vicinity of the centerline. These extremities are most likely caused by the λ-shock

structures on the sidewalls. On the left-sidewall, a portion of the compression-ramp shock

close to the wall (0 ≤ Y ≤ 10) lies upstream of its mean while the rest of it lies approx-

imately on its mean. The trace of the reattachment shock-system lies on its mean on the
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(a) φ = 0 (b) φ = π/2

(c) φ = π (d) φ = 3π/2

Figure 4.28. Contours of p̂/p∞ depicting the low-frequency motion of the
compression-ramp shock and the reattachment shock-system. Red and black
solid lines represent the mean and instantaneous contour levels of p̂/p∞ = 0.2
and 0.4 respectively.

left-sidewall. In Fig. 4.28b at φ = π/2, both the compression-ramp shock and the reattach-

ment shock-system translate downstream of their respective mean locations, which is then

followed by an upstream movement of the latter at φ = π (see Fig. 4.28c .) At this phase,
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the compression-ramp shock remains downstream of its mean which then moves upstream

at φ = 3π/2 in Fig. 4.28d . Based on these figures, there exists a finite time-delay between

the oscillations of the compression-ramp shock and the reattachment shock-system. Also,

note that the motion of parts of the compression-ramp shock lying above and below Y ≈ 10

are not synchronous.

The motion of the interaction at St = 0.12 is shown in Fig. 4.29 . The template used

in the previous figure is reproduced here. The right-sidewall (Z = 20) is included as a

translucent surface to visualize the motion described hereafter. For the upcoming analysis,

we focus only on the motion of the compression-ramp shock.

At φ = 0 in Fig. 4.29a , the compression-ramp shock on the left-sidewall lying in Y ≤ 15

is downstream of its mean, while the rest of it is approximately upstream of it. An opposite

trend is observed on the right-sidewall at this instant. In Fig. 4.29b at φ = π/2, the lower

portions of the compression-ramp shock on the left and right-sidewall (Y ≤ 5) begin to move

upstream and downstream of their respective mean locations. This is followed by their upper

portions (Y ≥ 15) moving in opposite directions at φ = π (see Fig. 4.29c ), while the lower

portions on the left and right-sidewall begin translating downstream and upstream of their

mean locations.

(a) φ = 0 (b) φ = π/2
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(c) φ = π (d) φ = 3π/2

Figure 4.29. Contours of p̂/p∞ depicting the low-mid frequency motion of the
compression-ramp shock and the reattachment shock-system. Red and black
solid lines represent the mean and instantaneous contour levels of p̂/p∞ = 0.2
and 0.4 respectively.

The compression-ramp shock front at φ = 3π/2 in Fig. 4.29d returns to its original loca-

tion (corresponding to φ = 0), and the cycle repeats. Based on this description, the low-mid

frequency mode highlights a low-amplitude asymmetric streamwise motion of the interac-

tion. This asymmetric motion of the interaction was observed by Poggie and Porter [65 ]

on plotting conditionally averaged wall pressure (see Figs. 16 and 17 in that reference) as

well as in the coherence plots by Deshpande and Poggie [163 ] (see Figs. 8 and 9 in that

reference). One of the contributing factors for this phenomenon could be variation in the

size of the sidewall separated zones, as described in Fig. 4.25 on the ramp-normal plane at

this frequency.

Figure 4.30 illustrates the process of vortex shedding through contours of p̂/p∞ for the

frequency component St = 0.6. The reconstructed mode does not include contribution from

the mean flowfield, and two instances at φ = 0 and φ = π are shown in Figs. 4.30a and

4.30b respectively. The mean contour level of cfx = 0 is included as a black solid line. From

both the figures, the vortices on the wall and away from the centerline are swept towards the
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(a) φ = 0 (b) φ = π/2

Figure 4.30. Contours of p̂/p∞ depicting the mid-frequency vortex shedding.
Black solid lines represent the mean contour level of cfx = 0.

corners and into the corner vortex system present at the sidewall junctures (see Fig. 4.2 ). It

seems that the sidewall vortex system transports the shed vortices from the wall to the left-

sidewall, which then follow a helical trajectory of the open separation vortex. This process

can be visualized by tracking the encircled region in the figure, which enters the corner vortex

system associated with left-sidewall at φ = 0, followed by the sidewall separation vortex at

φ = π. This observation is consistent with the behaviour of the mid-frequency mode in

Sec. 4.6.2 (see Fig. 4.26 ). The vortices in the vicinity of the centerline follow the path of the

core flow as shown in Fig. 4.21 .

4.7 Summary

Data analysis of ILES computations on a highly confined compression ramp flow with

sidewalls carried out by Poggie and Porter [17 ], [65 ] was elaborated in this chapter. The

mean and instantaneous flowfields were used to elucidate the three-dimensionality of the

interaction. Secondary flows within the interaction were characterized by Critical Point

Analysis. Spectra of wall-pressure fluctuations highlighted events such as low-frequency sep-

aration shock motion, low-mid frequency breathing of the centerline separated zone, and

mid-frequency vortex shedding. Individual spectrum plotted for the first two phenomena

156



showed peaks in the respective frequency regimes. Contours of coherence of pressure fluc-

tuations in the domain suggested an asymmetric back-and-forth motion of the interaction.

Space-time correlations of the same were used to quantify the degree of coupling between

the centerline and corner separations. The complex secondary flows were recovered using

modal reconstruction from the SPDMD algorithm.
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5. HIGH-FREQUENCY FORCING OF SHEAR-LAYERS

This chapter characterizes the effects of introducing high-frequency perturbations in the flow-

field described in Chapter 3 . Initially, the formulation of the source term used to introduce

periodic perturbations in the flowfield is elaborated. This is followed by a discussion on the

effects of forcing on the mean and statistical quantities. Spectral analysis is performed to

examine any new time-scales caused as a result of forcing. The effect of forcing was exam-

ined using ILES calculations in HOPS and DDES calculations in SU2. These calculations

are being carried out by Deshpande and Poggie, and are currently in progress. This chapter

presents a snapshot of work in progress.

5.1 Actuator Formulation

The method used for formulating the actuator model that was implemented as source

terms in the momentum and energy equations (labelled as fi in Eq. (2.7 ) in Sec. 2.3 ) is de-

scribed in this section. Deshpande and Poggie [164 ] carried out conditional averaging of the

fluctuating velocity velocity field, based on the instantaneous location of the reattachment

shock (xshk(t).) A time offset between two events: positive (negative) streamwise velocity

fluctuations in the shear-layer followed by upstream (downstream) movement of the reat-

tachment shock was incorporated while carrying out the conditional averages. This value was

obtained from the optimum time-delay in the space-time correlations of streamwise velocity

fluctuations (u′(t)) and xshk(t)) (see Fig. 9(a) in Ref. [164 ].)

The flow-control approach is to take the form of disturbances identified through condi-

tional averaging to precede separation bubble/reattachment shock motion, and impose them

in the flow to attempt to modify such motion. Following the methodology used by Poggie [6 ],

the actuator was modeled computationally as an artificial body-force actuator varying sinu-

soidally in time, with a Gaussian distribution in the streamwise direction. On implementing

the expressions in Eqs. (5.1 ) and (5.2 ) in a CFD code, physically similar fluctuations can be
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generated in the flowfield. The analytical expression of the actuator’s wall-normal profile is

given as,

g(y) =
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(5.1)

where yr = D = 0.0254 m, A1 = 1.6, A2 = 1.7, C1 = 400, and C2 = 300. In this study,

the actuator was placed close to the step at xa/D = 0.1. The expression for the body-force

(N/m3) to be used in the momentum equations is shown in Eq. (5.2 ),

Φ(x, y, t) = Af(x)g(y) cos(2πf0t)

f(x) = exp(−X2)√
πxr

; X = x− xa

xr

(5.2)

where Φ is the body-force, xr = 0.1Dm, A is the forcing amplitude (in N/m), f0 is the

forcing frequency (in Hz), and xa is the streamwise location of the actuator. The functions

f(x) and g(y) are normalized such that,

∫ ∞

−∞
f(x) dx = 1;

∫ ∞

−∞
g(y) dy = 1 (5.3)

A comparison of the analytical velocity profile with the conditionally averaged velocity

profile is shown in Fig. 5.1a . Although there is a slight disagreement in the vicinity of

y/yr = 0, the maxima/minima of the analytical profile agree well with the conditionally

averaged profile. Figure 5.1b shows the contour plot of the body-force function evaluated

from Eq. (5.2 ), where A = 1.

The amplitude corresponding to the forcing term can be tuned by examining some previ-

ous studies [165 ], [166 ], which quantify the degree of forcing using the ratio of perturbation ve-

locity to the freestream velocity (u′/U∞) or the momentum coefficient, Cµ = ρau
2
ab/ρ∞U

2
∞L,
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Figure 5.1. Actuator details. (a) Wall-normal profile (b) Body-force distribution.

where the subscript a stands for “actuator” and L is the choice of length-scale (which is

cavity length (Lc) in this study.)

In the expression for momentum coefficient, the dynamic pressure term ρau
2
a is inte-

grated across the wall-normal extent of the actuation region. Using this interpretation, the

momentum coefficient can be defined as,

Cµ = 1
ρ∞U2

∞Lc

∫ ∞

−∞
ρa(y)ua(y)2 dy (5.4)

Estimates of the momentum coefficient were obtained by performing Euler calculations

with the actuator switched on, followed by extracting the momentum flux at the outlet. A

two-dimensional square box with a length of 2D with a grid size of 2000 × 2000 points was

used for the calculations. The actuator was placed at the center of the domain Table 5.1 

below shows the values for u′
max/U∞ and Cµ corresponding to different values of A, which is

dimensional. These values were obtained by carrying out Euler calculations with varying A

values. The momentum coefficient is integrated over the entire span of the source term, i.e

−0.01 ≤ y/D ≤ 0.01 using Eq. (5.4 ). On the other hand, the ratio of u′
max/U∞ is calculated

to determine the relative influence of actuator velocity.
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Table 5.1. Amplitude values.
A (N/m) Cµ u′

max/U∞
1 0.33 × 10−4 0.06
2 1.35 × 10−3 0.12
5 7.4 × 10−3 0.25

Based on the review paper by Greenblatt and Wygnanski [165 ], the effective value of

Cµ for reduced frequencies F+ = fLc/U∞ ∼ O(1) lie in the range: 0.01% ≤ Cµ ≤ 3%,

where Cµ = (cµ, < cµ >) includes the contribution from both steady blowing and oscillatory

blowing. The former is not as effective and requires higher values to obtain the desired

effect. The latter was found to be more effective and typically requires lower values. For the

reduced frequency value of F+ = 1.6 used in this study, a value of A = 1.5 N/m was chosen.

Note that the definition of reduced frequency is equivalent to the Strouhal number used in

this study.

The grid sizes, time-steps, and sampling rates used for the DDES calculations in SU2 and

ILES calculations in HOPS are consistent with the ones used for calculations of the baseline

(unforced) flowfield. They are listed in Tables 2.3 and 2.4 in Sec. 2.4.1 . Additionally, the

data were extracted at locations chosen for the baseline case (see Table 2.6 at the end of

Chapter 2 .) The SU2 calculations were carried out for a total run-time of ≈ 0.023 s (∼ 93000

iterations and 343 actuator cycles) while the HOPS calculations were carried out for a total

run-time of ≈ 0.002 s (∼ 1165000 iterations and 30 actuator cycles.)

5.2 Flowfield Structure

This section investigates any changes in the mean and statistical quantities caused as a

result of forcing. The baseline flow consists of a flow separating at the edge of a backward

facing step over a recirculation zone in the cavity region. The separated shear-layer reattaches

onto a ramp and is aligned along its surface through a reattachment shock. The mean

flowfield highlighting these features is shown in Fig. 3.1 .
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(a) (b)

Figure 5.2. Comparison of shear-layer growth rates between unforced (—)
and forced (—) cases in SU2 for (a) Momentum thickness (b) Vorticity thick-
ness.

We start by comparing the growth rates of the forced case with the baseline case in

Fig. 5.2 . The momentum thickness curve in Fig. 5.2a for the forced case follows that for

the baseline case until the saturation location. Subtle variations between the two curves are

observed in region II, which may subside with additional samples. Similarly, the vorticity

thickness curve for the forced case also follows the curve for the unforced case up to x/D ≈ 0.8

(labelled as region I in Fig. 5.2b .) The growth rate for the forced case is slightly reduced

as compared to the unforced case, downstream of x/D ≈ 0.8 (in region II.) But the overall

trend in growth rates with actuator forcing remains largely unchanged with respect to the

baseline case.

Figure 5.3 highlights the effect of forcing on the mean (right y-axis) and RMS (represented

by 〈 〉 on the left y-axis) surface properties. In Fig. 5.3a , the forcing has almost no effect on

both the mean and RMS wall-pressure distribution. The invariance of pressure rise across

the reattachment shock with application of forcing suggests that the latter does not affect

the mean shock strength significantly. As with the study of Poggie [6 ], the intent was to

perturb the instantaneous flow without significantly distorting the mean flow. The mean

reattachment location also does not change with the application forcing, as indicated by the
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(a) (b)

Figure 5.3. Surface quantities of (a) Wall-pressure (b) Skin-friction coeffi-
cient with (—) and without (—) forcing in SU2. Mean and RMS values are
highlighted by dashed and solid lines, respectively.

mean skin-friction coefficient distribution in Fig. 5.3b . Some variation is observed in the

redeveloping region wherein the mean skin-friction coefficient decreases to a slightly lower

value with forcing towards the domain exit. On the other hand, the peak RMS value of

skin-friction coefficient decreases slightly in the case of forcing.

The comparison of mean velocity profiles with and without forcing is shown in Fig. 5.4 .

The streamwise locations are consistent with those used in Fig. 3.3 . Based on the trend

observed in Figs. 5.4a to 5.4d , the forcing does not alter the mean velocity profile in the

shear-layer significantly. Also, unlike observations in the study carried out by Dandois et

al. [69 ], no additional inflection points are observed. Possible causes for this result are

discussed in the next section.

Figure 5.5 examines the effect of forcing on the resolved Reynolds stresses in the shear-

layer. In this figure, an RMS quantity is represented by 〈 〉. Comparison of the normalized

mean-squared streamwise momentum fluctuations and the shear-stress component of the

stress tensor (u′v′) is carried out. The normalization is carried out using freestream quan-

tities, i.e. (ρ∞U∞)2 and U2
∞ in case of (ρu)′2 and u′v′, respectively. The figure has two x-
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(a) (b) . (c) (d)

Figure 5.4. Comparison of mean velocity profiles in the shear-layer at (a)
x/D = 0.5 (b) x/D = 1.5 (c) x/D = 2.5 (d) x/D = 3.5, with (– –) and
without (—) forcing in SU2.

and y-axes. For the streamwise momentum flux (plotted using solid lines), the x- and y-axis

lie on the bottom and left side of the figure. For the shear-stress component (plotted using

dashed lines), the x- and y-axis lie on the top and right side of the figure.

Application of forcing does not seem to affect the distribution of the mean-squared

streamwise momentum fluctuations in the shear-layer at all the streamwise locations shown

in the figure. On the other hand, subtle variations in the profile of the shear-stress com-

ponent are observed at x/D = 0.5 in Fig. 5.5a . The maxima of the profile present within

the shear-layer decreases slightly. At wall-normal locations away from the shear-layer, the

profile does not show any notable change. On moving downstream to x/D = 1.5 and 2.5 in

Figs. 5.5b and 5.5c , respectively, the magnitude of the shear-stress component is unaffected.

This observation also suggests that actuator forcing does not alter the turbulent production

(Π = −ui′uj′∂ui/∂xj) in the shear-layer.
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(a) (b) (c)

Figure 5.5. Comparison of normalzied profiles of mean-squared streamwise
momentum fluctuations (—) and RMS of shear-stress component (– –) in the
shear-layer (a) x/D = 0.5 (b) x/D = 1.5 (c) x/D = 2.5, with (—) and without
(—) forcing in SU2.

5.3 Unsteadiness of the interaction

This section discusses the unsteadiness of the flowfield in the presence of forcing by

examining the pressure spectra on the surface and within the shear-layer. The comparison

of wall-pressure spectra at select streamwise locations corresponding to the SU2 and HOPS

run is shown in Fig. 5.6 . The spectra are shown in semi-logarithmic scale. Since the physical

run-time is not long enough to resolve the lower frequencies, the nature of only low-mid

and mid frequencies is studied here. The spectra for the SU2 and HOPS run were obtained

by segment averaging with window sizes of Nw = 32768 (∼ 4 windows) and Nw = 524288

(∼ 4 windows), respectively, followed by averaging across the span. The resulting frequency

resolutions are ∆St ≈ 0.013 and ∆St ≈ 0.1, respectively.

Figure 5.6a compares the wall-pressure spectra at x/D = 1.07, which lies close to the

step within the cavity region. At this location, a sharp peak corresponding to the forcing

frequency of Stf = 1.6 is clearly observed in the spectrum. An additional peak at a higher
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(a) (b)

(c)

Figure 5.6. Comparison of wall-pressure spectra for the SU2 and HOPS run
at (a) x/D = 1.07 (b) x/D = 2.44 (c) x/D = 3.81

harmonic occurs at St = 2Stf = 3.2. The rest of the spectrum remains largely unchanged.

On the other hand, the spectrum corresponding to the HOPS run does not show a peak either

at the forcing frequency or its higher harmonic. Since this location lies close to the step, it

is possible that the large turnover times in the recirculation zone result in slow progression

of acoustic disturbances introduced by the actuator, towards the step. At x/D = 2.44

in Figure 5.6b , which lies at the cavity-ramp junction, the peak at the higher harmonic

present at the upstream location damps out, while the peak value corresponding to the
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forcing frequency remains invariant. For the HOPS case, a peak at the forcing frequency

now appears in the spectrum.

Farther downstream on the ramp surface at x/D = 3.81 in Fig. 5.6c , the peak magnitude

corresponding to the forcing frequency in the SU2 spectrum subsides significantly. A similar

result occurs in the HOPS spectrum. This observation suggests that the effects of forcing

are primarily confined in the cavity region. A detailed view of the spectra shown in Fig. 5.6 

(a)

(b)

Figure 5.7. Contours of pre-multiplied wall-pressure spectra corresponding
to the SU2 run for (a) Baseline case (b) High-frequency forcing.
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is shown in the contour plots presented in Fig. 5.7 . The streamwise coordinate is shown on

the x-axis and the logarithm of the Strouhal number is plotted on the y-axis.

In this figure, the cavity-ramp junction at x/D ≈ 2.44 and mean reattachment location

at x/D ≈ 4.69 are labelled as xc and xR, respectively. Based on the patterns observed in

Figs. 5.6a to 5.6c , the forcing frequency Stf = 1.6 and its harmonics Stf/2 and 2Stf are also

marked to track their evolution downstream. The spectra at each streamwise location were

calculated using a window size of Nw = 8192 samples (∼ 16 windows), followed by averaging

across the span. The resulting frequency resolution is ∆St ≈ 0.053.

The baseline contour plot in Fig. 5.7a is similar to the contour plots corresponding to

the OVERFLOW run in Figs. 3.8 and 3.9 . The spectral energy residing within the low-mid

frequencies (St ∼ O(0.1)) is comparatively lower in magnitude due to a shorter run-time.

Figure 5.7b clearly highlights the evolution of the forcing frequency and its harmonics. The

effect forcing starts immediately downstream of the step at x/D = 0 and persists up to

the mean reattachment location. The magnitude of spectral energy associated with the

forcing frequency (Stf ) begins to subside progressively on the ramp. The second harmonic

component (2Stf ) follows a roughly similar pattern. The sub-harmonic component (Stf/2)

observed in Figs. 5.6b and 5.6b starts developing at x/D ≈ 2.5 and damps out shortly

downstream at x/D ≈ 3.5.

(a) (b)
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(c) (d)

(e)

Figure 5.8. Comparison of pressure spectra between SU2 (without forcing)
(—), SU2 (with forcing) (—), and HOPS (with forcing) (—) at (a) SH-1 (b)
SH-2 (c) SH-3 (d) RZ-1 (e) RZ-2.

Figure 5.8 illustrates the pressure spectra at various stations within the shear-layer and

recirculation zone, which were used for the baseline case (see Fig. 3.10 in Chpater 3 .) Spectra

corresponding to the SU2 and HOPS case are included in the figure. The window segment

sizes and the corresponding frequency resolutions for SU2 and HOPS case are Nw = 32768

(∼ 4 windows), Nw = 1048576 (∼ 2 windows) and ∆St ≈ 0.013, ∆St ≈ 0.06, respectively.

For reference, the baseline spectrum corresponding to the SU2 run is included in all the
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figures. The forcing frequency is labelled in all the cases to discern any peaks that occur at

that value. Since the time-step for the HOPS run is smaller, a larger window size is required

to capture a longer time-frame, in order to resolve low-mid and mid-frequencies.

At SH-1 in Fig. 5.8a , the spectrum obtained from the SU2 run shows a small peak at

the forcing frequency. Compared to the baseline spectrum, the energy magnitude in the

vicinity of St = 1 are lower in the spectrum corresponding to high-frequency forcing. A

peak at the forcing frequency is also observed in the spectrum corresponding to the HOPS

run, though it is not well resolved due to an insufficiently long run-time. (This calculation

is currently running, and fully converged statistics will eventually be required.) No changes

in the spectra are observed in the high-frequency regime.

The peak at the forcing frequency is not as prominent at SH-2 and SH-3 in Figs. 5.8b 

and 5.8c , which suggests that the effect of forcing in the shear-layer persists only up to SH-1,

which lies close to the step. A similar trend is observed in the spectra corresponding to the

HOPS case. The peak reappears in the spectra within the recirculation zone at RZ-1 and

RZ-2, shown in Figs. 5.8d and 5.8e , respectively. Note that spectra for the HOPS case are

not shown since the data were not sampled at those locations. The presence of this peak

indicates a relatively stronger influence of forcing in the recirculation zone as compared to

the shear-layer. In order to examine this in additional detail, contours of pressure spectra

at the frequency component and its sub-harmonic from the SU2 run are shown in Fig. 5.9 .

(a)
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(b)

(c)

Figure 5.9. Contours of pre-multiplied pressure spectra corresponding to the
SU2 run for the frequency components: (a) St = 1.6 (b) St = 0.8 (c) St = 3.2.
The mean reattachment location at xR/D = 4.69 is marked for reference. The
actuator location at (x/D, y/D) = (0.1, 0) is highlighted using a black marker.

The spectra were determined by using a window size of Nw = 8192 samples (∼ 16

windows), with a frequency resolution of ∆St ≈ 0.053. The contours mean non-dimensional

streamwise velocity (u/U∞) are included in the figure to differentiate between the shear-layer

and the recirculation zone. The region above the shear-layer is neglected for ease of analysis.

The actuator is located close to the step at (x/D, y/D) = (0.1, 0) and is highlighted using a

black marker in each figure.
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Figure 5.9a shows the contours for the forcing frequency component of St = Stf = 1.6.

High magnitudes of spectral energy are present in the immediate vicinity of the actuator

location and are skewed towards the recirculation zone. This region approximately follows

the contour line of u/U∞ = 0, wherein the magnitude spectral energy decreases progressively

downstream. The cavity surface is also characterized by regions high spectral energies dis-

tributed unevenly, and which persist up to x/D ≈ 3. This observation is consistent with

the spectra shown in Figs. 5.6 and 5.7 . Note that the shear-layer region is populated by

moderate to low magnitudes of spectral energy, which confirms that it is not significantly

affected by the forcing. This may explain the minimal variation in the growth rates, mean

velocity and resolved stress profiles shown in Figs. 5.2 , 5.4 and 5.5 , respectively.

Figure 5.9b shows the contours for the sub-harmonic of the forcing frequency, St =

Stf/2 = 0.8. The aft portion of the cavity region consists of low magnitudes of spectral

energy associated with this frequency component. It starts to develop towards the cavity-

ramp junction and is localized close to the cavity and ramp surfaces. Within the shear-layer,

signs of sub-harmonic development are evident downstream of x/D ≈ 2.44, i.e. the corner.

Similar to the fundamental forcing frequency, the effects of the sub-harmonic component

is localized to the recirculation zone and does not affect the shear-layer significantly. The

contours corresponding to the second harmonic of the forcing frequency (St = 2Stf = 3.2)

shown in Fig. 5.9c indicate a standing-wave-like pattern along the wall-normal direction.

The effect of forcing on the motion of the reattachment shock and separation bubble

breathing is examined by the spectra shown in Figs. 5.10a and 5.10b , respectively. The

procedures used to obtain the time histories of shock location and separation bubble mass

are described in Sec. 3.4 in Chapter 3 . The baseline plots for both the cases are included

for reference. In case of the spectra of reattachment shock motion, three distinct peaks

are observed at the forcing frequency, St = 1.6 and its harmonics, St = 3.2 = 2Stf and

St = 4.8 = 3Stf . The spectrum of the separation bubble mass history shows a peak at a

slightly lower value (St ≈ 0.1) in the mid-frequency range as compared to the unforced case.

The peak in the low-frequency range at St ≈ 0.026 remains unaffected by forcing. Unlike

the spectrum of the reattachment shock motion, peaks at the forcing frequency or any of its

higher harmonics are not observed here.
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(a) (b)

Figure 5.10. Spectra of (a) reattachment shock motion and (b) separation
bubble breathing in pre-multiplied coordinates for the baseline (—) and forcing
(—) cases using the SU2 code.

To investigate the presence of peaks at the forcing frequency (and its higher harmonics)

in the spectrum of reattachment shock location, the contours of phase-averaged pressure

fluctuations are plotted in Fig. 5.11 . The data are divided into four bins, with the bin edges

increasing progressively from 0 to 2π in steps of π/2. The mean and instantaneous contour

levels of u/U∞ = 0, 0.15, and 0.7 are used to capture the propagation of pressure fluctuations

in the recirculation zone, shear-layer, and the freestream, respectively.

The downstream propagation of disturbances (seen as alternating regions of positive

and negative pressure fluctuations) in the freestream and recirculation zone is evident in

Figs. 5.11a –5.11d . Based on the magnitude of pressure fluctuations, the disturbances in the

freestream get progressively weaker downstream and hence may not affect the shock motion

significantly. On the other hand, the disturbances in the recirculation zone seem to traverse

along the contour level of u/U∞ = 0 (which is consistent with the trend in Fig. 5.9a ) and

towards the foot of the reattachment shock. This process can be visualized by focusing on

the encircled region at (x/D, y/D) ≈ (2.19,−0.63).
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(a) 0 < φ < π/2 (b) π/2 < φ < π

(c) π < φ < 3π/2 (d) 3π/2 < φ < 2π

Figure 5.11. Phase-averaged contours of pressure fluctuations correspond-
ing to the SU2 run. Arrows in part (d) indicate the approximate path of
disturbances in the recirculation zone.

In Fig. 5.11a when the actuator phase lies between 0 and π/2, the encircled region

captures a downstream propagating packet of positive pressure fluctuations. As observed in

Fig. 5.11b , this packet travels along the contour level of u/U∞ = 0. The encircled region

is replaced by a packet of negative pressure fluctuations in Fig. 5.11c , which then travels

downstream (in Fig. 5.11d ) along the same path followed previously by the packet of positive

pressure fluctuations in Fig. 5.11b . The packet of positive pressure fluctuations which was
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traversing downstream for actuator phase lying in the range: 0 < φ < π, is now close to the

reattachment shock foot. These observations suggest that the peak at the forcing frequency

present in the spectrum of reattachment shock position is may be caused by the actuator

perturbations propagating through the recirculation zone.

The peaks in the spectrum of reattachment shock location are caused as a result of ac-

tuator forcing, as it is only the differentiating factor in comparison to the baseline spectra.

It is possible that the high-frequency forcing introduced by the actuator introduces new

phenomena in the shear-layer and/or the recirculation zone which have not been addressed

previously in this chapter. Considering these points, the influence of perturbations induced

by the actuator on the reattachment shock oscillations is investigated by calculating the

statistical estimates of coherence. Higher values of coherence indicate a roughly linear rela-

tionship between the two signals and in the following discussion, it is assumed that any such

observation indicates a stronger influence (and possible causality) of the preceding signal on

the phenomenon of interest.

Figure 5.12 illustrates the coherence plots between the reattachment shock oscillations

and locations in the recirculation zone and the shear-layer. The coherence estimates were

calculated by segment averaging with a window size of Nw = 8192 points (∼ 16 windows.)

The coherence plot corresponding to RZ-1 shown in Fig. 5.12a exhibits two distinct peaks at

(a) (b)
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(c)

Figure 5.12. Coherence of reattachment shock oscillations with (a) pressure
fluctuations in the recirculation zone at RZ-1 (—) and RZ-2 (—) (b) wall-
normal velocity fluctuations in the shear-layer at SH-1 (—), SH-2 (—), and
SH-3 (—) (c) breathing motion of the recirculation zone, using the SU2 code.

the forcing frequency (Stf ) and its harmonic (2Stf .) On the other hand, the coherence plot

associated with RZ-2 is relatively broadband in nature, suggesting a non-linear relationship

with the reattachment shock motion. Unlike RZ-2, RZ-1 lies deep within the recirculation

zone (see Fig. 2.4a in Sec. 2.4.1 ), which according to Figs. 5.9a and 5.11 is influenced by the

actuator forcing. This explains presence of peaks in the coherence plot corresponding to this

location. Figure 5.12b shows the coherence plots with the wall-normal velocity fluctuations at

SH-1, SH-2, and SH-3. The markers corresponding to the forcing frequency and its harmonic

are included in the figure for reference. The plots do not show any distinct peaks at any

of the three locations, highlighting a weaker effect of flapping motion on the reattachment

shock oscillations.

The coherence plot in Fig. 5.12c examines the relationship between the reattachment

shock oscillations and separation bubble breathing. A longer window segment of Nw = 32768

points was used to resolve the lower frequencies. The locations of the peak in the low and

low-mid frequency regimes at St ≈ 0.026 and St ≈ 0.1 are similar to the ones in the spectrum

of separation bubble breathing in Fig. 5.10b . At mid-frequencies, this plot is broadband in
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nature, with one of peaks occurring at the forcing frequency. This plot is similar to the one

for the baseline case (see Fig. 3.24 in Sec. 3.5 ), with peaks occurring at dominant frequencies

present in the spectrum of separation bubble mass.

(a) (b)

Figure 5.13. (a) Pressure spectrum in the freestream at (x/D, y/D) ≈
(0.71, 0.21) (b) Coherence of pressure fluctuations in the freestream with reat-
tachment shock motion, using the SU2 code.

The phase-averaged contours of pressure fluctuations shown in Fig. 5.11 indicated dis-

turbances in the freestream that reach the reattachment shock location farther downstream.

In order to determine any influence on its oscillations, a similar exercise of examining the

coherence estimates is carried out. Initially, the dominant time-scales in the freestream are

quantified by plotting the pressure spectrum at (x/D, y/D) ≈ (0.71, 21). The spectrum

is plotted in pre-multiplied coordinates and shown in Fig. 5.13a , using a window size of

Nw = 8192 points (∼ 16 windows.) The spectrum consists of peaks at the forcing frequency

and its higher harmonics as labelled in this figure. This observation is consistent with a

similar result in the work of Samimy et al. [67 ], who observed several additional peaks at

harmonics of the actuation frequency in the near-field pressure power spectra. The coherence

plot between this signal and the reattachment shock motions is illustrated in Fig. 5.13b . The

window size is similar to the one used in the calculation of pressure spectrum in Fig. 5.13a .
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Three peaks occur in the coherence plot at the forcing frequency Stf , and its higher har-

monics at 2Stf and 3Stf . The magnitude of peaks decreases monotonically towards higher

frequencies. The peak at the third harmonic in the shock position spectrum may therefore

be caused due to interaction with freestream disturbances. In case of the peak at second

harmonic, based on the coherence magnitudes in this figure and Fig. 5.12a , the influence of

freestream disturbances on the reattachment shock motion is relatively more stronger than

the disturbances propagating through the recirculation zone.

5.4 Summary

Delayed-Detached Eddy Simulations and Implicit Large-Eddy Simulations of high-frequency

forcing applied to the reattaching shear-layer case were carried out, and the corresponding

results were described in this chapter. The actuator introduced perturbations of the form

that were identified from conditional averages based on the instantaneous reattachment shock

position. The actuation frequency and amplitude were set to St = F+ = 1.6 and A = 1.5,

respectively. The mean and RMS profiles in the shear-layer did not change significantly, but

the forcing did have an effect on the unsteadiness of the flowfield. The wall-pressure spectra

indicated development of a sub-harmonic component which damped out shortly downstream.

The contours of premultiplied spectra suggested that the effects of forcing were localized to

the recirculation zone. The spectrum of reattachment shock location showed three peaks at

the forcing frequency and its second and third harmonics. On the other hand, the dominant

frequency in the mid-frequency range shifted to a lower value in the spectrum of separation

bubble mass. The peak in the low frequency range remained unchanged, thereby suggesting

that forcing of this type does not affect the low-frequency breathing motion of the interac-

tion. Based on the coherence plots and phase-averaged contours of pressure fluctuations, the

disturbances propagating in the freestream as well as through the recirculation zone drove

the oscillations of the reattachment shock.
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6. CONCLUSIONS

In this chapter, the main findings from the data analyses carried out on the flowfields cor-

responding to compressible reattaching shear-layers — with and without forcing — and

compression ramp flow with sidewalls, are summarized. Each case generates a unique SWT-

BLI characterized by events lying in the low, low-mid, and the mid-frequency range. The

flowfield corresponding to the compressible reattaching shear-layer was determined using

both DDES and ILES calculations. The DDES calculations were carried out using OVER-

FLOW by Leger et al. [28 ] and SU2 in the present study. New ILES calculations were also

carried out as part of the present study. The ILES computations for the highly confined

compression ramp flow were carried by Poggie and Porter [17 ], [65 ]. Statistical analysis was

performed on the sampled data.

The primary objective of this study was to characterize the separation unsteadiness in

each flowfield and determine the possible causes of low-frequency dynamics of the interaction.

As mentioned in Chapter 1 , separation unsteadiness in a SWTBLI can be caused either due to

upstream effects, downstream events, or a combination of both. Huerre and Monkewitz [16 ]

classified flow instabilities in terms of an amplifier, oscillator, or resonator models. These

concepts can then be used to model separation unsteadiness in a SWTBLI; the flow behaves

as an amplifier when upstream effects are dominant and as a self-sustaining oscillator when

downstream effects drive the unsteadiness of the interaction. In some instances, a SWTBLI

acts as a resonator wherein the low-frequency dynamics are sustained by perpetual upstream

forcing of a particular form. The subsequent sections will summarize the main findings

obtained from data analysis of the two flowfields. An attempt is made to classify each

flowfield into one of the three models proposed above, based on the nature of its unsteadiness.

Avenues for future work are discussed at the end.

6.1 Compressible Reattaching Shear-Layer

A detailed analysis of various unsteady features in a compressible reattaching flow was

presented, based on the computations carried out by Leger, Bisek, and Poggie [28 ]. The

computations reproduced all the essential mean flow features of the flowfield, namely a large
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recirculation vortex, shear-layer with a concave curvature, and a reattachment shock with

a highly smeared shock foot. Visualization of the instantaneous flowfield highlighted the

presence of spanwise vortices formed on account of the Kelvin-Helmholtz instability. Shortly

downstream of the step, breakdown of these structures to fine-scale turbulence was evident

as the DDES simulation transitioned from RANS to LES mode. Farther downstream in the

shear-layer, vortical structures resembling the hairpin geometry were observed. The trend

of resolved Reynolds stresses agreed with the experimental results of Hayakawa et al. [31 ].

Premultiplied wall pressure spectra in the cavity region as well as on the ramp surface

highlighted events such as low-frequency separation bubble breathing, shear-layer flapping,

shedding of vortical structures from the recirculation zone, and the presence of hairpin

structures. Local peaks possibly corresponding to Rossiter modes were observed at higher

frequency in the spectra, thereby suggesting an acoustic feedback mechanism through the

separation bubble. Cavity length was chosen as the length scale to calculate the Strouhal

number. This analysis emphasized the broadband nature of unsteadiness in this type of flow,

comprising of various events at frequencies ranging from St ∈ [0.01, 1].

Two-point correlations showed the presence of hairpin structures in the shear-layer,

which underwent both streamwise and spanwise elongation downstream. The concomitant

non-dimensional convection velocity (Uc/U∞), determined from space-time correlations, was

about 0.61. Correlations in the recirculation zone suggested the presence of similar hairpin

structures. The associated length and time-scales were an order of magnitude higher than

those present in the shear-layer. This observation is consistent with the results of Kiya and

Sasaki [38 ]. Using the space-time correlations of wall pressure fluctuations on the ramp, the

scale dependence of convection velocities was highlighted, and an analogy with the nested

hairpin model proposed by Adrian et al. [147 ] was made. Packets with larger hairpin vor-

tices were present away from the wall and propagated at a higher convection velocity than

smaller packets which were present closer to the wall. The time-scale of large-scale structures

corresponding to the plot showcasing the scale dependence of convection velocities, and the

spectra of wall pressure on the ramp surface showed good agreement.

To study the flapping motion of the shear-layer, wall-normal velocity was used as the

representative variable. Space-time correlations with pressure fluctuations in the recircula-
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tion zone showed effect of flapping on the local pressure in that region. For some locations

in the shear-layer, the disturbances caused by the flapping motion propagated at acoustic

speeds. Two-point correlations between wall pressure and wall-normal velocity demonstrated

the effect of former on shear-layer flapping, especially close to the step. Low-pass filtered

movies1
 of streamwise velocity clearly emphasized the asymmetric flapping motion as well

as the breathing cycle of the separation bubble. Reattachment shock location history was

extracted using a combination of wall-normal pressure gradient and the Ducros sensor. The

corresponding spectra showed evidence of energy concentration at St ≈ O(10−2), which was

lower in magnitude as compared to the spectra of separation bubble. Additionally, signif-

icant energy was also present at higher frequencies St ≈ O(10−1) suggesting a broadband

nature of reattachment shock motion.

The effects of upstream events on the reattachment shock motion were studied by ex-

amining the coherence magnitude. The coherence plots between wall-normal velocity in the

shear-layer and reattachment shock location history showed distinct peaks both at frequen-

cies St ≈ O(10−2) as well as St ≈ O(10−1). The peaks in the latter range had a higher co-

herence magnitude, indicating a stronger effect of shear-layer flapping and hairpin structures

on the reattachment shock motion. In case of coherence plots between pressure fluctuations

in the recirculating zone and reattachment shock motion, peaks in St ≈ O(10−2) were higher

in magnitude, indicating a higher influence of separation bubble breathing. Based on these

observations, low-frequency motion of the reattachment shock is affected by frequencies as-

sociated with separation bubble breathing, the latter being prevalent in the recirculation

zone. Similarly, frequencies associated with flapping and hairpin structures dominant in the

shear-layer modulate the high-frequency motion of the reattachment shock.

No definitive phase relationship was obtained for the events occurring at higher frequen-

cies (St ≥ 0.1). The events occurring at lower frequencies St ≈ O(10−2) were 180 deg out

of phase with the reattachment shock motion. Coherence between the mass history of sep-

aration bubble and reattachment shock motion implied a strong relationship at frequencies

St ≈ 0.02 and 0.03. Conditionally averaged density gradient demonstrated the effect of

separation bubble breathing on the same, which agrees with the model proposed by Pipon-
1↑ see https://engineering.purdue.edu/ jpoggie/RSL/index.html 
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niau et al. [25 ] Coherence between wall pressure fluctuations on the ramp and the motion

of the instantaneous reattachment location/shock system (IRSS) was computed. A strong

relationship was observed with separation bubble breathing at St ≈ O(10−2) and large-scale

structures at St ≥ 0.2. Low values of coherence for frequencies 0.1 < St < 0.2 suggested a

weak effect of shear-layer flapping. In addition to coherence, correlation plots showed nega-

tive correlation between shear-layer flapping and motion of the IRSS. On the ramp, shedding

of large-scale structures affected the same in the vicinity of the mean reattachment location.

Repeated occurrence of high coherence values at low-frequencies (St ≈ O(10−2)) suggests

a global mode (perhaps weakly damped and driven by shear-layer turbulence) associated with

separation bubble breathing. Also, the apparent presence of Rossiter modes may indicate

an acoustic feedback mechanism through the separation bubble.

6.2 Compression Ramp Flow with Sidewalls

Statistical analysis of results obtained from the simulations of Poggie and Porter [65 ] was

carried out. The mean and instantaneous flowfields highlighted curving of the shock front

due to sidewall effects. Based on the skin-friction contours, flow at the corner separated at

a location upstream relative to the separation at the centerline. Critical point analysis on

the floor suggested the presence of tornado vortices originating at foci close to the sidewalls.

An interaction similar to that produced by a sharp fin was observed on the sidewalls with

a λ-shock foot and separation vortex. The separation extent on the sidewalls increased

downstream. A vortex system comprised of a pair of corner vortices, a horseshoe vortex,

and swept sidewall vortices was observed from the mean density contours. Peak values of

RMS pressure fluctuations were observed downstream of mean reattachment on the floor.

Based on the instantaneous contours, this was attributed to the reflection of sidewall λ-shock

structures at that location.

Spectra of pressure fluctuations for individual frequency components were plotted on the

sampled surfaces. For the lowest frequency component (St = 0.03), the spectra highlighted

the intermittent length of the shock motion on both the floor and sidewalls. The locations

corresponding to the sidewall λ-shock feet were comprised of high values of spectral energy
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density, which confirmed low-frequency oscillations of the same. At mid-frequencies (St =

0.12), regions in the vicinity of foci on the floor showed an increase in the spectral energy

density. At higher frequencies (St = 0.36), zones within the centerline separation on the

floor and separation vortex on the sidewalls were energy dominant. Similar plots on the

centerplane characterized the low-frequency shock motion (at St = 0.03) and shedding of

horseshoe like vortices (at St = 0.12) originating at the focus within the centerline separation.

At higher frequencies, spectral energy was concentrated in the separated shear-layer, local

compression waves, and in the separation zone close to the reattachment.

The shock location histories at the centerline and left juncture were extracted using a

pressure based sensor and the corresponding spectra displayed peaks in the low-frequency

range. The influence of sidewalls on the flowfield unsteadiness was investigated using coher-

ence and correlations. Initially, the time-history of the centerline shock location was used to

calculate coherence with pressure fluctuations in the domain. The corresponding contours

were plotted for the lowest frequency components (St = 0.03 and 0.06). For St = 0.03, the

shock oscillations showed a strong linear relationship with pressure fluctuations within the

intermittent length on the floor and sidewall, as well as with the λ-shock structure on the

sidewalls. This band of high coherence on the floor was skewed in the upstream direction

towards the left sidewall, which suggested alternate back and forth movement of the side-

wall interactions at lower frequencies. The authors attribute this to the breathing motion

of the concomitant separated regions that are out of phase, but a more rigorous analysis is

warranted. The spectrum of separation bubble breathing highlighted a dominant frequency

component at St ≈ 0.11. Based on the coherence and correlation plots, this component

partly drives the centerline shock oscillations at this frequency. The breathing motion of the

centerline separation bubble at lower frequencies seems to have a localized effect, with no

significant relationship with the events on the sidewall. The low-pass filtered velocity fields

indicated spanwise motion of the interaction (possibly caused by alternating breathing mo-

tion of the separated regions on the sidewalls), in addition to the back and forth streamwise

motion.

Space-time correlations of wall-pressure fluctuations on the floor were carried out to

determine the influence of centerline separation on those at the corners and sidewalls. The
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domain of influence of centerline separation encompassed 75% of the span. The corresponding

time-scale(s) calculated from the width of the well correlated region lay in the low-frequency

range, signifying the presence of shock motion. The domain of influence for corner separations

at either junctures extended up to 35% of the span and lay well within the bounds of the

centerline separation. Corner separation at one end affected the other after a time delay,

which physically may correspond to the transport of fluid in the spanwise direction. A similar

exercise was carried out to investigate the relationship between interactions at the centerline

and on the sidewalls. The resulting correlations confirmed the asymmetric motion of the

sidewall interactions occurring at St ≈ 0.026, as indicated by the coherence plots as well as

the low-pass filtered velocity fields.

Sparsity-Promoting Dynamic Mode Decomposition was also performed on the data set.

The eigenspectrum obtained from SPDMD for all the cases indicated a statistically stationary

system. Using this observation, the oscillatory part of modes corresponding to a representa-

tive frequency from each band were reconstructed and examined at different phase angles.

Also, neutral DMD modes suggested that a continuous input of disturbances from the incom-

ing turbulent flow is required to maintain unsteadiness in this flow. This result is consistent

with the hypothesis of a weakly-damped global mode. This procedure highlighted several

complex phenomena present in the flowfield, which were not readily evident from statistical

analysis carried out by Poggie and Porter [65 ] and Deshpande and Poggie [163 ].

On the centerplane, the low-frequency mode (St = 0.03) highlighted separation bubble

breathing coupled with the oscillations of the compression-ramp shock. The shock moved

upstream in the bubble expansion phase and downstream when it contracted. The low-mid

frequency mode (St = 0.12) showed the flapping of the shear layer which responded to the

variation in the instantaneous size of the separated zone. The mid-frequency mode indicated

vortex shedding (St = 0.6) from the separated zone, which also affected the instantaneous

reattachment location. Similar analysis on the ramp-normal plane showed in-phase breathing

motion of the sidewall separated zones at low-frequency. In addition to the streamwise motion

of the λ-shock feet, their spanwise motion was also affected by the aforementioned breathing

motion. Asymmetric expansion and contraction of the sidewall separated zones occurred

at the low-mid frequency, while the mid-frequency mode showed the spanwise transport of
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the vortical structures present on the wall, into the open separation vortex on the sidewalls

through the corner vortex system.

The low-frequency mode on the wall and sidewalls highlighted the oscillations of the

compression-ramp shock and the reattachment shock-system downstream on the ramp.

These oscillations were slightly out of phase. Additionally, oscillations of the portions of

the compression-ramp shock closer to the wall and in the freestream were not synchronous.

Alternating streamwise motion of the interaction, possibly caused by the asymmetric expan-

sion and contraction of the sidewall separated zones, occurred at the low-mid frequency. The

mid-frequency mode showed vortex shedding from the separated region on the floor. The

structures shed away from the centerline follow a pattern observed for the mid-frequency

mode corresponding to the ramp-normal case, i.e. they are swept away from the midspan

and into the sidewall separation vortex. Those that are shed in the vicinity of the centerline

are aligned with the core flow.

6.3 High-Frequency Forcing of Reattaching Shear-Layers

Delayed-Detached Eddy Simulations and Implicit Large-Eddy Simulations of high-frequency

forcing applied to reattaching shear-layers were carried out using the SU2 and HOPS code.

The former was run for longer time (about 343 cycles of actuation) on account of a larger

time-step, which allowed for the analysis of low-mid to mid-frequency content in the flowfield.

The HOPS run-time was comparatively smaller (about 30 cycles of actuation.)

Since the ILES approach resolves a wider range of scales in the turbulence energy cas-

cade, it’s time-step is limited by small-scale structures in the dissipation regime. Therefore,

longer runs to accurately resolve the low-frequency phenomena are computationally expen-

sive. Whereas DDES approach models the near-wall content, which allows for a larger

time-step to determine the evolution of large-scale structures that are resolved. Longer runs

to accurately capture the low-frequency events are thus feasible using this approach.

The wall-normal profiles of mean velocity and resolved stresses within the shear-layer

did not exhibit significant variation from their baseline counterparts. A similar trend was

observed in the case of growth rates and mean wall-pressure and skin-friction coefficient.
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The peak RMS value of skin-friction coefficient decreased slightly with the application of

forcing. Spectral analysis of the results obtained from the SU2 run indicated effects of forcing

localized to the recirculation zone and not affecting shear-layer evolution significantly. This

may explain the invariance of the mean and statistical profiles from the baseline case.

The contours of wall-pressure spectra as well as the pressure spectra in the recirculation

zone highlighted the development of a sub-harmonic and a harmonic component. The sub-

harmonic component persisted only for a short distance since its inception while the harmonic

component closely followed the trend of the fundamental forcing frequency. The spectrum

of the reattachment shock location showed three peaks at the fundamental frequency and

its higher harmonics, which are most likely caused due a combined influence of pressure

fluctuations generated by the actuator propagating through the freestream and recirculation

zone. The peak value in the mid-frequency range of the separation bubble breathing spectrum

shifted to a slightly lower value of St ≈ 0.1. The actuator forcing did not modulate the low-

frequency breathing motion of the interaction.

6.4 Prospects of Future Study

This document has presented a detailed statistical analysis of the unsteadiness present

in the flowfields corresponding to reattaching shear-layers and compression ramp flow with

sidewalls. A short study on the effects of high-frequency forcing was also carried out. Based

on the results presented, certain aspects that require additional efforts are listed below:

1. The flowfield corresponding to the reattaching shear-layer case presents a promising

case for a detailed input-output analysis in order to ascertain the frequency response

of the system.

2. The application of flow-control did not alter the mean and RMS quantities in the

flowfield, but did affect its unsteadiness. For future calculations, modifying the shear-

layer evolution by placing the actuator upstream of the shear-layer origin and close to

the location of maximum receptivity is worth exploring.
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3. Obtaining a more detailed insight on the frequency response of the flowfield via the ap-

plication of input-output analysis would aid in a more targeted approach in formulating

the forcing term.

4. The ILES calculations corresponding to the sidewalls case were not run long enough

to accurately resolve the low-frequency events. Based on the comparisons of results

between the ILES and DDES calculations carried out for the reattaching shear-layer

case in Chapter 3 , reasonable agreement was observed in the spectra within the resolved

region. Therefore, performing time-resolved DDES calculations of the sidewalls case is

another area that needs to be pursued.

5. The DMD analysis presented in this study was memory intensive due to large grid

sizes. As a stopgap measure, the data were sub-sampled in space. The streaming DMD

algorithm devised by Hemati et al. [167 ] is an attractive alternative that accounts for

both space and time-resolved data.
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