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ABSTRACT

This thesis presents work and simulations containing the use of Artificial Intelligence for

Unmanned Aerial Vehicles in search and rescue and/or surveillance operations. The goal is

to create a vision system that leverages Artificial Intelligence, mainly Deep Learning tech-

niques to build a pipeline that enables fast and accurate classification of the environment

of the robot. Deep Neural Networks are trained and tested on ’emergency situational data.’

Further, the power of this vision system is leveraged to extend the problem onto a multi-

agent system to handle fault tolerance. The multi-agent system is also made resilient to

Byzantine malicious attacks to help improve the reliability of the system.

This thesis also shows the use of Artificial Intelligence for effective surveillance for defense-

related purposes. Tracking the GPS coordinates of a boat using only the video of the

boat captured by a camera and the GPS coordinates of the camera itself is demonstrated.

The solution was tested by the Department of Defense - Department of the Navy, Naval

Information Warfare Center Pacific.
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1. INTRODUCTION

Unlike human beings, computers see the world in 1s and 0s. What a human may see as a

cat or dog is something entirely different to a computer. That being said, computers have

come a long way in terms of what it can understand. In fact, modern AI scientists say

that the Turing Test, a test developed by Alan Turing [1 ] that checks whether a computer

and a human are indistinguishable, is somewhat simplistic because computer intelligence has

surpassed imitation of human conversations and ventured into many other territories.

A vision system is one such venture of advanced computing. A vision system essentially

is a system that allows a computer to observe the world around it and perform specific ac-

tions in response to what it understands. The challenge here is that computers do not see

images like what humans do. For a computer, an image is a 2-D or 3-D array of numbers.

Each cell in this array represents a specific value for the intensity of light at a specific pixel.

Therefore, image processing is a very complicated yet vital area of research for the future of

computers.

On a big scale, image processing is performing specific operations on the input images

from the data source to get meaningful output. But on a technical level, image processing

is feeding arrays of numbers into the computer and writing programs to ensure that the

computer can make sense of these numbers and find specific patterns that characterize a vi-

sual feature. 1.1 shows different image processing outputs from a single input image. These

outputs vary based on what information needs to be extracted from the image. A lot of

operations must be performed on each image to extract such information such as filtering

noise, masking the image to find the specific characteristic that the user requires and several

other operations depending on the expected outcome. Here, we face the second problem -

computing power.

For a standard video which has about 30 frames per second, 30 individual images are

processed each second. Therefore, for a computer vision task, 30 images need to be pro-
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Figure 1.1. Different Image Processing Outputs. Adapted from [2 ]

cessed, information needs to be extracted and actions based on this information need to

be performed 30 times in one second. For real-time video processing, the output or the

processed images need to be similar to the frame-rate of the input, and hence needs to be

around 30 images a second for a standard video. Hence, the processing time for each image

needs to be minimal.
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Here we make the trade-off between computing power and accuracy. Reducing the effi-

ciency of a few of the operations would lessen the computational load. Hence each vision

system is configured to a specific application, and the desirable characteristic, speed vs. ac-

curacy is measured and chosen accordingly.

Now coming out of the world of image processing and into the world of computer vision

[3 ], we find that the output required is entirely different. For image processing, the output

required would be to to check whether a specific color exists in the input image or changing

the filters in the image to highlight certain features. Fundamentally, for image processing,

the input and output are both images. But computer vision faces a new set of problems.

Computer Vision is the ability of the computer to use visual input to perform certain

tasks based on the qualitative and quantitative information obtained from the image. Taking

the example of a robotic surface vehicle which would rely on a camera for visual input. The

input from the camera is then used to understand the robot’s surroundings and based on

the obstacles detected in the image; the robot will have to change its trajectory and perform

certain functions based on pattern recognition in the input.

Computer Vision has many applications in day to day life. A prevalent and useful appli-

cation is to analyze the footage from a CCTV camera. A CCTV camera in a railway station

or on the street or in apartments can be used to identify suspicious activities of people,

monitoring proper law, finding people based on face recognition, counting the number of

cars passing by in the street, identifying vehicles that jump a traffic signal, etc.

With the ubiquity of Unmanned Aerial Vehicles (UAVs) and the power of computer vi-

sion, we can combine them to build a vision system for UAVs that enables them to see

and understand the world around them. A pressing issue that can be addressed with this

combination is using UAVs as first responders in emergency situations and search and rescue

operations.
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The main task in such situations is creating a vision system that can be used by UAVs

to understand its environment. Further, the usage of multiple UAVs instead of a single UAV

in such situations is also studied in this thesis. This thesis shows that using multiple UAVs

and having them secure to malicious attacks provides a complete, safe, and robust system

that can be readily deployed in high-tension situations. Further, as this thesis looks at the

software framework for such a system, the solution can be extrapolated to other type of

robots in other tasks as well with minimal changes.

1.1 Motivation

Today, advanced and autonomous robots are shooting up in popularity thanks to three

things: Sensors, Actuators, and AI [4 ]. The AI component is vital to the development of such

robots as it increases the ’smartness’ of modern robots. We have many applications for such

robots even as first responders [5 ]. Mainly, UAVs and Unmanned Ground Vehicles (UGVs)

are used as they can be completely autonomous, highly maneuverable, and can easily access

difficult terrain. UAVs also provide the added advantage of an aerial view over uneven and

obscured terrain. Therefore, UAVs have become popular in search-and-rescue situations [6 ],

[7 ]

Figure 1.2. Drones in Search and Rescue Operations. Adapted from [7 ]

One of the key challenges that UAVs and other such autonomous robots face in emer-

gency situations is the lack of infrastructure to communicate a cloud-based server. This
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constraints these robots to rely solely on their on-board processing capabilities [8 ]. The

small size of UAVs and the corresponding lack of processing power makes it very difficult

to run computer vision models that use the power of deep learning on-board these UAVs.

We cannot rely on other forms of image processing as the environment of UAVs is highly

dynamic such that a ’one size fits all’ solution is not feasible. Hence, there is a need to

build a model that can analyze the images taken from the camera of the UAV and give cer-

tain parameters as the output that enables the drone to understand the content of the image.

Here, a Convolutional Neural Network needs to be employed that is both accurate and

fast. Therefore, our first task is to create a model that matches these constraints and can

easily be deployed on-board UAVs. One model will help a single UAV make sense of its sur-

roundings. We develop this problem further to incorporate a multitude of UAVs for example

a multi-agent system. A multi-agent system is defined as a group of interacting intelligent

agents working to achieve a common goal.

We know that no model can accurately depict the realism of our environment but we can

come close to it. Every agent that is deployed with our computer vision model is susceptible

to inaccuracies because of the accuracy if the model, noise in the camera images, occlusions

in the image, camera sensor problems, exposure problems and many other factors. For a

single-agent these flaws are always amplified as there is no contingency to keep a check on

the output of the network. However, in the case of multi-agent systems, each agent interacts

with its neighbours and such inaccuracies in the output of an agent can confuse the system

and as a result the system might not achieve its common goal. In order to avoid this we

need to ensure that the agents work together to balance the inaccuracies of single agents and

agree upon values as a group. Here, all agents in the system agreeing upon the same value

is termed as ’consensus’, so for the system to achieve consensus, every agent in the system

needs to agree on the same value which in this case is the output of the computer vision

model.
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Taking our problem a step further, we want to introduce resilient consensus into the sys-

tem. Resilient consensus is a systems ability to achieve consensus even when the system is

under attack by malicious agents. In emergency situations it is possible that a system could

malfunction and produce erogenous values or that agents in a system can be hacked/at-

tacked by malicious entities to drive the system away from consensus. Therefore, we need

algorithms to ensure that the system achieves consensus even under such attacks. Here we

adopt different techniques to ensure that the output of our vision system achieves resilient

consensus. There is a need to improve existing resilient algorithms to ensure compatibility

of the values in our case which is the output of the vision system. The requirements of these

algorithms and our system will be detailed in the later sections.

Finally, we extend this concept to create a new algorithm that is capable of tracking

boats in the sea. This extension is part of a challenge put forth by the the United States

Department of Defense - Department of the Navy, Naval Information Warfare Center Pacific

[9 ]. The motivation behind this challenge is to autonomously track the GPS coordinates

of a boat as observed from the camera of an Unmanned Marine Vehicle. Here, the only

known inputs are the GPS coordinates of the camera and the video feed from the camera

that contains the boat/vessel to be tracked. An algorithm must identify the boat in the

video and then show the GPS coordinates of that boat. This would enable the Unmanned

Marine Vehicle to stealthily gather and provide information about the GPS coordinates of

another boat.

1.2 Literature Review

Image classification is a common problem with many state-of-the-art networks that are

capable of classifying images with great accuracy. Starting with the structural foundation for

modern convolutional neural networks laid by Alex [10 ] called AlexNet. The other famous

higher accuracy networks include VGG [11 ], ResNet [12 ], Inception [13 ] and a few others.

There are also high-speed networks that focus on performance by compromising on accuracy
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such as the MobileNet [14 ].

Other methods for image classification exist that do not rely on neural networks for the

entire classification and rather uses neural networks as a feature extractor and then classifies

based on regression models [15 ] to classify images. There are also matrix ranked methods

that project matrix data onto left and right vectors which upon further regression can be

classified into one of many classes [16 ]. This section aims to highlight the work involved

specifically in Computer Vision systems for UAVs and the multi-agent application of this

problem. This section also shows the common algorithms in resilient consensus and how

systems handle different adversarial attacks. Finally, it shows the work in tracking objects

through computer vision.

1.2.1 Multi-agent Image classification

Consensus algorithms are used in multiple domains to ensure system security. For exam-

ple, the Bitcoin relies on block chain technology that employs consensus algorithms to ensure

the system is secure and stable [17 ]. Although blockchain technology uses very complicated

algorithms to ensure system security, regular systems such as UAVs rely on algorithms that

aren’t as computationally intensive. One of the most common ways to achieve consensus is

the average consensus algorithm introduced by Xiao et al [18 ]. Here, each agent updates

its states based on a certain update rule that looks at the difference between the agent’s

state and its neighbours’ states. For a multi-agent classification system, achieving consensus

among all the agents in the system would be important to help the system give a single

output than each agent giving its own output. Other methods to tackle this problem would

involve combining the outputs of the agents in different ways to produce a single output or

processing the input differently to obtain similar outputs.

The work of Mousavi et al [19 ] is a multi-agent classification problem that requires dif-

ferent agents to observe partial views of the image based on the pose. Then, a network is

designed that helps the system form local beliefs for the purposes of reinforcement learn-
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ing, take local actions, and extract relevant features from the agents’ (partial) observations.

Further, consensus protocols are run to update each agent’s states based on its neighbours’

states for the entire system to utilize reinforcement learning to achieve decentralized consen-

sus on the classification of the image. Here, the main parameters are the area of observation

of each agent (pixel area), the number of agents in the system, and the time passed since

observation had begun. The limitations in this approach is that greater accuracy is achieved

only when the number of agents are higher. Also, in our case of an emergency situation, it

would be an unwise choice to make certain agents observe only a part of the environment and

then rely on consensus. It would also be impractical in terms of coordinated path-planning

for a system that will rely on high computations will also need high level of path-planning

and coordination algorithms to run simultaneously.

Figure 1.3. Sampling location adjustment of each agent based on context
information. Adapted from [20 ]

Another such method is detailed by Pourpanah et al [21 ] where Q-learning [22 ] and a

Bayesian formalism [23 ] is used for formulating trust-measurement. Video analysis is another

method that is utilized to become a multi-agent image classification problem [20 ] where dif-

ferent agents process different frames in a video. Here, the frame sampling is based on

multiple parallel Markov processes which helps the agents pick the frame to be analyzed. A

reinforcement learning algorithm is formulated which models the information extracted by

a single agent with that of its neighbours and also utilizes the historical states of agents, the

action space, a policy network which ultimately gives the final network. A detailed schematic
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of the logic in video analysis is shown in Figure 1.3 . The limitations here are again that

each agent views a different image which would mean that the information would have to

extracted over time which is very costly in emergency situation where time is of the essence.

Also, proper communication with each agent is a necessity in this case and more number of

agents would mean more number of frames. Matching frames from different vantage points

could also be a complicated task.

In general, multi-agent image classification usually relies on reinforcement learning algo-

rithms to classify images based on certain conditions such as partial observation of the image

space or different frames of videos. Further, accurate consensus often puts a constraint on

higher number of agents in the system.

1.2.2 Resilient Consensus

There are many types of attacks that a system of agents can incur. Random attack

targeting agents, spoof attacks, intelligent attacks, Denial of service attacks, etc. Having

mentioned the consensus protocols in cryptocurrency in the previous section, blockchain

technology relies on resilient consensus for its security [24 ]. These focus on a specific type of

attack called Byzantine Attacks [25 ] where a single agent or multiple agents in a system of

agents is attacked and faulty values/information is sent to the other agents in the system.

The purpose of such attacks is to ensure that the system does not reach consensus. Bitcoin

addresses this problem by using a consensus protocol called Proof of Work [26 ]. This algo-

rithm and many similar algorithms are very computationally intensive and is also the reason

that mining bitcoin consumes a lot of energy and requires a lot of time.

For the purposes of deploying resilient consensus protocols on-board drones such com-

putationally expensive algorithms will not work and we hence we rely on smaller algorithms

that model such adversarial attacks using certain assumptions. One such example is using an

algorithm is proposed by Dibaji et al [27 ] where the authors develop a Secure Broadcasting
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and Acceptance Algorithm (SABA) which employs a voting system that each agent accepts

a value from its neighbour only if it receives an identical value for that node from other

f + 1 agents where f is the total number of agents that are under attack in the system.

The works in [27 ], [28 ] focus on achieving average consensus in time-varying networks using

similar protocols.

Other forms of obtaining average consensus for multi-agent systems include assuming

a few trustworthy agents in the system that cannot be compromised which dominate the

connections in the network [29 ], a convex combination based resilient algorithm where the

identity if the attacker is unknown [30 ], [31 ] where the intersection of convex hulls of the

states of agents help drive the system towards the average of the states. Another work that

focuses on reaching consensus without identifying the attacking agent(s) is described by Hou

et al [32 ]. This work uses a reinforcement learning type method to learn the weights in

the adjacency matrix of the system over time based on the differences in the states of the

neighbours. Links between agents with a bad trust factor are given less weights and trusted

links have more weights. These weights and the states of the agents are used to bring the

system to consensus.

Different resilient consensus protocols have different assumptions and work under dif-

ferent conditions. Identification of the attacking agent(s) would lead to the exact average

consensus of all initial states of agents whereas obtaining consensus without identification

would lead to skewed values of the average but the system achieves consensus still. There-

fore, we look at light consensus algorithms that protect the system from Byzantine attacks

and drives the values of the system towards the average of the initial states.

1.2.3 Object Tracking

A survey of object tracking problems and methods is detailed in [33 ]. The common

methods include object detection and/or video segmentation. Segmentation is an intensive

task both for training and deployment. Brendel et al [34 ] describe a segmentation tracking
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approach that tracks regions in the images. Our mission of finding lightweight solutions

leads us to use object detection and corresponding actions based on the detection of objects.

Also, the requirements for our tracking problem involves tracking boats at sea. The work

of Kruger et al [35 ] uses thermal images from a thermal camera to track boats at sea. The

only example of a full-functioning system for tracking boats is detailed in [36 ] although it

is utilized for traffic monitoring rather than obtaining GPS coordinates of the boat as is

required by our problem.

1.3 Contributions

The main contributions of this work are:

• A computer vision system that classifies emergency situations to be deployed on

UAVs and achieves multi-agent consensus on the classification result for a system of

agents to improve the accuracy of the system

• Extension of multi-agent image classification towards resilient consensus where the

system achieves average consensus of the output of the image classification system

even under Byzantine attacks. Here, a new algorithm is developed that reduces

certain assumptions required by other works and significantly reduces the number of

agents required to achieve consensus.

• A novel algorithm that combines object detection with GPS coordinate tracking for

the purposes of tracking boats at sea solely through video analysis from a regular

mono-ocular camera.
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2. MULTI-AGENT IMAGE CLASSIFICATION

2.1 Introduction

In this chapter, the key idea and model behind image classification is addressed. Different

techniques for image classification is introduced and the combination of multi-agent systems

and image classification is addressed. The classification accuracy is compared between a

single agent and a group of agents.

2.1.1 Introduction to Image Classification

Image classification through Deep Learning relies on using Convolutional Neural Net-

works that produce an output based on the image that is given as the input [37 ]. It helps

to understand what neural networks are and how they help in image classification. A con-

volutional neural network takes an image input which is a 2D or a 3D matrix and classifies

the image into different classes. The output is a set of probability values that give the prob-

ability of the image belonging to each class. Figure 2.1 shows a simple image classifier using

different types of layers to classify beverages as either coffee, tea, or other.

Figure 2.1. Convolutional Neural Network for Image Classification
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Layers in a Convolutional Neural Network

The different layers in a typical convolutional neural network are shown in Figure 2.2 

where each layer has different mechanisms for information flow.

Figure 2.2. Layers in a typical CNN

• Input Layer

The input layer is image data that is represented as a 3D matrix for colored images

and a 2D matrix for grayscale images. The dimensions of the matrix l × d × c

where l, d, and c are the length, width and channels of the image respectively. The

channels for a normal image are RGB - Red, Green and Blue. These values are what

determines the intensity and color of a certain pixel at a certain location on a screen.

• Convolutional Layer

The convolutional operator is defined in mathematics as:

(f ∗ g)(t) =
∫ ∞

∞
f(τ)g(t− τ)dτ

In matrices, this corresponds to multiplication and addition where the kernel g(t) is

placed on the input f(t) and the dot product of all corresponding values becomes

a single value as shown in Figure 2.3a in the output. Then the kernel slides over

the filter to the next location and the same operation is performed. The important

parameters here are the size of the kernel, the stride which is the number of steps

the kernel moves for each convolution.

This operation behaves like a pattern feature extractor. Typically, the number of

channels increases as we go deeper into the network. This is done by performing
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the same convolution operation using n different kernels to obtain n channels as the

output.

• Pooling Operator

Pooling is usually down to downsample the data. As mentioned earlier, the num-

ber of channels typically increases across the network as we increase the number of

convolutions. But we also decrease the length and width of the image across the

network. This is done through downsampling which helps us pick out the essential

features leaving aside the unimportant features. A common method of downsampling

is done using the ’Max-pooling operator’ which picks out the maximum value from

the input for a given kernel size and then slides this kernel to the next set of values

in the input to continue the same process as shown in Figure 2.3b . Another pooling

operator is ’Average Pooling’ where as the name suggests, the average of the

• Fully-Connected Layers

In a fully connected layer, we have multiple neurons (values) in a single layer. Each

of these neurons are connected to all the neurons in the next layer by a matrix of

multipliers called Weights. Once these values are multiplied by the weights, a bias is

added on each neuron and then passed through a non-linearity function. We will talk

about the non-linearity functions in the next subsection. The formula that defines

the flow of information in these layers are:

f

(
b +

n∑
i=1

xiwi

)

where b - bias

x - Value of input neurons

w - weights

n - Number of inputs from the incoming layer

f(.) - non-linearity function

This output is the value of the neuron in the next layer.
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• Softmax

The softmax function is usually present at the end of the last fully connected layer.

These fully connected layers are defined in such a way that the last fully-connected

layer will have the same number of neurons as the number of classes in the image

dataset. The value from each of these neurons is passed through a softmax function

given by the formula:

σ(yi) = eyi∑n
k=1 eyj

where yi is each output from the last layer. The softmax outputs the probability

values and the sum of all the outputs from the softmax function will equal 1. This

function helps us in determining the probability of an image belonging to each class.

The highest probability value is the class of the input image.

• Output

It is the class of the image as predicted by the neural network. This is then used to

backpropogate the error through the network.

(a) Convolutional Operator (b) Max-Pooling Operator

Figure 2.3. Operators in CNNs

Working of a Neural Network

• Non-Linearity Functions
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A non-linear function decides the activation of a certain neuron. An output of 0

means that the neuron will be inactive whereas any other output will be passed to

the next operation. A very common example of a non-linear function is the ReLU

function (Rectified Linear Unit) [38 ]. The ReLU function is defined as R(z) =

max(0, z) and the graph is shown in Figure 2.4 .

Figure 2.4. ReLU Function. Adopted from [39 ]

• Loss Functions

Perhaps the most important part of a neural network is the loss function. Loss

functions help us develop a measure between the values of the output and the all

the trainable parameters in the network [40 ]. Typically, we train networks using

the stochastic gradient descent algorithm. This optimization algorithm essentially

calculates the negative of the gradient of the loss function with respect to the weights.

This will lead the function towards the minima of the loss function (refer Figure 2.5 ).

We represent the trainable hyper-parameters by θ. The pseudo-code that updates

the weight w.r.t loss function represented by J(θ) is given by:

θj ← θj − α
∂

∂θj
J(θ)

Here, α is the learning rate. The most common loss function is the Mean squared

error loss and the Cross-entropy loss for classification problems.
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Figure 2.5. Gradient descent loss function

2.1.2 Transfer Learning

The structure of a typical neural network, the method of functioning, and the learning

parameters were detailed in the previous subsection. This section will talk about a method

to achieve image classification without having to go through the tedious process of building

a network from scratch and further training the network to suit one’s needs. Instead, this

method lets you use existing networks that are state-of-the-art and have already been trained

on large publicly available datasets [41 ]. The reason transfer learning is used is two fold:

• The more training data that is available to a network, the better it will learn. So if

a particular application of a network only has a small dataset for training, it would

be better to use the transfer learning method

• In a typical CNN, the first few convolutional layers perform the function of feature

extractors such as detecting edges and shapes in images. The further layers will

extract more complicated features such as patterns, faces, etc. It is the FC layers

in the end of the network that is useful in classification. So for the large part, the

first few layers can be kept constant for any CNN for image classification as it would

have learned, through training on large datasets, how to extract the right features

from images.

Essentially, transfer learning helps us modify existing pre-trained networks and then

re-train it to suit any particular application. These networks are usually trained on the

ImageNet dataset [42 ] which is a large dataset with over a million images in about 1000
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classes. Obviously, training any network on this dataset will take a lot of time so transfer

learning helps in reducing training time by using pre-trained networks whose weights are

known.

Figure 2.6. Transfer Learning

The illustration in Figure 2.6 shows how a network that has learned to perform a general

task by being trained on a general dataset can be modified to use a few of the learned

parameters on a new specific task by being trained on a specific dataset.

2.1.3 Multi-agent Consensus

We are fairly familiar with the concept of UAV swarms where multiple agents help out

to perform a task. The reason this problem is extended to multi-agent systems is because:

• False Positive - A single UAV reliant on its vision system might falsely classify its

given environment as an emergency situation because of the angle of incidence, color

corrections, lighting, exposure, camera faults or just the accuracy of the vision system

itself.

• Backup - In the case one UAV fails, sending multiple UAVs to such emergency situ-

ations definitely increases the chances of a successful mission.

• Accuracy - Using multiple UAVs instead of a single UAV could potentially increase

the accuracy of the image classification as we will see in the later sections.
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• Efficiency - UAVs can distribute the load of computing amongst themselves which

could potentially increase the battery life of the system as a whole by lessening the

load on the processors.

Therefore, it is hypothesized that introducing a multi-agent system will benefit the emer-

gency response system and imporive the image classification.

2.2 Problem Formulation

2.2.1 CNN Image Classification Problem Formulation

Figure 2.7. Image Classification Problem

The problem is founded in building a vision system that can be easily deployed on UAVs

and accurately classify images based on emergency situations. Since the reliability of internet

is not present in emergency situations we will rely on processing the images on-board the

UAVs. This will mean that a completely new network will need to be build that can classify

images in real-time through the camera present in the UAV.

Therefore the first part of our problem can be considered as transforming an image to

class probabilities. Whatever the size of the input image is, the output must have 5 class

probabilities - Fire, Collapsed Building, Flood, Automobile Accident, and Normal. This

problem is detailed in Figure 2.7 

The model will use a CNN to deliver the required image classes through a process of

training the network. Training the network involves using training images on the network
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that utilizes the loss function to correct the weights. This will be done repeatedly over all

the training images until the loss is at a minima and the accuracy of classification is the

highest. This process is shown in Figure 2.8 

Figure 2.8. Training the network

For the sake of consistency and compatibility with a particular model, we will set the

dimensions of the input image to 224 × 224 and the output will be a vector of dimensions

5× 1.

This vector will be in the form



p1

p2

p3

p4

p5


where

p1 - probability that image is fire

p2 - probability that image is collapsed building

p3 - probability that image is flood

p4 - probability that image is automobile accident

p5 - probability that image is normal
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2.2.2 Transfer Learning Problem Formulation

Figure 2.9. Training the network

The other method that is used here is transfer learning where the problem is still getting

the same output from the same input as the regular CNN case. However, there is an addi-

tional problem in this case. In traditional learning approaches, when there are 2 different

domains (data) for 2 different tasks, generally 2 different models are created and are made to

learn on their respective domains. However, for transfer learning we need to use the learned

knowledge of a source domain and transfer it to a target model.

To put it down mathematically, from [43 ], we define domains and tasks. Domains are

represented by D and consists of a feature space X and a marginal probability distribution

over this feature space P (X) where X = x1, x2, .., xn ∈ X . For example, in an image clas-

sification problem, X is the space of all images, X are all the images samples that will be

used for training and xi ∈ X is each image in the training dataset.

Now, given a domain D = {X , P (X)}, a task T is defined which has its own space Y

called a label space and a conditional probability distribution P (Y |X). This probability

distribution is usually learned from the training data and the label pair xi ∈ X and yi ∈ Y .
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In the same example as above, Y is a set of classes for the image classification problem.

If we have a source domain Ds and a corresponding task Ts, we also a define a target

domain and task Dt and Tt. The problem that transfer learning would need to solve is

to learn the conditional probability distribution P (Yt|Xt) in the taget domain Dt with the

information it learned from Ds and Ts where the constraint is that either Ds 6= Dt or Ts 6= Tt.

After learning this probability distribution, the output of the network will still give us

a 5 × 1 vector as the probabilities of an image belonging to each of the 5 classes that was

defined earlier.

2.2.3 Consensus Problem Formulation

From the literature review section, we have identified the different works and methods

used for achieving average consensus. In this section too, we will be focusing on achieving

average consensus. We will define the consensus problem with respect to the UAV in emer-

gency response situation.

Figure 2.10. System with multiple agents

Here we define a graph G = (V , E) of multiple agents where each vertex V represents a

single UAV and they are connected to other UAVs through corresponding edges in E . That

is, for 2 agents i, j ∈ V can communicate with each other if the edge eij ∈ E . Let this graph

have N agents. For our case we define each of these agents will have its own vector denoted
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by yi and each of these vectors are an output from the agent’s vision system. Essentially,

the vectors that each agent will achieve consensus on is the image classification vector of

dimension 5× 1 that contain the probability of each input image belonging to each of the 5

different classes that was defined in the previous sections.

yi(k) =



p1

p2

p3

p4

p5


Here, k represents the discrete time, at each step of which each agent will update its own

vector to get closer to the average. The problem with average consensus is for every agent

in G to agree upon the same vector y at any finite time k by making an update to its own

vector at every time step. Therefore, we will define an average value of all vectors

ȳ = 1
N

N∑
i=1

yi(0)

Therefore, the algorithm to be used here to update the state of each variable must ensure

that for each agent i,

lim
k→∞

yi(k) = ȳ (2.1)

Once we find the average of the vectors of the entire system, we will have one vector for

each image that the UAVs see which will be the average of all the vectors in the system and

that will be what the system agrees to be the best classification of an image.

2.3 Method

2.3.1 Image Classification using CNN

In the previous sections, we discussed many aspects and the working of Convolutional

Neural Networks. In this subsection, we will address the factors considered while construct-
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ing our own network, inputs and outputs, architecture of the model, software and libraries

used etc., that will enable UAVs to classify images. Most of the work in this section is derived

from the work of Kyrkou et al. [44 ].

Figure 2.11. Sample images from AIDER dataset. Adopted from [44 ]

The first step is to gather the required data to train the network. From [44 ], we use the

dataset called Aerial Image Database for Emergency Response (AIDER) which is a dataset

consisting of the 5 classes that we have defined earlier i.e. Fire, Flood. Collapsed Building,

Normal, and Automobile Accidents. Each of these classes contain 300-500 images each and

the normal class contains 1200+ images. The normal class consists of images that does not

belong to nay of the other classes and the vision system will always predict a class as normal

unless it detects any of the other class. Essentially it is the class that the network falls back

on in case it does not detect the other classes. All the classes in the dataset contain images

of the corresponding category from an aerial vantage point which means that the pictures in

these classes closely resemble what an actual UAV would see using its camera. Figure 2.11 

shows a few samples of the different images in different classes in the AIDER dataset. The

dataset also contains images with different viewpoints and different illuminations so that the
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network can train on a vast variety of images. A reason why the ’normal’ class has more

images than any other class is to make sure that it is as close to real-life as possible where

majority of what a UAV sees will be normal. However, this also makes it challenging to train

the network. The reason is because the ’normal’ class contains more than half the images

in the entire dataset. Therefore, the network could falsely classify every image it sees as

’normal’ and still produce a high classification accuracy. In order to avoid this problem, the

dataset will be sampled in a balanced way while training which will be explained later.

Next we will talk about the factors considered that sets this network apart from existing

networks. The factors considered by Kyrkou et al. [44 ] while building the network are:

• First Layer cost - The first layer of the network is usually a costly layer since

it interacts with the entire image input. The larger the image the more computa-

tions will need to be done. From the concepts of convolutions mentioned earlier, we

understand that the input usually has 3 channels (RGB). The number of channels

increases as we move through the network while the dimensions (length and width)

decreases. The more the number of channels, the more number of convolutions need

to be performed. Also, the kernel size for convolutions play an important role. The

bigger the kernel, the lesser number of convolutions are performed on the same input.

For example, in a matrix input of dimensions 6× 6, a kernel of size 3× 3 will move

around the input 16 times to cover the entire input assuming a stride (step size) of

1. However, if the kernel has a size of 5 × 5, it will move around 4 times. That

means there will be 16 convolutions performed on the same input if a 3× 3 filter is

used and only 4 convolutions performed if the kernel used us 5 × 5. Using a larger

kernel however is not always good as important features in the image can often be

missed out when larger kernels are used. Hence we strike a balance between speed

and accuracy. In this case the number of channels introduced in the first layer is only

16 and the size of the kernel used is 5 × 5. In other works, the number of channels

introduced in the first layer is around 64. The imporved speed is attributed to this

smaller channels and larger kernel size.
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• Early downsampling - The process of downsampling was discussed in the previous

section where the dimensions (length and width) are reduced as the information flows

through the network. This is done with the help of pooling layers. Max-pooling

effectively reduces the dimensions by half while emphasizing the important features

in the image. Early downsampling also means that the dimensions reduces by half

in each step of the network which decreases the number of computations required.

Therefore, the max-pooling operation is performed after every convolutions but the

last 2 convolutions.

• Regular Architecture - It was mentioned earlier that a typical CNN follows a

certain architecture that enables the information to be decreased in dimensions as

it flows through the network through pooling layers and increased in the number of

channels through convolutional layers. Many networks have the number of channels

in the last layers exceed 1000 but this will not be supported on UAVs as the com-

putations become excess for the processors of UAVs to handle. Therefore, in this

network, the maximum number of channels before classification will be only 256.

• Regularization - One of the many disadvantages of using small datasets is the

risk of overfitting. Overfitting happens when the model learns the training data too

well. This is to say that since there was not enough images to train, the model

learns the output from the input perfectly for the training data and will predict with

high accuracy the images in the training data. However, it will fail to successfully

predict any other general input. This is not what we want from a network. A

network should behave well given any data and should show a high accuracy. To

avoid overfitting we use regularisation techniques such as Batch Normalization [6 ]

and the dropout strategy [45 ] with a ratio of 0.5. Dropout strategy is a simple

strategy where during training, certain neurons are made inactive with a probability

of 0.5 so that the information will find other pathways and not rely on the same

path all the time which might lead to over-fitting. This helps in more generalisation

of the data. Another regularization technique used is the L2 regularization [46 ]. L2

regularization is an added loss to the existing loss function where the weights of the
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layers are penalized. If the loss function for the network is defined as L(w), where

w represents the weights, then the regularized loss is given by:

Lλ(w) = L(w) + λ||w||22

where λ is the regularization parameter.

• Depth of the network - The network depth refers to the number of layers in the

network. There are 2 factors to be considered here, 1 - The higher the network

depth the better the classification but for small datasets, the number of features

that can be learned are limited and hence a higher network depth will lead to a

decreased accuracy. 2 - Greater network depth means more operations which means

greater computational cost. The factors listed here show that the network we build

should not have a high depth and so a network depth of 7 layers was chosen for this

architecture.

• Fully Convolutional Architecture - As an alternative to a standard CNN where

the last few layers are FC layers, a different network architecture is implemented

where all the layers are convolutional layers and the last layer is a Global Average

Pooling layer before it is passed to the softmax function. This reduces the com-

putational cost effectively as FC layers are more computationally intensive than

Convolutional layers. The performance between this architecture and the regular

architecture is also compared.

Next, the architecture of the network is discussed. The architecture used by Kyrkou et al.

[44 ] is shown in Figure 2.12 . Here, the convolutions are mentioned and also, the alternative

strategy is shown where instead of the FC layers before classification, convolutional layers

are present instead which performs the classification. The canonical architecture where the

last layers are the FC layers which performs the classification is named as BaseNet and the

alternative where the last layers are convolutional layers is named as SCFCNet.
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Figure 2.12. Network Architecture. Adopted from [44 ]

Table 2.1. Network Architecture
Layer Channels Dimension Stride Padding
Input 3
Conv1 16 5×5 1 2
Pool1 2×2 2 0
Conv2 32 5×5 1 2
Pool2 2×2 2 0
Conv3 32 3×3 1 1
Pool3 2×2 2 0
Conv4 64 3×3 1 1
Pool4 2×2 2 0
Conv5 64 3×3 1 1
Pool5 2×2 2 0
Conv6 128 3×3 1 1
Pool6 2×2 2 0
FC-1 512
FC-2 5

Log Softmax

In the implementation of this work in this thesis, the network parameters have been

changed to further improve accuracy. The network that is modified from BaseNet and used

in this work is described in Table 2.1 Also, more images have been added to the dataset in

this thesis by using videos available on YouTube and extracting the frames from the videos.
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There is another process called Data Augmentation [47 ] where in order to make-up for

the small size of the dataset, the images are transformed to trick the network into thinking

that it is receiving a new image. These transformations include very simple tricks as shown

in Figures 2.13 and 2.14 .

Figure 2.13. Example of Augmentation. Adopted from [48 ]

Figure 2.14. Another Example of Augmentation. Adopted from [49 ]

From these images we can observe that by applying simple transformations on images,

we can generate a new image to fool the computer into thinking it is a different image. These

transformations as seen from the examples above include translation, rotation, flipping, per-

spective shifts, etc., and help to enlarge the size of the dataset.
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While training a neural network, the network goes through each and every image in

the training dataset. The training dataset is divided into batches to reduce the training

time where each batch goes through a network at one time and the loss of each batch is

backpropogated through the network to update the weights. A network going through a

single image in this situation is called an iteration. A normal batch size is about 32 to 64

which means the network goes through 32-64 iterations for each batch. Once the network

goes through every image in the dataset, it is called one epoch. After every epoch, the neural

network starts all over again with the data and learns from it. It takes quite a few epochs

for the network to learn the data and give high accuracy results. The data augmentation is

performed randomly at each epoch in our network training with the help of the DataLoaders

in PyTorch [50 ]. This means that in each epoch, the training data is randomly augmented

so that the network sees ’new’ images every epoch. The augmentations applied in this work

are:

• Resize - Resizing the image to 224× 224.

• Random Rotation - Images are randomly picked to rotate by a random value between

-40° to 50°

• Random Affine - Random affine transfomrations are performed on the image

• Random Perspective Shifts - The perspective of the image is shifted

• Random Horizontal Flip - Images are flipped horizontally at random

• Random Gaussian Noise - Random images are picked to which gaussian noise of

mean 0 and standard deviation of 0.001 is added

Now, the dataset is split into 2 parts training and, validation with a 0.8, 0.2 ratio re-

spectively. The training dataset is for training the neural network, the validation dataset

is for checking the performance of the dataset after every epoch. This validation dataset

accuracy and loss is what we look at to judge the performance of the network. We bear in

mind that the network only learns from the training dataset. While validating and testing,
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we turn the backpropogation off so the network can only predict from the data but never

learn. This helps us understand the generalisation performance of the network. The testing

dataset is what is used while reporting the results. For the work in this thesis, the testing

dataset is not a part of the AIDER dataset but rather images compiled for this thesis to

understand the true performance of the network. As mentioned earlier, the AIDER dataset

has a large number of images in the ’normal’ class. Since splitting the dataset will still not

give the correct performance of the network as ’normal’ can be predicted for most images

to get high accuracy, the testing the dataset that the work in this thesis uses contains 800

images belonging to the class ’Fire’ and 104 images belonging to the class normal’. This is

a better metric to judge the classification accuracy of the network.

The trick that is used while training to make sure that all the classes are sampled equally

to avoid under or over sampling where certain classes, in this case ’normal’ is over-represented

and hence the model might not learn properly, is called balanced sampling. In balanced

sapling, it is ensured that for each batch that is sent to the network for training, the number

of images from every class is the same. This would mean repeating a few images but it still

ensures that every class is equally represented in each batch and hence the learning is better.

During the training process, there are important parameters that are paramount to

proper training: learning rate, optimizer and loss function. For this work, many differ-

ent learning rates, optimizers and loss functions were tried. The ones that yielded the best

results were chosen to compare the accuracy. The finally selected learning is α = 0.001. The

optimizer selected is the Adam optimizer [51 ], and the loss function was the cross-entropy

loss given by the equation:

L(x, y) = − log ex[y]∑
j ex[j]

where x is the input to the loss function which are the predicted values from the model

and y the actual class which is picked from a range y = [0, , , C − 1] where C is the total

number of classes. For example, if the output from the network after the softmax function
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is x = [0.1, 0.1, 0.7, 0.1, 0.0] for a 5 classes, and the ground-truth class of the image is the 3rd

class, then y = 2. These will be the inputs to the cross entropy loss function. Also, since we

are using the cross-entropy loss function, we will use the log-softmax function at the output

instead of the softmax function as it is more compatible with the Cross-Entropy loss. The

log-softmax function is given by

LogSoftmax(xi) = log exi∑
j exj

Figure 2.15. Training Statistics for BaseNet variant

The network was trained in parallel on 4 Nvidia GeGorce RTX 2080 GPUs with 128 GB

of RAM and an Intel i9 processor. The speed performance discussed in the results section

will be measured on this system however the GPU was not used for testing and we relied

solely on the CPU.

Before moving to the main results, we will talk about the training for the network built in

this work. The training graphs shown in Figure 2.15 are for the modified version of BaseNet

constructed for this thesis. In these graphs, what is highlighted as the testing accuracy is the

performance of the network on the validation dataset which is a part of the AIDER dataset.

The graph shows the trend of increasing accuracy as the number of epochs increases and a

decreasing loss as the number of epochs increases. The training is stopped at a little more
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than 40 epochs when the loss did not decrease for about 5 epochs. Beyond this point, if

the validation loss did not decrease, it would mean that the network has started overfitting

which is why training was stopped at that point. At the stopping point as highlighted in

Figure 2.15 the validation accuracy was 87.5%.

In the Section 2.4 we will look at the results of the performance from these networks,

the author’s original performance and the improvements in performance through this work

in our new testing dataset.

2.3.2 Image Classification using Transfer Learning

In this section, we will address the method of training the networks for our tasks through

transfer learning. As we described the process of transfer learning earlier, it involves using

pre-trained networks to classify images in a specific dataset. It is important to keep in mind

that the networks that will be used here are trained on the ImageNet dataset [52 ]. The

ImageNet dataset contains over a million images in 1000 classes. It is a huge dataset and

requires a lot of time to train. Training with the ImageNet dataset on the simple BaseNet

architecture mentioned earlier takes about 2 hours for each epoch. Training for close to 40

epochs is a daunting task with a lot of computation 80 hours. Obviously, the time taken

is considerably larger as different parameters are varied through trial and error to get the

best performance in the network. Therefore, only BaseNet was trained from scratch with

the ImageNet dataset and then made to transfer learn. Transfer learning works because the

layers have learned to extract the important features from the image. All that needs to be

changed is the classification layers which determine the final output. Hence, 2 variants of

transfer learning was performed:

• The weights of the first few layers were locked and only the weights in the last

layers were allowed to be changed while training with the specific AIDER dataset.

Of course, all weights were allowed to change when being trained on the ImageNet

dataset.
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• While training on the AIDER dataset, all the weights in all layers were allowed to

be trained.

Figure 2.16. VGG11 used for Transfer Learning

The other network that is presented here is a network called VGG11 [11 ] which is a 11-

layered version of the popular VGG16 network. The pre-trained model is readily available

from PyTorch’s pre-trained model library. In Figure 2.16 the network is shown, however, the

network is modified by taking out the last few layers highlighted in red and instead replacing

it with the new set of layers that starts with a FC layer of 512 and ends with a FC layers of

size 5 as we have 5 classes. Therefore, the initial layers that were transferred already have

weights which was learned from the ImageNet dataset but the new layers do not have any

trained weights yet. Then, this network was trained with the AIDER dataset both, keeping
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the weights of initial layers constant and allowing all weights to be learned again.

(a) VGG11 Transfer Learning training statistics

(b) BaseNet Transfer Learning training statistics

Figure 2.17. Transfer Learning Networks Training Statistics

The training and validation statistics for this network is shown in Figure 2.17a where

it is evident that there is a high validation accuracy in about 7-8 epochs of about 94%.

However, when we look at the performance for transfer learning in BaseNet, we see lower

validation accuracy of about 78%. The drop in performance is expected as a shallow net-

work like BaseNet is not built to handle training on the ImageNet dataset as it does not

have enough learnable parameters to formulate the relationship between the input and the
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output. However, both networks in Figures 2.17a and 2.17b the trend is for the accuracy

to increase over the epochs and the loss to decrease over the epochs which shows that the

networks are learning, The extent to which they would have learnt will become obvious in

the main results section for this chapter.

Many training parameters were varied such as the learning rate, optimizer and the net-

work architectures but it was found that the same settings that was used to train BaseNet

as shown in the previous subsection provided the best results.

2.3.3 Multi-agent Image Classification

In all the subsections so far the method to obtain a 5× 1 output vector from the vision

system was discussed. This 5×1 vector is the output of a Log Softmax function from the last

layer of the CNN. It is evident that the predicted class of the image by the neural network

is the index of the highest value in this vector:

Predicted class = arg max
p



p1

p2

p3

p4

p5


We have defined earlier that this output vector for each agent in G = (V , E) is yi(k). From

[18 ], we know that each agent must update their vector at each time step to move towards

the average defined by equation 2.1 . The update rule that each agent must follow to reach

this average is given by:

yi(k + 1) = yi(k) +
∑
j∈Ni

Wij(yj(k)− yi(k)) (2.2)

where Ni is a set of all agents that are neighbours of agent i. A neighbour of an agent

means that the 2 agents are connected to each other through either a one way or two way
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communication. Wij is the ith element of the jth row in a weight matrix W . To achieve

average consensus, this weight matrix must satisfy the conditions:

W = W T W1 = 1 W ∈ S, (2.3)

where 1 denotes a vector of all ones, and S denotes a sparse matrix that is compatible

with the graph,

S = {W ∈ Rn×n|Wij = 0 if i 6= j and (i, j) /∈ E}

To achieve global average consensus, the Metropolis-Hastings weights is utilized that gives

us the values of the W matrix so as to achieve average consensus. These are the values that

are used for the work in this thesis.

There is also another method for achieving consensus that was tested in this thesis called

Gossiping Consensus [53 ]. In this method, a node and its nearest neighbour communicate

with each other at each time step to slowly move towards consensus. Here, the node sends

0.5 × yi to its neighbour and receives 0.5 × yj from its neighbour at each time step. The

update rule followed here is:

yi(k + 1) = yi(k) + yj(k)
2 (2.4)

Although this method achieves average consensus, it is too slow as each agent commu-

nicates with only one other neighbour and our tests for a simple system with 4 agents show

that gossiping consensus takes 17 time steps to achieve consensus. However, using the up-

date rule in equation 2.2 , we use 2 matrices to show the results for a system of 4 agents. The

values that we test the algorithm with are:
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y1(0) =



0.0805

0.0805

0.6782

0.0805

0.0805


y2(0) =



0.0805

0.0805

0.6782

0.0805

0.0805


y3(0) =



0.0200

0.2000

0.2000

0.2000

0.2000


y4(0) =



0.0805

0.0805

0.6782

0.0805

0.0805


It is evident that image belongs to class 3 for all but one agent. We will see whether

the system can achieve this average. We define 2 weight matrices based on the topology in

Figure 2.10 :

W1 =



0 0.5 0 0.5

0.5 0 0.5 0

0 0.5 0 0.5

0.5 0 0.5 0


W2 =



0.3 0.3 0 0.3

0.3 0.3 0.3 0

0 0.3 0.3 0.3

0.3 0 0.3 0.3


It is clear that both matrices follow the constraints in equation 2.3 . W2 is the Metropolis

weights matrix. Both matrices used with equation 2.2 show convergence. When W1 is used,

the system converges in 5 time steps. When W2 is used the system converges in 7 time steps.

In both cases, the highest probability value is at index 3 with a value of 0.43.

2.4 Main Results

Figure 2.18. Accuracy comparison of the networks built by Kyrkou et al. [44 ]
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In this section, we will start with the results of the works of Kyrkou et al. [44 ] which are

shown in Figure 2.18 and then we will compare the network built for this thesis. We will

start by comparing the CNNs classification accuracy and performance, then move onto the

Transfer Learning networks and finally we will look into the Multi-agent image classification

system.

From Figure 2.18 we will only look at the rows for baseNet which shows a classification

accuracy of 88% and SCFCNet which shows a classification accuracy of 87.7%. It is important

to note that the accuracy shown in Figure 2.18 are the network tested on the AIDER dataset.

This thesis’ results are tested on different images to check the generalization performance

and to see if the network would not classify everything as ’normal’. While training the

modified version of baseNet, we obtained the confusion matrix shown in Table 2.2 . The

confusion matrix is used to identify how many images in each category does the neural

network classify into each category. Typically, we will see that the diagonal of confusion

matrices should have the highest values which would show that the network has actually

learned and not classifying images randomly. It also helps to determine if certain classes are

over-represented or under-represented.

Table 2.2. Confusion matrix for modified baseNet
Collapsed Building Fire Flood Normal Accident

Collapsed Building 73 4 0 15 5
Fire 1 90 0 9 1

Flood 6 0 60 20 14
Normal 9 40 0 827 2
Accident 9 5 2 15 64

Our modified BaseNet shows a validation accuracy of 89.1% which is higher than the

88% accuracy as shown in the original results. Further, on testing it with the our testing

dataset, we find that it achieves an accuracy of 91.81% correctly classifying 726/800 images

of ’fire’ correctly and 104/104 images of ’normal’. We record an FPS (frames per second) of

51 but this value cannot be compared to the original results because the computing powers
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are different. However, 51 fps is good enough to allow the network to be run on UAVs to

process data in real-time. Looking at the performance of SCFCNet however, the validation

accuracy showed 87.5% which is a marginal decrease from the reported 87.7%. However,

running this on our testing dataset, the accuracy was very poor with an average accuracy

of around 60%. This shows that the learning capability of SCFCNet is limited when data is

more generalised. So here we conclude that the modified version of BaseNet is more suited

towards classifying images.

Equipped with this information we move onto the next stage of our results which include

the transfer learning networks. As mentioned before, we use the VGG11 and the modified

baseNet to be transfer learned. We will show the result for 2 scenarios the relevance of which

will be evident later. One set of results are normal images passed through the network and

the classification accuracy is calculated. The other set of results are for when Gaussian noise

is added to the same images before passing it into the network. We obviously expect the

images with Gaussian noise to have poor accuracy as the network was not trained to handle

such noise in the image.

In Figures 2.19a and 2.19b , we show 2 types of accuracy, Top 1 accuracy where the class

with the highest probability as predicted by the network is the correct class of the image,

and Top 2 accuracy where the classes with the highest and second highest probabilities as

predicted by the network is the correct class of the image. The Top 2 accuracy is done only

if the image is not ’normal’ again because of over-representation of the ’normal’ class. We

see that the VGG11 has an amazing performance with a Top 2 accuracy of 98.12% having

transfer learnt but the BaseNet has dipped in performance as compared to the previous

results. This shows that baseNet is incapable of transfer learning due to the sallow network

size. As predicted we also see that the performance dipped significantly when the noise was

added to the images before it was inputted into the neural network.

Now we will look at the final set of results for the multi-agent image classification system.

Figure 2.20 shows what each of the 4 agents will see. It is the same image with perspective
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(a) VGG11 Transfer Learning training results

(b) BaseNet Transfer Learning training results

Figure 2.19. Transfer Learnt Networks’ Results

shift transformations to simulate the effect of UAVs viewing the same image from different

angles. The first column are example images of what agent 1 sees, second column for what

agent 2 sees and so on. Now we will look at the performance of the system as a whole. The

agents will achieve consensus amongst themselves for the probability values of their vision

system. The classification accuracy here is shown to be 91.48%. This is despite the massive

perspective shifts that is seen in Figure 2.20 . It is evident that the actual accuracy if not
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Figure 2.20. Image examples for the 4-agent system

for such perspective shits would definitely be higher. Unfortunately we did not perform this

experimentally with multiple UAVs observing the same environment from different angles.

Figure 2.21. Image examples for the 4-agent system with noise added to 2 agents

Now we look at the same condition, but we will add Gaussian noise to 2 of the 4 UAVs’

images. This means that half of the UAVs in a system are affected by Gaussian noise which

we have seem before to cripple the accuracy of the system. The Gaussian noise added has a

mean = 0 and standard deviation = 0.5. The example of the input is shown in Figure 2.21 .
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The results from this are very surprising and shown in table 2.3 .

Table 2.3. Results for multi-agent image classification

Gaussian Noise (single agent) Gaussian Noise on 2 of the 4 agents
Fire Images identified correctly: 0/800 Fire Images identified correctly: 723/800

Normal Images identified correctly: 104/104 Normal Images identified correctly: 104/104
Classification Accuracy: 11.5% Classification Accuracy: 91.48%

The accuracy for the multi-agent system significantly increased as compared to the per-

formance of a single agent. This means that a multi-agent image classifier is more resilient to

variations in the input image to still produce the correct output. We also look at a case for

the VGG 11 network where noise with a non-zero mean = 0.5 and a standard deviation = 0.5

is added to the images and the performance of single agent vs multiple agents is compared.

Figure 2.22 shows this comparison and it is again evident that the classification accuracy

greatly increased for multi-agent systems from 17.92% to 70.02%.

Figure 2.22. Single agent vs Multi-agent comparison for VGG11 with non-zero noise

In conclusion, we can say that the regular performance of single agent vs multi-agent is

similar but multi-agent can prove to be better provided more experimental data. Regular

events such as occlusion of ROI from one camera can be counteracted as the consensus of

the graph will ensure that the common decision is the correct decision. The multi-agent

system is tolerant to occasional irregularities such as noisy data, perspective shifts, poor

lighting/sensors, out of focus images, too close or far from the object, etc,. among other
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faults. Therefore, using a distributed vision system proves to be highly fault-tolerant and

brings up the accuracy of the entire system.
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3. RESILIENT AVERAGING CONSENSUS

3.1 Introduction

The results in the previous section shows a very promising approach to image classifica-

tion. We are left with a 5 × 1 vector that is the output of the vision system of each UAV.

Next, we applied this vector to a multi-agent system to achieve average consensus and saw

how the accuracy can be increase in certain situations if the multi-agent approach is taken.

Now, we will look at how to ensure that the system always achieves consensus even in the

face of malicious attacks. A system that can achieve consensus even when the system is

under-attack by entities that want to prevent consensus is called a resilient system. In this

section, we will look at how our system is made to achieve consensus and the algorithms it

uses to ensure that all benign agents agree upon the same value.

Figure 3.1. Byzantine Generals Problem. Adopted from [54 ]

We look at a special type of problem called Byzantine Generals problem. This is based

on a though experiment that Byzantine generals outside a city are waiting to attack the

city. However, all the generals must attack together to be victorious. Or all generals must

retreat to live to fight another day. Either way, all the generals have to agree on the same
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thing and execute it. Then, traitors are introduced into the system to confuse the generals.

Traitors might tell one general that they are planning to attack and tell another general that

they plan to retreat. This would cause an uncoordinated attack leading to the defeat of the

generals. This is exactly the type of attack that can happen in our systems that leads the

system away from consensus. Therefore, in our system, the UAVs need to be resilient to such

attacks where the attacker will make some of the UAVs in the system produce erogenous

values that will try and confuse the system. These values could be random or carefully

crafted to try and fool the system. This section will talk about how a system of UAVs with

each trying to achieve the average of a 5× 1 vector can achieve resilient consensus. For the

sake of convenience, we will call this 5 × 1 vector that state or state vector of the UAV,

although in literature the state of UAVs refers to another vector.

3.2 Problem Formulation

For the problem, we have a multi-agent graph G = (V , E). In this we define a set of be-

nign nodes B and a set of adversarial nodes A = V\R. Here, the benign nodes are the agents

that are not attacked and will follow the required protocols and update rules whereas the

adversarial agents are the ones that are attacked and will not follow protocols and update

rules to try and move the system away from consensus.

We define 2 models of attacks [27 ] - The f -local adversarial model and the f -total ad-

versarial model. In the f -total adversarial model, it is assumed that the upper bound of the

number of adversarial agents in the system is f , which means at any given time, there will be

at-most f adversarial agents in the system. In the f -local model, the number of adversarial

agents in the vicinity of each agent is upper bounded by f . This means that each node will

have at-most f adversarial agents as its neighbours. We assume that the value of f is known.

We know that the neighbours of each agent i is denoted by Ni. Therefore, an f -local model

can be described as

|Ni ∩ A| ≤ f, ∀i ∈ B
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Now, 2 different approaches to achieving resilient consensus will be shown and these

approaches will have a different problem statement. The first one is a type of resilient

consensus where we reach the exact average of the initial states of the agents. For this

method, the problem statement is put-forth as for a multi-agent system G under an f -local

adversarial attack model, resilient average consensus is achieved if for every initial condition,

xi[0], i = 1, 2, ..., N it holds that

lim
k→∞

xi[k] = xa, ∀i ∈ B

where xa = ∑
i∈B xi[0]/|B|.

The second method does not involve finding the exact average of the state vectors rather

it tries to get as close to the average as possible. However, since in many cases we cannot

identify the identity of the adversarial nodes, we will have to rely on consensus with a margin

of error. So in this case, the problem will be:

lim sup
x→∞

max
i,j∈B
|xi(k)− xj(k)| < ε

where ε is a very small number. In the next section, we will see the various methods that

can be used to achieve resilient consensus on our vision system.

3.3 Method

The first method shown here is based on the first problem formulation where we will pro-

ceed to identify the adversarial nodes in the system. Here, we use an algorithm called Secure

Acceptance and Broadcasting Algorithm (SABA) [27 ]. This algorithm is shown in Figure

3.2 . Essentially this algorithm shows a simple way to accept the values of other agents. It

employs a voting system to identify the correct values from the wrong ones. And provided,

the graph has enough connections, each agent will have the states of all other agents after a

finite number of time steps.
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Figure 3.2. Secure Broadcasting and Acceptance Algorithm. Adopted from [27 ]

Essentially, the assumptions in this algorithm are that at k = 0, all agents send their

true initial values and only from k > 1 are the adversarial agents allowed to send faulty

values. So beginning at k = 0 all the benign agents sets its own memory vector to its

initial value. At k = 1, each regular agent broadcasts its memory vector to its neighbours

while receiving values from the neighbours to update its own vector. Again, it is assumed

that there are no communication delays in the network and each agent receives and send its

states simultaneously. Since from k > 1 the adversarial agents may send faulty values to its

neighbours, the voting system is employed to ensure that the benign agents only accept the

correct values. The memory vectors of each agent is only updated if it receives the identical

value of the state of another agent from f + 1 agents. Since there are at-most f adversarial

agents in a benign agents neighbourhood, identical values from f + 1 neighbours means that

the value is trustworthy. Of course, the limitation here is that the graph G must be strongly

(2f + 1) robust for this algorithm to work. This would mean that each agent would need to

be strongly connected to at-least 2f + 1 other agents.
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The end result of the SABA algorithm gives us a vector mi[k] for each agent i that

contains the state of all other agents which have been agreed upon by voting. Next, we will

use this memory vector to find the average. At each time step, the node i updates its time

step as:

φi[k] =
∑

mi
n[k]

λ[k]
, n ∈Mi[k] (3.1)

Here, Mi[k[ is the set of indices of mi[k] that are non-empty and λ[k] = |Mi[k] is the

cardinality of this matrix. Further, to update the states of each agent, a low-pass filter

is used which exponentially smooths the states of each agent which is given by the set of

equation:

xi[0] = φi[0],

xi[k] = εixi[k − 1] + (1− εi)φi[k], ∀k > 0,
(3.2)

where 0 ≤ εi < 1 is the filter gain. In this case, since we don’t really require exponential

smoothing and we would like the system to reach consensus on the class probabilities, we set

the filter gain εi = 0. This method helps in identification of the adversarial nodes and then

finds the average of the states by averaging the states that is in the memory vector which

ignores the random faulty values sent by adversarial agents. This algorithm in [27 ] can be

applied to our problem although slight modifications have to be made. The algorithm was

designed for each agent to have one value as its state. In our case, we have 5 values in the

state vector. After different approaches using trial and error, the best method was found to

be using SABA to identify the states of the agents. The dimensions of the memory vector

will be different because now each memory vector will be turned into a matrix with the rows

representing the different probability values. This means that that mi
n[k] represents a 5× 1

vector. The rest of the algorithm remains the same. Further, once the memory vectors have

been updated with all of the states, we use equation 3.2 to find the average of each agent

at each time step with εi = 0. Here, this step will need to be performed on vectors with

element-wise addition and division. This will give us 5 values for φi[k[ in each time step and
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each of these 5 values represents the respective average value of the probability values.

Implementing this algorithm for a system with 5 agents, we set that the adversarial agent

is ’Agent 2’. Figure 3.3 shows the system executing SABA was able to determine the adver-

sarial node as ’Agent 2’ in the second time step. It identified that the values coming from

’Agent 2’ through the edges highlighted in red are faulty values.

Figure 3.3. Finding the adversarial agent using SABA

Figure 3.4 shows the initial states of each agent. yi denotes the initial state of agent i.

The initial state vector is a 5 × 1 vector the reason for which is discussed in the previous

sections. The graphs in Figure 3.4 show the convergence of average values for each node for

each probability value. p1 is the first probability value and is the first row of every state

vector. We can see that at k = 3, all the values converge to a mean of 0.1044. Similarly,

all the other probability values shows convergence at their respective mean values. In every

graph, we can see the value of node 2, or agent 2 not converging as this node continues to

produce a faulty value and will not converge. From the example, we can also see that p3 has

the highest probability which means that the predicted class will be the ’Class 3’.

This algorithm helps us identify the adversarial agent and then helps the system reach

average consensus of the initial states. It may not always be possible to identify the attacker
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Figure 3.4. Convergence of states using SABA

in many scenarios so we look at methods where the adversarial agent is not identified yet

the system can achieve consensus. In the next subsections, we will elaborate 2 methods [31 ],

[32 ] that helps the system achieve consensus without identification of the adversarial node.

It is evident that such a system can never reach the true average of the initial states and

instead can only focus on coming as close as possible to the average of the states.

The next subsections talk about the 2 methods that was used to achieve consensus

without identification of the adversarial node.

3.3.1 Weight Learning Method

Similar to the weight matrix in 2.2 , this method [32 ] uses a weight matrix denoted by A

which is also called a weighted adjacency matrix to update the states of the agents. This

matrix A represents the edges of the graph G. A = {aij ≥ 0} but here we assume that there

are no self-loops which means aii = 0. Since it is a weight learning method, the value of A

changes at every time-step so we denote aij(k) as the value of aij at time step k.
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Previously, we defined a set B as the set of benign agents, and a set of adversarial agents

A. For this method, these definitions are taken a bit further, we define 3 sets of nodes:

V = V n ∪ vp ∪ V i

where V n are the regular/normal nodes, V p are the persistent faulty nodes, V i are the

intermittent faulty nodes. Each of these sets of nodes follows the same update rule i.e.

xi(k + 1) = xi(k) + ui(k)

.

The update rule by the different sets of nodes listed are given by:

• Normal Nodes V n

ui(k) =
∑
j∈Ni

aij(xj(k)− xi(k)) + ωi(k), i ∈ V n

Here, aij(k) is the adjacency matrix weight which satisfies ∑j∈Ni aij(k) < 1 and ωi(k)

is a bounded noise bounded by (|ωi(k)| < ω) introduced by transmission channel and

environment.

• Persistent Faulty Nodes V p

ui(k) = Random, i ∈ V p

• Intermittent Faulty Nodes V i These kind of nodes show behaviour of both normal

and faulty nodes,

ui(k) =


∑

j∈Ni aij(xj(k)− xi(k)) + ωi(k), with probability p,

Random, else
, i ∈ V i
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Now that the nodes have been defined and the update rules for the nodes are also defined,

the algorithm that makes this method work is defined. This method uses a learning method

to change the weights of the adjacency matrix over time so that the links between regular

and faulty nodes have very small weights (ideally 0) and the link between regular and regular

nodes have high weights (ideally 1) . This is achieved through a reward function defined by:

rij(k) = f(|xj(k)− xi(k) + ωij(k)|, k), j ∈ Ni, i ∈ V n

where ωij is the transmission noise from node j to i. Usually, the function f is selected so

that it is inversely proportional. The example given in [32 ] is the function that was selected

for this work as well which is:

f(|xj(k)− xi(k) + ωij(k)|, k) = e−|xj(k)−xi(k)+ωij(k)|θ(k)

where an arbitrary design parameter θ(k) > 1. This function helps to restrict the value

between 0 and 1 which means that if the states are different the reward moves closer to 0

while if the states are similar the reward moves closer to 1. Another function that is defined

here is the credibility function which helps store the historical value of the reward function.

This function essentially integrates the value of the reward function between 2 nodes over

time thereby providing the reliability of a connection over time.

Qij(k) = Qij(k − 1)rij(k), Qij(0) = 1, j ∈ Ni, i ∈ V n

Finally, the weighted matrix is then updated using the formula

aij(k) = Qij(k)∑
j∈Ni Qij(k)(1− 1

|Ni|)

The entire algorithm from [32 ] is shown in Figure 3.5 . The authors in [32 ] also mention a

special case for stochastic topology. The challenge here is that the function f(|xj(k)−xi(k)+

ωij(k)|, k) is the reward function and that in-turn updates the weight of the adjacency matrix.

The problem here is that since xi is a 5 × 1 vector, the algorithm either needs to choose a
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Figure 3.5. Algorithm for Weight Learning Method. Adopted from [32 ]

single value or have 5 different weighted adjacency matrices for each of the probability values.

Since having 5 different matrices does not make sense due to extra memory requirement and

every adversarial agent will send faulty values for all the probability values therefore the

communication links that are not trustworthy will be the same for all matrices. Therefore,

for this work, the mean of the output of f(|xj(k)− xi(k) + ωij(k)|, k) is taken as the value of

the reward function. Therefore, we rewrite the equations for this case.

Rij(k) = e−|xj(k)−xi(k)+ωij(k)|θ(k)

rij(k) = Rij(k) · 1
|Rij(k)|

(3.3)

where Rij is a vector output which in this case will be a 5× 1 vector and 1 is a column

vector of all ones with the same dimensions as Rij(k). The results of this algorithm are really

promising and will be shown in the next section. Using this method, a system of agents can

achieve consensus without identification of the attacker. Also, another advantage here is

that many underlying assumptions such as f -total or f -local attack model are not required.

Further, the graph need not be 2f + 1 robust, rather the only condition here is that the

topology of the regular nodes need to be strongly rooted.
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3.3.2 Intersection of Convex Combinations of States Method

The final method that is discussed is the method where the intersection of convex hulls of

the states of the agents help define the new states of the agents. This method is described in

[31 ] where the initial states of each agent are used to find the convex hulls of a set of states.

The intersection of these hulls form a ’safe kernel’ that the states of the agents move towards.

To understand the method and this thesis’ contributions to this method, we introduce a few

notations.

• For a vector a, ai denotes the i-th component of this vector

• For any matrix M , M i
j represents the element in the ith column and jth row

• For a set S ⊂ Rd, Conv(S) denotes its convex hull which is essentially a set of all

convex combinations of the points in S Here, d is the dimensionality.

• We denote the state vector of an agent xi with dimensionality d as:

xi =



xi
1

xi
2

.

.

.

.

xi
d



• For a set S, |S| denotes the cardinality of the set

• Let Ver(Conv(S)) denote the vertices of the convex hull

• We denote c as an index variable with a maximum value of c = d − 1. Each value

of c represents one of the intersections of convex hulls for a state vector with dimen-

sionality d.

• We denote each intersection of convex hulls w.r.t agent i as Ri
c
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• Let F denote the total number of adversarial agents in the system

• We denote a set S(A, n) where A ⊂ Rd with cardinality m, then the set S(A, n) is

the set of all subsets of A with cardinality m − n. It is clear that S(A, n) has
(

m
n

)
elements

A function is introduced for a set A ⊂ Rd with cardinality m, then

Ψ(A, n) =
⋂

S∈S(A,n)
Conv(S) (3.4)

The algorithm follows the F-Local or F-Total attack model, the update that each benign

agent follows is detailed in Figure 3.6 . Here Ri(k) as the ’safe-kernel’ which is guaranteed to

be within the convex hull formed by the benign agents. An example of the ’safe-kernel’ of 5

agents is shown in Figure 3.7 . Therefore, we see that a healthy agent moves its state inside

of this ’safe-kernel’. The states of each agent are update by the rule:

xi(k + 1) = ai
i(k)xi(k) +

∑
x̄j(k)∈Ver(Ri(k))

ai
j(k)x̄k(k) (3.5)

Figure 3.6. Algorithm for the Safe Kernel Method. Adopted from [31 ]
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Figure 3.7. Safe kernel of 5 agents with F = 1. Adopted from [31 ]

The underlying assumption here is that for any i ∈ V , |Ni| ≥ (d + 1)F + 1. Further,

there is a limitation on the network topology. Here we define the topologies from [31 ]:

• (r-robust network) A graph G = (V , E) is said to be r-robust if for any pair of disjoint

and non empty subsets V1,V2 ( V , then either there is more than one agent in V1

such that it has at least r neighbours outside V1 or there is more than one agent in

V2 such that it has at least r neighbours outside V2.

• ((r, s)-robust network) the same conditions as the previous case hold except that

there is an additional condition that the graph G may follow which is that there is

no less than s agents in V1 ∪ V2 such that each of them has at least r neighbours

outside the set they belong to (V1orV2)

This lets us understand the limitation on the network topology where if the F-Total at-

tack model is used, then network must be (dF + 1, F + 1)-robust for the system to achieve

consensus. And if the F-local attack model is followed, the graph needs to be ((d + 1)F + 1)-

robust for resilient consensus.
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Now that we understand the algorithm in [31 ], we can quickly identify the limitation

that the algorithm gets very complex as d increases since the dimensionality of the space for

finding convex hulls increases. This means that it is harder to find convex hulls and their

intersection in 4-D space rather than 2-D space. Also, we can see that the requirement for

robustness in-terms of network topology is also directly proportional to d. In our case with

d = 5 the network gets vast and it is harder to calculate the convex hulls in 5-D space.

Looking at the assumptions, in the case of d = 5 and assuming F = 1, then each agent will

need to have 7 neighbours and the graph will need to be (6, 2)-robust therefore the minimum

number of agents is 12. A new algorithm is proposed that is an extension of the algorithm in

[31 ] which significantly reduces the number of agents required for our problem by ensuring

the dimensionality is always 2.

This proposed algorithm derives from the algorithm in Figure 3.6 and works by splitting

each of the state vector into smaller pieces of size 2 and performing all the same steps as

before. Essentially, the problem for this hypothesis is formulated in the next paragraph.

Let us now denote a variable c where c = (1, 2, ..., d). Now, each component in agent i’s

state vector can be represented by xi
c(k). Our proposed method follows that for every agent

i, at each time step k, the vector

 xi
c

xi
c+1

 is made to follow the algorithm in Figure 3.6 . If

the algorithm is followed for each split vector

 xi
c

xi
c+1

, we hypothesize that at k → ∞, each

state vector will move towards the average of the initial values of all states.

Bearing this new problem, we come up with a the new proposed algorithm to incorporate

this into the older algorithm. Algorithm 1 shows the process of updating its each state by

each agent i,∀i ∈ B.
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Algorithm 1: Resilience Algorithm
1. Receive the states from all neighbouring agents j ∈ Ni and each of these state

vectors xj(k) is appended as new column in a matrix X i(k) whose dimensions will

be d×m

2. for each row r in X i till r = d− 1 do

We define the r-th row in X i as sr where sr is a row vector with m elements ;

Find the value of Ri
r(k) = Ψ(

 sr

sr+1

 , F ).

end

3. Create 2 empty column vectors pi(k) and W i(k) both with dimensionality d.

4. for each convex hull Ri
c(k) in Ri(k) do

Let c be the index of Ri
c(k) in Ri(k)

Let ρ be the number of vertices in Ri
c(k)

 pi
c

pi
c+1

 =

 pi
c

pi
c+1

+
∑

x̄θ∈Ver(Ri
c(k))

wi(ρ)x̄θ

where θ denotes the index of each vertex in Ri
c(k)

In W 2(k), assign wi
c = wi(ρ)

end

4. We update the values in the p vector as



pi
2

.

.

pi
d−1


= 0.5×



pi
2

.

.

pi
d−1



5. In W i(k), assign wi
d = wi

d−1

6. Each agent update its state as:

xi(k + 1) = W i(k)� xi(k) + pi(k)
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The few functions required for this algorithm to run are:

• Each benign agent updates its states as

xi(k + 1) = W i � xi(k) + pi(k) (3.6)

where W i(k) is a column vector of weights. pi ∈ Rd.

� is used to denote element-wise multiplication

• To find the weights wi for updating the states, we use w as a function:

wi(ρ) = 1
ρ + 1 (3.7)

Now that we have the algorithm, this method can be better explained through an exam-

ple. We take an example of 6 interconnected agents with adjacency matrix

A =



0 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 0


‘ We generate random initial states for all the 6 agents. The states for each node is

x1(0) =



0.0186

0.6748

0.4385

0.4378

0.1170


x2(0) =



0.8147

0.3249

0.2462

0.3427

0.3757


x3(0) =



0.5466

0.5619

0.3958

0.3981

0.5154


x4(0) =



0.6575

0.9509

0.7223

0.4001

0.8319


x5(0) =



0.1343

0.0605

0.0842

0.1639

0.3242


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x6(0) =



0.3017

0.0117

0.5399

0.0954

0.1465


The actual average of the states is avg = [0.4122 0.4308 0.4045 0.3063 0.3851]T

We assume F = 1 and that the adversarial agent is node 1. Therefore, at every iteration,

node 1 will update its state to a new set of random values. Therefore, we will look at the

first update for agent 2.

The steps agent 2 takes to update its states are:

X 2 =



0.0710 0.5466 0.6575 0.1343 0.3017

0.8877 0.5619 0.9509 0.0605 0.0117

0.0646 0.3958 0.7223 0.0842 0.5399

0.4362 0.3981 0.4001 0.1639 0.0954

0.8266 0.5154 0.8319 0.3242 0.1465


This matrix is built by making the state vectors of every neighbour of agent 2 as a col-

umn. Column 1 is denoted in red as it is the random states of malicious agent 1. The values

in the column representing the states of agent 1 will change at every time step.

We define the rth row in X i as sr where sr is a row vector with m elements. Hence, we

take the first row of X 2 as s1 = [0.0710 0.5466 0.6575 0.1343 0.3017]. Note, the length of

this row vector is m = 5. Since F = 1 we need to take every combination of m − F = 4

elements at a time from this row vector. We find the number of combinations by using the

mathematical function
(

m
n

)
= m!

n!(m−n)! . In this case
(

5
4

)
will give you 5 combinations of values

taken 4 at a time from s1. Each of these combinations is a row in the matrix below and
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hence it has 4 elements in each row. Since there are 5 combinations, the total number of

rows is 5.



0.0710 0.5466 0.6575 0.1343

0.0710 0.5466 0.6575 0.3017

0.0710 0.5466 0.1343 0.3017

0.0710 0.6575 0.1343 0.3017

0.5466 0.6575 0.1343 0.3017


Similarly, we perform this operation for the second row of X 2 i.e. s2 and we find all the

combinations of s2 with F = 1 to get:



0.8877 0.5619 0.9509 0.0605

0.8877 0.5619 0.9509 0.0117

0.8877 0.5619 0.0605 0.0117

0.8877 0.9509 0.0605 0.0117

0.5619 0.9509 0.0605 0.0117


To plot a convex hull in 2−D space, we need 2 coordinates for each point - x-coordinate

and y-coordinate. This is the reason we perform the above operations on 2 vectors at a time

- to obtain the x and y coordinates. Corresponding rows from the matrices above form the

x and y coordinates respectively for each individual convex hull.

For example, the first rows of the matrices above are:

[0.0710 0.5466 0.6575 0.1343] and [0.8877 0.5619 0.9509 0.0605]

respectively. Therefore the coordinates of the vertices of the first convex hull will be:

(0.0710, 0.8877), (0.5466, 0.5619), (0.6575, 0.9509), and, (0.1343, 0.0605)
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These values are plotted in the Figure 3.8 as Convex Hull 1. Since the above matrices

have 5 rows each, we will have a total of 5 convex hulls. Figure 3.8 shows the convex hulls

being plotted together sequentially and the 6-th plot shows the intersection of all the 5

convex hulls.

Figure 3.8. Intersection of Convex Hulls

As per the algorithm, this intersection of convex hulls will be called R2
1(k). To find the

intermediary states, we need to find all the convex hulls for R2(k). Since there are 5 states

for each agent i.e. 5 rows in X 2 (d = 5), taking 2 rows at a time like how we did for s1 and

s2 will yield 4 convex hull intersections. This means that taking s1 and s2 gave us R2
1(k),

taking s2, and s3 will give us R2
2(k), and so on till R2

4(k). We note that the variable R2(k)

contains all these convex hulls.

Now we calculate the p-vector as described hereafter. We first create an empty p2(k)

vector which is a column vector with dimensionality d. The values of p2(k) are denoted by
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

p2
1

p2
2

p2
3

p2
4

p2
5


. We also create a W 2(k) vector which is also a column vector with dimensionality d.

The values of W 2(K) are denoted by



w2
1

w2
2

w2
3

w2
4

w2
5


The formula that we use to calculate the p-vector is:

 pi
c

pi
c+1

 =

 pi
c

pi
c+1

+
∑

x̄θ∈Ver(Ri
c(k))

wi(ρ)x̄θ (3.8)

where θ denotes the index of each vertex in Ri
c(k). Here, in the W 2 vector, we also equate

wi
c = wi(Ver(Ri

c(k))) from the above equation.

For this example, starting with R2
1(k), this intersection has 5 vertices (ρ = 5) and each

of the vertices has by 2 coordinates (2× 1 vector). The formula for this case becomes:

p2
1

p2
2

 =

p2
1

p2
2

+
∑

x̄θ∈Ver(R2
1(k))

w2(5)x̄θ

This formula sums up the vertices of the intersection of convex hulls with a weight factor.

Here w2
1 = w2(Ver(R2

1(k))). In the above formula x̄θ is a 2× 1 vector (x and y coordinate).

All these 2 × 1 vectors are multiplied with w2 and summed up to give

p2
1

p2
2

. We get the

values as

p2
1

p2
2

 =

0.4297

0.4410

 and w2
1 = 0.1667 because the number of vertices in R2

1(k) is 5.

Now the algorithm looks at R2
2(k) and uses equation 3.8 to find:

74



p2
2

p2
3

 =

0.8499

0.3094


.

Here, w2
2 = w2(Ver(R2

2(k))) = 5 because R2
2(k) also has 5 vertices.

Note here that p2
2 was updated by R2

1(k) and R2
2(k). After going through every intersection

of convex hulls in R2(k), we get our p2(k) as

p2(k) =



0.4297

0.8499

0.6570

0.5040

0.3239


W 2(k) =



0.1667

0.1667

0.1667

0.1667

w2
5


Now we note that p2

2, p2
3 and, p2

4 were added updated twice in each time step so before

we update the states of each agent, we divide the values of p2
2, p2

3 and, p2
4 by 2. Therefore,

we divide the value of every row in p2(k) except the first and the last row by 2. The first

and the last rows were updated only once.

This gives us the value of the p-vector as:

p2(k) =



0.4297

0.4249

0.3285

0.2520

0.3239


We also update the last value w2

5 = w2
4. This is because the last row (s5) is updated with

the same weight as s4 with R2
4(k) as:
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p2
4

p2
5

 =

p2
4

p2
5

+
∑

x̄θ∈Ver(R2
4(k))

w2(Ver(R2
4(k)))x̄θ

and hence w2
4 = w2

5. With p2(k) and W 2(k), we update the final state of agent 2 as

x2(k + 1) = W 2(k)� x2(k) + p2(k) and we get:

x2(k + 1) =



0.5654

0.4791

0.3695

0.3091

0.3865


This process is followed by every normal node at every time step. As a result, this system

converges in 2 time steps. The resulting states of the agents at k = 2 are:

x1(k) =



0.0186

0.6748

0.4385

0.4378

0.1170


x2(k) =



0.4920

0.2938

0.4156

0.3282

0.4309


x3(k) =



0.4907

0.2948

0.4113

0.3281

0.4318


x4(k) =



0.4917

0.2973

0.4088

0.3281

0.4314


x5(k) =



0.4921

0.2972

0.4106

0.3283

0.4317



x6(k) =



0.4918

0.2926

0.4165

0.3219

0.4322


We calculate the new average of these updated states at k = 2 as avgnew

= [0.4917 0.2951 0.4125 0.3269 0.4316]T which is nothing but the mean of the states

of the benign agents at k = 2.
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The calculated error between actual mean values and the algorithm obtained mean values

is 0.97%. As we can see this method is fairly effective in reducing the number of agents

that are required. The results will be discussed in the next section.

3.4 Results

We will first look at the results of the weight learning algorithm and then the result of

the convex combination of states algorithm.

The weight learning algorithm works really well and achieves consensus for all the tested

cases. The number of agents and the number of faulty agents were varied but the algorithm

still gave good results. The algorithm is not computationally intensive and on following

equation 3.3 , we get the average states very easily. The consensus values are really far from

the actual mean where more than a third of the system is adversarial nodes although this

is as expected. The number of steps time steps before consensus is achieved has been in the

range of 7-9 time steps. This algorithm has many advantages and is exceptionally robust in

dealing with adversarial agents in the system.

The intersection of convex hulls algorithm shows great promise. The modified version of

this algorithm has been tested in many different scenarios with different number of agents

and different number of adversarial nodes. Simulations show that this algorithm works well

and significantly reduces the limitations posed by the original algorithm in [31 ]. It is evident

that each split vector

 xi
c

xi
c+1

 which is a part of the whole state vector will achieve average

consensus by following the algorithm in [31 ]. It is then clear, that combining all these spilt

vectors after averaging out the state values in between will be inside the ’safe-kernel’ of the

entire state vector. Further, simulation results agree with the fact that the algorithm works

and can reduce dimensionality of the state vector to perform the intersection of convex

combinations method.

Thus we can safely say that our image classification system can now achieve resilient

average consensus through either of the methods detailed in this chapter. The choice of
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method would depend on the user’s parameters but both methods are very effective and have

been proven in this thesis to work well with our multi-agent image classification system.
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4. BOAT TRACKING USING OBJECT DETECTION

4.1 Introduction

This section describes a novel method to tackle a challenge put forth by the United

States Department of Defense - Department of the Navy, Naval Information Warfare Center

Pacific [9 ]. The purpose of this challenge is to detect a specified target (the given boat) over

the course of a video file recorded by a single electro-optical camera and predict its path

or track by providing relevant GPS coordinates for each frame of the video file. The only

data that was provided was the GPS coordinates of the camera which recorded the videos,

the GPS coordinates of the boat that was supposed to be tracked (to provide ground-truth

data), along with relevant video files recorded by the camera to help train the model.

We start our approach by understanding what a neural network can and cannot do. A

neural network can identify mathematical relationships between the input and the output

hence predicts outputs using given inputs by adjusting its weights. A neural network cannot

be fed input that is seemingly random (not in a distribution) and expect an output without

any meaningful relationship between the input and the output. Our approach then is to

not only build a neural network that is capable of providing the output we need but also to

choose the inputs and outputs so that our network actually solves the problem and gives the

required solution.

4.2 Problem Formulation

The problem at hand is to model the relationship between the GPS coordinates of a

source and the GPS coordinates of a target only through the source’s view of the target. In

this case, the source is a camera that record the boat in the sea. The target is the boat being

recorded and the only information available is the camera’s GPS coordinates and the video

captured of the boat. An example of a frame of the video provided is shown in Figure 4.1 
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Figure 4.1. Frame captured from video of boat

The sub-parts in the problem would include identifying the position of the boat in the

frame and then finding the GPS output from the position of the boat in the frame. The

method used to perform this task is described in the section below.

4.3 Method

As described in the introduction section, we will try to find a relationship between the

input and the output that makes mathematical sense for a neural network to compute.

The problem at hand is to identify the GPS coordinates of a boat in video given only

the video and GPS coordinates of the camera. An easy approach here would be to know

to draw a line from the source(camera) to the target(boat in the image) and using the

intrinsic and extrinsic properties of the image and the camera, we calibrate our algorithm

to estimate the GPS coordinate of any point given the information for one particular point.

However, since we do not possess any properties of the camera and image, we leave the

entirety of the ‘relationship building’ between the input and the output to the neural network.
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The method we developed is to solve the problem by training an object detection

model using the initial video data provided so that we had a guaranteed match with our

specified target in every video as there were several frames in which multiple boats were

visible. Essentially, here an object detection model was trained to identify the specific boat

required. Of course, a more general purpose version can identify any boat and give the GPS

coordinates for all of them but that was not the purpose of this challenge. We used over

12000 frames with our target boat in them to train our model to improve its accuracy. We

then created an algorithm that provided the height, width and x and y coordinates of each

target detected in a frame. This data is sent to a neural network that compares the height,

width, x and y coordinates of this target with data that was calculated initially and outputs

an approximate GPS position of the boat. This process is detailed in the next paragraphs.

The first task was understanding the GPS data from the GPS logs and creating an

organized and processed dataset that can be easily analysed. This section of the algorithm

was written on MATLAB and helps us to retrieve relevant data from GPS logs. These

GPS logs with our algorithm was matched to the respective frames in the video using the

timestamp data to match the corresponding GPS data and frames. Figure 4.2 shows a

snippet of the processed dataset with the corresponding information in each row.

Figure 4.2. Processed Dataset of GPS logs and Frame matching
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In the processed dataset, there are also 2 other fields that are added which are the

distance and bearing. This is essentially the ground-truth data which we calculated by

using the GPS coordinates of the camera and the GPS coordinates of the boat. Again, the

GPS coordinates of the boat are provided only to obtain the ground-truth data. We use the

distance and bearing because as we mentioned before, it is imperative to give the neural

network values it can find the relationship between. The location of a boat in the frame

of a video can be shown with the distance and bearing to that region in the image from

the camera. Figure 4.3 shows the relevancy of distance and bearing to the camera image.

Distance is the length between the 2 GPS points and bearing is the angle between these 2

points with respect to the vertical axis.

Figure 4.3. Relevance of distance and bearing of GPS coordinates to the camera image

From Figure 4.3 it is evident how distance and bearing can be seen as physical quantities

on the image with respect to the camera and the position of the boat in the image. This is

the reason that distance and bearing were chosen to be the representing factors for our model.
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The formulae for calculating the distance and bearing are given by the Haversine formula

and the bearing formula:

a = sin2(∆φ/2) + cos(φ1). cos(φ2). sin2(∆λ/2)

c = 2. arctan(
√

a,
√

1− a)

d = R.c

(4.1)

Here, φ1, λ1 are the starting point’s latitude and longitude respectively while φ2, λ2 are

the target point’s latitude and longitude respectively. ∆φ and ∆λ are the differences in the

latitudes and longitudes respectively. R is the radius of the earth (mean= 6, 371km). The

distance is obtained through the haversine formula while the bearing is obtained through

the formula:

θ = arctan(sin ∆λ. cos φ2, cos φ1. sin φ2 − sin φ1 cos φ2. cos ∆λ) (4.2)

Now that we have the parameters d and θ that could identify a relationship between the

input and the output, the method proposed here is to use an object detector to detect the

boat in the image. With the help of this object detector, we will be able to extract the ROI

(region of interest) in the image. In this case the region of interest will be a bounding box

(a boundary drawn around the object) of the boat in the image. The parameters that the

object detector will give us regarding this bounding box are the height, width, x and y pixel

coordinates of the bounding box in the image. This x and y is the location of the centre of

the bounding box with respect to the image.

We obtain these values of the height, width, x and y coordinates of the bounding box

through an object detector. The object detector obviously needs to be light so that it can

detect the object in the image with speed and accuracy. Hence, we chose an existing object

detector called YOLOv4 [55 ]. This network is an improvement from the already popular

and amazing object detection network YOLOv3 developed by Joseph Redmon [56 ]. The

YOLO network which stands for You Only Look Once uses a neural network that divides

the image into different regions and then the network predicts the bounding boxes and
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probabilities for each region. The pre-trained version of the YOLOv4 network is available

which has been trained on the COCO dataset [57 ]. The COCO dataset contains about 80

object categories. Although we identified that the COCO dataset had the category ’boats’

in it, the YOLO network could not always detect the boat that we wanted from the frame.

Also, it sometimes detected many boats in the image. Since the ground-truth data for

only one boat existed, we had to use transfer learning again in order to ensure that the

YOLO network could detect our boat. Therefore, the dataset had to be manually annotated

to find the boat in the image. This annotation was done using software developed for

this work. Finally, after training the YOLOv4 network to detect the boat in the image,

we have successfully extracted the bounding box data of the boat in every frame of the video.

The bounding box data is fed into a custom-built neural network that takes in the

height, width, x and y coordinates of the bounding box to give out the distance and bearing.

Since the GPS coordinates of the source (camera) is known, we can easily calculate the

target (boat) GPS coordinates from the distance and the bearing that is the output. This

network was trained with the ground-truth distance and bearing. The full structure of our

solution is shown in Figure ??.

Figure 4.4. AI Tracks Solution Structure

With the ground-truth data, the custom network was trained. The structure of the

network is shown in Table 4.1 .The training statistics are shown in Figure 4.5 . While training

84



the parameters include the initial learning rate α = 0.001, the ADAM optimizer and the loss

function used is the Mean Squared Error loss function which is given by the formula:

MSE = 1
n

n∑
i=1

(Yi − Ŷi)2

where n is the number of data points, Yi is the actual value and Ŷi is the predicted value.

Table 4.1. Custom network structure
Layer Dimensions
Input 4 (height, width, x and y)
FC-1 8
FC-2 8
FC-3 4
FC-4 2 (Output: Distance and Bearing)

Figure 4.5. Training custom-built network

In the next section, the results of this method is discussed.
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4.4 Results

The network was tested to output the GPS coordinates of the boat from the distance

and bearing that the neural network calculates. The GPS coordinates of the camera was

provided to the algorithm and the video of the boat was provided. Further, the GPS

coordinates given from our model was compared to the ground-truth GPS coordinates and

the error between them was calculated. The Root Mean Squared Error was calculated

between the ground-truth and the model output. The values from this error calculation were:

Max RMSE: 0.0014303197713278148,

Min RMSE: 0.0007053464384854741,

Average RMSE: 0.0009926212150476418

This means that the average root mean squared error between the coordinates in terms

of real world distance is less than a few inches which is more than the required level of

accuracy typically expected from GPS coordinates. Further, the time taken to calculate the

GPS coordinate from the input video was reported to be 11 seconds for 50 frames which

gives us an average frame speed of 4.5 fps. Therefore, we conclude from the results that the

algorithm designed for this work accurately gave the GPS coordinates of the target without

compromising on speed.
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5. SUMMARY

5.1 Conclusion

This thesis delved into image classification, application of image classification to emer-

gency response UAVs, extension of image classification to multi-agent systems, resilience

in multi-agent image classification systems and, object tracking in video to give GPS

coordinates. We looked at an introduction to image classification and the working of

neural networks was explained. once the image classifier for emergency situations was built

using the AIDER dataset, the problem was extended to multi-agent systems. Different

methods were also shown here to improve image classification accuracy in single agents

which then later would be applied to multi-agent systems. The methods shown were

to build a regular CNN that is both light and accurate using many design parameters

and using transfer learning to use pre-trained models to suit the task at hand. The

performance of the custom baseNet and the transfer learnt VGG11 are shown. The

trade-off between speed and accuracy would cause oneself to use one of these networks over

another. The trade-off will depend on the exact nature of the situation but both methods

work really well and provide accurate results for image classification with the AIDER dataset.

It was shown that multi-agent systems would prove more efficient in emergency situations

and that having multiple agents in such situations was a good contingency plan in case

single agents malfunction. However, upon extending this problem to the multi agent system

we saw that the accuracy of predictions of the image class significantly improved especially

when noise or other errors/defects are present in the input images. It was shown that using

a multi-agent system not only improves reliability and robustness of the system but also

classification accuracy of the system. Therefore, it is implied that sending a swarm of UAVs

running the algorithm discussed in chapter 2 of this thesis will show a high rate of success

in completing the operation it set to do.

Next, the result of image classification for a multi-agent system was further extended

to an attack resistant system. Here, the multi-agent system that classifies images was
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assumed to be under attack from malicious agents that try to ensure that the system does

not reach consensus. Different algorithms for moving past such attacks were shown along

with their underlying assumptions. Every method has its limitations and advantages but

all methods were shown to work with our multi-agent image classifier. One of the methods

in the system which involved moving the states of each agent towards the intersection of

convex hulls of the states of all agents in the system. This method had very high memory

and minimum number of agents in the system requirements. A modified version of this

algorithm was presented in this thesis that reduced the intensity of the computations and

drastically reduced the minimum number of agents and connections the system needs to

have to achieve resilient consensus. The specific method to be utilized in the multi-agent

image classification system will again depend on the circumstance and which algorithm

would work best for that particular circumstance, but all algorithms are shown to work well

with our system and the work has been properly extended and executed on our multi-agent

image classification system.

Finally, the method to track boats from a video using only the GPS coordinates of the

camera used to take that video was presented in chapter 4. This novel approach to track

the GPS coordinates of objects in the frame can be extended to any application. The work

in this thesis was specific to boats as the challenge that the Purdue team in the AIMS lab

participated in required the team to track boats in the image. The system used an object

detector and then a custom-built network to obtain the outputs with high accuracy and

speed.

5.2 Future Work

Extensions of this work in the future can be:

• Deploy the multi-agent image classifier on actual UAVs to gather experimental data

and perform the necessary updates and corrections to the algorithms if need be. It
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may be found that one particular algorithm is more suited to being deployed on

actual UAVs than the other.

• Train more models with more data to improve the accuracy of the image classifier

much further. Use different video processing techniques such as analyzing only ever

i-th frame rather than every frame and then train the network accordingly so that

the video processing becomes faster.

• Try a different approach to the weight learning algorithm for resilient consensus that

can easily achieve accurate consensus no matter the dimensionality of the state vector

similar to the modified version of the intersection of convex hulls of states algorithm.

• Train a custom object detector using similar principles as the YOLOv4 described in

chapter 4 to make the object detection even faster and maybe more accurate.
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