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ABSTRACT

Energy-efficient communication has remained the primary bottleneck in achieving fully

energy-autonomous IoT nodes. Several scenarios including In-Sensor-Analytics (ISA), Col-

laborative Intelligence (CI) and Context-Aware-Switching (CAS) of the cluster-head during

CI have been explored to trade-off the energies required for communication and compu-

tation in a wireless sensor network deployed in a mesh for multi-sensor measurement. A

real-time co-optimization algorithm was developed for minimizing the energy consumption

in the network for maximizing the overall battery lifetime of individual nodes.

The difficulty of achieving the design goals of lifetime, information accuracy, transmission

distance, and cost, using traditional battery powered devices has driven significant research

in energy-harvested wireless sensor nodes. This challenge is further amplified by the inher-

ent power intensive nature of long-range communication when sensor networks are required

to span vast areas such as agricultural fields and remote terrain. Solar power is a com-

mon energy source is wireless sensor nodes, however, it is not reliable due to fluctuations

in power stemming from the changing seasons and weather conditions. This paper tackles

these issues by presenting a perpetually-powered, energy-harvesting sensor node which uti-

lizes a minimally sized solar cell and is capable of long range communication by dynamically

co-optimizing energy consumption and information transfer, termed as Energy-Information

Dynamic Co-Optimization (EICO). This energy-information intelligence is achieved by adap-

tive duty cycling of information transfer based on the total amount of energy available from

the harvester and charge storage element to optimize the energy consumption of the sensor

node, while employing event driven communication to minimize loss of information. We show

results of continuous monitoring across 1Km without replacing the battery and maintaining

an information accuracy of at least 95%.

Decades of continuous scaling in semiconductor technology has resulted in a drastic re-

duction in the cost and size of unit computing. This has enabled the design and development

of small form factor wearable devices which communicate with each other to form a network

around the body, commonly known as the Wireless Body Area Network (WBAN). These

devices have found significant application for medical purposes such as reading surface bio-
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potential signals for monitoring, diagnosis, and therapy. One such device for the management

of oropharyngeal swallowing disorders is described in this thesis. Radio wave transmission

over air is the commonly used method of communication among these devices, but in recent

years Human Body Communication has shown great promise to replace wireless communica-

tion for information exchange in a WBAN. However, there are very few studies in literature,

that systematically study the channel loss of capacitive HBC for wearable devices over a

wide frequency range with different terminations at the receiver, partly due to the need for

miniaturized wearable devices for an accurate study. This thesis also measures and explores

the channel loss of capacitive HBC from 100KHz to 1GHz for both high-impedance and

50Ω terminations using wearable, battery powered devices; which is mandatory for accurate

measurement of the HBC channel-loss, due to ground coupling effects. The measured results

provide a consistent wearable, wide-frequency HBC channel loss data and could serve as a

backbone for the emerging field of HBC by aiding in the selection of an appropriate operation

frequency and termination.

Lastly, the power and security benefits of human body communication is demonstrated

by extending it to animals (animal body communication). A sub-inch3, custom-designed sen-

sor node is built using off the shelf components which is capable of sensing and transmitting

biopotential signals, through the body of the rat at significantly lower powers compared to

traditional wireless transmissions. In-vivo experimental analysis proves that ABC success-

fully transmits acquired electrocardiogram (EKG) signals through the body with correlation

accuracy >99% when compared to traditional wireless communication modalities, with a

50x reduction in power consumption.
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1. INTRODUCTION

Advances in semiconductor technology in the last couple of decades has enabled the prolif-

eration of smart connected devices, collectively referred to as The Internet of Things. They

have found such abundant application in all spheres of life, from smart homes and cities,

wearable and implantable medical devices to agriculture and vehicles, that CISCO predicts

by the year 2022 there will be machine-to-machine (M2M) communication between 14.2

billion connected devices [1 ]. Low-power and cheap computing elements have enabled these

devices to provide complex in-situ processing capabilities in a small and energy efficient form

factor. However, a significant percentage of these devices are battery powered and require

regular replacements which is bound to create a profound environmental impact, not to

mention the time and cost of human intervention. This thesis aims to address this problem

by reducing the energy consumption of wearable devices and enabling energy harvesting in

an energy intelligent fashion for other battery-powered, wireless, connected devices.

The first, refers to small form factor devices that reside on or around the body and

communicate with each other, which is referred to as a Body Area Network. These devices

conventionally communicate using radio-frequency signals which can be extremely power

intensive and affect the lifetime, size and cost of the device. By exploiting the electrical

characteristics of the human body, a form communication can be established which has

the mobility and benefits of wireless communication at the power consumption of wire-line

communication, which is approximately 10,000X lower. This thesis builds the first accurate

termination dependent channel model from 100KHz to 1GHz of the human body for wearable

devices, to further optimize the design of these communication systems. Also, human body

communication is extended to animals by describing a custom-designed wearable sensor node

for capturing bio-potential signals and transmitting that data through the animal’s body,

thereby demonstrating the energy benefit of this communication modality.

The second scenario pertains to all other M2M connected devices, such as those for

agriculture, industrial, or environmental monitoring where batteries are utilized and the

finite lifetime of these devices risks the temporary loss of information while adding the

cost of spending time and money to either replace the battery or place new sensor nodes.
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This can be subverted by making the devices energy harvested, however, there are few

such implementations since the instantaneous power generated by energy harvesters is not

sufficient for powering long range communication systems without duty cycling of information

and using large, bulky energy harvesters. This thesis proposes an energy aware system which

addresses this issue by optimizing the energy consumption of the sensor node by varying the

transmission rate of information based on the total amount of energy available (harvested

and stored), while minimizing the loss of information through event driven communication.

Obviously this can also be extended to wearable devices by making an appropriate choice

for the harvesting element.

Chapter 2 explores the design of intelligent Internet of Things sensor nodes. It briefly

describes the methods that can be used to reduce the power consumption of battery powered

wireless sensor nodes in a mesh network to increase its overall lifetime and thereby lays out

the groundwork and need for an energy-harvested long-range sensor node. The chapter

then dwells in detail on the design challenges and constraints to make long-range wireless

sensor nodes perpetually powered, and proposes a solution in the from of Energy information

Dynamic Co-optimization (EICO) which makes the sensor node energy intelligent by varying

the data transmission rate based on the total amount of energy available while using anomaly

detection to transmit data to prevent information loss.

Chapter 3 discusses the design of internet of body devices starting with a wearable device

that collects data from a flexible submental sensor patch for management of oropharyngeal

swallowing disorders. This device transmits data over radio-frequency signals which are en-

ergy intensive. Human Body communication is introduced as a more secure, energy efficient

way to transmit data and the first termination dependent channel model from 100KHz to

1GHz is described in section 2. Finally, human body communication is extended to animals

as a wearable device to collect bio-physical signals and simultaneously transmit data through

body-wire communication, which is proven to be as reliable as Bluetooth.
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2. DESIGN OF INTERNET OF THINGS SENSOR NODES

Most of the content in this chapter has been extracted verbatim from the papers:

S. Avlani et al. ”Energy Harvesting Long-Range Sensor Nodes Using In-Sensor-Analytics

and Energy Intelligence” to be submitted to IEEE Journal of Internet of Things.

B. Chatterjee et al., ”Context-Aware Collaborative Intelligence With Spatio-Temporal In-

Sensor-Analytics for Efficient Communication in a Large-Area IoT Testbed,” in IEEE Inter-

net of Things Journal, vol. 8, no. 8, pp. 6800-6814, 15 April15, 2021, doi: 10.1109/JIOT.2020.3036087.

2.1 Context-Aware Collaborative Intelligence With Spatio-Temporal In-Sensor-
Analytics for Efficient Communication in a Large-Area IoT Testbed

2.1.1 Introduction

Decades of continuous scaling has reduced the energy of unit computing to virtually

zero, while energy-efficient communication has remained the primary bottleneck in achiev-

ing fully energy-autonomous IoT nodes. This paper presents and analyzes the trade-offs

between the energies required for communication and computation in a wireless sensor net-

work, deployed in a mesh architecture over a 2400-acre university campus, and is targeted

towards multi-sensor measurement of temperature, humidity and water nitrate concentration

for smart agriculture. Several scenarios involving In-Sensor-Analytics (ISA), Collaborative

Intelligence (CI) and Context-Aware-Switching (CAS) of the cluster-head during CI has been

considered. A real-time co-optimization algorithm has been developed for minimizing the

energy consumption in the network, hence maximizing the overall battery lifetime of individ-

ual nodes. Measurement results show that the proposed ISA consumes ≈467X lower energy

as compared to traditional Bluetooth Low Energy (BLE) communication, and ≈69,500X

lower energy as compared with Long Range (LoRa) communication. When the ISA is imple-

mented in conjunction with LoRa, the lifetime of the node increases from a mere 4.3 hours

to 66.6 days with a 230 mAh coin cell battery, while preserving more than 98% of the total

information. The CI and CAS algorithms help in extending the worst-case node lifetime

by an additional 50%, thereby exhibiting an overall network lifetime of ≈104 days, which

is >90% of the theoretical limits as posed by the leakage currents present in the system,
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Our Approach: In-Sensor Analytics + Collaborative Communication
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Figure 2.1. The six challenges identified in designing ultra-low power IoT
sensor node and our proposed solution, addressing all six challenges. The
salient features of the implemented sensor node with In-Sensor Analytics (ISA)
and Collaborative Intelligence (CI) are also described in brief: 1. Temporal
Anomaly Detection, 2. Temporal Data Compression, 3. Spatial Data Com-
pression/CI, 4. Context-Aware switching (CAS), 5. Hybrid Radio, 6. Multi-
hop LoRa

while effectively transferring information sampled every second. A web-based monitoring

system was developed to archive the measured data in a continuous manner, and to report

anomalies in the measured data.

2.1.2 In-Sensor Analytics

During normal operation the sensor duty cycles the transmission of data at a very slow

rate. To prevent the loss of meaningful information in-sensor analytics for anomaly detection

is incorporated, the basics of which is depicted in Fig. 2.2 . A threshold (x%) is defined for

each of the sensed variables, which was previously calculated by analyzing the data collected
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Figure 2.2. Illustration of Anomaly Detection and Data Compression.

over a span of more than 4 weeks using a K-means clustering algorithm. when the difference

in standard deviation between the data sampled at real time and its moving average is

greater than the above defined threshold, an anomaly event is generated which triggers the

communication of sampled data. A provision is maintained to alter these thresholds when

required.

For example, when the threshold for anomaly detection is defined as 10% and 100 samples

of uncompressed data is collected in 100 seconds, only 12 data points are transmitted by the

temporal data compression algorithm (compression ratio = 100/12 = 8.33). Of these 12 data

points, 10 are transmitted due to an anomaly in the sensor readings. Some of those 10 data

points are also transmitted while the sensor readings gradually reduces back to its original

value. In the absence of this artificially created anomaly, the compression rate would be

much higher. The correlation coefficient between the compressed, and uncompressed data is

greater than 98%

Fig. 2.3 shows the data from two devices, Device-19 functions without in-sensor analyt-

ics, while Device-20 incorporates in-sensor analytics. The two devices are placed beside each

other in a lab setting. A custom built device that automatically generated environmental
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Data: Samples from environmental sensors
Result: Anomalies detected in sampled data
Initialize the threshold (x) of the k-means clustering algorithm;
while New sample available do

if data >= x% or <= x% from last anomaly (ISA) then
activate sub-GHz communication;
send temporally compressed data stream to the receiver;
record new transmission time; deactivate sub-GHz communication;

else
wait for the next anomaly/next transmission time;
stay in low-power sense and compute mode;

end
if time since last transmission = transmission interval then

activate sub-GHz communication;
send current data point to the receiver;
record new transmission time; deactivate sub-GHz communication;

else
wait for the next anomaly/next transmission time;
stay in low-power sense and compute mode;

end
end

Algorithm 1: Anomaly Detection followed by data transmission using Long Range
communication
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Figure 2.3. (a) Sensor distribution and live monitoring as performed in
https://purduewhin.ecn.purdue.edu/ . Device 19 (without ISA) and Device
20 (with ISA) are placed on the same location, < 1 foot away from each
other. Both Device 19 and device 20 samples once every 5 seconds. Device 19
transmits the data when it is sampled, while Device 20 compresses the data
and sends out when there is an anomaly, which is artificially created every
minute using a heating pad and cooling fan for demonstration purpose. This
demonstration achieves energy savings of ≈12X, simply due to the ratios of
transmission time (website link  ); (b) Setup for in-Lab demonstration of ISA
with Device 19 and Device 20; (c) LoRa Rx at a distance of 100 m (in-Lab
Setup).

anomalies was used compare the readings received from both devices. Temperature and

humidity anomalies were artificially created through a heating pad and cooling fan placed
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right on top of the sensors. These transducers were controlled by Tiva-C series microcon-

troller (Texas Instruments) through a couple of relays. The anomaly pattern repeated every

60 minutes, wherein the heating pad was turned on for 1 minute following which the cool-

ing fan operated for 5 minutes. Device 20 transmitted compressed data once every minute

and at the occurrence of an anomaly, while device 19 transmitted uncompressed data at a

5 second interval. This demonstration showcases an energy savings of approximately 12X

for Device-20 at a correlation coefficient > 0.98, due to the ratio of transmission interval

(https://purduewhin.ecn.purdue.edu/data_analytics/ ).
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2.2 EICO: Energy-Harvesting Long-Range Environmental Sensor Nodes with
Energy-Information Dynamic Co-Optimization

2.2.1 Introduction

A long-range wireless sensor node is primarily used in smart cities and smart agricul-

tural fields, and has multiple design variables ranging from the choice of transducers, power

supply, communication and in-built computation capabilities, to cost, size, and network

protocols. Batteries are typically the choice of power source for sensor nodes deployed in

remote locations, large areas where the cost of wiring would be unfeasible, or for mobility,

such as agricultural fields, habitat and environment monitoring [2 ], volcano monitoring [3 ],

and structural monitoring [4 ] to name a few. This creates a major limitation of finite battery

capacity, resulting in a finite lifetime which adds an overhead of spending time and money

to either replace the battery or place new sensor nodes while risking temporary loss of in-

formation. Designers could opt for larger batteries at the cost of increasing the size, weight

and price of the device.

This has naturally sparked an increasing interest in energy harvesting sensor nodes since

they can operate for many years at a time without requiring human intervention to replace

the battery or the node itself. However, there are few such implementations since the in-

stantaneous power generated by energy harvesters is not always sufficient for powering long

range communication systems and commercially available sensor nodes can be extremely

power hungry. Some designs either use solar panels to meet this power requirement, which

can be prohibitively expensive and large, or create low power systems that duty cycle data

transmission such that information is lost in the process. Hence, its evident that there is

an inconsistency between the power available from energy harvesters and the power con-

sumed by wireless sensor nodes to perform the required task without compromising on the

information reported. This motivates the creation of an energy harvesting sensor node ca-

pable of long range communication using a cheap and small energy source by optimizing its

power consumption to function within the bounds of the energy harvester, without losing

any information in the process.
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Figure 2.4. The performance of state of the art energy-harvested long-range
wireless sensor nodes is introduced in terms of an Energy/Information metric
and the constraints to improve this metric are depicted. Finally, our proposed
solution to optimize this metric using EICO is illustrated.

A multitude of software techniques have been proposed to prolong the lifetime of bat-

tery powered wireless sensor nodes without any energy harvesting modalities. Some of these

methods include energy-aware network protocols, duty-cycling strategies, redundant place-

ment of nodes, and various in-sensor analytics [5 ], [6 ]. A prominent example is an IoT device

developed by Intel which implemented multiple energy-scavenging techniques like duty cy-

cling to reduce the overall average power, however, duty cycling reduced the overall on-time
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[7 ]. These methods will prolong the time between battery replacements but still require

human intervention, often at the cost of information loss, sensing reliability, and increased

costs due larger quantity of nodes from an increased number of hops.

Extensive research has been performed to address this problem by utilizing renewable

energy through energy harvesters to power wireless sensor nodes. Some of the prominent

energy sources include photovoltaics, thermoelectric generators, wind energy, piezoelectic,

radio-frequency based methods, etc. [8 ]. Due to the low power output of these sources

(15µW −30mW per cm under perfect conditions), most of the implementations in literature

are only able to meet the needs of low-energy, short-range communication and often have low

reporting intervals with loss of information. Long-range communication is extremely power

intensive (150-300mW) which creates a large power discrepancy. Lee, et.al.[9 ], attempted

to address this by proposing a floating, energy-harvested, long-range sensor node which

combined solar and thermoelectric energy harvesting, but the power consumption was 6.6216

Wh/day (275.9mW) and required large solar panels to meet this demand which made the

device excessively large and expensive. Stamenkovic, et.al. [10 ], was able to shrink the size

of the energy source to 40.7cm2 by optimizing the design using hybrid energy modelling

but paid the price in information loss since data was transmitted at maximum rate of once

every minute. This clearly shows that there is a discrepancy between the availability of

energy from a reasonably sized energy source and the energy required to perform long range

communication with minimal loss of information.

Various methods have been explored to increase the power harvested in wireless sensor

nodes by introducing a power management module to reduce the mismatch between the

power harvested and the power consumed by the sensor node. These include nonlinear

techniques for piezoelectric and electromagnetic energy harvesters by toggling switches at

the appropriate time to form an LC oscillator using an inductor or capacitor [11 ] and resistive

or impedance matching for maximum power transfer in energy harvesters using either a

photovoltaic, thermoelectric, or piezoelectric sources [12 ], [13 ]. [14 ] proposed a combined

power management module with an energy aware program to deal with the power mismatch

by managing the energy flow from the storage capacitor. [15 ] proposed a solar prediction

algorithm to exploit solar energy more efficiently by taking into account both the current
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and past-days weather conditions, however, it requires a DSP and has significant difficulties

during variable weather conditions.

To the best of our knowledge, there is no literature available on creating an energy

aware system which addresses this issue by optimizing the power consumption of the sensor

node by varying the transmission rate of information based on the total amount of energy

available (harvested and stored), while minimizing the loss of information through event

driven communication. We term this as ”Energy-Information Dynamic Co-Optimization

(EICO)”, which has been presented in this paper.

Table 2.1. Variables for Energy-Information Dynamic Co-Optimization

Variable Description
TxminRate Minimum data transmission rate

EBAT T Energy currently stored in battery
Ebuf Critical (buffer) energy level
Dmax Lifetime (days) without energy harvested
Eavail Energy harvested on previous day

In this work, we have proposed an embedded hardware architecture and software strate-

gies to create a perpetually powered, energy-harvested, long-range sensor node using in-

sensor analytics and energy-aware data transmission. In-sensor analytics enables the de-

tection of anomalies by event-driven communication and temporally compresses data with

a maximum of 5% loss of information. Energy-aware data transmission measures the total

energy available from the energy harvester on a given day and the state of the charge storage

device to vary the data transmission rate of the wireless sensor node, thereby optimizing the

transfer of information to the energy consumed by the device. A brief description of the

important variables involved to enable this is shown in Table 2.1 , with a pictorial depiction

in Fig.2.4 . A proprietary sub-GHz transceiver from Texas Instruments [16 ] was chosen over

LoRa, SigFox, and NB-IoT for long range communication since it has the best receiver sen-

sitivity, encryption features, and provides a sufficient range (at least 1-5 Km). Additionally,

it allows for the development of private networks by using the unlicensed 915MHz ISM band

in Region-2 of the International Telecommunication Union.
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Figure 2.5. Block diagram of the proposed energy-harvested, long-range
communication wireless sensor ndoe.

Fig. 2.5 shows the top-level hardware architecture of the proposed custom-built IOT

sensor node. Digital sensors for temperature, humidity, and light intensity (lux) are used

as the environmental sensors for information and a solar cell is used as the source for the

energy harvester for demonstration purposes. The microcontroller SoC applies the in-sensor

analytics algorithm to the the discretized and quantized values read from the sensors to

detect anomalies and initiate communication when the difference between the values crosses

a predefined threshold of variance. During the absence of anomalies, the sensor node duty

cycles the data transmission rate which is calculated from the total energy harvested on the

previous day and the energy stored in the battery, such that the device can function for at

least 14 (Dmax) days if the harvester were to fail. This will optimize the energy consumption

of the device to maximize the transfer of information and improve accuracy, while ensuring

that the device remains perpetually powered.
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2.2.2 Theoretical Analysis

Limitations of Energy Harvesting

Advances in semiconductor technology over the years has dramatically increased the

efficiency and output power of energy harvesting systems, while opening new avenues of

energy sources like thermo-electric generators (TEG) and targeted radio frequency (RF)

sources. TEGs can generate between 20 µW to 10mW of power per cm2 of area based on

the temperature gradient. Output power from RF sources is largely limited to the 10 µW -

a few 100 µWs range and requires high power RF sources in close proximity. Photo-voltaic

cells produce an output power ranging from 100 µW - 200mW based on their construction,

dimensions, spectrum of operation and light intensity. TEG and RF sources would be more

suitable for devices placed in industrial locations and wearable devices, whereas photovoltaics

would find better use in outdoor applications. A summary of these energy sources is shown

in Table 2.2 for unit length under specific conditions.

Table 2.2. Unit power of energy sources [17 ] [18 ] [19 ]

Source Power Parameter
RF 15µW Multiband Receiver (RF: 1mW/cm2)

TEG 20.53µW/cm Ag/Ni Thermocouple (∆T=127 C)
Photovoltaic 28mW/cm2 Si-Crystalline (1KW/m2 solar radiation)
Piezoelectric 19mW/cm2 -

The power intensive nature of long range communication and limited power availabil-

ity warrants the need for low power architectures, careful selection of energy sources, and

planning of the power budget. The sensor node proposed in this paper is primarily built for

monitoring environmental variables with applications in agricultural fields or climate studies

and would be placed outdoors in open fields, making solar power the obvious choice.

The sensor nodes will be deployed in Indiana, which has approximately 3.5 times lower

average solar insolation in winter as compared to the summer months which is illustrated

in Fig. 2.6 . The energy harvesting system and consequently the sensor node needs to be

able to operate by adapting to the lower energy limit, thereby selecting that as the design
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Figure 2.6. Maximum, minimum, and average solar insolation received on
an average day during a given month in Indiana which serves as the design
constraint for power consumption. [20 ]

constraint. Minimum solar insolation is in the month of December, when an average of

1.55KWh/m2/day is received. The theoretical power harvested is then calculated as shown

in Eq. (2.1 ).

PHarvested = Prad × Area of Solar Cell × η

24
(2.1)

Where, Prad is the average solar power irradiated and η is the efficiency of the cell.

Assuming a dimension of 30cm2 and a conservative efficiency of 10%(η), the theoretical

power consumption limit is calculated to be 2.01mW or 173.9J of energy per day. The

design constraint for minimum power consumption was set at 60% of 2.01mW, i.e. 1.20mW

or 105J per day in order to to account for losses in the power management system and

producing surplus energy to try and recharge the charge storage device if it is at its critical

threshold.
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Theoretical Limits of Computation and Communication Energy

Representing the energy per bit for computation and communication to be Ecmp,u and

Ecom,u, respectively, the total energy consumed in a system for computation (Ecmp) and

communication (Ecom) is written as

Ecmp = (Ecmp,u) × No. of bits switched

Ecom = (Ecom,u) × No. of bits transmitted
(2.2)

Energy consumed during computation primarily comprises of digital calculations. There-

fore, it can be approximated as the dynamic energy at a frequency of operation beyond the

leakage-dominant region, given by (Ecmp,u) = CV 2 [21 ]. In an ideal technology that allows

for zero device capacitance, (Ecmp,u) reduces to its theoretical limit given by Landauer’s prin-

ciple [22 ]. Eq. (2.3 ) illustrates this, where κ is Boltzmann constant and T is the absolute

temperature. This translates to an (Ecmp,u)th_min of 2.85×10−21 J/bit at room temperatures

(T=298K).

(Ecmp,u)th_min = κT × ln 2 (2.3)

On the other hand, the theoretical limit of energy consumed during communication Ecom,u

is given by the free-space path loss (FSPL) of the physical channel since the transmitter

(Tx) still needs to transmit a power level which needs to be more than the receiver’s (Rx)

sensitivity after considering the channel loss. This is under the assumption that the receiver

consumes zero power and the transmitter has a 100% efficiency. (FSPL) calculated using

Frii’s equation [23 ] [24 ] and is shown in Eq. (2.4 ), where AT x and ARx are the antenna

gains of the transmitter and receiver; λ is the wavelength, d is the distance between the

transmitter and receiver, and n is an empirical parameter that represents fading margin

(typically between 2 to 3).

FSPL = AT x.ARx( λ

4πd
)n (2.4)
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For a typical sub-GHz protocol operating in the ISM band at 916 MHz with d = 10m,

FSPL can be estimated to be 48 dB (n = 2, AT x = 2 dB, ARx = 2 dB). If a state-of-

the-art Rx which has a sensitivity of −120 dBm is used in the system,then the Tx needs

to transmit a minimum of −72 dBm. This translates to a power consumption of 63.096

pW as theoretical minimum for power consumption. The typical data rate (DR) for sub-

GHz communication is 5kbps. This results in a theoretical minimum energy efficiency of

(Ecom,u)th_min = 1.262×10−14 J/bit, which is more than 107 times higher than computational

minimum given by Landauer’s principle.

>    X

>    X

Figure 2.7. Comparison between theoretical and practical computation and
communication energies [25 ] [26 ] shows that computation energy is 104 times
less than communication energy for the same number of bits with leakage
current ignored [5 ].

HDL simulations of in-sensor analytics in standard 45nm CMOS process resulted in 80

µW power consumption at 100 MHz and a linear increase in computation energy at a rate

of ≈2 fJ/bit [5 ]. The preceding discussion is summarized in Fig. 2.7 wherein the contrast
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between Ecom and Ecmp is shown for the same number of bits transmitted, or switched [25 ].

Despite advances in wireless communication transceivers[26 ], computation saves at least 104

times more energy than communication for the same number of bits processed. This makes a

strong case for incorporating in-sensor analytics to process and selectively transmit data for

reducing the overall system power consumption, especially when harvested energy is a scarce

commodity. This conclusion is valid while the ratio between the number of bits switched

during ISA and the reduction in the number of bits transmitted is less than (Ecom/Ecmp),

which we anticipate during normal operation.

Communication Energy and Accuracy Trade-off

For a long-range sensor node that samples and transmits data every N seconds, over

n seconds the communication module is on for a total time of Tcomm = bits×n
baud×N

. The total

energy consumed during n seconds is then represented by Eq. (2.5 ).

E = (Tcom.Icom + To.Icmp,lkg + 2.Ttran.Icom.
n

N
) × V (2.5)

Where Icom is the current consumption of the communication module (along with com-

putation of the network stack and leakage), To = (n − Tcom), Icmp,lkg is the computation

and leakage current consumed during sampling and data processing when the communica-

tion module is off, and Ttran is the transient time during switching the module on and off

(hence the factor 2) added to the initialization time. Eq. (2.5 ) makes it evident that when

Tcom � 2.Ttran. n
N

(i.e. when bits
baud

� 2.Ttran), communication energy is limited by the energy

required to turn the module on or off. Conversely, when 2.Ttran � bits
baud

, communication

energy is limited by the payload size or the number of bits transmitted. In practice, 2.Ttran

is usually a few ms long [16 ] and the data rate is much larger than the number of bits per

sample, resulting in communication energy being primarily limited by the energy required

to turn the module on or off and its frequency.

In an effort to reduce power consumption previous methods in literature (for example,

[7 ], [27 ]) preferred a duty cycle based approach to limit the amount of switching energy by

increasing N .This results in an increased probability of losing important, useful information.
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Figure 2.8. Information loss and communication energy as a function of the
time interval between sub-GHz transmission of samples, motivating the need
for in-sensor analytics.

Fig. 2.8 illustrates this scenario by graphically depicting the communication energy per

day and rate of information lost as a function of N . The values were measured for LoRa

communication in a Nordic nRF52 platform [5 ]. Comparing N = 100 to a baseline of

N = 1, we see a 50X reduction in energy consumed at the cost of 99% loss of information.

Implementing a mechanism to avoid these losses while taking an acceptable hit in energy

consumption makes a strong case for utilizing finely tuned in-sensor analytics and energy

aware adaptive transmission.
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Interaction Between Energy Harvested, Storage Capacity, and Information Trans-
fer Rate

So far the discussion has covered the minimum energy generated by the energy harvester

and software solutions that can be implemented to reduce energy consumption in order

to meet that design constraint while minimally affecting performance. However, limiting

the device operation to the minimal power budget will waste massive amounts of energy

harvested throughout the year and potentially lose information that could have otherwise

been reported. These losses can be subverted by making the device energy-aware, such that

it can vary its energy consumption by altering the information transfer rate based on the

amount of energy available.
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Figure 2.9. Device behaviour shown as the relationship between the har-
vested energy, energy consumed by the node, charging energy or battery volt-
age, and long range communication transmission interval shown as a function
of daily average solar insolation and time after sunrise on a particular day.

The average energy consumed by the device (Eavg) for a specific time interval between

communication samples can be simplified to Eq. 2.6 . Icomm, Icomp, and Ioff is the current

consumed during communication, computation, and standby mode respectively; and Tcomm,

Tcomp, and Toff is the time spent performing each of those tasks. As the information transfer
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rate or frequency of reporting samples increases, the relative value of Tcomm to the total time

increases which thereby increases energy consumption.

Eavg = V (Tcomm.Icomm + Tcomp.Icomp + Toff .Ioff ) (2.6)

As shown in Fig. 2.9 the energy harvested by the node increases with the increase in

average solar insolation received during a day. Therefore, the device can safely transmit

data at a higher transmission rates throughout the entire day while keeping the total energy

consumption within the bounds of the total amount of energy available. The higher trans-

mission rates will reduce the loss of information without comprising the ability of the device

to perpetually function since the energy used to charge the battery will remain constant.

This will translate to higher transmission rates in the summer months when more energy is

available from the harvester and consequently lower transmission rates in the winter.

During daylight hours the difference between the harvested power and the power con-

sumed by the node is used to charge the energy storage device as shown in Fig. 2.9 . When

the harvested power increases beyond the minimum power consumption of the device the

battery starts charging. As the sunlight intensity changes throughout the day, the data

transmission rate is varied such that the amount of charging power remains constant. If

the energy storage device is charged to capacity, the excess power available from the energy

harvester would be wasted if not consumed by the device. Therefore the power consumed by

the wireless sensor node is increased to match the amount of power generated by increasing

the data transmission rate.

2.2.3 Platform and Implementation

Hardware

The custom long range sensor node shown in Fig. 2.10 can be broadly divided into three

main blocks, power management, the microcontroller and RF chain, and the environmental

sensors. The device was designed to be modular and consists of two vertically stacked printed

circuit boards (PCB). One PCB (top) houses only the environmental sensors to allow for

easy replacement or addition of new sensors to re-purpose the device without redesigning
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the entire sensor node. The top layer of the bottom PCB comprises of the microcontroller

and RF chain along with the power sensor and finally, the energy harvester and battery

management is placed on the bottom layer.
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Figure 2.10. PCB stack of the CC1352 based energy harvested long range
sensor node shown along with its 3D printed housing. 50mm x 60mm amor-
phous silicon solar cell, with BQ25505 (TI) energy harvester used for power
management. CC1352 SoC (TI) is used to implement ISA+EICO in conjunc-
tion with the power sensor (INA233). HDC2010 and OPT3001 is used as the
environmental senors.
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A System-on-Chip (CC1352R1, Texas Instruments (TI)) integrates an ARM Cortex-

M4F processor with a multi-band (sub-GHz and Bluetooth low energy) wireless transceiver.

In this design only the sub-GHz wireless transceiver is used and the BLE transceiver is

always in the powered down state. The primary motivation for selecting this SoC was

minimizing power consumption while maximizing performance since it boasts of one of the

lowest power architectures with high receiver sensitivity (-121 dBm for 868MHz at 5.8mA)

and transmission power efficiency (+14dBm for 868MHz at 28.9mA). An integrated ultra-

low power sensor controller is used to sample and process sensor data whose operation is

independent of the system processor and draws 30uA at 2MHz. The system CPU consumes

2.9mA in active mode at 48MHz and 0.85uA in stand-by mode with 80KB of RAM and

CPU retention, making it powerful enough to run analytics by consuming minimal power.

Finally, power consumption is further reduced by using an on-chip DC-DC converter.

Three environmental variables temperature, humidity, and light intensity are collected by

the sensor node over I2C. HDC2010 and OPT3001 by TI are used to measure the first two and

the last quantity, respectively. HDC2010 provides data at an accuracy of 0.2 degrees Celsius

for temperature and 2% for humidity while consuming 0.55uA. OPT3001 has a measurement

range of 0.01 lux to 83K lux in the visible spectrum. The sensors are powered up through a

PMOS in order to turn them off during sampling intervals and conserve power.

An amorphous silicon solar cell of 60mm by 50mm is used as the power source to an

ultra-low power harvester and power management IC (BQ25505, Texas Instruments). The

device has cold start voltage of 600mV, consumes 325nA, performs maximum power point

tracking, and can continuously harvest energy when the input voltage is as low as 100mV.

The energy harvester converts the solar cell voltage to 4.2V, which is used to power the

system and charge the back up battery/charge storage device. When the input power falls

below the system load, an inbuilt automatic power multiplexer draws power from the charge

storage device to prevent the voltage rails from drooping. The sensor node is made energy

aware by measuring the battery voltage and the power drawn from the solar cell on the high

side using an ultra-precise power monitor (INA233 by TI) which typically draws 310 µA

during normal operation and 2 µA in standby mode.
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Software

The microcontroller is programmed with an RTOS to read the sensor values every 1

second and run a network stack (Easylink by Texas Instruments) for sub-GHz communica-

tion. Data is transmitted at an interval between 1 second (no compression) to 5 minutes

(maximum compression). A lightweight algorithm is implemented for anomaly detection and

energy-aware data transmission to optimize power consumption and loss of information.

Data: Output power of solar cell
Result: Data Transmission Rate
initialization;
while power reading available do

Integrate for Energy Available;
if harvested power > 0 then

if power reading above threshold then
Increase data transmission rate;

else if power reading below threshold then
decrease data transmission rate up to minimum Tx rate;

else
if Battery charged then

Set data transmission rate to match available power;
end if

end if
else

if Sunset Time then
Measure battery voltage and compute energy stored;
Calculate new minimum transmission rate;

end if
end if

end
Algorithm 2: Energy-aware data transmission algorithm

The sensor node is made energy intelligent by measuring the amount of energy harvested

on a given day and the energy stored in the battery to determine the minimum energy

consumption of the device for the following day. This is achieved by controlling the com-

munication energy through adjusting the minimum transmission rate of the device, which

governs the information transfer rate at nighttime and until the harvested power exceeds

the power consumption of the sensor node during the day. The minimum transmission rate

is evaluated from the energy measurements once every day at sunset, when PHarvest falls to
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zero for the first time. The energy harvested on a given day is shown in Eq. 2.7 . The power

sensor connected to the solar cell is sampled once every minute and numerical integration is

performed to calculate the energy in Joules. Eq. 2.8 depicts the calculation of the energy

stored in the battery which is performed by using a look up table on the measured battery

voltage. The look-up table was generated by characterizing the battery at a dais charge rate

of 0.1C (23mA).

EAvail(J) = Σ(Pharvest ∗ 60/1000) (2.7)

EBAT T (J) = fBatteryChemistry(VBAT T ) (2.8)

Sub-GHz Transmitter Packet Structure

Date Rate = 625bps (PL1>PL2) 

Power 

Level 1

Power 

Level 2

Header
6 Bytes

Payload
16 Bytes

Destination Address
8b

Source Address
1 bytes

Sequence Number
32b

Payload Length
8b

Data
15 bytes

Temperature
16b

Humidity
16b

Light Intensity
16b

Solar Power
32b

Time (100ms)
32b

CRC
8b

Figure 2.11. TI Sub-GHz (Easylink) packet structure at 625 bps for long
range communication. Every Tx packet 22 Bytes long with a header of 6
Bytes and payload of 16 Bytes. Packet transmission rate varies based on the
total energy available to the wireless sensor node.

The available energy range is divided into 10 regions which maps on to a data trans-

mission rate between 1 sample/second (no compression) to 1 sample every 300s (maximum
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compression). As shown in Fig. 2.11 , each data packet is 22 bytes long carrying 16 bytes

of payload. Sensor data of humidity, temperature, and light intensity is contained within

6 bytes, and 4 bytes are used to convey the time of sampling. 4 Bytes are also used to

transmit information on the available power. Each device also sends its specific software

defined address and error detecting codes.

Data: Samples from environmental sensors
Result: Anomalies detected in sampled data
Initialize the threshold (x) of the k-means clustering algorithm;
while New sample available do

if data >= x% or <= x% from last anomaly (ISA) then
activate sub-GHz communication;
send temporally compressed data stream to the receiver;
record new transmission time; deactivate sub-GHz communication;

else
wait for the next anomaly/next transmission time;
stay in low-power sense and compute mode;

end
if time since last transmission = transmission interval then

activate sub-GHz communication;
send current data point to the receiver;
record new transmission time; deactivate sub-GHz communication;

else
wait for the next anomaly/next transmission time;
stay in low-power sense and compute mode;

end
end

Algorithm 3: Anomaly Detection followed by data transmission using Long Range
communication at a particular power level

The anomaly detection algorithm is used to minimize the loss of information when lower

data transmission rates are used. It incorporates a predefined threshold for each environ-

mental variable being sensed. When the difference between the sensed data and the previous

anomaly value crosses this threshold an anomaly is registered and data from all sensors is

transmitted. These thresholds were calculated offline using a k-means clustering algorithm

over a span of more than 4 weeks.

Figure 2.12 shows an example of humidity data transmitted by the sensor node using

anomaly detection overlaid on all of the samples collected by the microcontroller. In this case
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Anomaly Triggers Faster Rate of Data 

Transmission

Threshold for Anomaly Detection = 5%

Humidity Data is collected for 180s

Correlation Coefficient = 0.9974

Figure 2.12. An example of humidity data logged from HDC2010 with and
without anomaly detection at a threshold of 5%.

a sampling frequency of 1Hz was used and 180 data points were collected. The threshold for

anomaly detection was set at 5% with a data transmission interval of 60s. As seen a total

of 23 data points were transmitted resulting in a temporal compression ratio of 7.83. Of

these 23 data points, 21 were transmitted due to the anomaly created between 15s and 100s

and 2 were transmitted during normal operation. Without the introduction of an anomaly

the compression ratio would have been much higher. The compressed data has a correlation

coefficient of 0.9974 with the original sampled data.

A report of every 1 degree Celsius change in temperature is desirable since the sensor node

is primarily used for agricultural and environmental monitoring purposes. Temperatures in

Indiana remain between -20 to 20 degrees Celsius for most of the year and a 5% threshold

will prevent loss of information irrespective of the data transmission interval. In the summer

months when the temperatures cross 20 degrees Celsius, the anomaly detector will not trigger

at every degree change in temperature. However, the sunlight intensity also increases in this
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time period which will result in faster minimum data transmission rates to prevent any loss

of information.

2.2.4 Results

Energy Consumed by the Wireless Sensor node

The current consumption of the sensor node in different modes of operation is measured

using a precision current-voltage analyzer (B2901A, Keysight) and shown in Fig. 2.13 . In

standby mode the device consumes 280µA, during computation 3.5mA, and a peak cur-

rent of 35mA for sub-GHz long range transmission at an output power of +14dBm. At

a supply voltage of 3.7V , this translates to a power consumption of 1.036mW , 7.03mW ,

12.95mW , and 129.5mW during standby, sampling, computation, and communication re-

spectively. During each sampling interval, which repeats every 1 second, the microcontroller

SoC spends approximately 999ms in standby mode, 200µs to sample the sensors, and 800µs

to implement the various algorithms, resulting in an energy consumption of 1.04mJ . Each

computation interval can vary between 1s to 300s, during which the SoC spends 282ms

transmitting the sub-GHZ RF packet at the cost of standby time, resulting in a communica-

tion energy of 33.25mJ . The standby (leakage) current is relatively high since an ultra-low

noise, high PSSR, RF, low-dropout linear regulator was selected for the design which had a

typical ground pin current of 265µA. The current consumption and consequently the energy

consumption can be driven down by selecting an alternate voltage regulator, however, we

did not make this choice since the energy goal of our design was met.

The energy profile for the CC1352-based energy harvested sensor node is presented in

Fig. 2.14 for each of its different data transmission intervals. The fastest data transmission

rate of every 1 second (no compression) occurs either during the highest range of sunlight

intensity, or when the net available energy permits a daily energy consumption of 2872.5J .

The slowest data transmission rate of once every 300 seconds (maximum compression) occurs

either when negligible amounts of energy was harvested during the previous day (due to snow

accumulation, etc.) or the net available energy is at a critical value to prioritize charging

of the battery. This mode consumes an average energy of 90.1J , which translates to a
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Figure 2.13. Current consumed by the wireless sensor node as measured by
a precision current-voltage analyzer and the amount of time spent and power
and energy consumed in each of its different modes of operation i.e. standby
(leakage), sampling and computation, and communication.
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Figure 2.14. Average energy consumed by the wireless sensor node in one
day in each of its different data transmission modes used to report sensor data.

32x reduction in energy consumption with less than 5% loss of information. In case the

energy harvester is incapacitated due to excessive accumulation of snow or other unforeseen

circumstances, a lifetime of between 336 hours (14 days) to 818 hours can be obtained based

on the amount of energy stored in a standard 230mAh battery.

Interaction Between Energy Available, Energy Consumed and Transmission Rate

The energy harvester and power management system were characterized by measuring

the power available at the microcontroller supply net using a solar simulator which generated

a sunlight intensity of 1KW/m2, also called as 1 sun or peak sun. The results obtained from

this setup were multiplied by the peak sun hours seen in a day seen in Indiana during a given
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Figure 2.15. (a) The maximum, minimum, and average power and energy
available from the 50x60mm amorphous silicon solar cell in a 24-hour period on
an average day of the given month in Indiana. This accounts for the losses in
the energy harvester and power management system. (b) The minimum data
transmission rate of the wireless sensor node as a function of energy available
during a 15 day period at different times of the year.
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month to calculate the maximum, minimum, and average energy harvested on a given day

of each month of the year. This is shown in Fig. 2.15 along with the equivalent available

power for a 24 hour period, such that the charge storage device sees a net zero power loss.

These power measurements reflect a horizontal placement of the solar cell which will be

typical during the course of using the device. Obviously, the instantaneous power available

during peak sunshine hours can be up to 3X higher than the average value. The average

minimum energy value of 256J in December is almost 3 times the minimum energy consumed

by the device and perfectly accommodates daily fluctuations in weather and the reduction

in efficiency over time due to the accumulation of dust.

TxminRate = min
∀T xRate

(ET xRate − (EBAT T − Ebuf

Dmax

+ EAvail)) (2.9)

Eq. 2.9 describes the relationship between the amount of energy harvested on the previous

day (EAvail), energy stored in the battery (EBAT T ), and minimum data transmission rate

(TxminRate) which governs the energy consumed by the node. The equation assumes that

at least EAvail will be harvested in the subsequent days and based on the amount of energy

stored, it determines whether to give charging preference or allow the sensor node to burn

extra energy such that it wont reach its critical threshold (EBuff ) for Dmax days. This net

energy is compared to the energy consumption of each data transmission rate to find the

closest match and determine the minimum data transmission rate for the following day. Ebuf

represents the buffer energy in the battery (critical threshold) which must be maintained to

accommodate for future bad predictions when energy availability is low.

Fig. 2.15 depicts the operation of the device over 15 days during both, the summer (June)

and winter (December) months. The upward slopes depict charging of the battery during day

time and the downward slopes for discharge during night time. During the summer months

the minimum transmission rate remains steady at 30 samples/minute despite any changes

in weather conditions which varies the amount of energy harvested and subsequently stored

in the battery since the net energy available never moves between thresholds. An interesting

point to note is that the device never enters the highest minimum transmission rate even on

sunny, clear days, when maximum energy is harvested. This can be rectified by either using a
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larger battery, solar cell, or placing the device in a geographical location where more sunlight

is available. During the winter months, the energy stored in the battery is typically lower

and large fluctuations are seen in the minimum transmission rate due to changes in weather

conditions to conserve the energy stored in the battery, such that the device can remain

operational. When the energy stored in the battery reaches the critical threshold of Ebuf ,

we can see the device prioritizes charging by drastically reducing the minimum transmission

rate to reduce power consumption even when large amounts of energy was harvested.

During any given day, the relationship between the power available from the energy har-

vester, power consumed by the wireless sensor node, the energy stored, and data transmission

interval is shown in Fig. 2.16 . This example depicts a sunny, clear day in March, in Indiana.

At night time the device transmits data at the daily minimum data transmission rate which

is a function of the total energy available and is depicted in Eq. 2.9 . In this example 12

samples are transmitted every minute at a power consumption of 7.40mW. Over the course

of that night which was 717minutes long, 318.35J of energy was consumed. At day break,

the power available from the energy harvester slowly starts to rise and eventually becomes

greater than the power consumed by the device and the excess power starts to charge the

battery. When the available power is 2.5X the power consumed by the device (60% of

available power for charging), the sensor node switches to a higher data transmission rate.

This continues as long as the available power increases or the battery is completely charged.

Once fully charged, the device transmits data at the highest possible rate, such that its power

consumption is within the bounds of available power.As the available power reduces with

decreasing solar insolation, the data transmission rate decreases until it reaches the newly

calculated minimum transmission rate for the following day.

Accuracy of Data Reported at Maximum Compression

Fig. 2.3 shows data from two sensor nodes, device 1 functioning at maximum compression

and device 0 functioning at minimum compression (no compression) placed at the same

location. For demonstration purposes, the devices were placed in these modes by emulating

the power sensor readings to replicate the maximum and minimum power obtained from the
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Figure 2.16. Interaction between power available, power consumed, energy
stored in the battery, and data transmission rate during the course of a sunny,
clear day during March in Indiana.

solar cell. Additionally, to demonstrate the difference in readings reported by the devices,

temperature and humidity anomalies were artificially created using a heating pad and a

cooling fan which was programmed to turn on for 1 and 5 minutes respectively, once every

hour. Device 1 transmits data once every 5 minutes and reports temporally compressed data

when the anomaly occurs. Whereas, device 0 transmits uncompressed data every second

to make maximum use of the available power. Sensor data of temperature and humidity
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Sensor Data For Device 0 (Transmission Interval: 1s, UV Intensity: 9) 

Sensor Data For Device 1 (Transmission Interval: 300s, UV Intensity: 0) 
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Figure 2.17. Device 0 and Device 1 are placed at the same location with
a heating pad and cooling fan placed on top of them to artificially create
anomalies in their sensor readings for demonstration purposes. Device 0 op-
erates in the maximum net energy available mode by transmitting data every
second, whereas device 1 operates in the minimum net energy available mode
by transmitting data every 300 seconds.
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obtained from the receiver was logged in a comma separated value (.CSV) file on a mini-

PC. That data was processed and displayed in MATLAB as a time-varying quantity. A

total of 418 data points were transmitted by device 1 as compared to 36000 by device 0,

which resulted in a net compression ratio of 86.125 and a correlation coefficient of 0.9937 and

0.9808 for temperature and humidity respectively. This demonstration displayed a maximum

energy savings of approximately 32X, due to the difference in the transmission rate of the

two devices.

2.2.5 Conclusion

In this paper we analyzed the trade-offs and proposed the hardware design and software

methods to implement a perpetually powered, energy-harvested and aware, long-range com-

munication sensor node which can function with a minimally sized harvesting element. This

was achieved through Energy-Information Dynamic Co-optimization, which was termed as

EICO. The proposed method varied the data transmission rate of the wireless sensor node to

optimize its energy consumption based on the total amount of energy harvested and stored

in the battery. This resulted in nearly continuous transmission of samples in the summer

months because of large amounts of energy harvested, to a steady decrease to low data trans-

mission rates during the winter months due to a lack of energy availability. To minimize the

loss of information due to steep duty cycling of data transmission rates, in-sensor analytics

was employed to detect anomalies and enable event driven communication and temporal data

compression. This resulted in daily energy consumption levels spanning between 90.1J to

2872.5J, an approximately 32X difference based on the time of the year, energy collected by

the harvester, and energy stored in the battery. Despite these transmission rate fluctuations

and steep duty cycling, the correlation coefficient between the transmitted sensor data and

sampled sensor data was always > 0.95, resulting in < 5% loss of information.

Although this design primarily focuses on solar power as the energy source, it can be

easily modified to work with alternative sources like TEGs and piezoelectric generators to

achieve an identical performance. As future work, the energy consumption would be ana-

lyzed throughout the year to ensure reliability over different weather conditions and network
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security can be improved. Additionally, since the leakage current of the sensor node is the

limiting variable for power consumption, a custom SoC can be designed in-house to signifi-

cantly reduce leakage current and further miniaturize the sensor node. Subsequently, faster

data transmission rates can be achieved with smaller harvesting elements.
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3. DESIGN OF INTERNET OF BODY DEVICES

Most of the content in this chapter has been extracted verbatim from the papers:

S. Avlani, M. Nath, S. Maity and S. Sen, ”A 100KHz-1GHz Termination-dependent

Human Body Communication Channel Measurement using Miniaturized Wearable Devices,”

2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble,

France, 2020, pp. 650-653, doi: 10.23919/DATE48585.2020.9116556.

Sriram, S., Avlani, S., Ward, M.P. et al. Electro-Quasistatic Animal Body Communica-

tion for Untethered Rodent Biopotential Recording. Sci Rep 11, 3307 (2021).

https://doi.org/10.1038/s41598-021-81108-8.

M. K. Kim, C. Kantarcigil, B. Kim, R. K. Baruah, S. Maity, Y. Park, K. Kim, S. Lee,J. B.

Malandraki, S. Avlani, A. Smith, S. Sen, M. A. Alam, G. Malandraki, and C. H.Lee, “Flexible

submental sensor patch with remote monitoring controls for managementof oropharyngeal

swallowing disorders,”Science Advances, vol. 5, no. 12, 2019.doi:10.1126/sciadv.aay3210.

3.1 EMG Device

3.1.1 Introduction

Successful rehabilitation of oropharyngeal swallowing disorders (i.e., dysphagia) requires

frequent performance of head/neck exercises that primarily rely on expensive biofeedback

devices, often only available in large medical centers, which directly affects treatment com-

pliance and outcomes. The exponential scaling of transistors has enabled the production of

wearable devices for fitness monitoring, medical diagnosis, and other applications. These

devices are usually interconnected to relay sensor readings and other data, creating a local

network known as Body Area Network (BAN). [28 ] These networks have been leveraged to

create wearable and inexpensive remote monitoring system for the telerehabilitation of dys-

phagia. Here, we present the development and preliminarily validation of a skin-mountable

sensor patch that can fit on the curvature of the submental (under the chin) area noninva-

sively and provide simultaneous remote monitoring of muscle activity and laryngeal move-

ment during swallowing tasks and maneuvers. This sensor patch incorporates an optimal
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design that allows for the accurate recording of submental muscle activity during swallowing

and is characterized by ease of use, accessibility, reusability, and cost-effectiveness. Prelimi-

nary studies on a patient with Parkinson’s disease and dysphagia, and on a healthy control

participant demonstrate the feasibility and effectiveness of this system.

Figure 3.1. Custom-built wearable device for the telerehabilitation of dysphagia.
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3.1.2 Portable Device for Remote Data Transmission

Fig. 3.1 shows an animated illustration and the actual photograph of the system. A

sensor patch is mounted on to the submental area which incorporates embedded surface-

electromyogram (sEMG) electrodes such that they remain in contact with the skin in a

manner in which they are parallel to the underlying muscle fibres. The sEMG signals are

measured by two pairs of electrodes through a double-differential recording. Additionally,

the sensor patch integrates a piezoresistive strain gauge to respond against relative laryngeal

movements during swallowing.

The portable unit for remote data transmission and powering is built on a 2-layer Printed

Circuit Board (PCB) with commercially available components. The top layer houses the ana-

log front end on one side and the microcontroller for digital processing on the other. The

bottom layer is left for the Bluetooth module and antenna.The primary design constraint

while developing the device was usability (size and battery life) and signal quality of the

acquired sEMG signals. Figure 1d shows the unpackaged guts of the portable unit compris-

ing of a Bluetooth™ module (HC-06, Guangzhou HC Information Technologies Co., Ltd.,

China, 38mm x 17mm x 4mm) for remote data transmission; a 4-channel 24 bit analog-to-

digital (A/D) conversion (ADS1294, Texas Instruments, USA, 12 mm x 12 mm x 1 mm); a

rechargeable battery (PRT-13813, Sparkfun Electronics, USA, 1000 mAh, 50 mm x 34 mm

x 6 mm) for on-board power supply; and a 3D-printed plastic case made of acrylonitrile

butadiene styrene (ABS) for housing. The assembled unit had dimensions of 56mm x 37mm

x 20mm, and weighed approximately 55g.

The custom-built, wearable device was clipped on to the user’s clothing via a flexible

anisotropic conductive film (ACF) wire for remote data acquisition. Signals were collected

through a zero insertion force (ZIF) connector in the device. A differential input analog front

end system-on-chip (SoC) (ADS1294, Texas Instrument) was used for signal conditioning

and sampling of the sEMG signals and strain gauge waveforms. The SoC analog front

end is specifically designed for processing bio-physical signals and incorporates a differential

input, 24-bit resolution analog-to-digital converter. The SoC enables data acquisition across

multiple channels at programmable resolution of up to 24 bits and sampling rate of up to 32

53



Figure 3.2. Waveforms of the sEMG and strain gauge signals obtained from
the custom-built device.

ksps. The front-end circuit gain is digitally controllable to vary the resolution of the input

signal. The ADC sampled the sEMG signal at a rate of 1 kHz and the strain gauge at 100Hz.

The data from the SoC was collected by a Cortex-M4F microcontroller (TM4C123GH6PM,

Texas Instruments) and processed with a finite impulse response, 4th order Butterworth

bandpass filter with a cut-off frequency of 20-500 Hz and 0.1-20 Hz for sEMG signals and

strain waveforms, respectively. The data is then transmitted via a Bluetooth™ module

(HC-06, Guangzhou HC Information Technologies) to an external data acquisition system
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(commercial smart tablets or phones). The signals obtained from the wearable device is

shown in Fig. 3.2 .

Figure 3.3. Performance characterization of the custom built built device
against a commercially available gold standard (Bio Radio).

The size of the portable unit is 5.6cm × 3.8cm × 1.8cm, which is almost 3 times smaller

than that of the commercial unit (10cm × 6cm × 2cm). The data acquisition front-end

was programmed in terms of sampling rate and resolution to optimize between acquired

signal quality and battery life. The performance characterization of device is shown in Fig.

3.3 , which shows the correlation between the acquired sEMG signal and the signal obtained

through a commercial device (Bio Radio). The measurements prove that a minimum sam-

pling rate of 1 ksps (Nyquist rate) and an ADC resolution of 12 bits is more than enough

to obtain a correlation coefficient >0.95. The battery life of the device was 16 hrs while

55



transmitting data over the Bluetooth link, which was approximately twice longer than that

by using a commercial wireless unit (BioRadio).
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3.2 Human Body Communication Channel Measurement

3.2.1 Introduction

The human anatomy requires wearable devices constituting a Body Area Network (BAN)

to have a small form factor, thereby limiting battery capacity[29 ] and necessitating ultra-

low-power (ULP) circuits. Communication system such as Bluetooth is a significant portion

(�mW) of the power-budget of such energy-constrained devices. Human body communication

(HBC) promises ULP (�10’s of µW) BAN communication by utilizing the conductivity prop-

erties of the human body. Therefore, the power benefits similar to wire-line communication

[30 ], [31 ] can be achieved while keeping the devices physically wireless.

Figure 3.4. Frequency-range, termination modality and ground connection
used by prior work in HBC channel measurement and the research need [32 ]–
[38 ]

Capacitive HBC involves coupling and receiving the communication signal to the body

through a single electrode with a floating ground electrode both at transmitter and receiver.
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Only a few studies on characterizing the channel exist in literature (Fig. 3.4 ) on channel

which are conducted in a methodical manner and cover a wide range of frequencies with

different kinds of termination.

Maity[33 ] demonstrated that in capacitive-voltage mode HBC with high-impedance ter-

mination, the forward path contributed a path loss of only 0.5 dB, indicating that the return

path capacitance primarily controls channel loss, later analyzed in-depth by Nath[39 ]. Tra-

ditionally, path loss measurements were made using ground connected devices such as vector

network analyzers, which short the return path capacitance and grossly underestimate the

path loss. Subsequently, a balun was placed between the electrodes and the measurement

device to prevent this [34 ], [38 ]. Although this was a step in the right direction, the channel

loss measurements were still optimistic due to large ground plane and large return path

capacitance. These results obtained from large, ground connected devices are invalid for

miniaturized wearable devices.

Maity developed the first Bio-Physical model [32 ] which established the underlying mech-

anism of low-frequnecy capacitive HBC as electro-quasistatic transport[31 ] and described the

channel characteristics for various parameters like single-ended and differential electrodes,

ground connected and wearable devices, among others. Although this paints a vivid picture

of the channel characteristics, with both high-impedance capacitive and resistive termination,

the frequency range was limited till only 1 MHz. Park [35 ] developed miniature wearable

devices to measure channel loss from 10 MHz to 150 MHz, using moderate impedance match-

ing networks to maximize the power transfer. This is not the optimal choice for a voltage

signaling based communication, especially at low frequencies.

Maity and Park are the only studies to utilize wearable devices for channel loss measure-

ments. However, they investigate dissimilar parameters i.e. a small span of frequency and

one kind of termination. Therefore, it is imperative to present a unified set of measurements

using wearable devices over wide-frequency range to help optimize HBC transceivers.
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3.2.2 Bio-Physical Model

The bio-physical model proposed by Maity [32 ] for capacitive HBC is shown in Fig. 3.5 a.

The underlying mechanism for low frequencies is approximated as electro-quasistatic trans-

port since the signal wavelength is an order of magnitude larger than the body dimension.

Discounting a 5% error, this approximation is valid roughly up to 10MHz[31 ].

Writing 𝑪𝐆 = 𝑪𝒓𝒆𝒕−𝑻𝒙 = 𝑪𝒓𝒆𝒕−𝑹𝒙,

Channel Loss  ≈
𝑪𝐆

𝑪𝐁𝐨𝐝𝐲

𝑪𝑮

𝑪𝑳
for f<10 MHz

(assuming 𝑪𝑮 ≪ 𝑪𝑳 ≪ 𝑪𝑩𝒐𝒅𝒚)
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Figure 3.5. (a) Biophysical model [32 ]; (b) Simplified biophysical model [39 ].

The bio-physical model explains the various resistances and parasitic capacitance associ-

ated with HBC. The transmitter is modelled as a voltage source with a small series source

impedance, whereas the receiver is modelled by its termination impedance. The return path

capacitance between earth’s ground and the communication devices’ floating ground closes

the circuit loop, allowing signal transmission. Parasitic capacitances between the earth’s

ground and the body, and those between the body and communication devices further affect

the signal transmission and channel loss.

The return path capacitance and load capacitance primarily dictates the overall channel

loss of EQS-HBC. Hence, the biophysical model coule be simplified as shown in Fig. 3.5 b,

[39 ]). The return path capacitance (CG) could be approximated as the self-capacitance and
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is proportional to the ground plane size of the transmitter and receiver[39 ], increasing loss

for a lower (CG) (i.e. smaller device) or a higher load capacitance (CL). Hence, to measure

channel loss for wearable devices, small form factor measurement devices must be used.

At high frequencies (beyond 10MHz), the mechanism for HBC transitions from electro-

quasistatic transport to electromagnetic. As the return path capacitance will continue to

play a role during this transition, a small device is still imperative for high frequency mea-

surements. Additionally, the small size will help reduce inter-device coupling.

As shown in Fig. 3.5 , the termination impedance of the receiver significantly affects

channel loss in HBC. Therefore, correct termination at the receiver is of utmost importance.

Previous studies [32 ] have shown that 50Ω termination should be avoided at low frequencies.

However, as frequency increases the input impedance seen at the receiver will decrease and

may eventually fall below 50Ω. It is possible that a 50Ω terminated receiver could exhibit a

lower channel loss at high frequencies. Therefore the optimal termination at high frequency

should be investigated in the future. Here we measure wide-frequency channel loss with

wearable devices for both 50Ω and high-impedance termination (CL).

3.2.3 Measurement Setup

Measurement Location: Anechoic Chamber

All path loss measurements are conducted inside an anechoic chamber to prevent multi-

path effects and external interference from influencing the readings. The chamber has a

dimension of 400x550x400 cm and the inner walls are lined with a spike-patterned foam

which efficiently absorb electromagnetic waves above 80MHz. As depicted in Fig. 3.6 , the

human subject was placed the centre of the room to maximize distance from the side walls

which are connected to earth’s ground. This will minimize the change in return capacitance

and accurate path loss values can be obtained.
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Setup:Wearable Signal Transmitter

The entire frequency range could not be covered by a single off-the-shelf, wearable, battery

powered signal generator. Therefore, two devices (Fig. 3.7 a) were used as the transmitter,

one for low frequency and the other for high frequency.

Low-Frequency (100KHz to 20MHz)

The EK-TM4C123GXL launchpad by Texas Instruments which highlights the TM4C123GH6PM

micro-controller is used as the low frequency transmitter. It is powered by a small battery

and placed in a 3D printed enclosure. The coupling electrode is made from copper tape

which is fixed to an elastic band. The electrode is connected to one of the GPIO pins of

the micro-controller which generates a PWM signal. The micro-controller is programmed

to generate a PWM signal of 3.3V with a duty cycle of 50% between 100KHz and 20MHz.

Two switches on the PCB which were programmed to cycle through the required PWM

frequencies.

High-Frequency (24MHz to 960MHz)

A handheld RF signal generator (RFE6GEN) from RF Explorer is used as the transmitter

for the high frequency range. The device dimension is 113x70x25 mm, and operates between

24MHz to 6GHz with a resolution of 1KHz and a frequency stability of 0.5ppm. The output

signal power is 0dBm at 50Ω, with an accuracy of +/-3dB. The device body is made of

aluminum and is connected to ground, therefore a layer of foam is connected below the

device to prevent the body from touching the ground plane of the device.

Setup:Wearable Signal Receiver

A handheld RF spectrum analyzer (WSUB1G+) from RF Explorer is used as the wear-

able receiver for the entire frequency range (Fig. 3.7 a). The device operates between 100KHz

to 960MHz with a resolution of 0.5dB and an average noise level and amplitude accuracy

of -125dB and +/-3dB, respectively. The device body is again made of aluminum and con-
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Figure 3.6. (a)Body posture for which measurements were collected; (b)
Animation depicting the anechoic chamber and the physical location at which
the measurements were conducted; (c) System schematic.

nected to ground, therefore the protective measures described above are used. The receiver

has an input impedance of 50Ω. For low impedance termination measurements, the coupling

electrode band was directly connected to the input SMA port (CASE 2 in Fig. 3.6 c). For

high impedance measurements, a buffer was connected (CASE 1) between the electrode and

the input of the receiver.
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Buffer for High Impedance Termination

The high bandwidth buffer circuit was assembled on a perforated board. A high-speed

buffer IC, BUF602 from Texas Instruments was used. It has a wide bandwidth of 1GHz,

a slew rate of 8000V/µS, and an internal reference voltage generator, which is perfect for

buffering the transmitted high-speed AC signal. The input impedance of the buffer is 1MΩ

with a capacitance of 2.1pF. The input capacitance (CL) of the complete receiver will deter-

mine the measurement and will change according to the formula shown in Fig. 3.5 b.

Inter-device Coupling

Inter-device coupling measurements (CASE 3, dashed line implies no physical connection)

were performed by suspending the devices inside the anechoic chamber at the exact same

location as they would be if a human subject was wearing them, such that the devices see

similar parasitic capacitance, making the human body as the only variable in the setup.
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However, practically realizing the exact same orientation for all measurements proved to be

difficult, which resulted in a high variance for inter-device coupling measurements (Fig. 3.9 ).

3.2.4 Measurements and Analysis

Measurement Procedure

Standardized procedure was developed and repeated, since channel loss measurements

are susceptible to variations. The subject was placed at the exact same location in the

anechoic chamber. The transmitter was tied to the left hand which was outstretched at

shoulder, and the receiver was placed in the right hand in front of the belly. The orientation

of the electrode bands were kept consistent and great care was taken to ensure a steady body

posture while collecting the readings.

Due to involuntary variations in posture and placement of devices resulting from human

error, fluctuations in the readings were inevitable. This was addressed by repeating the

measurements multiple times over the course of a few days and averaging the results. The

measurements were carried out until the standard deviation of the results dropped below

3dB. This was achieved for high frequency and low frequency channel loss measurements

after 10 and 3 repetitions, respectively. Each measurement involved collecting data for both

50Ω and high impedance terminations.

High frequency measurements were carried out at 25 equally spaced points in the logarith-

mic scale between 24MHz and 960MHz. The transmitter was operated at power level 4, which

generated a signal power between 0.1dBm and 1dBm at the fundamental frequency. Since

voltage mode signaling is used in capacitive HBC, the power levels were converted to voltage

before calculating channel loss. The transmitted signal power values were converted to peak

voltage by, Vpeak−T x = 2 ∗ 10(
PtxdBm

−10
20 ). The receiver recorded the input signal power at the

fundamental frequency. Since the wearable spectrum analyzer has an input impedance of

50Ω, the recorded signal power can be converted to peak voltage by, Vpeak−Rx = 10(
PrxdBm

−10
20 )

and the resulting channel loss is given by, ChannelLoss = 20 ∗ Log10(Vpeak−Rx

Vpeak−T x
).

Low frequency measurements were carried out at 32 equally spaced points in the loga-

rithmic scale between 100KHz and 20MHz. The peak voltage at the fundamental frequency

64



TX

𝑺𝑩𝑷

𝑺𝑨𝑷

RX

𝐇𝐢𝐠𝐡 𝐅𝐫𝐞𝐪𝐮𝐞𝐧𝐜𝐲:
𝐒𝐑𝐱 = 𝐒𝐁𝐏 + 𝐒𝐀𝐏

Bottom 

View

f = 400MHz

TX

𝐋𝐨𝐰 𝐅𝐫𝐞𝐪𝐮𝐞𝐧𝐜𝐲:
𝐒𝐑𝐱 ≅ 𝐒𝐁𝐏

Earth’s Ground

Through Body

Through Air

f = 10MHz
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of the PWM signal was calculated by computing the Fourier Transform. The peak voltage at

the receiver and subsequently the channel loss was calculated as described above. For each

of these frequency points the inter-device coupling readings were noted. The values below

the noise floor were not plotted.

Result Analysis and Insights

The average path loss and standard deviation from 100KHz to 1GHz is depicted in Fig.

3.9 . From the graph it is clearly evident that the path loss at low frequencies for 50Ω

termination is more than 40dB higher (100KHz) than that for high impedance termination,

which is more or less flat up to 10MHz where the difference reduces to 20dB. The flat-band

loss is highly dependent on the CL of the receiver. Beyond 10MHz, the impedance of CL

(i.e. 1
jωCL

) starts approaching the resistive termination impedance of 50Ω. Consequently, the

difference in the channel loss values reduces. The channel loss of high impedance termination

can be further reduced by reducing CL which is a function of the PCB capacitance and the
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input capacitance of the buffer. In this case the chosen buffer IC and the perforated PCB

used to make the circuit has resulted in a path loss of 60dB, which can be reduced by either

using a thicker custom made PCB and/or a different buffer IC.

TX1 + RX TX2 + RX

Function of 𝐂𝐋

Figure 3.9. Wide-frequency Human Body Channel-loss for capacitive HBC
with high impedance and resistive termination along with inter-device cou-
pling.

Above 50-100 MHz, there is a low-pass filtering effect formed by RS and CL in Fig. 3.5 (b).

Additionally, the inter-device coupling starts to play a significant role as the dimensions of

the tx/rx devices and coupling electrodes become comparable to the wavelength (Fig. 3.8 ).

Basically, the coupler electrodes start functioning as a low-Q antenna, and a major part of

the transmission takes place through direct electro-magnetic radiation between the devices,

as opposed to a body-channel mode of communication. Evidently, the transmitted power

peaks at about 500 MHz (λ = 60cm) which is about 4 times the device dimensions. Also, as

seen in Fig. 3.9 , the device-device coupling in absence of the human subject can be higher

compared to the transmission when the subject is present. This further confirms that the

peaking in this region happens because of line-of-sight wireless style transmission, and the

human subject being in the way could hurt the transmission.
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Accurately characterizing the channel for capacitive HBC at frequencies above 100MHz

is in fact complicated since it’s extremely difficult to isolate signal power through the body.

This can be circumvented if the entire signal can be focused into the human body channel

with minimal radiation. However, this is not a trivial problem since the coupling electrode

band will act as an antenna. This challenge motivates future research on the design of an

optimal coupler or antenna which can focus transmitted signal into the human body channel

while minimizing radiation leakage and comparing the result from the above with standalone

EM-radiation based coupling.

3.2.5 Conclusion

Methodical characterization of the human body channel for capacitive HBC using minia-

turized wearable devices across a wide 4-decade frequency range with various types of ter-

mination is presented, which aims to fill the void in literature and serve as the backbone for

the emerging field of HBC. The results have shown that channel loss is significantly higher

at low frequencies for a 50Ω termination as compared to high impedance termination. The

difference steadily decreases beyond 10MHz and beyond 100MHz, inter-device coupling dom-

inates and an accurate measurement of only human-body portion of the channel loss is hard

to obtain. This motivates future research on optimizing the electrode coupler and device

design to ensure that the transmitted signal is directed into the human body with minimal

radiation leakage for comparison as well as optimal BAN antenna/coupler design purposes.
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3.3 Animal Body Communication Device

3.3.1 Introduction
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Figure 3.10. Animal Body Communication: a) Overview of Animal
Body Communication on a Rodent Model. Custom designed sensor node is
placed on the back of the rat. This sensor node is capable of sensing and
transmitting the surface biopotential signals via Bluetooth and Animal Body
Communication. The sensed signal is transmitted through the body to the
conductive surface in the form of OOK (On-Off Keying) sequences. The spe-
cially designed rat cage is isolated from the ground surface. A conductive
surface is placed on the base of the rat cage which is then connected to a
Data Acquisition System (DAQ) which receives the transmitted signals. The
Bluetooth receiver and DAQ are connected to a PC for processing, with the
DAQ and PC ground referenced. In this model Bluetooth communication acts
as a validity check for ABC. The rat model in a) was created using Paint 3D.

Continuous recording of bio-potential signals through small form-factor wearable devices

has enabled a better understanding of physiology, preventative healthcare, and enhanced

therapeutic treatments as shown in Section 3.1. These small form-factor wireless devices

consume large amounts of power since radio-frequency communication is used which is in-

herently lossy and requires up-conversion of the base-band signal. Consequently, either large

68



battery packs, frequent recharging or large energy harvesters are required to achieve a long

device lifetime. To overcome these constraints human body communication can be employed

for significant improvements to the size, weight, area, and power benefits of the wearable

devices as compared to conventional electromagnetic communication systems.

Animals have been used for hundreds of years to conduct research in medicine and medical

devices due to their anatomy and physiology being similar to the human body. Therefore,

it serves as an ideal starting point to prove the efficacy and reliability of communicating

information through the body as the communication modality while simultaneously recording

bio-potential signals in a controlled environment. Animal Body Communication (ABC) will

also address a research need in animal sciences wherein wherein wearable, untethered, small,

light-weight monitoring devices are required to minimally influence the animals behaviour

for more accurate studies. ABC is demonstrated with a sub-inch3, custom-designed sensor

node. Figure 3.10 , describes the concept of the ABC setup, surface biopotential signals

are acquired by a custom-designed sensor node that then transmits the signal using ABC

through the subcutaneous tissues of the animal body using EQS-ABC. These signals are

picked up by a receiver connected to the ground isolated conductive surface. In this setup,

we also transmit the signals using Bluetooth as a method to compare the ABC transmitted

signal with an established communication modality. The low power requirement enables the

use of smaller batteries or coils in the case of energy harvested nodes. Experiments were

performed with EKG signals of the rat as the chosen surface biopotential signal. This device

serves as the first demonstration of animal body communication.

3.3.2 System Architecture

Size, weight, area, and power consumption of wireless recording devices have the po-

tential to significantly affect animal behavior and compromise the quality and length of

recordings, thereby hindering scientific studies. Overcoming these obstacles formed the core

design objectives for the custom node for the acquisition of biopotential signals and wireless

transmission of data and resulted in the following initial specifications. Physical dimensions

were constrained to one cubic inch, which is sufficiently small to be placed on a rodent and
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large enough to house the various components. The net weight and power consumption were

capped at 50g, and 50 mW respectively. This posed a significant challenge since the analog

front end for sensing, micro-controller for computing, wireless communication for comparison

purposes, power management, and animal body communication had to be miniaturized and

integrated into the device while meeting the power budget.

➢ Sub-cubic inch sensor 
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a) System Architecture b) Detailed View c) Assembled View
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Figure 3.11. System Architecture of the custom-built node for biopotential
acquisition through animal body communication and Bluetooth Low Energy;
a) Block diagram of the custom-built node, b) Functional blocks depicted on
the actual device, c) Custom node after stacking.

The system architecture as shown in Figure 3.11 a can be broadly divided into three

blocks, the custom-wireless signal acquisition node, the Bluetooth receiver connected to the

data logging system (computer), and the animal body communication receiver. The custom

node consisted of two vertically stacked custom-designed printed circuit boards (PCB) which

were populated with commercially available integrated circuits and discrete components. The

top board in the stack contained the micro-controller and Bluetooth System on Chip (SoC),

along with the antenna and matching network on the top layer. The bottom layer consisted

of the power management system and charging connector. The analog front end was housed

on the top layer of the bottom stack, with the bottom layer serving as the electrode for

animal body communication. The detailed view and the assembled view of the sensor node

is shown in as shown in Figure 3.11 b and 3.11 c respectively.
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A System on Chip (NRF52840, Nordic Semiconductors) which integrates an ARM Cortex-

M4F micro-controller and a Bluetooth 5.0 transceiver was selected to form the core of the

node since it would minimize the device footprint and power consumption. The on board

1MB flash memory and 256KB RAM was sufficiently large to store the sampled signals

and implement in-sensor analytics in the future. Power efficiency was further improved by

utilizing the on-chip DC-DC converters.

The custom node collected the EKG signals from a zero-insertion force connector placed

on the PCB. Signal conditioning and sampling of the EKG signal was performed by an-

other SoC (ADS1298, Texas Instruments). This analog front-end chip incorporates a pro-

grammable gain differential amplifier and right-leg drive generation for conditioning EKG

signals, which were subsequently sampled at 500Hz by a 24-bit analog to digital converter.

The SoC was programmed to optimize signal acquisition quality and power consumption.

The sampled signals were sent to the micro-controller through an on-chip Serial Peripheral

Interface.

The sampled data was stored in a buffer in the micro-controller until the transmission

window started. The samples were then converted to characters and transmitted as a string

over Bluetooth after adding delimiters to differentiate between subsequent samples. For An-

imal Body Communication, the sample was transmitted in its original 24-bit binary integer

form after creating packets by adding two bits (binary 1) at the start and end of the sample.

Each bit in ABC was represented by on-off keying, wherein a 500kHz, 50% duty cycle square

wave was turned on (binary 1) or off (binary 0). ABC data was transmitted at 25Kbps,

which was significantly lower than the minimum required Bluetooth bandwidth of 45Kbps,

which excludes the overhead added by the Bluetooth stack.

The custom-designed node was packaged in a 3D-printed housing of dimensions 25mm

x 25mm x 10mm, which is equivalent to 0.39 cubic inches. It had a net weight of 20g and

average power consumption of 28.5 mW (with Bluetooth transmission for data comparison

purposes) which resulted in approximately 20 hours of battery life. This is 19 times smaller

and has more than twice the battery life when compared to a commercial wireless unit (Bio-

Radio). We expect a much longer lifetime when the Bluetooth transmission is turned off

and only ABC transmission is turned on. The power required for sensing is typically orders
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of magnitude lower than the power required for communication, thus the system power is

dominated by this communication power. The ABC transmission power is 50x lower when

compared to the Bluetooth transmission power and this translates into an order of magnitude

improvement in the device lifetime and reduction in the battery size.

The Bluetooth receiver was essentially another NRF52840 SoC connected via USB to

the data logging system, which in this case was a computer. This setup was used instead of

the inbuilt Bluetooth device of the computer since it would be easier to collate data from

multiple transmitters.

The conductive signal plane is connected to the high impedance receiver probe. A

computer-based oscilloscope, by Pico Technologies, was used as the ABC receiver. The

OOK sequences are sampled at 3.9 MSamples/s and collected for post-processing.

3.3.3 Signal Processing

OOK sequences collected from the ABC receiver are sent to a computer for processing.

Signals are first band-passed between 400kHz to 600 kHz with 80 dB attenuation software

filters. Filtered sequences are demodulated using envelop detection and thresholding. Se-

quences are then decoded using the start and stop bit followed by software error correction.

Bluetooth sequences in the form of ADC codes are converted to corresponding voltage values

and compared to the received ABC signals.

3.3.4 Communication Protocols

Time Multiplexed Data:

As discussed earlier, a requisite for animal body communication especially while record-

ing surface biopotential signals is the need to time multiplex the sensing and transmission

periods.

Error-Correcting Algorithms:

There is a possibility to bring in redundancy into the communication channel to ensure the

robustness of this communication modality. We have shown that if the rat foot is lifted from

the conductive surface, the received signal can still be picked up by the receiver. The goal of
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this paper is to ensure that long term recordings of freely moving animals can be obtained.

To ensure that there is a successful transmission of data, error-correcting algorithms become

a necessity.

Bi-modular Redundancy can be introduced by repeating packets over time. In the event

of a jump or signal drop, repeated packets ensure that the signal information is faithfully

transmitted. This technique reduces the data rate due to the added redundancy.

Block Codes a common error-correcting technique of encoding the data in blocks, such that

the code is a linear combination of the message and parity bits in a linear block code.

3.3.5 Conclusion

To conclude, a custom-designed sensor node was designed to acquire bio-potential signals

from a rat and transmit it through the animals body. Bluetooth was used as the communica-

tion gold-standard to validate animal body communication. During the course of testing the

data received from both modalities had a correlation coefficient > 0.99 at all times. However,

there was a stark difference in power consumption since ABC consumed 0.5mW of power

as compared to 29.5mW for Bluetooth transmission. Although a > 50x reduction in power

consumption is significant, it can be further reduced if a custom-designed IC integrates ABC

with the analog front end and computing. It was also demonstrated that reliable signals

could be received from the rat even when the foot was raised or in improper contact with

the receiver. While this device was built for capturing EKG signals, it can be extended

to any bio-potential signal where low power communication modalities are essential, such

as neural signal acquisition and transmission. Therefore, electro-quasistatic animal body

communication can prove to be the next advancement in communication for animal stud-

ies and by extension wearble devices for humans by enabling ultra-low power and efficient

communication.
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