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ABSTRACT

Unmanned Aerial Systems (UAS) are often used to collect and transmit sensor data (e.g.,

video, radar images) to the ground. While much research related to data transmission in UAS

settings has focused on short distances, there is growing interest in operating UAS beyond

Visual Line of Sight (VLOS), a relatively unexplored research area. In this thesis, we make

three contributions. We present one of the first characterization studies of UAS network per-

formance when operating at distances exceeding VLOS. Our results confirm challenges owing

to wireless network variability but also point to opportunities to exploit the correlation of

network performance with flight path (distance and orientation). Second, motivated by our

observations, we design Proteus, the first system for video streaming targeted at long-range

UAS settings. Proteus is distinguished from existing algorithms developed for traditional In-

ternet settings by explicitly accounting for dropouts, and leveraging flight path information.

Through flight emulation experiments, we show Proteus reduces rebuffering from 14.33% to

1.57% at long-range distances, while significantly improving composite video delivery met-

rics. Third, we design Chimera, which uses the flight path to optimize heterogenous sensor

data transmission. Chimera is based on an optimal control framework, performing online

optimization to yield a feedback control policy that makes transmission decisions. Through

emulation and simulation experiments, Chimera reduces penalties related to dropped radar

images by 72.4%-100%, compared to an algorithm agnostic of flight path, and achieves an

average bitrate of 90.5%, compared to an optimal scheme knowing future throughput, with

only minimal increase in radar images dropped.
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1. INTRODUCTION

Recent technological advances have dramatically increased the availability and capabilities

of Unmanned Aerial Systems (UAS) [ 1 ]. Once limited to a small community of research and

military applications, the barrier to entry for owning and operating UAS, sometimes referred

to as drones, has decreased in recent years. As a result, UAS usage has grown at incredible

rates and they are often used to provide sensing and data-gathering in a variety of scenarios,

due to their ability to go to areas where humans cannot, and gain vantage points and cover-

age with sensors that are not possible from the ground [  1 ]–[ 6 ]. The types and capabilities of

sensors, and options for mounting on UAS, have increased to provide many options to gain

insight from an aerial viewpoint [  4 ], [  7 ]–[ 9 ]. There is growing interest in operating UAS at

ranges beyond Visual Line of Sight (VLOS) since it increases the UAS mission opportuni-

ties [ 1 ], [  10 ], [  11 ]. UAS are broadly used in many domains including military [ 7 ], [  12 ], disaster

response [  2 ], [  8 ], [  13 ], search and rescue [ 14 ], law enforcement [ 2 ], agriculture [ 2 ], railroad

and pipeline inspection [  2 ], [  10 ], package delivery [  2 ], [  11 ], conservation management [  2 ], and

other domains [ 2 ], [ 11 ], [ 15 ].

1.1 UAS wireless data transfer challenges and opportunities

Transmitting sensor data from an UAS to a Ground Control Station (GCS) in real-

time presents challenges due to flight dynamics and bandwidth limitations of the wireless

network [  4 ], [  5 ], [  16 ]–[ 19 ]. However, there are also opportunities for improvement, since

the wireless network performance of the UAS depends on the flight path (which we explore

and present observations in our analysis with real-world UAS flight data that we collected in

§ 2 ). In the rest of this thesis, we use the term UAS network to refer to data transmission

from an UAS to a ground node (e.g., GCS). Swarms of UAS nodes are out of scope for this

dissertation.

Despite being a different and significantly more challenging environment than traditional

computer networks (e.g., Internet), there currently exists limited understanding of long-

range UAS networking (and its implications for applications). Thus, it is both important

and necessary to collect real-world flight data to properly analyze and understand these
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networks, and how they operate over long periods of time and at ranges beyond VLOS, in

order to design relevant and improved sensor data transmission algorithms and systems.

1.1.1 Dynamic flight network challenges

There are multiple different types of wireless networking options for UAS flight - each

with different pros and cons (as we discuss in §  2.2 ). Since the UAS must travel to locations

determined by the application requirements (e.g., disaster relief in a specific area, or provid-

ing mapping and oversight of an area to guide search and rescue missions), it is desirable to

have long-range options, and there is relatively limited freedom in placing UAS to optimize

for connectivity. Today, civilian use of UAS in the United States (US) is typically restricted

to limited distances that require VLOS [ 20 ] (typically, 1 Km). However, there is much inter-

est in going to larger distances and regulations are beginning to support this worldwide [ 1 ],

[ 10 ], [  11 ]. Our work focuses on long-range applications beyond VLOS, a relatively unex-

plored research area due to the challenges of collecting such data, but an area that presents

advantages for UAS mission scenarios. While this long-range focus increases the benefits of

flight, it also makes collection of data more challenging. There is limited prior research work

to leverage due to the challenges of data collection at extended distances. Further, extend-

ing the distances of UAS networks results in degradation of wireless network performance.

Additional challenges include variable performance based on the type of UAS (fixed wing or

multirotor) [ 21 ], type of antenna (omnidirectional or directional), and the flight path of the

UAS. We discuss all of these critical aspects in § 2 .

1.1.2 UAS sensor challenges

A wide variety of different sensors are used for UAS missions. Examples include video

(with different lenses and modes, such as infrared), Synthetic Aperture Radar (SAR), and

Light Detection and Ranging (LiDAR) [  7 ], [  22 ], [  23 ]. Many UAS settings, such as security

surveillance [ 7 ], [  24 ], search and rescue missions [  14 ], [  22 ] that are aided with wide-range

SAR imagery accompanied by live video, and environmental monitoring [  23 ], [  25 ], involve

both video and other sensors such as radar imaging (e.g., SAR) [  7 ], [  22 ], [  23 ]. Video provides
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color imaging of small visible areas, while SAR imagery provides a wide-area all-weather

capability that penetrates fog, smoke, and atmospheric obstructions [  23 ], [  26 ]–[ 28 ] (e.g., the

ability to penetrate through smoke is critical in fire monitoring scenarios [  8 ], [  9 ]). UAS

networks are often not able to keep up with demand in transferring important sensor data in

flight to the ground (especially at long-range distances and/or if multiple sensors are being

used in parallel). Sensor data can be gathered on the UAS and offloaded once on the ground

and connected to traditional Internet. However, it is usually more valuable and efficient to

offload the data during the flight to guide the flight mission and provide insight into real-

world events, disasters, research, and more. While data and quality of these different types

of sensors vary, the common desire is to have more data, faster access to the data, and higher

quality data (which is larger in terms of size). Additionally, being able to access the data

in a reliable manner is desirable for most of the data types, although some losses can be

tolerated, depending on the sensors and circumstances.

1.1.3 UAS flight opportunities for improvement

While dynamic UAS flight sensor data communication networks present challenges, espe-

cially at long-range distances, there are also significant opportunities that can be leveraged in

order to improve performance. We discuss opportunities that can be used to take advantage

of the dynamic networking performance based on UAS flight path in §  2 . We explore dif-

ferent UAS sensor data networking applications for transmitting sensor data to the ground,

and design new improvements to these types of applications, based on our measurements

and analysis of real-world UAS flight tests, collected at multiple locations across the United

States (US). Specifically, we explore the popular UAS application of recording video from

the UAS and streaming this video to the ground, at long-range, in §  3 , designing a new sys-

tem to optimize for the dynamic nature of UAS flight. Further, we expand into multiple

heterogenous sensor applications and develop a long-range multi-sensor SAR and live-video

streaming application in § 4 .

15



1.2 Current state of the art

We next provide an overview of the current state of the art and prior work in this area,

given the aforementioned growth of UAS and aerial sensor surveillance systems. There have

been recent measurement studies for UAS wireless communications [  29 ]–[ 35 ], but these have

all either been based on theory, without real-world measurements, and/or at limited distances

(within 0.25 miles), or with LTE that requires the UAS to be tethered to infrastructure,

limiting where the UAS can fly and communicate. Further, there has been much work in

video streaming, but most of this work is in the context of the traditional Internet [ 36 ]–

[ 40 ]. Some video streaming studies have been performed with UAS [  15 ], [  17 ], [  41 ], but

at limited distances and functionality. The challenges in this thesis are focused on long-

range UAS mission sets (e.g., exceeding VLOS) that optimize communication with different

types of sensors, with the ability to adapt to the UAS flight path in order to optimize data

transmission, motivated by real-world flight datasets.

1.3 Contributions

This work takes key steps to extend UAS sensor data transmission applications to dis-

tances exceeding VLOS. We present three new contributions, described below:

1.3.1 New measurements and characterization of long-range UAS networks

First, we present one of the first characterization studies of UAS networking at long-

range distances beyond VLOS [ 42 ], a relatively unexplored research area due to civilian flight

regulations and the difficulty of flying at such range. Our tests are conducted through special

approval and coordination, consisting of UAS flights tests over multiple days with both fixed

wing and multirotor UAS at locations in Florida (FL) and California (CA). While there

have been network studies with UAS, most have been conducted with multirotor UAS and

previous work focuses on experimentation at shorter distances (less than 0.25 miles), with

a mixture of 802.11 [  29 ]–[ 31 ], [  35 ], [  43 ] and LTE [ 33 ], [  34 ], [  44 ]–[ 46 ] networking technology

focus.
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Our measurements focus on long-range distances with both fixed wing and mul-

tirotor UAS. Additionally, our experiments are conducted using Tactical Radios [ 42 ],

[ 47 ], which do not rely on pre-existing infrastructure, thus enabling more flexibility in their

applications. We are motivated to understand networking capabilities and limitations with

UAS operating at long-range distances, and with different omnidirectional and directional

antenna configurations.

Key findings: Our measurements show how network throughput, and periods of dropout

(where no data goes through), varies with flight path. Interestingly, the data indicates the

orientation of the plane relative to the ground node also significantly impacts

network performance with both types of UAS. We also closely explore long-term flight

plans, where we can exploit the UAS flight path to improve data transmission and mission

performance in critical ranges beyond VLOS. In these scenarios, we analyze situations at the

edge of remote connectivity, where dropouts are common. Understanding the performance

under these different scenarios will extend the usable distance of UAS, and greatly increase

their applicability.

1.3.2 Proteus, the first video streaming system designed for long-range UAS
flight settings

Second, motivated by the observations above, we present Proteus, a system for video

streaming in long-range UAS settings [  48 ]. Proteus leverages Adaptive Bit Rate (ABR)

algorithms [  36 ], [  37 ], [ 40 ], [  49 ]–[ 51 ], given they are well suited to streaming with modest

delays, and since the throughput that can be sustained in UAS settings is highly variable and

dependent on flight path. While ABR algorithms have been extensively studied in traditional

Internet environments, they are only starting to be explored in UAS settings [ 15 ], [  41 ]. To

our knowledge, Proteus is the first system for video streaming that tackles long-range UAS

settings, and issues unique to UAS flight.

Key findings: Proteus is based on a control-theoretic approach, motivated by the suc-

cess of such approaches for traditional Internet video streaming [ 39 ], [  50 ], [  51 ]. Unfortu-

nately, we illustrate that a direct application of a representative and widely studied ABR

algorithm based on a control theoretic approach [  50 ], often referred to as MPC in the video
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streaming community 

1
 , does not work well for long-range UAS environments. Indeed, we

show that even with a perfect predictor of throughput (i.e., an Oracle), MPC performs poorly

owing to extended dropouts beyond the finite planning horizons utilized by the algorithm.

Proteus mitigates such myopic decision-making by the introduction of a terminal cost

into the receding-horizon optimization at each point in time. Such terminal costs are com-

monly used in control theory as a way to introduce long-term considerations into short-term

planning [  52 ]; however, an open problem is how to choose the terminal cost appropriately for

each individual problem. In our setting, we show that by carefully constructing a terminal

cost that incentivizes increasing buffer occupancy to hedge against future dropouts, we can

obtain substantial gains in video streaming performance over long-range UAS networks. In

particular, we show that knowledge of the UAS flight path can be incorporated into the de-

sign of the terminal cost by choosing the parameters as a function of both the UAS distance

and orientation (motivated by our analysis of UAS network characteristics from our first

contribution).

Results: We show through experiments using real-world network traces from UAS flights

on an emulated test-bed that Proteus significantly improves performance compared to MPC.

For example, we reduce the rebuffering ratio from an average of 14.33% to 1.57% for a flight

trace flying a circle orbit around a point 4 miles away from a receiver on the ground, while

also significantly improving a well accepted composite metric for video delivery. Overall,

these results show the promise of enabling video streaming applications over variable UAS

network environments at long-range distances with Proteus.

1.3.3 Chimera: exploiting the UAS flight path to optimize simultaneous sensor
data transmission

Third, motivated by our measurements, we developed Chimera, a system that taps

into the opportunity to exploit the UAS flight path to improve sensor data transmission.

Chimera optimizes transmission of heterogeneous sensor data over variable UAS network
1

 ↑ While Model Predictive Control refers to a broad body of work in the control literature, we use MPC
more narrowly to refer to a specific streaming algorithm [  50 ], following convention in the video streaming
community.
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environments at long-range and extended periods of flight. Chimera is based on an optimal

control framework, performing online optimization in order to yield a feedback control policy

that makes transmission decisions for the two different sensor data streams: (i) video, and (ii)

Synthetic Aperture Radar (SAR) images. While we focus on these streams for concreteness,

Chimera can be generalized to more diverse data streams as well.

Key findings: Chimera develops and validates robust UAS network throughput pre-

diction and error models through a detailed and data-driven analysis of our UAS flight test

data. A key consideration for providing useful models that can be used in working systems

is developing a pragmatic model whose parameters can be learnt online using information

from initial stages of the flight. We explore and analyze models using different combinations

of flight and throughput parameters. However, our analysis indicates that simple regression

models based on the distance and UAS orientation relative to the Ground Control Sta-

tion (GCS) are effective in prediction, even into the future. We integrate our models into

Chimera, which learns both the dependence of throughput on flight path, and also an error

model pertaining to throughput prediction errors. Chimera’s approach is viable since flight

paths are typically determined in advance. Further, its optimal control framework uses a

continual planning model, which allows it to adapt to flight path changes by learning and

improving throughput and error models over time.

Results: With a combination of emulation and simulation experiments using real-world

flight traces, we show Chimera’s effectiveness. Specifically, Chimera reduces penalties related

to dropped radar images by 72.4%-100% compared to an algorithm agnostic to flight path

information, and achieves an average bitrate of 90.5% compared to an optimal scheme that

knows the exact future throughput, with only a minimal increase in radar images dropped.

1.4 Thesis organization

This thesis is organized as follows. Chapter 2 presents data and analysis from real-world

UAS flight tests. These tests are conducted with both fixed wing and multirotor UAS, and

at ranges exceeding traditional civilian regulations, through special approval. This work pro-

vides unique insights into performance characteristics of UAS networks at long-range. Our
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recorded network measurements provide relevant data and a basis for research to improve

dynamic UAS sensor data transmission algorithms. Chapter 3 presents Proteus, the first

system for optimization of UAS video streaming at long-range distances. Proteus utilizes

control theory, modern video streaming algorithms, and knowledge of the UAS flight path to

uniquely tailor parameters to optimize a new and improved design architecture. Chapter 4

presents Chimera, a system that taps into this opportunity while transmitting heterogeneous

data streams over UAS networks. Chimera presents detailed analysis into throughput pre-

diction and errors models, and learns a model online that relates UAS network throughput

to the flight path. Chimera then combines the model with a control framework that op-

timizes simultaneous transmissions from different sensors, based on long-range throughput

prediction. Finally, we conclude and propose future work into the areas of UAS swarms,

satellite communication (SATCOM) with UAS, experimentation with our algorithms in 5G

wireless settings, and enhancements using Artificial Intelligence (AI).
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2. MEASURING FIXED WING UAS NETWORKS AT LONG

RANGE

2.1 Introduction

Recent technological advances have increased Unmanned Aerial Systems (UAS) usage

at high rates and show no signs of stopping [  1 ]. Many UAS applications involve sensor

data collection and transmission of sensor data to an interested party on the ground, given

that UAS can fly and go to places that humans cannot due to lack of physical access or as

a safety precaution (e.g., areas impacted by disasters, law enforcement, etc.). The sensor

data often has reliability requirements. Examples of such sensor data can include video with

reliability requirements, Synthetic Aperture Radar (SAR), and Light Detection and Ranging

(LiDAR) [ 7 ], [ 22 ], [ 23 ]. These sensors are often combined, thus putting significant demand on

the network. Reliable networking is required to ensure important information is not missed

due to dropped packets.

As discussed in §  1.1 , UAS must often travel to locations determined by the application

requirements (e.g., providing mapping and oversight of an area to guide search and rescue

missions), resulting in relatively limited freedom in placing UAS to optimize for connec-

tivity. Recall from § 1 that civilian use of UAS in the US is typically restricted to limited

distances that require Visual Line of Sight (VLOS) [ 20 ] (typically, 1 Km). However, there

is much interest in going to larger distances and regulations are beginning to support this

worldwide [ 1 ], [ 10 ], [ 11 ].

Contributions: In this chapter, we conduct a detailed measurement study of UAS net-

work communication to a Ground Control Station (GCS). The study is done at two different

locations across the US, each over multi-day periods, and using both fixed wing and multi-

rotor UAS at distances exceeding traditional civilian regulations, through special approval.

While there have been network studies with UAS, most have been conducted with multirotor

UAS and at limited distances (less than 0.25 miles). In addition to shorter distances, previous

work focuses on experimentation with a mixture of 802.11 [  29 ]–[ 31 ], [ 35 ], [ 43 ] and LTE [ 33 ],

[ 34 ], [  44 ]–[ 46 ] networking focus. Our measurements focus on long range distances with

both fixed wing and multirotor UAS. Additionally, our experiments are conducted using
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Tactical Radios [ 42 ], [  47 ], which do not rely on pre-existing infrastructure. We are mo-

tivated to understand networking capabilities and limitations with UAS operating at long

range distances, and with different omnidirectional and directional antenna configurations.

Our measurements show how network throughput, and periods of dropout (where no data

goes through), varies with flight path. Interestingly, the data indicates the orientation of

the UAS relative to the ground node also significantly impacts network perfor-

mance for both types of UAS. We explore long-range flight paths and carefully examine the

dynamics of UAS flight and its effect on network throughput. We also pay close attention to

situations on the edge of remote connectivity, where dropouts are common. Understanding

the performance under these different scenarios will extend the usable distance of UAS, and

greatly increase their mission capabilities.

2.2 Background

Fixed wing vs. multirotor UAS: There are two broad kinds of UAS - fixed wing

and multirotor systems [ 21 ]. Fixed wing systems are similar to traditional aircraft, with

a central body and two wings. Multirotor systems are similar to a helicopter structure,

with four (quad) or more rotors. Both systems are used in practice. Multirotor UAS can

provide greater flexibility, with vertical take-off and the ability to change directions very

quickly. Fixed wing systems benefit aerial coverage applications from typically being faster

and having longer endurance than their multirotor counterparts. However, both systems can

be challenging to characterize from a Radio Frequency (RF) standpoint. Fixed wing UAS are

not symmetrical in shape (leading to potentially varying wireless networking performance

based on orientation), and typically must remain in motion in order to stay aloft. Multirotor

UAS are often symmetrical, but can tilt (vertically, or in attitude) as they fly, potentially

causing obstructions from an RF standpoint.

Tactical Radios vs LTE/WiFi: Many aerial surveillance coverage applications cannot

rely on pre-existing infrastructure, and hence require the entire wireless infrastructure on

the UAS and the ground node. We refer to Tactical Radios [ 42 ], [ 47 ] as radios that

integrate the full infrastructure needed for communication into the radio, allowing them to
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be interchangeable and operate in an ad-hoc manner. These radios utilize Mobile Ad-Hoc

Networking (MANET) with multiple nodes, and can also operate in a point-to-point mode,

with two dedicated radios for network traffic. This is relevant for UAS aerial coverage, with

a radio on a UAS transmitting sensor data to another on the ground.

Tactical Radios have been used in the military for years and have since been adopted

by Government and commercial entities, due to their capabilities. They are now commonly

used to achieve goals in areas such as disaster relief [  53 ], fighting wildfires [  54 ], law en-

forcement [  55 ], and crowd management and surveillance [ 56 ]. They have also been used to

provide coverage of sporting events, such as the Super Bowl [ 57 ]. Due to their flexibility and

applicability for use in long-distance UAS applications, we focus on Tactical Radios in our

research.

While there is recent interest in mounting LTE base stations on UAS [  34 ], the technology

is still under development. Furthermore, LTE has different infrastructure requirements based

on whether the communication node is the master or slave. It is advantageous to have

consistent networking equipment that is interchangeable and has both the master and slave

functionality. This ensures that less backup equipment is needed, since it is not specialized,

lowering the logistics footprint. Finally, the Tactical Radios we consider have much longer

range than WiFi, presenting more options for aerial coverage at extended distances.

Types of antennas: UAS often operate with omnidirectional antennas, sometimes just

referred to as omni, due to their constant movement. Omnidirectional antennas on the

ground are the best for application flexibility, since they do not have to point at the UAS

(and thus do not need a tracker). This enables the omnidirectional antenna to be mounted

almost anywhere, even on a person, and moved around at ease. However, they have lower

gain, resulting in less throughput than directional antennas. Directional antennas are larger

and require a tracker to direct the antenna to the UAS, resulting in more equipment and setup

time. There are trade-offs in either case and both are widely used in practice, depending on

the application. Fig.  2.1 shows a comparison of a directional and omnidirectional antenna

that we used in our testing.
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2.3 Measurement methodology

We seek to understand network performance in UAS settings, with the intention of en-

abling aerial surveillance with sensors, transmitting the sensor data to the ground over dis-

tances that stretch the limits of wireless connectivity, with both fixed wing and multirotor

UAS. We characterize how network performance varies with distance, UAS orientation, and

antenna type. We present our measurement methodology, and discuss the data collected.

Regulatory approval: UAS flight in the US is governed by the FAA [  20 ]. Under civilian

regulations, UAS are typically restricted to an altitude of 400 ft, and to distances that require

visual line of sight for the duration of a flight (typically, 1 km). Given flight regulatory

restrictions in the US, we collaborated with the Air Force Research Laboratory (AFRL) to

accomplish relevant fixed wing UAS flight testing at distances exceeding current FAA limits

(recall we expect the FAA limits to increase over time (§ 2.1 )). We also collaborated with a

flight business and utilized strategic placement of our GCS (described below) to extend the

wireless network range of the multirotor UAS flights.

Flight terminology: We introduce the flight terms Distance, Slant Range, and

Altitude, and show them in Fig.  2.2 . The plane orientation of coming towards (to the

GCS) and going away (from the GCS) are also shown.

Figure 2.1. Antennas Figure 2.2. Orientation
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Hardware setup: Both UAS that we tested with had areas for storage. The fixed wing

UAS contained an air cooled payload bay on the bottom of the plane and the multirotor

had bracket mounting points. We stored a Raspberry Pi connected to our radios in order to

transmit and receive network data to and from the ground. Our Raspberry Pi also enabled

storage of data on the UAS (using a 32 GB SD Card). On the ground, we used a laptop

connected to the appropriate radio to communicate with the UAS.

Flight test locations: We collected UAS flight test wireless network data at distances

exceeding VLOS over multiple day periods in Florida (FL) and California (CA), described

below:

2.3.1 Florida dataset

Aircraft selection: We flew a Martin UAV Bat-4, a representative fixed wing UAS

in terms of size, weight, and speed, and appropriate for aerial surveillance activities. The

Bat-4 flies 40-70 knots, depending on weight and wind conditions. The pilot controlled the

airplane from the Ground Control Station (GCS) using a separate Command and Control

(C2) link at a lower frequency that did not interfere with our data link.

Flight patterns: Circular orbits around a point are useful for recurring coverage of an

area, and are common across many surveillance applications. For this reason, we mostly

flew circle patterns to the east of the ground station, as shown and described in Fig.  2.3 .

We refer to the data collected from the circle orbits as circ(k), with k ∈ {1, 2, . . . , 7},

depending on the distance of the center of the circle from the GCS. We flew at 1500 ft

cruising altitude Above Ground Level (AGL) and typically within 50-60 kts airspeed (taking

about 160-180 seconds per circle orbit). With clear vision from the GCS to the UAS, the

slant range determines the absolute distance between the radios. This range affects the signal

strength, and subsequent performance, of the network. Since slant range incorporates both

ground distance and altitude into the calculation, we were able to test a wide variety of slant

ranges while keeping altitude constant at a level that allowed for unobstructed point-to-point

communication between the ground radio and the UAS.
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Figure 2.3. FL flight plan and patterns

Radio Selection: We used two Persistent Systems MPU4 Tactical Radios [ 58 ] tuned to

S-Band frequency for testing. These radios provide seamless long-range layer 2 connectivity

and support Internet Protocol (IP) traffic. We chose this configuration since the UAS sensor

applications we consider require two radios in a point-to-point configuration: one on the

UAS and the other on the ground.

Antenna Selection: We tested with an omnidirectional antenna on the plane and with

both directional and omnidirectional antennas on the ground (see Fig.  2.1 ), since both are

widely used in practice. We used a large directional antenna with 27 dBi gain on the ground

(L-Com (HG2427)). This antenna aperture is 47.2 inches (in) x 35.43 in, offering signifi-

cant gain but is very large and not practical for many applications. We used power ranging

from 2W to 63mW, effectively lowering the gain to 12 dBi at 63mW, to be comparable to a

smaller directional antenna, appropriate for more applications. We focus on this configura-

tion throughout most of this chapter, as the data collected with this configuration is more

relevant to the edge of connectivity, given our flight distances. We use the term “directional

antenna” to represent this configuration. A 12 dBi directional antenna is still larger than
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the omnidirectional and also requires a tracker to accurately point to the UAS. We used a

small Haigh Farr 6130-4 omnidirectional blade antenna on the UAS.

2.3.2 California dataset

Plane Selection: We flew and collected this dataset in CA in partnership with a local

flight business. We used one of their industry-grade multirotor UAS, a good fit for the

missions we have described.

Flight patterns:

Figure 2.4. CA flight plan and patterns

Fig.  2.4 shows the flight setup for our CA dataset collection. We had permission to fly

in a range of roughly 0.8 miles (due to private land). To extend the collection range, we

moved our GCS (co-located with our car), flying a full flight and collecting several loops of

data (relevant for aerial surveillance) at each GCS location. The entire dataset was collected

at four different GCS collection locations at distances ranging from 0.9 to 4.35 miles. The

flight used a multirotor UAS [  21 ] flying in an oval racetrack orbit (similar to a circle orbit,
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but extended length-wise) at speeds of 15-25 knots, slower than the fixed wing alternative

that we collected data with in FL.

Radio Selection: We used two Trellisware Shadow Tactical Radios [  59 ] tuned to S-

Band frequency for testing. Like the MPU4, these radios also provide seamless long-range

layer 2 connectivity and support Internet Protocol (IP) traffic. We likewise chose this config-

uration since the UAS sensor applications we consider require two radios in a point-to-point

configuration: one on the UAS and the other on the ground.

Antenna Selection: We tested with omnidirectional antennas on the plane and on the

ground, for flexibility due to the movement of our GCS (co-located with our car). We used

2W power for maximum range and connectivity, and used Trelliware antennas on the UAS

and for our GCS.

2.3.3 Data collection

We scheduled flights on multiple different days to accomplish our goals for each test. We

flew all flight patterns for a given configuration in a single day to keep consistent results.

We collected second-by-second throughput, latency, SNR, and location data with synchro-

nized clocks. Our throughput was collected using iPerf [  60 ]. The FL dataset contains TCP

throughput information, while the CA datasets are based on mostly UDP measurements

(with some TCP measurements included as well). We hosted the iPerf server on the Rasp-

berry Pi in the UAS and ran the iPerf client on the ground laptop. We recorded latency via

pings from the ground laptop to the Raspberry Pi. We recorded SNR and GPS information

directly from the UAS radios and GPS antenna on the UAS, respectively.

2.4 Data analysis

We first analyze each dataset separately for clarity, and then detail our takeaways from

the analysis of both.
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2.4.1 FL dataset analysis

Our FL testing culminated in 6,245 seconds of throughput test time and 37 individual

traces. The average throughput of each circular orbit test (0.5 Mile radius and center of

circle 1 to 4 miles from GCS) is shown in Table  2.1 (the distances beyond 4 miles were only

collected with the directional 500mW and 2W configurations).

Table 2.1. Circle orbit TCP average throughput (Mbps)
Orbits With Center X Miles From GCS

Config 1 2 3 4
Omni 2W 5.03 2.31 0.97 1.32
Dir 2W 15.40 13.20 12.00 10.80

Dir 500mW 14.60 13.00 11.70 10.10
Dir 125mW 14.60 11.50 9.08 6.92
Dir 63mW 10.80 6.90 4.92 3.26

As expected, we see that throughput decreases as distance increases (except for the

anomaly of the omnidirectional 4 mile test, which will be explained later). Another observa-

tion is that the directional configurations all performed significantly better than the omnidi-

rectional. This is expected because even the lowest gain directional configuration (63mW) is

equivalent to a 12 dBi antenna operating at 2W, much higher than omnidirectional. Table

 2.1 can help guide applications for UAS operations with different configurations. In this

chapter, we focus on the 63mW directional and 2W omnidirectional configurations, as they

present edge cases of network performance with challenges to consider when designing UAS

applications.

Network performance over the flight path: Fig.  2.5 and Fig.  2.6 show a time

series of the slant range of the aircraft, as well as the network metrics (throughput, latency,

and SNR) for the circ(4) trace with omnidirectional and directional antenna configurations,

respectively. The figures allows us to observe network performance, and how it varies with

slant range. Dropouts are more prevalent at this distance, especially during the coming

towards duration (from about 50 until 140 seconds for each circ(4) trace). Dropouts can

be seen in Fig.  2.5 and Fig.  2.6 as sections where the throughput is 0 (top-left plot).

Additionally, dropouts cause the lines to disappear in the other three plots. While the
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Figure 2.5. Omni circ(4) metrics

Figure 2.6. Directional circ(4) metrics
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latency does not have a distinct pattern, we observe several dropouts in all test cases.

Of note, we observe an increase in dropouts while the UAS is in the coming towards

orientation (especially between 80-100 seconds) of the traces; this qualitatively suggests that

the orientation of the UAS will have an impact on network performance. We will see that this

impact is indeed present, and will quantify the differences in the subsequent subsections. The

other omnidirectional traces and corresponding directional traces were qualitatively similar,

with less dropouts as the range of distance decreased.

Fig.  2.7 and Fig.  2.8 show a time series of the same network metrics for the circ(1)

trace with omnidirectional and directional antenna configurations, respectively. These tests

have fewer dropouts than the circ(4) tests, due to being at a closer range. The SNR and

throughput can clearly be seen as increasing as the slant range decreases, and decreasing as

slant range increases.

Antenna pattern and aircraft symmetry: The Bat-4 is not symmetrical and parts

of the aircraft can interfere with wireless communication. As previously mentioned, this is

common in fixed wing aircraft and optimal antenna placement often depends on the intended

environment and flight patterns for the aircraft. Additionally, a closer look at the antenna

pattern specification sheet for the UAS antenna shows weaker signal strength in the front

of the antenna compared to the rear (by 1.5-2 dB). Both the UAS orientation and antenna

pattern contribute to lower performance in the coming towards phase of the orbit, which

is consistent with our data analysis. Next, we explore the impact of distance and orientation

with regard to dropouts.

Dropout analysis: We define a dropout period as a period of at least one second

in which the TCP throughput is zero. Dropout periods are typically caused by the SNR

dropping below a certain threshold, which causes a temporary link failure in the radios.

While dropouts are typical in wireless networks, especially at extended distances, we seek to

further understand the dropouts based on distance and orientation.

Fig.  2.9 shows the percentage of time in dropouts for each orbit, along with the orien-

tation phases of the orbits. We observe the coming towards phase of the orbit has higher

percentage of dropout time than the going away phase for both antenna types, validating

the qualitative observations from the previous subsection. The omnidirectional tests expe-

31



Figure 2.7. Omni circ(1) metrics

Figure 2.8. Directional circ(1) metrics
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Figure 2.9. Percentage of time in dropouts

rience significantly higher dropouts than directional, as expected. The percentage of time

in dropouts increases sharply from circ(1) to circ(2) and again from circ(2) to circ(3), as

distance increases. More interestingly, the omnidirectional test exhibits a decrease in per-

centage of time in dropout when moving from the circ(3) to circ(4) flight pattern. Upon

review, we determined that this can be attributed to the time spent in each orientation

during these tests. In particular, the UAS is going away for only 44% of circ(3), compared

to 58% of circ(4). Each of these tests completed a full circle orbit and small part of another

orbit for each (to ensure completeness, given slight variance in UAS speed during orbit).

Each test started in a different position in the circle, resulting in different times spent in

each orientation due to the extra portion of an additional orbit flown. We also considered

average dropout duration, and found it generally increases with distance, and is higher for

the coming towards direction.

Throughput analysis: We show boxplots of the throughput for each distance and

orientation in Fig.  2.10 . While there is a large variation in throughput across the traces, there

are some clear trends that are consistent with previous findings of performance differences,
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based on distance and orientation. We also analyzed SNR data, and it shows similar trends

as throughput (SNR degrades with distance, and depends on UAS orientation).

Figure 2.10. Omni throughput boxplots

Distance: We notice in Fig.  2.10 that throughput generally decreases as distance in-

creases, as expected. There is an exception to the trend as we move from circ(3) to circ(4),

likely caused by the fact that circ(3) has additional time spent in the coming towards

orientation, whereas circ(4) has additional time in the going away orientation, resulting in

fewer dropouts.

Aircraft orientation: We also see in Fig.  2.10 that the third quartile in the going away

phase is higher than in the coming towards phase across every trace. The first quartile is

visibly higher for the going away phases in circ(1), circ(2), and circ(3), compared to the

coming towards phases of those orbits. Due to the large number of dropouts, some of the

quartile data is at or close to 0, making it difficult to directly compare.

Throughput time series analysis: We next investigate the correlation of throughput

over time; this will indicate how much past bandwidth is a predictor of future bandwidth,
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with implications for different sensor data transmission algorithms. We use time series

analysis testing to determine the correlation of the throughput data over time for each

circle trace, with circ(1) and circ(4) omnidirectional and directional results shown in Fig.

 2.11 . The dashed lines represent the 95% confidence interval for an uncorrelated process;

in other words, if the samples were uncorrelated over time, we would expect the sample

autocorrelation at each lag to be inside the indicated bands with 95% confidence.

Figure 2.11. Autocorrelation of throughput

These tests show the throughput values are correlated over time. This is because the

UAS moves in a seasonal pattern through the circle over time, resulting in performance

differences based on the orientation and position of the aircraft. Interestingly, the auto-

correlation plots also reveal the differences in the throughput due to the orientation of the

UAS. In particular, since the circular orbits take roughly 160-180 seconds to complete, we

notice the anticorrelation of data occurring about halfway through, as a trend for all graphs.

This represents the time-lag between the coming towards and going away orientations,

agreeing with the results presented earlier. Additionally, the throughput is more closely cor-
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related for longer lags at shorter distances and less correlated as the aircraft moves further

away, due to increased throughput variability at further distances. Both trends agree with

our earlier findings.

Figure 2.12. Omni and directional SNR to throughput

SNR throughput analysis: Fig.  2.12 shows a comparison of the throughput in relation

to SNR for both antenna configurations. The results show a general increase in throughput

as SNR increases, as expected. The throughput ranges for each SNR value are relatively

similar for each antenna configuration, as expected. The overall throughput for directional is

higher than omnidirectional because the flight is in a higher SNR range at the same distance,

due to increased signal strength with a higher gain antenna.
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2.4.2 CA dataset analysis

Our CA data collection culminated in 12 TCP traces and 35 UDP traces across 3 days

of flight testing, for a total of roughly 5 hours of data collection time. We collected more

UDP traces because more data is required to calculate the available throughput of the

communication channel (as described below). TCP transmission automatically adjusts to

the expected available throughput by using the network statistics (throughput, loss, delay,

etc) and increasing or throttling the sender rate. UDP transmission rate, on the other hand,

is determined by the sender. If the UDP sender rate is too high and exceeds the available

throughput, then data can be lost or delayed. However, if the available throughput exceeds

the UDP sender rate, then there is an opportunity cost where more data could have been

sent. Generally, to find the available throughput, multiple UDP transmission rates should

be tested. The available throughput is: Throughput = transmissionRate × (1− lossRate).

However, if too much data is sent, then the congestion can cause this calculation to not be

exact, which is why we include multiple UDP traces. Our process for calculating available

throughput includes UDP measurements conducted at multiple different transmission rates

(several loops were flown in each orbit, and a different transmission rate used in each loop),

and we consider the effective throughput seen by the receiver when the sender transmitted

at a rate that saturated the link.

UDP test datasets: We focus our analysis on the UDP tests, since we have previously

described the TCP tests from our FL datasets, and the TCP data from the CA testing was

qualitatively similar.

We first explore UDP loss rates, based on distance. Fig.  2.13 (left) shows loss rates

for the CA data grouped by distance ranges with a UDP transmission rate of 5.0 Mbps. We

see the loss rate increases with distance, as expected. More interestingly, the right figure

shows the UAS orientation affects network performance, revealing higher UDP loss rates in

the coming towards orientation. This is similar behavior to the FL dataset, with fixed

wing UAS, but surprising that the multirotor UAS exhibits the same performance, since it

is symmetrical. Upon further inspection, the multirotor UAS tilts slightly in the direction it

is facing and thus has some obstruction while coming towards (shown in Fig  2.14 ).
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Figure 2.13. UDP loss with distance (left), and orientation (right), CA

Figure 2.14. UAS controlled by Mission Planner software, showing UAS
attitude is slightly titlted, leading to performance decrease while the UAS is
coming towards the GCS.

In Fig.  2.13 , notice that loss rates in the range of over 4 miles are too high to support most

usable sensor data applications, while performance at a range of under a mile was typically
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abundantly good, such that simple transmission algorithms in this range are sufficient for

data transmission. Hence, we focus our analysis on data collected in CA1-2 (see Fig.  2.4 ).

Figure 2.15. UDP throughput for CA1

Deeper analysis of UDP throughput: We test CA1 and CA2 with several UDP

sending rates, and combine three tests with transmission rates of 2.5, 5.0, and 8.0 Mbps,

respectively. Fig.  2.15 and Fig.  2.16 show the effective throughput for sending at each

of these rates for CA1 and CA2, respectively. The top plot shows sending with the highest

transmission rate (8.0 Mbps) and the middle plot shows sending with the lowest transmission

rate (2.5 Mbps), with a transmission rate of 5.0 Mbps in between those two plots. We see

more variability from UDP losses as the transmission rate is higher, as expected. Further, we

combine the three traces by taking the most link-saturated rate (labeled Effective Bitrate
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and shown as the second plot from the bottom). Finally, the slant range of the UAS from the

GCS is shown on the bottom plot. We notice the data for the CA2 location, which is further

distances than CA1, is slightly more variable (especially in the 8 Mbps UDP transmission

rate). This is expected, as the distance increase causes a decrease in wireless performance.

The combination of the UDP send rates into the effective UDP throughput is what we use

for our UDP test traces with Chimera in § 4 .

Figure 2.16. UDP throughput for CA2
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2.4.3 Flight dataset takeaways

Our flight tests were executed using both multirotor and fixed wing UAS at two locations

across the US. These tests were unique and present relatively unexplored aspects of UAS

flight beyond VLOS, due to the challenges in collecting such data, but representing a growing

area of interest, as discussed in §  2.2 . The datasets show the dependence of UAS throughput

on the UAS flight plan, for both multirotor and fixed wing UAS types. The throughput

degrades with distance, as expected. More interestingly, the UAS throughput depends on

the UAS flight orientation. This is especially interesting that it affects both UAS types, albeit

for different reasons, as we discussed. The observation that the UAS flight path significantly

impacts throughput motivates the rest of our research as we seek to exploit this information

to design new UAS sensor data transmission algorithms that are optimized for UAS flight.

Additionally, the flight test datasets provide traces from which we can further analyze and

design throughput prediction models with (§  4 ), and use for simulation and emulation testing

(in both § 3 and § 4 ).

2.5 Related work

There has been much recent interest in using UAS to extend Internet connectivity to

remote locations [  34 ], [  44 ], [  45 ]. The primary focus of these works is optimal positioning of

the UAS to best serve the area [  44 ], and how to best support LTE base station functionality

on UAS [  34 ]. There has been work with a focus on 802.11 fixed wing [  30 ], [  43 ] and multi-

rotor [  29 ], [  31 ], [  33 ], [  35 ] UAS networking, but at limited distances (less than 0.25 miles).

Additionally, commercial In-Flight Communication (IFC) is characterized in [  61 ], showing

there is significant packet loss and throughput variation in such settings. A recent workshop

paper [ 41 ] conducted a preliminary investigation of UAS for video streaming. Limited ex-

periments with a multirotor and WiFi over short distances were provided. Finally, different

types of Tactical Radios are tested with different transport protocols on the ground in [ 47 ].

In contrast to these works, our focus is on UAS networking for applications that require

aerial surveillance coverage, often where it is not advisable to step foot close to the area

being inspected. For these scenarios, it is important to enable acceptable performance over
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extended distances, and when the location cannot be optimized for connectivity. We focus

on Tactical Radios rather than LTE settings, providing extended reach and no reliance on

pre-existing infrastructure.

2.6 Conclusion

Our experiments explored long range measurements with both fixed wing and multirotor

UAS using Tactical Radios. Our data is collected at multiple locations across the US, and

presents both TCP and UDP transport data. Further, we have analyzed the flight test data

with traces at different distance ranges and with different corresponding antenna configura-

tions. In our analysis, we found that the network performance varies over the duration of the

flight with both distance and plane orientation, making networking with dynamic UAS

flight challenging, but also providing opportunity to potentially leverage the flight path in

UAS networking applications. Our results can be used to better tailor algorithms for delivery

of critical aerial surveillance information, and improve the overall experience for end users

(as shown in our work presented in the following chapters). One implication is that we need

to not only (i) consider the flight’s distance, but also relative orientation; and (ii) we need to

explicitly consider dropouts in the application design. Our tests explore performance all the

way to the edge of connectivity. Even in this worst case at the edge of connectivity, sensor

data (e.g. video) delivery at certain resolutions may still be possible, but dropouts must be

considered.
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3. OPTIMIZING QUALITY OF EXPERIENCE FOR

LONG-RANGE UAS VIDEO STREAMING

3.1 Introduction

Many UAS applications involve recording and streaming video. Quality and reliability

(e.g., uninterrupted video) is important when the video is being viewed by a human (e.g.,

to monitor and take appropriate action). An example of this type of scenario is shown in

 3.1 . The figure represents a military ground operator communicating with a UAS in order

to survey and gather insight about an area with a video sensor. This type of scenario is also

quite relevant to disaster response [ 2 ], [  8 ], [  13 ], search and rescue [  14 ], law enforcement[ 2 ],

agriculture [ 2 ], railroad and pipeline inspection [ 2 ], [ 10 ], and more [ 2 ], [ 11 ], [ 15 ].

Figure 3.1. UAS video transmission

Since UAS must travel to locations determined by the application requirements (e.g.,

surveying areas that are dangerous or difficult to access by humans such as disaster-hit

areas, and military environments), there is limited freedom in placing UAS to optimize

for connectivity. This is in contrast to the use of UAS to extend Internet connectivity to

remote locations [  62 ], [ 63 ], where it is feasible to optimally position UAS to ensure the

best connectivity. As we discussed in §  1 , today’s civilian use of UAS in the United States
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(US) is typically limited to distances that require visual line of sight [ 20 ] (typically, 1 Km).

However, we also noted that there is interest in extending the range of UAS networking, and

regulations are being put into place to support such initiatives [ 1 ], [ 10 ], [ 11 ].

In this chapter, we tackle two key questions: (i) What are the characteristics of long-

range UAS networking settings, and what challenges do they pose for video streaming? (ii)

How should video streaming algorithms be designed to address these challenges, and is it

viable to achieve good performance? The answers to these questions are not obvious a priori,

and are complicated by the lack of real-world flight data.

Contributions. In this chapter, we answer the above questions and make the following

contributions [ 48 ].

First, we utilize the data analysis of UAS networks based on real-world data from UAS

flights at long-range distances (beyond VLOS) presented in § 2 . We use the observations

gleaned in the previous chapter but also take a deeper look at the specific measurement results

pertaining to video streaming. We do so in order to better understand the applicability for

such applications in dynamic long-range UAS environments. The results show that ultra-low

latency (e.g., sub-second) video streaming may not be achievable, due to the prevalence of

dropouts (periods of extremely poor throughput). However, the typical dropout duration is

short enough that video streaming with delays of tens of seconds is potentially viable, given

the right algorithm design. This is an acceptable delay in many of the UAS applications we

described, especially if the result extends the usable flight distance.

Second, motivated by the observations above and from §  2 , we present Proteus, a system

for video streaming in UAS settings. Proteus leverages Adaptive Bit Rate (ABR) algo-

rithms [ 36 ], [  37 ], [  40 ], [  49 ]–[ 51 ], given they are well suited to streaming with modest delays,

and since the throughput that can be sustained in UAS settings is highly variable and de-

pendent on flight path. While ABR algorithms have been extensively studied in traditional

Internet environments, they are only starting to be explored in UAS settings [ 15 ], [  41 ]. To

our knowledge, Proteus is the first system for video streaming that tackles long-range UAS

settings, and issues unique to fixed-wing UAS.

Proteus is based on a control-theoretic approach, motivated by the success of such ap-

proaches for traditional Internet streaming [  39 ], [  50 ], [  51 ]. Unfortunately, we illustrate that
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a direct application of a representative and widely studied ABR algorithm based on a control

theoretic approach [  50 ], often referred to as MPC in the video streaming community 

1
 , does

not work well for long-range UAS environments. Indeed, we show that even with a perfect

predictor of throughput (i.e., an Oracle), MPC performs poorly owing to extended dropouts

beyond the finite planning horizons utilized by the algorithm.

Proteus mitigates such myopic decision-making by the introduction of a terminal cost

into the receding-horizon optimization at each point in time. Such terminal costs are com-

monly used in control theory as a way to introduce long-term considerations into short-term

planning [  52 ]; however, an open problem is how to choose the terminal cost appropriately for

each individual problem. In our setting, we show that by carefully constructing a terminal

cost that incentivizes increasing buffer occupancy to hedge against future dropouts, we can

obtain substantial gains in video streaming performance over long-range UAS networks. In

particular, we show that knowledge of the UAS flight path can be incorporated into the de-

sign of the terminal cost by choosing the parameters as a function of both the UAS distance

and orientation (motivated by our analysis of UAS network characteristics from our first

contribution).

Third, we show through experiments using real-world network traces from UAS flights

on an emulated test-bed that Proteus significantly improves performance compared to MPC.

For example, we reduce the rebuffering ratio from an average of 14.33% to 1.57% for a flight

trace flying a circle orbit around a point 4 miles away from a receiver on the ground, while also

significantly improving a well accepted composite metric, Quality of Experience (QoE) [ 36 ],

[ 37 ], [  50 ], for video delivery. Overall, these results show the promise of enabling video

streaming applications over variable UAS network environments at long-range distances with

Proteus.
1

 ↑ While Model Predictive Control refers to a broad body of work in the control literature, we use MPC
more narrowly to refer to a specific streaming algorithm [  50 ], following convention in the video streaming
community
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3.2 Motivating measurements of UAS networks

In this section, we present measurements from real-world UAS flights, building upon our

measurements in § 2 , with a focus on how the data will function for video streaming appli-

cations. Our data reveals the challenges of UAS video streaming over distances stretching

the limits of wireless connectivity due to dropouts and highly varying throughput. The re-

sults also provides insights on how network performance correlates with the UAS flight path,

which we leverage in our video streaming algorithm design in later sections.

3.2.1 UAS flight test setup

We used the FL test data and radios as we described in §  2 : flying a Bat-4 [ 64 ], a

representative fixed wing UAS in terms of size, weight, and speed, and appropriate for the

activities described in § 3.1 . Fixed wing UAS can benefit video streaming application, since

the video streaming applications we focus on benefit from speed and longer endurance.

Recall the flight common flight terms Distance, Slant Range, and Altitude, relative

to the Ground Control Station (GCS), shown in Fig.  2.2 from § 2 , and the different UAS

orientation terms of coming towards (to the GCS) and going away (from the GCS).

For UAS wireless connectivity, recall that our FL testing used two Persistent Systems

MPU4 Tactical Radios [  47 ], [  58 ] tuned to S-Band frequency and in a point-to-point con-

figuration (one on the UAS and the other on the ground). These radios provide layer 2

connectivity and support Internet Protocol (IP) traffic. For video streaming at long-range

distances, we focus on the omnidirectional ground antenna test configurations since they

are common and best for application flexibility (a tracker is not needed since they do not

have to point at the UAS). This enables the antenna to be mounted almost anywhere, even

on a person, and moved around at ease. Directional antennas are sometimes still used in

practice and we also provide test results for directional antennas in §  3.4 in order to show the

flexibility and broad applicability of our work. As previously discussed (§  2 ), we collected

TCP throughput using iPerf [ 60 ] and used pings to record latency and loss rate.

As discussed in §  2 , circular orbits around a point are useful for recurring video coverage

of an area. Recall that we refer to the data collected from circle orbits as circ(k), with
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k ∈ {1, 2, . . . , 7}, depending on the distance from the GCS to the center of the circle. Our

work in this chapter focuses on omnidirectional configurations, for optimal flexibility, but we

also consider comparisons directional antenna configurations, as previously described. Thus,

we utilize the distances up to circ(4). We also flew along a line pattern (we refer to the

collected data as the Line trace), which is useful for monitoring of multiple successive areas

(e.g., pipeline inspection).

3.2.2 Findings and implications for UAS video streaming

Recall Fig.  2.5 shows time series plots of the UAS slant range and network metrics

(throughput, latency, and SNR) for the circ(4) trace. This figure shows network performance,

and how it varies with slant range. While latency does not have a distinct pattern, dropouts

are more prevalent at extended distances, especially during the coming towards duration

(from about 50 until 140 seconds). Recall that dropouts are sections where the throughput

is 0 (top-left plot) and pings are lost (bottom-left plot). This qualitatively suggests that

UAS orientation will have an impact on network performance. We saw in §  2 that this

impact is indeed present, and will further quantify the differences in network aspects related

to video streaming (especially dropouts) in the subsequent subsections. The other traces

were qualitatively similar. We now discuss two salient features of our measurements, along

with their implications for video streaming.

Losses and dropouts impact latencies achievable with video streaming. We

measured loss rate, using pings, of 5.6%, 18.3%, 28.5%, and 23.5%, respectively for circ(1-

4). The loss rate increases with distance, except a minor decrease for circ(3) to circ(4);

this anomaly is likely due to the UAS spending more time in the lower performance coming

towards orientation during circ(3), compared to circ(4).

We also explore additional measurements (relative to §  2 ), in order to provide a better

understanding of the flight test data, and how it relates to video streaming. To accomplish

this, we next measure consecutive periods of loss, which is an indication of no data going

through for a certain period. We also measure median and maximum loss duration, as well

as average dropout duration, as each of these measurements will have an impact on our
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video streaming performance (with specific impacts on the buffer, since the video buffer

needs to be large enough to sustain a prolonged dropout period). Fig.  3.2 shows the median

and maximum duration of consecutive losses, measured with pings. The median duration

increases slightly with distance and the maximum value increases from circ(1) to circ(3), and

slightly decreases for circ(4).

Figure 3.2. Median and maximum loss duration with pings

We also measured ping loss rates to compare to the TCP dropout rate that we previously

measured in §  2 . The results show the clear trend of going away exhibiting a lower loss rate

than coming towards, agreeing with our previous assessments.

Figure 3.3. Loss rate with pings

We next look at TCP dropout periods and compare performance by distance and orien-

tation. We define a dropout period as at least one second in which the throughput is zero.
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Dropout periods are often more prevalent at extended distances and are typically caused by

the SNR dropping below a certain threshold, which causes a temporary wireless link failure.

Fig.  3.4 shows the average duration of dropouts for each orbit, as well as for the coming

towards and going away phases of the orbits. First, we observe that the average dropout

duration generally increases as the distance of the plane increases, both for the orbit as a

whole, and during each phase of the orbit. Second, the average dropout duration is generally

higher in the coming towards phase of each orbit than in the going away phase. The data in

Fig.  3.4 does show some exceptions to the above trends, namely when going from circ(2) to

circ(3) (for the going away phase), and from circ(3) to circ(4) (for the coming towards phase).

These exceptions are due to two short dropouts of 1 second each in the corresponding traces.

These extended dropouts indicate that achieving extremely low latency video streaming

with sub-second delays may not be viable without losing entire periods of video. Therefore,

we focus on streaming with delays of tens of seconds, which our data suggests may still be

potentially viable. This is still acceptable in many application scenarios, as we discuss in

§ 3.3 .

Figure 3.4. Average dropout duration

Correlation of throughput with flight path presents opportunities to improve

video streaming. Recall Fig.  2.10 plots the TCP throughput measured across the traces.
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Each group of boxplots corresponds to a trace, and shows the distribution of throughput

samples collected at 1 second intervals for the entire trace (All), and the portions of the

trace corresponding to the coming towards, and the going away orientations.

Fig.  2.10 showed that throughput is generally higher for the going away orientation,

compared to coming towards, consistent with earlier measurements. As we discussed in §  2 ,

we believe this is because fixed wing UAS are not symmetrical and parts of the aircraft can

interfere with wireless communication. This is common in fixed wing aircraft and optimal

antenna placement depends on the intended environment, mission sets, and aircraft flight

patterns. Additionally, recall that a closer look at the representative radiation patterns on

the specification sheet [ 65 ] for the UAS antenna shows weaker signal strength in the front

of the antenna compared to the rear (by 1.5-2 dB). Both the UAS orientation and antenna

pattern contribute to lower performance in the coming towards phase of the orbit, consistent

with our data analysis.

Further, as expected, throughput generally decreases as distance increases. There is an

exception to the trend as we move from circ(3) to circ(4), likely caused by the fact that

circ(3) has additional time in the coming towards orientation, whereas circ(4) has additional

time in the going away orientation, resulting in fewer dropouts. In § 3.3 , we will explore how

Proteus leverages these correlations in its design.

3.3 Proteus: Video streaming in dynamic UAS environments

In this section, we present Proteus, a system for video streaming at long-range UAS

settings, motivated by the measurements presented in § 2.3 .

3.3.1 Proteus design rationale

Solutions for video streaming in UAS settings have multiple design points. At one end of

the spectrum, one could target ultra-low sub-second latencies. However, our measurements

in § 2 indicate that this design point is likely to incur significant video content loss owing to

extended dropouts at these distances. At the other extreme, video may be recorded during

the flight, and transmitted later to the ground. This approach ensures high video quality,
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but unacceptable delays of tens of minutes, or even hours. Proteus targets a middle ground

between video quality and latency, targeting latency in the range of tens of seconds, and

choosing to degrade video quality when needed.

While Proteus cannot handle some applications that require near instantaneous decision

making (e.g., military operations with troops actively engaged), delays of tens of seconds

are acceptable in the vast majority of military and civilian applications [ 7 ], [ 66 ]–[ 68 ], espe-

cially when the delay extends the mission flight range. For instance, in disaster response

settings [ 2 ], [  13 ], the extended distance can be very beneficial for safety and surveillance,

and information received within tens of seconds can guide decisions such as when and where

to deploy personnel to help. Further, such information can guide decisions on where to next

fly the UAS.

The primary benefit of Proteus is significant range extension of the UAS through software,

while supporting the timeliness requirements of a vast majority of applications, and not

requiring more expensive hardware solutions.

Proteus targets scenarios for human end-users, where stalls and fluctuations in quality

are undesirable. Given these requirements, Proteus considers video delivery using ABR

algorithms, which are a natural fit and can take advantage of varying network performance

while optimizing bitrate quality. ABR algorithms can run over TCP or emerging approaches,

such as QUIC [ 69 ], which allows use of rate adaptation mechanisms on top of UDP. We next

discuss why existing ABR algorithms are inadequate, and present Proteus’ approach.

3.3.2 Need for new ABR approaches for UAS settings

While many ABR algorithms have been developed in recent years [ 36 ], [  37 ], [  40 ], [  49 ]–

[ 51 ], [ 70 ], they are all designed for traditional Internet environments. This poses a problem

when working in dynamic UAS environments, where dropouts are more common and can

cause rebuffering.

We focus on MPC [  50 ], a widely used and representative ABR algorithm. Our insights

can benefit other ABR algorithms as well, as we discuss in §  3.5 . MPC uses a combination
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of future throughput prediction and buffer occupancy to select chunk bitrates [  50 ]. 

2
 Prior

to downloading each chunk, the MPC algorithm selects the next bitrate by optimizing a

composite metric (more formally defined in § 3.3.3 ) that rewards higher chunk bitrates, and

penalizes rebuffering and variation of bitrates over a look-ahead of W future chunks. This

type of scheme is also referred to as receding horizon optimization in the control litera-

ture [ 52 ].

We tested MPC via an emulated test-bed (see §  3.4 for experimental setup details) with

throughput traces gathered from our UAS flights. Fig.  3.5 shows the rebuffering ratio for

video streaming using MPC with our flight test traces ranging from circ(1) to circ(4). For

each trace, we present results for (i) the default harmonic mean throughput predictor, which

for each chunk predicts throughput based on the harmonic mean of the throughput expe-

rienced by prior chunks; and (ii) a perfect Oracle predictor that provides exact throughput

information for the duration of the look-ahead window. Rebuffering rates are high with the

harmonic predictor, exceeding 25% for circ(3). Interestingly, while using the Oracle predic-

tor helps, the rebuffering ratio is still high, exceeding 10% for circ(3). This is because while

MPC optimizes bitrates for a given look-ahead, it can leave the buffer nearly empty owing to

its greedy nature. This can in turn leave the algorithm vulnerable to dropouts and extended

periods of low throughput beyond the finite planning horizons, which are quite common

in long-range UAS settings. We experimented with both the default settings of MPC and

settings with much higher weights for the rebuffering penalty, but found this inadequate

to avoid rebuffering since this does not explicitly compensate for the greedy nature of the

algorithm. We show more detailed results and comparisons with Proteus in §  3.4 .

Next, we describe how to address these shortcomings by carefully incorporating charac-

teristics of the flight path into the receding horizon optimization.
2

 ↑ We use the term MPC to refer to the conservative version of the algorithm (referred to as RobustMPC
in [  50 ]) which reduces predicted throughput by using a discount factor based on the maximum error in
throughput predictions experienced over the last few chunks.
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Figure 3.5. MPC rebuffering ratio for circ(4) with a harmonic mean predictor
and an Oracle predictor

3.3.3 Proteus design details

In this section, we discuss our new algorithm design, Proteus, which overcomes previously

discussed challenges by (i) explicitly considering dropouts that occur in UAS networking

environments, and (ii) incorporating knowledge of the flight path and its interplay with

throughput. The improvements in Proteus are dependent on the addition of a terminal

cost into the receding-horizon optimization at each point in time. Terminal costs are often

used in receding horizon optimization to ensure stability and improve performance [ 52 ],

however, choosing an appropriate terminal cost for each individual problem is a difficult and

open problem. We discuss how we carefully design and select our terminal cost in order

to substantially improve long-range UAS video streaming. Specifically, motivated by our

network measurements and analysis, we show how we utilize knowledge of the UAS flight

path in the terminal cost design by carefully choosing parameters that consider both UAS

distance and orientation.
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Handling dropouts: Consider that the overall objective of the ABR algorithm is to

optimize a composite metric that rewards higher bitrates, penalizes rebuffering (and start-up

latency), and penalizes variations in bitrates across chunks (smoothness). While a variety

of composite metrics could be used with Proteus, we focus for concreteness on a metric

obtained by a linear combination of these metrics as in past work[ 36 ], [  37 ], [  50 ], defined as:

QoE(i, j) =
j∑

n=i
Rn − µ

j∑
n=i

Tn − λ
j−1∑
n=i

|(Rn+1) − (Rn)|. (3.1)

Here, QoE(i, j) captures the metric for chunks ranging from i to j. If N is the total number

of the chunks in the video, the performance metric for the entire session is simply captured

by QoE(1, N), or denoted by QoE for brevity. Rn refers to the bitrate for chunk n (in-

dexed relative to the current chunk) and Tn refers to the amount of rebuffering experienced.

The coefficients µ and λ capture the extent to which rebuffering and bitrate variations are

penalized.

Rather than greedily optimize the above metric in each finite planning horizon, Proteus

mitigates the greedy nature of MPC by explicitly incentivizing that some amount of video

is left in the buffer when selecting bit rates. Specifically, consider that a finite look-ahead

window of W chunks is used, and chunks starting from chunk i are to be downloaded.

Then, we create a new optimization metric for each look-ahead window (solved prior to the

transmission of each new chunk i in a receding horizon fashion) as follows:

QoEb = QoE(i, i + W − 1) + γε(b). (3.2)

Note that the QoEb metric optimized by Proteus in each look-ahead window includes

a term γε(b) that considers the amount of video (b), in seconds, in the buffer at the end

of the window. A higher value indicates that the algorithm wishes to insure more for the

future. The function ε(b) ranges from 0 to 1 depending on the buffer occupancy b, while γ

is a factor that decides how much weight to assign to the buffer insurance term, relative to

other factors such as bitrate and rebuffering. In particular, by setting γ = 0, we obtain the

original QoE metric from Eq. ( 3.1 ). The function γε(b) plays the role of a “terminal cost.”
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There are various considerations that go into the design of ε(b). A larger term indicates

more insurance for the future, in case network performance degrades or a long dropout occurs,

but also makes Proteus more conservative (since the algorithm may choose to sacrifice bitrate

in order to fill up the buffer). While some insurance can help, the benefits diminish with

larger insurance. Thus, the need to fill up the buffer to a “sweet spot” (in order to balance

video quality and insurance against dropouts) motivates us to design an ε(b) that is quadratic

in the buffer occupancy b. Specifically, we use the following:

ε(b) = b
2 − (min(b, 2b) − b)2

b
2 , (3.3)

where b̄ represents a target buffer size, or desired level of buffer, in seconds, which provides

some level of insurance against dropouts without being too conservative. The function ε(b)

reaches a maximum of 1 when b = b, but is 0 when b = 0, or b ≥ 2b. Fig.  3.6 shows a plot

of ε(b) and the effect that changes in buffer occupancy has on insurance. We also explored a

logarithmic function but found the quadratic to be slightly better and thus only discuss the

latter.

Incorporating path awareness: In the scheme above, a key question is how to set

the parameters b and γ. Intuitively, these parameters depend on the network characteristics

(particularly, the duration of dropouts). As our measurements have shown, the through-

put primarily depends on the distance of the UAS from the GCS, and secondarily on the

orientation. Based on these insights, we consider two schemes:

(i) Proteus, where the buffer insurance parameters are chosen based on the distance of

the UAS from the GCS.

(ii) Proteus-Orient, where we select parameters based on both the distance of the UAS,

and its orientation (coming towards and going away).

We set γ = α × M × W , where M is the maximum bit rate and W is our video chunk

look-ahead window. Here, α is used to regulate the importance of the buffer insurance term.

When α = 1, the maximum value of the buffer insurance term is equal to the maximum

bitrate reward over the W -chunk look-ahead, while α = 0 turns off buffer insurance.
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Figure 3.6. An illustration of the terminal cost ε(b) from Eq.  3.3 , representing
the reward obtained by having a buffer occupancy b.

We next discuss how the b and α parameters are set for Proteus in order to optimize

performance across the flight path. For the circle traces, while the distance of the UAS from

the GCS varies significantly across different traces, the variations are smaller within each

trace. Hence, for Proteus, we pick the same b and α for each individual trace (corresponding

to circular orbits at a certain distance from the GCS), though different parameters are

used across different traces. For Proteus-Orient we also allow for different b and α for each

orientation (coming towards and going away).

To determine the best parameter choices, we simulate Proteus using different parameter

settings, and pick the parameter resulting in the highest QoE for the entire video session.

The test takes less than a minute. We choose the look-ahead optimization window to be

W = 5 chunks, maximum bit rate M = 4.3, and we set λ = 1 and µ = 4.3 so that 1 second

of rebuffering penalty is equal to the maximum bitrate value (this method of parameter

selection is consistent with previous work [  36 ], [  37 ], [  50 ]). To illustrate our simulation, Fig.
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Figure 3.7. Target buffer size tuning for the circular orbits

 3.7 shows how the achieved QoE varies based on the b parameter, while keeping α fixed at

3. The figure shows that in general larger distances require a larger target buffer size b. This

is due to higher dropouts and lower throughput as distance increases. We can see that low

values of b are optimal for the 1 Mile distance because dropouts are not as disruptive at

this distance. Proteus-Orient can further add performance by changing parameters based on

orientation, as we show in §  3.4 . As an example, one can see the optimal selection for Proteus

for circ(3) is b = 52 (with α = 3), although with Proteus-Orient, the optimal configuration

becomes α = 3 and b = 28 for going away, and α = 5 and b = 52 for coming towards.

This aligns with our flight measurements, since the coming towards orientation induces more

dropouts and lower throughput than the going away orientation, and a higher value of buffer

occupancy would be necessary during times of degraded throughput.
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We believe this approach is reasonable in practice because in aerial video coverage ap-

plications, it is common for the UAS to make multiple passes over a given area (e.g., on the

same circular orbit). Thus, parameter choices may be informed using data gathered on an

initial pass. For an initial pass, it is still possible to learn parameters from other previously

flown trajectories and utilize them in current or future flights. To illustrate this, we consider

the Line trace §  3.2 , and set its parameters based on those learnt from the Circle trace; we

will present those results in the next section.

3.4 Results

Next, we evaluate the benefits of our new designs, Proteus and Proteus-Orient. Unless

otherwise mentioned, our results focus on the traces with omnidirectional antennas, MPC

with the harmonic mean predictor, and a client buffer of 60 seconds. We also explore

additional predictors and buffer sizes in a subsequent sensitivity analysis section.

3.4.1 Emulation methodology

We use Mahimahi [  71 ] to emulate network throughput, replaying the various throughput

traces collected from our flights. Since Proteus incorporates path-awareness and dynamically

changes parameters over a given trace (e.g., based on distance and orientation), we modified

the emulation setup to also include the distance and orientation information over time along

with the throughput.

The evaluations measure ABR performance using the “EnvivioDash3” video from the

MPEG-DASH reference videos [  72 ]. We chose this video because it has been extensively

used in prior work [  36 ], [  37 ], [  40 ], and since its length (193 seconds) is slightly larger than

the time it takes to complete a full circular orbit flight pattern. The video is divided into

48 chunks, each of 4 second duration (with the last chunk slightly smaller). The video is

encoded by H.264/MPEG-4 codec at bitrates of {300, 750, 1200, 1850, 2850, 4300} Kbps.

We host the video on an Apache Server. Both the server and client software run on the same

machine with Mahimahi performing the proper network emulation. The machine is a 64-bit

Ubuntu 4-core Virtual Machine (VM) with 8 GB RAM. The ABR algorithm is implemented
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on a separate server process, and Dash.js configured to contact this process to determine the

bitrates to fetch each chunk.

Our primary performance metric is the QoE metric from [ 50 ] presented earlier (Eq. ( 3.1 ),

with i=1, and j = N indicating that performance is measured over all video chunks). Note

that although Proteus optimizes the modified metric in Eq. (  3.2 ) in each look-ahead window,

the original QoE metric is used to evaluate performance, as this captures the relevant metrics

from the receiver’s perspective. In addition, we present the constituent video delivery metrics

(average bitrate, rebuffering ratio, and bitrate variations) to get a better sense of the video

performance.

Figure 3.8. Proteus illustration for circ(4)
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3.4.2 Benefits of Proteus

Fig.  3.8 illustrates MPC and Proteus for the circ(4) trace, showing the advantages of

Proteus. The top figure shows throughput across time (notice the horizontal flat lines that

represent dropouts), the second figure shows the video chunk bitrate, and the third figure

shows the buffer (since each chunk contains 4 seconds of video, the buffer must have at

least 4 seconds of video when a new chunk is selected for playback - otherwise there will be

rebuffering. A dotted line is at the 4 second mark to easily identify rebuffering events). Due

to its greedy nature, MPC can leave the buffer nearly empty (as discussed in §  3.3 ), resulting

in 3 rebuffering events (where the buffer drops below the dotted line). Each rebuffering

event is several seconds, creating an undesirable and disruptive video streaming experience.

We observe that Proteus is slightly more conservative than MPC, resulting in a larger buffer

occupancy. This in turn allows Proteus to better handle large dropouts and avoid rebuffering

while still achieving sufficient bitrate quality. Unlike MPC, the Proteus buffer does not drop

below 4 seconds once the video streaming session begins.

Figure 3.9. QoE benefits with Proteus

60



Fig.  3.9 compares MPC with Proteus for the different circle traces. Each circle trace

uses different insurance parameters, as described in § 3.3 . We noticed some variability across

runs in our emulation tests. Hence, we test each trace and algorithm combination ten times

and present a boxplot that shows the distribution of the QoE across the runs. Proteus out-

performs MPC in all scenarios, except for circ(1). Here, the optimal parameter is α = 0

(equivalent to no insurance), given that dropouts are less common. The results are dramati-

cally improved with the circ(3) trace, which experienced the most dropouts. Further, notice

that MPC exhibits significant variability because even minor processing delays across runs

in the emulation can lead to slightly different bitrate selections, resulting in significantly

different performance if a more aggressive choice were made just prior to a dropout. In

contrast, Proteus is more robust to these variations because it can better overcome a poor

bitrate selection choice with the larger buffer.

Figure 3.10. Breakdown of individual video delivery metrics
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Fig.  3.10 presents a breakdown of the QoE metric into the constituent video delivery met-

rics. The top figure shows Proteus dramatically reduces rebuffering. The average rebuffering

ratio is reduced from 10.06% to 0.38% for circ(2), from 23.97% to 8.16% for circ(3), and

from 14.33% to 1.57% for circ(4). Further, these reductions are achieved without significant

degradation in average bitrate (middle figure), and smoothness (lowest figure), since Proteus’

selection of parameters are optimized for the dynamic UAS flight path.

3.4.3 Benefits of Proteus-Orient

Fig.  3.11 considers and shows the additional benefits if Proteus parameters were chosen

based on orientation in addition to distance. For each circle trace, we determine two sets

of parameters for each of the (coming towards and going away) orientations, and use the

appropriate parameter based on the UAS orientation. There is a noticeable increase in

QoE for the circ(2) and circ(3) traces. Further inspection showed that this was because

Proteus-Orient achieved an increase in throughput by 13.34% and 14.38%, while reducing

rebuffering ratio from 0.38% to 0.18% and from 8.16% to 5.82% for circ(2) and circ(3),

respectively. Note that these benefits are in addition to significant gains already achieved by

the Proteus scheme. Proteus-Orient does not provide additional benefits for circ(4) because

the optimal values for b and α for circ(4) are the same for both orientations. We believe

this is because each orientation for circ(4) experiences a similar average dropout duration.

Finally, we omit circ(1) because Proteus did not improve performance, due to less dropouts

at this distance.

3.4.4 Learning across traces

We next present results showing that parameters learned for Proteus in one environment

can be effectively used in other similar environments. For this, we test Proteus for the Line

trace, with parameters learned from multiple circular traces. The Line trace is a straight

line from a distance of 2.75 miles from the GCS to 0.75 miles. We use b = b and α from the

circ(2) and circ(1) traces, dynamically monitoring the location of the UAS and adjusting the

parameter values based on UAS position. We also compare this scheme to a static optimal
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Figure 3.11. Benefits of considering orientation

scheme, which determines the best static b = b and α parameters for the Line trace. Fig.  3.12 

shows that Proteus significantly improves QoE relative to MPC, and also achieves noticeable

benefits over the static optimal. These results highlight the benefits of dynamically adapting

parameters with distance during the same flight path, and also show the feasibility of learning

parameters from one trace and applying them to another.

3.4.5 Sensitivity analysis

We evaluate if Proteus is still beneficial when: (i) a better predictor is used; (ii) a

directional antenna is used; and (iii) the client buffer is smaller.

Predictor sensitivity: We have assumed network throughput prediction using the

harmonic mean of previous samples. We next evaluate whether Proteus benefits persist if

better throughput prediction methods are used. We consider two such predictors: Hidden

Markov Model (HMM) and an Oracle.
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Figure 3.12. Proteus performance when parameters learned from one trace
are applied in another trace and dynamically vary with distance

HMM: Recent work [  38 ] has shown that network throughput follows different states

(with each state corresponding to different throughput distributions). Based on this, a HMM

predictor was developed, and was shown to perform better than harmonic mean for ABR

algorithms. We tested Proteus and MPC with a HMM predictor and found that Proteus still

outperforms MPC. The average QoE results were 201.4, 13.05, -206.5, and -22.4 for MPC

compared to 201.4, 47.84, -9.9, and 35.8 for Proteus for circ(1)-circ(4), respectively.

Oracle: Due to the greedy nature of MPC, it can perform poorly even with a perfect

predictor, as discussed in § 3.3 . We next evaluate both MPC and Proteus with an Oracle

that knows the exact throughput information for the duration of the look-ahead window.

Fig.  3.13 shows that Proteus still outperforms MPC in the QoE metric, even with

perfect Oracle throughput prediction. Fig.  3.14 shows that Proteus significantly reduces the

rebuffering ratio while only slightly reducing the average bitrate.
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Figure 3.13. QoE benefits with Proteus (Oracle predictor)

Figure 3.14. Oracle predictor performance measurements

Directional antenna testing: Directional antennas have higher gain than omnidirec-

tional antennas, but at the cost of being larger and also having to be pointed at the other

antenna. While this is not always practical, they are still used in some scenarios that permit

the required logistics. While directional antennas have dropouts, they are typically shorter

and an ABR algorithm can often recover from a myopic decision without rebuffering if a min-

imum video bitrate of 300 Kbps were used. However, if we consider higher quality bitrate
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requirements, then Proteus still shows significant benefits. For example, for the circ(4) direc-

tional trace and minimum bitrate of 1850 Kbps, Proteus reduced rebuffering and improved

the average QoE by 34.6% (from 80.96 to 108.97).

Different client buffer sizes: We tested if Proteus benefits can be extended to smaller

buffer sizes. To do so, we tested the traces again with buffer sizes ranging from 15 to 60

seconds. Proteus continued to show benefits. For example, with a buffer size of 30 seconds

the average QoE results were 3.06, -194.45, and -59.27 for MPC compared to 15.28, -92.61,

and -41.22 for Proteus for circ(2)-circ(4), respectively, as shown in Table  3.1 . These results

show there is still significant improvement over MPC by using Proteus, even with smaller

buffer sizes.

Table 3.1. Benefits of Proteus with the client buffer size lowered to 30 seconds
Trace MPC Proteus
circ(2) 3.06 15.28
circ(3) -194.45 -92.61
circ(4) -59.27 -41.22

3.5 Related work

UAS networking: A recent workshop paper [  41 ] conducted a preliminary investiga-

tion of UAS for video transmission using ABR with content-based compression. Another

paper [ 15 ] details optimal algorithms to improve sports surveillance with UAS. These works

present limited experiments with multirotor UAS and WiFi over short distances, and do not

consider dropouts, which is an important challenge in our work as we explore ABR using

flight test data from long-range distances.

Several efforts are underway to use UAS to augment Internet connectivity in remote

areas [  34 ], [  44 ], [  45 ], [  62 ], [  63 ]. In such settings, there is freedom to position UAS to best

serve the area [  44 ]. There has been work with a focus on 802.11 fixed wing [ 30 ], [  43 ] and

multirotor [ 31 ], [  33 ], [  35 ] UAS networking, but at limited distances. Tactical Radios are

tested with different transport protocols on the ground in [  47 ], but not in the air and without

regard to specific applications. In contrast, our focus is on UAS for aerial video coverage,
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and enabling acceptable performance over extended distances, and when the location cannot

be optimized for connectivity.

Video Streaming: The paper [  73 ] uses measurement-based methods to adjust the video

bitrate for video streaming. This work and the ABR algorithms [ 36 ]–[ 40 ] have been designed

for traditional Internet environments and do not account for the challenges of dynamic

long-range UAS flights. Recently, Elephanta [  40 ] enabled edge users to provide feedback

to the ABR algorithm via a QoE user perception interface and adaptation algorithm with

flexible parameters, based on user preference. Oboe [  36 ] has shown that it is feasible to

improve the performance of state-of-the-art ABR algorithms, including MPC, by tuning their

parameters (for MPC, the discount factor used to adjust throughput predictions) to network

state. In contrast, we design Proteus to account for the UAS flight path (distance and

orientation), and handle dropouts by introducing a carefully selected terminal cost designed

with parameter selection based on the UAS flight path. Pensieve [ 37 ] uses reinforcement

learning to select bitrates. We are unable to evaluate Pensieve [ 37 ] in our settings given

the lack of adequate training data, though our measurement and data collection efforts can

facilitate the use of learning in the future. Finally, we expect that incorporating information

about UAS flight path will benefit both learning approaches such as Pensieve [  37 ], and buffer-

based approaches [  39 ], [  49 ] (e.g., the minimum and target buffer thresholds in [  39 ] can be

configured in a manner informed by the UAS flight path).

3.6 Conclusion

In this chapter, we have taken a key step towards enabling UAS video streaming at

long-range distances [ 48 ], with three contributions.

First, we built upon the analysis of data collected from real-world UAS flight tests

in §  2 by considering additional analysis as it relates to video streaming. We showed that

extended dropouts make it challenging to simultaneously achieve sub-second video streaming

latency and avoid significant loss of video content. However, our data shows the potential to

achieve video streaming with modest delays (e.g., tens of seconds), and reveals how network

throughput depends on flight path (both distance and orientation).

67



Second, we presented Proteus, the first system for video streaming at long-range UAS

distances. Proteus is based on a control-theoretic ABR algorithm approach and introduces

a carefully constructed terminal cost into the receding-horizon optimization at each point in

time. Proteus integrates knowledge of the flight path into its design, choosing terminal cost

parameters as a function of both UAS distance and orientation.

Third, experiments on an emulation test-bed with real-world UAS flight traces show

that Proteus significantly improves upon a representative ABR that has been shown to work

well in Internet settings. For the circ(3) trace, which saw the most dropouts, the rebuffering

ratio is reduced from 23.97% down to 8.16%, with a net QoE improvement from -198.84

to -14.72. Additionally, by taking advantage of UAS orientation, the rebuffering ratio is

further reduced to 5.82%, and the QoE further increased to -3.83. The benefits hold across

traces and distances, and even show the benefits of using Proteus with a perfect Oracle

throughput predictor. Overall, the results show the feasibility of supporting demanding

video applications in dynamic long-range UAS environments with Proteus.
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4. CHIMERA: EXPLOITING UAS FLIGHT PATH

INFORMATION TO OPTIMIZE HETEROGENEOUS DATA

TRANSMISSION

4.1 Introduction

UAS are increasingly used to perform sensing and data-gathering in a variety of scenar-

ios, due to their ability to go to areas where humans cannot, and gain vantage points and

coverage with sensors that are not possible from the ground [  1 ]–[ 6 ]. The types and capabil-

ities of sensors, and options for mounting on UAS, have increased to provide many options

to gain insight from an aerial viewpoint [  4 ], [ 7 ]–[ 9 ]. Furthermore, the data transmitted from

these sensors has diverse network requirements; for instance, live video has stringent time-

liness requirements but can tolerate some quality degradation, while radar images must be

transmitted reliably and typically require delivery within several tens of seconds. A common

theme is that transmitting a larger quantity of and higher quality data from the UAS sensors

to the intended recipients (e.g., located at a ground station) is typically desirable.

UAS networks can present challenges to transmit sensor data in real-time due to flight

dynamics and bandwidth limitations [  4 ], [ 5 ], [  16 ]–[ 19 ]. However, they also offer opportu-

nities since UAS network performance depends on the flight path. To motivate this, we

leverage our observations and analysis from two real-world UAS flight test datasets from

two different locations in the US (discussed in (§ 2 ). Recall that the datasets are unique

in that they are from distances exceeding current Federal Aviation Administration (FAA)

limits requiring VLOS [ 20 ], motivated by the growing interest in extending the range of UAS

networking [ 1 ], [ 10 ], [ 11 ].

In this Chapter, we are primarily motivated by the question: is it feasible to exploit

knowledge of UAS flight paths to more effectively transmit UAS sensor data that has

demanding performance requirements? This problem presents multiple key design chal-

lenges in dealing with: (i) UAS flight throughput dynamics, (ii) variable sensor data rates

and requirements, and (iii) the impact that current sensor data transmission actions have

on future transmissions. To address these challenges, we develop Chimera, a system for

69



optimizing transmission of heterogeneous sensor data over variable UAS network environ-

ments. Chimera is based on an optimal control framework, performing online optimization

continuously in order to yield a feedback control policy that makes transmission decisions for

the two different sensor data streams: (i) video, and (ii) Synthetic Aperture Radar (SAR)

images. While we focus on these streams for concreteness, Chimera can be generalized to

more diverse sensors and data streams as well.

A novel aspect of Chimera is its use of flight path information to predict network through-

put, and using these predictions in its control algorithm. Towards this end, we develop and

validate UAS network throughput prediction models, given flight path knowledge from real-

world flights. A key consideration is developing a pragmatic model whose parameters can

be learnt online using information from the initial stages of the flight. Our analysis indicates

that simple regression models based on the distance and UAS orientation relative to the

Ground Control Station (GCS) are effective in prediction, even into the future. We integrate

our models into Chimera, which learns both the dependence of throughput on flight path,

and also an error model pertaining to throughput prediction errors. Chimera’s approach is

viable since flight paths are typically determined in advance as part of the mission planning

process, and to facilitate flight approval and coordination with proper authorities. Further,

Chimera’s optimal control framework uses a continual planning model, which allows it to

adapt to flight path changes, in addition to learning and improving throughput and error

models over time (§ 4.3.2 ).

We implemented Chimera and integrated it with a video encoder to stream live video,

and an application for generating and transmitting SAR data. We evaluated Chimera us-

ing an emulation test-bed, and also built a simulation environment to test a multitude of

additional scenarios and evaluate Chimera’s design-points. Through a combination of real-

world UAS flight throughput traces collected in different locations with different UAS types,

and synthetic traces generated using our models, we show that Chimera performs effectively

when transmitting diverse sensor data. Chimera offers significant improvement over an ap-

proach that does not exploit flight path information. Chimera accomplishes this by reducing

penalties related to dropped SAR image transmissions by 72.4% − 100% across all the afore-

mentioned real-world flight test traces, while achieving comparable video qualities in our
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Figure 4.1. Example UAS Surveillance Scenario with SAR + Video

emulation test-bed. Further, Chimera achieves a bitrate of 90.5% compared to an optimal

scheme that knows exact future throughput information, with only a modest increase in

SAR images dropped. Finally, we believe our models for generating synthetic traces can be

useful to the community in their own right.

4.2 Motivating measurements and challenges

In this section, we describe our problem setting for Chimera, and explore the network

throughput measurements from real-world UAS flight tests (described in detail in § 2 ) that

motivate our approach.

4.2.1 UAS sensor data transmission problem

Many UAS settings, such as security surveillance [  7 ], [ 24 ], search and rescue missions [  14 ],

[ 22 ], and environmental monitoring [  23 ], [ 25 ], involve both video and other sensors such

as radar imaging [  7 ], [  22 ], [  23 ], called SAR, as shown in Fig.  4.1 . Video provides color

imaging of small visible areas, while SAR imagery provides a wide-area all-weather capability

that penetrates fog, smoke and atmospheric obstructions [  23 ], [  26 ]–[ 28 ] (e.g., the ability to

penetrate through smoke is critical in fire monitoring scenarios [  8 ], [  9 ]). Live video is often

monitored by a person, while SAR images are typically used by algorithms to detect objects

and movement. Live video transmission is near real-time and can tolerate loss. In contrast,
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SAR images are more loss sensitive, but can tolerate greater delays since they cover much

wider regions [  26 ], [  28 ]. However, extensive delays (e.g., > 1 minute) can make the images

stale and the area may need to be surveyed again. The resolution and priority of each sensor

varies based on the mission.

A key challenge that we address in this paper is how to simultaneously transmit both

live video and SAR data in challenging UAS networking environments, while taking the

requirements of each data stream into account. While we focus on live video and SAR, our

approach is easily generalized to diverse sensor data with different reliability and timeliness

requirements.

4.2.2 Motivating flight test measurements

Recall from §  2 that most existing measurement studies of UAS were performed at limited

flight range from the GCS (less than 0.25 miles) or using LTE, which limits scenarios because

of required infrastructure [  15 ], [  17 ], [  29 ], [ 30 ], [  33 ], [  41 ], [ 74 ]. We use the UAS flight test data

described in §  2 , collected in CA and FL and providing flight tests at distances beyond VLOS.

For clarity, in this Chapter we use the term distance as the absolute distance from the UAS

to the GCS.

• CA Dataset. Recall that this dataset was collected in CA using a multirotor UAS, om-

nidirectional antennas on the ground and UAS, and point-to-point Tactical Radios. This

data was collected using UDP transport protocol. The abundant throughput from the GCS

location CA0 (see Fig.  2.4 ), as described in §  2 , is sufficient such that existing transmis-

sion algorithms can work quite well as-is, or with very little modification required. Further,

the limited throughput and extreme data loss from the GCS location CA3 presents chal-

lenges that even the most sophisticated algorithms cannot overcome in missions that require

sending multiple types of heterogeneous sensor data with reasonable requirements. Thus,

we focus our analysis in the rest of this chapter on data collected from the GCS locations

CA1-2, ranging from 1.8 to 3.4 miles distance from the GCS. The measurements from these

locations are shown in Fig.  2.15 and Fig.  2.16 , respectively.
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• FL Dataset. Recall that this dataset was collected in FL using a fixed wing UAS, an

omnidirectional antenna on the UAS, and a mixture of both omnidirectional and directional

antennas (tested separately) at the GCS. The UAS flight was flown continuously at distances

exceeding FAA UAS limits [  20 ], with necessary approvals. We use the directional antenna

GCS configuration in Chimera, most appropriate for missions requiring data from multiple

sensors that have strict requirements, with the flight path (Fig.  2.3 ) spanning a distance

of up to 7.5 miles between the UAS and GCS. The UAS flew circular patterns at each

mile interval, with 0.5 mile radius each, and collected data using two different power levels

(500mW and 2W), with performance at the 2W level generally being better at the same

range. We refer to these datasets as FL1 and FL2, respectively.

Observations from flight test data: For each dataset, we analyzed the network

performance as a function of the UAS distance and orientation in §  2 . We saw a decrease in

throughput as distance increased, and we noticed the performance depended on whether the

UAS flies towards or away from the GCS. The FL throughput is higher than CA at similar

distances because the FL dataset used a directional antenna on the ground with higher gain

than the CA omnidirectional ground antenna.

Since the FL dataset was collected in one flight from the same GCS, we stitch the circles

together in the rest of the chapter to form an extended flight path from 0.5 to 7.5 miles,

used for our analysis. We do not stitch the CA dataset together since that was collected

with various flights at different GCS locations. Table  4.1 shows our test datasets.

Table 4.1. Flight test traces for Chimera
Name UAS Type Distance (Mi) Power Antenna

FL1 Fixed Wing 0.5-7.5 500mW Dir
FL2 Fixed Wing 0.5-7.5 2W Dir
CA1 Multirotor 1.8-2.6 2W Omni
CA2 Multirotor 2.6-3.4 2W Omni

Opportunities and challenges: Overall, our datasets show the dependence of UAS

network performance on both distance and UAS orientation, providing an opportunity to

plan and optimize data transmission based on the UAS flight path. The key challenges are

building throughput prediction models that exploit knowledge of the UAS flight path,
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and handling throughput prediction errors. We will tackle these challenges in the rest

of this chapter.

4.3 Chimera design

Influenced by the challenges, insights, and opportunities from the relationship of the UAS

flight path to network performance, we next outline the problem we are seeking to solve,

and the details of our design of Chimera.

4.3.1 Problem formulation

We now formally state our UAS sensor data transmission problem. Consider a flight

of duration T seconds. The UAS transmits live video and SAR data, with an associated

reward for each. Our objective is to maximize the reward over the full flight. The SAR data

stream involves a sequence of images, each Bs bytes, generated every G seconds (typically <

10 seconds) [  24 ], [  26 ], [  28 ], and which must be transmitted within a time limit of L seconds

(usually on the order of tens of seconds to a few minutes based on the scenarios described in

§ 4.2 ). Any image that is transmitted within the deadline L is valuable, and an image that

misses the deadline is stale and loses its value. The video transmission objective is to achieve

the highest bitrate possible (up to a maximum bitrate needed by that video). We design

Chimera to capture the relative importance of video and SAR transmission in a reward

function, which we describe in this section. This function rewards higher video bitrates and

penalizes dropped SAR images. We often do not have sufficient throughput to transmit the

entirety of our data throughout the flight. As a result, Chimera must make decisions on

what data to transmit, or delay, at any given time. If we assign too much throughput to

video, then SAR cannot keep up with timeliness requirements and becomes stale, resulting in

dropped image penalties. If we assign too little throughput to video, then we are potentially

wasting opportunity where we could have transmitted higher quality video and still met our

SAR requirements.
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Figure 4.2. Chimera system Figure 4.3. Chimera transmission example

4.3.2 Chimera overview

We briefly describe Chimera’s four major components and then dive into further details

in the subsequent sections (Fig.  4.2 shows a high-level overview).

Control theoretic model: Chimera uses an optimal control framework that yields a

feedback control policy that makes transmission decisions at each time-step as a function

of current state and predictions of future throughput. In particular, Chimera optimizes

expected rewards over the duration of the flight while accounting for prediction errors, which

we characterize and model online.

Network prediction model: Chimera’s prediction model is built using real-world

flight data and utilizes the known UAS flight path to predict future network performance.

It includes parameters unique to UAS flight, such as distance and orientation, building a

robust model for future throughput prediction. Chimera can work with any generic transport

protocol, and uses the network bandwidth estimates provided by the transport layer, with

the prediction models trained accordingly.

Adding robustness to prediction errors: Chimera adjusts to network prediction er-

rors by carefully building a weighted probabilistic error model. This error model is integrated

into the planning and decision-making process in order to provide robustness to errors and

improve performance.

Online learning: It is difficult to gather UAS wireless performance data [ 5 ], [  17 ], and

flight environments can vary [  6 ]. Because of this, Chimera incorporates an online learning
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Table 4.2. Chimera problem notation table
Parameter and notation definitions

Term Meaning
T, N, τ flight duration (seconds), flight duration (epochs), epoch duration (seconds)

R, Rd, Rv total reward, dropped SAR reward penalty, and video reward functions
G, L, Bs SAR image gen time (seconds), transmission deadline (seconds), size (bytes)
Vt, V̄n average bitrate for live video during time t, during epoch n

Ct, C̄n average available throughput during time t, during epoch n

Bmax, b̄n max images in buffer, buffer images (fraction) at the start of epoch n

Ḡn, D̄n SAR images generated during epoch n, dropped at the end of epoch n

r̄n, P̄n residual images (fractional) at start of epoch n, transmitted during epoch n
e(n) subset of all timesteps t representing all timesteps t in the nth epoch

σ̄n, ω̄n, ε̄n distance, orientation, and throughput prediction error at epoch n

process to train network and error models in flight. This online learning process can be used

on its own, or be combined with models learnt from previous flights to increase accuracy.

Chimera’s approach is viable given that flight paths are typically known a priori as

part of the mission planning process, and to facilitate flight approval and coordination with

proper authorities. However, if flight paths change (e.g., because of an emergency or abrupt

mission change), Chimera’s feedback control policy enables it to quickly adapt. Specifically,

in the case of an abrupt change, Chimera’s online optimization would be based on the

current system state and network and error models, with consideration of the new flight path.

The online optimization would then provide a new set of optimal sensor data transmission

decisions for each time-step into the future, based on the new flight path.

Roadmap: In the following sections, (i) we detail Chimera’s optimal control model

with knowledge of the future throughput (§  4.3.3 ), (ii) we develop models for predicting

throughput using real-world flight datasets (§ 4.3.4 ), and (iii) we discuss how Chimera builds

its throughput and error models online, and Chimera’s algorithmic approach that utilizes

them (§ 4.3.5 ).
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4.3.3 Control theoretic formulation

Let there be T second time-steps, indexed by t ∈ {0, 1, 2, . . . , T − 1}. The throughput

at each time-step is Ct. Our goal is to allocate the throughput between live video and SAR

traffic at each time-step so as to optimize the overall reward.

As we have discussed, a unique opportunity in UAS settings is that the entire flight path

is typically planned in advance, providing the potential to use a long term look-ahead window

for planning. For computational efficiency reasons (as we will discuss further in §  4.5 ), it may

sometimes be desirable to conduct Chimera’s planning at a coarser granularity than at each

time-step. Towards this end, we partition the duration of the flight into N epochs, each of

a fixed length of time τ . We index the epochs by the variable n ∈ {0, 1, 2, . . . , N − 1}. We

next present Chimera’s control model (Table  4.2 summarizes notation).

Video: Let Vt be the achieved live video bitrate at a given time-step t (such that Vt <=

Ct). Consider a sequence of achieved live video bitrates at each time-step: V0, V1, . . . , VT −1.

The achieved video bitrate over the entire flight is ∑T −1
t=0 Vt, and we can divide by T to obtain

the average transmitted video bitrate per second over the entire flight. To enable epoch level

decision-making, we define the quantity e(n), where for each n ∈ {0, 1, . . . , N − 1}, e(n) is

the set of all time-steps t in the nth epoch. Thus, our average live video bitrate for epoch

n, denoted V̄n is:

V̄n =
∑

t∈e(n) Vt

τ
. (4.1)

We select video values in order to maximize the reward (provided later in Eq. ( 4.8 )) by

influencing the balance of dedicated throughput to live video and SAR. To do this, we

specify the maximum live video bitrate transmitted within an epoch, denoted V̄ max
n , selected

from a finite set of possible bitrates V . The encoder targets (and never exceeds) a bitrate of

V̄ max
n in each epoch, but adapts to dips in network throughput by encoding at lower bitrates

as needed. For each t ∈ e(n), we let Vt ∈ [0, V̄ max
n ] denote the realized throughput of live

video during time-step t:

Vt = min(Ct, V̄ max
n ). (4.2)
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Note that Vt will be a random variable, determined by actual throughput Ct during that

time-step. The remaining throughput Ct − Vt in any given time-step is dedicated to SAR

transmission, through a scheduler. Fig.  4.3 shows an example of Chimera over a period of 20

seconds, split into 10 second epochs. During each epoch n, V̄ max
n is a dotted line and excess

throughput during that epoch is devoted to SAR transmission. For each epoch, we seek a

V̄ max
n that is achievable but also leaves sufficient throughput for SAR transmission. Without

this limitation, SAR and video flows would compete with each other, and potentially starve

the system. By predicting future throughput based on the UAS flight path, and varying

data prioritization at different points during flight, we can improve our reward.

SAR image transmission: After allocation of throughput to video, the remaining

throughput for each epoch is dedicated to SAR images, given by ∑
t∈e(n)(Ct − Vt) (note

that remaining throughput for SAR can be zero if V̄ max
n is equal to or exceeds the available

throughput at each time-step during epoch n). This strategy allows for long-term planning

to maximize reward, while also adapting live video to short term fluctuations in throughput.

The use of multiple levels of planning and adaptation takes advantage of long-term horizon

throughput prediction based on flight path and also allows faster computations compared to

second-by-second planning and processing.

SAR buffer: During each epoch n, Ḡn new full (integer) SAR images are generated and

stored in the buffer for transmission. Let b̄n denote the number of SAR images (fractional)

stored in the buffer at the start of epoch n, and let P̄n denote the number of SAR images

(fractional as partial images can be in transmit) transmitted to the GCS during that epoch:

P̄n = min
{∑

t∈e(n)(Ct − Vt)
Bs

, b̄n

}
. (4.3)

An incomplete SAR image is not valuable to us. We must transmit the entire image to

provide useful information to the system operator and get the reward for that image. Let

78



r̄n be our residual (partial) images and S̄n be the number of full SAR images (integer)

transmitted during epoch n, given by:

r̄n = b̄n − bb̄nc,

S̄n =



0 if r̄n > P̄n

bP̄nc if r̄n = 0

1 +
⌊
P̄n − r̄n

⌋
else

. (4.4)

Let Bmax denote the maximum number of full SAR images that can be stored in the buffer

(calculated based on the deadline, L, to transmit SAR images before they become stale). L

is a multiple of the generation time, G, such that:

Bmax = L/G. (4.5)

Let D̄n denote the number of SAR images dropped from the buffer during epoch n (penalized

as an integer, even if part of the image was transmitted because only full SAR images

transmitted are useful to us). The dynamics of the buffer are:

b̄0 = 0,

b̄n+1 = min{b̄n − P̄n + Ḡn, Bmax}, n ∈ {0, 1, . . . , N − 1}.
(4.6)

Furthermore, the number of SAR images dropped from the buffer at the end of each epoch

n is given by:

D̄n = max{0, db̄n − P̄n + Ḡn − Bmaxe}. (4.7)

Decisions and rewards: Consider a sequence of specified maximum live video bitrates:

V̄ max
0:N−1 , {V̄ max

0 , V̄ max
1 , . . . , V̄ max

N−1 } ∈ VN ,

where each V̄ max
n denotes the maximum live video bitrate during epoch n. Each such sequence

induces a sequence of achieved live video bitrates and dropped SAR images. Note that each
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of these quantities is a random variable, dependent on the realized throughput during each

epoch. During flight, the system operator obtains a live video transmission reward, Rv(Vt),

every second. The system operator also incurs a penalty, Rd, for the total SAR images

dropped during the flight, which can be represented as the summation of images dropped at

each time-step, or equivalently the summation of images dropped across epochs.

Flight reward with epochs: The expected reward earned over the duration of the flight

for a given sequence V̄ max
0:N−1 is:

R(V̄ max
0:N−1) = E

[
T −1∑
t=0

Rv(Vt) − Rd(
N−1∑
n=0

D̄n)
]

. (4.8)

Optimization problem with epochs: Our optimization problem based on epochs is:

max
V̄ max

0:N−1∈V̄N
R(V̄ max

0:N−1)

subject to ( 4.2 ), ( 4.3 ), ( 4.5 ), ( 4.6 ), and ( 4.7 ).
(4.9)

Chimera extensions: Chimera is extendable to different reward functions using the above

framework. For example, it is easy to add a reward for successful full SAR image transmis-

sions, S̄n in Eq. ( 4.4 ), instead of, or in addition to penalties for dropped SAR images. It is

also possible to extend the reward function to minimize fluctuations in the live video bitrate

by adding a smoothness function, R∆, that penalizes changing live video bitrates. To do this,

we would calculate the difference in video bitrates at each time-step: ∆t = Vt+1 − Vt. Each

change in video bitrate would result in a corresponding penalty based on the smoothness

function, R∆(∆t), and a summation of these penalties may be taken.

4.3.4 Throughput prediction model with Chimera

Our discussions in §  4.3.3 assume we know the throughput for each time-step, Ct, in

advance. In this section, we develop and validate models to capture how network throughput

depends on the UAS flight path, leveraging the real-world flight datasets discussed in § 4.2 .

Our models consider three key factors: (i) UAS distance to the GCS, (ii) UAS orientation,
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and (iii) recent throughput samples. We first look at prediction for the immediate next

time-step, and then consider longer look-aheads.

Prediction over the next time-step: Our data shows that UAS distance to the GCS

affects throughput. We built a regression model to calculate predicted throughput at time

t, Ĉt, based on distance, σt, with an estimated error term, ε̂t:

Ĉt = ασt + γ + ε̂t. (4.10)

In Eq. (  4.10 ), the coefficients α and γ are calculated based on gathered data. We considered

a distance to throughput relationship of linear, log, and a combination of both. We built a

regression model for each relationship and found the linear relationship to be slightly more

accurate than log, and the same as the combination (setting the log coefficient to 0).

Figure 4.4. SNR-dist relationship Figure 4.5. Throughput-dist relationship

We also explored the relationship of Signal-to-Noise Ratio (SNR) to distance. SNR,

measured in dB, is expected to have a logarithmic relationship to distance [  75 ]–[ 77 ]. Fig.

 4.4 verifies this for our data and shows that the SNR exhibits a relationship with distance

that follows a logarithmic curve. However, Fig.  4.5 shows that throughput and distance

do not clearly exhibit a logarithmic relationship, and visually appear to have a relationship

that is more along the lines of linear, in agreement with our regression model results. We

hypothesize that this is because of the many layers involved in network communication, and

SNR is only one of the contributing factors that impact throughput.
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Considering orientation: We built two regression models: one using the entire dataset

(orientation agnostic) and the other with separate models for each orientation. We then

compared the throughput prediction of these models to the actual throughput across the

entire flight. Fig.  4.6 (left) shows prediction errors are reduced by building seperate models

for CA1 and FL1. The other datasets were qualitatively similar.

Figure 4.6. Throughput prediction model differences with orientation (left)
and inclusion of previous throughput samples (right), normalized to the last 8
throughput samples.

Previous throughput samples: We explore if we can improve our model by includ-

ing additional previous throughput samples. We modify Eq. ( 4.10 ) to include previous

throughput samples and calculate regression models using 0, 1, and 8 previous through-

put samples. We then use these regression models to compare predicted throughput to the

actual throughput over the same time period. Fig.  4.6 (right) shows that incorporating

previous throughput improves prediction accuracy. However, the improvement gained by

including throughput samples beyond the previous time-step is small. The other datasets

were qualitatively similar.

Network model for Chimera: Based on these results, Chimera uses a regression model

for throughput prediction at time t, Ĉt, based on Ct−1 (the actual throughput at time t− 1),
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an estimated error term ε̂t, and ωt and σt, which respectively denote the orientation and

distance at time t:

Ĉt =


δCt−1 + ασt + γ + ε̂t if ωt = 0

δ′Ct−1 + α′σt + γ′ + ε̂t if ωt = 1.

(4.11)

In Eq. ( 4.11 ), the coefficients δ, α, γ, δ′, α′, and γ′ are calculated based on gathered flight

data, while ωt indicates the orientation (i.e., ωt = 0 if the UAS is going away at timestep

t and ωt = 1 if the UAS is coming towards).

Prediction over a longer look-ahead: So far, we considered a regression model

for predicting throughput at the next time-step. However, for Chimera, we must predict

throughput over longer time horizons (in fact, the entire flight path). Consider that through-

put samples up to time t − 1 are available. We seek to predict throughput for time-steps

t, t+1, . . . , t+k. Extending our analysis, we consider a model where throughput at time-step

t + k, Ct+k, depends on Ct−1 (the last throughput sample), ωt+k and σt+k (the orientation

and distance at time t + k), and ε̂t+k (the estimated error):

Ĉt+k =


δkCt−1 + αkσt+k + γk + ε̂t+k if ωt = 0

δ′
kCt−1 + α′

kσt+k + γ′
k + ε̂t+k if ωt = 1.

(4.12)

Significance as time lag (k) increases: Fig.  4.7 compares throughput prediction

errors for FL1, using Eq. (  4.12 ), with different coefficients turned off (i.e., considering

distance + past throughput, and each on its own). We repeat this regression for each lag

k, iterating through all t values for each k value in our flight, and show the MSE across

lags. The left side considers the going away orientation and the right considers coming

towards. The results show that (i) distance is important, and (ii) only considering previous

throughput sample is insufficient. Further, the previous throughput sample helps for low lag,

but not larger lag. We also see a larger error in the coming towards orientation compared

to going away, owing to higher variability based on orientation, as discussed in § 2 . We see

a slight oscillation in MSE when considering past throughput only, but it is reduced when

distance is considered, since the distance coefficient magnitude is more significant. Based
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on these results, we remove the previous throughput samples from our long-term prediction

model.

Figure 4.7. MSE across different time lags when considering distance + past
throughput, or each individually, FL1.

Prediction over epochs Chimera may make decisions at a coarser granularity of epochs,

as discussed in §  4.3.3 . This is done by using epochs instead of time-steps in Eq. (  4.11 ), where

the epoch distance and throughput (σ̄n and C̄n) are the average distance and throughput over

all time steps within that epoch. Further, we remove dependence on previous throughput,

as previously discussed, and our model for throughput prediction over epochs is:

ˆ̄Cn =


ασ̄n + γ + ˆ̄εn if ω̄n = 0

α′σ̄n + γ′ + ˆ̄εn if ω̄n = 1.

(4.13)

We built regression models with Eq. ( 4.13 ) using different epoch sizes. Throughput depen-

dence on both UAS distance and orientation continued to hold at the epoch scale. Further,

the average throughput prediction error within an epoch decreased as epoch size increased,

with median prediction errors of 15.3%, 11.8%, 9.0%, and 5.2% for epoch sizes of 1, 5, 10,

and 30, respectively. However, there may still be significant throughput variability within

an epoch, and larger epochs may reduce Chimera’s responsiveness (§ 4.5.3 ).
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4.3.5 Incorporating predictions into Chimera

We next discuss how we integrate the network models in § 4.3.4 into Chimera’s planning

algorithm, run each epoch.

Online optimization: We implement Chimera’s online optimization as a Dynamic

Program (DP) that incorporates the UAS flight network characteristics to maximize reward

(with evaluation results shown in § 4.5 ). The full DP, with throughput prediction, error

models, and probabilistic errors, is shown in Algorithm  1 . We start by discussing the basic

DP and then discuss how an error model is integrated. The state for the DP is the number of

untransmitted SAR images (the SAR buffer, bn). For each epoch and state, the DP computes

the optimal sequence of targeted (and maximum) live video bitrate values, V̄ max
n , starting

at the next epoch until the end of the look-ahead window (by default, the end of the trace),

maximizing the total reward.

Let the throughput prediction for the next epoch be ˆ̄Cn. For each value of V̄ max
n , the

average live video bitrate transmitted during that epoch, V̄n, is limited to min{ ˆ̄Cn, V̄ max
n }

because the video bitrate cannot exceed the available throughput. We modify Eq. (  4.3 ) to

determine the (possibly fractional) SAR images transmitted during an epoch, P̄n, as follows:

P̄n = min{τ
ˆ̄Cn − min{ ˆ̄Cn, V̄ max

n }
Bs

, b̄n}. (4.14)

Note that if ˆ̄Cn ≤ V̄ max
n then P̄n = 0. In this case, our throughput estimate is such that the

target live video bitrate cannot be achieved. Available throughput will be devoted to live

video transmission, estimated as ˆ̄Cn, and no SAR data will be transmitted. The rest of the

computations follow §  4.3.3 . Our test results showing the benefits of Chimera are presented

in § 4.5 .

Incorporating prediction error: To be robust to prediction inaccuracies, we build an

error model online. Specifically, Chimera maintains a distribution of errors in predictions

made earlier in the flight. Next, Chimera selects a few discrete points in the distribution (in

our implementation, we select quartiles). Given a predicted throughput, ˆ̄Cn, Chimera con-

siders each quartile error, εq, adjusting the throughput prediction for each error as follows:
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Algorithm 1: Dynamic Program
Result: S is our optimal decision for video with maximum reward R at each epoch

and buffer size. Starting at R[0,0] for epoch and buffer 0.
Initialize;
for n = (N − 1) to 0 do

for b = 0 to bmax do
Rmax = −∞;
for V max

n ∈ V do
Rprob = 0;
for k = 0 to binSize do

ε̃k = probError at k;
P̃ rk = Pr[ε̃k];
ˆ̃Ck = ˆ̄Cn + ˆ̄Cn × ε̃k;
if ˆ̃Ck > V̄ max

n then
P̄n = min{τ

ˆ̃Ck−V̄ max
n

Bs
, b};

V̄n = V̄ max
n ;

r̄n = b − bbc;
if r̄n > P̄n then

S̄n = 0;
else

if r̄n = 0 then
S̄n = bP̄nc;

else
S̄n = 1 + bP̄n − r̄nc

else
S̄n, P̄n = 0;
V̄n = ˆ̃Ck;

b′ = b − P̄n + Ḡn;
D̄n = max{0, db′ − B̄maxe};
R̃k = τRv(V̄n) − Rd(D̄n) + R[n + 1, discretize(b′)];
Rprob = Rprob + R̃k × P̃ rk;

if Rprob > Rmax then
Rmax = Rprob;
S[n, b] = V̄ max

n ;
R[n, b] = Rprob;
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ˆ̄Cq = ˆ̄Cn + ˆ̄Cn × εq. Our DP evaluates the choice of V̄ max
n with each error-adjusted through-

put prediction, weighing the resulting reward according to the error probability. Chimera

considers the summation of these weighted rewards to select the optimal choice of V̄ max
n

when evaluating each epoch. Our results show that incorporating an error model improves

Chimera’s performance (§ 4.5.3 ).

Figure 4.8. Comparison of online learning throughput prediction, after 30
and 40 seconds, compared to offline learning.

Online learning: Chimera uses online learning for generating throughput prediction

and error models. At the start of each epoch, Chimera calculates the previous through-

put prediction error and reruns the throughput regression model in §  4.3.4 with all observed

flight throughput data, allowing Chimera to adjust to changes and update predictions dur-

ing flight. Figure  4.8 illustrates Chimera’s online learning with the FL1 trace, and shows

the throughput predicted by the regression models learnt online after 30 and 40 seconds,

compared to the prediction from an offline regression model that has all of the data ahead

of time. The figure shows that Chimera can converge to the offline model within tens of

seconds, a trend we also observed in other traces. This furthers our confidence in Chimera

being able to quickly adapt to different environments.

An important consideration is how much previous data should be included in online

learning. We experimented with several strategies for learning throughput and error models.

For throughput, we considered (i) building a single regression model for the entire flight using
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all of the available data up to that point in the flight and (ii) building separate regression

models based on orientation. For error models, we considered both strategies of using all

of the available flight data verses building separate models based on orientation. Further,

we also considered building separate error models based on distance ranges (e.g., distance

bins covering 2 miles each) and orientation, motivated by the throughput prediction error

distribution in § 4.4 . We show in § 4.5 that building orientation-specific models typically

improves performance for both error and throughput models, with the most benefits in

traces that encounter each orientation more than once during flight. Further, we found the

addition of error models learnt online based on distance bins was similar to and did not

improve Chimera’s performance beyond using orientation-specific models-potentially due to

limiting the data available for learning. Finally, while we focus on online learning for the

most general settings, we note that UAS settings may have error and/or throughput model

data from prior flights that Chimera can also leverage (shown in § 4.5.3 ).

Chimera Oracle optimization algorithm: Algorithm  2 shows Chimera’s DP with

a perfect Oracle look-ahead. In this variant, the equations follow §  4.3.3 exactly as there is

no need for error models, since the throughput for the entire flight is known by the perfect

Oracle. Thus, the actual throughput at each time-step, Ct, is used in the DP calculations,

rather than a predicted average throughput for each epoch, as is done in Algorithm  1 . The

result is that detailed planning and rewards are calculated at the time-step level for live

video bitrate and actual throughput, since the Oracle provides this granularity of perfect

throughput knowledge. This version of the DP is used to provide an example of the optimal

performance for each trace based on exact knowledge of future throughput (while not possible

in practice, it presents a best-case scenario for comparison).

4.4 Evaluation methodology

We evaluate Chimera with an actual implementation on an emulation test-bed and using

simulations, as we discuss below.

Implementation and test-bed Setup: We implemented Chimera and integrated it

with a VP8 video encoder to stream live video, and an application for generating and trans-

88



Algorithm 2: Dynamic Program (Oracle)
Result: S is our optimal decision for video with maximum reward R at each epoch

and buffer size. Starting at R[0,0] for epoch and buffer 0.
Initialize;
for n = (N − 1) to 0 do

for b = 0 to bmax do
Rmax = −∞;
for V max

n ∈ V do
Vt = min{Ct, V max

n } ∀ t ∈ e(n);
P̄n = min{

∑
t∈e(n)(Ct−Vt)

Bs
, b};

r̄n = b − bbc;
if r̄n > P̄n then

S̄n = 0;
else

if r̄n = 0 then
S̄n = bP̄nc;

else
S̄n = 1 + bP̄n − r̄nc

b′ = b − P̄n + Ḡn;
D̄n = max{0, db′ − B̄maxe};
R′ = ∑

t∈e(n) Rv(Vt) − Rd(D̄n) + R[n + 1, discretize(b′)];
if R′ > Rmax then

Rmax = R′;
S[n, b] = V̄ max

n ;
R[n, b] = R′;
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mitting SAR data. We leveraged the codebase from Salsify [ 78 ], while making modifica-

tions to inform the encoder of a target bitrate by Chimera, as described in §  4.3 . We used

Mahimahi [  71 ] to emulate flight network throughput, replaying the traces from the flight test

datasets, described in § 4.2 . Our control setup integrated both the distance and orientation of

the UAS, allowing Chimera to continuously run the online optimization, and make decisions

based on the flight path and current state, while also providing an opportunity to adapt to

changes in the progressive throughput and error models. We generate representative SAR

image files and transmit these to the client GCS at a set rate that is updated every second

based on the estimated remaining available throughput, per our protocol design. Our tests

are run on a 64-bit Ubuntu 20.04 2-core machine, with 8 GB RAM - representative of a

typical UAS system. We also tested at a large scale with a simulated setup that integrated

the distance and orientation of the UAS into the logic, in order to provide more extensive

sensitivity studies.

Real-world traces: We test using the throughput traces from multiple flights in FL and

CA (§ 4.2 , Table  4.1 ). We also perform tests with dataset variants, which we discuss in §  4.5 .

UAS flights typically involve several to tens of minutes of flight time. Since our CA flight

traces are shorter duration, we extended them by an additional 3 loops, by synthetically

generating throughput loops (as described below) and appending them to our dataset (this

is reasonable because UAS survey missions often complete multiple loops of an area).

Synthetic traces: Since real-world flight traces are challenging to collect, we generated

synthetic traces for additional testing using the network model from § 4.3.4 (Eq. (  4.11 )),

and coefficients gleaned from our real-world flight data. Since the errors are higher with

larger distances and certain orientations (e.g. coming towards), we model the error term,

εt, separately for different distance range and orientation bins, using a procedure described

below.

Fig.  4.9 shows a histogram of prediction errors, and the best fit for both a Normal and

Cauchy distribution, for the FL1 trace and an example bin (a distance range of 2 to 4 miles).

Visually, we see the Normal distribution is not a good fit because it does not encompass

the peak or tails, while the Cauchy distribution is a better fit. We used the Kolmogorov-

Smirnov (KS) test [ 79 ] to evaluate the null hypothesis that the prediction errors are drawn
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Figure 4.9. Modeling the prediction error term for synthetic trace generation

from a specific distribution. We considered the Normal, Cauchy, Lognormal, Gamma, and

Weibull distributions. For all bins of the FL and CA datasets, we were unable to reject the

null hypothesis that the prediction errors fit a Cauchy distribution at a significance level of

0.05. In contrast, we rejected the null hypothesis that the errors fit a Lognormal and Gamma

distribution in all cases, and in the vast majority of cases for Normal and Weibull distribution

(the full KS test results for FL1 are shown in Table  4.3 and Table  4.4 for each orientation,

respectively). We considered both percentage and absolute errors, with consistent results.

We tested with the Anderson-Darling (AD) and Cramer Von-Mises (CVM) tests, which are

refinements of the KS test [  79 ], with nearly identical results to the KS test, supporting the

Cauchy distribution as a good fit for our error distributions.

These results motivated us to model errors based on the Cauchy distribution, confirming

what we visually saw in Fig.  4.9 : that the error distribution has a higher peak and longer

tails than can be captured with a Normal distribution. In summary, we generate synthetic

traces using Eq. ( 4.11 ), with the error term generated using a Cauchy distribution, and
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Table 4.3. Kolmogorov-Smirnov test results (going away error bins), Florida1
Distribution Under 2 Miles 2-4 Miles 4-6 Miles Over 6 Miles

Cauchy Not Rejected Not Rejected Not Rejected Not Rejected
Normal Rejected Rejected Not Rejected Not Rejected

Lognormal Rejected Rejected Rejected Rejected
Gamma Rejected Rejected Rejected Rejected
Weibull Rejected Rejected Rejected Not Rejected

Table 4.4. Kolmogorov-Smirnov test results (coming towards error bins), Florida1
Distribution Under 2 Miles 2-4 Miles 4-6 Miles Over 6 Miles

Cauchy Not Rejected Not Rejected Not Rejected Not Rejected
Normal Not Rejected Rejected Rejected Rejected

Lognormal Rejected Rejected Rejected Rejected
Gamma Rejected Rejected Rejected Rejected
Weibull Rejected Rejected Rejected Rejected

parameters based on the flight distance and orientation. To ensure meaningful results (e.g.,

avoid negative throughput), the tail was truncated on both sides.

Schemes: We compared Chimera with several schemes:

• Flight Agnostic: Our baseline scheme uses a model-predictive controller with a look-ahead

window of 5 epochs, and throughput prediction based on the average throughput in the

past 5 epochs. In each look-ahead window, the same DP as Chimera is run to best allocate

bandwidth between the live video and SAR data streams. This scheme does not exploit

knowledge of the UAS flight path, and is inspired by an algorithm widely used in the context

of Internet video streaming [ 50 ].

• Oracle: This scheme assumes perfect knowledge of throughput for the duration of the trace

at the start of the flight, and executes a DP based on the model in § 4.3.3 .

• Chimera and variants: By default, we evaluate Chimera with all its features, including

online learning and a probabilistic error model. We also explore several variants to test key

decisions of Chimera, which we detail later.

Evaluation settings: We consider a reward function (§  4.3.3 ) based on live video and

SAR image transmission. We set the reward for live video at each time-step, Rv(Vt), to be

equal to the live video bitrate received at that time-step. Let the maximum possible reward
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for live video transmissions be M (achieved when live video is always transmitted at the

highest rate), I be the total number of SAR images generated, and D be the total number

of dropped images during flight. Then, we set the penalty for dropped SAR images to be

W × M
I

× D. Here, W is a parameter which captures that if all SAR images were dropped,

the penalty would be W times the reward obtained if live video were always transmitted

at the highest rate. We use a default W of 8 since a dropped SAR image implies the data

is completely lost, while live video could still be transmitted at degraded bitrates. We also

evaluate Chimera with different W values. We set possible values of V̄ max
n to be {1, 2.5, 5},

corresponding to bitrates typical for standard and high definition video [  80 ]. Our SAR sensor

generates a full image every 5 seconds, based on a real-world system [  24 ]. We use SAR images

of 16, 32, and 40 Mb for CA1-2, FL1, and FL2, respectively, modeling higher resolution

images in datasets with better throughput. We set the SAR transmission deadline to be

L = 60 seconds.

4.5 Results

Our test results show that (i) utilizing UAS flight path improves performance (beneficial

to use both distance and orientation), (ii) performance is further increased by using a prob-

abilistic error model, and (iii) online learning performs well, even with no prior knowledge

or model insights.

Figure 4.10. Chimera’s performance with emulation testing, showing com-
parisons of reward (left), SAR images dropped (middle), and the average live
video bitrate (right).
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4.5.1 Effectiveness of Chimera: emulation results

Fig.  4.10 shows a comparison of the Flight Agnostic, Chimera, and Oracle schemes with

all of our traces on the emulation testbed. The left-most figure corresponds to the total

reward, while the other figures show the performance of each sensor stream: SAR images

dropped due to becoming stale (middle), and the average live video bitrate measured at the

receiver (right). We see Chimera performing much better than the Flight Agnostic scheme

because it significantly reduces SAR drops, while maintaining a comparable video bitrate

(the negative Y-Axis is truncated at -3000, and Flight Agnostic achieves a reward of -8049.12

in CA1). Flight Agnostic performs worse because it is more aggressive with live video bitrate

transmission and does not properly prepare for periods of poor throughput. In contrast, by

utilizing knowledge of the flight path, Chimera and the Oracle (with perfect knowledge)

account for future periods of lower throughput by throttling back the maximum permitted

live video bitrate. Consequently, the SAR buffer (number of untransmitted images) fills

up faster for Flight Agnostic with 54 images dropped in (CA1), while only 10 images are

dropped with Chimera.

While Chimera performs comparably to the Oracle in most traces, there is a noticeable

gap to the Oracle for the CA1 trace. Upon further inspection, this is because CA1 involved

a sharp and prolonged drop in throughput when transitioning to the orientation with poor

performance for the first time, leading to dropped images. Chimera starts with no prior

knowledge, but its performance improves over time as it quickly learns better throughput

and error models. We note that UAS flights are typically longer, which allow online learning

approaches to work even better. Finally, Chimera can improve performance using models

learnt from previous flights (§ 4.5.3 ), which may be available in many scenarios.

4.5.2 Sensitivity to traces

Since we are not aware of any other real-world UAS flight datasets at long-range distances,

we test Chimera with several additional traces, described below. Our results are based on

simulations. All schemes perform slightly better using the simulator (since it does not

account for factors such as processing and encoding delays), but we verified the relative
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performance is similar to the emulator. Across the traces used for validation, Chimera

achieved 63.1% of the reward of the Oracle in emulation, compared to 63.6% of the Oracle

reward in simulation.

Figure 4.11. Chimera reward performance for variants, showing simulated
testing of starting in different positions with FL1, and also the reverse direc-
tion for all traces.

Trace variants: Fig.  4.11 shows the results of trace variants with simulated testing.

For example, we consider each trace in reverse (noted by Rev). We also explore starting

at different points in the flight (i.e., starting at the 1Q, 2Q, and 3Q point in the flight) by

adjusting our starting position and throughput to the corresponding time-step in the trace

and then completing a full loop. This works out to the same number of time-steps as the

original trace, with location variance relative to the beginning and end of the flight (e.g.,

starting and ending closer or further from the GCS, or in a different orientation). Chimera

performs well in all cases, with the relative performance of schemes following the same trends

as before in our initial testing. For the 2Q FL1 variant, Flight Agnostic performs slightly

better than Chimera. Here, the flight begins in an area of poor throughput which gets better,

leading Chimera to be conservative in bitrate allocated to live video. Flight Agnostic is also

slightly more conservative, but its model ignores the initial data after 5 epochs, whereas

Chimera continues to utilize this data in its throughput model.

Synthetic traces: We generated 100 synthetic traces using the methodology described

in § 4.4 , which were based on a flight path that spans 0.5 to 7.5 miles (like the FL datasets).

Fig.  4.12 shows a Cumulative Distribution Function (CDF) of the reward across the different

traces under test. Chimera out-performs Flight Agnostic in all cases, and performs much
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Figure 4.12. Effectiveness of Chimera with 100 synthetic trace tests. The
left figure shows the reward comparisons, and accompanying SAR drops are
shown on the right side

closer to the Oracle scheme. As expected, Chimera-offline (where the models are pre-trained

on data offline, prior to flight) performs slightly better than Chimera because of the ad-

vantage of the models being pre-trained on the test data and robust error and throughput

models being available immediately, rather than having to take time to be learnt online.

Chimera deep dive: To get a better sense of how Chimera improves performance,

Fig.  4.13 presents time series plots to depict how Chimera, Flight Agnostic, and the Ora-

cle scheme make decisions based on the data and state for the FL1 trace, in a simulated

test. Each pair of graphs corresponds to a scheme, with the left graph showing the actual

throughput in the trace (black line) and the maximum live video bitrate (V̄ max
n ) allowed

by the scheme at each time-step (note that the actual live video bitrate could be lower to

account for short-term network fluctuations, calculated as ( 4.2 )). The right graph shows

the number of untransmitted SAR images (SAR buffer) for each scheme (the black dotted

line indicates where SAR images become stale and are dropped). We see Flight Agnostic is

more aggressive with its live video bitrate and does not properly prepare for periods of poor

throughput. Whereas, Chimera and the Oracle account for future periods of lower through-

put by throttling back the maximum permitted live video bitrate. Consequently, the SAR

buffer size (number of untransmitted images) fills up faster for the Flight Agnostic with 23

images being dropped, while only 8 and 1 images are dropped with Chimera and the Oracle,

respectively.
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Figure 4.13. Illustrating how Chimera improves performance with video
(left) and SAR (right). The top pair of graphs corresponds to Chimera, the
middle pair to the oracle, and the bottom pair to Flight Agnostic

4.5.3 Evaluating design variants

We next evaluate variants of Chimera with simulated tests in order to both explore the

importance of some of Chimera’s decisions and also understand the trade-offs involved with

alternative choices.

Importance of considering prediction error: Chimera trains and uses a probabilistic

error model to account for prediction errors (  4.3.5 ). Fig.  4.14 (left) compares Chimera and a

variant, Chimera-Non robust, which does not account for prediction errors. The performance

is improved when using an error model, with the benefits being particularly significant in the

FL1 and CA2 traces. For FL2 alone, adding the error model results in a slight reduction

in performance since the algorithm is a bit more conservative in terms of the maximum live

video bitrates permitted. For this trace, throughput is both consistent and also plentiful

enough that the prediction errors can be recovered from and are not enough to cause SAR

drops.

Online learning variants: We compare Chimera to an orientation agnostic variant of

online learning that does not consider UAS orientation in the network and error models. Fig.

97



Figure 4.14. Showing the benefits of modeling the prediction errors with
Chimera (left), and orientation sensitivity (right)

 4.14 (right) shows a comparison of the rewards. We see the FL dataset tests are comparable.

CA performance is much higher when considering orientation because (i) the throughput in

these traces is more sensitive to orientation and (ii) the traces have more loops, allowing

the network models to fully train with each orientation and then utilize the models in the

subsequent loops. We also considered variants where the switch to a new orientation model

was delayed several epochs. This allowed time for the new orientation model to ingest data

prior to use, but we found the tests were inconclusive in providing a clear direction for higher

performance.

Facilitating learning with prior data: We explore the feasibility of training a model

in one flight and using this model for another flight in a similar environment. To test,

we trained a model learned from the actual flight throughput trace, and used this model

to test with multiple synthetic traces. We saw benefits to using a prior model – e.g., the

average reward improved from 1388.44 to 2377.76, an increase of 71.25%, with FL1. We also

tested how online learning improves over multiple loops in the flight path, common for many

scenarios. To test, we appended a synthetic trace loop to our original trace and compared

the performance over two loops with the single loop (with the reward multiplied by 2 for

relevant comparison). We repeated this test over 5 iterations with different appended traces

and saw an improvement in reward by an average of 9.3% compared to the reward for the
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regular trace, showing Chimera can improve performance by utilizing models trained from

different flights in similar environments.

Look-ahead sensitivity: So far, we have evaluated Chimera with its look-ahead lasting

the full flight duration. We explored Chimera’s reward with different look-ahead windows.

Our results concluded that increasing the look-ahead provides benefits up to 25 epochs (250

seconds), and the benefits diminish beyond this point. This indicates that while a longer

look-ahead window is still useful, there is opportunity to reduce Chimera’s computational re-

quirements by reducing the look-ahead window, while also enabling Chimera to better adapt

to future flight path changes (e.g., emergency situations). We also tested Flight Agnostic

and found that even with an unlimited look-ahead, it performed worse than Chimera – e.g.,

for FL1, the reward was lower by 761.46 relative to Chimera, and for the reverse direction

of the trace, lower by 2537.45 relative to Chimera.

Impact of epoch size: The choice of epoch size impacts Chimera’s performance. Since

the maximum permitted live video bitrate does not change during an epoch, a larger epoch

size reduces Chimera’s ability to adapt. On the other hand, with a larger epoch size, the

DP is run less often, and it also takes less time since there are fewer iterations to run. We

tested with epoch sizes of 1, 5, 10, and 30 seconds, and found Chimera performs well at 5

and 10 seconds, with performance of 1993.71 and 1772.85, respectively, for the FL1 trace.

Performance degraded at 30 seconds, although Chimera with a 30 second epoch still out-

performed the Flight Agnostic scheme significantly. Further, epoch sizes of 1 second are

infeasible due to the computational requirements in our test scenarios.

We also measured computation times of the DP on a MacBook Pro. The average DP run

time across 10 trials is 6.484, 1.357, 0.700, and 0.210 seconds for epoch sizes of 1, 5, 10, and

30, respectively, indicating an epoch size of 5 or 10 seconds strikes a good balance between

Chimera’s responsiveness and computation needs. In addition, computational requirements

can be further reduced by limiting the look-ahead.

Varying reward function: We explore Chimera’s ability to work with different reward

functions by changing the parameter W , which captures the importance of SAR relative

to video. Recall that we have so far used W = 8 which indicates that the penalty of

dropping all SAR images is 8 × higher than the reward of seeing video at the highest bitrate
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throughout the flight. We experimented with weights of W = 2 and W = 12, which decrease

and increase the importance of SAR relative to video, respectively. Chimera significantly

out-performed Flight Agnostic, amounting to an average reward increase of 2980.65 for

Chimera in comparison to Flight Agnostic for FL1, showing robustness and improvement

with Chimera even with smaller and also more severe SAR drop penalties.

4.6 Related work

UAS Data Transmission: Recent papers [  15 ], [  17 ], [  41 ] explore UAS video streaming

for video on demand settings using Adaptive Bitrate (ABR) algorithms. All these works

use past network performance (e.g., throughput of the last few video chunks) for future

throughput prediction (similar to Flight Agnostic). In contrast, we focus on live video, and

joint transmission with SAR sensor data. Further, we develop models that predict future

throughput based on flight path, complemented with an error model.

Uses of wireless sensor networks for UAS surveillance with path planning is studied in [ 3 ],

[ 81 ]–[ 83 ]. These studies focus on discrete connectivity and sensor data sizes rather than the

dynamic throughput of real-world UAS networks and variable sensor data. In contrast, we

focus on how to predict network throughput, and effectively transmit heterogeneous sensor

data, given a long-range UAS flight path.

UAS Communication and Networking: Recent work [  29 ] analyzes hobby UAS flight

data and discusses how to generate traffic unique to these settings. However, this work en-

compasses limited distances based on WiFi, and only works for a few specific and proprietary

types of UAS. Wireless UAS networking has been the focus of recent work [  30 ]–[ 33 ], [  35 ], [  43 ],

which explore the dynamic nature of UAS communication networks, but at shorter distances

(typically within VLOS) and with single data types. In contrast, our work is supported

by real-world UAS flight data at distances exceeding VLOS, a relatively unexplored area of

research due to the difficulty of data collection at such distances. There has been work on

modeling UAS communication channels for data transmission [  6 ], [ 77 ], [ 84 ], reinforcing our

theoretical observations (e.g., the effect of distance to throughput). The papers [  4 ], [ 5 ], [ 16 ],

[ 19 ] provide high-level information about the challenges and open problems in UAS com-
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munication networks, but lack actual flight test data or working solutions to the problems

discussed.

Internet video: Much recent work has focused on efficiently delivering Internet video

through the design of ABR algorithms [  36 ]–[ 40 ], [  50 ], considering video conferencing chal-

lenges [  78 ], and exploring the simultaneous transfer of live and time-shifted video [ 85 ]. These

works do not account for challenges unique to UAS settings, which is our focus.

4.7 Conclusion

In this Chapter, we have designed Chimera to exploit knowledge of the UAS flight path

in order to improve transmission decisions for multiple types of heterogeneous sensor data

from the UAS to the GCS. We have made the following contributions:

First, we have provided additional characterization and analysis from our two real-world

UAS flight datasets (§  2 ), providing deeper insight and motivation into the significant oppor-

tunity to optimize data transmission in UAS settings by exploiting knowledge of UAS flight

paths, which are typically known in advance of flight.

Second, we have presented Chimera, a system for simultaneously transmitting heteroge-

neous sensor data with different timeliness and reliability requirements by taking advantage

of UAS flight path information. As part of Chimera, we have developed robust models

grounded in real-world data that relate UAS network throughput to flight path. Chimera

uses an optimal control framework, performing online optimization and augmented with a

robust prediction and error model in planning its heterogeneous data transmissions.

Third, we evaluated Chimera using a combination of simulation and emulation experi-

ments, and with multiple real-world flight and synthetic traces generated using a method-

ology that we developed and validated. Our results show that Chimera offers significant

improvement over an approach that does not exploit flight path information. Specifically, in

evaluation on our emulation test-bed, Chimera is able to reduce penalties related to dropped

SAR image transmissions by 72.4%−100% relative to a Flight Agnostic scheme, and achieve

comparable video qualities of 90.5%, with only minimal increase in SAR images dropped,

compared to a perfect Oracle (optimal) scheme that knows future throughput.
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5. CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Conclusions

Unmanned Aerial Systems (UAS) are increasingly used to perform sensing and data-

gathering in a variety of scenarios (§  1 ). We have taken several key steps towards enabling

UAS sensor data transmission applications to efficiently and optimally operate at distances

exceeding VLOS, a relatively unexplored, but very important, area of research. UAS op-

erations at long-range distances are of increasing importance due to the opportunities that

these extended ranges provide, and regulations are beginning to support long-range flights

worldwide [ 1 ], [ 10 ], [ 11 ]. In our work, we have made three contributions.

First, we have flown, collected, and analyzed flight data from real-world UAS flights at

distances exceeding VLOS. Our tests range well beyond the existing research in this area

(limited to less than 0.25 miles), and provide new insights into how the UAS flight path

impacts network throughput [  42 ]. Our flight measurements were taken with a combination

of both multirotor and fixed wing UAS, using Tactical Radios, and with omnidirectional and

directional antenna configurations. Our results reveal how network throughput depends not

only on UAS distance, but also more interestingly on the orientation of the UAS relative to

the GCS.

Second, motivated by our measurement results, we designed Proteus, the first system

for video streaming at long-range UAS distances, extending the range of UAS video stream-

ing to the edge of connectivity [  48 ]. At this range, our measurements showed extended

dropouts make it challenging to simultaneously achieve sub-second video streaming latency

and avoid significant loss of video content. However, our data showed the potential to achieve

video streaming with modest delays (e.g., tens of seconds). Proteus is based on a control-

theoretic ABR algorithm approach and introduces a carefully constructed terminal cost into

the receding-horizon optimization at each point in time. Proteus integrates knowledge of

the flight path into its design, choosing terminal cost parameters as a function of both UAS

distance and orientation. Experiments on an emulation test-bed with real-world UAS flight

traces show that Proteus significantly improves upon a representative ABR that has been

shown to work well in Internet settings. For the circ(3) trace, which saw the most dropouts,
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the rebuffering ratio is reduced from 23.97% down to 8.16%, with a net QoE improvement

from -198.84 to -14.72. Additionally, by taking advantage of UAS orientation, the rebuffering

ratio is further reduced to 5.82%, and the QoE further increased to -3.83. The benefits hold

across traces and distances, and even show the benefits of using Proteus with a perfect Ora-

cle throughput predictor. Overall, the results show the feasibility of supporting demanding

video applications in dynamic long-range UAS environments with Proteus.

Third, we have shown through a characterization of two real-world UAS flight datasets

that there is significant opportunity to optimize data transmission in UAS settings by exploit-

ing knowledge of long-term UAS flight paths. Based on this observation, we have presented

Chimera, a system we designed to simultaneously transmit heterogeneous sensor data with

different timeliness and reliability requirements by taking advantage of UAS flight path in-

formation. As part of Chimera, we have developed models grounded in real-world data that

relate UAS network throughput to flight path. Chimera uses an optimal control framework,

performing online optimization augmented with a robust prediction and error model for

planning its heterogeneous data transmissions. We evaluated Chimera using a combination

of simulation and emulation experiments, and with multiple real-world flight traces and syn-

thetic traces generated using a methodology that we have developed and validated. Our

results show that Chimera offers significant improvement over an approach that does not ex-

ploit flight path information. Specifically, in evaluation on our emulation test-bed, Chimera

is able to reduce penalties related to dropped SAR image transmissions by 72.4% − 100%

relative to a flight agnostic scheme. Further, Chimera is able to achieve comparable video

qualities of 90.5%, with only a minimal increase in SAR images dropped, compared to a

perfect Oracle (optimal) scheme that knows future throughput.

5.2 Future directions

This thesis takes the first step in building robust UAS sensor data transmission applica-

tions that account for UAS flight path and can operate at distances exceeding VLOS. Given

the importance and growth of UAS applications, and high probability of expanded opera-
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tions in the near future, there are several avenues that warrant consideration for potential

future directions to build upon this research.

Expansion to multiple UAS: Our work focuses on initial characterization and ap-

plications of missions that operate with a UAS-to-GCS configuration. While this is a very

common configuration, multiple UAS (e.g., swarms) further increase the capabilities and

opportunities to enhance mission effectiveness (e.g., they can utilize more sensors and cover

more area in less time) [ 86 ]. However, multiple UAS networking changes the point-to-point

network configuration that our work includes into a large network of interconnected nodes.

The expansion of our research into multiple UAS networks is not trivial, but would represent

a leap forward and is a next logical step that could build off our measurement insights in

exploiting the UAS flight path, and control theoretic approaches to optimize data transmis-

sion.

Explore interoperability with satellite communication (SATCOM): Our re-

search focuses on point-to-point communication with the radios having a direct path of

communication, where SATCOM is not used or needed. Many UAS operations benefit from

having a communication link that can expand to space to reach anywhere in the world [ 87 ].

In this manner, a hybrid network of Tactical Radios and SATCOM communication points

could be connected to provide UAS sensing capabilities with worldwide reach. This could

further expand to provide additional sensor data from UAS across the world and fuse data

in a controlled manner.

Experiment with Proteus and Chimera in 5G settings: 5G wireless is an area

of high interest and growth, providing millimeter waveforms and increasing throughput.

However, the pros of 5G are not without challenges, such as weather, range, and obstruc-

tion considerations. There is much ongoing research for 5G, including wireless usage with

UAS [  88 ]–[ 90 ]. The control frameworks and algorithms we have designed (Proteus and

Chimera) would benefit from experimentation with 5G settings for UAS flight - potentially

increasing the viability of higher video bitrates (for Proteus) and even more types of sensors

(Chimera).

Explore enhancements using artificial intelligence: Our research built throughput

prediction and error models through detailed analysis and insights gleaned from real-world
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flight datasets. Additionally, we explored the implications of learning these models online,

and using them in UAS sensor data transmission algorithms. Since real-world flight data is

challenging to collect, especially at extended distances, it may be beneficial to explore using

artificial intelligence to enhance the models. One specific area of potential pursuit would

be to explore model-based reinforcement learning in the context of UAS data transmission

systems.
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