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ABSTRACT

We develop a growth option and asset pricing model that incorporates uncertain cash

flow volatility by way of a bounded quadratic diffusion. Using different measures of risk

uncertainty, we study the combined effects of risk and its associated uncertainty on project

values, firm investment, and the resulting returns. Uncertain cash flow volatility is modeled

by a Jacobi process, and our main interest is the effect of the max uncertainty arising from

the diffusion term. For comparison, we also model the volatility by a CIR process. In regards

to the Jacobi process, we consider upper and lower bounds on cash flow volatility as measures

of uncertainty. For the max uncertainty and upper bound, we find that higher uncertainty

leads to less investment, higher returns, and lower project values. In the case of the lower

bound, we find that higher uncertainty leads to more investment, lower returns, and higher

project values. Comparatively, using a CIR process in place of the Jacobi process yields

differences in returns and growth option values, showing the importance of the diffusion

term in the volatility process. Finally, we have reduced the computational complexity of

the simulation. This allows the user to generate long time series and run cross sectional

regressions with many firms.

14



1. INTRODUCTION

When a firm considers the prospect of taking on a new project, it is useful to estimate the

project value. As discussed in Schulmerich [ 1 ], the most basic way of finding the value of

a project is by discounted cash flow valuation, in which it is known that cash flows from a

project will arrive at dates t1, t2, · · · , tn (with 0 ≤ t1 ≤ · · · ≤ tn) and the discount factor is

r. Then, the net present value (NPV) of the project at time t = 0 is given by

NPV =
n∑
j=1

Ctj
(1 + r)tj ,

where the cash flows Ctj may be positive or negative. This model is known to be very

inaccurate, as noted in Schulmerich [ 1 ] and Dixit and Pindyck [  2 ]. One drawback of this

model is that it assumes deterministic cash flows. Our first aim is to develop a model that

takes into account random cash flows with random volatility. Second, we desire a model that

provides different measures of risk uncertainty. For example, an upper bound and a lower

bound on the random risk would be two different measures of uncertainty. To this end, we

will model cash flow volatility by two different mean reverting stochastic processes, and the

difference in these processes is in the diffusion terms.

Our main contribution is demonstrating the importance of correctly modeling the time

varying risk uncertainty. In other words, as the risk changes over time, the uncertainty about

the risk changes too. How the risk changes as the uncertainty changes must be properly taken

into account through the model. By cash flow risk, we mean cash flow volatility. In our two

different cash flow volatility models, the risk uncertainty changes in different ways. In our

first model, we assume a bounded mean-reverting quadratic diffusion process to model the

cash flow volatility. Let Q(v) denote the quadratic polynomial in the diffusion term of the

volatility process. In this case, risk uncertainty is the highest at the local max of Q, which

occurs at the midpoint of the volatility bounds. As the volatility approaches either bound,

uncertainty decreases as the drift term of the volatility process gets larger in magnitude

and the diffusion term gets smaller in magnitude. Our second model uses Feller process.

This means that we replace the quadratic function inside the square root of the diffusion

15



term in the previous process by the current state of the volatility. Thus, as the volatility

increases, the magnitude of the diffusion term increases. As the volatility drifts down below

the long run mean, the uncertainty decreases while the magnitude of the drift term increases.

On the other hand, as volatility drifts above the long run mean, the uncertainty increases

as the magnitude of the drift increases. Aside from accurately capturing the time varying

uncertainty, the quadratic diffusion model allows project managers to put bounds on both

the risk and the uncertainty coefficient. This is critical because they are most likely unable

to calculate accurate volatility parameter estimates for their model.

Volatility modeling and estimation in the context of option pricing is nontrivial, and

detailed discussions can be found in Musiela and Rutkowski [ 3 ]. Volatility is not observable.

It must be estimated, and the estimates used matter. To circumvent this issue, uncertain

volatility models have been develop in Avellaneda, Levy, and ParÁs [ 4 ] and Fouque and Ning

[ 5 ]. A benefit of the uncertainty modeling is that we can establish worst case scenario bounds,

as seen in Buff [  6 ], and this is quite useful when it is not realistically possible to accurately

estimate model parameters. This is certainly the case in the context of real options. In

the case of real options, Brandão [ 7 ] studied volatility estimation when project values are

uncertain. Our model is different, since we focus on the cash flows, not the project value

directly. We believe that parameter estimates for the process modeling firm specific cash

flows should be easier to accurately obtain than estimates for the corresponding volatility

process, since we do not observe the volatility. Again, an uncertain volatility model allows

the firm to make investment decisions when its not possible to have good estimates for the

volatility parameters. Now, we will briefly discuss the models used for the cash flow volatility.

A good candidate model for our purposes is a bounded quadratic diffusion process in

which uncertainty is highest at the midpoint between the bounds and decreases when ap-

proaching the bounds. The Jacobi process satisfies this property. Also known as the Wright-

Fisher diffusion, the Jacobi process has been used in mathematical biology to model changes

in allele frequency in a population over time, as can be seen in Durrett [ 8 ], Fleming and Viot

[ 9 ], Jenkins and Spano [ 10 ], and the references therein. In mathematical finance, Delbaen

and Shirakawa [ 11 ] use a Jacobi process to model the interest rate, and Ackerer, Filipovic,

and Pulido [ 12 ] develop a stochastic volatility model in which a Jacobi process represents

16



the square of the volatility. The Jacobi process is mean-reverting, and the state-dependent

diffusion term of the Jacobi process allows for time varying changes in risk uncertainty.

Methods for simulation and parameter estimation of the Jacobi process along with associ-

ated difficulties are described in Gourieroux and Jasiak [ 13 ], Gourieroux and Valery [ 14 ],

and Jenkins and Spano [ 10 ]. One notable difficulty is the lack of closed form expression for

the transition probability density function. Along these lines, we were not able to derive

closed form expressions for the desired quantities in our model. Due to this, the model is

very computationally expensive. This trouble is not due specifically to the Jacobi process

but rather to adding stochastic volatility to the model. We believe the study of risk and time

varying risk uncertainty justifies the difficulties associated with the addition of stochastic

cash flow volatility. We now provide more motivation for our work from the real options

literature.

A useful way to analyze the investment decision of a firm is through the framework of

options, as opposed to the discounted cash flow valuation method previously mentioned.

Berk, Green, and Naik [ 15 ] develop a model to study the relationship between risk, expected

returns, and firm properties. In their model, firms choose whether or not to take on a new

project each month, and the prospective project is called a growth option. Berk, Green,

and Naik [ 15 ] use I(j) to denote the one time cost of investment in a project available in

month j, and Cj(t) denotes the cash flow at month t from the j-th project. Then, Cj(t)
I(j) is

log-normally distributed in their model. Unlike Berk, Green, and Naik [  15 ], in our model,
Cj(t)
I(j) is not log-normally distributed. The parameter σj in their paper controls the variance

of the cash flows. It is determined at time j and fixed for the lifetime of the project. We

develop a model that includes stochastic cash flow volatility. We use a geometric Brownian

motion to model the cash flows and a Jacobi process to model cash flow volatility. The

bounds on the Jacobi process vmin and vmax may in some sense be considered analogous to σj
in Berk, Green, and Naik [  15 ] as the bounds determine a minimum and maximum allowable

volatility for the cash flows of a certain project. We consider these bounds to be measures

of volatility uncertainty. Another source of uncertainty arises from the diffusion term of the

Jacobi process. We study the effect of the uncertainty due to the bounds and the quadratic
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diffusion on returns, project values, and the rate of project investment. We now motivate

the need for an uncertain volatility model.

McDonald and Siegel [ 16 ] study irreversible investment using a model in which project

values, which represent expected discounted cash flows, and the cost of investment both

follow geometric Brownian motions. Although our model is distinct from theirs in many

ways, including the fact that we derive project values after describing the dynamics of cash

flows, they remark that an increase in the variance of the value divided by the cost of

investment yields higher project values. They remark that this is due to the constants in

the diffusion terms of the geometric Brownian motions, and as noted in Brock, Rothschild,

and Stiglitz [ 17 ], the effect of the variance on the option value is not so straightforward.

Grullon, Lyandres, and Zhdanov [ 18 ] provide an explanation for the positive relationship

between firm level volatility and returns and mention that in the study of real options, an

increase in volatility yields an increase in value of the option. On the other hand, Nishimura

and Ozaki [ 19 ] study Knightian uncertainty in the context of irreversible investment. They

find that an increase in uncertainty decreases the value of an investment, but an increase in

risk increases the value. Knightian uncertainty refers to not knowing the correct probability

measure. In our model, we assume the correct probability measure is known and capture

uncertainty through the diffusion term of the Jacobi process. We intend to see if uncertainty

decreases growth option values under our new perspective of uncertainty. Moreover, few, if

any, real options papers consider stochastic volatility. So, this alone is a valuable addition

to the literature. In addition to Berk, Green, and Naik [  15 ], several papers study the cross-

sectional and time series relationships between expected stock returns and firm properties,

including Gomes, Kogan, and Zhang [ 20 ] and Kogan and Papanikolaou [ 21 ]. Although we

do not investigate these properties in this thesis, we have designed a framework in which it is

possible. This is important because the correct set up is necessary to prevent the simulation

from being computationally infeasible. More motivation comes from Zhang [ 22 ], who studies

the value premium through basic firm properties and concludes that “assets in place much

are riskier than growth options”. Is this still true if the growth option risk is not known? Ai

and Kiku [ 23 ] develop a growth option model in which the volatility of both consumption

and cash flows is a two-state Markov process. One of their conclusions is that an increase in
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idiosyncratic volatility yields larger growth option values. What happens when the volatility

is uncertain? In this paper, we study this question when two different diffusion processes

are used to model cash flow volatility.

The remainder of the thesis is organised as follows: In the second chapter, we describe

the model set up and how it differs from that of Berk, Green, and Naik [  15 ]. Then, we

write expressions required for firm valuation as a function whose value is known at time

t multiplied by a time t conditional expectation defined in Equation ( 2.13 ). This greatly

reduces the computational complexity of the problem. The expressions required for firm

valuation include formulas for the expected future cash flows of projects currently alive

and the value of future growth options. We show that under certain parameter restrictions

(which make sense in practice) that the firm value does not explode. We show that our model

reproduces the desirable quality that ceteris paribus firms are more likely to invest in lower

interest rate environments and less likely to invest in higher interest rate environments. In

the third chapter, we discuss parameter estimation. Then, we present simulation results. Our

focus is on how different parameter combinations of the volatility processes affect realized

returns. Interestingly, we find the rate of mean reversion to be a dominant parameter in the

case of the Feller process, while the long run mean is a dominant parameter in the case of

the Jacobi process. Our main result is a description of the effects of different measures of

uncertainty on growth option values, realized returns, and the rate of project investment.
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2. THEORY

This chapter contains the theoretical development of the model. Using continuous time

stochastic processes and sampling in discrete time, we extend the model of Berk, Green,

and Naik [ 15 ], henceforth referred to as BGN, to include stochastic volatility. Our main

innovation is the use of a Jacobi process as the stochastic volatility of the cash flow process,

and our foremost objective is demonstrating the importance of the functional form of the

diffusion term in the volatility process. The Jacobi process affords us several measures of

uncertainty. First, we consider the local maximum of the quadratic function in the diffusion

term of the Jacobi process. This is the location of “max uncertainty.” Also, we consider the

upper and lower bounds of the Jacobi process as measures of uncertainty. We will explain why

the lower bound acts as a measure of “good” uncertainty, while the upper bound and “max

uncertainty” act as measures of “bad” uncertainty. In addition, the difference in the bounds

of the paths of the Jacobi process are a measure of uncertainty, and the individual parameters

of the Jacobi process will be shown to have an effect too. In our model, uncertainty represents

lack of knowledge about the cash flow volatility for a specific firm. For the model to make

sense, certain properties need to be satisfied. Our model reproduces the effect that firms

are more likely to invest during periods of lower interest rates rather than periods of higher

interest rates. Our model also reproduces the effect that a firm is more likely to accept

projects with lower systematic risk, which in this case refers to the covariance between the

SDF and the cash flow process. We show that the relevant series converge, which is required

to prevent the explosion of firm values. Most importantly, we reduce the computational

complexity of the model.

2.1 Background material

In this section, we recall the definitions necessary for the development of our model. Most

importantly, we recall the definition of standard Brownian motion, which can be found in

Protter [ 24 ], Privault [ 25 ], or Schilling and Partzsch [ 26 ]. We begin with the definition of a

complete probability space.
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Definition 2.1.1. A probability space (Ω,F ,P) is complete if for every subset A of B, with

B ∈ F and P(B) = 0, it follows that A ∈ F .

In finance, it is useful to condition on the latest information. To this end, we recall the

definition of a filtration on a complete probability space.

Definition 2.1.2. Given a complete probability space (Ω,F ,P), a filtration is an increasing

sequence of sigma algebras F = (Ft)t∈[0,∞] contained in F , i.e., ∀s ≤ t Fs ⊂ Ft ⊂ F .

It is standard to assume that a complete filtered probability space (Ω,F ,Ft,P) satisfies

the “usual conditions,” as defined below.

Definition 2.1.3. The usual conditions for (Ω,F ,Ft,P), as defined in Protter [ 24 ], are as

follows:

1. If A ∈ F and P(A) = 0, then A ∈ F0.

2. For every t ∈ [0,∞), we have Ft = ⋂
u>t
Fu.

We are now in a position to define standard Brownian motion, which will be driving the

stochastic processes used in our model.

Definition 2.1.4. A standard Brownian motion is a collection of random variables

B = (Bt)t∈[0,∞) satisfying the following properties:

1. B is a real-valued function on [0,∞) × Ω, namely B : [0,∞) × Ω → R, and for every

t ∈ [0,∞) the function Bt : Ω→ R is F/B(R) measurable.

2. P(ω ∈ Ω : B0(w) = 0) = 1.

3. P(ω ∈ Ω : t 7→ Bt(ω) is continuous) = 1.

4. B(s) − B(t) ∼ N (0, s − t), i.e. B(s) − B(t) is normally distributed with mean 0 and

variance s− t.

5. For every n ∈ N and for every subset {ti}i=ni=1 ⊂ [0,∞) with 0 = t0 < t1 < · · · < tn <∞,

it follows that Bt1 −Bt0 , · · · , Btn −Btn−1 are mutually independent.
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In everything that follows, we will assume every Brownian motion is a standard Brownian

motion. Next, we explain what it means for a Brownian motion to be adapted to a filtration,

define its natural filtration, and define an admissible filtration.

Definition 2.1.5. A Brownian motion B = (Bt)t∈[0,∞) is adapted to the filtration

F = (Ft)t∈[0,∞) if for every t ∈ [0,∞) it follows that Bt is an Ft measurable random variable.

Definition 2.1.6. The natural filtration of a Brownian motion B = (Bt)t∈[0,∞) is the collec-

tion of sigma algebras FB = (FBt )t∈[0,∞) defined by FBt = σ(Bs : s ≤ t). This is the smallest

filtration making B adapted.

Definition 2.1.7 (Schilling and Partzsch [  26 ]). An admissible filtration F = (Ft)t∈[0,∞) for

the Brownian motion B = (Bt)t∈[0,∞) satisfies

1. For every t ∈ [0,∞) it follows that FBt ⊂ Ft.

2. For every s ∈ [0, t) it follows that Bt −Bs |= Fs.

2.2 Stochastic processes

In this section, we present the stochastic processes that will be used in the model. Let

(Ω,F ,F ′t,P) be a complete filtered probability space satisfying the usual conditions. For

every j ∈ Z+, let W I ,W r,WCj ,W Vj , and WM be P-standard Brownian motions adapted

to the filtration F ′t. Here, j is the index of the j-th project arriving for a particular firm

at month j. Each firm has its own collection of WCj and W Vj for all j. Though we have

suppressed the index identifying the individual firm, we include here the collection of all

WCj and W Vj across all firms in existence. Since for all j, WCj are correlated with WM

and W r, WCj and WCi can’t be independent for any value of i, including j. It’s possible

to find bounds on the correlation between WCj and WCi , but knowledge of the value of

this correlation is not required in our model. Also, for s ≤ t, we assume that WCj(s)

and W Vj(s) are F ′t measurable, but we assume that the individual firm does not see the

information regarding a project until it arrives. From now on, we now focus our attention

on the individual firm. Everything is easily generalized to the case of many firms. In that
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case, all firms experience the same interest rate and SDF processes. Thus, the information

available to the firm at time t is given by the join of the sigma algebras generated by

σ(W I(s) : 0 ≤ s ≤ t), σ(W r(s) : 0 ≤ s ≤ t), σ(WM(s) : 0 ≤ s ≤ t), σ(W Vj(s) : j ≤ s ≤ t),

and σ(WCj(s) : j ≤ s ≤ t) for all integers j ≤ t, and we denote this sigma algebra by Ft.

Again, W Vj and Vj(j) are not observed until time j when the j-th project becomes available.

We now go into details of the processes used in our model.

Let I(j) be the cost of the project that arrives at month j. This is the initial investment

cost that is paid once, only if a project that arrives at month j is going to be executed. Thus,

from the standpoint of an option, this is a strike price that is known at month j, but future

strike prices are unknown. Let this initial investment of the project follow the dynamics

dI(t)
I(t) = µIdt+ σI dW I(t). (2.1)

This of course has the solution for s > t:

I(s) = I(t)e(µI−
σ2
I

2 )(s−t)+σIW I(s−t). (2.2)

The computation is done by applying Ito’s formula to log(I(t)), and the derivation can

be found in Klebaner [  27 ]. We assume I is independent of all the other processes in this

model. Note that I(t) could also be represented as a mean reverting process to account

for the flows of the business cycle. Unfortunately, this significantly complicates an already

computationally expensive problem. One factor affecting the decision to invest is the interest

rate process and its value at the time of the potential investment.

We model the interest rate with the Vasicek model. The interest rate follows the dynamics

dr(t) = a(b2 − r(t)) dt+ σr dW r(t). (2.3)

23



We desire to find a way to relate the interest rate r(s) at time s to the interest rate r(t) at

time t, for s > t. We do this in the following derivation, which is standard. We begin by

differentiating eatr(t).

d(eatr(t)) = aeatr(t) dt+ eat dr(t)

= aeatr(t) dt+ eat(a(b2 − r(t)) dt+ σr dW r(t))

= ab2eat dt+ σreat dW r(t).

Integrating yields

easr(s) = eatr(t) + ab2

∫ s

t
eau du+ σr

∫ s

t
eau dW r(u).

Multiplying each side by e−as leads to an expression for r(s) given r(t):

r(s) = r(t)e−a(s−t) + b2(1− e−a(s−t)) + σre−as
∫ s

t
eau dW r(u). (2.4)

We are now in a position to give formulas for the conditional expectation and variance

of the interest rate at time s, given the value of the interest rate at time t.

Lemma 2.2.1. The conditional distribution of r(s) given r(t) = r is normal with conditional

mean

E [r(s)|r(t) = r] = r(t)e−a(s−t) + b2(1− e−a(s−t))

and conditional variance

V [r(s)|r(t) = r] = σ2
r

2a(1− e−2a(s−t)).

Proof. Since
∫ s
t eau dW r(u) is normally distributed, normality of the conditional distribution

is obvious. We proceed to calculate the desired conditional expectation.

E [r(s)|r(t) = r] = E [r(t)e−a(s−t)|r(t) = r] + E [b2(1− e−a(s−t))|r(t) = r]

+ E [σre−as
∫ s

t
eau dW r(u)|r(t) = r]
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= r(t)e−a(s−t) + b2(1− e−a(s−t)).

Next, the conditional variance is given as follows. The third equality will use Ito’s isometry

and independence.

V [r(s)|r(t) = r] = V [r(t)e−a(s−t) + b2(1− e−a(s−t)) + σre−as
∫ s

t
eau dW r(u)|r(t) = r]

= V [σre−as
∫ s

t
eau dW r(u)|r(t) = r]

= E [σre−as
∫ s

t
eau dW r(u)]2

= σ2
re−2as E [

∫ s

t
e2au du] = σ2

r

2a(1− e−2a(s−t)).

This completes our proof.

Lemma 2.2.2. For all s > t, the conditional distribution of the random variable −
∫ s
t r(u) du

given r(t) = r is normal with conditional mean

E [−
∫ s

t
r(u) du|r(t) = r] = (b2 − r(t)

a
)[1− e−a(s−t)]− b2(s− t)

and conditional variance

V [−
∫ s

t
r(u) du|r(t) = r] = σ2

r

a2 (s− t+ 1
2a −

1
2a [ea(t−s) − 2]2).

Proof. First, note the following equality.

−
∫ s

t
r(u) du = (b2 − r(t))

∫ s

t
e−a(u−t) du−

∫ s

t
b2 du− σr

∫ s

t
e−au

(∫ u

t
eap dW r(p)

)
du.

Let us consider the integral
∫ u
t eap dW r

p , which is normally distributed. The mean of this

random variable is clearly zero. Using the Ito isometry, we now calculate the variance.

V(
∫ u

t
eap dW r

p |Ft) = E [(
∫ u

t
eap dW r

p )2|Ft]

= E [
∫ u

t
e2ap dp|Ft]
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=
∫ u

t
e2ap dp

= e2au − e2at

2a .

Thus,
∫ u
t eap dW r

p ∼ N (0, e2au−e2at

2a ), and it follows that

σre−au
∫ u

t
eap dW r

p ∼ N (0, σ
2
r

2a(1− e2a(t−u))).

Now, let I(t, s) :=
∫ s
t

∫ u
t e−a(u−p) dW r

p du. By Fubini’s theorem,

I(t, s) =
∫ s

t

∫ s

p
e−a(u−p) du dW r

p

=
∫ s

t
eap

∫ s

p
e−au du dW r

p

=
∫ s

t
eap

[
−1
a

e−au
]u=s

u=p
dW r

p

= 1
a

∫ s

t
(1− ea(p−s)) dW r

p .

Clearly, I(t, s) is normally distributed, with conditional mean and conditional variance as

follows:

E [I(t, s)|Ft] = 1
a
E
[∫ s

t
(1− ea(p−s)) dW r

p |Ft
]

= 0,

V(I(t, s)|Ft) = 1
a2 E

[(∫ s

t
(1− ea(p−s)) dW r

p

)2
|Ft
]

= 1
a2

∫ s

t
(1− ea(p−s))2 dp.

We calculate the following integral appearing in the variance:

K(t, s) : =
∫ s

t
[1− ea(p−s)]2 dp

=
∫ s

t
dp− 2e−as

∫ s

t
eap dp+ e−2as

∫ s

t
e2ap dp

= s− t− 2e−as
a

(eas − eat) + e−2as

2a [e2as − e2at]

= s− t− 1
2a [3− 4ea(t−s) + (ea(t−s))2]

= s− t+ 1
2a −

1
2a [ea(t−s) − 2]2.
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Thus, we have σrI(t, s) ∼ N (0, σ2
r

a2K(t, s)). Returning to the integral in question,

−
∫ s

t
r(u) du = (b2 − r(t)

a
)[1− e−a(s−t)]− b2(s− t)− σr

a

∫ s

t
(1− e−a(s−p)) dW r(p).

From here, we can easily calculate the conditional expectation and variance of −
∫ s
t r(u) du

given the interest rate at time t.

E
[
−
∫ s

t
r(u) du|r(t) = r

]
=
(
b2 − r(t)

a

)
(1− e−a(s−t))− b2(s− t),

and

V [−
∫ s

t
r(u) du|r(t) = r] = E [− σr

a

∫ s

t
(1− e−a(s−p)) dW r(p)]2

= σ2
r

a2

∫ s

t
(1− e−a(s−p))2 dp

= σ2
r

a2 (s− t+ 1
2a −

1
2a [ea(t−s) − 2]2),

where the first equality follows by independence and the Ito isometry.

Cash flow volatility is modeled by a Jacobi process, as its properties are conducive to

properly modeling risk uncertainty. The following definition of the Jacobi process and the no-

tation employed here are from Ackerer, Filipovic, and Pulido [ 12 ]. Similar definitions, though

possibly for the case when vmin = 0 or vmax = 1 can be found in Delbaen and Shirakawa

[ 11 ], Gourieroux and Jasiak [ 13 ], and Gourieroux and Valery [ 14 ]. Let vmin, vmax ∈ R+, with

0 < vmin < vmax. Let θ ∈ (vmin, vmax), κ ∈ R+ (the positive real numbers), and σV ∈ R+. As

stated in Delbaen and Shirakawa [ 11 ], under these conditions, the Jacobi process will have

a stationary Beta distribution. Let W V be a P-standard Brownian motion adapted to the

filtration Ft. Let the function Q : [vmin, vmax]→ R be defined by

Q(v) = (v − vmin)(vmax − v)
(√vmax −

√
vmin)2 . (2.5)
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The diffusion process V satisfying the dynamics

dV (t) = κ(θ − V (t)) dt+ σV
√
Q(V (t)) dW V (t) (2.6)

is called a Jacobi process. As noted in Ackerer, Filipovic, and Pulido [ 12 ], if V (t) ∈ (vmin, vmax),

then V (t)− vmin > 0 and vmax−V (t) > 0 implies Q(V (t)) > 0. So, it is clear that if V stays

within the bounds vmin and vmax, then V is real-valued. It is also noted, without proof, in

Ackerer, Filipovic, and Pulido [ 12 ] that V (t) ≥ Q(V (t)), where equality holds if and only if

v = √vminvmax. We will prove this.

Proof. We want to first prove that V (t) ≥ Q(V (t)). To this aim, we first expand the square

in the relation (V (t)−√vminvmax)2 ≥ 0. In the second step below, we rearrange terms and

add V (t)vmax + V (t)vmin to each side of the inequality. In the third step, we factor out V (t)

on the left hand side.

V 2(t)− 2V (t)√vminvmax + vminvmax ≥ 0

V (t)vmax − 2V (t)√vminvmax + V (t)vmin ≥ V (t)vmax − V 2(t)− vminvmax + vminV (t)

V (t)(vmax − 2√vminvmax + vmin) ≥ V (t)vmax − V 2(t)− vminvmax + vminV (t).

Rearranging and factoring yields

V (t)(√vmax −
√
vmin)2 ≥ V (t)(vmax − V (t))− vmin(vmax − V (t))

= (vmax − V (t))(V (t)− vmin).

This gives the conclusion that V (t) ≥ Q(V (t)), where Q is defined in Equation ( 2.5 ).

Let us now show that V (t) = Q(V (t)) if and only if V (t) = √vminvmax. First, suppose

that V (t) = √vminvmax. Then, recalling the definition of Q given in Equation ( 2.5 ), we use

algebra to see that Q(V (t)) = √vminvmax. This is done below.

Q(V (t)) = (vmax −
√
vminvmax)(√vminvmax − vmin)
(√vmax −

√
vmin)2
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= v
1/2
minv

3/2
max − 2vminvmax + v

3/2
minv

1/2
max

(√vmax −
√
vmin)2

=
√
vminvmax(vmax − 2√vminvmax + vmin)

(√vmax −
√
vmin)2

=
√
vminvmax(√vmax −

√
vmin)2

(√vmax −
√
vmin)2

= √vminvmax.

Finally, suppose that V (t) = Q(V (t)). Then,

V (t)(vmax − 2√vminvmax + vmin) = vmaxV (t)− vminvmax − V 2(t) + V (t)vmin.

By cancelling terms in the above expression we arrive at the following equation.

−2V (t)√vminvmax = −vminvmax − V 2(t).

We now rearrange and factor.

0 = V 2(t)− 2V (t)√vminvmax + vminvmax

= (V (t)−√vminvmax)2.

Thus, we arrive at the desired conclusion V (t) = √vminvmax.

We now record a special case of a theorem justifying the existence and uniqueness of the

Jacobi process. A proof can be found on page 2 of Delbaen and Shirakawa [ 11 ].

Theorem 2.2.3 (Theorem 2.1 of Ackerer, Filipovic, and Pulido [ 12 ]). Given a determinis-

tic initial state V0 ∈ [vmin, vmax], there exists a unique solution V (t) of  2.6 taking values in

[vmin, vmax] such that
∫∞

0 1V (t)=v dt = 0 for every v ∈ [vmin, vmax). Also, the process V (t) takes

values in (vmin, vmax) iff V (0) ∈ (vmin, vmax) and

σ2
V (vmax − vmin)

(√vmax −
√
vmin)2 ≤ 2κmin{vmax − θ, θ − vmin}. (2.7)
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The condition ( 2.7 ) is critical as it ensures the Jacobi process stays within the bounds.

We now turn our attention to the derivation of conditional expectations.

Lemma 2.2.4. If u < t, then the conditional expectation E [V (t)|V (u) = v] is given by

E [V (t)|V (u) = v] = θ + (v − θ)e−κ(t−u). (2.8)

Proof. Recall the definition of Q: Q(V (t)) = (vmax−V (t))(V (t)−vmin)
(√vmax−

√
vmin)2 . First, we differentiate the

product eκtV (t).

d(eκtV (t)) = eκt dV (t) + κeκtV (t) dt

= κeκtV (t) dt+ eκt(κθ − κV (t)) dt+ σV eκt
√
Q(V (t)) dW V (t)

= κθeκt dt+ σV eκt
√
Q(V (t)) dW V (t).

Integrating from u to t yields the following.

eκtV (t) = eκuV (u) + κθ
∫ t

u
eκs ds+ σV

∫ t

u
eκs
√
Q(V (s)) dW V (s).

Now, we multiply each side by e−κt.

V (t) = V (u)e−κ(t−u) + κθe−κt
∫ t

u
eκs ds+ σV e−κt

∫ t

u
eκs
√
Q(V (s)) dW V (s)

= V (u)e−κ(t−u) + θ(1− e−κ(t−u)) + σV e−κt
∫ t

u
eκs
√
Q(V (s)) dW V (s).

We now arrive at our conclusion.

E [V (t)|V (u) = v] = V (u)e−κ(t−u) + θ(1− e−κ(t−u))

= ve−κ(t−u) + θ(1− e−κ(t−u)).
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We will use a stochastic discount factor (SDF) process which follows the dynamics

dM(t)
M(t) = −r(t) dt− λ(t) dWM(t),

where λ is the market price of risk, which we will assume to be a constant. The SDE for the

SDF has the following solution for s > t:

M(t) = M(0)e−
∫ t

0 λ(s) dWM (s)− 1
2

∫ t
0 λ

2(s) ds−
∫ t

0 r(s) ds. (2.9)

We are now in a position to describe the model.

2.3 The model

Our model is an extension of the one in Berk, Green, and Naik [ 15 ]. When possible, the

notation has been kept the same or similar. Their model is designed to explain standard

results in the empirical finance literature from the perspective of individual firm investment

decisions. In our model, as in theirs, a project becomes available at every month to each

firm, and this investment opportunity is called a growth option.

Let π ∈ (0, 1) be a parameter affecting project lifetimes. The random variables {Yj(t+ 1)}

with t ≥ j are a collection of Bernoulli random variables for every j ∈ Z+ with probability

mass function P(Yj(t+ 1) = 1) = π and P(Yj(t+ 1) = 0) = 1− π. We assume the random

variables Yj are independent of all other random variables in the model. Also, we assume

that Yj(t) is adapted to the filtration Ft for all real t and for all positive integers j. In

practice, we will only be concerned with Yj(t) for positive integer values of t, since cash flows

come in on a monthly basis. We now make remarks on the parameter π, which can be made

to be firm specific or even random. Our model for cash flow volatility is mean-reverting. If π

is large for a particular project, the project will tend to have a long lifetime. The information

available at a particular month, especially the value of the Jacobi process at that month,

may not have a significant effect on the value of the cash flows if the project has a long

lifetime. What matters is what happens “on average” in our model set up. We now describe

how the project lifetime is determined.
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Let j ∈ Z+ be the month that a project has arrived. The indicator random variables

{χj(t)}t≥j determine the lifetime of the j-th project. For every j, for every t ≥ j, χj(t) is

defined by χj(t+ 1) = χj(t)Yj(t+ 1). This has the following meaning:

χj(t) =


0 if the project has been terminated on or before time t.

1 if the project has not yet been terminated at time t.

The value of χj(j) is determined at time j, when the option to take on the project is

available.

χj(j) =


0 if the project is not taken on.

1 if the project is taken on.

The j-th project is taken on if its net present value, henceforth NPV, is positive. The

NPV is the current expected value of all future cash flows from the project minus the initial

cost of investment. We now describe project cash flows for a specific firm, and we begin with

cash flow volatility.

The volatility of the cash flows of projects are modeled by a Jacobi process. For com-

parison, we also use a Cox-Ingersoll-Ross (CIR) process to model cash flow volatility. The

difference arises in the diffusion term of the volatility process, which is bounded for the

Jacobi process but not bounded for the CIR process. Furthermore, in the case of the Ja-

cobi process, volatility uncertainty decreases as it moves from the location of max volatility

uncertainty to the bounds. In the case of the CIR process, volatility uncertainty increases

monotonically as volatility increases. We begin with the Jacobi process.

We consider a time-varying and stochastic volatility that is likely to capture cash flow

uncertainty for the specific firm in question. Assume that for every j, Vj(t) is a Jacobi

process. The subscript j on the Jacobi process indicates that Vj is specific to the j-th project.

We assume that the parameters of the Jacobi process are firm specific, so κ, σV , vmin, vmax,

and θ are all firm specific. Thus, vmin ≤ Vj(t) ≤ vmax, and we consider the difference in the

bounds, vmax − vmin, as a measure of the scope of cash flow uncertainty. Additionally, we

consider the local max of Q, the lower bound vmin, and the upper bound vmax to be other
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measures of uncertainty. Let θ ∈ (vmin, vmax) and κ > 0. The Jacobi process for the j-th

project follows the dynamics

dVj(t) = κ(θ − Vj(t)) dt+ σV
√
Q(Vj(t)) dW Vj(t). (2.10)

In the current set up, all growth options for a certain firm are ex ante identical. For

every j, let F jt,s = σ(Vj(u) : t ≤ u ≤ s). Conditioning on F jt,s allows for a reduction

in computational complexity, which will be seen later. This reduction is extremely useful

because the problem ultimately requires the computation of a large number of monte carlo

simulations. For comparison, we will consider a different form of the diffusion term. We also

study the case in which the cash flow volatility follows a CIR process, which is given below.

dVj(t) = κ(θ − Vj(t)) dt+ σV
√
Vj(t) dW Vj(t). (2.11)

For the CIR process, we require that κ, θ, and σV satisfy the Feller condition 2κθ > σ2
V , so

that Vj(t) > 0 for all t ≥ j. We now turn our attention to the cash flows.

The cash flows of a project beginning at date j follow the dynamics

dCj(t)
Cj(t)

= µ dt+ σVj(t) dWCj(t),

which has the solution for t ≥ j:

Cj(t) = Cj(j)eµ(t−j)+R(j,j,t), (2.12)

where R(j, t, s) = σ
∫ s
t Vj(u) dWCj(u)− σ2

2
∫ s
t V

2
j (u) du for every j, t, s ∈ R+ with s ≥ t. The

firm does not receive the cash flow Cj(j) at time j. The first possible cash inflow is at time

j+ 1 for the j-th project. Define C(j) = ln Cj(j)
I(j) , but we will write C instead of C(j), as this

parameter will be the same across all projects for a specific firm.

Now, we define the following constant and functions. Let the constant C1 be defined by

C1 = λσrρMr

a
− b2 + σ2

r

2a2 . Let C2 : [0,∞)→ R and C3 : [0,∞)→ R be functions of the interest

rate defined as follows: C2(t) = b2−r(t)
a
− λσrρMr

a2 − 3σ2
r

4a3 and C3(t) = σ2
r

4a3 −C2(t). After defining
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C41 : (R+)3 → R, C42 : (R+)2 → R, and C43 : (R+)2 → R, we will define C4 : (R+)3 → R as

a combination of these functions.

C41(j, t, s) = C + µ(s− j) + (s− t− 1)C1 −
σ2
r

4a3 e−2a(s−t−1),

C42(t, s) = σ2
r

4a3 + σ2
r

4a3 (1− e−a(s−t−1))2(1− e−2a) + (b2

a
− λσrρ

Mr

a2 − σ2
r

a3 )(1− e−a(s−t−1)),

C43(t, s) = (r(t)e
−a + b2(1− e−a)

a
)(e−a(s−t−1) − 1),

C4(j, t, s) = eC41(j,t,s)+C42(t,s)+C43(t,s).

Our model incorporates multiple sources of risk in addition to the risk and uncertainty

associated with the Jacobi process. These other sources include the correlations between the

standard Brownian motions driving the interest rate, the SDF, and the cash flow processes

for each of the projects. Let ρr,Cj represent the correlation between the standard Brownian

motions driving the interest rate process and the cash flow process of the j-th project. Let

ρM,r represent the correlation between the standard Brownian motions driving the interest

rate process and the SDF process. Let ρM,Cj represent the correlation between the standard

Brownian motions driving the SDF process and the cash flow process of the j-th project.

We list restrictions on the following parameters: ρr,Cj > 0, a > 0, σ > 0, and σr > 0. Let

ρM,Cj be a random variable. Let ρM,Cj
l , ρ

M,Cj
u ∈ [−1, 1] be lower and upper bounds on ρM,Cj ,

respectively. Let Pj denote the set [ρM,Cj
l , ρ

M,Cj
u ]. Define the constant C6 = σσrρ

r,Cj

a
. Let the

function C7 : Z+ → R be defined by C7(j) = −σσrρ
r,Cj

a
− λσρM,Cj . Let f : [0,∞)2×Z+ → R

be defined by f(s, p, j) = C6e−a(s−p) + C7(j). By our parameter assumptions, C6 > 0 and

C7(j) ≤ f(s, p, j).

Writing cash flows and growth options in terms of the following function g will allow for

a reduction in the computational complexity of the monte carlo simulations. For all T ≥ t,

define the function g : [vmin, vmax]× [0,∞)× [0,∞)× Z+ → R by

g(v, t, T, j) = E [e
∫ T
t
Vj(p)f(T,p,j) dp|Vj(t) = v]. (2.13)
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Remark 2.3.1. The function g is really a function of the parameters θ, vmin, vmax, κ, σV ,

and the parameters involved in f , in addition to v, t, T, and j. We suppress the former

parameters when writing g because we assume they are firm specific. The dependence on

so many parameters makes the problem very computationally expensive. Without reducing

our expressions to nice functions multiplied by the conditional expectation which we call g,

running the simulation would have been even more difficult compared to what is already a

challenging problem computationally. The definitions and derivations in the remainder of

this chapter are for one specific firm, and differences in the firm specific parameters will be

taken into account during the simulation. Its possible to derive an infinite series representa-

tion for g, which is very similar to the result of Delbaen and Shirakawa [ 11 ]. Unfortunately,

our simulations require the generation of long time series, and the expansion of the series

becomes too cumbersome to be useful as an approximation for g.

2.4 A series expansion for the conditional expectation

Following Delbaen and Shirakawa [  11 ], we derive a series representation for the condi-

tional expectation g. Our definitions and lemma are very similar to theirs. The main differ-

ence is the addition of the function f , and the difference becomes apparent in the second order

expansion. We have tried using this approximation for g up to second order in our model, but

it is not accurate over our long time horizons. Theoretically, the approximation can be made

to be very good, but as will be seen below, expanding past the second order term in the series

is very cumbersome. The representation given in this section will show the effect of changing

the bounds of the Jacobi process on the function g. Specifically, if vmin = 0, then g will be an

increasing function of vmax. Let Ln = {(l1, · · · , ln) ∈ Nn : |lj− lj−1| ≤ 1, 1 ≤ j ≤ n, l0 = 0}.

In the definition of q below, let l = max(lj−1, lj). Now, let

q(lj−1, lj) =


(2l(a+b+l−1)+a(a+b−2))Γ2(a)l!Γ(b+l)

(a+b+2l)(a+b+2l−1)(a+b+2l−2)Γ(a+l)Γ(a+b+l−1) , if lj = lj−1,

− l!Γ2(a)Γ(b+l)
(a+b+2l−1)(a+b+2l−2)(a+b+2l−3)Γ(a+l−1)Γ(a+b+l−2) , if |lj − lj−1| = 1.
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For every n ∈ Z+ and for every n-tuple (λl1 , · · · , λln) ∈ Ln, let sn+1 = t, and define for every

j ∈ Z+ the following function:

In,jt,T (λl1 , · · · , λln) =
∫ T

t

∫ T

sn
· · ·

∫ T

s2
{
n∏
i=1

f(T, si, j)}e−
∑n

i=1 λli (si−si+1) ds1 · · · dsn. (2.14)

Define γ = θ−vmin
vmax−vmin

, β = σV√
vmax−

√
vmin

, (a1)k = Γ(a1+k)
Γ(a1) , a = 2κγ

β2 , b = 2κ(1−γ)
β2 , and

w(x) = xa−1(1− x)b−1. Note that a > 0 and b > 0. For every n, let λn = κn+ β2

2 n(n− 1),

kn = (a+b+2n−1)Γ(a+n)Γ(a+b+n−1)
n!Γ(a)2Γ(b+n) , and ψn(x) = ∑n

k=0(−1)k
(
n
k

)
(a+b+n−1)k

(a)k
xk.

Lemma 2.4.1. Let T > t. Then,

g(v, t, T, j) = e
vmin

(
C7(j)(T−t)−

C6(e−a(T−t)−1)
a

)

× (1 +
∞∑
n=1

(vmax − vmin)n{
∑

(l1,··· ,ln)∈Ln
ψln(z)

(
n∏
i=1

kliq(li−1, li)
)

×
∫ T

t

∫ T

sn
· · ·

∫ T

s2
{
n∏
i=1

f(T, si, j)}e−
∑n

i=1 λli (si−si+1) ds1 ds2 · · · dsn−1 dsn}). (2.15)

Proof. The argument is nearly identical to what is in Delbaen and Shirakawa [ 11 ]. We

use similar notation, and the only difference in our proof is the extra function f inside

the integration. For the Jacobi process, we suppress the subscript j and simply write V

instead of Vj. Let Z(t) = V (t)−vmin
vmax−vmin

. Note that V (t) = Z(t)(vmax − vmin) + vmin. Under this

transformation, by Equation (  2.6 ),

dZ(t) = κ(γ − Z(t)) dt+ β
√
Z(t)(1− Z(t)) dW V (t).

Let z(v) = v−vmin
vmax−vmin

so that in the conditional expectation below, we can switch from

conditioning on V (t) = v to Z(t) = z.

E [e
∫ T
t
V (p)f(T,p,j) dp|V (t) = v] = E [e

∫ T
t

(z(p)(vmax−vmin)+vmin)f(T,p,j) dp|Z(t) = z]

= evmin
∫ T
t
f(T,p,j) dp

× E [e(vmax−vmin)
∫ T
t
z(p)f(T,p,j) dp|Z(t) = z]
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= evmin
∫ T
t
f(T,p,j) dp E [1 +

∞∑
n=1

(vmax − vmin)n
n!

× (
∫ T

t
z(p)f(T, p, j) dp)n|Z(t) = z]

= evmin
∫ T
t
f(T,p,j) dp

(
1 +

∞∑
n=1

(vmax − vmin)n
n!

× E [(
∫ T

t
z(p)f(T, p, j) dp)n|Z(t) = z]

)
,

where the last line follows by Fubini’s theorem. Let ds = ds1 ds2 · · · dsn−1 dsn. Now,

E [(
∫ T

t
z(p)f(T, p, j) dp)n|Z(t) = z] = n!

∫ T

t

∫ T

sn
· · ·

∫ T

s2
E [

n∏
i=1
{zsi

× f(T, si, j)}|Z(t) = z] ds

= n!
∫ T

t

∫ T

sn
· · ·

∫ T

s2
{
n∏
i=1

f(T, si, j)}

× E [{
n∏
i=1

zsi}|Z(t) = z] ds.

From Equation (3.10) of Delbaen and Shirakawa [ 11 ],

E [{
n∏
i=1

zsi}|Z(t) = z] =
∑

(l1,··· ,ln)∈Ln
ψln(z)(

n∏
i=1

kliq(li−1, li))e−
∑n

i=1 λli (si−si+1).

Thus, combining the equations above yields

E [e
∫ T
t
V (p)f(T,p,j) dp|V (t) = v] = evmin

∫ T
t
f(T,p,j) dp(1 +

∞∑
n=1

(vmax − vmin)n

×
∫ T

t

∫ T

sn
· · ·

∫ T

s2
{
n∏
i=1

f(T, si, j)}

× {
∑

(l1,··· ,ln)∈Ln
ψln(z)(

n∏
i=1

kliq(li−1, li))e−
∑n

i=1 λli (si−si+1)} ds)

= evmin((T−t)C7(j)−C6(ea(t−T )−1)
a

)(1 +
∞∑
n=1

(vmax − vmin)n

× {
∑

(l1,··· ,ln)∈Ln
ψln(z)(

n∏
i=1

kliq(li−1, li))

×
∫ T

t

∫ T

sn
· · ·

∫ T

s2
{
n∏
i=1

f(T, si, j)}e−
∑n

i=1 λli (si−si+1) ds}),
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where the last equality follows since ∑(l1,··· ,ln)∈Ln ψln(z)(∏n
i=1 kliq(li−1, li)) does not depend

on si for any i. The proof is complete.

Remark 2.4.2. Suppose that vmin = 0. The representation given in Lemma  2.4.1 makes

clear that g(v, t, T, j) is an increasing function of vmax.

In the next section, we will expand the series up to second order.

2.5 Second order approximation for the conditional expectation

The goal of this section is to calculate a second order approximation for the conditional

expectation from Lemma  2.4.1 . As this section is not necessary, the reader is welcome to

proceed to Section  2.7 . First, we calculate the necessary constants and functions. We begin

by listing the constants λn, which correspond to the eigenvalues arising in Delbaen and

Shirakawa [ 11 ].

1. λ0 = 0.

2. λ1 = κ.

3. λ2 = 2κ+ β2.

4. λ3 = 3κ+ 3β2.

5. λ4 = 4κ+ 6β2.

6. λ5 = 5κ+ 10β2.

7. λ6 = 6κ+ 15β2.

We now calculate the constants kn. Below, Γ denotes the Gamma function. Recall that

zΓ(z) = Γ(z + 1) and Γ(1) = 1. Also, note that (x)0 = Γ(x)
Γ(x) = 1, (x)1 = Γ(x+1)

Γ(x) = x, and

(x)2 = Γ(x+2)
Γ(x) = Γ(x+2)

Γ(x+1)
Γ(x+1)

Γ(x) = x+1
x

.

1. k0 = (a+b−1)Γ(a)Γ(a+b−1)
Γ(a)2Γ(b) = Γ(a+b)

Γ(a)Γ(b) .

2. k1 = (a+b+1)Γ(a+1)Γ(a+b)
Γ(a)2Γ(b+1) = (a+b+1)aΓ(a+b)

Γ(a)Γ(b+1) .
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3. k2 = (a+b+3)Γ(a+2)Γ(a+b+1)
2Γ(a)2Γ(b+2) .

4. k3 = (a+b+5)Γ(a+3)Γ(a+b+2)
6Γ(a)2Γ(b+3) .

We record useful computations below.

1. a+ b = 2κ
β2 > 0.

2. a
a+b = γ.

3. a+b+1
a

= 2κ+β2

2κγ .

4. a+ b+ 2 = 2(κ+β2)
β2 .

5. a+b+2
a+1 = 2(κ+β2)

2κγ+β2 .

6. a+ 1 = 2κγ+β2

β2 .

7. a+1
a

= 2κγ+β2

2κγ .

8. (a+b+2)a
(a+1)(a+b+1) = 4(κ+β2)κγ

(2κγ+β2)(2κ+β2) .

9. 1− γ = 1− θ−vmin
vmax−vmin

= vmax−vmin−θ+vmin
vmax−vmin

= vmax−θ
vmax−vmin

.

10. a2 + ab+ 2b = 4κ2γ
β4 + 4κ(1−γ)

β2 = 4(κ2γ+κβ2−κγβ2)
β4 .

Now, we record the first few functions ψn(x).

1. ψ0(x) = 1.

2. ψ1(x) = 1− 1
γ
x.

3. ψ2(x) = ∑2
k=0(−1)k

(
2
k

)
(a+b+1)k

(a)k
xk = 1− 2(a+b+1)

a
x+ (a+b+1)2

(a)2
x2 = 1− 2(a+b+1)

a
x

+ (a+b+2)a
(a+b+1)(a+1)x

2 = 1− (2κ+β2)
κγ

x+ 4(κ+β2)κγ
(2κγ+β2)(2κ+β2)x

2.

Note that L1 = {(0), (1)} and L2 = {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2)}. So, we will need to

use the following in our evaluation:

1. ψ0( v−vmin
vmax−vmin

) = 1.
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2. ψ1( v−vmin
vmax−vmin

) = 1− 1
γ
( v−vmin
vmax−vmin

).

3. ψ2( v−vmin
vmax−vmin

) = 1− (2κ+β2)
κγ

( v−vmin
vmax−vmin

) + 4(κ+β2)κγ
(2κγ+β2)(2κ+β2)(

v−vmin
vmax−vmin

)2.

We record the possible products A = kl1q(l0, l1) from L1.

1. For the case l1 = 0, A = k0q(0, 0) = γ.

2. For the case l1 = 1, A = k1q(0, 1) = −γ.

Here, we record the possible products A = ∏2
j=1 kljq(lj−1, lj) from L2.

1. For the case (l1 = 0, l2 = 0), A = k2
0q(0, 0)2 = ( Γ(a+b)

Γ(a)Γ(b))
2q(0, 0)2 = γ2.

2. For the case (l1 = 0, l2 = 1), A = k0k1q(0, 0)q(0, 1) = −γ2.

3. For the case (l1 = 1, l2 = 0), A = k1k0q(0, 1)q(1, 0) = γ(1−γ)β2

2κ+β2 .

4. For the case (l1 = 1, l2 = 1), A = k2
1q(0, 1)q(1, 1) = −γ(κγ+β2−γβ2)

κ+β2 .

5. For the case (l1 = 1, l2 = 2), A = k1k2q(0, 1)q(1, 2) = a(a+1)
(a+b+2)(a+b+1) = (2κγ+β2)κγ

(κ+β2)(2κ+β2) .

Finally, we calculate the required integrals using Definition  2.14 . If n = 0, there are

no integrals to calculate. Consider the case when n = 1. So, we are summing over

L1. This requires us to calculate the integrals I1,j
t,T (λl1) for l1 = 0 and l1 = 1. Recall-

ing that λ0 = 0 and λ1 = κ, we calculate the integrals I1,j
t,T (0) and I1,j

t,T (κ). Note that

I1,j
t,T (λl1) =

∫ T
t f(T, s1, j)e−λl1 (s1−s2) ds1.

1. For the case λ0 = 0,

I1,j
t,T (0) =

∫ T
t (C6e−a(T−s1) + C7(j)) ds1 = C6(1−e−a(T−t))

a
+ C7(j)(T − t).

2. For the case λ1 = κ,

I1,j
t,T (κ) =

∫ T

t
(C6e−a(T−s1) + C7(j))e−κ(s1−t) ds1

= C6eκt−aT
∫ T

t
e(a−κ)s1 ds1 + C7(j)

∫ T

t
e−κ(s1−t) ds1,

so
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I1,j
t,T (κ) =



C6eκt−aT (T − t) + C7(j)(1−e−κ(T−t)

κ
) if a = κ,

C6eκt−aT e(a−κ)T−e(a−κ)t

a−κ + C7(j)(1−e−κ(T−t)

κ
) =

C6
e−κ(T−t)−e−a(T−t)

a−κ + C7(j)(1−e−κ(T−t)

κ
) if a 6= κ.

In the calculation of the integral I1,j
t,T (κ) above, it is important to note that we will select

parameters so that a 6= κ. Thus, we do not need to consider the case when a = κ. From

now on, we assume a 6= κ and 2a 6= κ. Now, consider the case when n = 2. In this case, we

are summing over L2. This requires us to calculate the integrals

I2,j
t,T (λl1 , λl2) =

∫ T
t

∫ T
s2
f(T, s1, j)f(T, s2, j)e−λl1 (s1−s2)−λl2 (s2−t) ds1 ds2 for all (λl1 , λl2) ∈ L2.

1. For the case l1 = 0, l2 = 0,

I2,j
t,T (0, 0) =

∫ T

t

∫ T

s2
(C6e−a(T−s1) + C7(j))(C6e−a(T−s2) + C7(j)) ds1 ds2

= e−2aT [C6eat − eaT (C6 + aC7(j)(T − t))]2
2a2 .

2. For the case l1 = 0, l2 = 1,

I2,j
t,T (0, κ) =

∫ T

t

∫ T

s2
f(T, s1, j)f(T, s2, j)e−λl1 (s1−s2)−λl2 (s2−t) ds1 ds2

=
∫ T

t

∫ T

s2
(C6e−a(T−s1) + C7(j))(C6e−a(T−s2) + C7(j))e−κ(s2−t) ds1 ds2

= e2C7(j)C2
6(aeκ(t−T ) + ea(t−T )((a− κ)ea(t−T ) − 2a+ κ))

a(a− κ)(2a− κ) .

We remark that when doing this integration, it would be necessary to consider the three

cases a = κ, a = 2κ, and a 6= κ separately, but we can adjust parameters to avoid the

cases a = κ and a = 2κ.

3. For the case l1 = 1, l2 = 0,

I2,j
t,T (κ, 0) =

∫ T

t

∫ T

s2
(C6e−a(T−s1) + C7(j))(C6e−a(T−s2) + C7(j))e−κ(s1−s2) ds1 ds2

= e2C7(j)C2
6(a(−2e(a+κ)(t−T ) + e2a(t−T ) + 1) + κ(e2a(t−T ) − 1))

2a(a− κ)(a+ κ) .
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Note that it’s required that a 6= 0, a 6= κ, and a 6= −κ.

4. For the case l1 = 1, l2 = 1,

I2,j
t,T (κ, κ) =

∫ T

t

∫ T

s2
(C6e−a(T−s1) + C7(j))(C6e−a(T−s2) + C7(j))e−κ(s1−s2)−κ(s2−t) ds1 ds2

= C2
6e2C7(j)−T (a+κ)(a(−2et(a+κ) + eaT+κt + e2at−aT+κT ) + κeκt(eat − eaT ))

a(a− κ)(2a− κ) .

Again, its required that a 6= 0, a 6= κ, and 2a 6= κ.

5. For the case l1 = 1, l2 = 2,

I2,j
t,T (κ, 2κ+ β2) =

∫ T

t

∫ T

s2
(C6e−a(T−s1) + C7(j))(C6e−a(T−s2)

+ C7(j))e−κ(s1−s2)−(2κ+β2)(s2−t) ds1 ds2

= e2C7(j)C2
6(e2a(t−T ) − e(β2+2κ)(t−T )

(a− κ)(2a− β2 − 2κ) + e(β2+2κ)(t−T ) − e(a+κ)(t−T )

(κ− a)(−a+ β2 + κ) ).

In addition to a 6= κ, we now have the additional requirements that −a + β2 + κ 6= 0

and 2a− β2− 2κ 6= 0. We can avoid these requirements by calculating the integral case

by case.

Proposition 2.5.1. Let g(n)(v, t, T, j) denote the approximation for g(v, t, T, j) by truncating

the summation representation for g at the n-th term (note g(n) does not represent the n-th

derivative). Below, we list approximations in which the sum in Lemma  2.4.1 is truncated at

order n = 2.

1. For the case n = 0, g(0)(v, t, T, j) = evmin

(
C7(j)(T−t)−C6(e−a(T−t)−1)

a

)
.

2. For the case n = 1,

g(1)(v, t, T, j) = evmin

(
C7(j)(T−t)−C6(e−a(T−t)−1)

a

)
(1 + (θ − vmin)(C6(1− e−a(T−t))

a

+ C7(j)(T − t)) + (v − θ)(C6
e−κ(T−t) − e−a(T−t)

a− κ

+ C7(j)(1− e−κ(T−t)

κ
))).
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3. For the case n = 2,

g(2)(v, t, T, j) = e
(

(T−t)C7(j)− (−1+e−a(T−t))C6
a

)
vmin((− A∗0

a(a− κ)(2a− κ)

− A∗1
a(a− κ)(2a− κ)(vmax − vmin)(σ2

v + κ)

+ A∗2
2a(a− κ)(a+ κ)(vmax − vmin)(σ2

v + 2κ)

+ A∗3
(vmax − vmin)(σ2

v + κ)(σ2
v + 2κ)

+ e−2aT (eatC6 − eaT (C6 + a(T − t)C7(j)))2(θ − vmin)2

2a2 )

+ (v − θ)((−e−a(T−t) + e−(T−t)κ)C6

a− κ
+ (1− e−(T−t)κ)C7(j)

κ
)

+ ((1− e−a(T−t))C6

a
+ (T − t)C7(j))(θ − vmin) + 1),

where

A∗0 = e2C7(j)(e(t−T )κa+ ea(t−T )(−2a+ ea(t−T )(a− κ) + κ))

× ( (θ − vmin)2

(vmax − vmin)2 −
(v − vmin)(θ − vmin)

(vmax − vmin)2 )C2
6 ,

A∗1 = C2
6e2C7(j)−T (a+κ)(a(−2et(a+κ) + eaT+tκ + e2at−aT+Tκ) + etκ(eat − eaT )κ)

× (θ − v)(−(θ − vmin)σ2
v

vmax − vmin
+ σ2

v + κ(θ − vmin)
vmax − vmin

),

A∗2 = e2C7(j)(a(1 + e2a(t−T ) − 2e(t−T )(a+κ))

+ (−1 + e2a(t−T ))κ)(1− θ − vmin

vmax − vmin
)(θ − vmin)σ2

vC
2
6 ,

A∗3 = e2C7(j)κC2
6(θ − vmin)(σ2

v + 2κ(θ − vmin)
vmax − vmin

)

× ( e2a(t−T ) − e(t−T )(σ2
v+2κ)

(a− κ)(−σ2
v + 2a− 2κ) + −e(t−T )(a+κ) + e(t−T )(σ2

v+2κ)

(κ− a)(σ2
v − a+ κ) )

× ( 4κ(θ − vmin)(σ2
v + κ)(v − vmin)2

(vmax − vmin)3(σ2
v + 2κ)(σ2

v + 2κ(θ−vmin)
vmax−vmin

)
− (σ2

v + 2κ)(v − vmin)
κ(θ − vmin) + 1).
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Proof. The approximation for g(0) is obvious. Consider n = 1.

g(1)(v, t, T, j) = evmin

(
C7(j)(T−t)−C6(e−a(T−t)−1)

a

)
× (1 + (vmax − vmin){

∑
(l1)∈L1

ψl1(z)kl1q(l0, l1)I1,j
t,T (λl1)}).

Let Ξ1 = (vmax − vmin)∑(l1)∈L1 ψl1(z)kl1q(l0, l1)I1,j
t,T (λl1). We expand Ξ1 to obtain an explicit

formula.

Ξ1 = (vmax − vmin)(ψ0(z)k0q(0, 0)I1,j
t,T (λ0) + ψ1(z)k1q(0, 1)I1,j

t,T (λ1))

= (vmax − vmin)(γI1,j
t,T (λ0)− (1− 1

γ
( v − vmin

vmax − vmin
))γI1,j

t,T (λ1))

= (vmax − vmin)(γI1,j
t,T (λ0)− (γ − ( v − vmin

vmax − vmin
))I1,j

t,T (λ1))

= (θ − vmin)(C6(1− e−a(T−t))
a

+ C7(j)(T − t)

− (C6
e−κ(T−t) − e−a(T−t)

a− κ
+ C7(j)(1− e−κ(T−t)

κ
)))

+ (v − vmin)(C6
e−κ(T−t) − e−a(T−t)

a− κ
+ C7(j)(1− e−κ(T−t)

κ
))

= (θ − vmin)(C6(1− e−a(T−t))
a

+ C7(j)(T − t))

+ (v − θ)(C6
e−κ(T−t) − e−a(T−t)

a− κ
+ C7(j)(1− e−κ(T−t)

κ
)).

Substitution yields the result. Consider n = 2. Let

Ξ2 = (vmax − vmin)2{
∑

(l1,l2)∈L2

ψl2(z)kl1kl2q(l0, l1)q(l1, l2)I2,j
t,T (λl1 , λl2)}.

Expansion yields the following:

Ξ2 = (vmax − vmin)2{ψ0(z)k2
0q(0, 0)2I2,j

t,T (λ0, λ0) + ψ1(z)k0k1q(0, 0)q(0, 1)I2,j
t,T (λ0, λ1)

+ ψ0(z)k1k0q(0, 1)q(1, 0)I2,j
t,T (λ1, λ0) + ψ1(z)k2

1q(0, 1)q(1, 1)I2,j
t,T (λ1, λ1)

+ ψ2(z)k1k2q(0, 1)q(1, 2)I2,j
t,T (λ1, λ2)}

= (vmax − vmin)2{γ2(e−2aT [C6eat − eaT (C6 + aC7(j)(T − t))]2
2a2 )
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− (1− 1
γ

( v − vmin

vmax − vmin
))γ2(e2C7(j)C2

6(aeκ(t−T ) + ea(t−T )((a− κ)ea(t−T ) − 2a+ κ))
a(a− κ)(2a− κ) )

+ (γ(1− γ)β2

2κ+ β2 )(e2C7(j)C2
6(a(−2e(a+κ)(t−T ) + e2a(t−T ) + 1) + κ(e2a(t−T ) − 1))

2a(a− κ)(a+ κ) )

− (1− 1
γ

( v − vmin

vmax − vmin
))(γ(κγ + β2 − γβ2)

κ+ β2 )

× (C
2
6e2C7(j)−T (a+κ)(a(−2et(a+κ) + eaT+κt + e2at−aT+κT ) + κeκt(eat − eaT ))

a(a− κ)(2a− κ) )

+ (1− (2κ+ β2)
κγ

( v − vmin

vmax − vmin
) + 4(κ+ β2)κγ

(2κγ + β2)(2κ+ β2)( v − vmin

vmax − vmin
)2)

× ( (2κγ + β2)κγ
(κ+ β2)(2κ+ β2))(e2C7(j)C2

6(e2a(t−T ) − e(β2+2κ)(t−T )

(a− κ)(2a− β2 − 2κ) + e(β2+2κ)(t−T ) − e(a+κ)(t−T )

(κ− a)(−a+ β2 + κ) ))}.

Substituting this into the formula below yields the result.

g(2)(v, t, T, j) = evmin(C7(j)(T−t)−C6(e−a(T−t)−1)
a

)(1 + (vmax − vmin)

× {
∑

(l1)∈L1

ψl1(z)kl1q(l0, l1)I1,j
t,T (λl1)}

+ (vmax − vmin)2{
∑

(l1,l2)∈L2

ψl2(z)kl1kl2q(l0, l1)q(l1, l2)I2,j
t,T (λl1 , λl2)}).

2.6 Bounds on the conditional expectation

We derive useful bounds on the conditional expectation given by g from Equation ( 2.13 ).

These bounds allow us to prove that the firm value does not explode and that the func-

tion Lj(j)
I(j) is a monotonic function of the interest rate. This is particularly useful if an

approximation for the growth option values is desired. It is possible to calculate the growth

option values on a grid of interest rate values and interpolate to reduce computation time.

The bounds may also be useful in finding error estimates. Let vmin > 0. We now de-

fine functions for clarity when writing complicated expressions. Define the random vari-
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able K(t, T, j) =
∫ T
t f(T, p, j)Vj(p) dp for all positive integers t, T, j. Let the functions

Kl : [0,∞)2 × Z+ → R and Ku : [0,∞)2 × Z+ → R be defined by

Kl(t, T, j) = C7(j)vmax(T − t),

Ku(t, T, j) = λσρM,Cjvmin(T − t).

These are lower and upper bounds on K(t, T, j), respectively. Define the set D by the Carte-

sian product D = (0,∞)2 × Z+. Let the functions A11 : D → R, A12 : [vmin, vmax]×D → R,

and A1 : [vmin, vmax]×D → R be defined by

A11(t, T, j) = C6θ(
1− e−a(T−t)

a
) + θ(T − t)C7(j),

A12(v, t, T, j) = C6(v − θ)(e−κ(T−t) − e−a(T−t)

a− κ
) + (v − θ)(1− e−κ(T−t)

κ
)C7(j),

A1(v, t, T, j) = A11(t, T, j) + A12(v, t, T, j).

Now, we define the functions lb : [vmin, vmax]×D → R and ub : [vmin, vmax]×D → R.

lb(v, t, T, j) = eA1(v,t,T,j),

ub(v, t, T, j) = Ku(t, T, j)eKl(t,T,j) −Kl(t, T, j)eKu(t,T,j) + (eKu(t,T,j) − eKl(t,T,j))A1(v, t, T, j)
Ku(t, T, j)−Kl(t, T, j)

.

Note that given κ > 0, a > 0, θ > 0, ρM,Cj > 0, and ρr,Cj > 0, it follows that

limT→∞ lb(v, t, T, j) = 0. We now state our result on the bounds of g.

Theorem 2.6.1. The function g(v, t, T, j) has the following bounds:

max(eKl(t,T,j), lb(v, t, T, j)) ≤ g(v, t, T, j) ≤ min(e−Ku(t,T,j), ub(v, t, T, j)).

Proof. The proof is similar to Theorem 4.2 of Delbaen and Shirakawa [ 11 ]. Throughout

the proof, we assume that we are considering the Jacobi process for the j-th project of a
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specific firm, and thus the Jacobi process parameters are fixed. We begin with some useful

calculations. By Equation ( 2.8 ),

E [Vj(p)|Vj(t) = v] = θ + (v − θ)e−κ(p−t).

Integration from t to T yields

∫ T

t
E [Vj(p)|Vj(t) = v]f(T, p, j) dp =

∫ T

t
(θ + (v − θ)e−κ(p−t))(C6e−a(T−p) + C7(j)) dp

= C6θ
∫ T

t
e−a(T−p) dp+ C7(j)θ

∫ T

t
dp

+ C6(v − θ)
∫ T

t
e−a(T−p)e−κ(p−t) dp

+ C7(j)(v − θ)
∫ T

t
e−κ(p−t) dp

= A1(v, t, T, j).

Below, the second equality follows by Fubini’s theorem, and the inequality follows by Jensen’s

inequality (since ex is convex).

eA1(v,t,T,j) = e
∫ T
t

E [Vj(p)|Vj(t)=v]f(T,p,j) dp

= eE [
∫ T
t
Vj(p)f(T,p,j) dp|Vj(t)=v]

≤ E [e
∫ T
t
Vj(p)f(T,p,j) dp|Vj(t) = v].

We now establish an upper bound. Recall that for every t, Vj(t) ∈ [vmin, vmax] ⊂ [0,∞). So,

vmin(T − t) = vmin

∫ T

t
dp ≤

∫ T

t
Vj(p) dp ≤ vmax

∫ T

t
dp = vmax(T − t). (2.16)

Recall that f(s, p, j) = C6e−a(s−p) + C7(j) with C6 > 0 and C7(j) < 0. By assumption

s ≥ p and a > 0. Below, we establish an upper bound on f . The last line uses the fact

0 < e−a(s−p) ≤ 1.

f(s, p, j) = σσrρ
r,Cj

a
(e−a(s−p) − 1)− λσρM,Cj
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= σσrρ
r,Cj

a
e−a(s−p) − σσrρ

r,Cj

a
− λσρM,Cj

≤ −λσρM,Cj .

A lower bound is given by f(s, p, j) ≥ −σσrρ
r,Cj

a
− λσρM,Cj = C7(j). Thus,

C7(j) ≤ f(s, p, j) ≤ −λσρM,Cj . (2.17)

Since for every p, Vj(p) ∈ [vmin, vmax] ⊂ [0,∞), it follows that

C7(j)Vj(p) ≤ f(s, p, j)Vj(p) ≤ −λσρM,CjVj(p).

This implies the following inequalities:

C7(j)
∫ T

t
Vj(p) dp ≤

∫ T

t
f(s, p, j)Vj(p) dp ≤ −λσρM,Cj

∫ T

t
Vj(p) dp < 0. (2.18)

Note that

C7(j)vmax(T − t) ≤ C7(j)vmin(T − t)

and

−λσρM,Cjvmax(T − t) ≤ −λσρM,Cjvmin(T − t).

By Equations ( 2.16 ) and ( 2.18 ),

C7(j)vmax(T − t) ≤
∫ T

t
f(s, p, j)Vj(p) dp ≤ −λσρM,Cjvmin(T − t) ≤ 0. (2.19)

By monotonicity of the exponential function, we have the bounds

0 ≤ eC7(j)vmax(T−t) ≤ e
∫ T
t
f(s,p,j)Vj(p) dp ≤ e−λσρ

M,Cj vmin(T−t) ≤ e0 = 1. (2.20)
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We now find another set of bounds. Let J (t) = Ku(t,T,j)−K(t,T,j)
Ku(t,T,j)−Kl(t,T,j)

. It now follows that

1− J (t) = K(t,T,j)−Kl(t,T,j)
Ku(t,T,j)−Kl(t,T,j)

. Note that J (t) > 0. As seen below, it is clear that |J (t)| ≤ 1.

|J (t)| = |Ku(t, T, j)−K(t, T, j)
Ku(t, T, j)−Kl(t, T, j)

| ≤ |Ku(t, T, j)−Kl(t, T, j)
Ku(t, T, j)−Kl(t, T, j)

| = 1.

So, J (t) ∈ [0, 1] and 1 − J (t) ∈ [0, 1]. We are now able to write K as a combination of

Kl and Ku, namely K(t, T, j) = J (t)Kl(t, T, j) + (1− J (t))Ku(t, T, j). By the definition of

convexity,

eK(t,T,j) ≤ J (t)eKl(t,T,j) + (1− J (t))eKu(t,T,j)

= Ku(t, T, j)−K(t, T, j)
Ku(t, T, j)−Kl(t, T, j)

eKl(t,T,j) + K(t, T, j)−Kl(t, T, j)
Ku(t, T, j)−Kl(t, T, j)

eKu(t,T,j).

Taking conditional expectations yields

E [eK(t,T,j)|Vj(t) = v] ≤ Ku(t, T, j)− E [K(t, T, j)|Vj(t) = v]
Ku(t, T, j)−Kl(t, T, j)

eKl(t,T,j)

+ E [K(t, T, j)|Vj(t) = v]−Kl(t, T, j)
Ku(t, T, j)−Kl(t, T, j)

eKu(t,T,j)

= Ku(t, T, j)eKl(t,T,j) −Kl(t, T, j)eKu(t,T,j)

Ku(t, T, j)−Kl(t, T, j)

+ (eKu(t,T,j) − eKl(t,T,j))E [K(t, T, j)|Vj(t) = v]
Ku(t, T, j)−Kl(t, T, j)

= Ku(t, T, j)eKl(t,T,j) −Kl(t, T, j)eKu(t,T,j)

Ku(t, T, j)−Kl(t, T, j)

+ (eKu(t,T,j) − eKl(t,T,j))A1(v, t, T, j)
Ku(t, T, j)−Kl(t, T, j)

,

where the last equality follows by the definition of A1.

Corollary 2.6.2. If ρr,Cj > 0, vmin > 0, and ρM,Cj > 0, then

lim
T→∞

g(v, t, T, j) = 0.
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Proof. By Theorem  2.6.1 ,

0 = lim
T→∞

eC7(j)vmax(T−t) ≤ lim
T→∞

g(v, t, T, j) ≤ lim
T→∞

e−λσρ
M,Cj vmin(T−t) = 0.

2.7 Main theoretical results: firm valuation and returns

We begin this section by presenting a roadmap for our path to the main results. Berk,

Green, and Naik [ 15 ] state that their simulation is only feasible due to the closed form solu-

tions developed within their framework. Incorporating stochastic cash flow volatility renders

computational difficulties. These difficulties arise due to the large number of conditional ex-

pectations that must be computed, each of which requires the generation of many long time

series and depends upon many different possible combinations of the monthly interest rate,

the correlation between the SDF and the cash flow process (ρM,Cj), and the Jacobi process

parameters. Through conditioning, the computational complexity of the problem is signifi-

cantly reduced. The goal of this section is to derive expressions for the value of each firm at

every point in time for the duration of the simulation. We outline our solution here.

First, the goal is to compute the value of a firm at time t ∈ Z+, where t represents month

t. The firm value is calculated by adding the time t expected value of all the future cash

flows of all the projects alive at time t to the time t value of all growth opportunities. We

reduce the computational complexity of the problem by writing the expression for the cash

flows and growth options in terms of the conditional expectation from Equation ( 2.13 ).

Let P (t) be the firm value at time t. Later, a formula will be derived to express P (t) in

terms of the value of growth options and future cash flows from alive projects. The realized

rate of return for holding a claim on the firm for exactly one month starting at time t is given

by Rt+1 = P (t+1)
P (t) − 1. Similarly, the expected rate of return is E [Rt+1|Ft] = E [P (t+1)|Ft]

P (t) − 1.

We show that our model reproduces the desirable property that, ceteris paribus, a firm

is more likely to take on projects during periods of low interest rates and less likely to take

on projects during periods of high interest rates.
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In the next section, we begin our quest to find expressions for the firm value at each

month in time by deriving formulas for the value of future cash flows from alive projects.

Before we begin, we comment on notation in this section. Since the Jacobi process models

firm specific cash flows, each firm has its own Jacobi process parameters. Thus, we will

derive all of our formulas for the j-th project of a specific firm, and the formulas regarding

other projects of the same firm will be identical.

2.7.1 Value of ongoing projects this period

In this section, we calculate the value of ongoing projects at each month in time by

calculating the expected value of cash flows from projects that are still alive for the firm in

question at that time. In the next section, we calculate the expected value of these cash flows

next period given the current information. Here, we state a lemma that gives the expected

value of cash flows for a particular month, say month s, in the future given that the project

is known to be alive at month t prior to s. First, we define some functions to make the

exposition clear. Let the functions h : (Z+)3 → R, hl : (Z+)2 → R, and hu : (Z+)2 → R be

defined by

h(j, t, s) = C + C1(s− t) + C2(t) + µ(s− j) +R(j, j, t)− σ2
r

4a3 e−2a(s−t) + C3(t)e−a(s−t),

hl(j, t) = C + C2(t) +R(j, j, t) + µ(t− j),

hu(t, s) = C1(s− t) + µ(s− t)− σ2
r

4a3 e−2a(s−t) + C3(t)e−a(s−t).

Note that h(j, t, s) = hl(j, t)+hu(t, s). For every s, t, j ∈ R+, we define the random variables

X1(t, s), F1(t, s),Z(t, s),X (j, t, s), and the function F2 as follows:

X1(t, s) = WM(s)−WM(t),

F1(t, s) = −λX1(t, s)− σr
a

∫ s

t
(1− e−a(s−p)) dW r(p),

F2(t, s) = λ2

2 (s− t) + σ2
r

2a2

∫ s

t
(1− e−a(s−p))2 dp+ λσrρ

Mr

a
(s− t+ e−a(s−t) − 1

a
),

Z(t, s) = −σr
a

∫ s

t
(1− e−a(s−p)) dW r(p),
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X (j, t, s) = −σσrρ
r,Cj

a

∫ s

t
Vj(p)(1− e−a(s−p)) dp.

The Lemma regarding the cash flows at one month in the future for a project still alive

is given below.

Lemma 2.7.1. Suppose that the j-th project for a specific firm is known to be alive at time

t. Then, the time t value of the future cash flow at time s (s ≥ t) from the jth project (j ≤ t)

is given by

E [M(s)
M(t)Cj(s)χj(s)|Ft] = I(j)eh(j,t,s)g(v, t, s, j)π

s−t. (2.21)

Proof. We begin by establishing notation. For every s, t, j ∈ R+, we define the random

variable

h1(j, t, s) = I(j)eC−(λ
2

2 +b2)(s−t)+( b2−r(t)
a

)[1−e−a(s−t)]+µ(s−j)+R(j,j,t).

Note that by Equation ( 2.9 ), M(s)
M(t) = e−

λ2
2 (s−t)−λX1(t,s)−

∫ s
t
ru du. The main idea in what follows

will be to use the tower property to condition on the paths of the Jacobi process from

time t up to time s. This standard technique can be found in Privault [ 25 ]. Because of

independence, it is enough to calculate E [M(s)
M(t)Cj(s)|Ft].

E [M(s)
M(t)Cj(s)|Ft] = I(j)E [eC−

λ2
2 (s−t)−λX1(t,s)−

∫ s
t
ru du+µ(s−j)+R(j,j,s)|Ft] (2.22)

= h1(j, t, s)E [eF1(t,s)+R(j,t,s)|Ft]

= h1(j, t, s)E [e−
σ2
2

∫ s
t
V 2
j (u) du E [eF1(t,s)+σ

∫ s
t
Vj(u) dWCj (u)|Ft ∨ F jt,s]|Ft].

To proceed, we need three conditional covariances. The calculations proceed the results.

1. covFt∨Fjt,s(−λX1(t, s),Z(t, s)) = λσrρMr

a
(s− t+ e−a(s−t)−1

a
),

2. covFt∨Fjt,s(−λX1(t, s), σ
∫ s
t Vj(u) dWCj(u)) = −λσρM,Cj

∫ s
t Vj(u) du,

3. covFt∨Fjt,s(σ
∫ s
t Vj(p) dWCj(p),Z(t, s)) = X (j, t, s).

First, let Λ1 = covFt∨Fjt,s(−λX1(t, s),Z(t, s)). Then,

Λ1 = λσr
a

covFt∨Fjt,s(X1(t, s),
∫ s

t
(1− e−a(s−p)) dW r(p))
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= λσr
a

covFt∨Fjt,s(
∫ s

t
dWM(p),

∫ s

t
(1− e−a(s−p)) dW r(p))

= λσr
a

E(
∫ s

t
dWM(p)

∫ s

t
(1− e−a(s−p)) dW r(p)|Ft ∨ F jt,s)

= λσr
a

E(
∫ s

t
(1− e−a(s−p)) d[WM ,W r](p)|Ft ∨ F jt,s)

= λσrρ
Mr

a

∫ s

t
E(1− e−a(s−p)|Ft ∨ F jt,s) dp

= λσrρ
Mr

a

∫ s

t
(1− e−a(s−p)) dp

= λσrρ
Mr

a
(s− t+ e−a(s−t) − 1

a
).

Second, let Λ2 = covFt∨Fjt,s(−λX1(t, s), σ
∫ s
t Vj(u) dWCj(u)). The calculation is shown below.

Λ2 = −λσ covFt∨Fjt,s(
∫ s

t
dWM(u),

∫ s

t
Vj(u) dWCj(u))

= −λσ E [
∫ s

t
Vj(u) d[WM ,WCj ](u)|F1

t ∨ F2
s ]

= −λσρM,Cj

∫ s

t
Vj(u) du.

Let Λ3 = covFt∨Fjt,s(σ
∫ s
t Vj(p) dWCj(p),Z(t, s)). Then,

Λ3 = −σσr
a

covFt∨Fjt,s(
∫ s

t
Vj(p) dWCj(p),

∫ s

t
(1− e−a(s−p)) dW r(p))

= −σσr
a
E[
∫ s

t
Vj(p)(1− e−a(s−p))ρr,Cj dp|F1

t ∨ F2
s ]

= −σσrρ
r,Cj

a

∫ s

t
E [Vj(p)(1− e−a(s−p))|F1

t ∨ F2
s ] dp

= −σσrρ
r,Cj

a

∫ s

t
Vj(p)(1− e−a(s−p)) dp.

Now, note that a > 0, s > t, and e−x < 1 ∀x > 0. Using a well known property of normal

random variables and letting

Λ4 = E [e−λX1(t,s)+Z(t,s)+σ
∫ s
t
Vj(u) dWCj (u)|Ft ∨ F jt,s],
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it follows that

Λ4 = eF2(t,s)+σ2
2

∫ s
t
V 2
j (u) du−λσρM,Cj

∫ s
t
Vj(u) du−σσrρ

r,Cj

a

∫ s
t
Vj(p)(1−e−a(s−p)) dp

= eF2(t,s)+
∫ s
t
Vj(p)f(s,p,j) dp+σ2

2

∫ s
t
V 2
j (u) du. (2.23)

Substitution of Equation ( 2.23 ) into Equation ( 2.22 ) yields

E [M(s)
M(t)Cj(s)|Ft] = h1(j, t, s)E [e−

σ2
2

∫ s
t
V 2
j (u) du E [eF1(t,s)+σ

∫ s
t
Vj(u) dWCj (u)|Ft ∨ F jt,s]|Ft]

= h1(j, t, s)eF2(t,s) E [e
∫ s
t
Vj(p)f(s,p,j) dp|Ft]

= h1(j, t, s)eF2(t,s)g(v, t, s, j).

Expanding h1(j, t, s)eF2(t,s) and rearranging terms yields

h1(j, t, s)eF2(t,s) = I(j)eC+(λσrρ
Mr

a
−b2)(s−t)+( b2−r(t)

a
)[1−e−a(s−t)]+µ(s−j)+R(j,j,t)

× e
σ2
r

2a2
∫ s
t

(1−e−a(s−p))2 dp+λσrρ
Mr

a
( e−a(s−t)−1

a
)

= I(j)eC+C1(s−t)+( b2−r(t)
a

)[1−e−a(s−t)]+µ(s−j)+R(j,j,t)− σ2
r

4a3 e−2a(s−t)− 3σ2
r

4a3

× e(σ
2
r
a3 +λσrρ

Mr

a2 )e−a(s−t)−λσrρ
Mr

a2

= I(j)eC+C1(s−t)+C2(t)+µ(s−j)+R(j,j,t)− σ2
r

4a3 e−2a(s−t)+C3(t)e−a(s−t)
.

Using the definition of h, we now have the desired formula for E [M(s)
M(t)Cj(s)|Ft]. Now, note

that by independence,

E [M(s)
M(t)Cj(s)χj(s)|Ft] = E [M(s)

M(t)Cj(s)|Ft]E [χj(s)|Ft] = π
s−t E [M(s)

M(t)Cj(s)|Ft].

Combining these results yields the Lemma.

As noted earlier, in order to find the value of a firm at month t, we will need to calculate

the time t expected value of the cash flows from the projects which are still ongoing for the

firm. This is accomplished by summing over terms of the form E [M(s)
M(t)Cj(s)χj(s)|Ft]. The

value at time t of the cash flows of a project beginning at time j ≤ t and still alive at time
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t is Lj(t) = E [∑∞s=t+1
M(s)
M(t)Cj(s)χj(s)|Ft] = ∑∞

s=t+1 E [M(s)
M(t)Cj(s)χj(s)|Ft], which follows by

Fubini’s theorem. Under suitable parameter selection, this infinite series will converge, and

this is shown below in Lemma  2.7.3 . An application of Lemma  2.7.1 yields the following

Theorem.

Theorem 2.7.2. The value at time t of the cash flows of a project that arrived at time j ≤ t

and is still alive at time t is

Lj(t) = I(j)ehl(j,t)
∞∑

s=t+1
π
s−tehu(t,s)g(v, t, s, j). (2.24)

In particular,

Lj(j) = I(j)eC+C2(j)
∞∑

s=j+1
π
s−jehu(j,s)g(v, j, s, j). (2.25)

Proof. First note that the project still being alive at time t implies χj(t) = 1. Below, the

first equality is by definition, the second equality is by Fubini’s Theorem, the third equality

is by Lemma  2.7.1 , and the last equality is by the definitions of hl and hu.

Lj(t) = E [
∞∑

s=t+1

M(s)
M(t)Cj(s)χj(s)|Ft]

=
∞∑

s=t+1
E [M(s)
M(t)Cj(s)χj(s)|Ft]

= I(j)
∞∑

s=t+1
π
s−teh(j,t,s)g(v, t, s, j)

= I(j)ehl(j,t)
∞∑

s=t+1
π
s−tehu(t,s)g(v, t, s, j). (2.26)

In particular,

Lj(j) = I(j)ehl(j,j)
∞∑

s=j+1
π
s−jehu(j,s)g(v, j, s, j). (2.27)

We now state a Lemma concerning the convergence of the series in Lj(t).

Lemma 2.7.3. Let a > 0. A sufficient condition for the convergence of

A = ∑∞
s=t+1 πs−tehu(t,s)g(v, t, s, j) is C1 + µ− λσρM,Cjvmin < − ln(π). As a result, the series

in Equation ( 2.25 ) also converges.
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Proof. By Theorem  2.6.1 ,

g(v, t, t+ k, j) ≤ min(e−λσρ
M,Cj vmink, ub(v, t, t+ k, j)).

In particular,

g(v, t, t+ k, j) ≤ e−λσρ
M,Cj vmink.

A =
∞∑

s=t+1
π
s−teC1(s−t)+µ(s−t)− σ2

r
4a3 e−2a(s−t)+C3(t)e−a(s−t)

g(v, t, s, j)

=
∞∑
k=1

π
ke(C1+µ)k− σ2

r
4a3 e−2ak+C3(t)e−ak

g(v, t, t+ k, j)

≤
∞∑
k=1

π
ke(C1+µ−λσρM,Cj vmin)k− σ2

r
4a3 e−2ak+C3(t)e−ak

.

Let B denote the value of the series

∞∑
k=1

π
ke(C1+µ−λσρM,Cj vmin)k− σ2

r
4a3 e−2ak+C3(t)e−ak

.

Let ak = πke(C1+µ−λσρM,Cj vmin)k− σ2
r

4a3 e−2ak+C3(t)e−ak . Note that ak > 0 ∀k ∈ N and a > 0.

We proceed with the ratio test.

lim
k→∞
|ak+1

ak
| = lim

k→∞

πk+1e(C1+µ−λσρM,Cj vmin)(k+1)− σ2
r

4a3 e−2a(k+1)+C3(t)e−a(k+1)

πke(C1+µ−λσρM,Cj vmin)k− σ2
r

4a3 e−2ak+C3(t)e−ak

= lim
k→∞

πe(C1+µ−λσρM,Cj vmin)− σ2
r

4a3 (e−2a(k+1)−e−2ak)+C3(t)(e−a(k+1)−e−ak)

= πe(C1+µ−λσρM,Cj vmin).

Now,

lim
k→∞
|ak+1

ak
| < 1 iff

e(C1+µ−λσρM,Cj vmin) <
1
π

iff

(C1 + µ− λσρM,Cjvmin) < − ln(π).
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(Recall that π is a parameter affecting project lifetimes and is a value between 0 and 1.)

By the ratio test, the series in question converges absolutely.

For all s ≥ j with s, j ∈ Z+, define the function

F3(j, s) = (C1 + µ)(s− j) + C + b2

a
− 3σ2

r

4a3 −
λσrρ

M,r

a2

+ (σ
2
r

a3 + λσrρ
M,r

a2 − b2

a
)e−a(s−j) − σ2

r

4a3 e−2a(s−j).

For future reference, note that

F3(s, s+ k) = (C1 + µ)k + C + b2

a
− 3σ2

r

4a3 −
λσrρ

M,r

a2

+ (σ
2
r

a3 + λσrρ
M,r

a2 − b2

a
)e−ak − σ2

r

4a3 e−2ak. (2.28)

We now show that our model reproduces the desirable property that firms are more likely

to accept new projects when the interest rate is lower rather than higher.

Lemma 2.7.4. Lj(j)
I(j) is monotonically decreasing as a function of the interest rate.

Specifically, r(j1) < r(j2)⇒ Lj1 (j1)
I(j1) >

Lj2 (j2)
I(j2) .

Proof. By assumption, a > 0. For every k ∈ Z+, e−ak < 1⇒ e−ak − 1 < 0 ∀k.

r(s) > 0⇒ r(s)
a

(e−ak − 1) < 0.

The dependence of Lj(j)
I(j) on r(j) arises from the terms C2(j) = b2−r(j)

a
− λσrρMr

a2 − 3σ2
r

4a3 and

C3(j) = σ2
r

a3 + λσrρMr

a2 + r(j)−b2
a

. So, we write Lj(j)
I(j) as follows:

Lj(j)
I(j) =

∞∑
k=1

π
keF3(j,j+k)+ r(j)

a
(e−ak−1)g(v, j, j + k, j). (2.29)

Note that for any k, F3(j, j + k) and g(v, j, j + k, j) do not depend on r(j). Suppose

r(j1) < r(j2). Then, since for every k ∈ Z+, (e−ak − 1) < 0, it follows that

r(j1)
a

(e−ak − 1) > r(j2)
a

(e−ak − 1) ∀k.
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Taking the exponential of each side yields

e
r(j1)
a

(e−ak−1) > e
r(j2)
a

(e−ak−1) ∀k.

Thus, we conclude that
Lj1(j1)
I(j1) >

Lj2(j2)
I(j2) .

It will be seen later that the decision of the firm to take on a project will by determined

by the sign of Lj(j)
I(j) − 1. So, it’s easy to see that this model reproduces the desired effect

that the interest rate has on a firm’s decisions regarding growth opportunities, namely that

a firm is more likely to take on projects during periods of low interest rates and less likely

to take on projects during periods of high interest rates.

2.7.2 Valuation of growth options

The next step in firm valuation is finding the time t value of the growth options, which

is given by L∗(t). Note that I(s) > 0 ∀s, so division by I(s) makes sense. Thus, it follows

that (Ls(s)− I(s))+ = I(s)(Ls(s)
I(s) − 1)+. A project arrives at every month t, and the decision

of whether or not to take on the project is made at the time the project arrives. For this

reason, when calculating the value of growth opportunities available at time t, the value of

the growth option at time t is not included. If the project is taken on at time t, the expected

value of the cash flows from that project will be included in the calculation of Lj(t). Now,

L∗(t) =
∞∑

s=t+1
E [M(s)
M(t) (Ls(s)− I(s))+|Ft]

=
∞∑

s=t+1
E [M(s)
M(t) I(s)(Ls(s)

I(s) − 1)+|Ft].

For simplicity we assume the investment process is independent of all other processes in this

model. Thus,

L∗(t) =
∞∑

s=t+1
E [I(s)|Ft]E [M(s)

M(t) (Ls(s)
I(s) − 1)+|Ft]. (2.30)
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Assuming I satisfies Equation (  2.2 ),

E [I(s)|Ft] = I(t)e(µI−
σ2
I

2 )(s−t) E [eσIW I(s−t)|Ft]

= I(t)e(µI−
σ2
I

2 )(s−t)e
σ2
I

2 (s−t)

= I(t)eµI(s−t).

Then, substitution into Equation ( 2.30 ) yields

L∗(t) = I(t)
∞∑

s=t+1
eµI(s−t) E [M(s)

M(t) (Ls(s)
I(s) − 1)+|Ft]. (2.31)

From now on, we consider the valuation of each firm over a finite time horizon TF . For the

purpose of the simulation in the next chapter, all the infinite summations will be truncated.

Let TK be the upper limit on the summation over k. We will still often write ∞ instead

of TF and TK , but the truncation is implied. Then, there exists r∗ depending on v(s) and

ρM,Cs , written as r∗(s), such that

TK∑
k=1

π
keF3(s,s+k)+ r∗(s)

a
(e−ak−1)g(v, s, s+ k, s) = 1. (2.32)

This follows since the the sum in question is a continuous function of r∗. Clearly, r∗ can

be chosen small enough so that the sum is less than 1 and large enough so that the sum is

greater than 1. Then, an application of the intermediate value theorem yields the existence

of the desired r∗. This will be used in the derivation of the growth option values. We begin

in this direction with a Lemma on covariances.

Lemma 2.7.5. Formulas for the following conditional covariances (given time t informa-

tion) are as follows:

1. covFt(−λX1(t, s), r(s)) = −λσrρMr

a
(1− e−a(s−t)),

2. covFt(−λX1(t, s),−
∫ s
t r(u) du) = λσrρMr

a
(s− t+ e−a(s−t)−1

a
),

3. covFt(−
∫ s
t r(u) du, r(s)) = σre−a(s−t)

a2 {1− cosh (a(s− t))}.
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Proof. The conditional covariances are calculated as follows:

1. Let Λ5 = covFt(−λX1(t, s), r(s)). Substituting for r(s) yields

Λ5 = −λcovFt((WM(s)−WM(t)), σre−as
∫ s

t
eau dW r(u))

= −λσre−ascovFt(
∫ s

t
dWM(u),

∫ s

t
eau dW r(u))

= −λσre−as E [
∫ s

t
eauρMr du|Ft]

= −λσre−asρMr
∫ s

t
eau du

= −λσrρ
Mr

a
(1− e−a(s−t)).

2. Let Λ6 = covFt(−λX1(t, s),−
∫ s
t r(u) du). Since

r(u) = e−a(u−t)r(t) + ab2e−au
∫ u

t
eap dp+ σre−au

∫ u

t
eap dW r(p),

it follows that

covFt(−λX1(t, s),−
∫ s

t
r(u) du) = λcovFt((WM(s)−WM(t)),

∫ s

t
r(u) du)

= σrλcovFt(
∫ s

t
dWM(p),

∫ s

t
e−au(

∫ u

t
eap dW r(p)) du)

= σrλcovFt(
∫ s

t
dWM(p), 1

a

∫ s

t
(1− e−a(s−p)) dW r(p))

= λσr
a

E [
∫ s

t
(1− e−a(s−p))ρMr dp|Ft]

= λσrρ
Mr

a
(s− t+ e−a(s−t) − 1

a
).

3. Finally, consider

covFt(−
∫ s

t
r(u) du, r(s)) = −covFt(

∫ s

t
r(u) du, r(s))

= −covFt(
1
a

∫ s

t
(1− e−a(s−p)) dW r(p), σre−as

∫ s

t
eap dW r(p))

= −σre
−as

a
E [
∫ s

t
(1− e−a(s−p))eap dp|Ft]
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= σre−a(s−t)

a2 {1− cosh(a(s− t))}.

Before stating our first theorem on growth options, we define a few functions. These functions

will occur naturally in the proof of Theorem  2.7.6 . Define the functions B3 : (Z+)2 → R,

d1 : (Z+)3 → R, d2 : (Z+)2 → R, d3 : (Z+)3 → R, K∗ : (Z+)2 → R, and Ψ : (Z+)3 → R.

Also, the variance of the random variable Y (t, s), which is defined in the proof below, is

listed here.

B3(t, s) = (b2 − r(t)
a

)[1− e−a(s−t)]− b2(s− t),

1
2 V(Y (t, s)) = 1

2(λ2 + σ2
r

a2 + 2λσr
a
ρMr)(s− t) + σ2

r

(1− e−2a(s−t))
4a3

− λσrρ
Mr

a2 (1− e−a(s−t))− σ2
r

a3 (e−as − eat−2as),

d2(t, s) = (b2 − r(t)
σr

+ (r∗(s)− b2)
σr

ea(s−t) + λ
ρMr

a
(ea(s−t) − 1)

+ σr
2a2 (ea

(s−t)
2 − e−a

(s−t)
2 )2)

√
2a

e2a(s−t) − 1 ,

d1(t, s, k) = d2(t, s) + σr
a

(1− e−ak)
√

1− e−2a(s−t)

2a ,

K∗(s, k) = r∗(s)
a

(e−ak − 1),

d3(t, s, k) = (r(t)e−a(s−t) + b2(1− e−a(s−t)))
a

(e−ak − 1) + σ2
r(e−ak − 1)2 1− e−2a(s−t)

4a3

+ σr
a

(e−ak − 1)(−(λρ
Mr

a
+ σr
a2 )(1− e−a(s−t)) + σr

1− e−2a(s−t)

2a2 ),

Ψ(t, s, k) = eB3(t,s)+ 1
2 V(Y (t,s)){ed3(t,s,k)N(d1(t, s, k))− eK∗(s,k)N(d2(t, s))}.

We now state our first growth option theorem.

Theorem 2.7.6. The time t value of the future growth options is

L∗(t) = I(t)
∞∑
k=1

π
k
∞∑

s=t+1
e(µI− 1

2λ
2)(s−t)+F3(s,s+k)

×
∫
V

∫
P
g(v, s, s+ k, s)Ψ(t, s, k) dFρ(ρM,Cs) dFV (V (s)), (2.33)
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where FV denotes the stationary distribution of the appropriate Jacobi process and Fρ denotes

the distribution function of the random variable ρM,Cs, which is the same for all s.

Proof. First, let A(t, s) = Ft ∨ Vs(s) ∨ ρM,Cs . We begin by considering the following expec-

tation:

E [M(s)
M(t) (Ls(s)

I(s) − 1)+|Ft] = e− 1
2λ

2(s−t) E [e−λ(WM (s)−WM (t))−
∫ s
t
r(u) du(Ls(s)

I(s) − 1)+|Ft]

= e− 1
2λ

2(s−t) E [e−λ(WM (s)−WM (t))−
∫ s
t
r(u) du

× (
∞∑
k=1

π
keF3(s,s+k)+ r(s)

a
(e−ak−1)g(v, s, s+ k, s)− 1)+|Ft]

= e− 1
2λ

2(s−t) E [E [e−λ(WM (s)−WM (t))−
∫ s
t
r(u) du

× (
∞∑
k=1

π
keF3(s,s+k)+ r(s)

a
(e−ak−1)g(v, s, s+ k, s)− 1)+|A(t, s)]|Ft].

The last equality follows by the tower property. Now, we consider the inner expectation

from above and manipulate the expression, so that we can later apply properties of normal

random variables. Let

Λ7 = E [e−λX1(t,s)−
∫ s
t
r(u)du(

∞∑
k=1

π
keF3(s,s+k)+ r(s)

a
(e−ak−1)g(v, s, s+ k, s)− 1)+|A(t, s)].

Below, we use the represtation given in Equation (  2.32 ) to adjust the summation and ex-

pectation.

Λ7 = E [e−λ(WM (s)−WM (t))−
∫ s
t
r(u) du × (

∞∑
k=1

π
keF3(s,s+k)+ r(s)

a
(e−ak−1)g(v, s, s+ k, s)

−
∞∑
k=1

π
keF3(s,s+k)+ r∗(s)

a
(e−ak−1)g(v, s, s+ k, s))+|A(t, s)]

= E [e−λ(WM (s)−WM (t))−
∫ s
t
r(u) du

∞∑
k=1

π
kg(v, s, s+ k, s)eF3(s,s+k)(e

r(s)
a

(e−ak−1)

− e
r∗(s)
a

(e−ak−1))+|A(t, s)]

=
∞∑
k=1

π
kg(v, s, s+ k, s)eF3(s,s+k) E [e−λ(WM (s)−WM (t))−

∫ s
t
r(u) du(e

r(s)
a

(e−ak−1)

− e
r∗(s)
a

(e−ak−1))+|A(t, s)].

62



The goal is to find a formula for the conditional expectation in the summation above. It is

defined below by Ψ(t, s, k). Note that Ψ is a function of r(t) and r∗(s). Let

Ψ(t, s, k) = E [e−λX1(t,s)−
∫ s
t
r(u) du(e

r(s)
a

(e−ak−1) − e
r∗(s)
a

(e−ak−1))+|A(t, s)]. (2.34)

Recall that X1(t, s) is normally distributed with mean 0 and variance s−t. In the expectation

above, substitute for r(s) using

r(s) = r(t)e−a(s−t) + b2(1− e−a(s−t)) + σre−as
∫ s

t
eap dW r(p).

The random part of r(s) is
∫ s
t eau dW r(u), which is normally distributed with mean 0 and

variance
∫ s
t e2au du = e2as−e2at

2a . The following integral arises in −
∫ s
t r(u) du:

∫ s

t
e−au(

∫ u

t
eap dW r(p)) du = 1

a

∫ s

t
(1−ea(p−s)) dW r(p) = 1

a

∫ s

t
dW r(p)− e−as

a

∫ s

t
eap dW r(p).

Let X2(t, s) be the random variable
∫ s
t dW r(p), which is normally distributed with mean 0

and variance s − t. Let X3(t, s) be the random variable
∫ s
t eap dW r(p), which is normally

distributed with mean 0 and variance e2as−e2at

2a . The following three covariances are easy to

calculate.

• cov(X1(t, s), X2(t, s)) =
∫ s
t ρ

Mr dp = ρMr(s− t),

• cov(X2(t, s), X3(t, s)) =
∫ s
t eap dp = eas−eat

a
,

• cov(X1(t, s), X3(t, s)) =
∫ s
t eapρMr dp = ρMr

a
(eas − eat).

We aim to compute Λ8 from Equation  2.34 . Note that a > 0 and e−ak − 1 < 0. We make a

few definitions for convenience and write −
∫ s
t r(u) du in terms of B3.

1. Ar(t, s) = r(t)e−a(s−t) + b2(1− e−a(s−t)). So, r(s) = Ar(t, s) + σre−asX3(t, s).

2. B1(t, s, k) = Ar(t,s)
a

(e−ak − 1),

3. B2(s, k) = σr
a

e−as(e−ak − 1), so |B2(s, k)| = σr
a

e−as(1− e−ak),
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4. For s− t ≥ 1, B3(t, s) = ( b2−r(t)
a

)[1− e−a(s−t)]− b2(s− t). Then,

−
∫ s
t r(u) du = B3(t, s)− σr

a
X2(t, s) + σr

a
e−asX3(t, s).

We now have a new representation for Ψ from Equation ( 2.34 ):

Ψ(t, s, k) =

eB3(t,s) E [e−λX1(t,s)−σr
a
X2(t,s)+σr

a
e−asX3(t,s)(eB1(t,s,k)+B2(s,k)X3(t,s) − e

r∗(s)
a

(e−ak−1))+|A(t, s)].

It is easy to show that all the random variables in the expectation in Ψ are jointly normal.

Thus, we can apply the standard properties of normal random variables. Let the random

variable Y (t, s) be defined by

Y (t, s) = −λX1(t, s)− σr
a
X2(t, s) + σr

a
e−asX3(t, s).

Then, E [Y (t, s)] = 0 and the variance of Y (t, s) is given by

V(Y (t, s)) = λ2 V(X1(t, s)) + σ2
r

a2 V(X2(t, s)) + σ2
r

a2 e−2asV(X3(t, s))

+ 2λσr
a

cov(X1(t, s), X2(t, s))− 2λσr
a

e−as cov(X1(t, s), X3(t, s))

− 2σ
2
r

a2 e−2as cov(X2(t, s), X3(t, s))

= (λ2 + σ2
r

a2 + 2λσr
a
ρMr)(s− t) + σ2

r

(1− e−2a(s−t))
2a3

− 2λσrρ
Mr

a2 (1− e−a(s−t))− 2σ
2
r

a3 (e−as − eat−2as).

We will make use of 1
2 V(Y (t, s)), so we record an expression for that here.

1
2 V(Y (t, s)) = 1

2(λ2 + σ2
r

a2 + 2λσr
a
ρMr)(s− t) + σ2

r

(1− e−2a(s−t))
4a3

− λσrρ
Mr

a2 (1− e−a(s−t))− σ2
r

a3 (e−as − eat−2as).
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For the purpose of the simulation, it’s convenient to write this as a function of n = s− t and

t. Letting n = s− t and using e−as = e−a(s−t)−at, we have the following formula:

1
2 V(Y (t, n)) = 1

2(λ2 + σ2
r

a2 + 2λσr
a
ρMr)n+ σ2

r

(1− e−2an)
4a3

− λσrρ
Mr

a2 (1− e−an)− σ2
r

a3 e−an−at(1− e−an).

We record the following computations for future use.

1. B1(t,s,k)
|B2(s,k)| = b2−r(t)

σr
eat − b2

σr
eas,

2. K∗(s,k)
|B2(s,k)| = − r∗(s)

σr
eas,

3. cov(X3(t, s), Y (t, s)) = −λρMr

a
(eas − eat)− σr eas−eat

a2 + σre−as e2as−e2at

2a2 .

Let N be the CDF of the standard normal distribution. Our aim here is to apply Lemma B.1

of BGN to find a formula for Ψ(t, s, k) from Equation ( 2.34 ). In the definition of d2 below,

the first equality arises from an application of Lemma B.1 of BGN. The following equalities

are for simplification purposes. We define the functions ∀k ∈ Z+∀s > t with s, t ∈ R+ as

follows:

1. Note that E [X3(t, s)] = 0. Let d2 be defined as follows:

d2(t, s, k) = B1(t, s, k)−K∗(s, k) +B2(s, k)E [X3(t, s)] +B2(s, k) cov(X3(t, s), Y (t, s))
|B2(s, k)|

√
V(X3(t, s))

= (b2 − r(t)
σr

eat + (r∗(s)− b2)
σr

eas + λ
ρMr

a
(eas − eat)

+ σreas − 2σreat + σre2at−as

2a2 )
√

2a
e2as − e2at

= eat(b2 − r(t)
σr

+ (r∗(s)− b2)
σr

ea(s−t) + λ
ρMr

a
(ea(s−t) − 1)

+ (σre
a(s−t) − 2σr + σre−a(s−t)

2a2 )) 1
eat

√
2a

e2a(s−t) − 1 .
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Since d2 does not depend on k, from now on we will write d2 as a function of t and s

alone. Thus,

d2(t, s) = (b2 − r(t)
σr

+ (r∗(s)− b2)
σr

ea(s−t) + λ
ρMr

a
(ea(s−t) − 1)

+ (σre
a(s−t) − 2σr + σre−a(s−t)

2a2 ))
√

2a
e2a(s−t) − 1

= (b2 − r(t)
σr

+ (r∗(s)− b2)
σr

ea(s−t) + λ
ρMr

a
(ea(s−t) − 1)

+ σr
2a2 (ea

(s−t)
2 − e−a

(s−t)
2 )2)

√
2a

e2a(s−t) − 1 .

2. Let d1 be defined as follows:

d1(t, s, k) = d2(t, s) + |B2(s, k)|
√
V(X3(t, s))

= d2(t, s) + σr
a

e−as(1− e−ak)
√

e2as − e2at

2a

= d2(t, s) + σr
a

(1− e−ak)
√

1− e−2a(s−t)

2a .

3. Let d3 be defined as follows:

d3(t, s, k) = B1(t, s, k) +B2(s, k)E [X3(t, s)] + E [Y (t, s)]

+ 1
2(B2(s, k)2 V(X3(t, s)) + 2B2(s, k) cov(X3(t, s), Y (t, s)))

= (r(t)e−a(s−t) + b2(1− e−a(s−t)))
a

(e−ak − 1)

+ 1
2(σ

2
r

a2 e−2as(e−ak − 1)2 e2as − e2at

2a + 2σr
a

e−as(e−ak − 1)(−λρ
Mr

a
(eas − eat)

− σr
a

eas − eat
a

+ σr
a

e−as e2as − e2at

2a ))

= (r(t)e−a(s−t) + b2(1− e−a(s−t)))
a

(e−ak − 1) + σ2
r(e−ak − 1)2 1− e−2a(s−t)

4a3

+ σr
a

(e−ak − 1)(−(λρ
Mr

a
+ σr
a2 )(1− e−a(s−t)) + σr

1− e−2a(s−t)

2a2 ).
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Applying Lemma B.1 of Berk, Green, and Naik [ 15 ] yields a formula for Ψ:

Ψ(t, s, k) = eB3(t,s){ed3(t,s,k)+ 1
2 V(Y (t,s))N(d1(t, s, k))− eK∗(s,k)+E [Y (t,s)]+ 1

2 V(Y (t,s))N(d2(t, s))}

= eB3(t,s)+ 1
2 V(Y (t,s)){ed3(t,s,k)N(d1(t, s, k))− eK∗(s,k)N(d2(t, s))}.

We now substitute our formula for Ψ into E [M(s)
M(t) (Ls(s)

I(s) − 1)+|Ft].

E [M(s)
M(t) (Ls(s)

I(s) − 1)+|Ft] = e− 1
2λ

2(s−t) E [
∞∑
k=1

π
kg(v, s, s+ k, s)eF3(s,s+k)Ψ(t, s, k)|Ft]

= e− 1
2λ

2(s−t)
∞∑
k=1

π
keF3(s,s+k) E [g(v, s, s+ k, s)Ψ(t, s, k)|Ft]

= e− 1
2λ

2(s−t)
∞∑
k=1

π
keF3(s,s+k)

×
∫
V

∫
P
g(v, s, s+ k, s)Ψ(t, s, k) dFρ(ρM,Cs) dFV (v).

Appropriately summing over s yields the final result.

2.7.3 The firm value

Now that we have formulas for the value of a firm’s assets in place and growth options,

we are able to write down an expression for the value of the firm. First, note that the value

of the firm’s assets in place is

A∗(t) =
t∑

j=1
Lj(t)χj(t). (2.35)

The value of the firm is the sum of the value of the assets in place and the value of growth

options. The value of the firm at month t is denoted by P (t).

P (t) =
t∑

j=1
Lj(t)χj(t) + L∗(t). (2.36)
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We are now able to calculate realized returns, which are given byRt+1 = P (t+1)
P (t) −1. Analogous

to BGN p. 1562 Equation (16), we have the following formula for the book value of the firm:

b(t) =
t∑

j=1
I(j)χj(t). (2.37)

We also desire a way to calculate the expected returns for the firm. As a first step in this

direction, we now derive an expression for the expected cash flow next period, given the

current information. This theorem will be particularly useful when fitting the model.

Theorem 2.7.7. At time t, the conditional expectation, given the current information, of

the cash flow next period is

E [
t∑

j=1
Cj(t+ 1)χj(t+ 1)|Ft] = πeC

t∑
j=1

χj(t)I(j)eµ(t+1−j)+R(j,j,t).

Proof. First, note that independence implies

E [
t∑

j=1
Cj(t+ 1)χj(t+ 1)|Ft] = π

t∑
j=1

χj(t)E [Cj(t+ 1)|Ft]. (2.38)

Now, we derive an expression for the conditional expectation of cash flows next period, given

the current information.

E [Cj(t+ 1)|Ft] = I(j)eC+µ(t+1−j)+R(j,j,t) E [eR(j,t,t+1)|Ft]

= I(j)eC+µ(t+1−j)+R(j,j,t) E [E [eR(j,t,t+1)|Ft ∨ F jt,t+1]|Ft]

= I(j)eC+µ(t+1−j)+R(j,j,t).

Substitution into Equation ( 2.38 ) yields the result.

In the next section, we will derive a formula for the value of the currently alive projects

next period, given the current information.
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2.7.4 Value of ongoing projects next period

We desire to calculate the expected value of ongoing projects and growth options for the

next period. This amounts to calculating the time t + 1 value of the cash flows for each

project given the information available at time t, and then summing up the value of each of

these projects. We begin with a Lemma.

Lemma 2.7.8. The conditional expectation of the value at time t+ 1 of the cash flows from

the j-th project given the information available at time t is

E [Lj(t+ 1)|Ft] = I(j)
∞∑

s=t+2
π
s−t−1C4(j, t, s)eR(j,j,t)Q∗j(v, t, s), (2.39)

where

f2(j, t, s) = σσr
a

(e−as − e−a(t+1))ρr,Cj ,

and

Q∗j(v, t, s) = E
[
g(v, t+ 1, s, j)ef2(j,t,s)

∫ t+1
t

Vj(u)eau du|Ft
]
.

Proof. We begin the proof by defining the function Qj, which is not the same as Q∗j .

1. Let Qj(v, t, s) = E [eC2(t+1)+R(j,t,t+1)+C3(t+1)e−a(s−t−1)
g(v, t + 1, s, j)|Ft]. Then, the time t

conditional expectation of Lj(t+ 1) is given as follows:

E [Lj(t+ 1)|Ft] = I(j)E [ehl(j,t+1)
∞∑

s=t+2
π
s−t−1ehu(t+1,s)g(v, t+ 1, s, j)|Ft]

= I(j)
∞∑

s=t+2
π
s−t−1eC+µ(s−j)+C1(s−t−1)− σ2

r
4a3 e−2a(s−t−1)+R(j,j,t)Qj(v, t, s).

2. We now substitute for r(t+ 1) with the following:

r(t+ 1) = r(t)e−a + b2(1− e−a) + σre−a(t+1)
∫ t+1

t
eau dW r(u).
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Below, instead of writing Qj(v, t, s), we simply write Q. The first equality follows by

the tower property.

Q = E [E [eC2(t+1)+R(j,t,t+1)+C3(t+1)e−a(s−t−1)
g(v, t+ 1, s, j)|Ft ∨ F jt,t+1]|Ft]

= E [e−
σ2
2

∫ t+1
t

V 2
j (u) dug(v, t+ 1, s, j)

× E [eC2(t+1)+σ
∫ t+1
t

Vj(u) dWCj (u)+C3(t+1)e−a(s−t−1)|Ft ∨ F jt,t+1]|Ft]

= e( b2
a
−λσrρ

Mr

a2 −σ
2
r
a3 )(1−e−a(s−t−1))+ σ2

r
4a3 E [e−

σ2
2

∫ t+1
t

V 2
j (u) dug(v, t+ 1, s, j)

× E [eσ
∫ t+1
t

Vj(u) dWCj (u)+ r(t+1)
a

(e−a(s−t−1)−1)|Ft ∨ F jt,t+1]|Ft]

= e( b2
a
−λσrρ

Mr

a2 −σ
2
r
a3−

r(t)e−a+b2(1−e−a)
a

)(1−e−a(s−t−1))+ σ2
r

4a3 E [e−
σ2
2

∫ t+1
t

V 2
j (u) dug(v, t+ 1, s, j)

× E [eσ
∫ t+1
t

Vj(u) dWCj (u)+σr
a

(e−as−e−a(t+1))
∫ t+1
t

eau dW r(u)|Ft ∨ F jt,t+1]|Ft].

After a calculation in the next step, we simplify the inner expectation.

3. We calculate the following conditional covariance in order to compute the inner expecta-

tion above. Let Λ9 = covFt∨Fjt,t+1
(σ
∫ t+1
t Vj(u) dWCj(u), σr

a
(e−as−e−a(t+1))

∫ t+1
t eau dW r(u)).

Then, the following computation is standard.

Λ9 = σσr
a

(e−as − e−a(t+1)) covFt∨Fjt,t+1
(
∫ t+1

t
Vj(u) dWCj(u),

∫ t+1

t
eau dW r(u))

= σσr
a

(e−as − e−a(t+1))(E [
∫ t+1

t
Vj(u)eau d[WCj ,W r](u)|Ft ∨ F jt,t+1]

− E [
∫ t+1

t
Vj(u) dWCj(u)|Ft ∨ F jt,t+1]E [

∫ t+1

t
eau dW r(u)|Ft ∨ F jt,t+1])

= σσr
a

(e−as − e−a(t+1))ρr,Cj E [
∫ t+1

t
Vj(u)eau du|Ft ∨ F jt,t+1]

= σσr
a

(e−as − e−a(t+1))ρr,Cj
∫ t+1

t
E [Vj(u)eau|Ft ∨ F jt,t+1] du

= σσr
a

(e−as − e−a(t+1))ρr,Cj
∫ t+1

t
Vj(u)eau du.

The last line follows since Vj(u)eau is Ft ∨ F jt,t+1 measurable.

4. We are now ready to calculate the conditional expectation given by

Λ10 = E [eσ
∫ t+1
t

Vj(u) dWCj (u)+σr
a

(e−as−e−a(t+1))
∫ t+1
t

eau dW r(u)|Ft ∨ F jt,t+1].
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By the properties of normal random variables, we simplify as follows:

Λ10 = e
σ2
2

∫ t+1
t

V 2
j (u) du+ σ2

r
2a2 (e−as−e−a(t+1))2

∫ t+1
t

e2au du+σσr
a

(e−as−e−a(t+1))ρr,Cj
∫ t+1
t

Vj(u)eau du

= e
σ2
2

∫ t+1
t

V 2
j (u) du+ σ2

r
2a2 (e−as−e−a(t+1))2× e2a(t+1)(1−e−2a)

2a +σσr
a

(e−as−e−a(t+1))ρr,Cj
∫ t+1
t

Vj(u)eau du

= e
σ2
2

∫ t+1
t

V 2
j (u) du+ σ2

r
4a3 (1−e−a(s−t−1))2×(1−e−2a)+σσr

a
(e−as−e−a(t+1))ρr,Cj

∫ t+1
t

Vj(u)eau du.

5. Substituting Λ10 into the inner expectation of Q yields the following:

Q = e( b2
a
−λσrρ

Mr

a2 −σ
2
r
a3−

r(t)e−a+b2(1−e−a)
a

)(1−e−a(s−t−1))+ σ2
r

4a3 + σ2
r

4a3 (1−e−a(s−t−1))2(1−e−2a)

× E [g(v, t+ 1, s, j)e
σσr
a

(e−as−e−a(t+1))ρr,Cj
∫ t+1
t

Vj(u)eaudu|Ft].

Using the definitions of C4, R, and f2 yields the result.

Using the previous Lemma, it is now easy to derive a formula for the time t expected

value of the ongoing projects next period, which we denote V ∗(t). We do this in the theorem

below.

Theorem 2.7.9. The time t expected value of the ongoing projects next period (ongoing at

time t+ 1) is

V ∗(t) =
t∑

j=1
χj(t)I(j)

∞∑
s=t+2

π
s−tC4(j, t, s)eR(j,j,t)Q∗j(v, t, s).

Proof. Below, we record the standard computations that lead to the result.

E [
t∑

j=1
Lj(t+ 1)χj(t+ 1)|Ft] =

t∑
j=1

E [Lj(t+ 1)χj(t)Yj(t+ 1)|Ft]

=
t∑

j=1
χj(t)E [Lj(t+ 1)|Ft]E [Yj(t+ 1)|Ft]

= π

t∑
j=1

χj(t)E [Lj(t+ 1)Ft].

Substituting for E [Lj(t+ 1)|Ft] from Equation ( 2.39 ) yields the result.
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The final step in deriving a formula for the expected returns for a firm is finding the

value of the growth options next period.

2.7.5 Value of growth opportunities next period

Let L∗∗(t) denote the time t + 1 value of the growth options given the information at

time t. Explicitly, this means we calculate the time t + 1 value of all growth opportunities

that become available on or after time t+ 1. The main difference between this valuation and

that of L∗(t) is in the discounting, as the same projects are available in each case. We begin

the section by defining several functions. We define the functions d∗2 : Z2 → R, d∗1 : Z3 → R,

f ∗∗ : Z2 → R, K∗∗ : Z2 → R, d∗5 : Z → R, d4 : Z3 → R, d∗6 : Z2 → R, and B4 : (Z+)2 below.

Note that d∗2 is well defined since s > t implies e2a(s−t) − 1 > 0. It’s important to note that

d∗2 is a function of the interest rate at time t. We also define the function Φ : Z3 → R below

for s ≥ t+ 2.

d∗2(t, s) = ((b2 − r(t))
σr

+ (r∗(s)− b2)
σr

ea(s−t) + λρMr

a
(ea(s−t) − ea)

+ σr
2a2 (ea(s−t) − ea − e−a + e−a(s−t)))

√
2a

e2a(s−t) − 1 ,

d∗1(t, s, k) = d∗2(t, s) + σr
a

(1− e−ak)
√

1− e−2a(s−t)

2a ,

f ∗∗(t, k) = e
r(t)e−a+b2(1−e−a)

a
(e−ak−1)+σ2

r (1−e−2a)(1−e−ak)2

4a3 ,

K∗∗(s, k) = e
r∗(s)
a

(e−ak−1),

d4(t, s, k) = B1(t, s, k) + σ2
r(1− e−ak)2 1− e−2a(s−t)

4a3 + (σr
a

e−a(s−t)(e−ak − 1))

× ([− (λρ
Mr

a
+ σr
a2 )(ea(s−t) − ea)

+ σr
2a2 (e−a − e−a(s−t))(1− e2a) + σr

2a2 (ea(s−t) − e2a−a(s−t))]),

d∗5(t) = {−r(t)e
−a + b2(e−a − 1) + r∗(t+ 1)}

√
2a

σr
√

1− e−2a
,

d∗6(t, k) = d∗5(t) + σr
√

1− e−2a(1− e−ak)√
2a3

,

B4(n, t) = (b2 − r(t))e−a
a

(1− e−an)− b2n,
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Φ(t, s, k) = eB4(s−t−1,t)+ 1
2 V(Y ∗(t,s)){ed4(t,s,k)N(d∗1(t, s, k)− eK∗(s,k)N(d∗2(t, s))}.

Let the random variable Y ∗(t, s) be defined by

Y ∗(t, s) = −λX1(t+ 1, s)− σr
a

(e−at−a − e−as)
∫ t+1

t
eap dW r(p)

− σr
a

∫ s

t+1
dW r(p) + σre−as

a

∫ s

t+1
eap dW r(p).

It is easy to see that E [Y ∗(t, s)] = 0. Below, we calculate V [Y ∗(t, s)].

V [Y ∗(t, s)] = −λX1(t+ 1, s)− σr
a

(e−at−a − e−as)
∫ t+1

t
eap dW r(p)− σr

a

∫ s

t+1
dW r(p)

+ σre−as
a

∫ s

t+1
eap dW r(p)

= λ2(s− t− 1) + σ2
r

a2 (e−at−a − e−as)2e2at e2a − 1
2a + σ2

r

a2 (s− t− 1)

+ σ2
re−2as

a2
e2as − e2at+2a

2a + 2λσr
a
ρM,r(s− t− 1)− 2λσrρ

M,re−as
a2 (eas − eat+a)

− 2σ
2
re−as
a3 (eas − eat+a).

Rearranging yields the following formula.

V [Y ∗(t, s)] = (λ2 + σ2
r

a2 + 2λσr
a
ρM,r)(s− t− 1) + σ2

r

a2 (e−a − e−a(s−t))2
(

e2a − 1
2a

)

+ σ2
r

1− e−2a(s−t)+2a

2a3 − 2(λσrρ
M,r

a2 + σ2
r

a3 )(1− e−a(s−t)+a).

The following standard lemma is recorded here for use in the second growth option theorem.

Lemma 2.7.10. Let X be a normal random variable with E [X] = µx and V [X] = σ2
x. Let

the constants A and K be positive. Then,

E [(AeX −K)+] = Aeµx+σ2
x
2 N( ln(A)− ln(K) + µx + σ2

x

σx
)−KN( ln(A)− ln(K) + µx

σx
).
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Proof. First,

(Aex −K)+ =

 Aex −K iff x > ln(K
A

)

0 iff Aex −K ≤ 0

Below, we will use the transformation z = x−(µx+σ2
x)

σx
, with of course dz = dx

σx
. First, we have

A
∫ ∞

ln(K
A

)
ex 1
σx
√

2π
e−

1
2 (x−µx

σx
)2 dx = Aeµx+σ2

x
2

∫ ∞
ln(K

A
)

1
σx
√

2π
e−

1
2 (x−(µx+σ2

x)
σx

)2 dx

= Aeµx+σ2
x
2

∫ ∞
ln(K

A
)−(µx+σ2

x)
σx

1√
2π

e− 1
2 z

2 dz

= Aeµx+σ2
x
2 {1−N(

ln(K
A

)− (µx + σ2
x)

σx
)}

= Aeµx+σ2
x
2 N( ln(A)− ln(K) + µx + σ2

x

σx
).

Also,

−K
∫ ∞

ln(K
A

)

1
σx
√

2π
e−

1
2 (x−µx

σx
)2 dx = −K

∫ ∞
ln(K)−ln(A)−µx

σx

1√
2π

e− 1
2 z

2 dz

= −KN( ln(A)− ln(K) + µx
σx

).

Finally,

E [(AeX −K)+] =
∫ ∞

ln(K
A

)
(Aex −K) 1

σx
√

2π
e−

1
2 (x−µx

σx
)2 dx

= Aeµx+σ2
x
2 N( ln(A)− ln(K) + µx + σ2

x

σx
)−KN( ln(A)− ln(K) + µx

σx
).

We are now prepared to state and prove our theorem on the value of growth options next

period.

Theorem 2.7.11. The time t+ 1 value of the growth opportunities available beginning next

period conditional on the information available at time t is given by

L∗∗(t) = I(t)eµI− 1
2λ

2
∫
V

∫
P

∞∑
k=1

π
keF3(t+1,1+t+k)g(v, t+ 1, t+ 1 + k, t+ 1)
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× {f ∗∗(t, k)N(d∗6(t, k))−K∗∗(t+ 1, k)N(d∗5(t))} dFρ(ρM,Ct+1) dFV (Vt+1(t+ 1))

+ I(t)
∞∑

s=t+2
e(µI− 1

2λ
2)(s−t)

∫
V

∫
P

∞∑
k=1

π
keF3(s,s+k)

× g(v, s, s+ k, s)Φ(t, s, k) dFρ(ρM,Cs) dFV (Vs(s)),

where FV denotes the stationary distribution of the Jacobi process and Fρ denotes the distri-

bution function of the random variable ρM,Cs, which is the same for all s.

Proof. The value of growth opportunities at month t+ 1 given the information at time t is

L∗∗(t) = E [L∗(t+ 1) + (Vt+1(t+ 1)− I(t+ 1))+|Ft]

=
∞∑

s=t+1
E [ M(s)
M(t+ 1)(Ls(s)− I(s))+|Ft]

=
∞∑

s=t+1
E [I(s)|Ft]E [ M(s)

M(t+ 1)(Ls(s)
I(s) − 1)+|Ft]

= I(t)
∞∑

s=t+1
eµI(s−t) E [ M(s)

M(t+ 1)(Ls(s)
I(s) − 1)+|Ft].

Observe that by Equation ( 2.9 ), we have

M(s)
M(t+ 1) = e−

λ2
2 (s−t−1)−λX1(t+1,s)−

∫ s
t+1 ru du

.

We now focus on the calculation of the conditional expectation defined by Λ11:

Λ11(t, s) = E [ M(s)
M(t+ 1)(Ls(s)

I(s) − 1)+|Ft] = E [E [ M(s)
M(t+ 1)(Ls(s)

I(s) − 1)+|A(t, s)]|Ft].

As before, there exists r∗(s) such that

∞∑
k=1

π
keF3(s,s+k)+ r∗(s)

a
(e−ak−1)g(v, s, s+ k, s) = 1.

Let the function G : [vmin, vmax]× (Z+)2 → R be defined as follows:

G(v, t, s) = E [e−λX1(t+1,s)−
∫ s
t+1 r(u) du(

∞∑
k=1

π
keF3(s,s+k)+ r(s)

a
(e−ak−1)g(v, s, s+ k, s)
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−
∞∑
k=1

π
keF3(s,s+k)+ r∗(s)

a
(e−ak−1)g(v, s, s+ k, s))+|A(t, s)].

We split this up into two cases. The first case is for s = t+1, and the second is for s ≥ t+2.

For the case s = t+ 1, we have

G(v, t, t+ 1) = E [(
∞∑
k=1

π
keF3(t+1,1+t+k)+ r(t+1)

a
(e−ak−1)g(v, t+ 1, t+ 1 + k, t+ 1)

−
∞∑
k=1

π
keF3(t+1,t+1+k)+ r∗(t+1)

a
(e−ak−1)×

g(v, t+ 1, t+ 1 + k, t+ 1))+|A(t, t+ 1)]

=
∞∑
k=1

π
keF3(t+1,1+t+k)g(v, t+ 1, t+ 1 + k, t+ 1)×

E [(e
r(t+1)
a

(e−ak−1) − e
r∗(t+1)

a
(e−ak−1))+|A(t, t+ 1)].

Now, we aim to derive a formula for

Λ12 = E [(e
r(t+1)
a

(e−ak−1) − e
r∗(t+1)

a
(e−ak−1))+|A(t, t+ 1)].

Recall that r(t+ 1) = r(t)e−a + b2(1− e−a) + σre−a(t+1) ∫ t+1
t eap dW r(p). Now, note that

the random variable X3(t, t+ 1) is normally distributed with mean 0 and variance e2at(e2a−1)
2a .

So, the random variable σre−a(t+1)
∫ t+1
t

eap dW r(p)
a

(e−ak − 1) is normally distributed with mean

0 and variance σ2
re−2a(t+1)(e−ak−1)2

a2
e2at(e2a−1)

2a =σ2
r(1−e−2a)(e−ak−1)2

2a3 . So, the standard deviation of

X3(t, t+ 1) is given by

σX3(t,t+1) = σr
√

1− e−2a(1− e−ak)√
2a3

.

Substituting the above and an application of Lemma  2.7.10 yields

Λ12 = E [(e
r(t)e−a+b2(1−e−a)

a
(e−ak−1)e

σre−a(t+1)
∫ t+1
t

eap dWr(p)
a

(e−ak−1) −K∗∗(t+ 1, k))+|A(t, t+ 1)]

= f ∗∗(t, k)N(d∗6(t, k))−K∗∗(t+ 1, k)N(d∗5(t)).
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Thus, for the case s = t+ 1, we have an expression for Λ11(t, s).

Λ11(t, t+ 1) =
∫
V

∫
P

∞∑
k=1

π
keF3(t+1,1+t+k)g(v, t+ 1, t+ 1 + k, t+ 1)

× {f ∗∗(t, k)N(d∗6(t, k))−K∗∗(t+ 1, k)N(d∗5(t))} dFρ(ρM,Ct+1) dFv(v(t+ 1)).

For all s ≥ t+ 2,

G(v, t, s) =
∞∑
k=1

π
keF3(s,s+k)g(v, s, s+ k, s)

× E [e−λX1(t+1,s)−
∫ s
t+1 r(u) du(e

r(s)
a

(e−ak−1) − e
r∗(s)
a

(e−ak−1))+|A(t, s)].

Recall again that

r(u) = r(t)e−a(u−t) + b2(1− e−a(u−t)) + σre−au
∫ u

t
eap dW r(p),

so

−
∫ s

t+1
r(u) du = −r(t)e−a − e−a(s−t)

a
− b2(s− t− 1) + b2

e−a − e−a(s−t)

a

− σr
∫ s

t+1

(
e−au

∫ u

t
eap dW r(p)

)
du. (2.40)

Now, we calculate Λ13 = σr
∫ s
t+1(e−au

∫ u
t eap dW r(p)) du.

Λ13 = σr

∫ s

t+1
(e−au

∫ t+1

t
eap dW r(p)) du+ σr

∫ s

t+1
(e−au

∫ u

t+1
eap dW r(p)) du

= σr
a

(e−at−a − e−as)
∫ t+1

t
eap dW r(p) + σr

∫ s

t+1
(e−au

∫ u

t+1
eap dW r(p)) du

= σr
a

(e−at−a − e−as)
∫ t+1

t
eap dW r(p) + σr

a

∫ s

t+1
dW r(p)− σre−as

a

∫ s

t+1
eap dW r(p).

By substitution of Λ13 into Equation ( 2.40 ), we have

−
∫ s

t+1
r(u) du = B4(n, t)− σr

a
(e−at−a − e−as)

∫ t+1

t
eap dW r(p)

− σr
a

∫ s

t+1
dW r(p) + σre−as

a

∫ s

t+1
eap dW r(p).
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Let the function Φ : (Z+)3 → R be defined by

Φ(t, s, k) = E [e−λX1(t+1,s)−
∫ s
t+1 r(u) du(e

r(s)
a

(e−ak−1) − e
r∗(s)
a

(e−ak−1))+|A(t, s)]

= eB4(s−t−1,t) E [eY ∗(t,s)(eB1(t,s,k)eB2(s,k)X3(t,s) − eK∗(s,k))+|A(t, s)],

where B1(t, s, k), B2(s, k), K∗(s, k) and X3(t, s) were defined previously. We now calculate

the covariance of Y ∗(t, s) and X3(t, s).

cov(Y ∗(t, s), X3(t, s)) = −λcov(
∫ s

t
eap dW r(p),

∫ s

t+1
dWM(p))

− σr
a

(e−at−a − e−as) cov(
∫ s

t
eap dW r(p),

∫ t+1

t
eap dW r(p))

− σr
a

cov(
∫ s

t
eap dW r(p),

∫ s

t+1
dW r(p))

+ σre−as
a

cov(
∫ s

t
eap dW r(p),

∫ s

t+1
eap dW r(p))

= −λρ
Mr

a
(eas − ea(t+1))− σr

2a2 (e−at−a − e−as)(e2a(t+1) − e2at)

− σr
a2 (eas − ea(t+1)) + σre−as

2a2 (e2as − e2a(t+1))

= −(λρ
Mr

a
+ σr
a2 )(eas − ea(t+1)) + σr

2a2 (e−at−a − e−as)e2at(1− e2a)

+ σr
2a2 (eas − e2a(t+1)−as)

= eat[− (λρ
Mr

a
+ σr
a2 )(ea(s−t) − ea) + σr

2a2 (e−a − e−a(s−t))(1− e2a)

+ σr
2a2 (ea(s−t) − e2a−a(s−t))].

We will make use of the following calculations:

1. E [B2(s, k)X3(t, s)] = 0,

2. V(B2(s, k)X3(t, s)) = B2
2(s, k) e2as−e2at

2a ,

3. |B2(s, k)| = σr
a

e−as(1− e−ak),

4. B1(t,s,k)
|B2(s,k)| = (b2−r(t))

σr
eat − b2

σr
eas,

5. K∗(s,k)
|B2(s,k)| = − r∗(s)

σr
eas.
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We define the following functions and proceed to apply Lemma B.1 of Berk, Green, and Naik

[ 15 ]. Note that t, s, k are positive integers and s ≥ t+ 1.

d∗1(t, s, k) =
B1(t, s, k)−K∗(s, k) +B2

2(s, k) e2as−e2at

2a +B2(s, k) cov(Y ∗(t, s), X3(t, s))
|B2(s, k)|

√
e2as−e2at

2a

= B1(t, s, k)
|B2(s, k)|

√
2a

e2as − e2at −
K∗(s, k)
|B2(s, k)|

√
2a

e2as − e2at + |B2(s, k)|
√

e2as − e2at

2a

− cov(Y ∗(t, s), X3(t, s))
√

2a
e2as − e2at

=
(
B1(t, s, k)
|B2(s, k)| −

K∗(s, k)
|B2(s, k)| − cov(Y ∗(t, s), X3(t, s))

)√
2a

e2as − e2at

+ |B2(s, k)|
√

e2as − e2at

2a

= ((b2 − r(t))
σr

− b2

σr
ea(s−t) + r∗(s)

σr
ea(s−t)

+ (λρ
Mr

a
+ σr
a2 )(ea(s−t) − ea) + σr

2a2 (e−a − e−a(s−t))(e2a − 1)

+ σr
2a2 (e2a−a(s−t) − ea(s−t)))

√
2a

e2a(s−t) − 1 + σr
a

(1− e−ak)
√

1− e−2a(s−t)

2a ,

d∗2(t, s) = d∗1(t, s, k)− σr
a

(1− e−ak)
√

1− e−2a(s−t)

2a .

We now have a formula for Λ14 = E[eY ∗(t,s)(eB1(t,s,k)eB2(s,k)X3(t,s) − eK∗(s,k))+|A(t, s)].

Λ14 = exp{1
2 V(Y ∗(t, s)) +B1(t, s, k) + σ2

r(1− e−ak)2 1− e−2a(s−t)

4a3

+ (σr
a

e−a(s−t)(e−ak − 1))([− (λρ
Mr

a
+ σr
a2 )(ea(s−t) − ea)

+ σr
2a2 (e−a − e−a(s−t))(1− e2a) + σr

2a2 (ea(s−t) − e2a−a(s−t))])}N(d∗1(t, s, k))

− eK∗(s,k)+ 1
2 V(Y ∗(t,s))N(d∗2(t, s)).

So, for s ≥ t+ 2,

Φ(t, s, k) = eB4(s−t−1,t)+ 1
2 V(Y ∗(t,s)){ed4(t,s,k)N(d∗1(t, s, k)− eK∗(s,k)N(d∗2(t, s))}.
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Thus, for a fixed s ≥ t+ 2, we have

Λ11(t, s) =
∫
V

∫
P

∞∑
k=1

π
keF3(s,s+k)g(v, s, s+ k, s)Φ(t, s, k) dFρ(ρM,Cs) dFv(v(s)).

For the final result, we sum this over all s ≥ t+ 2, and then add this to Λ(t, t+ 1).

We are now able to write down a formula for the expected rate of return for hold-

ing a claim on the firm for exactly 1 month starting at time t. The formula is given by

E[Rt+1|Ft] = E[P (t+1)|Ft]
P (t) − 1. Thus, the expected rate of return for holding a claim on the

firm for exactly one month starting at time t is given by

E[Rt+1|Ft] = V ∗(t) + L∗∗(t)∑t
j=1 Lj(t)χj(t) + L∗(t) − 1.

Having derived the necessary formulas for firm valuation, we turn our attention to the

simulation in the next chapter.
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3. SIMULATION

In this chapter, we present the parameter estimation procedure and the simulation results.

The Jacobi process parameters and the cash flow growth rate will be estimated from Com-

pustat data using a regression method. The initial value of the cash flow process for each

firm is determined using yearly S&P500 returns as a returns proxy. After estimating the

parameters, we analyze the effect of different parameters on growth option values for both

the Jacobi process and the CIR process. Differences become clear. We then study the effects

of these parameters on returns. We begin with parameter estimation.

3.1 Parameter estimation

In this section, we describe our method of parameter estimation. The parameters for the

interest rate process and the Bernoulli random variables determining project lifetimes are

chosen to be the same as those of BGN. As mentioned before, the Jacobi process parameters

are firm specific. We apply the “indirect inference method” of Gourieroux and Valery [ 14 ]

to estimate parameters for the Jacobi process. Recall the dynamics of the Jacobi process,

which can be found in Equations ( 2.5 ) and ( 2.6 ). Discretization of Equation ( 2.6 ) (for the

j-th project) yields

Vj(t+ 1) = Vj(t) + κ(θ − Vj(t)) + σV
√
Q(Vj(t))ξ(t+ 1)

= (1− κ)Vj(t) + κθ + σV
√
Q(Vj(t))ξ(t+ 1), (3.1)

where the random variables ξ(t) are standard normal for all t. For this section only, we let

α = 1− κ and β = κθ. Then, division by
√
Q(Vj(t)) in Equation ( 3.1 ) yields

Vj(t+ 1)√
Q(Vj(t))

= α
Vj(t)√
Q(Vj(t))

+ β
1√

Q(Vj(t))
+ σV ξ(t+ 1). (3.2)
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We now consider the cash flow process and demonstrate the validity of our proceeding

procedure. First, we apply Ito’s lemma to the logarithm of the cash flows from Equation

( 2.3 ) (recall that we assume σ = 1):

d (log(Cj(t)) =
(
µ− 1

2V
2
j (t)

)
dt+ Vj(t) dWCj(t).

As a discrete-time analogue, we have

log(Cj(t+ 1)) = log(Cj(t)) + µ− 1
2V

2
j (t) + Vj(t)

(
WCj(t+ 1)−WCj(t)

)
.

Taking the conditional variance of each side given the time t information yields:

V(log(Cj(t+ 1))|Ft) = V 2
j (t).

We estimate the conditional cash flow variance, V(log(Cj(t+ 1))|Ft), by taking the variance

of the natural logarithm of each of the prior twenty cash flow observations. Note that it may

have been better to use the variance of the differences of the logarithm of the cash flows. The

resulting parameter estimates in this case are similar to simply taking the logarithm of the

cash flows, except using the difference yields more outlier estimates. Our estimates still allow

us to address the questions at hand, so we proceed with using the variance of the logarithm

of the cash flows and not the difference of the logarithms of the cash flows. We implicitly

assume the time t information consists of the prior twenty cash flow observations. We use

the standard deviation of the logarithm of each of the prior twenty cash flow data points

to estimate Vj(t) at each time t. Then, we apply the regression method mentioned above.

Lastly, we need to mention how Vj(j), the value of the Jacobi process for the j-th project

when the project becomes available, is determined. Since the Jacobi process is stationary

with a Beta distribution, for every j, Vj(j) will be drawn from a Beta distribution depending

on the parameters of the specific Jacobi process. We now turn our attention to the cash flow

proxy.

We follow the procedures of Keefe and Yaghoubi [ 28 ] to deal with the cash flow data.

We describe this process now. We use OIBDPQ (Operating Income Before Depreciation
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Quarterly) as a proxy for the cash flow. For each firm, we scale OIBDPQ by CSHOQ

(Common Shares Outstanding Quarterly), ACTQ (Total Assets Quarterly), and net assets.

We have calculated nets assets as ACTQ minus LCTQ, where LCTQ is Total Liabilities

Quarterly. If the Compustat footnote of REVTQ is ‘AB’, then the associated observation

is deleted. If the common equity for a quarter (CEQQ) is negative, then this observation

is deleted. Utility firms are deleted, and there are no financial services firms. If ACTQ

or REVTQ are negative, then the associated observation is deleted. All observations with

missing data are deleted. If a firm has one or more negative values for OIBDPQ, then the

firm is removed from the data set. We delete firms with less than 90 OIBDPQ data points.

Since firms with negative values of OIBDPQ are dropped and our model assumes positive

cash flows, it makes sense to take the natural logarithm of the scaled OIBDPQ values. We

chose to scale OIBDPQ by ACTQ, and we will discuss differences in the scaling later. Cash

flow volatility is estimated using a rolling standard deviation of the past 20 scaled OIBDPQ

data points. Thus, the first 20 data points for each firm are deleted. Parameters are estimated

using the regression method. After running the regressions, firms with a p-value associated

with the estimates for θ or κ greater than or equal to .01 are deleted. We use the root mean

square error as an estimator of σV . The parameters vmax and vmin are determined by taking

the largest and smallest values of Vj(t) for each specific firm, respectively. Obviously, we

ensure that vmin ≤ θ ≤ vmax for each firm when the Jacobi process is used. We now describe

the aforementioned cash flow scaling.
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Figure 3.1. Jacobi parameter estimates for OIBDPQ scaled by CSHOQ

Figure 3.2. CIR parameter estimates for OIBDPQ scaled by CSHOQ

We present the distribution of the parameter estimates when OIBDPQ was scaled by

CSHOQ in Figure  3.1 for the Jacobi process and in Figure  3.2 for the CIR process. The

procedures above yield 151 firms for the Jacobi process and 64 firms for the CIR process.

When OIBDPQ is scaled by ACTQ, the parameter estimation procedures yield 153 firms for

the Jacobi process and 87 firms for the CIR process. The distribution of parameter estimates

when OIBDPQ is scaled by ACTQ is presented in Figure  3.3 for the Jacobi process and in

Figure  3.4 for the CIR process. Not all firms satisfy the condition for convergence in Lemma
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Figure 3.3. Jacobi parameter estimates for OIBDPQ scaled by ACTQ

 2.7.3 . Furthermore, the convergence depends on ρM,Cj . For the Jacobi process, we allow

ρM,Cj to be drawn from a uniform discrete distribution, and ρM,Cj takes six values linearly

spaced between .0001 and .2. As ρM,Cj increases, it is more likely for a firm to satisfy the

convergence condition. For example, in one of our runs, we found that for the smallest

value of ρM,Cj , 75 of 153 firms meet the convergence criterion, but for the largest value

of ρM,Cj , 106 of 153 firms meet the criterion. It is obvious that this always holds, due

to the convergence criterion. Finally, when OIBDPQ is scaled by net assets, the parameter

estimation procedures yield 122 firms for the Jacobi process and 40 firms for the CIR process.

Tables  3.1 ,  3.2 ,  3.3 ,  3.4 ,  3.5 , and  3.6 present the minimum, maximum, mean, standard

deviation, skewness, and excess kurtosis of the parameters estimated for use in the Jacobi

and CIR processes. Each plot is labelled by what factor scales OIBDPQ. This concludes the

volatility parameter estimation, and we turn our attention to cash flow growth.

We now consider parameter estimation for the cash flow growth rate. Discretization of

Equation ( 2.12 ) with the assumption that σ = 1 yields

Cj(t+ 1) = Cj(t) + Cj(t)µ̂+ Cj(t)Vj(t)
(
WCj(t+ 1)−WCj(t)

)
. (3.3)
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Figure 3.4. CIR parameter estimates for OIBDPQ scaled by ACTQ

Figure 3.5. Jacobi parameter estimates for OIBDPQ scaled by net assets

Figure 3.6. CIR parameter estimates for OIBDPQ scaled by net assets

86



Table 3.1.
Jacobi parameter statistics (scaled by CSHOQ)
θ κ σV vmin vmax

min 0.046788 0.023796 0.022332 0.020137 0.12751
max 0.33841 0.6898 0.13004 0.19246 0.98935
mean 0.15237 0.11665 0.047842 0.08286 0.32115
median 0.14574 0.084999 0.044846 0.077799 0.30099
std 0.057192 0.091707 0.016534 0.032004 0.11962
skew 1.0335 2.8683 1.6223 1.1372 1.7403
ex.kurt 1.0732 11.4374 3.9922 1.7631 6.033

Table 3.2.
CIR parameter statistics (scaled by CSHOQ)

θ κ σV
min 0.061905 0.052325 0.0174
max 0.29702 0.48261 0.084019
mean 0.12945 0.12897 0.03518
median 0.11875 0.11741 0.031951
std 0.048333 0.07594 0.012529
skew 1.1971 2.6491 1.6031
ex. kurt 1.7143 8.5795 3.2504
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Table 3.3.
Jacobi parameter statistics (scaled by ACTQ)
θ κ σV vmin vmax

min 0.044917 0.022081 0.019554 0.025608 0.10479
max 0.36776 0.62619 0.12482 0.17853 0.62093
mean 0.1328 0.12645 0.046946 0.071289 0.30904
median 0.11879 0.11143 0.045257 0.067339 0.30831
std 0.060825 0.077913 0.015836 0.028664 0.096582
skew 1.4637 2.4164 1.6392 1.291 0.43324
ex. kurt 2.4872 10.6915 4.3761 2.2987 0.28834

Table 3.4.
CIR parameter statistics (scaled by ACTQ)

θ κ σV
min 0.047354 0.056137 0.018207
max 0.22371 0.33941 0.063786
mean 0.1041 0.13522 0.033871
median 0.098241 0.11905 0.031569
std 0.034907 0.055721 0.0096284
skew 0.79468 1.5727 0.85079
ex. kurt 0.49894 2.7616 0.36164
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Table 3.5.
Jacobi parameter statistics (scaled by net assets)

θ κ σV vmin vmax
min 0.046788 0.023796 0.022332 0.020137 0.12751
max 0.33841 0.6898 0.13004 0.19246 0.98935
mean 0.15237 0.11665 0.047842 0.08286 0.32115
median 0.14574 0.084999 0.044846 0.077799 0.30099
std 0.057192 0.091707 0.016534 0.032004 0.11962
skew 1.0335 2.8683 1.6223 1.1372 1.7403
ex. kurt 1.0732 11.4374 3.9922 1.7631 6.033

Table 3.6.
CIR parameter statistics (scaled by net assets)

θ κ σV
min 0.062936 0.029879 0.020264
max 1.5734 0.31727 0.18982
mean 0.26889 0.11121 0.045374
median 0.14267 0.09771 0.037774
std 0.31739 0.057981 0.029476
skew 2.5514 1.6348 3.2898
ex. kurt 6.1561 2.9414 12.2827
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(a) CSHOQ (b) ACTQ (c) net assets

Figure 3.7. Parameter estimates cash flow growth (Jacobi)

Taking conditional expections yields

E [Cj(t+ 1)|Ft] = Cj(t) + Cj(t)µ̂,

which implies

µ̂ = E [Cj(t+ 1)|Ft]− Cj(t)
Cj(t)

. (3.4)

Figures  3.7 and  3.8 present histograms of estimated values of µ when scaled values of

OIBDPQ are used to estimate µ. An estimate for µ is obtained by taking the average of

µ̂ in Equation ( 3.4 ) for each firm. The parameter µ has a significant effect on firm value,

cash flow growth, and returns. In fact, µ may be the most important parameter in regards

to returns. The simulation may be run for the scenario in which all firms have their own

value for µ. In this case, it is no longer possible to discern the effects of the volatility process

parameters. Therefore, we opt to keep µ the same across firms. We now turn our attention

to the estimation of C.

We now derive two more equations to assist in parameter estimation. Assuming the j-th

project is alive at time t, i.e. χj(t) = 1, then the expected cash flow at time t + k is given

by:

E [Cj(t+ k)χj(t+ k)|Ft] = π
k E [I(j)eC+µ(t+k−j)+σ

∫ t+k
j

Vj(u)dWCj (u)−σ
2

2

∫ t+k
j

V 2
j (u)du|Ft]

= I(j)π
keC+µ(t+k−j)e

∫ t
j
Vj(u)dWCj (u)− 1

2

∫ t
j
V 2
j (u)du

.
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(a) CSHOQ (b) ACTQ (c) net assets

Figure 3.8. Parameter estimates cash flow growth (CIR)

We also have

E [Cj(t)χj(t)|χj(j) = 1] = π
t−j E [I(j)eC+µ(t−j)+σ

∫ t
j
Vj(u)dWCj (u)−σ

2
2

∫ t
j
V 2
j (u)du]

= I(j)π
t−jeC+µ(t−j). (3.5)

We use π = .99, which yields average project life spans of 100 months. We use Equation

( 3.5 ) to estimate C. We sum over t = j + 1 to t = j + 100 in Equation ( 3.5 ) and think of

the left hand side as being the average return on the asset, which we denote by ROA. Then,

we solve for C. Thus, we estimate C through the equation

C = − log
(

1
ROA

100∑
l=1

π
leµl

)
. (3.6)

Now that we have described the parameter estimation procedure, we proceed with the sim-

ulation in the next section.

3.2 The case of no cash flow growth

In this section, we examine the effects of κ, σV , vmax, vmin, θ, vmax − vmin, and vmax+vmin
2

from Equation ( 2.6 ) on the value of the growth options when a Jacobi process is used to

model cash flow volatility. For comparison, we also consider the analogous case in which a

CIR process is used in place of the Jacobi process. In this case, we examine the effects of

the parameters κ, θ, and σV , along with the empirical max in certain cases, on the growth

option values. We use the phrase “value of future growth options” to mean the value at a
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specific month of all the projects that will be available after that month, namely the value

of L∗(t) at month t. The formula used to calculate this quantity is Equation ( 2.33 ). “Mean

value of all future growth options” refers to the average value of L∗(t) taken over all of the

values of t for each firm individually. The time-frame is usually 1750 months, but the first

140 observations are dropped in some cases. Results from several simulations are presented.

We now begin for the case of µ = 0 and C = −3.7. Following the procedure outlined in

Section  3.1 , we are left with 155 firms for the Jacobi process and 103 firms for the CIR

process. We arbitrarily reduce the number of firms to 150 and 100, respectively.

Figure  3.9a presents a plot of the mean value of all future growth options as a function of

θ for the full set of 150 firms, and it shows that the value of growth options decreases as the

value of θ increases. On the surface, this appears contrary to the standard results in which

a geometric Brownian motion (with constant volatility) is used, such as in McDonald and

Siegel [ 16 ], who use a GBM to model the project values. Our project values are calculated

after modeling the cash flows by stochastic processes. On the other hand, it is also known

that investors value smooth cash flows, as seen in Rountree, Weston, and Allayannis [ 29 ].

The cash flow volatility should fluctuate around θ. As θ increases, the long run mean of

the cash flow volatility increases, making the project cash flows less smooth and thus less

valuable to investors. Investment in projects becomes less likely as θ increases. Equation

( 2.12 ) gives some insight into why our model produces these results, for the Jacobi process,

from a mathematical perspective. Interestingly, when a CIR process is used in place of a

Jacobi process, the long run mean of the cash flow volatility does not have the same effect.

From the plot, it is not clear whether growth option values increase as a function of θ or

there are simply less firms possessing a larger θ parameter. On the other hand, as the rate

of mean-reversion increases, the growth option values trend downward for the CIR process.

Interestingly, Figure  3.9c displays growth option values as a function of the rate of mean

reversion, and the effect of this parameter is not conclusive. Finally, Figures  3.9e and  3.9f 

display growth option values as a function of the VoV constant coefficient.

Since it is not possible to discern a pattern in all of the plots above, we will investigate

special cases in which some of the parameters are held constant while others are allowed to

vary. First, we consider the effect of individually changing the value of each of the bounds
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(a) long run mean (Jacobi) (b) long run mean (CIR)

(c) rate of mean reversion (Jacobi) (d) rate of mean reversion (CIR)

(e) VoV constant (Jacobi) (f) VoV constant (CIR)

Figure 3.9. Growth option values

Notes. This figure plots the mean value of growth options as a function of different parameters
from our two separate cash flow volatility models. There are 150 firms for the Jacobi process
and 100 firms for the CIR process. “Mean value of growth options” refers to taking the mean
of the growth option values for each firm over all of the 1750 months. In (a), (c), and (e)
a Jacobi process is used, and in (b), (d), and (f) a CIR process is used to model cash flow
volatility. Plots (a) and (b) concern the long run mean. The fitted curve in (a) is given by
f(x) = 18.71e−4.885x, with 95% confidence intervals (18.34, 19.07) and (−5.026,−4.744). The
fitted line in (b) is given by f(x) = 7.797x+ 10.17 with 95% confidence intervals (2.072, 13.52)
and (9.522, 10.81). Plots (c) and (d) concern the rate of mean reversion. The equation for
the fitted line in (c) is given by f(x) = 9.498x + 8.119 with 95% confidence bounds given by
(3.192, 15.8) and (7.398, 8.839). The equation of the fitted line in (d) is f(x) = −19.23x+13.53
with 95% confidence intervals (−19.82,−18.63) and (13.44, 13.61). Figures (e) and (f) concern
the VoV constant coefficient. The fitted line in (e) is given by f(x) = −86.03x + 13.02 with
95% confidence intervals (−108.1,−63.93) and (11.95, 14.09). The fitted line in (f) is given by
f(x) = 17.16x+ 10.42 with 95% confidence intervals (−5.925, 40.25) and (9.622, 11.22).
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on the value of the growth options. To this aim, we select three values of θ and run three

simulations. In each simulation, the parameter vmin or vmax varies. Figures  3.10a and  3.10b 

show three plots of the mean value of growth options for θ = .075, θ = .16, and θ = .25 for

varying vmax and vmin, respectively. Note that as vmin increases uM = vmin+vmax
2 also increases,

and the same is true of vmax. As expected, a lower value for vmin leads to higher growth option

values, and the relationship appears to be linear. Intuitively, we view a decrease in the lower

bound as a good type of uncertainty for two reasons. First, it allows for the possibility of

periods of lower cash flow volatility, and second, it yields a lower max uncertainty. Note that

the effect of vmin is quantitatively negligible. One plausible reason for this is that the range

of possible lower bound values is small, as it must be within the long run mean and zero. We

remark on the necessity of obtaining an accurate estimate of vmin from a risk management

perspective. If the estimate for vmin is lower than it should be, the project will be overvalued

and riskier. The risk stems not only from the lower bound itself being incorrect but also from

an inaccurate estimate of uM , which will be lower than the true value. If the true vmin is

larger than the estimate, it will not allow for periods of low cash flow volatility, and the true

max uncertainty will be higher than the estimate. We now turn our attention to the upper

bound. In addition, the lack of knowledge of the volatility should be reflected in the growth

option value. It is interesting to see that when the volatility is not known, an increase in the

long run mean of the volatility yields a decrease in the growth option value.

In Figure  3.10a , we plot the value of growth options as a function of vmax. Clearly, as

θ increases, the growth option values decrease. For each value of θ, as vmax increases, the

growth option values decrease. An increase in the upper bound vmax allows for higher cash

flow volatility and higher max uncertainty. Thus, we consider an increase in vmax to be an

increase in bad uncertainty. A higher vmax means that project investment is less likely, and

if the project is accepted, cash flows will most likely be less smooth. Let us now investigate

the effect of the constant VoV coefficient.

We plot growth option values as a function of σV with the other Jacobi and CIR process

parameters left unchanged in Figure  3.11 . These plots show an upward trend for the Jacobi

process but no clear trend for the CIR process. In the graphs, the maximum difference in

growth option values as σV changes is .0122 for the Jacobi process and .0046 for the CIR
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(a) Upper bound (b) Lower bound

Figure 3.10. Growth option values (the bounds)

Notes. This figure plots the mean value of growth options as a function of vmax in (a) and
vmin in (b) when a Jacobi process is used to model cash flow volatility. The length of time
is 1610 months, and there are 10 firms for three different values of θ. “Mean value of growth
options” refers to taking the mean for each firm over the 1610 months. We give equations
for fitted lines, but we leave the lines off of the plot for visual clarity. The fitted lines in (a)
correspond to three different θ values. For θ = .075 (represented by blue dots), the fitted
line is f(x) = −1.02x+ 12.0 with 95% confidence intervals (−1.13,−.91) and (11.7, 12.3). For
θ = .16 (represented by red dots), the fitted line is f(x) = −.62x + 8.1 with 95% confidence
intervals (−.67,−.57) and (7.9, 8.2). For θ = .25 (represented by green dots), the fitted line is
f(x) = −.41x + 5.7 with 95% confidence intervals (−.44,−.38) and (5.6, 5.8). The fitted lines
in (b) are given as follows: For θ = .075 (represented by blue dots), f(x) = −5.36x + 13.7
with 95% confidence intervals (−5.83,−4.90) and (13.68, 13.72). For θ = .16 (represented by
red dots), f(x) = −1.87x+ 8.64 with 95% confidence intervals (−2.00,−1.74) and (8.63, 8.65).
For θ = .25 (represented by green dots), f(x) = −.86x + 5.98 with 95% confidence intervals
(−.899,−.822) and (5.97, 5.98). Note that the blue dots in Figure (b) do not extend as far as
the other dots due to restrictions on the parameters of the Jacobi process, namely Inequality
( 2.7 ).

(a) vol-of-vol constant (b) vol-of-vol constant

Figure 3.11. Growth option values (vol-of-vol constant)

Notes. This figure plots the mean value of growth options as a function of σV for the Jacobi
process in (a) and for the CIR process in (b). In each case, we consider ten linearly spaced
values of σV . “Mean value of growth options” refers to taking the mean for each firm over all
of the 1750 months. In (a), the equation of the fitted line is f(x) = .1991x + 7.219 with 95%
confidence intervals (0.05279, 0.3454) and (7.211, 7.226). The equation of the fitted line in (b)
is f(x) = .0237x+ 7.49 with 95% confidence intervals (−.05829, .1057) and (7.487, 7.493).
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process. Because of Equation (  2.6.1 ) and the Feller condition, the range of possible σV values

is limited, and this may hinder our ability to discern the effect of σV . Quantitatively, the

effect of the constant VoV coefficient is small compared to the effect of the other parameters

in these models.

Recall that Figure  3.9 presents plots of the mean growth option values versus σV for

the full set of firms for both the Jacobi and CIR processes. Since θ dominates the growth

option values in the Jacobi process and κ dominates the growth option values in the CIR

process, we consider the effect of the VoV constant when the firms are separated based on

the dominant parameter for the respective process. Figure  3.12 displays the effect of σV
on growth option values for three different groups based on the parameter θ for the Jacobi

process and the parameter κ for the CIR process. Again, these parameters were chosen

because they have a prominent effect on growth option values, as seen in Figures  3.9 . We

struggle to find a pattern in all of the figures concerning σV , except for the pattern observed

in Figure  3.11a . This pattern is puzzling because we would expected a larger VoV to yield

lower project values. Nevertheless, it is clear that σV is not a dominant parameter in either

model, especially when compared to κ in the CIR process or θ and uM in the Jacobi process.

Let us now investigate the other important parameter uM .

Figure  3.13 shows growth option values as a function of uM = vmax+vmin
2 in (a) and the

empirical max in (b), when κ and σV are fixed. As the square root in the diffusion term is not

bounded, there is no direct analog in the CIR process corresponding to the max uncertainty

of the Jacobi process. Thus, we consider the empirical max of the observations for the CIR

process. Recall that uM is where the max of Q(v) from Equation ( 2.6 ) occurs. Note that the

empirical max takes the value .6 six times, but the growth option values are different in these

cases. The difference in growth option value is due to the difference in the corresponding θ

values. As uM increases, the growth option values decrease. More data is required to make

conclusions regarding the empirical max, but the very small data set that we have does trend

down as the empirical max increases. In Figures  3.14a and  3.14b , we present plots of the

value of growth options as a function of uM and the empirical max for the full set of firms

when the Jacobi process and CIR process are used, respectively. It is clear that an increase
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(a) VoV constant (Jacobi) (b) VoV constant (CIR)

(c) VoV constant (Jacobi) (d) VoV constant (CIR)

(e) VoV constant (Jacobi) (f) VoV constant (CIR)

Figure 3.12. Growth option values (grouped by certain parameters)

Notes. Plots (a), (c), and (e) display the mean value of growth options as a function of
σV when a Jacobi process is used to model volatility for firms that meet the criterion θ < .12,
.12 < θ < .22, and .22 < θ, respectively. Plots (b), (d), and (f) display the mean value of growth
options as a function of σV when a Jacobi process is used to model volatility for firms that meet
the criterion κ < .1, .1 < κ < .15, and .15 < κ, respectively. In (a), the equation of the fitted
line is given by f(x) = −21.08 + 12.65 with 95% confidence intervals given by (−55.04, 12.89)
and (11.33, 13.96). In (b), the equation of the fitted line in (b) is f(x) = 0.9628x+ 11.98 with
95% confidence intervals (−13.86, 15.79) and (11.45, 12.5). In (c), the equation of the fitted line
is given by f(x) = −20.22x + 9.403 with 95% confidence intervals given by (−37.24,−3.207)
and (8.573, 10.23). The equation of the fitted line in (d) is f(x) = 2.628x + 11.07 with 95%
confidence intervals (−8.131, 13.39) and (10.7, 11.45). In (e), the equation of the fitted line is
given by f(x) = −15.64x + 6.109 with 95% confidence intervals given by (−45.37, 14.08) and
(4.189, 8.03). The equation of the fitted line in (f) is f(x) = 30.32x+8.712 with 95% confidence
intervals given by (−1.941, 62.57) and (7.619, 9.805). In (a), (c), and (e) there are 150 firms.
In (b), (d), and (f) there are 100 firms. “Mean value of growth options” refers to taking the
mean of all growth option values for each firm over all of the 1750 months.
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(a) Max uncertainty (Jacobi) (b) Empirical max (CIR)

Figure 3.13. Growth option values (max uncertainty)

Notes. This figure plots the mean value of growth options as a function of uM when a Jacobi
process is used in (a) and as a function of the empirical max when a CIR process is used in (b) to
model volatility. In both cases, κ = .15, σV = .04, and θ takes 10 values linearly spaced between
.1 and .4. For the Jacobi process, vmin varies between .03 and .33, and vmax varies between .17
and .47. The values increase along with θ for the Jacobi process. The equation of the fitted line
is given by f(x) = −27.39x + 13.34 with 95% confidence intervals given by (−33.29,−21.49)
and (11.76, 14.92). The equation of the fitted line in (b) is f(x) = −3.263x + 12.71 with 95%
confidence intervals (−4.279,−2.247) and (12.09, 13.33). In (a), there are 150 firms. In (b),
there are 100 firms. “Mean value of growth options” refers to taking the mean for each firm
over all of the 1750 months.
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(a) Max uncertainty (Jacobi) (b) Empirical max (CIR)

Figure 3.14. Growth option values (max uncertainty)

Notes. This figure plots the mean value of growth options as a function of uM when a Jacobi
process is used in (a) and as a function of the empirical max when a CIR process is used in (b) to
model volatility. In (a), 150 firms are used. In (b), 100 firms are used. The equation of the fitted
line is given by f(x) = −27.2x+14.46 with 95% confidence intervals given by (−31.41,−22.99)
and (13.58, 15.34). The equation of the fitted line in (b) is f(x) = −7.705x + 15.93 with 95%
confidence intervals (−14.3,−1.108) and (11.7, 20.16). “Mean value of growth options” refers
to taking the mean for each firm over a period of 1750 months.

in uM yields a decrease in growth option values, but there is no discernible effect for the

empirical max of the CIR process.

Finally, we remark that firm value decreases in an exponential manner as θ increases for

the Jacobi process. Also, firm value trends downward as uM increases. This is expected

since firm value is the sum of future growth options and expected cash flows from projects

that are still alive. So, in our model smaller firms tend to be those with higher volatility.

Now, we consider what determines the project acceptance rate. The parameter C plays

a large role in the acceptance or rejection of a project. If C is too low, all projects will be

rejected, and if C is too large, all projects will be accepted, though this does depend on

the other parameters. In our model, the other main factors that determine the acceptance

or rejection of a project are the interest rate, the value of ρM,Cj (which becomes know at

the time the project becomes available), and the Jacobi process parameters. In the case

of the Jacobi process, the projects that are rejected are associated with firms that have

higher uncertainty and long run mean. Only 3 firms out of 150 with parameters fitted from

Compustat have projects being rejected. Out of 1750 months (so 1750 projects), a firm with

θ = .3048 and uM = .3555 had 10 projects rejected. A firm with θ = .3917 and uM = .4200

had 125 projects rejected. A firm with θ = .4682 and uM = .3624 had 85 projects rejected.
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Figure 3.15. Growth option values (vdiff)

Notes. This figure plots the mean value of growth options as a function of the difference in
bounds when a Jacobi process is used to model volatility. The equation of the fitted line is
given by f(x) = −10.3x + 11.44 with 95% confidence intervals given by (−13.51,−7.101) and
(10.63, 12.26). There are 150 firms. “Mean value of growth options” refers to taking the mean
for each firm over the 1750 months.
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The last two firms had the two largest theta values of all firms. Note that θ = .3917 has

a larger associated uM than θ = .4682 does, and we believe this is why more projects are

rejected for the firm with θ = .3917. We also note that θ = .3048 is the sixth largest θ value

if θ values are ranked from our sample set of 150 parameters, but its value of uM is higher

than the uM value for firms that have a θ value of third, fourth, or fifth in the ranking of

θ values. We view this as further evidence of the importance of the max uncertainty uM in

the decision to take on a project.

Now, we consider the case of no cash flow growth, that is the case of µ = 0, but using

Equation (  3.6 ), the parameter C is estimated to be −4.3. When there is no cash flow

growth, a minor change in the parameter C can mean the difference between all projects

being accepted and all projects being rejected. Since µ = 0, the future cash flows are less

valuable because they are multiplied by the appropriate value from the function g, which

is monotonically decreasing. For the case C = −4.3, all projects are rejected, and for the

case C = −3.7 (seen previously), almost all projects are accepted. In these cases, we only

consider the growth option values, as we would like to study returns when not all projects

are accepted or rejected.

Figure  3.16 presents the mean value of growth options as a function of the parameters

θ, κ, and σV from the CIR process. In Figure  3.16a , the equation of the fitted curve is f(x) =

1.4865 ∗ 10−6 ∗ e−18.5406x with 95% confidence bounds given by (1.378 ∗ 10−6, 1.5949 ∗ 10−6)

and (−19.3147,−17.7665). The bounds correspond to the coefficients in the same order as

they appear in f(x). As before, we notice that as the rate of mean reversion increases, the

value of growth options decreases exponentially.
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(a) rate of mean reversion, CIR (b) long run mean, CIR

(c) VoV constant, CIR

Figure 3.16. Growth option values (CIR, no cash flow growth)

Now, in Figure  3.17 we turn our attention to the same scenario, except the CIR process

is replaced by the Jacobi process. In (b), the equation of the fitted curve is f(x) = 1.9195 ∗

10−6 ∗ e−19.1885x with 95% confidence bounds given by (1.8405 ∗ 10−6, 1.9986 ∗ 10−6) and

(−19.6878,−18.6893). The bounds correspond to the coefficients in the same order as they

appear in f(x). The most discernible trend is due to the parameter θ. Due to confounding

effects, we will also run simulations in which most parameters are held constant while we

investigate individual parameters.

Along these lines, let us now investigate several special cases in which certain parameters

are allowed to vary while others are held constant for the case of the Jacobi process. In Figure

 3.18 , we present special cases when different parameters of the Jacobi process are allowed to

vary while others are held constant. In Figure  3.18a , the case of the upper bound is presented,

and the fitted lines, which are not displayed, have the following equations: The equation of

the fitted line for θ = .075 is f(x) = −1.0576x+ 12.0116 with 95% confidence bounds given

by (−1.1662,−0.949) and (11.7049, 12.3183). The equation of the fitted line for θ = .16 is

f(x) = −0.63539x+ 8.0944 with 95% confidence bounds given by (−0.68744,−0.58335) and

(7.9474, 8.2414). The equation of the fitted line for θ = .25 is f(x) = −0.4179x + 5.7288

with 95% confidence bounds given by (−0.44679,−0.389) and (5.6472, 5.8104). In Figure

 3.18b , we present a plot concerning the lower bound. Equations of the fitted line are as
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(a) rate of mean reversion, Jacobi (b) long run mean, Jacobi

(c) VoV constant, Jacobi (d) max uncertainty, Jacobi

(e) lower bound, Jacobi (f) upper bound, Jacobi

(g) bounds difference, Jacobi

Figure 3.17. Growth option values (Jacobi, no cash flow growth)

follows: The equation of the fitted line for θ = .075 is f(x) = −5.5361x + 13.8245 with

95% confidence bounds given by (−6.0299,−5.0422) and (13.8063, 13.8427). The equation

of the fitted line for θ = .16 is f(x) = −1.9183x + 8.7258 with 95% confidence bounds

given by (−2.0551,−1.7816) and (8.7151, 8.7365). The equation of the fitted line for θ = .25

is f(x) = −0.88189x + 6.0374 with 95% confidence bounds given by (−0.91913,−0.84465)

and (6.0345, 6.0404). The blue dots corresponding to θ = .075 do not extend as far as

the others due to the restraint from Inequality (  2.7 ). In  3.18c , the equation of the fitted

line is f(x) = 18.1066e−4.51x with 95% confidence bounds given by (16.9476, 19.2657) and
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(−4.8398,−4.1803). In  3.18d , the equation of the fitted line is f(x) = 0.11816x + 7.0414

with 95% confidence bounds given by (−0.037736, 0.27405) and (7.0332, 7.0496). In  3.18e , the

equation of a fitted exponential curve would be f(x) = 7.714e−0.15171x with 95% confidence

bounds given by (7.5543, 7.8737) and (−0.24896,−0.054453), though we do not display it

since it looks more like a line. The bounds correspond to the coefficients in the same order

as they appear in f(x). In  3.18e , why does an increase in the rate of mean reversion yield

lower growth option values? We suggest that a lower rate of mean reversion yields lower

uncertainty on average over large periods. If κ is relatively small and the Jacobi process is

near one of the bounds, then on average it will take longer to return to the long run mean,

which is also usually near the location of max uncertainty. By the same logic, a large rate

of mean reversion quickly brings the volatility back near the location of max uncertainty, in

most cases. This in turn leads to a higher volatility of volatility of cash flows.

(a) upper bound, Jacobi (b) lower bound, Jacobi

(c) max uncertainty, Jacobi (d) VoV, Jacobi

(e) rate of mean reversion, Jacobi

Figure 3.18. Growth option values (Jacobi, no cash flow growth)
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We now turn our attention to returns for the same case. Figure  3.19 presents plots

regarding the realized returns. In Figure  3.19a , we present a plot concerning the upper bound

for three different values of θ. The equation of the fitted line for the case θ = .075 is f(x) =

9.1289∗10−6x+0.00017227 with 95% confidence bounds given by (4.4344∗10−7, 1.7814∗10−5)

and (0.00014774, 0.0001968). The equation of the fitted line for the case θ = .16 is f(x) =

3.2093∗10−5x+0.00054616 with 95% confidence bounds given by (8.7347∗10−6, 5.5451∗10−5)

and (0.00048018, 0.00061214). The equation of the fitted line for the case θ = .25 is f(x) =

9.9844 ∗ 10−5x+ 0.0023205 with 95% confidence bounds given by (5.2104 ∗ 10−5, 0.00014758)

and (0.0021857, 0.0024554). The number of projects rejected in each case of θ are as follows:

119.1340 for θ = .075, 586.6340 for θ = .16, and 883.9180 for θ = .25. In Figure  3.19b ,

we present a plot concerning the lower bound for three different values of θ. The equation

of the fitted line for the case of θ = .075 is f(x) = −0.00010367x + 0.00014763 with 95%

confidence bounds given by (−0.00028415, 7.6808 ∗ 10−5) and (0.00014097, 0.0001543). The

equation of the fitted line for the case of θ = .16 is f(x) = 0.00021469x+0.0004988 with 95%

confidence bounds given by (−0.00022247, 0.00065184) and (0.00046453, 0.00053308). The

equation of the fitted line for the case of θ = .25 is f(x) = 0.00034624x + 0.0021529 with

95% confidence bounds given by (−0.00034926, 0.0010417) and (0.0020984, 0.0022074). In

 3.19c , the equation of the fitted line is f(x) = 0.0001708e10.6014x with 95% confidence bounds

given by (0.00010104, 0.00024056) and (9.4993, 11.7034). We now turn our attention to the

rate of project acceptance.

Figure  3.20 contains plots of the number of projects rejected versus the value of the upper

bound for three different values of the long run mean, namely θ = .075, .16, .25. In the case

of θ = .075, as the upper bound increases, there is a clear decrease in the number of projects

rejected. The case of a medium long run mean displays an increase and then a decrease in

projects rejected as the upper bound increases. Finally, the case of the largest long run mean

shows an increase in the projects rejected as the upper bound increases followed by a short

decrease in rejected projects.
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(a) upper bound, Jacobi (b) lower bound, Jacobi

(c) max uncertainty, Jacobi (d) VoV, Jacobi

(e) rate of mean reversion, Jacobi

Figure 3.19. Realized returns (Jacobi, no cash flow growth)

(a) low long run mean (b) medium long run mean

(c) high long run mean

Figure 3.20. Rejected projects, upper bound, Jacobi
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(a) low long run mean (b) medium long run mean

(c) high long run mean

Figure 3.21. Rejected projects, lower bound, Jacobi

(a) max uncertainty (b) VoV constant

(c) rate of mean reversion

Figure 3.22. Rejected projects, Jacobi

Figure  3.21 shows the average number of projects rejected as a function of the lower

bound for three different values of the long run mean, and Figure  3.22 shows plots of the

average number of rejected projects versus the max uncertainty, the VoV constant, and the

rate of mean reversion. Clearly, as the max uncertainty increases, the average number of

projects rejected increases. Otherwise, the results are mostly inconclusive but recorded for
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completeness. This concludes our investigation of the case in which there is no cash flow

growth. Now, we turn our attention to the case of positive cash flow growth.

3.3 Positive cash flow growth

In this section, we present simulation results for the case of positive cash flow growth,

using a monthly cash flow growth rate of µ = .0124 for all firms. The parameter µ plays

such a dominant role in the model, that fixing µ is the best way to inspect the effects

of the uncertainty measures arising from the volatility process. As usual, the parameter

π = .99 controls the project lifetimes. The value of C, which was estimated by Equation

( 3.6 ), is −4.91 for both the case of the Jacobi process and the CIR process. The cash

flow volatility parameters are firm specific, and they were estimated using the procedures

previously discussed for the case of OIBDPQ scaled by ACTQ. We will first consider growth

options, and then, we will consider returns.

3.3.1 Growth option values (positive cash flow growth)

We now consider the growth option values for the cases when cash flow volatility is

modeled by a Jacobi process and a CIR process. We begin first with the Jacobi process.

Figure  3.23 presents plots of the mean value of growth option values as a function of

relevant parameters. The “mean value of growth option values” refers to taking the mean

for each firm type over fifty realizations of that firm type over a period of 1750 months. In

(a), the equation of the fitted curve is f(x) = 3.763e−16.396x with 95% confidence bounds

given by (3.437, 4.089) and (−17.3958,−15.3962). In (b), the equation of the fitted line is

f(x) = 0.62958x + 0.52393 with 95% confidence bounds given by (−0.21192, 1.4711) and

(0.39894, 0.64892). In (c), the equation of the fitted line is f(x) = −8.9607x + 1.0242

with 95% confidence bounds given by (−12.874,−5.0475) and (0.83033, 1.2181). In (d),

the equation of the fitted curve is f(x) = 2.5054e−22.1801x with 95% confidence bounds

given by (1.9947, 3.0161) and (−26.008,−18.3522). In (e), the equation of the fitted line

is f(x) = −0.98382x + 0.90758 with 95% confidence bounds given by (−1.649,−0.31864)

and (0.69221, 1.123). In (f), the equation of the fitted line is f(x) = −2.9812x + 1.1705

108



(a) long run mean, Jacobi (b) rate of mean reversion, Jacobi

(c) VoV constant, Jacobi (d) lower bound, Jacobi

(e) upper bound, Jacobi (f) max VoV, Jacobi

(g) vdiff, Jacobi

Figure 3.23. Growth option values (Jacobi)

with 95% confidence bounds given by (−4.1147,−1.8477) and (0.9465, 1.3944). In (g), the

equation of the fitted line is f(x) = −2.9812x + 1.1705 with 95% confidence bounds given

by (−4.1147,−1.8477) and (0.9465, 1.3944). In each case, the bounds correspond to the

coefficients in the same order as they appear in f(x).

In Figure  3.23 , notice that as θ and uM increase, the mean value of growth options

decreases. We will see later that firms with the largest values of θ and uM experience the

largest returns. Why is the value of the growth option low and the returns high for firms with

large θ and uM? One plausible explanation is that the firm does not know when the large
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cash flows will occur. Assuming all other factors are equal, an increase in θ implies higher

cash flow volatility on average in the long run, but we do not know for certain what the

volatility will be in the future. Thus, a project with a relatively large value of θ may indeed

experience large cash flows, but these large cash flows may be in the future, when they would

be comparatively less valuable due to discounting. Later, we will see a long right tail in the

returns of firms with a larger value of θ. We postulate that the firm does not know if or when

these large cash flows will occur, making the growth option less valuable. Our result agrees

with the observation that investors value smooth cash flows, as seen in Rountree, Weston,

and Allayannis [ 29 ]. We note that the only truly discernible trend is associated with the

parameter θ. We believe we can make some hypotheses based on trends regarding the other

parameters, but the trends are not as noticeable due to confounding factors from the other

parameters not being held constant. For example, the true effect of κ, in the case of the

Jacobi process, is best seen when all of the other parameters are held constant. In a similar

vein, as the parameter vmin increases, the value of growth options tends to decrease. As

mentioned previously, this is likely due to two reasons. First, periods in which the cash flow

volatility is less than or equal to the lower bound are precluded, so the firm is guaranteed

cash flow volatility which is greater than the lower bound. Secondly, increasing the lower

bound requires an increase in the max uncertainty uM , and larger values of max uncertainty

are correlated with lower growth option values and the possibility of higher returns. Now,

consider the effect of the rate of mean reversion κ. A higher rate of mean reversion means

that the cash flows would spend less time in both the lower and higher volatility states

prior to reverting back toward the long run mean, which is often near the location of max

uncertainty. When the volatility is at or near the long run mean, the contribution of the drift

term is relatively small compared to that of the diffusion term, and the volatility may tend

towards a state of higher or lower volatility rather quickly. Again, it is not only that the drift

term makes a small contribution near the long run mean but also that the quadratic function

of the diffusion term is usually close to its max here. To show this, in Table  3.7 , we present

the statistics regarding the magnitude of the difference of the long run mean and and the

location of max uncertainty. UTdiff refers to the absolute value of the difference of θ and uM ,

and the relative difference is calculated by dividing UTdiff by vdiff. The net result of having
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a larger rate of mean reversion is a higher overall cash flow volatility of volatility. Next, an

increase in the parameter σV may lead to a decrease in the growth option values, further

signifying the importance of the magnitude of the VoV, but this result is not entirely clear

without more data. Figure  3.23c displays very weak evidence that an increase in the VoV

coefficient precludes large growth option values, and more data would be necessary to settle

this. A trend for the upper bound is not very clear, but we believe that as the upper bound

increases, growth options are more likely to go down. An increase in the upper bound of cash

flow volatility yields a decrease in growth option values for two reasons. First, it allows for

periods of higher cash flow volatility, and second, it implies a higher max uncertainty since

uM = vmin+vmax
2 . Similarly, notice that larger values of vdiff appear to lead to lower growth

option values. It makes sense that this trend is not very clear, because a decrease in the

lower bound is actually good uncertainty. Thus, it is important to realize that an increase

in the magnitude of vdiff is not as important as the change in the individual upper and lower

bounds. It is interesting to compare these trends to those of the CIR process.

Table 3.7.
Difference in max uncertainty and long run mean (Jacobi)

Stats UTdiff relative difference

min 0.0010453 0

max 0.21067 0.36687

mean 0.060927 0.00069347

median 0.054028 0

std 0.047146 0.010811

skew 0.56539 18.6169

ex. kurt −0.52685 385.3111

Figure  3.24 contains plots of growth option values as a function of different parameters.

This figure plots the mean value of growth options as a function of the long run mean, θ, in

(a), as a function of κ, the rate of mean reversion, in (b), as a function of the coefficient in

the diffusion term in (c), and as a function of the empirical max in (d), when a CIR process is

111



(a) GO and long run mean (CIR) (b) Value of growth options (CIR)

(c) GO and diffusion coefficient (CIR) (d) GO and empirical max (CIR)

Figure 3.24. Growth option values (CIR)

used to model cash flow volatility. In (a), the equation of the fitted line is f(x) = 1.4587x+

0.31856 with 95% confidence bounds given by (−0.28043, 3.1977) and (0.12762, 0.5095),

and there is no obvious trend. On the other hand, in (b), the equation of the fitted

curve is f(x) = 3.3845e−16.7603x with 95% confidence bounds given by (3.2558, 3.5132) and

(−17.1548,−16.3657). In (c), the equation of the fitted line is f(x) = 1.8887x + 0.40643

with 95% confidence bounds given by (−4.5055, 8.283) and (0.18127, 0.63159). In (d), the

equation of the fitted line is f(x) = −1.9617x + 1.0991 with 95% confidence bounds given

by (−2.385,−1.5385) and (0.95664, 1.2416). The bounds correspond to the coefficients in

the same order as they appear in f(x). For the empirical max, we calculated the maximum

value observed after sampling the CIR process 1000 times over a time frame of 1750 months

for each firm. Thus, each firm had 1000× 1750 total observations.

In Figure  3.24 , the two main trends concern the rate of mean reversion and the empirical

max. Contrary to what we see when the Jacobi process is used to model cash flow volatility,

in the case of the CIR process, an increase in the rate of mean reversion yields exponential

decay in the growth option values. Thus, it is natural to see if there is a relationship between

the rate of mean reversion and the empirical max. As previously mentioned, we calculated

the maximum value observed after sampling the CIR process 1000 times over a time frame
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of 1750 months for each firm. Thus, each firm had 1000 × 1750 total observations. In

Figure  3.25 , we present the results of plotting the empirical max as a function of the long

run mean in (a), the rate of mean reversion in (b), and the VoV constant in (c). In (a),

the equation of the fitted line is f(x) = −0.88778x + 0.41292 with 95% confidence bounds

given by (−1.4952,−0.28036) and (0.34623, 0.47961). In (b), the equation of the fitted line

is f(x) = 1.3932x + 0.13211 with 95% confidence bounds given by (1.1306, 1.6557) and

(0.093722, 0.17051). In (c), the equation of the fitted line is f(x) = 4.7604x + 0.15926 with

95% confidence bounds given by (2.6922, 6.8285) and (0.086436, 0.23209). In each case, the

bounds correspond to the coefficients in the same order as they appear in f(x). The most

obvious trend is that an increase in the rate of mean reversion yields a larger empirical max.

We now turn our attention to the returns and determine if the rate of mean reversion is the

dominant parameter there as well.

(a) Emp. max and long run mean (CIR) (b) Emp. max and rate of mean reversion (CIR)

(c) Emp. max and diffusion coefficient (CIR)

Figure 3.25. Growth option values (CIR)

We now consider the returns from holding a claim on the firm. We mainly focus on

realized returns because we believe the expected returns are not a good predictor of realized

returns. We explain our reasoning for this now. Expected returns are lower, often negative,

and skewed to the left in this simulation. The opposite may be true if other parameters
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are selected. This is due to the method of valuation used for assets in place. First, the

month t expected value of future cash flows from all alive projects is calculated, given the

current information. Then, the month t + 1 expected value of future cash flows from all

alive projects is calculated, given the current information. Two interesting effects arise. In

the case presented below, the negative expected returns arise from the cash flows having

more value at the current time period than at the next time period. On the other hand, it

is possible to adjust parameters in such a way that expected returns are positive and too

large. In this case, the expected returns do not “see” the projects that will be terminated

during the next period and thus overestimate the realized returns. We begin by examining

the returns when the Jacobi process is used to model cash flow volatility.

Table 3.8.
Jacobi realized returns

Stats
min 0.0014248
max 0.010001
mean 0.0030773
median 0.0024213
std 0.0017001
skew 1.7733
ex. kurt 3.257

Table 3.9.
Jacobi expected returns

Stats
min −0.059398
max 0.0041917
mean 0.00068055
median 0.0019826
std 0.006587
skew −6.1649
ex. kurt 46.7235
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Table 3.10.
Jacobi realized returns

Stats
min 0.0012329
max 0.47628
mean 0.014624
median 0.0018815
std 0.058334
skew 5.4607
ex. kurt 32.2629

Table 3.11.
Jacobi expected returns

Stats
min −0.059296
max 0.0041936
mean 0.00065744
median 0.0019792
std 0.0066133
skew −6.0871
ex. kurt 45.6403

Tables  3.8 and  3.9 present winsorized realized and expected returns, respectively, when

a Jacobi process is used to model cash flow volatility. In each case, the returns for the

simulation of each realization of each firm are winsorized at the 5% and 95% level. This affects

the firms with large values of the long run mean and max uncertainty the most. Tables  3.10 

and  3.11 present results when the returns have not been winsorized. We believe one of the

reasons for the negative skewness in the expected returns is that due to discounting, assuming

all else is equal, cash flows today are more valuable than cash flows tomorrow. Obviously, this

statement depends on the growth rate of the cash flows. In any case, we believe the method of

calculating expected returns is not accurate, and this was discussed previously in the thesis.

In regards to the realized returns, the mean is more in line with true market observations for

the data that is not winsorized than for the data that is winsorized. On the other hand, the

excess kurtosis of the winsorized realized returns is more in line with market observations

than that of the realized returns that were not winsorized. We now consider which parameters
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yield the largest and smallest realized and expected returns for the case of the Jacobi process.

In order to truly understand the effects of the parameters, we do not winsorize the data.

In Tables  3.12 and  3.13 , we present the parameters corresponding to the top ten largest

mean realized and expected returns, respectively. In Tables  3.14 , and  3.15 , we present

the parameters corresponding to the top ten smallest mean realized and expected returns,

respectively. In each case, the average is taken over fifty realizations for each parameter set

and a time frame of 1550 for expected returns and 1549 for realized returns. These tables

suggest that a combination of the long run mean and the max uncertainty dramatically affect

realized returns. We now investigate further by way of Figure  3.26 , which presents plots of

the realized returns as a function of different parameters. The trend concerning the plot

of real returns versus the long run mean is not clear when wisorized returns are presented.

Thus, for the long run mean, we also present a plot in which the returns are not winsorized.

Figure  3.26a is a plot of winsorized realized returns versus the long run mean. Figure  3.26h 

presents the corresponding plot when the returns are not winsorized. We will present more

details in the next paragraph.
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(a) Real Return (long run mean, Jacobi) (b) Real Return (rate of mean reversion, Ja-
cobi)

(c) Real Return (VoV constant, Jacobi) (d) Real Return (lower bound, Jacobi)

(e) Real Return (upper bound, Jacobi) (f) Real Return (max VoV, Jacobi)

(g) Real Return (vdiff, Jacobi) (h) Real Return (not winsorized, Jacobi)

Figure 3.26. Real Return (Jacobi)

Figure  3.26 presents mean realized returns as a function of the parameters of the Jacobi

process. In Figures (a)-(g), the realized returns of each realization of each firm over a time

period of 1549 are winsorized at the 5% and 95% levels. Figure (h) is not winsorized, and the

result is noticeably different from Figure (a). In (b), the equation of the fitted line is f(x) =

−0.0032715x+0.003491 with 95% confidence bounds given by (−0.0067286, 0.00018567) and

(0.0029775, 0.0040044). In (c), the equation of the fitted line is f(x) = 0.015077x+0.0023695

with 95% confidence bounds given by (−0.0019564, 0.03211) and (0.0015255, 0.0032134). In
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(d), the equation of the fitted line is f(x) = 0.0067405x + 0.0025967 with 95% confidence

bounds given by (−0.0027027, 0.016184) and (0.0018712, 0.0033223). In (e), the equation

of the fitted line is f(x) = 0.0069135x + 0.00094074 with 95% confidence bounds given by

(0.0043208, 0.0095062) and (0.00010127, 0.0017802). In (f), the equation of the fitted line is

f(x) = 0.01216x + 0.00076481 with 95% confidence bounds given by (0.0074745, 0.016846)

and (−0.00016108, 0.0016907). In (g), the equation of the fitted curve is f(x) = 0.001854e2.0501x

with 95% confidence bounds given by (0.0014356, 0.0022723) and (1.2932, 2.807). In Figure

(h), the equation of the fitted line is f(x) = 0.00040949e19.4779x with 95% confidence bounds

given by (0.00029014, 0.00052883) and (18.6269, 20.3289). In all cases, the bounds corre-

spond to the coefficients in the same order as they appear in f(x).

Table 3.16.
CIR realized returns

Stats

min 0.0082618

max 0.011448

mean 0.0091387

median 0.0089771

std 0.00068605

skew 1.6431

ex. kurt 2.8766

Table 3.17.
CIR expected returns

Stats

min −0.023372

max 0.006728

mean −0.0015324

median −0.00035033

std 0.0056801

skew −1.4694

ex. kurt 2.8474

Tables  3.16 and  3.17 present realized and expected return, respectively, when a CIR

process is used. In each case, the returns are winsorized at the 4% and 96% level.

In Tables  3.18 and  3.19 , we present the parameters corresponding to the top ten largest

mean realized and expected returns, respectively. In Tables  3.20 and  3.21 , we present the

parameters corresponding to the top ten smallest mean realized and expected returns, re-

spectively. In these four tables, we did not winsorize the returns. In each case, the av-

erage is taken over fifty realizations for each parameter set and a time frame of 1550

for expected returns and 1549 for realized returns. Interestingly, the parameter κ seems

to have the most significant effect on realized returns when the CIR process is used to
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Table 3.18.
CIR realized returns (largest)

returns θ κ σV
0.19757 0.07174 0.33941 0.024932
0.13377 0.060133 0.33031 0.0261
0.048904 0.12058 0.29433 0.033933
0.025542 0.10676 0.26914 0.022374
0.0091088 0.052397 0.24644 0.024813
0.0081535 0.070422 0.23649 0.028663
0.0057442 0.08615 0.21804 0.029713
0.0055764 0.18235 0.21556 0.031454
0.005286 0.10175 0.20433 0.027252
0.0051355 0.075258 0.21424 0.041549

Table 3.19.
CIR expected returns (largest)

returns θ κ σV
0.0068029 0.15403 0.076578 0.026356
0.0059055 0.16696 0.084112 0.03979
0.0059022 0.13182 0.08884 0.021595
0.005419 0.22371 0.11774 0.025087
0.0045703 0.14257 0.074424 0.047555
0.0043609 0.14965 0.11348 0.027477
0.0042946 0.14291 0.087658 0.045649
0.0042608 0.17676 0.11905 0.038571
0.004115 0.16129 0.11753 0.036965
0.0041095 0.17445 0.098108 0.063786
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Table 3.20.
CIR realized returns (smallest)

returns θ κ σv
0.0033036 0.10209 0.072002 0.031213
0.0033204 0.13187 0.095536 0.036297
0.0033288 0.086706 0.096819 0.023701
0.0033346 0.096464 0.086217 0.031573
0.0033372 0.16696 0.084112 0.03979
0.0033454 0.1014 0.056137 0.030323
0.0033469 0.09139 0.086297 0.029632
0.0033472 0.082866 0.10145 0.040335
0.0034125 0.13182 0.08884 0.021595
0.0034342 0.17445 0.098108 0.063786

Table 3.21.
CIR expected returns (smallest)

returns θ κ σv
−0.023567 0.07174 0.33941 0.024932
−0.022764 0.060133 0.33031 0.0261
−0.014553 0.048018 0.12256 0.023139
−0.013739 0.047354 0.095252 0.032758
−0.013061 0.052397 0.24644 0.024813
−0.011275 0.050298 0.10949 0.02742
−0.010382 0.056656 0.2063 0.031569
−0.009103 0.058504 0.10571 0.028793
−0.0083572 0.070422 0.23649 0.028663
−0.0082259 0.058814 0.10368 0.023422
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model cash flow volatility. We now further investigate in Figure  3.27 . Figure (a) plots

the mean of realized returns as a function of the long run mean θ. The equation of

the fitted line is f(x) = −0.0027572x + 0.0094257 with 95% confidence bounds given by

(−0.006929, 0.0014147) and (0.0089676, 0.0098837). Figure (b) plots the mean of realized re-

turns as a function of σV . The equation of the fitted line is f(x) = −0.010507x+ 0.0094945

with 95% confidence bounds given by (−0.025616, 0.0046019) and (0.0089625, 0.010027).

Figure (c) plots the rate of mean reversion of realized returns as a function of the rate of

mean reversion, κ, when the realized returns of each realization of each firm are winsorized

at the 4% and 96% levels. The equation of the fitted line is f(x) = 0.011929x + 0.0075256

with 95% confidence bounds given by (0.011336, 0.012521) and (0.0074389, 0.0076123). Fig-

ure (d) plots the mean of realized returns as a function of κ, when the realized returns are

not winsorized. The equation of the fitted curve is f(x) = 9.6762 ∗ 10−6e28.9693x with 95%

confidence bounds given by (2.9069e − 06, 1.6446e − 05) and (26.8694, 31.0693). Figure (e)

plots the mean of realized returns as a function of the empirical max of simulated CIR data

points. The equation of the fitted line is f(x) = 0.0046156x+0.0076594 with 95% confidence

bounds given by (0.0035931, 0.005638) and (0.0073151, 0.0080036). In each case, the bounds

correspond to the coefficients in the same order as they appear in f(x). In all cases, a CIR

process was used. The length of time is 1549 months. In both cases, 87 firms are used with

50 realizations of each type of firm, and the mean value of realized returns is taken over the

1549 months and 50 realizations.
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(a) Realized returns (long run mean) (b) Realized returns (VoV coeff)

(c) Realized returns (kappa, winsorized) (d) Realized returns (kappa, not winsorized)

(e) Realized returns (empirical max)

Figure 3.27. Realized returns (CIR)

Finally, consider the projects rejected for both the Jacobi and CIR processes. In Figure

 3.29 , we plot the mean number of projects rejected as a function of the long run mean, the

VoV constant, and the rate of mean reversion. There is no clear trend for the long run

mean or the VoV constant. On the other hand, as the rate of mean reversion increases, the

number of projects rejected increases. This is what we should expect, since the rate of mean

reversion is the dominant parameter in growth option values and realized returns in the case

of the CIR process.
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(a) Projects rejected (long run mean) (b) Projects rejected (max uncertainty)

(c) Projects rejected (lower bound) (d) Projects rejected (upper bound)

(e) Projects rejected (rate of mean reversion) (f) Projects rejected (difference of bounds)

Figure 3.28. Projects rejected (Jacobi)

(a) Projects rejected (long run mean) (b) Projects rejected (VoV coeff)

(c) Projects rejected (rate of mean reversion)

Figure 3.29. Projects rejected (CIR)
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4. CONCLUSION

In this thesis, we have developed a growth option and asset pricing model that incorporates

stochastic cash flow volatility, and we have used two separate diffusion processes to inves-

tigate the manner in which different measures of uncertainty affect growth option values,

realized returns, and the rate of project acceptance.

Our first model for cash flow volatility was the Jacobi process, a bounded mean reverting

quadratic diffusion. Since there are confounding factors, we study the effects of some pa-

rameters individually. We study both the lower and upper bound for three separate values

of the long run mean, namely θ = .075, .16, .25. We find that in all cases increasing the lower

bound yields lower growth option values. As θ increases, the magnitude of this relationship

decreases. That is to say that the slope of the regression line for growth option values plotted

as a function of the lower bound remains negative but decreases in magnitude. Intuitively,

increasing the lower bound removes the possibility for periods of lower cash flow volatility,

and these periods of low cash flow volatility are desirable to both the firm and investors. As

the long run mean increases, this effect still holds but is less prominent since over the long

run the cash flow volatility will be larger. We also find that increasing the upper bound

yields lower growth option values. Again this effect becomes less prominent as the long run

mean increases. Intuitively, an increase in the upper bound yields the possibility of periods

with larger cash flow volatility. We call the local max of the quadratic function in the dif-

fusion term the max uncertainty. We find that an increase in the max uncertainty yields a

decrease in growth option values. The same is true of the long run mean. Although the max

uncertainty and long run mean are not necessarily the same, they are typically near each

other. The effect of a large long run mean is that over long periods of time, the volatility will

be large on average. The effect of a large max uncertainty is a large cash flow volatility of

volatility. The effect of these two parameters compounds and affects growth option values,

as mentioned previously. The effect of the VoV constant coefficient in the diffusion term is

not immediately clear. Although an increase in this constant seems to yield an increase in

growth option values when all other factors are held constant, the effect is minuscule. The

effect of the rate of mean reversion is also negligible until it is investigated when all other
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parameters are held constant. In this case, an increase in the rate of mean reversion yields

rapid exponential decay initially but this levels off quickly. We also consider realized returns

and the rate of project acceptance.

We now consider returns for the Jacobi process. For the case concerning only the upper

bound, realized returns increase as the upper bound increases. The increase becomes more

pronounced as the long run mean increases. In the case of the lower bound, the results are

mixed. When the long run mean takes the smallest of three chosen values, realized returns

decrease slightly as the lower bound increases. On the other hand, for the two larger values of

the long run mean, realized returns increase slightly as the lower bound increases. Realized

returns increase exponentially as a function of the max uncertainty. The results for the VoV

constant and rate of mean reversion are not so obvious, but realized returns generally increase

as a function of the VoV constant and decrease as a function of the rate of mean reversion.

The results regarding project rejection are mixed, except for the case of max uncertainty.

As the max uncertainty increases, the average number of projects rejected increases. Of the

trends just mentioned, the only noticeable one is that of the max uncertainty when the full

set of firms is used. When the full set of firms with parameters fitted by financial data are

used, the combination of the long run mean and the max uncertainty together yield the most

noticeable trend. As the long run mean and the max uncertainty increase, both the realized

returns increase and the number of projects rejected increase. The realized returns increase

at the expense of higher cash flow volatility and uncertainty, and firms are thus less likely

to accept these projects.

We now turn our attention to the case in which cash flow volatility is modeled by a

CIR process. First, consider growth option values. As the rate of mean reversion increases,

the mean value of growth options decreases exponentially. Also, as the empirical max of

observed values from the CIR process increases, the growth option values tend to decrease.

Recall that as the rate of mean reversion increases, the empirical max trends upwards. On

the other hand, there is no discernible trend when plotting the mean growth option values

as a function of the long run mean or the VoV constant. In regards to the realized returns,

the perceptible trends are associated with the rate of mean reversion and the empirical max.

As the rate of mean reversion increases, the realized returns increase exponentially. As the
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empirical max increases, the realized returns also increase, but not exponentially. Finally,

the mean number of projects rejected increases as the rate of mean reversion increases. This

is what we expect, since this parameter has such a dominant impact on the growth option

values and realized returns. There is no clear trend between the long run mean and the VoV

coefficient. Again, we notice a difference in which parameters are dominant when the Jacobi

process is used as opposed to the CIR process.

The most obvious distinction between the two cash flow volatility models is that the

rate of mean reversion is the dominant parameter when the CIR process is used, while the

combination of the long run mean and max uncertainty are the dominant parameters when

the Jacobi process is used. Indeed, when considering growth options and realized returns,

the long run mean yields exponential trends for the case of the Jacobi process, and the rate

of mean reversion yields exponential trends for the case of the CIR process. Why is this?

We believe the answer lies in the diffusion term of the volatility process. Investors and firms

prefer stable cash flows. Consider the Jacobi process. Investors naturally prefer a smaller

long run mean of cash flow volatility. It makes sense that as this parameter increases, the

project value will decrease. Furthermore, we can intuitively consider a competition between

the diffusion term and the drift term. In the Jacobi process, as the state of the volatility

drifts away from the location of max uncertainty, which is usually near the long run mean,

the diffusion term becomes less prominent and the drift term takes over. For the purpose

of this thought experiment, let us assume that the location of max uncertainty is relatively

near the long run mean of volatility. A large max uncertainty then quickly pushes the state

of volatility towards the bounds, where the drift term pulls the volatility back towards the

long run mean. Near the long run mean, the drift term is small, especially compared to the

diffusion term. Thus, firms with a high max uncertainty near the long run mean are shifting

volatility states frequently, leading to a high cash flow volatility of volatility. Investors do not

like a high VoV. Thus, the combination of increasing long run mean and the max uncertainty

yield lower growth option values, though these projects occasionally yield massive returns,

and they exhibit better than average returns. Due to the nature of the diffusion term in the

Jacobi process, the job of the rate of mean reversion as a scaling factor is not so important.

Interestingly, the opposite is true when the CIR process is used. As the state of the cash
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flow volatility increases in the case of the CIR process, the diffusion term increases, since the

square root is not bounded. Thus, a large rate of mean reversion is required to compete with

the diffusion term, especially when the state of volatility is larger than the long run mean. A

large rate of mean reversion will pull the state of volatility back to the long run mean faster

compared to a smaller rate of mean reversion. Once the state of volatility is near the long

run mean, the drift term becomes negligible again. Thus, the key difference between the two

models is the VoV risk. The effects of these key differences could be studied in time series

and cross sectional regressions since we have significantly reduced the computation time for

the simulation. Our next goal is to study cash flow volatility and cash flow VoV in the

cross section of returns through the framework of this model. In conclusion, we developed

a growth option model with stochastic volatility, studied the effects of cash flow volatility

uncertainty through two different volatility models, and set up a computationally feasible

framework to study cash flow VoV and volatility uncertainty from the perspective of firm

investment.
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5. APPENDIX

In the Appendix, we present the main components of the Matlab code used to run the

simulations. The first step is running the script INAF.m, which we present below. This code

allows the user to choose which simulation will be run and adjust certain properties of the

model.

1 %Brian Hogle, April 2021

2

3 %INAF− Initialize parameters across firms

4

5 WP='CIR'; %Use 'Jacobi' for Jacobi process, 'CIR' for CIR process,

6 %'VminJac', 'VmaxJac', 'UMJac', 'kappaJac', or 'sigmavJac' for other ...

options.

7

8 WhichFirms='NO'; %Use 'YES' to get only firms that meet convergence

9 %Criterion. Use 'No' to get only firms that do not.

10

11 doSeries='NO'; %Use 'Yes' if you want to eliminate firms based on

12 %the convergence criterion derived in Hogle's PhD thesis

13

14 CbarEst='YesCbar'; %Use 'NoCbar to use set variable Cbar1 below.

15 %Use 'YesCbar' to estimate Cbar.

16 Cbar1=−3.7; %BGN value

17

18 %Use average monthly stock market returns, or

19 %Change ROATYPE to avoid using monthly stock market returns.

20

21 MKTret=.0083; %Monthly market return.

22

23 ROATYPE='Market'; %Either 'Market' or 'RetOnAssets'

24

25 muType='noDrift'; %If muType is set to 'Agg',

26 %mean(mu) will be used across
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27 %all firms.

28 %'noDrift' will use mu=0 for

29 %all firms. Change to anything else to use firm

30 %specific mu.

31

32 %END OF OPTIONS/PREFERENCES

33

34 simlen=1750; %Time−frame of simulation.

35 N=950; %Terminate sum over n=s−t=1 to \infty at N=s−t=950.

36 K=450; %Index over second sum in paper.

37 nPaths=1000; %Number of paths used for monte carlo simulation.

38

39 pi1=.99; %Probability Bernoulli r.v. is equal to 1.

40 %Same for all firms. Determines lifetime of projects.

41

42 %The parameters below are related to how processes are correlated.

43 %It's important to note that rhorcj for example is the correlation

44 %between dWr and dWCj, not the correlation of the processes r and Cj

45 %themselves, as there is sometimes a negative sign in front of the

46 %diffusion term.

47

48 rhorcj=.2; %Correlation between B.M.'s driving the interest

49 %rate and cash flows.

50 rhomr=−.175; %Correlation between B.M.'s driving SDF and interest rate.

51

52 rhomcjmax=1;%Upper bound on r.v. rhomcj.

53 rhomcjmin=0;%Lower bound on r.v. rhomcj.

54

55 rhomcj=[.0001 .01 .03 .07 .11 .2]; %Can change the length of this

56 %vector with no other adjustments.

57 %Also, consider changing distribution of rhomcj. Current

58 %set up is discrete uniform distribution. Changing ...

distriubtion

59 %will require changes to other segments of the code.

60

61
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62 rhon=length(rhomcj);

63

64 lambda=.4; %Market price of risk.

65

66 %Interest rate.

67 sigmar=.002;

68 a=.05;

69 b2=.006236;

70 rparams=[a b2 sigmar];

71

72 boundtol=10ˆ(−14);%Adjustment when Jacobi process goes out of bounds.

73

74 %Below are parameters for the process I(t). Note that the value I(t)

75 %significantly affects the value of the growth options.

76 %If I(t) decreases(increases) the growths option values will

77 %decrease(increase). We will assume I(t)=1 for all t.

78 muI=0; %Growth rate of investment process I(t).

79 sigmaI=0; %Volatility of investment process I(t).

80

81 % r and SDF are same across all firms.

82 buff=20;%We create a buffer. This is useful for example when using

83 %mulcorFun to generate dWCj correlated to dWr and dWm.

84 [r,M,Wm,dWr,dWm]=SimMr(simlen+buff,rhomr,rparams,lambda);

85

86 %Recall the constant C1 is the same across all firms.

87 C1=lambda*sigmar*rhomr/a−b2+sigmarˆ2/(2*aˆ2);

88 %C2 & C3 are same across firms. They depend on r(t).

89 C2=C2r(r,b2,a,lambda,sigmar,rhomr); C2=C2(1:simlen);

90 C3=sigmarˆ2/(4*aˆ3)−C2; C3=C3(1:simlen);

91

92 %We will make Jacobi process parameters firm specific.

93 vn=10; %vn is number of grid points for [v min,v max].

94 %Partition this to approximate g.

95

96 sigma=1; %Coefficient in volatility of cash flow process.

97
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98 %Load Jacobi or CIR

99 if strcmp(WP,'Jacobi')

100 V=readmatrix('Jacobi RFS withCSHOQ.xlsx');

101 theta=V(:,5);

102 kappa=V(:,4);

103 sigmav=V(:,1);

104 vmin=V(:,3);

105 vmax=V(:,2);

106 mu=V(:,6);

107 ROA=V(:,7);

108 vdiff=V(:,8);

109 vparams=[theta kappa sigmav vmin vmax];

110 CSHOQ=V(:,9);

111 elseif strcmp(WP,'CIR')

112 V=readmatrix('CIR RFS ACTQ.xlsx');

113 theta=V(:,3);

114 kappa=V(:,2);

115 sigmav=V(:,1);

116 mu=V(:,4);

117 vparams=[theta kappa sigmav];

118 elseif strcmp(WP,'VminJac') %For Jacobi

119 load('Vmin vars','vparams')

120 elseif strcmp(WP,'VmaxJac') %For Jacobi

121 load('Vmax vars','vparams')

122 elseif strcmp(WP,'UMJac') %For Jacobi

123 load('um vars','vparams')

124 elseif strcmp(WP,'sigmavJac') %For Jacobi

125 load('sigmav vars','vparams')

126 elseif strcmp(WP,'kappaJac') %For Jacobi

127 load('kappa vars','vparams')

128 elseif strcmp(WP,'kappaCIR') %For Jacobi

129 load('kappa vars CIR','vparams')

130 %Want Left \leq Right

131 end

132
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133 if strcmp(WP,'VminJac') | | strcmp(WP,'VmaxJac') | | strcmp(WP,'UMJac') ...

| | ...

134 strcmp(WP,'sigmavJac') | | strcmp(WP,'kappaJac')

135 theta=vparams(:,1);

136 kappa=vparams(:,2);

137 sigmav=vparams(:,3);

138 vmin=vparams(:,4);

139 vmax=vparams(:,5);

140 Left=sigmav.ˆ2.*(vmax−vmin)./(sqrt(vmax)−sqrt(vmin)).ˆ2;

141 Right=2*kappa.'.*min(vmax−theta,theta−vmin);

142 end

143

144 if strcmp(doSeries,'Yes') && strcmp(WP,'Jacobi')

145 %Series convergence criterion. Must have SerConv<0.

146 SerConv=C1+mu−lambda*sigma*vmin.*rhomcj+log(pi1);

147 if strcmp(WhichFirms,'YES')

148 B=SerConv<0; %1 if true, 0 if not.

149 B2=sum(B,2);

150 B3=(B2==length(rhomcj));

151 vparams=vparams(B3,:); ROA=ROA(B3); mu=mu(B3); theta=theta(B3);

152 kappa=kappa(B3); sigmav=sigmav(B3); vmin=vmin(B3); CSHOQ=CSHOQ(B3);

153 vmax=vmax(B3);

154 elseif strcmp(WhichFirms,'NO')

155 B=SerConv≥0; %1 if true, 0 if not.

156 B2=sum(B,2);

157 B3=(B2≥1);

158 vparams=vparams(B3,:); ROA=ROA(B3); mu=mu(B3); theta=theta(B3);

159 kappa=kappa(B3); sigmav=sigmav(B3); vmin=vmin(B3);

160 vmax=vmax(B3); CSHOQ=CSHOQ(B3);

161 end

162

163 end

164

165

166 if strcmp(muType,'Agg')

167 mu=.0124*ones(size(vparams,1),1);
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168 end

169

170 if strcmp(muType,'noDrift')

171 mu=zeros(size(vparams,1),1);

172 end

173

174

175 if strcmp(ROATYPE,'Market')

176 ROA=MKTret*ones(size(vparams,1),1);

177 elseif strcmp(ROATYPE,'RetOnAssets')

178 ROA=.054*ones(size(vparams,1),1);

179

180 end

181

182 if strcmp(CbarEst,'YesCbar')

183 L=100; %Number of months. This is for uncoditional expectation.

184 Cbar=−log(1./(ROA*L).*sum(pi1.ˆ(1:L).*exp(mu.*(1:L)),2));

185 SS(Cbar(:))

186 elseif strcmp(CbarEst,'NoCbar')

187 Cbar=repmat(Cbar1,size(vparams,1),1);

188 end

189

190 %Gridpoints for Jacobi process

191 if contains(WP,'Jac')

192 vt=zeros(size(vparams,1),vn);

193 for i=1:size(vparams,1)

194 vt(i,:)=linspace(vmin(i),vmax(i),vn);

195 end

196 vt(:,1)=vt(:,1)+10ˆ(−14);

197 vt(:,end)=vt(:,end)−10ˆ(−14);

198 elseif contains(WP,'CIR')

199 vt=linspace(.001,.6,vn);

200 vt=repmat(vt,size(vparams,1),1);

201 end

202

203 save(strcat('initialize',WP));
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The next step is to run the function Getgsurf.m for all appropriate indices. Each index

corresponds to five firms. The total number of firms was broken into groups due to memory

issues. The code is vectorized. While this speeds up the code, it requires more memory than

for loops without vectorization.

1 function xx = Getgsurf(index,str)

2

3 %BRIAN HOGLE 2021

4

5 %Getgsurf calulate g(v,t,T,j)

6 %Use the appropriate string str to specify the run. For example, '

7 %use str='UMJac to run the specific version analyzing changes in UM

8 %for the Jacobi process.

9

10 %Note for UM and sigmav, only need index=1,2. For vmax and vmin, need

11 %index=1,...,6.

12

13 str2=strcat('initialize',str);

14 load(str2,'vt','rhomcj','vparams','nPaths','sigma','sigmar',...

15 'rhorcj','a','lambda','N','boundtol');

16

17 str3=strcat('gsurface',str);

18

19 xx=(1:5)+5*(index−1);

20

21 if xx(end)>size(vparams,1) && (mod(size(vparams,1),10)≤5)

22 xx=xx(1:mod(size(vparams,1),10));

23 elseif xx(end)>size(vparams,1) && (mod(size(vparams,1),10)>5)

24 xx=xx(1:(mod(size(vparams,1),10)−5));

25 end

26 if contains(str,'Jac')

27

28 [gval,Q]=gsurf(vt(xx,:),rhomcj,vparams(xx,:),nPaths,sigma,...
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29 sigmar,rhorcj,a,lambda,N,boundtol);

30

31 save(strcat(str3,num2str(index),'.mat'),'gval','Q');

32

33 elseif contains(str,'CIR')

34

35 [gval,Q]=gsurfCIR(vt(xx,:),rhomcj,vparams(xx,:),nPaths,sigma,...

36 sigmar,rhorcj,a,lambda,N);

37

38 save(strcat(str3,num2str(index),'.mat'),'gval','Q');

39 end

40

41 end

Below, we present the function gsurf.m used in Getgsurf.m to generate values of

g(v, t, T, j) when the Jacobi process is used to model volatility.

1 function [gval,Q] = gsurf(vt,rhomcj,vparams,nPaths,sigma,sigmar,...

2 rhorcj,a,lambda,N,boundtol)

3

4 %BRIAN HOGLE 2021

5

6 %gsurf: generate function g(v,t,T,rhoˆ{M,C j})

7 %This is done according to our partition of

8 %[vmin,vmax]x[rhomcjmin,rhomcjmax]

9 %INPUTS

10 %vt=partition of [vmin,vmax] for each firm. size(vt,1)=

11 %number of firms. size(vt,2)=number of partition points

12 %vt=linspace(vmin+10ˆ(−10),vmax−10ˆ(−10),vn); gives

13 %starting points V(t)=v

14 %N=place to terminate sum over s−t

15 %Seems g is close to zero after around 200 time points.

16 %Each partition point of (vmin,vmax) will

17 %be a starting point of V(t) at time t. i.e. represents |V(t)=v.

18 %OUTPUTS
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19 %gval=g(v,t,T,rhomcj) for different values V(t)=v and rhomcj

20 %Q=conditional expectation used in cash flows. See paper

21

22 rhon=length(rhomcj);

23 gg=sigma*sigmar/a*rhorcj/2.*(exp(−a.*(2:(N+1)))−exp(−a));

24

25 [v,outbounds] = vsim(vt,vparams,N,nPaths,boundtol);

26

27 C6=C6calc(sigma,sigmar,rhorcj,a);

28 C7=zeros(length(rhomcj),1);

29

30 for i=1:length(rhomcj)

31 C7(i)= C7calc(sigma,sigmar,rhorcj,a,lambda,rhomcj(i));

32 end

33

34 EF=C6*exp(−a*((1:N)−1));

35 G=bsxfun(@plus,EF,C7);

36 v2=permute(repmat(v,1,1,1,1,length(rhomcj)),[1 2 3 5 4]);

37 G2=permute(repmat(G,1,1,size(v,1),size(v,2),size(v,3)),[3 4 5 1 2]);

38 vG=v2.*G2;

39

40 gval=zeros(size(v,1),size(v,2),nPaths,length(rhomcj),N);

41 %size(gval)=(# sets of different Jacobi process parameters)x(size of

42 %partition of [v min,v max])xnPathsxlength(rhomcj)xN

43 for i=1:N

44 gval(:,:,:,:,i)=exp(trapz(vG(:,:,:,:,(1:i)),5));

45 end

46

47 [v,outbounds]=vsim(vt,vparams,2,nPaths,boundtol);

48 [¬,idx]=min(abs(permute(vt,[2 1])−permute(v(:,:,:,2),[2 1 3])));

49 idx=squeeze(idx);

50

51 v3=v(:,:,:,1)+v(:,:,:,2)*exp(a);

52 v4=repmat(v3,1,1,1,N);

53 gg2=permute(repmat(gg(1:N)',1,size(v4,1),...

54 size(v4,2),size(v4,3)),[2 3 4 1]);
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55 gv4=exp(gg2.*v4);

56 gv5=permute(repmat(gv4,1,1,1,1,rhon),[1 2 3 5 4]);

57

58 gval=squeeze(mean(gval,3));%Average over nPaths

59

60 Q=zeros(size(gval,1),nPaths,length(rhomcj),size(gval,4));

61 for i=1:size(gval,1)

62 for j=1:nPaths

63 Q(i,j,:,:)=squeeze(gval(i,idx(i,j),:,:));

64 end

65 end

66

67 Q2=permute(repmat(Q,[1 1 1 1 size(vt,2)]),[1 5 2 3 4]).*gv5;

68

69 Q=squeeze(mean(Q2,3));%Average over nPaths

70

71 end

Similarly, we have the function gsurfCIR.m for calculating g(v, t, T, j) when the CIR

process is used to model volatility.

1 function [gval,Q] = gsurfCIR(vt,rhomcj,vparams,nPaths,sigma,sigmar,...

2 rhorcj,a,lambda,N)

3

4 %BRIAN HOGLE 2021

5

6 %gsurfCIR: generate function g(v,t,T,j) when CIR is used to model vol.

7 %This is done according to our partition of

8 %[vmin,vmax]x[rhomcjmin,rhomcjmax]

9 %INPUTS

10 %vt=partition of [vmin,vmax] for each firm. size(vt,1)=

11 %number of firms. size(vt,2)=number of partition points

12 %vt=linspace(vmin+10ˆ(−10),vmax−10ˆ(−10),vn); gives

13 %starting points V(t)=v

14 %N=place to terminate sum over s−t
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15 %Seems g is close to zero after around 200 time points.

16 %Each partition point of (vmin,vmax) will

17 %be a starting point of V(t) at time t. i.e. represents |V(t)=v.

18 %OUTPUTS

19 %gval=g(v,t,T,rhomcj) for different values V(t)=v and rhomcj

20 %Q=conditional expectation used in cash flows. See paper

21

22 theta=vparams(:,1);

23 kappa=vparams(:,2);

24 sigmav=vparams(:,3);

25

26 rhon=length(rhomcj);

27 gg=sigma*sigmar/a*rhorcj/2.*(exp(−a.*(2:(N+1)))−exp(−a));

28

29 nPeriods=N−1;

30 nSteps=1;

31 v=zeros(size(vparams,1),size(vt,2),N,nPaths);

32 for jj=1:size(vt,2)

33 for kk=1:size(vparams,1)

34 obj=cir(theta(kk),kappa(kk),sigmav(kk),'Startstate',vt(kk,jj));

35 v(kk,jj,:,:)=squeeze(simByTransition(obj,nPeriods,...

36 'nTrials',nPaths,'nSteps',nSteps));

37 end

38 end

39 v=permute(v,[1 2 4 3]);

40

41

42 C6=C6calc(sigma,sigmar,rhorcj,a);

43 C7=zeros(length(rhomcj),1);

44

45 for i=1:length(rhomcj)

46 C7(i)= C7calc(sigma,sigmar,rhorcj,a,lambda,rhomcj(i));

47 end

48

49 EF=C6*exp(−a*((1:N)−1));

50 G=bsxfun(@plus,EF,C7);
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51 v2=permute(repmat(v,1,1,1,1,length(rhomcj)),[1 2 3 5 4]);

52 G2=permute(repmat(G,1,1,size(v,1),size(v,2),size(v,3)),[3 4 5 1 2]);

53 vG=v2.*G2;

54

55 gval=zeros(size(v,1),size(v,2),nPaths,length(rhomcj),N);

56 %size(gval)=(# sets of different Jacobi process parameters)x(size of

57 %partition of [v min,v max])xnPathsxlength(rhomcj)xN

58 for i=1:N

59 gval(:,:,:,:,i)=exp(trapz(vG(:,:,:,:,(1:i)),5));

60 end

61

62 nPeriods=1;

63 nSteps=1;

64 v=zeros(size(vparams,1),size(vt,2),2,nPaths);

65 for jj=1:size(vt,2)

66 for kk=1:size(vparams,1)

67 obj=cir(theta(kk),kappa(kk),sigmav(kk),'Startstate',vt(kk,jj));

68 v(kk,jj,:,:)=squeeze(simByTransition(obj,nPeriods,...

69 'nTrials',nPaths,'nSteps',nSteps));

70 end

71 end

72 v=permute(v,[1 2 4 3]);

73

74 [¬,idx]=min(abs(permute(vt,[2 1])−permute(v(:,:,:,2),[2 1 3])));

75 idx=squeeze(idx);

76

77 v3=v(:,:,:,1)+v(:,:,:,2)*exp(a);

78 v4=repmat(v3,1,1,1,N);

79 gg2=permute(repmat(gg(1:N)',1,size(v4,1),...

80 size(v4,2),size(v4,3)),[2 3 4 1]);

81 gv4=exp(gg2.*v4);

82 gv5=permute(repmat(gv4,1,1,1,1,rhon),[1 2 3 5 4]);

83

84 gval=squeeze(mean(gval,3));%Average over nPaths

85

86 Q=zeros(size(gval,1),nPaths,length(rhomcj),size(gval,4));
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87 for i=1:size(gval,1)

88 for j=1:nPaths

89 Q(i,j,:,:)=squeeze(gval(i,idx(i,j),:,:));

90 end

91 end

92

93 Q2=permute(repmat(Q,[1 1 1 1 size(vt,2)]),[1 5 2 3 4]).*gv5;

94

95 Q=squeeze(mean(Q2,3));%Average over nPaths

96

97 end

We now present the function vsim.m, which is used to simulate paths of the Jacobi

process. We do not present a corresponding function for the CIR process since Matlab has

a built in function that does this.

1 function [v,outbounds] = vsim(vt,vparams,simlen,nPaths,boundtol)

2

3 %BRIAN HOGLE 2021

4

5 %vsim Simulate the Jacobi process

6 %boundtol= how much to adjust above below vmin vmax if Jacobi goes out of

7 %bounds

8 outbounds=0;

9 v=zeros(size(vt,1),size(vt,2),nPaths,simlen);

10 v(:,:,:,1)=repmat(vt,[1 1 nPaths]);

11 vmin1=repmat(vparams(:,4),[1 size(vt,2) nPaths]);

12 vmax1=repmat(vparams(:,5),[1 size(vt,2) nPaths]);

13 theta1=repmat(vparams(:,1),[1 size(vt,2) nPaths]);

14 kappa1=repmat(vparams(:,2),[1 size(vt,2) nPaths]);

15 sigmav1=repmat(vparams(:,3),[1 size(vt,2) nPaths]);

16

17 for i=2:simlen

18 v(:,:,:,i)=v(:,:,:,i−1)+kappa1(:,:,:).*(theta1(:,:,:)...

19 −v(:,:,:,i−1))+sigmav1(:,:,:).*sqrt((v(:,:,:,i−1)...
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20 −vmin1(:,:,:)).*(vmax1(:,:,:)−v(:,:,:,i−1))...

21 ./(sqrt(vmax1(:,:,:))−sqrt(vmin1(:,:,:))).ˆ2)...

22 .*randn(size(vt,1),size(vt,2),nPaths);

23

24 A=v(:,:,:,i);

25 IA=find(A≥vmax1);

26 outbounds=outbounds+numel(IA);

27 A(IA)=vmax1(IA)−boundtol;

28

29 IB=find(A≤vmin1);

30 outbounds=outbounds+numel(IB);

31 A(IB)=vmin1(IB)+boundtol;

32 v(:,:,:,i)=A;

33

34 end

35 end

After running gsurf.m for the Jacobi process or gsurfCIR.m for the CIR process for the

appropriate indices, we merge the resulting variables from these runs by using

CombineGsurf.m. We present the code below.

1 str='CIR'; %If str='Special, combine for specific cases.

2 %Otherwise, combine the general version for Jacobi or CIR

3

4 if strcmp(str,'CIR')

5 Groupend=18;

6 elseif strcmp(str,'Jacobi')

7 Groupend=31;

8 elseif strcmp(str,'VmaxJac') | | strcmp(str,'VminJac')

9 Groupend=6;

10 elseif strcmp(str,'sigmavJac') | | strcmp(str,'UMJac') | | ...

11 strcmp(str,'kappaJac') | | strcmp(str,'kappaCIR')

12 Groupend=2;

13 end

14
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15 if contains(str,'Jac')

16 load(strcat('gsurface',str,num2str(1)))

17 gval1=gval;

18 Q1=Q;

19 for i=2:Groupend

20 load(strcat('gsurface',str,num2str(i)))

21 Q1=[Q1;Q];

22 gval1=[gval1;gval];

23 end

24 gval=gval1;

25 Q=Q1;

26 clearvars −except gval Q str

27 save(strcat('gvalQcombined',str))

28

29 elseif strcmp(str,'CIR')

30 load(strcat('gsurfaceCIR',num2str(1)))

31 gval1=gval;

32 Q1=Q;

33 for i=2:18

34 load(strcat('gsurfaceCIR',num2str(i)))

35 Q1=[Q1;Q];

36 gval1=[gval1;gval];

37 end

38 gval=gval1;

39 Q=Q1;

40 clearvars −except gval Q

41 save gvalQcombinedCIR

42

43 elseif strcmp(str,'Special')

44 strlist=["sigmavJac";"UMJac";"VmaxJac";"VminJac"];

45 for i=1:length(strlist)

46 if strcmp(strlist(i),"sigmavJac") | | strcmp(strlist(i),"UMJac")

47 load(strcat('gsurface',strlist(i),num2str(1)));

48 Q1=Q; gval1=gval;

49 load(strcat('gsurface',strlist(i),num2str(2)));

50 Q=[Q1;Q]; gval=[gval1;gval];
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51 clearvars −except i Q gval strlist

52 save(strcat('gvalQcombined',strlist(i)));

53 elseif strcmp(strlist(i),"VmaxJac") | | strcmp(strlist(i),"VminJac")

54 load(strcat('gsurface',strlist(i),num2str(1)));

55 Q1=Q; gval1=gval;

56 for j=2:6

57 load(strcat('gsurface',strlist(i),num2str(j)))

58 Q1=[Q1;Q];

59 gval1=[gval1;gval];

60 end

61 gval=gval1;

62 Q=Q1;

63 clearvars −except gval Q i strlist

64 save(strcat('gvalQcombined',strlist(i)));

65

66 end

67 end

68 end

We now desire to acquire the functions F3 and r∗, which we do through the code

F3rstar.m.

1 %BRIAN HOGLE, 2021

2

3 %F3rstar: Find F3 and rstar. Run after CombineGsurf.m

4

5 str='CIR'; %If str='Special, combine for specific cases.

6 %Otherwise, combine the general version

7

8 load(strcat('initialize',str),'rparams','mu','lambda','rhomr','K',...

9 'Cbar','C1','vt','rhomcj','pi1');

10 load(strcat('gvalQcombined',str));

11

12 [F3,F3star,C8]=F3calc(rparams,mu,lambda,rhomr,K,Cbar,C1);

13
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14 rstar=findrstar(K,pi1,rparams,gval,F3);

15

16 save(strcat('gvalQF3rstar',str),'gval','Q','F3','rstar','C8')

17

18

19

20 if strcmp(str,'Jacobi')

21 load('initializeJacobi','rparams','mu','lambda','rhomr','K',...

22 'Cbar','C1','vt','rhomcj','pi1');

23 load('gvalQcombinedJacobi');

24

25 [F3,F3star,C8]=F3calc(rparams,mu,lambda,rhomr,K,Cbar,C1);

26

27 rstar=findrstar(vt,rhomcj,K,pi1,rparams,gval,F3);

28

29 save('gvalQF3rstarJacobi','gval','Q','F3','rstar','C8')

30

31 elseif strcmp(str,'CIR')

32 load('initializeCIR','rparams','mu','lambda','rhomr','K',...

33 'Cbar','C1','vt','rhomcj','pi1');

34 load('gvalQcombinedCIR');

35

36 [F3,F3star,C8]=F3calc(rparams,mu,lambda,rhomr,K,Cbar,C1);

37

38 rstar=findrstar(vt,rhomcj,K,pi1,rparams,gval,F3);

39

40 save('gvalQF3rstarCIR','gval','Q','F3','rstar','C8')

41

42 elseif strcmp(str,'Special')

43 strlist=["sigmavJac";"UMJac";"VmaxJac";"VminJac"];

44 for i=1:length(strlist)

45 load(strcat('gvalQcombined',strlist(i)))

46 load(strcat('initialize',strlist(i)),'rparams','mu','lambda',...

47 'rhomr','K','Cbar','C1','vt','rhomcj','pi1');

48 [F3,F3star,C8]=F3calc(rparams,mu,lambda,rhomr,K,Cbar,C1);

49
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50 rstar=findrstar(vt,rhomcj,K,pi1,rparams,gval,F3);

51

52 save(strcat('gvalQF3rstar',strlist(i)),'gval','Q','F3','rstar','C8')

53 end

54 end

Here we list the code F3calc.m, which is used to calculate F3 and C8.

1 function [F3,F3star,C8] = F3calc(rparams,mu,lambda,rhomr,K,Cbar,C1)

2

3 %BRIAN HOGLE, APRIL 2021

4

5 %F3calc calculate F 3

6 %INPUTS

7 %K=upper limit on summation over k

8 %OUTPUTS (All defined in thesis/paper)

9 %F3

10 %F3star

11 %C 8

12

13 a=rparams(1);

14 b2=rparams(2);

15 sigmar=rparams(3);

16

17 C8=Cbar+b2−3*sigmarˆ2/(4*aˆ3)−lambda*sigmar*rhomr/aˆ2;

18

19 F3star=(C1+mu).*(1:K)+(sigmarˆ2/aˆ3+lambda*sigmar*rhomr/aˆ2−b2)....

20 *exp(−a.*(1:K))−sigmarˆ2.*exp(−2*a.*(1:K))./(4*aˆ3);

21

22 F3=F3star+C8;

23

24 end

Now, we present the code findrstar.m, which is used to calculate r∗.
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1 function rstar = findrstar(K,pi1,rparams,gval,F3)

2 %findrstar calculate r*(v(s),rhomcs)

3 %For inputs, use vt for vvals and rhomcj for rhomcjvals

4 %INPUTS

5 %vvals= simulated values of v(s)\in[v min,v max]. is a vector

6 %rhomcjvals= simulated values of rhomcj(s)\in[rho min,rho max].

7 %is a vector

8 %K= upper limit on sum over k=1 to \infty

9 %pi1=.99 determines lifetime of projects

10 %gval= calculated from gsurf

11 %OUTPUTS

12 %rstar= 2−D array rstar(i,j) of size vnxrhon

13 a=rparams(1);

14 rstar=zeros(size(gval,1),size(gval,2),size(gval,3));

15 for i=1:size(gval,1)

16 for j=1:size(gval,2)

17 for l=1:size(gval,3)

18 xx=squeeze(gval(i,j,l,1:K));

19 f=@(rs)−1+sum(pi1.ˆ(1:K).*exp(F3(i,1:K)+rs....

20 *(exp(−a.*(1:K))−1)./a).*xx');

21 rstar(i,j,l)=fzero(f,0);

22 clear f xx rs;

23 end

24 end

25 end

26

27 end

The function GOFun.m calculates the value of growth options. Again, “index” is used due

to a lack of memory. Five firms are run at a time.

1 function Lstar1 = GOFun(index,str,tstart)

2

3 %BRIAN HOGLE, 2021
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4

5 %GOFun Evaluate growth options

6 %INPUTS

7 %index= vparams is separated into groups due to memory constraints

8 %str= specialized routine. Leave this out for general routine

9 %tstart= where to start for loop over time t=tstar:simlen

10

11 %Must always include index. case 2 is for index and tstart. case 3

12 %include str.

13

14 str2=strcat('initialize',str);

15 str3=strcat('gvalQF3rstar',str);

16 load(str2,'N','K','rparams','simlen','r','lambda',...

17 'rhomr','pi1','muI','vparams');

18 load(str3,'gval','F3','rstar');

19

20 xx=(1:5)+5*(index−1);

21

22 if xx(end)>size(vparams,1) && (mod(size(vparams,1),10)≤5)

23 xx=xx(1:mod(size(vparams,1),10));

24 elseif xx(end)>size(vparams,1) && (mod(size(vparams,1),10)>5)

25 xx=xx(1:(mod(size(vparams,1),10)−5));

26 end

27

28 rstar=rstar(xx,:,:);

29 gval=gval(xx,:,:,:);

30 F3=F3(xx,:);

31

32 Lstar=zeros(length(xx),simlen−tstart+1);

33 Lqq=zeros(length(xx),simlen−tstart+1);

34 I=ones(1,simlen−tstart+1);

35

36 r=r(tstart:simlen);

37

38 for t=1:(simlen−tstart+1)

39 [Lstar1,Lqqs] = GOcal(N,K,rparams,r,I,rstar,lambda,...
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40 rhomr,gval,F3,pi1,t,muI);

41 fprintf('Value of GO')

42 t

43 Lstar1

44 Lqqs

45 Lstar(1:length(xx),t)=Lstar1;

46 Lqq(1:length(xx),t)=Lqqs;

47

48 end

49

50 save(strcat('GO',str,num2str(index),'.mat'),'Lstar','Lqq');

51

52 end

We now present the function GOcal.m from GOFun.m. This function is used to calculate

the growth option values at each time t.

1 function [Lstar,Lqq] = GOcal(N,K,rparams,r,I,rstar,...

2 lambda,rhomr,gval,F3,pi1,t,muI)

3

4 %BRIAN HOGLE 2021

5 %GOcalc calculate the time t and time t+1 value of growth options given

6 %information at time t.

7 %INPUTS

8 %N=upper limit on sum over s−t=1 to s−t=N

9 %K=upper limit on sum over k=1 to k=K

10 %rstar= solution from fzero for corresponding (v(s),rhomcj(s)).

11 %F3= function of k alone.

12 %OUTPUTS

13 %Lqq=Lˆ**(t)

14 %Lstar=Lˆ*(t)

15

16 rt=r(t);

17 gval1=gval(:,:,:,1:K);

18
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19 %parameters for interest rate process

20 a=rparams(1);

21 b2=rparams(2);

22 sigmar=rparams(3);

23

24 Kstar=repmat(rstar,1,1,1,K).*permute(repmat(((exp(−a.*(1:K))...

25 −1)./a)',1,size(rstar,1),size(rstar,2),size(rstar,3)),[2 3 4 1]);

26

27 d2=((b2−rt+repmat(rstar(:,:,:)−b2,1,1,1,N)...

28 .*permute(repmat(exp(a.*(1:N))',1,size(rstar,1),size(rstar,2),...

29 size(rstar,3)),[2 3 4 1]))./sigmar...

30 +permute(repmat((lambda*rhomr/a*(exp(a.*(1:N))−1)...

31 +sigmar/(2*aˆ2)*(exp(a.*(1:N)./2)−exp(−a.*(1:N)./2)).ˆ2)',...

32 1,size(rstar,1),size(rstar,2),size(rstar,3)),[2 3 4 1]))...

33 .*permute(repmat(sqrt(2*a./(exp(2*a.*(1:N))−1))',1,size(rstar,1),...

34 size(rstar,2),size(rstar,3)),[2 3 4 1]);

35 %fqq will denote fˆ{**} (from thesis)

36 %fqq is a function of rt and k

37 fqq=exp(((rt−b2).*exp(−a)+b2)./a.*(exp(−a.*(1:K))−1)...

38 +sigmarˆ2*(1−exp(−2*a)).*(1−exp(−a.*(1:K))).ˆ2/(4*aˆ3));

39

40 B4=(b2−rt)*exp(−a)/a.*(1−exp(−a.*(1:N)))−b2.*(1:N);

41

42 B3=(b2−rt)./a.*(1−exp(−a.*(1:N)))−b2.*(1:N);%size of B3star is 1xN.

43 %Note rt is not a vector

44 %VYs=Var(Y*(t,s))

45

46 %note n=s−t in all of this, which is why s−t−1 is represented by (1:N)−1

47 VYs=(lambdaˆ2+sigmarˆ2/aˆ2+2*lambda*sigmar*rhomr/a).*((1:N)−1)+...

48 sigmarˆ2/aˆ2*(exp(−a)−exp(−a.*(1:N))).ˆ2.*(exp(2*a)−1)/(2*a)+...

49 sigmarˆ2.*(1−exp(−2*a.*(1:N)+2*a))/(2*aˆ3)−...

50 2*(lambda*sigmar*rhomr/aˆ2+sigmarˆ2/aˆ3).*(1−exp(−a.*(1:N)+a));

51

52 %VY=.5*Var(Y(t,s)). Note the 1/2 is already included.

53 VY=.5*(lambdaˆ2+sigmarˆ2/aˆ2+2*lambda*sigmar*rhomr/a).*(1:N)...

54 +sigmarˆ2.*(1−exp(−2*a.*(1:N)))/(4*aˆ3)−...
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55 (lambda*sigmar*rhomr/aˆ2−sigmarˆ2.*exp(−a.*(1:N)−a*t)/aˆ3)...

56 .*(1−exp(−a.*(1:N)));

57

58 d3=repmat((rt*exp(−a.*(1:N))/a+(b2/a−lambda*rhomr*sigmar/aˆ2−...

59 sigmarˆ2/aˆ3).*(1−exp(−a.*(1:N))))',[1,K])...

60 .*repmat(exp(−a.*(1:K))−1,[N,1])...

61 +repmat((sigmarˆ2*(exp(−a*(1:K))−1).ˆ2/(4*aˆ3)+...

62 sigmarˆ2*(exp(−a*(1:K))−1)/(2*aˆ3)),[N,1])...

63 .*repmat((1−exp(−2*a*(1:N)))',[1,K]);

64

65 gvl1=size(gval,1); gvl2=size(gval,3);

66

67 d1=repmat(d2,1,1,1,1,K)...

68 +sigmar/a*permute(repmat(bsxfun(@times,sqrt((1−...

69 exp(−2*a.*(1:N)))./(2*a))'...

70 ,(1−exp(−a*(1:K)))),1,1,gvl1,size(gval,2),gvl2),[3 4 5 1 2]);

71

72 fp=(permute(repmat(exp((muI−.5*lambdaˆ2).*(1:N)+B3(1:N)+VY(1:N))',...

73 1,size(gval,1),size(gval,2),size(gval,3),K),[2 3 4 1 5])...

74 .*permute(repmat((pi1.ˆ(1:K))',1, size(gval,1),size(gval,2),...

75 size(gval,3),N), [2 3 4 5 1]) ...

76 .*permute(repmat(exp(F3(:,1:K)),1,1,size(gval,2),size(gval,3),N),...

77 [1 3 4 5 2])).*permute(repmat(gval1,1,1,1,1,N),[1 2 3 5 4])...

78 .*(exp(permute(repmat(d3,1,1,size(gval,1),size(gval,2),...

79 size(gval,3)),[3 4 5 1 2])).*normcdf(d1)...

80 −exp(permute(repmat(Kstar,1,1,1,1,N),[1 2 3 5 4]))...

81 .*normcdf(repmat(d2,1,1,1,1,K)));

82

83 fp=squeeze(mean(fp,2)); fp=squeeze(mean(fp,2));

84 fp=squeeze(sum(fp,2)); fp=squeeze(sum(fp,2));

85

86 Lstar=I(t)*fp;

87

88 clearvars fp d1 d2 d3

89

90 d2star=((b2−rt+repmat(rstar(:,:,:)−b2,1,1,1,N)...
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91 .*permute(repmat(exp(a.*(1:N))',1,size(rstar,1),...

92 size(rstar,2),size(rstar,3)),[2 3 4 1]))./sigmar...

93 +permute(repmat((lambda*rhomr/a*(exp(a.*(1:N))−exp(a))...

94 +sigmar/(2*aˆ2)*(exp(a.*(1:N))−exp(a)−exp(−a)...

95 +exp(−a.*(1:N))))',1,size(rstar,1),size(rstar,2),...

96 size(rstar,3)),[2 3 4 1])).*permute(repmat(sqrt(2*a./...

97 (exp(2*a.*(1:N))−1))',1,size(rstar,1),size(rstar,2),...

98 size(rstar,3)),[2 3 4 1]);

99 d5star=(−rt*exp(−a)+b2*(exp(−a)−1)+rstar)*sqrt(2*a/(1−exp(−2*a)))/sigmar;

100

101 %VY stands for 1/2Var(Y(t,s))

102 %Directly below, Lqq1 is for the first term in L**

103 d6star=repmat(d5star,1,1,1,K)...

104 +permute(repmat((sigmar*(1−exp(−a*(1:K)))*sqrt((1−...

105 exp(−2*a))/(2*aˆ3)))',...

106 [1,size(d5star,1),size(d5star,2),size(d5star,3)]),[2 3 4 1]);

107

108 d1star=repmat(d2star,1,1,1,1,K)...

109 +sigmar/a*permute(repmat(bsxfun(@times,sqrt((1−...

110 exp(−2*a.*(1:N)))./(2*a))',...

111 (1−exp(−a*(1:K)))),1,1,gvl1,size(gval,2),gvl2),[3 4 5 1 2]);

112

113 d4=bsxfun(@times,((rt−b2)*exp(−a*(1:N))+b2)',(exp(−a*(1:K))−1)/a)...

114 +bsxfun(@times,((1−exp(−2*a*(1:N)))/(4*aˆ3))',sigmarˆ2*...

115 (1−exp(−a*(1:K))).ˆ2)...

116 +bsxfun(@times,((−(lambda*rhomr/a+sigmar/aˆ2)*(exp(a*(1:N))−exp(a))...

117 +sigmar/(2*aˆ2)*((exp(−a)−exp(−a*(1:N)))*(1−exp(2*a))+...

118 exp(a*(1:N))−exp(2*a−a*(1:N))))...

119 .*sigmar/a.*exp(−a*(1:N)))',(exp(−a*(1:K))−1));

120

121 fn=permute(repmat((pi1.ˆ(1:K).*exp(F3(:,1:K)))',...

122 [1 1 size(gval1,2) size(gval1,3)]),[2 3 4 1]).*gval1(:,:,:,:)...

123 .*(permute(repmat((fqq)',...

124 [1 size(gval1,1) size(gval1,2) size(gval1,3)]),[2 3 4 1])...

125 .*normcdf(d6star(:,:,:,:))−...

126 repmat(normcdf(d5star(:,:,:)),1,1,1,K).*exp(Kstar(:,:,:,:)));
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127

128 fm=zeros(size(gval,1),size(gval,2),size(gval,3),size(gval,4),K);

129

130 B41=B4(1:(end−1));

131

132 fm(:,:,:,2:N,:)=permute(repmat(exp((muI−.5*lambdaˆ2)*(2:N)+B41...

133 +.5*VYs(2:N))',1,size(gval,1),size(gval,2),size(gval,3),K),...

134 [2 3 4 1 5]).*permute(repmat((pi1.ˆ(1:K))',1,size(gval,1),...

135 size(gval,2),size(gval,3),N−1),[2 3 4 5 1])...

136 .*permute(repmat(exp(F3(:,1:K)),1,1,size(gval,2),...

137 size(gval,3),N−1),[1 3 4 5 2])...

138 .*permute(repmat(gval1(:,:,:,:),1,1,1,1,N−1),[1 2 3 5 4])...

139 .*(exp(permute(repmat(d4(2:N,:),1,1,size(gval,1),size(gval,2),...

140 size(gval,3)),[3 4 5 1 2]))...

141 .*normcdf(d1star(:,:,:,2:N,:))...

142 −exp(permute(repmat(Kstar(:,:,:,:),1,1,1,1,N−1),[1 2 3 5 4]))...

143 .*normcdf(repmat(d2star(:,:,:,2:N),1,1,1,1,K)));

144

145 fn=squeeze(mean(fn,2)); fn=squeeze(mean(fn,2));

146

147 Lqq1=I(t)*exp(muI−.5*lambdaˆ2)*sum(fn,2);

148

149 %We now find L** for all rest terms

150

151 fm=squeeze(mean(fm,2)); fm=squeeze(mean(fm,2));

152 fm=squeeze(sum(fm,2)); fm=squeeze(sum(fm,2));

153

154 Lqq2=I(t)*fm;

155 Lqq=Lqq1+Lqq2;

156

157 end

Finally, we present the code GetTS.m, which calculates the time series generated for the

cash flows.
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1 function countproj = GetTS(index,str,Nfirms)

2

3 %BRIAN HOGLE, APRIL 2021

4

5 %GetTS Generate time series

6 %INPUTS

7 %index=used to separate into groups due to memory issues

8 %str= identifies specialized run, if included

9 %Nfirms= number of realizations generated.

10

11 str2=strcat('initialize',str);

12 str3=strcat('gvalQF3rstar',str);

13 load(str2,'N','rparams','simlen','r','lambda',...

14 'rhomr','pi1','muI','vparams','dWr','dWm','muI','C1','C2',...

15 'C3','mu','sigmaI','Cbar','vt','rhorcj','sigma','rhomcj') ;

16 load(str3,'gval','Q');

17

18 xx=(1:5)+5*(index−1);

19

20 if xx(end)>size(vparams,1) && (mod(size(vparams,1),10)≤5)

21 xx=xx(1:mod(size(vparams,1),10));

22 elseif xx(end)>size(vparams,1) && (mod(size(vparams,1),10)>5)

23 xx=xx(1:(mod(size(vparams,1),10)−5));

24 end

25

26 if contains(str,'CIR')

27

28 gval=gval(xx,:,:,:);

29 Q=Q(xx,:,:,:);

30 mu=mu(xx);

31 Cbar=Cbar(xx);

32 vparams=vparams(xx,:);

33 vt=vt(xx,:);

34

35 b=zeros(Nfirms,size(vparams,1),simlen);
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36 CF=zeros(Nfirms,size(vparams,1),simlen);

37 Vstar=zeros(Nfirms,size(vparams,1),simlen);

38 countproj=zeros(Nfirms,size(vparams,1));

39

40 parfor i=1:Nfirms

41

42 [b1,countproj1,CF1,Vstar1]=FirmValCIR(N,rparams,r,dWr,dWm,lambda,rhomr...

43 ,gval,pi1,muI,C1,C2,C3,mu,simlen,rhomcj,vparams,Q,sigmaI,Cbar,vt,...

44 rhorcj,sigma);

45

46 b(i,:,:)=b1;

47 CF(i,:,:)=CF1;

48 Vstar(i,:,:)=Vstar1;

49 countproj(i,:)=countproj1; %number projects rejected for i−th firm.

50

51 end %end parfor loop

52 elseif contains(str,'Jac')

53

54 gval=gval(xx,:,:,:);

55 Q=Q(xx,:,:,:);

56 mu=mu(xx);

57 Cbar=Cbar(xx);

58 vparams=vparams(xx,:);

59 vt=vt(xx,:);

60

61 b=zeros(Nfirms,size(vparams,1),simlen);

62 CF=zeros(Nfirms,size(vparams,1),simlen);

63 Vstar=zeros(Nfirms,size(vparams,1),simlen);

64 countproj=zeros(Nfirms,size(vparams,1));

65

66 parfor i=1:Nfirms

67

68 [b1,countproj1,CF1,Vstar1]=FirmVal(N,rparams,r,dWr,dWm,lambda,rhomr...

69 ,gval,pi1,muI,C1,C2,C3,mu,simlen,rhomcj,vparams,Q,sigmaI,Cbar,vt,...

70 rhorcj,sigma);

71
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72 b(i,:,:)=b1;

73 CF(i,:,:)=CF1;

74 Vstar(i,:,:)=Vstar1;

75 countproj(i,:)=countproj1; %number projects rejected for i−th firm.

76

77 end %end parfor loop

78 end

79 save(strcat('TS',str,num2str(index),'.mat'),'b','CF',...

80 'Vstar','countproj');

81

82 end

Below, we present the SAS code which was used for parameter estimation.

1 /*

2 BRIAN HOGLE 2021

3 */

4

5

6 /* This code uses quarterly OIBDPQ for the jacobi process

7 with 3 different ways of scaling.*/

8

9 proc datasets library=work kill nolist;

10 quit;

11

12 %let x=%sysfunc(pathname(sasautos));

13 %put &x ;

14 filename nwords "C:\Users\18594\Documents\";

15 options append=sasautos=(nwords) mrecall mautosource ;

16 filename winsorize "C:\Users\18594\Documents";

17 options append=sasautos=(winsorize) mrecall mautosource ;

18

19 %include "C:\Users\18594\Documents\nwords.sas";

20 %include "C:\Users\18594\Documents\winsorize.sas";

21
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22 /*

23 data first(drop=UCEQQ);

24 set 'C:\Users\18594\Downloads\JacobiCF11Quar.sas7bdat';

25 run;

26 */

27

28 data first(drop=UCEQQ);

29 set 'C:\Users\18594\Downloads\JacobiCF11QuarwCSHOQ.sas7bdat';

30 run;

31

32

33 data second2;

34 set first;

35 if ACTQ=. then delete;

36 run;

37

38 *Here we get rid of mergers;

39 data second2;

40 set second2;

41 if REVTQ FN1='AB' then delete;

42 run;

43

44 *delete if common equity is ≤ 0;

45 data second2;

46 set second2;

47 if CEQQ le 0 then

48 delete;

49 run;

50

51 data second2;

52 set second2;

53 if SIC le 4999 and SIC ge 4900 then

54 delete;

55 run;

56

57 *If total assets less than 0 then delete;
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58 data third;

59 set second2;

60 if actq lt 0 then delete;

61 if revtq lt 0 then delete;

62 run;

63

64 data third2;

65 set third;

66 if actq=. then delete;

67 if revtq=. then delete;

68 if lctq=. then delete;

69 if OIBDPQ=. then delete;

70 *if CSHOQ=. then delete;

71 run;

72

73 *Here we get rid of firms with too many negative

74 cash flow values;

75 data fifth;

76 set third2;

77 by gvkey;

78 retain Negvals;

79 if first.gvkey then

80 NegVals=0;

81 if OIBDPQ<0 then

82 NegVals + 1;

83 if last.gvkey;

84 run;

85 data fifth;

86 set fifth;

87 if NegVals>0 then delete;

88 run;

89

90 data NoNeg;

91 merge third2(in=a) fifth(in=b);

92 by gvkey;

93 if a and b;
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94 run;

95

96 data NoNeg;

97 set NoNeg;

98 if revtq lt 0 then delete;

99 run;

100

101 *sort by gvkey;

102 proc sql;

103 create table want as

104 select *

105 from NoNeg

106 group by gvkey

107 having count(*) ge 90 ;

108 quit;

109

110 *Below we sort based on Ticker. Within ticker we sort by ascending date;

111 PROC SORT DATA = want OUT = want4;

112 BY gvkey datadate;

113 run;

114

115 data want4;

116 set want4;

117 netasset=actq−lctq;

118 run;

119 data want6(DROP=OIBDPQ CSHOQ);

120 set want4;

121 scaled2=log(OIBDPQ/actq);

122 run;

123

124

125 PROC EXPAND DATA=want6 OUT=MOVINGSTD;

126 CONVERT scaled2=STD2 / TRANSFORMOUT=(MOVSTD 20);

127 RUN;

128

129 data Movingstd;
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130 set movingstd;

131 std2=std2/sqrt(3);

132 run;

133 *change 20 below if changing size of moving window;

134

135 data d4(drop=count);

136 set movingstd(drop=time);

137 by gvkey;

138 if first.gvkey then count=0;

139 count+1;

140 if count ge 20 then output;

141 run;

142

143 proc sort data=d4 out=one2;

144 by gvkey std2;

145 run;

146 data two2(keep=gvkey smax2);

147 set one2;

148 by gvkey;

149 smax2=std2;

150 if last.gvkey then output;

151 run;

152

153 data three2(keep=gvkey smin2);

154 set one2;

155 by gvkey;

156 smin2=std2;

157 if first.gvkey then output;

158 run;

159

160

161 proc means data=d4 noprint MEAN;

162 var std2;

163 by gvkey;

164 OUTPUT out=four;

165 run;
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166

167 data five(keep= gvkey FREQ thetamean1 thetamean2 thetamean3);

168 set four;

169 if STAT ='MEAN' then output;

170 RENAME STD2=thetaMean2;

171 run;

172

173 *The goal is to find weight based of of CSHOQ;

174 proc contents data=first;

175 run;

176 proc means data=first noprint MEAN;

177 var CSHOQ;

178 by gvkey;

179 OUTPUT out=fourCSHOQ;

180 run;

181

182 data meanCSHOQ(keep= gvkey CSHOQ);

183 set fourCSHOQ;

184 if STAT ='MEAN' then output;

185 *RENAME CSHOQweight=thetaMean2;

186 run;

187 *End getting weights based off of CSHOQ;

188

189 data want8(DROP= TYPE FREQ STAT indfml scaled1 scaled2 scaled3

190 SIC datadate bookval negvals hetasset revtq popsrc prccq revtq fn1

191 datafmt datafqtr costat consol actq LCTQ indfmt fyr fyearq fqtr fic ...

datacqtr ceqq curcdq cshoq fn netasset);

192 merge d4 two2 three2 five;

193 by gvkey;

194 run;

195

196 *We add the Q here;

197 data withQ;

198 set want8;

199 Qanybound2=sqrt((std2−smin2)*(smax2−std2))/(sqrt(smax2)−sqrt(smin2));

200 run;
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201

202 data withQ;

203 set withQ;

204 if Qanybound2=0 then Qanybound2=.1;

205 run;

206

207 data withQ;

208 set withQ;

209 vdiff2=smax2−smin2;

210 run;

211

212 *We add a lag;

213 data Lagged;

214 set withQ;

215 Qanyboundlag2=lag1(Qanybound2);

216 vlag2=lag1(std2);

217 v2=std2;

218 run;

219

220 *Eliminate first element in each group;

221 data Lagged1(drop=count);

222 set Lagged;

223 by gvkey;

224 if first.gvkey then count=0;

225 count+1;

226 if count ge 2 then output;

227 run;

228

229 data SetRet2;

230 set Lagged1;

231 DVany2=v2/Qanyboundlag2;

232 IVany2=vlag2/Qanyboundlag2;

233 IVany22=1/Qanyboundlag2;

234 run;

235

236 proc reg data = SetRet2 noprint outest=estimates22;
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237 model DVany2=IVany2 IVany22 / noint;

238 by gvkey;

239 run;

240 proc reg data = SetRet2;

241 model DVany2=IVany2 IVany22 / noint;

242 ods output parameterestimates=parms2;

243 by gvkey;

244 run;

245 data estimates22(drop= RMSE DVany2 DEPVAR MODEL TYPE );

246 set estimates22;

247 sigmav2= RMSE ;

248 run;

249

250 data parms2;

251 set parms2;

252 if Probt ge .01 then delete;

253 run;

254

255 *Only keep firms with no deletions due to p−values;

256

257 proc sql;

258 create table parms22 as

259 select *

260 from parms2

261 group by gvkey

262 having count(*) ge 2 ;

263 quit;

264

265 PROC FREQ data=parms22;

266 tables gvkey/out=gvkey counts2 noprint;

267 run;

268

269 *Merge the data sets. Need 3 separate sets as p−values are different ...

in each set

270 which leads to certain firms being deleted while others not;

271
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272 data Aest2(drop=count percent);

273 merge estimates22(in=a) gvkey counts2(in=b);

274 by gvkey;

275 if a and b;

276 run;

277

278

279 data withq22(keep=gvkey smax2 smin2 vdiff2);

280 set withq;

281 if first.gvkey then output;

282 by gvkey;

283 run;

284

285 data bound2;

286 merge Aest2(in=a) withq22(in=b);

287 by gvkey;

288 if a and b;

289 run;

290 *convert Ivany and IVany2 to kappa and theta;

291

292 data KT2(drop=ivany2 ivany22);

293 set bound2;

294 kappa2=1−Ivany2;

295 theta2=IVany22/(1−Ivany2);

296 run;

297

298 data KT2;

299 set KT2;

300 rename smax2=vmax2 smin2=vmin2;

301 run;

302 data KT2;

303 set KT2;

304 if vmax2 le theta2 or vmin2 ge theta2 then delete;

305 run;

306 data KT2;

307 set KT2;
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308 myo=1;

309 run;

310

311

312 data KT3;

313 set KT2;

314 if sigmav2**2*(vmax2−vmin2)/(sqrt(vmax2)−sqrt(vmin2))**2 le ...

2*kappa2*min(vmax2−theta2,theta2−vmin2) then JC=1;

315 run;

316

317 data KT3(drop=myo JC);

318 set KT3;

319 if JC=. then delete;

320 run;

321

322 data KT4(drop=count percent);

323 merge KT3(in=a) Meancshoq(in=b);

324 by gvkey;

325 if a and b;

326 run;

327

328 PROC EXPORT DATA= WORK.KT3

329 OUTFILE= ...

"C:\Users\18594\OneDrive\Documents\Jacobi RFS wCSHOQ.XLS"

330 DBMS=EXCEL REPLACE;

331 SHEET="Jacobiparams";

332 RUN;

5.1 How to run the simulation

In this section, we describe how to run the simulation in an itemized list.

1. Run INAF.m to initialize the variables across all of the firms. INAF.m allows the user to

decide if the cash flows do not grow (µ = 0), if the cash flow growth is firm specific, or if

the cash flow growth is given the same positive value across all of the firms. Options are
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available to run the code for the Jacobi process or CIR process at the beginning, and

there are also certain specific scenarios available to examine one parameter at a time.

2. We compute the function g(v, t, T, j) at specified grid points by running Getgsurf.m.

This needs to be broken into pieces due to memory issues. Later, we combine the

variables g and Q from these runs.

3. Combine the saved variables g and Q by running CombineGsurf.m. The initial setting

“Special” is for the specific cases in which isolated parameters are examined. “Jacobi”

or “CIR” is for the general version with the corresponding volatility process.

4. Get F3 and r∗ by running F3rstar.m.

5. Run the function GOFun.m, which contains GOcalc.m, for all of the appropriate indices

to calculate growth option values. Note the special cases of σV and uM require only two

indices, while vmax and vmin require six indices.

6. Run the function GetTS.m for all of the appropriate indices. Note this can be run at

the same time as GOFun.m.

7. Combine all of the indexed TS.mat and GO.mat files to get GOandTS_All.mat by running

TScombine.m.
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