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ABSTRACT

The University of Massachusetts S-band frequency-modulated, continuous-wave

radar (UMass FMCW) was deployed to monitor the growth of the convective bound-

ary layer over northern Alabama during the Verification of the Origins of Rotation in

Tornadoes Experiment-Southeast (VORTEX-SE). The Doppler spectra collected in

2016 from the vertically-pointing UMass FMCW contain “spurs”, or spurious spec-

tral peaks, caused by high-voltage switching power supplies in the traveling wave

tube amplifier. In the original data processing scheme for this radar, a median filter-

ing method was used to eliminate most of the spurs, but the largest ones persisted,

which significantly degraded the quality of derived radar moments (e.g., reflectivity,

Doppler velocity, and spectrum width) and hindered further analysis of these data

(e.g., boundary layer height tracking).

In this study, a novel “in-painting” image processing technique was applied to

remove the spurs in the Doppler spectra. We hypothesized the in-painting method

would exhibit superior performance to the median filter at removing large spectral

peaks, and also improve downstream radar products derived from the spectra. First,

a Laplacian filter identified and masked spikes in the spectra that were characteristic

of the spurs in shape and amplitude. The in-painting method then filled in masked

areas based on surrounding data. Via a histogram analysis, the in-painting method

was found to be more e�ective than the median filter at removing the large spurs

from the Doppler spectra. The radar moments were then recomputed using a co-

herent power (CP) technique, resulting in cleaner reflectivity, Doppler velocity, and

spectrum width data. Improvement was also found downstream when a boundary

layer height detection algorithm was applied to the moments generated from the in-

painted spectra. Output from the boundary layer height detection algorithm was then

used to verify forecast boundary layer height from the Advanced Regional Prediction

System (ARPS) model for the 31 March 2016 VORTEX-SE tornadic case study.
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1. INTRODUCTION

1.1 Motivation for VORTEX-SE

For decades, the central and southern Great Plains region has been the epicen-

ter of meteorological data collection related to severe weather, and for good reason.

Researchers and storm chasers target this area due to the high density and visibility

of severe weather events, including tornadoes. Accordingly, this region of the United

States (U.S.) has been termed “Tornado Alley.” However, in recent years there has

been an increasing number of severe weather outbreaks in the southeast region of

the U.S. (hereafter SE-US) (e.g., Dixon et al. 2011; Agee et al. 2016; Gensini and

Brooks 2018). For example, Fig. 5 in Gensini and Brooks 2018 shows a decrease

in gridded tornado reports in the central and southern Plains and an increase in re-

ports in the SE-US. A relative paucity of severe weather observations from the SE-US

was a main driver behind the Verification of the Origins of Rotation in Tornadoes

Experiment-Southeast (VORTEX-SE) field campaign, which took place during Spring

2016, Spring 2017, and Spring 2018.

There are known di�erences between tornadic storms in the SE-US and Great

Plains, including di�erences in thermal and moisture profiles (Rasmussen 2015; An-

derson -Frey et al. 2019). Convective available potential energy (CAPE) quantifies

the amount of energy available for convection and typically, the larger the CAPE

value, the greater the potential for severe weather (Branick 1996). Vertical wind

shear, hereafter denoted only as “shear”, is a change in wind speed and/or direction

with height (Markowski and Richardson 2010). Storms in the SE-US tend to be

characterized by high-shear, low-CAPE (HSLC) environments (Sherburn and Parker

2014), whereas storms in the Great Plains commonly form in high-shear, high-CAPE

(HSHC) environments (Thompson et al. 2004; Schneider et al. 2006). Furthermore,

many SE-US tornadoes occur during the cool season (e.g., Burke and Schultz 2004;

Guyer et al. 2006; Smith et al. 2008; Davis and Parker 2014; Sherburn and Parker

2014) and at night (e.g., Kis and Straka 2010; Davis and Parker 2014; Sherburn and

Parker 2014; Anderson-Frey et al. 2019). The societal impacts of tornadoes in these
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regions also vary, with the SE-US having greater population density and more fre-

quent inferior building structure compared to the Great Plains (e.g., Ashley et al.

2008; Strader et al. 2017; Strader and Ashley 2018).

1.1.1 HSLC environments and cold season events

HSLC environments are commonly defined as having surface-based (SB) and

mixed layer (ML) CAPE Æ 500 J kg≠1 (Guyer and Dean 2010), most unstable parcel

(MU) CAPE Æ 1000 J kg≠1, and 0–6-km shear vector magnitude Ø 18 m s≠1 (Sher-

burn and Parker 2014). While these conditions can be satisfied across all regions of

the U.S. during any time of day and year (Sherburn and Parker 2014), they are most

prevalent in the SE-US (Schneider et al. 2006; Sherburn and Parker 2014) during

the cool season (e.g., Burke and Schultz 2004; Guyer et al. 2006; Smith et al. 2008;

Davis and Parker 2014; Sherburn and Parker 2014) and overnight hours (e.g., Kis

and Straka 2010; Davis and Parker 2014; Sherburn and Parker 2014; Anderson-Frey

et al. 2019).

HSLC environments occur frequently, but produce severe weather only a small

percentage of the time, creating a challenge for forecasters (Sherburn and Parker

2014). Storms that form in these environments tend to be horizontally and verti-

cally smaller than traditional HSHC storms of the Great Plains (Davis and Parker

2014). These storms may be poorly sampled by the Weather Surveillance Radar 1988-

Doppler (WSR-88D) network, with small-scale and low-altitude circulations poorly

resolved, especially with increasing distance from the radar (Davis and Parker 2014).

Furthermore, traditional forecasting techniques (Johns and Doswell 1992) have been

shown to not perform as well in HSLC environments (Sherburn and Parker 2014),

resulting in greater uncertainty and consequently, higher false alarm ratios (FAR)

and reduced probability of detection (POD) (Guyer and Dean 2010). Additional

complexities arise because high intensity tornadoes (rated 2+ on the Fujita (F) and

Enhanced Fujita (EF) scales) (NOAA 2007) have been associated with a variety of

storm modes in HSLC environments (Przybylinski 1995).
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Guyer and Dean (2010) performed an extensive study on tornadoes in low-CAPE

environments. They found that mid-level (700-500 mb) and low-level (0-3 km) lapse

rates in low-CAPE environments were lower than in environments with greater buoy-

ancy (Guyer and Dean 2010). They attributed this to the lack of an elevated mixed

layer due to increased moisture and/or cool season environments (Guyer and Dean

2010). Additionally, low-CAPE tornadoes were associated with lower surface temper-

atures and dewpoints, as well as higher low-level relative humidity and lower lifted

condensation levels (LCLs) (Guyer and Dean 2010). HSLC environments of the SE-

US account for more significant tornadoes than their Great Plains HSHC counterparts

(Sherburn and Parker 2014). According to Guyer and Dean (2010), more than half of

the low-CAPE tornadoes had MLCAPE values Æ 250 J kg≠1, and of all low-CAPE

tornadoes, 7.7% were significant (E)F2-(E)F5.

1.1.2 SE-US vulnerabilities

There are a multitude of factors that make the population of the SE-US excep-

tionally vulnerable to tornadoes. Alabama has the greatest number of low-CAPE

tornadoes, as well as the greatest number of (E)F2+ low-CAPE tornadoes (Guyer

and Dean 2010). Forested land cover, hilly topography, and low cloud bases make it

di�cult to visually identify tornadoes in the SE-US (Ashley et al. 2008; Brotzge and

Erickson 2010). Moreover, tornadoes occurring in the region extending from Texas

eastward though Florida are most frequent during the climatological minimum in an-

nual U.S. tornado activity from November to April (Ashley et al. 2008; Guyer and

Dean 2010).

The SE-US also has one of the highest nocturnal tornado percentages (Ashley et

al. 2008). According to Brotzge and Erickson (2010), tornadoes that occur overnight

have a greater likelihood of being unwarned compared to those that occur during

the afternoon hours. Additionally, “tornadoes at night are almost twice as likely to

kill than those during the daytime” (Ashley et al. 2008). This is in part because

tornadoes are more di�cult to visually identify at night and the public may not

receive the warning if they are asleep (Ashley et al. 2008). The public also tends to

3



be in more vulnerable building structures (e.g., mobile or “manufactured” and single-

family homes) at night compared to steel or reinforced concrete buildings, such as

schools or workplaces, during the day (e.g., Simmons and Sutter 2005; Ashley 2007;

Strader et al. 2017; Strader and Ashley 2018). The SE-US has some of the largest

populations living in mobile homes in the U.S., and 44.8% of all tornado deaths occur

in mobile homes (Ashley et al. 2008). Furthermore, tornado sirens are designed to

alert people who are outdoors and thus, are less e�ective at alerting the public during

nocturnal tornadoes when most people are indoors (Ashley et al. 2008).

1.2 Motivation for this study

Because of the above factors, the SE-US sees a disproportionate share of tornado

fatalities. Furthermore, climatological studies suggest this region will experience more

frequent tornado environments in the future (Dixon et al. 2011; Agee et al. 2016;

Li and Chavas 2021). VORTEX-SE was initiated to investigate SE-US tornadoes,

their environments, and their societal impacts (Koch 2016; Rasmussen and Koch

2016). Di�erent branches (i.e., physical science, operations, and social science) were

tasked with one of the aforementioned objectives. This study falls within the physical

science realm. Di�erences between the SE-US and Great Plains environments have

implications on the growth and evolution of the planetary boundary layer (PBL),

which in turn, a�ects the atmosphere’s ability to generate and sustain severe thun-

derstorms. Accordingly, some objectives of VORTEX-SE included examining the

nocturnal boundary layer, the maintenance of large PBL vertical shear, and rapid

destabilization of the PBL (Rasmussen 2015). During VORTEX-SE, the Univer-

sity of Massachusetts Amherst S-band frequency-modulated, continuous-wave radar

(hereafter, UMass FMCW; described in more detail in the Methodology section) was

deployed to monitor the growth of the convective boundary layer (CBL) over northern

Alabama. The objective of this deployment was to collect high-temporal resolutions

of the boundary layer structure over northern Alabama, and predict the timing of

destabilization and convective initiation.
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Unfortunately, the Doppler spectra collected during the 2016 VORTEX-SE cam-

paign contain spurious peaks, resulting in unwanted striping in the derived radar

moments (Fig.  1.1 ). Furthermore, e�ects from receiver saturation, which we termed

”horizon glow,” masked details in the CBL (Fig.  1.1 ). Therefore, this thesis describes
a unique data quality issue a�ecting UMass FMCW Doppler spectra, and a novel so-
lution (combining an image processing technique and a signal processing technique)
that allowed much of the underlying information to be recovered. It is hypothesized
the novel combination of image processing and signal processing techniques will out-
perform traditional methods and improve downstream products.

Figure 1.1. Time-height series of reflectivity (dBZ ) of clear air condi-
tions during the overnight hours of 0400 UTC to 0500 UTC 24 March
2016. Unwanted striping caused by the spurious peaks in the Doppler
spectra is evident at 1.3 km and 3.9 km. Horizon glow is located in the
lowest ≥ 500 m.

1.3 31 March 2016 case study

The 2016 VORTEX-SE observational field campaign, which UMass FMCW was a

part of, lasted several weeks. When severe weather was anticipated, Intensive Observ-
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ing Periods (IOPs) were declared in which specialized observations (i.e. supplemental

radar deployments, radiosondes, surface observations, etc.) were collected. The en-

vironmental setup on 31 March 2016 prompted VORTEX-SE IOP3, as this was the

third IOP during the 2016 field campaign. During the early morning of 31 March

2016, there was a round of widespread, non-severe convection across the VORTEX-SE

domain associated with a mesoscale convective system that moved through Tennessee

and Alabama (Fig.  1.2 a). The rain and cool outflow from the morning convection

stabilized the boundary layer. However, rapid destabilization from direct insolation

and near-surface moisture advection was expected to take place in the afternoon,

creating an environment supportive of supercells (LaFleur et al. 2018).

The potential for evening convection was associated with an upper-level trough

moving eastward from the Rocky Mountains and a surface low pressure system sit-

uated near the Great Lakes, with a cold front extending south into eastern Texas

and progressing eastward (Fig.  1.3 ). Southerly surface winds advected warm, moist

air northward from the Gulf of Mexico. The 1700 UTC Storm Prediction Center

(SPC) mesoscale analysis (mesoanalysis) showed < 100 J kg≠1 SBCAPE in northern

Alabama (Fig.  1.4 a). Around this time, the CBL began to redevelop. Over the next

several hours, SBCAPE values increased to > 1000 J kg≠1 (Fig.  1.4 b) (LaFleur et

al. 2018). Around 1900 UTC, isolated storms began to initiate in north central Mis-

sissippi and rapidly translate northeast (Fig.  1.2 b). Westerly 0–6-km shear ranged

from 40–60 kt from north central Mississippi to north central Alabama (Fig.  1.5 ).

Just before 2200 UTC, the National Weather Service (NWS) SPC released a

Mesoscale Discussion (#311) regarding the severe potential for these storms and their

environment (NWS Storm Prediction Center 2016). In their discussion, the forecast-

ers mentioned a large residual outflow boundary across north central Alabama from

the morning convection. This boundary aided in generating 0–1-km storm relative

helicity (SRH) values around +200 m2 s≠2. At 2300 UTC, a tornado watch (#72)

was issued for west central and northern Alabama (NWS Storm Prediction Center

2016). As the storms progressed, the convective mode became a mixture of discrete

supercells and multi-cell clusters (Fig.  1.2 c). With an environment characterized by
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backing winds, ample SRH, and warm air advection, the storms continued to exhibit

low-level rotation over the next several hours as they entered the VORTEX-SE do-

main. At 0154 UTC, a tornado rated EF-2 on the EF scale was produced in Morgan

County, Alabama near Priceville (Fig.  1.2 d). Shortly afterward, the storms exited

the Huntsville domain and VORTEX-SE field operations concluded for the day.

Figure 1.2. Mosaic of composite reflectivity (dBZ ) from 31 March
2016 for (a) early morning storms, (b) initiation of the second round,
(c) mature storms, and (d) time of Priceville, AL tornado.
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Figure 1.3. Surface analysis from the NWS Weather Prediction Center
valid for 1500 UTC 31 March 2016.
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Figure 1.4. SBCAPE (J kg≠1; red contours at 100 J kg≠1, 250 J kg≠1

and every 500 J kg≠1 thereafter) and convective inhibition (CIN; J kg≠1;
filled blue intervals) from SPC mesoanalysis valid at (a) 1700 UTC and
(b) 2200 UTC 31 March 2016.
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Figure 1.5. 0–6-km wind shear barbs (short = 5 kt, long = 10 kt) and
isoshears for 40 kt, 50 kt, 60 kt from SPC mesoanalysis valid for 1900
UTC 31 March 2016.
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2. BACKGROUND

2.1 Boundary layer

Storm mode and behavior is strongly modulated by the behavior of the PBL.

One commonly accepted definition of the atmospheric boundary layer (ABL) is the

“part of the troposphere that is directly influenced by the presence of the Earth’s

surface, and responds to surface forcings with a timescale of about an hour or less”

(Stull 1988). The terms ABL and PBL refer to the same thing and can be used

interchangeably. For clarity, I will be using the term PBL. The CBL, sometimes

referred to as the “mixed layer” because of the turbulent mixing that occurs within

it, is a subtype of the PBL. Figure  2.1 conveys how these terms are interrelated.

Figure 2.1. The relationships between terms used in boundary layer
meteorology, as used in this thesis.

Since the PBL is closely tied to surface heating and cooling, it exhibits a diurnal

variation (Fig.  2.2 ). Throughout the morning and afternoon, the boundary layer

height begins to increase as buoyant thermal plumes rise, thereby eroding the capping

inversion through turbulent mixing processes, hence the term “mixed layer” (Fig.

 2.1 ) (Stull 1988). During this period, the boundary layer height can reach several

kilometers (Stull 1988; Bangho� et al. 2018). In the evening hours, as the sun sets

and convective turbulence dissipates, the boundary layer height begins to decrease,

shrinking to only a few tens of meters (Stull 1988; Bangho� et al. 2018).

There are di�erent sublayers within the daytime and nighttime boundary layers

(Stull 1988) (Fig.  2.2 ). The main focus of this study is the CBL, which is composed of
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(in order of height) the surface layer, mixed layer, and entrainment zone (Stull 1988;

Angevine et al. 1994). The CBL is a mixed layer composed of buoyant, turbulent air

that is driven by radiation and surface fluxes, in which air parcels buoyantly rise (Stull

1988). As such, the CBL is exclusive to the daytime heating hours (Fig.  2.2 ) and

the growth of the CBL is dependent upon surface characteristics and the stability of

the layer above the boundary layer, termed the free atmosphere (Cohn and Angevine

2000). It is important to monitor the CBL because it influences the potential for

convection. The CBL is characterized by well-mixed temperature and moisture (i.e.,

profiles of these variables are relatively constant with height) (Fig.  2.3 ) (Stull 1988;

Garratt 1992).

Figure 2.2. Conceptual diagram of the diurnal evolution of the PBL.
The CBL is outlined in pink. (Adapted from Markowski and Richardson
2010.)

CBL depth is one parameter often used to characterize the CBL. The top of the

boundary layer consists of unique characteristics that help make it identifiable. For

example, the top of the boundary layer is marked by a temperature inversion (Stull

1988; Angevine et al. 1994). There are steep gradients in potential temperature and

water vapor mixing ratio between the CBL and the free atmosphere (Stull 1988).

The CBL height is often taken to be the middle of the entrainment zone, between

12



the top of the mixed layer and bottom of the free atmosphere (Stull 1988; Cohn and

Angevine 2000). The depth of the CBL is pertinent for any boundary layer study or

model (Angevine et al. 1994).

Figure 2.3. Idealized boundary layer profiles of (a) daytime and (b)
nighttime temperature (T; units K), potential temperature (◊; units K)
and mixing ratio (r; units g m≠3). zi is the boundary layer height, which
is taken to be the halfway point between the top of the mixed layer
(residual layer) and the entrainment zone (capping inversion) during
the daytime (nighttime). (Adapted from Stull 2017.)

2.1.1 Role of the boundary layer in severe convective storms

Severe thunderstorms require a favorable juxtaposition of four ingredients: mois-

ture, instability, lift, and shear (Johns and Doswell 1992; Markowski and Richardson

2010). Moisture increases instability, and instability is what allows air parcels to be-

come positively buoyant and rise. Lift helps parcels reach the level of free convection

(LFC), which is the point in the troposphere where parcels can continue to rise inde-

pendently. Shear is a strong prognostic discriminator between nonsevere and severe

storms. Severe thunderstorms are favored under strong speed and directional shear,

which allows the thunderstorm to remain organized because it develops separate up-

draft and downdraft regions.
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Boundary layer profiles are closely tied to moisture, instability, lift, and shear.

Increases in moisture and instability create positively buoyant thermals, which mix

the boundary layer and increase boundary layer depth. Shear also increases vertical

mixing in the boundary layer, increasing boundary layer depth. When one or more of

these ingredients is only marginally supportive of severe weather, small model errors

can have a large impact on the forecast (Cohen et al. 2015). Environmental conditions

influenced by the model’s PBL scheme can result in di�erences in the morphological

characteristics (i.e., timing, location, mode, intensity) of the convection, which in turn

impacts a forecaster’s assessment of the severe weather threat (Cohen et al. 2015,

2017). As such, there is a need to reduce errors in forecasting the vertical structure of

the atmosphere, particularly the boundary layer, to better represent the convective

environment (Cohen et al. 2017).

The severe storm environment in the SE-US has received comparatively little

attention in regard to mesoscale modeling and PBL schemes (Cohen et al. 2015);

however, in recent years more studies have begun to examine PBL modeling in the

SE-US (e.g., Cohen et al. 2015; Cohen et al. 2017). Thermodynamic and kinematic

properties of the PBL in this region are not only influenced by heat fluxes from diurnal

heating, but also shear-driven eddies and large-scale vertical motion (Cohen et al.

2015). These processes need to be reflected in model simulations because the choice

of PBL parameterization schemes can a�ect a model’s ability to accurately depict the

SE-US severe storm environment (Cohen et al. 2015). PBL parameterization schemes

are necessary because the vertical grids of most numerical weather prediction (NWP)

models poorly resolve the PBL.

Cohen et al. (2015) and Cohen et al. (2017) found local PBL schemes (which

consider immediately adjacent vertical levels) under-forecast PBL depth and do not

fully mix the PBL in the SE-US, whereas non-local schemes (those that consider a

deeper layer with multiple levels) overmix the PBL. Hybrid schemes represent envi-

ronments that are not well mixed or strongly stable because vertical shear enhances

mixing and limited instability inhibits mixing (Cohen et al. 2017). At night, most

PBL schemes resulted in PBL depths that were too shallow (Cohen et al. 2017). All
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PBL schemes examined in Cohen et al. (2017) also over forecasted MLCAPE in both

daytime and overnight periods. They identified a need to improve a model’s ability

to depict the PBL in the SE-US region, which would in turn improve the forecast

and assessment of the severe weather threat. Accordingly, the di�erences between the

Great Plains CBL and SE-US CBL need to be accurately characterized. This study

will demonstrate the discrepancies between measured and numerically simulated PBL

depth by means of comparison between vertically pointing radar observations and a

high-resolution, nonhydrostatic NWP model. The case under consideration was a

tornado that occurred just after sunset.

2.1.2 Bragg scattering

Thermals may overshoot the top of the boundary layer, entraining drier air from

the free atmosphere into the CBL (Stull 1988). Such moisture gradients increase the

refractive index of the atmosphere for electromagnetic waves (Wyngaard and LeMone

1980; Bangho� et al. 2018). Di�erences in indices of refraction satisfy a condition

for Bragg scattering in the atmosphere (Rauber and Nesbitt 2018). Bragg scattering

occurs when “electromagnetic waves impinge on regularly spaced objects or regions of

air with di�erent indices of refraction leading to constructive interference between the

scattered waves” (e.g., Atlas 1959; Atlas 1960; Wol� 1998; Rauber and Nesbitt 2018).

Constructive interference also occurs when scatterers are located at distances equal

to half the radar wavelength (Wol� 1998; Rauber and Nesbitt 2018 and references

therein).

Studies have demonstrated radars with 10 cm wavelengths (i.e. S-band) or longer

are superior to shorter wavelength radars at detecting Bragg scattering (Ottersten

1969; Ralph 1995). Ralph (1995) performed a study to determine the threshold be-

tween Bragg scattering and Rayleigh scattering at various radar wavelengths. Based

on this work, the range of values in which C- and X-band radars can detect Bragg

scattering occur much less frequently than those at S-band (Ralph 1995).
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2.1.3 Boundary layer profiling by S-band radars

Radars have been used to study the boundary layer using backscatter from inho-

mogeneities in the refractive index since at least the 1960s (e.g., Atlas et al. 1966;

Hardy et al. 1966; Kropfli et al. 1968; Hardy and Katz 1969; Lane 1969, Tanamachi

et al. 2019). They have the ability to detect wind, turbulence, and the stability of

atmospheric layers (Gage and Balsley 1978). S-band (≥ 10 cm) wavelength radars

are commonly used for monitoring the CBL. They were designed to study boundary

layer morphology and evolution, and to measure the refractive index structure with

high spatial and temporal resolution (Chadwick et al. 1976; Waldinger et al. 2017).

They are suitable for clear-air and precipitation studies because the S-band covers

both Bragg scattering and Rayleigh scattering regimes (Battan 1959; Gossard 1990).

The Rayleigh scattering regime dominates in most cases of precipitation where the

scatterer is much smaller than the radar wavelength and the electric field is assumed

to be constant across the scatterer (Rauber and Nesbitt 2018 and references therein).

Scatterers detected in the examination of the boundary layer include hydrometeors,

insects and birds, cha�, debris, and inhomogeneities in the refractive index (Gage

and Balsley 1978; Gossard 1990). Using radar, there is the ability to determine the

heights of the convective thermals in the boundary layer (Melnikov and Zrnić 2017),

which aids in the detection of the boundary layer height. The use of these types of

Doppler radars in field campaigns can aid in understanding the mesoscale structure

of the atmosphere (Gage and Balsley 1978).

One type of S-band radar used to monitor the growth of the boundary layer is a

frequency-modulated, continuous-wave radar. The phrase “continuous-wave” means

the radar uses a high duty cycle, transmitting at or near 100% of the time (Fig.  2.4 )

(Richter 1969; Ince et al. 2003; Waldinger 2018). As a result, more energy is incident

on scatterers than with a conventional pulsed radar, yielding high radar sensitivity

(Richter 1969; Ince et al. 2003; Waldinger 2018). FMCW systems transmit a varying

linear frequency-modulated waveform with a long pulse repetition period (Fig.  2.4 )

(Richter 1969; Ince et al. 2003; Waldinger et al. 2017). The received echoes are a
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delayed version of the transmitted waveform, and when the two are combined, the

resulting beat frequency is proportional to the range of the target (Richter 1969;

Ince et al. 2003; Waldinger et al. 2017). The beat frequency signals are recorded

and transformed into pulsed radar-like echoes using a Fourier transform (Eaton et al.

1995; Ince et al. 2003; Waldinger et al. 2017).

Figure 2.4. Waveforms for traditional pulsed radars (top), continuous-
wave radars (middle), and frequency-modulated, continuous-wave
radars (bottom). (From Hegazy et al. 2016.)

2.1.4 Interpreting FMCW data

Interpreting data from a vertically pointing, FMCW radar data is much di�erent

than interpreting data from a pulsed, volumetrically scanning radar. FMCW data
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consist of vertical profiles of the conditions directly above the radar, whereas data from

a volumetrically scanning radar are most often collected using a spiral step scanning

pattern, scanning 360°and increasing elevation angle. If multiple layers with distinct

characteristics are present, they may appear di�erent on vertically pointing radar.

Under quiescent, clear sky conditions, the layer exhibiting the highest reflectivity

will likely be the top of the boundary layer, and any other layers with enhanced

reflectivity are likely shear layers (Waldinger 2018). Similarly, Gossard (1990) states

that internal layers within the boundary layer detected by radar are often locations

of sharp temperature or humidity gradients. It is also common for insects or birds to

produce brief high-reflectivity echoes (Waldinger 2018).

Figure 2.5. UMass FMCW coherent reflectivity factor (dBZ) from
1200 UTC to 1300 UTC 14 March 2016. The melting layer is located
at ≥2.5 km.

When precipitation is present in the column above the radar, the melting layer

is identified as a local maximum in reflectivity aloft (Fig.  2.5 ) (Austin and Bemis

1950, Waldinger 2018). The reflectivity is greater in this region due to frozen parti-

cles becoming coated with liquid water as they begin to melt, increasing their index
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of refraction, and having a larger cross-sectional area than the melted drops below

(e.g., Austin and Bemis 1950; Rauber and Nesbitt 2018; Waldinger 2018). Above the

melting layer, hydrometeors are frozen (i.e., snow flakes) and fall slowly, resulting in

lower velocities (Doviak and Zrnić 1993, Fabry and Zawadzki 1995, Rauber and Nes-

bitt 2018). Below the melting layer, liquid drops fall much faster (Doviak and Zrnić

1993, Fabry and Zawadzki 1995). In the UMass FMCW data, the liquid precipitation

sometimes has a velocity that exceeds the radar’s unambiguous velocity, resulting in

incorrectly identified velocity values displaced by an integer multiple of the radar’s

Nyquist interval. This phenomenon is known as velocity aliasing (Doviak and Zrnić

1993, Fabry and Zawadzki 1995, Rauber and Nesbitt 2018).

2.2 Issues with forecasting boundary layer height

The current U.S. upper air observational network is too sparse to capture bound-

ary layer phenomena at length scales of 10 km or less (Wagner et al. 2019). Raw-

insondes are a conventional observational tool for studying the boundary layer, but

operationally, they are only launched twice daily at 0000 UTC and 1200 UTC in

select locations in the U.S., resulting in coarse spatial (≥ 100 km to 1000 km) and

temporal resolution (Bangho� et al. 2018). Disadvantages of using radiosondes for

field research include the high cost (≥ $500) of each observation, the amount of labor

that goes into each launch, and horizontal drift (Wagner et al. 2019). The existing

WSR-88D network o�ers the potential for automated boundary layer height moni-

toring (e.g., Heinselman et al. 2009; Elmore et al. 2012; Bango� et al. 2018) which

increases the temporal resolution of boundary layer observations; however, the spa-

tial resolution between WSR-88D sites is still on the order of 200 km to 300 km and

WSR-88Ds cannot point vertically.

To supplement data from observations, PBL height can be calculated from NWP

model output. Unfortunately, there can be large errors in boundary layer height esti-

mates given by numerical models (e.g., Grimsdell and Angevine 1998; Stensrud and

Weiss 2002; Cohen et al. 2017). Limited spatial and temporal resolution observations

and inaccurate model predictions make it di�cult to observe and forecast the height
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of the boundary layer (Bangho� et al. 2018). Profiling instruments, such as FMCW

radars, the National Oceanic and Atmospheric Administration (NOAA) Wind Profiler

Network, the Collaborative Lower Atmospheric Mobile Profiling System (CLAMPS),

and the Atmospheric Emitted Radiance Interferometer (AERI) can help alleviate

some of these issues because they can capture the evolution of the boundary layer in

near-real time (Wagner et al. 2019).

2.3 Data assimilation

NWP models use data assimilation (DA) to represent the initial state of the atmo-

sphere as accurately as possible (Talagrand 1997). DA aims to combine observations

and a prior model state to produce more accurate initial conditions for further in-

tegration of the model through the use of meteorological observations and physical

laws, such as the conservation of mass and momentum (Talagrand 1997; Kalnay 2003).

When observations are available, the background state predicted by the model is “up-

dated” with the new observations (Talagrand 1997). The integration of the model

is then restarted from this updated state and the process repeats (Talagrand 1997).

There will inherently be uncertainty in both the observations and the model equa-

tions, so DA systems should not only provide a good representation of the atmospheric

state, but also an estimate of the associated uncertainty (Talagrand 1997).

The goal of DA is to minimize the di�erence between observations and the updated

model state, or analysis (Jung et al. 2008). Assimilation of observations into NWP

models provides a statistically optimal combination of the model and observations

for initialization (Xue et al. 2005). Over the past several decades, DA has improved

the initial conditions of operational models, leading to improved NWP (Kalnay 2003).

The assimilation of Doppler radar observations has shown to be particularly beneficial

in the numerical prediction and analysis of severe convective storms (e.g., Xiao and

Sun 2007; Snook et al. 2012; Tanamachi et al. 2013; Bachmann et al. 2020).
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2.3.1 Ensemble Kalman filter

One technique used to capture uncertainty and model variability is ensemble fore-

casting. Ensemble forecasting generates multiple forecasts from the same model, each

with slightly di�erent initial conditions (Kalnay 2003). When a majority of ensemble

members produce similar outcomes, there is greater confidence in the forecast. On

the contrary, when there is greater spread amongst members, there is reduced confi-

dence. Ensemble forecasting also provides information about forecast sensitivity and

probabilistic forecast guidance (Snook et al. 2012). The forecast can be improved

using ensemble averaging (Kalnay 2003).

One type of DA system commonly used for atmospheric data, and the one use in

this study, is the ensemble Kalman filter (EnKF) (Evensen 1994, 2003; Houtekamer

et al. 2005; Xue et al. 2005). EnKF uses an ensemble of forecasts to calculate a

model spread (Snook et al. 2015). It predicts how all variables will change with

one modification and updates all ensemble members. Given that the model and

observations both have associated uncertainty, the ensemble spread after assimilation

should be approximately equal to the uncertainty in the observations. Therefore, a

key benefit to the EnKF method is that it helps capture uncertainty.

The EnKF technique can be used to assimilate both simulated and real data

from various platforms, and it can be used on scales ranging from global models to

mesoscale convective models (Houtekamer and Mitchell 1998; Snook et al. 2015).

Because of its ability to handle complex, nonlinear, physical processes, EnKF is par-

ticularly suitable for convective scales (Jung et al. 2008). EnKF analyses charac-

terize analysis uncertainty, which generates desirable initial conditions for ensemble

forecasts (Snook et al. 2012). As the number of ensemble members increases, accu-

racy generally increases and the root-mean-square analysis error generally decreases

(Houtekamer and Mitchell 1998).

The assimilation of Doppler radar observations through the EnKF technique has

proven e�ective for initializing model states (Snook et al. 2012). Doppler velocity

and radar reflectivity are the most commonly assimilated radar variables (Tanamachi
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et al. 2013). When assimilating these two variables, EnKF methods have produced

dynamically consistent wind, temperature, and microphysical fields for convective

storms (Snook et al. 2012). Additionally, the more radars whose data are assimilated,

the more realistic the model output tends to be (e.g., Tanamachi et al. 2013; Marquis

et al. 2014; Supinie et al. 2016). In this study, conventional observations and radar

reflectivity from the WSR-88D network surrounding the VORTEX-SE domain are

assimilated into the Advanced Regional Prediction System (ARPS) model.
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3. DATA AND METHODOLOGY

3.1 Data

High temporal resolution observations of CBL development have the potential to

improve forecasts because the vertical structure of the atmosphere influences the tim-

ing, location, mode, and intensity of convection (Stull 1988; Markowski and Richard-

son 2010 and referenes therein). Quality control was performed on contaminated

Doppler spectra from a vertically pointing, S-band, profiling radar deployed in north-

ern Alabama during the VORTEX-SE field campaign. Once the spectra were cleaned,

new moments were generated and radar derived boundary layer height observations

were compared to forecast PBL height from the ARPS model as a verification metric

of the new data set.

3.1.1 UMass FMCW observations

This study focuses on observations from the UMass FMCW collected during

VORTEX-SE. The UMass FMCW (Fig.  3.1 ) was developed at the Microwave Re-

mote Sensing Laboratory (MIRSL) (Eaton et al. 1995; İnce et al. 2000, 2003). It is

an S-band, vertically pointing, single polarized, pulse compression radar. This radar

is mounted on a truck for mobility, and is designed to be deployed at a fixed location

continuously collecting observations for long periods of time (e.g., Tanamachi et al.

2019). The UMass FMCW uses a pair of 2.4-m diameter parabolic dish antennas,

one for transmission and one for reception, each with 34 dB gain (Ince et al. 2003).

The UMass FMCW has a high temporal (≥ 16 s) and vertical (≥ 5 m) resolution

(Tanamachi et al. 2019).

The UMass FMCW was deployed to monitor the growth of the CBL over north-

ern Alabama in both the 2016 and 2017 VORTEX-SE field experiments. In total,

approximately 14 weeks of data were collected (55 days in 2016 and 53 days in 2017),

ranging from clear air cases to severe thunderstorms (Tanamachi et al. 2019). In

2016, the UMass FMCW was deployed at the Tennessee Valley Research and Ex-

tension Center near Belle Mina, Alabama and operated almost continuously from 7
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March to 30 April (Fig.  3.1 ). This site was selected because it is relatively free from

clutter, and was collocated with other meteorological instruments.

Figure 3.1. The UMass FMCW at its 2016 VORTEX-SE deployment
location near Belle Mina, AL. © Robin Tanamachi

The radar was configured to collect 256 frequency modulated sweeps over a 1.34-s

interval to generate a Doppler spectrum. Twelve spectra were then averaged every

16.1 s. From these averaged spectra, the moments (reflectivity, Doppler velocity, and

spectrum width) were calculated. Reflectivity (mm6/m3) is estimated from the signal

to noise ratio (SNR) and calculated using:

÷ ¥ 0.38C2
n⁄≠1/3 (3.1)

where ÷ is reflectivity, C2
n is the refractive index structure parameter, and ⁄ is radar

wavelength. ( 3.1 ) assumes only Bragg scattering is present. Reflectivity (÷) is dif-

ferent than reflectivity factor (dBZ), but in keeping with meteorological convention,

reflectivity factor is referred to as just reflectivity. Each spectral profile in the 2016

data set comprised 1,024 spectra at 5-m height intervals from 0 to 5.1 km above

radar level (ARL). In total, approximately 14,000 spectral profiles were collected over
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the 2016 field campaign (Frasier and Waldinger 2016; Tanamachi et al. 2019). The

UMass FMCW data are openly available through the Earth Observing Laboratory

(EOL) archive ( https://data.eol.ucar.edu/dataset/527.016 ).

3.1.2 Spurs

Unfortunately, the Doppler spectra collected in 2016 were contaminated by “spurs”,

or spurious spectral peaks caused by high-voltage switching power supplies in the trav-

eling wave tube amplifier, resulting in approximately 14,000 tainted spectral profiles.

An example of such a contaminated spectral profile is shown in Fig.  3.2 a. The spurs

are evidenced as small, bright, horizontally elongated peaks. Electronic spurs can be

distinguished from a naturally occurring peak in the spectra (e.g. a bird or bug) be-

cause they are time continuous and occur at nearly constant heights and amplitudes

owing to their electronic origin, whereas echoes from birds and bugs vary widely in

height and spectral power (Fig.  3.3 ). Spectral peaks at 0 m s≠1 Doppler velocity

are caused by ground clutter and antenna leakage (Waldinger 2018). Tanamachi et

al. (2019) employed a median filtering technique (Fig.  3.2 b) to eliminate most of

the spurs, but the largest ones were still present, which degraded the quality of radar

moments (e.g., reflectivity, Doppler velocity, and spectrum width) and hindered fur-

ther analysis of these data (e.g., boundary layer height tracking). The traveling wave

tube amplifier was replaced with a solid-state amplifier in 2017, which eliminated the

spurs.

3.1.3 Description of in-painting algorithm

We aimed to rectify the unwanted spurs in the 2016 data in order to improve

the quality of the moments. The method selected to remove and interpolate across

the spurs was the Chan et al. (2016) “in-painting” method, which was developed to

remove noise in 2D images. The version adapted for the UMass FMCW radar data

can be found at  https://github.com/sbeverid/inpainting .
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Figure 3.2. Spectral profile for a clear-air case on 31 March 2016: (a)
raw spectral power (in dBZ); (b) as in a, but after application of the
median filter; and (c) as in a, but after application of the in-painting
method.

The main idea of the Chan et al. (2016) in-painting method is to take a cor-

rupt image y œ Rn and use a maximum-a-posteriori estimation, with the goal of

maximizing the posterior probability, to generate a denoised image (x):

‚x = argmax
x

p(x | y)

= argmin
x

≠ log p(y | x) ≠ log p(x)
(3.2)

where p(y | x) is some conditional probability, and p(x) is a prior distribution of the

image. We want to find an x that maximizes the conditional probability and is the

best approximation of the real image.
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Figure 3.3. Flow chart of the logic for determining whether a peak in
the Doppler spectra is biological or electronic in origin.

( 3.2 ) can be written as an optimization problem:

‚x = argmin
x

f(x) + ⁄g(x) (3.3)

where f(x) def= ≠ log p(y | x) is the forward model of the image formation process,

which tries to minimize the noise and other corruption happening from the image

formation process, and g(x) def= ≠(1/⁄) log p(x) is the regularization function that

controls how natural the reconstructed image appears, and ⁄ > 0 is the regularization

parameter. ⁄ controls how much prior information should be used to do the image

reconstruction (i.e. how much f(x) and g(x) is needed). Using a ⁄ that is too large

can result in a loss of detail from the original image because too much weight will be
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given to the prior. A very small ⁄ can result in an image that still has a lot of corrupt

pixels. log p(x) is the prior and log p(y | x) is the probability mean square error.

It is di�cult to solve the forward model and the prior at the same time, because

we want a solution that will work for any prior. Therefore, a standard technique

called alternating direction method of multipliers (ADMM) (Boyd et al. 2011; Chan

et al. 2016) is used, where we introduce a new variable v and add a constraint. The

optimization problem is now:

(‚x, ‚v) = argmin
x,v

f(x) + ⁄g(v), subject to x = v (3.4)

One of the common ways to solve for a constrained optimization problem is to find

the saddle point of the Lagrangian (Boyd et al. 2011). Since the Lagrangian itself is

not usually stable, an augmented Lagrangian used here:

L(x, v, u) = f(x) + ⁄g(v) + uT (x ≠ v) + fl

2Îx ≠ vÎ2 (3.5)

This introduces a fourth term, which is added to prevent x from moving too far away

from v, thus making making the Lagrangian more stable.

An approximate saddle point of ( 3.5 ) can be obtained by iteratively solving the

following set of subproblems:

x(k+1) = argmin
x

f(x) + (flk/2)
...x ≠

1
v(k) ≠ u(k)

2...
2

(3.6)

v(k+1) = D‡k

1
x(k+1) + u(k)

2
(3.7)

u(k+1) = u(k) +
1
x(k+1) ≠ v(k+1)

2
(3.8)

flk+1 = “kflk (3.9)

( 3.6 ), ( 3.7 ), ( 3.8 ) are scaled multipliers where D‡k
is an image denoiser algorithm and

‡k
def=

Ò
⁄/flk is the “noise level” that the denoiser takes and controls the strength of

the denoiser. A larger ‡k results in a smoother image, whereas a smaller ‡k retains

more details from the original image. ( 3.6 ) is an inversion step and ( 3.7 ) is a denoiser
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step, involving the prior. These equations are repeatedly solved until the algorithm

converges.

For the Chan et al. (2016) in-painting method, the problem takes the following

form:
‚x = argmin

x

1
2ÎSx ≠ yÎ2 + ⁄g(x) (3.10)

where S is a diagonal matrix which contains a list of pixels and and x is a 1D array

(Fig.  3.4 a). Therefore, once you apply the matrix S to the original, corrupt image,

you will get an image with the corresponding missing pixels. Implementation of S is

done using a mask (Fig.  3.4 b).

Figure 3.4. Simplified example of the in-painting process using a 5 ◊
5 matrix with (a) a peak in the center pixel; (b) implementation of a
mask around the peak; and (c) the output image with the peak filled
in according to surrounding data.

The inversion step for in-painting becomes:

‚x = argmin
x

1
2ÎSx ≠ yÎ2 + fl

2Îx ≠ ÂxÎ2 (3.11)

and the solution becomes:

‚x =
1
ST S + flI

2≠1 1
ST y + flÂx

2
(3.12)
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(Fig.  3.4 c). ST S is a diagonal matrix with binary entries: pixel present = 1 or

pixel not present = 0. The closed form solution can be executed using element-wise

division, or in this case, “pixel-wise” division for all pixels.

In essence, each UMass FMCW spectral profile (e.g., Fig.  3.2 a, Fig.  3.5 a) was

treated as a 256 ◊ 1,024 pixel image. The Chan et al. (2016) in-painting code requires

a first guess for the locations of noise spikes in an image, which were provided by

labeling local extrema in the Laplacian of the spectral profile. After these extrema

were masked, the dynamic range of the UMass FMCW spectral power (ranging from

-50.5 dBZ to +47.6 dBZ) was scaled down to the normalized range (0, 1), as required

by the Chan et al. (2016) in-painting code (Fig.  3.5 b). The Chan et al. (2016)

in-painting code then filled in the masked area according to surrounding data. In

cases in which the holes created by the masking procedure were too large for the

in-painting method to fill, the masked 256 ◊ 1,024 spectral profile was down-sampled

to a 128 ◊ 512-pixel image, to which the in-painting code was then applied. The

resulting spectral profile was then scaled back up to the original size and dynamic

range. Lastly, regardless of whether the down-scaling substep occurred or not, those

portions of the spectral profiles that were not masked in the Laplacian filtering step

were restored. The resulting spectral profiles are hereafter referred to as the “in-

painted” spectral profiles (e.g., Fig.  3.2 c, Fig.  3.5 c).

The Chan et al. (2016) in-painting method is superior to simplistic methods, such

as linear interpolation, because the denoiser is more powerful. Denoisers have an im-

age prior, either implicitly or explicitly defined, that ensures the reconstructed image

is close to the distribution of images, whereas simple linear interpolation does not.

A limitation regarding the Chan et al. (2016) in-painting method is that completely

saturated pixels, such as in instances where aircraft pass over the radar, cannot be

fixed by the in-painting method because the noise floor is raised. In the 2016 data

set, this was not a common issue and cases were easily eliminated by inspection.
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Figure 3.5. Example of the in-painting process for a Doppler spectral
profile at 0000 UTC 31 March 2016 with (a) the raw spectral profile
containing the peaks; (b) implementation of a mask around the peaks
with the normalized dynamic range; and (c) the output in-painted image
with the peaks filled in according to surrounding data.

3.1.4 Spectral power di�erences

To evaluate the performance of the Chan et al. (2016) in-painting method relative

to the median filter, spectral power di�erences were calculated and plotted. Multiple

three-panel plots were produced containing spectral power di�erences for time indices

0, 100, and 200, coinciding with approximately the beginning, middle, and end of a

given hour. These time indices were su�cient to give an overview of how well the in-

painting method performed compared to the median filter. To visualize the spectral

power di�erences, histograms were produced of spectral profile pixels for each 5-dB

spectral power di�erence bin. The bins (-5 dB, 0 dB) and (0 dB, 5 dB) were masked,

because their frequencies dominated the histograms by several orders of magnitude.
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3.1.5 Regenerating UMass FMCW moments

The moments of Doppler spectra are the basis of three primary weather radar

variables: reflectivity, Doppler velocity, and spectrum width. When the quality of

the Doppler spectra are compromised, it impacts the quality of these derived spectral

moments. Once the quality of the Doppler spectra were improved, we generated a

new version of UMass FMCW spectral moments from the in-painted spectra.

The velocities of targets within a radar sample volume vary due to wind shear,

variations in target fall speeds, small-scale turbulent motions (Rauber and Nesbitt

2018 and references therein), and other factors (Doviak and Zrnić 1993). The radial

velocity assigned to that sample volume is a representation of the power weighted

average target motion over all targets within the sample volume (Rauber and Nesbitt

2018 and references therein). When the di�erent phase shifts for all of the di�er-

ent pulse-pairs taken within a given sample volume are aggregated, a spectrum of

velocities is produced (Rauber and Nesbitt 2018 and references therein).

Traditionally, radar reflectivity is calculated using noise-subtracted power mea-

surements (Ulaby et al. 1982, Doviak and Zrnić 1993, Pazmany and Haimov 2018).

In the UMass FMCW data, the noise floor was assumed to be a constant function

of range, but in reality, there are subtle changes in the noise floor. For example,

temperature fluctuations change receiver gain, which results in changes in the noise

floor. Unwanted striping was present in the reflectivity and signal to noise ratio

(SNR) fields, even after the application of the Chan et al. (2016) in-painting, because

the largest spurs were accompanied by large jumps in the noise floor. To mitigate

the unwanted striping in reflectivity and SNR, we applied the coherent power (CP)

technique (Pazmany and Haimov 2018). The CP technique uses coherent reflectivity

factor, which is the reflectivity derived from the coherent signal to noise ratio (SNC).

SNC is the signal to noise ratio derived from the coherent power, which does not

require noise subtraction. Instead, it assumes each signal has a di�erent noise sample

and when averaging the noise samples, the noise gets smaller and smaller because

of the random phase. Therefore, a benefit to using coherent reflectivity is that it is
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derived directly from the pulse pair correlation and does not require estimating and

subtracting noise (Pazmany and Haimov 2018). This also results in an inherently

unbiased signal.

3.1.6 Boundary layer height detection algorithm

Since one of the objectives of VORTEX-SE was to quantitatively assess boundary

layer growth, an objective method to measure the boundary layer height in reflectivity

observations was needed. Deriving boundary layer height from the UMass FMCW

radar served two purposes: 1) a metric to evaluate the improvement of the in-painted

Doppler spectra on downstream products, and 2) a comparison to the ARPS modeled

PBL depth at Belle Mina, Alabama.

The method selected to estimate the CBL depth was the boundary layer height

detection algorithm of Lange et al. (2015). This algorithm employs an extended

Kalman filter (EKF) which combines past and present CBL height estimates with an

a priori estimate and an analytical model of the CBL-to-free atmosphere transition

reflectivity profile to provide time-continuous CBL height estimations (Lange et al.

2015). The reader is directed to Lange et al. (2015) for additional information

regarding the boundary layer height detection algorithm beyond what is discussed

below.

The first step in the boundary layer height detection algorithm is a preprocess-

ing step to generate a “clean” time-height reflectivity profile where Bragg scattering

dominates (Lange et al. 2015). A median filter is used to remove noise caused by

Rayleigh scatterers, such as bioscatterers, and instrumentation e�ects (Lange et al.

2015). The resulting reflectivity image is an approximation of what the radar would

see if only Bragg scattering was present, from which the CBL depth can then be esti-

mated (Lange et al. 2015). The next step is to run the EKF (Lange et al. 2015). The

EKF requires initial guesses for the a priori state vector (i.e., the previous time step’s

reflectivity profile), a priori state vector error covariance matrix factor, atmospheric

state-noise covariance matrix factor, and the bounds of the filter (Lange et al. 2015).

Lastly, the measurement noise covariance matrix is computed under the assumption
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of ergodicity (Lange et al. 2015). With each iteration of the EKF, a new, a posteriori
estimate of the CBL height is generated.

One limitation to the boundary layer height detection algorithm is that the Kalman

filter assumes relatively slowly varying quantities. Additionally, the algorithm is lim-

ited by error covariances, so there are no large jumps in boundary layer height. Track-

ing the stable boundary layer and elevated residual layer was beyond the scope of this

study because the focus of VORTEX-SE was on the CBL.

To quantify the improvement of the algorithm with the in-painted moments, his-

tograms were produced of the frequency of PBL height values. These are discussed

in the next chapter.

3.2 Numerical model

As part of other VORTEX-SE-related research at Purdue, we performed a high-

resolution numerical simulation of the northern Alabama domain for one IOP from

the 2016 campaign. From this, we generated an ensemble of boundary layer states

against which the UMass FMCW-derived boundary layer heights could be compared.

Numerical simulations were performed using the ARPS model. The ARPS model was

developed at the Center for Analysis and Prediction of Storms at the University of

Oklahoma (Johnson et al. 1994; Xue et al. 2000). It is a fully 3D, compressible, and

nonhydrostatic model designed for mesoscale to convective scale studies (Johnson et

al. 1994; Xue et al. 2000). The governing equations are transformed from Cartesian

coordinates to curvilinear coordinates to allow for stretched grids and terrain (Johnson

et al. 1994). Additionally, ARPS has the ability to change grid shape with time,

which allows for higher resolution grids in regions with larger gradients (Johnson et

al. 1994).

ARPS employs a non-local boundary layer parameterization scheme. It contains

di�erent input options that determine how PBL depth is calculated. For the method

selected in this study, the initial PBL depth (h0) is scaled by the frictional velocity

(uú):

h0 = uú/f (3.13)
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where f is the Coriolis parameter. Then, PBL depth either decreases or increases

depending on whether the boundary layer is stable or unstable. Stability is determined

based on the bulk Richardson number:

Rib = g

◊0

(◊h ≠ ◊s) h

U2
h

(3.14)

where g is gravitational acceleration, Uh and ◊h are the wind speed and potential tem-

perature at the top of the PBL, and ◊0 and ◊s are the reference and surface potential

temperatures, respectively. If Rib > 0, it is assumed there is a stable boundary layer

and the depth is calculated as follows:

dh

dt
= T ≠1 (he ≠ h) (3.15)

where

T = ≠3
4

(◊h ≠ ◊s)
ˆ◊s/ˆt

(3.16)

and

he = 0.15◊0
fU2

h sin – cos –

g |ˆ◊s/ˆt| (3.17)

where he is the equilibrium height and – is the angle between the wind at the top of

the PBL and the surface wind:

– = tan≠1 (uh/vh) ≠ tan≠1 (us/vs) (3.18)

On the contrary, if Rib < 0, the boundary layer is assumed to be unstable and depth

is calculated with: A
h2

(1 + 2A)h ≠ 2BŸL

B
dh

dt
=

1
wÕ◊Õ

2

s

(ˆ◊/ˆz)h
(3.19)

where A = 0.2, B = 2.5, Ÿ is the von Karman constant,
1
wÕ◊Õ

2

s
is the vertical heat

flux at the surface, L is the Obukhov length defined by:

L = ≠ u3
ú◊

Ÿg
1
wÕ◊Õ

2

s

(3.20)
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Regardless of the method selected to calculate PBL depth in the ARPS model, PBL

depth is a diagnostic quantity. Because ARPS PBL depth is diagnostic, it is not tied

to turbulence.

Benefits to using the ARPS model include: it has self-contained data ingest,

quality control and objective analysis packages, a DA system which includes single-

Doppler velocity and thermodynamic retrieval algorithms, a forward prediction com-

ponent, and a self-contained post-processing, diagnostic and verification package (Xue

et al. 2000). The model is essentially run via two main steps: initialization and iter-

ation (Johnson et al. 1994). The initialization step generates an initial model state

and the iteration step integrates the model equations at each grid point, through

successive time steps (Johnson et al. 1994). The initialization period is shorter than

the iteration period (Johnson et al. 1994).

To examine the 31 March 2016 tornadic VORTEX-SE case, we performed numer-

ical simulations of the weather conditions on three one-way nested grids at horizontal

grid spacings of �x = 6 km, 3 km, and 1 km (Fig.  3.6 ). All grids had 53 vertical

levels stretching from ≥ 20 m near the surface to 773 m aloft. For these experiments,

we used an ensemble of 40 members.

3.2.1 Model data

Five-minute observations from the Automated Surface Observing System (ASOS)

( https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-b

ased-datasets/automated-surface-observing-system-asos ) were assimilated

into ARPS for all experiments. These surface observations consisted of temperature

(T), dew point temperature (Td), pressure (p), and the zonal (u) and meridional (v)

components of the wind.

In addition to surface observations, Level II WSR-88D radar data were also as-

similated. These data were downloaded from the National Centers for Environmental

Information NEXRAD data archive ( https://www.ncdc.noaa.gov/nexradinv/ ).

Radar reflectivity and radial velocity data were assimilated into the model using the

EnKF method. Only WSR-88D data from 1800 UTC 31 March 2016 to 0300 UTC 1
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April 2016 were assimilated because the focus of this study is on the tornadic round

of evening convection.

Figure 3.6. 6 km (outermost box), 3 km, and 1 km (innermost, red
box) grid domains, including the locations of the WSR-88D radars that
were assimilated.

A total of three test experiments were performed (Table  3.1 ). These experiments

are further detailed below.

3.2.2 6 km simulation

The 6 km simulation had a grid size of 303 ◊ 303 ◊ 53 and covered the VORTEX-

SE domain (Fig.  3.6 ). Data from the North American Mesoscale Forecast System

(NAM), an operational NWP model which has a horizontal grid spacing of 40 km,

was used for the initial conditions and boundary conditions. NAM output can be
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accessed at  https://www.ncdc.noaa.gov/data-access/model-data/model-dat

asets/north-american-mesoscale-forecast-system-nam . A 6-hour spin up

period (1200 UTC to 1800 UTC 31 March 2016), in which no data were assimilated,

was used to allow the model to become steady (Fig.  3.7 ). ASOS observations were

assimilated from 1800 UTC 31 March 2016 to 0300 UTC 1 April 2016. Output for

the 6 km simulation was generated every 15 minutes (Fig.  3.7 ).

Table 3.1. A brief description of the experiments, including the grid
sizes and data assimilated.

Experiment Type Horizontal Grid
Spacing

Description

Background 6 km Assimilated surface obs.,
served as the background
for the 3 km experiment

sfc+88D 3 km Assimilated surface obs.
and WSR-88D data,

served as the background
for the 1 km experiment

sfc+88D 1 km Assimilated surface obs.
and WSR-88D data

3.2.3 3 km simulation

The 3 km simulation had a grid size of 153 ◊ 153 ◊ 53 and covered northern

Alabama (Fig.  3.6 ). The aforementioned 6 km simulation served as the initial condi-

tions and boundary conditions for the 3 km simulation. This simulation assimilated

surface and radar observations from KBMX, KGWX, KHPX, KHTX, KNQA, KOHX,

and KPAH every 5 minutes. Output for the 3 km simulation was generated every 5

minutes (Fig.  3.7 ).
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3.2.4 1 km simulation

The 1 km grid was 243 km ◊ 243 km in size and was centered over Priceville, Al-

abama (Fig.  3.6 ) where the tornado occurred at 0154 UTC. The 1 km simulation was

initialized using initial and boundary conditions generated from the 3 km simulation.

To prevent the model from becoming unstable, surface and radar observations were

assimilated at every other grid point. Output for the 1 km simulation was generated

every 5 minutes (Fig.  3.7 ).

Figure 3.7. A timeline of the 6 km, 3 km, and 1 km experiments. All
times are in UTC.

Thermodynamic profiles (i.e., a model sounding) were extracted from the 1 km

simulation at the grid point closest to Belle Mina, Alabama, where the UMass FMCW

radar was deployed. This allowed for a straightforward comparison of the model-

derived boundary layer height with the radar-derived boundary layer height. The

comparison was done via a time series analysis.
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4. RESULTS

4.1 Spectral power di�erences

When examining the spectral power di�erence plots (e.g., Fig.  4.1 f), areas that

are brighter and have higher spectral power di�erence values indicate an improvement

in the removal of the spurs (i.e., the spurs were more e�ectively flattened by the Chan

et al. (2016) in-painting method than the median filter method). Regions that are

darker with negative spectral power indicate spurs that were more e�ectively removed

by the median filter than the Chan et al. (2016) in-painting method. Additionally, for

the in-painting method to perform better than the median filter method, we expect

a right-tailed distribution in the spectral power di�erence histograms (e.g., Fig.  4.2 ).

4.1.1 Clear air

For clear air (i.e., non-precipitation containing) spectra, the median filter method

did a good job at removing the spurs, particularly the smaller peaks, as can be

seen from the raw minus median filtered panels of the spectral power di�erence plots

(Fig.  4.1 d). However, the Chan et al. (2016) in-painting method better removed the

larger peaks (Fig.  4.1 e), as indicated by the greater spectral power di�erences there.

There were negative spectral power di�erence values when the in-painted spectra

were subtracted from the median filtered spectra, indicating the Chan et al. (2016)

in-painting method did not remove the small peaks as well as the median filter method

(Fig.  4.1 f).

The spectral power di�erence histograms for clear air cases have right-tailed dis-

tributions (Fig.  4.2 ). The raw minus median filtered spectral power di�erence his-

tograms (Fig.  4.2 a) have a greater number of spectral profile pixels in the bins with

lower spectral di�erence (i.e., ≥ <20 dB) compared to the raw minus in-painted his-

tograms (Fig.  4.2 b), whereas the raw minus in-painted histograms have a greater

number of spectral profile pixels in the bins >35 dB (Fig.  4.2 e). This can be seen in

Fig.  4.2 d-f, which zoom in on the higher spectral power di�erences to show the detail

in the improvement in the number of spectral profile bins between the raw minus
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median filtered and raw minus in-painted. Given the negative spectral power di�er-

ence values, the Chan et al. (2016) in-painting method retains some artifacts from

small peaks. This a�rms the Chan et al. (2016) in-painting method better removes

the large spurs. While the median filter may smooth out small-amplitude spurs, it

also wipes out spectral features with small amplitudes that we wish to retain. Ex-

amples include monodisperse precipitation spectral peaks as might be encountered in

the presence of size sorting, or bioscatterer activity, whereas the in-painting method

retains these features owing to its data restoration step in unmasked regions.

4.1.2 Precipitation

In spectral profiles containing precipitation, there are fewer spurs present, because

power associated with the spurs does not exceed that from the rain in most cases (Fig.

 4.3 ). Again, the Chan et al. (2016) in-painting method better removes the large

spurs, particularly in regions of the spectra una�ected by rain. This is evidenced by

the greater spectral power di�erence and higher dB values in those regions in the raw

minus in-painted (Fig.  4.3 e) and median filtered minus in-painted (Fig.  4.3 f) panels.

Again, small peaks are not as well removed with the Chan et al. (2016) in-painting

method because they evade masking during the initial Lagrangian peak-finding step.

The spectral di�erence histograms for precipitation cases also have right-tailed

distributions (Fig.  4.4 ). However, when compared to the corresponding histograms

for clear-air cases, the frequencies in each bin are smaller. This is because, in many

instances, the spurs have lower power than, and are therefore obscured by, the rain

signal. Negative spectral di�erences come mostly from di�erences along the zero

isodop and the edges of the peaks (Fig.  4.4 b-c). This provides further evidence the

Chan et al. (2016) in-painting performs well on large peaks, but does not handle

smaller peaks as well.
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4.2 Moments

The moments generated from the median filtered Doppler spectra have spurious

reflectivity and SNR peaks at constant altitudes caused by the largest spurs (bold

horizontal lines at approximately 1.3 km, 2.6 km, and 3.9 km in Fig.  4.5 a-d). The

Chan et al. (2016) in-painting method removed some of the unwanted horizontal

striping, resulting in cleaner derived moments (Figs.  4.5 e-h and  4.6 e-h). The use

of coherent reflectivity and SNC, which are not noise floor-dependent, helped reduce

the e�ect of receiver saturation that we dubbed, “horizon glow” (Fig.  4.5 e-h). This

is also evident when comparing reflectivity (Fig.  4.7 ) and coherent reflectivity (Fig.

 4.8 ) fields for the entire 2016 VORTEX-SE campaign.

4.3 Boundary layer height detection

Tanamachi et al. (2019) noted that an automated boundary layer height detection

algorithm (Lange et al. 2015), which operated purely on the reflectivity, struggled to

identify the top of the boundary layer in the presence of the spurious reflectivity peaks

caused by the spurs in the Doppler spectra, even after median filtering was applied.

It can be seen in the example shown in Fig.  4.9 a that the algorithm misidentified the

spurious reflectivity peaks as the top of the CBL. The combined application of the

Chan et al. (2016) in-painting and CP technique methods reduced the amplitudes of

these peaks, leaving the Bragg scatter at the top of the CBL as the dominant signal

in clear air.

Qualitatively (e.g., Fig.  4.9 b) and quantitatively (e.g., Fig.  4.10 b), the auto-

mated boundary layer height detection algorithm performs much better on this new

reflectivity field. For the quantitative assessment, histograms were generated for a

subsample of 24 hours of clear air boundary layer height detection observations using

both median filtered and in-painted moments. The median filter method identifies

more PBL heights at 1.3 km associated with a maximum in reflectivity caused by the

spurs (Fig.  4.10 a). The in-painting method better removes the spurs, which reduces

the number of misidentified PBL heights (Fig.  4.10 b). There is another local peak in
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the median filtered histogram in the bin centered around 400 m ARL, which is the top

of the horizon glow layer. With the horizon glow removed by the CP technique, there

are now detections of PBL depth in the bottom two bins that used to be obscured by

the horizon glow.

There were instances where the boundary layer height detection algorithm failed

to accurately detect the decaying CBL, and instead began tracking the residual layer.

It may be possible to tag boundary layer retrievals in the algorithm with a quality

flag based on factors such as time of day, net radiative flux sign, presence of clouds

and precipitation, etc. However, a data quality flag is beyond scope of this study.

4.4 ARPS model comparison

As a demonstration of the potential diagnostic value of the PBL depth values

derived from these improved moments, they were compared with PBL depth estimates

from a state-of-the-art NWP model, the ARPS (Xue et al. 2000). At early times

(1800 UTC to 2100 UTC) in the ARPS simulations, calculated PBL depths followed

the UMass FMCW observations of boundary layer depth (Fig.  4.11 ). There was

particularly good agreement between the PBL depths derived from UMass FMCW

and the ensemble mean PBL depth from the ARPS model between 1930 UTC and

2030 UTC. Given this was a multi-hour, pre-convective environment (1800 UTC to

2200 UTC), which is often a di�cult period to model, the ARPS and UMass FMCW

PBL heights compared quite well. However, after 2200 UTC, the PBL depth derived

from the UMass FMCW observations continued increasing, while the PBL depth in

nearly all the ARPS ensemble members decreased to 0 m by 2300 UTC, about an

hour before local sunset (0008 UTC) and two hours before the onset of precipitation.

The divergent trend can partially be explained by the boundary layer height detection

algorithm applied to the UMass FMCW observations failing to accurately track the

decaying CBL. We expect the CBL to begin decaying when net radiative flux at the

surface changes sign (from downward to upward). Instead, it began tracking the

residual layer (Fig.  4.12 ). If the algorithm were to track the decaying CBL seen in
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the UMass FMCW observations, the PBL depths would align more closely with the

modeled PBL depths from ARPS.

We sought to further explain the divergent trends in PBL depth between the

UMass FMCW and the ARPS model at and after 2300 UTC by examining the ARPS

model output for temperature, pressure, and humidity, which were used to create

model soundings. Local sunset was not until 0008 UTC, so the cessation of turbulent

mixing does not explain the collapse of PBL depth in the ARPS model an hour

beforehand. Additionally, there were no simulated storms nearby generating near-

surface cold pools that would stabilize the boundary layer at Belle Mina; the simulated

surface potential temperature at Belle Mina stayed nearly constant throughout this

period (Fig.  4.13 ). Therefore, a change within the mixed layer between 2200 UTC

and 2330 UTC must be responsible for the reduction in simulated PBL depth.

Model soundings were produced for 2200 UTC (before ARPS PBL depth started

to decrease) and 2330 UTC (after ARPS PBL depth started to decrease) at the grid

point closest to Belle Mina, Alabama, where UMass FMCW was located. In a skew-T

from an example ensemble member (member 1), it can be seen that the layer between

900 hPa and 800 hPa warmed and dried between 2200 UTC and 2330 UTC, while

the surface conditions remained relatively constant (Fig.  4.14 ). This warming of

the upper boundary layer decreased the lapse rate and stabilized the boundary layer,

leading to a reduction in the calculated PBL depth.

Cohen et al. (2015, 2017) document similar inconsistencies between observed and

modeled boundary layer depths over the SE-US in operational models. However,

they found that local PBL parameterization schemes tended to overmix and stabilize

the boundary layer more than nonlocal PBL schemes. Since ARPS has a nonlocal

PBL parameterization scheme, we do not believe that this is the primary source of

the simulated PBL stabilization. We speculated subsidence could be occurring in

the ARPS model, causing compressional warming. We investigated this by plotting

ARPS ensemble mean vertical velocity (w) in the 900 mb to 800 mb layer where the

warming was occurring (Fig.  4.15 ). There is a period of subsidence from ≥ 2220

UTC to 2250 UTC that could be responsible for the warming. Additionally, there
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were horizontal convective rolls occurring throughout the domain during this period

(not shown), which is why w in Fig.  4.15 switches between positive and negative.

Other plausible causes of the warming and drying could be latent heat release by

cloud formation near the top of the simulated PBL, or horizontal advection. Latent

heat release could be evaluated by calculating the change in water vapor mixing ratio

corresponding to a positive change in cloud water mixing ratio. This would tell us

approximately how much warming in the air is due to latent heating. Horizontal

advection could be assessed by plotting horizontal wind with potential temperature

and mixing ratio.
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Figure 4.1. Spectral profiles (a-c) as in Fig.  3.2 and spectral power
di�erences (d-f), but for a clear air case on 14 March 2016.
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Figure 4.2. Spectral power di�erence histograms for a clear air case on
14 March 2016. Panels d-f zoom in on the right tail of the distribution.
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Figure 4.3. As in Fig.  4.1 , but for precipitation on 14 March 2016.

48



Figure 4.4. As in Fig.  4.2 , but for precipitation on 14 March 2016.
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Figure 4.5. Clear air moments from 14 March 2016 that were cal-
culated from the median filtered Doppler spectra (a-d) and in-painted
Doppler spectra (e-h).
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Figure 4.6. As in Fig.  4.5 , but for precipitation on 14 March 2016.
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Figure 4.7. Reflectivity (in dBZ) from UMass FMCW observations
taken during the 2016 VORTEX-Southeast field campaign. (From
Tanamachi et al. 2019.)
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Figure 4.8. Coherent reflectivity (in dBZ) from UMass FMCW obser-
vations taken during the 2016 VORTEX-SE field campaign.
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Figure 4.9. Boundary layer height detection algorithm for a clear-air
CBL on 31 March 2016 for (a) median filtered reflectivity factor and
(b) in-painted coherent reflectivity factor.

Figure 4.10. PBL height histograms for select clear air CBLs in March
2016 using (a) median filtered moments and (b) in-painted moments.
The red line denotes the height of a known, persistent, high-power spur
at 1.3 km (Figs.  1.1 and  4.7 ).
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Figure 4.11. Time series of PBL depth from 1800 UTC 31 March 2016
to 0100 UTC 01 April 2016 for forecast PBL depth near Belle Mina,
Alabama from the 40 ARPS ensemble members (gray), ARPS ensemble
mean (blue), and UMass FMCW observations (red).
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Figure 4.12. UMass FMCW boundary layer height retrievals (pink
dots) from the Lange et al. (2015) algorithm for 1700 UTC to 0200
UTC 31 March 2016. Note that this time series is also plotted in red
in Fig.  4.11 .
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Figure 4.13. Time series of ensemble mean potential temperature from
1800 UTC 31 March 2016 to 0100 UTC 1 April 2016 near Belle Mina,
Alabama from the ARPS model.
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Figure 4.14. Skew-T, log p plot of ARPS model soundings (for en-
semble member 1) before and after the boundary layer stabilization on
31 March 2016. Sounding values plotted are temperature (red line) and
dew point temperature (blue line) at 2200 UTC, and temperature (ma-
genta line) and dew point temperature (cyan line) at 2330 UTC. Note
the warming and drying over the 900 hPa to 800 hPa layer between
2200 UTC and 2330 UTC.
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Figure 4.15. ARPS model ensemble mean vertical velocity (w) (blue
line) from 2200 UTC to 2330 UTC 31 March 2016. Positive (negative)
velocities correspond to upward (downward) motion.
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5. CONCLUSIONS

We used a combination of two novel techniques, one from image processing and one

from signal processing, to rectify a data quality issue in UMass FMCW spectra col-

lected during the 2016 VORTEX-SE field campaign. To evaluate the extent of the

improvement, spectral power di�erences are computed and analyzed, moments com-

puted with median filtered and in-painted Doppler spectra are compared, and output

from a boundary layer height detection algorithm is compared. Additionally, the ob-

served boundary layer height derived from the UMass FMCW is compared to model

forecast boundary layer height predicted by the ARPS mesoscale model for a single

case study: 31 March 2016.

The Chan et al. (2016) in-painting method shows promising results when applied

to Doppler spectra contaminated by sharp spectral peaks. The Chan et al. (2016)

in-painting method does better than the previously applied median filter at remov-

ing the spurs from the Doppler spectra in both clear air and precipitation events.

Owing to the restoration of the raw spectral structure in regions that are not in-

painted, our method preserves more of the underlying Doppler spectral structure of

the scatterers being sampled (Fig.  3.2 c). These scatterers are mainly precipitation

and bioscatterers, which tend to be smeared out in the median filter (Fig.  3.2 b).

The radar moments were regenerated from the in-painted spectral profiles using

a CP signal processing technique (Pazmany and Haimov 2018). In combination with

the Chan et al. (2016) in-painting method, this type of signal processing removes

most of the spurious reflectivity and SNR peaks resulting from the spectral peaks in

both clear air and precipitation cases. Improvements in products further derived from

these moments (i.e., automated CBL height detection) were demonstrated. Lastly,

when comparing boundary layer height observations from the UMass FMCW with

modeled PBL depth from ARPS, it is evident that convective scale models strug-

gle with properly characterizing the boundary layer. Therefore, there is a need for

supplemental boundary layer observations, such as those from profiling radars, to be

assimilated into NWP models.
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This work demonstrates the application of image processing and signal processing

methods allowed for recovery of meteorological information from a contaminated data

set. To the best of our knowledge, this study represents the first time these two

methods have been applied together to Doppler spectra. Doppler spectra are often

discarded from radar data because they are voluminous. (In this case, they consume

256 times as much disk space as the moments.) However, this study demonstrates

that whenever possible/practical, Doppler spectra should be retained in case novel

methods become available in the future that can aid in data recovery.
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