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ABSTRACT 

Cognitive diagnostic models can uncover students’ mastery of multiple fine-grained skill 

attributes or problem-solving processes. A number of studies have applied cognitive diagnostic 

models to detect students’ knowledge mastery in mathematics and language testing. However, few 

studies focus on cognitive diagnostic assessment in K-12 science education, and no studies on the 

energy topic specifically. This study applied cognitive diagnostic models to Trends in International 

Mathematics and Science Study (TIMSS) science achievement data to assess students’ knowledge 

mastery in energy. Three TIMSS participating jurisdictions, i.e., Australia, Hong Kong, and 

Ontario were compared. A Q matrix (i.e., an item attribute alignment table) was proposed based 

on existing literature about learning progressions of energy in the physical science domain, and 

the TIMSS assessment framework. The Q matrix was validated through expert review and real 

data analysis. Then, one of the cognitive diagnostic models, i.e., the deterministic inputs, noisy 

and-gate (DINA) model was applied to each jurisdiction’s data.  

Results suggested that the hypothesized learning progression was consistent with 

Australian and Ontario students’ but not Hong Kong students’ observed progression in 

understanding the energy concept. According to overall attribute mastery probabilities and the 

latent class pattern, most students failed to explain simple electrical systems. Students also 

performed poorly in recognizing that heating an object can increase its temperature, and that hot 

objects can heat up cold objects. Identifying sources of energy was found to be easiest to be 

mastered. I discuss several potential curriculum-related issues that may affect students’ mastery 

patterns in different jurisdictions. 
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 INTRODUCTION 

1.1 Purpose of Study and Research Questions 

Students’ domain-specific concept knowledge has received substantial attention from 

researchers in science education (Liu & McKeough, 2005). Previous research shows that many 

students have not mastered an understanding of energy as envisioned in policy documents 

(Neumann et al., 2013). However, understanding energy is important, since energy concepts are 

scientifically and academically related to many social, environmental and technological 

applications (Chen et al., 2014). Although there are extensive studies probing students’ 

understanding of energy (e.g., Duit, 2014; Lacy et al., 2014; Lee & Liu, 2009; Liu & McKeough, 

2005), most studies use interviews (e.g., Lacy et al., 2014; Jin & Wei, 2014) and item response 

theory (IRT) based Rasch analysis (Neumann et al., 2013; Liu & McKeough, 2005). However, 

there is no strong rationale for using Rasch analysis in these studies, since it has a restrictive model 

assuming all items are equally discriminating indicators of students’ energy understanding, 

although item discrimination varies in practice. The interview studies are limited by the small 

sample sizes of participants and their generalizability.  

Students’ incorrect responses during problem solving can be caused by weaknesses in 

multiple, distinct underlying skill attributes (e.g., Brown & Burton, 1978; Brown & VanLehn, 

1980; Tatsuoka, 1983). Cognitive diagnostic models (CDMs) can uncover students’ mastery of 

multiple fine-grained skill attributes or problem-solving processes. CDMs can diagnose students’ 

performance on a set of multiple discrete skills and provide formative diagnostic information to 

inform instruction and learning based on students’ mastery or non-mastery of these fine-grained 

skills (Embretson, 1998; Leighton & Gierl, 2007; Nichols, 1994). CDMs can help to diagnose 

students’ mastery of specific energy concepts, which could be useful to validate learning 



 

11 

progressions (an ordered description of students’ understanding about a particular concept) that 

have been proposed in the literature. The aims of the proposed study are a) to measure systematic 

patterns of students’ knowledge mastery and misunderstandings of energy and b) to gain a better 

understanding of students’ learning progression through energy concepts. The study will use 

CDMs to identify students’ knowledge mastery and misunderstanding patterns through the 

hypothesized learning progressions. CDMs can characterize students’ cognitive mastery pattern at 

a fine-grain size (Rupp et al., 2010), and provide diagnostic feedback about students’ mastery or 

non-mastery of each skill. In addition, since students’ opportunity to learn is an essential factor 

contributing to their learning outcomes (Törnroos, 2005), the study will also examine how the 

intended curriculum may influence students’ understanding of energy across different countries. 

Based on previous research (Lacy et al., 2014; Neumann et al., 2013), this study 

hypothesized that students understand energy through four hierarchical concepts: 1) forms of 

energy; 2) transfer and transformations of energy; 3) dissipation and degradation of energy; and 4) 

conservation of energy. The study will use data from a fourth-grade physical science assessment 

to address the following major questions: 

1. To what extent does the hypothesized learning progression match students’ observed 

progression in understanding the energy concept, based on the results of the cognitive 

diagnostic model? 

2. What similarities and differences in students’ knowledge mastery patterns are evident for 

different countries?  

3. How does the intended curriculum relate to students’ understanding of energy across 

different countries?  
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1.2 Significance of the Study 

Cognitive diagnostic assessment can illuminate students’ knowledge mastery pattern at a 

fine-grain size level because the latent variables (i.e., attributes) in cognitive diagnostic assessment 

tend to be more narrowly defined than the constructs in multidimensional factor analysis, another 

common method of analyzing assessment item responses (Rupp et al., 2010). Many studies have 

applied cognitive diagnostic assessment in the mathematics (e.g., Lee et al., 2011; Birenbaum et 

al., 2004) and language testing (e.g., Jang, 2009) fields. However, relatively few studies (Briggs 

& Alonzo, 2012; Chen et al., 2017; Fumler et al., 2014; Kabiri et al., 2017; Kizil, 2015) focus on 

cognitive diagnostic assessment in K-12 science education, and no studies have examined the 

energy topic specifically. This study will use CDM to explore students’ mastery patterns for energy 

concepts. The study will use the literature and experts’ judgments to hypothesize a sequence of 

energy-related concepts likely to be measured by the Trends in International Mathematics and 

Science Study (TIMSS) achievement test items. Then, I will use CDMs and three countries’ 

TIMSS data to test the hypothesized learning progression, which could allow us to have a better 

understanding of the sequence in which students tend to master energy concepts and provide more 

accurate and informative diagnostic assessment results to students and teachers. The study results 

will have implications for the methodology of validating hypothesized learning progressions 

through CDM by checking attribute mastery probability, indicating whether CDM will be a 

feasible method to detect learning progressions. In addition, the study will also provide information 

about how the intended curriculum affects students’ understanding across different countries, 

which could inform curriculum changes. 
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 REVIEW OF LITERATURE 

Before detailing the methods that this study will use, I review the literature related to the 

current study in this chapter. To provide background for Research Question 1 and Research 

Question 2, I start by reviewing the definitions of learning progressions. I summarize the methods 

of developing learning progressions in science disciplines. Then, I introduce specifically the 

methods that are most widely used. I review students’ understanding about energy and learning 

progressions, particularly those related to the energy topic. Since I will explore how intended 

curriculum and instruction relate to students’ understanding of energy across countries (Research 

Question 3), I also review the concepts of opportunity to learn and instructional sensitivity. I 

introduce widely used instructional sensitivity indices. I briefly review the science curricula of 

Australia, Hong Kong, and the Ontario province of Canada, since this study will investigate these 

three jurisdictions’ Grade 4 science test item performance, as further detailed in Chapter 3. Finally, 

I introduce cognitive diagnostic models. 

2.1 Learning Progressions 

Learning progressions (LPs) are descriptions of increasingly sophisticated levels of 

thinking about or understanding of a topic (National Research Council, 2007). LPs are ordered 

descriptions of students’ understanding of a given concept (Alonzo & Steedle, 2009). LPs describe 

an upper and lower “anchoring” performance-level description, followed by descriptions of several 

intermediate levels (Stevens et al., 2010). The lower anchor is defined by students’ tentative 

understanding of a particular idea or concept upon entering the learning progression (Neumann et 

al., 2013). The level of understanding expected from students once they have mastered the concept 

or skill defines the upper anchor (Neumann et al., 2013). The upper anchor is often defined by 
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analysis of policy documents, such as curriculum standards (Chen et al., 2017). LPs also describe 

different levels of understanding that students have as they move towards the upper anchor 

(Stevens et al., 2010). 

 Learning progressions (LPs) are “a promising means of organizing and aligning the 

science content, instruction and assessment strategies to provide students with the opportunity to 

develop a deep and integrated understanding of a relatively small set of big ideas of science over 

an extended period of time” (Stevens et al., 2010, p. 688). LPs may provide a framework that can 

be used to coordinate standards, assessments, and instruction in a way that advances scientific 

literacy (Alonzo & Gotwals, 2012). In this way, the development of LPs should not only include 

increasingly sophisticated levels of thinking about or understanding a topic. LPs also need to 

include relevant assessment criteria about students’ understanding at each level and correspondent 

instruction to enhance students’ learning to more sophisticated levels (Stevens et al., 2010). 

Intermediate learning progression levels are the levels between the upper and lower anchor. They 

are informed by two sources of research: (1) “research on how students develop conceptual 

understanding through an increasingly complex knowledge base” (Neumann et al., 2013, p.168), 

and (2) “research on how students’ understanding of the target concept changes over time” 

(Neumann et al., 2013, p.168). 

2.2 Methods of Developing Learning Progressions in Science Disciplines 

2.2.1 Overview 

Although there is not a specific widely agreed-upon method for developing LPs (Stevens 

et al., 2010), the development of LPs is an iterative process of empirical validation and theoretical 

enhancement (Neumann et al., 2013).  LPs use both top-down and bottom-up design approaches 
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(e.g., Alonzo & Gotwals, 2012): 1) Bottom-up LPs refers to LPs “where the identification of topics 

and learning pathways are grounded in iterative assessments that obtain evidence of student 

learning and build on it” (Duschl et al., 2011, p. 125), and 2) “top-down LPs where the selection 

of topics and pathways is based on a logical task analysis of content domains and personal 

experiences with teaching” (Duschl et al., 2011, p. 125).  

Duschl et al. (2011) summarized and distinguished two types of LPs in the current literature, 

“validation” and “evolutionary” LPs. Validation LPs aim to validate initial sequences and levels 

of progression that have been proposed (Duschl et al., 2011). Evolutionary LPs are LPs that refine 

and define the developmental pathways through identification of intermediate levels that are then 

used to help instructional interventions (Duschl et al., 2011). Detailed differences between these 

two types of LPs are presented in Table 1. 

Table 1.  Validation LPs and Evolutionary LPs 

Validation LPs Evolutionary LPs 

(1)  LP based on validating a standards-based 
progression: instruction as intervention  

(1) LP based on sequencing of teaching experiments 
across multi-grades: instruction as refining progression  

(2)  Theory-driven top/down approach  (2) Evidence-driven bottom/up approach  

(3)  Upper anchors as college readiness  (3) Upper anchors as targeted literacy  

(4)  Uses assessments to confirm learning models  (4) Uses assessments to explore learning models 

(5)  Progress variables steps and targets are fixed  (5) Progress variable steps and targets are flexible 

(6)  Adopts a misconception-based ‘Fix It’ view 
of conceptual change instruction  

(6) Adopts an intuition-based ‘Work with It’ view of 
conceptual change instruction 

(7)  Theory building as conceptual change  (7) Model building as conceptual change  

(8)  Domain general orientation to topic selection  (8) Domain specific orientation to topic selection  

Note. Reprinted from “Learning progressions and teaching sequences: A review and analysis”, by Duschl et 
al., 2011, Studies in Science Education, 47(2), p. 173 



 

16 

Grain size is another important issue discussed in the development of LP research 

(Hokayem & Gotwals, 2016). The grain-size of an LP refers to the extent to which the progression 

is broadly or finely focused (West et al., 2012). The covered breadth of content and length of time 

need to be defined in LPs. Alonzo (2012) distinguished coarse-grained and fine-grained LPs. 

Studies related to LPs vary in the grain size and time length. LPs studies cover from elementary, 

through middle and high school (e.g., Mohan et al., 2009; Smith et al., 2006). Some studies only 

concentrate on one grade length (e.g., Johnson & Tymss, 2011; Neumann et al., 2013). The breadth 

of content in LPs also varies in the existing research. Broader LPs could refine standards and large-

scale standards and assessments, while narrower LPs for specific content topics may serve to 

support the curriculum, instruction and formative assessment in the classroom (Alonzo, 2012; 

Furtak, 2012; Lehrer & Schauble, 2015).   

There are different ways of developing and validating LPs in science education: interview 

(e.g., Jin & Wei, 2014; Jin & Anderson, 2012; Suzuki et al., 2015), construct map (e.g., Black et 

al., 2008; Plummer & Maynard, 2014; Wilson, 2009), Rasch-type partial credit model from item 

response theory (e.g., Lee & Liu, 2009; Neumann et al., 2013; Plummer, & Maynard, 2014), 

cognitive diagnostic model (Gao et al., 2018; Kizil, 2015; Briggs & Alonzo, 2012), latent class 

analysis (Steedle & Shavelson, 2009), and Bayes’ network (Rupp et al., 2009). Researchers usually 

combine two of these methods to develop LPs, so that there is a second source of evidence for 

cross-validation. In the current literature, the most commonly used methods are interviews and 

Rasch analysis. Appendix A provides a summary of empirical papers about LPs in science (except 

energy topics), and Appendix B summarizes papers about LPs for energy topics. I will introduce 

interview, partial credit model, and construct map methods specifically in the following sections, 

and cognitive diagnostic models in a later section. 
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2.2.2 Interview 

Interviews have been used to develop learning progressions in numerous studies (Alonzo 

& Steedle, 2007; Draney, 2009; Hokayem & Gotwals, 2016; Jin & Anderson, 2012; Jin et al., 2013; 

Lacy et al., 2014; Paik et al., 2017; Plummer & Krajck, 2010; Shin et al., 2009; Stevens et al., 

2010). An interview is a good way to truly understand students’ reasoning process about a 

particular topic when they solve the questions or tasks to ensure the substantive validity of an 

assessment (Paik et al., 2017; Jin et al., 2013). However, interview results may be restricted by the 

small interview sample size and cannot be used for statistical generalizations (Jin & Anderson, 

2012). There are mainly two kinds of interviews that are applied in LP development and validation: 

think-aloud interviews and traditional clinical interviews (e.g., Stevens et al., 2009; Alonzo & 

Steedle, 2007). Generally, students are asked to think aloud while they answer the items. After a 

student completes the test, the interviewer also may ask the student to talk about each item to 

understand students’ responses to the items (Alonzo & Steedle, 2007). In addition, interviews have 

been implemented before and after instructional intervention in some studies (Lacy et al., 2014; 

Jin et al., 2013; Plummer & Krajcik, 2010) to track students’ understanding and progression. 

2.2.3 Partial Credit Model  

In item response theory, an item discrimination parameter indicates the strength of the 

relationship between the item and latent trait score. The partial credit model (PCM) is a Rasch-

type item response model that constrains the item discrimination parameter values to be equal 

across all items when responses are in two or more ordered categories or levels (Masters, 1982). 

PCM is based on a unidimensional probabilistic model assuming a student’s probability on each 

item is merely decided by “the difference between the student’s latent trait status (i.e., academic 
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ability) and the difficulty of the task involved” (Liu & McKeough, 2005, p. 501). The equation of 

the PCM is Equation 1 as follows (Masters & Wright, 1997):  

																																								 !!"#
!!"#$%	"!!"#

= #$%	((!)*"#)
,"	#$%	((!)*"#)

																											                (1) 

where 𝑃-.$ is the probability of person i scoring 𝑥 on item j, 𝑃-.$),	is the probability of 

person j scoring x-1, and 𝛿-$ is an item parameter governing the probability of scoring x rather than 

x-1 (Masters & Wright, 1997, p. 102)  

2.2.4 Construct Map Approach 

A construct is an unobservable human trait or abstract personal attribute (e.g., motivation, 

ability, opinion, agreeableness) that is given meaning by a specific theoretical framework (Peak, 

1953). A construct map defines a particular construct and different levels of student performance 

on it. It was the first building block of the Berkeley Evaluation and Assessment Research Center 

(BEAR) assessment system (BAS; Wilson, 2005; Wilson & Sloane, 2000), which has been used 

to evaluate students, schools, and educational policy in some parts of the US.  

A construct map is used to represent a cognitive theory of learning from a development 

perspective (Draney, 2009). It is developed only after progress variables are determined and 

defined (Masters et al., 1990; Wilson, 1990). A construct map consists of different progress 

variables. The levels of the progress variables are linked to the construct map levels (Wilson, 2009). 

Progress variables represent a range of student thinking about a particular knowledge domain or 

construct, and they describe the construct or core idea researchers want to track (Merritt & Krajcik, 

2013) through the learning activities associated with a curriculum (Wilson & Sloane, 2000). 

Progress variables often come from studies examining representative domains of core science 
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topics (Draney, 2009). The main purpose of developing progress variables is to serve as a 

framework for assessment and diagnosis (Wilson, 2008).  

Construct map is a way to structure both measurement and diagnosis and to make sure that 

the two are aligned (Wilson, 2008). Construct maps also reflect the learning goals and instructional 

sequencing of the curriculum (Kennedy et al., 2005). The importance of embedded assessments 

tied to the learning goals of a curriculum is also highlighted through construct maps by assessing 

what students know and can do at several levels (Kennedy et al., 2005). When a learning 

progression only has one construct, the learning progression is identical to a construct map (e.g., 

Plummer & Maynard, 2014). A set of construct maps constitute a learning progression (Draney, 

2009).  

I introduced different kinds of learning progressions in science education in this section. 

According to different classifications, there are top-down and bottom-up design approaches of LPs, 

Validations LPs and Evolutionary LPs, and coarse- and fine-grained LPs. I also summarized 

different ways of developing and validating LPs in science education. Three widely used methods, 

i.e., interview, partial credit model, and construct map methods, were specifically introduced. 

CDM is another method of developing LPs, which I will specifically describe in Section 2.7. In 

section 2.3, first, I will introduce LPs related to the energy topic, beginning from the conceptual 

framework of energy and existing research about students’ understanding of energy. 

2.3 Students’ Conceptual Understanding about Energy 

2.3.1 The Conceptual Framework of Energy  

It is widely agreed that the concept of energy is a central idea in science education. Energy 

is a core idea in science education since it is the basis to foster students’ ability to learn about a 
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variety of scientific topics with coherence and increasing depth (National Research Council; NRC, 

2012; cited in Opitz et al., 2015). Energy is a crosscutting concept connecting all science 

disciplines and we experience it in our everyday life situations (Saglam-Arslan & Kurnaz, 2009). 

Energy is also a core idea proposed in the US Next Generation Science Standards (NGSS; the 

NGSS Lead States, 2013). 

Duit (1984) proposed five basic aspects of the energy concept as a potential framework for 

energy teaching: conceptions of energy, energy transfer, energy conversion, energy conservation, 

and energy degradation. Duit (1984) explained each basic aspect specifically: energy transfer 

refers to the energy that can be transferred from one system or place to another; energy conversion 

refers to the energy that can be converted from one form to another; energy conservation 

recognizes the amount of energy does not change while it is transferred or converted; and energy 

degradation refers to the “value” of energy that is lost from transferring from one form to another, 

although the total amount of energy does not change.  

2.3.2 Students’ Understanding about Energy  

Since each student has some prior knowledge of energy concepts from their life experience, 

they have different understandings about energy, which may include some erroneous ideas. 

Students’ prior knowledge may affect their success in learning about energy concepts (Trumper & 

Gorsky, 1993). Previous literature shows that energy is often defined as “the ability to do work” 

by students and students’ understanding about energy tends to be superficial (Boylan, 2017). Many 

researchers (e.g., Watts, 1983; Gilbert & Pope, 1986; Kirkwood & Carr, 1988; Trumper & Gorsky, 

1993; Duit, 2014) have investigated students’ conceptual understanding about energy, using 

several distinct conceptual frameworks for talking about energy that can be classified as follows:  
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1. Energy is associated with human beings (anthropocentric framework). 

2. Things possess and expend energy (depository framework).  

3. Energy causes things to happen (cause framework).  

4. Energy is a dormant ingredient in things and can be released by a trigger (ingredient   
framework).  

5. Energy is associated with activity (activity framework).  

6. Energy is a product of certain processes (product framework).  

7. Energy is a general kind of fuel associated with making life comfortable (functional    
framework).  

8. Energy is a kind of fluid which is transferred in some processes (flow-transfer    
framework).  

9. A scientific conception in which energy is transferred from one system to another.           
(Trumper & Gorsky, 1993, p. 639) 

Other researchers have also explored students’ understanding of energy in detail. 

Chabalengula et al. (2012) summarized five main kinds of erroneous ideas that students hold about 

energy and energy-related concepts: energy is force; energy is work; energy is electricity; energy 

is power; and energy is an entity. In Chabalengula et al. (2012)’s study, about half of the students 

(44%) gave a correct definition of energy (i.e., energy is the ability to do work), but a large 

percentage of these students (24%) did not write any additional statements even though students 

were required to write. Their results showed that many students had problems in understanding 

energy and energy-related concepts. Trumper (1990) also summarized most students as holding 

the following alternative frameworks of energy before they studied physics: anthropocentric 

frameworks, cause frameworks, and product frameworks. After students studied physics, they 

typically still retained the same alternative frameworks. Thus, Trumper’s (1990) study used a 

model viewing children’s minds as a rich and varied network of ideas from day-to-day experiences, 

and non-scientific language to help students to change their conceptions about energy. Trumper 
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(1991) also tried pupil/teacher dialogue in small groups to help students change their 

misconceptions.  

Researchers also use learning progressions to examine students’ understanding about 

energy as an educational trajectory and I will introduce the learning progression of energy in the 

following section.  

2.3.3 Learning Progression of Energy 

In the past two decades, as a core science concept, energy has received a lot of attention in 

the research on LPs across different grades or grade bands (e.g., Lee & Liu, 2010; Liu & 

McKeough, 2005; Neumann et al., 2013; Yao et al., 2017). These studies aim to develop 

corresponding assessments, examine students’ progression in understanding energy, and improve 

instruction and curriculum related to energy topics. A summary of recent studies on LPs related to 

energy is presented in Appendix B. Similar to approaches of developing learning progressions in 

other concepts in science, the development of LPs on energy mainly has used interviews (Lacy et 

al., 2014; Dawson-Tunik, 2006) and Rasch type partial credit models (Herrmann-Abell & DeBoer, 

2011; Lee & Liu, 2010; Neumann et al., 2013; Yao et al., 2017). The studied grades have ranged 

from third grade to twelfth grade. These studies include not only small samples but also large-scale 

samples, such as participants in the TIMSS (Liu & McKeough, 2005; Lee & Liu, 2009). Though 

studies may use different terms to refer to the same concepts, most of these studies propose LPs 

of energy from four strands: energy sources and forms, transfer and transformation, degradation, 

and conservation. In summary, the current studies on LPs of energy cover different grade levels, 

sample sizes, and development methods. I will introduce the main studies on LP of energy 

specifically next. 
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Studies have explored students’ LPs for energy from different perspectives. Dawson-Tunik 

(2006) explored students’ progression in understanding energy based on Fischer’s (1980) skill 

theory across three levels (i.e., representational systems level, single abstractions level, abstract 

mappings level) using both interviews and Rasch analysis. Their results concluded that many 

students did not have a sufficient understanding about the energy concept. Liu and McKeough’s 

(2005) study hypothesized five levels of an energy concept sequence (i.e., activity/work, 

source/form, transfer, degradation, conservation). Correspondingly, they analyzed three different 

populations from the third TIMSS database using Rasch partial credit models: students aged 9 

years at the time of testing, typically grades 3 and 4; students of age 13 typically 7 and 8; students 

at the final year of their secondary education, grade 12. The results showed that their hypothesized 

sequence of energy concept development was supported. Their study also showed that third- and 

fourth-grade students can develop an understanding of the first two levels, i.e., energy does work, 

and sources or forms of energy. They also concluded that energy degradation should be an 

important component for understanding energy conservation (Liu & McKeough, 2005). 

Herrmann-Abell and DeBoer (2011) examined grade six to college students’ understanding about 

energy transformation, energy transfer and conservation of energy using Rasch analysis. Their 

study supported that knowledge of forms of energy was important for students to successfully 

answer questions about energy transformation. They found the idea of conservation of energy was 

much more difficult than the ideas of energy transformation and energy transfer to students. They 

concluded that it is easier for students to know general principles than to apply them in real life. 

Herrmann-Abell and DeBoer (2011) also found that there are some misconceptions about energy 

that are widespread at all grade levels. For example, there is a misconception held by students at 

all grade levels that both force and energy are transferred during mechanical interactions. 
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Lee and Liu (2010) explored students’ progression in understanding energy from a 

knowledge integration approach applying the Rasch partial credit model. Their analysis showed 

that items about advanced energy concepts such as conservation are related to the highest 

knowledge integration levels, followed by transformation and source items at lower knowledge 

integration levels. The difficulty is partially associated with the increased demand for integrating 

many scientifically relevant ideas. Furthermore, students’ knowledge integration level differs by 

grade and subject. Eighth-grade students’ mean energy knowledge integration level is significantly 

higher than that of sixth- or seventh-grade students, and the mean knowledge integration level at 

the end of school year of students who took a physical science course is significantly higher than 

that of students who took a life or earth science course after a school year. Lee and Liu’s (2010) 

study suggests that to help students develop an understanding of energy, science curricula should 

address the relevant instructional sequence of energy concepts as well as encourage students to 

integrate ideas.  

Neumann et al. (2013) explored four hierarchical energy topics: forms, transfer, 

degradation, and conservation, each of which was conceptualized as having four hierarchical levels 

of complexity: facts, mappings, relations, and concept. They confirmed a general progression of 

the four levels for energy conceptions (forms and sources, transfer and transformation, dissipation, 

conservation). But they did not confirm the distinct levels of these conceptions. Their Rasch 

analysis and analysis of variance (ANOVA) suggest that students may develop an understanding 

of energy transfer and transformation in parallel with an understanding of energy degradation.  

Following Neumann et al.’s (2013) approach, Yao et al.’s (2017) study examined eighth- 

to twelfth-grade students’ developing understanding of energy in mainland China to collect 

evidence for national standard revision and build a foundation for future instructional research. 
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Their study took both ideas about energy and levels of conceptual development into account. Ideas 

about energy was their first progress variable, and levels of conceptual development was their 

second progress variable. There were four key ideas of energy: form, transfer and transform, 

dissipation, and conservation; and four conceptual development levels: fact, mapping, relation, 

and systematic. Although their study followed the same sequence of four ideas about energy as 

previous studies (i.e., forms, transfer and transformation, dissipation, and conservation) (Neumann 

et al., 2013), their Rasch analysis results did not support the hypothesis that students actually 

progress along this sequence in their understanding of energy. Their findings showed that although 

“energy forms” is a foundational idea for developing a deeper understanding of energy, other ideas 

may not necessarily be developed in a distinct sequence (Yao et al., 2017). 

In order to allow students to accomplish understanding by the end of the elementary grades, 

Lacy et al. (2014) proposed a detailed learning progression for energy from four strands, focusing 

on grades 3-5: forms of energy, transfer and transformations, dissipation and degradation, and 

conservation. Their proposed learning progression was established on the “aligned development 

of a network of interconnected and interdependent foundational ideas” (p. 265). Their proposed 

progression was also based on students’ intuitive ideas. The progression also takes students’ 

misinterpretations and hurdles in previous research into account. Their exploratory interviews and 

teaching interventions have supported that relevant instruction could increasingly enhance, 

transform, and integrate students’ knowledge toward a scientific understanding of energy (Lacy et 

al., 2014). 

The studies on LPs of energy also provide some suggestions about instruction for the 

energy topic. For instance, McKeough (2005) argued for a multi-faceted and holistic approach to 

introducing the energy concept. This holistic and multi-faceted approach means that teachers 
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should expose students to as many aspects of the energy concept as developmentally appropriate 

and continue to incorporate additional aspects through grade 12 and beyond. At all grades, 

instruction of energy should focus not only on developing students’ understanding of the energy 

concept itself but also on the application of their understanding in various contexts. Nordine et al. 

(2010) explored the effectiveness of an approach to middle school energy instruction that was 

consistent with the principles of learning-goals-driven design (Krajcik et al., 2008) and curricular 

coherence (Roseman et al., 2008; Shwartz et al., 2008) to address energy concepts. For students 

who were taught using this approach, they gained a more integrated understanding of energy than 

students who were not taught using this approach.  

This section summarized current studies on LPs of energy. Most of these studies propose 

LPs of energy from four separate strands: energy sources and forms, transfer and transformation, 

degradation, and conservation. Some studies only used partial credit model (PCM)s’ results and 

did not compare other models, while PCM constrains the item discrimination parameter values to 

be equal across all items and some original information of the item is lost. In addition, the results 

of energy LPs appear different across studies: although some studies (Liu & McKeough, 2005; 

Neumann et al., 2013) confirmed the four proposed hierarchical levels, i.e., 1) energy sources and 

forms, 2) transfer and transformation, 3) degradation, and 4) conservation, one study (Yao et al., 

2017) did not confirm four sequential levels. Since studies use different grades’ student samples, 

this may lead to differences in results.  For the current study, since I will focus on fourth grade 

students, I will hypothesize the learning progression following Lacy et al. (2014)’s four-strand LP: 

forms of energy, transfer and transformations, dissipation and degradation, and conservation. 
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2.4 Opportunity to Learn 

Previous studies (e.g., Lee & Liu, 2010; Plummer & Krajcik, 2010; Yao et al., 2017) on 

learning progressions found that educational environments play important roles in students’ 

learning, seeming to affect their learning trajectories or rates of progress. Curriculum and 

instruction are both important factors contributing to an educational environment. Frankenberg et 

al. (2016) also emphasize that schools should ensure high-quality instruction for all students. These 

findings implicate curriculum and instruction as playing an important role in students’ learning. 

Whether the curriculum and instruction provide students an opportunity to learn related topics 

would influence students’ understanding and their progress through stages of a learning 

progression. Having an opportunity to learn is essential for learning, but a learning opportunity 

cannot guarantee students truly learn.  

Opportunity to learn (OTL) refers to “whether or not the students have had the opportunity 

to study a particular topic or learn how to solve a particular type of problem” (Husen, 1967a, p. 

162; cited in Törnroos, 1993). The concept of OTL was first introduced in the early 1960s to ensure 

the validity of cross-national comparisons in studies of mathematics achievement (McDonnell, 

1995). In order to interpret differences in achievement within or across countries, topics included 

in a country’s implemented curriculum at a particular grade level for a particular population, and 

excluded or given minimal attention, must be considered (Törnroos, 2005). OTL variables are 

often measured by large-scale cross-national assessments such as TIMSS, and the Teacher 

Education and Development Study in Mathematics (TEDS-Math). OTL is associated with the 

study of educational equity and fairness related to the adequacy of educational experiences, which 

include the availability of resources across classrooms, teacher quality differences, and other 

aspects of schooling related to learning (D'agostino et al., 2007).  
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OTL variables are multidimensional and related studies investigate different dimensions of 

students’ educational experiences. Among those dimensions, content coverage, content exposure, 

and content emphasis are the most measured aspects (Stevens, 1993; Wang, 1998). Content 

coverage is the most frequently used OTL variable and even is the only indicator of OTL in some 

studies (Wang, 1998; Schmidt et al., 2011). Content coverage refers to whether the topics tested 

are covered in the instruction or not. Content exposure refers to allowing and devoting time to 

instruction and the depth of the teaching provided (Wang, 1998). Content emphasis refers to 

whether a certain area was treated as a major topic, a minor topic, a review topic, or not taught at 

all (Wang, 1998). 

Researchers have explored the relation between OTL and students’ achievement using 

large scale assessments. There is a substantial correlation between learning achievement and OTL 

when achievement has been examined across countries (Törnroos, 2005). Mo et al. (2013) found 

that OTL is an important factor in students’ science achievement in TIMSS 2002 using hierarchical 

linear modeling methodology. Students’ science achievement was higher in the class whose 

teachers had a full science teaching license or certificate (Mo et al., 2013). Topic coverage is also 

related to science achievement (Mo et al., 2013). Specifically, there is an interaction effect of topic 

coverage and students’ emotional engagement. There is a positive relation between topic coverage 

and science achievement among students who are not interested in science, while the relation is 

slightly negative among students who are interested in science. When OTL was measured using 

an item-based approach, i.e., students’ OTL for each test item, it has higher correlations between 

OTL and students’ achievement than measured by aggregated values that cover broader 

mathematical topics (Törnroos, 2005). Törnroos (2005) found that the association between OTL 
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and student achievement must be established on learning opportunity data covering a longer period 

than only the most recent year (Törnroos, 2005).  

To sum up, OTL is essential to students’ performance. Different dimensions of OTL can 

be measured. Content coverage, content exposure, and content emphasis are perhaps the most 

prevalent dimensions of OTL measured. These dimensions could help us to understand students’ 

learning progression in energy through comparing knowledge mastery patterns for students who 

have and have not had the opportunity to learn. 

2.5  Instructional Sensitivity 

Another concept related to OTL is instructional sensitivity, called “instructional validity” 

in some studies. Haladyna and Roid’s (1981) definition of instructional sensitivity is “the tendency 

for an item to vary in difficulty as a function of instruction” (p. 40). Popham (2006) defines 

instructional sensitivity as “the degree to which students’ performances on a test accurately reflect 

the quality of instruction specifically provided to promote students’ mastery of what is being 

assessed” (p. 1). D’Agostino et al. (2007) related instructional validity to OTL and referred to 

instructional validity as “the ability of a test to detect instructional differences that might arise due 

to OTL” (p. 4). In summary, these definitions all refer to the degree that a test reflects student 

ability as the result of the instruction.  In this study, I will use the term instructional sensitivity to 

maintain consistency. Through instructional sensitivity, we can see how the instructional 

opportunity can influence students’ learning progression and attribute mastery in the energy 

domain. 

Instructional sensitivity could be observed through instruction-focused methods and expert 

judgment (Polikoff, 2010). There are also different indices measuring instructional sensitivity in 

psychometrics, such as pre-to-post difference index (PPDI) (Cox & Vargas, 1966), percent of 
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possible gain (PPG) (Brennan & Stolurow, 1971), the Brennan index (Brennan, 1972), and ZDIFF 

(Haladyna & Roid, 1981). Researchers also use contingency table indices, Bayesian methods 

(Helmstadter, 1974), Hedge’s g, and Cohen’s d to measure instructional sensitivity. Hedges’ g 

(Hedges, 1981) is also widely used as an effect size index for approximately continuous data. It is 

relatively simple to compute and interpret. Similarly, Cohen’s d is also an effect size indicating 

the standardized difference between two means. The difference between Hedge’s and Cohen’s d 

is that Cohen’s d uses standard deviation that is divided by N, while Hedge’s g is divided by N-1. 

Differential item function (DIF) methodology is also applied to measure instructional 

sensitivity. DIF is a statistical characteristic of an item representing whether different subgroups 

perform differently to a particular item. In measuring instructional sensitivity, the subgroups could 

be divided into the group that has received instruction and the group that has not received 

instruction. DIF has two primary types: uniform and nonuniform. For uniform DIF, the magnitude 

and direction of the item difficulty difference between the groups are constant across the entire 

range of observed scores (Hanson, 1998). For nonuniform DIF, item difficulty favors one group 

across part of the score range and another group across other parts of the score range. The logistic 

regression method has many strengths in detecting DIF:  it can accommodate continuous 

conditioning variables (Li et al., 2017), can model uniform and nonuniform DIF simultaneously 

(Swaminathan, 1994); logistic regression for ordinal items is flexible in model specification and it 

is especially efficient for simultaneous conditioning on multiple variables (Li et al., 2017, p. 3). 

When the data has nested structure, hierarchical logistic regression has advantages over logistic 

regression since it accounts for the nested structure in the data set. It performs better than simple 

logistic regression when the data has a nested structure (French & Finch, 2010). Hierarchical 

logistic regression is also used to detect instructional sensitivity (Li et al., 2017).  
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2.6 Science Curriculum of Primary Schools across Three Jurisdictions 

Different countries and regions have different science curricula. The detailed expectations 

specified in the curriculum may also vary by country or region. I will explore how the intended 

curriculum relates to students’ understanding of energy in Research Question 3 of this study. In 

this section, I will specifically introduce the science curriculum of the three jurisdictions (i.e., 

Australia, Hong Kong, Ontario) that will be included in this investigation. Australia, Hong Kong, 

and Ontario are chosen since their curricula have changed or been updated before 2011, and these 

jurisdictions participated in the TIMSS assessment, which included items measuring 

understanding of energy, and item-level curriculum coverage information. 

2.6.1  Science Curriculum of Australia 

The current Australian science curriculum was initially released in 2010. Some states 

started implementing the current science curriculum in 2011 and full implementation across 

Australia was scheduled for 2014. This is the first national curriculum for Australia. Before 

2011, each state in Australia had its own curriculum. The curriculum before the current national 

curriculum was implemented between 1993 and 2009. Different states may have had different 

grade coverages for the science curriculum before 2011. In most states, the curriculum covered a 

number (2 or 3) of grade levels at a time before the current curriculum. 

The current Australian science curriculum aims to provide students with a solid 

foundation in science knowledge, understanding, skills, and values on which further learning and 

adult life can be built (ACARA, 2009, p. 5). The Australian science curriculum is formed around 

three strands: science understanding, science as a human endeavor, and science inquiry skills 

(ACARA, 2009). As described in the following figure, there are six key ideas in the science 
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curriculum: Patterns, order and organization; Form and function; Stability and change; Scale and 

measurement; Matter and energy; and Systems. 

 

Figure 1.  Key Ideas of the Science Curriculum (ACARA, 2020a) 

 

The Australian science curriculum is described year by year. It also provides guidelines for 

year groupings. The curriculum focuses on years K-2 is “awareness of self and the local world;” 

the curriculum focus of years 3-6 is “recognizing questions that can be investigated scientifically 

and investigating them” (ACARA, 2009). “Forms use and transfer of energy” is listed as an 

essential part of the science understanding strand of years 3-6, while it is not listed in the years K-

2. The specific content description and elaborations of each year’s physical science curriculum are 

listed in Table 2. Energy is an important concept in year 1, year 3, year 5, and year 6. As we can 

see in the table, the energy concepts presented in the science curriculum are similar to those in the 

learning progression for the energy topic. The source of energy is covered in year 1 and year 5. 

Energy transfer in the heat is covered in year 2. Energy transfer in electricity is covered in year 6. 

Energy conservation and degradation are not covered in primary schools’ science curriculum.  
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Table 2.  Curriculum Content Description and Elaborations from Year 1- Year 6 (ACARA, 2020b) 

Year Curriculum content description Elaborations 

Year 1 Light and sound are produced 

by a range of sources and can be 

sensed  

● recognizing senses are used to learn about the 
world around us: our eyes to detect light, our ears 
to detect sound, and touch to feel vibrations 

● identifying the sun as a source of light 

● recognizing that objects can be seen when light 
from sources is available to illuminate them 

● exploring different ways to produce sound using 
familiar objects and actions such as striking, 
blowing, scraping, and shaking 

● comparing sounds made by musical instruments 
using characteristics such as loudness, pitch and 
actions used to make the sound 

Year 2 A push or a pull affects how an 

object moves or changes shape 

● exploring ways that objects move on land, 
through water and in the air 

● exploring how different strengths of pushes and 
pulls affect the movement of objects 

● identifying toys from different cultures that use 
the forces of push or pull 

● considering the effects of objects being pulled 
towards the Earth 

Year 3 Heat can be produced in many 

ways and can move from one 

object to another  

● describing how heat can be produced such as 
through friction or motion, electricity, or 
chemically (burning) 

● identifying changes that occur in everyday 
situations due to heating and cooling 

● exploring how heat can be transferred through 
conduction 
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Table 2 Continued 

Year Curriculum content description Elaborations 

  ● recognizing that we can feel the heat and measure 
its effects using a thermometer 

Year 4 Forces can be exerted by one 

object on another through direct 

contact or from a distance  

● observing qualitatively how speed is affected by 
the size of a force 

● exploring how non-contact forces are similar to 
contact forces in terms of objects pushing and 
pulling another object 

● comparing and contrasting the effect of friction 
on different surfaces, such as tires and shoes on a 
range of surfaces 

● investigating the effect of forces on the behavior 
of an object through actions such as throwing, 
dropping, bouncing, and rolling 

● exploring the forces of attraction and repulsion 
between magnets 

Year 5 Light from a source forms 

shadows and can be absorbed, 

reflected and refracted 

 

● drawing simple labelled ray diagrams to show the 
paths of light from a source to our eyes 

● comparing shadows from point and extended 
light sources such as torches and fluorescent 
tubes 

● classifying materials as transparent, opaque or 
translucent based on whether light passes through 
them or is absorbed 

● recognizing that the color of an object depends on 
the properties of the object and the color of the 
light source 

● exploring the use of mirrors to demonstrate the 
reflection of light 

● recognizing the refraction of light at the surfaces 
of different transparent materials, such as when 
light travels from air to water or air to glass 
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Table 2 Continued 

Year Curriculum content description Elaborations 

 

 

Year 6 

 

 

Electrical energy can be 

transferred and transformed in 

electrical circuits and can be 

generated from a range of 

sources 

 

● recognizing the need for a complete circuit to 
allow the flow of electricity 

● investigating different electrical conductors and 
insulators 

● exploring the features of electrical devices such 
as switches and light globes 

● investigating how moving air and water can turn 
turbines to generate electricity 

● investigating the use of solar panels 

● considering whether an energy source is 
sustainable 

Note. The descriptions and elaborations are direct quotations from ACARA (2020b). 

2.6.2 Science Curriculum of Hong Kong  

Aiming to stimulate students’ thinking and develop their capabilities to “Learn to Learn,” 

the Education Bureau of Hong Kong launched a curriculum reform in 2000. The current 

curriculum of Hong Kong is based on the General Studies for Primary Schools (GS) curriculum, 

which was introduced in 2002. The Curriculum Development Council (CDC) of Hong Kong 

updated the GS curriculum guide in 2011 and then in 2017. Science is taught as part of the subject 

General Studies at the elementary level. “Science and Technology in Everyday Life” is an 

important strand in the GS curriculum. The aim of this strand is to “arouse students’ curiosity and 

interest in science and technology through hands-on and minds-on activities and help them develop 

basic science process skills and technology learning skills” (CDC, 2017a, p. 29).  

The curriculum framework describes what students should know, value, and be able to do 

from three interconnected perspectives: Knowledge and understanding; Skills; and Values and 

attitudes. (The relations among the three perspectives are depicted in Figure 2.) The curriculum 
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specifically describes the learning objectives from these three perspectives of each strand. In 

addition, there are two stages, i.e., key stage 1 and key stage 2, in the learning objectives. The 

curriculum framework of GS continues to be updated responding to the changes and challenges in 

society and around the world. For instance, the curriculum remains open and flexible, with the 

following new emphases added in 2017: developing STEM education, and deepening values 

education (CDC, 2017a). 

 

Figure 2.  Interconnection among Three Perspectives (CDC, 2017a, p. 12) 
 

Energy-related topics are an important part of the learning objectives. For instance, “to 

recognize sources of energy and know their uses in everyday life” is the first learning objective 

presented in the “Science and Technology in Everyday Life” strand. At key stage one, “sources of 

energy and uses of energy in everyday life (e.g., light and electricity)” is listed as one of the core 

learning elements. At key stage two, “examples of energy and conversion of energy (e.g., light, 

sound, electricity)” is listed as one of the core learning elements. The examples of themes for the 

GS primary curriculum provided in the guide also list learning elements related to energy at 

primary 1, primary 4, primary 5, and primary 6.  “Energy and Change” is one of six strands in the 

major learning elements of the Science Education curriculum. The specific learning objectives in 
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the primary grades 1-6 are listed in Table 3. Unlike Australia’s science curriculum, Hong Kong’s 

curriculum description is much simpler. However, the first two stages of learning progressions of 

energy are also covered in Hong Kong’s curriculum: energy sources and energy transfer.  

Table 3.  Learning Objective of Energy and Change by Stage (CDC, 2007b, p. 29) 

Stage Energy and Change 

Learning Objectives at Key 
Stage 1 (Primary 1 - 3)  

To recognize sources of energy and know their uses in daily life; 
To recognize heat transfer and some related phenomena; 
To understand the need for saving energy; 

To describe energy use at home and in school. 

Learning Objectives at Key 
Stage 2 (Primary 4 - 6)  

To recognize some patterns or phenomena related to light, 
sound, electricity and object movement; 
To recognize different forms of energy involved in energy 
change; 
To use energy wisely and save energy in daily life; 
To recognize the safety measures in using energy of different 
forms in daily life. 

 

2.6.3 Science Curriculum of Ontario 

The Ontario province of Canada was one of the benchmarking participants in TIMSS 

across the years of 2007, 2011 and 2015. Benchmarking participants are the states and districts 

that participated in TIMSS with the opportunity to assess their students’ achievement from an 

international comparative perspective and view their curriculum and instruction within an 

international context. Canada does not have a uniform national curriculum, and each province is 

responsible for developing its own ministry-established common curriculum. The current science 

curriculum of Ontario was originally developed in 1998. The official curriculum document about 

the science discipline is The Ontario Curriculum, Grades 1–8: Science and Technology. The 

curriculum was updated in 2007 and implemented in September 2008. There are three major goals 
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outlined in the curriculum: 1) “to relate science and technology to society and the environment” 

(OME, 2008, p. 3).; 2) “to develop the skills, strategies, and habits of mind required for scientific 

inquiry and technological problem solving” (OME, 2008, p. 3).; and 3) “to understand the basic 

concepts of science and technology” (OME, 2008, p. 3). 

Understanding matter and energy is one of the strands of the Ontario science curriculum. 

The curriculum describes the big ideas for each strand’s fundamental concepts by different grades. 

Students broaden and deepen their understanding about the fundamental concepts as they progress 

through the grades in the curriculum (OME, 2008). Energy is one of the fundamental concepts in 

the curriculum.  In addition, there are two sets of expectations for each grade’s strand: overall 

expectations and specific expectations. The specific expectations are described from three 

perspectives: relating science and technology to society and the environment; developing 

investigation and communication skills; understanding basic concepts. Table 4 lists the big ideas 

and overall expectations corresponding to each grade and strand. Ontario science curriculum’s 

description about energy is the most specific among three selected jurisdictions. Due to their length, 

specific expectations are not included here. The first two stages of learning progressions of energy: 

“energy sources” and “energy transfer and transformation” are covered in the Ontario science 

curriculum from lower to upper grades.   
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Table 4.  Big Ideas and Overall Expectations of Energy from the Ontario Curriculum (OME, 
2008, p. 50, p. 61, p. 63, p. 76, p. 86, p. 90, p. 104, p. 107, p. 118) 

Grade & Strand Big ideas Overall expectations 

Grade 1  
Understanding 
matter and energy 
(Energy in our 
lives) 

Everything that happens is a 
result of using some form of 
energy.  

1. Assess uses of energy at home, at 
school, and in the community, 
and suggest ways to use less 
energy;  

2. Investigate how different types 
of energy are used in daily life; 
demonstrate an understanding 
that energy is something that is 
needed to make things happen, 
and that the sun is the principal 
source of energy for the earth.  

Grade 2  
Understanding 
structures and 
mechanisms 
(Movement) 

Simple machines help objects to 
move. (Overall expectations 1, 2, 
and 3) Mechanisms are made up 
of one or more simple machines. 
(Overall expectation 2)  
Simple machines and 
mechanisms make life easier 
and/or more enjoyable for 
humans. (Overall expectation 1)  

 

1. Assess the impact on society and 
the environment of simple 
machines and mechanisms;  

2. Investigate mechanisms that 
include simple machines and 
enable movement;  

3. Demonstrate an understanding of 
movement and ways in which 
simple machines help to move 
objects.  

Grade 2 
Understanding 
matter and energy 
(Properties of liquid 
and solids) 

Materials that exist as liquids and 
solids have specific properties. 
(Overall expectations 2, and 3) 

1. Assess ways in which the uses of 
liquids and solids can have an 
impact on society and the 
environment;  

2. Investigate the properties of and 
interactions among liquids and 
solids;  

3. Demonstrate an understanding of 
the properties of liquids and 
solids.  
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Table 4 Continued 

Grade & Strand Big ideas Overall expectations 

Grade 3 
Understanding 
matter and energy 
(Forces causing 
movement) 
 

There are several types of forces 
that cause movement. (Overall 
expectations 1, 2, and 3) 
 

1. Assess the impact of various 
forces on society and the 
environment; 

2.  Investigate devices that use 
forces to create controlled 
movement; 

3. Demonstrate an understanding of 
how forces cause movement and 
changes in movement.  

Grade 4 
Understanding 
structures and 
mechanisms 
(Pulleys and gears) 

Pulleys and gears make it 
possible for a small input force to 
generate a large output force. 
(Note: Grade 4 students need to 
understand mechanical advantage 
only in its qualitative sense). 
(Overall expectation 1)  
Gears are specialized wheels and 
axles that are used daily in many 
machines. (Overall expectations 
1, 2, and 3)  

 

1. Evaluate the impact of pulleys 
and gears on society and the 
environment;  

2. Investigate ways in which 
pulleys and gears modify the 
speed and direction of, and the 
force exerted on, moving 
objects;  

3.Demonstrate an understanding of 
the basic principles and 
functions of pulley systems and 
gear systems.  

Grade 5 
Understanding 
matter and energy 
(Light and sound) 

Light and sound are forms of 
energy with specific properties. 
(Overall expectations 2 and 3)  
Sound is created by vibrations. 
(Overall expectations 2 and 3) 
Light is required to see. (Overall 
expectation 3)  
Technological innovations 
involving light and sound have an 
impact on the environment. 
(Overall expectation 1)  

1.Assess the impact on society and 
the environment of technological 
innovations related to light and 
sound;  

2. Investigate the characteristics 
and properties of light and 
sound;  

3.Demonstrate an understanding of 
light and sound as forms of 
energy that have specific 
characteristics and properties.  
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Table 4 Continued 

Grade & Strand Big ideas Overall expectations 

Grade 5 
Understanding 
matter and energy 
(Properties and 
changes in matter) 

Matter that changes state is still 
the same matter. (Overall 
expectations 2 and 3) 

1. Conduct investigations that 
explore the properties of matter 
and changes in matter;  

2. Demonstrate an understanding of 
the properties of matter, changes 
of state, and physical and 
chemical change.  

Grade 5 
Understanding 
earth and space 
system (Conservat-
ion of energy and 
resources) 

Energy sources are either 
renewable or non-renewable. 
(Overall expectation 3)  

1. Demonstrate an understanding of 
the various forms and sources of 
energy and the ways in which 
energy can be transformed and 
conserved.  

Grade 6 
Understanding 
matter and energy 
(Electricity and 
electrical devices) 

Electrical energy can be 
transformed into other forms of 
energy. (Overall expectations 2 
and 3)  

1. Investigate the characteristics of 
static and current electricity, and 
construct simple circuits;  

2. Demonstrate an understanding of 
the principles of electrical 
energy and its transformation 
into and from other forms of 
energy.  

2.7 Cognitive Diagnostic Models 

This study proposes to apply cognitive diagnostic models (CDMs) to detect students’ 

knowledge mastery patterns for energy concepts to address Research Questions 1 and 2. I briefly 

mentioned that CDMs are also one of the methods used to develop learning progression in section 

2.2. I will introduce these models specifically in this section. I will start with an overview of CDMs. 

Then, I will define the attribute and Q matrix, which are two important terms in CDMs. I will also 

briefly introduce the classification of CDMs. The specific statistical models of CDMs that this 

study intends to use are not covered in this section. Instead, I will introduce the statistical models 

in Chapter 3. 
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2.7.1 Overview of Cognitive Diagnostic Models  

 CDMs are designed for differentiating a large number of skills or attributes at a fine 

cognitive grain size level to provide diagnostic feedback to learners (Rupp et al., 2010). They are 

special cases of latent class models that characterize the relationship of observable data to a set of 

categorical latent ability attributes (typically dichotomous) (Templin & Henson, 2006). CDMs can 

diagnose the presence or absence of each attribute for every student and illuminate different 

mastery patterns. In achievement testing contexts, the presence or absence of attributes is referred 

to as skills mastery and non-mastery, which are represented by a vector of binary latent variables. 

CDMs also provide diagnostic feedback about test-takers’ or learners’ master or non-mastery of 

the subskills.   

2.7.2 Attributes 

Conceptually, the term attributes refer to “skills, dispositions, or any other constructs that 

are related to behavioral procedures or cognitive processes that a learner must engage in to solve 

an assessment item” (Carragher et al., 2019). Psychometrically, attributes refer to unobserved 

(latent) variables in a statistical model, which are measured through assessment items and encoded 

in a Q matrix (Carragher et al., 2019).  (I will discuss the Q matrix in the following section.) In 

CDM contexts, latent attributes can be binary, categorical polytomous, or ordinal polytomous. For 

instance, Tatsuoka (1983) defined eight attributes for solving fraction subtraction items and these 

attributes were all binary. These eight attributes are: convert a whole number to a fraction; separate 

a whole number from a fraction; simplify before subtracting; find a common denominator; borrow 

from whole number part; column borrows to subtract the second numerator from the first; subtract 

numerators; and reduce answers to simplest form.  
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CDM could classify test-takers into latent classes (i.e., attribute mastery patterns). If k is 

the number of attributes and each attribute is assigned into two levels (i.e., mastery or non-mastery), 

CDMs will generate 2/ possible latent classes. In Tatsuoka’s (1983) study, for example, there are 

20, i.e., 128 latent classes. Test-takers who are likely to have mastered corresponding attributes 

(probabilities above 0.5) are coded as 1, otherwise (probabilities below 0.5) they are coded as 0.  

2.7.3 Q Matrix 

The specification of attributes hypothesized to be measured by each item is done 

numerically in a table called a Q matrix (e.g., Tatsuoka, 1983; de la Torre, 2009). A well-designed 

Q matrix is fundamental to CDMs. The construction of the Q matrix needs to be developed from 

theory and empirical investigations (Rupp et al., 2010), which requires joint input from content 

experts, cognitive and learning theorists, and psychometricians (Liu et al., 2014). From a statistical 

perspective, the Q matrix is the loading matrix or pattern matrix that shows the relation of items 

and latent variables (Rupp et al., 2010). Generally, the items are in the rows and attributes are in 

the columns of the Q matrix. A cell is coded as one if item j involves attribute k for answering item 

j correctly, otherwise, that cell is coded as zero in the Q matrix. The Q matrix shows the cognitive 

specification for each test item explicitly (de la Torre, 2009). An example of a Q matrix is 

presented in Table 5. There are 10 items and 6 attributes measured by this example assessment. If 

the attribute is measured by the item, its cell is coded as one, otherwise, it is coded as zero. When 

an item can be solved using different strategies, the most dominant attributes or skills should be 

used to define the Q matrix (Lee et al., 2011). Researchers (Rupp et al., 2010) divide Q matrices 

into three categories: adjacency matrix, reachability matrix and reduced Q matrix. For an 

adjacency matrix, attributes are directly hierarchically dependent on one another. Attributes are 

both directly and indirectly hierarchically dependent on one another in a reachability matrix. A 
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reduced matrix is derived from both adjacency and reachability matrices. It is reduced because 

some attribute combinations that would be permissible if all attributes were independent are not 

permissible if an attribute hierarchy is specified (Rupp et al., 2010, p. 62). 

Table 5.  Sample Q Matrix of an Assessment 

 Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6 

Item 1 0 0 0 1 0 0 

Item 2 0 0 0 1 1 0 

Item 3 1 0 0 1 0 1 

Item 4 1 1 1 1 0 0 

Item 5 1 0 0 0 0 1 

Item 6 0 1 0 1 1 0 

Item 7 1 1 1 0 0 0 

Item 8 0 1 0 1 0 1 

Item 9 0 1 0 1 1 1 

Item 10 0 0 0 0 0 1 

2.7.4 Classification of CDMs 

According to whether the latent attributes are additive in predicting the probability of 

correct response or not, there are two kinds of models: compensatory latent-variable models and 

non-compensatory latent-variable models. In compensatory latent-variable models, a low value 

on one latent variable can be compensated for a high value on another latent variable to yield a 

correct response. For instance, the generalized deterministic inputs, noisy and-gate (G-DINA) 

and higher-order deterministic inputs, noisy and-gate (HO-DINA) models are compensatory 

latent-variable models. In non-compensatory latent-variable models, a low value on one latent 
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variable cannot be compensated by a high value on another latent variable. For instance, the 

deterministic inputs, noisy and-gate (DINA) model is non-compensatory. Whether particular 

observed response data is more consistent with a compensatory or non-compensatory model can 

be investigated using Akaike information criterion (AIC) or Bayesian information criterion 

(BIC) values (Rupp et al., 2010, p. 93). But theory is also needed to interpret any model results.  

2.7.5  Retrofitting CDM to Non-diagnostic Framework Based Assessment  

Retrofitting normally refers to the practice of fitting CDMs to responses obtained from 

assessments that are not designed under a diagnostic measurement framework (Liu et al., 2018, p. 

359). The main differences between diagnostic and non-diagnostic measurement frameworks can 

be described as follows: Non-diagnostic framework assessments such as item response theory-

based assessment assign scores to test-takers on a trait continuum or continua; however, diagnostic 

framework assessment specifies multiple categorical traits and classifies examinees on each trait 

as mastered or non-mastered (Liu et al., 2018). For instance, in a non-diagnostic framework, 

reading ability could be represented and assessed as a unidimensional latent trait (e.g., overall 

reading ability) or multiple latent traits (e.g., make inferences, evaluate skills), with scores 

assigned on the latent trait continuum(s). Retrofitting CDMs to much of the existing achievement 

testing data is likely to yield unsatisfactory diagnostic classification results (Gierl & Cui, 2008). 

However, it is still possible to retrofit CDMs to assessments developed under a non-diagnostic 

framework and obtain satisfactory results. In CDMs, for instance, reading ability would be 

assessed by multiple categorical traits (e.g., make inferences, evaluate skills) and learners are 

scored in a series of dichotomous or polytomous (e.g., mastery or non-mastery) latent categories. 

The nondiagnostic framework assessment would also have skill-level considerations during test 

development (Liu et al, 2018). The test’s content development often breaks the theoretical larger 
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construct into subdomains and those subdomains could be treated as multiple attributes when 

retrofitting CDMs (Liu et al, 2018). Thus, it is possible to retrofit CDM to current nondiagnostic 

assessment to get skill-level information about test-takers, although non-diagnostic measurement 

frameworks normally do not provide fine-grain skill-level diagnostic feedback (Liu et al., 2018). 

 Retrofitting has been used widely as “an add-on to simulation studies addressing different 

research questions in diagnostic measurement” (Liu et al., 2018, p. 360). However, few studies 

focusing on the methodology of retrofitting CDMs to nondiagnostic framework besides Liu et al. 

(2018). Liu et al. (2018) proposed an iterative process of the methodology of retrofitting CDMs 

based on their review of published retrofitted examples and their experiences. There are four stages 

in this process (Liu et al., 2018): 1) Gathering information about the assessment, end users, and 

item responses, 2) specifying attributes and attribute-item relationships, 3) modeling item 

responses through evaluating fit statistics, and examining attribute correlations and reliability, and 

4) interpreting results. 

Studies have applied CDMs to existing non-diagnostic assessments to provide diagnostic 

feedback in different content areas. A number of applied studies have retrofitted CDM to existing 

reading comprehension tests (e.g., Chen & Chen, 2016; Javidanmehr & Sarab, 2019; Kasai, 1997; 

Jang, 2009; Lee & Sawaki, 2009b; Li et al., 2015; Mirzaei, Vincheh & Hashemian, 2020; Ravand 

& Robitzsch, 2018; Yi, 2012; Wang & Gierl, 2011), mathematics tests (e.g., Gierl et al., 2008; 

Gierl et al., 2010; Lee et al., 2011; Toker & Green, 2012; Yamaguchi & Okada, 2018; Wu et al., 

2020), and listening tests (e.g., Aryadoust, 2018; Effatpanah, 2019), while few studies (Kabiri et 

al., 2017) have applied CDM to existing nondiagnostic assessment in science disciplines. The 

normal practice of retrofitting CDM of these studies is to start with model selection among 

different CDMs, then choose the best fitting model to conduct the analysis and provide diagnostic 
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feedback based on the chosen model. If it’s assumed that there are hierarchical relations between 

attributes, an attribute hierarchy method model is often retrofitted to the non-diagnostic tests 

without model comparisons. In summary, CDMs have been retrofitted to non-diagnostic 

framework assessments in different subject areas, but the applications in science disciplines are 

few.  

This chapter reviewed literature related to the current study. I reviewed definitions of 

learning progressions, methods of developing learning progressions in science disciplines, students’ 

understanding about energy, and learning progressions, particularly related to the energy topic. 

Then, the opportunity to learn and instructional sensitivity were reviewed. I also briefly reviewed 

the science curricula of Australia, Hong Kong, and the Ontario province of Canada. Finally, I 

introduced CDM-related concepts and retrofitting CDM to non-diagnostic framework-based 

assessment. In Chapter 3, I will introduce the methods this study will use.  
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 METHOD 

This study hypothesizes a learning progression of energy based on previous research (Lacy 

et al., 2014; Neumann et al., 2013) study sequenced as 1) forms of energy; 2) transfer and 

transformations of energy; 3) dissipation and degradation of energy; and 4) conservation of energy. 

I will examine the extent to which the hypothesized learning progression matches students’ 

observed progression in understanding the energy concept using CDM (Research Question 1). I 

will also compare the differences in students’ knowledge mastery patterns for different countries 

(Research Question 2). Finally, since different jurisdictions implement different science curricula, 

I will also explore how the intended curriculum may relate to students’ understanding of energy 

across different countries (Research Question 3). Specifically, I will explore how OTL may affect 

students’ understanding and assessment items’ instructional sensitivity. The items’ instructional 

sensitivity analysis will examine the validity of the items and will inform the discussion of the 

differences in students’ knowledge mastery patterns for different countries. 

This chapter will describe the cross-national science assessment data, specific variables, 

and statistical models related to the four research questions. For Research Questions 1 and 2, I will 

describe the Q matrix development and validation in this chapter. I will introduce the deterministic 

inputs, noisy and-gate (DINA) model. Finally, since I will investigate Question 3 by applying 

logistic regression, I will present that model.  

3.1 Data  

This study will use Trends in International Mathematics and Science Study (TIMSS) 

student achievement test data and curriculum data from Grade 4 and Year 2011. TIMSS applies a 

two-stage random sample design: in the first stage, a sample of schools was drawn; in the second 
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stage, one or more intact classes of students were selected from sampled schools (Martin et al., 

2016). The science assessment framework is organized around two dimensions: content and 

cognitive. Specifically, the Grade 4 science assessment framework is designed from three major 

content domains, i.e., life science, physical science, and earth science. There are three cognitive 

domains of TIMSS science assessment: knowing, applying and reasoning. The TIMSS data sets 

are suitable for the current investigation because: 1) they provide reliable data on students’ science 

achievement, including performance on the energy topic, which is the main focus of the study; and 

2) it also provides curriculum data from different countries, which allows me to analyze and 

compare how the science curriculum may relate to students’ understanding of energy across 

countries.  

Three jurisdictions, Australia, the Ontario province of Canada, and Hong Kong, are chosen 

for analysis since their curricula have changed or been updated before 2011. In 2011, Australia 

had 6,146 students who participated, Ontario had 4,568 students who participated, and Hong Kong 

had 3,957 students who participated in TIMSS.  

3.2 Variables  

This section will introduce the variables that will be used in the study. I will describe the 

student level and teacher level variables. The specific variables that will be used in this study are 

listed in Table 6. 

Student level variables. In the proposed study, I will focus on achievement test item 

variables assessing each student’s knowledge mastery of energy topics under the physical science 

domain in the year 2011. The cognitive domain of each item is specified in the assessment’s 

framework. Specific item IDs are listed in Table 6. Some items had several subitems. For instance, 

item S031197 had two subitems, resulting in two response variables: S031197A, and S031197B. 
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These subitems will be treated as independent items since they provide unique information about 

students’ responses. There are 28 items included in this study counting all the subitems. Twelve 

items only had two score categories and all other items had more than two score categories. It 

should be noted here that the multiple-choice items will be classified into two categories (correct 

will be coded as 1 and incorrect will be coded as 0) in CDM. For open-ended questions with more 

than two response categories, all the correct response categories are coded as 1 and all the incorrect 

response categories are coded as 0. (Items have multiple types of correct answers and/or multiple 

types of incorrect answers, but do not have ‘partially correct’ answers.) 

Country level variables. Country level variables came from TIMSS Test-Curriculum 

Matching Analysis (TCMA). TCMA was conducted to investigate the appropriateness of the 

TIMSS mathematics and science assessments for the fourth and eighth grade students in the 

participating countries (Foy et al., 2013, p. 102). Binary coding (Yes/No) indicated whether items 

in the assessment were included in the national curriculum, or not, for a particular participating 

jurisdiction. (It should be noted here that there is no existing variable indicator for this information. 

Only a table is presented showing the binary coding, through which I can code the table into 

variables).  

Table 6.  Selected TIMSS Variable List of TIMSS 2011 Grade 4 

Variable Cognitive Domain Question type Response Category 

S031273 Applying Multiple choice 4 
S031076 Reasoning Open-ended 3 

S031077 Applying Multiple choice 4 
S031197A Knowing Open-ended 7 

S031197B Knowing Open-ended 7 
S031298 Applying Multiple choice 4 

S031299 Knowing Open-ended 5 



 

51 

Table 6 Continued 

Variable Cognitive Domain Question type Response Category 

S041311 Applying Multiple choice 4 

S041120 Knowing Multiple choice 4 
S041067 Knowing Open-ended 2 

S041069 Applying Multiple choice 4 
S041070 Applying Multiple choice 4 

S041191 Knowing Multiple choice 4 
S041195 Applying Open-ended 3 

S051119 Reasoning Open-ended 3 
S051074 Applying Open-ended 3 

S051179 Applying Multiple choice 4 
S051201 Applying Multiple choice 2 

S051121A Knowing Multiple choice 2 
S051121B Knowing Multiple choice 2 

S051121C Knowing Multiple choice 2 
S051121D Knowing Multiple choice 2 

S051121E Knowing Multiple choice 2 
S051188A Knowing Multiple choice 2 

S051188B Knowing Multiple choice 2 
S051188C Knowing Multiple choice 2 

S051188D Knowing Multiple choice 2 
S051188E Knowing Multiple choice 2 

3.3 Analysis 

The data analysis will be divided into four steps. First, I will report the descriptive analysis 

of test item variables. Second, I will analyze the achievement test items of each jurisdiction using 

CDM to obtain students’ mastery patterns.CDM analysis will be conducted using the R software 

CDM package (Robitzsch et al., 2020). Since most of the items only measure one attribute in this 

study (see sections 3.5 and 4.3, 85.71% items in the proposed Q matrix and 91.66% items in the 
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final Q matrix), the results of CDM analysis are expected to be similar across different models. 

Thus, the parsimonious DINA model is chosen. I will use the parsimonious and interpretable 

“deterministic, inputs, noisy, ‘and’ gate” (DINA; see Haertel, 1989; Junker & Sijtsma, 2001; 

Macready & Dayton, 1977) model, with results obtained by weighted maximum likelihood 

estimation. Third, I will compare the differences between students’ mastery patterns in different 

countries from step two. Fourth, I will analyze how the intended curriculum may influence students’ 

mastery or understanding of the particular topic domain, i.e., energy. I will use logistic regression 

to see if students’ performance on each item differs depending on whether it was covered or not 

covered in the national curriculum, i.e., detect the instructional sensitivity of each item, using 

Mplus software. The nested structure of the data will be accounted for by using complex 

adjustment analysis (Stapleton, 2016). The missing data will be handled through full information 

maximum likelihood estimation. 

3.4 Analysis Model 

3.4.1 DINA Model 

Among CDMs, the deterministic inputs, noisy and-gate (DINA) model is widely used for 

its simplicity and interpretability (de la Torre & Douglas, 2004). The DINA model (e.g., Haertel, 

1989; Junker & Sijtsma, 2001) is a noncompensatory model with a conjunctive condensation rule. 

The respondent needs to master all the attributes required for a particular item (Rupp et al., 2010) 

in the DINA model to have a high probability of answering the item correctly. A latent variable 

𝜂-.  represents whether or not respondent i has all of the required attributes to resolve item j in the 

DINA model (Hsu & Wang, 2015). The latent variable 𝜂-. is a function of the determinist input 

which is defined as Equation 2: 
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			η12 = 	∏ 𝛼-/
3!'4

/5,                                                          (2) 

where 𝜂-. = 1 when respondent i masters all of the required attributes for item j, 	𝜂-. = 0 

when respondent i lacks at least one of the required attributes, 𝛼-/ is attribute vector for respondent 

i and attribute k. If an attribute is not measured by an item, then 𝑞-/ = 0, which means that 𝛼./6 =1. 

If an attribute is measured by an item, then 𝑞-/ = 1, which means that whether the respondent 

masters the attribute or not matters for the probability of correct response (Rupp et al., 2010).  

DINA model accounts for the noise (i.e., random error) introduced in the underlying 

stochastic process with slip and guessing parameters. Even respondents who have mastered all 

measured attributes for an item can slip and miss the item. The respondents who have not mastered 

at least one of the measured attributes can guess and answer a question correctly (Rupp et al., 

2010). The probability of respondent i with the skill vector 𝛼- answering item j correctly in the 

DINA model is defined as Equation 3: 

																			𝑃.(𝛼-) = 𝑃(𝛼-) = 		 𝑔.
,)7!"(1	 − 𝑠.)7!"                                                    (3) 

where  𝑔. is the guessing parameter, 𝑠. is the slipping parameter, and all other terms are as 

defined previously. Given local independence among items and examinees, the joint likelihood 

function of the DINA model is defined as Equation 4: 

𝐿(𝑠, 𝑔, 𝛼|𝑋) = ∏ ∏ [(1 −	𝑠.)8()𝑠.
,)8())]9()[	g.8()(1 − g.			

,):!")],)9();
.5,

<
15,                   (4) 

where 𝑠 is the vector that consists of all slip parameters and g is the vector that consists of 

all guessing parameters in the test; N is the examinee sample size; and the others have been defined 

previously.  

DINA model is one of the most parsimonious and interpretable CDM models with only 

two parameters (i.e., guessing parameter and slipping parameter). de la Torre and Lee’s (2008) 
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study found that DINA keeps item-level information generated from item response theory models. 

TIMSS assessment items are selected based on IRT item statistics (Martin & Mullis, 2011). The 

DINA model is consistent with generalizations of standard IRT assumptions (e.g., local 

independence, monotonicity) (Junker & Sijtsma, 2011), and has been shown to be sensitive to 

attributes even if the items were designed to fit by an item response theory model (Junker & 

Sijtsma, 2011). Retrofitting TIMSS item response data with the DINA model could reveal 

important cognitive and content attributes, providing diagnostic information on students’ attribute 

mastery (Choi, et al., 2015; Lee et al., 2011).  

3.4.2 Logistic Regression 

In this study, I will use logistic regression to detect items’ instructional sensitivity. The 

outcome variable Yij indicates the natural log odds of a correct response for student i on item j. For 

items with more than two ordered score categories, I will combine different correct score 

categories into one category as correct. Similarly, I will combine all incorrect score categories into 

one category as incorrect. This coding procedure matches the item responses’ coding in the CDM 

analysis. Whether the item is covered in the national curriculum, from the TCMA results, will be 

the independent variable (𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑢𝑚-.). Items covered in the national curriculum will be coded 

as 1, otherwise they will be coded as 0. I will use full information maximum likelihood estimation 

to deal with missing data on the outcome variables. The equation I will use for logistic regression, 

with one model for each item, is defined as Equation 5. 

																																			𝑌-. = 	b0j + b1j 𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑢𝑚-.                                              (5) 
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where 𝑌-. is the log odds of a correct response for student i on item j, 0j is the log odds when 

the independent variable is zero, and b1j is the coefficient indicating instructional sensitivity 

regarding curriculum.     

Some studies controlled for students’ ability in exploring items’ instructional sensitivity 

(e.g., D’Agostino et al., 2007; Li et al., 2017). The rationale is that students’ ability would relate 

to students’ performance in each item, while performance on an instructionally sensitive item is 

expected to increase with effective teaching (Baker, 1994). Thus, I will also examine the 

instructional sensitivity of selected items, controlling for students’ ability (𝐴𝑏𝑖𝑙𝑖𝑡𝑦-.). Students’ 

ability is indicated by the number of attributes each student mastered from CDM analysis. The 

equation for the second part of instructional sensitivity analysis, controlling students’ ability is 

defined as Equation 6 

																																		𝑌-. = 	b0j + b1j 𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑢𝑚-.   + b2j 𝐴𝑏𝑖𝑙𝑖𝑡𝑦-. 																																							(6)       

3.5 Q Matrix Development and Validation  

3.5.1 Development of the Draft Q matrix 

A well-designed Q matrix is essential in CDMs. I developed a draft Q matrix based on the 

literature related to learning theory, learning progressions of energy in the physical science domain, 

and the TIMSS assessment framework. The Q matrix reflected the learning progression I proposed 

based on Lacy et al. (2014)’s study, i.e., 1) forms of energy; 2) transfer and transformations of 

energy; 3) dissipation and degradation of energy; and 4) conservation of energy. Since I will use 

the Grade 4 items, none of which are related to “dissipation and degradation of energy” or 

“conservation of energy,” I deleted these two strands in the Q matrix. The proposed Q matrix (see 

Table 7) thus has two higher-order strands (“forms of energy” and “transfer and transformations 
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of energy”). According to the TIMSS science assessment framework (Mullis et al., 2009) and 

Quebec Progression of Learning Science and Technology (Quebec Education Program [QEP], 

2009), I then classified the existing items into six specific attributes in the proposed Q matrix. 

Most of the attribute descriptions came from objectives proposed in the TIMSS science assessment 

framework and Quebec Progression of Learning Science and Technology for elementary school 

except the last attribute “Understands heat transfer” which was most clearly characterized in Hong 

Kong’s curriculum. There are two attributes under the “forms of energy” strand: 1) “Describes 

different forms of energy (mechanical, electrical, light, chemical, heat, sound, nuclear)”(QEP, 

2009, p.5); and 2) “Identifies sources of energy in his/her environment (e.g., moving water, the 

chemical reaction in a battery, sunlight)”(QEP, 2009, p.5). There are four attributes under the 

“transfer and transformations of energy” strand:  1) Distinguish between substances that are 

conductors and those that are insulators; 2) “Explain that simple electrical systems, such as a 

flashlight, require a complete (unbroken) electrical pathway” (Mullis et al., 2009, p.59); 3) “Relate 

familiar physical phenomena to the behavior of light (e.g., reflections, rainbows, shadows)” 

(Mullis et al., 2009, p.59); and 4) Understand heat transfer. According to the hypothesized learning 

progression from Lacy et al. (2014) and Neumann et al. (2013), I hypothesize that these six 

attributes in this study are not necessarily fully ordered, but the four attributes for the strand 

“transfer and transformations of energy” are followed by the two attributes for the strand “forms 

of energy” in learning sequence, and attributes are not ordered within the strands. There are 28 

items in the proposed Q matrix, and 24 out of 28 items (85.71%) are only measuring one attribute.  

 

 

 



 

57 

Table 7.  Proposed Q matrix 

Items A1 A2 A3 A4 A5 A6 
S031273 0 0 1 0 0 1 
S031076 0 1 0 0 0 0 
S031077 0 1 1 0 0 0 

S031197A 1 0 0 0 0 0 
S031197B 1 0 0 0 0 0 
S031298 0 1 0 0 0 1 
S031299 1 0 0 0 0 0 
S041311 1 0 0 0 0 1 
S041120 0 1 0 0 0 0 
S041067 1 1 0 0 0 0 
S041069 0 0 0 0 1 0 
S041070 0 0 0 0 1 0 
S041191 0 0 1 0 0 0 
S041195 0 0 0 1 0 0 
S051119 0 1 0 0 0 0 
S051074 0 0 0 1 0 0 
S051179 0 0 0 0 1 0 
S051201 0 0 1 0 0 0 

S051121A 0 0 1 0 0 0 
S051121B 0 0 1 0 0 0 
S051121C 0 0 1 0 0 0 
S051121D 0 0 1 0 0 0 
S051121E 0 0 1 0 0 0 
S051188A 0 1 0 0 0 0 
S051188B 0 1 0 0 0 0 
S051188C 0 1 0 0 0 0 
S051188D 0 1 0 0 0 0 
S051188E 0 1 0 0 0 0 

Note. A1 = Describes different forms of energy (mechanical, electrical, light, chemical, heat, sound, 
nuclear); A2 = Identifies sources of energy (e.g. moving water, the chemical reaction in a battery, sunlight); 
A3 = Distinguishes between substances that are conductors and those that are insulators; A4 = Explain that 
simple electrical systems, such as a flashlight, require a complete (unbroken) electrical pathway; A5 = 
Relate familiar physical phenomena to the behavior of light (e.g., reflections, rainbows, shadows); A6 = 
Understand heat transfer 
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3.5.2 Expert Review 

 Then, five experts from science education were invited to review the draft matrix and the 

proposed attributes. Among the five experts, two experts were K-9 physical science teachers. One 

of the science teachers had five years’ teaching experience and another one had one year’s teaching 

experience. One expert was a faculty member of physical science education and he had been a 

physical science teacher for two years. One expert was a faculty member of science education and 

he had been a physical science teacher for five years. Another expert was a fourth-year doctoral 

candidate in science education. All the five experts had obtained their bachelor’s degree and 

master’s degree in science education. I conducted an interview with each expert by discussing each 

item’s endorsed attributes. The length of each interview was about an hour to an hour and a half. 

Experts were asked whether each endorsed attribute was correct or not, and what revisions needed 

to be made. Experts were also asked whether new attributes needed to be added to fully describe 

the available items’ content. The Q matrix was revised after the expert review. 

3.5.3 Q Matrix Validation Using Real Data  

The revised Q matrix was analyzed and validated using CDMs and two split data sets. The 

current dataset was divided into halves. I randomly drew half of the data within each jurisdiction 

and combined those into one dataset for the first validation of the Q matrix. I combined the rest of 

each jurisdiction’s data for the second validation. I conducted the validation analysis using the 

DINA model. I revised the Q matrix according to the first analysis result, again referring to the 

expert review information. Then, I used the second half of the combined data set to do the second 

validation analysis. I used weighted maximum likelihood estimation to deal with specific sampling 

features and missingness in the survey data. Maximum likelihood estimation allows us to “estimate 

a set of parameters that maximize the probability of getting the data that was observed” (Newman, 
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2003, p. 332), and it is an effective way to treat missingness on outcome variables. Adding 

sampling weights to the analysis allows the sample results to reconstruct those that would be 

obtained if it was a random draw from the total population and leads to accurate population 

parameter estimates (Friedman, 2013). The absolute model fit will be identified using the 

Standardized Mean Square Root of Squared Residuals (SRMSR), mean of absolute deviations in 

observed and expected correlations (MADcor), mean of absolute values of Q3 statistic (MADQ3), 

and a maximum of all chi-square statistics (max(X2)). To calculate MADQ3, residuals e=-=  𝑋=-− 

𝑒=-  of observed and expected responses for respondents n and items i are constructed (Robitzsch 

et al., 2020, p. 167). Then, the average of the absolute values of pairwise correlations of these 

residuals is computed for MADQ3 (Robitzsch et al., 2020, p. 167). The max(X2) statistic is the 

maximum of all item pair  𝑥..>?  statistics, and a statistically significant p-value shows that some 

item pairs violate statistical independence (Robitzsch et al., 2020). Thus, a non-significant value 

for max(X2) (p > 0.05) indicates a good fit. For all other model fit indices, the model fits the data 

better if these fit indices are close to zero (Ravand & Robitzsch, 2015). 

Item level fit will be evaluated using the item fit Root Mean Square Error of Approximation 

(RMSEA) and item discrimination index (IDI). The criteria for interpreting item-fit RMSEA are 

as follows: item-fit RMSEA below 0.05 indicates good fit, item-fit RMSEA below 0.10 indicates 

moderate fit, and item-fit RMSEA above 0.10 indicates poor fit (Kunina-Habenicht et al., 2009). 

IDI for each item is calculated as  𝐼𝐷𝐼.	=	1 − 𝑠.−𝑔.	(Lee et al., 2012), where	𝑠.		is the slipping 

parameter and 𝑔.	is the guessing parameter. IDI can be used as a diagnostic index about how an 

item discriminates between students having a response probability of 1 − 𝑠.	 possessing all skills, 

and students guessing with probability (𝑔.	) without possessing any skills (George et al., 2016). 

IDIs close to 1 indicates a good discrimination of the item, and IDI values close to 0 indicate items 
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with a low discrimination (George et al., 2016). The matrix may be revised according to the 

analysis result. Similar attributes may be combined to reduce the number of attributes according 

to the analysis results. For items that do not have a good item fit, their attribute classifications will 

be reconsidered, or the item may be deleted from the model if it violated the assumptions of the 

model’s assumption. The final cognitive diagnostic assessment analysis will be based on the 

validated Q matrix.   

This chapter described the data, variables, selected models, statistical models, and planned 

analytic strategies to address my research questions. This chapter also described the proposed Q 

matrices and validation process of the Q matrices for the cognitive diagnostic models. In the next 

chapter, I will present the results.  
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 RESULTS 

In this chapter, I will document the Q matrix validation results from both expert reviews 

and using real data. The final Q matrix will be presented. I will also present descriptive statistics 

of items. The overall attribute mastery probability and latent class mastery pattern profile from 

cognitive diagnostic models across the three jurisdictions will also be presented. The overall 

attribute mastery probability could help answer the first research question of the study, i.e., the 

extent to which the hypothesized learning progression matches students’ observed progression in 

understanding the energy concept using the cognitive diagnostic model. The latent class mastery 

pattern profile would help answer the second research question, i.e., the similarities and differences 

in students’ knowledge mastery patterns for different questions. I will also present the instructional 

sensitivity of each item, which helps answer the study’s third research question. 

4.1 Descriptive Statistics of Items 

Table 8 presents descriptive statistics of each item for each jurisdiction, i.e., the proportion-

correct item difficulty. Item S041195 and item S051074, both about simple electrical circuits, are 

two items with the lowest proportion of correctness for all the three selected jurisdictions. Item 

S051188C and item S051188D about sources of energy are two items with the highest proportion 

of correctness. 
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Table 8.  Item Statistics: Proportion-correct Item Difficulty 

 
Item 

Proportion-correct Item Difficulty 

Australia Hong Kong Ontario 

S031273 0.66 0.87 0.63 
S031076 0.37 0.50 0.53 

S031077 0.76 0.84 0.80 
S031197A 0.86 0.81 0.85 

S031197B 0.77 0.69 0.77 
S031298 0.29 0.44 0.26 

S031299  0.45 0.54 0.57 
S041311 0.94 0.96 0.94 

S041120 0.45 0.26 0.47 
S041067 0.65 0.66 0.63 

S041069 0.60 0.73 0.57 
S041070 0.63 0.51 0.62 

S041195 0.14 0.21 0.20 
S051119 0.26 0.32 0.39 

S051074 0.18 0.23 0.12 
S051179 0.85 0.74 0.88 

S051201 0.55 0.17 0.55 
S051121A 0.84 0.89 0.90 

S051121B 0.82 0.84 0.78 
S051121C 0.76 0.89 0.69 

S051121E 0.72 0.94 0.72 
S051188A 0.84 0.89 0.89 

S051188B 0.75 0.89 0.77 
S051188C 0.93 0.93 0.95 

S051188D 0.90 0.93 0.94 
S051188E 0.69 0.92 0.75 
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4.2 Q Matrix Validation Results: Expert Review 

I summarized the four experts’ feedback and revised the proposed Q matrix according to 

their feedback. One attribute’s description was revised, some items were deleted from the matrix, 

and some items’ attribute correspondence was changed. First, one attribute’s description was 

revised according to experts’ review. Experts commented that Attribute 6 was broad, and we 

narrowed down Attribute 6 “Understand heat transfer” to “Recognize that heating an object can 

increase its temperature and that hot objects can heat up cold objects” based on the content of 

TIMSS items.  

Second, experts also suggested deleting some items. Item S031076 was about magnets 

repelling or attracting because of North/South poles repelling or attracting rather than about 

Attribute 2 “Identifies sources of energy.” Since only one item assessed the attribute about 

magnetism proposed by the reviewer, which could not provide adequate estimation, this item was 

deleted. There were still 9 items assessing Attribute 2 in the Q matrix after item S031076 was 

deleted, which would not affect the testing of the hypothesized learning progressions. Item 

S051119 was about the reasoning of magnet property that magnets can attract pins and only this 

item measured this content. Thus, this item was also deleted. Although item S041311 was under 

the “source and effects of energy” topic area, it is about the reading of a thermometer and was not 

related to any attributes proposed. Since only one item was related to thermometer reading, this 

item was deleted. Item S041120 about the objects that produce their own light was also deleted 

since this item is not related to any attributes proposed.  

Some items’ attribute assignment changed according to experts’ review. For item S031077, 

Attribute 2 was not endorsed since all the experts agreed that this item did not involve identifying 

sources of energy as proposed in Attribute 2. For item S031298, Attribute 2 was also not endorsed 

since students did not need to identify sources of energy to solve this problem. For item S031299, 
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Attribute 5 was added since it’s about light rays as proposed in Attribute 5. For item S041067, 

Attribute 2 was deleted. For item S051201, it assessed whether students understand sweaters are 

insulators or not. Thus, Attribute 3 was endorsed, and Attribute 6 was not endorsed. In summary, 

four items were deleted and there remained six attributes after the expert reviewers’ feedback. 

Eight items assessed the attributes of the first strand of the proposed learning progressions and 

seventeen items assessed the attributes of the second strand of the proposed learning progressions. 

The revised Q matrix is presented in Table 9.  

Table 9.  Revised Q Matrix 

Items A1 A2 A3 A4  A5 A6 

S031273 0 0 1   0 0 1  

S031077 0 0 1 0 0 0 
S031197A 1 0 0 0 0 0 

S031197B 1 0 0 0 0 0 
S031298 0 0 0 0 0 1 

S031299  1 0 0 0 1  0 

S041067 1 0  0 0 0 0 

S041069 0 0 0 0 1  0 
S041070 0 0 0 0 1 0 

S041191  0 0 1 0 0 0 

S041195 0 0 0 1 0 0 

S051074 0 0 0  1  0 0 
S051179 0 0 0 0 1 0 

S051201 0 0 1 0 0 0 
S051121A 0 0 1 0 0 0 

S051121B 0 0 1 0 0 0 

S051121C 0 0 1 0 0 0 

S051121D 0 0 1 0 0 0 
S051121E 0 0 1 0 0 0 

S051188A 0 1 0 0 0 0 
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Table 9 Continued 

Items A1 A2 A3 A4  A5 A6 

S051188B 0 1 0 0 0 0 

S051188C 0 1 0 0 0 0 
S051188D 0 1 0 0 0 0 

S051188E 0 1 0 0 0 0 

total 3 5 9 2 4 2 

Note. A1 = Describes different forms of energy (mechanical, electrical, light, chemical, heat, 
sound, nuclear); A2 = Identifies sources of energy (e.g. moving water, the chemical reaction in a 
battery, sunlight); A3 = Distinguishes between substances that are conductors and those that are 
insulators; A4 = Explain that simple electrical systems, such as a flashlight, require a complete 
(unbroken) electrical pathway; A5 =  Relate familiar physical phenomena to the behavior of 
light (e.g., reflections, rainbows, shadows); A6 =  Recognize that heating an object can increase 
its temperature and that hot objects can heat up cold objects 

4.3 Q Matrix Validation Results: Using Real Data 

I divided the current data into two datasets, and I did the validation based on the first half 

of the data first. I validated the Q matrix using the DINA model and weighted maximum likelihood 

estimation method as stated earlier. I checked the indices of the DINA model as the following 

procedure. First, I examined item-level fit indices to check how well the model fit each item’s 

observed response data. The item level indices for the first validation are presented in Table 10. 

Item S041191 had a negative item discrimination index (IDI) index, -0.072, which violated the 

constraint of the DINA model that 𝑔.	<1−	𝑠.		(George et al., 2016). Item S041191 was a multiple-

choice item inquiring which material was the best conductor of heat. Then I double-checked this 

item’s attribute classification (the endorsed attribute was Attribute 3 “Distinguishes between 

substances that are conductors and those that are insulators”) and consulted with the experts again, 

who indicated that no further changes of this item’s attribute should be made based on its content. 

Since there were still multiple items measuring Attribute 3, this item was deleted due to its negative 

IDI. All other item-level indices were good. The IDI indices ranged from 0.104 to 0.879. Item 
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S051121A and item S051188E were two items with the lowest IDI index 0.104 and 0.159. Item 

S051121A and item S051188E were also found to have local dependence with other items (as 

presented in the next paragraph). Thus, these two items would be deleted. All items’ RMSEA 

values were below 0.05.  

Then I checked the absolute model fit indices. All other absolute model fit indices were 

good: SRMSR = 0.053, MADcor = 0.039, MADQ3 = 0.076. However, the max(X2) statistic was 

not good: max(X2) = 42.681, p < 0.05. Max(X2) statistics’ p-value was significant, which 

indicated a violation of statistical independence of the item pair. Then I checked the item pairs’ 

local independence. Item S051121A had significant local dependence with another two items 

(S051121D and S051188B). Item S051121D had significant local dependence with another two 

items (S051121A, S051121B). S051188E had significant local dependence with another two items 

(S051188B, S051201). Item S051121A, S051121B, and S051121D came from the same set of 

items, which distinguish between substances that are conductors and those that are insulators. Item 

S051188B and S051188E came from the same set of items about sources of energy. Item S051201 

was also about sources of energy. In addition, item S051121A and item S051188E had the lowest 

IDI indices among all the items. Thus, I deleted one item that had multiple local dependence with 

other items and the two items with a lower IDI index, i.e., S051121A, S051121D, and S051188E.  

Then I used the second half of the data to check the revised Q matrix. The absolute model 

fit indices were all good SRMSR =0.040, MADcor = 0.034, MADQ3 = 0.080, max(X2) = 8.787, 

p = 0.134. The item-level fits were also all good. The IDI indices ranged from 0.162 to 0.722.  Item 

S051188D had the lowest IDI index 0.162. Item S041067 and item S041069 had the highest IDI 

index 0.746. RMSEA statistics were all below 0.05. Table 11 presents item-level fit results for the 



 

67 

second validation. Most items’ IDI values increased at the second validation. Table 12 presents 

the final Q matrix of this study. In total, there are 20 items and six attributes in the final matrix. 

Table 10.  Item-level Fit Indices of the First Validation 

Item Guess Slip IDI RMSEA 

S031273 0.538 0.124 0.337 0.027 

S031077 0.492 0.017 0.491 0.015 
S031197A 0.595 0.000 0.405 0.005 

S031197B 0.329 0.000 0.670 0.007 
S031298 0.046 0.429 0.525 0.003 

S031299  0.407 0.417 0.176 0.034 
S041067 0.127 0.097 0.776 0.004 

S041069 0.101 0.020   0.879 0.004 
S041070 0.240 0.133 0.627 0.009 

S041191  0.508 0.564 -0.072 0.015 
S041195 0.003  0.618 0.378 0.012 

S051074 0.012 0.640   0.348 0.006 
S051179 0.692 0.046 0.261 0.007 

S051201 0.212  0.135   0.652 0.013 
S051121A 0.811 0.085 0.104 0.016 

S051121B 0.676 0.121 0.203 0.003 
S051121C 0.414 0.024  0.562 0.018 

S051121D 0.524 0.191 0.284 0.019 
S051121E 0.367 0.000   0.632 0.016 

S051188A 0.314 0.016 0.669 0.009 
S051188B 0.301 0.144 0.555 0.015 

S051188C 0.720 0.019 0.262 0.019 
S051188D 0.696 0.048 0.256 0.028 

S051188E 0.630 0.211 0.159 0.030 
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Table 11.  Item-level Fit Indices of the Second 

Validation 

Item Guess Slip IDI RMSEA 

S031273 0.544 0.028 0.428 0.019 
S031077 0.407 0.057 0.536 0.006 

S031197A 0.554 0.000 0.446 0.009 
S031197B 0.278 0.000 0.722 0.003 

S031298 0.004 0.453 0.543 0.006 
S031299  0.410 0.405 0.185 0.034 

S041067 0.279 0.075 0.746 0.004 
S041069 0.179 0.075 0.746 0.004 

S041070 0.247 0.093 0.660 0.003 
S041195 0.001 0.636 0.363 0.015 

S051074 0.024 0.646 0.330 0.003 
S051179 0.652 0.006 0.342 0.006 

S051201 0.022 0.222  0.756 0.007 
S051121B 0.653 0.087 0.260 0.003 

S051121C 0.318 0.000 0.682 0.002 
S051121E 0.330 0.023 0.647 0.007 

S051188A 0.503 0.000 0.497 0.016 
S051188B 0.536 0.098 0.366 0.047 

S051188C 0.775 0.006 0.219 0.031 
S051188D 0.808 0.030 0.162 0.025 
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Table 12.  Final Q matrix 

Items A1 A2 A3 A4  A5 A6 

S031273 0 0 1   0 0 1  

S031077 0 0 1 0 0 0 
S031197A 1 0 0 0 0 0 

S031197B 1 0 0 0 0 0 
S031298 0 0 0 0 0 1 

S031299  1 0 0 0 1  0 
S041067 1 0  0 0 0 0 

S041069 0 0 0 0 1  0 
S041070 0 0 0 0 1 0 

S041195 0 0 0 1 0 0 
S051074 0 0 0  1  0 0 

S051179 0 0 0 0 1 0 
S051201 0 0 1 0 0 0 

S051121B 0 0 1 0 0 0 
S051121C 0 0 1 0 0 0 

S051121E 0 0 1 0 0 0 
S051188A 0 1 0 0 0 0 

S051188B 0 1 0 0 0 0 
S051188C 0 1 0 0 0 0 

S051188D 0 1 0 0 0 0 
total 3 4 6 2 4 2 

Note. A1 = Describes different forms of energy (mechanical, electrical, light, chemical, 
heat, sound, nuclear); A2 = Identifies sources of energy in (e.g. moving water, the 
chemical reaction in a battery, sunlight); A3 = Distinguishes between substances that 
are conductors and those that are insulators; A4 = Explains that simple electrical 
systems, such as a flashlight, require a complete (unbroken) electrical pathway; A5 =  
Relates familiar physical phenomena to the behavior of light (e.g., reflections, rainbows, 
shadows); A6 =  Recognizes that heating an object can increase its temperature and that 
hot objects can heat up cold objects 
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Then, I also double-checked the model fit and the item fit indices for subset datasets for 

Australia, Hong Kong, and Ontario to ensure the model fits were all good. The absolute model fit 

indices were good for each jurisdiction: none of the p values of max(X2) were significant, which 

means that the current model fit well for each jurisdiction’s data. MADcor and SRMSR values 

were below 0.05; MADQ3 were below 0.1 (see Table 13). The item-level fit for each jurisdiction 

is also acceptable: item-level RMSEA statistics are all below 0.05; IDI values are all above zero, 

ranging from 0.214 to 0.819. 

 

Table 13.  Absolute Model Fits Statistics for Australia, Hong Kong, and Ontario  

Jurisdiction max(X2) MADcor SRMSR MADQ3 

Australia 9.330 (p = 0.099) 0.033 0.043 0.089 

Hong Kong 5.325 (p = 0.925) 0.037 0.049 0.072 

Ontario 5.002 (p= 1.000) 0.036 0.046 0.078 

4.4 Item Covered in National Curriculum or Not 

A Test-Curriculum Matching Analysis (TCMA) was conducted by the International 

Association for the Evaluation of Educational Achievement (IEA) to investigate the 

appropriateness of the TIMSS 2011 mathematics and science assessments for the fourth and eighth 

grade students in the participating countries (Foy et al., 2013). Participating countries were asked 

to indicate whether the corresponding items on the TIMSS 2011 assessments were included in 

their national curricula or not (Foy et al., 2013). Table 14 presents the results of whether the 

selected items in this study were covered in the selected jurisdiction’s national curriculum or not. 

As presented in Table 14, most items were covered in Australia and Hong Kong’s national 
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curriculum. Ontario has fewer items that were covered in the national curriculum compared to 

Australia and Hong Kong.  

Table 14.  Item Covered in National Curriculum or Not 

 
Items 

Item Covered in National Curriculum or Not 

Australia Hong Kong Ontario 
S031273 not yes yes 
S031076* yes yes not 
S031077 not not not 
S031197A yes not not 
S031197B yes not not 
S031298 yes yes not 
S031299 yes yes yes 
S041311* yes yes not 
S041120* yes yes yes 
S041067 yes not not 
S041069 yes yes yes 
S041070 yes yes yes 
S041191* yes yes not 
S041195 not not not 
S051119* yes yes yes 
S051074 not yes not 
S051179 yes yes yes 
S051201 yes yes not 
S051121A* yes yes not 
S051121B yes yes not 
S051121C yes yes not 
S051121D* yes yes not 
S051121E yes yes not 
S051188A yes yes not 
S051188B yes yes not 
S051188C yes yes not 
S051188D yes yes not 
S051188E* yes yes not 
Note. This data is from the TIMSS TCMA result (IEA, 2013).  
* Items were not included in the final Q matrix.  
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4.5 Attribute Mastery Profile Across Three Jurisdictions 

Table 15 and Figure 3 present the attribute mastery probabilities of the three jurisdictions. 

They show each participant population’s mastery probability for each attribute, which is the 

relative difficulty levels of different sub-skills underlying the energy topic for each jurisdiction. 

As the results show, Attribute 1 “Describes different forms of energy” and Attribute 2 “Identifies 

sources of energy,” which were mastered by 71.26% and 77.5% of the test-takers from Australia, 

were easiest for the Australian students. Attribute 4 “Explain that simple electrical systems, such 

as a flashlight, require a complete (unbroken) electrical pathway” mastered by 44.04%, was the 

most difficult for Australian students. 

As to Hong Kong, Attribute 2 “Identifies sources of energy”, which was mastered by 87.54 % 

of the test-takers from Hong Kong, was easiest for the Hong Kong students. Attribute 3 

“Distinguishes between substances that are conductors and those that are insulators” came after 

Attribute 2 with a relatively high level of mastery, 80.46%. Attribute 4 “Explain that simple 

electrical systems, such as a flashlight, require a complete (unbroken) electrical pathway” mastered 

by 46.04% was also the most difficult for Hong Kong students. 

As to Ontario, Attribute 1 “Describes different forms of energy” and Attribute 2 “Identifies 

sources of energy”, which were mastered by 66.07% and 74.82% of the test-takers from Ontario, 

were easiest to the Ontario students. Attribute 3 “Distinguishes between substances that are 

conductors and those that are insulators” comes after Attribute 2 with a relatively high level of 

mastery, 80.46%. Attribute 4 “Explain that simple electrical systems, such as a flashlight, require 

a complete (unbroken) electrical pathway,” mastered by 46.04%, was also most difficult to Ontario 

students. Overall, Ontario students’ mastery probabilities for each attribute are the lowest among 

the three selected jurisdictions, while Hong Kong students’ are the highest.  
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Table 15.  Attribute Mastery Probabilities across Three Jurisdictions 

Attribute Attribute Mastery Probability 

Australia Hong Kong Ontario 

A 1 0.7126 0.5981 0.6607 

A 2 0.7750 0.8754 0.7482 
A 3 0.6517 0.8046 0.5970 

A 4 0.4404 0.4604 0.4339 
A 5 0.5690 0.6057 0.5991 

A 6 0.4868 0.5913 0.4997 

Note. A1 = Describes different forms of energy (mechanical, electrical, light, chemical, heat, 
sound, nuclear); A2 = Identifies sources of energy (e.g. moving water, the chemical reaction in 
a battery, sunlight); A3 = Distinguishes between substances that are conductors and those that 
are insulators; A4 = Explains that simple electrical systems, such as a flashlight, require a 
complete (unbroken) electrical pathway; A5 =  Relates familiar physical phenomena to the 
behavior of light (e.g., reflections, rainbows, shadows); A6 =  Recognizes that heating an 
object can increase its temperature and that hot objects can heat up cold objects 

 
 
 
 

 
 

Figure 3.  Attribute Mastery Probabilities across Three Jurisdictions
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4.6 Latent Class Profiles  

The DINA model defines 2/ possible latent classes for each cognitive domain, where k is 

the number of attributes. In the current study, I have 6 attributes. Thus, there are 64 latent classes. 

As I noted in Chapter 2, test-takers who are likely to have mastered corresponding attributes are 

coded as 1, otherwise, it is coded as 0. Test-takers who master all the underlying attributes are 

categorized to the “111111” latent class. Test-takers who are not considered as masters of any 

attributes belong to “000000.” The latent class “110000” indicates a group of test-takers who are 

estimated to have mastered the first two attributes presented in the final Q matrix.  

Table 16 demonstrates 64 latent class profiles and their attribute mastery pattern 

probabilities in the three jurisdictions. As is presented in Table 16, for Australia, the latent class 

“111111” had the highest latent class probability (0.13871), which means about 13.87% of the 

overall test-takers were estimated to have mastered all attributes. The latent class “111011”, to 

which 8.11% of the test-takers belong, came second. About 8.11% of students could not master 

Attribute 4 “Explains that simple electrical systems” while they could master all other attributes. 

The third dominant latent class is “111110” (0.06661), which means that about 6.66% of the test-

takers belong to this latent class. This latent class represents mastery of the first five defined 

attributes. About 6.66% of students did not master Attribute 6 “recognizes that heating an object 

can increase its temperature and that hot objects can heat up cold objects” while they could master 

all other attributes. The next seven dominant classes are: “111010” (3.92%), “111000” (3.86%), 

“111100” (3.718%), “011000” (3.025%), “100000” (2.692%), “110000” (2.583%), and “010000” 

(2.569%). Finally, about 2.537% of test-takers did not master any attribute. 

For Hong Kong, the highest probability is also class “111111” and about 13.19% of test-

takers were estimated to have mastered all attributes. As for Australia, the second-highest class 



 

75 

probability of Hong Kong was also a latent class “111011” (0.12016), which means that about 

12.02% of test-takers belong to this latent class. About 12.02% of Hong Kong students could not 

master Attribute 4 “Explains that simple electrical systems,” while they could master all other 

attributes. The percentage was relatively higher than for Australian students. The third highest 

class probability is “011010”, with about 7.13% of test-takers possessing this latent class. The next 

seven dominant classes were: “111101” (5.96%), “011110” (5.47%), “111110” (5.45%), “111010” 

(5.148%), “010001” (3.823%), “111100” (3.198%), and “000001” (2.831%). In addition, the 

percentage of Hong Kong test-takers in the latent class that had none of the attributes mastered 

“000000” was very low (0.665%). 

For Ontario, the highest probability is class “111011” and about 8.233% of test-takers were 

categorized to this class. Test-takers mastered all the attributes except Attribute 4 (i.e., Explain 

that simple electrical systems, such as a flashlight, require a complete electrical pathway). The 

second highest class probability of Ontario is the latent class “111111” (0.07489), which means 

that about 7.489% of test-takers are masters of all the attributes. The third highest class probability 

is “111010”, with about 6.422% of test-takers not mastering Attribute 4 “Explain that simple 

electrical systems, such as a flashlight, require a complete electrical pathway” and Attribute 6 

“Recognizes that heating an object can increase its temperature and that hot objects can heat up 

cold objects”. The next seven dominant classes are “111110” (5.80%), “011110” (5.47%), 

“111101” (4.083%), “111001” (3.34%), “110010” (3.24%), “011100” (3.19%), and “010011” 

(2.817%). In addition, the percentage of Ontario test-takers that did not master any attributes (i.e., 

in the latent class “000000”) is slightly higher than that of Australia and Hong Kong. 
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Table 16.  Latent Class Probabilities 

Latent Class Attribute Mastery 
Pattern 

Australia Hong Kong Ontario 

1 000000 0.02537 0.00665 0.02789 
2 100000 0.02692 0.00364 0.01766 
3 010000 0.02569 0.00894 0.02090 
4 001000 0.00980 0.00617 0.00891 
5 000100 0.00473 0.00031 0.01230 
6 000010 0.00358 0.00169 0.00436 
7 000001 0.01505 0.02831 0.01288 
8 110000   0.02583 0.00454 0.01251 
9 101000 0.01309 0.00433 0.00478 
10 100100 0.00917 0.00031 0.00807 
11 100010 0.00407 0.00216 0.01372 
12 100001 0.01435 0.00805 0.00934 
13 011000 0.03025 0.02243 0.02717 
14 010100 0.00782 0.00637 0.01585 
15 010010 0.01461 0.00295 0.01116 
16 010001 0.01555 0.03823 0.00987 
17 001100 0.00141 0.00043 0.00569 
18 001010 0.00456 0.01021 0.00192 
19 001001 0.00311 0.00299 0.00101 
20 000110 0.00102 0.00005 0.00187 
21 000101 0.00273 0.00136 0.00555 
22 000011 0.00281 0.00239 0.01088 
23 111000 0.03855 0.01535 0.01408 
24 110100 0.01451 0.00590 0.00993 
25 110010 0.01549 0.00348 0.03242 
26 110001 0.01399 0.01006 0.00673 
27 101100 0.00348 0.00054 0.00315 
28 101010 0.01117 0.00763 0.01455 
29 101001 0.00620 0.00812 0.01142 
30 100110 0.00236 0.00009 0.00438 
31 100101 0.00478 0.00069 0.00418 
32 100011 0.00490 0.00243 0.01121 
33 011100 0.01597 0.02598 0.03187 
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Table 16 Continued 

Latent Class Attribute Mastery 
Pattern 

Australia Hong Kong Ontario 

34 011010 0.01731 0.07134 0.00932 
35 011001 0.00979 0.01074 0.00318 
36 010110 0.00716 0.00138 0.00854 
37 010101 0.00462 0.02724 0.00734 
38 010011 0.01170 0.00421 0.02817 
39 001110 0.00104 0.00046 0.00121 
40 001101 0.00044 0.00021 0.00064 
41 001011 0.00302 0.00382 0.00244 
42 000111 0.00079 0.00007 0.00458 
43 111100 0.03718 0.03198 0.01724 
44 111010 0.03925 0.05148 0.06422 
45 111001 0.01842 0.02810 0.03342 
46 110110 0.01532 0.00228 0.01870 
47 110101 0.00771 0.01302 0.00525 
48 110011 0.01885 0.00393 0.02688 
49 101110 0.00516 0.00047 0.00686 
50 101101 0.00163 0.00104 0.00753 
51 101011 0.02370 0.01845 0.01886 
52 100111 0.00280 0.00010 0.00349 
53 011110 0.01476 0.05471 0.01117 
54 011101 0.00513 0.01269 0.00372 
55 011011 0.01150 0.02660 0.01193 
56 010111 0.00564 0.00196 0.02120 
57 001111 0.00068 0.00017 0.00153 
58 111110 0.06661 0.05446 0.05795 
59 111101 0.01779 0.05962 0.04083 
60 111011 0.08110 0.12016 0.08233 
61 110111 0.01835 0.00257 0.01520 
62 101111 0.01115 0.00120 0.00898 
63 011111 0.00981 0.02087 0.01423 
64 111111 0.13871 0.13187 0.07489 
Note. The top 10 most frequent mastered latent class patterns for each jurisdiction 
are in bold.  
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4.7 Individuals’ Performance on the Energy Topic  

Test-takers with the same total score on the energy topic could have different attribute 

mastery patterns. Besides the population attribute mastery patterns, it is also possible to interpret 

each individual’s attribute mastery pattern. I randomly selected two test-takers who received the 

same total score from the population to take a closer look at each individual’s performance on 

energy. Table 17 presents the attribute mastery patterns for two individual students. From Table 

17, we can see that although the two students earned the same score in the energy topic, their 

mastery patterns differed. Test-taker 1 did not master Attribute 4 and Attribute 5, while test-taker 

2 did not master Attribute 3 and Attribute 4. This means that Test-taker 1 could not explain a 

simple electrical system and failed to relate familiar physical phenomena to the behavior of light 

(e.g., reflections, rainbows, shadows). Test-taker 2 could not distinguish between substances that 

are conductors and those that are insulators or explain a simple electrical system. We could create 

diagnostic performance reports for each test-taker based on individual attribute mastery patterns 

to inform students’ weaknesses and strengths so that we could help each student to promote their 

performance on energy tasks.  

Table 17.  Attribute Mastery Pattern for Individual Test-taker 

Test-taker Score in Energy Topic Attribute Mastery Pattern 

1 5 111001 

2 5 110011 

4.8  Instructional Sensitivity of Selected Items  

4.8.1 Instructional Sensitivity of Selected Items without Controlling Student Ability  

I also checked the instructional sensitivity of items in the final diagnostic model using 

logistic regression. I ran each logistic regression based on a separate dataset only including 
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students’ achievement results for each item, and an indicator for whether the corresponding item 

is covered in each student’s national curriculum. Whether the item was covered in each student’s 

national curriculum was treated as the independent variable. Items covered in the national 

curriculum were coded as 1, and items not covered in the national curriculum were coded as 0. 

Students’ performance on each item (correct or incorrect) was treated as the dependent variable. 

Six items without any variation in national curriculum coverage across the three jurisdictions, 

S031077, S031299, S041069, S041070, S041195, and S051179, were not included in the analysis. 

Item S031077 measures Attribute 3 “Distinguishes between substances that are conductors and 

those that are insulators”. Item S031299 measures Attribute 1“Describes different forms of energy” 

and Attribute 5 “Relate familiar physical phenomena to the behavior of light”. Item S041069, 

S041070, and S051179 measure Attribute 5 “Relate familiar physical phenomena to the behavior 

of light”. S041195 measures Attribute 4 “Explain simple electrical systems require a complete 

(unbroken) electrical pathway”.   

Table 18 presents instructional sensitivity for all items. Item S031273, S030298, S051074, 

S051121B, and S051121E showed instructional sensitivity. Item S051201 has a negative 

regression coefficient. Hong Kong students had a much lower proportion of correctness on this 

item while they performed better on most other questions, so this may cause a negative regression 

coefficient. The possible reason may be that Hong Kong students took the TIMSS test in Mandarin 

and the translation of item S051201 may increase this item’s difficulty. Item S051188D also has a 

negative regression coefficient, while the p-value of this item is marginal. P values are influenced 

by the sample size. When the sample size is large, p-values are more likely to be significant, which 

may be the case in this study.  
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Table 18.  Results of the Instructional Sensitivity for All Items without Controlling Student 
Ability 

Item Regression Coefficient of the Grouping 
Variable (Log Odds) 

p 

S031273* 0.413 0.000 
S031197A 0.187 0.141 
S031197B 0.196 0.063 
S030298* 0.426 0.000 
S041067 0.029 0.766 
S051074* 0.464 0.000 
S051201 -0.564 0.000 

S051121B* 0.313 0.009 
S051121C* 0.595 0.000 
S051121E* 0.504 0.000 
S051188A -0.212 0.161 
S051188B 0.237 0.058 
S051188C -0.349 0.116 
S051188D -0.435 0.022 

Note. * Items that were found to show instructional sensitivity. 

4.8.2 Instructional Sensitivity of Selected Items after Controlling Student Ability  

Some previous studies have controlled for students’ ability in exploring items’ instructional 

sensitivity (e.g., D’Agostino et al., 2007; Greer, 1995; Ing, 2018; Li et al., 2017). The rationale is that 

students’ ability prior to instruction would relate to their performance in each item, while the performance 

of an instructionally sensitive item is expected to increase with effective teaching (Baker, 1994). Thus, I 

also examined the instructional sensitivity of all items with variation in national curricular coverage, 

controlling for students’ ability. As I noted in section 4.7, we can get the attribute mastery pattern for each 

student. I calculated the number of attributes each student mastered and treated this as an estimate of their 

overall competence in the energy domain. Table 19 presents the results for the items showing instructional 

sensitivity after controlling student’s ability. Compared to the results without controlling student ability 

(see Table 18), items S031273 and S030298 no longer showed instructional sensitivity, while items 
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S031197A, S031197B, S041067 now appeared to be instructional sensitive. All other items were still 

showing instructional sensitivity. Items that appeared to be instructional sensitive after controlling 

students’ ability all measured attributes in the first strand of the hypothesized learning progression. We 

can see that the regression coefficients of items S051188A, S051188B, S051188C, and S051188D were 

negative after controlling for students’ ability at the time of testing. I noted a possible reason that the 

regression coefficient of whether the curriculum covered the item or not was negative might be due to 

translation issues. The score of these items may be influenced by other instruction issues, but that cannot 

be inferred from this study.  

 

Table 19.  Results of the Instructional Sensitivity for All Items after Controlling Student Ability 

Items  Regression Coefficient of the 
Grouping Variable (Log Odds) 

p 

S031273 1.202 0.160 
S031197A* 1.720 0.003 
S031197B* 2.926 0.000 
S030298 0.952 0.696 
S041067* 0.673 0.000 
S051074* 1.017 0.000 
S051201 -1.577 0.000 
S051121B* 0.240 0.047 
S051121C* 0.937 0.000 
S051121E* 2.319 0.000 
S051188A -1.366 0.000 
S051188B -0.300 0.035 
S051188C -1.317 0.000 
S051188D -1.299 0.000 
Note. * Items that were found to show instructional sensitivity. 
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 DISCUSSION AND CONCLUSION 

5.1 Research Question 1 

This study hypothesized students’ learning progression in energy across four strands: 1) 

forms of energy; 2) transfer and transformations of energy; 3) dissipation and degradation of 

energy; and 4) conservation of energy. Since Grade 4 items only related to the first two strands, I 

only focused on the first two strands (i.e., forms of energy; transfer and transformations of energy) 

of the learning progression in this study. According to the TIMSS assessment framework and 

Quebec Progression of Learning Science and Technology (Quebec Education Program [QEP], 

2009) for elementary school, six attributes were identified in the energy domain. I hypothesized 

that these six attributes are not necessarily ordered but that the four attributes for the strand 

“transfer and transformations of energy” are followed by the two attributes from the strand “forms 

of energy”, and attributes are not necessarily consistently ordered across student populations 

within either strand. 

The first research question of this study is to what extent the hypothesized learning 

progression matches students’ observed progression in understanding the energy concept, based 

on results from the cognitive diagnostic model. This research question could be answered by this 

study’s attribute mastery probability results. According to the results, Attribute 1 “describes 

different forms of energy (mechanical, electrical, light, chemical, heat, sound, nuclear)” and 

Attribute 2 “identifies sources of energy (e.g., moving water, the chemical reaction in a battery, 

sunlight)” from Strand 1 of the hypothesized learning progression had the highest mastery 

probabilities for Australia and Ontario. Attribute 2 had the highest mastery probability for Hong 

Kong, while Attribute 1 was ranked as the third-highest mastered attribute for Hong Kong. The 

highest mastery probability of the two attributes from Strand 1 for Australia and Ontario indicates 
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that the hypothesized learning progression could be matched to Australia and Ontario students’ 

observed progression in understanding the energy concept using cognitive diagnostic models by 

detecting the attribute mastery probability. This was consistent with previous research about the 

learning progression in energy (Lacy et al., 2014; Neumann et al., 2013) that showed the stand 

“forms of energy” learned before the Strand “transfer and transformations of energy” in the 

learning progression. However, the hypothesized learning progression could not be matched to 

Hong Kong students’ results. The possible reason leading to differences was that two items (item 

031197A and 031197B) assessing Attribute 1 were not covered in Hong Kong’s national 

curriculum according to the TCMA report. “Sources of energy and uses of energy in everyday life” 

is listed as one of the core learning elements at the Key Stage One in Hong Kong’s General Studies 

for Primary Schools (GS) curriculum document, while forms of energy were not mentioned in 

Hong Kong’s national curriculum. Hong Kong students may be lacking the opportunity to learn 

Attribute 1. Although according to the TCMA result these two items were also not covered in 

Ontario’s national curriculum, the Ontario curriculum described specifically that “everything that 

happens is a result of using some form of energy” was a big idea and it expects students could 

investigate how different types of energy are used in daily life in Grade 1.  In addition, these two 

items were covered in Australia’s national curriculum. These may lead to the differences between 

students’ mastery probabilities across countries in describing forms of energy for Attribute 1 and 

may explain why Hong Kong students have lower mastery probability in Attribute 1.  

The content of a country’s curriculum (i.e., the intended curriculum) has been shown to 

affect students’ performance (Schmidt et al., 2001; Ramírez, 2006). Schmidt et al. (2005) also 

found that curricular coherence was the most dominant predictive factor for Grade 1 to Grade 8  

students’ academic performance in science and mathematics, where the curricular coherence is 



 

84 

defined as curriculum standards sequenced progressively towards the understanding of the deeper 

structure of each topic both within and across grades. This study reemphasized the importance of 

the curriculum for students’ performance, which is consistent with earlier studies (Ramírez, 2006; 

Schmidt et al., 2001; Schmidt et al., 2005). Furthermore, this study suggests that the students’ 

observed LPs are dependent on the curriculum they have. Previous learning progression studies 

have examined results for only one curriculum at a time (e.g., Plummer & Krajcik, 2010), while 

this study compared diagnostic model results for different curricula. In addition, though previous 

studies (Gunckel et al., 2012; Liu &Tang, 2004) found differences in LPs for students from 

different countries or contexts, they did not identify how the curriculum may influence students’ 

LPs specifically. Modeled LPs in this study suggest that curriculum may affect students’ 

performance by modifying their learning trajectory, i.e., students from three jurisdictions likely 

differed in their learning progressions on the energy topic since some jurisdictions’ curricula did 

not cover Attribute 1 “describes different forms of energy” of the Strand 1 “forms of energy” in 

the proposed LPs. Besides curriculum, other factors such as classroom instruction and schools’ 

systems may also influence students’ LPs. However, this cannot be inferred from this study. In 

future research, we can look into how classroom level and school level factors relate to students’ 

observed LPs. 

LPs can provide a framework to coordinate standards, assessments, and instruction (Alonzo 

& Gotwals, 2012). The alignment of standards, assessments and instruction could be achieved 

through LPs. LPs are essential in designing curricula materials that allow learners to develop 

integrated understandings of key scientific ideas and practices across time (Fortus & Krajcik, 

2012).  However, currently, not all curricula are designed based on students’ LPs. It is common 

that the curriculum was not built to coherently help learners make connections between ideas 
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within and among disciplines nor help learners develop an integrated understanding (Fortus & 

Krajcik, 2012).  The development of coherent curriculum materials calls for multiple cycles of 

design and development, testing and revising the materials, aligning materials, assessments, and 

teacher support with learning progressions (Fortus & Krajcik, 2012, p.796). 

Additionally, I also found that Attribute 4 from Strand 2 was learned latest by students. 

The mastery probability of the Attribute 4 “Explains that simple electrical systems, such as a 

flashlight, require a complete electrical pathway” from Strand 2 “transfer and transformation of 

energy” is the lowest among all the attributes for all the three selected participating jurisdictions: 

Australia (0.4404), Hong Kong (0.4604), and Ontario (0.4339). In addition, the latent class pattern 

(111011) was ranked as the first mastered pattern for Ontario (8.2%), and the second for Australia 

(8.1%) and Hong Kong (12.02%). These results show that no matter which jurisdiction students 

came from, they performed worse in mastering Attribute 4, and more than half of the students in 

each jurisdiction failed to acquire Attribute 4. There were mainly two items assessing Attribute 4: 

item S041195 and item S051074. For item S041195, none of the three jurisdictions’ curriculum 

covered this item. Item S051074 showed instructional sensitivity, which means that the 

performance of the item was related to whether the item was covered in the curriculum or not. 

Students performed better on this item if it was covered in the national curriculum than if it was 

not. However, neither Ontario’s nor Australia’s curriculum covered this item. When I examined 

the description of energy for each jurisdiction in the curriculum carefully, “electrical circuits” was 

highlighted in Australia’s curriculum in Grade 6. Similarly, the Ontario curriculum described 

“simple circuits” in Grade 6. Though Hong Kong reported covering this item in their curriculum, 

the grade band structure of the national curriculum makes it difficult to identify whether circuits 

are generally covered in Grade 4, 5 and/or 6. Thus, there was still a large possibility that students 
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in Grade 4 had not had the opportunity to learn this attribute in school. In addition, students’ 

misconceptions about circuits are common across the world and have been well documented 

(Moodley & Gaigher, 2019, p. 74). This may explain students’ lowest mastery of Attribute 4 in 

this study. Studies have shown that students have many different misconceptions about electric 

circuits (e.g., Çepni & Keleş, 2006; Pesman & Eryılmaz, 2010). For instance, Çepni and Keleş 

(2006) summarized four models used by students that resulted in misunderstanding circuits: a 

unipolar model; the clashing currents model; the current consumed model, and the scientist model 

with current conserved. For example, in the unipolar model, students believe that only one cable 

is enough to complete a circuit, which would hinder their mastery of Attribute 4. Science teachers 

should get to know different misconceptions that students have in mastering Attribute 4 and utilize 

these misconceptions to help students to change their misconceptions and enhance their conceptual 

understanding, for example, by asking students to demonstrate that one cable is not enough to 

complete a circuit.  

5.2 Research Question 2 and 3 

The second research question of the study was to examine the similarities and differences 

in students’ knowledge mastery patterns for different countries. The third research question of the 

study was to explore how the intended curriculum relates to students’ understanding of energy 

across different countries. The second question could be answered from the overall attribute 

mastery probabilities and attribute mastery pattern profiles obtained during this study. To answer 

the third question, I examined the TCMA data and the curriculum descriptions of the three 

jurisdictions. Since these two questions are related, I will discuss them together in this section.  

Overall, this study’s results showed that Australia and Hong Kong had higher percentages 

of students mastering all the attributes, while lower percentages of Ontario students mastered all 
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the attributes and most individual attributes. These indicate that Ontario students perform relatively 

worse than Australian and Hong Kong students on the energy topic. Among 20 selected items 

assessing the attributes in the Q matrix, Hong Kong had 15 items that were reported to be covered 

in their curriculum according to the TCMA data and Australia had 16 items. However, Ontario 

only had 5 items, many fewer than were covered in the comparison countries. Ontario students’ 

relatively poor performance in energy learning may be caused by their much lesser curriculum 

exposure to learn these attributes.  

This study found some other similarities in students’ knowledge mastery patterns across 

the selected jurisdictions using cognitive diagnostic models. There were high proportions of 

students in latent class pattern “111010” for all three jurisdictions. Ontario had the highest 

proportions of students possessing this pattern, then followed by Hong Kong. Australia had a 

relatively smaller proportion of students. This implicated that most students had weakness in 

mastering both Attribute 4 and Attribute 6. The latent class pattern “111110” was another dominant 

knowledge mastery pattern among three jurisdictions: Australia (0.06661), Hong Kong (0.05446), 

and Ontario (0.05795). In addition, the overall mastery probability of Attribute 6 was the second-

lowest next to Attribute 4’s. These results indicated that Attribute 6 “Recognize that heating an 

object can increase its temperature and that hot objects can heat up cold objects” was also difficult 

for all the participants from three jurisdictions. Students in primary schools always hold some 

misconceptions about heat and temperature. Students may believe the temperature of an object is 

related to its physical properties, that is, the object’s temperature differs by its material properties 

(Choi et al., 2001; Erickson & Tiberghien, 1985), and may confuse it with heat (Paik et al., 2007). 

For instance, some students in primary schools thought that objects of different material in the 

same room were at different temperatures, and there was a misconception of the students that wood 
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objects were hotter than metal objects (Erickson & Tiberghien, 1985). These misconceptions about 

the temperature of objects may lead to students’ poor mastery of Attribute 6.  

There were also some other differences in students’ knowledge mastery patterns. Hong 

Kong and Ontario students had a much higher proportion of students possessing the latent class 

pattern “111101” than Australian students, which means that Hong Kong and Ontario students 

tend to not master Attribute 5 while they could master all the other attributes. This means that 

Attribute 5 “Relate familiar physical phenomena to the behavior of light” was relatively more 

difficult for some Hong Kong and Ontario students. However, as to the overall attribute mastery 

probability, Hong Kong and Ontario students had a slightly larger proportion of students in 

mastering Attribute 5 than Australian students. Among 64 latent mastery patterns, there were 32 

patterns that Attribute 5 was not acquired. Thus, caution is needed in interpreting that more Hong 

Kong and Ontario students failed to acquire Attribute 5 only from the probability of latent mastery 

pattern “111101”. But we can conclude there was a fairly large number of students from Hong 

Kong and Ontario who did not master Attribute 5 while they could acquire all other attributes. 

There are four items measuring Attribute 5 (S031299, S041069, S041070, and S051179). From 

the TCMA results, I can see all three jurisdictions reported that all four items were covered in their 

national curriculum, while students’ performance differed in mastering this attribute. Thus, I 

cannot judge how the curriculum may relate to students’ understanding of this attribute. I may 

more closely examine how teachers’ implemented curriculum and instruction may relate to 

students’ mastery of Attribute 5 in future research.   

5.3 Limitations and Future Directions  

Since the current study used existing TIMSS Grade 4 science datasets, I could only detect 

students’ proficiency on attributes of the energy topic that were measured by the test’s items, and 
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only two strands of the hypothesized learning progression could be tested due to the limited 

number of items that TIMSS administered on the energy topic. In addition, some attributes (e.g., 

A3 “Distinguishes between substances that are conductors and those that are insulators”) 

conceptually could have been divided into more specific attributes in this study if there had been 

multiple items measuring these more specific attributes (but there were not). In future research, we 

could develop an assessment from a cognitive diagnostic model approach to include more 

attributes, so we can separately detect more abilities and skills of students’ energy mastery learning 

progression (Neumann et al., 2013). For instance, we could add attributes and items related to 

another two strands that were not included in this study, i.e., dissipation and degradation of energy, 

and conservation of energy. Since this research only used the DINA model future research could 

also explore other CDM models (e.g., Attribute Hierarchy Models) to probe students’ learning in 

energy and other science topics.   

Second, in the Q matrix validation process, I invited experts in physical science education 

to review the Q matrix while Grade 4 students were not interviewed to talk through their problem-

solving method for each item. In future research, we could also include students’ think-aloud 

process for each item to validate the Q matrix (e.g., Kabiri et al., 2017; Mirzaei et al., 2020). It 

would be more comprehensive to include both experts’ and students’ views.  

Thirdly, this study only included whether each item was covered in the national curriculum 

as an independent variable in detecting each item’s instructional sensitivity. Although teachers 

were asked to report when each particular topic assessed in TIMSS (e.g., energy) was taught in the 

teacher questionnaire, the survey question topics were general and item-level information about 

whether students received instruction was not available. In order to have a better understanding 



 

90 

about how implemented curriculum and instruction may relate to students’ mastery of knowledge 

in energy, it would be helpful to collect item-level information about instruction in the future.  

Fourthly, I only added the sampling weights to improve the estimation accuracy, but I did 

not take the multilevel structure of the TIMSS data with students nested in classrooms into account 

due to constraints of the R CDM package. In future research, if we continue to retrofit CDMs to 

large-scale survey data, we could try to take both their multilevel structure and weights into 

consideration.  

5.4 Conclusion 

This study aimed to gain a better understanding of students’ learning progression of energy 

concepts through cognitive diagnostic models. An initial Q matrix was constructed based on the 

literature related to learning progressions of energy in the physical science domain, and the TIMSS 

assessment framework. A well-validated Q matrix is crucial to CDM analysis. The initial Q matrix 

consisted of six attributes and 28 items. Then, the initial Q matrix was reviewed by experts from 

the physical science education domain. Four items were deleted after the review. After that, the Q 

matrix was validated by applying the DINA model to two sets of TIMSS data. Item fit indices and 

overall model fit statistics were computed. This application led to the refinement of the Q matrix, 

ultimately yielding 20 items that effectively measured six attributes of students’ energy 

understanding. From the result of students’ overall attribute mastery probability, it showed that the 

hypothesized learning progression of learning “forms of energy” first, followed by learning 

“transfer and transformation of energy” matches students’ observed progression in understanding 

the energy concept using cognitive diagnostic models for Australia and Ontario students, but not 

for Hong Kong students.  
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The second aim of the study set out to identify students’ knowledge mastery patterns of 

energy across jurisdictions. For the overall test-takers, the most difficult attribute was to explain 

that simple electrical systems require a complete (unbroken) electrical pathway, and the attribute 

identifying sources of energy was found to be the easiest. Students also performed poorly in 

recognizing that heating an object can increase its temperature and that hot objects can heat up 

cold objects. There was also a large portion of students having difficulty with both the simple 

electrical systems and concepts related to heat and temperature. 

In conclusion, cognitive diagnostic models are a feasible method to detect students’ 

learning progression since they can be used to identify mastery or non-mastery of fine-grained 

attributes corresponding to each strand in a learning progression. CDM has the potential to provide 

insights about fine skills underlying the performance of test-takers. The CDM results may allow 

learners and teachers to recognize learners’ weaknesses, which could guide teachers to adjust their 

instruction and promote students’ learning of energy.  
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APPENDIX A. LIST OF STUDIES ON LEARNING PROGRESSIONS IN 
SCIENCE  

Study Learning progression 
domain/topic    

  Grade level    Methods/ Models  
 

Alonzo & Steedle, 2007 Force and motion 
 

Grade 8  The standard error of measurement 
(SEM) analysis; 
the reliability analysis (Cronbach’s 
α); interview  

    
Black et al. (2011) Molecular theory of 

matter 
Grade 8  Rasch-based partial credit model 

Breslyn et al. (2016) Sea level rise, a Major 
Impact of climate 
change; Causes and 
mechanisms; Scale and 
representations  
Impacts of sea level 
rise; 

  

    
Briggs & Alonzo (2012) Earth and the solar 

system  
 

High school 
students in Iowa 
 

Attribute Hierarchy Method; Classical 
test theory (CTT) 

    
Chen et al. (2017). Thermochemistry Senior high 

school students 
CTT; IRT (Rasch model) as a 
comparison with rule space model  
Rule Space Model; 

    
Fumler et al. (2014)  Applying a force and 

motion learning 
progression over an 
extended time span 
using the force concept 
inventory  
 

Grades 9–12  
 

Rasch measurement model;  
Latent class analysis (LCA) (partial 
credit model) 

Gao et al. (2018) Buoyancy to model 
conceptual change  
 

Grade 8 
 
 

CTT; a latent class; rule space model 
analysis 

Hokayem & Gotwals 
(2016) 

Complex ecosystems 
 

Elementary 
students 

Rank correlation method; Interview 

    
 Jin et al. (2013) Carbon-transforming 

processes in socio-
ecological systems.  

Grades 4 to 12  
 

Interview  
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Appendix A Continued 
 

Study Learning progression 
domain/topic    

  Grade level    Methods/ Models  
 

Kizil (2015) 
 
 

Forces and motion High school 
students 

Partial Credit Model; Attribute Hierarchy 
Model (AHM); Generalized Diagnostic 
Model (GDM) 

Merritt & Krajcik (2013) Building a particle 
model of matter 

Grade 6 Partial Credit Model 
 

Osborne et al. (2016) Argumentation in 
science  

Grades 6–8  
 

Partial credit model and its generalization 
the multidimensional random coefficients 
multinomial logic model (MRCMLM); 
Think-aloud Interview  
 

Plummer & Krajck 
(2010) 

Celestial motion  
 

Grade 1-3 and 
grade 8 students 
 
 

Interview  

Plummer & Maynard 
(2014) 

New or novel 
trajectory” to uncover 
new ways of describing 
an LP  

Grade 8 
 
 

Principal components analysis 
Partial credit model)  

Smith et al. (2006) Matter and the atomic-
molecular theory  
 

K through grade 
2, 3 through 5, 
and 6 through 8.  

 

Songer et al. (2009) Complex thinking 
about biodiversity 

Grade 6 IRT analysis; Hierarchical Linear 
Modeling; Growth Model 

Stevens et al. (2010) The nature of matter; 
Atomic structure and 
the electrical forces; 
Multi-dimensional HLP  
 

Middle school 
students  
 

A systematic design approach, CCD, 
semi-structured interview  
 

Steedle & Shavelson 
(2009)  

 

Force and motion Grade 7 to 12  Latent class analysis, A Bayesian 
approach to latent class analysis 

Suzuki et al. (2015) Students’ Reasoning 
about Ecosystems 
(based on Hokayem & 
Gotwals (2016)’s 
framework) 

Grade 6 Interview 

 
Paik et al (2017)  

 

 
Buoyancy 

 
Grades 3–12  

 
Partial credit model; interview 
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APPENDIX B. LIST OF STUDIES ON LEARNING PROGRESSIONS IN 
ENERGY 

Study Learning progression 
domain/topic and sequence     

  Grade level    Methods/ Models  
 

Dawson-Tunik 
(2006) 
 

Three levels: 
Representational systems 
(“At the representational 
systems level, children 
often provide elaborate 
observations of the 
movements of a bouncing 
ball, including the 
observation that a bouncing 
ball bounces lower and 
lower. ”)  
Single abstractions (“At 
the single abstractions 
level, the term energy 
means something “behind” 
motion—a cause for 
motion.” At this level, 
students may speak of 
energy transfer, explaining 
that the energy of a ball 
transfers to the floor during 
a bounce, much as a liquid 
flows from one location to 
another. They may also 
speak of gravity as a force 
that gradually takes away 
all of a bouncing ball’s 
energy.”) 
Abstract mappings (“At 
the abstract mappings level, 
kinetic and potential energy 
are finally understood as 
different energy states. 
Students can describe trans- 
formations from one energy 
state to the other, 
sometimes referring to 
types of potential energy.”) 
 

 Grade 9 Interview; Rasch 
analysis 
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Appendix B Continued 

Study Learning progression 
domain/topic and sequence     

  Grade level    Methods/ Models  
 

Herrmann-Abell et 
al.(2018) 

Three levels (Basic, 
immediate, advanced), 14 
energy ideas based on (6 
ideas about the forms of 
energy, 6 ideas about 
energy transfer, and two 
other energy ideas about 
energy conservation, 
energy dissipation & 
degradation) 

Grade 4 to 12 grade 
students   
176 University 
students in Physics 
 

Rasch model  
Kendall's tau 
correlation coefficients 
were calculated to 
assess the relationship 
between the difficulty 
of the items and the 
items’ level on the 
learning progression 
(Herrmann-Abell & 
DeBoer, 2018).  
ANCOVA was used to 
perform a cross-
sectional analysis of 
students’ performance 
by grade controlling 
for gender, ethnicity, 
and whether or not 
English was their 
primary language  

Jin & Anderson 
(2012) 

Energy in Socio-Ecological 
Systems  
 

4th Grade, 7th & 8th 
Grade, 9th, 10th, & 
11th Grade  

Interview  

Jin & Wei (2014) Energy in Socio-ecological 
Systems (sources of energy, 
nature of energy, and causal 
reasoning.) 

NA Interview  

Lacy et al.(2014) Energy (forms of energy, 
transfer and 
transformations; 
Dissipation and 
degradation; conservation) 

Grades 3–5 Exploratory interviews  

Lee & Liu (2010) Energy concepts: the 
Knowledge Integration 
Perspective  
(Energy source, Energy 
transformation items, 
Energy conservation items) 
 

 Middle school 
students taught by 29 
teachers in 12 
schools.  
 

Item response theory 
analysis based on the 
Rasch partial credit 
model to validate a 
learning progression of 
energy concepts on the 
knowledge integration 
construct.  
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Appendix B Continued 

Study Learning progression 
domain/topic and sequence     

  Grade level    Methods/ Models  
 

Liu & McKeough 
(2005) 

Energy sources and energy 
forms, energy transfer, 
energy degradation, energy 
conservation  
5 levels: Activity/work, 
source/form, Transfer, 
degradation, conservation  
 

Three kinds of 
different participants: 
students aged 9 years 
at the time of testing, 
typically grades 3 and 
4; students enrolled in 
the two adjacent 
grades that contain 
the largest proportion 
of students of age 13 
years at the time of 
testing, typically 
grades 7 and 8; 
students in the final 
year of their 
secondary grade, 
typically grade 12  

Rasch partial credit 
model  

    
Neumann et al. 
(2013) 
 

Energy: Four hierarchical 
energy topics: forms, 
transfer, degradation, and 
conservation; and each 
topic has four hierarchical 
levels/complexity: facts, 
mappings, relations, and 
concept 
 

Grades 6, 8, and 10  
.  
 
 
 

Rasch analysis  
Analysis of variances 
(ANOVA); Kendall’s t 
correlation coefficient; 
student’s t-test  

Yao et al.(2017) Ideas about energy (form, 
transform, Dissipation, 
Conservation) and four 
levels of conceptual 
development (Fact, 
mapping, relation and 
systematic) into account. 

A total of 4550 
students from Grades 
8 to 12  
 

Rasch analysis, more 
specifically, Partial 
credit Rasch model; 
ANOVA 
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