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temperature and (dashed lines) fits (Pd-Pd). . . . . .. ... .. ... ... ..

Ambicent temperature Pd K-cdge EXAFS of an as-cxchanged Pd-CHA-12(24%)-
2.2 sample prepared via incipient wetness impregnation with Pd(NH;)4(NOj),. .

Ambient temperature Pd K-edge EXAFS of a predominantly mononuclear Pd-
CHA-5-1.2-923 after treatment in flowing air to 1023 K for 0.5 h (gray) then
exposure to 1—2 kPa HyO in balance air at ambient temperatures for 0.5 h

(dashed black). . . . . . . ..

Ambient temperature Pd K-edge (a) XANES and (b) EXAFS spectra of a PdO-
Beta-Si-1.0-773 sample that was treated in flowing air (1.67 em® s7) to 1023 K
(gray) for 0.5 h and subsequently treated in 1-2 kPa H,O in balance air (1.67
em® s71) at ambient temperature for 0.5 h (dashed black). . . . . ... ... ..
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2.33

2.34

2.35

2.36

2.37

2.38

2.39

Ambient temperature Pd K-edge XANES (a) and EXAFS (b) spectra of a PdO-
CHA-Si-1.4-823 sample that was treated in flowing air (1.67 em?® s71) to 1023 K
(gray) for 0.5 h and subsequently treated in 1-2 kPa H,O in balance air (1.67
cm?® §71) at ambient temperature for 0.5 h (dashed black). . . . . ... ... ..

First-derivative Pd K-edge XANES analysis of Pd materials at ambient temper-
ature. Reference compounds were collected under ambient conditions: Pd foil
(black), PdO (dark red, 98% purity, Sigma Aldrich), and K,PdClg (pink, 99%
purity, Sigma Aldrich). (Offset 4300 units for clarity) Pd-CHA-12(24%)-1.0-1023
treated in flowing air to 1023 K (black, divided by a factor of 10 for clarity) and
treated in flowing 1—2 kPa H,O in balance air at ambicnt temperature (green).
(Offset +500 units for clarity) Pd-CHA-9-1.8-1023 treated in flowing air to 1023
K (black, divided by a factor of 7 for clarity) and treated in flowing 1-2 kPa H,O
in balance air at ambient temperature (blue). Dashed line represents an energy
of 24.354 keV. . . . . L

(a) First derivative analysis of Pd I3-edge XANES for Pd reference compounds:
metallic Pd nanoparticles (green dashed, treatment of Pd-CHA-5-1.4-923 in 5 kPa
H, at 473 K), Pd(II) acetate (dotted red, 98%, Sigma Aldrich), Pd(II) hydrox-
ide on carbon (red dashed, 20 wt%, Sigma Aldrich), agglomerated PdO domains
on siliceous Beta (red line, Pd-Beta-Si-1.0-773), and Potassium hexachloropalla-
date(IV) (black, 99%, Sigma Aldrich). (b) First derivative analysis of Ls-cdge
XANES of a predominantly mononuclear sample, Pd-CHA-5-1.2-923. The sam-
ple was first scanned as-loaded in flowing He (solid black), then treated to 673
K in flowing 5 kPa O, in balance He (black dashed). The sample was cooled in
flowing 5 kPa O, in He to 348 K (red dashed), then cooled to 298 K with 1—2
kPa HyO (solid blue). . . . . . . .. .

Ambient temperature Pd K-edge XANES (a) and EXAFS (b) region of Pd-CHA-
14(10%)-0.7-823 (red) and Pd-CHA-5-1.2-923 (dashed black) after treatment in
flowing 5 kPa Hy to 473 K (gray) for 0.5 h. Samples were cooled in flowing UHP
He with an in-line O, trap to decompose Pd-H species and mitigate reaction of
mctallic Pd with O,. Reference spectra of Pd foil (solid black) and PA(IT) acctate
(dashed blue) were collected under ambient atmosphere. . . . . . . . .. .. ..

NH; desorption rates as a function of time and temperature for a series of as-
exchanged [Pd(NHj3),]*"-CHA-12(24%) zeolites of varying Pd content (0-2.2 wt%
Pd). Arrow on top x-axis represents a temperature hold at 873 K. . . . . . . ..
H2 desorption rates as a function of time and temperature for a series of as-

exchanged [PA(NH;)4)*T-CHA-12(24%) zeolites of varying Pd content (0-2.2 wt%
Pd). Arrow on top x-axis represents a temperature hold at 873 K. . . . . . . . .

N, desorption rates as a function of time and temperature for a series of as-
exchanged [PA(NH;3),]*"-12(24%) zcolites of varying Pd content (0-2.2 wt% Pd).
Arrow on top x-axis represents a temperature hold at 73 K. . . . . . . . . . ..
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2.40

241

2.42

2.43

2.44

2.45

2.46

H, TPR profiles for (a, offset +1.5 units) PAO-CHA-Si-1.4 and (b) H-CHA-
14(10%) after pretreatment in flowing air to 823 K (0.167 K s, 0.5 cm?® s71).
H, consumption features are labeled for clarity. Asterisk (*) denotes Pd0-H
decomposition. . . . . . ..

H, TPR profile of an as-exchanged Pd-CHA-12(24%)-1.5-298 sample pretreated
in flowing He (0.83 cm® s71) to 773 K (0.167 Ks™*, 1 h). . . . ... . ... ...

H, TPR profiles for a dehydrated Pd-CHA-12(24%)-1.5-298 material. The sam-
ple was first pretreated in flowing air (0.5 cm® s71) to 650 K (0.167 K s ') for 1 h
before Hy TPR characterization (bottom). The sample was subsequently cycled
between increasing air pretreatments (750-1023 K) and Hy TPR characteriza-
tions. Profiles are offset +4 units and listed with air pretreatment temperature
and amounts of mononuclear Pd** cations (Pdig) per total Pd. . . . . . . . ..

H, TPR profiles of a hydrated Pd-CHA-12(18%)-3.9-298 sample. The sample
was first pretreated in flowing air (0.5 em® s7') to 673 K (0.167 K s71) for 1
h before TPR characterization (bottom, black). The sample was subsequently
cycled between increasing air pretreatments (673-1023 K, black to gray) and TPR
characterizations. Profiles are offset +4 units and labeled with air pretreatment
temperature and amounts of mononuclear Pd*" ions (Pdig) per total Pd. . . . .

Hy; TPR profiles of hydrated Pd-CHA-12(24%)-3.3 reported in Table 2.3 of the
main text and also summarized in Table 2.9. Black profiles (a-g) correspond
to hydrated Pd-CHA-12(24%)-3.3 samples with different air pretreatment con-
ditions (0.5 em?® s7!, 0.167 K s7*, 1 h, Table 2.9). Gray profiles correspond to
reference TPR profiles of(h) predominantly hydrated, mononuclear Pd-CHA-5-
1.2-923 and (i) PdO reference (PdO-CHA-Si-1.4-823). Profiles offset +10 units
for clarity. . . . . ..

(a) OH stretching region of a parent H-CHA-15(1.2%) (black), Pd-CHA-15(1.2%)-
1.2 (dark red), and Pd-CHA-15(1.2%)-2.3 (light red) treated ex situ in air to 1023
K. Samples were treated in situ in 20 kPa O, in balance He to 723 K before cooling
to 473 K to collect spectra. The amount of mononuclear Pd** per Al (PA(IE)/Al)
measured by Hy TPR after a 1023 K air treatment for each sample is listed in
parentheses. (b) 3660 cm™! region enlarged for clarity. . . . .. . ... ... ..

(a) OH stretching region of a parent H-CHA-12(24%) (black) and Pd-CHA-
12(24%)-1.5 (red) treated ex situ in air to 1023 K. Samples were treated in situ in
20 kPa Os in balance He to 723 K before cooling to 473 K to collect spectra. The
amount of mononuclear Pd*T per Al (Pd(IE)/Al) measured by Hy, TPR. after a
1023 K air treatment is listed in the parentheses. (b) 3660 cm™' region enlarged
for clarity. . . . . . ..
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2.47

2.48

2.49

2.51

2.52

2.53

2.54

2.55

2.56

2.57

2.58

2.59

3.1

O, chemisorption (313 K; mol O adsorbed per Pdiy) cycling experiments of
a Pd-CHA-12(24%)-2.2 sample. Sample was sequentially treated in O, (listed
left to right: blue for 773 K, red for 1023 K, and green for subsequent 773 K
treatment), followed by reduction Hy at 573 K, and then O, adsorption at 313
K. Last measurement (yellow) is after treatment in Hy to 1023 K. . . . . . . ..

Ex situ HAADF-STEM (left) and BF-STEM (right) images of a Pd-CHA-14(10%)-
0.7-823 sample. . . . . . e

Ex situ HAADF-STEM (top panels) and EDS of Pd (green) and Si (red) at 1.25
Mx (bottom panels) of a Pd-CHA-12(24%)-1.5 sample treated in air to (a) 298
K, (b) 773K, and (c) 1023 K. . . . . .. .. L
Ex situ HAADF-STEM (top panels) and EDS of Pd (green) and Si (red) at 320

kx (bottom panels) of a PA-CHA-12(24%)-1.5 sample treated in air to (a) 298 K,
(b) 773 K, and (¢) 1023 K. . . . . . . . ...

Ex situ HAADF-STEM (top panels) and EDS of Pd (green) and Si (red) at 900
kx (bottom panels) of a Pd-CHA-12(24%)-1.5 sample treated in air to (a) 298 K,
(L) 773 K, and (¢) 1023 K. . . . . . . . . oo

EDS spots with quantifications (1.25 Mx) for an as-exchanged Pd-CHA-12(24%)-
1.5 sample previously treated in air to 298 K. . . . . . ... ..o

EDS spots with quantifications (1.25 Mx) for a Pd-CHA-12(24%)-1.5 sample
previously treated in air to 773 K. . . . . ..o oo
EDS spots with quantifications (1.25 Mx) for a Pd-CHA-12(24%)-1.5 sample
previously treated in air to 1023 K. . . . . . . .. ..o oo
EDS spots with quantifications (900 kx) for an as-exchanged Pd-CHA-12(24%)-
1.5 sample previously treated in air to 298 K. . . . . . . . .. ...
EDS spots with quantifications (900 kx) for a Pd-CHA-12(24%)-1.5 sample pre-
viously treated in air to 773 K. . . . . ..o

EDS spots with quantifications (900 kx) for a Pd-CHA-12(24%)-1.5 sample pre-
viously treated in air to 1023 K. . . . . . . . . .. ..o

X-ray photoelectron spectra of Pd-CHA-12(24%)-1.5 samples. Bottom spectrum
(black) is of the as-exchanged material, middle spectrum (red) is after treatment
in air to 773 K, and top spcetrum (bluce) is after treatment in air to 1023 K.

X-ray photoelectron spectra (Pd 3d binding energy range) of PA-CHA-12(24%)-
1.5 samples. Bottom spectrum (black) is of the as-exchanged material, middle
spectrum (red) is after treatment in air to 773 K, and top spectrum (blue) is
after treatment in air to 1023 K. . . . . . . . .. ... L

Ex-situ TEM images of the as-deposited Pd-CHA-X materials. Pd-CHA-2 (left),
Pd-CHA-7 (middle), Pd-CHA-14 (right). . . . . . ... ... ... .. ... ...
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3.2

3.3

3.4

3.5

3.6

3.7

(a) The amount of ion-exchanged Pd** (per total Pd) after treatment in flowing
air (593-873 K) for Pd-CHA-2 (squares), Pd-CHA-7 (circles), and Pd-CHA-14
(triangles). (b) Total Hy consumed (per total Pd) from (a). Dashed lines repre-
sent theoretical maximum amounts. H, TPR profiles reported in Figures 3.24,
3.25, and 3.26, SL. . . ..o

Pd particle size-dependent thermodynamic phase diagram for the conversion of
Pd particles to Z,Pd in CHA (Si/Al =12, Pd/Al = 0.06) under (a) 20 kPa O,,
0.014 kPa H,O and (b) 20 kPa O,, 6 kPa H,O, based on HSE06-D3(BJ)vdw
calculated energies. The fraction of Pd particles converted to Zs,Pd for 2 nm
(squarcs), 7 nm (circles), and 14 nm (triangles) Pd particles at the experimental
air treatment conditions for Pd-CHA-X samples are labeled. (¢) Thermodynamic
phase diagram for the conversion of 7 nm Pd particle to ion-exchanged Pd**
cations on CHA (Si/Al =12, Pd/Al = 0.06) as a function of temperature and
Py,0. The fraction of Pd particles converted to ion-exchanged Pd?" cations at
20 kPa Oy, 0.014 kPa H,O (squares), and 20 kPa O, 6 kPa HyO (circles) at
treatment temperatures of 598-1023 K are labeled. . . . . . . . . . . . ... ..

(a) The amount of ion-exchanged Pd*T and (b) total Hy consumed normalized
per total Pd as a function of treatment temperature in flowing air (squares), 6
kPa H,O in balance air (circles), air (1 h) then adding 6 kPa H,O (1h, diamond),
and 6 kPa H,O in balance air (1 h) then air (1 h, tringle) for the Pd-CHA-7
material. Dashed line represents theoretical maximum values. H, TPR profiles
are reported in Figure 3.30, SI. . . . . . . .. ..o

(a) The amount of ion-exchanged Pd?"T normalized per total Pd as a function
of time during isothermal switching experiments for three different treatment
temperatures (square: 673 K, triangle: 648 K, circle: 598 K) using a 2.2 wt%
Pd-CHA material (Si/Al = 12) prepared via incipient wetness impregnation. (b)
The total H, consumed normalized per total Pd from (a). Dashed line represents

theoretical maximum amount. H, TPR profiles are in Figures 3.32, 3.33, 3.34, SI. 167

(a) The amount of ion-exchanged Pd?* (normalized per ion-exchanged Pd?" con-
tent after treatment for 1 h, and denoted as conversion) as a function of time
during isothermal switching experiments (648 K) in air (circles), 2 kPa H,O in
balance air (squares), and air after treatment in air to 873 K (diamonds) using a
2.2 wt% Pd-CHA material (Si/Al = 12) prepared via incipient wetness impreg-
nation. Hy TPR profiles are in Figures 3.33, 3.35, and 3.36, SI. (b) Hy consumed
normalized to total Pd of materials in (a). . . . . .. ... ... .. 0L

Ex-situ HAADF-STEM images (340 kx resolution) of the as-exchanged 2.2 wt%
Pd-CHA sample synthesized via incipient wetness impregnation after treatment
in flowing Hy (5 kPa) at 673 K for 1 h. Histogram is reported in Figure 3.8 . . .
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3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

Histogram (normalized frequency), normal distribution (solid black line), and log-
normal distribution (dashed black line) for the as-exchanged 2.2 wt% Pd-CHA
material after treatment in flowing Hy (5 kPa) at 673 K for 1 h. Histogram bins
contain particles + 0.5 nm from bin listing. The total number of particles imaged
was 164, and the average particle size was 3.2 nm with a 98% confidence interval
of 0.3 nm and standard deviation of 1.5 nm, assuming a normal distribution. The
mean (average of In(x)) of the log-normal distribution was 1.1 (corresponding to
an average particle size of 2.9 nm) with a standard deviation (o(ln(x)) of 0.5.

Ex-situ TEM images (71 kx resolution) of the colloidal Pd nanoparticle solutions.
(Far left) nominally 2 nm particles, (middle) nominally 7 nm particles, (right)
nominally 14 nm particles. Histograms are reported in Figures 3.10, 3.11, 3.12. .

Histogram (normalized frequency) and normal distribution (black line) for the
nominally 2 nm colloidal Pd nanoparticle solution. Histogram bins contain par-
ticles + 0.2 nm from bin listing. The total number of particles imaged was 164,
and the average particle size was 2.2 nm with a 98% confidence interval of 0.1
nm and standard deviation of 0.5 nm. . . . . .. ..o

Histogram (normalized frequency) and normal distribution (black line) for the
nominally 7 nm colloidal Pd nanoparticle solution. Histogram bins contain par-
ticles + 0.3 nm from bin listing. The total number of particles imaged was 161,
and the average particle size was 6.9 nm with a 98% confidence interval of 0.1
nm and standard deviation of 0.7 nm. . . . . .. ...

Histogram (normalized frequency) and normal distribution (black line)for the
nominally 14 nm colloidal Pd nanoparticle solution. Histogram bins contain
particles + 1 nm from bin listing. The total number of particles imaged was 378,
and the average particle size was 14 nm with a 98% confidence interval of 0.3 nm
and standard deviation of 23 nm. . . . . . ... Lo

Histogram (normalized frequency) and normal distribution (black line) for the
as-exchanged Pd-CHA-2 material. Histogram bins contain particles + 0.2 nm
from bin listing. The total number of particles imaged was 164, and the average
particle size was 2.2 nm with a 98% confidence interval of 0.1 nm and standard
deviation of 0.5 nm. . . . . . ...

Histogram (normalized frequency) and normal distribution (black line) for the
nominally 7 nm colloidal Pd nanoparticle solution. Histogram bins contain par-
ticles + 0.3 nm from bin listing. The total number of particles imaged was 112,
and the average particle size was 6.8 nm with a 98% confidence interval of 0.2
nm and standard deviation of 0.7 nm. . . .. ...

Histogram (normalized frequency) and normal distribution (black line) for the
nominally 14 nm colloidal Pd nanoparticle solution. Histogram bins contain
particles +£ 1 nm from bin listing. The total number of particles imaged was 73,
and the average particle size was 14.0 nm with a 98% confidence interval of 0.5
nm and standard deviation of 1.6 nm. . . . . .. ...
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3.16

3.17

3.18

3.19

3.20

3.21

3.22

Ex-situ TEM images of the air-treated (548 K) Pd-CHA-X materials. Pd-CHA-2
(left), Pd-CHA-7 (middle), Pd-CHA-14 (right). Histograms are plotted in Figures
317,318, and 319, . . . .

Histogram (normalized frequency) and normal distribution (black line) for the
nominally 2 nm colloidal Pd nanoparticle solution after treatment in flowing air
to 548 K (60 K h™!) for 4 h. Histogram bins contain particles + 0.2 nm from hin
listing. The total number of particles imaged was 164, and the average particle
size was 2.2 nm with a 98% confidence interval of 0.1 nm and standard deviation
of 0.5nm. . . ...

Histogram (normalized frequency) and normal distribution (black line) for the
nominally 7 nm colloidal Pd nanoparticle solution after treatment in flowing air
to 548 K (60 K h') for 4 h. Histogram bins contain particles + 0.3 nm from bin
listing. The total number of particles imaged was 72, and the average particle
size was 6.6 nm with a 98% confidence interval of 0.2 nm and standard deviation
of 0.7 nm. . . . ..

Histogram (normalized frequency) and normal distribution (black line) for the
nominally 14 nm colloidal Pd nanoparticle solution after treatment in flowing air
to 548 K (60 K h') for 4 h. Histogram bins contain particles + 1 nm from bin
listing. The total number of particles imaged was 74, and the average particle
size was 13.5 nm with a 98% confidence interval of 0.4 nm and standard deviation
of 1.3nm. . . . ..

Ex-situ HAADF-STEM images (340 kx resolution for top panels and 470 kx res-
olution for bottom panels) of the as-exchanged Pd-CHA sample after treatment
in flowing Hy (5 kPa) at 673 K for 1 h, then air at 873 K for 1 h. Histogram is
reported in Figure 3.21. . . . . . . . .o

Histogram (normalized frequency), normal distribution (solid black line), and
log-normal distribution (dashed black line) for the as-exchanged 2.2 wt% Pd-
CHA material after treatment in flowing Hy (5 kPa) at 673 K for 1 h, treatment
in air to 873 K for 1 h, then trecatment in flowing Hy (5 kPa) to 573 K for 1 h.
Histogram bins contain particles + 0.3 nm from bin listing. The total number
of particles imaged was 179, and the average particle size was 2.2 nin with a
98% confidence interval of 0.2 nm and standard deviation of 1.0 nm, assuming a
normal distribution. The mean (average of In(x)) of the log-normal distribution
was 0.7 (corresponding to an avcrage particle size of 2.1 nm) with a standard
deviation (o(In(x)) of 0.4. . . . . . ..o

TGA weight loss derivative profiles (298 523 K. hold at 523 K) of as-deposited
Pd-CHA-14 nm Pd-CHA (red), air-treated (548 K, 60 K h™*, 4 h) monodisperse
Pd-CHA materials (yellow for Pd-CHA-14, green for Pd-CHA-7, and black for
Pd-CHA-2), and H-CHA support (bluc). . . . . ... ... ... ... .. ...

21

188



3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

TGA weight loss derivative profiles (298-1073 K) of as-deposited Pd-CHA-14
(red), air-treated (548 K, 60 K h', 4 h) monodisperse Pd-CHA-X materials
(vellow for Pd-CHA-14, green for Pd-CHA-7, and black for Pd-CHA-2), and
H-CHA support (blue). Dotted line is for temperature (secondary y-axis).

H, TPR profiles of the Pd-CHA-2 material after treatment in flowing (0.5 cm?
s air to 598 K (black), 673 K (red, offset +5 units), and 773 K (blue, offset +
10 units) for 1 h. Quantifications are plotted in Figure 3.1, main text. Dashed
gray lines for 598 K air treatment are for two Gaussian fits for agglomerated PdO
particles (centered near 340 K) and ion-exchanged Pd*" (centered near 390 K).
Dashed red line is the sum of the two Gaussians. . . . . . . .. ... ... .

H, TPR profiles of the Pd-CHA-7 material after treatment in flowing (0.5 ¢cm?
s1) air to 598 K (black), 673 K (red, offset +5 units), and 773 K (blue, offset +
10 units) for 1 h. Quantifications are plotted in Figure 3.1. . . . . . . . . .. ..

H, TPR profiles of the Pd-CHA-14 material after treatment in flowing (0.5 cm?®
s air to 673 K (black, 1 h), 673 K (red, offset +10 units, 5 h), 773 K (blue,
offset + 20 units, 1 h), and 873 K (green, offset +30 units, 1 h). Quantifications
are plotted in Figure 3.1. . . . . . . . . . ...

(a) The amount of ion-exchanged Pd*" and (b) total Hy consumed normalized
per total Pd as a function of trcatment temperature in flowing air (squarcs),
6 kPa water in balance air (circles), and 10 kPa water in balance air (tringle)
for the Pd-CHA-2 material. Dashed line represents theoretical maximums. See
above for discussion of data. Hy TPR profiles are found in Figure 3.28. . . . . .

H,; TPR profiles of the Pd-CHA-2 material after treatment in flowing air (with
and without water) for 1 h. Profiles are offset by +5 unit increments and labeled
for clarity. Quantifications are plotted in Figure 3.27. For profiles that required
fitting, gray dashed lines are for Gaussian fits of agglomerated PdO domains and
ion-exchanged Pd?", and the dotted black lines are for the sum of the respective
Gaussian fits. . . . . . L

H, TPR profiles of the Pd-CHA-7 material after treatment in flowing air with 6
kPa water for 1 h (black) and 18 h (red, offset 4+ 6 units) at 673 K. . . . . . . .

H, TPR profiles of the Pd-CHA-7 material (reported in Figure 3.4 of the main
text) after various treatments, which are listed next to profile. Profiles are offset
+5 units for clarity. Hy TPR quantifications arc listed in Table 3.8. . . . . . ..

H, TPR profiles of a 2.2 wt% Pd-CHA (Si/Al = 12) material after treatment in
flowing air to 473 K for 2 h (black), 473 K for 5 h (blue, offset +5 units), and 473
K in air for 2 h, then 648 K in flowing He for 1 h (red, offset + 10 units). Bracket
region denotes an integrated region attributed to agglomerated PdO domains for
the +10 units offsct profile. . . . . . . . . ..o
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3.32

3.33

3.34

3.36

H, TPR characterization of the 2.2 wt% Pd-CHA material after isothermal redis-
persion experiments at 673 K. Air exposure times are listed by profiles (offset +5
units for clarity). Gaussian peak deconvolutions were performed to determine ag-
glomerated PdO more and ion-exchanged contents more accurately. Dotted gray
lines are for PdO (lower temperature) and ion-exchanged Pd?" (highest tempera-
ture) Gaussian deconvolutions, dotted red lines are the sum of the Gaussian fits,
and the black lines are for the experimentally measured Hy consumption rate.

H, TPR characterization of the 2.2 wt% Pd-CHA material after isothermal redis-
persion experiments at 648 K. Air exposure times are listed by profiles (offset +5
units for clarity). Gaussian pcak deconvolutions were performed to determine ag-
glomerated PdO more and ion-exchanged contents more accurately. Dotted gray
lines are for PdO (lower temperature) and ion-exchanged Pd?™ (highest tempera-
ture) Gaussian deconvolutions, dotted red lines are the sum of the Gaussian fits,
and the black lines are for the experimentally measured Hy consumption rate.

H, TPR characterization of the 2.2 wt% Pd-CHA material after isothermal redis-
persion experiments at 598 K. Air exposure times are listed by profiles (offset +5
units for clarity). Gaussian peak deconvolutions were performed to determine ag-
glomerated PdO more and ion-exchanged contents more accurately. Dotted gray
lines are for PdO (lower temperatures) and ion-exchanged Pd*" (highest tem-
perature) Gaussian deconvolutions, dotted red lines are the sum of the Gaussian
fits, and the black lines are for the experimentally measured Hy consumption rate.
For the 11.4 s trial, the entire profile was integrated to determine Hy consumed
per Pd, and the ion-exchanged Pd?* content was estimated with a Gaussian. . .

H, TPR characterization of the 2.2 wt% Pd-CHA material after isothermal re-
dispersion experiments in wetted (2 kPa H50) air at 648 K. Wetted air exposure
times are listed by profiles (offset +5 units for clarity). Gaussian peak deconvo-
lutions were performed to determine agglomerated PAdO more and ion-exchanged
contents more accurately. Dotted gray lines are for PO (lower temperatures)
and ion-exchanged Pd?* (highest temperature) Gaussian deconvolutions, dotted
red lines arc the sum of the Gaussian fits, and the black lines arc for the experi-
mentally measured Hy consumption rate. . . . . . . . .. ... ...

H, TPR characterization of the 2.2 wt% Pd-CHA (treated in air to 873 K for 1
h before each redispersion sequence, particle size distribution in Figure 3.21, O,
chemisorption dispersion measurements in Figure 3.44) material after isother-
mal redispersion experiments in air at 648 K. Wetted air exposure times are
listed by profiles (offset +5 units for clarity). Gaussian peak deconvolutions were
performed to determine agglomerated PdO more and ion-exchanged contents
more accurately. Dotted gray lines are for PAO (lower temperatures) and ion-
exchanged Pd?" (highest temperature) Gaussian deconvolutions, dotted red lines
arc the sum of the Gaussian fits, and the black lincs arc for the experimentally
measured Hy consumption rate. . . . . . . . ..
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3.37

3.38

3.39

3.40

3.41

3.42

3.43

3.44

4.1

Thermodynamic bulk phase diagram based on HSE06-D3(BJ)vdw calculated en-
ergies at 0.014 kPa H,O . . . . . . . .o 207

(a) Comparison of particle size-dependent thermodynamic models with DFT-
computed energies of Pd nanoparticles. (b) Optimized structures of the Pd
nanoparticles considered . . . . . . . ... oL 209

Particle size dependent thermodynamic phase diagram based on HSE06-D3(BJ)vdw
calculated energies for conversion of Pd particle sizes ranging from 1.8 to 100 nm
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ABSTRACT

Metal-zeolites are promising materials for passive adsorber technologies for the abate-
ment of nitrogen oxides (NOx, x = 1,2) and aldehydes during low-temperature operation
in automotive exhaust aftertreatment systems. The aqueous-phase exchange processes used
commonly to prepare metal-zeolites typically require mononuclear, transition metal com-
plexes to diffuse within intrazeolite pore networks with their solvation shells and replace
extraframework cations of higher chemical potential. When metal complexes are larger than
the zeolite pore-limiting diameter, this imposes intracrystalline transport restrictions; thus,
complexes and agglomerates tend to preferentially deposit near the surfaces of crystallites,
requiring post-synthetic treatments to disperse metal species more uniformly throughout
zeolite crystallites via solid-state ion-exchange processes. Here, we address the influence of
post-synthetic gas treatments and zeolite material properties on the structural interconver-
sion and exchange of extraframework Pd in CHA zeolites with a focus on the thermodynamic,
kinetic, and mechanistic factors that dictate the Pd site structures and spatial distributions
that form.

Pd-amine complexes introduced via incipient wetness impregnation on CHA zeolites were
found to preferentially site near crystallite surfaces. Post-synthetic treatments in flowing air
results in Pd-amine decomposition and agglomeration to metallic Pd® and supersequent oxi-
dation to PdO, before converting to mononuclear Pd®" cations through an Ostwald ripening
mechanism at high temperatures (>550 K). Progressively higher air treatment tempera-
tures (up to 1023 K) were found to (1) thermodynamically favor the formation of mononu-
clear Pd?" cations relative to agglomerated PdO particles, (2) increase the apparent rate
of structural interconversion to mononuclear Pd?", and (3) facilitate longer-range mobility
of molecular intermediates involved in Ostwald ripening processes that allow Pd cations to
form deeper within zeolite crystallites to form more uniformly dispersed Pd-zeolite mate-
rials. Additionally, the controlled synthetic variation of the atomic arrangement of 1 or 2
Al sites in the 6-membered ring of CHA was used to show a thermodynamic preference to
form mononuclear Pd*" cations charge-compensated by 2 Al sites over [PAOH]™ complexes

at 1 Al site. Colloidal Pd nanoparticle syntheses and deposition methods were used to pre-
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pare monodisperse Pd-CHA materials to isolate the effects of Pd particle size on structural
interconversion to mononuclear Pd** under a range of external environments. Consistent
with computational thermodynamic predictions, smaller Pd particle sizes favor structural
interconversion to mononuclear Pd?* under high-temperature air treatments (598-973 K),
while adding HyO to the air stream inhibits the thermodynamics but not the kinetics of
mononuclear Pd** formation, demonstrating that water vapor in exhaust streams may be
deleterious to the long-term stability of Pd-zeolite materials for passive NOx adsorption.

The influence of metal-zeolite material properties on the adsorption, desorption, and
conversion of formaldehyde, a government-regulated automotive pollutant, under realistic
conditions was investigated to identify beneficial material properties for this emerging ap-
plication in mobile engine pollution abatement. A suite of Beta zeolite materials was syn-
thesized with varied adsorption site identity (Brensted acid, Lewis acid, silanol groups,
and extraframework metal oxide) and bulk site densities. All materials stored formalde-
hyde and converted a large fraction of formaldehyde to more environmentally benign CO
and CO,, demonstrating the efficacy of silanol defects and zeolitic supports for the stor-
age of formaldehyde. Sn-containing zeotypes, containing either Lewis acidic framework Sn
sites or extraframework SnO, particles, resulted in the greatest selectivity to CO and COq
formed during formaldehyde desorption, suggests that Sn species are a beneficial compo-
nent in metal-zeolite formulations for the abatement of formaldehyde in automotive exhaust
streams.

This work demonstrates how combining precise synthesis of metal-zeolites of varied bulk
and atomic properties with site-specific characterization and titration methods enables sys-
tematically disentangling the influence of separate material properties (e.g., Pd particle size,
zeolite framework Al arrangement, silanol density, heteroatom identify) and external environ-
ment on changes to metal structure, speciation, and oxidation state. This approach provides
thermodynamic, kinetic, and mechanistic insights into the factors that influence metal re-
structuring under the practical conditions encountered in automotive exhaust aftertreatment
applications and guidance for materials design and treatment strategies to form desired metal

structures during synthesis and after regeneration protocols.
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1. INTRODUCTION

Mobile engine exhaust aftertreatment systems are challenged to abate greater amounts of
pollutants as government regulations continue to tighten. The highly transient conditions in
automotive exhaust streams require the development of robust abatement technologies that
convert pollutants to more environmentally benign products over a wide range of external
conditions (i.e., temperatures and gas composition) and for the entire lifetime of the vehi-
cle. Currently, the majority of government-regulated pollutants, specifically NOx (x = 1,
2) and formaldehyde, are released during engine cold-start when abatement technologies are
below their optimal operating temperature (<473 K) window, motivating the development
of passive adsorber technologies. Passive adsorbers function by storing pollutants at lower
temperatures and then desorbing them at higher temperatures compatible with downstream
abatement technologies, thereby buffering the effects of transient temperature fluctuations
(300-1000 K) in exhaust systems. This dissertation focuses on synthesis-structure-function
relationships of metal-exchanged zeolites for the passive adsorption of NO, and formalde-
hyde.

Pd-exchanged CHA zeolites have emerged as promising materials for passive NOx ad-
sorption (PNA) [1], where the purported Pd structures for NO, adsorption are mononuclear
Pd cations [2] charge-compensated by anionic zeolite framework charges formed by the iso-
morphous substitution of tetravalent Si with trivalent Al. Chabazite (CHA) is the most
promising zeolite framework for Pd-based PNA materials because the CHA topology hosts
mononuclear Pd cations, minimizes the effects of sulfur poisoning of mononuclear Pd cations,
and shows better durability under hydrothermal aging conditions (1023 K, 10 kPa H,O in
balance air) than other common zeolite frameworks (e.g., Beta, MFI) [3]. However, the for-
mation of undesirable agglomerated Pd structures caused by reduction with Hy, and CO under
realistic exhaust conditions [4], [5] motivates further fundamental studies to understand the
relationship among Pd structures, zeolite framework material properties, and external envi-
ronment conditions. The fundamental learnings here are applied to the rational design of

Pd-zeolites to improve their long-term stability and efficacy as passive NOx adsorbers.
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Determining the identity and number of Pd structures stabilized on zeolites remains
challenging because of the co-existence of many Pd structures, which vary in nuclearity
(mono- and polynuclear) and formal oxidation state (zero to tetravalent). Under external
environments composed of air from 300-1023 K, density functional theory (DFT) calcula-
tions predict that CHA zeolites can host both mononuclear Pd* and Pd?* cations, where
the distribution of these structures depends on the local arrangement Al in the framework
[6]. Additionally, IR band assignments of NO adsorbed on Pd-zeolites have been assigned to
adsorption at mononuclear Pd* (ca. 1810 cm™) and Pd*" (ca. 1860 cm™), supporting the
viability of both species being present after air treatments. However, the proposal of mul-
tiple valence states of mononuclear Pd contradict other literature reports that propose Pd
is predominantly in the divalent state after high-temperature (700-1000 K) air treatments
(7], [8]. Additionally, the co-existence of agglomerated Pd species as Pd?, PdO, and PdO,
along with mononuclear Pd cations further obfuscates the quantification of the Pd struc-
tures present [9]. Therefore, Chapter 2 focuses on how zeolite material properties (i.e., the
arrangement of framework Al sites) influences the formation and structures of mononuclear
Pd sites, by synthesizing CHA zeolites with varied numbers of 6-MR paired Al sites (i.e., 2
Al sites in the 6-memebered ring) and developing methods to characterize the identify and
quantify all Pd species after high temperature (773-1023 K) air treatments.

Another complexity with Pd-zeolite materials is the structural interconversion between
mononuclear and agglomerated Pd species, which can proceed in either direction depend-
ing on the external gas environment. For example, Pd species in Y zeolites agglomerate
to predominantly metallic Pd particles under flowing 5 kPa Hy (>573 K), but subsequent
treatment in flowing air to elevated temperatures (>573 K) causes metallic Pd particles
to redisperse to mononuclear Pd cations. However, treating Pd-CHA zeolites to high tem-
peratures (1023 K) in air streams containing water (10 kPa) facilitates agglomerated PdO
interconversion to mononuclear Pd cations, reportedly maximizing mononuclear Pd cation
content [10]. Computational studies on v-Al,O identified that the Pd nanoparticle size in-
fluences the interconversion into mononuclear Pd cation sites, where smaller Pd particles
favor conversion to mononuclear Pd sites hosted at defect Alyy sites through an Ostwald

ripening mechanism, which was corroborated with experiments on a series of monodisperse
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Pd/Al,O3 samples that showed smaller Pd particles convert in air to mononuclear Pd sites
at lower temperatures [11]. However, there have been no clear studies with CHA zeolites
linking the thermodynamics, kinetics, and mechanisms of Pd structural interconversion as
a function of Pd particle size and external gas conditions. In Chapter 2, the reversibility
between agglomerated and mononuclear Pd species as a function of air treatment temper-
ature was investigated to understand the changes in Pd structure that occur to favor the
formation of mononuclear Pd at high temperatures. Additionally, Chapter 3 addresses the
effects of the initial Pd particle size on the structural interconversion by synthesizing a series
of monodisperse Pd nanoparticles of varied size that were supported on CHA zeolites. These
Pd-CHA materials were treated in flowing air with and without water, and the amounts and
apparent rates of mononuclear Pd?* formation were quantified and compared to theoretical
estimates. Together, these findings provide fundamental thermodynamic and kinetic insights
into Pd structural interconversion mechanisms in CHA zeolites.

Unlike PNA with Pd-zeolites, a technological breakthrough for the passive adsorption
of aldehydes (specifically formaldehyde) remains unestablished. This shortcoming motivates
an exploratory synthesis-structure-function relationship study to identify beneficial zeolite
material properties for the storage and conversion of formaldehyde. Previous literature iden-
tified the efficacy of Lewis acid sites for the adsorption of aldehydes and ketones in aqueous
media, suggesting these site types may operate under realistic automotive exhaust conditions
containing water (e.g., 1-10 kPa H,0) [12], [13]. Therefore, in Chapter 4, a range of Beta
zeolite materials were synthesized with varied heteroatom identity (Brgnsted and Lewis acid
sites) and densities. These materials were tested for formaldehyde storage and conversion,
and the total storage and selectivity of desorbed products to more environmentally benign
products (CO and CO;) were correlated to different site types, revealing promising material

properties for passive formaldehyde adsorption and abatement.
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2. STRUCTURAL INTERCONVERSION BETEWEEN
AGGLOMERATED PALLADIUM DOMAINS AND
MONONUCLEAR PD(II) CATIONS IN CHA ZEOLITES

Reprinted with permission from Chem. Mater. 2021, 33, 5, 1698-1713. Copyright 2021
American Chemical Society.

2.1 Abstract

Palladium-exchanged zeolites are candidate materials for passive NO, adsorption in au-
tomotive exhaust aftertreatment, where mononuclear Pd cations behave as precursors to the
purported NO, adsorption sites. Yet, the structures of zeolite lattice binding sites capable
of stabilizing mononuclear Pd?* ions, and the mechanisms that interconvert agglomerated
PdO and Pd domains into mononuclear Pd?* ions during Pd redispersion treatments, remain
incompletely understood. Here, we use a suite of spectroscopic methods and quantitative
site titration techniques to characterize mononuclear and agglomerated Pd species on ze-
olites with varying material properties and treatment history. Aqueous-phase methods to
introduce Pd onto NH-form zeolites initially form mononuclear [Pd(NHjz)4]*" complexes,
but subsequent thermal treatments (573-723 K; air) lead to in situ formation of Hy that first
reduces Pd?" to metallic Pd domains, which are then oxidized by air to PdO domains. Pro-
gressive treatment of Pd-zeolites in air to higher temperatures (723-1023 K) converts larger
fractions of agglomerated PdO to mononuclear Pd?*, as quantified by Hy temperature pro-
grammed reduction, because higher temperature treatments facilitate Pd redispersion toward
deeper locations within chabazite (CHA) crystallites, which is corroborated by complemen-
tary titrimetric and spectroscopic data. Pd-CHA zeolites synthesized with similar bulk Pd
and framework Al content, but varying framework Al arrangement, provide evidence that
six-membered rings (6-MR) hosting paired Al sites (Al-O—(Si-O),—Al, x = 1, 2) stabilize
Pd?T ions and that otherwise isolated Al sites can stabilize [PAOH]|T species, identifiable by
an IR OH stretch at 3660 cm . These findings clarify the underlying chemical processes and
gas environments that cause Pd agglomeration in zeolites and their subsequent redispersion

to mononuclear Pd?* ions, which prefer binding at 6-MR paired Al sites in CHA, and indi-
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cate that higher temperature air treatments lead to more uniform Pd spatial distributions

throughout zeolite crystallites.

2.2 Introduction

The speciation of metal ions, complexes, and particles on a given zeolite support depends
on bulk (e.g., framework topology) and atomic-scale properties (e.g., arrangement of lattice
Al sites) and often on the specific protocols and treatments used to introduce metals onto the
zeolite. The size and connectivity of microporous voids introduce different shape-selective
limitations on the diffusion of metal species within crystallites [14] and influence the sizes
of encapsulated metal nanoparticles [15]-[17]. The speciation of exchanged metal cations
and complexes also depends on the atomic arrangements of framework Al sites [18]-[21],
which introduce localized anionic charges into siliceous zeolite lattices. For example, the
structure of mononuclear Cu®* cations has been shown to depend on the arrangement of Al
sites within six-membered rings (6-MR) of chabazite (CHA) zeolites [22], as Cu?" cations
prefer exchange at 6-MR paired Al sites (two Al per 6-MR; Al-O—(Si—0O),—Al, x = 1,
2), while [CuOH]* prefer exchange at 6-MR isolated Al sites (one Al per 6-MR) [20], [23].
Identifying the framework Al arrangements that stabilize mononuclear metal cations be-
comes more challenging when agglomerated particles also form after relevant synthesis and
treatment protocols, as is common for Pd- and Pt-exchanged zeolites [5], [11], [24], [25]. Fur-
thermore, for applications in diesel NO, (x = 1, 2) aftertreatment, metal-exchanged zeolites
must be stable under a wide range of transient operating conditions, motivating methods to
characterize and quantify metal structures that can improve mechanistic understanding of
how such structures interconvert with changes in temperature and gas environment. Strate-
gies to augment selective catalytic reduction (SCR)-based NO, abatement, particularly at
low temperatures (<473 K) wherein Cu-zeolite SCR catalysts tend to become ineffective in
practice, have considered implementing Pd-zeolites as materials for passive NO, adsorption
(PNA) followed by subsequent NO, desorption at temperatures compatible with catalytic

conversion via SCR [1], [3].
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Mononuclear Pd ions charge-compensating anionic framework Al charges are the pro-
posed PNA precursor sites [2], [3], [26], but the structures of desired Pd binding sites among
different possible cationic species remain incompletely understood. Various Pd species are
reported to be present on zeolites under different gas conditions, including agglomerated
clusters (metallic Pd [27], [28], PdO [29], PdO, [9]) and mononuclear cations (Pd* , Pd?*,
Pd3*) [6], [8], [30]-[33]. Even when solely considering Pd-zeolites treated in air (600-1023
K), various mononuclear Pd sites have been proposed by CO IR spectra (2050—2250 cm ™!
peaks assigned to Pd*T, [PAOH|*, Pd™) [26], [29], [34]-[36] and by in situ X-ray absorp-
tion spectroscopy (XAS, majority four-coordinate Pd*" in Pd-MFI) [37]. Density functional
theory (DFT) calculations by Mandal et al. indicate that a divalent Pd®" cation charge-
compensated by a 6-MR paired Al site in CHA (denoted as ZoPd, where Z represents an
anionic framework charge introduced by Al substitution) is the most thermodynamically
stable mononuclear Pd?* species, consistent with their experimental Pd-CHA samples that
did not show the OH IR stretches near 3660 cm ™" expected for a monovalent [PAOH]* com-
plex (denoted as ZPdOH) [38]. These findings appear consistent with the larger amounts of
mononuclear Pd ions (higher Pd?* /Al ratios) reported to form on zeolites of higher bulk Al
density (lower Si/Al ratios) [37], [39], [40], which on average should contain larger amounts
of proximal Al sites. Additionally, the Rietveld refinement of X-ray diffraction (XRD) pat-
terns of dehydrated Pd-exchanged Y zeolites showed mononuclear Pd cations predominantly
located in the plane of the 6-MR, likely as Z,Pd sites. Although substantial evidence can
be found in prior work for the formation of Zy,Pd sites in Pd-exchanged zeolites, there is
relatively scant experimental evidence for ZPdOH sites, which in part may reflect the lack
of synthetic or treatment methods to emphasize this mononuclear Pd?* site motif.

Additionally, the mechanistic details by which mononuclear Pd** ions form at various
zeolite binding sites during PdO redispersion at high temperatures are imprecisely known.
Agglomerated PdO domains are reported to convert to mononuclear Pd?* ions after hy-
drothermal aging (1023 K, 10 kPa HyO in air) [41] or elevated temperature (>500 K in air)
treatments of Pd-zeolites [42], with the extent of Pd redispersion reported to depend on bulk
Pd and Al densities [11], [37], Pd particle size [11], and treatment temperature [43], [44]; yet,

a unified mechanistic description for these redispersion phenomena is lacking. Goodman et
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al. calculated the change in Gibbs free energy upon ejection of a Pd(OH); molecule from
a PdO particle and its subsequent adsorption on an Al defect on a «v-AlyO3 support to
estimate the Boltzmann-averaged distribution of mononuclear Pd** formed (1048 K in dilute
O,) as a function of Pd content [11]. This mean-field model rationalized the experimental
observation that decreasing the total Pd content relative to the Al defect sites on v-Al,O3
led to increased fractions of mononuclear Pd. In the case of Pt on alumina, Simonsen et
al. observed using transmission electron microscopy (TEM) that Pt particles of similar size
either became larger or smaller during redispersion treatments (923 K in air), suggesting that
Ostwald ripening processes that exchange atoms among particles depend on their local envi-
ronment and relative proximity in a manner that cannot be fully described by a mean-field
model [45].

Here, we investigate the influence of zeolite material properties on the structures and
amounts of Pd species formed under various treatment conditions by preparing and interro-
gating a suite of Pd-exchanged CHA samples with varied Pd and framework 6-MR paired
Al content. In situ diffuse reflectance UV—vis (DRUV—vis) spectroscopy was used to mon-
itor the transformation of mononuclear [Pd(NH3)4)*" complexes to mononuclear Pd** sites
and agglomerated Pd domains during high temperature treatments in air. The numbers of
mononuclear Pd?* ions and agglomerated PdO domains were quantified with Hy temperature
programmed reduction (TPR) to understand the influence of air treatment conditions and
zeolite material properties on the formation of mononuclear Pd?* sites. Cyclic treatments to
agglomerate and redisperse Pd structures reveal that both reversible and irreversible struc-
tural changes occur, wherein PdO domains interconvert to mononuclear Pd?* sites via an

Ostwald ripening mechanism.

2.3 Materials and methods

2.3.1 Synthesis of Pd-zeolites

A Beta zeolite (Si/Al = 13) sample was obtained from Zeolyst International (CP814E).
One CHA zeolite sample (Si/Al = 12) was provided by BASF Corporation. All other CHA

and Beta zeolites were hydrothermally synthesized following previously reported procedures

37



20], [23], [46]-[49] (detailed procedures in Section 2.8.1, Supporting Information (SI)). In
general, zeolite synthesis solutions were homogenized in perfluoroalkoxy alkane (PFA) con-
tainers (Savillex Corporation) with magnetic Teflon stir bars. The solutions were transferred
to Teflon-lined, stainless steel autoclaves (Parr Instruments), sealed under autogenous pres-
sure, and placed in a forced convection oven controlled to 413—433 K for at least 6 days.
Synthesis solutions were recovered via centrifugation, and the solids were washed (30 mL
(g solid)™! per wash) with alternating cycles of deionized water (18.2 M2 ¢cm) and acetone
(>99.5 wt%, Sigma-Aldrich), finishing a seventh wash with deionized water. Solids (0.2—2.0
g) were stored in a static drying oven at 373 K for >12 h before treating in flowing dry
air (1.67 cm?® s71, Air Zero, Indiana Oxygen) to 853 K (0.0167 K s71) to remove occluded
organic content via combustion.

Zeolites were converted to their NHy-forms by contacting with 1 M of NHy;NO3 (99.9
wt% purity NH4;NOg, Sigma-Aldrich) in PFA containers with a magnetic Teflon stir bar at a
ratio of 150 g of solution (g solid)™! under ambient conditions for >24 h. NH,-form zeolites
were recovered by centrifugation, washed with deionized water (30 mL (g solid) ™ per wash)
until the pH of the supernatant was constant, treated in a static drying oven at 373 K for
>12 h, and then stored under an ambient atmosphere in capped borosilicate scintillation
vials.

Pd-exchanged samples were prepared via incipient wetness impregnation. First, deion-
ized water was added dropwise to NHy- form zeolites while stirring with a plastic spatula
until saturation of the total pore volume, evidenced by transformation from an agglomerated
powder-like substance to a shear-thickening slurry. Assuming the same mass saturation point
as pure water, aqueous Pd(NH3)4(NO3)s (10 wt%, Sigma-Aldrich) solutions were appropri-
ately diluted with deionized water and added dropwise to NHy-form zeolites while stirring
to achieve targeted Pd loadings. As-exchanged Pd-zeolite samples were left under ambient

conditions overnight before storing in capped borosilicate scintillation vials
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2.3.2 Zeolite characterization

Zeolite framework topologies were characterized by powder XRD using a Rigaku Smart-
Lab X-ray diffractometer (Cu Ka radiation source, XRD patterns in Section 2.8.2, SI).
Samples (ca. 0.01 g) were pressed onto a low-dead-volume sample holder (Rigaku). XRD
patterns were collected over a range of 4—40° 20 with a 0.01° step size and a scan rate of
0.0167° s~1. Diffractograms were compared to known references to identify the dominant
crystalline phases.

The micropore volumes of CHA (Ar, 87 K) and Beta (Ng, 77 K) zeolites were determined
via physisorption using a Micromeritics ASAP 2020 surface area and porosity analyzer. H-
form and Pd-H-form zeolites were evacuated under dynamic vacuum (5 pHg), heated first
(0.167 K 7') to 393 K for 2 h, and then heated to 623 K for 9 h before adsorption mea-
surements. Volumetric uptakes of adsorbates between 0.10 and 0.20 P/Py were linearly
extrapolated to zero relative pressure to estimate the micropore volume. Micropore vol-
umes were additionally estimated by finding the minimum of the semilogarithmic plot of
0(Vads)/0(In(P/Py)) versus In(P/Py), which were within 10% of the linearly extrapolated
estimate. Micropore volumes of all samples were within reported literature ranges for pre-
dominantly crystalline CHA and Beta zeolites (Section 2.8.3, SI).

The number of 6-MR paired Al sites in CHA samples was quantified by Co?* titration
20], [22]. NHy-form zeolites were contacted with 2 M of CoCly (98 wt%, Sigma-Aldrich) in
PFA containers with a magnetic Teflon stir bar at a ratio of 150 g of solution (g solid)~* for
>24 h to achieve saturation (Co®" ion-exchange isotherm in Section 2.8.4, ST). Co-exchanged
zeolites were recovered via centrifugation, washed with water (30 mL (g solid)™' per wash)
four times, and dried in a static oven at 373 K before treatment in flowing air to 773 K
(0.0167 K s 1) for 4 h. Co-form zeolites were characterized by DRUV—vis spectroscopy
and did not contain features for CoyOy species (300—350 nm; Figure 2.17, SI) [50], [51],
demonstrating that this Co-exchange procedure results in predominantly mononuclear Co?*
ions.

Elemental compositions were characterized by atomic absorption spectroscopy (AAS)

using a PerkinElmer model AAnalyst 300 or inductively coupled plasma optical emission
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spectrometry (ICP-OES) using a Thermo Scientific iCAP 7000 Plus Series ICP-OES. Sam-
ples (0.02—0.05 g) were digested with 2.5 g of hydrofluoric (HF) acid (48 wt%, Alfa Aesar)
for at least 2 days before diluting with 50 g of deionized water at an ambient temperature.
[Caution: use appropriate personal protective equipment, ventilation, and engineering con-
trols when working with HF.] Samples analyzed by ICP analysis were further acidified with
2.5 g of HNO3 (70 wt%, Sigma-Aldrich) before analysis. Elemental compositions of Co, Pd,
and Al were determined from calibration curves generated by elemental analysis standard
solutions. The Si/Al ratios of the solids were estimated by subtracting the contribution of
extraframework cations and assuming a molar composition of Si;_ O5AlL.

DRUV—vis spectra were collected with a Varian Cary 5000 UV—vis—NIR spectropho-
tometer equipped with a Harrick Scientific Praying Mantis diffuse reflectance accessory.
Baseline spectra were collected using poly(tetrafluoroethylene) (200 pm, Sigma-Aldrich).
Samples were pelletized, sieved (180—250 pm), and lightly pressed using a glass microscope
slide to achieve a flat surface of uniform height. Spectra were collected over a range of
190-1200 nm with a scan rate of 5 nm s~

XAS was performed at the Advanced Photon Source at Argonne National Laboratory.
Pd Ls-edge spectra were collected in fluorescence mode at sector 9-BM. Samples (0.1-0.2
g) were pressed into self-supporting wafers and placed on temperature-controlled resistive
heater elements inside an in situ cube cell sealed with Kapton windows [52], [53]. Four
spectra were collected over a range of 2073—3310 eV (resolution of 5 eV for 2973—3158 eV,
0.2 eV for 3158—3204 eV, and 1.5 eV for 3204—3310 eV) and averaged. Derivative spectra
were calculated with a noise-robust seven-point stencil equation (details in Section 2.8.6, SI).
Pd K-edge spectra were collected in transmission mode at sector 10-BM. Samples (0.05—0.10
g) were pressed into cylindrical holders as self-supporting wafers and placed in Kaptonsealed
quartz tubes. Samples were treated in a separate furnace equipped with a gas flow manifold,
cooled to an ambient temperature, and then sealed and transferred to the beamline for
measurement. Energies for Pd K- and Lz-edge experiments were calibrated using the first
inflection point (i.e., edge energy) of the X-ray absorption nearedge structure (XANES) of
a Pd foil. Fitting details for the extended X-ray absorption fine structure (EXAFS) spectra
are provided in Section 2.8.6 of the SI.
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Temperature programmed desorption (TPD) experiments were performed with a Mi-
cromeritics AutoChem II 2920 Chemisorption Analyzer. Samples (0.02—0.05 g) were sup-
ported between two quartz wool plugs in a quartz U-shaped reactor, and a clam-shell furnace
was used to control the temperature of a thermocouple touching the top quartz bed. Species
that were adsorbed on the sample were desorbed under flowing (0.833 cm?® s7') He (ultra
high purity (UHP), 99.999%, Indiana Oxygen) to 873 K (0.167 K s™!), and the products
were quantified with a residual gas analyzer (MKS Cirrus 3).

H; TPR experiments were performed with a Micromeritics AutoChem II 2920 Chemisorp-
tion Analyzer equipped with an internal thermal conductivity detector (TCD) for Hy con-
sumption quantification. An isopropanol slurry (cooled to 184 K with liquid Ny) was placed
in-line before the TCD to trap any condensable gases (e.g., HoO). Mixtures of varying Hy
partial pressures (0.5—5 kPa) in balance Ar were used to generate a response factor, which
quantified the theoretical Hy consumption upon reduction of a reference AgsO material to
within 10%. Samples (0.04—0.10 g) were supported between two plugs of quartz wool in
a quartz U-tube reactor, and a clam-shell furnace controlled the temperature measured by
a thermocouple above the sample bed. For Hy TPR of dehydrated zeolites, samples were
treated in flowing air (0.50 cm® s, Air Zero, Indiana Oxygen) to a range of temperatures
(573-1023 K, 0.167 K s7!) for 1 h, cooled to 373 K before switching to flowing (0.50 cm? s71)
Ar (UHP, 99.999%, Indiana Oxygen), and then cooled further to 203 K using a Micromeritics
CryoCooler II accessory. For Hy TPR of hydrated zeolite samples, Ho, TPR was performed
after similar treatments as above, but instead of cooling directly from 373 K to 203 K in Ar,
an intermediate step was used to hold the sample at 303 K under flowing (0.50 cm?® s71) 1—2
kPa HyO in balance Ar (UHP, 99.999%, Indiana Oxygen) for at least 0.5 h. After the tem-
perature stabilized at 203 K, a flowing stream of 5 kPa Hs in balance Ar (certified mixture,
Indiana Oxygen) was sent over the sample (0.167 cm?® s71) until a stable TCD baseline was
achieved, and then the sample was treated to 573 K (0.167 K s™') and held for 0.5 h.

NHj back-exchange procedures were adapted from Lee et al. [26] and are similar to other
Na™ back-exchange procedures [35], [54], [55]. Pd-exchanged samples (0.05—0.08 g) were
mixed with 25—50 g of 1 M NH4;NO3 (99.9 wt% NH4NO3, Sigma-Aldrich) in PFA containers

with a magnetic Teflon stir bar for 24 h at 338 K, unless stated elsewise. The solution was
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removed from heated oil baths to cool to an ambient temperature before recovering solids
via centrifugation, and the Pd content in the decanted and filtered (0.2 pm) supernatant
was quantified with AAS.

IR spectra were collected with a Nicolet 6700 Fourier transform infrared (FTIR) spec-
trometer equipped with a mercury cadmium telluride (MCT) detector. Samples (0.03—0.05
g) were pressed into self-supporting wafers, placed in a custom-built FTIR cell described
elsewhere [56], treated in 20 kPa Oy (UHP, 99.98%, Indiana Oxygen) in balance He (UHP,
99.999%, Indiana Oxygen) to 723 K (0.083 K s7!) for 1 h, and then cooled to 473 K. Spectra
were collected as the average of 500 scans over a range of 400—4000 cm™! with a resolution
of 2 ecm™t. An empty cell spectrum collected under identical conditions was subtracted from
all spectra before baseline-correcting and normalizing to T—O—T vibrations (2100 and 1750
cm™1).

04 chemisorption experiments were performed with a Micromeritics ASAP 2020 Plus
Chemisorption unit. Samples (0.4—0.5 g, pelleted and sieved to 180—250 um) were supported
between two plugs of quartz wool and flushed in flowing He (UHP, 99.999%, Indiana Oxygen)
before degassing under vacuum (<3 pmHg) for 1 h at 373 K. Samples were leak-tested after
the first degas and before chemisorption measurements and consistently had leak rates of
<60 pmHg h~!, which is below the <600 ymHg h~! recommended by Micromeritics for
chemisorption measurements. Samples were treated in flowing Oy (UHP, 99.98%, Matheson)
to 773 or 1023 K (0.167 K s ') for 1 h, evacuated at 313 K for 1 h, treated in Hy (UHP,
99.999%, Praxair) to 573 K (0.167 K s™1) for 1 h, evacuated at 573 K for 1 h, cooled to 313
K for a leak test, and then evacuated for 0.3 h at 313 K before collecting two Oy adsorption
isotherms (313 K, 2—42 kPa) with an evacuation step in between to remove physisorbed
O,. The isotherms were linearly extrapolated to zero partial pressure, and the difference in
intercepts was used to quantify the amount of O, adsorbed per Pd. A stoichiometry of one
O per surface Pd was assumed to quantify the Pd dispersion [57].

Scanning transmission electron microscopy (STEM) analysis was performed at the Oak
Ridge National Laboratory. The morphology and elemental distribution of Pd-exchanged
samples were analyzed on an FEI F200X Talos operating at 200 kV equipped with an extreme
field emission gun electron source, a high-angle annular dark-field (HAADF) detector, and a

42



Super-X energy-dispersive X-ray spectroscopy (EDS) system with four silicon-drift detectors
(Bruker XFlash 6 series with detector size 120 mm?) with a solid angle of 0.9 sr for chemical
analysis. To avoid and minimize any potential electron beam damage during imaging and
spectroscopy analysis, the current of the electron beam was controlled to 0.490 nA. Samples
for TEM analysis were prepared by a drop-cast method, wherein samples were dispersed
in isopropanol via sonication and then deposited onto lacey carbon-coated copper grids
(SPI Supplies, part no. Z3820C). Part of the microscopy experiments were also conducted
on an aberration-corrected JEOL JEM-ARM200CF TEM/STEM operated at 200 kV with a
unique cold field emission gun, a next-generation Cs corrector (ASCOR) that compensates for
higher-order aberrations, and a Gatan 965 GIF Quantum electron energy loss spectroscopy
(EELS) imaging filter with dual electron energy loss spectroscopy capabilities.

X-ray photoelectron spectroscopy (XPS) was performed using a Thermo Scientific K-
Alpha XPS instrument equipped with a monochromatic Al K photon source, a hemispherical
electron energy analyzer, and a 128-channel detector. Wide-energy-range survey spectra were
acquired using a pass energy of 200 eV to determine all elements present. Core level spectra
were also acquired for detailed analysis of elemental bonding using a pass energy of 50 eV.
Samples were prepared for analysis by dispersing onto doublesided tape fixed to clean glass
slides. Samples were introduced into the analysis chamber through a vacuum-pumped load
lock. The base pressure in the analysis chamber is ca. 5 x 107'Y mbar, but was at 2 x 1077
mbar during measurement of the mounted sample due to using a charge compensation system
that uses both low-energy electrons and low-energy Ar ions to prevent sample charging. Data

were collected and analyzed using Avantage version 4.61 software.

2.4 Results and discussion

2.4.1 Synthesis of Pd-CHA zeolites and origins of Pd agglomeration

All samples are referred to as F-CHA-A(X%)-B-C, where “F” denotes the cation or metal
form (e.g., NHy, Na, H, Pd, PdO, [Pd(NH;)4)*>", Co), “A” denotes the solid Si/Al ratio (or
“Si” for purely siliceous materials), “B” denotes the Pd wt%, and “C” denotes the highest air

temperature treatment (in Kelvin) that the sample was exposed to before characterization.
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Some parent zeolite materials have the same Si/Al ratio; these are differentiated by the
percentage of Al in 6-MR configurations (determined by Co** titration) using the “(X%)”
portion of the sample code. Extraframework, mononuclear Pd cations of arbitrary structure
and oxidation state will be referred to as Pdig. Powder XRD patterns (Section 2.8.2, SI)
for all zeolites in their as-made forms were consistent with the intended framework topology
and were collected after the most severe treatments of Pd-form zeolites (i.e., 1023 K in air
with and without 1—2 kPa H,0) to assess their effects on long-range structural degradation.
Additionally, XRD was not able to identify diffraction peaks for agglomerated Pd or PdO
domains (Figure 2.11, SI) because these particles were smaller (<3 nm) than detection limits
(Figure 2.48, SI) [58]. Micropore volumes of H-form and Pd-H-zeolites determined from Ar or
N, adsorption isotherms (Section 2.8.3, SI) were also consistent with the respective topology.

DRUV—vis and XAS were used to characterize the initial structure of Pd before treat-
ments that attempt to convert them to Pdjg. As-exchanged Pd-CHA-12(24%)-1.5-298, cho-
sen as a representative sample, showed two DRUV—vis absorption bands; the positions of
their maxima are listed in Table 2.1 and plotted in Figure 2.1 (spectra for other as-exchanged
Pd-zeolite samples in Figure 2.18, SI). The abs