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4.1 (a) Notional schematic of the system exhibiting thermoacoustic response. An alu-
minum rod with circular cross-section under fixed-free boundary conditions. The
free end carries a concentrated mass used to tune the frequency of the longitudinal
resonance and the corresponding wavelength. A section of the rod is surrounded
by a large thermal inertia (represented by a highly-thermally-conductive solid) on
which a heater and a cooler are connected in order to create a predefined thermal
gradient; this component is referred to as a stage. The stage is the equivalent
of the stack in classical thermoacoustic setups. The ideal interface between the
stage and the rod should be isothermal and capable of negligible shear force (see
inset). Heat insulating material (not showed) is assumed to be placed around the
rod to reduce radiative heat losses and therefore approximate adiabatic bound-
ary conditions. (b) (top) idealized reference temperature profile T0(x) produced
along the rod, and (bottom) schematic of an axi-symmetric cross section of the
rod showing the characteristic geometric parameters and the correspondence to
the temperature profile. Three relevant segments are identified: 1) S-segment, 2)
hot segment, 3) cold segment. These three segments correspond to the isothermal
and the two adiabatic boundary conditions, respectively. . . . . . . . . . . . . . 68

4.2 (a) Schematic of the thermodynamic cycle of a Lagrangian particle in the S-
segment during an acoustic/elastic cycle (see also the supplementary material of
[ 51 ]). (b) The time averaged volume-change work 〈ẇ〉 (presented in arbitrary
scale and units) along the length of the rod showing that the net work is gener-
ated in the stage. (c) Schematic view showing the evolution of an infinitesimal
volume element during the different phases of the thermodynamic cycle (a). For
simplicity, the cycle is divided in two reversible adiabatic steps and two irre-
versible constant-stress steps. ()′

p indicates the peak value of the corresponding
fluctuating variables. (d) Time history of the axial displacement fluctuation at
the end of the rod for the fixed-mass configuration. ‘Red –’: Response, ‘Blue •’:
Peak values, ‘Black –’: Exponential fit. (e) Table presenting a comparison of the
results between the quasi-1D theory and the numerical FE 3D model.  . . . . . 73

4.3 (a) Schematic diagram of the multi-stage configuration. The two insets show the
mean temperature T0 profile along the axial direction x and the time averaged
volume-change work 〈ẇ〉 (arbitrary scale and unit) along the rod. Time response
at the moving end of a fixed-mass rod for the (b) undamped and (c) 1% damped
configurations.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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4.4 Notional schematics of (a) the looped rod and (b) the resonance rod. A compo-
nent with a large thermal inertia, stage, connected to a heater and a cooler on
opposite ends, is mounted on the outer surface of the rod to sustain a linear ther-
mal gradient. In (a), a secondary cold heat exchanger (SHX) is attached to the
rod creating the Thermal Buffer Segment (TBS, shown in (c)). In (b), a clamp is
used to apply the displacement node (abbreviated as Disp. Node in (d)), which
is necessary to suppress the traveling wave mode. (c) and (d) show the tempera-
ture profile T0(x) in the S-seg. (solid line, Ts(x)), and in the remaining sections
(dashed line), and the characteristic geometric parameters. Th and Tc are the hot
and cold temperatures respectively. The stage is ls = 0.05L long centered about
x = xs (irrelevant for the looped design). The SHX is mounted at xb (lb = 0.45L
away from the stage). The optimal location of the stage’s midpoint xs for the
full-wavelength standing wave is xs = 0.845L.  . . . . . . . . . . . . . . . . . . . 81

4.5 The mode shapes of the looped and the resonance rod and the naming convention
for modes. Note that same mode numbers correspond to different wavelengths.
Especially, the looped rod starts with a full-wavelength mode as its first mode
while a resonance rod starts with a half-wavelength one. To make a comparison
based on the same wavelength, Loop − I and Res − II represent our contrast
group (the shaded blocks).  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 A semilog plot of the growth ratio versus the nondimensional radius for the
Loop − I mode in the looped rod and the Res − II mode in the resonance rod.
Case A, B, C correspond to Res − II mode with the stage placed at different
locations. The growth ratios of these three cases at optimal R/δk are plotted in
Fig.  4.7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Plot of the growth ratio versus the normalized stage location for the resonance
rod Res− II at optimal R/δk(= 1.8). Three specific cases are labeled A, B and
C corresponding to the stability curves in Fig.  4.6 . Only the location of the stage
falling into the shaded region gives a positive growth ratio. . . . . . . . . . . . . 86

4.8 Plot of the phase difference between negative stress σ̄ and particle velocity v for
an R = 0.184mm resonance rod ‘Res−II’, an R = 0.1mm looped rod ‘Loop−I’,
and an R = 0.184mm looped rod ‘Loop−M ’. . . . . . . . . . . . . . . . . . . . 89

4.9 (a) The real and imaginary parts of the dimensionless complex function gk vs.
the dimensionless radius R/δk. gk is a geometry-dependent function accounting
for the radial heat conduction in the S-segment. The high imaginary part of gk
on the left indicates an excellent thermal contact between the medium and the
boundary. (b) The maximal value of the phase difference between ˆ̄σ and v̂ vs.
the dimensionless radius R/δk, showing as the looped rod becomes thinner, the
phase difference decreases and eventually TWC dominates. . . . . . . . . . . . . 89
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4.10 Cycle-averaged heat flux Q̃ and mechanical power Ĩ in the frequency domain (ar-
bitrary units) for the looped rod ‘Loop’ and the resonance rod ‘Res’, respectively.
These components are evaluated from eigenfunctions from the stability analysis
(Eqns. (  4.1 ), (  4.2 ) and ( 4.3 )). The color gradient strips indicate the location of
S-segment, and the shaded grey strips indicate the location of the TBS in ‘Loop’.  94
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5.9 (a) Multi-stage configuration proposed in [  51 ]. Natural conduction in between
stages might be detrimental to performance if the separation is small. (b) Stag-
gered multi-stage design with segments alternating positive and negative CTE as
well as the temperature gradient profile. In this configuration, the temperature
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ABSTRACT

Thermoacoustic (TA) oscillations have been one of the most exciting discoveries of the

physics of fluids in the 19th century. Since its inception, scientists have formulated a com-

prehensive theoretical explanation of the basic phenomenon which has later found several

practical applications to engineering devices. The most common devices are the so-called

TA engines (prime movers) and refrigerators (heat pumps). These devices are distinguished

by the direction in which they perform energy conversion. While a traveling sound wave

propagates through a TA regenerator with a positive temperature gradient, the gas parcels

experience a Stirling-like thermodynamic cycle, so that thermal energy can be converted into

acoustic power cyclically. The most fascinating feature of TA engines is its capability of uti-

lizing low-grade external heat sources, such as industrial waste heat and solar thermal energy

to produce acoustic power, which can be easily converted into electricity using piezoelectric

elements. The absence of moving parts in TA engines is another advantage over conventional

heat engines, which demonstrates the potential for developing low-cost and reliable power

generators.

To-date, significant research efforts have been made to develop TA coolers and electric

generators, but all studies have concentrated on fluid media where this mechanism was exclu-

sively believed to exist. This research extends the idea of thermoacoustic instability to solid

media and lays the theoretical foundation of Solid-State Thermoacoustics (SSTA). This new

paradigm uncovers the fundamental idea that a self-sustained TA response can be achieved

also in solid media. Although the underlying physical mechanism exhibits interesting similar-

ities with its counterpart in fluids, the theoretical framework highlights relevant differences

that have important implications on the ability to trigger and sustain the TA response. This

work shows both theoretically and numerically that TA instability can be achieved in solids

in the form of both longitudinal standing and traveling waves, the most logical counterpart to

pressure waves in gases. However, mechanical waves in solids are polarized, hence leading to

multiple mode types unlike pressure waves in fluids. This research also reveals the existence

of thermoacoustically excited flexural waves and presents theoretical and numerical analyses

of flexural-mode thermoacoustic waves in a bilayer beam. Experimental investigations are
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conducted to confirm the thermo-mechanical energy conversion associated with the flexural

motion.

In contrast to conventional fluid-based thermoacoustics, SSTA systems offer the capabil-

ity to leverage the tunable thermo-mechanical properties of engineered materials to improve

thermoacoustic instabilities. Numerical evidence of using negative thermal expansion ma-

terials to intensify both axial-mode and flexural mode thermoacoustic intensities are shown

in this work, which sheds light on the practical design and application of SSTA devices.

This research opens a unique window on the use of solid materials as working substances to

overcome the shortcomings of traditional thermoacoustic devices. Based on the fundamental

theoretical and numerical explorations conducted in this research, it is believed that SSTA

provides a promising path towards the development of more robust, more powerful, more

cost-effective and more eco-friendly thermo-mechanical energy conversion devices, hence pro-

moting practical applications and commercialization of thermoacoustic technologies.
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1. INTRODUCTION

1.1 Introduction to Thermoacoustics

The existence of thermoacoustic (TA) oscillations in thermally driven gases has been

known for centuries. When a pressure wave travels in a confined gas-filled cavity while being

provided heat, the amplitude of the pressure oscillations can keep growing until it saturates

due to nonlinear effects. This self-sustaining process builds upon the dynamic instabilities

that are intrinsic in the TA process. The essence of TA phenomena is the two-way interaction

between fluid motion and fluctuations in heat release rate, and ultimately, the resulting

TA energy conversion processes. In this chapter, we will first provide an overview of TA

energy conversion technology, briefly illustrating how it is applied in modern thermoacoustic

devices. Followed by the initial introduction, we will explain the main characteristics of

the two most common types of TA devices, namely the standing- and the traveling-wave

TA devices. A literature review summarizing the development of TA technology from the

historic explorations to the modern numerical and experimental studies will be conducted.

Summarizing the key limitations of the development of fluid-based TA to date leads to the

motivations and objectives of this study. This chapter is closed by an outline of this thesis.

1.1.1 Overview of Thermoacoustic Energy Conversion

Thermoacoustic devices, as the name suggests, rely on the heat exchange between sound

waves in the working medium and the surrounding heat source to conduct energy-conversion

process. The key components of thermoacoustic devices consist in a resonant tube, in which

the sound field can be effectively excited. The heat-sound interaction takes place in a porous

section that is inserted into the acoustic tube. The porous section can be as simple as a chunk

of steel wool, a stack of metal gauze or foam, or a ceramic stack (Fig. 1.1 ). When sound

waves pass through the small pores of such section, plane-wave assumption is no longer valid,

due to the non-negligible thermoviscous effects, which are associated with the thermoacoustic

energy exchange. When this porous section is sandwiched by a hot heat exchanger and a

cold heat exchanger (Fig. 1.2 ), a spatial temperature gradient is established, with which
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the diffusion in the small pores becomes beneficial to a thermoacoustic energy conversion

process. The static temperature gradient that is imposed by the two heat exchangers with

a temperature difference is the main driver of thermoacoustic instability, which accounts

for the transient amplifying and the nonlinear steady-state acoustic oscillations. The solid

porous material acts as a thermal reservoir with huge heat capacity, so it is usually modeled

as an isothermal boundary condition with the specified temperature profile in numerical

studies. From the perspective of wave propagation, when a sound wave progresses through a

sufficiently thin passage from the cold to the hot end of the porous section, a Lagrangian gas

parcel experiences a Stirling-like thermodynamic cycle [1 ], [2 ]. The proper phase difference

between the heat release from the porous section and the deformation of the infinitesimal

element is crucial to TA instability. If the temperature of a fluid parcel is higher than its

mean state while it undergoes elastic expansion, the positive temperature fluctuation will

further inflate the parcel on top of its elastic expansion. Same deformation amplification

can happen when the parcel contracts. As a result, if heat is provided and extracted in a

good ‘timing’, the motion of the infinitesimal parcel can grow, leading to TA instability in

macroscopic scale.

Along with the heat exchangers, the porous section forms the essential component of a

thermoacoustic device, known as the thermoacoustic core. In the thermoacoustic core, mi-

croscopic fluid parcels effectively go through a thermodynamic cycle and produce mechanical

(acoustic) work by absorbing net heat input. In some studies, the name of this chunk of

porous material is distinguished, i.e. stack for a standing wave engine (SWE) and regen-

erator for a traveling wave engine (TWE). See Fig. 1.2 . In an SWE, the phase difference

between pressure and particle velocity is close to 90◦, while that for TWEs is practically in

the range of 20◦ ∼ 60◦, although ideally a zero-phase TWE operates at its optimal condition.

Discussions on SWEs and TWEs will be expanded in Section 1.1.2 .

Depending on the direction of energy conversion, TA devices are divided into prime

movers (engines) and heat pumps (refrigerators). TA engines rely on the established tem-

perature gradient to cyclically release heat to fluid parcels in the stack so that the energy is

accumulated in the form of acoustic power in the absence of energy harvesting elements. The

reverse effect, which relies on the input acoustic power to establish a temperature gradient
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Figure 1.1. Ceramic stack [3 ].

from ambient temperature to a low temperature, is the principal mechanism of TA refrig-

eration [4 ]. Several prototypes of TA engines and heat pumps are built and can operate at

power levels up to one megawatt [5 ].

1.1.2 Standing- and Traveling-wave Thermoacoustic Devices

Depending on the proportion of standing wave and traveling wave components in the

acoustic field, TA devices are generally classified into standing-wave and traveling-wave de-

vices. Fig. 1.2 shows a typical example of a standing-wave and a traveling-wave thermoa-

coustic engine with external loads. The difference between them lies in the phase difference

between pressure and velocity oscillations. In a standing wave device, the phase difference is

approximately (but not exactly equal to) ±90◦ at all spatial locations. The slight phase drop

from 90◦ is a result of imperfect thermal contact which allows heat flow to the acoustic load.

It is worth-mentioning that a perfect thermal contact between stack and working medium is

not thermoacoustically optimal in a standing-wave configuration. This aspect reflects in an

optimal pore sizing of the stack, which is approximately two times the thermal penetration

depth [6 ]. Under such condition, the imperfect thermal contact guarantees that heating fol-

lows compression and cooling follows expansion, thus creating the desired phase difference

between pressure and velocity.
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Figure 1.2. (a) A standing-wave and (b) a travelling-wave thermoacoustic
engine with external loads. Note that the porous section where thermoacoustic
energy conversion takes place is labeled as stack/regenerator in the standing-
/traveling-wave configuration. In both configurations, the porous section is
sandwiched by a hot heat exchanger (HHE) and a cold heat exchange (or
ambient heat exchanger, AHE) [7 ].

However, in a traveling wave engine, the phase between pressure and velocity stays well

below 90◦ depending on the specific design (e.g. between ±30◦ in the traveling wave TA

engine built by Yazaki [8 ]). Generally in TWEs, a smaller pore size is always favorable

because the intrinsic nature of synchronized pressure and velocity in pure traveling waves

leads to the favorable compression-heating-expansion-cooling phasing under perfect thermal

contact. As the pore size decreases, the delay between temperature rise and heat input

becomes shorter. More quantitative explanations about the phasing in both configurations

will be presented in Section 4.3.2 .

To-date, the most researched and built TA devices are the traveling-wave types. Traveling-

wave devices are generally easily triggered with low onset temperature. Traveling-wave TAEs

are more efficient than their standing-wave counterparts because the fluid parcels in the re-

generator of TWEs undergo a reversible thermodynamic cycle. The most efficient standing-

and traveling-wave engines reported by researchers convert thermal energy to acoustic power

at 18% and 30% (41% of Carnot efficiency), respectively [9 ].
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1.1.3 Historical Notes on Thermoacoustics

The first laboratory TA experiment may be the one conducted by Higgins in 1777 when

he inserted a hydrogen flame into an open pipe (Fig. 1.3 ) to produce a self-sustained standing

wave [10 ]. This phenomenon was later dubbed a singing flame.

Figure 1.3. Higgins Tube [10 ].

It is 70 years later when Soundhauss prepared another experiment, which bears closer

resemblance to the process of glassblowing. He attached a narrow tube to a closed bulb and

put the flame near the junction, while left another end open (Fig. 1.4 ) . The flame raised

the temperature of the closed end and resulted in an unstable standing sound wave [11 ]. The

experimental apparatus was later dubbed Soundhass tube.

In 1859, Rijke used a hot metal gauze to replace the flame and observed similar phenom-

ena (Fig. 1.5 ). He also pointed out that there existed an optimal location of such hot gauze.

In a vertical open tube, the unstable sound wave reached its maximal power density when the

gauze was placed one-fourth of its length from the lower end of the tube. More interestingly,

either closing one end of the tube or reversing its direction suppressed the sound generation

[13 ].

In 1896, the famous physicist and acoustician, Lord Rayleigh, proposed a qualitative

explanation of the heat-induced sound phenomena [14 ]. He concluded that these heat-driven
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Figure 1.4. Soundhauss Tube [12 ].

sound would be generated if heat flowed into the gas when its density was high, and out of

the gas when its density was low. Such qualitative explanation for the first time unveiled the

essence of the coupling between pressure and temperature fluctuations and the dependence

of TA instability on phasing.

In 1949, Kramers was the first to start the theoretical study of thermoacoustics by ex-

tending Kirchhoff’s theory of the decay of sound waves at constant temperature to the case

of attenuation in the presence of a temperature gradient [15 ]. However, his theory based

on boundary-layer approximation did not present acceptable results compared to the exper-

imental data.

Although a systematic and quantitative understanding of the phenomenon had not been

built yet, Bell Telephone Laboratories proposed the idea of converting heat into electricity

through a two-fold energy conversion strategy in 1950s [16 ], [17 ]. The concept consisted

in the conversion from heat into sound energy with a thermoacoustic engine, followed by a

sound-to-electricity conversion process. However, such device was not well accepted at that

time due to the low efficiency of the TA energy conversion.

A plausible TA theory was finally established by Rott in 1970s, which marked the in-

ception of quantitative understanding of TA phenomena [18 ]. Between 1969 and 1980. Rott

published a series of papers, introducing a quasi-one-dimensional linear theory which was
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Figure 1.5. Rijke Tube [13 ].

based on linearized equations of conservation, i.e. conservation of mass, momentum and

energy [18 ]–[24 ]. The transverse heat conduction and viscous loss were cross-sectionally

averaged in the theory so that the fully 3D equations were collapsed to the dimension corre-

sponding to the axis of wave propagation. This series of papers has been generally viewed as

an important milestone for thermoacoustic research, which greatly stimulated the subsequent

theoretical and numerical researches on thermoacoustics.

In 1979 and 1985, Ceperley pointed out that when a wave traveled through a regenerator

with a temperature gradient, the fluid parcel experienced a Stirling-like thermodynamics

cycle (Fig. 1.6 ) [2 ]. This heat-to-work cycle could thus amplify the traveling wave. It

was further mentioned that the reversible nature of such thermodynamic cycle permitted a

higher efficiency than the cycle that a standing wave went through. Based on this principle,

a conceptual heat-driven refrigerator with torus topology was proposed to allow waves to

travel in the loop without reflection.

Swift from Los Alamos National Laboratories (LANL) in 1988 published a reveiw article,

which comprehensively summarized the historical progression, mathematical formulation for

interaction between sound wave with both single plate and stack, components of TA engines,

and some engine examples [1 ]. This review bridged the gap between TA theory and the
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Figure 1.6. Sounds get amplified through a narrow channel with cold to hot
temperature distribution [2 ].

buildups of real TA devices. Since then, extensive experimental rigs and even commercial

prototypes have been built.

It is noteworthy that in 2008, a numerical simulation tool, DeltaEC (Design Environ-

ment for Low-Amplitude ThermoAcoustic Energy Conversion), was developed at LANL by

Ward and Swift. DeltaEC is a well-integrated tool guiding the design of real TA devices

based on Rott’s linear theory. As a powerful tool, it is widely used in the process of de-

signing TA devices and analyzing their performances. However, because the equations in

DeltaEC describes the steady-state conditions, as Guedra and Penelet (2012) pointed out

in [25 ], DeltaEC ‘is not primarily devoted to the determination of the threshold condition

itself’. It is in the same paper that they described the transient characteristics of TA en-

gines using a complex frequency. The real part of this complex frequency represented the

frequency of self-sustained acoustic oscillations, while its imaginary part characterized the

amplification/attenuation of the wave due to the thermoacoustic coupling. This idea has

been accepted by a number of researchers [26 ]–[29 ], including the author of this thesis, be-

cause it reveals the ‘eigenvalue problem’ nature of the transient process of thermoacoustic

instability.

1.1.4 Experimental and Numerical Studies of Thermoacoustic Engines

With the mutual interaction between thermal and acoustic fields well understood, efforts

have been dedicated to developing thermoacoustic devices with different configurations. This
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section summarizes the most important leaps in the progression of thermoacoustic engine

design, as well as several high fidelity numerical simulations of thermoaocoustic engines.

In 1998, Yazaki et al. for the first time presented a traveling wave thermoacoustic proto-

type engine (Fig. 1.7 ) [8 ], as an experimental realization of Ceperley’s proposal. The phase

difference between pressure and velocity in Yazaki’s torus-shaped engine was brought down

to ±30◦, which guaranteed the traveling wave component being dominating. As predicted by

Ceperley, the measurements showed that traveling wave device significantly outperformed a

standing wave counterpart at the same operating frequency. However, the engine converted

energy at a relatively low efficiency due to a low acoustic impedance within the thermoa-

coustic core, caused by the large velocity amplitude in the regenerator. This low impedance

gave rise to a high acoustic loss, thus preventing the engine operating efficiently.

Figure 1.7. Yazaki et al.’s Engine [8 ].

This drawback was noticed by Backhaus and Swift, so they overcame the issue by propos-

ing a new type of engine consisting of a loop tube attached by a long resonator pipe (Fig.
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1.8 ) [9 ]. Three main modifications were made: (1) An inertance section was added to force a

zero phase difference in the regenerator to achieve a local pure traveling wave; (2) To avoid

the high viscous loss, they applied a compact acoustic network to decrease the particle veloc-

ity in the regenerator without using large resonator; (3) a jet pump and a tapered thermal

buffer tube was designed to suppress the acoustic streaming due to nonlinearity. With all

the aforementioned efforts made, their engine with 30 bar Helium as working gas reached

30% thermal efficiency (equivalently 41& Carnot efficiency), while operating at 80 Hz.

Figure 1.8. Backhauss and Swift’s Engine [9 ].

Although with higher efficiency, Backhaus and Swift’s engine operated at 725◦C. The high

operating temperature harmed its competitiveness especially when compared with traditional

heat engines. As one of the solutions, De Blok (2008) developed a torus engine with a bypass
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tube cascading two regenerators (Fig. 1.9 ), which was capable of utilizing low temperature

differences from solar energy or industrial waste heat in the range of 70 − 200◦C [30 ]. He

Figure 1.9. De Blok’s Engine with bypass tube [30 ].

pointed out that a standing wave resonator should induce higher viscous loss because the

two positively interfered waves results in higher amplitudes. His solution was to use a bypass

tube as a traveling wave resonator. Also, he proposed to enlarge the cross section area of the

regenrator to further reduce viscous losses. His engine utilized atmospheric air as working

gas with an onset temperature as low as 65◦C with two cascaded regenerators. He then

improved his design by adding two more regenerators (Fig. 1.10 ) and achieved 40◦C onset

temperature in 2010 [31 ]. In the same year, Biwa et al. presented a multi-stack design

with a standing wave resonator [32 ]. The engine with five stacks distributed along the torus

achieved instability with the hot end temperature equal to 355K (Fig. 1.11 ).

In 2012, Yu et al. integrated the loop traveling wave engine with a commercially available

loudspeaker as an alternator to study the serial thermal-acoustic-electric energy conversion

(Fig. 1.12 ) [33 ]. Their prototype converted 800 W heat input eventually into 5.17 W

electricity, achieving a thermal-to-electrical efficiency of 0.65%, showing the possibility of

a low cost TA generator which could be used in developing areas rich of free solar energy.

The full thermal-to-electrical energy conversion and harvesting was also theoretically and

numerically studied by Smoker et al. [34 ] and Nouh et al. [35 ].
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Figure 1.10. De Blok’s Engine with four regenerators [31 ].

Other than the qualitative understanding gained from experimental studies of thermoa-

coustics, a few linear and nonlinear numerical simulations have been conducted to quantita-

tively understand the details of thermoacoustic energy conversion procedure.

Scalo et al. (2015) carried-out three-dimensional Navier-Stokes simulations, from quies-

cent conditions to the limit cycle, of a theoretical travelling-wave thermoacoustic heat engine

(TAE) composed of a long variable-area resonator shrouding a smaller annular tube (Fig.

1.13 ) [26 ]. This simulation captured the process from transient exponential growth, con-

sistent with the linear prediction based on Rott’s theory, till the saturation to limit cycle

governed by acoustic streaming. Fully compressible Navier–Stokes simulations of a standing

wave thermoacoustic–piezoelectric engine were carried out by Lin et al. (2016) [27 ], provid-

ing accurate predictions of thermal-to-acoustic and acoustic-to-electrical energy conversion

(Fig. 1.14 ). Gupta et al. (2017) investigated thermoacoustically amplified quasi-planar

nonlinear waves driven through a hierarchical spectral broadening to the limit of shock-wave

formation in a variable-area looped resonator (Fig. 1.15 ) [28 ]. The experimental observation
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Figure 1.11. Biwa et al.’s Engine with five regenerators [32 ].

of thermoacoustic shock waves in a looped thermoacoustic tube were firstly reported by Biwa

et al. in 2011 [36 ].

1.1.5 Benefits and Shortcomings of Thermoacoustic Devices

Through the theoretical, numerical, and experimental analyses of TA devices, it has

been understood that TA devices bear advantages over conventional heat engines in various

aspects. At the meantime, new challenges, accompanied with the shortcomings of TA devices,

emerged for building efficient TA devices.

Among all the benefits of TA devices, we list the most significant advantages over con-

ventional energy-conversion devices in the following:

1. TA devices do not require moving parts, translating into higher structural robustness.

Little or no maintenance is required while the devices are in operation.

2. They are eco-friendly. The most studied and built TA devices generally use non-toxic

gas like air, nitrogen or helium as working medium. With the environmental issues

becoming challenging and more urgent globally, TA technology shows its special charm

because it does not require the use of harmful working fluids.
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Figure 1.12. Yu et al.’s generator [33 ].

Figure 1.13. Scalo et al.’s Engine [26 ].

3. They can utilize low-grade heat as energy sources. Through a proper design, a TA

engine only needs a temperature difference lower than 100◦C to trigger instability.

This makes the use of free solar energy and industrial waste heat to produce or harvest

useful energy possible.

Despite the superiority of TA devices, their application is limited in the following aspects:

1. Due to the intrinsic nature of gaseous media, the power density produced by TA process

is low, which limits the efficiency of TA devices.

2. Mass and thermal leakages require additional maintenance and complicate the design.

3. The nonlinearities involved in the TA process harms the device performance:
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Figure 1.14. Lin et al.’s Engine [27 ].

Figure 1.15. Gupta et al.’s Engine [28 ].

(a) Acoustic streaming, generally found in traveling-wave engines, can lower the ef-

fective thermal gradient along the regenerator.

(b) Harmonic generation spreads energy over the spectrum, which harms the energy

conversion at the main operating frequency.

(c) Turbulence aroused in the TA process dissipates acoustic energy.

Most of the limitations listed above are due to the intrinsic sound propagation charac-

teristics in gaseous media. Considering the similarities between solids and fluids, in terms
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of the nature of continua, it seems reasonable to wonder if TA phenomena can also exist in

solid media. It is anticipated that some of the key bottlenecks for fluid-based TA devices,

e.g., turbulence and acoustic streaming, are not problematic for solid-state thermoacoustic

(SSTA) devices.

1.2 Motivations and Objectives of the Thesis

Thermoacoustics has been an active field of research for decades, leading to various types

of practical devices. Yet, the TA phenomenon was explored only in fluids. The development

of fluid-based TA devices is limited by different aspects, such as low power density, leakage

and nonlinear losses. These aspects are mainly related to the nature of the working medium,

which in the case of classical TA is a gas. When using solid medium to propagate sound

instead, it is possible to envision larger power density and no leakage. The nonlinear effects,

such as acoustic streaming and turbulence, which harm the engine efficiency significantly,

do not take place in solids. These characteristics make solids a promising candidate medium

for thermoacoustics. The main motivation of this research is to explore the existence of

thermoacoustics in solids, its performance and possible limitations.

In addition, the development of engineered materials provides the opportunity to tailor

the thermo-mechanical properties of solid materials in a way that could be beneficial for

thermoacoustic devices. Other than the conventional treatments (e.g. phase adjustment)

for performance enhancement of TAEs, the ease of control and tuning on certain thermal

properties (e.g. thermal expansion coefficient) of solids opens another window to designing

more efficient and more robust TA devices. One of the most common drawback of existing

TA devices is their large size, needed to achieve low operating frequencies that are required

for a more efficient heat transfer. Although efforts have been made by adding liquid pistons

to bring down the operating frequency [37 ], this could lead to other issues associated with

the instability of gas-liquid interface [38 ]. The length of a TA device, together with the sound

speed of the working medium, determines the operating frequency of a TAE. To design a

shorter engine with a low operating frequency, a medium in which sound travels slowly is

preferred. Leveraging different dynamic mechanisms, such as local resonance, engineered
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solid materials can exhibit tunable mass density and stiffness [39 ], [40 ], translating into

tunable sound speed. This characteristic of solid materials provides the opportunity of

designing more compact TA devices. Therefore, the potential application of engineered

materials to more efficient and more compact thermoacoustic devices further motivates this

research.

The detailed objectives of the present study are summarised in the following:

1. To extend the well-established theory of thermoacoustics to solid media. The theory

of SSTA shall be established to present quantitative explanations of the following

phenomena:

(a) Axial-mode standing wave thermoacoustic instability in solids (Standing-wave

A-SSTA).

(b) Axial-mode traveling wave thermoacoustic instability in solids (Traveling-wave

A-SSTA).

(c) Flexural-mode thermoacoustic instability in solids (F-SSTA).

2. To develop simulation strategies and algorithms to perform stability and energy anal-

yses of solid state devices.

3. To understand and analyze the thermo-mechanical principles of A-SSTA and F-SSTA.

4. To conduct experimental validations of the theory of SSTAs. The experiments shall

show the evidence of thermo-mechanical energy conversion and self-sustained vibration

when thermoacoustic instability is triggered.

5. To conduct parametric studies of SSTA systems in order to identify optimal designs of

SSTA devices.

6. To explore configurations utilizing engineered materials to enhance or control the per-

formance of both SSTA and conventional TA devices.
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1.3 Thesis Outline

Following the introduction in this section, Chapter 2 reviews the conventional theory of

thermoacoustics, theory of thermoelasticity. Both classical theories form a basic understand-

ing of thermo-mechanical(acoustical) coupling in solid materials. They are the two essential

building blocks of the proposed theory of solid-state thermoacoustics, which is derived in

Chapter 3. The full mathematical derivations of the governing equations of these theories

are presented in details.

Chapter 4 presents a numerical study of axial-mode SSTA instability. A quasi-1D lin-

earized model, analogous to Rott’s theory, is developed to perform stability analysis and

characterize the effect of different design parameters. A 3D transient model is developed

with commercial FEM software, COMSOL Multiphysics, to validate the proposed quasi-1D

model. Numerical evidences are presented to show that the instability can be effectively

triggered and sustained in an axially vibrating metal rod. A multi-stage configuration was

proposed in order to overcome the effect of structural damping, which is one of the main

differences with respect to the thermoacoustics of fluids. A looped solid configuration, in-

vestigating the existence of self-sustained thermoelastic oscillations associated with traveling

wave modes in rod under the effect of a localized thermal gradient is then proposed. Con-

figurations having different ratios of the rod radius R to the thermal penetration depth δk
are explored and the traveling wave component (TWC) is found to become dominant as

R approaches δk. The growth-rate-to-frequency ratio of the traveling TA wave is found to

be significantly larger than that of the standing wave counterpart for the same wavelength.

The perturbation energy budgets are analytically formulated and closed, shedding light onto

the energy conversion processes of SSTA engines and highlighting differences with fluids.

Efficiency is also quantified based on the thermoacoustic production and dissipation rates

evaluated from the energy budgets. This Chapter lays the theoretical foundation of ther-

moacoustics of solids and provides key insights into the underlying mechanisms leading to

self-sustained oscillations in thermally driven solid systems.

In Chapter 5, the governing equations of A-SSTAs are firstly recast into dimensionless

form to develop an accurate analytical approaches to solve for the mode shapes and complex
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frequencies for 1) a standing-wave fixed-mass SSTA rod, and 2) for a traveling-wave looped

SSTA rod; then, it is found that the growth-rate-to-frequency ratio is governed by the dimen-

sionless coefficient of thermal expansion (CTE), the Grüneisen parameter, the hot-to-cold

temperature ratio, the normalized stage location and length, the dimensionless radius, the

end mass ratio for the fixed-mass rod, and the thermal buffer segment (TBS) length for the

looped rod. Based on these newly identified dimensionless parameters, a thorough numerical

analysis is conducted in order to get a thorough understanding of the functional relationships

controlling the complex dynamics in SSTAs. With the many mechanisms available in solids

to tailor either their physical or effective properties, remarkable opportunities to enhance

and tune the performance of SSTA devices can be potentially sought.

In Chapter 6, following the research on axial-mode solid-state thermoacoustics, the

flexural-mode solid-state thermoacoustics (F-SSTAs), which is unique to solids, is theoreti-

cally and experimentally studied. More specifically, it is shown how flexural waves can grow

unbounded when traveling in a bilayer beam subject to a spatial thermal gradient. A theo-

retical framework is developed to analyze the dynamics of the system and to establish the

criterion controlling the onset of flexural thermoacoustic instability. Numerical calculations

conducted in both the frequency and the time domains show the occurrence of two main

effects due to the presence of thermal coupling: (1) the dynamic amplification of the flexural

motion, and (2) the time-varying location of the neutral axis. An experimental investiga-

tion is also conducted in order to corroborate the existence of this thermal-to-mechanical

energy conversion mechanism associated with flexural waves. Leveraging the tunable thermo-

mechanical properties of architectured materials, the F-SSTA response of a hybrid bilayer

beam that consists in both a continuous layer and an architectured layer having negative

thermal expansion (NTE) properties is investigated. Numerical results confirm that the NTE

layer significantly improves the F-SSTA instability, as predicted by the instability criterion.

The energy conversion mechanism that takes place in the F-SSTA process is also explored by

using the perturbation energy budget approach, developed based on a discrete order reduced

model.
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In Chapter 7, this thesis is concluded by briefly summarizing the key findings, followed

by additional discussions of possible routes towards future developments of the study of

solid-state thermoacoustics.
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2. THERMOACOUSTICS AND THERMOELASTICITY: REVIEW OF

FUNDAMENTAL THEORY

2.1 Introduction

The theory of solid-state thermoacoustics is developed based on two building blocks: (1)

Rott’s thermoacoustic theory and, (2) classical thermoelastic theory. Rott’s thermoacous-

tic governing equations are a classical treatment of understanding and solving fluid-based

thermoacoustics, which enlights the development of thermoacoustic theory of solids.

Mechanical waves in solid media, especially in audible range, are generally referred to

elastic waves rather than acoustic waves. Therefore, to understand the coupling between

heat and sound (mechanical waves) in solids, it is crucial to understand the fundamental of

thermoelasticity. According to classical thermoelasticity [41 ]–[43 ], an elastic wave traveling

through a solid medium is accompanied by a thermal wave, and vice versa. The thermal

wave follows from the thermoelastic coupling which produces local temperature fluctuations

(around an average constant temperature T0) as a result of a propagating stress wave. When

the elastic wave is not actively sustained by an external mechanical source, it attenuates and

disappears over a few wavelengths due to the presence of dissipative mechanisms (such as

material damping); in this case, the system has a positive decay rate (or, equivalently, a

negative growth rate). When considering the thermoelastic coupling, even if the system is

fully isolated from the environment (i.e. all adiabatic boundaries), the thermoelastic motion

can still decay due to the well known thermoelastic damping aroused from the irreversible

thermodynamics in the bulk of materials. The lost kinetic energy will then lead to a very

slow rise of mean temperature, which is generally neglected.

Classical thermoelastic problem typically assumes the medium being at a uniform ref-

erence temperature T0 under adiabatic condition. With the knowledge of thermoacoustic

phenomena in fluids, we wonder what may happen if heat exchange is allowed at the bound-

ary (known as wall heat transfer in thermoacoustic community), while the solid is subject to

a non-uniform T0 in the axial direction. Under such conditions, which are essential for TA

instability in fluid-based devices, can we observe TA instability in solids as well?
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The above question was aroused from the understanding of both Rott’s thermoacoustic

theory and classical theory of thermoelasticity, whose main elements are briefly reviewed in

this chapter, to provide the foundation for the development of the SSTA theory and the

associated analyses conducted in the following chapters.

2.2 Thermoacoustic theory: From Conservation Laws to Rott’s Theory

In this section, we will review the derivations of Rott’s thermoacoustic theory [18 ]–

[24 ], [44 ]. The linear governing equations of thermoacoustics, which greatly facilitate the

understanding of the thermoacoustic phenomena, thus beneficial to the development of the

modern thermoacoustic research, will be rigorously derived based on the conservation laws

of fluids.

2.2.1 Conservation Laws of Fluids

Conventional (fluid-based) thermoacoustics, like all the other phenomena in fluids, is

governed by conservation laws of fluids. Other than the consideration of continuity and

momentum conservation adopted in pressure acoustics, thermoacoustics also requires the

entropy conservation to describe the heat transfer processes in the coupling mechanism.

Before introducing Rott’s linear thermoacoustic theory, which is the foundation of thermoa-

coustic engine design, the fully three dimensional conservation laws are discussed in this

section. However, some of the results can be very tedious to derive, so rigorous step-by-step

derivations are not provided here. They can easily be found in advanced fluid-mechanics

textbooks [45 ], [46 ].

Conservation of Mass

Conservation of mass equation, also known as continuity equation, describes the conser-

vation of mass for a microscopic control volume in a fluid. For a cubic fluid control volume

40



dxdydz, the mass can only be changed as a result of mass inflow and out flow through its

boundary surfaces, i.e.:

−∂ρ

∂t
dxdydz =

(
∂(ρu)
∂x

dx
)
dydz +

(
∂(ρv)
∂y

dy
)
dxdz +

(
∂(ρw)
∂z

dz
)
dxdy (2.1)

where ρ is density, u, v and w are velocity in x, y and z directions. The left hand side

indicates the mass decrease rate and the terms on the left hand size denote the mass outflow

through the dydz, dxdz and dxdy surfaces. Factoring out dxdydz and writing the result in

a compact tensor form yields the well-known continuity equation:

∂ρ

∂t
+ ∇ · (ρv) = 0 (2.2)

Conservation of Momentum

The conservation of momentum in fluids, also known as the Navier-Stokes equation, is

an expression of Newton’s second law, i.e.: the summation of all the external forces applied

to an object (fluid parcel) equals the mass of the object multiplied by its acceleration. In

fluid mechanics, the acceleration typically includes the local acceleration and the convective

acceleration, which describes how a fluid parcel is accelerated induced by different velocity

of the location. The force equation is expressed as:

(ρdxdydz)
[
∂v

∂t
+ (v · ∇)v

]
= (∇ · σ)dxdydz (2.3)

where σ is total stress tensor including the pressure and visocous components:

σ = (−pI + τ ) (2.4)

41



where p is pressure, I is identity matrix and τ is a third-order viscous stress tensor. Two of

its elements are shown below as an example:

τxx = µ
(

2∂u
∂x

− 2
3∇ · v

)
+ ζ∇ · v (2.5)

τxy = µ
(
∂u

∂y
+ ∂v

∂x

)
(2.6)

where µ and ζ are the dynamic and bulk viscosity, respectively. Divided by dxdydz, Eqn

(2.3 ) is reduced to:

ρ
[
∂v

∂t
+ (v · ∇)v

]
= (∇ · σ) (2.7)

Inserting the constitutive equation (2.4 ) yields:

ρ
[
∂v

∂t
+ (v · ∇)v

]
= (−∇p+ µ∇2v) (2.8)

The result is reached with the assumptions that the effects of viscosity gradient and com-

pressibility of fluids are neglected. Such assumptions were also adopted by Rott, whose

linear theory can provide a fairly good prediction of the exponential growth regime of ther-

moacoustic oscillations.

Conservation of Entropy

The infinitesimal change of entropy of a microscopic fluid parcel is expressed as the

following:

d(ρs)dxdydz = ΣdQ
T

+ ΣsdM + ρ(ds)irrevdxdydz (2.9)

where the three terms on the right hand side denote respectively: reversible entropy change

due to the addition of heat dQ at temperature T , entropy change due to mass exchange,

irreversible entropy increase due to effects like viscous loss. The third term, according to

thermodynamic second law, shall be positive.
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Divided by dxdydzdt and with Green’s theorem applied, Eqn. (2.9 ) becomes:

∂(ρs)
∂t

= ∇ ·
(
k∇T
T

)
− ∇ · (ρvs) + ρ

∂sirrev

∂t
(2.10)

Recasting yields,

ρT
(
∂s

∂t
+ v · ∇s

)
= ∇ · k∇T − k

|∇T |2

T
+ ρT

∂sirrev

∂t
(2.11)

Through combining other conservation equations [45 ], the above equation can be converted

to the well-known general heat transfer equation, i.e.:

ρT
(
∂s

∂t
+ v∇ · s

)
= ∇ · k∇T + (τ · ∇) · v (2.12)

2.2.2 Thermodynamics of Ideal Gas

The fluid-based TA devices typically use gases (air, helium, argon, etc.) as working

medium and these gases can be modeled as ideal gas for simplicity while achieving satisfactory

results.

Ideal gases are fluids which are governed by the following two fundamental thermody-

namic relations:

p = ρRgasT (2.13)

ε = RgasT

γ − 1 (2.14)

where ε is the internal energy per unit mass, Rgas is gas constant which varies for different

gases but related to the universal gas constant Runiv = 8.314J/mol ·K by molar mass M via

the following relation:

Rgas = Runiv/M (2.15)
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The constant γ is the ratio of specific heat, which is 1.667 and 1.4 for monoatomic and

diatomic gases at ambient temperature. The values of γ and M are tabulated in Table (2.1 ).

All other quantities related to the thermodynamic process can be independently expressed

in terms of Rgas (or M) and γ.

Equations (2.13 ) and (2.14 ) yield the expressions of the following quantities and relations:

Thermal expansion coefficient:

β ≡ −1
ρ

(
∂ρ

∂T

)
p

= 1
T

(2.16)

Isothermal bulk modulus:

BT = ρ
(
∂p

∂ρ

)
T

= p (2.17)

The changes of p, T and ρ

dp = ρRgasdT +RgasTdρ (2.18)

The changes of internal energy and temperature

dε = Rgas

γ − 1dT (2.19)

First law of thermodynamics tells that of a unit mass, the increase in internal energy

shall equal the heat absorbed distracted by the work done, i.e.:

dε = dq − dw (2.20)

For an isentropic (reversible and adiabatic) process, dq = 0, so

(dε)s = −dw (2.21)
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where the work done is the product of pressure and the volume of the unit mass, i.e.:

dw = pd
(1
ρ

)
(2.22)

As a result, in an isentropic process, Rgas
γ−1 dT + pd(1

ρ
) = 0, yielding:

dT = (γ − 1)p
Rgasρ2 dρ (2.23)

Plugging in Eqn.(2.18 ) yields:

dp = γpdρ (2.24)

Hence, the isentropic bulk modulus is written as:

Bs = ρ
(
∂p

∂ρ

)
s

= γp (2.25)

The sound speed under isentropic conditions is:

a ≡
√

(∂p
∂ρ

)s =
√
γRgasT (2.26)

The specific heat at constant volume and pressure are expressed as:

cp = γcv = γ

γ − 1Rgas (2.27)

The change of entropy ds = dq/T can be expressed according to first law of thermodynamics

Eqn. (2.20 ) as:

ds = dε

T
+ dw

T
= Rgas

γ − 1
dT

T
−Rgas

dρ

ρ
(2.28)
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Table 2.1. Gas constants and indices used in power law for T0 = 300K [6 ]
m(kg/mol) γ µ0(g/m·s) k0(W/m·K) sµ sk

air 0.02896 1.4 0.0185 0.026 0.76 0.89
nitrogen 0.02801 1.4 0.0182 0.026 0.69 0.75
helium 0.00400 1.667 0.0199 0.0152 0.68 0.72
neon 0.02018 1.667 0.0320 0.049 0.66 0.66
argon 0.03995 1.667 0.0230 0.018 0.85 0.84
xenon 0.1313 1.667 0.0240 0.0058 0.85 0.84

2.2.3 Material Properties

Unlike solids, fluid materials’ properties are more sensitive to temperature variation.

However, for a large range of temperature, both the viscosity and thermal conductivity of

gases satisfy the power laws:

µ = µ0(T/T0)sµ (2.29)

k = k0(T/T0)sk (2.30)

The constants are tabulated in Table (2.1 ) for common gases.

Other than the power law, other relations are also used to describe the dependence of

material properties on temperature. For example, in the matieral library of the commercial

FEM software, COMSOL Multyphysics, the fourth order polynomials are used and produce

fairly close approximation compared to Eqns. (2.29 -2.30 ) in a certain temperature range

(Figs. (2.1 )& (2.2 )).

2.2.4 Assumptions of Linear Thermoacoustic Theory

In this section, the conservation laws presented in Section 2.2.1 are simplified with proper

assumptions adapt to thermoacoustic calculations.

In low-amplitude pressure acoustics, the well-accepted harmonic assumption is expressed

as X1(r, t) = X1(r)eiωt, where X1(r, t) is a dummy fluctuating variable at location r. This
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Figure 2.1. Viscosity vs. temperature for air
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Figure 2.2. Thermal conductivity vs. temperature for air
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assumption is also adopted in thermoacoustics, but some researchers prefer to use a complex

frequency ω = ωr + iωi to capture the transient exponential growth.

Linear assumptions are adopted as well, which allows to drop all terms higher than order

one, e.g. the convective derivative in the momentum conservation, (v ·∇)v. It is emphasized

that the convective derivatives are not always totally dropped because if there exist a mean

temperature for instance, the convective derivative of entropy, v · ∇s still contains a linear

component, which is essential for thermacoustic instability. The fact that the convective

derivative of velocity can always be neglected (under linear assumption) is that velocity is

assumed to have a zero mean, so the total quantity per se is a first order term.

Considering the large axial-to-transverse aspect ratio of thermoacoustic systems, the

(zero-order) mean state component of variables are assumed to be functions of only axial

coordinate, x. However, the zero-order components of pressure and velocity are assumed to

be constants, i.e. P0 and 0, respectively. Besides, the fluctuating pressure is assumed to be

varying only in x direction, which is justified with an argument in the same way Prandtl

used in his historic analysis of steady-flow boundary layers, which can be easily found in

most fluid-mechanics textbooks [45 ], [47 ], [48 ]. Thus, the relevant variables are expressed as:

ρ(r, t) = ρ0(x) + ρ1(r)eiωt (2.31)

T (r, t) = T0(x) + T1(r)eiωt (2.32)

s(r, t) = s0(x) + s1(r)eiωt (2.33)

p(r, t) = P0 + p1(x)eiωt (2.34)

v(r, t) = v1(r)eiωt (2.35)

All the first order terms are assumed to be much smaller than the zero-order mean states,

while the particle velocities are assumed to be much smaller than sound speed. It is also due

to the geometric properties of thermoacoustic devices, the axial component of the velocity

tensor is generally much greater than the other two components in y and z directions. This

fact leads to the fluctuating pressure gradient in y and z much smaller than it in x, which

can serve as another justification of keeping only the x dependence of p1.
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Additional simplifications can be justified solely in the case of narrow channels that, the

derivatives of first-order quantities with respective to x can be neglected. That is due to the

fact that in narrow tubes, ∂/∂x is of the order of 1/λw, where λw is the wavelength, while

the other two derivatives with respective to the transverse directions are of the order of the

boundary layer thickness δk or δv. In practice, the conditions λw � δk and λw � δv can be

easily achieved in thermoacoustic systems.

With the above assumptions explained, the conservation laws derived in the previous

seciton can be easily recast into simpler forms. The continuity equation (Eqn. (2.53 )) is

converted into:

iωρ1 + dρm
dx

u1 + ρm∇ · v1 = 0 (2.36)

The ideal gas law (Eqn. (2.13 )) can be decomposed into zero-order and first-order ex-

pressions:

P0 = ρ0RgasT0 (2.37)

p1 = ρ0RgasT1 +RgasT0ρ1 (2.38)

where the first-order equation is more often written in the form of:

p1

P0
= T1

T0
+ ρ1

ρ0
(2.39)

The entropy is then:

s1 = − p1

ρ0T0
+ cpT1

T0
(2.40)

Similarly, the axial component of the momentum conservation is recast into:

iωρ0u1 = −dp

dx
+ µ

(
∂2u1

∂2y
+ ∂2u1

∂2z

)
(2.41)

with the axial viscous diffusion and bulk viscosity ζ neglected.
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The heat-transfer equation (Eqn. 2.2.1 ) is re-written as:

ρ0cp

(
iωT1 + dT0

dx
u1

)
= iωp1 + k

(
∂2T1

∂2y
+ ∂2T1

∂2z

)
(2.42)

The relation in Eqn. (2.40 ) is used to get the above equation. The axial heat conduction is

also neglected.

It is stressed that unlike conventional understanding of acoustics that acoustic waves are

sinulsoidal both in time and in space, under the approximations adopted in this section,

thermoacoustic waves can be harmonic in time, but not necessarily in space, mainly due

to the existence of the convective derivatives as a result of a non-zero mean temperature

gradient dT0/dx.

2.2.5 Rott’s Linear Theory

The conservation laws under thermoacoustic assumptions, i.e., Eqns. (2.36 , 2.41 & 2.42 )

are further simplified by operating cross-sectional averaging to get rid of variables’ transverse-

direction dependency. Thus, the equations eventually become a set of quasi-one-dimensional

(quasi-1D) equations. The derivations are shown in this section.

Considering the momentum equation (Eqn. (2.41 )) as an ordinary differential equation

(ODE) for u1(y, z), one can solve it with the non-slip (u1 = 0) boundary conditions resolved.

The solution is thus written as:

u1 = i
ωρ0

[1 − hv(y, z)]
dp1

dx
(2.43)

where hv(y, z) is a complex function, which varies for channels of different geometry.

Applying cross-sectional averaging on Eqn. (2.43 ) yields the important thermoacoustic

momentum equation:

Thermoacoustic Momentum Equation : iω(U1/A) = −1 − fv
ρ0

dp1

dx
(2.44)

where U1 is the flow rate, i.e. U1 =
∫
A u1dA and A is cross-sectional area.
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Figure 2.3. Cross-sectional-average function f for different geometries[6 ].

fv in Eqn. (2.44 ) is the cross sectional integration of hv, which is also a complex function.

The one-dimensional Euler’s equation in linear form can be recovered if fv = 0. It can be

also noticed that if fv is purely real, the pressure gradient is totally inertial, which leads to

no loss. However, if the imaginary part of fv appears due to the existence of sound hard wall

and gas viscosity, the pressure gradient includes a resistive component, which contributes to

the change of velocity as well.

Same as hv, fv also varies with channel’s cross-sectional geometry, Fig. 2.3 shows the

thermo-viscos function f vs. dimensionless channel size for different pore geometry[6 ]. The

viscous function fv is yielded if rh/δv is used for the horizontal axis, where rh is the hydraulic

radius. Alternatively, using rh/δk for the horizontal axis yields fk, which will be introduced

51



below. The complex functions for two commonly modeled geometry, parallel plates (2D

model) and circular pore (2.5D model) are expressed as:

h = cosh[(1 + i)y/δ]
cosh[(1 + i)h/δ] (2.45)

f = tanh[(1 + i)h/δ]
(1 + i)h/δ (2.46)

for parallel plates with spacing 2h, and

h = J0[(i − 1)r/δ]
J0[(i − 1)R/δ] (2.47)

f = 2J1[(i − 1)R/δ]
J0[(i − 1)R/δ](i − 1)R/δ (2.48)

for circular pores with radius R, where Jn are Bessel’s functions of the nth kind.

Note that the subscript v is neglected in the above expressions because such expressions

also hold for thermal complex functions fk of thermal boundary layer δk, which will be

introduced in the next paragraph. And the two boundary layers are related by Prandtl

number, Pr:

δv =
√
Prδk (2.49)

Similarly, the heat equation (Eqn. (2.42 )) can also be cross-sectionally averaged and

gives:

〈T1〉 = 1
ρ0cp

1 − fk
p1

− 1
iω
dT0

dx

(1 − fk) − Pr(1 − fv)
(1 − fv)(1 − Pr)

(
U1

A

)
(2.50)

where the angle brackets denote cross-sectionally averaged quantities.

Now we have two equations (2.44 ) and (2.50 ) and three unknown variables T1, p1 and U1,

so the continuity equation (Eqn. (2.36 )) shall be included. Averaging Eqn. (2.36 ) yields:

iω〈ρ1〉 + d

dx
[ρ0(U1/A)] (2.51)
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The ideal gas law for first-order quantities, Eqn. (2.39 ) is used here to link 〈ρ1〉 and 〈T1〉.

Averaging Eqn. (2.39 ) and eliminating 〈ρ1〉 yields:

iωρ0[
p1

P0
− 〈T1〉

T0
] + d

dx
[ρ0(U1/A)] = 0 (2.52)

Combining Eqns. (2.50 ) and (2.52 ) to eliminate 〈T1〉 yields the thermoacoustic version

continuity equation:

Thermoacoustic Continuity Equation: iωp1 = γP0

1 + (γ − 1)fk

[
− d

dx
+ g

](
U1

A

)
(2.53)

where g is a complex proportional constant for flow rate U1 representing the gain or attenu-

ation of the temperature gradient dT0/dx, which is expressed as:

g = (fk − fv)
(1 − fv)(1 − Pr)

1
T0

dT0

dx
(2.54)

Physical interpretations can be made by carefully examining Eqn. (2.53 ). The pressure

rate is composed of two componetns, one proportional to dU1/dx and the other proportional

to dT0/dxU1. The first dependence is relatively easier to interpret with the understanding

of adiabatic pressure acoustics. An adiabatic and lossless pressure wave equation can be

recovered if both fk = 0 and fv = 0 hold, in which case the bulk modulus is the one defined

in Eqn. (2.25 ). However, if the heat transfer is perfect, i.e. fk = 1, the compressibility

becomes P0, which is the reciprocal of the isothermal bulk modulus expressed in Eqn. (2.17 ).

To understand the second term on the right hand side, we isolate the effect of viscosity for

now (fv = 0,Pr = 0), so it becomes (fk/T0)(dT0/dx)(U1/A). This term vanishes in the

following two cases. (1) fk = 0. That means no wall heat transfer, so the temperature

difference (if there is any) doesn’t induce any energy exchange, but only affects the material

properties instead. (2) dT0/dx = 0. The zero axial temperature difference lead to zero net

energy exchange per cycle. Instead, the instantaneous heat exchange (if there is any) can

only happen in the progress of gas compression and dilatation. Pushing towards another

limit when the gas is always at the local temperature (fk = 1), leads to the second term

proportional to (dT0/dx)U1. As a result, when a fluid parcel flow from cold to hot, it is
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expanded. Otherwise, it is extracted. Thus, if the heat-transfer-induced deformation and

the elastic deformation are well ‘coordinated’ so that they happen at ’right timing’, the

desired thermoacoustic instability can be potentially achieved. Although the limit cases

described above help understanding the thermoaoucstic process, in practice, the situation

always lies in the intermidiate regime.

Finally, by combining Eqns. (2.44 ) and (2.53 ) we arrive the complete expression of Rott’s

thermoacoutic wave equation:

γP0

ω2
d

dx

[1 − fv
ρ0

dp1

dx

]
− a2

ω2 g
dp1

dx
+ [1 + (γ − 1)fk]p1 = 0 (2.55)

It is a second-order ODE in pressure fluctuation. Swift considered it as a Rott’s version

of Helmholtz equation and ‘a milstone in the devepoment of thermoacoustics’. Equantion

(2.55 ) indeed marks a giant leap of the development of thermoacoustic theory, however for

numerical calculations, the easiest way is to solve Eqns. (2.44 ) and (2.53 ) separately.

It is also notable that by carefully inspecting Eqns. (2.44 ) and (2.53 ), they can be viewed

as an eigenvalue problem with the eigenvalue iω and eigenfunction [p1, U1]T, if the parameters

are all knowns. The dependence of thermo-viscous functions fk and fv of ω can be iteratively

resolved in the eigenvalue solving process. Therefore, under linear assumption, the steady

state (reflected by a purely real ω) considered in the simulation software DeltaEC is not

always achievable with arbitrary temperature gradient dT0/dx. For a given dT0/dx, there

shall be a set of eigenvalues corresponding to different modes, and they are generally complex.

The real part of the eigenvalue is the exponential growth/decay rate and the imaginary part is

the angular natural frequency. The dT0/dx corresponding to a purely imaginary eigenvalue

is often called the onset temperature associated with that mode. An exponential growth

predicted by the linear theory does not guarantee that a realistic unstable thermoacoustic

wave can grow unbounded. The ’steady-state‘ oscillations seen in thermoacoustic devices or

combustion systems are a nonlinear saturation effect which is not captured in linear theory.

In reality, after the onset of thermoacoustic oscillations, the pressure reaches very high level

rapidly and makes the nonlinear terms (e.g. the convective derivatives) become vital. In that
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regime, the linear theory is no longer valid. Nonlinear thermoacoustic waves were formulated

and numerically simulated in a different fashion, which are out of the scope of this thesis.

2.3 Basic Concepts of Thermoelasticity

Considering that the motivation of this thesis is to study the thermoacoustic behavior

in solid media, it’s necessary to revisit a few key concepts of the conventional thermoelastic

theory to understand the coupling between elastic and thermal stress waves. This section

derives the thermoelastic governing equations from conservation laws and paves the way to

solid-state thermoacoustic theory.

When studying fluid mechanics, the velocity field is more often used as the basic variables,

while in solid mechanics, equations are generally formulated in terms of particle displace-

ments. This could induce certain notational confusions, although by carefully inspecting the

equations, one can easily tell if a symbol u indicates displacement or velocity. To keep consis-

tency, hereinafter, when discussing the fluid-based thermoacoustics, u, u1, U1, etc. are used

for total particle, first-order particle and first-order volumetric velocity in axial direction.

However when it’s in the context of thermoelasticity or axial-mode solid-state thermoacous-

tics, u denotes particle displacement in the axial direction, and v particle velocity in the

axial direction. Note that the bold v still denotes the velocity tensor.

The conservation laws written in the most general forms are adapt to any continuum,

regardless that it’s a fluid or a solid. These equations already derived in previous section

are Eqns. (2.2 ), (2.7 ) &(2.11 ). To simplify them, assumptions adapt to solid dynamics are

made through rewriting the equations.

2.3.1 Continuity Equation

In solids, the density variation over a large temperature range is quite small, compared

to its static value. As a result, for a homogeneous and isotropic solid, the mean density ρ0

is with zero spatial gradient. Equation (2.2 ) is then simplified as:

∂ρ1

∂t
+ ρ0∇ · v = 0 (2.56)
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Note that the nonlinear term ρ1∇ · v is neglected in the above equation. Unlike fluids, the

constitutive relation of solids does not require the coupling between continuity and other

two conservation equations, so the continuity equation is not often solved in solid mechanics.

However, once the displacement (velocity) field is known, one can still use Eqn. (2.56 ) to

recover the density variation.

2.3.2 Momentum Equation

To simplify the momentum equation (Eqn. (2.7 )), the constitutive equation for solids

is considered. The constitutive stress-strain relation for an isotropic solid considering the

thermal expansion effect is written as:

σij = λLδijεkk + µL(εij + εji) − (3λL + 2µL)δijαl∆T (2.57)

where i, j, k = 1, 2, 3, δij is Kronecker delta, λL and µL are the Lamé constants, αl is the linear

thermal expansion coefficient. ∆T is the temperature difference deviated from a reference

temperature, usually taken as the ambient temperature.

The normal stress in the axial direction x is the ij = 11 component of Eqn. (2.57 ),

written as:

σ11 = 2µLε11 + λLe − (3λL + 2µL)δijαl∆T (2.58)

where e is the volumetric strain, expressed as e = εii. Considering the axial vibration of a

slender rod, the normal stresses in transverse direction y and z are zero. Adding the ij = 22

and ij = 33 components of Eqn. (2.57 ) yields,

e = µL
λL + µL

ε11 + 3λL + 2µL
λL + µL

αl∆T (2.59)

Plugging in Eqn.(2.58 ) yield,

σ11 = µL
3λL + 2µL
λL + µL

(ε11 − αl∆T ) (2.60)
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The proportional constant can be replaced by Young’s modulus, i.e. E = µ3ω+2µ
ω+µ , so the one

dimensional thermoelastic consititutive relation, with the subscript dropped, is written as:

σ = E(ε− αl∆T ) (2.61)

Equation (2.61 ) can be inserted into Eqn. (2.7 ) to reach the ii = 11 component of

momentum equations for solids:

ρ0
∂v

∂t
= E[∂ε

∂x
− αl

∂(∆T )
∂x

] (2.62)

Note that the nonlinear convective derivative is neglected agian with the same argument.

Considering the total temperature T (r, t) = T0 + T1(r, t), Eqn. (2.62 ) becomes:

ρ0
∂v

∂t
= E[∂ε

∂x
− αl

∂T1

∂x
] (2.63)

2.3.3 Heat Transfer Equation

Same as the heat transfer equation for fluids, the counterpart for solids is also derived

from first law of thermodynamics and entropy conservation. However the derivations are also

tedious, as the case in fluids. Therefore, in this section, only a few key steps are provided

as a hand-waving proof. The rigorous derivations can be found in classical thermoelasticity

textbooks [41 ]–[43 ] or seminal paper in thermodynamics of thermoelasticity like Biot (1956)

[49 ].

According to Biot, the entropy variation per unit mass is defined as:

s1 = cε
T1

T
+ 3λL + 2µL

ρ
αle (2.64)

where cε is the specific heat at constant strain per unit mass.

In classical thermoelasticity, the convective derivative of entropy is not considered because

in most of problems where thermoelasticity is involved, (1) a uniform mean temperature dis-

tribution is generally considered and (2) the heat transfer across the solid boundaries affects
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the system very little, which is analogous to the configuration of fk = 0 in thermoacoustics.

With the convective derivative neglected, Eqn. (2.11 ) is rewritten as:

ρT
∂s

∂t
= ∇ · k∇T − k

|∇T |2

T
+ ρT

∂sirrev

∂t
(2.65)

The last two terms are treated in the same fashion as in thermoacoustics; and the heat

equation with coupling term is eventually expressed as:

ρcε
∂T

∂t
+ T (3λL + 2µL)αl

∂e
∂t

= ∇ · k∇T (2.66)

Applying Eqn. (2.59 ), the second term of Eqn. (2.66 ) becomes

T (3λL + 2µL)∂e
∂t

= αlET
(
∂ε

∂t
+ 3λL + 2µL

µL
αl
∂∆T
∂t

)
(2.67)

Considering the total temperature T (t) = T0 + T1(t), Eqn. (2.66 ) becomes:

[
ρcε + α2

lE
3λL + 2µL

µL
T
]
∂T

∂t
+ αlET

∂ε

∂t
= ∇ · k∇T (2.68)

For most of solid materials, especially metallic materials analyzed in this thesis, the second

term in the bracket (∼ 103[J/m3 K]) is much smaller than the first term (∼ 106[J/m3 K]).

With that term neglected and linearizing the equation yields:

ρ0cε
∂T1

∂t
+ αlET0

∂ε

∂t
= ∇ · k∇T1 (2.69)

Equations (2.63 ) and (2.69 ) are the two fundamental coupled equations governing the lon-

gitudinal dynamics of a slender rod.

2.4 Concluding Remarks

This chapter reviews the derivation of Rott’s linear thermoacoustic theory from conser-

vation laws and the thermodynamics of ideal gas. The assumptions adopted by Rott are
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revisited to justify the associated simplifications. Rott’s linear governing equations are re-

vealed, which not only improve the qualitative understanding of thermoacoustic processes,

but also enable the quantitative calculations, especially if the equations are recast in the

form of an eigenvalue problem. Theory of thermoelasticity is also revisited because the main

structure of SSTA theory is born out of thermoelastic theory.

In short, the review of fundamental theories conducted in this chapter lays the foundation

for the development of SSTA theory and all the analyses throughout this thesis.
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3. SOLID-STATE THERMOACOUSTICS THEORY

3.1 Introduction

The fundamental understanding of Rott’s thermoacoustic theory and thermoelasticity

theory provides the foundation for the development of the theory of solid-state thermoa-

coustics. This theory allows quantitatively predicting the unstable motion in solid media as

a result of thermo-elastic/acoustic coupling.

Different from thermoacoustic waves in fluids, the thermoacoustic waves in solids can

sustain multiple modes. This is a characterisitc inhereted by the well-known wave polariza-

tion of solids. For slender structures, the main emphasis of this thesis, attention is taken

to the axial-mode and flexural-mode thermoacoustic waves. In particular, the axial-mode

TA waves in solid rods resemble the TA waves in fluids, in that the direction of wave prop-

agation is parallel to the direction of particle oscillation. However, the flexural-mode TA

wave is unique to solids, where the direction of particle displacement is perpendicular to the

direction of wave propagation.

In this chapter, the theory of axial-mode solid-state thermoacoustics is derived based

on the conservation laws of solids, where as the derivation for flexural-mode solid-state

thermoacoustics originates from Euler-Bernoulli beam assumptions.

3.2 Axial-Mode Solid-State Thermoacoustics (A-SSTA)

Inspired by Rott’s theory, the linear theory of axial-mode solid-state thermoacoustics is

established in this section, which serves as the theoretical foundation for all relevant results

and analyses that will be demonstrated in Chapters 4 and 5 .

3.2.1 Assumptions

Other than the general assumptions adopted by thermoelasticity, which are mentioned

above, the following assumptions are also important to achieve the final governing equations

of A-SSTAs:

1. Linear approximation: Terms higher than or equal to second order are neglected.
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2. The structure should have a large axial-to-transverse aspect ratio so that the 1D ap-

proximation is acceptable.

3. The wavelength is much greater than the boundary layer size. This condition is easily

met in 1D systems, but it allows to drop the axial diffusion term in heat equation,

which greatly simplifies the modeling.

4. The mean temperature T0 is only a function of axial coordinate, i.e. T0 = T0(x) .

5. The displacement and velocity are assumed to be constant across the transverse direc-

tion, while the temperature fluctuation T1 does have full dependence on 3D coordinates.

i.e. u = u(x), v = v(x) and T1 = T1(x, y, z). Note that in fluid-based thermoacoustics,

the velocity varies in the cross-section, due to the wall shear effects. However, in solids,

it’s the Poisson effect that happens in the transverse direction which does not deform

the cross-sectional distribution of axial displacement. However, no viscosity in solids

does not mean zero dissipation. The dissipative mechanism in solids are more complex.

Its effects are discussed in the following chapters.

With the above approximations, the governing equations of 1D A-SSTA are derived based

on thermoelasticiy equations.

3.2.2 Momentum and Heat Equations

The momentum equation (Eqn. (2.63 )) is re-written in terms of displacement:

ρ0
∂2u

∂2t
= E

[
∂2u

∂2x
− αl

∂T1

∂x

]
(3.1)

To capture the heat transport due to the mutual effect of wall heat transfer and axial

motion, the convective derivatives are included in the temperature derivative. The axial

thermal conduction is neglected, which is justified by Assumption 3 . Equation (2.69 ) then

becomes:

ρ0cε

(
∂T1

∂t
+ v

dT0

dx

)
+ αlET0

∂ε

∂t
= k

(
∂2T1

∂2y
+ ∂2T1

∂2z

)
(3.2)
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3.2.3 A-SSTA Equations: An Eigenvalue Problem

Under harmonic assumptions Y1(r, t) = Ŷ(r)eiωt, where Y1 and Ŷ are a dummy fluctu-

ating variable in time and Fourier domain, Eqns. (3.1 ) and (3.2 ) can be converted into:

− ω2ρ0û = E
[
∂2û

∂2x
− αl

∂T̂

∂x

]
(3.3)

ρ0cε

(
iωT̂ + v̂

dT0

dx

)
+ αlET0

∂v̂

∂x
= k

(
∂2T̂

∂2y
+ ∂2T̂

∂2z

)
(3.4)

The relation ∂ε/∂t = ∂v/∂x is used. Note that as the case in fluid-based thermoacoustics,

the frequency ω can be complex valued. To transform the above equations into an eigenvalue

problem, an intermediate relation v = ∂u/∂t is used, which yields:

iωû = v̂ (3.5)

iωv̂ = E

ρ0

(
d2û

dx2 − αl
dT̂

dx

)
(3.6)

iωT̂ = −dT0

dx
v̂ − γGT0

dv̂

dx
+ κ

(
∂2T̂

∂2y
+ ∂2T̂

∂2z

)
(3.7)

where γG = (αlE)/(ρ0cε) is Grüneisen constant, κ = k/(ρ0cε) is thermal diffusivity.

Inspired by Rott’s theory, cross-sectional averaging is applied to Eqns. (3.6 ) and (3.7 ),

yielding

iωv̂ = E

ρ0

(
d2û

dx2 − αl
d〈T̂ 〉
dx

)
(3.8)

iω〈T̂ 〉 = −dT0

dx
v̂ − γGT0

dv̂

dx
+ iωgk〈T̂ 〉 (3.9)

Similarly, gk is also a complex function denoting the strength of transverse heat transfer. It

varies with different rod cross-sectional geometry. Through this thesis, the rod is assumed

to be a cylindrical one. The expression of the corresponding gk is derived in the following.
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For a circular cross-section rod, Eqn. 3.7 becomes:

iωT̂ = −dT0

dx
v̂ − γGT0

dv̂

dx
+ κ

1
r

∂

∂r

(
r
∂T̂

∂r

)
(3.10)

where r is the radial coordinate.

In order to find a solution to the energy equation, a coordinate transformation is per-

formed:

ξ =
√

−2i r
δk

(3.11)

where the thermal penetration thickness δk is defined as:

δk =
√

2κ
ω
. (3.12)

The energy equation in the transformed coordinate becomes:

ξ2∂
2T̃

∂ξ2 + ξ
∂T̃

∂ξ
+ ξ2T̃ = 0 (3.13)

where

T̃ = − T̂

[û(dT0/dx) + γGT0(dû/dx)] − 1 (3.14)

The general solution to Eqn. (3.13 ) is:

T̃ (ξ) = AJ0(ξ) + BY0(ξ) (3.15)

where A and B are constants of integration determined by imposing the boundary conditions,

J0(·) and Y0(·) are Bessel functions of the first and second kind, respectively. On the axis

of the rod, the temperature fluctuation is bounded, and considering that Y0(0) = ∞ then it

must be B = 0. At the boundaries, the isothermal boundary condition enforces T̂ (R) = 0,
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so T̃ (ξtop) = −1, where ξtop =
√

−2i(R/δk). Substituting the constants in Eqn. (3.15 ), we

find T̃ = −J0(ξ)/J0(ξtop). It follows that:

T̂ = −
(
û
dT0

dx
+ γGT0

dû

dx

)(
1 − J0(ξ)

J0(ξtop)

)
(3.16)

By averaging Eqns. (3.16 ) over the cross section and substituting into Eqn. (3.10 ) and

comparing to Eqn. (3.9 ), the complex thermo-conductive function gk is expressed as

gk =
[
1 − 1

2ξtop
J0(ξtop)
J1(ξtop)

]−1
(3.17)

gk for other cross-section geometry can also be derived following the similar fashion.

With the gk function well defined, Eqns. (3.5 ), (3.6 ) and (3.9 ) form a complete eigenvalue

problem with eigenvalue iω and eigenfunctions [û, v̂, 〈T̂ 〉]T. These three equations can be

further combined to arrive a second-order ODE with respect to û by canceling other two

variables. The A-SSTA wave equation is written as:

[
1 + αlγG

1 − gk
T0

]
d2û

dx2 + αl(1 + γG)
1 − gk

dT0

dx

dû

dx
+ ω2û = 0 (3.18)

In practice, Eqns. (3.5 ), (3.8 ) and (3.9 ) are solved separately in numerical calculations.

However, Eqn. (3.18 ) is also analytically solvable under certain circumstances, thanks to the

insensitivity of solid material properties to temperature, which allows all the coefficients to

be extracted from the spatial derivatives. A nondimensional form of Eqn. (3.18 ) is proposed

in Chapter 5 . The variable û can be written as an analytical infinite series. The solutions,

although not amenable to closed form, provide valuable information on the form of mode

shapes, and lay the foundation for the dimensionless parametric study.

3.3 Flexural-Mode Solid-State Thermoacoustics (F-SSTA)

The unstable flexural motion considered in this study is subject to a thin layer Euler-

Bernoulli beam. The slender beam’s transverse oscillation is within long wavelength limit,

so the displacement over the cross section is assumed to be uniform.

64



An infinitesimal element in the beam of arbitrary cross section geometry satisfies force

balance in the transverse direction, i.e.:

ρA
∂2v

∂t2
= ∂Q

∂x
(3.19)

where A is total area of beam cross section, v is transverse displacement, ρ is effective density,

expressed as:

ρ =
∫
A ρldA∫
A dA

(3.20)

ρl is the local density at an arbitrary point on the cross section. Q is shear force:

Q = ∂M

∂x
(3.21)

which is related to moment M by:

M =
∫
σydA (3.22)

where σ is axial stress defined as:

σ = E(ε− αlT ) (3.23)

The strain in thin beams is expressed as:

ε = −y ∂
2v

∂x2 (3.24)

Hence, the stress-strain relation and the heat transfer equation in this case are written as:

σ = E
(

− y
∂2v

∂x2 − αlT
)

(3.25)

ρ0cε

(
∂T

∂t

)
− αlET0y

∂3v

∂x2∂t
= k

(
∂2T

∂2x
+ ∂2T

∂2y
+ ∂2T

∂2z

)
(3.26)

65



Equations (3.20 ) and (3.26 ) are the simplest form for an Euler-Bernoulli beam without

specification of the cross-section geometry. In Chapter 6 , a bimetallic beam is considered,

where further simplification of equations is conducted. With proper application of thermal

coupling, the bimetallic beam can become unstable. This thermally-induced flexural-mode

instability of a bilayer beam is called flexural-mode solid-state thermoacoustics in this study.

3.4 Concluding Remarks

Based on Rott’s thermoacoustic theory and theory of thermal elasticity, the mathemati-

cal formulation of both axial-mode and flexural-mode thermoacoustics is proposed. In axial-

mode solid-state thermoacoustics, the convective derivative of temperature in heat equation

is retained to capture the transverse heat transfer happening in the region with temperature

gradient. The governing equations can be formulated either as an eigenvalue problem for

easier numerical calculation or as a second-order ODE with respect to particle displacement

to pursue analytical solutions. Governing equations of flexural-mode solid-state thermoa-

coustics are also derived in the last part of this chapter.

In short, the derivation of theories conducted in this chapter lays the theoretical founda-

tion for all the analyses throughout this thesis.
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4. NUMERICAL STUDY OF A-SSTA

4.1 Introduction

With the theory of A-SSTA established in Chapter 3 , numerical evidence of the existence

of this phenomenon in solid media is provided in this chapter. In particular, we show that

a solid metal rod, with finitely straight or infinitely looped topology, subject to a prescribed

temperature gradient on its outer boundary can undergo self-sustained vibrations driven

by a thermoacoustic instability phenomenon. Besides, it is anticipated that, although the

fundamental physical mechanism resembles the thermoacoustic of fluids, the different nature

of sound and heat propagation in solids produces noticeable differences in the theoretical

formulations and in the practical implementations of the phenomenon.

4.2 A-SSTA in a Fixed-Mass Rod Device

The fundamental system under investigation consists of a slender solid metal rod with

circular cross section (Fig. 4.1 ). The rod is subject to a temperature (spatial) gradient

applied on its outer surface at a prescribed location, while the remaining sections have

adiabatic boundary conditions. We investigate the coupled thermoacoustic response that

ensues as a result of an externally applied thermal gradient and of an initial mechanical

perturbation of the rod.

We anticipate that the fundamental dynamic response of the rod is governed by the laws

of thermoelasticity. According to classical thermoelasticity [41 ]–[43 ], an elastic wave travel-

ing through a solid medium is accompanied by a thermal wave, and viceversa. The thermal

wave follows from the thermoelastic coupling which produces local temperature fluctuations

(around an average constant temperature T0) as a result of a propagating stress wave. When

the elastic wave is not actively sustained by an external mechanical source, it attenuates and

disappears over a few wavelengths due to the presence of dissipative mechanisms (such as,

material damping); in this case the system has a positive decay rate (or, equivalently, a

negative growth rate). In the ideal case of an undamped thermoelastic system, the mechan-

ical wave does not attenuate but, nevertheless, it maintains bounded amplitude. In such
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Figure 4.1. (a) Notional schematic of the system exhibiting thermoacous-
tic response. An aluminum rod with circular cross-section under fixed-free
boundary conditions. The free end carries a concentrated mass used to tune
the frequency of the longitudinal resonance and the corresponding wavelength.
A section of the rod is surrounded by a large thermal inertia (represented by
a highly-thermally-conductive solid) on which a heater and a cooler are con-
nected in order to create a predefined thermal gradient; this component is
referred to as a stage. The stage is the equivalent of the stack in classical ther-
moacoustic setups. The ideal interface between the stage and the rod should
be isothermal and capable of negligible shear force (see inset). Heat insulating
material (not showed) is assumed to be placed around the rod to reduce ra-
diative heat losses and therefore approximate adiabatic boundary conditions.
(b) (top) idealized reference temperature profile T0(x) produced along the rod,
and (bottom) schematic of an axi-symmetric cross section of the rod showing
the characteristic geometric parameters and the correspondence to the tem-
perature profile. Three relevant segments are identified: 1) S-segment, 2) hot
segment, 3) cold segment. These three segments correspond to the isothermal
and the two adiabatic boundary conditions, respectively.

situation, the total energy of the system is conserved (energy is continuously exchanged be-

tween the thermal and mechanical waves) and the stress wave exhibits a zero decay rate (or,

equivalently, a zero growth rate).

Contrarily to the classical thermoelastic problem where the medium is at a uniform ref-

erence temperature T0 with an adiabatic outer boundary, when the rod is subject to heat

transfer through its boundary (i.e. non-adiabatic conditions) the thermoelastic response can

68



become unstable. In particular, when a proper temperature spatial gradient is enforced on

the outer boundary of the rod then the initial mechanical perturbation can grow unbounded

due to the coupling between the mechanical and the thermal response. This last case is the

exact counterpart that leads to thermoacoustic response in fluids, and it is the specific con-

dition analyzed in this study. For the sake of clarity, we will refer to this case, which admits

unstable solutions, as the thermoacoustic response of the solid (in order to differentiate it

from the classical thermoelastic response).

4.2.1 Linear Stability Analysis

Equations (3.5 ), (3.6 ) and (3.7 ) form an eigenvalue problem. However, to perform linear

stability analysis, we assume the eigenvalue as a complex-valued quantity, iΛ = β + iω to

capture both the real angular frequency and the growth rate, while the frequency-dependent

coefficient iωgk(x) is kept as a function of only the real part of the complex frequency,

considering the fact that β/ω � 1. In this regard, Equations (3.5 ), (3.6 ) and (3.7 ) are

rewritten as:

iΛû = v̂ (4.1)

iΛv̂ = E

ρ

(
d2û

dx2 − αl
d〈T̂ 〉
dx

)
(4.2)

iΛ〈T̂ 〉 = −dT0

dx
v̂ − γGT0

dv̂

dx
+ iωgk(x)〈T̂ 〉 (4.3)

Note that the complex function gk(x) is only non-zero, expressed in Eqn. (3.17 ), in the

S-segment where the transverse heat transfer happens. It is zero elsewhere.

The one-dimensional model was used to perform a stability eigenvalue analysis. The

eigenvalue problem is given by (iΛI − A)y = 0 where I is the identity matrix, A is a matrix

of coefficients, 0 is the null vector, and y = [û; v̂; 〈T̂〉] is the vector of state variables where

û, v̂, and 〈T̂〉 are the particle displacement, particle velocity, and cross-sectionally averaged

temperature fluctuation eigenfunctions.

The eigenvalue problem was solved numerically for the case of an aluminum rod hav-

ing a length of L = 1.8m and a radius R = 2.38mm. The following material parameters
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were used: density ρ = 2700kg/m3, Young’s modulus E = 70GPa, thermal conductivity

κ = 238W/(m· K), specific heat at constant strain cε = 900J/(kg· K), and thermal expan-

sion coefficient α = 23 × 10(−6)K−1. The strength of the instability in classical thermoa-

coustics (often quantified in terms of the ratio β/ω) depends, among the many parameters,

on the location of the thermal gradient. This location is also function of the wavelength

of the acoustic mode that triggers the instability, and therefore of the specific (mechanical)

boundary conditions. We studied two different cases: 1) fixed-free and 2) fixed-mass. In

the fixed-free boundary condition case, the optimal location of the stage was approximately

around 1/2 of the total length of the rod, which is consistent with the design guidelines

from classical thermoacoustics. Considerations on the optimal design and location of the

stage/stack will be addressed in the following section; at this point we assumed a stage

located at x = 0.5L with a total length of 0.05L.

Assuming a mean temperature profile equal to Th = 493.15K in the hot part and to

Tc = 293.15K in the cold part, the 1D theory returned the fundamental eigenvalue to be

iΛ = 0.404 + i4478(rad/s). The existence of a positive real component of the eigenvalue

revealed that the system was unstable and self-amplifying, that is it could undergo growing

oscillations as a result of the positive growth rate β. The growth ratio was found to be

β/ω = 9.0 × 10−5.

Equivalently, we analyzed the second case with fixed-mass boundary conditions. In this

case, a 2kg tip mass was attached to the free end with the intent of tuning the resonance

frequency of the rod and increasing the growth ratio β/ω which controls the rate of ampli-

fication of the system oscillations. An additional advantage of this configuration is that the

operating wavelength increases. To analyze this specific boundary condition configuration,

we chose xh = 0.9L and xc −xh = 0.05L. The stability analysis returned the first eigenvalue

as iΛ = 0.210 + i585.5(rad/s) resulting in a growth ratio β/ω = 3.6 × 10−4, larger than the

fixed-free case.

The above results from the quasi-1D thermoacoustic theory provided a first important

conclusion of this chapter, that is confirming the existence of thermoacoustic instabilities in

solids as well as their conceptual affinity with the analogous phenomenon in fluids.
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To get a deeper physical insight into this phenomenon, we studied the themodynamic

cycle of a particle located in the S-region. The mechanical work transfer rate or, equivalently,

the volume-change work per unit volume may be defined as ẇ = −σ ∂ε
∂t

[50 ], where σ and

ε are the total axial stress (i.e. including both mechanical and thermal components) and

strain, respectively. During one acoustic/elastic cycle, the time averaged work transfer rate

per unit volume is 〈ẇ〉 = 1
τ

∫ τ
0 (−σ)∂ε

∂t
dt = 1

τ

∫ τ
0 (−σ)dε = 1

τ

∫ τ
0 σ̄dε, where τ is the period of a

cycle, and σ̄ = (−σ). Figure 4.2 a shows the σ̄-ε diagram where the area enclosed in the curve

represents the work per unit volume done by the infinitesimal volume element in one cycle.

All the particles located in the regions outside the S-segment do not do net work because the

temperature fluctuation T ′ is in phase with the strain ε, which ultimately keeps the stress

and strain in phase (thus, the area enclosed is zero). Figure 4.2 b shows the time-averaged

work 〈ẇ〉 = 1
2Re[ˆ̄σ(iωε̂)∗] along the rod, where ()∗ denotes the complex conjugate. Note that

the rate of work 〈ẇ〉 was evaluated based on modal stresses and strains, therefore its value

must be interpreted on an arbitrary scale. The large increase of 〈ẇ〉 at the stage location

indicates that a non-zero net work is only done in the section where the temperature gradient

is applied (and therefore where heat transfer through the boundary takes place).

Figure 4.2 c shows a schematic representation of the thermo-mechanical process taking

place over an entire vibration cycle. When the infinitesimal volume element is compressed,

it is displaced along the x direction while its temperature increases (step 1). As the element

reaches a new location, heat transfer takes place between the element and its environment.

Assuming that in this new position the element temperature is lower than the surrounding

temperature, then the environment provides heat to the element causing its expansion. In

this case, the element does net work dW (step 2) due to volume change. Similarly, when

the element expands (step 3), the process repeats analogously with the element moving

backwards towards the opposite extreme where it encounters surrounding areas at lower

temperature so that heat is now extracted from the particle (and provided to the stage). In

this case, work dW ′ is done on the element due to its contraction (step 4). The net work

generated during one cycle is dW − dW ′.
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4.2.2 Time-Dependent Analysis

In order to validate the quasi-1D theory and to estimate the possible impact of three-

dimensional and nonlinear effects, we solved the full set of thermoelasticity governing equa-

tions in the time domain. The equations were solved by finite element method on a three-

dimensional geometry using the commercial software COMSOL Multiphysics. We highlight

that with respect to the momentume equation, we drop the nonlinear convective derivative

vi
∂vi
∂xi

which effectively results in the linearization of the momentum equation. Full nonlinear

terms are instead retained in the energy equation.

To facilitate the COMSOL analysis, given the largely disparate time scales involved in the

wave propagation and heat diffusion processes, we first solved a static problem to calculate

the elastic deformation induced by the thermal boundary conditions and to achieve the steady

state mean temperature distribution inside the rod. These elastic and thermal equilibrium

states where imposed as initial conditions when solving the time-dependent response. In

order to reduce the effect of the initial transient we also included in the initial conditions the

particle displacement field associated with the eigenfunction at the given excitation frequency

(and obtained from the quasi-1D eigenvalue analysis). The linear temperature profile T0 was

imposed as an isothermal boundary condition on the outer surface of the rod.

Figure 4.2 d shows the time history of the axial displacement fluctuation u at the free end

of the rod. The dominant frequency of the oscillation is found, by Fourier transform, to be

equal to ω = 583.1(rad/s), which is within 0.4% from the prediction of the 1D theory. The

time response is evidently growing in time therefore showing clear signs of instability. The

growth rate was estimated by either a logarithmic increment approach or an exponential fit

on the envelope of the response. The logarithmic increment approach returns β as:

β = 1
N − 1

N∑
i=2

lnAi

A1
/(ti − t1) (4.4)

where A1 and Ai are the amplitudes of the response at the time instant t1 and ti, and where

t1 and ti are the start time and the time after (i − 1) periods. Both approaches return

β = 0.212(rad/s). This value is found to be within 1% accuracy from the value obtained via
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Figure 4.2. (a) Schematic of the thermodynamic cycle of a Lagrangian particle
in the S-segment during an acoustic/elastic cycle (see also the supplementary
material of [51 ]). (b) The time averaged volume-change work 〈ẇ〉 (presented
in arbitrary scale and units) along the length of the rod showing that the net
work is generated in the stage. (c) Schematic view showing the evolution of
an infinitesimal volume element during the different phases of the thermody-
namic cycle (a). For simplicity, the cycle is divided in two reversible adiabatic
steps and two irreversible constant-stress steps. ()′

p indicates the peak value
of the corresponding fluctuating variables. (d) Time history of the axial dis-
placement fluctuation at the end of the rod for the fixed-mass configuration.
‘Red –’: Response, ‘Blue •’: Peak values, ‘Black –’: Exponential fit. (e) Table
presenting a comparison of the results between the quasi-1D theory and the
numerical FE 3D model.
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the quasi-1D stability analysis, therefore confirming the validity of the 1D theory and of the

corresponding simplifying assumptions.

4.2.3 Considerations on Structural Damping

An important factor for the thermoacoustic amplification in solids is the energy dis-

sipation of the system. This is probably the element that differentiates more clearly the

thermoacoustic process in the two media.

The mechanism of energy dissipation in solids, typically referred to as damping, is quite

different from that occurring in fluids. Although in both media damping is a macroscopic

manifestation of non-conservative particle interactions, in solids their effect can dominate

the dynamic response. Considering that the thermoacoustic instability is driven by the first

axial mode of vibration, some insight in the effect of damping in solids can be obtained by

mapping the response of the rod to a classical viscously damped oscillator. The harmonic

response of an underdamped oscillator is of the general form x(t) = AeiΛDt, where iΛD is the

system eigenvalue given by iΛD = −ζω0 + i
√

1 − ζ2ω0, where ω0 is the undamped angular

frequency, and ζ is the damping ratio. The damping contributes to the negative real part

of the system eigenvalue, therefore effectively counteracting the thermoacoustic growth rate

(which, as shown above, requires a positive real part). In order to obtain a net growth rate,

the thermally induced growth (i.e. the thermoacoustic effect) must always exceed the decay

produced by the material damping. Mathematically, this condition translates into the ratio
β
ω
> ζ.

For metals, the damping ratio ζ is generally very small (on the order of 1% for aluminum

[52 ]). By accounting for the damping term in the above simulations, we observe that the

undamped growth ratio β
ω
becomes one or two orders of magnitude lower than the damping

ratio ζ. Therefore, despite the relatively low intrinsic damping of the material the growth is

effectively impeded.

Considering that dissipative forces exist also in fluids, then a logical question is why their

effect is so relevant in solids to be able to prevent the thermoacoustic growth? Our analyses

have highlighted two main contributing factors:
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1. In fluids, the dissipation is dominated by viscous losses localized near the boundaries.

This means that while particles located close to the boundaries experience energy

dissipation, those in the bulk can be practically considered loss-free. Under these con-

ditions, even weak pressure oscillations in the bulk can be sustained and amplified. In

solids, structural damping is independent of the spatial location of the particles (in

fact it depends on the local strain). Therefore, the bulk can still experience large dissi-

pation. In other terms, even considering an equivalent dissipation coefficient between

the two media, the solid would always produce a higher energy dissipation per unit

volume.

2. The net work during a thermodynamic cycle in fluids is done by thermal expansion

at high pressure (or stress, in the case of solids) and compression at low pressure [1 ].

Thermal deformation in fluids and solids can occur on largely disparate spatial scales.

This behavior mostly reflects the difference in the material parameters involved in

the constitutive laws with particular regard to the Young’s modulus and the thermal

expansion coefficient. In general terms, a solid exhibits a lower sensitivity to thermal-

induced deformations which ultimately limits the net work produced during each cycle,

therefore directly affecting the growth rate of the system.

In principle, we could act on both the above mentioned factors in order to get a strong ther-

moacoustic instability in solids. Nevertheless, damping is an inherent attribute of materials

and it is more difficult to control. Therefore, unless we considered engineered materials able

to offer highly controllable material properties, pursuing approaches targeted to reducing

damping appears less promising. On the other hand, we choose to explore an approach that

targets directly the net work produced during the cycle.

4.2.4 Multi-stage Configuration

In the previous section, we indicated that thermoacoustics in solids is more sensitive to

dissipative mechanisms because of the lower net work produced in one cycle.

In order to address directly this aspect, we conceived a multiple stage (here below re-

ferred to as multi-stage) configuration targeted to increase the total work per cycle. As the
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name itself suggests, this approach simply uses a series of stages uniformly distributed along

the rod. The separation distance between two consecutive stages must be small enough,

compared to the fundamental wavelength of the standing mode, in order to not alter the

phase lag between the temperature and velocity fields.

We tested this design by numerical simulations using thirty stage elements located on

the rod section [0.1 ∼ 0.9]L, with Th = 543.15K and Tc = 293.15K (Fig. 4.3 a). The

resulting mean temperature distribution T0(x) was a periodic sawtooth-like profile with a

total temperature difference per stage ∆T = 250K. Note that, in the quasi-1D theory, in

order to account for the finite length of each stage and for the corresponding axial heat

transfer between the stage and the rod we tailored the gradient according to an exponential

decay. In the full 3D numerical model, the exact heat transfer problem is taken into account

with no assumptions on the form of the gradient. We anticipate that this gradient has no

practical effect on the instability, therefore the assumption made in the quasi-1D theory has

a minor relevance. A tip mass M = 0.353kg was used to reduce the resonance frequency and

increase the wavelength so to minimize the effect of the discontinuities between the stages.

The stability analysis performed according to the quasi-1D theory returned the funda-

mental eigenvalue as iΛu = 8.15 + i598.6(rad/s) without considering damping, and iΛd =

2.27 + i598.7(rad/s) with 1% damping. Figure 4.3 (a.2) shows the time averaged mechanical

work 〈ẇ〉 along the rod. The elements in each stage do net work in each cycle. Although the

segments between stages are reactive (because the non-uniform T0 still perturbs the phase),

their small size does not alter the overall trend. The positive growth rate obtained on the

damped system shows that thermoacoustic oscillations can be successfully obtained in a

damped solid if a multi-stage configuration is used.

Full 3D simulations were also performed to validate the multi-stage response. In the

damped model, Rayleigh damping ζ = 0.5(αR

ω
+ βRω) was used, where αR and βR are

Rayleign parameters, ζ and ω are the damping ratio and angular frequency respectively.

The parameters were determined by matching ζ = 0.01 at the natural frequency (i.e. αR =

3.3344×10−5(rad/s), βR = 3.3344×10−5(s/rad) for ω = 598(rad/s)). Figures 4.3 b and 4.3 c

show the time response of the axial displacement fluctuation at the mass-end for both the

undamped and the damped rods. The growth rates for the two cases are βu = 6.87(rad/s)
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Figure 4.3. (a) Schematic diagram of the multi-stage configuration. The two
insets show the mean temperature T0 profile along the axial direction x and
the time averaged volume-change work 〈ẇ〉 (arbitrary scale and unit) along
the rod. Time response at the moving end of a fixed-mass rod for the (b)
undamped and (c) 1% damped configurations.

(undamped) and βd = 1.28(rad/s) (damped). Contrarily to the single stage case, these

results are in larger error with respect to those provided by the 1D solver. In the multi-stage

configuration, the quasi-1D theory is still predictive but not as accurate. The reason for

this discrepancy can be attributed to the effect of axial heat conduction. For the single

stage configuration, the net axial heat flux κ∂
2T̂
∂x2 is mostly negligible other than at the

77



edges of the stage (see Fig. S4a). Neglecting this term in the 1D model does not result

in an appreciable error. On the contrary, in a multi-stage configuration the existence of

repeated interfaces where this term is non-negligible adds up to an appreciable effect (see

Fig. S4b). This consideration can be further substantiated by comparing the numerical

results for an undamped multi-stage rod produced by the 1D model and by the 3D model

in which axial conductivity is artificially impeded. These two models return a growth ratio

equal to β1D = 6.38(rad/s) and βκx=0
3D = 6.60(rad/s).

4.2.5 General Considerations on the Design of SSTA Devices and Applications

The present chapter confirmed from a theoretical and numerical standpoint the possibil-

ity of inducing thermoacoustic response in solids. The next logical step in the development

of this new branch of thermoacoustics consists in the design of an experiment capable of val-

idating the SS-TA effect and of quantifying the performance. The most significant challenge

that the authors envision consists in the ability to fabricate an efficient interface (stage-

medium) capable of high thermal conductivity and negligible shear force. In conventional

thermoacoustic systems, it is relatively simple to create a fluid/solid interface with high heat

capacity ratio which is a condition conducive to a strong TA response. In solids, the absolute

difference between the heat capacities of the constitutive elements (i.e. the stage and the

operating medium) is lower but still sufficient to support the TA response. To this regard,

we highlight two important factors in the design of an SS-TA device. First, the selection of

constitutive materials having large heat capacity ratio is an important design criterion to

facilitate the TA response. Second, the stage should have a sufficiently large volume com-

pared to the SS-TA operating medium (in the present case the aluminum rod) in order to

behave as an efficient thermal reservoir.

High thermal conductivity at the interface is also needed to approximate an effective

isothermal boundary condition while a zero-shear-force contact would be necessary to allow

the free vibration of the solid medium with respect to the stage. Such an interface could be

approximated by fabricating the stage out of a highly conductive medium (e.g. copper) and

using a thermally conductive silver paste as coupler between the stage and the solid rod.
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Unfortunately, this design tends to reduce the thermal transfer at the interface (compared

to the conductivity of copper) and therefore it would either reduce the efficiency or require

larger temperature gradients to drive the TA engine. Nonetheless, we believe that optimal

interface conditions could be achieved by engineering the material properties of the solid so

to obtain tailored thermo-mechanical characteristics.

Concerning the methodologies for energy extraction, the solid state design is particu-

larly well suited for piezoelectric energy conversion. Either ceramics or flexible piezoelectric

elements can be easily bonded on the solid element in order to perform energy extraction

and conversion. Compared to fluid-based TA systems, the SS-TA presents an important

advantage. In SS-TA the acoustic energy is already generated in the form of elastic energy

within the solid medium and it can be converted directly via the piezoelectric effect. On the

contrary, fluid-based systems require an additional intermediate conversion from acoustic to

mechanical energy that further limits the efficiency. It is also worth noting that, with the

advent of additive manufacturing, the SS-TA can enable an alternative energy extraction

approach if the host medium could be built by combining both active and passive materials

fully integrated in a single medium.

The author expect SS-TA to provide a viable technology for the design, as an exam-

ple, of engines and refrigerators for space applications[53 ], [54 ] (satellites, probes, orbiting

stations, etc.), energy extraction or cooling systems driven by hydro-geological sources, and

autonomous TA machines (e.g. the ARMY fridge[55 ]). Although this is a similar range of

application compared to fluid-based systems, it is envisioned that solid state thermoacoustics

would provide superior robustness and reliability while enabling ultra-compact devices. In

fact, solid materials will not be subject to mass or thermal losses that are instead important

sources of failure in classical thermoacoustic systems. In addition, the solid medium allows

a largely increased design space where structural and material properties can be engineered

for optimal performance and reduced dimensions.
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4.3 A-SSTA in Looped and Resonance Rods

Section 4.2 has theoretically demonstrated that the unstable thermo-mechanical energy

conversion process can occur with elastic waves in solid media.

This section provides two key contributions: 1) it extends the concept of solid-state ther-

moacoustics to traveling wave configurations, and 2) offers an in-depth analysis of the wave

energy budgets of SSTAs. In this section, we prove the existence of traveling thermoacoustic

waves in solid media based on the theoretical framework developed in the previous section.

We also show that the growth-rate-to-frequency ratio (shorten as growth ratio hereinafter) of

the traveling wave oscillations is considerably larger than that of a standing wave oscillation

of the same wavelength. Heat flux, mechanical power, and work source for theoretical solid-

state thermoacoustic (SSTA) engines are defined heuristically in light of their definitions in

fluids. The acoustic energy budgets are analyzed in detail to interpret the energy conversion

process in SSTA engines and to define the efficiencies of SSTA engines. Through the detailed

study and comparison of traveling and standing wave thermoacoustics, this paper expands

the theory of thermoacoustics of solids and may lead to implementations of new generations

of ultra-compact and robust SSTA devices capable of direct thermal-to-mechanical energy

conversion.

4.3.1 Looped and Resonance Rods: Traveling- and Standing-Wave A-SSTA

In this section, we consider two configurations (Fig. 4.4 ) in which a ring-shaped slender

metal rod with circular cross section is under investigation. Specifically, they are called the

looped rod (Fig. 4.4 (a) and (c)) and the resonance rod (Fig. 4.4 (b) and (d)). The rod expe-

riences an externally imposed axial thermal gradient applied via isothermal conditions on its

outer surface at a certain location, while the remaining exposed surfaces are adiabatic. The

difference between the two configurations lies in the imposition of a displacement/velocity

node (Fig. 4.4 (d)), which is used in the resonance rod to suppress the traveling wave mode.

Practically, the displacement node could be realized by constraining the rod with a clamp

at a proper location (Fig. 4.4 (b)). The coupled thermoacoustic response induced by the

external thermal gradient and the initial mechanical excitation is investigated.
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Figure 4.4. Notional schematics of (a) the looped rod and (b) the resonance
rod. A component with a large thermal inertia, stage, connected to a heater
and a cooler on opposite ends, is mounted on the outer surface of the rod to
sustain a linear thermal gradient. In (a), a secondary cold heat exchanger
(SHX) is attached to the rod creating the Thermal Buffer Segment (TBS,
shown in (c)). In (b), a clamp is used to apply the displacement node (abbre-
viated as Disp. Node in (d)), which is necessary to suppress the traveling wave
mode. (c) and (d) show the temperature profile T0(x) in the S-seg. (solid line,
Ts(x)), and in the remaining sections (dashed line), and the characteristic ge-
ometric parameters. Th and Tc are the hot and cold temperatures respectively.
The stage is ls = 0.05L long centered about x = xs (irrelevant for the looped
design). The SHX is mounted at xb (lb = 0.45L away from the stage). The
optimal location of the stage’s midpoint xs for the full-wavelength standing
wave is xs = 0.845L.

The initial mechanical excitation could grow with time as a result of the coupling between

the mechanical and thermal response provided a sufficient temperature gradient is imposed

on the outer boundary of a solid rod at a proper location. This phenomenon is identified as

the thermoacoustic response of solids in [51 ].
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By analogy with fluid-based traveling wave thermoacoustic engines [1 ], [8 ], a stage element

is used to impose a thermal gradient on the surface of the looped rod (Fig. 4.4 (a)). The

specific location of the stage element in this case is irrelevant due to the periodicity of the

system. The segment surrounded by the stage is named S-segment, which experiences a

spatial temperature gradient (from Tc to Th) due to the externally enforced temperature

distribution. The interface between the stage and the S-segment is ideally assumed to have

a high thermal conductivity, which assures the isothermal boundary conditions along with

a zero shear stiffness. One can anticipate the compromise between these two seemingly

contradictory conditions in an experimental validation. The stage is considered as a thermal

reservoir so that the temperature fluctuation on the surface of S-segment is assumed to be

zero (isothermal). A Thermal Buffer Segment (TBS) next to the thermal gradient provides

a thermal buffer between Th and room temperature Tc. The temperature drop in the TBS

is caused by the secondary cold heat exchanger (SHX, Fig. 4.4 (a)) located at xb. A linear

temperature profile in the TBS from Th to Tc is adopted to account for the natural axial

thermal conduction along the looped rod.

To show the superiority of traveling wave thermoacoustics, a fair comparison was con-

ducted with a resonance rod. The resonance rod, as Fig. 4.4 (d) shows, was constructed by

enforcing a displacement/velocity node at an arbitrary position labeled x = 0. This node is

equivalent to a fixed and adiabatic boundary condition. If only plane wave propagation is

considered, this resonance rod has no difference with a straight rod with both ends clamped.

The TBS is not necessary in the resonance rod since the temperature can be discontinu-

ous at the displacement node. To make a comparison, we calculated the growth ratio of a

standing wave mode in the resonance rod with the same wavelength (λ = L) and frequency

(≈ 2830Hz) as the traveling wave mode in the looped rod without the displacement node. We

highlight the essential difference of the mode numbering in Fig. 4.5 and propose a naming

convention for the modes for brevity. The modes in comparison in this section are Loop− I

and Res− II (the shaded blocks).

With the boundary conditions well defined, the governing equations, i.e.: Eqns. (4.1 ),

(4.2 ) and (4.3 ) can be solved to show the transient thermoacoustical response of the system.
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Figure 4.5. The mode shapes of the looped and the resonance rod and the
naming convention for modes. Note that same mode numbers correspond to
different wavelengths. Especially, the looped rod starts with a full-wavelength
mode as its first mode while a resonance rod starts with a half-wavelength one.
To make a comparison based on the same wavelength, Loop− I and Res− II
represent our contrast group (the shaded blocks).

4.3.2 Stability Analysis and Mode Shifting

We solved the eigenvalue problem numerically for both cases of a L = 1.8m long alu-

minum rod, being the looped or the resonance rod, under a 200K temperature difference

(Th = 493.15K and Tc = 293.15K) with a 0.05L long stage to investigate the thermoacoustic

response of the system. The material properties of aluminum are chosen as: Young’s modu-

lus E = 70GPa, density ρ = 2700kg/m3, thermal expansion coefficient α = 23 × 10(−6)K−1,

thermal conductivity κ = 238W/(m·K) and specific heat at constant strain cε = 900J/(kg·K).

The first traveling wave mode in the looped rod, with a full wavelength (λ = L) is

considered, and will be referred to as Loop − I, following the naming convention of modes

shown in Fig. 4.5 . The dimensionless growth ratio β/ω is used as a metric of the SSTA

engine’s ability to convert heat into mechanical energy; such normalization accounts for the

fact that thermoacoustic engines operating at high frequencies naturally exhibit high growth

rates [27 ] and vice versa. Besides, in solids the inherent structural damping is commonly

expressed as a fraction of the frequency of the oscillations, i.e. the damping ratio; the latter

is widely used to quantify the frequency-dependent loss/dissipative effect in solids. The

optimal growth ratio was found by gradually varying the radius R of the looped rod. We
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used the dimensionless radius R/δk to represent the effect of geometry, where δk was assumed

to be constant at the operating frequency f = c
λ

≈
√
E/ρ

L
= 2830Hz. The ‘Loop− I’ curve in

Fig. 4.6 shows the growth ratio β/ω vs. the dimensionless radius R/δk of a full-wavelength

traveling wave mode. The frequency variation with radius is neglected. Positive growth

ratios are obtained in the absence of losses, and the losses in solids are mainly induced by

intrinsic structural damping. The positive growth ratio suggests that the undamped system

is capable of sustaining and amplifying the propagation of a traveling wave. It is noteworthy

that in fluid-based thermoacoustic devices, the thermal buffer tube (TBT), whose companion

component in solids is the TBS (Fig. 4.4 ), acts as a wave scatterer due to the temperature

dependence of sound speed of the fluid media. [56 ] The speed of sound in solids is expressed

as c =
√
E/ρ for longitudinal waves, and has a negligible dependency on temperatures; as

such, the TBS is not expected to yield wave scattering effect. However, the length of the

TBS ls does affect the growth ratio of the traveling wave mode in solid-state thermoacoustic

devices; in particular, ls = 0.45L achieves the optimal growth ratio for the setup analyzed

herein. A plot of growth ratio β/ω vs. nondimensional TBS length ls/L can be found in

Fig. 5.7 .

On the other hand, for the resonance rod configuration, only standing-wave thermoa-

coustic waves can exist since the traveling wave mode is suppressed by the displacement

node. In this case, the second mode (also (λ = L)) is considered, and denoted as Res − II

(Fig. 4.5 ) The presence of a displacement node also decreases the rod’s degree of symmetry.

Thus, the stage location, while being irrelevant in the looped rod configuration, crucially

affects the growth ratio in the standing wave resonance rod. An improper placement of

the stage on a resonance rod can lead to a negative growth rate, physically attenuating the

oscillations. As Fig. 4.7 shows, only a proper location falling into the shaded region leads to

a positive growth ratio. Other than the stage location, the radius of the rod is also another

important factor, which can affect the growth ratio for the resonance rod configuration. In

Fig. 4.6 , we show the β/ω vs. R/δk relations of a resonance rod for different stage locations

as well. The maximum thermoacoustic response is obtained for a stage location xs = 0.845L

(Res− II,case A).
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Figure 4.6. A semilog plot of the growth ratio versus the nondimensional
radius for the Loop − I mode in the looped rod and the Res − II mode in
the resonance rod. Case A, B, C correspond to Res− II mode with the stage
placed at different locations. The growth ratios of these three cases at optimal
R/δk are plotted in Fig. 4.7 

Figure 4.6 shows that as R � δk, all the curves, whether the looped or the resonance rod,

reach zero due to the weakened thermal contact between the solid medium and the stage.

However, as R/δk reaches zero (shaded grey region), the stage is very strongly thermally

coupled with the elastic wave. As a result, the traveling wave mode dominates. The reason

for mode switching will be discussed later in this section. The stability curves also tell that

the traveling wave engine has about 4 times higher growth ratio in the limit R/δk → 0,

compared to the standing wave resonance rod (Res − II,case A) in which maximal growth

ratio is obtained (at R/δk ≈ 2). The noteworthy improvement on growth ratio is essential

to the design of more robust solid state thermoacoustics devices.

Hereafter, the modes or results from Loop − I and Res − II will be taken for values of

R of 0.1mm and 0.184mm, i.e. R/δk of 1.0 and 1.8 respectively.

In classical thermoacoustics, the phase delay between pressure and cross-sectional aver-

aged velocity is an essential controlling parameter of thermoacoustic energy conversion[2 ],

[8 ]. Ceperley [2 ] stated that the energy conversion process of a traveling wave TA machine re-

sembles that of a Stirling engine with the piston being an air column, while the standing wave
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Figure 4.7. Plot of the growth ratio versus the normalized stage location for
the resonance rod Res − II at optimal R/δk(= 1.8). Three specific cases are
labeled A, B and C corresponding to the stability curves in Fig. 4.6 . Only
the location of the stage falling into the shaded region gives a positive growth
ratio.

engines need a thermal delay to effectively convert energy. In analogy with thermoacoustics

in fluids, we use the phase difference Φ between negative stress σ̄ = −σ = |ˆ̄σ|Re[ei(ωt+φσ̄)]

and particle velocity v = |v̂|Re[ei(ωt+φv)], where φσ̄ and φv denote the phases of σ̄ and v

respectively, Φ = φv − φσ̄. Note that a negative stress in solids indicates compression which

is equivalent to a positive pressure in fluids. The standing wave component (SWC) and

traveling wave component (TWC) of velocity are quantified as vS = |v̂|Re[ei(ωt+φσ̄+π/2)]sinΦ

and vT = |v̂|Re[ei(ωt+φσ̄)]cosΦ, which are 90◦ out-of-phase and in-phase with σ̄, respectively.

In a resonance rod, TWC is negligible because the wave propagation at the extremities is

impeded by the clamped boundary condition, the displacement node. However, the non-zero

growth rate β will cause a small phase shift, which makes the phase difference Φ close to but

not exactly 90◦. The blue solid line in Fig. 4.8 shows the phase difference of a R = 0.184mm

resonance rod (Res− II). In the case of a thick looped rod (R � δk) with a poor degree of
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thermal contact, the mode shape is much similar to that of a resonance rod because SWC

is still dominant and the phase difference is close to 90◦. Supplementary Movie 1 shows

that the displacement nodes may exist intrinsically in the system without clamped points.

However, when the looped rod is sufficiently thin (R ∼ δk) the traveling wave component

plays a dominant role. Thus, the phase delay decreases to 30◦ at most. The orange dashed

line in Fig. 4.8 shows the phase difference of a R = 0.1mm looped rod (Loop − I). The

time history of the displacement along the looped rod in Supplementary Movie 2 shows that,

as R ≤ δk (small phase difference), the wave mode is dominated by TWC. Figure 4.8 also

presents an intermediate case (Loop−M , the orange solid line) in which the phase difference

of a looped rod whose radius is equal to that of Res − II is shown. The phase difference

is 50◦ at most, indicating that neither TWC nor SWC plays a dominating role so the wave

mode is highly mixed.

In the looped rod, the TWC of the thermoacoustically unstable waves increases with

respect to the SWC as the degree of thermal contact in the thermoacoustic core, expressed as

the ratio of the thermal penetration depth δk to the radius R, is increased. This is consistent

with Ceperley’s classical statement [2 ]: excellent thermal contact between the stage and

the medium is favorable to traveling waves, while standing waves prefer imperfect thermal

contact. This can be understood by considering an infinitesimal solid element in the S-seg.

shown in Fig. 4.4 , where positive velocity leads to the element moving into a hotter region

and, hence, being heated. In a traveling wave, velocity and negative (compressive) stress ˆ̄σ

are in phase, so the solid element undergoes a cycle with compression, heating, expansion

and cooling phases distinct from each other, resembling a Stirling cycle. In a standing wave,

however, negative stress and velocity have a 90◦ phase difference, so a thermal delay is

necessary to avoid simultaneous compression and heating, and simultaneous expansion and

cooling, which would lead to no thermal-to-elastic energy conversion. The thermal delay, or

poor thermal contact, is in fact achieved by increasing the radius of the rod. The inward

radial heat transfer can be expressed as q̂ = Rρcε(iωgk)T̂ . (See Eqn. (22) in Supplementary

Material). Figure 4.9 (a) shows that as the radius decreases, the real part of gk becomes

negligible compared to the large imaginary part, so an element at a temperature lower than

the base temperature will instantly absorb heat from the boundary, indicating an excellent
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thermal contact. Contrarily, as R/δk � 1, the real and imaginary parts of gk become

comparable (See the inset), leading to a phase/thermal delay, which favors a standing-wave

phasing. The change of Φm, referring to the maximal phase difference between v̂ and ˆ̄σ,

with R/δk is plotted in Fig. 4.9 (b); and it is shown that as the thermal contact/rod radius

becomes stronger/smaller, the mode in the rod switches from SWC dominated (Φm ≈ 90◦)

to TWC dominated (Φm ≈ 30◦). The blue curves for Res − II in Fig. 4.6 provide another

evidence that perfect thermal contact (low R/δk) does not promote standing-wave phasing.

In the resonance rod, traveling wave is suppressed by the clamped boundaries; and as R/δk �

1, β/ω tends to zero, which proves the limited amplification of the standing wave under high

degrees of thermal contact.

It is noteworthy that in either the resonance rod or the looped rod, neither a pure

standing wave nor traveling wave is ever achieved due to the presence of the base temperature

gradient and thermoacoustic production of power. Therefore, when referring to a standing-

wave or traveling-wave mode, the latter are intended as the dominating contributions to the

instability. The Res− II mode in the resonance rod is dominated by the SWC with a phase

difference close to, but never exactly equal, to 90◦ and the Loop− I mode in the looped rod

is dominated by the TWC, with the phase difference at most 30◦ at a few locations in the

domain (Fig. 4.8 ).

4.3.3 Energy Conversions in SSTA Engines

In this section, we explore the energy conversion process in the resonance and the looped

rods. The resonance rod, ‘Res’, has a length of 1.8m, radius of R = 0.184mm and the stage

location xs = 0.805L. The looped rod, ‘Loop’, has the same total length, but the radius

R = 0.1mm is selected to allow the TWC to dominate. The location of the stage in looped

rods does not influence the thermoacoustic response, thus only for illustrative purposes, it is

located at xs = 0.205L so that the TBS does not cross the point where periodicity is applied.

We firstly present definitions of heat flux, work flux (mechanical power) and work source

for the SSTA system. The latter are then discussed within the context of acoustic energy

budgets rigorously derived from the governing equations, naturally yielding the consistent
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Figure 4.8. Plot of the phase difference between negative stress σ̄ and particle
velocity v for an R = 0.184mm resonance rod ‘Res − II’, an R = 0.1mm
looped rod ‘Loop− I’, and an R = 0.184mm looped rod ‘Loop−M ’.
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Figure 4.9. (a) The real and imaginary parts of the dimensionless complex
function gk vs. the dimensionless radius R/δk. gk is a geometry-dependent
function accounting for the radial heat conduction in the S-segment. The
high imaginary part of gk on the left indicates an excellent thermal contact
between the medium and the boundary. (b) The maximal value of the phase
difference between ˆ̄σ and v̂ vs. the dimensionless radius R/δk, showing as
the looped rod becomes thinner, the phase difference decreases and eventually
TWC dominates.

expressions of the second order energy norm, energy redistribution term, and the thermoa-

coustic production and dissipation. The thermal-to-acoustic (or thermodynamic) efficiency,
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defined as the ratio of the net acoustic energy gain per cycle to the total heat absorbed by the

medium, is analyzed for SSTA devices where it is found that the first mode of the traveling

wave engine (‘Loop− I’) is more efficient than the second standing wave mode (‘Res− II’).

Heat Flux, Mechanical Energy and Work Source

A cycle-averaged heat flux in the axial direction is generated in the S-segment due to its

heat exchange with the stage. Neglecting the axial thermal conductivity, the transport of

entropy fluctuations due to the fluctuating velocity v1 (subscript 1 for a first order fluctuating

term in time) is the only way heat can be transported along the axial direction [57 ]. The

instantaneous heat flux is expressed in the time domain as

q̇2 = T0ρ0(s1v1) [W/m2] (4.5)

where the subscript 2 denotes a second-order quantity. Entropy fluctuations in solids are

related to temperature and strain rate fluctuations via the following relation from thermoe-

lasticity theory [49 ]:

s1 = cε
T0
T1 + αEε1. (4.6)

Substituting Eqn. (4.6 ) into Eqn. (4.5 ), q̇2 can be expressed in terms of T1, v1 and

ε1. Note that the quantities with subscript 1 are instantaneous and dependent on both

radial and axial coordinates, while the hatted quantities T̂ , v̂ and ε̂ are the Fourier ampli-

tudes of the cross-sectional averaged first order fluctuations. The latter can be extracted

from the eigenfunctions of the eigenvalue problem (Eqns. (4.1 ), (4.2 ) and (4.3 )). Under

the assumptions: (1) β/ω � 1, and (2) v1 is uniform through the cross section, the cycle

average of the second order cross-sectionally-averaged products, 〈a1v1〉r, can be evaluated as

〈〈a1v1〉r〉 = 〈〈a1〉r〈v1〉r〉 = 1
2Re[âv̂∗]e2βt (e.g. 〈〈s1v1〉r〉 = 1

2Re[ŝv̂∗]e2βt), where a is a dummy

harmonic variable following the eiΛt convention, the superscript ∗ denotes the complex con-

jugate, and 〈〉 and 〈〉r are the cycle averaging and cross-sectional averaging, respectively.

Note that since hatted quantities already denote cross-sectional averaged quantities in the
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frequency domain, angular brackets are omitted for quantities such as T̂ , v̂ and ε̂. We want

to stress that the uniformity of v1 through the cross section is necessary for the above eval-

uation to hold because the cross-sectional average of the product of two first-order terms

(〈a1v1〉r) can be equal to the product of two cross-sectionally averaged terms (〈a1〉r〈v1〉r)

only if one of the two terms is uniform in the cross section. Contrary to the fluids case,

where viscous effects cause a non-uniform distribution of velocity along radial direction, in

the case of longitudinal waves in solids, it is correct to assume a uniform radial velocity

distribution.

We obtain 〈q̇2〉 = Q̃e2βt, where

Q̃ = 1
2ρ0cεRe[T̂ v̂∗] + 1

2T0αERe[ε̂v̂∗] [W/m2]. (4.7)

The total heat flux through the cross section of the rod is

Q̇ =
∫
A

〈q̇2〉dS = A〈q̇2〉 [W]. (4.8)

The second equality holds because the eigenfunctions are all cross-section-averaged quan-

tities. We note that Q̇ is a function of the axial position x.

The instantaneous mechanical power carried by the wave is defined as

I2 = (−σ1)v1 = σ̄1v1. [W/m2] (4.9)

This quantity physically represents the rate per unit area at which work is done by an

element onto its neighbor. It can be also called ‘work flux’ because it shows the work flow

in the medium as well. When an element is compressed (σ̄ > 0), it ‘pushes’ its neighbor

so that a positive work is done on the adjacent element. A notable fact is that there is a

directionality to I2, which depends on the direction of v1.

Similarly, the cycle-average mechanical power 〈I2〉 can be expressed as 〈I2〉 = Ĩe2βt, where

Ĩ = 1
2Re[ˆ̄σv̂∗] [W/m2]. (4.10)
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The total mechanical power through the cross section I of the rod is given by

I =
∫
A

〈I2〉dS = A〈I2〉 [W]. (4.11)

The work source can be further defined as the gradient of the mechanical power as

w2 = ∂I2

∂x
[W/m3]. (4.12)

By expanding Eqn. (4.12 ), w2 can be further expressed as

w2 = ∂σ̄1

∂x
v1 + ∂v1

∂x
σ̄1 (4.13)

The first term of w2 vanishes after applying cycle-averaging, because according to the

momentum conservation (Eqn. (4.2 )), ∂σ1/∂x and v1 are 90◦ out of phase under the as-

sumption that the small phase difference caused by the non-zero β can be neglected due to:

β/ω � 1. The remaining term is equivalent to σ̄1
∂ε1
∂t
, i.e.

∂v1

∂x
σ̄1 = σ̄1

∂ε1

∂t
, (4.14)

whose cycle average is consistent with the cycle-averaged volume change work defined in

[51 ].

The cross sectional integral of the work source is given by

W =
∫
A

〈w2〉dS = A〈w2〉 [W/m]. (4.15)

Figure 4.10 shows the cycle-averaged quantities: heat flux Q̃ and mechanical power Ĩ of

a traveling wave engine (‘Loop’) and a standing wave one (‘Res’). Note that the quantities

indicated with (̃) satisfy the assumption of cycle averaging: 〈()2〉 = (̃)e2βt. Figure 4.10 (a) and

(c) illustrate that heat flux only exists in the S-segment and that wave-induced transport of

heat occurs from the hot to the cold heat exchanger. The negative values in the S-segment

in (a) and (c) are due to the fact that the hot exchanger is on the right side of the cold
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one, so heat flows to the negative x direction in that case. The non-zero spatial gradient in

Q̃ in the S-segment proves that there is heat exchange happening on the boundary of this

segment because the heat flux in the axial direction is not balanced on its own.

Fig. 4.10 (d) shows the mechanical power in the standing wave engine. The positive slope

of Ĩ in the S-segment elucidates the fact that the work generated in this region is positive,

as discussed in detail in Section 4.3.3 . This amount of work drops along the axial direction

in the remaining segments at the spatial rate of dĨ/dx. The work drop in the hot and cold

segments balances the accumulation of energy because there is no radial energy exchange in

these sections. Clearly, if there is no energy growth, the slope of Ĩ should be zero in these

sections, as also discussed in Section 4.3.3 .

The work flow in the traveling wave engine, as Fig. 4.10 (b) shows, has a very large

value, which is due to the fact that negative stress σ̄ and particle velocity v have a phase

difference much smaller than 90◦ (Fig. 4.8 ). This means that a nearly uniform work flow is

circulating the ‘Loop’ carried by the wave dominated by TWC. Contrarily to the standing

wave case, the slope of Ĩ is negative in the S-segment, because it is balancing the positive

work created by Ĩ against the temperature gradient in the TBS. The volumetric integration

of the work source w, i.e. the spatial integration ofW along the rod, should be zero because,

globally, their is no energy output in the system. All the energy converted from the heat in

the S-segment should eventually lead to a uniformly distributed perturbation energy growth.

More discussions will be addressed in the following section.

Acoustic Energy Budgets

The acoustic energy budgets are derived from the governing equations

∂v1

∂t
= 1
ρ

∂σ1

∂x
, (4.16)

∂T1

∂t
= −dT0

dx v1 − γGT0
∂v1

∂x
+ κ

ρcε

1
r

∂

∂r

(
r
∂T1

∂r

)
. (4.17)
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Figure 4.10. Cycle-averaged heat flux Q̃ and mechanical power Ĩ in the fre-
quency domain (arbitrary units) for the looped rod ‘Loop’ and the resonance
rod ‘Res’, respectively. These components are evaluated from eigenfunctions
from the stability analysis (Eqns. (4.1 ), (4.2 ) and (4.3 )). The color gradient
strips indicate the location of S-segment, and the shaded grey strips indicate
the location of the TBS in ‘Loop’.
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Define σ̄1 = −σ1. The constitutive relation is written as

T1 = 1
α

(ε1 + σ̄1

E
). (4.18)

Combined with Eqn. (4.18 ), the cross-sectional averages of Eqns. (4.16 ) and (4.17 ) are

expressed as

∂〈v1〉r
∂t

= −1
ρ

∂〈σ̄1〉r
∂x

, (4.19)

∂〈σ̄1〉r
∂t

= −E(1 + αγGT0)
∂〈v1〉r
∂x

− αE
dT0

dx 〈v1〉r + αE

Rρcε
〈q1〉r, (4.20)

where 〈〉r indicates cross-sectional averaging and 〈q1〉r = 2κ∂T1
∂r

|r=R indicates the heat con-

duction at the medium-stage interface. The relation ∂ε1
∂t

= ∂v1
∂x

is used in the transformation

above.

Multiplying Eqn. (4.19 ) by ρ〈v1〉r and Eqn. (4.20 ) by 〈σ̄1〉r

E(1+αγGT0) , and adding them gives

∂E2

∂t
+ ∂I2

∂x
+ R2 = P2 − D2, (4.21)

where

E2 = 1
2ρ〈v1〉2

r + 1
2

1
E(1 + αγGT0)

〈σ̄1〉2
r, (4.22)

I2 = 〈σ̄1〉r〈v1〉r, (4.23)

R2 = α

1 + αγGT0

dT0

dx I2, (4.24)

P2 − D2 = α

1 + αγGT0

1
Rρcε

〈q1〉r〈σ̄1〉r. (4.25)

E2, I2,R2,P2 and D2 are the second order energy norm, work flux, energy redistribution

term, thermoacoustic production and dissipation, respectively. Note that the work flux

shown in Eqn. (4.23 ) is consistent with the heuristic definition adopted in the previous section

(Eqn. (4.9 )). If two first order quantities 〈a1〉r and 〈b1〉r are in the form of ()1 = (̂)e(β+iω)t
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with β/ω � 1, we adopt the assumption 〈〈a1〉r〈b1〉r〉 = 1
2Re[âb̂∗]e2βt, where 〈〉 indicates cycle

averaging and the superscript * indicates the complex conjugate. This is because

〈〈a1〉r〈b1〉r〉 = Re[
∫ t+T >/2

t−T >/2
âe(β+iω)t · b̂e(β+iω)tdt] (4.26)

≈ e2βtRe[
∫ t+T >/2

t−T >/2
âeiωt · b̂eiωtdt] (4.27)

= e2βt(1
2Re[âb̂∗]) (4.28)

= 1
2Re[âb̂∗]e2βt, (4.29)

where T = (2π)/ω is the period of the harmonic oscillation. Note that we use the hat to

denote the cross sectional averaging of quantities in the frequency domain for brevity, so

angular brackets are neglected. A notable fact is that in an instable system, the second

order cycle averages are no longer constant numbers. Instead they grow with time, but at

twice the first oder terms’ growth rate.

Taking the cycle average of Eqn. (4.21 ) we get

2βẼ + dĨ
dx + R̃ = P̃ − D̃ , (4.30)

where Ẽ , R̃, Ĩ , P̃, and D̃are transformed from the cycle averages of the cross-sectionally-

averaged second order terms in Eqns. (4.22 -4.25 ), following the assumption of cycle averag-

ing: 〈()2〉 = (̃)e2βt. Note that a common factor e2βt is canceled in each term.

It’s clear that Ẽ , R̃ and Ĩ are expressed as

Ẽ = 1
2ρ|v̂|2 + 1

2
1

E(1 + αγGT0)
|ˆ̄σ|2 [W/m3], (4.31)

Ĩ = 1
2Re[ˆ̄σv̂∗] [W/m2], (4.32)

R̃ = 1
2

α

1 + αγGT0

dT0

dx Re[ˆ̄σv̂∗] [W/m3] (4.33)
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Now we are to find the separate expressions of P̃ and D̃ . With the definition of the

dimensionless function gk, we transform 〈q1〉r to the frequency domain. The cross sectional

average of the third term on the right hand side of Eqn. (4.17 ) can be written as

〈 κ
ρcε

1
r

∂

∂r
(r∂T1

∂r
)〉r = 2κ

Rρcε

∂T1

∂r
|r=R= 〈q1〉r

Rρcε
(4.34)

Transforming 〈q1〉r to the frequency domain, the above term is written as q̂
Rρcε

in frequency.

Comparing q̂
Rρcε

to the third term on the RHS of Eqn. (6) in the main text, q̂ can be written

as

q̂ = Rρcε(iωgk)T̂ = Rρcε
α

(iωgk)(ε̂+
ˆ̄σ
E

). (4.35)

Expanding the right hand side of Eqn. (4.30 ), we get the clear expressions of P̃ and D̃

separately,

P̃ = 1
2

1
1 + αγGT0

{Re[gk]Re[ˆ̄σ(iωε̂)∗] + Im[gk]Im[ˆ̄σ(iωε̂)∗]} [W/m3], (4.36)

D̃ = ω

2
1

E(1 + αγGT0)
|ˆ̄σ|2Im[gk] [W/m3]. (4.37)

which indicate the thermoacoustic production and dissipation in each cycle. Note that the

thermoacoustic dissipation D̃ comes from the wall heat transfer. It’s a pure conductive loss,

nothing to do with mechanical dissipations.

The growth rate can be recovered via

βEB =
P̃ − D̃ − ( ∂Ĩ

∂x
+ R̃)

2Ẽ
. (4.38)

As Fig. 4.11 shows, the growth rates βEB calculated from Eqn. (4.38 ) are within 0.4%

from the direct output of the eigenvalue problem (Eqns. (4.1 ), (4.2 ) and (4.3 )) in both the

standing wave and the traveling wave configurations, which validates the consistency of the

derivations in this section.
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Figure 4.11. The relative difference of the growth rates estimated from the
energy budgets βEB and directly retrieved from the eigenvalue problem in
Eqns. (4.1 ), (4.2 ) and (4.3 ) for the standing wave configuration (‘Res’) and
the traveling wave configuration (‘Loop’).

From the physical point of view, the significance of the terms in Eqn. (4.30 ) are illustrated

as following. 2βẼ quantifies the rate of energy accumulation, dĨ/dx is the work source

defined in the previous section, R̃ is an energy redistribution term. P̃ and D̃ are the

thermoacoustic production and dissipation, respectively. The energy redistribution term in

the acoustic energy budgets of solid thermoacoustics cannot be found in the fluid counterpart

of the same equations [28 ]. This term is absent in fluids because it is canceled in the

algebraic derivations by expressing the variation of mean density according to the ideal

gas law, as a function of the mean temperature gradient. On the other hand, in solid-

state thermoacoustics, the heat-induced density variation is neglected and the impact of

the temperature gradient is manifest in the stress-strain constitutive relation. It is proved

numerically that the spatial integration of this term is zero (see Supplementary Material), so

it does not produce or dissipate energy, but just redistributes it. In summary, it represents

the work created by the acoustic flux acting against the temperature gradient. Figure 4.12 
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plots every term in the acoustic energy budgets (Eqn. (4.30 )) in the standing wave and

traveling wave configurations, respectively.

Figure 4.12. The terms in the acoustic energy budgets (Eqn. (4.30 )) for (a)
and (b) the traveling wave configuration (‘Loop’) and, (c) and (d) the standing
wave configuration (‘Res’). The insets in (b) and (d) plot the difference of the
thermoacoustic production P̃ and dissipation D̃ in both configurations. The
spatial integration of P̃ − D̃ yields the total energy accumulation rate (see
Eqn. (4.39 )).

The values of P̃ and D̃ are non-zero only in the S-segment. The dissipation D̃ is due

to wall heat transfer, which is a conductive loss. Although they are very similar in the S-

segment, there exists a small difference between them. Thus, from a thermal standpoint, as a

given amount of heat is transported through this section, a small portion of it (proportional to

P̃−D̃) is converted into wave energy which accumulates in the rod, hence sustaining growth.

Regarding P̃, a remarkable difference with thermoacoustic waves in fluids is present. In the

latter case [28 ], P̃ can be explicitly expressed as the weighted combination of a standing

wave (Im[p̂∗Û ]) and traveling wave (Re[p̂∗Û ]) (Eqn. (4.13a) in [28 ]), where p and U are
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the pressure and flow rates, respectively, so the traveling-/standing-wave contribution of the

thermoacoustic production P̃ is zero when the mode is purely standing/traveling. However

in solids, the two terms on the right hand side of Eqn. (4.36 ) do not depend on the wave

phasing, since whether they are zero or not only depends on if there is thermal coupling (if

T̂ is zero). So these two terms can not be considered as the TWC and SWC contributions

of the thermoacoustic energy production P̃.

As can be seen, 2βẼ is flat, meaning that the rate of the energy accumulation along the

rod is uniform and exponential in time, consistent with the eigenvalue ansatz.

In the standing wave configuration, the work flux gradient dĨ/dx peaks in the S-segment,

and has a constant negative value out of the S-segment. As foreshadowed by the discussions

in the previous section, this distribution means that dĨ/dx adjusts itself so that β is uniform.

In other words, energy is accumulated everywhere at the same rate.

Neglecting the small phase shift caused by β, the energy redistribution R̃ does not

exist in the standing wave configuration because of the 90◦ phase difference between ˆ̄σ and

v̂. Locally, the produced work in the S-segment, is converted from the most of the net

production P̃ − D̃ . The remaining of P̃ − D̃ transforms to the accumulated energy in this

small segment. Outside the S-segment, the negative value of dĨ/dx is exactly the same as

the rate of the energy accumulation to keep the condition of zero local net production.

In the traveling wave configuration, the energy conversion becomes different because of

the existence of the TBS. The TBS creates a temperature drop, which makes the energy

redistribution term non zero in this section. To balance the negative value in the TBS, it

peaks up in the S-segment so that the spatial integration is zero. In the TBS, the shape

of the work flux gradient is the mirror image of that of the energy redistribution term

because the addition of these two terms should be the negative of the spatially uniform

energy accumulation rate. For the work flux gradient itself, a negative distribution in the

S-segment is necessary to balance the positive redistributed work in the TBS so that the

spatial integration is zero. The above supplements the explanations in the previous section

on why the work source is negative in the S-segment.
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Globally, in both configurations, given that both the spatial integrations of the work flux

gradient and the energy redistribution terms are zero, the total net production
∫ L

0 (P̃ −D̃)dx

only leads to the accumulation of energy

∫ L

0
2βẼ dx =

∫ L

0
(P̃ − D̃)dx. (4.39)

Efficiency

Generally, efficiency is defined as the ratio of work done to thermal energy consumed.

However, since there is no energy harvesting element in the system, the rod has no work

output. Thus, we take the accumulated energy, which could be potentially converted to

energy output, as the numerator of the ratio. For the denominator, limited to the 1D

assumption, the thermal energy consumed is not available directly from the quasi-1D model

because the evaluation of the radial heat conduction at the boundary is lacking. Swift [57 ]

suggested that the heat flux Q̇ could be considered as uniform for a short stack, which is

approximately equal to the consumed thermal energy. Thus, we use the averaged Q̇ over the

S-segment, an estimate of the consumed thermal energy, as the denominator of the efficiency.

As a result, the efficiency η is expressed as

η =
A
∫ L

0
∂E2
∂t
dx

1
ls

∫ xs+ ls
2

xs− ls
2
Q̇dx

(4.40)

=
∫ L

0 2βẼ dx

1
ls

∫ xs+ ls
2

xs− ls
2
Q̃dx

. (4.41)

Although this definition is the best estimate we could make based on the quasi-1D model,

we highlight that fully nonlinear 3D simulations are capable of providing more accurate

estimates of the efficiency.

Figure 4.13 shows the efficiencies of ‘Loop’ and ‘Res’ at different temperature difference

∆T = Th − Tc. It can be seen from this plot that (1) the efficiency of the traveling wave

configuration ‘Loop’ is much higher than that of the standing wave configuration Res, which
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is consistent with the conclusions drawn in fluids, and (2) for the traveling wave config-

uration, the efficiency goes up with ∆T increasing, while for the standing wave one, the

efficiency is insensitive to the change of ∆T . For the cases studied in the previous sections

(∆T = 493.15K− 293.15K = 200K), the efficiencies η are 37% and 7% for ‘Loop’ and ‘Res’,

respectively, as the red dots show in Fig. 4.13 .

Considering that the material properties of solids are much more tailorable than fluids, the

authors expect that the efficiency of SSTA can be improved by designing an inhomogeneous

medium having optimized mechanical and thermal thermoacoustic properties.

50
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Figure 4.13. The efficiencies of the traveling wave configuration (‘Loop’) and
the standing wave configuration (‘Res’) at different temperature difference
∆T . The efficiencies are 37% and 7%, respectively at ∆T = 200K (The red
dots).

4.4 Concluding Remarks

In this chapter, we firstly show the numerical evidence of existence of thermoacoustic

oscillations in a sample system consisting of a fixed-mass metal rod. The theory served

as a starting point to develop a quasi-1D linearized model to perform stability analysis. A

multi-stage configuration was proposed in order to overcome the effect of structural damping,

which is one of the main differences with respect to the thermoacoustics of fluids.
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In the second part of the chapter, we have shown numerical evidence of the existence of

traveling wave thermoacoustic oscillations in a looped solid rod. The growth ratio of a full

wavelength traveling wave in a looped rod is found to be significantly larger than that of a

full wavelength standing wave in a resonance rod. The phase delay in the looped rod between

negative stress and particle velocity, which controls the value of TWC, is at most 30◦ under

the situation that the stage is 5%L long and ∆T0 = 200K. Heat flux, mechanical power and

work source are derived in analogous ways to their counterparts in fluids. The perturbation

acoustic energy budgets are performed to interpret the energy conversion process of SSTA

engines. The efficiency of SSTA engines is defined based on the rigorously derived energy

budgets. The traveling wave SSTA engine is found to be more efficient than its standing

wave counterpart.

This chapter laid the theoretical foundation of thermoacoustics of solids and provided key

insights into the underlying mechanisms leading to self-sustained oscillations in thermally-

driven solid systems. It is envisioned that the physical phenomenon explored in this study

could serve as the fundamental principle to develop a new generation of solid state thermoa-

coustic engines and refrigerators.

103



5. PARAMETRIC ANALYSIS OF A-SSTA

5.1 Introduction

Chapter 4 showed the existence of unstable thermoacoustic waves in solids in both stand-

ing and traveling modes. Contrary to fluids, solids exhibit unique opportunities to tailor

both physical and effective dynamic properties that can ultimately greatly benefit the ther-

moacoustic response of SSTA. The many recent efforts in the development of engineered

materials and structures have highlighted the remarkable design space offered by these man-

made materials.[58 ], [59 ] In order to take full advantage of this capability of tailoring the

dynamic response of solids for the design of SSTA devices methodologies for the systematic

performance and parametric analysis of SSTA systems are necessary.

In this Chapter, an analytical approach is proposed to solve the governing equations of

axial-mode standing and traveling SSTA waves in a fixed-mass rod [51 ] and a looped rod

[60 ] configuration, respectively [61 ]. The governing equations are recast into dimensionless

form facilitating the identification of a set of seven dimensionless parameters that directly

impact the growth-rate-to-frequency ratio (growth ratio) [25 ]. In the present thesis, this ra-

tio is considered as the fundamental metric to compare the performance of different designs.

The seven dimensionless parameters are: the dimensionless coefficient of thermal expansion

(CTE), the Grüneisen parameter, the hot-to-cold temperature ratio, the normalized stage

location and length, the dimensionless radius, the end mass ratio for the fxed-mass rod,

and the dimensionless thermal buffer segment (TBS) length for the looped rod. The above

parameters will be analyzed in detail particularly from a perspective of growth ratio opti-

mization. This parametric analysis allows shedding light on the effect of different material

and structural parameters on the design of SSTA devices.

5.2 Dimensionless Quasi-1D model

The two configurations being considered in this chapter are: 1) the fixed-mass axial SSTA

[51 ], and 2) the looped rod in [60 ]. The axial thermoacoustic modes for both systems can
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be obtained using the governing equations defined in Chapter 4 , i.e.: Eqns. (4.1 ), (4.2 ) and

(4.3 ).

The two SSTA configurations differ in terms of the distribution of the reference mean

temperature T0(x), function Gk(x) and of the boundary conditions (BCs). The specific

conditions for the two cases are given here below:

Case 1: Fixed-mass rod - Standing mode SSTA

T0(x) =



Th 0 < x < xh

Th + Tc−Th

xc−xh
(x− xh) xh < x < xc

Tc xc < x < L

(5.1)

Gk(x) =


gk = 1

1 − 1
2ζtop

J0(ζtop)
J1(ζtop)

xh < x < xc

0 elsewhere

, (5.2)

where xh and xc are the axial locations of the two ends of the stage, Th and Tc are tempera-

tures of segment 1 (0 < x < xh) and segment 3 (xc < x < L), corresponding to the hot and

cold temperatures.

The dimensional boundary conditions are:

û|x=0 = 0 (5.3)

σ̂|x=LA = −iΛ(v̂|x=L)M (5.4)

where A is the rod cross-sectional area, and M is the end mass.
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Case 2: Looped rod - Traveling mode SSTA

T0(x) =



Tc 0 < x < xc, xb < x < L

Tc + Th−Tc

xh−xc
(x− xc) xc < x < xh

Th + Tb−Th

xb−xh
(x− xh) xh < x < xb

(5.5)

GK(x) =


gk xc < x < xh

0 elsewhere
, (5.6)

where xb is the end position of the thermal buffer segment (TBS).

The dimensional BCs are:

û|x=0 = û|x=L (5.7)

σ̂|x=0 = σ̂|x=L (5.8)

Considering Table 5.1 , we can recast both the governing equations (Eqns. (4.1 ), (4.2 )

and (4.3 )) and the boundary conditions (Eqns. 5.3 -5.8 ) into a dimensionless form:

iλũ = ṽ (5.9)

iλṽ = d2ũ

dξ2 − A
dT̃
dξ (5.10)

iλT̃ = −dθ0(ξ)
dξ ṽ − γGθ0(ξ)

dṽ
dξ + iλGk(ξ)T̃ (5.11)

Fixed-mass:

ũ|ξ=0 = 0 (5.12)

σ̃|ξ=1 = mλ2ũ|ξ=1 (5.13)
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Table 5.1. Dimensionless variables, parameters, and auxiliary dimensional quantities
Dimensionless variables

ξ = x/L Dimensionless axial coordinate
ũ = û/L Dimensionless particle displacement
ṽ = v̂/a0 Dimensionless particle velocity
T̃ = 〈T̂ 〉/Tc Dimensionless temperature fluctuation
σ̃ = σ̂/E = du/dξ − AT̃ Dimensionless stress
iλ = iΛ/ω0 Dimensionless eigenvalue
β = Re[iλ] Dimensionless growth rate
ω = Im[iλ] Dimensionless frequency

Dimensionless parameters
A = αTc Dimensionless coefficient of thermal expansion (CTE)
γG = αE/(ρcε) Grüneisen constant
Θ = Th/Tc Temperature ratio
r = R/δk Dimensionless radius (frequency dependent)
ξh = xh/L Dimensionless stage hot end position
ξc = xc/L Dimensionless stage cold end position
ξb = xb/L Dimensionless TBS end position (looped rod only)
m = M/(ρLA) Mass ratio (fixed-mass rod only)

Auxiliary dimensional quantities
a0 =

√
E/ρ [m/s] Sound speed

ω0 = a0/L [1/s] Characteristic frequency
δk =

√
2κ/(ωρcε) [m] Thermal penetration depth (frequency-dependent)
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Looped:

ũ|ξ=0 = ũ|ξ=L (5.14)

σ̃|ξ=0 = σ̃|ξ=L (5.15)

Figure 5.1 shows the distribution of the dimensionless mean temperature θ0(ξ) and of

the wall-heat-transfer function Gk(ξ).

... ...

1

1

0

0

0 1

0 1

Fixed-mass rod

Looped rod

Figure 5.1. Distribution of θ0(ξ) and Gk(ξ) for the fixed-mass rod and the
looped rod. Circled numbers indicate the segmentation of the rods.
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5.3 Analytical Solution: Derivation and Validation

From Eqns. (5.9 -5.15 ), the dimensionless parameters which determine the value of λ are

the material parameters A and γG, the dimensionless temperature profile θ0(ξ), specifically

Θ, ξh and ξc, the frequency-dependent dimensionless radius r, which determines gk, and (only

for the fixed-mass case) the mass ratio m.

Rearranging Eqn. (5.11 ), a local solution of T is obtained:

T̃ = [dθ0(ξ)/dξ]ũ+ γGθ0(ξ)[dũ/dξ]
Gk(ξ) − 1 (5.16)

Thus:

dT̃
dξ = (Gk(ξ) − 1)−1[(1 + γG)dθ0

dξ
dũ
dξ + γGθ0(ξ)

d2ũ

dξ2 ] (5.17)

Note that d2θ0/dξ2 = 0 is assumed due to the piece-wise linearity of θ0(ξ).

Substituting Eqns. (5.9 ) and (5.17 ) into Eqn. (5.10 ) and rearranging, a second order

ODE is obtained:

a(ξ)d2ũ

dξ2 + b(ξ)dũ
dξ + cũ = 0 (5.18)

where:

a(ξ) = 1 + AγG
1 −G(x)θ0(ξ) (5.19)

b(ξ) = A(1 + γG)
1 −G(x)

dθ0(ξ)
dξ (5.20)

c = λ2 (5.21)

From this point on, the procedure for the two cases requires a different treatment.

Case 1: Fixed-mass rod (Standing mode):

For the three segments shown in Fig. 5.1 (1: 0 < ξ < ξh, 2: ξh < ξ < ξc, 3: ξc < ξ < 1),

the expressions for a(ξ), b(ξ), and c are given in Table 5.2 .
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Table 5.2. Coefficients a(ξ), b(ξ), and c for segments of the fixed-mass rod

Segment 1 (0 < ξ < ξh):


a1 = 1 + AγGΘ
b1 = 0
c1 = λ2

Segment 2 (ξh < ξ < ξc):


a2(ξ) = 1 + AγG

1−gk
(Θ + 1−Θ

ξc−ξh
(ξ − ξh))

b2 = A(1+γG)
1−gk

1−Θ
ξc−ξh

c2 = λ2

Segment 3 (ξc < ξ < 1):


a3 = 1 + AγG

b3 = 0
c3 = λ2

So for Segment 1 and 3, Eqn. (5.18 ) degenerates to two constant-coefficient second order

ODEs. Their general solution is given by:

ũ1 = A1eiλR1ξ +B1e−iλR1ξ (5.22)

ũ3 = A3eiλR3ξ +B3e−iλR3ξ (5.23)

where A1, B1, A3, and B3 are coefficients to be determined, while R1 and R3 are given by:

R1 = 1√
1 + AγGΘ (5.24)

R3 = 1√
1 + AγG

(5.25)

For Segment 2, a(ξ) becomes a linear function a2(ξ) = a21 + a22ξ where:

a21 = 1 + AγG
1 − gk

(Θ − 1 − Θ
ξc − ξh

ξh) (5.26)

a22 = AγG
1 − gk

( 1 − Θ
ξc − ξh

) (5.27)

and b(ξ) becomes a constant b2 (Table 5.2 ). Thus Eqn. (5.18 ) for this segment becomes:

(a21 + a22ξ)
d2ũ2

dξ2 + b2
dũ2

dξ + c2ũ2 = 0 (5.28)

110



Assume that the solution u2 can be expanded via a Taylor series that converges on the

interval (ξh < ξ < ξc). Specifically:

ũ2 =
∞∑
n=0

βnξ
n (5.29)

Substituting the expansion back into Eqn. (5.28 ) yields:

∞∑
n=1

[a21(n+ 2)(n+ 1)βn+2 + [b2 + a22n](n+ 1)βn+1 + c2βn]ξn

+[2a21β2 + b2β1 + c2β0] = 0 (5.30)

Considering that ξj is independent of ξk for j 6= k, for any n > 0, the above equation

gives:

a21(n+ 2)(n+ 1)βn+2 + [b2 + a22n](n+ 1)βn+1 + c2βn = 0 (5.31)

From Eqn. (5.31 ), all βn for n > 2 could be determined from assigned values of β0 and β1.

βn can be expressed as a linear combination of β0 and β1, namely:

βn = cβ0(n)β0 + cβ1(n)β1 n > 2 (5.32)

where, the coefficients cβ0(n) and cβ1(n) can be found recursively by:

cβ0(n+ 2) = − c2

a21(n+ 2)(n+ 1)cβ0(n) − b2 + a22n

a21(n+ 2)cβ0(n+ 1) (5.33)

cβ1(n+ 2) = − c2

a21(n+ 2)(n+ 1)cβ1(n) − b2 + a22n

a21(n+ 2)cβ1(n+ 1), n > 0 (5.34)

cβ0(0) = 1, cβ0(1) = 0, cβ1(0) = 0, cβ1(1) = 1 (5.35)

Consider the fact that Eqns. (5.9 -5.13 ) are linear equations; and ũ, ṽ, and T̃ denote the

corresponding mode shapes, A1 is arbitrarily taken as A1 = 1. Therefore, the six independent
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unknowns β0, β1, B1, B2, B3 and λ should be evaluated. The boundary conditions of each

segment (a total of six BCs) are expressed as:

ξ = 0 : ũ1|ξ=0 = 0 (5.36)

ξ = ξh : ũ1|ξ=ξh
= ũ2|ξ=ξh

(5.37)

ξ = ξh : σ̃1|ξ=ξh
= σ̃2|ξ=ξh

(5.38)

ξ = ξc : ũ2|ξ=ξc = ũ3|ξ=ξc (5.39)

ξ = ξc : σ̃2|ξ=ξc = σ̃3|ξ=ξc (5.40)

ξ = 1 : σ̃3|ξ=1 = mλ2(ũ3|ξ=1) (5.41)

This set of equations could be solved iteratively by initializing the calculation with an

initial guess λ(0). The steps of one iteration are as follows:

Step 1: By Eqn. (5.36 ):

B1 = −1 (5.42)

ũ1 = 2isin(λR1ξ) (5.43)

Step 2: Eqns. (5.37 ) and (5.38 ) give:

F2 = C2 b2 (5.44)

where:

F2 = 2i

 1 0

− A
1−gk

1−Θ
ξh−ξc

(1 + AγGΘ)(λR1)


sin(λR1ξh)

cos(λR1ξh)

 (5.45)

C2 =

 1 +∑∞
n=2 ξ

n
hcβ0(n) ξh +∑∞

n=2 ξ
n
hcβ1(n)

(1 + AγGΘ
1−gk

)∑∞
n=2 nξ

n−1
h cβ0(n) (1 + AγGΘ

1−gk
)(1 +∑∞

n=2 nξ
n−1
h cβ1(n))

 (5.46)

b2 =

β0

β1

 (5.47)
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Rename β0 and β1 as A2 and B2. They are therefore given by:

A2

B2

 = b2 = C2
−1F2 (5.48)

Step 3: Eqns. (5.39 ) and (5.40 ) give:

F3 = C3 b3 (5.49)

where:

F3 =

 0 1

1 + AγG

1−gk

A
1−gk

1−Θ
ξc−ξh


∑∞

n=1 βnnξ
n−1
c∑∞

n=0 βnξ
n
c

 (5.50)

C3 =

 exp(iλR3ξc) exp(−iλR3ξc)

[1 + AγG(2iλR3)]exp(iλR3ξc) −[1 + AγG(2iλR3)]exp(iλR3ξc)

 (5.51)

b3 =

A3

B3

 (5.52)

Therefore, A3 and B3 are given by:

A3

B3

 = b3 = C3
−1F3 (5.53)

Step 4: By Eqn. (5.41 ), λ can be solved iteratively through:

λ(p+1) = i(1 + AγG)R3

m

A3exp(iλ(p)R3) −B3exp(−iλ(p)R3)
A3exp(iλ(p)R3) +B3exp(−iλ(p)R3)

(5.54)

where (p) is the index for iterative step.

Step 5: Average λ(p+1) and λ(p), and perform a new iteration until the difference between

λ’s from two consecutive iterations is satisfied.

The coefficients Aj and Bj, (j = 1, 2, 3) are expressed by Eqns. (5.42 ), (5.48 ) and (5.53 )

once λ reaches its convergence value. Thus, the displacement mode shape ũj, the strain
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ε̃j = dũj/dξ, and the temperature T̃j (see Eqn. (5.16 )) for the three segments can be written

in terms of Aj, Bj, and λ.

Case 2: Looped rod (Traveling mode)

The looped rod is virtually divided into four segments (Fig. 5.1 ), while continuity condi-

tions (continuous ũ and σ̃) hold at ξh ξc and ξb. In this case, The quantities a(ξ), b(ξ), and

c are given in Table 5.3 

Table 5.3. Coefficients a(ξ), b(ξ), and c for segments of the looped rod

Segment 1 & 4 (0 < ξ < ξc, ξbξ < 1):


a1,4 = 1 + AγG

b1,4 = 0
c1,4 = λ2

Segment 2 (ξh < ξ < ξc):


a2(ξ) = 1 + AγG

1−gk
(1 + 1−Θ

ξc−ξh
(ξ − ξc))

b2 = A(1+γG)
1−gk

1−Θ
ξc−ξh

c2 = λ2

Segment 3 (ξc < ξ < 1):


a2(ξ) = 1 + (AγG)(Θ + 1−Θ

ξb−ξh
(ξ − ξh))

b2 = A(1 + γG) 1−Θ
ξb−ξh

c2 = λ2

By the periodicity condition at ξ = 0 and ξ = 1, the displacement ũ of Segment 1 and 4

are:

ũ1 = A1eiλR3ξ +B1e−iλR3ξ (5.55)

ũ4 = A1eiλR3(ξ−1) +B1e−iλR3(ξ−1) (5.56)

Assuming that the displacement of Segment 2 and 3, (i.e. ũ2 and ũ3) have converging Taylor

series on their own intervals:

ũ2 =
∞∑
n=0

φnξ
n (5.57)

ũ3 =
∞∑
n=0

ψnξ
n (5.58)

Similar to Case 1, φn and ψn are linear combinations of φ0 and φ1, and ψ0 and ψ1, respectively:
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φn = dφ0(n)φ0 + dφ1(n)φ1 n > 2 (5.59)

ψn = dψ0(n)ψ0 + dψ1(n)ψ1 n > 2 (5.60)

where the coefficients dφ0(n), dφ1(n), dψ0(n), and dψ1(n) can be found recursively in the same

fashion described in Case 1 (see Eqns. (5.33 , 5.34 )). By applying the continuity conditions

at ξc, ξh, and ξb the following equation holds:

C b = 0 (5.61)
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where C is a 6 × 6 matrix whose elements are expressed as:

C(1, 1) = eiλR3ξc , C(1, 2) = e−iλR3ξc

C(1, 3) = 1 +
∞∑
n=2

ξnc dφ0(n), C(1, 4) = ξc +
∞∑
n=2

ξnc dφ1(n)

C(2, 1) = [(1 + AγG)(iλR3) − A

1 − gk

Θ − 1
ξh − ξc

]eiλR3ξc

C(2, 2) = −[(1 + AγG)(iλR3) + A

1 − gk

Θ − 1
ξh − ξc

]e−iλR3ξc

C(2, 3) = −(1 + AγG
1 − gk

)
∞∑
n=2

nξn−1
c dφ0(n)

C(2, 4) = −(1 + AγG
1 − gk

)
∞∑
n=2

nξn−1
c dφ1(n)

C(3, 3) = 1 +
∞∑
n=2

ξnhdφ0(n), C(3, 4) = ξh +
∞∑
n=2

ξnhdφ1(n)

C(3, 5) = 1 +
∞∑
n=2

ξnhdψ0(n), C(3, 6) = ξh +
∞∑
n=2

ξnhdψ1(n)

C(4, 3) = (1 + AγGΘ
1 − gk

)
∞∑
n=2

nξn−1
h dφ0(n) + A

1 − gk

Θ − 1
ξh − ξc

(1 +
∞∑
n=2

ξnhdφ0(n))

C(4, 4) = (1 + AγGΘ
1 − gk

)
∞∑
n=2

nξn−1
h dφ1(n) + A

1 − gk

Θ − 1
ξh − ξc

(1 +
∞∑
n=2

ξnhdφ1(n))

C(4, 5) = −(1 + AγGΘ)
∞∑
n=2

nξn−1
h dψ0(n) − A

Θ − 1
ξh − ξb

(1 +
∞∑
n=2

ξnhdψ0(n))

C(4, 6) = −(1 + AγGΘ)
∞∑
n=2

nξn−1
h dψ1(n) − A

Θ − 1
ξh − ξb

(1 +
∞∑
n=2

ξnhdψ1(n))

C(5, 1) = −eiλR3(ξb−1), C(5, 2) = −e−iλR3(ξb−1)

C(5, 5) = 1 +
∞∑
n=2

ξnb dψ0(n), C(5, 6) = ξb +
∞∑
n=2

ξnb dψ1(n)

C(6, 1) = [A Θ − 1
ξh − ξb

− (1 + AγG)(1iλR3)]eiλR3(ξb−1)

C(6, 2) = [A Θ − 1
ξh − ξb

+ (1 + AγG)(1iλR3)]e−iλR3(ξb−1)

C(6, 5) = (1 + AγG)
∞∑
n=2

nξn−1
b dψ0(n) C(6, 6) = (1 + AγG)

∞∑
n=2

nξn−1
b dψ1(n)
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The elements in C that were not defined above are implicitly assumed equal to zero. The

vector b is:

b =
[
A1 B1 φ0 φ1 ψ1 ψ1

]T
(5.62)

From Eqn. 5.61 , the complex frequency λ is the root of:

det[C(λ)] = 0 (5.63)

which can be solved by a nonlinear numerical root finding approach. By arbitrarily choosing

A1 = 1, the remaining elements in the vector b can be calculated. These coefficients enable

recovering the mode shapes of displacement, strain and temperature.

To validate the analytical approach, we performed numerical simulations using the di-

mensional parameters tabulated in Table 5.4 .

Table 5.4. Dimensional parameters used in numerical simulations
General:
α = 23 × 10−6 [1/K] E = 70 [GPa] ρ = 2700 [kg/m3] κ = 238 [W/mK]
cε = 900 [J/kgK] Th = 493.15 [K] Tc = 293.15 [K] L = 1.8 [m]
Fixed-mass rod:
xh = 0.9L xc = 0.95L r = 1 [mm] M = 0.3527 [kg]
Looped rod:
xc = 0.18L xh = 0.23L xb = 0.68L r = 0.1 [mm]

The dimensional parameters were used in the numerical solver adopted by [51 ]. The

spatial domain was discretized uniformly into 500 cells using a central Euler scheme on a

staggered grid. The output eigenvalue and mode shape will be reported later in comparison

to the analytical results.

The dimensional parameters can be grouped and recast into dimensionless parameters

(Table 5.5 ).

Note that r is a frequency dependent quantity, which can be determined in either the

iterative process or the nonlinear root finder.

λ is then solved differently for the two cases:
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Figure 5.2. Iteration of real and imaginary part of the dimensionless λ.

Table 5.5. Dimensionless parameters used in analytical approach
General: A = 6.74 × 10−3 γG = 0.6626 Θ = 1.682
Fixed-mass rod: r = 3.80

√
1/ω ξh = 0.9 ξc = 0.95 m = 23.101

Looped rod: r = 0.38
√

1/ω ξc = 0.18 ξh = 0.23 ξb = 0.68

Fixed-mass rod: To solve for λ, Eqn. (5.29 ) was truncated to six terms. By Eqn. (5.54 ),

the value of λ at convergence was calculated as 0.20714 − (1.5215 × 10−4)i. The iteration of

the real and imaginary parts of λ are shown in Fig. 5.2 . It is seen that the iterative process

is very efficient for the calculation of λ. The dimensional eigenvalue iΛ can be recovered as

0.430 + 585.95i, the error is within 0.5% from 0.429 + 584.68i, the result calculated by the

numerical solver with N = 500 cells.

Looped rod: Equation (5.63 ) is divided into real and imaginary parts and numerically

solved for Re[λ] and Im[λ]. λ is returned as 6.2984 − 1.7598i. The dimensional eigenvalue

iΛ can be recovered as 4.9781 + 17816.51i which has an error within 1% from the numerical

solution 4.9209 + 17816.32i obtained using N = 500 cells.

The amplitude normalized mode shapes for displacement ū, strain ε̄, and temperature

fluctuation T̄ are shown in Fig. 5.3 , where z̄ = |z|/max(|z|), and z = ũ, ε̃ or T̃ . The
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Figure 5.3. Mode shapes of displacement, strain, and temperature (normalized
by their own maximum value) obtained from both the numerical solver and
the analytical approach.

good agreement between the results provide good confidence in the validity of the analytical

approaches.

5.4 Dimensionless Parametric Analysis

By deriving the dimensionless expressions for the governing equations and boundary

conditions (see Eqns. (5.9 -5.15 )), it is understood that the growth-to-frequency ratio β/ω is

determined by the following dimensionless parameters (divided into four groups):

1. Stage parameters: Temperature ratio, Θ and dimensionless stage location parameter,

ξh and ξc

2. Material parameters: Dimensionless CTE, A and Grüneisen parameter, γG

3. Heat-transfer parameter: Dimensionless radius, r
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4. Unique parameters

(a) Fixed-mass rod: Mass ratio, m

(b) Looped rod: Thermal buffer segment (TBS) end position ξb

This section focuses on the analysis regarding the above four groups of parameters and

on their effects with regard to the optimization of the growth ratio β/ω. The parameters

tabulated in Table 5.6 are chosen as references for Fixed-mass rod and Looped rod configu-

rations.

Table 5.6. Reference cases of parametric analysis
General: A = 6.74 × 10−3 γG = 0.6626 Θ = 1.682
Fixed-mass rod: r = 3.80

√
1/ω ξh = 0.9 ξc = 0.95 m = 23.101

Looped rod: r = 0.38
√

1/ω ξc = 0.02 ξh = 0.07 ξb = 0.52

Note that during the parametric analysis, when one group of parameters is varied the

remaining are kept constant. This approach helps isolating the effect of a specific set of

parameters on β/ω.

5.4.1 The Effect of Stage Parameters

It is well known that the temperature difference is the key element to determine the

onset of TA instability. In the field of fluid thermoacoustics, the stack design is crucial to

the efficiency of TAEs [4 ], [62 ]. For an ideal SSTA engine, the stage (equivalent to a one-pore

stack in fluids) has infinite heat capacity, hence it is capable of both suppressing the tem-

perature fluctuation on the surface of the stage segment (Segment 2 for both configurations)

and sustaining the spatial temperature gradient. It is intuitive that a larger temperature

difference causes a higher growth rate. A quantitative analysis conducted in this section is

in line with the intuition. The three parameters in the first group determine the strength

of the temperature difference, by Θ, and the location and length of the stage, by ξh and

ξc. In a previous study, Hao et al. [51 ] pointed out that for a standing wave configuration,

the optimal stage location ξs = (ξc + ξh)/2 is at 1/8 wavelength from the hot fixed end.
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Figure 5.4. Contour plots of the growth ratio β/ω on the Θ − ls plane. The
whole plane is divided into the stable (blue) and unstable (pink) regions by
the β/ω = 0 level, indicating the onset of TA instability. The red dashed
line represents an isoline of the stage temperature gradient, illustrating the
difference of β/ω on the same level of temperature gradient.

This observation was consistent with the conclusions drawn in fluid TA devices [25 ]1  . For a

fixed-mass rod with heavy end mass, the rod length is smaller than 1/8 wavelength, so the

optimal location for the stage is at the rod’s extremity ξ = 1 − ls/2, where ls = |ξc − ξh| is

the dimensionless stage length. However, in order to focus on the effect of the stage length

ls and the temperature ratio Θ on growth ratio, the stage location was fixed at the midpoint

of the rod ξs = 0.5 (although not the optimal location).

Differently from the standing wave configuration, the stage location is irrelevant for the

looped rod due to its periodicity. Therefore, ξc is fixed at 0.02 (close to the left boundary)

so to get a larger span of ls by varying ξh. Note that ξh cannot exceed (1 − lb + ξc),

where lb = ξb − ξh is the length of TBS; lb = 0.45 is taken. Fig. 5.4 shows the growth

ratio contours for different temperature ratios Θ and stage lengths ls. The transition from

stable (blue) to unstable (pink) regions is very evident. For a fixed stage length, a stronger

temperature difference gives rise to a higher growth ratio, which is consistent with the

phenomena observed in fluid TAEs. The red dashed line represents an isoline of temperature
1↑ In Ref. [25 ], the optimal stage location for the first mode of a closed-closed tube is 1/4 length away from
the hot end. 1/4 tube length for a half-wavelength tube is 1/8 wavelength.
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gradient [(Θ − 1)/ls]. It reveals that for stages with same temperature gradient, those

providing higher temperature difference, although longer, generate higher growth ratios.

This results illustrate that increasing the temperature difference is generally more effective

than shortening the stage. From Fig. 5.4 , another noteworthy observation is that for a short

stage (small ls), the SSTA engine becomes unstable as long as it has a non-zero temperature

difference. This result is explained by the fact that the ideal SSTA engine analyzed in this

chapter has zero structural damping, which is the main mechanism of dissipation in solids.

In the presence of damping, the critical temperature shall be larger. For a practical design

in which damping is present, the multi-stage configuration proposed in [51 ] is capable of

lowering the onset temperature.

5.4.2 The Effect of Material Parameters
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Figure 5.5. Contour plots of β/ω on A − γG plane. The scatters denote the
corresponding metals on the plane.

Compared to fluids, properties of solids can be more easily engineered. Many areas of

research including composites, smart materials, and metamaterials have explored several

avenues to achieve material properties not readily available in natural materials. Examples

include, to name a few, negative density [63 ], negative stiffness [64 ], and negative, zero, or

colossal CTE [65 ]. Realistically, one can envision these properties to play a key role in the

development of SSTA engines characterized by ultra high efficiency and more versatility in
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the application spectrum. Therefore, understanding the effect of material properties on TA

performance is a crucial step for their development.

From the dimensionless governing equations (Eqns. 5.9 -5.11 ), the two material-related

parameters left in the equations are the dimensionless CTE A = αTc, and the Grüneisen

parameter γG = αE/(ρcε). Figure 5.5 presents the contour plots of the growth ratio β/ω

on A − γG plane. The markers indicate where some typical solid materials would fall on

this plane. The reference case (A = 6.74 × 10−3, γG = 0.6626) corresponds to Aluminum.

The contour plots reveal that for the fixed-mass rod, the growth ratio is always positive and

weakly dependent on γG (at least, in the chosen range). The growth ratio increases with A.

On the contrary, for the looped rod, this same behavior occurs only when γG < 1.5, although

most of the showcased materials are located in this region. Beyond γG ≈ 1.5, for a given A,

the growth ratio decreases rapidly with γG increasing and eventually becomes negative. Note

that γG is the coefficient in front of the thermoelastic coupling term in Eqn. (5.11 ). This

term acts in the energy equation as a source caused by the irreversible entropy increase due

to stress inhomogeneity. The same term acts, in the momentum equation, as a dissipating

term that is well-known as thermoelastic damping [49 ], [66 ].2  As a result, the increase of γG
can amplify thermoelastic damping which eventually makes the overall growth rate null or,

even, negative. To enhance the TA performance, those materials with high CTE and low

γG are preferred. Generally, a high CTE is accompanied with low Young’s modulus. This

behavior is due to the fact that high CTE is due to loose chemical bonds that ultimately

prevent high modulus. As a result, a material with high CTE usually has low or moderate γG
(e.g. epoxy resin). More discussions regarding material properties are presented in Section

5.5 .

5.4.3 The effect of Heat-Transfer Parameter

The onset of TA instability is a result of energy conversion from heat to mechanical

oscillations. The transverse heat transfer taking place underneath the stage plays a crucial

role for the performance of TAEs. The ratio of the rod radius R to the thermal penetration
2↑ From an energy perspective, the decrease in kinetic energy leads to a very slow rise in mean temperature
T0. However, in this study, temperature fluctuation is the variable and the slow variation in T0 is neglected.
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depth δk is a metric for thermal coupling that has significant effects on the growth ratio. It

has been shown in earlier work that r = R/δk ≈ 2 is an optimal value for standing wave

SSTA systems (Fig. 3(b) in [51 ] and Fig. 3 in [60 ]). For traveling wave configurations, as

r < 1, the growth ratio β/ω converges to a value where the traveling wave mode dominates

the motion (Fig. 3 in [60 ]). In general, a rod with very low radius-to-length aspect ratio

is avoided so to prevent the rod being dominated by flexural mode. Therefore, to pursue a

larger R while keeping the optimal value of r, a larger δk is required as well. The thermal

penetration depth is expressed as δk =
√

2k/ω, where k is thermal diffusivity. Thus, a

material with higher thermal diffusivity is preferred in practical sense. δk is a frequency-

dependent parameter as well, so for structures with different fundamental frequency, which

is affected by rod length and end mass, the radius R should be adjusted accordingly in order

to achieve optimal performance.

5.4.4 The Effect of Unique Parameters

This subsection focuses on the discussion of parameters that are unique to each configu-

ration. They are the mass ratio m for the fixed-mass rod and the TBS end location ξb for

the looped rod.

Fixed-Mass Rod: Mass ratio

For the dimensionless representation of the fixed-mass rod, the mass ratio m is the only

parameter which controls the fundamental frequency, given the negligible effect of thermal

coupling and structural damping on frequency. To study the effect of the tip mass, the impact

of the heat transfer coefficient is isolated by choosing r = 2 (corresponding to the optimal

radius value for performance). Fig. 5.6 (a) shows the relation between the mass ratio m and

the dimensionless frequency ω. Fig. 5.6 (b) exhibits the change of growth ratio β/ω with

frequency ω. In the range of ω ∈ [0.1, π/4], the value of β/ω varies within ±3% compared to

the average in the frequency range. Therefore, we conclude that the dependency of growth

ratio on frequency is weak when both the radius and the stage location are selected at their
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Figure 5.6. (a) The relation between mass ratio and dimensionless frequency.
(b) Plot of growth ratio for different frequencies induced by variation of mass
ratio.

optimal values. It is noteworthy that, in practical designs, a low frequency is still preferable

in order to avoid small values of both δk ∝ 1/
√
ω and R for optimal performance.

The lower limit of ω is chosen as 0.1, since the corresponding mass ratio m = 100 is high

enough for practical designs. The upper limit π/4 is to keep the mass end as the optimal

stage location for all the values of ω within the range. The frequency is related to the

(dimensionless) wavelength λw of the rod by λw = 2π/ω. The wavelength determines the

optimal location of the stage by min[1, λw/8], which has impacts on β/ω, as seen in [51 ]. In

order to perform a meaningful comparison with the reference, the maximum value of ω was

chosen as π/4, corresponding to λw = 8, the shortest wavelength which makes the mass end

the optimal location for stage. To adapt to the 3-segment division of the rod developed for
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the analytical approach, we set the stage at [0.90 0.95], same as the reference case, which

is not the exact optimal location (extremity) but sufficiently close. For all the values of ω

under consideration, this location is regarded the optimal. Hence, in the frequency range

ω ∈ [0.1, π/4], fixing the stage at [0.90 0.95] excludes the effect of stage location on β/ω.

The variation of β/ω is shown in Fig. 5.6 (b) and it is exclusively due to the effect of the

frequency.

0 10.2 0.4 0.6 0.8

3

2

1

0
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Figure 5.7. The plot of β/ω vs. lb

Looped Rod: TBS Length

Figure 5.7 plots the growth ratio β/ω versus the TBS length ls of the looped rod. It is

seen that the optimal TBS length is lb = 0.45. This is consistent with the conclusion drawn

in Ref. [60 ], Fig. S1.

5.5 Instability Enhancement with Tunable-CTE Metamaterials

Section 5.4.2 revealed that in the ”γG-independent” region, a larger CTE is preferable

for both standing- and traveling-wave configurations. Polymers generally have one-order-of-

magnitude larger CTE compared to metals. The epoxy resin (see Fig. 5.5 ), as an example,

causes higher growth ratio according to the prediction of the lossless linear SSTA theory.
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However, the high viscous loss in polymers is unfavorable for SSTA devices. Besides, the

applicability of the linear theory for polymers is reduced very quickly due to their nonlinear

viscoelastic behavior enhanced by large amplitude oscillations. So, unless considering engi-

neered polymers, it is not likely that polymers could provide better performance for SSTA

devices.

Another promising type of cellular solid is made of curved bimetallic ribs with void

spaces. This two-dimensional material, first proposed by Lakes [65 ], can exhibit tunable

and colossal CTE. A three-dimensional lattice was also envisioned in a follow-up work [67 ]

by Lakes. Experiments on 3D fabricated prototypes of highly tunable CTE structures have

been conducted by Xu and Pasini [68 ]. The CTE of such a structure is given by:

α = larc
t

(α1 − α2)
φ

12 (5.64)

where larc, t, and φ are the arc length, thickness, and angle of the bimetallic rib, while α1

and α2 are the CTE for the two layers. By making the ribs more slender (a smaller aspect

ratio t/arc), the magnitude of α can become unbounded. While exhibiting high CTE, the

dissipation of such structure shall be in the same order of bulk metals. In addition, the voids

inside the structure reduce the density ρ and the specific heat cε, although they cause lower

thermal conductivity κ as well. Lower ρ and cε might lead to higher thermal penetration

depth δk, which is favorable for practical designs.

According to Eqn. (5.64 ), the effective CTE can be made negative if α1 < α2, which

physically means that the layer with higher CTE is on the convex side. The negative CTE

is a unique property for solids. Negative-CTE materials can be potentially applied in SSTA

engines.

We first numerically prove that a negative-CTE material accompanied with an inverse

temperature gradient can produce SSTA instability as well. Figure 5.8 shows the comparison

between a regular SSTA configuration (reference) and one with inverse temperature gradient

and negative CTE of the same magnitude. The growth ratio for the latter configuration is

also postive and quite close to the reference case.
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Figure 5.8. Comparison between the reference case (left column) and its
counterpart with negative CTE of same magnitude and inverse temperature
gradient (right column). Both induce TA instability with an approximately
equivalent growth ratio. To keep the notation consistent with the analytical
approach, in the ”Negative CTE” case, Tc and Th still correspond to the tem-
perature for Segment 1 and Segment 3, respectively, although in this case Tc
is higher than Th.

The negative-CTE material accompanied by the inverse temperature gradient can be

applied to the multi-stage configuration proposed in [51 ]. As the distance between adjacent

stages is reduced, the natural conduction between them might become problematic leading to

the reduction of the temperature difference in each stage (see red line in Fig. 5.9 (a)). As an

alternative, a new configuration with staggered stages (see Fig. 5.9 (b)) could be envisioned.

The direction of the temperature gradient of adjacent stages (being opposite to each other)

avoids the natural conduction between stages. However, in this configuration, the segment

underneath the inverse temperature gradient needs to have negative CTE to make positive

contributions to the TA process.In order to explore the performance of these concepts, the

two configurations were numerically simulated using a commercial finite element software

(COMSOL Multiphysics). Thirty stages with 250K temperature difference were distributed

along an aluminum rod with 1.8m length and 1mm radius. One end of the rod was fixed,

while a 0.3527kg mass was attached to the other end. The negative CTE was chosen to be

−23 × 10−6 [1/K] for case (b). Figure 5.9 (c) and (d) show the displacement at the mass end
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in configuration (a) and (b). The non-zero mean is due to the static thermal expansion of

the rod. In case (b), the contraction effects due to the negative-CTE segments cancel part

of the expansion from other segments. As a result, the mean thermal deformation is smaller

than that in case (a). Note that in case (b), while the CTE was chosen to be a negative

value, the other parameters were kept consistent with those of aluminum. In reality, a hollow

structure has lower effective density, specific heat, and Young’s modulus, so more elaborate

modeling considerations should be employed to properly account for effective properties of

materials. Nevertheless, Fig. 5.9 (b) shows that a staggered multi-stage configuration by use

of negative-CTE materials is plausible and could yield more robust SSTA devices.
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Figure 5.9. (a) Multi-stage configuration proposed in [51 ]. Natural conduction
in between stages might be detrimental to performance if the separation is
small. (b) Staggered multi-stage design with segments alternating positive and
negative CTE as well as the temperature gradient profile. In this configuration,
the temperature at the two ends of adjacent stages is identical, hence no natural
conduction takes place. (c) Displacement at the mass end in case (a). (d)
Displacement at the mass end in case (b).
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5.6 Concluding Remarks

In this Chapter, we have presented contributions that impact the science of SSTA at

three different levels

(1) A dimensionless form of the governing equations for SSTA responses of a fixed-mass

rod and a looped rod is derived and analytical approaches to solve them are proposed. Al-

though the analytical solutions are not amenable to closed form, they provide valuable infor-

mation on the form of mode shapes, and lay the foundation for the dimensionless parametric

study. (2) The analysis regarding the dimensionless parameters reveals the dependence of

the growth ratio on the stage design, the rod radius (wall heat transfer), the material prop-

erties, and the parameters unique to each configuration. (3) Possible design configurations

enlightened by the parametric study are envisioned, and some preliminary results are pro-

vided. More specific conclusions for the enhancement of SSTA performance are summarized

in the following:

1. The ratio of rod radius R to thermal penetration depth δk, which is dependent on

frequency, is a metric for thermal coupling. For a standing wave configuration, R/δk ≈

2 is optimal [51 ], [60 ].

2. For a given stage length, there exists a critical temperature difference which triggers

the onset of TA instability. The higher the temperature difference, the stronger the

TA response. For a same level of temperature gradient, higher temperature difference

is favorable.

3. For fixed-mass rods, the mass ratio m affects the operating frequency ω. In the range

ω ∈ [0.1, π/4], where the mass end is kept at the optimal location, the growth ratio

β/ω only varies 3% with frequency ω.

4. Unlike the thermal buffer tube in fluid-based thermoacoustic devices, the TBS in SSTA

engines is not expected to yield wave-scattering effect, due to the negligible temperature

dependency of sound speed [60 ]. However, for looped rods, there does exist an optional

length of the TBS. For the configuration studied in this paper (an aluminum looped
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rod under 200 K temperature difference over a 5%L stage), the optimal TBS length is

0.45L.

5. Large CTE materials are favorable for SSTA instability. However, polymers, having

CTE one order of magnitude larger than metals, are highly dissipative due to their

nonlinear viscoelastic nature. More comprehensive analyses leveraging a nonlinear

formulation would be needed in order to determine the feasibility of the use of polymers

for SSTA devices.

6. Engineering structures involving curved bimetallic ribs with voids can exhibit positive

or negative CTE with unbounded magnitude. Hollow micro-scale structures with high

CTE could be a good choice for SSTA devices due to their low dissipation and low

density and specific heat. Negative-CTE segments allow the application of inverse

temperature gradient, which can be used in multi-stage configurations. A staggered

multi-stage SSTA design is proposed in this chapter. By elaborating the staggered

distribution of positive- and negative-CTE segments (Fig. 5.8 (b)), the detrimental

effect due to the natural conduction between adjacent stages can be eliminated.

The parametric analyses conducted in this work provide new insights on the selection and

design of materials for the optimization of SSTA devices. The authors envision that with

the unique properties of solid-based engineered materials, robust SSTA devices can provide

a wider range of applications than their fluid counterparts.
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6. NUMERICAL AND EXPERIMENTAL STUDY OF F-SSTA

6.1 Introduction

In Chapter 4 , the theory of axial-mode thermoacoustic oscillations in solids was estab-

lished. By numerical means, the existence of self-sustained longitudinal TA oscillations in

solids is shown, hence providing a direct counterpart to the well-known thermoacoustic re-

sponse of fluids. Both standing and traveling axial-mode wave configurations were explored.

The latter configuration shows a higher efficiency of the energy conversion mechanism, an

observation consistent with fluid-based TA systems.

Unlike in fluids, waves in solids are polarized which means that, beyond the primary

(also known as longitudinal or axial) waves, two shear-type waves are also admissible states

of motion. The shear-type waves, which are not present in gases, produce particle motion in

a direction perpendicular to the direction of propagation. In finite elastic waveguides, shear

waves give rise to flexural type of motion. In the first part of this Chapter, we will establish

the theoretical framework of flexural solid-state thermoacoustics and discuss the existence

of unstable flexural thermoacoustic waves in a continuous bilayer beam. More specifically,

Section 6.2 focuses on a bilayer slender beam subject to two types of spatial thermal gradients.

The Type I gradient is linear and, although less practical for an experimental implementation,

it allows a fully analytical treatment of the dynamical problem hence facilitating the detailed

understanding and the physical interpretation of the phenomenon. In the Type II gradient,

the inward heat flux is a sign function of the transverse displacement. This type of gradient

is instead more amenable to an experimental implementation, but it does not allow an

analytical solution of the governing equations. Theoretical analyses of the flexural motion

of the continuous bilayer beam under these two types of heating reveal the criterion to

determine the occurrence of flexural instability. Also, the dynamics of the neutral axis

location and the mechanism behind the self-amplifying flexural solid-state thermoacoustic

(F-SSTA) oscillations will be explored in detail. The results of an experimental investigation

of the thermoacoustic response of a continuous bilayer beam will also be presented. Although

a fully self-sustained flexural motion was not observed due to the limited heating and cooling
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capacity, a visibly reduced effective damping rate was achieved, demonstrating that the

thermal-to-mechanical energy conversion process does exist in an F-SSTA system.

Interestingly, revisiting the (in)stability criterion suggests the possibility of utilizing a

layer of negative-thermal-expansion (NTE) material to significantly enhance the F-SSTA

instability. Recall that NTE materials contract upon heating, and expand upon cooling.

Despite a limited number of natural materials (e.g. ZrW2O8) possesses NTE properties

[69 ], it is the rapidly growing field of architectured materials that is offering remarkable

opportunities to achieve a broad range of coefficient of thermal expansion (CTE) spanning

all the way from positive to negative values.

In Section 6.3 , we first presented the motivation to explore NTE materials as a way to

significantly enhance F-SSTA instability, provided by the instability criterion. Then, we

perform a numerical study of the F-SSTA response of a hybrid bilayer beam in cantilever

configuration. The term hybrid refers to the particular structure of the bilayer beam that

employs both a fully solid and homogeneous layer and an architectured material layer. The

selection of an architectured material design is motivated by the need to tune the thermo-

mechanical properties and achieve NTE behavior. NTE properties are obtained by exploiting

a bi-material octet truss design. Overall, the design of the truss structure gives rise to an

effective axial NTE of the entire architectured layer. Upon heating, the effective NTE

produces an axial contraction of the architectured layer as opposed to the axial extension

of the homogeneous layer. The contrast between the behavior of the two layers results in

a pronounced thermal bending, which is beneficial for the F-SSTA instability. Numerical

results indicate that the NTE-aided F-SSTA instability is enhanced with respect to a more

traditional bilayer homogeneous design.

In Section 6.4 , a simplified one degree-of-freedom (1DOF) model is presented in order to

quantify the thermal energy budget and to better understand the thermo-mechanical process

leading to the instability. Despite its simplicity, the 1DOF model qualitatively describes the

flexural motion of a bilayer beam under the heat flux gradient, modeled as a sign function

of the transverse displacement. It is found that the motion of the 1DOF system, in the

absence of structural damping, grows linearly to infinity in a similar manner as the bilayer

beam. However, when structural damping is taken into account, the motion converges to
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a limit-cycle oscillation. The perturbation energy budgets of the 1DOF system reveals the

dependence of variation of energy accumulation on the thermoacoustic power production

and structural-damping-induced dissipation.

Before concluding this Chapter, we will discuss several topics relevant to F-SSTA sys-

tems, including a conceptual comparison between F-SSTA systems with the thermal flutter

previously observed in space applications [70 ], [71 ]. The advantages of using architectured

NTE structures compared to natural NTE materials will also be discussed. We also pro-

vided some thoughts on manufacturing the architectured NTE materials for a successful

experimental validation of such system.

6.2 F-SSTA in a Bilayer Beam

Consider the small amplitude dynamic response of a slender beam. Under Euler-Bernoulli

assumptions, the force balance of an infinitesimal beam element of arbitrary cross section in

the transverse direction is given by:

ρA∂2v

∂t2
= ∂Q
∂x

(6.1)

where A is the total area of the beam cross section, v is the transverse displacement, ρ =

(
∫

A %dA)/A is the effective density, % is the density distribution over the across section,

Q = ∂M/∂x is the shear force, M =
∫

A σydA is the bending moment and σ is the axial

stress defined as:

σ = E(ε− αT )

= E
(

− y
∂2v

∂x2 − αT
)

(6.2)

where E and α are the Young’s modulus and the linear thermal expansion coefficient, ε =

−y(∂2v)/(∂x2) is the axial strain and T is the temperature fluctuation. y is the transverse

coordinate defined from the neutral axis of the cross section.

In this study, we consider the case of a beam having a rectangular cross section formed

by two adjoined layers of different material having the same width b and height h/2 (Fig.
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6.1 (b)). We assume an ideal interface between the two layers hence discard the possibility

of relative slip.

Layer 1

Layer 2

（b） （c）
Type I: Type II:

Heating Region

Cooling Region

（d）

Heating Region

Cooling Region

（e）

A

A

A - A

（a）

Length:

Figure 6.1. (a) and (b) Basic notation and local coordinate frame for the
bilayer beam. (c) Top and bottom surfaces of the cross section experience
heat flux (positive if inward). Two types of thermal loads are investigated,
namely q = Bv and q = Qsgn(v). (d) and (e) The beam moving from heating
region to cooling region under (d) Type I: q = Bv and (e) Type II: q = Qsgn(v)
thermal loads. The red and blue arrows indicate surface heating and cooling,
respectively.
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The flexural motion of the beam is governed by:

ρh
∂2v

∂t2
= ∂2m

∂x2 (6.3)

where the effective density ρ = (ρ1 + ρ2)/2, m is the moment per unit width expressed as:

m =
∫ h0

−h1
σ1ydy +

∫ h2

h0
σ2ydy (6.4)

where σ is the axial stress defined in Eqn. (6.2 ). For the i − th layer (with i=1,2), the axial

stress is given by:

σi = Ei

(
− y

∂2v

∂x2 − αiTi

)
, (i = 1, 2) (6.5)

Note again that y is a local coordinate defined at the neutral axis (Fig. 6.1 (a) and (b)) which,

as clarified in the following, can change its position due to the effect of the thermoelastic

coupling. In Eqn. (6.5 ), the first term on the right hand side represents the mechanical

stress while the second term represents the thermoelastic stress. h0 in Eqn. (6.4 ) indicates

the location of the neutral axis on the local coordinate system y (Fig. 6.1 (a) and (b)). The

magnitude of h0 denotes the distance between the neutral axis and the interface between the

two layers. h1 and h2 are related to h0 by:

h1 + h0 = h

2 (6.6)

h2 − h0 = h

2 (6.7)

The neutral axis location h0 is determined by imposing a vanishing total axial force:

∫ h0

−h1
σ1dy +

∫ h2

h0
σ2dy = 0 (6.8)

which yields:

h0 = he − AIT
h/2vxx(n+ 1) (6.9)
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where he = h(n − 1)/4(n + 1) denotes the neutral axis location in a purely elastic bilayer

beam with no thermoelastic coupling, n = E1/E2, and vxx is a compact notation for ∂2v/∂x2.

The second term in Eqn. (6.9 ) shows the effect of thermoelastic coupling. AIT is given by:

AIT = nα1

∫ h0

−h1
T1dy + α2

∫ h2

h0
T2dy (6.10)

Equation (6.9 ) shows that, unlike its elastic counterpart, the location of the neutral axis

of a beam in presence of thermoelastic coupling depends on the temperature fluctuations in

the cross section. Consequently, the location of the neutral axis is a function of both time t

and spatial x coordinates.

The fluctuating temperature field in the 2D beam is governed by:

ρicεi

∂Ti

∂t
+ EiαiT0

∂ε

∂t
= ki

(
∂2Ti

∂x2 + ∂2Ti

∂y2

)
(6.11)

where ki and cεi are thermal conductivity and specific heat at constant strain. The mean

temperature T0 is assumed as the ambient temperature set at 293.15[K]. The second term on

the left-hand side is the heat source induced by the thermoelastic coupling, as a result of the

local heat flux caused by the stress inhomogeneity [66 ]. According to thermodynamic laws,

this local heat flux leads to an entropy increase, reflected in a (very slow) rise of the mean

temperature T0. However, in this study, only the fluctuating temperature is considered and

the slow variation of T0 is neglected. From a dynamic perspective, this irreversible process

dissipates kinetic energy and induces a slow decay of the response that is well known as

thermoelastic damping (TED) [49 ]. Note that although coupling the thermal and elastic

fields induces the existence of TED, this quantity differs from the structural damping which

is an intrinsically dissipative mechanism in solids. Without loss of generality, structural

damping is not included in the theoretical analyses conducted in this study because its effect

on the dynamics is well-known. However, its effect is observed in the experiments. A more

detailed discussion can be found in Section 6.2.3 .

The thermoacoustic response of a cantilever bilayer beam subject to two different types of

surface heating will be considered (Fig. 6.1 (c)). Type I is q = Bv, where q is the inward heat
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flux on the top (y = h2) and bottom (y = −h1) surfaces, and B is a constant. This type of

heating represents a linear thermal gradient anchored in space (with a transverse coordinate

Y in spatial frame, see Fig. 6.1 (d)). We assume that the equilibrium position of the beam,

v = 0, is aligned with the Y = 0 location in the absolute spatial frame. As a result, the beam

experiences a linearly varying rate of heating (cooling) as it vibrates in the positive (negative)

Y domain. Type II is q = Qsgn(v), where Q is a constant value and sgn() is the sign function.

This type of surface heating represents an abrupt change of heat flux in space as the beam

moves through the upper half plane towards the lower half plane. Note that the Euler-

Bernoulli theory assumes that the flexural displacement v is homogeneous across the cross

section, while the stress and the temperature in presence of thermoelastic coupling are not.

It follows that, when taking these two types of heating into consideration, once the geometric

center of the cross section is positively (negatively) displaced, i.e. v > 0 (v < 0), the whole

cross section experiences surface heating (cooling), as shown in Fig. 6.1 (d) and (e). The

analysis for Type I is based on a modal approach which allows developing useful analytical

expressions to understand the physical mechanisms governing the coupled dynamic response

of the system. Type II is analyzed instead by using time-domain numerical integration. It

confirms the existence of the self-amplifying mechanism due to F-SSTAs. The time evolution

of neutral axis location h0 associated with the flexural instability is observed and analyzed.

Under the two types of thermal loads, we adopted different assumptions for (1) the neutral

axis location, (2) the interfacial thermal resistance, and (3) the thermoelastic damping. The

basis for these assumptions will be articulated in details in the following. The assumptions

corresponding to the two thermal loads are listed below:

1. Type I thermal load

(a) Time-invariant neutral axis location:

i. Both infinite and zero interfacial thermal resistance are considered. These

two cases are referred to Case 1 and Case 2 respectively in Sections 6.2.1 and

6.2.2 .

ii. Both cases with and without thermoelastic damping (w/. and wo/. TED)

are considered.
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(b) Time-varying neutral axis location:

i. Both infinite and zero interfacial thermal resistance (Case 1 and Case 2) are

considered.

ii. Negligible thermoelastic damping (wo/. TED).

2. Type II thermal load

(a) Time-varying neutral axis location:

i. Zero interfacial thermal resistance (Case 2).

ii. Negligible thermoelastic damping (wo/. TED).

6.2.1 Type I: q = Bv Heating

This thermal load case is selected to obtain analytical solutions capable of describing

the dynamics of the F-SSTA bilayer beam while revealing the role of the design parameters

on both the dynamic response and the occurrence of the instability. We will first assume

a time-invariant neutral axis location h0 in section 6.2.1 , which allows a relatively compact

and quantitatively accurate estimate of the growth rate and natural frequency. Then in

section 3 , we will remove the constant h0 assumption and explore the dynamics of the

neutral axis under thermoelastic coupling. The latter assumption, despite its modeling and

computational complexity, provides a more accurate representation of the underlying physics.

Time-Invariant Neutral Axis Location (Constant h0)

In this section, we assume h0 = he where he is a constant value denoting the location

of the neutral axis in a bilayer beam with no thermoelastic coupling. This is a common

assumption in most studies on thermal induced vibrations [70 ], [72 ]–[74 ] and implies that

the second term in the right-hand side of Eqn. (6.9 ) is neglected.

Under this assumption, equation (6.3 ) becomes:

ρh
∂2v

∂t2
+D

∂4v

∂x4 + ∂2mT

∂x2 = 0 (6.12)
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where D is flexural rigidity expressed as:

D = 1
3E2

[
n
(
h3

0 −
(
h0 − h

2
)3
)

+
(
h0 + h

2
)3

− h3
0

]
(6.13)

The thermal moment per unit width mT is expressed as:

mT = E2

(
nα1

∫ h0

−h1
yTdy + α2

∫ h2

h0
yTdy

)
(6.14)

The assumed q = Bv heating implies the following boundary conditions for the temper-

ature on the free surfaces:

− k2
∂T2

∂y

∣∣∣∣∣
y=h2

= −Bv (6.15)

− k1
∂T1

∂y

∣∣∣∣∣
y=−h1

= Bv (6.16)

Assume the variables are harmonic in time so that () = (̂)eiλt, where the complex fre-

quency λ = ω− iβ, i is the imaginary unit, β is the growth/decay rate, and ω is the angular

frequency. (̂) denotes quantities in modal space. By neglecting the heat conduction in x

(since the heat flows mainly in the transverse direction), Eqn. (6.11 ) becomes:

(iλ)T̂i = ki

ρicεi

(
∂2T̂i

∂y2

)
+ γiT0y(iλ)∂

2v̂

∂x2 (6.17)

where γi = Eiαi/(ρicεi) is the Grüneisen parameter. Note that neglecting the axial diffusion

term is a very common simplification used in thermoacoustics [70 ] because the axial derivative

is on the order of 1/λw, much smaller than the transverse derivative which is on the order of

1/δk. λw and δk are the wavelength and the thermal penetration depth, respectively. This

assumption is due to the large difference in scale between 1/λw and 1/δk, so it is reasonable

for solids as well.

Equation. (6.17 ) can be solved for T̂ , yielding:

T̂i = Ccos
(√

−2i
δki

y
)

+ Ssin
(√

−2i
δki

y
)

+ γiT0y
∂2v̂

∂x2 (6.18)
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where C and S are coefficients to be determined based on the boundary conditions. Con-

verting Eqn. (6.14 ) into modal space and substituting T̂i from Eqn. (6.18 ) yields:

m̂T = cAv̂ + cE v̂xx (6.19)

where cA and cE are complex coefficients and their real and imaginary parts are determined

by the constants C and S.

In the following, the two cases of different interfacial thermal conditions: Case 1 (infinite

thermal resistance) and Case 2 (zero thermal resistance) are analyzed separately. Note that

a realistic interface has finite thermal resistance, so the two cases represent the upper and

lower bounds of a realistic case.

Case 1: Infinite interfacial thermal resistance

Assuming that the thermal resistance at the interface is infinitely large, no heat flux is

allowed at the interface, therefore:

∂T2

∂y

∣∣∣∣∣
y=h0

= ∂T1

∂y

∣∣∣∣∣
y=h0

= 0 (6.20)

By applying the counterpart of Eqns. (6.15 ), (6.16 ) and (6.20 ) in modal space, the temper-

ature field in each layer is found as:

T̂i = −B

ki

δki√
−2i

cos
[√

−2i
δki

(h0 − y)
]

sin
[√

−2i
δki

h
2

] v̂ + γiT0

y − δki√
−2i

sin
[√

−2i
δki

(y − h0 ± h
4 )
]

cos
[√

−2i
δki

h
4

]
v̂xx (6.21)
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where the ± sign is replaced by a plus sign for layer 1 (i = 1) and a minus sign for layer 2

(i = 2). The real and imaginary parts of cA and cE in Eqn. (6.19 ) for this case are expressed

as:

Re[cA] =
[
E1α1

δ3
k1

4k1
f−(η1) − E2α2

δ3
k2

4k2
f−(η2)

]
B (6.22)

Im[cA] =
[
E1α1

δ3
k1

4k1

(2h1

δk1
− f+(η1)

)
− E2α2

δ3
k2

4k2

(2h2

δk2
− f+(η2)

)]
B (6.23)

Re[cE] = E1α1γ1T0

[1
3(h3

0 + h3
1) + δ3

k1
2 f−(η1)

]
+ E2α2γ2T0

[1
3(h3

2 − h3
0) + δ3

k2
2 f−(η2)

]
(6.24)

Im[cE] = E1α1γ1T0
δ3
k1
2
(
η1 − f+(η1)

)
+ E2α2γ2T0

δ3
k2
2
(
η2 − f+(η2)

)
(6.25)

where

ηi = h

2δki

(6.26)

f+(z) = sin(z) + sinh(z)
cos(z) + cosh(z) (6.27)

f−(z) = sin(z) − sinh(z)
cos(z) + cosh(z) (6.28)

where z is a dummy variable.

Case 2: Zero interfacial thermal resistance

Assuming that the thermal resistance at the interface is zero, heat is perfectly conducted

and temperature is continuous at the interface, therefore:

k2
∂T2

∂y

∣∣∣∣∣
y=h+

0

= k1
∂T1

∂y

∣∣∣∣∣
y=h−

0

(6.29)

T2|y=h+
0

= T1|y=h−
0

(6.30)

By applying the counterpart of Eqns. (6.15 ), (6.16 ) and (6.30 ) in modal space, the coefficients

Ci and Si are found as:

[C1, S1, C2, S2]T = M−1
c (M0v̂ +M2v̂xx) (6.31)
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where the superscript T denotes matrix transpose and:

Mc =



0 0 −sin
(√

−2i
δk2

h2

)
cos
(√

−2i
δk2

h2

)
sin
(√

−2i
δk1

h1

)
cos
(√

−2i
δk1

h1

)
0 0

cos
(√

−2i
δk1

h0

)
sin
(√

−2i
δk1

h0

)
−cos

(√
−2i
δk1

h0

)
−sin

(√
−2i
δk1

h0

)
−k1

√
−2i
δk1

sin
(√

−2i
δk1

h0

)
k1

√
−2i
δk1

cos
(√

−2i
δk1

h0

)
k2

√
−2i
δk2

sin
(√

−2i
δk2

h0

)
−k2

√
−2i
δk2

cos
(√

−2i
δk2

h0

)


MT

0 =
[
δk2√
−2i

B
k2

− δk1√
−2i

B
k1

0 0
]

MT
2 =

[
− −δk2√

−2iγ2T0 − −δk1√
−2iγ1T0 (γ2 − γ1)T0h0 (k2γ2 − k1γ1)T0

]
(6.32)

Thus, cA and cE can be obtained by performing the integrals in Eqn. (6.14 ).

Once converted to modal space, the momentum equation (Eqn. (6.12 )) is expressed as:

−ρhλ2v̂ = ∂2m̂

∂x2 (6.33)

Knowing cA and cE, Eqn. (6.33 ) becomes:

−ρhλ2v̂ + (D + cE)∂
4v̂

∂x4 + cA
∂2v̂

∂x2 = 0 (6.34)

A possible solution to the fourth order ODE in Eqn. (6.34 ) has the form v̂ = eiκjx,

where κj (with j = 1, 2, 3, 4) is the wavenumber obtained from the roots of the characteristic

equation:

(D + cE)κ4 − cAκ
2 − ρhλ2 = 0 (6.35)

The complete solution of v̂ to Eqn. (6.34 ) is:

v̂ =
4∑

j=1
Cjeiκjx (6.36)
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The mode shape v̂ satisfies cantilever beam boundary conditions:

v̂(0) = 0 (6.37)
∂v̂

∂x
(0) = 0 (6.38)

Q̂(L) = −(D + cE)∂
3v̂

∂x3 (L) − cA
∂v̂

∂x
(L) = 0 (6.39)

M̂(L) = −(D + cE)∂
2v̂

∂x2 (L) − cAv̂(L) = 0 (6.40)

Substituting Eqn. (6.36 ) into the above boundary condition equations, they can be rewritten

in a more compact form as:

det[Mκ] = 0 (6.41)

where the (i, j)th element in the 4x4 matrix Mκ is given by:

M(1, j) = 1 (6.42)

M(2, j) = κj (6.43)

M(3, j) = κj[ − (D + cE)κ2
j + cA]eikjL (6.44)

M(4, j) = [ − (D + cE)κ2
j + cA]eikjL (6.45)

Equation (6.41 ) can then be solved for the complex frequency λ = ω − iβ.1  

Numerical results

Consider a cantilever beam where layer 1 is made out of copper and layer 2 is made out

of aluminum. The beam is subject to an inward heat flux q = Bv applied at both the top

and bottom surfaces. The relevant coefficients and parameters are listed in Table 6.1 .

The application of the method described above yields the complex frequency λ for both

Case 1 and Case 2. The corresponding results are 1)λc1w = 6.6147 − 0.0868i[rad/s] and 2)

λc2w = 6.6104 − 0.0388i[rad/s]. Note that the c in the subscripts indicates “constant h0”;

the 1 and 2 correspond to Case 1 and Case 2 respectively; and the w denotes “with TED”.
1↑ An alternative approach to find λ is to discretize Eqn. (6.34 ) in x and then solving the corresponding
eigenvalue problem.
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Table 6.1. Material properties and relevant parameters.
Layer 1 Layer 2

E1 = 110[GPa] ρ1 = 8960 [kg/m3] E2 = 70[GPa] ρ2 = 2700 [kg/m3]
α1 = 17 × 10−6[K-1] k1 = 400 [W/(mK)] α2 = 23 × 10−6[K-1] k2 = 238 [W/(mK)]
cε1 = 385 [J/(kgK)] cε2 = 900 [J/(kgK)]

Dimensions Heating parameter
h = 1/8[inch]= 3.175[mm] L = 4.5[ft]= 1.37[m] B = 106[(W/m3)]
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According to the λ = ω − iβ notation, in both cases we get positive growth rates β, which

indicates that the motion is being amplified exponentially. Remember that the structural

damping, which counteracts the exponential growth, is not accounted for in this analyses.

Damping ratio of metals is generally on the order of 10−3 [75 ].

The coefficient cE can be viewed as a modification to the flexural rigidity due to the

adiabatic thermoelastic coupling. The imaginary part of cE, expressed as Eqn. (6.25 ), is

positive regardless of the value of ηi, because the inequality η − f+(η) > 0 always holds

for η > 0. This result indicates that the modified flexural rigidity (D + cE) is complex

with a small positive imaginary part, which leads to a slowly decaying response in time.

This is the well-known thermoelastic damping effect, caused by stress inhomogeneities in

the vibrating beam [66 ]. We can neglect the thermoelastic damping in order to evaluate

its effect on the growth rate by setting γi = 0 in the energy equation (Eqn. (6.17 )). The

resulting eigenvalues λ for both cases are 1) λc1wo = 6.6054 − 0.0871i [rad/s] and 2) λc2wo =

6.6102 − 0.0396i [rad/s]. Note that the wo denotes “without TED”. Comparing these results

with those obtained when keeping the thermoelastic coupling term in the energy equation, it

is observed that β is slightly larger when the thermoelastic damping is neglected. Therefore

it can be concluded that the thermoelastic coupling term in the energy equation has a

small effect on the mechanical damping. In addition, if the heat flux (B) is large enough,

the thermoelastic damping becomes negligible compared to the strong exponential growth

caused by thermoacoustic instability.

The additional term associated with cA accounts for the effects of the external heating

by the coefficient B. Similar to the thermoelastic damping coefficient cE, cA is also complex,

hence it is capable of inducing either a decaying or a growing response depending on the sign

of Im[cA]. A negative Im[cA] produces motion amplification. It is seen by Eqn. (6.23 ) that

the sign of Im[cA] depends on the material properties of the two layers and on the sign of

the coefficient B. To achieve a more intense thermoacoustic growth, a negative Im[cA] with
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a larger absolute value is preferred. If the beam is thin compared to the thermal penetration

thickness, that is ηi � 1, f+(ηi) ≈ ηi, hence Im[cA] is approximately equal to:

Im[cA] ≈
[
E1α1

δ3
k1

4k1

(2h1

δk1
− η1

)
− E2α2

δ3
k2

4k2

(2h2

δk2
− η2

)]
B

=
[
E1α1

δ2
k1

4k1

(
h

2 − 2h0

)
− E2α2

δ2
k2

4k2

(
h

2 + 2h0

)]
B

= α1

2ω(ρ1cε1)
E1E2

E1 + E2
h
[
1 −

(
α2

α1

)(
ρ1cε1

ρ2cε2

)]
B (6.46)

Therefore, the following inequality is necessary to achieve flexural thermoacoustic instability:

H1
E1E2

E1 + E2

[
1 − H2

H1

]
B < 0 (6.47)

where the ratio

Hi = αi

(ρicεi)
(6.48)

is a measure of the rate of linear expansion of a thin material layer in response to a certain

amount of heat being provided.

Equation (6.47 ) shows that for conventional materials whose thermal and mechanical

properties are positive (Hi > 0 and Ei > 0), the layer with higher ratio H should coincide

with the hot region ([1 − H2/H1]B < 0), so that both the thermal bending and the phase

lag between heating/cooling and deformation work together to amplify the motion.

As depicted in Fig. 6.1 (d) and (e), we consider the hot region being in the upper half

plane (B > 0, i.e. q > 0 when v > 0), then the top layer (layer 2) requires larger thermal

expansion coefficient α and lower heat capacity ρcε compared to the bottom layer. A lower

heat capacity causes faster temperature changes when heated/cooled and a larger thermal

expansion coefficient causes larger deformations induced by a given temperature fluctuation.

A more detailed discussion on these aspects can be found in Section 6.2.2 . Clearly, if the

two layers are made out of the same material, Im[cA] becomes zero by Eqns. (6.22 -6.23 ).

Thus, a single layer beam being heated at the same rate on both sides cannot sustain

thermoacoustically induced motion.
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Table 6.2. Values of λ calculated from Eqns. (6.34 ) and (6.51 ) with constant
and varying h0, respectively. Case 1 and 2 indicate bilayer beams having ei-
ther infinite or zero interfacial thermal resistance, respectively. For the case of
constant h0, the eigenvalues λ calculated either with (w) or without (wo) ther-
moelastic damping (TED) are tabulated in the second row. Results show that
the effect of TED is essentially negligible. The last row shows the eigenvalues
λ for the case including both varying h0 and negligible TED. These results are
very close to those calculated from constant h0.

λ Case 1 Case 2
Constant h0

w/. Eqn. (6.34 )
λc1w =6.6147-0.0868i
λc1wo =6.6054-0.0871i

λc2w =6.6104-0.0388i
λc2wo =6.6102-0.0396i

Varying h0
w/. Eqn. (6.51 ) λv1wo =6.6053-0.0870i λv2wo =6.6100-0.0396i

In summary, an asymmetric temperature distribution achieved via the use of an hetero-

geneous cross section can induce a non-zero thermal moment mT capable of producing either

a growing or a decaying response. This observation is consistent with the conclusions drawn

in other studies on thermally induced vibrations [70 ], [72 ]–[74 ].

By comparing the growth rate β of the two cases studied in previous sections, one can

conclude that the heat transfer at the interface between the two layers is actually detrimental

to the onset of the instability. This is due to the fact that the interfacial heat transfer tends

to smear out some of the temperature asymmetry.

Time-Varying Neutral Axis Location (Varying h0)

In this section, we remove the previous assumption of stationary neutral axis and we

consider a more physically accurate condition where the location of the neutral axis can vary

according to Eqn. (6.9 ). Note this case, also the flexural rigidity D is no longer a constant

but it depends on x. The procedure to solve the equation is conceptually equivalent to

that described in Section 6.2.1 . Remembering that the thermoelastic damping effect is small

when B is large (see first row of Table 6.2 ), we can neglect the thermoelastic coupling term

by setting γi = 0 in order to simplify the analytical derivation.
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The temperature fluctuation T̂ and the integral quantity ÂIT are determined by Eqn.

(6.17 ) with γi = 0. Since the heat flux q̂ is proportional to v̂, ÂIT can be expressed as

ÂIT = cT v̂. Thus:

h0 = he − cT
h/2(n+ 1)

v̂

v̂xx
(6.49)

By Eqn. (6.5 ), σi is a linear combination of v̂ and v̂xx. From Eqn. (6.4 ):

m =
∫ h0

−h1
σ1ydy +

∫ h2

h0
σ2ydy = −

(
φ1v̂ + φ2v̂xx + φ3

v̂2

v̂xx

)
(6.50)

where φj (with j = 1, 2, 3) are constants determined by h0 and the integral in Eqn. (6.50 ).

Substituting Eqn. (6.50 ) into Eqn. (6.33 ) yields:

−ρhλ2v̂ + φ1
∂2v̂

∂x2 + φ2
∂4v̂

∂x4 + φ3
∂2(v̂2/v̂xx)

∂x2 = 0 (6.51)

Since h0 = h0(x) is x-dependent, Eqn. (6.51 ) is a nonlinear equation homogeneous in

terms of v̂ and its derivatives. This indicates that the mode shapes v̂ in modal space are

scale-independent, because linearity is sufficient but not necessary for homogeneity.

Equation (6.51 ) can be discretized on x and solved by using a nonlinear algorithm for root

extraction. The spatial derivatives are approximated by a second order central difference

scheme. At each boundary, two ghost points are assumed, whose displacements are extrap-

olated according to a fourth order polynomial in order to ensure the boundary conditions.

The eigenvalues λ and the mode shapes v̂ are obtained for the same two cases considered in

Section 6.2.1 . The calculated values of λ for the two cases are 1) λv1wo = 6.6053 − 0.0870i

and 2) λv2wo = 6.6100 − 0.0396i, both are very close to the results in Section 6.2.1 . The v

in the subscripts denotes “varying h0” Table 6.2 summarizes the results calculated through

Eqn. (6.34 ) and (6.51 ). Figure 6.2 shows the mode shape v̂, the neutral axis location h0,

and the effective flexural rigidity Deff = −m̂/v̂xx. The black solid lines in the mid and right

columns in Fig. 6.2 indicate the reference values of the neutral axis location he and the flex-

ural rigidity De for an elastic beam without thermoelastic coupling. Results show that both

h0 and Deff resemble their elastic counterparts near the fixed end of the beam, while they
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deviate considerably near the free end. The imaginary part of Deff being negative, similar

to a negative Im[cA] described in Section 6.2.1 , is another driver to achieve positive β, that

is a growing motion.
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Figure 6.2. Mode shape |v̂|, real (blue circles) and imaginary (orange dots)
parts of neutral axis location h0 and effective flexural rigidity Deff for (a) Case
1. Infinite interfacial thermal resistance, and (b) Case 2. Zero interfacial
thermal resistance. The black solid lines in h0 and Deff plots are the neutral
axis location and flexural rigidity of a pure elastic beam as references.

6.2.2 Type II: q = Qsgn(v) Heating

In this section, we consider a heating configuration which is more practical from an

experimental standpoint. As depicted in Fig. 6.1 , we consider a hot region in the upper

half plane (q = +Q when v > 0), and a cold region in the lower half plane (q = −Q

when v < 0). As soon as the geometrical center of the cross section is positively (negatively)

displaced, the whole cross section experiences uniform surface heating (cooling) rate Q. This

configuration, shown in Fig. 6.1 (e), results in a non-harmonic heat flux so that the modal

approach cannot be applied. Therefore, Eqn. (6.3 ) was solved by direct time integration

with a forward-time-central-space (FTCS) scheme. The space was discretized in the same

150



fashion as described in Section 3 . A fourth order Runge-Kutta scheme with adaptive time

step was adopted for the time integration. Note that according to Eqn. (6.9 ), h0 might

become singular in correspondence to a zero local curvature value, that is vxx = 0. While

this scenario is physically possible, as it indicates a local change of concavity, it is numerically

challenging. Hence, in order to overcome this numerical issue, a continuous filter g is imposed

on (h0 − he)/h. The filter is given by:

g
(
h0 − he

h

)
= ψtanh

( 1
ψ

h0 − he

h

)
(6.52)

Note that g(z) ≈ z when z is small and g(z) ≈ ψ when z is large. z is a dummy variable.

Figure 6.3 shows the trend of this function for different values of the parameter ψ. In order

to avoid the numerical instability in our study, we choose ψ = 10000 to approximate the

case of zero curvature when h0 approaches the singularity (h0 = ∞).
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Figure 6.3. The trend of the function g(z) parameterized in ψ. The dashed
line shows that g(z) ≈ z when z is small.

By solving Eqn. (6.3 ), we can evaluate the time evolution of h0, vxx, v,m and of the

cross-sectional averaged thermal strain εT = α〈T 〉 over each layer. In the latter expression,

the angle brackets indicate layer-cross-sectional averaging (see also online supplementary

material). Results show that 1) the motion of the beam is self-amplifying, and 2) a singularity
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in h0 (i.e. a zero-curvature point) exists and propagates towards the fixed end. These two

points are closely related to each other and are the result of two factors: 1) the existence

of a phase lag between the thermal-induced deformation and the thermal perturbation, and

2) the differential expansion and contraction of each layer. The time evolution of εT (see

supplementary video) shows that the thermal strain of the top layer increases (decreases)

faster than the bottom layer when the beam is heated (cooled), thus insuring that the thermal

strain of the top layer is larger (smaller) when the beam is moving downward (upward). This

situation occurs because the top layer (here assumed to be aluminum) has a larger thermal

expansion coefficient and a lower heat capacity so it reacts faster to the heat stimulus than

the bottom one (here assumed to be copper). This observed behavior is consistent with the

discussion on Eqn. (6.47 ) in Section 6.2.1 .

Figure 6.4 shows the time history of the transverse displacement of the beam’s midpoint

numerically calculated via time integration. Differently from the q = Bv type heating, the

motion grows linearly instead of exponentially. This is a clear evidence of a growing motion

under spatial thermal gradient.
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Figure 6.4. Time history of the transverse displacement at the midpoint of the
beam under q = Qsgn(v) type heating.

Figures 6.5 (I-IV) show the four fundamental states occurring over each selected quarter

of a period, that qualitatively explain the mechanism of flexural thermoacoustic response
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in the bilayer beam. In the first quarter of period (Fig. 6.5 (I)), the beam is warping

upward while moving downward. The thermal strain εT of the top layer is larger than that

of the bottom one, which makes the free end of the beam deflect downwards as a result of

thermal bending. This effect changes the concavity of the beam, inducing a sign change of

curvature and a singularity of h0 at the same location. When the beam is in the upper half

plane, the heating increases the difference between the elongation of the two layers, thus

further increasing the bending of the beam downward. This mechanism explains why the

singularity of h0 propagates towards the fixed end (as visible in the supplementary material

video). The downward thermal bending accelerates the downward elastic motion (compare

the two rows in Fig. 6.5 (I)), hence amplifying the motion. In the second quarter of period

(Fig. 6.5 (II)), the beam is warping downward and moving downward as well. Although

the beam is cooled since it is in the lower half plane, the temperature fluctuation, as well as

εT , is still positive due to the phase delay with respect to heating. Therefore, there is still

a thermally-induced downward bending which accelerates the original downward motion.

However, in this quarter, the beam is elastically warping downward as well, so the additional

thermally-induced downward bending does not change the sign of the curvature, but rather

increases its absolute value. As a result, in this period, there is no singularity on h0. The

motion in the third and fourth quarters are analogous to the first and second, but the two

layers contract instead of expanding.

An interesting observation can be drawn concerning the opportunities opened by SSTA

devices. For all the configurations discussed above, the materials used for the two layers were

assumed to have positive properties, i.e. Hi > 0 & Ei > 0, and satisfy Eqn. (6.47 ) by ensuring

[1−H2/H1]B < 0. In recent decades, the engineering community has made much progress in

the discovery and development of engineered materials capable of unusual effective dynamic

properties such as, for example, negative density [63 ], negative modulus [64 ], and negative

thermal expansion coefficient (CTE) [65 ], [67 ], [68 ]. Assuming the availability of materials

having such unusual properties, we could conceive a bilayer beam capable of satisfyingH1 < 0

or E1E2/(E1 + E2) < 0. For example, assuming the top layer still made of aluminum while

replacing the bottom layer with a material exhibiting negative CTE (i.e. α1 < 0), Eqn.

(6.47 ) could still be satisfied. With this combination of materials, the thermally-induced
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Figure 6.5. Conceptual schematic summarizing the flexural SSTA mechanism.
In a given period of oscillation, the beam motion can be divided into four
phases. (I, III) In the first (third) phase, the beam moves down (up), warps
up (down) and is heated (cooled). The top layer expands (contracts) more than
the bottom one does. Thus the beam under the effect of heat, bends down (up)
starting from the free end, which (1) causes a sign change of the curvature, and
(2) accelerates the downward (upward) motion. (II, IV) In the second (fourth)
period, the beam moves and warps down (up), and is cooled (heated). In this
phase, the temperature fluctuation, hence the thermal strain, is still positive
(negative) due to the phase delay between temperature and heat flux. The top
layer expands (contracts) more than the bottom one does. Thus, the beam
under the effect of heat, bends down (up) further from the free end, which
does not change the concavity along the beam but accelerates the downward
(upward) motion. This schematic explains the self-amplifying mechanism of
flexural SSTAs.

bending would be increased because the degree of thermal bending depends on the difference

between the thermally-induced axial deformation of the two layers. Obviously, this difference

increases if, during heating, one layer is expanded while the other is contracted. We merely

note here that the use of a solid state medium as a basis for TA devices provides an excellent

opportunity for tailoring the dynamic behavior and the resulting performance by leveraging

engineered materials.
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6.2.3 Experimental Validation

In order to validate the concept of F-SSTAs as well as the corresponding modeling frame-

work, we performed an experimental investigation. The experimental sample consisted in a

bilayer beam made of a layer of Aluminum 6061 and a layer of Copper 110. The dimensions

of each strip were 1/2 inch wide, 1/16 inch thick and 4.5 feet long (Fig. 6.6 ). The two

metallic strips were combined in a bilayer beam by means of riveted joints spaced 2 inches

along the axial direction (Fig. 6.6 ). Two rivets were used in the width direction. The beam

was oriented in a vertical position, clamped at one end, and with a 2 lbs mass attached to

the free end. The mass was applied in order to lower the fundamental frequency ω of the

beam so to increase the time the beam is exposed to either heating or cooling. Note that a

larger thermal penetration depth δk ∝
√

1/ω is in favor of the cross-sectional temperature

variation subject to surface heating. The weight of the mass also limits the static thermal

deformation of the beam which results from the differential expansion of the two layers. Two

infrared (IR) lamps having a nominal power output of 1500 Watts were used as heat source.

The lamps were located on the same side of the aluminum strip, for the argument following

Eqn. (6.47 ). The dynamic response was measured via a Laser Doppler Vibrometer (LDV)

at a point located 20 inches from the end mass.

The perturbation needed to initiate the oscillatory response was provided by displacing

the free end of the beam by approximately 10 inches. When the beam enters the heating

region, it absorbs heat radiated by the IR lamps; when it leaves the heating region, it cools

down by natural convection. Therefore, the combination of the heating region and the natural

convection cooling form a spatial thermal gradient. Although less effective in creating strong

thermal gradients, natural convection was preferred to forced convection because the latter

might induce aerodynamic loading possibly alter the TA response of the beam.

A few considerations should be made comparing the experimental setup with the nu-

merical model. The transition through the hot-cold region at the interface is not as sharp

as considered in the numerical simulations. This is due to heat escaping the heating region

through the opening realized to allow the oscillatory motion of the beam. Also, note that the

heat source is fixed in space, so only when the equilibrium position of the beam is exactly
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Figure 6.6. A notional schematic of the experimental setup. The cantilever
beam is made of one layer of Aluminum and one of Copper joined together
by an array of rivets spaced 2 inches in the axial direction (inset photo). Two
1500 watts infrared (IR) lamps were used as heat source. A mass was applied
at the free end to lower the fundamental resonance frequency of the beam and
to counteract its static thermoelastic deformation. The response of the beam
was measured in terms of the transverse displacement of the point located 20
inches from the free end. The dynamic response is measured by an LDV.

aligned with the interface between the heating and the cooling regions, the physical thermal

gradient would match the theoretical gradient of Type II thermal load. If equal amount of

heating and cooling could be provided during one cycle, as assumed in the theory derived

in Section 6.2 , the equilibrium position of the beam would always coincide with the straight
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configuration. However, in practice, the cooling does not balance exactly the heat absorbed,

hence producing an increase of the average temperature of the beam. The most direct result

of this average temperature increase is a static deformation of the beam due to the differ-

ential thermal expansion of the two layers. The end mass partially helps counteracting this

static thermal deformation.

The experimental data were acquired under three different conditions: (1) lamps off,

(2) lamps on with the beam moving only within the hot region, and (3) lamps on with

the beam moving across the thermal gradient. Case (1) captures the response of the beam

at room temperature and in presence of structural damping. Case (2) corresponds to the

oscillatory motion of the beam occurring always in a hot environment, which leads to stronger

thermoelastic damping effect. The decay in this case should be larger than Case (1). Recall

that, as discussed in Sections 6.2.1 and 6.2.2 , the decay induced by thermoelastic damping

is negligible compared to the large growth due to strong F-SSTA effect. However, in Case

(2), the F-SSTA effect is absent, so the thermoelastic effect must be noticeable. Case (3)

correspond to the beam operating under actual F-SSTA conditions. Figure 6.7 (a) presents

the measured transverse displacement history in these three cases. Five measurements for

each case were taken. The solid lines displayed in Fig. 6.7 show the algebraic mean of these

five data sets. The shaded area represents the 3σ standard deviations from the mean. The

expected decay of the oscillatory motion due to either the structural or the thermoelastic

dissipative mechanisms can be observed in Case (1) and (2). The response in Case (2) decays

faster because both dissipative mechanisms (i.e. structural and thermoelastic) are active. In

Case (3), that is the F-SSTA case, a self-sustaining motion could not be observed due to an

insufficient thermal gradient. A few aspect contributed to this low grade thermal gradient:

(1) the low directivity of the IR lamps which disperse part of the heat away from the beam;

(2) the cooling capacity of natural convection is limited; (3) part of the heat from the hot

region leaks into the cold region via the opening left for the motion of the beam, hence

decreasing the strength of the thermal gradient (compared to numerical case). Nonetheless,

this data set still provides useful information to characterize the dynamics of the system.

By visual comparison, it appears that in Case (3) the amplitude of the displacement is the

largest and the decay rate is the lowest. More quantitatively, the displacement level in Case
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Figure 6.7. (a) Amplitude of the measured displacement for the three heating
cases. Case (1), “Lamps off” shows that the damping ratio of the bilayer beam
is ∼ 1.3 × 10−3, consistent with observed values typical of metals. Case (2),
“Lamps on: No gradient” decays the fastest due to the additional thermoe-
lastic damping at high temperature. Case (3), “Lamps on: With gradient”
corresponds to the F-SSTA conditions. Although no self-sustained oscillations
could be observed in this case, an evident and strong reduction of the decay
rate highlights the amplifying effect of the TA response. (b) Calculated decay
rates (i.e. the inverse of the growth rate β) with time. The large deviations
from the mean value observed towards the end of the time window in the case
“Lamps on: No gradient” case are due to the signal decaying quickly below
the noise floor level. Solid lines: mean value of five measurements in each case.
Shaded region: 3σ error deviation from the mean.

(3) is 13.5 dB and 25.2 dB higher than that of Case (1) and Case (2), respectively. The

decay rate (Fig. 6.7 (b)) is calculated by using a logarithmic decrement approach combined

with a sliding window having length of 93 s (∼ 20 cycles). In all cases, the decay rate is large

during the initial part of the transient, while it decreases as the amplitude of the oscillation

reduces. This trend can be explained as losses due to both structural and aerodynamic

damping are directly related to the amplitude of the transverse displacement. Other effects

affecting the global decay rate can include friction forces at the riveted interface between

the two layers. As the motion reaches lower amplitudes, the decay rate stabilizes around

a constant value. The decay rates of the three cases are extracted and compared in this

range. In Case (1), the decay rate induced by structural damping is around 1.3 × 10−3,
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which is consistent with the average value of the damping ratio for metals [75 ]. The higher

dissipation in Case (2), due to the additional thermoelastic damping, induces a fast decay

of the response that falls quickly below the noise floor level. Therefore, the measured signal

is actually dominated by the ambient noise which explains the larger fluctuations towards

the end of the time window. In Case (3), the decay rate nearly reaches zero towards the

end of the time window, hence showing an evident delay of damping under the effect of the

spatial thermal gradient. This reduction in decay rate (or, equivalently, enhancement in

growth rate) is due to the thermo-mechanical energy conversion occurring in the F-SSTA

process. By subtracting the time signal in Case (1) from that in Case (3), the amplified

motion induced by the thermoacoustic instability can be obtained. In summary, even if

a self-sustained thermoacoustic response could not be obtained in the current setup, the

hallmarks of thermoacoustic growth are clearly present in the experimental data.

6.3 F-SSTA in a Hybrid Beam

Section 6.2 established the theory of flexural solid-state thermoacoustics. According

to this theory, the flexural motion of slender beams (a vibration mode unique to solids)

can become unstable when subject to a spatial heat flux gradient. While the experiments

conducted in Section 6.2.3 could not trigger a self-sustained flexural motion, the reduction of

the effective damping was a clear indicator of the thermal-to-mechanical energy conversion

taking place in the flexural solid-state thermoacoustic (F-SSTA) process. In this section

we will first revisit the (in)stability criterion proposed in Section 6.2 , thus analyzing the

possibility of utilizing a layer of negative-thermal-expansion (NTE) material to significantly

enhance the F-SSTA instability. Then, we perform a numerical study of the F-SSTA response

of a hybrid bilayer beam in cantilever configuration. The term hybrid refers to the particular

structure of the bilayer beam that employs both a fully solid and homogeneous layer and an

architectured material layer. The selection of an architectured material design is motivated

by the need to tune the thermo-mechanical properties and achieve NTE behavior. NTE

properties are obtained by exploiting a bi-material octet truss design. Overall, the design

of the truss structure gives rise to an effective axial NTE of the entire architectured layer.
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Upon heating, the effective NTE produces an axial contraction of the architectured layer as

opposed to the axial extension of the homogeneous layer. The contrast between the behavior

of the two layers results in a pronounced thermal bending, which is beneficial for the F-SSTA

instability. Numerical results indicate that the NTE-aided F-SSTA instability is enhanced

with respect to a more traditional bilayer homogeneous design.

6.3.1 Revisiting the Instability Criterion

Considering the continuous bilayer beam (Fig. 6.1 (a) under a q = Bv type thermal load

(Fig. 6.1 (c)), the transverse motion v in the frequency domain, relabeled as v̂, is governed

by:

−ρhλ2v̂ + (D + cE)∂
4v̂

∂x4 + cA
∂2v̂

∂x2 = 0 (6.53)

where h is the total height of the two layers, λ is the complex frequency, whose imaginary

part is indicative of either the amplifying or the attenuating motion, depending on its sign. D

is flexural rigidity, and cE and cA are complex coefficients due to the thermoelastic coupling

and the inward heat flux q, respectively (see also Eqn. 6.34 ). The use of the q = Bv

type thermal load is convenient because it is amenable to analytical treatment. Following

a q = Bv type thermal load, the thermal bending term ∂2mT/∂x
2 in Eqn. (6.12 ) can be

recast into [cE∂4v̂/∂x4 + cA∂
2v̂/∂x2], as shown in Eqn. (6.53 ). This manipulation of the

thermal bending term facilitates a more detailed interpretation of the coupled response (See

also Section 6.2 ). In fact, the motion can grow exponentially in time if Im[λ] < 0, because

v ∼ exp[(−Im[λ] + iRe[λ])t]. The symbols Re[ ] and Im[ ] denote the real and imaginary

parts of a complex-valued quantity.

To facilitate the understanding of the F-SSTA instability, we isolate the thermoelastic

effect (cE in Eqn. (6.53 )) and the thermoacoustic coupling (cA). If the thermoacoustic

coupling is neglected, that is cA = 0, Eqn. (6.53 ) becomes

−ρhλ2v̂ + (D + Re[cE] + iIm[cE])
∂4v̂

∂x4 = 0 (6.54)
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It was proven in Section 6.2 that Re[cE] � D and Im[cE] > 0. Therefore, the effective

flexural rigidity Deff = D+Re[cE]+iIm[cE] ≈ D+i|Im[cE]| is complex-valued with a positive

imaginary part, which eventually leads to a decaying motion. Considering Im[cE] � D, the

exponential decay rate induced by the thermoelastic damping should be proportional to

Im[cE]/D, or, equivalently (Im[λ]/Re[λ]) ∼ (Im[cE]/D).A short proof is developed below.

Considering ∂/∂x ∼ 1/Λ, where Λ denotes the wavelength, Eqn. (6.54 ) is rewritten as:

−ρhλ2 + D + iIm[cE]
Λ4 ∼ 0 (6.55)

Note that Re[cE] is neglected due to Re[cE] � D. Equation (6.55 ) can be further manipu-

lated to yield:

λ ∼
√
D + iIm[cE]

Λ4ρh
=
√

D

Λ4ρh

√
1 + iIm[cE]

D
∼
√

D

Λ4ρh

[
1 + i

(Im[cE]
2D

)]
(6.56)

Note that the relation
√

1 + i(Im[cE]/D) ≈ 1+i(2Im[cE]/D) is used thanks to Im[cE]/D � 0.

Therefore, the exponential decay rate (Im[λ]/Re[λ]) is expressed as:

Im[λ]
Re[λ] ∼ Im[cE]

2D ∼ Im[cE]
D

(6.57)

Analogously, the thermoacoustic coupling can also lead to a decaying motion if Im[cA] > 0,

or an amplifying motion if Im[cA] < 0 (See also Section 6.2 ). The third term (ther-

moacoustic coupling term) in Eqn. (6.53 ) is on the order of Λ2cA(∂4v̂/∂x4), considering

(∂2/∂x2) ∼ Λ2(∂4/∂x4). Following the same procedure of the previous proof, the growth-

rate-to-frequency ratio β/ω of this bilayer beam is approximately proportional to:

β/ω = −Im[λ]
Re[λ] ∼ |Im[cA]|Λ2

D
∼ −Im[cA]

D
(6.58)
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Therefore, to achieve an unstable F-SSTA response, we require β/ω > 0, or equivalently,

Im[cA] < 0. The latter is the instability criterion proposed in Section 6.2 , which is recast

into:

Im[cA] = 1
2ωhB(H1 −H2)E2

n

n+ 1 < 0 (6.59)

where n = E1/E2 is the Young’s modulus ratio of the two layers, which indicates the relative

stiffness. The ratio H = α/(ρcε), where ρ is density, and cε is the specific heat at constant

strain. It is seen that H is a measure of the rate of linear expansion of a thin material layer

in response to a certain amount of heat being provided.

To achieve a negative Im[cA], our previous study exploited two layers consisting of dif-

ferent materials so that the ratio Hh = H2 associated with the properties of the material

on the heated side must be larger than the ratio Hc = H1 provided by the material on the

cooled side. Qualitatively speaking, in a continuous bilayer beam composed of two positive

CTE materials, both layers expand upon heating. However, the layer with higher CTE

undergoes a more pronounced expansion than the layer with lower CTE. The result of this

differential behavior is a thermal moment that causes the beam to bend towards the side of

the lower-CTE layer (See also Eqn. (6.12 )). This thermally-induced bending occurs peri-

odically (i.e. at every cycle of oscillation) and it is the main cause of the ensuing unstable

flexural motion. The instability criterion (Eqn. (6.59 )) also suggested that, by selecting

a material with negative Hc, or H1, the F-SSTA response could be enhanced. Given the

functional dependencies of H, it appears that one way to get a negative ratio is to use mate-

rials with negative CTE. In the system with a negative-CTE layer, upon provided heat, the

positive-CTE layer expands in the axial direction while the negative-CTE layer contracts.

This mechanism further enhances the thermal bending by enlarging the difference between

the axial thermal deformation of the two layers.

From the above discussion, it appears that to achieve high performance F-SSTA systems

and to facilitate an experimental implementation (See alsoSection 6.2 ), a design capable of

negative CTE components could be particularly efficient. In this study, we present a novel

design that consists of a hybrid bilayer beam where one layer is engineered to exhibit axial

negative thermal expansion. It is anticipated that such hybrid bilayer beam could outperform
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a continuous bilayer beam in terms of their F-SSTA instability, according to the instability

criterion of F-SSTA systems (Eqn. 6.59 ).

6.3.2 Description of the Hybrid Bilayer Beam

The benchmark system under consideration consists in a hybrid beam made of two layers

(Fig. 6.8 ). One layer has a continuous solid design (i.e. a slender beam having rectangular

cross section) and it is made of a homogeneous and isotropic material. The second layer

is conceived as an architectured periodic material whose building block is an octet truss

composed of eight bi-material tetrahedrons, proposed by Xu and Pasini [68 ]. The effective

CTE of the tetrahedron in the z1 direction (See Fig. 6.8 (a.2)) can be adjusted by properly

selecting the two constituent materials (on the basis of their respective CTEs) as well as

the skew angle θ. For a material pair such as aluminum and titanium alloy Ti-6Al-4V, the

anisotropic CTE in the z1 direction varies between −60×10−6[1/K] to 10×10−6[1/K] as θ is

varied [68 ]. As explained in Section 6.3.1 , the F-SSTA motion relies on the beam’s thermal

moment induced by the distinct axial deformations of the two layers upon heating (See also

Section 6.2 ). Therefore, the octet truss is oriented in a way that its z1 axis (Fig. 6.8 (a.2)),

that is the axis along which the value of CTE can be tuned to negative values, is parallel to

the axial direction (z-direction) of the hybrid bilayer beam. The hybrid beam is mounted in

a cantilever configuration as shown in Fig. 6.8 (b). The beam is subject to an inward heat

flux q = Qsgn(v) that is a sign function of the beam’s transverse displacement v. We stress

that the heat flux is applied to all surfaces of the hybrid beam that are exposed to air. As

shown in Section 6.2 , this type of thermal gradient gives rise to a linearly growing flexural

motion of a continuous bilayer beam (under assumptions of negligible structural damping).

In practice, this type of thermal load can be realized by utilizing uniform and vertically

aligned heat sources (e.g. infrared lamps in Section 6.2.3 ) and placed on the same side of the

aluminum layer, hence creating an effective hot region characterized by q = Q when v > 0.

The other half space can be subject to either forced or natural convection which enforces the

cold region (approximately modeled as q = −Q when v < 0, see Fig. 6.8 (b)). More details
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related to the practical implementation of this type of heat source can be found in Section

6.2.3 .

Continuous Layer

Building Block

NTE Tetrahedron

（a） （b）

（

（a.2）

（b.1）

High CTE member

Low CTE member

Figure 6.8. (a) Schematic of the hybrid beam composed of two layers, one being
continuous and the other being a periodic truss structure. For illustration,
we show a truss layer that consists of 40 units (Nz × Ny = 20 × 2), while
the geometrical details of 6 repeating units (Nz × Ny = 3×2) are shown in
(a.1). (a.2) The building block of the truss structure is an octet composed of
eight tetrahedrons having negative CTE in the z1 direction. (b) The hybrid
beam is under an inward heat flux, which is a sign function of its transverse
displacement, shown in (b.1)
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Table 6.3. Geometrical parameters. Refer to Fig. 6.8 for labels. ha/b and
da/b, which are not shown in Fig. 6.8 , indicate the width and the thickness of
the rectangular cross section of the individual truss member. The high CTE
and low CTE truss members are represented by the orange and blue lines in
Fig. 6.8 (a.2).

Continuous layer (Aluminum)
w = 40 [mm] th = 1.59 [mm] L = 733 [mm]

High CTE truss members (Aluminum)
ha = 0.283 [mm] da = 0.141 [mm] la = 14.1 [mm]

Low CTE truss members (Titanium)
hb = 0.0826 [mm] db = 0.141 [mm] lb = 11.0 [mm]

Skewness angle θ = 50◦

Table 6.4. Material properties.

Aluminum Titanium
E [Gpa] 70 113.8
ρ [kg/m3] 2700 4430
cε [J/(kgK)] 900 526.3

CTE [10−6 1/K] 23 11.5

Consider the hybrid beam in Fig. 6.8 where the continuous layer is made out of aluminum.

The architectured periodic layer is made out of two constituent materials, namely aluminum

and titanium alloy Ti-6Al-4V. In the following, this architectured layer will be referred to as

the truss layer. The relevant geometrical and material parameters can be found in Tables

6.3 and 6.4 .

6.3.3 Numerical Modeling of the Hybrid Bilayer Beam

This section presents the numerical models used to analyze the hybrid beam design, fol-

lowed by the numerically calculated F-SSTA responses of the hybrid beam. Before proceeding

to the numerical simulation of the entire hybrid beam, we performed an initial assessment of

the static CTE of the fundamental building block (Fig. 6.8 (a.2, down)) at the basis of the
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truss layer. The CTE αz1 of such block in the z1 direction (Fig. 6.8 (a.2)) was extracted by

numerical simulations performed using the commercial software COMSOL Multiphysics. In

these simulations, a uniform ∆T = 10[K] static temperature difference (with respect to the

ambient temperature) was applied on the building block. The resulting static strain εz1 in

the z1 direction was used to extract the CTE αz1 = εz1/∆T = −41.9×10−6[1/K], which was

found consistent with the theoretical prediction in [68 ]. Following this initial validation of

the equivalent CTE, the entire hybrid beam was assembled and used to evaluate the F-SSTA

response.

Numerical Models

To simulate the hybrid beam, we considered two different modeling strategies based on

different physical assumptions. One model was based on a three-dimensional (3D) elasticity

formulation, hence capturing the full geometry of both the links, or the truss members, in the

truss layer and the solid layer, as shown in Fig. 6.9 (a, top). The 3D model was discretized

using 3D tetrahedral elements. The second model leveraged simplified 1D and 2D structural

mechanics theories in an effort to capture the same mechanical and dynamic behavior while

reducing the size of the resulting model. In this reduced model, the truss members in the

truss layer were modeled based on the Euler-Bernoulli (EB) beam formulation while the

solid layer was modeled according to the Kirchhoff plate theory (Fig. 6.9 (a, bottom)). The

cross-sectional parameters listed in Table 6.3 were entered as input data. These two models,

are hereinafter referred to as the full 3D model and the reduced model, respectively. It is

highlighted that, although the full 3D model provides a more accurate representation of the

actual geometry of the hybrid beam, it leads to a large number of degrees of freedom. In

cases where the truss layer includes many unit cells (e.g. Nz×Ny = 80×2) and the transient

response is sought, this approach can result in a drastic increase in size that becomes rapidly

unmanageable from a computational perspective. On the other side, the reduced model offers

a much more efficient option to simulate the response the F-SSTA hybrid beam system.

Therefore, in the following section, we will first perform a numerical analysis to compare

the performance of both modeling approaches in terms of both the static and the modal
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response. For this task, we will use a hybrid beam having a small number of unit cells (i.e.

Nz × Ny = 20 × 2) so to allow an efficient solution with both methods. This initial model

validation will be followed by a time-dependent analysis of a full scale hybrid beam (i.e.

Nz ×Ny = 80 × 2) performed using the reduced model.

Validation of the Reduced Numerical Model

To validate the reduced model and show its ability to capture all the relevant features of

the hybrid beam, we compared its static and modal response with that of the full 3D model.

The test model for this validation phase consisted in a hybrid beam counting Nz×Ny = 20×2

units. The 3D model was discretized into ∼ 4, 840, 000 3D quadratic tetrahedral finite ele-

ments, corresponding to ∼ 20 million degrees of freedom (DOFs), while the reduced model

only used ∼ 170, 000 2D quadratic triangular elements and ∼ 100, 000 1D linear edge ele-

ments, corresponding to ∼ 2.5 million degrees of freedom. The large discrepancy in DOFs

already suggests the significant saving in computational resources offered by the reduced

model. The comparison between the physical responses predicted by the two models is pre-

sented in Fig. 6.9 (b) and (c) in terms of both the thermoelastic static deformation produced

by a 10[K] temperature difference, and of the modal characteristics of the fundamental mode

(accounting both the frequency and the modal deformation). Note that the static deforma-

tion (Fig. 6.9 (b)) was induced by imposing a spatially-uniform static temperature difference

(with respect to the ambient temperature) ∆T = 10[K] on the entire structure. Figure 6.9 (b)

shows that the static displacement profile obtained with both models. Aside from an evident

visual resemblance, the maximum displacement of the free end is calculated at 9.7 × 10−5[m]

for the reduced model, and at 9.9 × 10−5[m] for the full 3D model; a maximum error of 2%.

Concerning the modal analysis (Fig. 6.9 (c)), the eigenfrequency of the fundamental mode

were also found to be very close (41.52 Hz for the reduced model compared with 42.24 Hz

for the full 3D model) and within a maximum error of 1.7%. Remembering that the F-SSTA

response is dominated by the thermoelastic response and by the fundamental mode of the

structure, these results confirm the validity of the reduced model and the fact that it can
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be used as an effective surrogate model. In the following, we will only exploit the reduced

model to simulate the time-dependent F-SSTA response of the hybrid beam.
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Figure 6.9. (a) Zoomed-in view showing some geometric detail of the two hy-
brid beam models. Full 3D model: based on complete 3D geometry and elastic-
ity formulation. Reduced model: based on a 1D Euler Bernoulli beam formula-
tion for the members in the truss layer and 2D Kirchhoff plate formulation for
the flat solid layer. Using a hybrid beam composed of 40 (Nz ×Ny = 20 × 2)
and constrained in cantilever configuration (bottom end in figure), the two
models were compared both in terms of their static thermoelastic and modal
response. (b) Static deformation under a spatially uniform temperature dif-
ference of 10[K]. (c) Eigenfrequency and eigenfunction

corresponding to the fundamental flexural mode of the hybrid beam.

Time-Dependent Simulation of NTE-aided F-SSTA Beam

In order to assess the F-SSTA performance of the hybrid beam, we performed a time-

dependent analysis of a beam assembled based on 160 units (Ny ×Nz = 80 × 2), subject to

inward surface heat flux in the form of q = Qsgn(v). In the following, this hybrid beam with

160 units will be referred to as the NTE beam (as in Negative Thermal Expansion) Note

that, owning to the low frequency involved in the TA driven oscillatory response of the beam,
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we neglected the time lag associated with heat conduction process. This assumption is well

justified by the fact that the dimensions in the transverse direction of the truss members

and the continuous layer are much smaller than the thermal penetration depth δk =
√

2κ/ω,

where κ is thermal diffusivity of the materials and ω is the angular frequency. Under this

assumption, the surface heating at the boundaries of each element in the beam is converted

to an effective volumetric heating source with no time lag. The volumetric heating source p

is expressed as:

p[W/m3] = S

V
(q[W/m2]) (6.60)

where S and V are the surface area and the volume of that element, respectively. The time

evolution of the temperature field in the beam and plate elements are expressed as:

dT

dt
= p

ρcε
= S

V

Q

ρcε
sgn(v) (6.61)

The thermo-mechanical coupling was completed by including the thermal stress resulting

from the temperature field calculated via Eqn. (6.61 ) in the structural analysis.

In order to assess the performance of the NTE beam design, we considered two additional

bilayer beams that will serve as baseline (or reference) configurations: 1) a bilayer beam

(aluminum and Ti-6Al-4V) where both layers are continuous, and 2) a hybrid bilayer beam

where the continuous layer is made out of aluminum and the truss layer shares the same

geometry used for the NTE beam but made out of a single material Ti-6Al-4V, hence not

capable of NTE (see Fig. 6.10 ). In the following, we will refer to these reference models as

RB1 and RB2, respectively. The length of both reference beam models was slightly modified

in order to match the fundamental frequency to that of the NTE beam that was found to

be approximately 2.6 Hz.

Figure 6.10 shows the displacement envelop of the free end of each beam as a function of

time, under the surface heat flux q = Qsgn(v) with Q = 77[W/m2]. In order to trigger the

flexural motion of the bilayer beam, an initial perturbation is needed. In a practical experi-

ment, even the ambient-induced vibration could be sufficient. In our numerical simulations,

we applied the perturbation in the form of a displacement initial condition over the entire
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beam; the displacement profile was scaled following the fundamental mode shape. While any

initial displacement profile would have had the required effect of triggering the instability, the

chosen initial condition has the added benefit of minimizing the initial transient. Recall that

the thermoacoustic response is driven by the fundamental mode, so by choosing the initial

condition in the form of a displacement profile scaled as the fundamental mode we can target

directly this mode. Finally, we chose a scaling that resulted in a free-end displacement equal

to 1[mm]. In an undamped beam, any initial perturbation regardless of its magnitude will be

amplified by the periodic thermal loading q = Qsgn(v). However, in a damped beam under

a fixed Q, there exists a critical value of the amplitude of the initial perturbation such that

the response can be seen either growing (if starting below the critical value) or attenuating

(if starting above the critical value). Despite this initial behavior both responses will evolve

towards the same limit cycle response (which is controlled exclusively by the self-sustained

oscillation). This aspect will be further clarified in Section 6.4 when addressing the energy

conversion mechanism. Equivalently, for a fixed initial condition, there exists a critical Q

value such that only above this value the initial perturbation can be amplified, because a

larger Q represents more energy production.

Getting back to the analysis of the results in Fig. 6.10 , in order to highlight the con-

tribution of the NTE property we neglected any form of dissipation (including structural

damping and thermoelastic damping). The damped F-SSTA response will be shown later in

this section, and will be discussed more in detail in Section 6.4 . It is well visible from the

results that the motion of RB1, in the absence of any damping, grows linearly as predicted

by the model proposed in Section 6.2 (See Fig. 6.4 ). The motion of RB2 remains practically

unaltered, showing no significant signs of amplification. Although the effective CTE of the

Ti-6Al-4V truss layer is positive (only one constituent material is used in the truss layer),

the lower effective stiffness of the cellular structure limits significantly the stress contributing

to the thermal moment.

To understand this behavior more in detail, we revisit the instability criterion developed

in Section 6.2 and reported in Eqn. (6.59 ). Note that, in Eqn. (6.59 ), we consider a negative
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Figure 6.10. (a) Time history of the envelope of the free-end displacement of
the beams ensuing from a thermal load Q = 77[W/m2]. View of a few unit
cells for the (b) RB1 beam, (c) RB2 beam, and (d) the NTE beam. Damping
is neglected in all three cases.

Im[cA] as a necessary condition for F-SSTA instability. The expression of D, originally

derived in Section 6.2 (Eqns. 6.13 ), is also recast into the following form:

D = 1
96E2h

3n
2 + 14n+ 1
n+ 1 (6.62)

171



Recall that n = E1/E2 is the Young’s modulus ratio of the two layers. Incorporating Eqns.

(6.59 ) and (6.62 ), Eqn (6.58 ) is further simplified as:

β/ω ∼ −48B(H1 −H2)
ω

λ2

h2φ(n) (6.63)

where

φ(n) = n

n2 + 14n+ 1 (6.64)

Note that the material of the two layers of the beam is selected so that H1 −H2 < 0, which

guarantees the negativity of Im[cA] (Eqn. (6.59 )) and therefore a positive β/ω (Eqn. (6.63 )),

and that as n → 0, φ(n) ∼ n → 0 (Eqn. (6.64 )).

Recall that the qualitative discussion about the role of cA and φ(n) is based on the q = Bv

type thermal load (See also Section 6.2 ), which facilitates the analytical interpretation. Given

that numerical calculations were not performed using the q = Bv thermal load, the numerical

value of B was not provided. All the quantitative (numerical) simulations presented in this

paper are based on a more realistic thermal load q = Qsgn(v).

For RB2, the Ti-6Al-4V truss layer is much less stiff than the aluminum continuous

layer (n � 1), hence resulting in a near-zero growth-rate-to-frequency ratio. Qualitatively

speaking, when the bilayer beam is heated, the axial stretching of the continuous layer

dominates the weak thermal expansion effect of the Ti-6Al-4V truss layer. As a result, the

Ti-6Al-4V truss layer provides a weak contribution to the thermal bending of the overall

bilayer beam. The truss layer ends up acting as an appendix whose motion is dominated by

the axial expansion and contraction of the continuous layer.

Despite the relatively low stiffness of the NTE truss layer leading to small n, the NTE

beam still exhibits a pronounced effect of the thermal bending of the continuous layer due

to the strong contraction associated with the significantly negative CTE. It turns out that

the motion of the NTE beam grows linearly with time faster than the motion of RB1. In

fact, the two-constituent truss layer can be seen equivalently as a continuous compliant

material that shrinks when heated. These results confirm the possibility of using a NTE

material to enhance the F-SSTA instability, hence suggesting a promising pathway towards
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the experimental realization of a self-sustained flexural motion driven by a spatial thermal

gradient.

0 10 20 30 40 50 60
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Figure 6.11. Sustained oscillation of the free end of the NTE beam in the
presence of 1% damping. First, the motion grows (up to the red dashed line),
and then it saturates to limit-cycle oscillation due to the presence of damping.
The inset shows that the limit-cycle oscillation is quasi-harmonic.

When dissipative effects are neglected, the F-SSTA response of a bilayer beam can grow

unbounded regardless of the amplitude of the spatial thermal gradient. Recall that the

former condition assumed that the heating region and the layer with larger CTE were

in the same half plane (See also Section 6.2 ). However, when a dissipation mechanism

(e.g. structural damping) is present, there exists a critical magnitude of the thermal gra-

dient above which the self-sustained flexural motion is possible. Figure 6.11 shows the

self-sustained flexural motions of the NTE beam subject to the thermal load amplitude

Q = 230[W/m2] and in the presence of Rayleigh damping [76 ]. The effective damping

ratio ζ at the fundamental frequency ωr is 1%, achieved by setting the two Rayleigh damp-
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ing coefficients equal to each other aM = aK = a. The damping ratio can be written as

ζ = 0.5(aM/ωr + aKωr) = 0.5a(1/ωr + ωr) = 1%, and the relation can be inverted to find

the coefficient a. Unlike the undamped case, the flexural motion cannot grow unbounded

due to the energy dissipation associated with structural damping. Initially, the response

grows linearly while slowly reaching steady-state oscillation (Fig. 6.11 ), hence suggesting

the attainment of an energy balance between the thermoacoustic gain and the damping-

induced dissipation. Further considerations on the energy balance are provided in Section

6.4 . Figure 6.11 also reveals that the critical value Q to trigger self-sustained flexural in-

stability is approximately Q = 230[W/m2], since the saturation happens rapidly after the

initial growth. As described above, the motion is initiated by a perturbation of the free-end

corresponding to a 1[mm] displacement, and it rapidly saturates. This behavior indicates

that, under a fixed thermal load Q = 230[W/m2], the critical initial free-end displacement

necessary to achieve an amplifying motion is slightly over 1 [mm], as also discussed earlier

in this section. Any initial perturbation that is smaller than the critical value (here ap-

proximately identified at v = 1[mm]) will be amplified at first and eventually saturate and

reach limit cycle behavior. Regardless of the value of the initial perturbation, the response

always reaches the limit-cycle oscillation. However, the initial transient can show either a

growing or an attenuating response depending on the amplitude of the initial perturbation

with respect to the critical value. The energy conversion process will be further analyzed in

the next section.

6.4 Analysis of Energy Conversion in F-SSTA systems

The previous discussion clearly highlighted that the thermo-mechanical energy conver-

sion mechanism is key for the performance of the F-SSTA system. It follows that, from a

design perspective, a simplified qualitative model capable of capturing the most important

functional dependencies contributing to the energy conversion process could significantly en-

hance the understanding of the system and the design of F-SSTA architectures. In Section

6.3.3 , we presented a numerical strategy to accurately simulate the response of the F-SSTA

hybrid beam and to capture its multi-physics dynamics. Despite the development of a re-
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duced model, the computational burden is not negligible and the purely numerical nature

of the model is not amenable to an analytical study of the energy conversion mechanism.

For these reasons, we introduce a lumped-parameter one Degree Of Freedom (1DOF) model

that is capable of capturing the phenomenological behavior of both the undamped and the

damped motion of the F-SSTA beam under the q = Qsgn(v) type thermal load. This sim-

plified approach is possible because the F-SSTA response of the bilayer beam is driven by its

fundamental resonance. As it is often the case in classical modal analysis of continuous sys-

tems, the response of the system around well-isolated modal resonances can be approximated

by 1DOF oscillators. Note also that the use of such a discrete 1DOF model further facilitates

the analytical derivation of perturbation energy budgets. The energy budgets method is a

well-established theoretical framework to interpret the energy production and dissipation

in the thermoacoustic process. Energy budgets have found successful applications in both

fluid-based [28 ], [77 ] and axial-mode solid-state thermoacoustics [60 ]. In the following, we

apply the concept of energy budget to the F-SSTA system based on the reduced order 1DOF

model. Although using a simplified model, the rigorous derivation of the thermoacoustic

gain and the damping-induced loss contributions to the energy budget greatly improves the

understanding of the underlying energy conversion mechanism in F-SSTA systems.

As previously stated, in the case of well separated resonances (such as typically a funda-

mental mode), the flexural response of the beam can be qualitatively modeled as a 1DOF

spring-mass-damper system. In the context of F-SSTA, the mass represents the bending

inertia of the bilayer beam, the spring coefficient represents the flexural rigidity of the beam,

and the damping coefficient represents the intrinsic dissipation in the beam (e.g. structural

damping). The unstable flexural motion induced by the thermo-mechanical coupling can be

modeled as a forcing term in the equivalent 1DOF model. Consider a spring-mass-damper

system in Fig. 6.12 . The equation of motion (EOM) is expressed as:

mû+ cû+ kû = F sgn(û) (6.65)
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where û is the mass displacement, m, c, k and F are mass, viscous damping coefficient,

stiffness coefficient, and force amplitude, respectively. The prime symbol denotes derivation

with respect to time.

Figure 6.12. A 1DOF spring-mass-damper model qualitatively representing
the fundamental flexural motion of a bilayer beam under inward heat flux
q = Qsgn(v).

With reference to the system shown in Fig. 6.8 , the first flexural mode of the bilayer

beam is simplified and qualitatively captured by the 1DOF spring-mass-damper. The density,

stiffness, and damping characteristics are simplified as three lumped parameters m, k, and

c, respectively. Note that the forcing term is taken as a sign function of velocity û, instead of

displacement û. Recall the expression of the one dimensional stress σ including the thermal

component: σ = E(ε − α∆T ), where ε is the strain and E is the Young’s modulus. In

the F-SSTA system, the effective “thermal force” that directly drives the bilayer beam is

proportional to the temperature difference ∆T , which is 90 degree out of phase with the

heat input q (Eqn. (6.61 )) in a quasi-harmonic motion (Figure 6.13 (a) and (c) insets).

Therefore, when the beam is subject to a thermal load which is in phase with the displacement

(e.g. q = Qsgn(v)), the resulting temperature fluctuation is in phase with velocity, because

velocity and displacement are 90 degree out of phase. Hence, in the 1DOF model, we use

a sign function of velocity, as the direct forcing term, to represent the thermal load in the

F-SSTA system. It is highlighted that due to the nonlinear excitation, whether q = Qsgn(v)

in the F-SSTA system or F = fsgn(u̇)) in the 1DOF system, the response cannot be exactly

sinusoidal, or harmonic. However, due to the resonant nature of the system, the motion is

still dominated by the fundamental frequency with low amplitude super-harmonics. Hence,

the response is quasi-harmonic, as shown in the insets of Fig. 6.13 (a) and (c).
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Following the non-dimensionalization of Eqn. (6.65 ) yields:

ü+ ξu̇+ u = fsgn(u̇) (6.66)

where u is the dimensionless displacement, ξ = ω0c/k and f = F/kL are the dimensionless

damping coefficient and forcing amplitude, and ω0 =
√
k/m. The dot symbol indicates the

dimensionless time derivative (̇) = ()/ω0.

Figure 6.13 (a) and (c) show the undamped (ξ = 0) and damped (ξ = 0.004) responses

of the 1DOF system under the load f = 0.05 with initial conditions given as u = 1 and

u̇ = 0. In analogy with the continuous bilayer beam analyzed in Section 6.2 and with the

configurations shown in Fig. 6.10 (a), the undamped response of the 1DOF system grows

linearly without saturation. The damped response initially grows linearly, then it saturates

and reaches a steady-state oscillation.

The dimensionless EOM (Eqn. (6.66 )) can be recast to yield the perturbation energy

budget [28 ]:

P = Ė + D (6.67)

where

P = 1
2fu̇sgn(u̇) = 1

2f |u̇| (6.68)

E = 1
2(u2 + u̇2) (6.69)

D = 1
2ξu̇

2 = 1
2ξ|u̇|2 (6.70)

denote the instantaneous thermoacoustic production, instantaneous energy, and instanta-

neous dissipation, respectively.

The energy dissipation D originates from the constant damping coefficient ξ adopted

in the 1DOF model. In reality, the energy loss associated with the F-SSTA response can

be due to multiple causes, including structural damping, thermoelastic damping, and flow-

induced damping [78 ]. Modeling all these different sources of damping independently is a

complicated task (especially when using a 3D model) and leads to computationally heavy
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Figure 6.13. Dimensionless displacement u of the (a) undamped and (c)
damped 1DOF systems. Insets show that the motion, whether unstable (a) or
stable (c), is quasi-harmonic. The cycle-averaged perturbation energy budgets
of the (b) undamped and (d) damped 1DOF systems. τ is the dimension-
less time. Note that the blue dashed line 〈Ė〉 is the time derivative of the
cycle-averaged mechanical energy. 〈Ė〉 = 0 indicates that the cycle-averaged
mechanical energy is unchanged due to energy balance.

models. Therefore, the use of simplified models (e.g. Rayleigh damping [76 ]) to represent

losses is widely accepted. Given that the 1D model is a simplified mechanical equivalent

of the beam vibrating at its fundamental frequency, it is reasonable to simplify the energy

loss as a constant damping coefficient. In addition, from a qualitative perspective, this
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representation of damping is sufficient to describe a linear dissipation independently of the

possible causes.

Equation (6.67 ) reveals that in the F-SSTA system, part of the thermoacoustic production

term P leads to an accumulation of energy, that is the rate of change of E , while the rest

is dissipated by the damping term, represented by D. Observing the expressions for P and

D (Eqns. (6.68 ) and (6.70 ), respectively), we conclude that the production P increases

linearly with the magnitude of velocity, while the dissipation D increases quadratically with

the magnitude of velocity, as shown in Fig. 6.14 . Therefore, if the system is initiated by a

perturbation that is smaller than |u̇|cr (defined in Fig. 6.14 ), as the amplitude of the F-SSTA

oscillation grows, it is expected that the two competing factors P and D eventually become

identical, hence giving rise to a limit cycle (Equilibrium point in Fig. 6.14 ). Alternatively,

if the system is initiated by a perturbation that is larger than |u̇|cr, the motion will at first

decay (after the initial release) while eventually reaching the limit cycle equilibrium, where

P = D. As a result, regardless of the initial perturbation, a steady-state oscillation can

always be self-sustained. However, it is the growth-saturation motion (i.e. initiation below

the critical value of the velocity) that more closely resembles the classical thermoacoustic

oscillation observed in fluids [8 ], [27 ], [28 ], [33 ], [79 ]–[82 ].

Figure 6.13 (b) and (d) show the cycle-averaged thermoacoustic production, energy accu-

mulation rate, and dissipation. In the undamped case (ξ = 0), all the input thermoacoustic

production is devoted to building up the energy level without losses, hence leading to an

unbounded growing motion. In the damped case (ξ 6= 0), the production exceeds the dissi-

pation, at first, hence causing an accumulation of energy (〈Ė〉 > 0). This positive 〈Ė〉 leads

to a linearly growing motion that is well visible in the simulation results of the bilayer beams

(Fig. 6.10 ). The difference between 〈P〉 and 〈D〉 keeps decreasing until 〈Ė〉 becomes zero;

at this point, the energy level remains unchanged and a steady-state oscillation ensues, as

shown in Figure 6.13 (c). Similar results are also observed in the damped response of the

bilayer beam in Fig. 6.11 .

Therefore, we conclude that despite the simplicity of the 1DOF model, it successfully

captures the main features of both the undamped and damped F-SSTA response of a bilayer

beam. Moreover, the 1DOF system allows the derivation of the energy budgets based on
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Figure 6.14. The instantaneous thermoacoustic production P and the instan-
taneous dissipation D as a function of the dimensionless velocity magnitude |u̇|
of the 1DOF system, obtained by Eqns. (6.68 ) and (6.70 ), f = 0.05, ξ = 0.004.
Note that P and D contribute to the time rate of increase and decrease of en-
ergy (Eqn. 6.67 ), respectively, so they have the unit of power. The intersection
of these two curves is the equilibrium point indicative of a steady-state mo-
tion. The equilibrium point corresponds to a critical value of the perturbation
|u̇|cr that separates two different transient behaviors that, however, lead to the
same limit cycle response. If the system is initiated by a value below |u̇|cr,
the motion will be amplified due to P > D. On the contrary, if the system is
initiated by a value above |u̇|cr, the motion will initially attenuate.

simple mathematical manipulation of the governing equation, which provides interesting

insights in the energy conversion process that takes place in F-SSTA systems.

6.5 Discussion

In this section, we discuss several relevant topics related to F-SSTA, including (1) a

conceptual comparison between the concept of F-SSTA presented in this study and the

concept of thermal flutter that was explored in the late 1960s [71 ]; (2) a comparison between
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natural and architectured NTE materials; (3) stiffness matching for further improvement of

F-SSTA systems; and (4) thoughts on manufacturing architectured lattice structures.

6.5.1 Comparison Between F-SSTA and Thermal Flutter

The thermal flutter phenomenon was discovered in the study of the dynamic thermoe-

lastic response of boom-like structures operating in outer space environment. In thermal

flutter, one side of a thin-walled boom with open annular cross section was subject to direct

radiation from sunlight, while the other side remained in the dark hence radiating heat to

deep space. Under these conditions, the boom exhibited either torsional or flexural instabil-

ity depending on the specific design of the boom’s cross section. By revisiting Eqn. (6.3 ),

we observe that in both configurations a non-zero thermal moment gradient (∂2mT/∂x
2)

is necessary to achieve a heat-induced flexural instability. This condition further requires

mT (x) 6= 0 and ∂mT (x)/∂x 6= 0. The differences between F-SSTAs and the thermal flutter

are mainly reflected in how these two conditions are satisfied.

In the flexural thermal flutter configuration, two main causes contribute to the occurrence

of the instability: (1) the existence of a local thermal moment due to an asymmetric tempera-

ture distribution across the cross section of the beam which results from a single side exposure

to the heat source (mT (x) 6= 0); (2) as the beam bends, the non-uniform distance from the

heat source of points located along the beam longitudinal axis leads to a non-uniform heat

absorption, creating a non-zero thermal moment gradient along the beam (∂mT (x)/∂x 6= 0).

The thermal moment gradient effectively contributes to a thermal-induced motion.

In the context of F-SSTA, both sides of the beam experience identical heating (cooling),

but the local thermal moment is achieved by utilizing two layers of distinct materials. Dif-

ferent thermal properties of both layers give rise to asymmetric temperature distribution

over the cross section, while the difference in thermal expansion coefficients contribute to

a distinct thermal strain. The combination of both these effects leads to a non-zero local

bending moment (mT (x) 6= 0). The thermal moment gradient (∂mT (x)/∂x 6= 0) is formed

by the spatially-varying and dynamically-changing neutral axis location h0, under the effect

of the localized thermal gradient.
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Despite both phenomena rely on a non-uniform thermal moment distribution, we em-

phasize the necessity of a spatial thermal gradient in the F-SSTA configuration which is the

foundation of the thermoacoustic instability.

6.5.2 Natural and Architectured NTE materials

While in the analysis above we have considered artificial structures designed to exhibit

negative CTE, we note that there exist natural materials that can contract upon heating.

However, most of these materials have some significant disadvantages that limit their appli-

cation, especially to F-SSTA systems. For example, ZrW2O8 and related ceramics are brittle

and subject to abrupt failure induced by thermal stresses [83 ]. Invar is robust, but it exhibits

low CTE only in a very limited temperature range [84 ]. More specifically, for the application

to SSTA systems, the intrinsic dissipative mechanism in the candidate material should be

as low as possible so that the unstable TA motion can be triggered with a lower thermal

gradient. This requirement is better met by architectured materials composed of metal con-

stituents. Moreover, the truss-like NTE structure made out of aluminum and Ti-6Al-4V, as

shown in Fig. 6.8 can achieve NTE with very large magnitude (CTE= −60 × 10−6[1/K] as

θ approaches 45 degree).

6.5.3 Stiffness Matching for Further Improvement of F-SSTAs

In this study, we focus on the potential of NTE materials to enhance the F-SSTA insta-

bility. Equation (6.64 ) further entails that it is beneficial to the flexural instability if the two

layers have comparable stiffness (n ∼ 1). On the contrary, if one layer is much stiffer than

the other (n → 0 or n → ∞), the growth-rate-to-frequency ratio is reduced because n → 0,

φ(n) ∼ n → 0, while as n → ∞, φ(n) ∼ 1/n → 0. In both cases, the low-stiffness layer acts

as an appendix to the high-stiffness layer, which results in its motion being dominated by

the axial motion of the high-stiffness layer and in negligible overall thermal bending. As a

result, the flexural thermoacoustic instability is limited. It is worth noting that the design

of the hybrid beam used in this study was not optimized for stiffness matching. The study

intended to show how the use of tailored NTE properties, achieved via engineered material
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design, can significantly help achieving experimentally sustainable F-SSTA instability. It is

possible to envision enhancing the performance by matching the stiffness of the two layers.

For example, the continuous (aluminum) layer could be replaced by a truss layer composed

of a single-constituent tetrahedron octet. In such way, the layer would maintain a positive

CTE while lowering the overall stiffness to a value comparable with that of the NTE layer.

As a result, when heated, the different yet comparable thermal stresses in the two layers

could give rise to a strong thermal moment.

6.5.4 Thoughts on Manufacturing Architectured NTE Materials

We note that, from a fabrication perspective, the introduction of an architectured mate-

rial design certainly increases the manufacturing complexity. Indeed, the truss like structure

combined with the presence of two material constituents in the octet truss design is not

a challenge to be taken lightly. However, recent advances in additive manufacturing and

3D printing (either with single or multiple materials) indicate that, while single material

designs are already achievable, multi-material designs could soon become viable. Recall that

the octet design was already built and experimentally validated in [85 ] and [68 ] via a tra-

ditional fabrication approach. However, this latter approach was not deemed viable for the

present study due to the large number of units to be fabricated, to the difficulty of achieving

high quality (low friction) joints in the octet truss, and to the complexity in joining the two

layers to form the hybrid design.

6.6 Concluding Remarks

In this chapter, the science of thermoacoustics is extended to include self-sustained insta-

bilities of flexural waves (F-SSTAs); a unique response modality typical of solid media. The

mathematical framework of F-SSTAs was established and used to analyze the instability of

the transverse bending motion in a bilayer slender beam. By employing a simplified heating

strategy, both an analytical modal solution and a criterion to determine the onset of the

flexural instability were obtained. According to this criterion, in natural materials, the layer

with higher ratio of thermal expansion coefficient to heat capacity should be placed on the

183



side where heat is provided (i.e. the hot region). However, for engineered materials in which

unconventional properties can be achieved (e.g. negative thermal expansion coefficient)

extreme thermoacoustic performance could be anticipated. This is a unique opportunity

opened by solid-state thermoacoustics and could be particularly relevant for device appli-

cations. Numerical simulations indicated that a hybrid bilayer beam composed of a layer

made out of natural material and the other layer made out of an NTE engineered material

exhibited an significantly improved F-SSTA response. Numerical simulations in both the

frequency and time domains helped revealing the mechanism of motion amplification due to

flexural instability. More specifically, the time dependence of the location of the neutral axis

under thermoacoustic coupling was observed and found to be a key aspect in the develop-

ment of the instability. An experimental setup was also developed in order to validate the

theoretical framework of F-SSTAs. Although no evident self-sustained motion was observed,

due to the limited heating and cooling capacity, the ultra-low effective damping was found

to be a confirmation of the thermal-to-mechanical energy conversion due to the F-SSTA

process. Nonetheless, with the numerical evidences of the significant improvement of NTE-

aided F-SSTA responses, it is anticipated that a successful experimental realization can be

achieved leveraging the tunable thermo-mechanical properties of engineered materials. The

energy conversion process of the F-SSTA system was explored analytically by exploiting a

perturbation energy budget approach based on the simplified equivalent 1DOF model. It was

found that the thermal energy input is either converted into internal energy (accumulated in

the system) or dissipated due to structural damping. While the introduction of engineered

materials is certainly accompanied by additional complexities from a fabrication perspective,

results suggest that they also provide one of the most likely viable routes to realize practical

F-SSTA systems capable of self-sustained oscillations.

Compared to its axial counterpart, flexural thermoacoustic vibrations are easier to excite

in slender structures, and are associated with lower fundamental frequencies and larger

amplitude of the response. All these aspects can result in significantly easier implementation

and higher power density, both aspects of key relevance for the fabrication of thermoacoustic

devices.
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7. CONCLUSIONS AND FUTURE WORK

Thermoacoustic technology possesses several characteristics that could make it a key tech-

nology to promote the next generation of energy-conversion devices. The most immediate

of these characteristics is their eco-friendliness. However, the development of TA devices

has been severely hindered by various limitations, such as low efficiency and low scalabil-

ity. These drawbacks arise from the intrinsic nature of the gaseous working substances. This

thesis provides the first systematic study of solid-state thermoacoustics, as an attempt to ex-

plore opportunities to bypass certain limitations of traditional fluid-based thermoacoustics,

thus potentially facilitating the commercialization of thermoacoustic devices. This study

also presents a new paradigm of thermoacoustic research. Although in its infancy, it is antic-

ipated that the SSTA technology could grow based on the theoretical foundation established

in this thesis, and eventually leading to the development of solid-state thermoacoustic de-

vices. More importantly, the author believes that the fast-growing knowledge of solid-state

engineered materials, whose thermo-mechanical properties can be more easily tailored, shall

be properly combined with the development of SSTA, in order to improve the performance

of SSTA systems for practical applications.

In this chapter, we will first summarize the key contributions of this thesis in Section 7.1 ,

followed by remarks on the main benefits and limitations of using solids as thermoacoustic

working media in Section 7.2 . Then, Section 7.3 will discuss thoughts about possible future

directions that may be worth exploring to further the understanding and design capabilities

of SSTA devices.

7.1 Summary of Key Contributions

In this thesis, the study of SSTA systems are divided in two categories: 1) A-SSTA and 2)

F-SSTA. A-SSTA refers to the thermoacoustically unstable axial motion of slender structures

(e.g., 1D bars) subject to a spatial temperature gradient. Due to the resemblance between

the axial-mode elastic waves in solids and the pressure waves in gases, A-SSTA shares sig-

nificant similarities with the conventional fluid-based thermoacoustics. On the other side,

F-SSTA is a thermoacoustically unstable mode unique to solid media. This modality, which
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refers to the excitation of unstable flexural mode, was realized in a bilayer slender beam

subject to a spatial thermal gradient. Compared to its axial counterpart, flexural thermoa-

coustic vibrations are easier to excite in slender structures, and are associated with lower

fundamental frequencies and larger amplitude of the response. All these aspects can result in

significantly easier implementation and higher power density, both aspects of key relevance

for the fabrication and use of thermoacoustic devices. The key contributions presented in

this thesis regarding A-SSTA and F-SSTA are summarized here below:

1. Development of the quasi-1D theory of A-SSTA. Following the classical Rott’s theory

of thermoacoustics, a quasi-1D theory of A-SSTA was derived in Chapter 3 . The theory

only took into account the cross-sectionally averaged fluctuating quantities in the TA

process. The A-SSTA theory successfully predicted the unstable axial standing-wave

mode that exists in a finite straight bar and the axial traveling-wave mode that exists

in a continuous loop-shaped bar, respectively (Chapter 4 ). The development of the

quasi-1D theory 1) facilitates the stability analysis; and 2) allows conducting optimal

design of solid-state thermoacoustic systems.

2. Comparative study of the standing- and traveling-wave A-SSTA. Similar to fluid-based

TA, traveling-wave SSTA supports a more efficient thermo-mechanical energy conver-

sion process, which is reflected by a more pronounced TA instability.

3. Systematic analysis of energy conversion. A perturbation energy budget is proposed in

order to systematically understand the energy conversion mechanism in both standing-

and traveling-wave SSTA.

4. Comparative discussion between A-SSTA and fluid-based TA. Important differences be-

tween A-SSTA and fluid-based TA were also observed. Among them, the most sig-

nificant stems from the dissimilar thermal expansion mechanism in the two classes of

working media. Unlike fluids, solids are less sensitive to heat and temperature gradients

due to their smaller coefficient of thermal expansion (CTE). This aspect is intrinsically

not in favor of a strong TA instability. However, the advent of engineered materials

provides a means to tailor the CTE of solid materials, which can potentially take any
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positive or negative real value. The possibility to manipulate of the thermo-mechanical

properties of engineered materials offers a unique opportunity in SSTA devices. These

ideas were explored in Chapter 5 .

5. Development of the theory of F-SSTA. The F-SSTA theory was established based on

the classical Euler-Bernoulli beam theory, incorporating the thermo-mechanical cou-

pling terms in the governing equations. The F-SSTA theory suggests that to success-

fully leverage the thermo-mechanical coupling to obtain unstable F-SSTA responses,

an asymmetric temperature distribution over the cross section has to be established.

This study was performed in Chapter 6 by using a bilayer beam as a prototypical

system to illustrate the operating mode.

6. Development of an analytical criterion for F-SSTA instability. By employing a simpli-

fied heating strategy, both an analytical modal solution and a criterion to determine

the onset of the flexural instability were obtained. According to this criterion, in nat-

ural materials, the layer with higher ratio of thermal expansion coefficient to heat

capacity should be placed on the side where heat is provided (i.e. the hot region).

7. Experimental assessment of the F-SSTA mechanism. An experimental investigation of

the F-SSTA modality was conducted. The setup consisted of a properly designed con-

tinuous bilayer beam. Although self-sustained motion was not observed, the reduced

effective damping clearly suggested the existence of the thermo-mechanical energy con-

version associated with the flexural motion of the bilayer beam.

8. Numerical study of NTE-aided F-SSTA. The instability criterion suggested the possi-

bility of replacing one of the two continuous layer by an engineered layer with negative

thermal expansion (NTE) coefficient to significantly enhance F-SSTA instability. Care-

ful numerical simulations confirmed this hypothesis and showed the distinctive role of

engineered materials in the SSTA systems. It is anticipated that by leveraging the

tunable NTE properties of engineered materials, a successful experimental realization

of F-SSTA responses could be achieved.
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7.2 Remarks on Benefits and Limitations of SSTA

Having summarized the main achievements of this thesis, we first highlight the most

significant benefits of using solids as working media for thermoacoustics as follows:

1. High robustness. Conventional fluid(gas)-based thermoacoustic devices may experience

leakage issues, which requires complex sealing design. However, the use of solid mate-

rials naturally prevents the leakage problem.

2. More direct electro-mechanical energy conversion. In gas-based thermoacoustic energy

harvester, a dedicated energy harvesting element, e.g., a piezoelectric element, has to

be integrated with the thermoacoustic conversion component. This coupling involves a

fluid-structure interaction that converts the mechanical energy carried by the pressure

wave in the gaseous working medium into the mechanical energy carried by the elastic

wave in the solid structure. Then the mechanical energy of the structure is further

converted into electricity. Such multi-step energy conversion is inevitably associated

with energy losses and a more elaborate design. However, by using solids as working

media, the serial thermo-mechanical-electrical energy conversion can be simplified by

integrating the piezoelectric element directly within the solid. The removal of the

fluid-structure conversion step allows reducing the energy loss, thus facilitating an

easier implementation of energy harvesting.

3. Enhanced tailoring and tuning ability of solids. To optimize a conventional thermoa-

coustic device, researchers have proposed numerous ideas to improve the design of each

individual component of the system. However, in the case of a gas or liquid working

medium, the capability to alter the material properties is very limited. Solids offer

more opportunities to tailor their characteristics, especially when leveraging architec-

tured material concepts, mainly attribute to the ongoing development of engineered

materials. With solid materials as constituents, the macroscopic structure can be de-

liberately designed to possess thermo-mechanical properties that favor thermoacoustic

instability (e.g. large thermal expansion coefficient). The ease of tailoring and tun-

ing material properties allows controlling more system parameters, thus enhancing the
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performance of thermoacoustic devices. This is a unique opportunity provided by solid

materials, which could greatly benefit the design of SSTA.

4. High scalability. The application of gas-based thermoacoustic devices are also hindered

by their bulky size. The low frequency oscillation, which is in favor of the heat trans-

fer process in thermoacoustic, can be only achieved with a large acoustic resonator.

However, the possibility to manipulate the (dynamic) density and stiffness of solid

structures that translates to a more manageable sound speed opens the window to

achieving desired low frequency with a more compact geometry. This aspect may also

promotes the future application of thermoacoustic devices.

Based on the above mentioned benefits of solids as main working media for thermoa-

coustics, the author anticipates that SSTA could promote further practical application of

thermoacoustic-based energy-conversion technology. To foster the development of SSTA, a

few considerations on the limitations of SSTA should also be kept in mind:

1. Heating a moving solid with conduction. The TA instability in both the fluid and solid

systems exists in an oscillatory working medium that is provided heat at a proper

phasing. In fluid systems, this process takes place in a porous material, or regenerator

(REG), where the gaseous parcel oscillates cyclically while heat exchange occurs via

conduction mechanisms. However, for solid systems, exchanging heat with the external

environment by conduction during oscillatory motion of the solid is not a trivial task.

Conceptually, for an A-SSTA system, one can surround the 1D bar by a large thermal

inertia, e.g., a copper jacket as shown in Fig. 4.1 (a), but this idea poses a challenging

requirement for the selection of the interface material in between the copper jacket

and the 1D bar. The interface must be simultaneously highly thermally conductive

(to achieve an effective isothermal boundary condition) and able to provide negligible

shear forces. Future effort can be dedicated to either the synthesis of an interface

material of this kind, or an alternative heating strategy, which is more appropriate

for oscillating solids. In the experimental attempt conducted in Chapter 6 , we used

two infrared lamps to provide radiative heat. We were able to see a reduction of the
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effective damping, as a sign of positive thermo-mechanical energy conversion associated

with the flexural motion. Yet, a self-sustained vibration was still not obtained, because

the heat leakage from the hot region to the cold region greatly reduced the strength

of the thermal gradient.

2. Low sensitivity to heat. In general, the response of natural solid materials is less sensi-

tive to heat, compared to gaseous media. This aspect, which is characterized by a lower

coefficient of thermal expansion (CTE), could be detrimental to thermoacoustic insta-

bility. While certain composites have CTE that is multiple orders of magnitude higher

than that in metals, the high dissipation in composites is another harmful aspect that

should be carefully considered because it prevents the establishment of powerful ther-

moacoustic instabilities. Overall, this limitation of homogeneous solid materials can

be overcome by artificially engineering the material’s CTE. With a dedicated selection

of constituent materials and elaborate topological design, an artificial truss structure

can possess tunable CTE which allows unbounded positive or negative value. This

unique chance provided by solids could greatly benefits thermoacoustic instability in

solid media. The performance enhancement in A-SSTA and F-SSTA systems through

the use of engineered materials have been discussed more in details in Chapter 5 and

Chapter 6 , respectively.

3. Nonlinearity in SSTA. The motion in a solid system which is thermoacoustically un-

stable initially grows with time. As the amplitude of oscillation grows, the nonlinear

effects in the system become more prominent. From the knowledge of gas-based ther-

moacoustic systems, it could be inferred that the nonlinear effects associated with

SSTA are another source that could limit the strength of thermoacoustic instability in

solids. This aspect was not explored in this thesis and should be further investigated.

7.3 Future Work

This thesis merely lays the theoretical foundation of SSTA. Although some preliminary

experimental studies have been conducted on F-SSTA, more experimental investigations
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need to be performed to better understand the thermoacoustic coupling in solids, and to

validate the theoretical framework proposed in this study. For experimental studies in the

future, one may consider the following strategies to pursue optimal thermoacoustic energy

conversion, thus facilitating a successful experimental operation.

1. Experimentation at the micro- or nano- scales. At the micro- or nano- scales, it is an-

ticipated that the thermal gradient achieved by radiation could be better managed.

For example, a strong light beam could be shed onto a non-uniformly perforated screen.

The screen, placed in between the solid structure and the light source, acts as an in-

tensity filter of the light. The non-uniform perforation shall enable the light, which

is refracted onto the solid structure, to create an effective spatial thermal gradient,

along the direction of motion. This shall apply to the experiments of both A-SSTA

and F-SSTA.

2. Construction of cellular structures. This strategy considers an SSTA system which is

made from cellular structures so that the additional surfaces that are exposed to air

can facilitate a more effective thermo-mechanical energy exchange. Additionally, the

cellular structure can be deliberately designed to be more compliant than continuous

solids, so to effectively lower the resonant frequencies; a useful factor for TA processes.

It is also remarkable that the thermo-mechanical properties (e.g., CTE) of cellular ma-

terials can be optimally tailored for the benefits of SSTA, as shown earlier in this thesis.

Overall, this seems a promising route towards a successful experimental demonstration

of SSTA phenomena.

3. Stiff matching of the F-SSTA bilayer beam. In Chapter 6 , we derived an approximate

analytical expression of the F-SSTA growth-rate-to-frequency ratio, which suggested

that matching the stiffness of the two layers of the hybrid bilayer beam can further en-

hance the F-SSTA instability. Therefore, further exploration can involve the numerical

and experimental studies of a hybrid bilayer beam that is composed of two truss layer,

one being NTE and the other being regular positive CTE material. As a result, despite

the large difference of CTE, which is beneficial to F-SSTA responses, the stiffness of

the two truss layers is comparable.
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The above-mentioned aspects are some of the immediate extensions that could be made,

based on the author’s knowledge of the fundamental SSTA theory, as well as the conclusions

drawn in the initial numerical and experimental explorations. It is noteworthy that, although

SSTA is a promising technology for the future development of solid-state energy conversion

devices (e.g., engines and refrigerators), the exploration of SSTA is still at its inception.

Extensive efforts have to be made in the future to look into all practical aspects relevant to

the application of SSTA systems more in detail.

Other than exploiting thermoacoustic coupling’s capability of energy conversion, it is

merely suggested by the author that exploring the possibility of manipulating sounds by

leveraging thermoacoustic coupling may lead to a promising route to the design of exotic

acoustic metamaterials and functional acoustic devices. A preliminary work shows the nu-

merical observation of several peculiar phenomena in a thermoacoustically coupled waveg-

uide, such as non-reciprocal sound propagation, one-way energy transport, and effective zero

refractive index [86 ].
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