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ABSTRACT 

Extrusion deposition additive manufacturing (EDAM) is a material extrusion method within the 

additive manufacturing technique, this method utilizes a screw and heaters to drive molten short 

fiber polymer composite through an orifice. The use of short fiber composite for EDAM has 

enabled large-scale 3D printing of tools and molds for traditional composite manufacturing 

processes, and structures. Additive manufactured (AM) short fiber composites (SFC) are both 

anisotropic and viscoelastic, with mechanical properties exhibiting strong non-linear behavior and 

temperature dependence. This means that the material processing history impacts the final residual 

stress and deformation states in a printed part. To simulate the in-manufacturing and in-service 

complex behavior of an AM SFC part, a homogenized physics-informed material model is required 

to be able to capture non-linear behavior stemming from sub-scale damage mechanisms.  With this 

in mind, a viscoelastic damage model is developed within a thermodynamically consistent 

framework.  

 Damage refers to failure mechanisms associated with fracture; these mechanisms act to 

degrade the stiffness of the material. The proposed material model is developed under the 

continuum damage mechanics and thermodynamics frameworks; therefore, thermodynamic-

consistency in enforced and representative orthotropic damage variables describe anisotropic 

damage nature. A damage surface is defined using the energy-norm, which is related to the 

thermodynamic forces conjugated to the damage variables, hardening function, and material-

dependent coefficients. Temperature-dependent material parameters are used to capture 

experimentally observed attributes of the stress versus strain. Two approaches are presented, a 

model calibrated using simple uniaxial tensile experiments conducted at ambient and elevated 

temperatures. The second approach considers the unilateral effect alongside extensive nonlinear 

behavior under shear by utilizing the sign of the normal strains to evolve normal damage variables 

that are dissociated into tensile and compressive modes, and using independent shear damage 

variables, respectively. 

 The material model is implemented as a user-defined material subroutine and exercised in 

the commercial finite element analysis software Abaqus/Standard. The performance of an additive 

manufacturing mold using the modified Additive3D framework is presented to demonstrate the 

viability of predicted progressive damage at elevated temperature for a compression molding tool.  
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 INTRODUCTION 

1.1 Background 

1.1.1 Extrusion Deposition Additive Manufacturing (EDAM) 

Extrusion deposition additive manufacturing (EDAM) is a material extrusion process which is an 

additive manufacturing technique, and according to ASTM 5290 [1], it is understood as a process 

of joining materials to make parts from 3D models in a layer-by-layer fashion. Commonly, 

composite feedstock materials in the form of unidirectional long discontinuous fiber or short 

randomly oriented fiber pellets are used for producing 3D printed parts. The feedstock is processed 

at the melt temperature of the polymer and extruded from a nozzle through application of pressure 

developed from a processing screw and melt pump. One of the main differences between EDAM 

and other forms of material extrusion processes is the use of an injection-molding like screw used 

for processing the feedstock pellets. The use of a screw significantly increases the amount of 

material extruded per unit time; this benefit is realized as parts become large since the time required 

to print a part can be substantially reduced depending on the allowable layer time. A converging 

conical nozzle is commonly used in EDAM systems, nozzles of this type produce cylindrically 

shaped extruded beads; however, when a bead compactor is utilized, such as a tamper or roller, 

the extruded bead is approximately elliptical. The extruded bead exits the nozzle at the molten 

temperature and atmospheric pressure, and it is exposed to either an open or closed environment, 

a heated chamber can be used to create a closed-like environment. In both environments, the 

extruded bead loses heat from conduction, convection, and radiation heat transfer; however, the 

extent of heat losses will be different. In either approach, a heated build plate can be used, and this 

can reduce the heat loss that occur through conduction between the deposited beads and the plate. 

Another aspect of EDAM deals with the first layers, the first printed layer does not adequately 

bond or stick to the build plate and this can cause the part to slide, to mitigate slippage, an adhesive 

or constraining technique is required. Continuous deposition of the molten material is guided by a 

machine code that commands the movement of either the nozzle system, print bed, or both. 

Moreover, the machine code contains includes a series of temporal and spatial commands for 

which dictates where and when the molten material will be deposited; in addition, optional feature 

commands can be recorded in the event series such as the type of feature is being printed (i.e., 
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infill or perimeter) and the status of the nozzle. A notable advantage of the additive manufacturing 

process is the ability to design a wide variety of complex shapes and infill structure with ease; 

however, an understanding of material behavior and slicing capabilities are some of the things 

required for successful use of the technology. Another important advantage is the waste reduction; 

for instance, the designed part is printed near shape so that very little machining is required to 

obtain desired surface smoothness or size. With this in mind, industrial-scale parts can be printed 

without significant waste, this has the potential to save time and allow for simplified designs such 

as elimination of non-critical joints. Overall, the ability to rapidly prototype large-scale printed 

structures through EDAM in an economical fashion and its potential for high temperature tooling 

are appealing abilities for the aerospace industry.  

In recent years, large-scale EDAM systems have become available. The technology has 

been shown to print short fiber composite parts or molds on the scale of meters in a short amount 

of time. Figure 1 depicts two large-scale EDAM systems; namely, the Large Scale Additive 

Manufacturing (LSAM) and Big Area Additive Manufacturing (BAAM), produced by 

Thermwood© and Cincinnati Inc., respectively. The technical details of these machines can be 

found in [2] and [3] for Thermwood© and Cincinnati Inc., respectively. In contrast to their pure 

polymeric counterparts, processed short fiber composite pellets have the following advantages 

which make them attractive for EDAM: (i) enhanced mechanical performance (ii) lower distortion 

or part warpage due to its coefficient of thermal expansion and (iii) enhanced in-plane thermal 

conductivity [4]. A printed part with a material that has a low CTE tends to have lower internal 

residual stresses caused by thermal gradient, this in turn reduces part deformation as a result of 

thermal gradients; evidently, this is appealing for the production of large-scale parts in open 

environments. Notable applications of this technology involve 3D printing of a 25% wt. short 

carbon fiber reinforced polyether sulfone (PESU) fuselage skin mold using an LSAM system [5] 

and a proof-of-concept composite hull using a BAAM system [6], these 3D printed structures are 

shown in Figure 2. These printed structures have bolstered the economic claims that can be 

accomplished through additive manufacturing by demonstrating the ability to curtail 

manufacturing lead times and lower overall cost of production. For example, the proof-of-concept 

hull project, based on the collaboration between Oak Ridge National Laboratory and the Navy’s 

Disruptive Technology Laboratory, reported a 90% reduction in production cost and reduced lead 

time from several months to days [6]. By the same token, the composite tooling case study between 
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traditional fused deposition modeling (FDM) and BAAM approaches described by Post et al. [7] 

best exemplifies the economics of EDAM. Specifically, the FDM printed tool required 478 hours 

and $31.4K whereas the BAAM printed tool required only 11 hours and $1.87K, the printed mold 

weighed approximately 65 pounds.  

 

 

Figure 1 (a) Thermwood© Large Scale Additive Manufacturing system [2] (b) Cincinnati Inc. 

Big Area Additive Manufacturing system [3] 

 

 

Figure 2 A 3D printed composite submersible hull [6] (left) and 3D printed composite fuselage 

skin mold [5] (right) 
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 While large-scale additive manufacturing has promising applications, an understanding of 

the complex physics involved during and post-processing has somewhat remained empirical and 

so has been the choice of processing parameters. A Composite Additive Manufacturing Research 

Instrument (CAMRI) was developed to investigate and observe the composite material extrusion 

deposition process at a smaller-scale relative to the aforementioned systems, this has been for the 

purpose of developing and validating material models which is briefly discussed in 1.1.2. The 

system is custom designed by the additive manufacturing team at the composites manufacturing 

and simulation center (CMSC) at Purdue University; moreover, this integrated system functions 

in a similar manner to the aforementioned large-scale EDAM systems. The CAMRI system uses a 

combination of instruments (e.g., injection-molding style screw, heaters, gear pump, tamper) to 

melt the composite feedstock and extrude it through a convergent zone nozzle, some of the design 

elements and assembly are shown in Figure 3. For comprehensive details on the  performance and 

attributes of the CAMRI system, the interested reader is referred to Barocio [8]. This EDAM 

system can be used for processing thermoplastics and fiber reinforced thermoplastics. 

 

 

Figure 3 Composite Additive Manufacturing Research Instrument 

 

The general procedure for designing and manufacturing a 3D printed mold is discussed 

below alongside some general considerations during these stages of design. Five main steps are 

needed for production of a short fiber composite mold, namely, (i) a Computer Aided Design 

(CAD) geometry file exported with a slicer compatible extension such as “.stl,” (ii) slicing of CAD 
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geometry which is translated into a “.gcode” file, (iii) printing of the sliced geometry dictated by 

the gcode commands, (iv) post-annealing of printed part to reduce process-induced residual 

stresses, and (v) machining step to smoothen the surface. Figure 4 below depicts these steps for a 

composite NACA air inlet duct mold [9], the last step can be omitted as coatings are usually applied 

when wear resistance and surface quality need to be improved.  

 

 

Figure 4 Production cycle of EDAM [9] 

 

 In the first step, CAD geometries are slightly oversized (i.e., approximately a fraction of a 

bead width) to allow for post-machining of the desired net-shape. Surface roughness of printed 

structures is inherent to the 3D printing process; hence, some form of machining is required if 

smooth surfaces are needed. Moreover, surface roughness of printed parts is defined by its surface 

texture (i.e., surface topography), this results from the semi-roundness of a bead as shown in Figure 

5. Noteworthy to mention, as the layer height increases, the surface roughness, in general, increases 

[10]. EDAM systems typically have bead heights between 1.5mm and 5.08mm, though these can 

be slightly altered depending on the flow mechanics; nevertheless, highly complex designs will 

need to account for this if smooth surfaces are required in difficult to reach locations. For 

composite materials, the slicing step requires some knowledge of composite mechanics so as to 

not induce a highly unbalanced design which will intentionally warp the printed part. Furthermore, 

layer times are an important consideration during the slicing step and should be specified 

appropriately so as to not induce severe thermal gradients or material sagging. These 
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considerations during the slicing step are not exhaustive and the main point here is that the slicing 

strategy directly affects the performance and outcome of a printed part; therefore, some 

understanding of process-structure-performance relationship is needed to support the efficiency 

gained through additive manufacturing. During the print stage, the first layer or two are usually 

sacrificial layers since the bead quality is impacted by the imperfections of the print bed, these 

layers are either removed during machining or accounted for during the model design stage. 

Furthermore, long periods of dwell time should be avoided since thermoplastics degrade with time 

at high temperatures, this degradation causes a significant increase in viscosity which may halt the 

printing process. Annealing of the printed part should be performed if feasible, this step requires 

an oven to bring the temperature of the part slightly below its glass transition temperature for 

amorphous thermoplastic composites. During this phase, some residual stress induced during 

processing can be relaxed. The relaxation phenomenon is a property of the polymer since it is 

viscoelastic. Machining should be performed after the annealing phase since the internal stresses 

will have to re-equilibrate as material is removed. Moreover, it is generally not recommended to 

remove significant amounts of material during a single pass. If the void volume fraction is 

significant within the material, the post-machined part may have surface cavities as a result of the 

air pocket within the bead. A coating material can be used to achieve the desired surface quality, 

the type of coating can be chosen so as to improve the wear resistant of the printed part.  

 

 

Figure 5 Illustration of a printed composite part and surface roughness 
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1.1.2 Virtual Design of EDAM Parts 

Virtual design of EDAM parts includes both the Design For Additive Manufacturing (DFAM) 

process and computational simulations. Gibson, Rosen, and Stucker [11] define DFAM as 

“maximizing product performance through the synthesis of shapes, sizes, hierarchical structures, 

and material composition, subject to the capabilities of AM technologies.” Product performance 

can be measured in terms of part deformation and part integrity and these metrics depend on both 

the EDAM process and part-level structure (i.e., infill structural details). In practice, maximizing 

product performance requires iteration of the virtual design process accomplished by modifying 

the geometry and slicing method, see Figure 6. With today’s available CAD software, designers 

have access to extensive tools to create highly complex structures with precise dimensions, 

however, dimensional compensation based on a printed bead’s cross-section should be considered 

beforehand; especially, for directions which are in-plane transverse to the print direction, 

specifically, certain dimensions should be an integer multiple of the bead’s width and its height an 

integer multiple of the bead’s height. With this in mind, changes made to the infill structure, such 

as infill orientation, may need geometrical compensation to achieve the slightly oversized shaped 

intended for minimal machining. Efficient additive manufacturing process designs minimize time 

and cost of production, this implies that optimal process designs should be sparsely filled whenever 

possible and quickly printed. Internal structure of sparsely filled geometries should not be random 

and should account for the anisotropy of the printed short fiber composite; in general, the print 

direction has the greatest stiffness and strength relative to its in-plane and stacking directions. In-

service loads that produce highly stressed regions should take advantage of the print direction 

properties whenever possible or filled adequately to prevent excessive deformation or damage. 

Neither should the print speed be tuned arbitrarily fast nor should it be the chief objective, an 

extremely fast print speed translates to a short layer time; the time it takes for the system to 

complete a layer. When the layer time is extremely short, material sagging becomes pronounced 

because of the lack of cooling time the layer experiences. In other words, very short cooling times 

do not allow the printed short fiber composite to develop enough stiffness to significantly resist 

gravitational deformation. On the contrary, neither should the layer time be extremely long as 

severe thermal gradients can promote significant residual stresses on a part. Therefore, the 

efficiency of the design process is constrained by the material behavior, likewise, minimization of 
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time and cost depend on the material behavior. Striking the balance between optimal process 

design variables and material behavior is facilitated by the virtual design process in contrast to the 

traditionally empirical trial and error fashion of printing a part. On the performance side, it is 

important to predict whether the intended structure can withstand the required service loads for a 

sustained period of time. Simulation tools that provide this capability allows the designer to modify 

the 3D printed shape for maximum performance; thus, taking advantage of the additive 

manufacturing capabilities and attributes.  

 

 

Figure 6 Virtual design for EDAM process 

 

 A couple of exemplary examples of the virtual design process is found in [12], one of which 

is a virtual design exercise of an automotive air inlet, shown in Figure 7b. The simulation 

framework used for the study is Additive3D, this framework is discussed in 1.1.2. The automotive 

air inlet is made from prepreg, depicted in Figure 7a, a fibrous material pre-impregnated with resin 

which is processed inside an autoclave. Two analyses are required to understand the implications 

of process and structure design choices, the first is the EDAM process simulation and the second 

is the performance simulation. Figure 8a illustrates the elements that inform the EDAM process 

simulations, these are the machine code, AM system card, and digital material card. The machine 

code is used for specifying the orientation states within the simulation, the AM system card for 

identifying appropriate boundary conditions, and the digital material model for the correct material 

properties. Furthermore, the EDAM process simulation is a sequentially-coupled thermal-stress 
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finite element analysis and its inputs depend on the EDAM system considered. For example, the 

CAMRI and LSAM systems extrude bead profiles of different dimensions because of the different 

nozzle sizes, consequently, the bead’s microstructure and performance will be different, and this 

is captured using different digital material cards. 

 

 

Figure 7 (a) Automotive air inlet fiber reinforced composite produced using an 3D printed short 

fiber composite autoclave mold (b) Virtual design process for NACA duct air inlet autoclave 

mold [12] 

 

 Figure 8b and Figure 8c illustrate the workflow for the performance simulation. Residual 

stresses can be mapped onto a conformal mesh of the geometry, and the final stress state can be 

investigated after the in-service loads are specified. The deformed shape of the tool during service-

use can be plotted and compared with the nominal shape profile. Tool shape compensation can 

then be made to achieve the desired design shape.  
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Figure 8 (a) EDAM process simulation workflow for a NACA duct autoclave short fiber 

composite mold (b) Performance analysis of composite NACA duct mold (c) Geometrical 

compensation of NACA duct composite mold [12] 
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1.1.3 Computational Modeling of EDAM Process using Additive3D 

Computational modeling of the EDAM process has been implemented in Abaqus/Standard 

(Implicit) via a set of user-defined subroutines, this framework is known as Additive3D [13]. 

Process and performance simulations are sequentially coupled thermal-stress analyses, these 

analyses require nine user-defined subroutines. The Additive3D workflow virtually reflects the 

design for additive manufacturing process by simulating the physics of the process to understand 

stress and deformation development. While the framework and workflow discussed in 1.1.1 are 

essential for improving the efficiency of additive manufacturing designs, it does not capture 

damage-based degradation as a result of the accumulated residual stress build-up or in-service 

conditions. Nevertheless, it remains relevant to discuss some of the elements of the framework to 

understand how damage mechanics can be implemented without extensive modification to the 

framework.  

 Additive3D contains nine user-defined subroutines utilized for the sequential 

thermomechanical analysis, Table 1 summarizes the subroutine descriptions. The mesh of the 

geometry is constructed by executing an in-house python script which generates a non-conformal 

voxel mesh based on the tool path in the machine code file, the resulting mesh only contains 

elements that will be activated in the analysis. The continuous deposition of molten material in the 

additive manufacturing process is imitated in Abaqus/Standard through the use of progressive 

element activation; specifically, the activation time of the element is computed based on the event 

series and an initially dormant element becomes active after the activation time is reached by using 

the UEPActivationVol subroutine. Moreover, this subroutine requires machine code information, 

denoted as the event series, alongside a searching algorithm that will check if an element is active 

or dormant at any given time during the deposition process. The event series usually contains 

information about the temporal and spatial history of the nozzle, and user-defined indicators that 

will aid in modeling certain phenomena. The order of subroutine execution begins with the 

ORIENT subroutine, it is called at the first integration point of an element. The searching algorithm 

is executed, and the activation time and local orientations is stored in a global array; specifically, 

by using the UEXTERNALDB subroutine. Subsequent integration point calls from ORIENT, all 

calls to SDVINI and UEPActivationVol extract required input information from the global array. 

For complex 3D printed geometries with internal infill walls, UFIELD is implemented to 
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approximate differences in convection properties between infill exposed surfaces and external 

surfaces. UMATHT is used for defining the thermal constitutive behavior of the short fiber 

composite in addition to internal heat generation, it is called at all material points of an element 

with user-defined thermal material behavior. UMDFLUX is implemented to capture the heat losses 

that result from an air cooled mechanical bead compactor or tamper when in use. UEXPAN is used 

for defining incremental thermal strains that are a function of temperature, predefined field 

variables, and state variables, this subroutine allows for capturing strain changes resulting from 

material phase changes such as crystallization for semi-crystalline polymers. UMAT is used for 

defining the mechanical constitutive behavior of the short fiber composite and it is called at all 

integration points for user-defined material behavior. For a comprehensive review of these 

subroutines, the pseudocode algorithm, and implementation, the motivated reader is referred to [8], 

[13]–[18]. Based on the functions of the subroutines, only the UMAT requires modification to 

include thermoviscoelastic damage mechanics. 

 

Table 1 Abaqus/Standard (Implicit) user-defined subroutines for the EDAM process simulations, 

H denoting heat transfer analysis and M denoting mechanical analysis, modified from [13] 

User subroutine Analysis Description 

UEXTERNALDB H & M Called at the beginning of an analysis to allocate global 

arrays to facilitate relevant information transfer between 

subroutines 

ORIENT H & M Assigns local element orientations based on principal 

directions of the local event series coordinate system. A  

SDVINI H & M Called after ORIENT at the beginning of analysis. 

Stores and shares activation time and other initial 

conditions to other subroutines 

UEPACTIVATIONVOL H & M Called at the beginning of increment to activate dormant 

elements by setting the activated volume fraction to one.  

UFIELD H only Called as needed and used for assigning feature-based 

convection properties to nodes 

UMATHT H only Called to perform phase change (i.e., crystallization for 

semi-crystalline polymers, melting, and bonding) and 

heat transfer calculations 

UMDFLUX H only Uses event series to implement heat losses from 

mechanical bead compactor (e.g., tamper) 

UEXPAN M only Used for phase transfer computations in mechanical 

analysis, crystallization and melting, and computes 

thermal crystallization strains 

UMAT M only Implements thermoviscoelasticity 
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 The UMAT and UMATHT are the subroutines that require material input parameters 

whenever a new short fiber composite is introduced, the set of material parameters are organized 

into a single file denoted as the material card. The other subroutines deal with machine-relevant 

information. A brief description of the relevant equations used for modeling heat and 

thermoviscoelasticity is discussed for the purpose of identifying relevant material-dependent 

parameters that must be considered for new material systems. It is noteworthy to mention that 

these material parameters or properties are not readily available in a database or in the literature; 

therefore, most if not all 3D printed short fiber composite require some form of characterization 

either experimentally or through validated micromechanical models.  

The variables involved in the heat transfer formulation are density, 𝜌, heat capacity, 𝐶𝑝, 

thermal conductivity tensor, 𝑘𝑖  for 𝑖 = 1,2,3, heat generation, 𝑄 , time, 𝑡 , and temperature, 𝑇 . 

Moreover, heat generation is present for semi-crystalline polymers like polyphenylene sulfide 

(PPS) because of its exothermic crystallization kinetics phenomenon, and it is omitted for 

amorphous polymers such as PESU. Furthermore, the variables involved in the convection 

formulation are the effective material conductivity, 𝑘𝑒𝑓𝑓, parallel to the surface normal, 𝑛, film 

coefficient, ℎ , emissivity, 𝜀 , Boltzmann constant, 𝜎𝐵 , ambient temperature with respect to 

convection, 𝑇∞1, and mean temperature of the boundaries in proximity to the surface, 𝑇∞2. For a 

fiber reinforced amorphous polymer, the essential heat transfer variables that need characterization 

are: 𝐶𝑝(𝑇), 𝑘𝑖, 𝜌, 𝜀, ℎ.  

 

 

 Polymer diffusion is an important phenomenon that affects the performance of 3D printed 

parts, it plays an essential role in the adhesion of bead-to-bead interfaces. A non-isothermal 

autohesion model, developed by Yang and Pitchumani [19], then modified by Barocio [8] to 

include crystallinity, is used for quantifying the temporal evolution of the mode-I critical energy 

release rate, 𝐺𝐼𝐶(𝑡). The ratio between the temporal energy release rate its maximum possible 
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energy release rate, 𝐺𝐼𝐶∞, is coined as the degree of bonding, 𝐷𝑏 as shown in Eq. (2). The degree 

of bonding is a scalar value that ranges between 0 and 1, with a value of 0 denoting no bonding 

and a value of 1 signifying complete bonding. The model includes a welding time parameter, 𝑡𝑤, 

to quantify the degree of bonding, and it is defined using the Arrhenius equation, 𝑡𝑤(𝑇) = 𝐴𝑒
𝐸𝐴/𝑅𝑇. 

The essential variables needed to describe the degree of bonding are the pre-exponential factor, 𝐴, 

and the activation energy, 𝐸𝐴. These variables are obtained through mode-I fracture experiments 

of 3D printed double cantilever beam samples. The mechanical properties of the interfaces are 

influenced by the degree of bonding; likewise, damage behavior is assumed to be coupled to this 

parameter. While it is important to study the coupling nature of these two phenomena, it is assumed 

the beads adhere to one another completely, this assumption is reasonable for thermally annealed 

specimens and geometries as this allows for accelerated polymer diffusion.   

 

  

The time-dependence of the short fiber composite is modeled with a thermoviscoelastic 

material description, the generalized Maxwell model is used alongside the reduced time variable. 

The material model is derived using a combination of rheological elements such as springs and 

dashpots, and when a 3D state of stress is considered, the time-dependent stresses are represented 

by the hereditary integral shown below. Here, the stiffness tensor, 𝐶𝑖𝑗(𝑇, 𝑋, 𝑡 − 𝜏) depends on 

temperature, 𝑇, crystallinity for semi-crystalline polymers, 𝑋, and time, 𝑡, moreover, the stiffness 

tensor is also defined with a Prony series. Time, 𝑡, is substituted with the reduced time variable, 𝜉, 

to represent the change in material behavior at different temperature, it is characterized by an 

empirical William-Landel-Ferry (WLF) or Arrhenius equation. The stiffness tensor is described 

using a Prony series, and each component of the stiffness tensor requires the constants of the Prony 

series. The material parameters that are required are the stiffness weights and the corresponding 

relaxation constants, these can be obtained from stress relaxation experiments. The number of 

constants in the reduced time expression depend on the model; for example, the WLF relation 

requires two constants obtained from thermoviscoelastic experiments. Additional details of the 

required material parameters and characterization for the heat transfer, degree of bonding, and 

thermoviscoelasticity models, the reader is referred to Barocio [8] and Brenken [14]. 

𝐷𝑏(𝑡) =
𝐺𝐼𝐶(𝑡)

𝐺𝐼𝐶∞
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0

, 𝑡𝑐 ∈ {𝑡 | 𝑋 < 𝑋𝑐𝑟𝑖𝑡} (2) 
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1.1.4 EDAM Short Fiber Composite Heterogeneity Hierarchy 

From a material modeling perspective, there are three length-scales which are most relevant for 

the analysis of EDAM behavior. Namely, these are the microscale, mesoscale, and macroscale. At 

the smallest length-scale, there are microscopic features, invisible to the human eye, at larger 

length-scales. Noteworthy to mention, modeling very small features for mesoscale or macroscale 

analyses can present a significant challenge. Most often, homogenization and localization 

approaches are used for transferring information from one length-scale to another, this is illustrated 

in Figure 9. Homogenization is a powerful tool that allows for effective material description based 

on microscopic descriptors, this approach is typically used to reduce computational expense at the 

cost of smearing microscopic or local stress and strain fields. This approach is used throughout 

this work to model anisotropic material behavior in a computationally inexpensive way.  

 The microscale is the origin of material heterogeneity, it contains microscopic features 

considered fundamental to the effective behavior of the material. The heterogeneity of a printed 

bead microstructure contains fibers or inclusions, matrix, fiber/matrix interfaces, and voids. Fibers 

are typically cylindrical; however, peculiarities in fiber production may yield other shapes such as 

the kidney-bean shaped fibers. The microstructure of a short fiber composite is an amalgamation 

of these micro-constituents, this ensemble is most often quantitatively characterized by its fiber 

length, fiber shape and size, fiber volume fraction, fiber orientation, matrix volume fraction, void 

volume fraction, and void size and shape. Each microstructural characteristic (e.g., fiber length, 

fiber orientation) has a distribution of values and this distribution does change with processing 

conditions. For example, modifying the nozzle size or geometry can significantly alter the fiber 

orientation tensor [20], mesoscale and macroscale performance are then affected. For anisotropic 

modeling, these microscopic features and characteristics should be considered. 

The mesoscale contains features on the length-scale of a printed bead, also, each bead 

contains a significant quantity of micro-constituents. The printed bead and bead-to-bead interfaces 

are the relevant characteristics at this length-scale. The microscale heterogeneity of the material 

propagates to the mesoscale and it produces anisotropic material behavior. Moreover, at the 

𝜎𝑖 = ∫ 𝐶𝑖𝑗(𝑇, 𝑋, 𝑡 − 𝜏)
𝜕𝜀𝑗

𝑒𝑓𝑓

𝜕𝜏
𝑑𝜏

𝑡

0

, 𝑖, 𝑗 = 1,2, … ,6 (3) 
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mesoscale, the role of interfaces is important, and its behavior should be incorporated into models. 

Due to the anisotropic nature of the material, the direction of beads or infill structure will have an 

impact on the final deformation state. Since the effective anisotropic response depends on the 

microscopic details, it requires characterization or analysis efforts when a new microstructure is 

obtained. This is an important point of consideration for EDAM material cards that incorporate 

effective mesoscale material properties, significant characterization efforts or validated 

micromechanical analyses are required for significant changes to the microstructure. Despite this 

reality, the processing conditions responsible for significantly altering the microstructure are kept 

the same and this translates to an effective mesoscale mean response that remains the same from 

batch-to-batch but with variability present. In this dissertation, the effective mesoscale properties 

of the short fiber composite are of interest and microscale characterization and analyses are only 

considered to inform mesoscale models or procure homogenized composite properties.  

  

 

Figure 9 Depiction of the EDAM relevant multiscales 
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The macroscale is considered for printed structures that are relatively large compared to 

the length-scale of a printed bead. At this scale, a computational analysis of large-scale structures 

may require further homogenization, this means that mesoscale details are smeared. Like 

homogenization, localization can be performed and is accomplished by using the macroscopic 

fields to predict mesoscopic or microscopic fields (i.e., local fields such as stress or strain within 

the representative volume). When high fidelity is warranted, traversing across the multiscale ladder 

is possible with homogenization/localization analyses. A brief review of multiscale analysis is 

discussed in 2.3.3. Figure 9 contains the torch design as an example of a macroscale structure 

relative to the other length-scales. The torch geometry is the largest known 3D printed structure 

produced with an LSAM by Dimensional Innovations© for the Las Vegas Raiders stadium [21]. 

The outer section of the torch structure is made of 225 assembled 3D printed blocks composed of 

20% wt. carbon fiber reinforced polycarbonate, each block weighing approximately 158.8 

kilograms (350 pounds). 

1.1.5 Damage and Failure in EDAM Materials and Structures 

Damage and failure during EDAM has been observed and reported by Talagani et al. [22] and 

Compton et al. [23], both publications investigate the same material, carbon fiber reinforced 

acrylonitrile butadiene styrene (ABS), printed on the BAAM. In their study, the failure event is 

shown through images of processing-induced delaminations. Delamination of the printed car 

chassis is shown in Figure 10, from the images at the center and right. A visible dark region is 

evident in the center image and this is evidence of delamination during the EDAM process; 

additionally, a flat yellow object was inserted between the crack surfaces on the image on the right-

hand side. The authors also show a micrographic image of the printed bead’s cross-section along 

the print direction, the image shows initial cracks as a dark band at the edge of the bead along its 

stacking interface, as well as dark irregular shaped intrabead regions denoted as voids. Motivated 

by the car chassis problem, Talagani et. al. [22] investigate the effects of process-induced residual 

stresses on structural distortion, multiscale damage and interface fracture in the BAAM process 

via a fully coupled thermo-mechanical finite element analysis. The coupled analysis utilized a 

temperature field based on the physical print to inform the mechanical analysis. Also, the thermal 

constitutive properties and thermal portion of the coupled analysis were validated using measured 

temperatures of a printed wall. A voxelized mesh model of the car chassis is constructed from 
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inputs of the BAAM machine code, additionally, the local element orientations are specified from 

the same machine code inputs. The input properties required for the mechanical constitutive law 

were obtained by reverse engineering micro-constituent properties and microstructural 

characteristics (e.g., fiber orientation tensor), then a homogenization step is performed using the 

Mori-Tanaka scheme. The macro stress and strain field were utilized in a localization step to 

determine element failure using multiscale damage and linear fracture mechanics, specifically, 

intrabead damage and interbead fracture within an element. The specifics of the damage model 

equations, theory, and calibration were not discussed in the article.  

 

 

Figure 10 Micrograph of extruded carbon fiber ABS with initial flaws (left), car chassis section 

with delamination printed on the BAAM system (center), interior of car chassis displaying 

delamination (right) [22] 

 

 

Figure 11 Warping and interbead cracking for a carbon fiber reinforced ABS wall printed on the 

BAAM system [23] 
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Compton et al. [23], while motivated by the same printed car chassis problem, investigated 

printed thin walls by measuring its thermal evolution, for the purpose of developing a 1D transient 

thermal model. Six thin walls were printed to study the effects of layer time on the steady-state top 

layer temperature, warping, and delamination. The steady-state top layer temperature, denoted as 

𝑇𝑡𝑜𝑝, is defined as the temperature of the last deposited bead before the subsequent layer is added. 

Three of the six walls were printed with an 11mm thickness and the remaining three with 20mm 

thickness; additionally, the length and height were 1.542m and 0.358m, respectively. For each wall 

of a given thickness, three layer times were imposed, categorized as short, intermediate, and long 

layer times. The authors show a plot of the steady-state top layer temperature with respect to the 

layer time with reference horizontal dashed lines indicating the temperature at the ABS glass 

transition and the ambient. One notable discovery was that delamination of the wall occurred for 

the cases with long layer times, while only warping occurred for intermediate layer times. 

Furthermore, delaminations occurred when the steady-state top layer temperature dropped 

significantly below the glass transition temperature. 

1.2 Problem Statement and Objective 

As discussed earlier, the computational framework and workflow used for process and 

performance analysis of 3D printed short fiber composites utilizes a thermoviscoelastic material 

model to understand part deformation and residual stresses, the material model does not take into 

account nonlinearity in material behavior as a result of accumulated micro-damage. The reported 

continuum and fracture mechanics based damage approach used for simulating failure sites of 

EDAM printed structures have not been adequately described to enable its implementation in 

similar thermomechanical models; therefore, the approach is questionable especially for different 

load cases. Furthermore, a framework or workflow that describes the damage model, proposes 

characterization experiments, and outlines material model calibration procedure has not been 

previously developed for this application. The interaction between creep and damage has not been 

captured in the previously developed additive manufacturing performance simulation approaches. 

In addition, the reported methodologies cannot accurately capture progressive damage and 

ultimate failure of a 3D printed part at elevated temperatures. Also, an understanding of anisotropic 

material behavior at elevated temperatures that are below the glass transition are lacking in the 

literature for a wide-range of 3D printed short fiber composites. With this in mind, the dearth of 
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experimental data poses a challenge for assessing how well a proposed material model can 

represent its behavior. Even though micromechanical approaches aimed at estimating material 

properties and behavior are possible, it is computationally expensive, and often requires difficult 

to characterize micro-constituent properties.  

 In this dissertation, these challenges are solved by developing a temperature-dependent 

viscoelastic continuum damage model that is capable of capturing anisotropic damage. The 

developed damage model is compatible with the additive3D framework since a similar hereditary 

integral is used. Experimental characterization of the viscoelastic properties remain the same as 

discussed in [14], except with less reliance on micromechanical predictions to obtain missing 

elastic properties. Experimental data under tension, compression, and shear are procured to 

calibrate the material model parameters and capture the experimental nonlinear trends at room and 

elevated temperatures. Finally, the material model is exercised to demonstrate its ability to predict 

time-dependent damage and structural performance of a 3D printed tool. The objective of this 

dissertation is to develop the framework and workflow for characterizing a thermoviscoelastic 

damage model for 3D printed short fiber composites.  

1.3 Dissertation Outline 

Chapter 2 provides a literature review of the relevant fields needed to develop the 

thermoviscoelastic damage model to accurately represent the short fiber reinforced thermoplastic. 

The classification of is discussed and the behavior of thermoplastics are illustrated to highlight 

notable aspects of mechanical behavior such as intrinsic and extrinsic yield points, proportional 

limit, strain softening or hardening. Further, these mechanical attributes are assumed to exists for 

reinforced thermoplastics and are considered when selecting an appropriate anisotropic 

viscoelastic damage theory. Viscoelastic properties are briefly discussed to explain the difference 

between creep and relaxation phenomenon as well as illustrate the temporal behavior associated 

with polymers. The rheological model and its mathematical representation used for describing 

viscoelastic behavior in Additive3D are reviewed for identifying the required mathematical 

formulation to develop a compatible thermoviscoelastic damage formulation. Previous work on 

damage mechanisms of short fiber composites is mentioned to facilitate appropriate selection of 

the anisotropic damage theory. Moreover, the taxonomy of computational progressive fracture and 
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damage mechanics is provided to identify the most viable approach for the adopted simulation 

framework.  

In Chapter 3, a thermoviscoelastic damage model is derived from fundamental 

thermodynamic equations. The theory accounts for damage in the constitutive law through 

introduction of a damage effect tensor, this is accomplished by employing the energy equivalence 

principle used in continuum damage mechanics. The damage effect tensor can be either formulated 

direction or through a dyadic product of its second-order damage or integrity tensors. Directional 

damage variables represent the different damage modes associated with anisotropic material 

behavior. The constitutive properties are derived from the Helmholtz free energy and 

thermodynamic consistency is enforced through the Clausius-Duhem inequality. The inequality 

ensures entropy remains positive for the thermodynamics of irreversible processes. The free energy 

function is shown to exhibit relaxed and unrelaxed parts, this is true for the derived stresses which 

resembles the Prony series discussed in Chapter 2. A damage surface and potential are postulated, 

these are formulated in strain-space to exploit the temporal driving force stemming from 

viscoelastic behavior. The thermodynamic force conjugated to the damage variables and a 

temperature-dependent isotropic hardening/softening law are used for describing the 

thermodynamically allowable material state by which no damage occurs. The viscoelastic damage 

model is numerically formulated for its implementation into the implicit finite element method 

with the updated stresses and Jacobian defined as required by the user material subroutine.  

In Chapter 4, the material properties for a 3D printed short fiber composite are 

experimentally obtained and the material behavior analyzed to assess trends of the mechanical 

attributes discussed in Chapter 2. The experimental set-up, apparatus, and methodology are 

discussed. Stress relaxation experiments are performed to both characterize the viscoelastic 

properties of the composite using the methodology described by Brenken [14] and determine the 

elevated temperature cases with the allotted time-scale for which viscoelastic stress relaxation is 

minimal to allow nonlinear behavior to be dominated by damage. Transient heat transfer analyses 

are performed to predict required thermal soak time to achieve a core temperature equal to the 

ambient within the environmental chamber. Microstructural images and characterization is made 

for the short fiber composite to highlight the microstructural features common to 3D printed 

composites. The strain fields for all mechanical tests were obtained using the digital image 

correlation method, and most thermoelastic properties for the orthotropic short fiber composite 
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were extracted. Uniaxial tensile, compression, and shear deformations were considered for 

this work. Scanning electron microscopy is performed to investigate the post-mortem fracture 

surfaces of mechanical coupons at room temperature and elevated temperature.  

In chapter 5, the stress relaxation experiments, and mechanical properties obtained in 

Chapter 4 are used for characterizing the viscoelastic model parameters as well as calibrating the 

damage properties. A proposed procedure for calibrating the damage model according to tension 

and compression stress versus strain experiments is made under the assumption plastic 

deformation is insignificant for brittle behavior. Model parameters are studied to illustrate the 

change in predicted material response and assess its ability to capture the experimental trends. Two 

types of approaches are taken to reflect the softening regime, the first assumes instantaneous 

fracture once the damage critical value is reached and the other assumes no further hardening 

occurs which accelerates the rate of damage past the ultimate stress point. The material model 

accounts for the stacking direction nonlinear behavior by assuming an independent set of 

parameters which are assumed to be interfacial properties. Creep and creep-induced damage is 

presented to highlight the capability of predicting time-dependent damage.  

In Chapter 6, the viscoelastic damage model is integrated into the Additive3D framework 

to the provide simulated progressive damage performance capability. The design for additive 

manufacturing process is demonstrated using the modified framework by designing a u-shaped 

mold similar to the LSAM large-scale mold geometry shown in Chapter 1. Process simulations are 

conducted to illustrate the stress analysis of the printed part for the characterized material model. 

Secondly, the mold is subjected to a compression load exerted by an aluminum plunger to reflect 

a compression molding load case. A sequentially coupled thermal-stress analysis is performed for 

the performance analysis of the mold to represent a load case with spatially varying temperature 

and damage behavior. A physical mold is printed and tested under a similar condition, comparison 

and contrast is made between the model and experiment.  

Chapter 7 concludes the dissertation with recommendations for future work. 
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 LITERATURE REVIEW 

2.1 Thermoviscoelasticity Background 

2.1.1 Classification of Polymers and Mechanical Behavior 

In general, most polymers are categorized as either thermoplastic or thermoset. The physical 

difference between a thermoplastic and a thermoset lies in its bonding behavior between molecular 

chains. Thermosets have primary and secondary bonds between chains; however, thermoplastics 

only exhibits secondary bonds. The bonding structure and morphology of the chains influences the 

thermal, mechanical, and processing behavior. Thermoplastics can be further classified as either 

semi-crystalline or amorphous, semi-crystalline polymers exhibit diffraction patterns which are 

indicative of short range order. The crystallization percentage directly influences the mechanical 

properties of the thermoplastic and should be considered in modeling approaches. The noteworthy 

distinction between both classes of polymers is based on its processing; specifically, thermoplastic 

polymers can be melted or molded by raising the temperature to its melt point. On the other hand, 

thermosetting polymers cannot be melted or molded rather they undergo an irreversible cross-

linking phenomenon. The cross-linking nature of thermosets also influence the mechanical 

properties of the polymer or composite. Amorphous thermoplastics are simple to model relative to 

semi-crystalline thermoplastics and thermosets since modeling nonlinear mechanical behavior 

does not require crystallization or cross-linking material models. For this work, only reinforced 

amorphous thermoplastics polymers are considered.  

 Uniaxial tensile tests are one of the common methods used for assessing the performance 

of polymers, guides such as the ASTM D638 [24] provide a standard approach for testing many 

different classes of polymers. Four types of uniaxial tensile behavior can be observed from a 

variety of polymers, as shown in Figure 12a., these are either:  

• Brittle – Fracture occurs with little elastic deformation and without significant plastic 

deformation 

• Semi-ductile – Fracture occurs with some plastic deformation 

• Ductile – Significant plastic formation is observable whereby sustained loads are 

accompanied by irreversible strains 
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• Elastomer – Usually exhibits high flexibility such as rubbers and behave highly 

nonlinear  

PESU, an amorphous thermoplastic polymer of interest, is known to behave in a ductile and high 

softening manner; moreover, the polymer has a Young’s modulus of 2.6GPa, yield stress of 

82MPa, and elongation at break of 40% [25]. Commercial polymers may however behave 

differently than its base polymer despite having the same basic chemical structure, the reason for 

this is due to additives. Additives are composed of a substance or solvent added to a polymer to 

modify the properties of a polymer to meet a specified need or application; for example, typical 

additives are lubricants, plasticizers, stabilizers, and reinforcements. With this in mind, a base 

polymer such as PESU can behave in a glassy brittle manner depending on the types of additives 

used. 

Figure 12b illustrates Considère construction which is often used for the interpretation of 

the yield and flow phenomenon in a tensile test, especially for ductile behavior. The proportional 

limit denotes the transition between linear elastic and nonlinear behavior. The extrinsic yield point 

is defined as the tangent to the nonlinear curve through the point 𝜀 = −1% or 𝜀 = 0% if an 

extension ratio is used, and it is obtained from manipulation of the true stress, nominal stress, and 

engineering strain relations [25]. The intrinsic yield point is often taken as the proportional limit 

stress or the first peak in the stress versus strain diagram [26]. Both intrinsic or extrinsic yield 

points are methods used for identifying the yield point in the stress-strain diagram, and either 

definition can be adopted depending on the application; nevertheless, the intrinsic yield point is 

adopted most often. The intrinsic yield point may change with temperature or strain rate as shown 

in Figure 13a; however, Brinson and Brinson [26] mention that care must be taken to ensure 

interpretations are taken from isochronous stress-strain plots. Polymers are also known to exhibit 

unilateral tension and compression behavior, an example is shown in Figure 13b based on the work 

of Rybicky and Kanninen [27]. With these observations in mind, it reasonable to expect fiber 

reinforced polymer composites to exhibit similar behavior.  
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Figure 12 (a) Typical stress-strain response of various polymers, modified from [26] (b) 

Considère’s construction adopted from (Kinloch and Young, 1995) [28] 

 

 

Figure 13 (a) An example of temperature effect (left) and strain rate (right) on the stress-strain 

response of a typical polymer (Brinson and Brinson, 2008 [29]), and (b) Unilateral response of 

polypropylene (Rybicky and Kanninen, 1973) [27] 

2.1.2 Viscoelastic Properties of Polymers 

Viscoelasticity refers to nature of a material that behaves both elastic and viscous when subjected 

to a deformation state. Elastic behavior is defined as the ability to resist deformation without 

energy dissipation such that the original shape is recoverable upon load relief. On the other hand, 

viscous behavior is best described as the ability to resist flow, Newtonian or non-Newtonian fluids 

are known to exhibit viscous behavior. Polymers are materials that behave both in an elastic 

(a) (b)
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and viscous manner. Furthermore, viscoelastic materials exhibit time-dependent behavior and in 

polymers it is caused by its unique molecular structure. Other materials, such as metals, also 

behave in a time-dependent manner depending on environmental factors (e.g., moisture, 

temperature etc.); however, the nano-scale mechanisms that trigger time-dependent behavior in 

metals and polymers are not the same. Therefore, the methodologies used for characterizing time-

dependent behavior in metals do not generally apply to polymers.  

Relaxation and creep tests are the two fundamental methods used for characterizing the 

viscoelastic behavior of polymers. Viscoelastic materials increase their deformation with time 

under a constant stress state whereas the stresses decrease with time under a constant strain input. 

A relaxation test places a viscoelastic material under a constant uniaxial strain, 𝜀0, that is applied 

in a quasi-static fashion. It is also assumed the viscoelastic material does not have a previous stress 

or strain history, or has at least been relieved through some form of annealing. Under this 

condition, the stress output, 𝜎(𝑡), is depicted in Figure 14a on the right-hand side. From such 

observations, it becomes evident that the modulus 𝐸(𝑡), also referred to as relaxation modulus, is 

time dependent as shown in Eq. (4) below. By the same token, a uniaxial quasi-statically applied 

constant stress, 𝜎0, produces the time varying strain, 𝜀(𝑡), illustrated in Figure 14b, this is known 

as the creep test with 𝐷(𝑡)  denoting the creep compliance. Thermoset and semi-crystalline 

polymers are known to have equilibrated properties; for example, the stress relaxation test will 

decay toward a non-zero constant value and the creep test will plateau to an equilibrated strain 

value. These equilibrated values are related to equilibrated modulus or compliance. Amorphous 

thermoplastics do not behave the same way in the long-term, and its relaxation modulus inevitably 

decays to null while its creep compliance perpetually increases. The viscoelastic properties of 

EDAM short fiber composites are examined via relaxation experiments; hence, the relaxation 

modulus is recorded as a function of time at any given temperature.  

 

𝐸(𝑡) = 𝜎(𝑡)/𝜀0, 𝐷(𝑡) = 𝜀(𝑡)/𝜎0  (4) 
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Figure 14 Creep test with stress input function (left), and stress relaxation test with strain input 

function (right) [30] 

 

Isochronous modulus versus temperature plots can be extracted from relaxation tests. 

These plots offer the perspective of understanding the polymer phases at different temperatures, 

specifically, the modulus trend with temperature provides insight into glassy, transitioning, 

rubbery and/or flow phases. From the relaxation experiment, the stress value taken at 10 seconds 

or any other suitable time is divided by the applied strain for each temperature run, then the 

modulus is plotted as a function of temperature. Isochronous plots are also useful for determining 

if the mechanical response of the polymer is linear or nonlinear. The requirement of linearity 

restricts the modulus response to be independent of strain, the same independent requirement holds 

for the compliance and stress. To test for linearity using the relaxation test, three experiments are 

conducted at constant temperature. Each test is performed at different strain levels well within the 

linear elastic regime so as to not induce nonlinear response as a result of damage or plasticity. For 

each experiment, the stress is taken at three stress values are taken at times, 𝑡1, 𝑡2, and 𝑡3. Then, 
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each stress value that corresponds for example to 𝑡1 is plotted with respect to the corresponding 

strain input. If the stress-strain points follow a linear trend, then the material is said to be linear 

viscoelastic; however, this does not prove or justify neglecting aging or that the viscoelastic 

material is time-translational invariant. Linear viscoelastic tests based on isochronous plots 

determine if relaxation modulus or creep compliance is solely a function of time and not dependent 

on strain or stress level, respectively.  

2.1.3 Rheological Elements and Models 

Rheological elements and models are useful for describing viscoelastic material behavior based on 

the observed response, rheological models are phenomenological approaches aimed at describing 

time-dependent phenomena. Two of the common elements used for deriving rheological models 

are the helicoidal spring and dashpot. The spring is assumed to be perfectly linear elastic and 

massless whereas the dashpot is an ideal viscous element, their mathematical representations are 

shown in Eq. (5) where 𝐸 represents the linear elastic stiffness and 𝜂 the viscosity coefficient. The 

aforementioned elements are not exhaustive, and many types of rheological models can be 

developed based on numerous combinations of rheological elements. The two well-known 

rheological models are the Maxwell model and the Kelvin model, in the context of amorphous 

thermoplastics, the Maxwell model is briefly discussed; however, the reader is referred to Brinson 

and Brinson [29] and Marques and Creus [31] for a review of these models.  

The Maxwell model combines a spring and dashpot element in series as shown in Figure 

15. When a deformation is applied to the series model, the forces must be equivalent for each 

element; however, the strains are additive. With this in mind, the differential equation in Eq. (6) 

can be formed and solved for to obtain the temporal stress function. For stress relaxation problems, 

a unit step in strain, 𝜀(𝑡) = 𝜀0𝐻(𝑡), is imposed on the system, with 𝐻(𝑡) denoting the Heaviside 

function. The differential equation, Eq. (6), is solved by taking the Laplace transform of both sides 

and solving for ℒ−1{ℒ{𝜎(𝑡)}}; also, keeping in mind the definition of the Dirac delta function, 

𝛿(𝑡) = 𝑑𝐻/𝑑𝑡, one can arrive at Eq. (7) where 𝜏 = 𝜂/𝐸. The time-varying modulus, defined in 

Eq. (8), resembles the modulus behavior of amorphous thermoplastics such that at time 𝑡0 = 0, 

the instantaneous modulus is 𝐸(𝑡0) = 𝐸 then decays to null at 𝑡 = ∞. The relaxation time, 𝜏, is 

the time required for the modulus to decay by 1/𝑒. 
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Figure 15 Maxwell rheological model 

 

 

 

  

While the Maxwell model is useful for conceptually understanding viscoelastic behavior, 

it is generally not pragmatic for representing real viscoelastic materials. Nevertheless, it serves as 

the fundamental building block for development of generalized models that are more appropriate 

for modeling viscoelastic behavior. The generalized Maxwell model is developed by considering 

𝑀𝑡ℎ  Maxwell systems (i.e., spring-dashpot in series) in parallel, then solving each individual 

differential equations and using superposition will produce the series model shown in Eq. (9) for 

the stress relaxation strain input condition [32]. The summation in Eq. (10) is deemed the 

relaxation modulus, this is also known as the Prony series. Brinson and Brinson [32] note that the 

Prony series is not referenced to a mechanical model and it is also used for describing the relaxation 

stiffness of a viscoelastic material. It is noteworthy to mention that such an exponential series can 

be obtained through from thermodynamic derivation. Similar to the single Maxwell system, the 

time-dependent modulus in the Prony series approaches zero for an infinite time. For solids that 

possess an equilibrated modulus, 𝐸𝑒, at 𝑡 = ∞, an additional spring element in parallel can be 

𝜎(𝑡) = 𝐸𝜀(𝑡) (Spring model/Hooke’s model) 

𝜀̇(𝑡) = 𝜎(𝑡)/𝜂  (Dashpot model/Newton equation) 
(5) 

𝜎̇ +
𝐸

𝜂
𝜎 = 𝜀̇ (6) 

𝜎(𝑡) = 𝜀0𝐸𝑒
−𝑡/𝜏 (7) 

𝐸(𝑡) = 𝐸𝑒−𝑡/𝜏 (8) 
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added to the generalized Maxwell model; consequently, this addition produces the relaxation 

modulus shown in Eq. (11). Even though ideal amorphous thermoplastics are best characterized 

by Eq. (10), a low equilibrated modulus value can be included to alleviate potential numerical 

issues in computational analysis. The relaxation modulus model in Eq. (11) has been used for 

EDAM process and performance simulations in the work of Brenken [14].  

 

 

 

 

The output of stress or strain for viscoelastic solids can be obtained by solving the general 

differential equations if the input function is specified, such an approach is difficult to implement 

in computational frameworks. The Boltzmann superposition principle if often used for three-

dimensional stress analysis problems that involve strain or stress temporal input functions, it is an 

integral expression that is also recognized as Duhamel’s integral. Integral expressions are 

appealing for numerical analysis as opposed to differentiation, derivatives are the limits of the 

difference quotient, by which you may have a large quantity divided by a small quantity which 

can cause numerical instability. The Boltzmann superposition principle assumes the strain 

response is superposable, this means that an arbitrary stain input, shown in Figure 16, can be 

specified as step-wise strain defined in Eq. (12). Since the stress relaxation response for any step 

in strain may be defined as 𝜎(𝑡) = 𝜀𝑛𝐸(𝑡 − 𝑡𝑛)𝐻(𝑡 − 𝑡𝑛), it follows that the stress response is 

then defined by the summation shown in Eq. (13). Duhamel’s integral is obtained by multiplying 

and dividing Eq. (13) by the time increment, Δ𝜏 , and taking the limit as the time increment 

approaches zero as shown in Eq. (14). Duhamel’s integral shown in Eq. (15) is also referred to as 

the hereditary integral or the Boltzmann superposition integral. Lastly, the integral is only applied 

𝜎(𝑡) = 𝜀0 ∑ 𝐸𝑚𝑒
−𝑡/𝜏𝑚

𝑀

𝑚=1

 (9) 

𝐸(𝑡) = ∑ 𝐸𝑚𝑒
−𝑡/𝜏𝑚

𝑀

𝑚=1

 (10) 

𝐸(𝑡) = 𝐸𝑒 + ∑ 𝐸𝑚𝑒
−𝑡/𝜏𝑚

𝑀

𝑚=1

 (11) 
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to linear viscoelastic materials because of the superposition and proportionality assumptions, 

where proportionality is deduced from isochronous stress-strain behavior tests.  

 

 

Figure 16 Arbitrary strain input modified from [30] 

 

 

 

 

 

The hereditary integral above is derived considering isothermal conditions. However,  

Non-isothermal conditions are often encountered in applications of viscoelastic materials, this is 

the case for extruded viscoelastic materials in the EDAM process. Moreover, viscoelastic materials 

have temperature-dependent constitutive relations, it must be included for transient thermal 

problems. When the effect of temperature is accounted for in viscoelastic models, the model is 

denoted as thermoviscoelastic. Therefore, to properly account for thermal effects, the hereditary 

𝜀(𝑡) = 𝜀0𝐻(𝑡) + (𝜀1 − 𝜀0)𝐻(𝑡 − 𝑡1) + ⋯+ (𝜀𝑛 − 𝜀𝑛−1)𝐻(𝑡 − 𝑡𝑛) (12) 

𝜎(𝑡) = 𝜀0𝐸(𝑡)𝐻(𝑡) + (𝜀1 − 𝜀0)𝐸(𝑡 − 𝑡1)𝐻(𝑡 − 𝑡1) + ⋯+ 
(𝜀𝑛 − 𝜀𝑛−1)𝐸(𝑡 − 𝑡𝑛−1)𝐻(𝑡 − 𝑡𝑛−1) 

(13) 

𝜎(𝑡) = 𝜀0𝐸(𝑡)𝐻(𝑡) + lim
𝑛→∞
Δ𝜏→0

∑
(𝜀𝑛 − 𝜀𝑛−1)

Δ𝜏
𝐸(𝑡 − 𝑡𝑛)𝐻(𝑡 − 𝑡𝑛)Δ𝜏 (14) 

𝜎(𝑡) = ∫ 𝐸(𝑡 − 𝜏)
𝑑𝜀(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0

 (15) 
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integral must be changed or modified to account for the temperature variable. For 

thermoviscoelastic models, temperature is assumed to affect time and time is substituted with an 

expression that relates to temperature. The reasoning for this assumption has been subject to 

experimental and theoretical investigation for decades [33]. Thermoviscoelastic models use the 

hereditary integral in the form shown below in Eq. (16) where 𝜉 denotes a reduced time which 

depends of temperature, 𝑇, and time 𝑡.  

 

 

The physical significance of the variable 𝜉 is related to the mechanics of polymeric chains 

and their relaxation mechanisms; however, its mathematical definition, provided in Eq. (17), is 

based on phenomenological behavior at the macroscale which reasonably represents this 

phenomena. According to Klompen and Govaert [34], time-dependent behavior of 

thermoviscoelastic materials is caused by molecular transitions and changes in temperature appear 

to accelerate or decelerate molecular transitions which affects relaxation time. Assumptions made 

on relaxation time are classified as either thermorheologically simple or complex. The former 

assumes the material exhibits only one active molecular transition which means that all relaxation 

times are affected by temperature in the same way; on the other hand, thermorheologically 

complex refers to multiple relaxation mechanisms that lead to multiple relaxation times [33]–[35]. 

The thermorheologically simple assumption implies time-temperature superposition principle 

(TTSP) is valid; practically, this means that the log-log plot of relaxation modulus versus time 

(i.e., in relaxation tests) can be superposed by vertically and/or horizontally shifting each 

individual short-term isothermal curve to generate a continuous master curve at the chosen 

reference temperature. For a short introduction to the history and development of time-temperature 

superposition for polymers, the reader is referred to the Brinson and Brinson [33] section on the 

kinetic theory of polymers. Horizontal shifts are those along the time axis, shown in Figure 17, 

and vertical shifts are along the modulus or compliance axis. The notation used for horizontal 

shifting is 𝑎𝑇, and 𝑏𝑇 for vertical shifting. The horizontal shift factors can be calculated, usually 

in the melt stage, if knowledge of viscosity as a function of temperature is known [36], and if the 

𝜎(𝑡, 𝑇) = ∫ 𝐸(𝑡 − 𝜏, 𝑇)
𝑑𝜀(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0

 

𝜎(𝜉) = ∫ 𝐸(𝜉 − ξ′)
𝑑𝜀(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0

 

(16) 
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vertical shifted factor is assumed negligible (i.e., 𝑏𝑇 = 1) then the relation 𝑎𝑇 = 𝜂0(𝑇)/𝜂0(𝑇𝑟𝑒𝑓) 

can be used where 𝜂0  represents the viscosity, 𝑇  is the temperature and 𝑇𝑟𝑒𝑓  is the reference 

temperature. Despite this definition which is related to polymer mechanics, thermoviscoelastic 

characterization of thermoplastic composite, from the glassy state to the rubbery state, often entails 

empirical shifting isothermal curves to produce a master curve. The empirical shifting process can 

be done through optimization routines that attempts to find the optimal shift factor that produces 

the best overlap between the isothermal curves [37]. For example, Ropers et al. [38] characterized 

the thermoviscoelastic properties of a thermoplastic composite by empirically shifting the dynamic 

moduli along the time axis to achieve a continuous master curve. Horizontal shift factors are often 

described by an empirical equation that is a function of temperature, the function is obtained by 

plotting 𝑎𝑇 against temperature and fitting its trend using the Arrhenius equation, William-Landel-

Ferry (WLF) equation, and/or a modified WLF equation [39], these equations are provided in Eq. 

(18). The equations can be defined in a continuous or piece-wise way. It is noteworthy to mention 

that the WLF equation is valid for temperatures above the glass transition temperature [33]; 

however, it can be used for temperatures below 𝑇𝑔 if the error between data and WLF trend is not 

significant. Although, it may be more appropriate to use either an Arrhenius relation or modified 

WLF equation for predicting the shift factor trend below the glass transition. When vertical shift 

factors are assumed negligible, the horizontal shift factor is then what defines the acceleration or 

deceleration of relaxation; hence, it defines the value of the reduced time variable 𝜉  in the 

thermoviscoelastic model.   

 

 

 

Significant errors may develop if vertical shifting is not accounted for during development 

of the master curve [33]. One way to account for vertical shifting is to use the Bueche-Rouse 

𝜉(𝑡) = ∫
𝑑𝜏

𝑎𝑇(𝑇(𝜏))

𝑡

0

 (17) 

log10 𝑎𝑇 =
𝐸𝑎

2.303𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)  (Arrhenius equation) 

log10 𝑎𝑇 =
−𝐶1(𝑇−𝑇𝑟𝑒𝑓)

𝐶2+(𝑇−𝑇𝑟𝑒𝑓)
  (WLF equation) 

log10 𝑎𝑇 =
−𝐶1(𝑇−𝑇𝑟𝑒𝑓)

𝑐

𝐶2+(𝑇−𝑇𝑟𝑒𝑓)
𝑐  (Modified WLF) 

(18) 
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theories [40], [41] that define the vertical shift factor as 𝑏𝑇 = 𝑇𝑟𝑒𝑓𝜌𝑟𝑒𝑓/𝑇𝜌, where 𝜌 is the density. 

Depending on the polymer system, modified theories can be used [36], [42]. In practice, 

thermoviscoelastic characterization of thermoplastic composites may yield discrepancies between 

instantaneous modulus measured from a dynamic mechanical analyzer (DMA) and the Young’s 

modulus measured via mechanical testing systems at the same temperatures, Hobbiebrunken et al. 

[43] and Deng et al. [44] both have observed and reported such discrepancy and accounted for it 

by shifting the moduli versus temperature curve obtained from DMA based on mechanical test 

data. Although this type of vertical shifting is reasonable under the assumption that factors such 

as the type of DMA machine, clamps and/or test parameters only affect the magnitudes of elastic 

modulus and not the temperature dependency, it requires further investigation to assess the validity 

of such shifting [44].  

 

 

Figure 17 Horizontal shifting for thermorheologically simple material under time-temperature 

superposition principle (TTSP) 
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2.2 Damage and Failure in Heterogenous Short Fiber Composites 

In general, 3D printed short fiber composites are anisotropic materials; however, we can 

approximate the material behavior as orthotropic which is defined as having three planes of 

symmetry. An orthotropic approximation implies the composite material is characterized by nine 

elastic properties. For 3D printed composites, these orthogonal planes of symmetry are the 1, 2, 

and 3 planes; moreover, these correspond to the print, in-plane transverse to the print, and stacking 

directions, respectively. Here, the 1, 2, and 3 directions are the material coordinate directions 

which is sometimes interchanged with the principal directions not to be confused with the 

eigenvectors obtained from the eigenvalue analysis of the stress or strain tensor. The different 

mechanical properties for 3D printed composites along these directions have been reported by 

Duty et al. [45] a z-tamped 13% wt. carbon fiber reinforced acrylonitrile butadiene styrene. The 

tensile strength and stiffness values along the print direction are greater than the tensile strength 

and stiffness along transverse directions. The reason for the anisotropic behavior is due to the 

microstructural morphology; for example, Tekinalp et al. [46] experimentally observed most of 

the fibers collimated along the print direction. Additionally, scanning electron microscopy (SEM) 

images of the tensile fracture surface along the print direction illustrated fibers sticking out from 

the fractured matrix surface and regions from which fibers were pulled out.  

 The print direction tends to exhibit mostly fiber pull-out, fiber/matrix interfacial debonding, 

and matrix cracking. The transverse directions tend to be dominated by matrix damage 

mechanisms such as matrix micro-cracks. In a relevant study on the effect of fiber direction and 

temperature on the tensile properties of short fiber reinforced polyphenylene sulfide, Takahashi et 

al. [47] observed different fracture modes for tensile coupons loaded along the 0° direction and 

90° direction using SEM.  

Short fiber composites manufactured using other fabrication processes such as injection 

molding can provide insights into the types of damage mechanisms that may occur in 3D printed 

composites as a result of its microstructural morphology. The micro-structural characteristics, such 

as the distributions of fiber volume fraction, fiber length, fiber orientation, void volume fraction, 

void size and shape, determine the elastic, strength and failure properties of the composite. These 

microstructural features influence the initiation and evolution of microscopic damage. Based on 

the observations made by several authors [48]–[57], fiber breakage, fiber/matrix interface 

debonding, and matrix micro-cracking are the micro-damage mechanisms responsible for the 
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failure process in these composites. Although fiber fracture is a contributing damage mechanism 

along directions with high fiber collimation, it can depend on the fiber critical length [58] and may 

not be the dominant mechanism in composites with significantly short fibers [50], [52], [59], [60]. 

Huang and Talreja described the general progressive damage process in four stages which are (i) 

the matrix debonds from the fiber ends early in the loading stage, (ii) matrix cracking and 

fiber/matrix interface debonding induced from stress concentrations at the debonded fiber end site, 

(iii) coalescence of matrix micro-cracks to form a macroscopic crack, and (vi) unstable 

propagation of macroscopic crack that leads to failure. The decohesion described in stages 1 and 

2 relating to debonding of the fiber ends and fiber/matrix interface failure was originally 

categorized by Nath et al. [61] into three modes which was further explained by Sirivedin et al. 

[62], these modes are summarized below. 

1. Mode 𝛼 (penny-shaped crack) – Localized matrix yielding at the intact interface in the 

vicinity of the stress concentration associated with the fiber end. Penny-shaped 

interface cracks are said to form from this mode. 

2. Mode 𝛽 (cylindrical crack) – As a result of weak fiber/matrix interface, a cylindrical 

interface crack (i.e., this may be envisioned as a crack in the shape of a sleeve) initiates 

at the fiber end and propagates along the interface. The cylindrical interface crack 

evolves from the penny-shaped crack that initiated at the fiber end; moreover, this crack 

remains closed as tensile loading progresses such that frictional stress transfer between 

the fiber and matrix may take place across the crack faces. 

3. Mode 𝛾 (conical crack) – When the fiber/matrix interface is strong, a conical crack 

forms from the debonded fiber end at an angle 𝜃𝑐 relative to the fiber axis. A conical 

crack can open as load progressive resulting in traction free surfaces. Like the 

cylindrical crack, the conical crack evolves from the penny-shaped crack.  

2.3 Computational Progressive Damage and Failure Analysis 

2.3.1 Continuum Damage Mechanics and Discrete Damage Mechanics 

Many approaches exist for modeling the progression of damage in a material system within a 

computational framework, a taxonomy of the various computational approaches is provided by 

Forghani et al. [63] as shown in Figure 18. While each approach is capable of modeling progressive 
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damage and deterioration of the material system, each approach is based on different sets of 

assumptions. The main difference between the holistic approaches; namely, continuum and 

discrete damage approaches is in the representation of the displacement discontinuity as noted by 

Rose, Dávila, and Leone [64]. In continuum models, the displacement discontinuity is represented 

with local volumetric stiffness degradation variables which may be defined as a soft discontinuity. 

On the other hand, models based upon the explicit kinematics of the displacement jump are denoted 

as a hard discontinuity. While some of the limitations of continuum models are its inability to 

capture the local effects of stress redistribution or capture the realistic crack pattern, it can capture 

the overall nonlinear response and it is generally computationally efficient for large-scale 

computational analysis. In this work, continuum models are of interest due to the computational 

efficiency it offers in the finite element method. Discrete damage models are usually implemented 

as cohesive element or cohesive surface models, discrete models often are used for capturing 

delamination behavior in composites. In 3D printed materials, delamination occurs at the bead-to-

bead interfaces. Discrete models present implementation challenges in processing and 

performance simulations; therefore, continuum approaches exists as an approximate solution. It is 

noteworthy to mention, Yuan and Fish et al. [65] used continuum damage mechanics to model 

interfacial damage in laminates and they proved it may be a viable alternative to interfacial damage 

modeling. 

 

 

Figure 18 Classification of computational damage and fracture mechanics approaches [63] 
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Damage is defined as the progressive process and irreversible state by which materials lose 

their load-bearing abilities. Damage mechanics is the study of the mechanisms at play that lead to 

the deterioration of the material through irreversible nanoscopic or microscopic changes in the 

material state when subjected to loading, see Figure 19a. At the fine scale, stress concentrations 

stemming from impurities, imperfections, or heterogenous morphology are regions from which the 

local stress state is greater than the average stress state, these local concentrations act to 

prematurely break the bonds of either the homogenous material or heterogenous phases. The 

breakage of bonds leads to micro-cracks which then evolve and coalesce with neighboring cracks 

or voids as loading is progressed and eventually form into a macroscopic crack. The unstable 

propagation of the macroscopic crack is what leads to fracture or catastrophic failure. The tools 

developed for continuous media (i.e., continuum mechanics) at the mesoscale can be used to study 

and investigate damage mechanisms that exists at the microscopic level through means of a 

damage variable. Once a macroscopic crack has developed, continuum mechanics ceases to 

adequately represent the behavior of the media and the tools of fracture mechanics must then be 

employed to further investigate the crack propagation problem. Chaboche [66] provided a 

definition for the final state of continuous damage mechanics, he stated that “the final state 

corresponds generally to the macroscopic crack initiation, that is the presence of a material 

discontinuity, sufficiently large as to regards the microscopic heterogeneities (grains, 

subgrains…),” and provided a visual illustration of this conceptual definition shown in Figure 19b.  

When continuum mechanics is used for studying damage mechanics, it is termed 

continuum damage mechanics. As mentioned by Lemaitre and Desmorat [67] and Jirásek [68], the 

phrase continuum damage mechanics was first introduced by Hult in 1972; however, the concept 

of a continuity field variable, 𝜓, related to damage had been introduced by Kachanov [69] in 1958 

and it was applied to the creep rupture problem in metallic materials. Rabotnov [70] in 1969 

extended this damage concept by introducing the effective stress concept. This concept was then 

extended in the 1970s by Hayhurst [71] and Leckie and Hayhurst [72] for multiaxial stress creep 

rupture problem in metals, Chaboche [73], [74] for high cycle fatigue and rate problems, 

Chrzanowski [75] for time-independent or time-dependent for creep-fatigue fracture, and Lemaitre 

and Chaboche [76] for the creep rupture problem. While these initial theories accounted for 

isotropic damage, anisotropic nature of damage could not be adequately represented. Vakulenko 
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and Kachanov [77] provided a more refined theory to take into account the anisotropic nature of 

damage by introducing a second-order damage tensor.  

 

 

Figure 19 (a) Different length scales of damage (Murakami, 2012 [78]), (b) Illustration of micro-

macro damage initiation and mechanics domain (Chaboche, 1981 [66]) 

 

It was in the 1980s when continuum damage mechanics began to substantially grow with 

research ongoing in both the eastern and western hemispheres, it was around this decade that the 

theory was developed to include thermodynamic and micromechanic formalism by many 

researchers: Murakami and Ohno [79], Krajcinovic and Fonseka [80], Fonseka and Krajcinovic 

[81], Chaboche [66], [82], [83], Germain et al. [84], Murakami [85], Ladevèze [86], Lemaitre [87], 

Krajcinovic [88], Ortiz [89], Talreja [90], Mazars [91], Chow and Wang [92], Simo and Ju [93], 

Chow and Lu [94], and Ju [95]. Anisotropic damage theories were further extended with damage 

being represented in vectorial form [80], generalized fourth-order tensor [96]. Most of the 

anisotropic damage formulations were based on the equivalent strain concept [97] which has 

limitations on the transformation of the stress or strain tensor, Cordebois and Sidoroff [98] 

proposed the principle of energy equivalence to remedy the limitations of the equivalent strain 

principle. Hansen and Schreyer [99] provide a well written explanation of the differences between 

the equivalent strain and equivalent energy principles. From the 1990s and onward, a plethora of 

(b)(a)
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literature and research on continuum damage mechanics can be found. Although not exhaustive, 

the anisotropic continuum damage mechanics formulations developed by of Zhu and Cescotto 

[100], Barbero [101]–[103], Lonetti and Barbero [104] were found useful for this work. For an in 

depth review on continuum damage mechanics, the motivated reader is recommended the 

following references [78], [105]–[109]. 

2.3.2 Local and Non-local Approach to Damage Analysis in Finite Element Method 

In general, local approach to damage analysis involves the definition of discontinuous 

representation at the material point, this usually an integration point in finite element analysis. On 

the other hand, non-local approaches attempt to consider information about neighboring fields to 

evolve the localized discontinuity representation. Murakami [78] mentions that the local approach 

to damage analysis in the finite element method uses continuum damage mechanics to represent 

the damaged state of an element through degradation variables. The degradation variable 

represents the crack and its value ranges between zero and one, this variable characterizes the 

integrity of an element with a value of zero denoting full load-bearing capacity and a value of one 

signifying complete failure. Consequently, this approach produces material softening by degrading 

the element stiffness matrix which may cause the loss of uniqueness and cause numerical 

instability. The non-uniqueness of the solution causes instability and mesh-dependent results. The 

causes of mesh-sensitivity can be classified as (i) strain softening induced non-uniqueness and 

strain localization, (ii) damage localization, and (iii) stress singularity at the crack tip [78]. Strain 

softening leads to the onset of material instability which induces the loss of positive-definiteness 

of the tangent stiffness matrix at the material point; consequently, this leads to the loss of the 

ellipticity in the linear momentum balance partial differential equations (i.e., equilibrium 

equations). The material instability induced by strain softening causes bifurcation of deformation, 

this engenders an intense localization band of almost equal width to the mesh size. The bifurcation 

point in nonlinear uniaxial tensile analysis of brittle materials occurs at the peak stress, beyond 

this point, damage begins to localize. Bažant and Oh 1983 [110], Bažant 1990 [111] proposed a 

crack band model that imposes a lower bound on the size of the finite element meshes, this has 

been one popular approach to remedy the localization problem due to its ease in implementation 

in finite element analysis. Bilby et al. [112] proposed the cell method, this method allows mesh 

refinement within a cell; however, inner cell mechanical behavior is influenced by the cell-
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averaged properties. Besides the crack band or cell methods, the method of mesh-dependent 

softening modulus also exists. Pietruszczak and Mroz [113] prescribed a shear band of a specified 

width in a finite element and derived a stiffness matrix that includes localized shear band 

deformation at some angle with respect to a horizontal axis. By the same token, Simo 1989 [114] 

included the micro-crack energy release into the internal dissipation of a finite element, and 

defined a modified strain-softening modulus dependent on mesh size and dissipated energy. Even 

though the mesh-dependent modulus approach can avert the localization intensity problem, it may 

provide unrealistic results and local states are still mesh-dependent. 

Nonlocal damage theories can be categorized into four methods which are (i) method of 

nonlocal variable, (ii) gradient-dependent method (iii) the Cosserat continuum method, and (vi) 

the artificial viscosity method. The nonlocal variable method imposes that the evolution of damage 

at a material point is governed not only by the local state variable but also the neighboring fields. 

One issue with this approach is the integro-differential relation that arises in the consistency 

equations [115], this nonlocal approach does not lead to a simple algebraic expression in the 

implementation of a return-mapping algorithm. In the nonlocal approach, the damage variable 

takes the nonlocal form shown in Eq. (19), 𝑽𝑟(𝒙) is the region of the body, Eq. (20), and ℎ(𝒔 − 𝒙) 

denotes a nonlocal weighting function that monotonously decays with the distance |𝒔 − 𝒙| and can 

be defined as shown in Eq. (21). It is noteworthy to mention that Pijaudier-Cabot and Bažant [116] 

and Bažant and Pijaudier-Cabot [117] made note that only the strain-softening variables are 

sufficient for specifying nonlocal behavior instead of all of the state variables involved in the finite 

element analysis. Moreover, the thermodynamic force, Eq. (22), conjugate to damage can also be 

defined nonlocally as well as the damage rate, Eq. (23) [117], [118].  

 

 

 

 

𝑫̅(𝒙) =
1

𝑽𝑟(𝒙)
∫ℎ(𝒔 − 𝒙)𝑫(𝒔)𝑑𝑽(𝒔)
𝑉

 (19) 

𝑽𝑟(𝒙) = ∫ℎ(𝒔 − 𝒙)𝑑𝑽(𝒔)
𝑉

 (20) 

ℎ(𝒙) = 𝑒
−
|𝒙|2

2𝑙2  (21) 
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The gradient-dependent method replaces the local variable, defined using the nonlocal 

approach, by the gradient-dependent variable 𝑫̅(𝒙) = 𝑫(𝒙) + 𝑐1∇𝑫(𝒙) + 𝑐2∇
2𝑫(𝒙) + ⋯, where 

∇ is the differential operator. The nonlocal gradient-dependent damage variable can be obtained 

as shown in Eq. (24) [78]. An example and application of gradient-dependent nonlocal approach 

applied to finite element method in Abaqus/Standard is given Abu Al-Rub, Darabi, and Masad 

[119]. Cosserat continuum approach requires additional static and kinematic quantities in the form 

of couple-stresses and micro-curvatures which includes a characteristic length scale, application 

of this approach, in commercial finite element software like Abaqus/Standard, requires coding the 

mathematical formulism into a user-defined element (UEL) subroutine. The artificial viscosity 

method introduces rate dependent terms into the constitutive relations to prevent loss of ellipticity 

in boundary-value problems, this approach is also referred to as viscous regularization. There are 

different methods of implementing an artificial viscosity scheme; for instance, Simo and Ju [120], 

[121] defined the viscous regularization of their proposed rate-independent strain-based model by 

introducing a damage fluidity coefficient, 𝜇, into the damage evolution law. In a different approach, 

the Duvaut-Lions viscosity model [122] is modified to introduce an artificial viscous term into the 

damage rate variable, Maimí et al. [123] and Rose et al. [64] both use this approach to define the 

damage rate, 𝑑̇𝑣 , in terms of an artificial viscosity, 𝜌, stabilized damage variable, 𝑑𝑣 , and the 

damage variable, 𝑑 , as shown in Eq. (25). In numerical form, the updated stabilized damage 

variable can be defined as shown in Eq. (26) after algebraic manipulation of Eq. (25). While its 

ease of implementation is an advantage, care must be taken in choosing an appropriate viscosity. 

 

 

 

𝒀̅(𝒙) =
1

𝑽𝑟(𝒙)
∫ℎ(𝒔 − 𝒙)𝒀(𝒔)𝑑𝑽(𝒔)
𝑉
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𝑫̅̇(𝒙) =
1

𝑽𝑟(𝒙)
∫ℎ(𝒔 − 𝒙)𝑫̇(𝒔)𝑑𝑽(𝒔)
𝑉

 (23) 

𝑫̅(𝒙) = 𝑫(𝒙) +
1

2
𝑙2∇2𝑫(𝒙) (24) 

𝑑̇𝑣 =
1

𝜌
(𝑑 − 𝑑𝑣) (25) 
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2.3.3 Multiscale, Micromechanical, and Phenomenological Modeling 

Multiscale modeling, in the context of composites, is an attempt to predict material behavior at an 

arbitrary length or time scale based on information obtained at another length or time scale. 

Sullivan and Arnold [124] categorized multiscale modeling into three techniques, these are the (i) 

hierarchical or sequential technique, (ii) concurrent technique, and (iii) synergistic technique. 

Aboudi, Arnold and Bednarcyk [125] explain the techniques which are briefly summarized as 

follows:  

• Hierarchical/sequential technique: Involves unilateral information passing between 

length scales in an either top-down or bottom-up fashion; for example, information about 

constitutive behavior at the micro-scale is passed to the macro-scale (i.e., at least two orders 

of magnitude greater than the micro-scale) in the bottom-up approach.  

• Concurrent technique: this is a fully coupled method by which the length and time scales 

are considered at once and the models at different scales are solved are simultaneously 

solved.  

• Synergistic technique: involves bilateral information passing between length and time 

scales. This approach is a hybrid between hierarchical and concurrent techniques, it handles 

field quantities either “spatially sequentially and temporally concurrent or spatially 

concurrent and temporally sequentially” 

 Micromechanics modeling is an approach that aims to capture micro-structural 

morphology to predict the effective mechanical or thermo-mechanical performance of a composite 

material. In short fiber composites, the micro-structural morphology plays an imperative role in 

stress transfer between fibers and matrix, this in turn governs the effective properties and ultimate 

load carrying characteristic of a composite. Analytical approaches which are based on evaluating 

the effective elastic properties of a unidirectional short fiber composite are the well-known Voigt 

and Reuss approximations, shear lag model, Eshelby inclusion approximation, self-consistent 

scheme, Mori-Tanaka scheme, and Halpin-Tsai model. Micromechanical analysis can be 

categorized into three main approaches; namely, the (i) modified rule of mixtures (ROM) 

approach, (ii) laminate analogy approach, and (iii) direct numerical analysis of an representative 

𝑑𝑣|𝑡+Δ𝑡 =
Δ𝑡

𝜌 + Δ𝑡
𝑑|𝑡+Δt +

𝜌

𝜌 + Δ𝑡
𝑑𝑣|𝑡 (26) 
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volume element (RVE) of the composite micro-structure. The shear lag theory initially developed 

by Cox [126] and modified by Krenchel [127] captures the effective stiffness and strength of a 

composite by incorporating fiber length, and fiber orientation efficiency factors into the ROM 

equation. The Kelly and Tyson [58] model is another modified ROM approach which accounts for 

short fiber length distribution in an a composite with all fibers aligned in the loading direction. 

Halpin and Pagano [128], developed the laminate analogy approach which models a random or 

nearly random short fiber composite as a pseudo-laminate to predict the elastic properties of the 

composite. The pseudo-laminate model consists of unidirectional short fiber composites, with the 

fiber direction angle defined by the percentage of fibers at angle 𝛼 in the composite material. The 

properties of unidirectional short fiber pseudo-lamina can be estimated using other theories [129], 

[130]. An example of application of laminate analogy is provided in the work of Fu and Lauke 

[131], the fiber orientation and length distribution is accounted for to estimate the composite 

modulus. The direct numerical approach is also referred to as RVE analysis and it is commonly 

performed using the finite element method. Unlike the analytical approaches, RVE analysis allows 

for an accurate representation of the microstructure by explicitly modeling the micro-phases and 

micro-morphology from which effective properties can be obtained using computational 

homogenization methods. Several authors [132]–[137] have used RVE analysis to predict 

progressive failure analysis in short fiber composite systems. When computational resources are 

available, RVE analysis offers high fidelity solutions to predict effective composite properties and 

micro-morphology induced progressive damage. Although computational RVE analysis is capable 

of modeling the heterogenous micro-morphology with relatively simple models (e.g., max stress 

criterion, traction-separation laws, etc.), the approach can become computationally taxing and 

often requires micro-constituent property inputs which are unavailable or difficult to 

experimentally characterize. For a review of multiscale and micromechanics, the following 

references are recommended [124], [138]–[142]. 

 Phenomenological modeling is an approach that uses mathematical models designed to 

capture the experimentally-observed material behavior, this is sometimes referred to as the meso-

scale approach. In this approach, the microstructural details or the heterogenous micro-phases that 

define the composite properties are replaced by an effective and fictitious homogenous equivalent; 

therefore, the heterogenous micro-fields induced by the microstructure is lost or perhaps smeared. 

As a result of this fact, the phenomenological approach requires sophisticated and complex 
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progressive damage models that is capable of capturing the anisotropic material behavior of the 

composite material. Evidently, the main advantage of the phenomenological approach is its 

computational efficiency relative to RVE analysis since the micro-phases are not explicitly 

modeled in realistic structural analyses. In EDAM process and performance analyses, 

computational efficiency is highly desirable, and implementation of phenomenological models is 

both feasible and viable.  
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 THERMODYNAMIC-BASED THERMOVISCOELASTIC DAMAGE 

MECHANICS 

3.1 Historical Background 

Thermodynamic models are defined by the three laws of thermodynamics, these are formulations 

that describe the state of a system. The first law is essentially the conservation of energy principle 

and the second law establishes the concept of total, production and transfer of entropy which 

fundamentally governs the direction of spontaneous processes. Thermoviscoelastic damage 

models are described by internal state variables that define the energy function in a 

thermodynamically consistent way; moreover, the mathematical representations of the energy 

function or thermodynamic potentials are phenomenologically derived. Thermodynamic 

consistency is obtained by satisfying the Clausius-Duhem inequality, this inequality is an entropy 

expression derived from the first and second laws of thermodynamics. Furthermore, the inequality 

not only governs the thermodynamically allowable constitutive states, it also describes the nature 

of internal state variable evolution. It is noteworthy to mention, when internal state variables 

change, evolution equations are required, and dissipation potentials specified. Moreover, the 

inequality contains the products of generalized force vectors and their associated generalized flux 

vectors. The relation between the generalized force and flux vectors can be defined by the 

reciprocal relations developed by Onsager [143], [144] in 1931, it is a phenomenological relation 

that states the proportional matrix between the generalized force and flux vectors is both symmetric 

and positive semi-definite. The solution obtained using the reciprocal relations allows for the 

straightforward definition of internal state variable evolution, which is valid for materials that 

exhibit microscopic reversibility.  

The thermodynamic framework was initially applied to viscoelastic materials by 

Staverman and Schwarzl [145] and Staverman [146], then extended by Meixner [147] in 1953. 

The theory linear irreversible thermodynamic process was then further developed by Biot [148] in 

1954 for isothermal viscoelastic solids in a generalized form, it was also shown that the generalized 

Maxwell model or Prony series also can represent the thermodynamic system. Moreover, in a 

series of subsequent publications, Biot demonstrated the utility of the thermodynamic formulation 

to present a unified treatment of thermoelastic damping, study behavior of porous media, and 

deduce variational principles [149]–[151]. Schapery [152] in 1963 modified the thermodynamic 
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viscoelastic theory developed by Biot [148] to include an explicit temperature dependence and a 

thermodynamically consistent inclusion of the time-temperature superposition principle for 

treating media with temperature-dependent viscosity coefficients. Furthermore, he continue to 

develop the work on deformation, damage, and fracture of linear and nonlinear viscoelastic solids 

for monolithic and composite materials [153]–[161]. Following the work of Biot [148] and 

Schapery [152], [153], Weitsman [162] introduced the internal state variable 𝛾𝑟 (𝑟 = 1,… ,𝑁) 

which represents the internal degrees of freedom within a glassy polymer to study the viscoelastic 

hygrothermal phenomenon in composites. The physical significance of the internal degree of 

freedom, 𝛾𝑟, is based on polymer mechanics, this may be understood from the work of Rouse [40] 

where he explains that “a velocity gradient in a solution of a linear polymer continuously alters the 

distribution of configurations of the polymer molecules.” In other words, a velocity gradient or 

strain rate disturbs the distribution of configurations of the polymer molecules away from its 

equilibrium form, storing free energy in the system. The coordinated thermal motions of the 

segments cause the configurations to drift toward their equilibrium distribution. In other words, a 

strain rate causes the equilibrium distribution of polymer molecular configurations to change and 

thus energy is momentarily stored. However, the coordinated thermal motions of the polymer 

molecules cause the already established configuration to drift toward a new equilibrated 

configuration. By the same token, Lubliner [163] states the following: 

“it is known that linearly viscoelastic amorphous polymers are described by 

relaxation spectra which are very smooth—which, in other words, do not 

correspond to a formalism of discrete internal variables (generalized Maxwell or 

Kelvin models) unless these are taken to be infinite in number. Physically this 

makes sense, since the irreversible mechanisms in polymers consist of coiling, 

bending, etc., of long chain molecules, and the relaxation time of each mechanism 

depends on the length and orientation of the molecule; the lengths and orientations 

are, however, randomly distributed, and the number of molecules is enormous; 

hence the internal variables are, in effect, infinite in number with a statistical 

distribution of relaxation times.” 

Abdel-Tawab and Weitsman [164] further developed the thermodynamic approach for viscoelastic 

materials by including the continuum damage mechanics framework to model the behavior of 

swirl-mat composites. In later years, they extended the formulation and proposed a strain-based 

formulation which coupled viscoelastic and damage behavior for creep problems [165]. The 

thermodynamic and continuum damage mechanics frameworks applied to linear viscoelastic 
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composites by Abdel-Tawab and Weitsman serve as the groundwork for the development of the 

linear thermoviscoelastic damage model applied to 3D printed short fiber composite systems.  

3.2 Model Development 

In this section, the formulation is described in two sections; namely, the first defines the 

viscoelastic constitutive behavior at fixed damage states and the second defines damage evolution 

of internal state variables. Thermodynamic consistency is enforced by satisfying the Clausius-

Duhem inequality; moreover, the constitutive behavior is derived from a necessary condition in 

the inequality. Furthermore, the inequality is obtained via manipulation of the first and second 

laws of thermodynamics in general form, shown in Eq. (27) and Eq. (28), respectively. The first 

law of thermodynamics relates infinitesimal internal energy changes with variations in process 

variables such as heat, 𝑄, mechanical work, 𝑊, and any other work, 𝑊′ (e.g., chemical work). For 

simplicity, the last term on the right side of Eq. (27) can be disregarded since heat and mechanical 

work dominate the internal energy state of the material system in consideration. The second law 

states that the total entropy change of a system, Δ𝑆𝑠𝑦𝑠, is equivalent to the sum of entropy changes 

produced within a system, Δ𝑆𝑝, and entropy transferred, Δ𝑆𝑡, across the boundary during a process. 

Entropy production terms are always positive according to the second law of thermodynamics. For 

example, damage events in the form of micro-fractures or production of micro-cavities which act 

to decrease the material stiffness, is an entropy production term. For an ideal system, the 

thermodynamics of reversible processes relate the change in heat, 𝛿𝑄𝑟𝑒𝑣 , divided by absolute 

temperature, 𝑇 , with the change in entropy, 𝑑𝑆 , as shown in Eq. (29). For irreversible and 

reversible processes, the general form of the infinitesimal change in entropy, Eq. (30), is an 

inequality which is known as the Clausius inequality [166].  

 

 

 

 

𝑑𝑈 = 𝛿𝑄 + 𝛿𝑊 + 𝛿𝑊′ (27) 

Δ𝑆𝑠𝑦𝑠 = Δ𝑆𝑡 + Δ𝑆𝑝 

Δ𝑆𝑝 ≥ 0 
(28) 

𝛿𝑄𝑟𝑒𝑣 = 𝑇𝑑𝑆 (29) 
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The infinitesimal change in work, shown in Eq. (31), is written in its generalized form and 

it includes the work done on a body by tractions and body forces. Traction is defined as usual, 𝒕 =

𝑡𝑖 = 𝜎𝑖𝑗𝑛𝑗, with 𝑛𝑗  denoting the outward normal surface vector, 𝒖̇𝒅 denotes the displacement rate 

vector, 𝒃 is the body force vector, 𝜌 is the density, and 𝝈 the Cauchy stress tensor. The bolded 

notation signifies it is a tensor and the single or double dot signifies tensors being contracted once 

or twice, respectively. The divergence theorem (i.e., Gauss’ theorem) is applied to obtain a single 

volumetric integral. The integral can be re-arranged as shown in Eq. (32) and the equilibrium 

equation can be applied to establish kinematically admissible displacement rates. For static 

equilibrium, linear momentum balance or the elasticity equilibrium equations must hold. In other 

words, we must have ∇ ⋅ 𝝈 + 𝜌𝒃 = 𝜎𝑖𝑗,𝑗 + 𝜌𝑏𝑖 = 0 (except for this equilibrium expression, the 

comma notation does not signify differentiation in this work). Consequently, the infinitesimal 

change in work or the rate of work simplifies to Eq. (33). 

 

 

𝛿𝑊 = ∫ (𝒖̇𝑑 ⋅ 𝒕)𝑑𝑆
𝜕𝑉

+∫(𝒖̇𝑑 ⋅ 𝜌𝒃)𝑑𝑉
𝑉

= ∫ (𝒖̇𝒅 ⋅ 𝝈) ⋅ 𝒏 𝑑𝑆
𝜕𝑉

+∫(𝒖̇𝒅 ⋅ 𝜌𝒃)𝑑𝑉
𝑉

= 

∫(∇ ⋅ (𝒖̇𝒅 ⋅ 𝝈) + 𝒖̇𝒅 ⋅ 𝜌𝒃)𝑑𝑉
𝑉

 

(31) 

 

 

 𝑊̇ = 𝛿𝑊 = ∫(𝛻𝒖̇𝒅: 𝝈)𝑑𝑉
𝑉

= ∫(𝝈: 𝜺̇)𝑑𝑉
𝑉

 (33) 

 

The generalized heat balance differential equations for the heat rate, 𝑄̇, is provided in Eq. 

(34). The conservation equation implies that the total rate of accumulation of heat in the volume, 

𝑉, must be equivalent to the total rate of inflow (i.e., heat flux) crossing the boundary surface plus 

the total rate of production of heat produced within the volume. The divergence theorem is applied 

to simplify the formulation.   

𝑑𝑆 ≥
𝛿𝑄

𝑇
 (30) 

∫(𝒖̇𝒅∇ ⋅ 𝝈 + ∇𝐮̇𝒅: 𝝈 + 𝒖̇𝒅 ⋅ 𝜌𝒃)𝑑𝑉
𝑉

= 

∫(𝛻𝒖̇𝒅: 𝝈)𝑑𝑉
𝑉

+∫𝒖̇𝒅 ⋅ (∇ ⋅ 𝝈 + 𝜌𝒃)𝑑𝑉
𝑉

 

(32) 
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 𝛿𝑄 = 𝑄̇ = ∫𝜌𝛿𝑞𝑑𝑉
𝑉

= −∫ (𝒒 ⋅ 𝑛)𝑑𝑆
𝜕𝑉

+∫(𝜌𝒓)𝑑𝑉
𝑉

= ∫(𝜌𝒓 − ∇ ⋅ 𝒒)𝑑𝑉
𝑉

 (34) 

 

With the rate of work and heat shown in Eq. (33) and (34), we can express the first law of 

thermodynamics as shown below in Eq. (35). It is noteworthy to mention, extensive properties in 

the thermodynamic sense (i.e., properties of the bulk) are integrated localized material point values 

throughout the volumetric domain. Moreover, uppercase notation for thermodynamic state 

variable definitions are extensive properties and lowercase notation signify intensive properties. 

The integrands in Eq. (35) are combined, and simplified to yield the relationship shown in Eq. (36) 

since the expression in parenthesis must be null to satisfy the integral for any sub-volume.  

 

 

𝑈̇ = 𝑄̇ + 𝑊̇ = ∫(𝜌𝒓 − ∇ ⋅ 𝒒)𝑑𝑉
𝑉

+∫(𝝈: 𝜺̇)𝑑𝑉
𝑉

→ 

∫𝜌𝑢̇𝑑𝑉
𝑉

= ∫(𝝈: 𝜺̇ + 𝜌𝒓 − ∇ ⋅ 𝒒)𝑑𝑉
𝑉

→ 

∫(𝜌𝑢̇ − 𝝈: 𝜺̇ − 𝜌𝒓 + ∇ ⋅ 𝒒)𝑑𝑉
𝑉

= 0 → 

𝜌𝑢̇ − 𝝈: 𝜺̇ − 𝜌𝒓 + ∇ ⋅ 𝒒 = 0 

(35) 

 

 

 The relationship between the rate of entropy and heat for the reversible case is rewritten in 

Eq. (37) by substituting Eq. (34) into Eq. (29). Since we are concerned with the thermodynamics 

of irreversible processes, the entropy equality is replaced by the inequality according to the 

Clausius inequality, Eq. (30). With this in mind, the Clausius-Duhem inequality is presented in Eq. 

(38) since the expression in parenthesis must satisfy the inequality for any differential volume.  

 

 

𝑆̇ =
𝑄̇

𝑇
=
1

𝑇
(−∫ (𝒒 ⋅ 𝑛)𝑑𝑆

𝜕𝑉

+∫(𝜌𝒓)𝑑𝑉
𝑉

) → 

∫𝜌𝑠̇𝑑𝑉
𝑉

= ∫ (
𝜌𝒓

𝑇
− ∇ ⋅ (

𝒒

𝑇
))𝑑𝑉

𝑉

 

(37) 

 

𝜌𝑢̇ = 𝝈: 𝜺̇ + 𝜌𝒓 − ∇ ⋅ 𝒒 (36) 

∫ (𝜌𝑠̇ −
𝜌𝒓

𝑇
+ ∇ ⋅ (

𝒒

𝑇
))𝑑𝑉

𝑉

≥ 0 

𝜌𝑠̇ −
𝜌𝒓

𝑇
+ ∇ ⋅ (

𝒒

𝑇
) = 𝜌𝑠̇ −

𝜌𝒓

𝑇
+
1

T
∇ ⋅ 𝐪 + 𝐪 ⋅ ∇𝑇−1 ≥ 0 

(38) 
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The Helmholtz free energy function is adopted here, and it is a scalar function defined by 

internal state variables 𝜀𝑖𝑗, 𝛾𝑖, 𝐷𝑖𝑗, 𝑇, and 𝛿 denoting the infinitesimal strain tensor, viscoelastic 

state variables, the second-order symmetric damage tensor, temperature, and isotropic hardening, 

respectively. The free energy function, Eq. (39), is written in differential rate form as shown in Eq. 

(40). The entropy rate can be obtain by rearranging Eq. (40) and substituting Eq. (36).  

 

 𝜓 = 𝜓(𝜀𝑖𝑗, 𝛾𝑖, 𝐷𝑖𝑗 , 𝑇, 𝛿) = 𝑢 − 𝑇𝑠 (39) 

 

 

 𝑠̇ =
1

𝑇
(
1

𝜌
𝝈: 𝜺̇ + 𝒓 −

1

𝜌
∇ ⋅ 𝒒) −

1

𝑇
(
𝜕𝜓

𝜕𝜺
𝜺̇ +

𝜕𝜓

𝜕𝜸
𝜸̇ +

𝜕𝜓

𝜕𝑇
𝑇̇ +

𝜕𝜓

𝜕𝑫
𝑫̇ +

𝜕𝜓

𝜕𝛿
𝛿̇) −

1

𝑇
𝑠𝑇̇ (41) 

 

The defined entropy rate enters the Clausius-Duhem inequality as shown in Eq. (42), then 

it is expanded in Eq. (43) and re-arranged to obtain Eq. (44). For independently varying strains 

and temperature rates (i.e., functional independence) [167], we obtain the necessary relations 

shown in Eq. (45). 

 

 

𝜌 (
1

𝑇
(
1

𝜌
𝝈: 𝜺̇ + 𝒓 −

1

𝜌
∇ ⋅ 𝒒) −

1

𝑇
(
𝜕𝜓

𝜕𝜺
𝜺̇ +

𝜕𝜓

𝜕𝜸
𝜸̇ +

𝜕𝜓

𝜕𝑇
𝑇̇ +

𝜕𝜓

𝜕𝑫
𝑫̇ +

𝜕𝜓

𝜕𝛿
𝛿̇) −

1

𝑇
𝑠𝑇̇)… 

…−
𝜌𝒓

𝑇
+
1

T
∇ ⋅ 𝐪 + 𝐪 ⋅ ∇ (

1

𝑇
) ≥ 0 

(42) 

 

 

1

𝑇
𝝈: 𝜺̇ +

𝜌𝒓

𝑇
−
1

𝑇
∇ ⋅ 𝒒 −

𝜌

𝑇

𝜕𝜓

𝜕𝜺
𝜺̇ −

𝜌

𝑇

𝜕𝜓

𝜕𝜸
𝜸̇   −

𝜌

𝑇

𝜕𝜓

𝜕𝑇
𝑇̇ −

𝜌

𝑇

𝜕𝜓

𝜕𝑫
𝑫̇ −

𝜌

𝑇

𝜕𝜓

𝜕𝛿
𝛿̇ −

𝜌

𝑇
𝑠𝑇̇

−
𝜌𝒓

𝑇
+⋯ 

…
1

T
∇ ⋅ 𝐪 + 𝐪 ⋅ ∇ (

1

𝑇
) ≥ 0 

(43) 

 

 
1

𝑇
(𝝈 − 𝜌

𝜕𝜓

𝜕𝜺
) 𝜺̇ −

𝜌

𝑇
(𝑠 +

𝜕𝜓

𝜕𝑇
) 𝑇̇ −

𝜌

𝑇

𝜕𝜓

𝜕𝑫
𝑫̇ −

𝜌

𝑇

𝜕𝜓

𝜕𝛿
𝛿̇ −

𝜌

𝑇

𝜕𝜓

𝜕𝜸
𝜸̇ + 𝐪 ⋅ ∇ (

1

𝑇
) ≥ 0 (44) 

 

 

𝜓̇̇ =
𝜕𝜓

𝜕𝜀𝑖𝑗
𝜀𝑖̇𝑗 +

𝜕𝜓

𝜕𝛾𝑖
𝛾̇𝑖 +

𝜕𝜓

𝜕𝑇
𝑇̇ +

𝜕𝜓

𝜕𝐷𝑖𝑗
𝐷̇𝑖𝑗 +

𝜕𝜓

𝜕𝛿
𝛿̇ = 𝑢̇ − 𝑇̇𝑠 − 𝑇𝑠̇ (40) 
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 The Clausius-Duhem inequality simplifies to Eq. (46) which contains terms relevant to 

viscoelasticity, damage, and heat transfer. The thermodynamic forces, Y𝑖𝑗, Π, and Γ𝑖, defined in Eq. 

(47), are conjugates to the damage state variables, 𝐷𝑖𝑗 , hardening variable, 𝛿 , and molecular 

motion state variable, 𝛾𝑖, respectively. The inequality in Eq. (46) is rewritten compactly as shown 

in Eq. (48) by substituting the thermodynamic force definitions.  

 

 −
𝜌

𝑇

𝜕𝜓

𝜕𝑫
𝑫̇ −

𝜌

𝑇

𝜕𝜓

𝜕𝛿
𝛿̇ −

𝜌

𝑇

𝜕𝜓

𝜕𝜸
𝜸̇ + 𝐪 ⋅ ∇ (

1

𝑇
) ≥ 0 (46) 

 

 𝑌ij = −
𝜕𝜓

𝜕𝐷𝑖𝑗
 , Γ𝑖 = −

𝜕𝜓

𝜕𝛾𝑖
, Π = −

𝜕𝜓

𝜕𝛿
 (47) 

 

 𝑌𝑖𝑗𝐷̇𝑖𝑗 + Π𝛿̇ + Γ𝑖𝛾̇𝑖 −
qi ⋅ (∇𝑇)𝑖
𝜌𝑇

≥ 0 (48) 

 

 Motivated by the work of Abdel-Tawab and Weitsman [165], the Helmholtz free energy 

function is defined by a Taylor series expansion, Eq. (50), about the equilibrium viscoelastic state 

variable, 𝛾𝑖
𝑒 (i.e., fully relaxed state). Deformed viscoelastic solids, at fixed strains and damage 

states, are triggered by a thermodynamic process that drives the molecular motion internal state 

variables to an equilibrated quantity, which is denoted as 𝛾𝑖
𝑒  in Eq. (49). The hypothesis of 

disparate length scales is adopted; viscoelastic behavior occurs at the molecular scale and damage 

at the micro-scale (i.e., matrix cracks, fiber/matrix debonding, fiber pull-out etc..). Under this 

assumption, arbitrary damage states will not alter the temporal stress relaxation or creep rate rather 

the effective magnitude of relaxation is changed. To derive the Helmholtz free energy function 𝜓, 

a Taylor series expansion, Eq. (50), is taken about the equilibrated variable, 𝛾𝑖
𝑒, . In the expansion, 

𝜓𝑒 refers to the value of the free energy function at equilibrium and 𝜓𝑖𝑗 as the twice differentiated 

quantity shown in Eq. (51), HOT refers to higher order terms of the Taylor expansion. Moreover, 

terms beyond second-order may be reasonably neglected since 𝛾𝑖 is a small enough quantity at the 

𝜎𝑖𝑗 = 𝜌
𝜕𝜓

𝜕𝜀𝑖𝑗
 

𝑠 = −
𝜕𝜓

𝜕𝑇
 

(45) 
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scale of polymer chain displacement. It is noteworthy to mention, the free energy function is 

assumed continuous, sufficiently differentiable, a minimum, Eq. (52), and convex, Eq. (53), at the 

equilibrium point. The connection between the viscoelastic thermodynamic force and its 

conjugated state variable is made by employing the Onsager’s theorem, which relates the equality 

of flows and forces for non-equilibrated thermodynamic systems through a symmetric positive 

semi-definite proportional matrix. With this consideration in mind, the Onsager’s theorem, Eq. 

(54), states that the thermodynamic viscoelastic driving force, Γ𝑖, is proportional to the rate of the 

internal viscoelastic state variable, 𝛾𝑖̇ , and the proportionality tensor, 𝑏𝑖𝑗 . When Eq. (54) is 

substituted into the entropy inequality, Eq. (48), for fixed damage and isothermal states, the 

inequality shown in Eq. (55) is obtained which shows that 𝑏𝑖𝑗  is positive semi-definite. 

Differentiation of Eq. (50) with respect to 𝛾𝑖̇  and substitution of Eq. (54) into the differential 

relation produces a system of first order differential equations, shown in Eq. (56). The system of 

differential equation can be diagonalized, where 𝐵𝑖 and Ψ𝑖 are diagonalized eigenvalue matrices 

to 𝑏𝑖𝑗  and 𝜓𝑖𝑗 , respectively, and 𝛾𝑚  are the transformed variables in Eq. (57); furthermore, the 

transformed internal state variables, 𝛾𝑖, can be solved for to obtain the general solution shown in 

Eq. (58). The relaxation times are defined as 𝜏𝑖 = 𝐵𝑖/Ψ𝑖 (no sum on 𝑖), which depends on the 

diagonalized matrices obtained from the Taylor expansion and the Onsager’s reciprocal relation. 

Furthermore, the relaxation times are positive semi-definite due to 𝑏𝑖𝑗 and 𝜓𝑖𝑗 already satisfying 

these conditions via the Clausius-Duhem inequality and convex condition at equilibrium. 

 

 

  

 

 

 

γ𝑖
e = 𝛾𝑖

𝑒(𝜀𝑖𝑗, 𝐷𝑖𝑗) (49) 

𝜓(𝜀𝑖𝑗, 𝛾𝑖, 𝐷𝑖𝑗 , 𝑇, 𝛿) = 𝜓𝑒 +
1

2
𝜓𝑖𝑗(𝛾𝑖 − 𝛾𝑖

𝑒)(𝛾𝑗 − 𝛾𝑗
𝑒) + 𝐻𝑂𝑇 (50) 

𝜓𝑒 = (𝜓(𝜀𝑖𝑗 , 𝐷𝑖𝑗 , 𝑇, 𝛿))
𝑒
, 𝜓𝑖𝑗 = (

𝜕2𝜓

𝜕𝛾𝑖𝜕𝛾𝑗
)
𝑒

 (51) 

(
𝜕𝜓

𝜕𝛾𝑖
)
𝑒

= 0 (52) 

𝜓𝑖𝑗𝛿𝛾𝑖𝛿𝛾𝑗 > 0 (53) 
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Schapery [168] derived the same linear equations of motion using the same process; 

additionally, the Taylor expansion was made with the generalized coordinates, 𝑞𝑖, and temperature, 

𝑇. It was pointed out that the expansion of the free energy solely in terms of 𝑞𝑖 can be made with 

an understanding that the matrices Ψ𝑖 and 𝐵𝑖 can be temperature-dependent and perhaps related 

through the polymer shift factor relation, 𝑎𝑇 [152]. Following the Schapery [168] procedure, the 

connection between the proportionality tensor, 𝑏𝑖𝑗, and the reduced time variable, 𝑎𝑇, is adopted. 

In essence, non-isothermal viscoelastic systems are represented by a reduced time expression 

which effectively transform 𝑏𝑖𝑗  and hence 𝜏𝑖 ; moreover, this assumes the time-temperature 

superposition principle to be valid. The reduced time expression 𝜉(𝑡) used in this work is shown 

in Eq. (59). The transformation or shift factor, 𝑎𝑇, is commonly defined by the empirical William-

Landel-Ferry (WLF) formula for thermorheologically simple polymers. However, the WLF 

relation is said to be valid above the polymer’s glass transition temperature or at least near the 

glass transition point. Modified WLF expressions have been introduced in the literature [39] to 

account for temperatures below the glass transition. A piece-wise function, shown in Eq. (60), is 

adopted in this work to represent shift factors above and below the glass transition temperature. 

 

Γ𝑖 = 𝑏𝑖𝑗𝛾̇𝑗 (54) 

𝑏𝑖𝑗𝛾̇𝑖𝛾̇𝑗 ≥ 0 (55) 

−
𝜕𝜓

𝜕𝛾𝑖
= Γ𝑖 =

𝜕

𝜕𝛾𝑖
(−𝜓𝑒 −

1

2
𝜓𝑖𝑗(𝛾𝑖 − 𝛾𝑖

𝑒)(𝛾𝑗 − 𝛾𝑗
𝑒)) → 

𝑏𝑖𝑗𝛾̇𝑗 =
1

2
𝜓𝑖𝑗(𝛾𝑗 − 𝛾𝑗

𝑒) → 

2𝑏𝑖𝑗𝛾̇𝑗 + 𝜓𝑖𝑗𝛾𝑗 = 𝜓𝑖𝑗𝛾𝑗
𝑒 

(56) 

𝐵𝑖𝛾𝑖̇ +Ψ𝑖𝛾𝑖 = Ψ𝑖𝛾𝑖
𝑒 → 

𝛾𝑖̇ +
Ψ𝑖
𝐵𝑖
 𝛾𝑖 =

Ψ𝑖
𝐵𝑖
𝛾𝑖
𝑒 → 

𝛾𝑖̇ +
1

𝜏𝑖
 𝛾𝑖 =

1

𝜏𝑖
𝛾𝑖
𝑒 , 𝑤ℎ𝑒𝑟𝑒 𝜏𝑖 =

𝐵𝑖
Ψ𝑖
  

(57) 

𝛾𝑖 = 𝛾𝑖
𝑒(1 − 𝑒−𝑡/𝜏𝑖) (58) 
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The Helmholtz free energy takes the form in Eq. (61) after substituting Eq. (58) into Eq. 

(50), this form contains an equilibrated and non-relaxed free energy contributions. With the free 

energy functions defined in terms of the viscoelastic internal state variables, the stresses are 

procured by substituting Eq. (61) into Eq. (45) while keeping all other variables constant and with 

𝜌 = 1 for simplicity. The stresses have two components that are associated with an equilibrated 

contribution and non-relaxed contributions. The variables, Λ𝑖, are a function of strains and damage 

because of 𝛾𝑖
𝑒 and are obtained by a Taylor series expansion about the null strain state, up to the 

quadratic term considering infinitesimal strain theory. Linear terms correspond to a residual stress 

state, which are assumed zero at the reference strain state, and constant terms vanish since strain 

free states do not produce excite viscoelastic motion. The term left in the expansion is shown in 

Eq. (63), the twice differentiated transient Helmholtz energy terms must produce viscoelastic 

stiffnesses according to the law of elasticity [108]. Additionally, employing the principle of energy 

equivalence [99], [169], the transient stiffness tensor takes the form shown in Eq. (64), with 𝑃𝑖𝑗𝑘𝑙
𝑉  

denoting the fourth-order damage effect tensor corresponding to the viscoelastic stiffness tensors, 

𝐶𝑖𝑗𝑘𝑙,𝑚
𝑉 . 

 

 

  

𝜉(𝑡) = ∫
𝑑𝑠

𝑎𝑇(𝑇(𝑠))

𝑡

0

 (59) 

𝑙𝑜𝑔10 𝑎𝑇 =

{
 
 

 
 𝐶1(𝑇𝑟𝑒𝑓 − 𝑇)

𝑐

𝐶2 + (𝑇𝑟𝑒𝑓 − 𝑇)
𝑐 , 𝑇 < 𝑇𝑟𝑒𝑓

𝐶1(𝑇𝑟𝑒𝑓 − 𝑇)

𝐶2 + (𝑇𝑟𝑒𝑓 − 𝑇)
, 𝑇 ≥ 𝑇𝑟𝑒𝑓

 (60) 

𝜓 = 𝜓𝑒 +
1

2
∑Ψ𝑖(𝛾𝑖

𝑒𝑒−𝑡/𝜏𝑖)
2

𝐼

𝑖=1

 (61) 

𝜎𝑖𝑗 =
𝜕𝜓𝑒
𝜕𝜀𝑖𝑗

+∑
𝜕𝛬𝑖
𝜕𝜀𝑖𝑗

𝑒−𝑡/𝜏𝑖

𝐼

𝑖=1

 

Λ𝑖 = Λ𝑖(𝜀𝑖𝑗, 𝐷𝑖𝑗) =
1

2
Ψ𝑖(𝛾𝑖

𝑒)2  (no sum over i) 

(62) 
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 The transient viscoelastic stiffness is defined with the Prony series as shown in Eq. (65), it 

is similar to the well-known generalized Maxwell model. Since the generalized Maxwell model is 

derived from rheological elements, the relaxation time is defined in terms of the spring-dashpot 

constants; however, the thermodynamic approach defines the relaxation times based on the Ψ𝑖 and 

𝐵𝑖. The damage effect tensor acts to transform the viscoelastic stiffness tensors, 𝐶𝑎𝑏𝑐𝑑,𝑚
𝑉 ; however, 

the exponential is unaffected by the damage transformation. For the equilibrated portion of the 

energy function, 𝜓𝑒, a similar procedure is followed to obtain Eq. (66) with 𝑃𝑖𝑗𝑘𝑙
𝑒  denoting the 

damage effect tensor corresponding to the equilibrated stiffness tensor, 𝐶𝑖𝑗𝑘𝑙
𝑒 . With this in mind, 

the equilibrated stresses are the obtained as shown in Eq. (67). While the damage effect tensors, 

𝑃𝑖𝑗𝑘𝑙
𝑒  and 𝑃𝑖𝑗𝑘𝑙

𝑉 , can be different, this work assumes damage is indistinguishable for both 

components and these tensors are then equivalent, demonstrated in Eq. (68). Therefore, the 

effective stiffness is defined in Eq. (69), it contains an equilibrated and non-equilibrated 

contribution. Boltzmann superposition is applicable for linear viscoelastic materials undergoing 

time-dependent strain inputs. Consequently, it follows that the stresses must take the form of 

Duhamel’s integral, shown in Eq. (70); also, it is assumed the time-translation invariance 

hypothesis holds. 

 

 

 

 

 

Λ𝑚 =
1

2
(
𝜕2Λ𝑚
𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝑙

)
0

𝜀𝑖̃𝑗𝜀𝑘̃𝑙 (63) 

Λ𝑚 =
1

2
𝑃𝑖𝑗𝑎𝑏
𝑉 𝐶𝑎𝑏𝑐𝑑,𝑚

𝑉 𝑃𝑐𝑑𝑘𝑙
𝑉 𝜀𝑖𝑗𝜀𝑘𝑙 (64) 

C𝑖𝑗𝑘𝑙,𝑚
V∗ (𝜉(𝑡)) = ∑ 𝑃𝑖𝑗𝑎𝑏

𝑉 𝐶𝑎𝑏𝑐𝑑,𝑚
𝑉 𝑃𝑐𝑑𝑘𝑙

𝑉 𝑒−𝜉/𝜏𝑚
𝑀

𝑚=1

 (65) 

𝜓𝑒 = 𝑃𝑖𝑗𝑎𝑏
𝑒 𝐶𝑎𝑏𝑐𝑑

𝑒 𝑃𝑐𝑑𝑘𝑙
𝑒 𝜀𝑖𝑗𝜀𝑘𝑙 (66) 

𝜎𝑖𝑗
𝑒 =

𝜕𝜓𝑒
𝜕𝜀𝑖𝑗

= 𝑃𝑖𝑗𝑎𝑏
𝑒 𝐶𝑎𝑏𝑐𝑑

𝑒 𝑃𝑐𝑑𝑘𝑙
𝑒 𝜀𝑘𝑙 (67) 

𝑃𝑖𝑗𝑘𝑙
𝑉 = 𝑃𝑖𝑗𝑘𝑙

𝑒 = 𝑃𝑖𝑗𝑘𝑙 (68) 
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The fourth-order damage effect tensor is constructed from a dyad of symmetric second-

order damage or integrity tensors, 𝐷𝑚𝑛 or Ω𝑚𝑛 [170], respectively, this is shown in Eq. (71). In 

the principal damage coordinate system, 𝐷𝑚𝑛 is a diagonal tensor with three principal values, 𝐷1, 

𝐷2, and 𝐷3. Analogous to the effective cross-sectional area concept, the damage variables quantify 

the ratio of damaged stiffness to the pristine stiffness. For example, a value of one denotes 

catastrophic failure or complete loss of load bearing capacity whereas a value of zero denotes a 

pristine material. Damage variables are homogenized representations of distributed microcracks 

within a material, for short fiber composites, damage variables homogenize micro-damage sites 

such as matrix cracks, fiber rupture, fiber pull-out, and fiber/matrix interface cracks into effective 

quantities. Damage in 3D printed short fiber composites can be dissociated into intra-bead and 

inter-bead damage. Intra-bead damage occurs within a bead and exhibit a combination of fiber, 

matrix, or fiber/matrix interface damage; on the other hand, inter-bead damage occurs in matrix-

rich zones such as the interface between stacked beads and mostly comprise of matrix cracking. 

Two types of integrity tensors are considered, an intra-bead description with only two damage 

modes, Ω𝑖𝑗, and inter-bead description with a single damage mode, Ω𝑖𝑗
𝐼 , as shown in Eq. (72). 

 

 

 

 Noteworthy to mention, other forms of the damage effect tensors have been proposed in 

the literature [171]–[176], which are an extension of the model proposed by Matzenmiller et al. 

[177]. The modified form introduces independent shear damage variables, 𝐷4, 𝐷5, and 𝐷6 which 

allow for greater flexibility in modeling the nonlinear behavior in shear. In comparison to Eq. (71), 

𝐶𝑖𝑗𝑘𝑙
∗ (𝜉(𝑡)) = 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑

𝑒 𝑃𝑐𝑑𝑘𝑙 + ∑ 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑,𝑚
𝑉 𝑃𝑐𝑑𝑘𝑙𝑒

−𝜉/𝜏𝑚

𝑀

𝑚=1

 (69) 

𝜎𝑖𝑗 = ∫ 𝐶𝑖𝑗𝑘𝑙
∗ (𝜉(𝑡) − 𝜉(𝑠))

𝜕𝜀𝑘𝑙
𝜕𝑠

𝑑𝑠
𝑡

0

 (70) 

𝑃𝑖𝑗𝑘𝑙 =
1

2
(𝛺𝑖𝑘𝛺𝑗𝑙 + 𝛺𝑖𝑙𝛺𝑗𝑘), 𝑤ℎ𝑒𝑟𝑒 Ω𝑖𝑗 = √𝛿𝑖𝑗 − 𝐷𝑖𝑗  (71) 

𝛺𝑖𝑗
𝐼 = [

1 0 0
0 1 0

0 0 √1 − 𝐷3

] , 𝛺𝑖𝑗 = [
√1 − 𝐷1 0 0

0 √1 − 𝐷2 0

0 0 1

] (72) 



 

 

75 

the shear reduction damage variables should be related to the principal damage variables, 𝐷1, 𝐷2, 

and 𝐷3; for example, assuming the damage effect tensor form used in Chow and Wang [92], the 

shear damage variable associated with the 2-3 direction would be 𝐷4 = 𝐷2 + 𝐷3 − 𝐷2𝐷3, in Voigt 

notation. For modeling shear damage, this approach can perhaps be more convenient.  

 

 

The general forms of damage evolution equations can be sorted into three categories; 

namely, (i) purely-standard thermodynamic approach, (ii) quasi-standard formulation where 

separate potentials are used for both plastic and damage dissipations, and (iii) formulations not 

based on dissipation potentials [106]. In this work, the quasi-standard approach with a rate-

independent formulation is adopted and no plastic potential is considered. Evolution equations 

require two functions; namely, a postulated damage surface, 𝑔(𝒀(𝑫), 𝜅(𝛿, 𝑇)) defined in Eq. (74), 

and convex damage potential, 𝑓(𝒀(𝑫), 𝜅(𝛿, 𝑇)). An associated model, shown in Eq. (75), is 

adopted, and the norm of the damage thermodynamic force is used [92], [94], [98], [100], [178]; 

where 𝑱 is a material-dependent damage interaction fourth-order tensor. A modified isotropic 

hardening/softening function, proposed by Barbero and Lonetti [103] and defined in Eq. (76), is 

used such that 𝜅0(𝑇) is the temperature dependent damage threshold, 𝛿 is the hardening variable, 

and both 𝑐1 and 𝑐2(𝑇) are material-dependent parameters. Since the damage potential is also a 

convex function, the following constraints, 𝑐1 > 0, 𝑐2 < 0 and 𝜅0 > 0 must hold. 

 

 

 

 

 

𝑃𝑖𝑗𝑘𝑙 =

[
 
 
 
 
 
1 − 𝐷1 0 0 0 0 0
0 1 − 𝐷2 0 0 0 0
0 0 1 − 𝐷3 0 0 0
0 0 0 1 − 𝐷4 0 0
0 0 0 0 1 − 𝐷5 0
0 0 0 0 0 1 − 𝐷6]
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𝑔(𝒀(𝑫), 𝜅(𝛿, 𝑇)) = 𝑔̂(𝒀(𝐃)) − (𝜅(𝛿, 𝑇) + 𝜅0(𝑇)) (74) 

𝑔̂(𝒀(𝐃)) = 𝑓(𝒀(𝐃)) = √(𝒀: 𝐉: 𝒀)/2 (75) 

𝜅(𝛿, 𝑇) + 𝜅0(𝑇) = 𝑐1 (𝑒
𝛿

𝑐2(𝑇) − 1) + 𝜅0(𝑇) (76) 
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 In the damage surface equality, Eq. (74), 𝑔 = 0 corresponds to a point that lies on the 

damage surface and also signifies the point of damage onset. When damage onset is achieved, 

damage evolution follows and the kinetic equations, Eqs. (77) and (78), determine the change in 

damage and isotropic hardening of the damage surface. In the kinetic equations, the variable, 𝜆̇, is 

the Lagrangian multiplier (i.e., damage multiplier) and 𝜕𝑓/𝜕𝒀  are the directions in the 

thermodynamic force space which are obtained from the normality rule [179]. The Lagrangian 

multiplier is assumed to affect the hardening rate in a similar manner except that the expansion is 

isotropic. The hardening function acts to increase the thermodynamically allowable space from 

which damage cannot evolve. To solve for the damage multiplier, the Kuhn-Tucker relations, Eq. 

(79), are needed for the unilateral constraint of 𝑔. The consistency conditions, provided in Eq. (80), 

are expanded as shown in Eq. (81) to determine the value of the damage multiplier defined in Eq. 

(82). Moreover, based on Eqs. (78) and (74), the hardening rate can be obtained as 𝛿̇ = −𝜆̇. For 

the isothermal case, the change in damage simplifies to Eq. (83). The damage multiplier, damage 

variables, and hardening variable are numerically solved for using a standard return mapping 

algorithm [170]. 

 

 

 

 

 

  

 

 

𝐃̇ =
𝜕𝑫

𝜕𝚾
= 𝜆̇

𝜕𝑓

𝜕𝚾
 (77) 

𝛿̇ = 𝜆̇
𝜕𝑔

𝜕𝜅
 (78) 

λ̇ ≥ 0, 𝑔 ≤ 0, 𝜆̇𝑔 = 0 (79) 

𝑔̇ =
𝜕𝑔

𝜕𝒀
: 𝒀̇ +

𝜕𝑔

𝜕𝜅
𝜅̇ = 0, 𝑔 = 0 (80) 

𝑔̇ =
𝜕𝑔

𝜕𝒀
:
𝜕𝒀

𝜕𝜺
: 𝜺̇ +

𝜕𝑔

𝜕𝜅

𝜕𝜅

𝜕𝑇
𝑇̇ + (

𝜕𝑔

𝜕𝒀
:
𝜕𝒀

𝜕𝑫
:
𝜕𝑓

𝜕𝒀
+
𝜕𝜅

𝜕𝛿
) 𝜆̇ = 0, 

 

  𝑤ℎ𝑒𝑟𝑒 𝒀̇ =
𝜕𝒀

𝜕𝜺
: 𝜺̇ + 𝜆̇

𝜕𝒀

𝜕𝑫
:
𝜕𝑓

𝜕𝒀
 and 𝜅̇ =

𝜕𝜅

𝜕𝛿
𝜆̇
𝜕𝑔

𝜕𝜅
+
𝜕𝑔

𝜕𝜅

𝜕𝜅

𝜕𝑇
𝑇̇  

(81) 
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In finite element analyses, the tangent constitutive matrix, 𝑪𝑇, is required and it is obtained 

from differentiating the stress tensor. The constitutive law is applied to Eq. (84) to simplify the 

relation as shown in Eq. (85) since the strains are independent of the damage variables. In the 

absence of damage evolution, the material tangent matrix is simply the differentiated stresses with 

respect to the strain; however, an additional contribution, provided in Eq. (86), must be added 

when damage is evolving.  

 

  

 

3.3 Numerical Implementation for Implicit Finite Element Method 

The outlined numerical formulations can be implemented in any implicit finite element solver that 

supports user-defined material subroutines. For this work, the numerical implementation is carried 

out in ABAQUS/Standard (Implicit). The Abaqus/Standard user material (UMAT) subroutine 

requires the specification of the stresses and the material tangent matrix (i.e., the Jacobian matrix) 

[18]. To compute the stresses, the integral in Eq. (87) needs to be numerically solved. A noteworthy 

point is that the solver provides the time and strain increments. The parameter, 𝑛, is the current 

𝜆̇ = {
𝐿𝑑𝝓: 𝜺̇ + 𝐿𝑑𝜃𝑇̇,   𝑖𝑓 𝑔 = 0

0, 𝑖𝑓 𝑔 < 0
   

 

𝑤ℎ𝑒𝑟𝑒 𝐿𝑑 = −
1

𝜕𝑔
𝜕𝒀
:
𝜕𝒀
𝜕𝑫

:
𝜕𝑓
𝜕𝒀

+
𝜕𝜅
𝜕𝛿

 , 𝝓 =
𝜕𝑔

𝜕𝒀
:
𝜕𝒀

𝜕𝜺
 , 𝜃 =

𝜕𝑔

𝜕𝜅
:
𝜕𝜅

𝜕𝑇
 

(82) 

𝐃̇ =
𝜕𝑓

𝜕𝒀
𝐿𝑑𝝓 (83) 

𝛔̇(𝛆, 𝐃) =
𝝏𝝈

𝝏𝜺
: 𝜺̇ +

𝝏𝝈

𝝏𝑫
: 𝑫̇ =

𝝏(𝑪𝑇: 𝜺)

𝝏𝜺
: 𝜺̇ +

𝝏(𝑪𝑇: 𝜺)

𝝏𝑫
: 𝑫̇ (84) 

𝛔̇(𝛆, 𝐃) = 𝑪𝑇: 𝜺̇ + (
𝝏𝑪𝑇

𝝏𝑫
: 𝜺) : 𝑫̇ (85) 

𝐂T = {

𝑪𝑇 , 𝑖𝑓 𝑫̇ = 0

𝑪𝑇 + (
𝝏𝑪𝑇: 𝜺

𝝏𝑫
:
𝜕𝑓

𝜕𝚾
)𝑳𝑑, 𝑖𝑓 𝑫̇ ≥ 0

 (86) 
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increment and 𝑛 + 1 denotes the updated increment, in other words, the beginning and end of the 

increment, respectively.  

 

 

Define the integral as, 

 

 

In the updated incremental form, we have the following, 

 

 

The updated stress tensor is computed as shown below, 

 

 

The stress tensor at the current increment is then, 

𝜎𝑖𝑗 = 𝑃𝑖𝑗𝑎𝑏∫ 𝐶𝑎𝑏𝑐𝑑
∗ (𝜉(𝑡) − 𝜉(𝑠))𝑃𝑐𝑑𝑘𝑙

𝜕𝜀𝑘𝑙
𝜕𝑠

𝑑𝑠
𝑡

0

= 

𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑
𝑒 𝑃𝑐𝑑𝑘𝑙𝜀𝑘𝑙 + ∑ 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑,𝑚

𝑉 𝑃𝑐𝑑𝑘𝑙

𝑀

𝑚=1

∫ 𝑒−(𝜉(𝑡)−𝜉(𝑠))/𝜏𝑚
𝜕𝜀𝑘𝑙
𝜕𝑠

𝑑𝑠
𝑡

0

 

(87) 

𝐼𝑘𝑙,𝑚
∗ (𝜉(𝑡)) = ∫ 𝑒−(𝜉(𝑡)−𝜉(𝑠))/𝜏𝑚

𝜕𝜀𝑘𝑙
𝜕𝑠

𝑑𝑠
𝑡

0
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𝐼𝑘𝑙,𝑚
(𝑛+1)∗(𝜉𝑛+1) = ∫ 𝑒

−
(𝜉𝑛+1−𝜉(𝑠))

𝜏𝑚
𝜕𝜀𝑘𝑙
𝜕𝑠

𝑑𝑠
𝜉𝑛+1

0

= 

∫ 𝑒
−
(𝜉𝑛+1−𝜉(𝑠))

𝜏𝑚
𝜕𝜀𝑘𝑙
𝜕𝑠

𝑑𝑠
𝜉𝑛

0

+∫ 𝑒
−
(𝜉𝑛+1−𝜉(𝑠))

𝜏𝑚
Δ𝜀𝑘𝑙
Δ𝑠

𝑑𝑠
𝜉𝑛+1

𝜉𝑛

= 

aT𝜏𝑚
Δ𝜀𝑘𝑙
Δt

𝑒
−
(𝜉𝑛+1−𝜉(𝑠))

𝜏𝑚 |
𝜉𝑛

𝜉𝑛+1

+∫ 𝑒
−
(𝜉𝑛+1−𝜉(𝑠))

𝜏𝑚
𝜕𝜀𝑘𝑙
𝜕𝑠

𝑑𝑠
𝜉𝑛

0

= 

𝐼𝑘𝑙,𝑚
(𝑛+1)∗(𝜉𝑛+1) = aT𝜏𝑚

Δ𝜀𝑘𝑙
Δt

(1 − 𝑒
−

Δ𝑡
𝑎𝑇⋅𝜏𝑚

 
) + 𝑒

−
Δ𝑡

𝑎𝑇⋅𝜏𝑚∫ 𝑒
−
(𝜉𝑛−𝜉(𝑠))

𝜏𝑚
𝜕𝜀𝑘𝑙
𝜕𝑠

𝑑𝑠
𝑡𝑛

0

= 

𝐼𝑘𝑙,𝑚
(𝑛+1)∗(𝜉𝑛+1) = aT𝜏𝑚

Δ𝜀𝑘𝑙
Δt

(1 − 𝑒
−

Δ𝑡
𝑎𝑇⋅𝜏𝑚) + 𝑒

−
Δ𝑡

𝑎𝑇⋅𝜏𝑚 ⋅ 𝐼𝑘𝑙,𝑚
(𝑛)∗(𝜉𝑛) 

(89) 

σ𝑖𝑗
(𝑛+1) = 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑

𝑒 𝑃𝑐𝑑𝑘𝑙𝜀𝑘𝑙
(𝑛+1) + ∑ 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑,𝑚

𝑉 𝑃𝑐𝑑𝑘𝑙

𝑀

𝑚=1

𝐼𝑘𝑙,𝑚
(𝑛+1)∗(𝜉𝑛+1) = 

𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑
𝑒 𝑃𝑐𝑑𝑘𝑙(𝜀𝑘𝑙

𝑛 + Δ𝜀𝑘𝑙) + 

∑ 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑,𝑚
𝑉 𝑃𝑐𝑑𝑘𝑙

𝑀

𝑚=1

[aT𝜏𝑚
Δ𝜀𝑘𝑙
Δt

(1 − 𝑒
−

Δ𝑡
𝑎𝑇⋅𝜏𝑚) + 𝑒

−
Δ𝑡

𝑎𝑇⋅𝜏𝑚 ⋅ 𝐼𝑘𝑙,𝑚
(𝑛)∗(𝜉𝑛)] 

(90) 
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Where the stress increment is defined as, 

 

 

Furthermore, the stress increment can be written compactly as shown below, 

 

 

Lastly, the Jacobian is computed as  

 

 

When damage is growing, the Jacobian must also account for the change with respect to 

the damage variable. Define the effective stiffness tensors as shown in Eqs. (96) and (97). The re-

𝜎𝑖𝑗
(𝑛)

= 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑
𝑒 𝑃𝑐𝑑𝑘𝑙𝜀𝑘𝑙

(𝑛)
+ ∑ 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑,𝑚

𝑉 𝑃𝑐𝑑𝑘𝑙

𝑀

𝑚=1

∫ 𝑒−(𝜉𝑛−𝜉(𝑠))/𝜏𝑚
𝜕𝜀𝑘𝑙
𝜕𝑠

𝑑𝑠
𝜉𝑛

0

→ 

𝜎𝑖𝑗
(𝑛)

= 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑
𝑒 𝑃𝑐𝑑𝑘𝑙𝜀𝑘𝑙

(𝑛)
+ ∑ 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑,𝑚

𝑉 𝑃𝑐𝑑𝑘𝑙

𝑀

𝑚=1

𝐼𝑘𝑙,𝑚
(𝑛)∗(𝜉𝑛) 

(91) 

Δ𝜎𝑖𝑗 = 𝜎𝑖𝑗
(𝑛+1)

− 𝜎𝑖𝑗
(𝑛)

= 

𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑
𝑒 𝑃𝑐𝑑𝑘𝑙(𝜀𝑘𝑙

(𝑛) + Δ𝜀𝑘𝑙) + 

∑ 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑,𝑚
𝑉 𝑃𝑐𝑑𝑘𝑙

𝑀

𝑚=1

[aT𝜏𝑚
Δ𝜀𝑘𝑙
Δt

(1 − 𝑒
−

Δ𝑡
𝑎𝑇⋅𝜏𝑚) + 𝑒

−
Δ𝑡

𝑎𝑇⋅𝜏𝑚 ⋅ 𝐼𝑘𝑙,𝑚
(𝑛)∗(𝜉𝑛)] − 

(𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑
𝑒 𝑃𝑐𝑑𝑘𝑙𝜀𝑘𝑙

(𝑛)
+ ∑ 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑,𝑚

𝑉 𝑃𝑐𝑑𝑘𝑙

𝑀

𝑚=1

𝐼𝑘𝑙,𝑚
(𝑛)∗(𝜉𝑛)) = 

∑ (𝑒
−

Δ𝑡
𝑎𝑇⋅𝜏𝑚 − 1)𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑,𝑚

𝑉 𝑃𝑐𝑑𝑘𝑙𝐼𝑘𝑙,𝑚
(𝑛)∗(𝜉𝑛)

𝑀

𝑚=1

+ 

[𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑
𝑒 𝑃𝑐𝑑𝑘𝑙 + ∑ 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑,𝑚

𝑉 𝑃𝑐𝑑𝑘𝑙
aT𝜏𝑚
Δ𝑡

(1 − 𝑒
−

Δ𝑡
𝑎𝑇⋅𝜏𝑚)

𝑀

𝑚=1

] Δ𝜀𝑘𝑙 

(92) 

𝜎𝑖𝑗
∗ = ∑ (𝑒

−
Δ𝑡

𝑎𝑇⋅𝜏𝑚 − 1)𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑,𝑚
𝑉 𝑃𝑐𝑑𝑘𝑙𝐼𝑘𝑙,𝑚

(𝑛)∗(𝜉𝑛)

𝑀

𝑚=1

 (93) 

Δ𝜎𝑖𝑗 = 𝜎𝑖𝑗
∗ + [𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑

𝑒 𝑃𝑐𝑑𝑘𝑙 + ∑ 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑,𝑚
𝑉 𝑃𝑐𝑑𝑘𝑙

aT𝜏𝑚
Δ𝑡

(1 − 𝑒
−

Δ𝑡
𝑎𝑇⋅𝜏𝑚)

𝑀

𝑚=1

] Δ𝜀𝑘𝑙 (94) 

𝑪𝑇 =
∂Δ𝜎𝑖𝑗

∂Δ𝜀𝑘𝑙
= 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑

𝑒 𝑃𝑐𝑑𝑘𝑙 + ∑ 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑,𝑚
𝑉 𝑃𝑐𝑑𝑘𝑙

aT𝜏𝑚
Δ𝑡

(1 − 𝑒
−

Δ𝑡
𝑎𝑇⋅𝜏𝑚)

𝑀

𝑚=1

 (95) 
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written stresses, Eq. (98), facilitate demonstrating the damage contributing component to 

the Jacobian matrix. The additional damage contributing Jacobian component is defined as shown 

in Eq. (99). 

 

 

 

 

 

 

 

  

𝐶̃𝑖𝑗𝑘𝑙
𝑒 = 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑

𝑒 𝑃𝑐𝑑𝑘𝑙 (96) 

𝐶̃𝑖𝑗𝑘𝑙,𝑚
𝑉 = 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑,𝑚

𝑉 𝑃𝑐𝑑𝑘𝑙  (97) 

𝜎𝑖𝑗 = 𝐶̃𝑖𝑗𝑘𝑙
𝑒 𝜀𝑘𝑙 + ∑ 𝐶̃𝑖𝑗𝑘𝑙

𝑉 𝐼𝑘𝑙,𝑚
∗ (𝜉)

𝑀

𝑚=1

 (98) 

𝜕𝑪𝑇: 𝜺

𝜕𝑫
=
∂𝜎𝑟𝑠
𝜕𝐷𝑐𝑑

=
∂𝐶̃𝑟𝑠𝑝𝑞

𝑒 𝜀𝑝𝑞

𝜕𝐷𝑐𝑑
+ ∑

∂𝐶̃𝑟𝑠𝑝𝑞,𝑚
𝑉 𝐼𝑝𝑞,𝑚

∗ (𝜉)

𝜕𝐷𝑐𝑑

𝑀

𝑚=1

 (99) 
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 EXPERIMENTAL INVESTIGATION OF SHORT FIBER COMPOSITE 

PRODUCED VIA EDAM 

4.1 Introduction 

A 25% wt. short carbon fiber reinforced PESU processed via extrusion deposition additive 

manufacturing has been characterized for uniaxial tension and compression, and in-plane shear 

mechanical properties at room and elevated temperatures of 70°C, 130°C, and 190°C. Mechanical 

performance is examined by observing the effective stress versus the field-averaged Lagrange or 

engineering strain procured using the digital image correlation method. The mechanical tests were 

performed under displacement control, while monitoring the strain distribution. Based on the 

analyses, this material exhibited highly anisotropic behavior with the highest stiffness and strength 

along the print direction for both tension and compression. Compressive strengths were observed 

to be greater than tensile strengths at room and elevated temperatures. Degradation in strength with 

temperature is observed for all deformation modes, and tensile and compressive stiffness is found 

to generally decrease with temperature. Shear stiffness along the 1-2 plane is found to decrease 

with temperature; however, this trend is not observed for 2-3 and 1-3 in-plane shear stiffnesses. 

Averaged ultimate strains generally decrease with temperatures for tensile and compression loaded 

specimens along the 2 and 3 printing directions as well as average ultimate shear strains in the 2-

3 and 1-3 plane. The behavior is not observed for samples loaded along the print direction in either 

tension, compression, or shear loaded specimens in the 1-2 plane. 

 Several authors have studied and reported mechanical properties of materials produced via 

FDM [4], [45], [188], [180]–[187], the types of mechanical properties reported are tensile stiffness, 

strength and failure strain, flexural stiffness, strength and failure strain, toughness, fatigue, 

torsional stiffness, yield strength, ductility, and interlaminar shear strength. Mechanical 

performance under tension and flexure for 3D printed short fiber composites are observed to be 

stiffer and stronger than their pure polymer counterparts; additionally, it is acknowledged that 

mechanical performance also depends on processing parameters and processing conditions [189]. 

In a review paper, Brenken [190] summarized a list of tensile strength and stiffness properties of 

FDM composite materials. It is noteworthy to mention that FDM or EDAM short fiber composite 

materials are not necessarily similar to those of compression molded or injection molded materials 
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since their microstructures contain different characteristics (e.g., differences in fiber orientation) 

[45], [187]. Therefore, injection or compression molded available data may not reflect the nature 

of EDAM or FDM materials. Fiber reinforced ABS, PPS, PEI, and PLA are the materials found in 

the literature; however, fiber reinforced PESU has not been reported. Relative to other 

thermoplastics, PESU has a greater glass transition temperature and this allows for temperature 

applications of at most 215°C without excessive deformation. Furthermore, performance of 3D 

printed short fiber composites at elevated temperatures are seldom reported which has proven a 

challenge to designers when attempting to model damage or failure of a large-scale printed 

structure. Talagani et al. [191] developed a 3D finite element analysis of a printed car chassis made 

from short fiber composite material to predict potential damaged regions as a result of significant 

residual stress build-up. The required thermo-mechanical input material properties were estimated 

using limited test data and micromechanical methods. Inter-bead shear stresses develop when 

incremental deposition of molten material onto cooler material occurs, which is a natural process 

in EDAM. Inter-bead shear stresses are influenced by long layer times as this allows for greater 

temperature gradients to exists between beads. Compton et al. [23] observed that long layer times 

resulted in significant warpage, substrate de-bonding, and inter-bead delamination in a 3D printed 

wall.  

 The scope of this study is to investigate mechanical performance data for 25% weight 

fraction of carbon fiber reinforced PESU to facilitate both an understanding of 3D printed material 

behavior and facilitate damage modeling efforts. The aim is to characterize stress versus strain 

behavior under tension, compression and shear at room and elevated temperature conditions while 

keeping processing variables constant within each set. The experimental work section contains 

details about the material identifier and form, EDAM process conditions, post-processing 

conditions, specimen preparation, standards used for specimen geometry, testing, and equipment 

used. The results and discussion provide the stress versus strain plots for temperatures under 

tension, compression and shear, and statistical information about the mechanical properties. 

Fracture surfaces of tensile coupons subjected to 25°C and 190°C are investigated for observable 

differences and similarities. 
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4.2 Mechanical Specimen Preparation 

4.2.1 Experimental Design, EDAM Processing and Post-Processing Methodology 

A standard set of geometries, shown in Figure 20, were designed for extracting specimens to 

characterize the material properties of the printed material, also these designs were chosen in an 

attempt to minimize time and cost of preparing specimens given the capabilities of the CAMRI 

system and available resources at CMSC. Panel A is a vertical printed wall that consists of three 

beads along the 2 direction, tension and compression specimens along the 1 and 3 directions can 

be extracted, also, shear specimens along the 1-3 or 3-1 direction. Block A consist of a simple cube 

with unidirectional infill, the block is designed to be sliced in order to extract shear coupons along 

the 2-3 or 3-2 direction. Panel B is a flat panel with the height dimension, 𝐻, much smaller than 

the in-plane dimensions, 𝐿 or 𝑊, Panel B option 2, namely, Panel_B2_1 and Panel_B2_2 are 

smaller versions of Panel B. Tension and compression specimens along the 2 direction can be 

extracted from these panels as well as shear coupons along the 1-2 or 2-1 direction. Panel B option 

2 is recommended if the larger panel significantly warps during or post-print, the subsequent 

machining steps require sufficiently flat panels. For the experimental campaign, 8 panel A, 21 

panel B option 2 and one block A were printed. The dimensions of the geometries are provided in 

Table 2. 

 

 

 

Figure 20 EDAM geometries used for extracting characterization specimens 
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Table 2 Dimensions of 3D printed geometries 

Panel Type 1 direction (X), L 2 direction (Y), W 3 direction (Z), H 

Panel A 320mm 18.45mm/3beads 321mm 

Panel B 320mm 319.80mm 9mm 

Panel B2-1 185.80mm  202.95mm 9mm 

Panel B2-2 120mm 202.95mm 9mm 

Block A 200mm 105mm 40mm 

 

 

Simplify3D® was chosen as the slicing software for the geometries shown above. Figure 

21a illustrates the infill structure for panel A, panel B and block A, although panel B option 2 is 

not shown, its print path follows that of panel B shown. The blue layers represent the outline and 

it is necessary to specify it as the designed dimensions will be smaller than specified otherwise. 

The purple layer is a print outline that surrounds the printed geometry, it does not come into contact 

with the part. A skirt layer is recommended to achieve a smooth print bead before the actual print 

of the geometry. An interesting observation are the transition regions, these are 90° turns which 

are clearly seen in panel B and block A. When extracting specimens from these printed geometries, 

care should be taken to avoid machining specimens too close to the transition region and a 

dimensional margin relative to the edges of the geometry should be considered. Another 

noteworthy observation is the commencement location at each new layer height for geometries of 

panel B type, this parameter is a fabrication choice made in the slicer software when selecting pre-

specified or optimized start locations. Figure 21b illustrates this choice for panel B, the left hand 

side of the figure begins each new layer at the same location regardless of its previous spatial 

position whereas the right image shows the start location of a new layer at a different position 

relative to the commencement point at the current layer height. For geometries similar to panel B, 

it is wise to choose the same start point for each new layer height in order to reduce the likelihood 

of imposing a severe thermal gradient on the part. Moreover, a heated bed or print table is 

recommended for relatively large flat panels with the temperature preferably close to the glass 

transition temperature if possible and the layer time should be as quick as possible without 

inducing sagging effects. Overall, printing large flat panels is a challenge for certain materials such 

as reinforced polyphenylene sulfide (PPS) or PESU; however, certain materials like fiber 

reinforced polysulfone (PSU) may fare well when all of these considerations are accounted for.  
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(a) 

 

(b) 

Figure 21 (a) Sliced geometries for characterization of material properties, (b) starting point 

specification for subsequent layer 

 

The material feedstock used for this study is the 25% wt. carbon fiber reinforced PESU, 

this material is available in compounded pellet form as shown in Figure 22 and manufactured by 

Techmer PM. The feedstock identifier is Electrafil® PESU 1810 3DP. According to the 

1
2

3

1

2
3

1

2
3

Panel A Panel B

Block A

Start point for all layers Start point for current layer

Start point for next layer

Specified starting point Optimized starting point
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manufacturer’s datasheet [192], the material is a specially formulated and compounded 

thermoplastic material designed for additive manufacturing of tooling for use in composite 

fabrication by autoclave curing; moreover, it can withstand cyclic temperatures in excess of 350°F 

(176.7°C). The compounded composite pellets are suggested to be dried in a desiccant dyer for up 

to four hours at 280°F (138°C) to obtain a recommended moisture content of 0.04% for printing. 

For this work, the composite feedstock were dried at 125°C for 4 hours before processing in the 

CAMRI system. 

 

 

Figure 22 Compounded short carbon fiber reinforced thermoplastic feedstock for 3D printing 

 

The EDAM processing conditions are specified in Simplify3D, it is encoded into a .gcode 

file then uploaded to the KMotionCNC program for execution. LabView alongside an external 

control panel are used for controlling temperature and other functions of the system (e.g., tamper). 

There are six temperature zones in the CAMRI system, the zones are illustrated in Figure 23 and 

they were set to 327°C, 343°C, 366°C, 365°C, 365°C, and 370°C, for zones 1 through 6, 

respectively. The temperature of the print bed was set to 120°C for panel A geometries, and 220°C 

for panel B and block A geometries. The print speed for panel A geometries was set to 

3500mm/min, and 4000mm/min for panel B and block A geometries. A fan is turned on during 

the print session of panel A to prevent sagging, this fan is attached onto the CAMRI frame. 

However, a fan was not used for the other geometries. For all prints, a 4mm convergent zone nozzle 

diameter was used. The target bead width and height were 6.15mm and 1.5mm, respectively. 

1mm
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Lastly, an actively cooled mechanical tamper was used to compact the extrudate at a speed of 1500 

rpm.  

 

 

Figure 23 CAMRI extruder schematic with highlighted temperature zones 

 

After the printing session, the geometries were thermally annealed for two hours at 190°C, 

this annealing process allows further polymer diffusion through the interface and alleviates some 

of the processing-induced residual stresses. A Grizzly helical cutterhead planer, model G1021x2 

15 in. 3 HP, was used to machine away the two outer beads for panel A and the first two printed 

beads for panel B geometries, as depicted in Figure 24. For carbon fiber reinforced PESU, small 

increments of the surfaces were symmetrically machined away at a time; for example, the planer 

wheel handle moves the table height by 2mm for every revolution and approximately 1/16th to 

1/8th of a revolution was made for each pass. One of the challenges encountered using a helical 

cutterhead planer is the fact that 3D printed vertical panels do not have a smooth flat surface and 

the ends are usually thicker than the center regions. A non-flat surface and thicker ends complicate 

the machining process since the first passes performed on a planer define the reference plane. The 

reference plane may not be parallel with the print direction and the entire operation will produce a 

panel with regions of the center bead machined away. As a result, the panel may warp, and this 

effect is shown in Figure 25 with the other end of the panel pinned to the table. While some of the 
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machined vertical panels warped, there were others that retained the center bead unmachined and 

did not warp. Despite this issue, there are benefits to using the panel such as reduced machining 

time, ease of use, and quality of machined surface. For characterization experiments that require 

critical dimensions and preservation of a single bead (i.e., assuming the geometries presented here 

are adopted), a computer numeric control (CNC) system is recommended; however, the use of a 

CNC does not guarantee the panels will not warp because of the internal stress re-equilibrium that 

inevitably occurs after material is removed. In general, machining process will induce warpage 

which can be avoided to some extent by symmetrically and incrementally machining both sides of 

a panel. To investigate the consequence of the machining outcome, tensile specimens were 

extracted from warped and non-warped panels and placed into a group. An analysis of variance 

(ANOVA) of the tensile stiffness and tensile strength were made to assess whether the hypothesis 

of sample properties is from the same population or not. Even though the sample size is relatively 

small, and the test is valid for normally distributed sets, the analysis can provide some insight into 

the samples exhibit different mean properties.  

Block A had been sectioned into 24 rectangular ~4mm slices, along the 1 direction as 

displayed in Figure 24, using an evolution metal chop saw with a steel-rated cutting wheel. Due to 

the difficulty of precisely cutting the block, some variability in thickness is expected and was found 

to range between 3.5mm and 4.5mm. The top surface of panel B (i.e., non-machined side) and 

both sides of the block A slices were minimally grinded and polished using an orbital sander with 

80-grit and 400-grit sandpaper, respectively. A more consistent cross-sectional dimension is found 

when grinding and polishing the surfaces of the 3D printed panels and block. A waterjet was used 

to cut the mechanical specimens from the panels and sliced sections of the block. To prevent the 

specimens from falling inside the waterjet, a small tab was added to the top of each specimen. For 

compression specimens that were tabbed, it is recommended to use a subsequent waterjetting step 

to remove the tabs to obtain a consistent flat surface which is a requirement for end-loaded 

compression samples. A belt sander or band saw can be used for removing the tabs from tensile 

and shear specimens since an irregular surface will not hinder experimental results. An example 

schematic for waterjetting the panels is provided in Figure 26a for reference. All mechanical 

coupons were dried in an oven for 2 hours at 115°C post-waterjet. 
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Figure 24 Machined regions of panel A, panel B and block A geometries 

 

 

Figure 25 Warped panel A geometries (panels 3, 4, 5 and 6) after machining using helical planer 

 

Tensile specimens were designed according to ASTM D638; however, different 

dimensions were used were used in an attempt to account for the printed bead’s dimension. In 

other words, the gage section dimensions were designed to be an integer multiple of a bead width 

or height. Shear coupons were designed according to ASTM D5379; however, the width-to-notch 

ratio was kept at 2.0 and the notch-to-notch distance at 9mm. Dog-bone shaped compression 

designed based on the ASTM D695, no modifications were made to the geometry. Specimen 
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dimensions are illustrated and provided in Figure 26b. For convenience, Table 3 shows the elastic 

and strength properties that can be obtained for each printed geometry. The Poisson’s ratio, 𝜈23, is 

challenging to obtain and it is estimated using micromechanical methods. 

 

 

 

Figure 26 (a) Specimen outlines on panels, (b) specimen dimensions 
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Table 3 Extracted properties from printed geometry 

Properties Panel A Panel B Block A 
𝐸1/𝑋1

𝑇/𝑋1
𝐶 X   

𝐸2/𝑋2
𝑇/𝑋2

𝐶  X  

𝐸3/𝑋3
𝑇/𝑋3

𝐶 X   

𝐺23/𝐺32/𝑆4   X 

𝐺13/𝐺31/𝑆5 X   

𝐺12/𝐺21/𝑆6  X  

𝜈23/𝜈32    

𝜈13/𝜈31 X   

𝜈12/𝜈21  X  

4.2.2 Strain Acquisition, Mechanical Testing, and Post-Processing Methodology 

The digital image correlation (DIC) technique was used for measuring the surface strain field of 

mechanical specimens, and an extensometer was installed in selected tensile experiments. To 

enable DIC measurement, the coupons were thinly coated with a Rust-Oleum high heat enamel 

white spray paint. Once dried, a random pattern of black speckle dots was imprinted onto the white 

surface. A dot size of 0.007” (0.178mm) was imprinted on compression and v-notch shear 

specimens, and a dot size of 0.013” (0.330mm) was used for tensile specimens. Cross-sectional 

dimensions were measured using a standard digital caliper for tension and compression specimens, 

and a micrometer for v-notch specimens. A servo-hydraulic MTS 810 with a 5-kip (22.24KN) load 

cell was used for all mechanical tests, and the MTS 651 environmental chamber was used for 

elevated temperature experiments. Mechanical wedge grips were used for all tensile specimens. 

Shear and compression specimens required the use of a fixture, an Iosipescu fixture was employed 

for shear deformation and the modified ASTM D695 test fixture (i.e., the associated fixture 

corresponding to the Boeing BSS 7260 standard) was utilized for compression experiments. The 

mechanical experiments were conducted in uniaxial displacement-controlled mode, and the 

effective elastic and strength properties were measured by applying uniaxial tension, compression 

and shear deformations.  

Based on the glass transition temperature of the neat thermoplastic polymer, temperatures 

for mechanical tests were chosen within the glassy regime. The amorphous thermoplastic exhibits 

significant flow behavior at temperatures beyond the glass transition, it enters the rubbery phase 

and extensive creep, or relaxation behavior is observable. To determine the glass transition 

temperature of the PESU, a TA instruments dynamic mechanical analyze (DMA) Q800 was 
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utilized for performing a double cantilever beam experiment at a frequency of 1Hz. The glass 

transition temperature was deduced from the drop in storage modulus as defined in ASTM D7028, 

this was observed at 215°C.  

 

 

Figure 27 Stress relaxation along the print direction (top) and in-plane transverse direction 

(bottom) 

 

Three temperatures above 25°C were chosen at approximately 30%, 60%, and 90% of the 

glass transition temperature (i.e., 70°C, 130°C, 190°C), these temperature values are somewhat 

arbitrary though the intention was to choose temperatures high enough to reflect the conditions in 

molding applications which are typically around 350°F (177°C) or below. In this work, room 

temperature is defined at 25°C, and it is used interchangeably in the subsequent sections. The 

nonlinear response stemming from stress relaxation is undesirable and needs to be minimized so 

that damage-induced nonlinearity can be properly investigated; therefore, stress relaxation 
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experiments were conducted to assess the extent of relaxation at the prescribed temperatures. The 

TA instruments Q800 DMA with the three-point bending fixture was used for uniaxially loading 

the composite beam at a constant strain value of 0.05% to investigate the stress relaxation 

phenomena. Noteworthy to mention, the stress relaxation experiments are also used for 

characterizing the Prony series of the composite along the 1 and 2 directions. 

Figure 27 shows the normalized stress relaxation behavior near the chosen temperatures, 

two observations are evident; firstly, significant stress relaxation in a relatively short amount of 

time is observed past the glass transition temperature as expected, secondly, the chosen 

temperatures exhibit less than 5% relaxation before 300 seconds (5 minutes). Mechanical 

experiments performed on the MTS at elevated temperatures are typically done within 2 – 5 

minutes. With this in mind, it is reasonable to assume that the nonlinear behavior associated with 

relaxation is minimal for experiments under 5 minutes. Although the strain rate affects the 

mechanical performance as discussed in Chapter 2, it is assumed negligible in order to minimize 

the total number of experiments. Since minimal relaxation is desired during the mechanical 

experiments, the cross-head displacement speed should be as quick as possible; however, a quasi-

static condition must be induced so as to not induce inertial effects or dynamic motion. Room 

temperature tensile, compressive, and shear tests were performed with a crosshead displacement 

rate of 2mm/min, 1mm/min, and 2mm/min, respectively; furthermore, elevated temperature tensile, 

compressive, and shear tests were executed with a crosshead displacement rate of 1mm/min, 

1.3mm/min, and 1mm/min, respectively.  

The elevated temperature soak or dwell times for all geometries were determined through 

a finite element transient heat transfer analysis, the thermal material card is available in the 

Appendix section. The convective film coefficient of the environmental chamber is unknown and 

conservatively assumed as 50𝑊/𝑚2𝐾. Figure 29 illustrates the temperature contour for half of the 

print direction sample about the symmetric plane for 70°C and 190°C ambient temperature 

conditions. The analyses show that 5 minutes of dwell time was enough to achieve a uniform 

temperature distribution. Similarly, analyses were conducted for compression and shear coupons, 

and 5 minutes was also deemed sufficient. For all tensile coupons, a minimum dwell period of 5 

minutes was adopted though some experiments were allowed to dwell for as long as 20 minutes in 

order to determine if there were noticeable differences in mechanical performance. No substantial 

difference in mechanical performance was found within a temperature set. To expedite the 
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experimental campaign, shear specimens that belonged to the tested temperature set remained 

inside the environmental chamber throughout the experiment and each specimen experienced a 

dwell period of at least 2 minutes with the exception of the first specimen which experienced a 

dwell period of at least 5 minutes during commencement. A similar procedure was followed for 

compression experiments at the elevated temperatures. For tension experiments conducted at 

elevated temperature, the wedge grips were tightened before closing the environmental chamber 

door and increasing the temperature. Thermal stresses are expected during the temperature ramp, 

to alleviate thermally induced stresses, the servo-hydraulic MTS was executed in force-control and 

the specimen was kept at a load level at zero or near zero until the dwell period ended. For 

additional details on the test methodology, the reader is referred to the ASTM D5379 and D695.  

 

 

Figure 28 Experimental test configuration for a print direction coupon under tension within the 

environmental chamber
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Figure 29 Finite element transient heat transfer analysis for print direction specimens 

 

 

Figure 30 Experimental test configuration for Iosipescu shear test using two DIC cameras 

 

For all room temperature mechanical tests and elevated temperature shear and compression 

tests, two 5-megapixel (MP) cameras with Correlated Solutions’ VIC-SNAP software were used 

for 3D DIC. For elevated temperature tensile tests, a single 5MP camera with VIC-SNAP was used 

for 2D DIC. DIC-measured displacements were recorded to compute the surface full field Green-

Lagrangian strain distribution for all room temperature tests, elevated shear and compression tests, 

and the 190°C tension tests, the engineering surface strain field for tensile coupons at 70°C and 

130°C were computed and averaged to compare with the MTS 632.11B-20 extensometer of 1.0 in. 
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gage length. The average strain field, 𝜀𝑖̃𝑗, computed with DIC analysis was plotted against the 

effective stress, 𝜎̃𝑖𝑗 , to characterize the meso-scale homogenized material response. The entire 

gage-section was chosen as a region of interest (ROI) to compute the global strain, 𝜀𝑖𝑗(𝑥1, 𝑥2) for 

tensile and compression coupons; however, global shear strains were computed from a narrow 

ROI between the notches. Effective stress, 𝜎̃𝑖𝑗, was calculated as the measured force from the load-

cell divided by the tensile or compressive coupon’s average width and thickness (𝑤̃ × 𝑡̃) along the 

gage section or the notch width and thickness for shear specimens. The effective stiffness of a 

coupon was evaluated as the slope of 𝜎̃𝑖𝑗 versus 𝜀𝑖̃𝑗 curve within appropriate strain-ranges guided 

by the aforementioned ASTM standards. Compression and shear coupons generally have 

anomalous mechanical behavior during load introduction due to the fixture settling in place; in 

essence, this is observed as either an initial stiffening or softening effect. As a result, the strain 

ranges are chosen away from these anomalous regions. The ultimate strength of a coupon is 

reported as the maximum stress recorded or the stress corresponding to the intersection of the 

measured chord (i.e., stiffness) modulus at a 0.2% strain offset, from the true zero strain point, and 

the stress-strain data. The true zero strain point may not correspond to the measured zero strain 

due to anomalous material behavior at load-introduction, and it is defined as the intersection of the 

extended chord modulus line to the strain axis. A non-linear region is observed in all cases, and a 

non-linear onset value is computed from the stress-strain data. The non-linear onset value reported 

is computed as the 2% – 5% departure of chord linearity between the last strain value used in the 

computation of the chord modulus and the last strain data point. The ultimate strain is taken as the 

strain at rupture and the peak strain is taken as the strain corresponding to peak stress. 

4.2.3 Optical and Scanning Electron Microscopy (SEM) 

Knowledge of microstructural features is important to facilitate understanding of the meso-scale 

response. To obtain micrographs and microstructural information, small samples are extracted 

from a printed geometry. Samples used in microstructural investigations were extracted from panel 

A, three samples were considered for microscopy and one sample for fiber length distribution 

measurements. To remove the polymer from the composite, the sample is placed inside a furnace 

and exposed to a temperature of 700°C for at least two hours. During this process, the polymer 

degrades, carbonizes and essentially evaporates. Afterwards, fibers are collected using tweezers, 
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placed onto a glass slide, and dispersed using silicone oil as demonstrated in Figure 31. A matrix 

of images is captured using the Leica DMI 5000M optical microscope, the image set contains 

thousands of fibers and these images are stitched together to form a mosaic. ImagePro is utilized 

to measure the fiber lengths from end-to-end after calibrating the scale. The other samples are 

mounted and potted using epoxy, with the surface normal oriented along the three principal print 

directions. The potted sample is grinded and polished using the Struers© pads. The Leica optical 

microscope is also used for acquiring a mosaic of micrographs at 10x and 50x magnification. The 

mosaic is imported into the open source software imageJ, this software is used for obtaining the 

fiber volume fraction, void volume fraction, and void dimensions. The volume fraction of the 

constituents is measured using the particle thresholding technique, an example is illustrated in 

Figure 31. Fiber orientation requires cylindrical-shaped fibers and it was not measured because 

most fibers were observed to have a kidney-bean shape. The photographic method of measuring 

the fiber orientation based on the major and minor axes of a fitted ellipse cannot be performed on 

kidney-bead shaped fibers since this technique results in erroneous measurements [193].  

 

 

Figure 31 Fiber length dispersion illustrated for distribution measurements and depiction of 

prepared sample for micrograph observations using imageJ 

 

Post-mortem fractography can provide insights into failure mechanisms and provide visual 

clues of the fiber orientation with respect to the fractured surface. Fractographic images were 

acquired via SEM to investigate features on the fracture surfaces. Specifically, the fracture surfaces 

of tensile specimens along the 1, 2, and 3 directions at 25°C and 190°C were investigated in 

addition to compression and shear specimens, compressive and shear images are provided in the 
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appendix section for completeness. A Quanta 650 FEG SEM was used for observing and acquiring 

the images. All samples were coated with a 3nm film of Platinum. The accelerating voltage was 

set to 15KV with a fixed working distance of 10mm.  

4.3 Microstructural Observations 

4.3.1 Microstructure along 1, 2, and 3 Direction via Optical Microscopy 

Most fibers have a preferential orientation toward the print direction in material extrusion 

processes with convergent-zone nozzles. Tekinalp et al. [46] measured the fiber orientation state 

for an carbon fiber reinforced ABS processed using FDM and compression molding, the extrusion 

direction was labeled as 𝑎33. In their study, the components of the second-order orientation state 

is reported and it is evident that most fibers are oriented preferentially along the extrusion or print 

direction since the measured 𝑎33 value was in the range of 0.87 and 0.92. In micrograph images, 

fibers are seen as the lighter phase, the matrix as a darker gray, and voids as nearly opaque. When 

fibers are preferentially oriented along the print direction, the micrograph appears to have white 

speckle dots contrasted with a gray background; On the other hand, fibers not oriented along the 

print direction appear as highly elliptical white regions. Figure 34a illustrates a micrograph of a 

polished surface of a section of a panel A geometry that is relatively close to the edge. Contrasting 

bands can be observed from the micrograph image, the darker regions correspond to sections of 

the cross-section with a greater amount of fiber collimation and lighter regions with less fiber 

collimation. From this micrograph, the bounds of a bead or at least the interfaces that encapsulates 

a bead is not clearly visible; however, there are regions of elongated voids which are suspect to lie 

at the interface. Two lines distances were measured, one between the dark and light region, and 

another offset vertically by one-half of the length of the dark region. The distances are observed 

to be approximately 1.6mm, which is close to the nominal bead height of 1.5mm. From these 

observations, a bi-orientation state exists within the span of a bead height or a core-shell 

morphology as commonly found in injection-molded samples. Figure 33b illustrates a closer look 

into the microstructure, with the core-shell section zoomed in. From this micrograph, it can be 

visually seen that lighter regions contain more fibers which are less collimated with respect to the 

print direction. Further micrographic investigated is required to verify this visual morphology and 

confirm it is not a flow-induced anomaly.  
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Figure 32 Micrograph along the print direction at 10x showing distinct high and low contrast 

bands 

 

 

Figure 33 Micrographs along the print direction illustrating high contrast of misaligned fibers 
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Figure 34 In-plane transverse (2) direction micrograph 

 

 

Figure 35 Stacking direction micrograph 

4.3.2 Microstructural Measurements 

The microstructural measurements made were the fiber volume fraction, fiber length, void volume 

fraction, and fitted ellipsoidal void size. The fiber orientation is not measured due to a majority of 

the fibers having a kidney-bean shape, this is seen in the micrograph shown in Figure 36. Moreover, 

a 100𝜇𝑚 ×100𝜇𝑚 grid is superimposed onto the micrograph to measure the distribution of fiber 

volume fraction, the size of the grid is arbitrarily defined with the intention to assume a reasonable 

representative size; however, the overall average is not affected by the grid discretization. Likewise, 

a 500𝜇𝑚 ×500𝜇𝑚 grid is used for measuring the distribution of void volume fraction. The voids 

can be reasonably assumed ellipsoidal as seen on the image at the right hand side of Figure 36, 
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ellipsoidal shaped voids have been observed within the bead and infrequently at the interface. 

Based on the displayed micrograph, the following observations are noticed: (i) the spatial 

configuration of the fibers are stochastic, (ii) voids are relatively large compared to the fiber-end 

size, (ii) a 100𝜇𝑚 ×100𝜇𝑚 grid discretization can have a majority of fibers oriented along the 

print direction or misaligned.  

The distribution plots are presented in Figure 37 below, most plots include the average and 

coefficient of variance values. The fiber length and void volume fraction distribution plots exhibit 

a skew distribution whereas the fiber volume fraction appears normally distributed. The fiber 

volume fraction distribution suggests that there are regions with high fiber clustering relative to 

other low-packed regions. Void distribution plot suggests a majority of the grid regions have a 

relatively low void presence; although, the mean void fraction stands at approximately 5%. It is 

should be noted that the volume fraction distributions are subject to the grid discretization and it 

will change if the grid size is altered. A total of 1000 fibers were measured; this distribution 

contains fibers between 18.5𝜇𝑚 and 421𝜇𝑚. While the arithmetic average is observed to be 90𝜇𝑚, 

the fiber length weighted average, defined as 𝐹𝐿𝑤 = Σ(𝑛 ⋅ 𝑙2)/Σ(𝑛 ⋅ 𝑙), is computed as 119𝜇𝑚. In 

the weighted average formula, 𝑛 is the count of fibers associated with length 𝑙. 

 

 

Figure 36 Print direction microstructure at 50x magnification 
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Figure 37 (a) Fiber length distribution, (b) fiber volume fraction distribution based on 

100𝜇𝑚 ×100𝜇𝑚 grid, (c) void volume fraction distributions based on 500𝜇𝑚 ×500𝜇𝑚 grid, and 

(d) fitted ellipsoidal dimensions of voids 

4.4 Tensile Performance of 25% Wt. Carbon Fiber Reinforced PESU 

The DIC-computed surface strain field, stress versus strain plots for different temperatures, and 

bar plots illustrating the distribution of tensile mechanical properties with temperatures are 

provided in the sub-sections below. The effective tensile modulus and strength are observed to 

decrease with an increase in temperature along all directions. Specifically, the tensile modulus 

ratio between room temperature and 190°C for the 1, 2 and 3 directions are 1.35, 1.21, and 1.25, 

respectively; by the same token, the strengths are 2.03, 2.48, and 2.69, respectively. The average 

tensile modulus at room temperature along the 1 direction is observed to be 3.4x and 4.5x greater 

than the average tensile modulus along the 2 direction and 3 direction, respectively. Moreover, the 

tensile strength at room temperature along the 1 direction is 3.2x and 3.0x greater than the 2 

direction and 3 direction, respectively.  

 The tensile properties along the print directions are evidently greater than the tensile 

properties along the 2 or 3 directions, this observation bolters the argument of significant fiber 

(a) (b)

(d)(c)
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collimation along the print direction. The room temperature tensile modulus along the 2 direction 

has been observed to be 1.3x greater than the room temperature modulus along the 3 direction; 

however, the strengths are observed similar. Based on the micrographs, the stacking direction has 

been observed with an insignificant amount of fiber collimation whereas some evidence of fiber 

collimation along the 2 direction is apparent. Therefore, the stiffness is expected to be greater and 

the strength is unlikely influenced. Stress concentrations arising from the presence of voids are 

hypothesized to adversely affect the strength properties, it produces intense localized stress regions 

by which micro-cracks initiate and evolve at low effective stress levels.  

The nonlinear onset in stress versus strain plots denotes the point at which yielding occurs, 

the tangent stiffness begins to decrease beyond this point. A decrease in tangent stiffness 

accompanies a reduction in secant modulus, initiation and evolution of micro-crack increases the 

compliance and can be reasonably assumed to be directly responsible for the nonlinear behavior 

in brittle composites. Since temperature directly affects the polymer, it is expected to influence the 

nonlinear onset. For coupons loaded along the 1 direction, the nonlinear onset value does not 

follow a recognizable trend; however, a decreasing trend is noticeable for coupons loaded in either 

the 2 or 3 directions. Similarly, temperature is expected to impact the peak and rupture strains. 

While a pattern in peak and rupture strains was absent in tensile loaded specimens along the 1 

direction, a discernable decreasing trend can be observed in the transverse directions with an 

increase in temperature.  

4.4.1 Performance along 1 (Print) Direction 

The surface strain-field distributions for tensile loaded specimens along the 1 direction at room 

temperature and 190°C are shown in Figure 38a and Figure 38b; in addition, the post-mortem 

images are also displayed. The strain distributions shown were taken at approximately the 0.2% 

average strain point. Strain-field images for tensile loaded specimens at different mean strain levels 

and temperatures are provided in the appendix. From the strain-field images, the magnitude of 

strain appears to change across the width. The reason for this varying strain contour across the 

width of the sample is due to load eccentricity, a bending moment is induced as a result of the load 

eccentricity. Although a bending moment is undesirable for uniaxial tensile tests, the severity of 

the bending moment can be estimated based on the difference in strains at equidistant points along 

the width [194]. The percent bending about the 2 direction can be computed using the following 
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formula, 𝐵2 = (2/3)(𝜀2 − 𝜀2)/𝜀𝑎𝑣𝑔 × 100 . The percentage of bending was found to be 

approximately 6% at the 0.2% strain level, however, a percentage of 25% can be obtained if the 

extreme strain values are used though bending percentage based on extreme values may not be 

accurate because of the inherent non-uniformity of the strain-field. The modulus of elasticity is not 

expected to be affected by the small amount of bending; however, the strength may be sensitive to 

the load eccentricity. Therefore, the true mean strength values are suspected to be slightly greater 

than the average strength values measured. The surface strain field at the elevated temperature are 

seen to have regions of high compliance and overall non-uniformity. The micrograph shown in 

Figure 34 illustrates irregular-shaped and elongated voids along the stacking direction interface, 

these are suspected to produce compliance along the print direction. Furthermore, consideration 

should also be given to the distribution of microstructural properties along the print direction; for 

example, local fiber volume fraction with fibers exhibiting greater collimation relative to the bulk 

fiber orientation state may also contribute to the observed non-uniformity in strain.  

To assess whether the mean values of strength or stiffness are different between specimens 

extracted from warped and non-warped panels, an analysis of variance was conducted. The 

distribution between room temperature tensile coupons extracted from warped and non-warped 

panels is shown in Figure 39. The computed p-value for the strength distribution case was 0.0805, 

and 0.0308 for the stiffness case. Assuming the usual 5% confidence threshold, the null hypothesis 

is rejected for the mean stiffness and accepted for the mean strength; in other words, no difference 

is found in strength values and a difference in stiffness between both panels is suspected. However, 

the mean stiffness is similar in magnitude with a difference of 2.3%.  

The failure modes for all coupons at room temperature were lateral and occurred at the start 

of the gage region, these are shown in Figure 40. A closer inspection of the fracture surface reveals 

the topographic roughness which is unlike the coupons tested along the 2 or 3 directions. Coupons 

tested at elevated temperatures were observed to fail within the gage section or at the start of the 

gage section with the overall fracture occurring laterally and a similar fracture topography to the 

room temperature case, the images are available in the appendix. Figure 41 illustrates the stress 

versus strain plots for all temperature data sets. The raw data set contains erroneous data points as 

a result of the noise inherent with high frequency acquisitions, the noisy data is mitigated using a 

MATLAB local regression smoothing function, called smooth. The observed undulations within 

the non-linear portion of the stress-strain plot are due to smoothing of stress-strain extreme data 
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kinks (e.g., reduction in stress and strain value as damage evolves). The stress-strain behavior has 

an initial linear portion followed by non-linear behavior, and the observed non-linear portion is 

pronounced at elevated temperatures. Within the glassy state of the polymer, the non-linear 

mechanical behavior observed is believed to be a dominated by competing damage mechanisms 

such as matrix cracking, fiber pull-out, and interfacial de-bonding. The distribution in tensile 

stiffness and strength properties for the different temperature sets are shown in Figure 42. Both 

strength and stiffness distributions at 190 °C exhibit greater variability relative to the room 

temperature distribution. The increase in variability is suspected to arise from both a reduction in 

matrix shear transfer efficiency since the properties of the polymer degrade with an increase in 

temperature. Furthermore, the presence of voids are attributes that engender severe stress 

concentrations are perhaps exacerbated at elevated temperatures.  

 

 

Figure 38 DIC-generated Lagrangian surface strain field at the 0.2% field-averaged value along 

the print direction (left) and post-mortem coupon (right) at (a) room temperature, and (b) 190°C 
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Figure 39 Room temperature (a) strength distribution, and (b) stiffness distribution of specimens 

extracted from non-warped (PA011DT) and warped (PA031DT) panels 

 

 

Figure 40 Fracture mode of tensile loaded coupon along the 1 direction at room temperature 

  

(a) (b)
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Figure 41 Effective stress versus field-averaged strain for tensile loaded specimens along the 

print direction at (a) room temperature (b) 70°C (c) 130°C (d) 190°C 

 

 

Figure 42 Distribution plot of effective tensile stiffness and effective tensile strength with 

temperature along the print direction 
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4.4.2 Performance along 2 (In-Plane Transverse) Direction & 3 (Stacking) Direction 

The surface strain-field distributions for tensile loaded specimens along the 2 direction at room 

temperature and 190°C are shown in Figure 43a and Figure 43b, respectively, these distributions 

are snap-shots taken at approximately 0.2% average strain. The strain field distribution for these 

tensile loaded specimens at different average strain levels and temperatures are available in the 

appendix section. From these plots, a non-uniform strain distribution is observed, with a linearly-

spaced contour range from 0.170% to 0.262% at room temperature and 0.127% to 0.270% at 190°C. 

In other words, certain regions on the surface of the tensile specimen are more compliant than 

others. From a micromechanical perspective, stiffness is influenced by fiber collimation, fiber 

volume fraction, strong fiber/matrix interface adhesion, and low void content. From a meso-scale 

point of view, bead-to-bead interfaces along the 2 direction are spaced approximately 6.15mm 

apart (i.e., the equivalent of a bead width), interfaces can be argued as exhibiting greater 

compliance than the regions within the bead itself since mechanical properties at the interface rely 

on polymer diffusion. The room temperature strain field plot does indeed contain compliant zones, 

the distance between two arbitrarily chosen compliant regions is approximately 6.15mm, although 

this coincidence does not necessarily imply with indubitable confidence that the interfaces lie in 

the compliant regions and a meticulous inspection is needed. At elevated temperatures, these 

compliant zones are still visible though a distinct spatial interval is not seen. The failure mode for 

these samples were all lateral, with the fracture plane located either in the gage section or within 

the width transition zone as shown in Figure 44. Evidently, the macroscopic crack is orthogonal to 

the loading direction and it is reasonable to assume the micro-cracks were oriented in a similar 

fashion. A closer look at the fracture surface of a sample is shown, four distinct dark narrow 

regions across the width is visible and these regions are the stacking direction interfaces. Despite 

the overall lateral fracture, the fracture surface appears to have local changes in depth. Upon visual 

inspection, the fracture surface appears to be located at the interface though some regions appear 

to transition into the bead. The stress versus strain plots are shown in Figure 45, from these plots 

the average rupture strains were observe to decrease with an increase in temperature; specifically, 

at 25°C, 70°C, 130°C, 190°C , these strains were 0.92%, 0.78%, 0.70%, and 0.52%, respectively. 

The distribution of tensile stiffness and strength is shown in  Figure 46, it is clear that the mean 

values decrease with an increase in temperature.  
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Figure 43 DIC-generated Lagrangian surface strain field at the 0.2% field-averaged value along 

the 2 direction (left) and post-mortem coupon (right) at (a) room temperature, and (b) 190°C 

 

 

Figure 44 Fracture modes of tensile loaded specimens along the 2 direction at room temperature 
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Figure 45 Effective stress versus field-averaged strain for tensile loaded specimens along the 2 

direction at (a) room temperature (b) 70°C (c) 130°C (d) 190°C 

 

 

Figure 46 Distribution plot of effective tensile stiffness and effective tensile strength with 

temperature along the 2 direction 
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The surface strain-field distribution for tensile loaded specimens along the 3 direction at 

room temperature is shown in Figure 47. The distribution is taken at an effective strain level of 

0.2% which lies within the linear elastic regime, and an effective strain level of 1.5% 

corresponding to the peak stress point at the moment before catastrophic failure. Within the linear 

elastic regime, the strain field is observed to vary between 0.178% and 0.230%. Bearing in mind 

the observations of Figure 34 and Figure 35, a low fiber collimation and interfacial voids render 

the strain state nonuniform albeit relatively mild relative to the 1 and 2 tensile specimens. At the 

mean strain level of 0.2%, a 15% strain concentration, computed as the percentage ratio between 

the largest strain value over the mean value, is observed in some regions. An interesting and 

noteworthy observation is the distinct strain concentration the moment before fracture, this 

concentration is a result of the macro-crack initiation which is seen as a narrow dark band splitting 

the speckle dots apart. In this concentrated region, a similar concentration factor, 15%, is observed. 

The crack does not rotate and a lateral fracture proceeds, this is observed for all samples shown in 

Figure 48. Unlike the fracture surfaces seen for specimens along the 1 and 2 directions, the fracture 

surface along the 3 direction is relatively flat.  

The stress versus strain behavior along the 3 direction at various temperatures is shown in 

Figure 49. The behavior at all temperatures is brittle, with little extensive nonlinear behavior or 

plasticity. Similar to the behavior along the 2 direction, the strain at rupture decreases with an 

increase in temperature. Specifically, an average rupture strain of 1.3%, 0.94%, 0.73%, and 0.6% 

were observed at temperatures of 25°C, 70°C, 130°C, 190°, respectively. The distribution plots of 

stiffness and strength properties at different temperatures are provided in Figure 50. As expected, 

the modulus and strength properties decay with an increase in temperature. The variability in 

strengths at elevated temperatures, 130°C and 190°C are lower than the strengths observed at the 

lower temperatures. The consistency in strength values are also observed for loaded specimens 

along the 2 direction but not for specimens loaded along the 1 direction. One of the main 

differences between the print direction specimens and that of the transverse directions is the fiber 

collimation, it is reasonable to assume the matrix and fiber/matrix dominates the micro-damage 

modes for specimens loaded either along the 2 or 3 directions. At elevated temperatures, it is 

suspected than any load bearing capabilities the fiber/matrix interface had is substantially reduced 

and matrix micro-cracking is dominating the damage mode. Moreover, since nonlinear strain onset 

occurs at lower strain levels for higher temperatures, micro-damage to initiates and evolves sooner.
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Figure 47 the DIC-generated Lagrangian surface strain field at the 0.2% field-averaged value 

along the stacking direction, the post-mortem coupon, and the strain concentration at the 

interface between stacked beads right before catastrophic failure at room temperature 

 

 

Figure 48 Fracture modes for tensile loaded coupons along the 3 direction at room temperature 
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Figure 49 Effective stress versus field-averaged strain for tensile loaded specimens along the 

stacking direction at (a) room temperature (b) 70°C (c) 130°C (d) 190°C 

 

 

Figure 50 Distribution plot of effective tensile stiffness and effective tensile strength with 

temperature along the stacking direction 
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4.5 Compression Performance of 25% Wt. Carbon Fiber Reinforced PESU 

The following sub-sections contain effective stress versus averaged strain plots, and bar plots 

depicting the distribution of compressive properties with temperatures. A diagonal/angled fracture 

path was observed for all 1 direction compression coupons. A single specimen at 190°C along the 

1 direction was tested and its effective stress versus averaged mean strain is shown for reference, 

though no conclusion is made. Buckling with shear band formation was observed for coupons 

loaded in the 2 direction for all temperatures. Along the 3 direction loaded samples, buckling or a 

slight bulge at the gage section occurred after extensive deformation; however, some samples did 

not exhibit buckling failure or any discernable failure. Moreover, the non-softening response of 

the 3 direction loaded specimens made it difficult to unequivocally extract the compressive 

strength. As a result, two ultimate strengths are reported which are based on the peak stress value 

and the 0.2% offset strength commonly used for shear tests (e.g., ASTM D3518). While the peak 

strength is reported for reference, the 0.2% offset value is taken as the representative compressive 

strength along the 3 direction. However, the 0.2% offset strengths reported for the 1 and 2 

directions are discretionary and the representative strengths for both of these directions are taken 

as the peak strength found in the effective stress versus averaged strain data. The compressive 

modulus along the 1 direction at room temperature is found to be similar to the tensile modulus at 

room temperature; however, the average compressive modulus at 130°C is observed lower than 

the tensile modulus at 130°C. Similar to tension behavior, the effective compressive stiffness along 

the 1 direction is greater than the 2 or 3 directions; specifically, the 1 direction modulus is 3.1x 

and 3.5x greater than the 2 and 3 direction modulus, respectively. The compression modulus along 

the 2 direction is found to be 1.2x greater than the 3 direction compressive modulus. Similarly, the 

1 direction compressive strength is 1.2x and 2.6x (0.94x assuming ultimate 3 direction strength) 

greater than the 2 and 3 direction compressive strength, respectively, this assumes the strength at 

0.2% offset for 3 direction specimens. Moreover, the 2 direction compressive strength is 1.8x 

greater (or 0.77x) than the 3 direction compressive strength. In comparison, the average 

compressive strengths along the 1, 2, and 3 directions at room temperature are 1.5x, 3.9x, and 1.8x 

(or 4.9x) greater than the 1, 2, and 3 direction average tensile strengths at room temperature, 

respectively. It has been observed that elevated temperature compressive strengths were higher 

than that of tensile strengths. Despite differences in processing methods, a similar trend is found 
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for short fiber composites knows as sheet molded compounds (SMC) [195], [196]. The average 

room temperature compressive strength along the 2, and 3 directions are 2.0x and 1.6x greater than 

their respective average 190°C strengths. Additionally, the 1 direction room temperature strength 

is 1.5x greater than its average 130°C strength. Based on these observations, a unilateral behavior 

is evident amongst all three directions; namely, the stress versus strain behavior in tension is 

different than in compression. The compressive non-linear onset strain values are on average larger 

than the tensile non-linear onset values for all three directions. The delayed nonlinear response is 

believed to be cause from a different microscopic damage mode since the macroscopic fracture 

modes are not identical. In a report by Hour [195], damage volumetric strains in short fiber 

composite SMC materials under compression is observed to initiate at a greater stress level relative 

to damage induced under tension. The nonlinear onset strain values between uniaxial tension and 

compression behavior may suggest damage initiation may be different or perhaps delayed.  

4.5.1 Performance along 1 (Print) Direction & 2 (In-Plane Transverse) Direction 

The stress versus strain plots for the uniaxial compression tests along the print direction are shown 

in Figure 51 below. The plots illustrate the nonlinear trend at room temperature, 130°C, and 190°C. 

Five specimens were tested at room temperature and 130°C, and a single specimen was tested at 

190°C which is shown for reference. Since the modified Boeing fixture was utilized for the 

compression experiments, an initial stiffening zone at load introduction is apparent as clearly seen 

in Figure 51c. The initial stiffness is caused by the fixture settling in place during the 

commencement of load introduction. Evidently, the strain range used for extracting the modulus 

should not contain such material behavior as it will produce an erroneous modulus measurement. 

Therefore, the compressive modulus were extracted within the linear portion of the stress-strain 

curve at strain and regions beyond initial anomalous stiffening behavior. Similar to tension 

behavior, compression behavior exhibits linear and non-linear regions. Non-linearity is also 

pronounced at higher temperatures with the rupture strain more than double the tensile case. The 

strain field and fracture image taken from the DIC camera is shown in Figure 52. The fixture has 

an opening at the gage section which allows lateral movement as the load progressive on the right-

hand side; however, the left-hand side of the fixture thwarts lateral movement. The low strain value 

seen on the lower left of the strain field map is believed to be caused by the fixture-induced 

displacement restriction. Although not shown, the supporting walls contain grooves which allows 
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for little Poisson expansion. Fracture has been observed to occur within the gage section or at least 

very close to the gage section.  

 

 

Figure 51 Effective stress versus field-averaged strain for compression loaded specimens along 

the print direction at (a) room temperature (b) 130°C (c) 190°C 

 

The distribution of stiffness and strength properties along the print direction are provided 

in Figure 53. Compared to the tensile stiffness coefficient of variance, 1.7%, the variability of the 

stiffness measured in compression is 7x greater. Since the compression specimens have a smaller 

width than the tensile coupons, the differences in bulk microstructures between compression 

samples may be more significant than bulk microstructural variations in tensile specimens. 

Furthermore, errors from DIC-computed strain fields can also result in stiffness variability to some 

extent. Projection errors are expected to increase slightly due to the process of removing and 

adding specimens into the fixture; however, utmost care should be made to ensure minimal error 

and bias. Figure 54 shows the images of the fractured compression specimens for each temperature 

set, each sample exhibited a shattering fracture corresponding to a substantial load drop. A definite 

compression strength value, based on the peak or ultimate value, is deemed acceptable because of 

these experimental observations. Furthermore, it is interesting to note that the failure mode 
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consisted of an angled macro-crack with respect to the horizontal axis, fractures were located 

within or near the gage section.  

 

 

Figure 52 Strain-field map (left) of uniaxial compression specimen along the print direction at 

room temperature and post-mortem fracture image (right) 

 

 

Figure 53 Distribution plot of effective compressive stiffness and effective compressive strength 

with temperature along the print direction 
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Figure 54 Fracture modes for uniaxial compression specimens along the print direction at (a) 

room temperature, (b) 130°C, and (c) 190°C 

 

The compressive behavior along the 2 direction at 25°C, 130°C, and 190°C is shown Figure 

55 below. Similar to the print direction response, the stress versus strain trend shows linear and 

nonlinear regions. In contrast to the tensile behavior, extensive deformation is observed for all 

temperatures. Under compression, a decrease in rupture strain is not observed, instead it appears 

to increase with temperature. Figure 56 illustrates the strain-field map for a compression loaded 

specimen along the 2 direction at room temperature, and its post-mortem failure image. Although 

buckling has been observed for most specimens, the nonlinear behavior is not entirely attributed 

to buckling as shown in Figure 57. A fairly uniform strain field is observed, though the corners 

appear to deviate from the 0.2% average strain value. The fracture image depicts two failure modes, 

the first is buckling failure and the second is the emergence of cracks which appear parallel to the 

specimen’s longitudinal axis. Buckling was observed first followed by the cracks; therefore, the 

load-drop seen on the stress versus strain plots are believed to be associated with buckling. The 

compressive strength reported consist of two values, one based on the ultimate load which should 

be discretionally used and the second based on the 0.2% chord modulus offset method. Figure 58 

shows the distribution of the stiffness and strength properties for each tested temperature set. The 

variability in stiffness is observed greater relative to tension modulus, this is also believed to be 

related to the sample dimensions and microstructural variability discussed earlier. The stiffness 

and strength properties degrade with an increase in temperature. Figure 59 illustrates the failed 

compressive coupons sets, each failed under buckling and some form of cracking which are less 

visible at the highest temperature. 
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Figure 55 Effective stress versus field-averaged strain for compression loaded specimens along 

the 2 direction at (a) 25°C (b) 130°C (c) 190°C 

 

 

Figure 56 Strain-field map (left) of uniaxial compression specimen along the 2 direction at room 

temperature and post-mortem fracture image (right) 
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Figure 57 Compressive stress versus strain behavior along 2 direction for (a) 25°C (b) 130°C (c) 

190°C 

 

 

Figure 58 Distribution plot of effective compressive stiffness and effective compressive strength 

with temperature along the 2 direction 
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Figure 59 Fracture modes for uniaxial compression specimens along the 2 direction at (a) room 

temperature, (b) 130°C, and (c) 190°C 

4.5.2 Performance along 3 (Stacking) Direction 

The effective stress versus average strain along the stacking direction with temperature is shown 

in Figure 60. Similar to the compressive behavior along the 2 direction, extensive deformation can 

be observed with strains exceeding 10%. No distinct load-drop is observed for all temperature sets, 

and significant strain hardening is visible beyond the yield point. In many instances, displacement 

end reached the limits of the fixture and no further load could be applied. Some specimens 

experienced buckling without load-drop though no further load could be applied since the 

displacement end reached the limit of the fixture as well. Figure 61 illustrates the strain-field 

distribution and the buckling failure mode. Similar to the compressive loaded specimen along the 

2 direction, buckling appears to be the likely failure mechanism for 3 direction loaded specimens 

under compression. The distribution plots are provided in Figure 61, a decrease in stiffness and 

strength is observed with an increase in temperature. It is noteworthy to mention that no well-

defined fracture was observed during the test, this usually means that the nominal compressive 

strength is ambiguous. Furthermore, buckling failure does not represent true material failure since 

the loss of stiffness is primarily due to geometric instability. Nevertheless, for measured quantities 

are reported for reference yet the reader is cautioned not to directly assume the ultimate strength 

is representative of the compressive strength. Instead, a 0.2% offset compressive strength may be 

appropriate or the strength at yield. Figure 63 illustrates the post-test compression coupons, with 

some coupons not exhibiting any discernable failure mode.  
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Figure 60 Effective stress versus field-averaged strain for compression loaded specimens along 

the stacking direction at (a) room temperature (b) 130°C (c) 190°C 

 

 

Figure 61 Strain-field map (left) of uniaxial compression specimen along the stacking direction 

at room temperature and post-mortem fracture image (right) 
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Figure 62 Distribution plot of effective compressive stiffness and effective compressive strength 

with temperature along the stacking direction 

 

 

Figure 63 Fracture modes for uniaxial compression specimens along the stacking direction at (a) 

room temperature, (b) 130°C, and (c) 190°C 

4.6 Shear Performance of 25% Wt. Carbon Fiber Reinforced PESU 

The sub-sections below contain the effective shear stress versus engineering shear strain plots with 

temperature, the distribution of shear mechanical properties, and DIC-generated strain field and 

post-mortem images. The tested directions were along the 2-3, 1-3, and 1-2 planes. The naming 
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conventions and material orientations follow that of the ASTM D5379 standard. For example, v-

notch specimens loaded in the 2-3 and 1-3 planes have the stacking direction along the width of 

the notch. For the 1-2 plane, the 2 direction is oriented along the width of the notch. The effective 

room temperature shear modulus along the 1-2 plane, 𝐺̃12, is observed to be 2.5x and 2.6x greater 

than 𝐺̃13 and 𝐺̃23, respectively. However, no significant difference is observed between 𝐺̃13 and 

𝐺̃23 and this similarity may be a result of the polymer dominating the shear behavior. Likewise, 

the ultimate shear strengths for 𝑆6 (i.e., following Voigt convention) is 1.2x and 1.7x greater than 

𝑆5 and 𝑆4, respectively; by the same token, the 0.2% offset shear strength for 𝑆6 is 1.3x and 1.2x 

greater than 𝑆5 and 𝑆4, respectively. It is noteworthy to mention the 0.2% offset shear strengths of 

𝑆4 and 𝑆5 are similar; however, the peak stress value of 𝑆5 is 1.3x greater than 𝑆4. The effective 

shear stiffness along the 1-2 plane is expected to be greater because of the greater fiber collimation 

relative to the other directions. The shear modulus, 𝐺̃13  and 𝐺̃23  are seen to not significantly 

change with temperature, and room temperature 𝐺̃13 is observed to be slightly lower than the 

elevated temperature modulus. 

4.6.1 Performance along 2-3 Direction & 1-3 Direction 

Figure 64 illustrates the Lagrange strain distribution at the averaged value of approximately 

0.275%, in essence, 0.55% for engineering shear strain. From the strain contour plots, it is evident 

that the shear strains are maximum between the notches. Furthermore, the maximum shear strain 

between the notches has been observed for the other temperature cases. The small region of interest 

visible between the notches has been averaged to compute the effective engineering shear strain 

between the notches. Figure 65 shows the effective shear stress versus engineering strain for the 

various temperatures cases along the 2-3 plane. From the shear stress versus shear strain plots, a 

general decrease in nonlinear onset shear strains with temperature has been observed, similar to 

tension and compression behavior along polymer dominated directions. Figure 66 provides the 

distribution of shear properties for the different temperatures. While the stiffness is not seen to 

vary significantly with temperature, the strength is seen to decrease on average with temperature 

for both the ultimate strength and the 0.2% strength definition.  
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Figure 64 DIC-generated Lagrangian surface shear strain field at the 0.55% field-averaged 

engineering value along the 2-3 plane and the post-mortem coupon at (a) room temperature, and 

(b) 190°C 

 

 

Figure 65 Effective shear stress versus field-averaged shear engineering loaded in the 2-3 plane 

at (a) room temperature (b) 70°C (c) 130°C (d) 190°C 
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Figure 66 Distribution plot of effective shear stiffness and effective shear strengths with 

temperature along the 2-3 plane 

 

The effective shear stress-shear strain behavior along the 1-3 plane for various 

temperatures is shown in Figure 67. The average ultimate strains have been observed to increase 

with an increase in temperature; specifically, at 25°C, 70°C, 130°C, and 190°C, these strains are 

7.1%, 7.0%, 8.6%, and 18%, respectively. Relative to room temperature, extensive nonlinear 

behavior is observed for the specimen tests at 190°C. At the elevated temperature, a plateau region 

is observed, and its cause is not apparent. One possible explanation for the elongation observed is 

due to the associated polymer flow or plastic deformation. Similar to the shear specimens in the 2-

3 plane, the nonlinear onset is also observed to decrease with temperature. Figure 68 illustrates the 

distribution in shear properties along the 1-3 plane. Similar to the 2-3 plane, an increase in 

temperature is observed to impact the shear strengths and not the shear stiffness.  
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Figure 67 Effective shear stress versus field-averaged shear engineering loaded in the 1-3 plane 

at (a) room temperature (b) 70°C (c) 130°C (d) 190°C 

 

Figure 68 Distribution plot of effective shear stiffness and effective shear strengths with 

temperature along the 1-3 plane 
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4.6.2 Performance along the 1-2 Plane 

The effective shear stress with shear strain along the 1-2 direction with temperature is shown in 

Figure 69. While the average ultimate strains are observed to increase with temperature, the 

nonlinear onset values do not appear to change significantly with temperature. Similar to 

compression behavior, erroneous mechanical behavior was observed at load introduction because 

of fixture settling. Consequently, linear elastic regions were defined between strain ranges which 

were beyond the anomalous regions. The ASTM D5379 recommends a strain range that 

commences anywhere between 1500 𝜇𝜖 – 2500𝜇𝜖 and extends over a 4000 𝜇𝜖 strain range for 

modulus extraction. At higher temperatures, the starting strain points were chosen slightly greater 

recommended values, this adjustment was determined necessary to capture the true linear shear 

response of the material. Figure 71 shows the distribution of mechanical performance for the 

various temperature cases. From the distribution plots, a decrease in both stiffness and strength is 

observed.  

 

Figure 69 Effective shear stress versus field-averaged shear engineering loaded in the 1-2 plane 

at (a) room temperature (b) 70°C (c) 130°C (d) 190°C
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Figure 70 DIC-generated Lagrangian surface shear strain field at the 0.55% field-averaged 

engineering value along the 1-2 plane (left) and the post-mortem coupon (right) at room 

temperature 

 

 

Figure 71 Distribution plot of effective shear stiffness and effective shear strengths with 

temperature along the 1-2 plane 



 

 

130 

4.7 Fracture Surface Investigation via SEM 

4.7.1 Tensile Fracture Surface along 1 Direction for a Room Temperature and 190°C 

Specimen 

Microscopic observations of the tensile fracture surfaces of the short carbon fiber reinforced PESU 

are shown in Figure 72. The top row contains images of specimens tested at room temperatures, 

while the bottom row contains images from the 190°C specimens. From these micrographs, the 

mode of failure is complex and appear dependent upon the fiber orientation. Figure 72(a) and 

Figure 72(d) show fibers extending above the fractured matrix, which is a possible sign of the fiber 

pull-out damage mechanism. Along the 2 and 3 directions, fibers are not observed to be collimated 

along the loaded direction and are seen to lie in the fracture plane. Voids are present and their size 

vary; however, they are large in comparison to the fiber imprints shown. Moreover, voids are 

common is EDAM processes and may arise from trapped air or polymer volatiles. Thin polymer 

fibrils are seen at the higher temperatures and are believed to be caused from the crazing 

mechanism. 

 

Figure 72 SEM of tensile loaded post-mortem specimens along (a) 1 direction (b) 2 direction (c) 

3 direction at room temperature, and (d) 1 direction (e) 2 direction (f) 3 direction at 190°C
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 VISCOELASTIC DAMAGE MODEL SETUP 

5.1 Introduction 

Observations of additive manufactured short fiber composite mechanical performance at ambient 

and elevated temperatures reveal changes in nonlinear attributes, which plays an important part in 

the design of additive manufactured parts. Additive manufactured short fiber thermoplastics 

exhibit a reduction in nonlinear onset strain as the temperature increases in addition to a reduction 

in strength and stiffness. Moreover, the nonlinear trend changes as temperature rises. The 3D 

printed bead-to-bead interfaces as well as the polymer phase is an important factor in the 

mechanics of deformation, directions with polymer-rich zones or interfaces remain brittle even at 

elevated temperature when deformed under tension. Unlike tensile behavior, compression and 

shear deformations have extensive nonlinearity and greater strain-to-failure values. For the virtual 

design process, the important question is, can the proposed viscoelastic damage model predict 

these anisotropic and unilateral behavior? If so, then a procedure needs to be developed to calibrate 

the material model from either experiments or through parametric investigations. Here, the 

question is addressed by demonstrating the approach taken to tune the model and directly 

comparing experimental behavior to the predicted behavior. Limitations of the model are discussed 

and proposed mathematical changes is made to attempt providing a feasible solution to the issue. 

The ultimate goal is to develop a material model that can represent material behavior during the 

3D printing process and in-service performance. In essence, this modeling capability can provide 

insights into (i) post-print part warpage, (ii) post-print accumulated residual stresses, (iii) 

knowledge of potential damaged zones, (iv) creep-damage from thermomechanical loading, and 

(v) intuition of undesirable 3D printed structural designs. 

In the composition of 3D printed parts, there are beads, also denoted as layers or roads, and 

interfaces at the mesoscale, length scale of bead dimensions. Interfaces are regions where two 

beads come into contact; when a bead is deposited next to another in-plane or placed on top of 

each other. These interfaces bond to one another through polymer diffusion which is dependent on 

temperature and pressure. It is noteworthy to mention that a bead compactor (e.g., a vibrating plate 

known as a tamper or a roller) is often used in EDAM processes to compress the molten bead along 

its height which increases the contact area and facilitates the fusion process. Each deposited bead 
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has a heterogenous microstructure which includes discontinuous fibers, matrix, and voids. Most 

fibers are oriented along the print direction, denoted as the 1 direction, because of the flow 

conditions that exists in the extrusion-based processes [197]. Fiber volume content and degree of 

fiber collimation with the print direction determine the anisotropic properties. Squeeze flow from 

bead compaction drives some fiber collimation along the transverse print direction orthogonal to 

the stacking direction, denoted as the 2 direction. Moreover, virtually no fibers are collimated 

along the stacking direction, 3 direction. These directions, 1, 2, and 3, are understood as the 

principal directions. Carbon fibers, especially along its longitudinal axis, are much stiffer than the 

surrounding polymer matrix and they have a pronounce effect on the thermo-mechanical 

performance of the material; most importantly, the preferential alignment of fibers is responsible 

for the anisotropic material behavior. Viscous behavior originates from the isotropic polymer 

phase; however, the viscous behavior also experiences directional dependency because of the 

presence of fibers. The effective properties of the 3D printed material in the stacking direction are 

dominated entirely by the polymer matrix; therefore, the mechanical performance in the stacking 

direction is the lowest amongst all directions with viscous behavior being the most pronounced. 

On the other hand, the interface along the 2 direction is influenced, to some extent, by the fibers 

and this is why the mechanical performance along the 2 direction is not identical to the stacking 

direction. To describe the anisotropic behavior of the composite and account for the composition 

of 3D printed parts, distinction is made between properties of the interbead and intrabead. 

Noteworthy to mention, two intrabead damage variables and an independent intrabead damage 

variable are adopted, and these are the main damage variables under the assumption that the 

principal damage planes are coincident to the principal directions. Despite the shear properties 

being degraded by the principal damage variables, shear damage variables can be used for 

flexibility which are obtained by directly specifying the damage effect tensor.  

In the past, a number of models to describe the viscoelastic behavior and/or nonlinear 

mechanical behavior associated with damage for a general anisotropic continuum have been 

proposed. Several approaches aimed at modeling the nonlinear behavior of short fiber reinforced 

polymers have been reported; namely, Dano et al. [198] adopted the continuum damage mechanics 

theory developed by Chow and Wang [92] to predict 2D damage in random short fiber glass 

reinforced composites with a damage evolution function linear with the thermodynamic force 

conjugate to damage. Oldenbo and Varna [199] used the same 2D continuum damage mechanics 
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theory but extended it to include linear viscoelastic properties of sheet molding compound, a quasi-

elastic approach was used for linear viscoelastic stiffness definition and a similar damage evolution 

function was used. Varna and Oldenbo [200] implemented their 2D continuum damage 

formulation into the finite element solver Abaqus/Standard. In works [refs], the effect of time on 

damage evolution was ignored, which resulted significant deviation in predicted nonlinear 

response. Andriyana et al. used a different approach of modeling the nonlinear behavior of short 

fiber composites by extending the rheological work of Lion [201], [202], Huber and Tsakmakis 

[203] and Miehe and Keck [204], wherein the continuum mechanics approach is based on 

multiplicative decomposition of the deformation gradient into an elastic and inelastic parts. While 

their strain energy decomposition approach yielded good agreement between experiments and 

simulation, it required trial and error fitting of several material-dependent parameters based on off-

axis tensile tests, x-ray tomography, relaxation tests, load-unload experiments. He et al. [205] used 

an internal state variable polymer model based on the work of Bouvard et al. [206], [207] and 

Francis et al. [208], and the model uses a second-order damage tensor decomposed into three 

micro-scale damage mechanisms, and does not account for viscoelasticity. In their work, 

characterization of the three micro-damage mechanisms required complex in-situ X-ray 

tomography experiments to track the evolution of the distinct micro-voids in an short fiber 

composite; moreover, this was done to investigate how these damage mechanisms evolve with the 

deformation of the composite at different stress levels and also to characterize some of the eleven 

material-dependent model parameters. To the best knowledge of the authors, there has been no 

linear viscoelastic damage model with temperature-dependent damage evolution behavior.  

In the present treatise, a three-dimensional anisotropic thermoviscoelastic progressive 

damage model that is capable of modeling the nonlinear behavior of 3D printed short fiber 

composites at ambient and elevated temperature conditions is presented. The thermodynamic 

framework for linear viscoelastic solids initially proposed by Biot [148], then explored by 

Lublliner [163], and extended by Abdel-Tawab and Weitsman [165] is adopted in this work. Under 

the thermodynamic framework, the material model is subjected to the conservation of energy and 

thermodynamic consistency requirements which allows for admissible states for any given 

thermomechanical loading. The anisotropic damage theory initially proposed by Cordebois and 

Sidoroff [98] and Cordebois [209], then extended by Chow and Wang [92], Chow and Lu [94] and 

Zhu and Cescotto [100] is used. In the work of Barbero and Lonetti [103], a similar damage 
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anisotropic theory was used and further extended to include a simple isotropic hardening 

formulation, their isotropic hardening function has been adopted in this work. Simon et al. [175] 

used a three-dimensional extension of the work of Barbero [170], initially proposed by Bednarcyk 

et al. [174] for plain woven fabric, to model intralaminar and delamination damage in laminates. 

In the work of Simon et al. [175], a very useful methodology for obtaining the anisotropic damage 

model parameters is presented and followed in this work. For a comprehensive review of the theory 

of continuum damage mechanics, the reader is recommended the following references [78], [106], 

[108]. 

  The scope of this chapter is to calibrate and exercise the thermoviscoelastic damage model 

to predict the nonlinear behavior of 25% wt. carbon fiber reinforced PESU for ambient and 

elevated temperature conditions. A temperature-dependent damage surface potential function has 

been proposed and calibrated from simple elevated temperature uniaxial tensile tests in addition to 

compression tests for the case of unilateral behavior. An energy-norm function with a material-

dependent J-tensor is used for anisotropic damage description. The model is exercised in 

Abaqus/Standard (Implicit) with a user material subroutine. The aim of this study is to perform 

several load cases and assess its ability to predict the change in nonlinear behavior as observed 

from experimental results. Lastly, proposed changes to the model is made for shear deformation 

cases for situations where plastic deformations are not available. 

5.2 Characterization of Thermoviscoelastic Material Model 

The experimentally measured effective elastic properties of the composite for various temperatures 

are summarized in Table 1. The short fiber composite is assumed to behave in an orthotropic 

manner; hence, nine independent components of the stiffness tensor are required for its description. 

Moreover, the nine stiffness components are represented as a Prony series as shown in Eq. (100). 

The method used for characterizing the Prony series of the stiffness matrix is found in [14], it is a 

quasi-elastic method for estimating the effective thermoviscoelastic properties of the short fiber 

composite. The coefficients of the Prony series are summarized in Table 4. The method requires 

relaxation experiments performed on a dynamic mechanical analyzer using a three-point bending 

fixture to apply a constant strain for slender beams. Two samples are needed to estimate the 

thermoviscoelastic properties of the composites, a beam oriented along the print direction and 

another oriented in-plane or out-of-plane transverse to the print direction. The modulus versus log-



 

 

135 

time for each temperature experiment is plotted, and the curves are shifted horizontally with 

respect to the reference curve at the glass transition temperature of the polymer. Vertical shifting 

of the modulus data below 180°C is done to ensure the relative instantaneous modulus is preserved. 

A normalized master curve is generated for both samples and the Prony series is fitted for each 

master curve. The print direction modulus is assumed to follow the trend of the print direction 

master curve; however, the remaining properties are assumed to follow the trend of the transverse 

direction master curve. Therefore, it is assumed the matrix controls the relaxation behavior of the 

remaining properties. Figure 74a illustrates the approximate relaxation behavior of the nine 

stiffness components based on the methodology adopted, and Figure 74b shows the fitted modified 

WLF piecewise equations for both sets of horizontal shift factors. 

 

Table 4 Prony coefficients for thermoviscoelastic model 
m 𝐶11,𝑚

𝑉  𝐶12,𝑚
𝑉  𝐶13,𝑚

𝑉  𝐶22,𝑚
𝑉  𝐶23,𝑚

𝑉  𝐶33,𝑚
𝑉  𝐶44,𝑚

𝑉  𝐶55,𝑚
𝑉  𝐶66,𝑚

𝑉  𝜏𝑚 

1 1.210E-16 3.333E-13 2.382E-13 5.320E-13 2.027E-13 4.004E-13 1.101E-13 1.051E-13 2.402E-13 1.000E-18 

2 1.706E+02 4.995E+01 3.569E+01 7.974E+01 3.038E+01 6.001E+01 1.650E+01 1.575E+01 3.600E+01 1.000E-17 

3 2.362E+02 1.055E+02 7.539E+01 1.684E+02 6.417E+01 1.267E+02 3.485E+01 3.326E+01 7.603E+01 1.000E-16 

4 2.401E+02 2.685E+01 1.919E+01 4.287E+01 1.633E+01 3.226E+01 8.870E+00 8.467E+00 1.935E+01 1.000E-15 

5 2.788E+02 1.431E-07 1.022E-07 2.284E-07 8.701E-08 1.719E-07 4.726E-08 4.511E-08 1.031E-07 1.000E-14 

6 2.401E+02 3.744E-06 2.676E-06 5.977E-06 2.277E-06 4.498E-06 1.237E-06 1.181E-06 2.699E-06 1.000E-13 

7 1.520E+02 5.035E+01 3.598E+01 8.037E+01 3.062E+01 6.049E+01 1.663E+01 1.588E+01 3.629E+01 1.000E-12 

8 3.814E+02 8.232E+01 5.882E+01 1.314E+02 5.007E+01 9.889E+01 2.719E+01 2.596E+01 5.933E+01 1.000E-11 

9 4.646E+02 3.261E+00 2.330E+00 5.205E+00 1.983E+00 3.917E+00 1.077E+00 1.028E+00 2.350E+00 1.000E-10 

10 2.149E-15 8.032E+01 5.740E+01 1.282E+02 4.885E+01 9.649E+01 2.653E+01 2.533E+01 5.789E+01 1.000E-09 

11 7.105E+02 1.331E+02 9.509E+01 2.124E+02 8.094E+01 1.599E+02 4.396E+01 4.196E+01 9.590E+01 1.000E-08 

12 6.873E+01 7.953E-10 5.683E-10 1.269E-09 4.837E-10 9.553E-10 2.627E-10 2.507E-10 5.731E-10 1.000E-07 

13 3.775E+02 1.551E+02 1.108E+02 2.475E+02 9.431E+01 1.863E+02 5.122E+01 4.889E+01 1.117E+02 1.000E-06 

14 3.756E+02 3.321E+01 2.373E+01 5.301E+01 2.020E+01 3.989E+01 1.097E+01 1.047E+01 2.393E+01 1.000E-05 

15 2.943E+02 1.183E+02 8.452E+01 1.888E+02 7.194E+01 1.421E+02 3.907E+01 3.730E+01 8.525E+01 1.000E-04 

16 3.427E+02 1.515E+02 1.082E+02 2.418E+02 9.212E+01 1.819E+02 5.003E+01 4.775E+01 1.092E+02 1.000E-03 

17 4.337E+02 9.311E+01 6.653E+01 1.486E+02 5.663E+01 1.119E+02 3.076E+01 2.936E+01 6.710E+01 1.000E-02 

18 2.033E+02 1.051E+02 7.510E+01 1.678E+02 6.392E+01 1.263E+02 3.472E+01 3.314E+01 7.574E+01 1.000E-01 

19 4.298E+02 1.199E+02 8.567E+01 1.914E+02 7.292E+01 1.440E+02 3.960E+01 3.780E+01 8.640E+01 1.000E+00 

20 5.673E+02 2.981E+02 2.130E+02 4.759E+02 1.813E+02 3.581E+02 9.847E+01 9.400E+01 2.148E+02 1.000E+01 

21 4.976E+03 1.395E+03 9.966E+02 2.226E+03 8.483E+02 1.675E+03 4.607E+02 4.397E+02 1.005E+03 1.000E+02 

22 7.647E+03 1.003E+03 7.167E+02 1.601E+03 6.101E+02 1.205E+03 3.313E+02 3.163E+02 7.229E+02 1.000E+03 

23 3.678E+02 3.764E-11 2.690E-11 6.009E-11 2.290E-11 4.522E-11 1.243E-11 1.187E-11 2.713E-11 1.000E+04 

24 3.730E+02 1.123E-09 8.024E-10 1.792E-09 6.830E-10 1.349E-09 3.709E-10 3.541E-10 8.093E-10 1.000E+05 

25 6.331E-02 2.821E-08 2.016E-08 4.504E-08 1.716E-08 3.389E-08 9.319E-09 8.896E-09 2.033E-08 1.000E+06 

𝐶𝑝𝑞
𝑒  8.247E+01 1.471E-07 1.051E-07 2.347E-07 8.944E-08 1.767E-07 4.858E-08 4.637E-08 1.060E-07  

 

To verify the thermoviscoelastic behavior of the material model, the stress relaxation 

behavior was evaluated and compared to the experimental data. Figure 73 illustrates selected plots 
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for normalized stress along the print direction with respect to time in seconds. Three temperatures, 

(a) 30°C, (b) 75°C, and (c) 220°C, are chosen to show the normalized stress relaxation trend from 

the experiments and thermoviscoelastic model. An instantaneous uniaxial strain of 0.05% was 

applied for all simulations. The red curve represents the stress relaxation experimental data and 

the black curve represents the finite element thermoviscoelastic model. For each of the three plots, 

the model is found to have good agreement with the experimental results using the quasi-elastic 

approximation. Moreover, the model is found to be within 5% of the experimental results. 

 

 

 

Figure 73 Selected normalized stress relaxation comparison between experiment and 

thermoviscoelastic model, strain along the print direction for (a) 30°C, (b) 75°C, and (c) 220°C

(a) (b)

(c)

𝐶𝑚𝑛
∗ (𝜉(𝑡)) =

[
 
 
 
 
 
 
𝐶11
∗ (𝜉(𝑡)) 𝐶12

∗ (𝜉(𝑡)) 𝐶13
∗ (𝜉(𝑡)) 0 0 0

𝐶12
∗ (𝜉(𝑡)) 𝐶22

∗ (𝜉(𝑡)) 𝐶23
∗ (𝜉(𝑡)) 0 0 0

𝐶13
∗ (𝜉(𝑡)) 𝐶23

∗ (𝜉(𝑡)) 𝐶33
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0 0 0 𝐶44
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∗ (𝜉(𝑡)) 0

0 0 0 0 0 𝐶66
∗ (𝜉(𝑡))]

 
 
 
 
 
 

 (100) 
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(a) 

 

(b) 

Figure 74 (a) Orthotropic stiffness matrix component relaxation behavior deduced from 

normalized master curves and mechanical properties of 25% wt. carbon fiber reinforced PESU, 

(b) Horizontal shift factors for print direction master curve (1D) and in-plane transverse direction 

(2D) alongside the piece-wise WLF trends 
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5.3 Calibration of Thermoviscoelastic Damage Parameters 

The orthotropic continuum damage model for printed composites contains two damage 

descriptions: namely, the intrabead and interbead damage modes. Therefore, the following nine 

parameters, 𝐽11, 𝐽22, 𝐽33
𝐼 , 𝑐1, 𝑐1

𝐼 , 𝑐2, 𝑐2
𝐼 , 𝜅0, and 𝜅0

𝐼  are required. Simon et al. [175] describe the 

procedure needed to characterize these parameters based on simple uniaxial tensile experiments. 

The uniaxial tension test along the print direction is used for characterizing 𝑐1, 𝑐2, and 𝜅0; on the 

other hand, the tension test along the stacking direction is used for characterizing 𝑐1
𝐼, 𝑐2

𝐼 , and 𝜅0
𝐼 . 

For the assumed homogenous and uniaxial stress state, only one component of the damage 

thermodynamic force tensor is non-zero for either case (e.g., 𝑌11 or 𝑌33). At damage onset, the 

hardening variable is zero and the damage surface equation reduces to Eq. (101), for example. The 

first value of the damage interaction tensor, 𝐽𝑚𝑛, can be arbitrarily chosen since the same damage 

surface and evolution equations can be obtained for any other value; therefore, it is set to two. It 

is noteworthy to mention, only the ratios of the damage interaction parameters are relevant.  

 

 

The two parameters in the hardening/softening function, 𝑐1  and 𝑐2 , are determined by 

selecting two points on the stress versus strain plot from which damage is present. After damage 

onset, damage is approximated by using the secant modulus, this enables the use of the equation, 

𝜎1 = (1 − 𝐷1)
2𝐸1𝜀1, to estimate the damage quantity relative to the pristine modulus, 𝐸1

0. In other 

words, the two damage points, 𝐷1
(𝐼)

 and 𝐷1
(𝐼𝐼)

, are obtained as shown in Eq. (102) and are then used 

for estimating 𝑐1 and 𝑐2 by solving Eqs. (103) and (104) at the reference temperature 𝑇0 (e.g., 

room temperature). Delamination material parameters are obtained in a similar fashion. To 

estimate the change in hardening softening behavior associated with temperature changes, Eq. (105) 

is recommended, this assumes 𝑐1 remains constant with temperature. Additionally, 𝑐2(𝑇 > 𝑇0) 

should be obtained for damage values above 0.01 to avoid anomalous values near 𝐷 = 0 and 

preferably averaged over a small range after the values of 𝑐2(𝑇 > 𝑇0) converge.

𝑔 = √𝐽11/2𝑌11 − 𝜅0 = 0 → 𝜅0(𝑇) = √𝐽11/2(𝐶11
𝑒 + ∑ 𝐶11,𝑚

𝑉

𝑀

𝑚=1

𝑒
−
𝜉(𝑡)
𝜏𝑚 ) (𝜀1

0)2 (101) 
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Table 5 Mechanical properties of 3D printed 25%wt. carbon fiber reinforced PESU 

Properties 
Values 

RT 70°C 130°C 190°C 

Avg. 𝐸1 (GPa) 16.92 16.91 15.91 12.56 

Std. 𝐸1 (GPa) 0.29 0.41 0.61 1.24 

Avg. 𝐸2 (GPa) 4.83 4.59 4.26 3.52 

Std. 𝐸2 (GPa) 0.32 0.25 0.23 0.28 

Avg. 𝐸3 (GPa) 3.78 3.73 3.53 3.03 

Std. 𝐸3 (GPa) 0.08 0.14 0.18 0.14 

𝐴𝑣𝑔. 𝐺23 (GPa) 1.2 1.2 1.2 1.2 

Std. 𝐺23 (GPa) 0.087 0.095 0.14 0.17 

Avg. 𝐺13 (GPa) 1.44 1.41 1.43 1.40 

Std. 𝐺13 (GPa) 0.017 0.095 0.057 0.065 

Avg. 𝐺12 (GPa) 2.88 2.69 2.52 2.18 

Std. 𝐺12 (GPa) 0.096 0.15 0.11 0.063 

Avg. 𝜈12 at RT 0.3441 

Avg. 𝜈13 at RT 0.4978 

𝜈23 at RT 0.4367* 

*Estimated via micromechanics 

 

The damage threshold value, 𝜅0(𝑇), is approximated using the nonlinear onset strain value, 

𝜀1
0, found in the experimental tensile stress versus strain curve, an example is shown in Figure 75a, 

and the computed the stiffness matrix from the thermoelastic properties provided in Table 5. 

𝐷1
(𝐼)
= 1 − √

(𝜎11
(𝐼)/𝜀11

(𝐼))

𝐸1
0   &  𝐷1

(𝐼𝐼)
= 1 − √

(𝜎11
(𝐼𝐼)/𝜀11

(𝐼𝐼))

𝐸1
0  (102) 

[(1 − 𝐷1
(𝐼𝐼))𝐶11

∗ (𝜉)(𝜀1
(𝐼𝐼))

2

− 𝜅0] (𝑒
−
𝐷1
(𝐼)

𝑐2 − 1)… 

−[(1 − 𝐷1
(𝐼))𝐶11

∗ (𝜉)(𝜀1
(𝐼))

2

− 𝜅0] (𝑒
−
𝐷1
(𝐼𝐼)

𝑐2 − 1) = 0 

(103) 

𝑐1 =
(1 − 𝐷1

(𝐼)
)𝐶11

∗ (𝜉)(𝜀1
(𝐼)
)
2

− 𝜅0(𝑇0)

𝑒−𝐷1
(𝐼)
/𝑐2 − 1

 (104) 

𝑐2(𝑇 > 𝑇0) =
−𝐷1

𝑙𝑛 [
(1 − 𝐷1)𝐶11

∗ (𝜉)(𝜀1)2 − 𝜅0(𝑇)
𝑐1

+ 1]

 
(105) 
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Additionally, the nonlinear onset strain value is determined by extrapolating the fitted linear elastic 

curve, based on ASTM D3039 strain range, and computing the point at which nonlinear behavior 

commences (e.g., small percentage difference between the two curves). Eq. (103) is numerically 

solved to obtain 𝑐2(𝑇0); however, it is recommended to plot the equation, shown in Figure 75b, to 

clearly identify an initial value to avoid solving for an infinite value. The secant modulus, 𝐸1
𝑠, as 

a function of strain is illustrated in Figure 75c. The trend of the secant modulus is similar to the 

trend of the damage variable, which is illustrated in Figure 75d. The two points shown on this plot 

are used for computing 𝑐2(𝑇0), these are chosen near the fracture point and approximately 60% of 

ultimate fracture. 

 

 

Figure 75 (a) Experimental stress versus strain along print direction (b) damage surface equation 

used for solving c2 (c) secant modulus approximation based on experimental tensile test curve (d) 

damage variable trend and highlighted points, P1 and P2, for hardening characterization 
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The damage threshold value and the isotropic hardening parameter, 𝑐2(𝑇), were plotted 

against temperature and a linear regression fit was made, this is shown in Figure 76a and Figure 

76b. A temperature increase is observed to decrease the nonlinear onset strain value, this 

observation is especially pronounced for uniaxial tensile loaded specimens along the in-plane 

transverse and stacking direction. In other words, nonlinearity commences sooner at elevated 

temperatures. Figure 77a illustrates the stress versus strain response when 𝜅0 is varied, it shows 

that the nonlinear onset increases with an increase in 𝜅0. Thermoviscoelastic stress relaxation also 

contributes to the nonlinear behavior; however, the loading rate and time elapsed from beginning 

to failure has been determined to produce no more than a 3% relaxation effect for all temperatures. 

Therefore, nonlinear relaxation behavior is reasonably assumed to not significantly contribute to 

the nonlinearity observed in the stress versus strain behavior. Nevertheless, the reduction in 

nonlinear strain onset is expected to be a polymer effect. The reduction in 𝑐2(𝑇) is due to the 

complex interaction between the damage variable, stiffness component and damage threshold 

value. Figure 78 illustrates the effect of a varying 𝑐2 when 𝑐1 and 𝜅0 are held constant, smaller 

values of 𝑐2 lead to a faster evolution of the damage variable and a smaller strain hardening region. 

Damage critical values have been implemented in all analyses; these values are defined as the last 

value of the damage variable before fracture occurs. A critical value signifies the moment at which 

the damage variable rapidly evolves to a value of one to signify total loss of structural integrity. 

Critical damage variables are found to increase with temperature, and this trend is shown in Figure 

76c. The maximum and average damage critical values are plotted with respect to temperature and 

a quadratic regression fit is made to model the change in the critical value with temperature. In 

this study, the maximum critical value is chosen since it reflects the data well. On the other hand, 

a constant room temperature damage critical value was chosen for the in-plane transverse, 𝐷2
𝑐𝑟, 

and stacking, 𝐷3
𝑐𝑟, directions to simplify the model. 

The value of the second damage interaction component, 𝐽22 , is obtain by solving the 

damage surface relation at the point of damage onset for a uniaxially loaded tensile specimen along 

the in-plane transverse direction. Since the damage threshold value has been evaluated, the damage 

surface relation can be solved for 𝐽22 with knowledge of the nonlinear strain onset of a tensile 

loaded specimen along the in-plane transverse direction and stiffness matrix component, 𝐶22
∗ . In 

Figure 77b, the stress versus strain plot for several different values of 𝐽11  is shown and this 

illustrates the changes in nonlinear material response. For the interface material damage 
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description, only 𝐽33
𝐼  is present in the damage interaction tensor and its value is also set to two; 

furthermore, only 𝑐1
𝐼 , 𝑐2

𝐼(𝑇) , and 𝜅0
𝐼(𝑇)  require characterization. For the interface isotropic 

damage material parameter, 𝑐2
𝐼 , a quadratic regression fit is made because of the observed trend 

shown in Figure 79a. It is noteworthy to mention, the nonlinear behavior is related to the nonlinear 

trend in the uniaxial tensile specimens loaded along the stacking direction. In other words, this 

suggests the strain hardening regime decays rapidly as temperature increases. A linear regression 

fit is made for the damage threshold parameter, 𝜅0
𝐼 , which is illustrated in Figure 79b. The damage 

model parameters are reported in Table 6. 

 

 
Figure 76 (a) Average isotropic hardening/softening parameter 𝑐2 as a function of temperature, 

(b) average damage threshold, 𝜅0, as a function of temperature, (c) mean critical damage value as 

a function of temperature for print direction tensile coupons, and (d) mean critical damage values 

for in-plane transverse tensile coupons as a function of temperature 

(c) (d)

(a) (b)



 

 

143 

 

 
Figure 77 (a) Simulation of stress versus strain along print direction for different values of 𝜅0 

while keeping all other model parameters constant, and (b) simulation of stress versus strain 

along print direction for different values of 𝐽11 

 

 
Figure 78 Simulation of stress versus strain along print direction at room temperature for 

different values of 𝑐2 while keeping all other model parameters constant 

 

 

(a) (b)
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Figure 79 (a) Average interface isotropic hardening/softening parameter 𝑐2 as a function of 

temperature and (b) average interface damage threshold as a function of temperature 

 

Table 6 Damage model parameters obtained from uniaxial tensile tests 
Property Value/Function Purpose 

𝐽11 2.0 Intrabead 

𝐽22 4.536 Intrabead 

𝑐1 1.617 Intrabead 

𝑐2(𝑇) −0.003032𝑇 − 0.08433 Intrabead 

𝜅0(𝑇) −0.00147𝑇 + 0.3858 Intrabead 

𝐷1
𝑐𝑟(𝑇) 6.313 ⋅ 10−6𝑇2 + 0.000497𝑇 + 0.1234 Intrabead 

𝐷2
𝑐𝑟  0.0317 Intrabead 

𝐽33
𝐼  2.0 Interbead 

𝑐1
𝐼  0.335 Interbead 

𝑐2
𝐼(𝑇) −8.835 ⋅ 10−6𝑇2 + 0.0007212𝑇 − 0.06633 Interbead 

𝜅0
𝐼 (𝑇) −0.0004214𝑇 + 0.1237 Interbead 

𝐷3
𝑐𝑟  0.0588 Interbead 

 

Temperature-dependent damage evolution parameters are essential for properly capturing 

the observed nonlinear trends in experimental elevated temperature tensile tests. Not only does the 

strain hardening regime change, the ultimate strain and stress decay with an increase in temperature. 

Even though all three damage parameters, 𝐽𝑚𝑛, 𝑐2, 𝜅0, are capable of producing the change in 

material response, both 𝑐2 and 𝜅0 should suffice in capturing the elevated temperature changes. 

Figure 80 depicts the uniaxial material response for three different cases, where (a) 𝑐2 is kept 

constant, (b) 𝜅0 is maintained constant, and (c) both 𝑐2 and 𝜅0 are constant. In Figure 80a, it is 

evident that keeping 𝑐2 constant while allowing 𝜅0 to change with temperature does not produce a 

significant change in material response for RT, 70°C, 130°C temperatures. Additionally, the strain 

hardening response is similar for all temperature cases. Figure 80b illustrates the change in 
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nonlinear response produced when 𝑐2 is not constant; however, the nonlinear onset is similar for 

all temperatures. By the same token, keeping both parameters constant with temperature does not 

significantly alter the material response as shown in Figure 80c, significant overlap is observed for 

the RT, 70°C, 130°C curves and a similar trend is followed by the 190°C behavior. 

 

 
Figure 80 Simulation of stress versus strain at different temperatures while keeping (a) 𝑐2(𝑇) 

constant, (b) 𝜅0(𝑇) constant, and (c) 𝑐2(𝑇) and 𝜅0(𝑇) constant 

5.4 Material Model Predictions 

Comparison between experiment and simulation for uniaxial tensile loaded specimens along the 

print direction is made in Figure 81. The temperatures chosen were approximately 30%, 60% and 

90% of the PESU glass transition temperature of 215°C, temperatures above the glass transition is 

expected to significantly contribute to the nonlinear response within the time scale of the tensile 

test. From plots shown, the nonlinearity observed for all experiments becomes more pronounced 

at higher temperatures. For all temperature cases, the blue crosses indicate the point at which 

abrupt failure or softening begin in the experimental specimens. The experimental data 
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is smoothed to reduce the noise output from the digital image correlation technique, and the 

undulations correspond to load drops during the test. The temperature-dependent model is shown 

to capture the trend observed in the experimental tests; namely, the reduction in nonlinear onset, 

nonlinear behavior, and decay in ultimate strength. The experimental average and model predicted 

values are summarized in Table 6. The abrupt failure in the model is produced by the critical 

damage parameter, 𝐷1
𝑐𝑟(𝑇). For the present model formulation, the nonlinear response is solely 

due to damage accumulation. Therefore, permanent strain is not modeled; however, this is an 

assumption that is valid when little permanent strain is observed upon unloading of coupon. 

 

 
Figure 81 Comparison of stress versus strain behavior between simulation and experiments for 

different temperatures for uniaxial tensile loaded specimens along the print direction 
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Table 7 Summary of experimental average values and predicted values 
 Experiment Simulation 

RT 70°C 130°C 190°C RT 70°C 130°C 190°C 

𝜎11
𝑢𝑙𝑡 (MPa) 133 122 104 65 144 115 91 67 

𝜎22
𝑢𝑙𝑡 (MPa) 42 34 28 17 40 34 27 19 

𝜎33
𝑢𝑙𝑡 (MPa) 44 32 25 16 50 45 28 18 

𝜀11
𝑢𝑙𝑡 (%) 0.97 0.93 0.99 1.03 1.13 0.950 0.991 0.940 

𝜀22
𝑢𝑙𝑡 (%) 0.92 0.78 0.63 0.52 0.89 0.76 0.64 0.53 

𝜀33
𝑢𝑙𝑡 (%) 1.29 0.94 0.73 0.60 1.46 1.34 0.87 0.66 

𝜀11
0  (%) 0.42 0.37 0.33 0.31 0.49 0.43 0.30 0.30 

𝜀22
0  (%) 0.51 0.53 0.38 0.33 0.72 0.65 0.55 0.43 

𝜀33
0  (%) 0.48 0.54 0.51 0.32 0.62 0.57 0.47 0.39 

𝐸1 (GPa) 16.9 16.9 15.9 12.6 16.5 16.4 16.0 13.4 

𝐸2 (GPa) 4.8 4.6 4.3 3.5 4.8 4.8 4.6 3.9 

𝐸3 (GPa) 3.8 3.7 3.5 3.0 3.8 3.8 3.7 3.1 

 

Figure 82 shows the comparison of experiments and simulation for uniaxial tensile loaded 

specimens along the in-plane transverse direction for different temperatures. Similar to the 

response along the print direction, the nonlinear response becomes pronounced at higher 

temperatures; however, the overall material response is brittle. The current formulation assumes 

the same isotropic damage surface growth as in the print direction. Consequently, the nonlinear 

trend beyond damage onset can be observed; however, both parameters, 𝐽22  and 𝐷2
𝑐𝑟 , act to 

abruptly fail the specimen as seen for all cases. The in-plane transverse contains bead-to-bead 

interfaces as well as some fiber collimation along this direction. The existence of the interface 

certainly influences the growth and evolution of the damage surface; however, the intrabead 

approximation is believed to be reasonable based on the predicted response. 

The uniaxial tensile mechanical performance along the stacking direction is presented in 

Figure 83, all of the experiments were found to fail at the interbead interface. It is noteworthy to 

mention two attributes of printed short fiber composites loaded along the stacking direction; firstly, 

the interface mechanical performance is highly influenced by the polymer because of the 

insignificant fiber collimation. Secondly, large compacted voids along the interbead interface have 

been observed through micrographs and these voids are expected to engender stress concentrations 

that severely hinders the strength properties. Although variability in performance is not accounted 

for in the present model, the strength prediction is reasonably close to the experimental 

observations. Since the polymer dominates the tensile performance along the stacking direction, it 

is also believed that the nonlinear trend of the isotropic damage hardening parameter, 𝑐2
𝐼(𝑇), is 

caused by the polymer. 
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Figure 82 Comparison of stress versus strain behavior between simulation and experiments for 

different temperatures for uniaxial tensile loaded specimens along the in-plane transverse 

direction 

 

The ultimate elongation strain at ultimate stress, 𝜀𝑢𝑙𝑡 , reduction with an increase in 

temperature for specimens loaded along the in-plane transverse and stacking directions are 

believed to be a characteristic of the polymer blend phase. Along the print direction, this elongation 

strain reduction trend is not observed, and it may be reasonable to also assume the fibers are 

dominating the performance characteristics and inhibiting this trend along this direction. A similar 

trend for a comparable injection-molded thermoplastic composite can be observed in the work of 

Eftekhari and Fatemi [210]. In their work, they experimentally investigated temperature effects on 

the tensile behavior of multiple thermoplastic composites. One of the composite materials, a 20% 

wt. short glass fiber reinforced modified polyphenylene ether and polystyrene (i.e., Noryl), was 

tested along the transverse mold-flow direction at room and elevated temperatures. The transverse 
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to the mold flow direction was said to exhibit most of the fibers oriented orthogonal to the loading 

direction due to the core-shell morphology. The composite was tested at 23°C, 85°C , and 120°C, 

these temperatures were below the polymer’s glass transition temperature of 135°C. For this 

composite system, the strain at ultimate strength, ultimate strength, 0.2% offset yield strength and 

elastic modulus all decreased with temperature. On the contrary, the strain at ultimate strength 

reduction with temperature was not observed for the other thermoplastic composites which did not 

contain a polymer alloy. Based on these observations, thermoplastic composites with polymer 

alloys tested in the glassy regime, this trend may be expected, and further investigation is needed 

to verify this behavior for other composite systems.  

 

 
Figure 83 Comparison of stress versus strain behavior between simulation and experiments for 

different temperatures for uniaxial tensile loaded specimens along the stacking direction 
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 The variability in the strain hardening behavior observed in Figure 81, Figure 82, and 

Figure 83 increases with temperature, this variability is pronounced for the behavior along the print 

direction and it is believed to be caused by the dominance of the matrix micro-damage mode. Since 

it is evident that the matrix softens with temperature and exhibits strain-to-failure brittleness at 

elevated temperature based on the performance along the in-plane transverse and stacking 

directions, it is reasonable to assume local compliant microscopic regions exhibits matrix-cracking 

and/or interfacial debonding at lower stress effective strain levels. The early micro-damage 

initiation combined with the spatial microstructural morphology produced by the EDAM process 

may lead to the observed strain hardening variability observed along the print direction. By the 

same token, the variability in thermo-mechanical properties are believed to be caused by the 

microstructural morphology, namely, differences in effective fiber orientation states and local 

spatial micro-constituent configurations between tensile specimens. 

5.5 Single Element Creep-Damage Interaction 

Since the material model is strain-based, the evolution of strain with time can initiate and progress 

damage. Creep occurs when a constant load is applied with time which causes strains to increase 

because of the time-dependent compliance. Viscoelastic induced strains also drive the evolution 

of thermodynamic forces. Time-dependent thermodynamic forces can create a material state that 

lies outside of the damage surface, eventually causing a non-allowable thermodynamic state that 

requires dissipation. To demonstrate the creep-damage behavior, Figure 84, Figure 85, and Figure 

86 illustrate the evolution of the axial strain and damage with time for various temperatures at 

constant load. Figure 84 shows the creep response along the print direction at a constant stress of 

60MPa, this stress value was chosen to accelerate damage evolution at higher temperatures and 

demonstrate the creep-damage behavior. The solid curves are the axial strain, 𝜀1̃1, and the dashed 

curves represent the damage variable, 𝐷1, along the print direction. A uniaxial stress is applied as 

a linear ramp from zero to one second, then it is held constant for 10 hours or until rupture occurs. 

Creep rupture happens when the strain increases substantially past the yield point and the damage 

variable reaches its critical value. For the 190°C case, the applied stress level is beyond the linear 

elastic regime and it is the reason why the damage variable is non-zero at the start. Likewise, the 

130°C exhibits a small amount of damage at the start of the creep simulation because of the same 

reason. An interesting observation is the effect of damage on the strain evolution, damage acts to 
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further increase the strain magnitude. Moreover, damage continues to evolve after initiation and 

no plateau in damage evolution is observed. The moment before creep rupture, an accelerated 

damage and strain region is seen from the 190°C creep test and it is driven by the combined effect 

of the isotropic hardening variable, thermodynamic forces, critical damage variable, and creep 

compliance. After the critical damage value is reached, damage jumps to a value of one which 

causes the strain to substantially rise. The jump in damage variable at the critical value is merely 

an assumption based on experimental observation, and it is arguably a limitation of the model since 

a fracture energy based softening function is not considered to capture the rapid damage 

progression past the critical point.  During the elapsed time, no deterioration is observed at low 

temperatures and this is because the creep compliance has not evolved enough to allow for 

thermodynamically unstable states. The creep compliance is expected to continuously increase 

with time, and this will cause strains to increase alongside the potential for damage dissipation.  

 

 

Figure 84 Single element creep-damage test along the print direction at various temperatures 

 

Creep behavior along the 2 direction for various temperatures is shown in Figure 85 below. 

The strains, 𝜀2̃2, are represented by solid curves and the damage variable, 𝐷2, by the dashed curves. 

For each temperature case, a constant load, within the linear elastic regime, was applied. Therefore, 

no initial damage is observed at the start of the simulation. Amongst all temperature cases, the 

190°C test experienced damage initiation, evolution and creep rupture with a sustained load of 
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15MPa. Simultaneously, the lower temperature tests did not experience any damage initiation. 

Creep rupture occurs at approximately 0.5% strain for the 190°C test, this value is similar to the 

rupture strain observed in uniaxial tensile tests. As seen from the room temperature and 70°C 

curves, the strain curves exceed the rupture strain of the 190°C test and this is expected since the 

damage threshold and hardening parameters change with temperature. Unlike the print direction 

creep test shown above, the creep rupture along the 2 direction is induced by the critical damage 

variable and it has the effect of steeply increasing both the strain and damage variable. The rapid 

change in these variables is due to the small amount of hardening experienced by the material, this 

means the damage surface experienced an insignificant amount of expansion which causes damage 

to rapidly evolve.  

 

 

Figure 85 Single element creep-damage test along the 2 direction at various temperatures 

 

Creep behavior along the stacking direction is shown in Figure 86. Similar to the creep 

plots shown above, a similar trend is found yet not creep rupture is observed. The plot shown 

below is provided for completeness. For all temperature cases except the 190°C test, an initial 

damage amount is observed which means that the applied loads were beyond the yield point of the 

material. Even though creep rupture is not observed within the elapsed time of the test and the 

applied loads, the strains and damage are continuously evolving. The instantaneous strain at 70°C 

is greater than the room temperature case because of the difference in instantaneous compliance. 
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Lastly, the creep strain evolution and an estimated creep rupture can be predicted using the 

continuum damage model. Creep experiments are needed to validate the model and confirm the 

trends predicted are representative of the material behavior.  

 

 

Figure 86 Single element creep-damage test along the stacking direction at various temperatures 

5.6 Meso-Scale Tensile Coupon Exercise 

Uniaxial tensile specimens, dog-bone shaped, were modeled in Abaqus/Standard to predict 

progressive damage with multiple elements. The dimensions of the dog-bone model were specified 

from the average measured values of the coupons used for tension experiments. Figure 87 

illustrates the effective stress versus average strains for a tensile loaded bar along the print 

direction. The average strain was obtained by selecting and averaging the elements within the gage 

section at the surface. Additionally, the strain and damage contour plots are displayed at three 

points along the stress versus strain curve. The damage contour plots are displayed in white to 

black scale; essentially, the dark regions signify damaged zones. Along the print direction, the 

damage critical value at room temperature is approximately 0.14, and values beyond the critical 

amount will fracture. Therefore, black regions represent zones of fracture. Point A lies within the 

linear elastic region, we can observe no damage has occurred based on the damage plot. Due to 

the anisotropy of the material and specimen geometry, the strains at the gage section are not strictly 



 

 

154 

uniform; however, the strain state is uniform for practical purposes since the difference between 

the strains is approximately 0.02%. Past the yield point, point B, damage has initiated, and it is 

distributed at the center of the gage section and slightly concentrated at the fillet-gage transition 

zone. Moreover, the strain field is observed to also have a concertation on the same regions. At the 

width transition zone, a small amount of shear strain, 𝜀13, exist and it contributes to both the 

thermodynamic force, 𝑌11, driving the damage variable, 𝐷1. Despite the presence of shear strains, 

the expected solution for a uniaxial and homogeneous state of stress does not appear to be affected 

since the stress vs strain response between the single element test and the meso-scale coupon are 

nearly identical. Point C corresponds to the peak stress, damage has localized at the strain 

concentration points and the likelihood of fracture at room temperature is predicted at the fillet-

gage transition. In comparison to the tensile experiments at room temperature, the failure sites are 

similar.  

While damage softening is an important aspect of progressive damage theories, it is not 

explicitly addressed in the presented models because of the implementation of the damage critical 

value. Figure 88 illustrates the prediction of the room temperature uniaxial tensile test for three 

different mesh densities; specifically, with 40K, 196K, and 300K elements. The linear and 

nonlinear response is nearly identical for all three cases, though upon closer inspection the 

predictions do not technically overlap. Nevertheless, significant differences between mesh 

densities have not been observed and the need for softening methods can be reasonably 

circumvented. However, for explicit softening behavior, at least one of the methodologies 

discussed in Chapter 2 should be implemented to mitigate convergence issues and mesh-dependent 

results.  
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Figure 87 Stress versus strain and damage evolution along the print (1) direction at room 

temperature 
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Figure 88 Mesh sensitivity for 1 direction room temperature coupon, using C3D8 elements 

 

A load eccentricity was applied to the tensile bar modeled at room temperature to 

understand the implications of a bending moment on the solution, the results are presented in 

Figure 89 below. The displacement at a reference node is tied to all of the displacements of the 

nodes within the loaded tab regions, this reference node only displaces along the length of the 

specimen, 𝑈1, under uniaxial deformation. The bending moment is applied by specifying a lateral 

displacement, 𝑈3. Two lateral displacements were specified, these were 0.2mm and 0.8mm. At the 

0.2% mean strain value, the strain contours for all three cases are shown in Figure 89. Eccentric 

loaded specimens experience a uniaxial strain and bending strain which are superimposed, this 

produces the effect shown in the strain contour plot. Specifically, the effect of having a greater 

strained region on one end of the specimen relative to the other. A greater bending moment 

magnifies the difference strains between the two regions. Figure 90 illustrates the damage contour 

plots for all three cases, it is interesting to observe the symmetric and non-symmetric damage 

distributions. For the case of no lateral displacement, 𝑈3 = 0, damage is symmetric about the 𝑥3 

plane. On the other hand, the load-eccentric cases exhibit greater damage quantities on the regions 

with greater tensile strains, this is most apparent for the case of 𝑈3 = 0.8. Above all, the strength 

between the case of 𝑈3 = 0 and 𝑈3 = 0.2 were alike (140.861MPa); on the flip side, the case for 
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𝑈3 = 0.8 had a slightly lower strength, 138.461MPa. While the strength appears to decrease with 

an induced bending moment, the overall trend appears unaffected.  

 

 

Figure 89 Comparison of eccentrically loaded coupon strain field and stress vs. strain behavior at 

room temperature along 1 direction 

 

 

Figure 90 Damage accumulation with load eccentricity for 1 direction room temperature coupon 
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While modeling efforts are facilitated via the use of an isotropic damage function, it has 

limitations since anisotropic hardening behavior is not captured unless a separate damage surface 

function is defined for the damage mode of interest. The intra-bead damage assumption inherently 

adopts the same hardening equations which produce similar intra-bead nonlinear trends. Due to 

the significant brittle response along the 2 direction relative to the print direction tensile response, 

it is evident that an anisotropic damage function is more suitable; however, the implementation of 

a damage critical value with the isotropic damage hardening function calibration with print 

direction tensile behavior is reasonable since the experimental trends are captured. Figure 91 

illustrates the difference stress versus strain behavior for the case of no damage critical value and 

one with the critical value implemented. The trends are identical and the critical value acts to 

curtail the monotonous growth of the damage variable thus prematurely terminating load 

progression. Figure 92 displays the strain, 𝜀22, and damage variable, 𝐷2, contours, these contours 

are indistinguishable and verifies that no change in mechanical response is made when the critical 

damage variable is implemented. It is interesting to point out that a unilateral effect can be 

potentially modeled if the damage interaction tensor, 𝐽𝑖𝑗𝑘𝑙  and the damage variable, 𝐷𝑚𝑛 , are 

dissociated into tensile and compressive parts (i.e., 𝐽𝑖𝑗𝑘𝑙
+ , 𝐽𝑖𝑗𝑘𝑙

− , 𝐷𝑚𝑛
+ , and 𝐷𝑚𝑛

− ). It has been shown 

that a reduction in 𝐽  will delay the onset of damage and the removal of 𝐷𝑐𝑟  will allow the 

monotonous evolution of the damage variable, these are the trends observed in compression and 

can be a useful engineering approach for capturing the unilateral behavior. 

 

 

Figure 91 Simulation with and without 𝐷2
𝑐𝑟 implemented 
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Figure 92 (a) Axial strain along 2 direction between simulation with and without 𝐷2
𝑐𝑟 (b) damage 

field with and without 𝐷2
𝑐𝑟 

 

Since tensile failure along the stacking direction occurs mainly at the interface between 

stacked beads, a separate damage surface relation is defined to properly capture the nonlinear 

behavior. The approach requires specification of elements that can undergo interfacial damage, the 

elements are then classified as either having an intra-bead damage description or all-mode damage 

behavior. Analysis of 3D printed structures, either process-based or performance-based, are 

typically meshed with an integer multiple of the bead height (e.g., 1, 2, 3 …, N elements per bead 

height) along the Z-axis. With this in mind, the proposed approach defines the inter-bead damage 

mode inside the element previous to the start of a new bead, this is illustrated in Figure 93. 

Although the damage is dissociated into two parts, a single damage effect tensor (i.e., a hybrid of 

damage variables consisting of 𝐷1, 𝐷2, and 𝐷3
𝐼) is used and the Jacobian has damage evolution 

contributions from both the intra-bead and inter-bead damage modes. To demonstrate the viability 

of this approach, three dog-bone shape according to the dimensions of the experimental coupons 

were generated, each with different mesh densities across a bead height, 1.5mm. Mesh 1 is the 

case with a single element across the bead height, mesh 2 and 3 contain two and three elements 

across the bead height. From Figure 94, this approach agrees reasonably well with the experimental 

observations. Mesh 2 and mesh 3 slightly differ from mesh 1 because of the increased intra-bead 

resistance from the non-interface damageable elements.  
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Figure 93 Illustration of elements with and without interfacial damage 

 

 

Figure 94  Experimental and simulation comparison for 3 direction tensile performance 
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5.7 Unilateral Tension-Compression Behavior and Modeling 

Experimental evidence demonstrates the disparate material behavior when subjected to tension or 

compression loads, differences are observed in peak stress, ultimate and rupture strains. Moreover, 

angled macro-cracks are seen for compression loaded specimen regardless of temperature; in 

contrast, tensile specimens fail with the macro-crack approximately orthogonal to the loading 

direction. Materials that behave differently in tension and compression are classified as unilateral. 

Currently, the model implemented and exercised in section 5.4 does not include any unilateral 

effects or parameters; therefore, it does not properly capture the compression behavior well, this 

is evident for 2 and 3 direction loaded modes. From a phenomenological perspective, the micro-

cracks open or close depending if the subjected load is tensile or compressive, respectively, crack 

closure is often referred to as damage deactivation and several theories have been developed to 

address this phenomenon [106]. Damage activation or deactivation is governed by the dissipative 

potential laws, which can be loading-mode dependent. In this approach, the damage variable is 

dissociated into tension and compression parts activated via the sign of the normal strains, shown 

in Eq. (106). The damage variable associated with tensile strains are 𝐷𝑖𝑗
+  and for compressive 

strains, 𝐷𝑖𝑗
−, the Heaviside function is denoted by 𝐻(𝜀𝑖𝑗) and it equals to one if the normal strain is 

positive and zero otherwise. The damage variable dissociation approach allows for the change in 

stiffness upon load reversal if dissipation has occurred during tensile or compressive loading. 

Similarly, the normal components of the damage material tensor, 𝐽𝑖𝑗𝑘𝑙, are decomposed into tensile 

and compressive parts, e.g., 𝐽11(𝑇) = 𝐻(𝜀11) ⋅ 𝐽11
+ (𝑇) + [1 − 𝐻(𝜀11)] ⋅ 𝐽11

− (𝑇) . Experimental 

strain onset values in compression, 𝜀𝑖𝑗
0−, and the temperature-dependent damage onset parameter, 

𝜅0
+(𝑇)  or 𝜅0

𝐼+(𝑇) , calibrated using tensile experiments are used for obtaining the normal 

components of the damage material tensor under compression. The trends with temperature are 

fitted using a least-square approach, the coefficient and plot are provided in Figure 95. Most 

notably, the trends are downward which correlates with decrease dissipation as demonstrated in 

Figure 77b, this is expected since compressive nonlinear behavior is extensive and compressive 

strengths are greater.  

 

 

𝐷𝑖𝑗 = 𝐻(𝜀𝑖𝑗)𝐷𝑖𝑗
+ + [1 − 𝐻(𝜀𝑖𝑗)]𝐷𝑖𝑗

− for 𝑖 = 𝑗 (106) 
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Figure 95 Compression damage component versus temperature (a) along print direction, 𝐽11
− , (b) 

along 2 direction, 𝐽22
− , and (c) along stacking direction, 𝐽33

−  

 

The expansion of the damage surface appears to significantly halt as load progresses past 

the peak stress, this results in significant strain softening behavior in specimens loaded in either 

tension or compression. The rate of hardening or softening is dictated by Lagrange damage 

multiplier, 𝜆̇ , and the isotropic hardening material parameters 𝑐1  and 𝑐2(𝑇) . Experimental 

evidence suggests the rate of hardening changes beyond the peak stress. Although fracture 

mechanics theories can be adopted to better capture the softening regime, a simple approximation 

to the softening behavior is adopted by inhibiting further hardening past the peak stress point, as 

shown in Eq. (107). Since the model is strain-based, the ultimate strains corresponding to peak 

stresses are considered and plotted with respect to temperature in Figure 96. The strains at each 

temperature are the averaged values of that set and the overall average across the temperature are 

used for providing the threshold for which no additional hardening occurs; however, the decreasing 
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trend observed for 2 and 3 direction tensile modes are captured with a linear or quadratic least-

squares fit.  

 

 

 

Figure 96 Average of ultimate strains corresponding to peak stress with respect to temperature 

 

The stress versus strain plots for tension and compression along the print direction are 

shown in Figure 97 and Figure 98, respectively. The room temperature 𝐽11
+  and 𝐽11

−  values are 

equivalent; therefore, the difference in behavior is attributed to the ultimate strain hardening cut-

off. The room temperature value of the damage tensor component, 𝐽11
− , was chosen similar to 𝐽11

+  

since the nonlinear trend in compression was observed to be similar to the tension case. A constant 

𝐽11
−  with temperature does not represent the observed nonlinear behavior at elevated temperatures, 

δ̇ = 𝜆̇ ⋅ [1 − 𝐻(𝜀𝑖𝑗
𝑢𝑙𝑡)] (107) 
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which warrants the need to include its change with respect to temperature at higher temperatures. 

The reason 𝐽11
−  decreases with temperature is to compensate for the increase in the rate of damage 

progression with temperature. Even though 𝐽11
+  is constant with temperature, it was observed to be 

a reasonable assumption based on the model correlation with the data. However, the accuracy of 

the model can be improved by including the temperature dependency of 𝐽11
+  at elevated 

temperatures. For example, the nonlinear strain onset value is found to be between 0.33% and 0.34% 

at 130°C, this is obtained by using a 1% deviation in chord modulus estimate. From these nonlinear 

onset values, the 𝐽11
+  can be computed, and it is found to be within the range of 1.3 and 1.8. It is 

noteworthy to mention that the values of 𝐽11  at elevated temperatures are estimated using 

experimental values of stiffness and nonlinear onset strain and these contain experimental error 

which needs to be carefully considered when computing the 𝐽𝑖𝑗𝑙𝑘 values. The mean experimental 

values were observed to provide reasonable estimates to the 𝐽𝑖𝑗𝑘𝑙 damage parameters; however, an 

iterative approach to find representative values is recommended for experiments with significant 

variability in properties. Furthermore, since the values related to damage initiation and damage 

surface limits depend on the microstructure, micrographic scans or micromechanical approaches 

aimed at analyzing micro-damage initiation with respect to strain-levels should be considered 

whenever possible to obtain a more representative estimate of 𝐽𝑖𝑗𝑘𝑙. Sine damage is assumed to 

initiate at nonlinear strain onset, the components of 𝐽𝑖𝑗𝑘𝑙  are sensitive to the 𝐶11
∗  and 𝜀11

0+ 

experimental values. These values do contain experimental error resulting from the Young’s or 

shear modulus fit, chord modulus deviation, force and DIC-computed strain errors. Despite 

measurement uncertainties, the average values of model parameters yield simulated behavior that 

correlates well for both tension and compression data.  

Figure 99 and Figure 100 illustrate the stress versus strain behavior along the 2 direction 

for tension and compression deformation modes, respectively. The simulated behavior in tension, 

Figure 99, is similar to the predicted results shown in Figure 82, and the difference is observed 

after the peak stress corresponding to the ultimate strain threshold. The deactivation of the 

hardening rate, 𝛿̇, produces the increase in damage progression, this deactivation of the hardening 

rate is seen to cause the rapid evolution of the damage variable, 𝐷2
+, and softening response. The 

accelerated damage progression is expected when the hardening rate goes to zero since no further 

expansion of the damage surface is allowed and greater unloading is required to bring the material 

back into the allowable thermodynamic force space. The brittle behavior of the short fiber 
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composite is reasonably modeled by the deactivation of the hardening rate and implementation of 

either a damage critical value or deactivation of hardening is a viable approach for capturing the 

extensive softening or brittle fracture beyond the peak stress. Unlike the brittle behavior in tension, 

compression behavior is more ductile, and the model reflects this trend well as seen in Figure 100. 

The compressive material behavior shows two main differences relative to the tensile case, the 

extent of nonlinear deformation is greater, and the peak stress and strain is also greater regardless 

of the tested temperature. It is noteworthy to mention that the isotropic hardening function remains 

unmodified and calibrated via tensile behavior; therefore, the increase in deformation and peak 

stress is caused by the implementation of the 𝐽22
−  parameter which was determined using the 2 

direction’s experimental compressive properties. Moreover, the model exhibits two softening 

mechanisms at 130°C and 190°C, it is caused by the change in the isotropic hardening rate 

parameter, 𝑐2(𝑇) , and the deactivation of the hardening rate, 𝛿̇ . At lower temperatures, the 

deactivation of the hardening rate dominates the softening behavior, on the other hand, the reduced 

𝑐2 allows for a reduced strain hardening effect and earlier softening at elevated temperatures. It is 

noteworthy to mention that the strain hardening behavior observed at high temperature and large 

strains are partly due to buckling and fixture support as the deformed material comes into contact 

with the fixture. Overall, good agreement between experiments and simulation are found with this 

considered approach. 

 The predicted stress versus strain behavior along the stacking direction is shown in Figure 

101 and Figure 102 for tensile and compressive deformation modes, respectively. Similar to the 

tensile predictions along the 2 direction, the deactivation of the hardening rate produces the 

extensive softening beyond the ultimate strain observed in Figure 101. The compressive behavior 

is governed by the temperature-dependent isotropic hardening response which had been calibrated 

using the stacking direction tensile performance, it is seen to represent the compressive nonlinear 

trend well alongside the implementation of 𝐽33
𝐼− . Since the nonlinear trends in tension and 

compression at room temperature are observed to be relatively similar, the damage components 

𝐽33
𝐼+  and 𝐽33

𝐼− are set to the same reference value of two. The nonlinear onset strain range was 

observed to be between 0.4% and 0.66% for the specimens subjected to 130°C, these were used to 

obtain the average 𝐽33
𝐼− parameter of 1.36. By the same token, the strain range for specimens tested 

at 190°C were between 0.4% and 0.54%, which resulted in an average 𝐽33
𝐼− value of 0.55. The strain 

hardening regime is reasonably predicted utilizing this approach.   
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Figure 97 Tensile experimental and simulation comparison along print direction for (a) 25°C, (b) 

70°C, (c) 130°C, and (d) 190°C 

 

Figure 98 Compression experimental and simulation comparison along print direction for (a) 

25°C, (b) 70°C, (c) 130°C, and (d) 190°C 



 

 

167 

 

Figure 99 Tensile experimental and simulation comparison along 2 direction for (a) 25°C, (b) 

70°C, (c) 130°C, and (d) 190°C 

 

Figure 100 Compression experimental and simulation comparison along 2 direction for (a) 25°C, 

(b) 70°C, (c) 130°C, and (d) 190°C 
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Figure 101 Tensile experimental and simulation comparison along stacking direction for (a) 

25°C, (b) 70°C, (c) 130°C, and (d) 190°C 

 

Figure 102 Compression experimental and simulation comparison along stacking direction for 

(a) 25°C, (b) 70°C, (c) 130°C, and (d) 190°C 
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5.8 Shear Behavior Calibration 

5.8.1 Shear Behavior with Independent Damage Variables 

The comparison between simulation and experiments for shear deformations along the 2-3, 1-3 

and 1-2 directions are shown in Figure 103, Figure 104, and Figure 105, respectively. Independent 

shear damage variables were used to allow for more flexibility in capturing the shear trend, 

inclusion of the three shear damage variables 𝐷4 , 𝐷5 , and 𝐷6  require specification of the 

corresponding shear damage components 𝐽44, 𝐽55, and 𝐽66. The shear damage components were 

assumed and adjusted to obtain reasonable correlation to the experimental results. The kink found 

in the model occurs at the point of damage initiation, this kink is a result of the coarse time 

incrementation. A finer time incrementation will reduce the severe change in slope after damage 

initiation. At room temperature, the predicted nonlinear behavior is in good agreement with the 

experimental results; however, there is a departure in model and experiments at elevated 

temperatures. The shear deformation at elevated temperatures, specifically the 130°C and 190°C 

cases along the 2-3 and 1-3 directions, exhibit a plateau region. The plateau region is believed to 

arise from inelastic strain mechanisms stemming from the polymer phase, this inelastic mechanism 

differs from damage and acts to irreversibly elongate the specimen instead of softening it. 

Although the inelastic strains are not captured in the model, the model is capable of representing 

the nonlinear behavior in shear. With this in mind, the model will have limitations if shear stresses 

dominate the stress state and the body is at relatively high temperatures as the irreversible 

elongation is not properly captured. The hardening rate is deactivated beyond the ultimate strain 

threshold, which causes the rapid softening past the ultimate strain. The deactivation of the 

hardening rate is observed to capture the decrease in stress well. The average ultimate strain values 

provided in Figure 106, Figure 107, and Figure 108 were used for specifying the onset on 

hardening deactivation; furthermore, the assumed values of 𝐽44(𝑇) , 𝐽55(𝑇),  and 𝐽66(𝑇)  are 

provided in the plots. For compression and shear, a decrease in 𝐽 is required to properly reflect the 

trend observed for 3D printed short fiber composites if the hardening is calibrated using tensile 

behavior.  
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Figure 103 Experimental and simulation comparison of shear behavior along 2-3 direction for (a) 

25°C, (b) 70°C, (c) 130°C, and (d) 190°C 

 

Figure 104 Experimental and simulation comparison of shear behavior along 1-3 direction for (a) 

25°C, (b) 70°C, (c) 130°C, and (d) 190°C 
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Figure 105 Experimental and simulation comparison of shear behavior along 1-2 direction for (a) 

25°C, (b) 70°C, (c) 130°C, and (d) 190°C 

 

 

Figure 106 (a) Ultimate effective shear strain, 2𝜀2̃3, corresponding to peak shear stress, and (b) 

damage component 𝐽44 versus temperature 
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Figure 107 (a) Ultimate effective shear strain, 2𝜀1̃3, corresponding to peak shear stress, and (b) 

damage component 𝐽55 versus temperature 

 

 

Figure 108 (a) Ultimate effective shear strain, 2𝜀1̃2, corresponding to peak shear stress, and (b) 

damage component 𝐽66 versus temperature 
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5.8.2 Modification of Hardening Rate by Shifting 

The nonlinear shear response can be described in three parts, the first part is the gradual softening 

that occurs after damage onset, the second is the somewhat stress plateau region for which damage 

progression begins to accelerate, and the last is the softening zone. The strain yield point, 𝜀𝑖𝑗
𝑦

 marks 

the transition from a gradual failure process to one in which the stress remains failure constant for 

continued deformation. An empirical parameter is proposed, ℎ(𝑇), which is activated past the yield 

point using the Heaviside function as shown in Eq. (108), this empirical parameter acts to shift the 

𝑐2 function to reflect the change in strain hardening associated with damage. An example of the 

predicted shear behavior along the 2-3 direction using this approach is presented in Figure 109. 

Although not a standard approach, it demonstrates the viability of capturing the different regimes 

in stress versus strain behavior.  

 

 

 

Figure 109 Example of shifted hardening function effect 

 

  

δ̇ = 𝜆̇[𝐻(𝜀𝑚𝑛 = 0) − 𝐻(𝜀𝑖𝑗
𝑦
)] + 𝜆̇[𝐻(𝜀𝑖𝑗

𝑦
) ⋅ ℎ(𝑇)], 𝑖 ≠ 𝑗 (108) 
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 ANALYSIS OF AN ADDITIVE MANUFACTURED MOLD WITH 

PROGRESSIVE DAMAGE 

6.1 Integration of Thermoviscoelastic Damage into Additive3D 

The modified additive3D framework is illustrated in Figure 110, it depicts the elements of the 

framework and the highlighted modification for process and performance analyses. For the 

implementation of viscoelastic damage, most of the elements of the framework remain unchanged 

except for the UMAT. Within the UMAT, the equations of viscoelasticity must be altered to 

include both the damage effect tensor. Moreover, the damage evolution equations must also be 

integrated. The Prony series equations used for modeling the viscoelastic phenomena is preserved. 

The Fortran code used for defining the UMAT is provided in the appendix section of this work.  

 

 

Figure 110 Thermoviscoelastic damage integration into the Additive3D framework 
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 The illustration above has two essential open-boundary sub-modules which are essential in 

the integration of the viscoelastic damage model into the Additive3D framework. The first sub-

module is labeled experimental characterization and model verification, in this sub-module, 

experiments were conducted to obtain information about the fundamental deformation properties 

of the short fiber composite. Next, this information is passed into the model tuning and calibration 

sub-module. Noteworthy to mention, fundamental effective properties of the short fiber composite 

can be obtained using the ASTM methodology; however, a multitude of methods can be adopted 

for damage analysis and quantification. For example, loading and unloading experiments appear 

to be the most straightforward method to obtain damage evolution parameters. Although, for 

certain low strain-to-failure materials, the monotonic stress versus strain behavior can be used to 

estimate damage evolution parameters as shown in this work. The damage mechanics calibration 

process utilizes the effective elastic, damage, and failure properties to compute the parameters of 

the viscoelastic damage model, these are the components of the 𝐽𝑖𝑗𝑘𝑙 tensor, hardening parameters, 

𝑐1  and 𝑐2 , and damage threshold, 𝜅0 . While experimentally-obtained or calibration model 

parameters are ideal, an iterative and optimization approach can still be used to obtain an estimate 

to the damage model parameters if experimental results are not available or limited. After the 

model tuning process is complete, a verification step is performed by comparing the experimental 

stress versus strain behavior to the predicted nonlinear results at various temperatures.  

6.1.1 Model Limitations 

Several assumptions were made in an attempt to simplify the problem of predicting progressive 

damage accumulation in the short fiber composite. While the chosen assumptions were shown to 

provide good agreement between experiments and simulations, caution in interpretation of model 

results should be made. One of the assumptions is based on the definition of intrabead damage, 

which encompasses damage behavior of bead-to-bead interfaces along the 2 direction. Interfaces 

are not explicitly modeled with cohesive laws as doing so will produce a computationally 

expensive model; moreover, cohesive elements are not compatible with the progressive activation 

routine and cannot be justifiably used in additive manufacturing process simulations at the present 

time. Nevertheless, interfacial behavior, either along the 2 or 3 directions, is accounted for in the 

continuum sense such that the equations governing interfacial damage accumulation is embedded 

into the material model. The option of using only the integration points that lie within a delimiting 
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space surrounding the expected location of the interface is possible; however, it is feasible to adopt 

this approach for the stacking direction but it requires a sophisticated searching algorithm for 

interfaces along the 2 direction. Another assumption is the quantification of damage, it relies on 

the absence of any irreversible strains or plasticity so that any unloading and reloading will pass 

through the peak value and continue its nonlinear path as it otherwise would have. For brittle glassy 

thermoplastic composites, neglecting plastic deformation under tensile load at low temperatures 

appears reasonable given that the damage quantity, computed from the degraded stiffness, outputs 

material parameters capable of describing the nonlinear behavior. The calibration of the model to 

predict tensile and compressive behaviors were strictly deduced from experimentally characterized 

properties and not arbitrarily tuned to fit the experimental results, this point is emphasized and an 

important consideration. Another assumption is on the choice of damage initiation and evolution, 

the damage surface relation which includes the hardening function was chosen based on the fact 

that (i) it has the capability of predicting anisotropic damage, (ii) it requires only simple uniaxial 

tensile, compression, and shear data, (iii) kinematic hardening and softening is easily modeled, (iv) 

implementation of temperature-dependent parameters is straight-forward, and (v) it has 

compatibility with the Additive3D simulation framework. Indeed, different damage initiation 

functions or criterions can be used based upon modeling needs. The fracture energies of the 

material were not experimentally characterized nor available in the literature; therefore, the 

softening regime of the material model is somewhat questionable. Two types of approaches were 

taken to reflect the softening part of the stress versus strain behavior; firstly, a damage critical 

value was implemented, and this produces the fracture behavior observed in the response of the 

material by instantaneously evolving the damage value to one. Secondly, no further hardening was 

allowed past the ultimate stress point, this caused the rapid evolution of the damage variable 

observed. Although obvious, the material model is not meant for problems which require fracture 

mechanics capabilities, for instance, to assess damage tolerance. Another assumption is the 

regularization approach, the artificial viscosity method was adopted for its simplicity in 

implementation which does not add to the computational expense of the model unlike the other 

approaches. Nevertheless, the choice of the viscosity parameter is difficult to determine since it 

requires awareness of its impact on the solution; in other words, it cannot be chosen arbitrarily and 

requires multiple analyses to understand its effect on the solution.  
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6.2 Design of a Short Fiber Composite U-Shaped Mold 

A short fiber composite mold, inspired by the LSAM printed tool shown earlier in Figure 2, is re-

designed at a smaller scale with supports. The dimensions of the tool are provided in Figure 111, 

the spline geometry, used for defining the complex u-shape, can be replicated using the coordinates 

of the event series provided in the appendix section. Compression molding is the intended 

application; therefore, a corresponding pressing surface (i.e., plunger) is needed. The assembly of 

the compression tool is shown in Figure 112 which illustrates the composite mold in dark-grey, 

prepreg charge, and aluminum plunger. Noteworthy to mention, the shape of the mold, provided 

in Figure 111, is an idealized version of the 3D printed mold. Moreover, the dimensions correspond 

to the nominal size of the tool. Although optional, it is customary to design the outer dimensions 

of the mold approximately half a bead width larger than the nominal dimensions, a subsequent 

machining step to obtain a smooth surface then follows to obtain the desired nominal outer 

dimensions.  

One of the challenges with t additive manufactured designs of this size is the deviation of 

the sliced geometry to the idealized CAD model. Figure 113 illustrates the CAD model and its 

sliced representation. The oversized model is sliced using the commercial software Simplify3D©. 

In the sliced model, there are gaps present in regions where print segments meet, an example of 

the region is enlarged in the figure. While the flow rate and compaction depth can be modified to 

attempt closing the gaps, the bead dimensions will be altered which can make it more difficult to 

control the overall size of the geometry. The gaps and sharp turn radii are generally not captured 

in both process and performance simulations, and the idealized model is often used for 

approximating the printed and machined geometry. The relevant slicing parameters used for 

creating the sliced model are provided in Table 8. External and internal thin wall type were found 

to be essential for obtaining a non-distorted sliced model. The end-point extension distance is 

specified at half of a bead width, this ensures the infill region does not have gaps at the z-transition 

zones. 
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Figure 111 Nominal dimensions of designed u-shaped mold 

 

Figure 112 Schematic of compression molding assembly with 3D printed short fiber composite 

mold 

Aluminum press

Prepreg charge

3D printed short fiber 

composite mold
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Figure 113 Idealized u-Mold geometry and Simplify3D© sliced model 

 

Table 8 Relevant Simplify3D© parameters 

Parameter Specification 

Nozzle diameter 4mm 

Top solid layers 0 

Bottom solid layers 0 

Outer/Perimeter Shells 2 

Outline overlap 5% 

Speed (mm/min) 4000mm/min 

External thin wall type Allow single extrusion walls 

Internal thin wall type Allow single extrusion fill 

Allow perimeter overlap 5% 

Minimum extrusion length 50mm 

Endpoint extension distance 3.075mm 

Avoid crossing outline for travel movements Enabled 

Maximum allowed detour factor 4.0 

Non-manifold segments Heal 

6.3 Process Simulation of a Mold 

Severe thermal gradients and relatively high stresses are not desirable during and after printing, 

the purpose of conducting process simulations is to predict the temperature and stress distributions 

throughout the history of the manufacturing process. The stress and temperature distributions will 

help determine if the chosen process conditions are appropriate; therefore, the goal is to change 

the process conditions if stresses or temperature gradients are significant. The temperature profile 

of the u-shaped mold is shown in Figure 114, the contour plots are taken at the end of the 12th, 

Sliced u-MoldIdealized Geometry

13

2

Gap
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23rd, and 35th layers, these are within the deposition step. During the deposition stage, the build 

plate is set to 120°C (398.15K) and it acts as a heat sink. In addition, the temperature at the base 

of the part, which is in contact with the build plate, exhibits the coldest temperatures throughout 

the deposition history. Heat losses through conduction plays a significant role in the cool down of 

the part for layers close to the build plate. Heat losses through convection and radiation dominate 

the cool down of the molten material after it has been deposited within the layer time. For 

reference, the layer time is approximately 33s for the chosen process conditions, this layer time is 

computed from the event series by taking the difference in time at the beginning and end of the 

layer. Figure 115 illustrates the temperature contour after printing at approximately 26 minutes 

after deposition and after 10 minutes of cool down. After deposition, conduction heat losses are 

still significant relative to heat losses from radiation or convection. During the cool down steps, 

the temperature boundary condition specified at the base of the part is removed. Consequently, 

convection and radiation occur at all of the exposed free surfaces, this causes the temperature at 

the free surfaces to decrease faster than the bulk regions.  

 

 

Figure 114 Temperature distribution during the deposition stage at three different times 

 

Layer 12

Layer 23

Layer 35
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Figure 115 Temperature distribution after deposition and after 10 minutes of cool down 

 

 

Figure 116 Displacement magnitude and mises stress distributions after 10 minutes of cool down 

 

The displacement magnitude and von mises equivalent stress of the printed part after cool 

are shown above in Figure 116. A displacement magnitude of approximately 0.6mm is observed 

throughout the part, with 0.7mm seen at the top-left region of the displayed part. Large 

displacement magnitudes were found at the base of the part where contact is made with the build 

After Deposition: 25.6min

After Cool Down: 35.6min
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plate. The rapid cooling of the first layer as a result of the imposed temperature boundary 

conditions causes this region to experience significant deformation relative to subsequent layers. 

The mises stresses are approximately 5MPa in the dark blue regions, and around 40MPa in the 

lighter regions, these lighter regions are located at the ends of the supports and at the four outer 

corners of the part. Similarly, the high mises stress is found at the base of the part.  

 

 

Figure 117 Displayed stresses for cross-sectional cuts taken 6mm above the print bed 

 

 Three process-based analyses were conducted to observe the differences in displacement 

and von mises magnitudes after the part has been printed and cooled down. Table 9 provides a 

summary of the process parameters modified, the convective heat transfer equations can be found 

in [8], the external wall feature type was used. For completeness, the polynomial function 

coefficients describing the air kinematic viscosity of zero, first, and second degrees are -8.96868D-

06, 6.36467D-08, and 6.21664D-11, respectively. Likewise, the polynomial coefficients of air 

thermal conductivity for the zero, first, second, and third order are 3.49201D-04, 9.89608D-05, -

4.57695D-08, and 1.39744D-11, respectively. The Prandtl number for air is 0.702, the first 

correlation coefficient for an external wall is -1.0169549D-03, the second correlation coefficient 

is 0.10586658, the n exponent is equal to 0.3665147, and the m exponent is equal to 0.2. The plots 

and figures shown earlier were for the process01 case. Only the build plate temperature, print 

speed, and base constraining method were changed. Process02 has similar process parameters as 

process01 except for the print speed, the lower print speed relates to a longer layer time which was 

approximately 44 seconds. Process03 was specified with the same print speed as process02 except 

that the build plate was set to room temperature and the base of the part fixed throughout the 
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deposition stage. Figure 118 illustrates the displacement magnitudes for each of the process 

conditions for the top three illustrations, and the mises stress distributions for the bottom-most 

plots. Like the first case, the displacement magnitudes were found to be greatest at the base of the 

part. A node at the top-center region of the curved part is chosen for extracting the displacement 

magnitude. The displacement magnitudes are similar for all three conditions at the chosen location, 

and were generally within 10% in most regions. However, the mises stress magnitudes were 

observed to be different for all three cases. Process03 exhibited the greatest stress in the base 

region, this is attributed to the imposed room temperature boundary condition and the fixed 

condition at the base. Since the mises stress distribution and the displacement magnitudes were 

not significant for most of the part when using when conditions in process01, it is chosen for the 

physical print.  

 

 

Figure 118 Comparison of displacement magnitudes for three different processing conditions 
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Table 9 Values of simulated process condition parameters 

Parameters Process01 Process02 Process03 

Build plate temperature 393.15K 393.15K 298.15K 

Speed 4000mm/min 3000mm/min 3000mm/min 

Base constraint Cohesive Cohesive Encastre 

Elements per bead width 2 

Elements per bead height 2 

Total elements 124,662 

On bed cooling duration 300s 

Off bed cooling duration 300s 

Deposition time increment 1s 

Cooling time increment 5s 

Ambient temperature 298.15K 

Material extrusion temperature 638.15K 

Emissivity 0.96 

 

6.3.1 Temporal Plot of Temperature between Physical Print and Simulation 

Figure 119 illustrates the temporal plot of the temperature at three locations along the backwall of 

the printed geometry, the temperature profile of the backwall, on the flat side, is shown below. The 

goal here is to provide a comparison of the temperature evolution during the deposition stage. 

Three curves are taken at layer heights 12, 23, and 35, and these are approximately located at center 

region of the flat region. Experimental values were extracted from a similar location on the 

physical mold, and the data was obtained using a thermal camera at a fixed distance from the print 

bed. The predicted temperature evolution were shifted in time to overlap with the experimental 

value to facilitate comparison, this shift is required since the event series used for simulations were 

generated using a python script which reads data from the gcode file and it does not account for 

changes in acceleration/deceleration during turns and transitions. From the plot shown below, the 

temperature evolution between the simulated and experimental results are in mostly good 

agreement during the deposition stage which lasts about 1500 seconds, some deviation is observed 

as the part is allowed to cool-down toward room temperature. A decrease and subsequent increase 

in temperature at approximately 100, 400, and 800 seconds occurs since the layer commences at 

the melt, cools down, and slightly re-heats when the layer directly above is deposited. The 

important point here is that the heat transfer material model captures the expected trend from heat 

losses in conduction, convection and radiation, this verifies the model works as expected. The heat 

transfer material model is utilized to conduct a sequentially-coupled thermal-stress analysis with 



 

 

185 

an approximate convective coefficient specified at the exposed surface during compression 

molding of the heated tool.  

 

 

 

Figure 119 Temporal temperature plot for three different layers heights (top), and backwall 

temperature profile after deposition and cool-down (bottom) 

6.4 Performance Simulation of a Mold 

Figure 120 illustrates the load versus deflection, print direction stress state, and print direction 

compression damaged zones. The model has 131,560 C3D8 elements, with one element per bead 

height. No stress-mapping was performed in order to reduce the computational burden; however, 

it is possible to map the voxelized model stresses onto the conformal mesh. A uniform temperature 

of 150°C is applied at all of the nodes. A displacement boundary condition is specified at the 

surface nodes which are meant to be in contact with the plunger, this type of boundary condition 

was chosen for simplicity. The bottom flat surface is fixed. A ramp rate with an amplitude of zero 

After Deposition: 25.6min After Cool Down: 35.6min
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at commencement and one at 120 seconds is specified, the total time increment is 120 seconds. 

The specified displacement was 3mm downward to induce compression in the supporting regions, 

this produces a displacement rate of 1.5mm/min. The nonlinear geometry option, nlgeom, was 

used alongside an unsymmetric matrix storage. Automatic stabilization was enabled with the 

default dissipated energy fraction of 0.0002 and an adaptive stabilization with maximum ratio of 

stabilization to strain energy specified at 0.05. The initial, minimum and maximum time 

increments were set to 0.5, 1e-15, and 0.5 seconds, respectively. Solution controls were modified 

from the default settings, the following parameters were set to 𝐶𝑛
𝛼 = 100, 𝐼0 = 8, 𝐼𝑅 = 10, and 

𝐼𝐴 = 50 , these can be found under the field equations and time incrementation tabs. The 

subsequent analyses have similar parameters with the exception of the minimum time increment, 

which in some cases were specified as low as 1e-50 in an attempt to achieve convergence. All 

finite element models were solved using the Halstead cluster that is available at Purdue University.  

 

 

Figure 120 Idealized u-shaped mold with nominal and original dimensions 

 

Idealized model with nominal 

dimensions

� � �� = 237� �

Compression 

failure
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For all analyses conducted here, the material model that takes into account unilateral 

behavior without hardening past the peak load is used. In the idealized model, an ultimate failure 

load is predicted at 237KN since the load is seen to significantly drop. The nonlinear behavior that 

is seen is mostly a result of accumulated tensile, compressive, and shear damage. In the plot shown 

above, a linear regime is observed though it does not signify the absence of damage since the print 

direction compression damage variable begins to evolve at approximately 67KN at the supports. 

After 0.6mm of displacement, the material’s tangent stiffness is visibly different, and this happens 

when damage localizes as shown in the black and white damage contour plot. The dark zones 

represent regions of damage, and when the damage variable reaches a state of one, it implies that 

the element can no longer support any load since its stiffness has fully degraded. Further, this 

contour plot illustrates the localized damage zones which happens at the sharp corners of the 

supporting regions, this is expected since load concentrations are expected in regions where a 

disruption to load transfer occur. The print direction stress contour at the peak load is shown, this 

illustrates how the load is redistributed after damage and before failure.  

 

Figure 121 Representative dimensions of 3D printed and machined u-shaped mold 

 

 Figure 121 is a re-scaled u-shaped mold, the z-direction height was reduced by half and 

several fillet regions each with a 7.5mm radius was included. The mold is re-designed to ensure it 

will fail within the load capacity of the 55-kip (245KN) MTS, the idealized model previously 
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shown does not include these fillet regions and the slightly thicker inner walls that result from the 

3D printing process. In the model shown above, thickness deviations are accounted for and the 

sharp corners are removed to better reflect the actual printed mold.  

 Figure 122 shows the load versus displacement plot for the re-designed u-shaped mold 

illustrated in the figure above. The same boundary conditions were applied as in the idealized case 

except for the loading mechanism which is explicitly modeled. An aluminum plunger with C3D6 

elements within the curved region is used, and C3D8R elements in the rectangular regions. The 

stiffness of the aluminum is specified as 68900MPa with a Poisson’s ratio of 0.31. A reference 

point is tied to the nodes at the top of the aluminum plunger, this reference point is fixed in all 

directions except the vertical for which a downward displacement condition is specified with a 

magnitude of 3mm. A uniform room temperature field is prescribed at the initial step, no initial 

residual stress state is mapped onto the mold for computational ease. At this temperature, damage 

is likely to occur at the curved region under tensile loads and on the angled supports from shear 

damage. No peak load is reported since the analysis was not fully completed in the allotted time 

given, significant time-increment cut-backs were observed. It is assumed the model can withstand 

more load since full fracture or damage evolution has not been observed yet.  

 

Figure 122 Performance of u-shape mold under compression at room temperature 

 



 

 

189 

 

Figure 123 Sequentially coupled thermal-stress analysis of short u-shape mold with a film 

coefficient, ℎ = 25𝑚𝑊/𝑚𝑚2𝐾, at the exposed surfaces, with 298.15K sink temperature 

 

Similar to the load case in Figure 122, the short u-shaped mold is modeled with the same 

mechanical boundary conditions except with a non-uniform temperature distribution. A 

sequentially coupled thermal-stress analysis is conducted. In the thermal analysis, the same 

material model is used as in section 0. The tool initially begins with a uniform temperature of 

190°C applied at the nodes, then all free surfaces are subjected to convection heat loses with the 

film coefficient specified as 25𝑊/𝑚2𝐾. In a subsequent step in the thermal analysis, the bottom 

flat surface is specified with a constant temperature condition of 190°C for two minutes. Moreover, 

the plunger is specified with a constant temperature at the top face. These conditions reasonably 

reflect the experimental setup used for the trial run, though it is noteworthy to mention that the 

actual conditions are more complex than assumed here. Figure 123 illustrates a snapshot of the 

temperature distribution at the end of the thermal analysis, this temperature distribution is then 

mapped onto the structural model. In the figure below, the load versus displacement is shown 

alongside the damage contours for the print direction tensile and compressive damage variables, 

the 2 direction compressive damage variable, and the 2-3 shear damage variable. These damage 

variables were observed to be the most pronounced at the peak load value. The load versus 

displacement curve exhibits nonlinear behavior, similar to the load case of the idealized model 

shown earlier, this nonlinearity results mostly from the accumulated damage. Supporting regions 
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are predicted to likely fracture under compression in addition to the base under shear and the 

curved side under tension. 

 

 

Figure 124 Sequentially coupled thermal-stress analysis of imperfect short u-shape mold with a 

film coefficient, ℎ = 15𝑚𝑊/𝑚𝑚2𝐾, at the exposed surfaces, with 298.15K sink temperature 

 

 The gaps shown earlier in Figure 113 for the sliced geometry will impact the stress 

distribution in the mold, these empty regions are not straightforward to model and an attempt to 

include these discontinuous regions is made as shown in Figure 124. The size and shape of the 

discontinuous regions have some form of curvature since these regions are produced when the 

printer makes a turn or loop. In the model shown above, these regions are approximated by 

triangles with varying sizes which are representative of the stochastic nature of the print quality. 

A similar sequential thermal-stress analysis is performed as in the previous case illustrated in 

Figure 123, the film coefficient is specified to be 15𝑊/𝑚2𝐾 as an assumption. The temperature 

distribution is shown above, and it is also mapped onto the structural model. The load versus 

displacement curve is presented above, and similar to the previous case, compression print 

direction damage is observed to also commence within the linear region. The load at which damage 

begins is approximately 37KN. The stress distribution along the print direction is also shown at 

the last converged time increment for the models with and without the discontinuities. These 

Last converged increment Last converged increment
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discontinuous regions have an amplifying effect on the compressive stresses at the three supports 

relative to the non-discontinuous model.  

 

 

Figure 125 Tension and compression damage along 1 and 2 directions for imperfect u-shape 

mold 

 

 Figure 125 illustrates the print direction tensile and compression damage variables on the 

left hand side, and the 2 direction tensile and compressive damage variables on the right hand side 

for the same model shown above. These damage plots were obtained at the last converged time 

increment. Dark regions are representations of damaged zones as mentioned previously, and the 

darker regions are seen to be within some proximity to the discontinuous regions. For instance, 

print direction compressive damage is observed at the bottom center in addition to 2 direction 

tensile damage. Keeping in mind the temperature distribution, the temperature is near the applied 

boundary temperature of 190°C, which directly implies that the strengths of the material is lower 

in this region; therefore, it is reasonable to expect some fracture at this location. It may be 

noteworthy to highlight that damage is not seen to localized or accumulate in one region for all 

damage modes, rather it occurs at different locations yet within some proximity to the 

discontinuity.  
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Figure 126 Short u-shape mold with a constant applied pressure of 10MPa, shape deviation as a 

result of creep-damage interaction 

 

 A mold without discontinuities is analyzed under a constant applied load of 10MPa and a 

uniformly distributed temperature of 190°C. Although not displayed, the aluminum plunger is 

present, its top surface is prescribed with a uniformly distributed pressure. The constant pressure 

conditions induce creep behavior since the compliance of the material increases with time for 

constantly sustained loads. A loading rate of 5MPa/min is applied, and the applied pressure was 

sustained for at least one hour (3600s) to monitor the evolution of the shape and damage variable. 

The plot shown in Figure 126 contains the shape outline of the tool after an hour at the sustained 

pressure, the selected path used for extracting the X-Y coordinates of the mold shape is highlighted 

in red. In the same plot, the print direction damage variable is also plotted with respect to the X-

coordinate. Damage was observed after the load was applied, with a maximum magnitude of 

1.16%. After an hour, this magnitude slightly increases to 1.3% and to 1.4% after 1.7 hours. The 

location of the damage is in the curved region of the mold, directly below the plunger. This 

signifies that there is a likelihood that material softening will occur in this region; consequently, 

the shape of the mold may be adversely affected by this softening.  

Selected Path

X

Y
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6.5 Experimental Investigation 

The mold presented in section 6.1 was 3D printed using the CAMRI system, it is made from the 

25% wt. carbon fiber reinforced PESU which had been characterized in Chapter 1. The pellets 

were dried at 125°C for four hours prior to processing. In the CAMRI system, the temperatures in 

zones 1 through 6, as illustrated in Figure 23, were set to 327°C, 343°C, 366°C, 365°C, 365°C, 

and 370°C, respectively. Moreover, the build plate temperature was maintained at 120°C and a 

thin layer of Weldwood® contact cement was deposited onto the build plate to ensure the initially 

deposited beads remained fixed during the deposition stage. A bead compactor, i.e., a tamper, was 

used to flatten the deposited layers, the vibrating plate’s speed was set to 1500rpm. The processing 

conditions labeled “process01” discussed in section 6.3 was used. After the mold was 3D printed 

and cooled down to room temperature, it was placed inside an oven for the thermal annealing 

process. The mold was subjected to a temperature of 190°C for at least two hours to alleviate 

residual stresses; also, since polymer diffusion is driven by temperature, it is assumed the interbead 

bonding is also improved during the annealing process.  

 

 

Figure 127 3D printing process of u-shaped mold using the CAMRI system 
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After the annealing process was completed, the outer perimeters of the mold were machined using 

a computer numerical control (CNC) system. Half of a bead’s width was removed during the 

machining process. A servo-hydraulic MTS 810 with a 55-kip (245 KN) load cell was used for the 

compression test. An in-house built press with temperature-controlled platens was installed onto 

the 55-kip MTS frame, the bottom platen was controlled in displacement mode by the movable 

piston and the top platen was in contact with the load cell. An actively cooled plate was placed 

between the load cell and the top platen. For the experimental procedure, a 120 grit medium 

drywall sanding screen was placed onto the top and bottom platens and secured using high 

temperature tacky tape, the screen was used for increasing the friction between the platens and the 

compression assembly. The platens were pre-heated to approximately 190 ° C before the 

compression test. An oven was placed near the MTS setup to minimize the time to transfer the 

heated mold onto the press. The short fiber composite mold and aluminum press was heated to a 

temperature of 190°C inside the oven, a thermocouple was placed at the inner wall of the mold to 

monitor the surface temperature of the mold. Figure 129 illustrates a transient heat transfer analysis 

conducted on the mold design shown in section 1.1, the film coefficient specified at the free 

surfaces was set to 50𝑊/𝑚2𝐾 with a sink temperature of 463.15K. Further, the time to a uniform 

temperature of 190°C is estimated to be approximately 26 minutes, this serves as a conservative 

estimate for the time required to reach the desired temperature once the ambient reaches 190°C.  

 

 

Figure 128 Experimental setup of short fiber composite mold for compression testing 
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Figure 129 Transient heat transfer analysis of original u-shape mold design 

 

Figure 130a shows the MTS-generated load versus crosshead displacement for the short fiber 

composite mold subjected to compressive loading. The aluminum plunger and composite mold are 

not completely in contact which is likely because of the thermal expansion difference and 

temperature differential between the two, the initial stiffening observed is a result of the contact 

between the mold and plunger settling into place. Some initial linear behavior is observed between 

1mm and 2mm, nonlinear deformation is observed afterwards. The initial softening at the first 

peak load, corresponding to a load level of approximately 169KN, was observed to crack in the 

curved region and at the bottom-center. From the cameras, the cracks first formed and evolved at 

the base of the part, where the discontinuity lies. In the subsequent images, a macro-crack was 

observed on the tensile-loaded side of the curved portion, these cracked regions are highlighted in 

the figure below. Due to the fact that the load transmission was disrupted on the left-hand side of 

the mold (i.e., from the cracked curved region) and the center region, the left-hand side support as 

well as the center support could no longer sustain the required load. Consequently, the right-hand 

support essentially sustained the load post-initial peak until catastrophic fracture. The macro-crack 

that causes ultimate failure, passes through the discontinuity and terminates near the corner of the 

support, on the top-left side, and the contact surface. The duration of the test took approximately 

5.5 minutes, this does not include the addition two or three minutes of setup time. The mold is 

believed to have substantially cooled down which explains the relatively large ultimate load.

5 minutes 10 minutes 26 minutes



 

 

196 

 

(a) 

 

(b) 

Figure 130 (a) MTS-generated load versus crosshead displacement for short fiber composite 

mold under compression, (b) images of composite mold before and after fracture 
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 CONCLUSION 

In summary of this dissertation, a novel viscoelastic damage modeling approach is developed for 

the analysis of extrusion deposition additive manufactured short fiber reinforced composites. The 

viscoelastic damage model is derived using thermodynamics and continuum damage mechanics 

principles. Two types of material models were considered, one with independent damage variables 

and another with three principle damage variables; moreover, critical damage values and a limited 

hardening function were also considered in the formulations. Experiments were conducted to 

understand the material behavior at ambient and elevated temperature; furthermore, stress versus 

strain behavior was analyzed for specimens subjected to uniaxial tensile, compressive, and shear 

deformations. The mechanical properties in tension and compression obtained from experiments 

were utilized to calibrate the material model, shear behavior was assumed based on experimental 

trends for the case with independent shear damage variables. The material model is verified using 

the experimental data, and it was shown to possess the ability to predict experimental trends 

observed at various temperatures or deformation modes. Lastly, the material model is integrated 

into the Additive3D framework and performance analyses were made for a compression molding 

tool.  

 Chapter 3 contains the derivation of the viscoelastic damage model used throughout this 

dissertation. The Helmholtz free energy potential is defined based on a Taylor series expansion of 

the viscoelastic internal state variables, damage is introduced through the principle energy 

equivalence. Thermodynamic consistency is enforced by satisfying the Clausius-Duhem inequality. 

Failure initiation and evolution is determined using the energy-norm surface function with a 

temperature-dependent isotropic hardening function; noteworthy to mention, the material-

dependent damage interaction tensor also exhibits temperature-dependency and is dissociated into 

tensile and compressive parts. The material model is implemented in numerical form as a user-

defined material subroutine for the commercial finite element analysis software Abaqus/Standard.  

 Chapter 4 includes the experimental characterization performed on a 25% wt. carbon fiber 

reinforced PESU. The viscoelastic properties were initially characterized using the three-point 

bending test for beams oriented along the print and in-plane transverse directions. Based on the 

results of the relaxation test, three temperatures were selected for elevated temperature mechanical 

tests with the intention to minimize relaxation nonlinearity within the span of the test. Unilateral 
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behavior is observed for tensile and compressive behaviors, with compression nonlinearity and 

strength being greater than the tensile performance irrespective of temperature or corresponding 

loading direction. A decreasing nonlinear onset strain value was observed for tensile and 

compressive specimens tested along the 2 and 3 directions. Furthermore, strength and stiffness 

were found to generally decrease as temperature increases for tensile and compressive specimens; 

however, shear modulus was not found to experience this decaying trend along the 2-3 and 1-3 

directions. Overall, the experimental campaign has shown the need for an anisotropic damage 

model that can account for behavioral changes when temperature is changed.  

 Chapter 5 discusses the procedure used for calibrating the material model using 

experimental properties procured in Chapter 4. The Prony series is characterized and a modified 

WLF equation is adopted to better predict the shift factors at lower temperatures. The thermoelastic 

approach adopted in this work is used for defining the viscoelastic stiffness matrix. The model 

with three principal damage variables and critical damage values was calibrated using tensile 

experimental properties to obtain the temperature-dependent damage threshold and exponential of 

the hardening function. For the model with unilateral behavior, both tensile and compression 

properties are used for estimating the damage model parameters. Since the model parameters were 

determined using the uniaxial tensile and compressive data, the three shear-dependent components 

of the damage interaction tensors were adjusted to obtain reasonable correlation to the shear data. 

Overall, the material model is found capable of predicted the observed experimental trends such 

as reduced nonlinear onset strain and reduction in strength.   

 Chapter 6 presents the modification made to the Additive3D framework. The material 

model is used for predicting performance of an additive manufactured compression molding tool. 

The load versus displacement of the compression mold is predicted, where the damage modes are 

quantified. Several analyses were conducted to demonstrate the utility of process and performance 

simulations. Moreover, multiple performance analyses were made to illustrate the damage model 

capability to predict damage zones and the load versus displacement behavior.  

 In conclusion, this work shows a comprehensive effort in damage modeling for which there 

are several important results made from conducted research. Firstly, the short fiber composite 

exhibits anisotropic behavior and its stress versus strain behavior changes when temperature is 

changed, this behavior must be included in material models. Secondly, the stress versus strain for 

uniaxial tensile behavior can be predicted and shown to have good agreement with experiments by 
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using material model parameters calibrated from tensile properties. Predictions of the unilateral 

behavior requires additional normal damage variables alongside dissociated normal damage 

interaction components into tensile and compressive parts. Permanent deformation cannot be 

modeled using this approach; therefore, extensive deformation observed for shear properties at 

elevated temperatures are not well captured. The temperature-dependent isotropic hardening 

function is capable of capturing changes in intrinsic and extrinsic material properties, its 

parameters were deduced from elevated temperature tensile data. Performance analyses can be 

made using the material model to predict load-displacement behavior and identify damage 

quantified regions.  

7.1 Future Work 

 The presented research has numerous areas of improvement, the author would like to 

recommend possible future work for this research as listed below. 

1. Include a permanent or plastic deformation potential to model irreversible strains to 

complement damage.  

2. Consider replacing the isotropic hardening function with an anisotropic hardening function 

with softening defined as a function of the fracture energy and strains. 

3. Consider using the gradient-enhanced non-local approach to mitigate mesh-dependency 

caused by material softening. 

4. Develop a searching algorithm for 3D printed geometries to specify enriched interface 

damage zones which act with interfacial damage properties. 

5. Develop a micromechanics approach to obtain homogenized viscoelastic stiffness matrix 

from micro-constituent elastic and viscoelastic properties. 

6. Conduct additional experiments aimed at quantifying damage and further validate the 

material model. 

a. Obtain X-ray computed tomography for a loaded specimen under tension or 

compression to quantify damage at different strain or stress levels. 

b. Obtain loading/unloading tensile and shear data to compare with CT-scan data and 

the current approach taken in this research. 

c. Perform a three-point bending under quasi-static loading to obtain creep rupture 

and ultimate strength to compare with simulations.  
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APPENDIX A. MATHEMATICAL FORMULATION AND CODES 

A.1 Definition of Second and Fourth Order Tensors 

 In this dissertation, tensors are defined in 3-dimensional space; therefore, the rank of any 

tensor is defined by 𝑛 and the total number of components is computed by 3𝑛. Summation notation 

is used to describe these tensors, it is also known as the Einstein summation convention. The total 

number of independent indices denote the rank of the tensor. Second and fourth order tensors are 

then composed of 9 and 81 components, respectively. An example of a generic second-order tensor 

is shown in Eq. A.1. The tensors presented here are Cartesian tensors, this means they are defined 

by a set of rectangular axes or orthonormal bases, 𝑒̂1, 𝑒̂2, and 𝑒̂3. Tensor transformation from one 

coordinate system to another follow the usual procedure, that is, they are transformed by the 

rotation or directional cosine matrix, as given by Yu [142].  

 

 

Another example of a second-rank tensor is the stress tensor, shown in Eq. A.2. The tensors 

presented here are Cartesian tensors, this means they are defined by a set of rectangular axes which 

are labeled the 1, 2 and 3 axes. The Cauchy stress tensor is used in this dissertation and it has 

symmetric properties, as shown in Eq. A.3, which can be derived through the equations of motion. 

Symmetry of second-order tensors means that it contains 6 independent components. To denote it 

is symmetric, its indices can be interchanged, 𝜎𝑖𝑗 = 𝜎𝑗𝑖. Moreover, it can be written as a 6x1 vector 

as shown in Eq. A.4, this tensorial notation is known as the Voigt notation and it is used throughout 

this dissertation. The infinitesimal strain tensor, 𝜀𝑖𝑗, is also used throughout this work; moreover, 

the strain tensor follows similar convention, with the symmetry condition, 𝜀𝑖𝑗 = 𝜀𝑗𝑖, still valid. 

Noteworthy to mention, there are many definitions of the strain tensor; however, for infinitesimal 

theory, such tensors are indistinguishable. The strain tensor can be written as shown in Eq. A.5, 

with 𝛾12 or 2𝜀12 denoting the engineering shear strain, these are equivalent.  

 

𝐓 = Tmn = (

𝑇11 𝑇12 𝑇13
𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇𝟑𝟑

) (A.1) 

σij = (

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

)    (A.2) 
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A generic fourth-order tensor is shown in Eq. A.6. These types of tensors can have major and 

minor symmetry; for example, major symmetry implies the following 𝑇𝑖𝑗𝑘𝑙 = 𝑇𝑘𝑙𝑖𝑗, where the first 

two pair of indices and the last two pairs are swapped. For the case of minor symmetry, the 

individual indices are permuted, 𝑇𝑖𝑗𝑘𝑙 = 𝑇𝑗𝑖𝑘𝑙 = 𝑇𝑖𝑗𝑙𝑘 = 𝑇𝑗𝑖𝑙𝑘. Without symmetry, a fourth-order 

tensor indeed contains 81 independent components. On the other hand, minor symmetry curtails 

the number of independent components to 36, and further drops to 21 with both major and minor 

symmetry properties. In the latter case, the tensor can be written as a 6x6 matrix as shown in Eq. 

A.7. The indices are written in Voigt notation, and are related to the forth-order tensor indices by 

substituting each number to the corresponding fourth-order notation pair (e.g., 1 → 11, 2 → 22, 

3 → 33, 4 → 23, 5 → 13, and 6 → 12).  

 

σij = (

𝜎11 𝜎12 𝜎13
𝜎22 𝜎23

𝑠𝑦𝑚𝑚 𝜎33

) (A.3) 

σi =

[
 
 
 
 
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6]
 
 
 
 
 

=

[
 
 
 
 
 
𝜎1
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12]
 
 
 
 
 

 (A.4) 

𝜀i =

[
 
 
 
 
 
𝜀1
𝜀2
𝜀3
2𝜀4
2𝜀5
2𝜀6]

 
 
 
 
 

=

[
 
 
 
 
 
𝜀11
𝜀22
𝜀33
2𝜀23
2𝜀13
2𝜀12]

 
 
 
 
 

=

[
 
 
 
 
 
𝜀11
𝜀22
𝜀33
𝛾23
𝛾13
𝛾12]
 
 
 
 
 

 (A.5) 

Tijkl =

(

 
 
 
 
 
 
 
(

𝑇11 𝑇12 𝑇13
𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇33

)

11

 (

𝑇11 𝑇12 𝑇13
𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇33

)

12

(

𝑇11 𝑇12 𝑇13
𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇33

)

13

(

𝑇11 𝑇12 𝑇13
𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇33

)

21

(

𝑇11 𝑇12 𝑇13
𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇33

)

22

(

𝑇11 𝑇12 𝑇13
𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇33

)

23

(

𝑇11 𝑇12 𝑇13
𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇33

)

31

(

𝑇11 𝑇12 𝑇13
𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇33

)

32

(

𝑇11 𝑇12 𝑇13
𝑇21 𝑇22 𝑇23
𝑇31 𝑇32 𝑇33

)

33)

 
 
 
 
 
 
 

 (A.6) 
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A.2 Constitutive Relations – Pristine and Damaged Relations 

In linear elastic solid mechanics, the stiffness matrix relates stress and strain as shown in Eq. A.8, 

this is the constitutive relation. The stiffness matrix, 𝐶𝑖𝑗𝑘𝑙, is a fourth-order tensor which exhibits 

major and minor symmetries. An important relation in solid mechanics is that of the strain energy 

density, shown in Eq. A.9, for a uniaxial case, it can be expressed as W = ∫ 𝜎𝑑𝜀
𝜀

0
. The stiffness 

matrix needs to satisfy positive-definiteness for material stability since the strain-energy density is 

always positive [142]; consequently, the diagonals of the matrix in addition to all of its eigenvalues 

must be positive. 

 

 

 

Orthotropic material definition 

An elastic or viscoelastic material is recognized as orthotropic if it exhibits three orthogonal planes 

of symmetry [142]. Due to these planes of symmetry, an orthotropic stiffness matrix will contain 

9 independent components and can be written as shown below in Eq. A.10. The compliance matrix 

exhibits the same symmetry. The compliance matrix can be written in terms of the nine 

independent elastic constants, assuming the linear elastic case, as shown in Eq. A.11. Since the 

compliance matrix is the inverse of the stiffness matrix, 𝑆𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙
−1 , the stiffness matrix can be 

written in terms of the elastic constants with the components defined as shown in Eq. A.12 [142].  

 

T𝑝𝑞 =

(

 
 
 
 

𝑇11 𝑇12 𝑇13 𝑇14 𝑇15 𝑇16
𝑇22 𝑇23 𝑇24 𝑇25 𝑇26

𝑇33 𝑇35 𝑇35 𝑇36
𝑇44 𝑇45 𝑇46

𝑇55 𝑇56
𝑠𝑦𝑚𝑚 𝑇66)

 
 
 
 

=

(

 
 
 
 

𝑇1111 𝑇1212 𝑇1313 𝑇1123 𝑇1113 𝑇1112
𝑇2222 𝑇2233 𝑇2223 𝑇2213 𝑇2212

𝑇3333 𝑇3313 𝑇3313 𝑇3312
𝑇2323 𝑇2313 𝑇2312

𝑇1313 𝑇1312
𝑠𝑦𝑚𝑚 𝑇1212)

 
 
 
 

 (A.7) 

σij = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (A.8) 

W =
1

2
𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 (A.9) 
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 In the viscoelastic case, the constitutive relation form is similar, and the stiffness matrix 

remains similar. The stresses are defined by the Duhamel’s integral as shown in Eq. A.13. The 

viscoelastic stiffness, 𝐶𝑖𝑗𝑘𝑙
∗ (𝜉(𝑡) − 𝜉(𝑠)), is composed of an equilibrated, 𝐶𝑖𝑗𝑘𝑙

𝑒 , and un-relaxed 

portion, 𝐶𝑖𝑗𝑘𝑙,𝑚
𝑉 , shown in Eq. A.14. The comma notation does not signify differentiation as 

typically interpreted using the summation convention, rather, it is reserved for denoting the 𝑚𝑡ℎ 

Prony term. Each stiffness tensor takes the form shown in Eq. A.10; however, the tensors within 

the summation, have the exponential multiplied to each component. Indeed, this assumes each 

component is affected by the relaxation time in the same manner. These are the pristine relations, 

for which damage is not embedded within the elastic or viscoelastic constitutive relation.  

 

Crs =

(

 
 
 
 

𝐶11 𝐶12 𝐶13 0 0 0

𝐶22 𝐶23 0 0 0

𝐶33 0 0 0

𝐶44 0 0

𝐶55 0

𝑠𝑦𝑚𝑚 𝐶66)

 
 
 
 

 (A.10) 

𝑆𝑝𝑞(𝐸1, 𝐸2, 𝐸3, 𝜈23, 𝜈13, 𝜈12, 𝐺23, 𝐺13, 𝐺12) =

(

 
 
 
 
 
 
 
 
 
 
 

1

𝐸1
−
𝜈12
𝐸1

−
𝜈13
𝐸1

0 0 0

1

𝐸2
−
𝜈23
𝐸2

0 0 0

1

𝐸3
0 0 0

1

𝐺23
0 0

1

𝐺13
0

𝑠𝑦𝑚𝑚
1

𝐺12)

 
 
 
 
 
 
 
 
 
 
 

 (A.11) 

C11 = 𝐸1(1 − 𝜈23𝜈32)/Δ 

C12 = 𝐸2(𝜈12 − 𝜈13𝜈32)/Δ 

C13 = 𝐸3(𝜈13 − 𝜈12𝜈23)/Δ 

C22 = 𝐸2(1 − 𝜈13𝜈31)/Δ 

C23 = 𝐸3(𝜈23 − 𝜈13𝜈21)/Δ 

C33 = 𝐸3(1 − 𝜈12𝜈21)/Δ 

C44 = 𝐺23 

C55 = 𝐺13 

C66 = 𝐺12 

Δ = 1 − 𝜈12𝜈21 − 𝜈23𝜈32 − 𝜈13𝜈31 − 2𝜈21𝜈13𝜈32 

(A.12) 
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 Following the formulations laid out by Barbero [170], the damage tensor, which is a 

second-order tensor, can be written as shown in Eq. A.15, where 𝛿𝑖𝑗 is the well-known Kronecker 

delta defined in Eq. A.16. The second-order damage tensor is also symmetry and it is commonly 

assumed to coincide with the material coordinate axes. The values of 𝑑𝑖 are the Eigenvalues of 𝐷𝑖𝑗. 

An integrity tensor can be defined from the second-order tensor, using the relation shown in Eq. 

A.17. The damage effect tensor, which is defined as a fourth-order tensor, can be formulated with 

the integrity tensor as shown in Eq. A.18. The damage effect tensor in this form coincides with the 

material coordinate system. In terms of the damage variable, the damage effect tensor can be re-

written as shown in Eq. A.19. The form shown in Eq. A.18, can be re-written as 𝑃𝑖𝑗𝑘𝑙 = Ω𝑖Ω𝑗𝐼𝑖𝑗𝑘𝑙 

with no sum on i or j, and 𝐼𝑖𝑗𝑘𝑙 =
1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘). Following this  

 

 

 

 

 

𝜎𝑖𝑗 = ∫ 𝐶𝑖𝑗𝑘𝑙
∗ (𝜉(𝑡) − 𝜉(𝑠))

𝜕𝜀𝑘𝑙
𝜕𝑠

𝑑𝑠
𝑡

0

 (A.13) 

𝐶𝑖̅𝑗𝑘𝑙
∗ (𝜉(𝑡)) = 𝐶𝑖̅𝑗𝑘𝑙

𝑒 + ∑ 𝐶𝑖̅𝑗𝑘𝑙,𝑚
𝑉 𝑒−𝜉/𝜏𝑚

𝑀

𝑚=1

 (A.14) 

𝐃 = Dij = 𝐷𝑖𝛿𝑖𝑗 = (

𝑑1 0 0
0 𝑑2 0
0 0 𝑑3

) , (𝑛o sum on i) (A.15) 

δij = (
1 0 0
0 1 0
0 0 1

) (A.16) 

Ωij = √1 − 𝑑𝑖𝛿𝑖𝑗 = (

Ω1 0 0
0 Ω2 0
0 0 Ω3

) , (no sum on i) (A.17) 

Pijkl =
1

2
(Ω𝑖𝑘Ω𝑗𝑙 + Ω𝑖𝑙Ω𝑗𝑘) =

(

 
 
 
 

Ω1
2 0 0 0 0 0

0 Ω2
2 0 0 0 0

0 0 Ω3
2 0 0 0

0 0 0 Ω2Ω3 0 0
0 0 0 0 Ω1Ω3 0
0 0 0 0 0 Ω1Ω2)

 
 
 
 

 (A.18) 
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 A general form of the damage tensor can be used for added flexibility in modeling shear 

degradation modes alongside the normal degradation modes. The second-order damage tensor then 

takes on the form shown in Eq. A.20. When the integrity tensor definition is used, it can be defined 

as shown in Eq. A.21. Through a similar procedure as shown above, the general form of the 

damage effect tensor can be defined as shown in Eq. A.22. 

 

 

 

 

 From the energy equivalence principle, the damaged stiffness matrix taken the form shown 

in Eq. A.23. Each stiffness tensor is contracted by the same general damage effect tensor shown 

above; therefore, damage affects the viscoelastic modes (i.e., equilibrated and un-relaxed) in the 

same manner. For instance, the equilibrated damaged stiffness part takes the form shown in Eq. 

A.24.  

 

Pijkl =

(

 
 
 
 

1 − 𝑑1 0 0 0 0 0
0 1 − 𝑑2 0 0 0 0
0 0 1 − 𝑑3 0 0 0

0 0 0 √1 − 𝑑2√1 − 𝑑3 0 0

0 0 0 0 √1 − 𝑑1√1 − 𝑑3 0

0 0 0 0 0 √1 − 𝑑1√1 − 𝑑2)

 
 
 
 

 (A.19) 

Dij = (

𝐷11 𝐷12 𝐷13
𝐷22 𝐷23

𝑠𝑦𝑚𝑚 𝐷33

) = (

𝐷1 𝐷6 𝐷5
𝐷2 𝐷4

𝑠𝑦𝑚𝑚 𝐷3

) (A.20) 

Ωij = √1 − 𝐷𝑖𝑗 = (

√1 − 𝐷1 √1 − 𝐷6 √1 − 𝐷5

√1 − 𝐷2 √1 − 𝐷4

𝑠𝑦𝑚𝑚 √1 − 𝐷3

) (A.21) 

Pijkl = ΩijΩ𝑘𝑙𝐼𝑖𝑗𝑘𝑙 =

(

 
 
 

1 − 𝐷1 0 0 0 0 0
0 1 − 𝐷2 0 0 0 0
0 0 1 − 𝐷3 0 0 0
0 0 0 1 − 𝐷4 0 0
0 0 0 0 1 − 𝐷5 0
0 0 0 0 0 1 − 𝐷6)

 
 
 

 (A.22) 

𝐶𝑖𝑗𝑘𝑙
∗ (𝜉(𝑡)) = 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑

𝑒 𝑃𝑐𝑑𝑘𝑙 + ∑ 𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑,𝑚
𝑉 𝑃𝑐𝑑𝑘𝑙𝑒

−𝜉/𝜏𝑚

𝑀

𝑚=1

 (A.23) 
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𝑃𝑖𝑗𝑎𝑏𝐶𝑎𝑏𝑐𝑑
𝑒 𝑃𝑐𝑑𝑘𝑙 = 

(

 
 
 
 

(1 − 𝐷1)
2𝐶11

𝑒 (1 − 𝐷1)(1 − 𝐷2)𝐶12
𝑒 (1 − 𝐷1)(1 − 𝐷3)𝐶13

𝑒 0 0 0

(1 − 𝐷2)
2𝐶22

𝑒 (1 − 𝐷2)(1 − 𝐷3)𝐶23
𝑒 0 0 0

(1 − 𝐷3)
2𝐶33

𝑒 0 0 0

(1 − 𝐷4)
2𝐶44

𝑒 0 0

(1 − 𝐷5)
2𝐶55

𝑒 0

𝑠𝑦𝑚𝑚 (1 − 𝐷6)
2𝐶66

𝑒 )

 
 
 
 

 

(A.24) 

A3. Damage Formulations 

Thermodynamic force conjugated to damage 

The thermodynamic force that drive damage is defined below as shown in Eq. A.25, the strains 

used in the definition are the elastic strains. Elastic strains are obtained by subtracting any thermal 

strains from the total strains, it also does not include plastic strains. The components of the 

thermodynamic forces conjugated to damage are defined in Eq. A.26. Solving for the damage 

multiplier (i.e., Lagrange multiplier) requires differentiation of the thermodynamic force tensor 

with respect to damage or strain. The differentiation with respect to damage is shown in Eq. A.27 

– A.33. For the differentiation with respect to strain, see Eqns. A.34 – A.40.  

 

 

Yij =
𝜕𝜓

𝜕𝐷𝑖𝑗
= −

1

2
𝜀𝑖𝑗
𝜕𝐶𝑖𝑗𝑘𝑙

∗ (𝜉(𝑡))

𝜕𝐷𝑚𝑛
𝜀𝑘𝑙 = (

𝑌11 𝑌12 𝑌13
𝑌22 𝑌23

𝑠𝑦𝑚𝑚 𝑌33

) (A.25) 

𝑌11 = (1 − 𝐷1) [𝐶1̅1
𝑒 + ∑ 𝐶1̅1,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀11
2 + (1 − 𝐷2) [𝐶1̅2

𝑒 + ∑ 𝐶1̅2,𝑚
𝑉 𝑒

−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀11𝜀22

+ (1 − 𝐷3) [𝐶1̅3
𝑒 + ∑ 𝐶1̅3,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀11𝜀33 

𝑌22 = (1 − 𝐷1) [𝐶1̅2
𝑒 + ∑ 𝐶1̅2,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀11𝜀22 + (1 − 𝐷2) [𝐶2̅2
𝑒 + ∑ 𝐶2̅2,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀22
2

+ (1 − 𝐷3) [𝐶2̅3
𝑒 + ∑ 𝐶2̅3,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀22𝜀33 

𝑌33 = (1 − 𝐷1) [𝐶1̅3
𝑒 + ∑ 𝐶1̅3,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀11𝜀33 + (1 − 𝐷2) [𝐶2̅3
𝑒 + ∑ 𝐶2̅3,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀22𝜀33

+ (1 − 𝐷3) [𝐶3̅3
𝑒 + ∑ 𝐶3̅3,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀33
2  

𝑌23 = 4(1 − 𝐷4) [𝐶4̅4
𝑒 + ∑ 𝐶4̅4,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀23
2  

(A.26) 
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T11rs =

(

 
 
 
 
 
 
−[𝐶1̅1

𝑒 + ∑ 𝐶1̅1,𝑚
𝑉 𝑒

−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀11
2 0 0

0 − [𝐶1̅2
𝑒 + ∑ 𝐶1̅2,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀11𝜀22 0

0 0 − [𝐶1̅3
𝑒 + ∑ 𝐶1̅3,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀11𝜀33
)

 
 
 
 
 
 

 

(A.28) 

 

T22rs =

(

 
 
 
 
 
 
−[𝐶1̅2

𝑒 + ∑ 𝐶1̅2,𝑚
𝑉 𝑒

−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀11𝜀22 0 0

0 − [𝐶2̅2
𝑒 + ∑ 𝐶2̅2,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀22
2 0

0 0 − [𝐶2̅3
𝑒 + ∑ 𝐶2̅3,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀22𝜀33
)

 
 
 
 
 
 

 

(A.29) 

 

T33rs =

(

 
 
 
 
 
 
−[𝐶1̅3

𝑒 + ∑ 𝐶1̅3,𝑚
𝑉 𝑒

−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀11𝜀33 0 0

0 − [𝐶2̅3
𝑒 + ∑ 𝐶2̅3,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀22𝜀33 0

0 0 − [𝐶3̅3
𝑒 + ∑ 𝐶3̅3,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀33
2

)

 
 
 
 
 
 

 

(A.30) 

 

𝑌13 = 4(1 − 𝐷5) [𝐶5̅5
𝑒 + ∑ 𝐶5̅5,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀13
2  

𝑌12 = 4(1 − 𝐷6) [𝐶6̅6
𝑒 + ∑ 𝐶6̅6,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀12
2  

𝜕𝑌𝑝𝑞

𝜕𝐷𝑟𝑠
= (

𝑇11𝑟𝑠 𝑇12𝑟𝑠 𝑇13𝑟𝑠
𝑇22𝑟𝑠 𝑇23𝑟𝑠

𝑠𝑦𝑚𝑚 𝑇33𝑟𝑠

) (A.27) 
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T23rs =

(

 
 
 
 

0 0 0

0 0 −4 [𝐶2̅3
𝑒 + ∑ 𝐶2̅3,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀23
2

0 −4 [𝐶2̅3
𝑒 + ∑ 𝐶2̅3,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀23
2 0

)

 
 
 
 

 

(A.31) 

 

 

T13rs =

(

 
 
 
 

0 0 −4 [𝐶1̅3
𝑒 + ∑ 𝐶1̅3,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀13
2

0 0 0

−4 [𝐶1̅3
𝑒 + ∑ 𝐶1̅3,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀13
2 0 0

)

 
 
 
 

 

(A.32) 

 

T12rs =

(

 
 
 
 

0 −4 [𝐶1̅2
𝑒 + ∑ 𝐶1̅2,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀12
2 0

−4 [𝐶1̅2
𝑒 + ∑ 𝐶1̅2,𝑚

𝑉 𝑒
−
𝜉
𝜏𝑚

𝑀

𝑚=1

] 𝜀12
2 0 0

0 0 0)

 
 
 
 

 

(A.33) 

 

W11rs = (

2(1 − 𝐷1)𝐶1̅1
∗ 𝜀11 + (1 − 𝐷2)𝐶1̅2

∗ 𝜀22 + (1 − 𝐷3)𝐶1̅3
∗ 𝜀33 0 0

0 (1 − 𝐷2)𝐶1̅2
∗ 𝜀11 0

0 0 (1 − 𝐷3)𝐶1̅3
∗ 𝜀11

) 

(A.35) 

 

W22rs = (

(1 − 1)𝐶1̅2
∗ 𝜀22 0 0

0 (1 − 𝐷1)𝐶1̅2
∗ 𝜀11 + 2(1 − 𝐷2)𝐶2̅2

∗ 𝜀22 + (1 − 𝐷3)𝐶2̅3
∗ 𝜀33 0

0 0 (1 − 𝐷3)𝐶2̅3
∗ 𝜀22

) 

(A.36) 

 

W33rs = (

(1 − 𝐷1)𝐶1̅3
∗ 𝜀33 0 0

0 (1 − 𝐷2)𝐶2̅3
∗ 𝜀33 0

0 0 (1 − 𝐷1)𝐶1̅3
∗ 𝜀11 + (1 − 𝐷2)𝐶2̅3

∗ 𝜀22 + 2(1 − 𝐷3)𝐶3̅3
∗ 𝜀33

) 

(A.37) 

𝜕𝑌𝑚𝑛
𝜕𝜀𝑝𝑞

= (

𝑊11𝑝𝑞 𝑊12𝑝𝑞 𝑊13𝑝𝑞

𝑊22𝑝𝑞 𝑊23𝑝𝑞

𝑠𝑦𝑚𝑚 𝑊33𝑝𝑞

) 

 

(A.34) 
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W23rs = (

0 0 0
0 0 8(1 − 𝐷4 )𝐶4̅4

∗ 𝜀23)

0 8(1 − 𝐷4 )𝐶4̅4
∗ 𝜀23 0

) 

(A.38) 

 

 

W13rs = (
0 0 8(1 − 𝐷5 )𝐶5̅5

∗ 𝜀13
0 0 0

8(1 − 𝐷5 )𝐶5̅5
∗ 𝜀13 0 0

) 

(A.39) 

 

W12rs = (
0 8(1 − 𝐷6 )𝐶6̅6

∗ 𝜀12 0

8(1 − 𝐷6 )𝐶6̅6
∗ 𝜀12 0 0

0 0 0

) 

(A.40) 

Damage surface 

The damage surface is defined using the relation below in Eq. A.41. The J-tensor is assumed non-

interacting, this means it has only diagonal components as shown in Eq. A.42, it is also symmetric 

and can be reduced to a 6x6 matrix, similar to the stiffness tensor. The thermodynamic force 

tensors can be written as a 6x1 matrix, similar to the stress or strain tensors. The differentiated 

damage surface with respect to the thermodynamic forces is given in Eq. A. 44. The numerator of 

𝐿𝑑 is given in Eq. A.45.  

 

 

 

 

g(Yij, 𝐽𝑖𝑗𝑘𝑙) = √
1

2
𝑌𝑖𝑗𝐽𝑖𝑗𝑘𝑙𝑌𝑘𝑙 = √

1

2
𝑌𝑚𝐽𝑚𝑛𝑌𝑛  (A.41) 

𝐽𝑚𝑛 = Jijkl =

(

 
 
 

𝐽11 0 0 0 0 0
0 𝐽22 0 0 0 0
0 0 𝐽33 0 0 0
0 0 0 𝐽44 0 0
0 0 0 0 𝐽55 0
0 0 0 0 0 𝐽66)

 
 
 

 (A.42) 

𝑔 =
√Y11

2 J11 + 4X12
2 J66 + 4X13

2 J55 + X22
2 J22 + 4X23

2 J44 + X33
2 J33

√2
 

 

(A.43) 
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Where 

𝛥1 = √2√𝐽11𝑌11
2 + 4𝐽66𝑌12

2 + 4𝐽55𝑌13
2 + 𝐽22𝑌22

2 + 4𝐽44𝑌23
2 + 𝐽33𝑌33

2  

And 

𝛥2 = √𝐽11𝑌11
2 + 4𝐽66𝑌12

2 + 4𝐽55𝑌13
2 + 𝐽22𝑌22

2 + 4𝐽44𝑌23
2 + 𝐽33𝑌33

2  

 

 

with 

𝑄11 =
𝐽11𝑌11(−2(D1 − 1)C̅11

∗ 𝜀11 − (D2 − 1)C̅12
∗ 𝜀22 − (D3 − 1)C̅13

∗ 𝜀33) − (D1 − 1)(C̅12
∗ 𝐽22𝑌22𝜀22 + C̅13

∗ 𝐽33𝑌33𝜀33)

𝛥1
 

𝑄22

=
−(D2 − 1)C̅12

∗ 𝐽11𝑌11𝜀11 − (D2 − 1)C̅23
∗ 𝐽33𝑌33𝜀33 + 𝐽22𝑌22(−(D1 − 1)C̅12

∗ 𝜀11 − 2(D2 − 1)C̅22
∗ 𝜀22 − (D3 − 1)C̅23

∗ 𝜀33)

𝛥1
 

𝑄33

=
−(D3 − 1)C̅13

∗ 𝐽11𝑌11𝜀11 − (D3 − 1)C̅23
∗ 𝐽22𝑌22𝜀22 + 𝐽33𝑌33(−(D1 − 1)C̅13

∗ 𝜀11 − (D2 − 1)C̅23
∗ 𝜀22 − 2(D3 − 1)C̅33

∗ 𝜀33)

𝛥1
 

𝑄23 = −
32√2(D4 − 1)C̅44

∗ 𝐽44𝑌23𝜀23
𝛥2

 

𝑄13 = −
32√2(D5 − 1)C̅55

∗ 𝐽55𝑌13𝜀13
𝛥2

 

𝑄12 = −
32√2(D6 − 1)C̅66

∗ 𝐽66𝑌12𝜀12
𝛥2

 

A.4 Location of UMAT and MATLAB codes 

The codes are made available on the GitHub page below:  

https://github.com/mramirez975/viscoelasticDamage 

 

  

𝜕𝑔

𝜕𝑌𝑖𝑗
=

(

 
 
 
 
 

𝐽11𝑌11
Δ1

2√2𝐽66𝑌12
Δ2

2√2𝐽55𝑌13
Δ2

2√2𝐽66𝑌12
Δ2

𝐽22𝑌22
Δ1

2√2𝐽44𝑌23
Δ2

2√2𝐽55𝑌13
Δ2

2√2𝐽44𝑌23
Δ2

𝐽33𝑌33
Δ1 )

 
 
 
 
 

 

 

(A.44) 

𝜕𝑔

𝜕𝑌𝑖𝑗

𝜕𝑌𝑖𝑗

𝜕𝜀𝑘𝑙
= (

𝑄11 𝑄12 𝑄13
𝑄22 𝑄23

𝑠𝑦𝑚𝑚 𝑄33

) (A.45) 

https://github.com/mramirez975/viscoelasticDamage


 

 

211 

APPENDIX B. SUPPLEMENTARY EXPERIMENTAL DATA 

B.1 SEM Fracture Images 

 

Fig B.1 Illustration of selected surface for investigation under SEM 

 

Fig B.2 SEM images from print direction fractured surface at room temperature, at three 

different locations, 1000x 

SEM observed direction
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Fig B.3 SEM images from print direction fractured surface at room temperature, at three 

different locations, 2000x 

 

 

Fig B.4 SEM images from print direction fractured surface at room temperature, at selected 

locations, 5000x 
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Fig B.5 SEM image from print direction fractured surface at room temperature, fiber-matrix 

bond, 10000x 

 

 

Fig B.6 SEM images from print direction fractured surface at 190°C, at three different locations, 

1000x 
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Fig B.7 SEM images from print direction fractured surface at 190°C, at selected locations, 2000x 

 

 

Fig B.8 SEM image from print direction fractured surface at 190°C, fiber-matrix bond, 5000x 
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Fig B.9 SEM images from 2 direction fractured surface at room temperature, at several points 

illustrated in the schematic on the lower-right side, 1000x 

 

 

Fig B.10 SEM images from 2 direction fractured surface at 190°C, at several points illustrated in 

the schematic at the upper-middle region, 1000x 
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Fig B.11 SEM image from 2 direction fractured surface at 190°C, fiber-matrix detach, 5000x 
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Fig B.12 SEM images from 3 direction fractured surface at room temperature, at several points, 

1000x 
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Fig B.13 SEM images from 3 direction fractured surface at 190°C, at several points, 1000x 
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Fig B.14 PA081DC05RT, PanelA 1 direction compression sample 05 at room temperature 

fracture surface  
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Fig B.14 PA081DC05RT, PanelA 1 direction compression sample 16 at 190°C fracture surface 

 

  



 

 

221 

B.2 Viscoelastic Measurements 

 

Fig B.15 Relaxation modulus versus time along the print direction for CF/PESU 

 

Fig B.16 Normalized stress along print direction versus time, comparison between FEA and Data 

at 30°C 
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Fig B.17 Normalized stress along print direction versus time, comparison between FEA and Data 

at 75°C 

 

Fig B.18 Normalized stress along print direction versus time, comparison between FEA and Data 

at 120°C  
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Fig B.19 Normalized stress along print direction versus time, comparison between FEA and Data 

at 180°C 

 

Fig B.20 Normalized stress along print direction versus time, comparison between FEA and Data 

at 220°C 



 

 

224 

 

Fig B.21 Relaxation modulus versus time along the 2 direction for CF/PESU 

 

 

 

Fig B.22 Normalized stress along 2 direction versus time, comparison between FEA and Data at 

30°C 
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Fig B.23 Normalized stress along 2 direction versus time, comparison between FEA and Data at 

75°C 

 

Fig B.24 Normalized stress along 2 direction versus time, comparison between FEA and Data at 

120°C  
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Fig B.25 Normalized stress along 2 direction versus time, comparison between FEA and Data at 

180°C 

 

Fig B.22 Normalized stress along 2 direction versus time, comparison between FEA and Data at 

220°C 
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B.3 Selected DIC Strain Field Plots 

 

 

Fig B.23 PB0112DS01RT, V-notch specimen along 1-2 plane, under shear deformation at three 

strain levels at room temperature 

 

 

Fig B.24 PA0113DS01RT, V-notch specimen along 2-3 plane, under shear deformation at three 

strain levels at room temperature 
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Fig B.25 BA0123DS01RT, V-notch specimen along 2-3 plane, under shear deformation at three 

strain levels at room temperature 

 

 

Fig B.26 PA081DC02RT, print direction compression sample at room temperature, at three 

average strain levels 
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Fig B.27 PB022DC04RT, 2 direction compression sample at room temperature, DIC-computed 

strain-field (left) and post-mortem sample (right) 

 

 

Fig B.28 PA083DC01RT, stacking direction compression sample at room temperature, DIC-

computed strain-field (left) and post-mortem sample (right) 
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