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ABSTRACT 

As industries take advantage of the widely adopted digitalization of industrial control systems, 

concerns are heightened about their potential vulnerability to adversarial attacks. False data 

injection attack is one of the most realistic threats because the attack could be as simple as 

performing a reply attack allowing attackers to circumvent conventional anomaly detection 

methods. This attack scenario is real for critical systems, e.g., nuclear reactors, chemical plants, 

etc., because physics-based simulators for a wide range of critical systems can be found in the 

open market providing the means to generate physics-conforming attack. The state-of-the-art 

monitoring techniques have proven effective in detecting sudden variations from established 

recurring patterns, derived by model-based or data-driven techniques, considered to represent 

normal behavior. This Ph. D. work further develops a new method designed to detect subtle 

variations expected with stealthy attacks that rely on intimate knowledge of the system. The 

method employs physics modeling and feature engineering to design mathematical features that 

can detect subtle deviations from normal process variation. This work extends the method to real-

time analysis and employs a new denoising filter to ensure resiliency to noise, i.e., ability to 

distinguish subtle variations from normal process noise. The method applicability is exemplified 

using a hypothesized triangle attack, recently demonstrated to be extremely effective in bypassing 

detection by conventional monitoring techniques, applied to a representative nuclear reactor 

system model using the RELAP5 computer code. 
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1 INTRODUCTION 

1.1 Overview 

Due to the wide range of advantages resulting from digitization, most critical infrastructure 

systems, such as nuclear, chemical, oil and gas plants, water treatment facilities, refineries, etc., 

are resorting to full digitization strategies for the control systems used to regulate their industrial 

processes. To an attacker, digitization offers a whole new realm of possibilities to compromise and 

then commandeer the operation of critical systems, considered to be the first target of a state-

sponsored crippling attack against a country. The direct response to that has focused on the 

adoption of information technology (IT) defenses such as passive network monitoring and offline 

traffic analysis. 

 

Metaphorically, conventional defenses may be viewed as building walls, sometimes referred to as 

perimeter defenses, such as firewalls, cryptography, message authentication, passwords, etc. In 

recent years, great strides in defensive measures relying on active defenses and deception-based 

defenses have been made. These defenses have a common goal, that is, to protect the information 

from being accessed and tampered with adversaries. Such information includes, but is not limited 

to, the engineering data flowing into the control network, such as sensor readings, component 

status indicators, actuator commands, administrative data, surveillance data, etc. Despite 

effectiveness of those defenses in stopping attacks, they could be compromised if their design 

details are leaked to attackers. Given the frequency and sophistication of recent attacks, e.g., the 

2010 Stuxnet against Iran [1], the 2015 Electric Grid attack against Ukraine [2], etc., state-

sponsored attackers have indeed proven that they can acquire proprietary design data relying on a 

number of techniques, such as espionage, social engineering, insiders’ assistance, etc. [3] One of 

the implications of that is that if they gain access to a control system, and its raw information, the 

industrial system regulated by those control systems becomes vulnerable and, worse yet, the 

system could remain defenseless and sustain physical damage.  

 

To address this rising challenge, it has become critically essential to build another layer of defense 

when IT defenses are compromised. This new layer is referred to as the operational technology 

(OT) defense  [4]. The OT defenses focus on the physical process as described by the network data 



 
 

14 
 

comprised of sensors readings, process variables, and actuating commands. The OT defenses ask 

the question: are the engineering network data consistent with expected behavior? In a 

sophisticated FDI (false data injection) attack, the attacker relies first on delivering an IT payload 

designed to penetrate through the IT defenses. This represents the conventional first step for any 

hacking attempt, i.e., gaining access to the system. Following that, the attacker must deliver 

another payload, referred to as the engineering payload. This payload is designed to cause the 

system to move along an undesirable trajectory. 

 

This can be achieved in multiple manners. For example, the engineering payload could falsify the 

sensors data, causing the control algorithms to send signals to the actuators that cause undesirable 

performance. Another approach is to change the control algorithm logic to achieve similar goals. 

In all scenarios, the payload must be aware of the normal engineering checks that exist in the 

network. These checks are developed by the engineering team to ensure that system is reliably 

responding to normal process variations. Thus, unlike IT defenses which rely on the use of generic 

methods to protect access to the information, OT defenses must be cognizant of the engineering 

design and safety procedures in place. To achieve that, OT defenses must rely on an online 

monitoring approach to continuously check the engineering data, i.e., sensors readings, process 

variables, and actuators commands, and be able to determine whether the data are real, i.e., have 

originated from the system, or falsified, i.e., have been potentially tampered with. 

 

This distinction between IT and OT defenses underpins the key challenge for designing OT 

defenses. For IT defenses, the goal is to block access regardless of the engineering values of the 

process variables, implying that one simply needs to adopt a fortress defense mentality. It does not 

matter what one protects, only how to build an incredible barrier that is difficult to bypass. For OT 

defenses, however, the goal is to determine whether the variables of the system process variables 

(an inevitable occurrence in any real industrial process) are naturally occurring or maliciously 

introduced. The implication is that the defense must depend on a pre-determined specification of 

what is normal and what is abnormal. Further, given the proliferation of critical systems 

worldwide, representing the key components of any country’s critical infrastructure, the OT 

defenses must assume that the attacker will likely recruit subject matter experts capable of 

differentiating between normal and abnormal behavior.  
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Many approaches have been proposed to design such metrics, often referred to as signatures. The 

signatures serve as fingerprints for the system, including its physics, and history of operation, 

where no two systems could be identically the same, even if their initial design is the same. These 

signatures are designed to ensure consistency and coherency of the process variables used to 

describe/monitor the physical process.  

 

A key challenge of signature-based methods is the ability to distinguish between normal and 

malicious behavior under various assumptions of the attacker’s familiarity with the system. For 

example, when the attacker has little or no familiarity with the system, outlier/anomaly detection 

techniques present the most straightforward approach to detecting FDI attacks [5][6]. In this 

scenario, each process variable has a prescribed range for variation, e.g., steam generator level, 

with deviations thereof -- as measured by one or two standard deviations -- indicating an abnormal 

behavior. This approach has the advantage of being simple to implement, however it does not 

provide information on whether the abnormal behavior is due to a malfunction or due to an FDI 

attack.  

 

Next, if the attacker has a basic understanding of the system behavior, outlier/anomaly techniques 

may not be effective because the attackers might know the preset values that trigger the outlier 

detection algorithm. In this scenario, another class of methods may be more effective, the so-called 

data-driven techniques, which rely on building predictive models for the system behavior [7]. 

Data-driven modeling implies that the physics models are not incorporated to guide the training of 

the models. Instead, auto-correlation-type regression techniques [8], and their more sophisticated 

neural-network implementations are employed to predict the present behavior as a function of past 

behavior [9] . When the predictions made by these models become inconsistent with observed 

behavior, an alarm is issued. Just like outlier/anomaly detection techniques, data-driven techniques 

are simple to implement. Also, the data-driven approaches need vast amounts of data, especially 

for complicated industrial systems, to ensure an accurate emulation of system behavior. Also, they 

can be customized with reasonable accuracy to recognize different equipment failure modes [10]. 

This simplicity however means that the learning process can be duplicated by an attacker during 

an initial lie-in-wait period. This follows because the mathematical machinery for data-driven 

techniques is well-understood and does not rely on any obscurity measures. Once learned, the 

attacker can proceed to make changes to the system state that respects the consistency between 
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present and past behavior. One key disadvantage of pure data-driven learning is that it does not 

incorporate the physics in the learning process, which implies that if the raw sensors data are 

routinely falsified, one cannot rely on such methods to detect sophisticated FDI attacks.   

 

In the next level, the attack would be intruded by the attackers who has a general understanding of 

system behavior but may not be able to exactly replicate it, because they do not have access to key 

proprietary data and historical operational details. This raises the first research topic that whether 

these technically-able attackers can learn the system accurately so as to launch attacks within the 

control limits. Correspondingly, the OT defense is expected to rely on the formal physics 

description for the system in order to decide what normal behavior looks like. This OT defense is 

denoted as model-based, since it relies on a physics model to establish a basis for normal behavior. 

This approach derives its strength from the operational uniqueness and complex interactions 

between system components.  

 

The next attack scenario, expected to be launched by state-sponsored organizations, the attacker 

will likely have access to high fidelity simulators for system behavior. For these attacks, referred 

to as knowledge-based/stealthy attacks, the requirement for an OT model-based defense becomes 

its capability of detecting signs of FDI attacks when the attackers can predict system behavior to 

a reasonable accuracy. This represents the focus of this study. This research proposes the use of a 

model-based approach hybrid with data mining techniques to identify signatures, which can be 

done by analyzing model simulation results for a wide range of conditions in search of signatures 

that cannot be identified by the attacker. In doing so, it is assumed that the attacker has access to 

physics models and data-driven techniques and hence can perform the same job. Specifically, this 

work shows that the defender can develop signatures, based on the higher-order differences 

between his/her model and that of the attackers, that are capable of distinguishing between normal 

behavior and FDI attacks. These higher order effects are typically discarded by most data-driven 

techniques, and are attributed to sources of uncertainties that cannot be explained by the models. 

Coupling these higher order effects with dominant behavior can be shown to establish signatures 

that are difficult to duplicate by the attacker. Clearly, if the attacker has the same model employed 

by the OT defense, this defense can also be bypassed. This extreme scenario is not considered in 

this work, and is discussed under the context of active OT defense [11]. The current research 

focuses on a passive OT defense, where the passivity implies that the defense does not introduce 
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any changes to the system. It only monitors the measured process variables and compares them to 

predicted values in search of signatures, as described earlier. 

1.2 Problem Statements and Research Questions 

As stated in overview, when constructing the signature of physical process, it is natural to rely on 

the physics governing the behavior of the system, and its mathematical description as embodied in 

a computer model. The approach is referred to as model-based defense [12], physics-based 

defense, or with one rendition coining the term digital twin [13]. The basic assumption here is that 

IT defenses have already been bypassed, and so one has to design another line of defense that can 

detect manipulation of the raw engineering data used to control the system. Model-based defenses 

are based on the premise that the defender has access to the most faithful description of the real 

physical process. This follows because for most critical systems, the models are carefully 

calibrated to operating data resulting in the best possible prediction capability of the real process 

behavior, with the measurement noise being the only source of discrepancy between measurements 

and predictions. Under these conditions, one could rely on a systematic monitoring approach, 

potentially aided by machine learning and artificial intelligence techniques [14], to look for any 

other sources of discrepancies between measurement and model-based predictions, representing a 

basis for detecting unauthorized manipulation of the data. Accepting this premise implies that the 

attacker cannot predict system behavior to the same level of accuracy as that of the defender. While 

this assumption could be true for some systems, e.g., highly-classified weapon systems, it certainly 

can be challenged for critical systems, such as nuclear reactors, chemical reactors, and oil and gas 

plants.  

 

Focusing the discussion on nuclear reactors, with parallels easily made for other critical systems, 

one could argue that attackers can acquire models of the same accuracy level as those employed 

by the defender, either directly or after an initial lie-in-wait period to self-learn reactor behavior. 

If this is possible, the attacker will be able to modify the raw data in a manner that respects the 

physics and hence evades detection. For nuclear reactors, such a scenario is not far-fetched, quite 

the opposite, as evident from the numerous Ph. D. dissertations conducted over the years to 

accurately simulate reactor behavior over a wide range of conditions, including normal state 

operation, to anticipated operational transients, design-basis accidents, and all the way to beyond-
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design basis accidents, e.g. core meltdown, response to aircraft crash, earthquakes etc. Further, the 

supply chains for nuclear reactors are extremely diversified including domestic and foreign 

manufacturers with many individuals involved. Also, there exists a large number of companies 

which sell reactor simulators that have been customized for existing nuclear reactors, used for 

training operators as well as for plant control. These simulators are based on faithful replicas of 

the reactor at all levels, including the I/O level, the PLCs (Programmable Logic Control units) 

level, the HMI (Human Machine Interface) level, etc.  

 

Given the detailed knowledge widely available about the various nuclear reactors, the effectiveness 

of model-based defenses should be investigated to determine their resiliency under these extreme 

adversarial conditions. This work focuses here on the following questions: 

 

1. Can attackers learn the system behavior by relying only on recent advanced machine 

learning techniques, i.e., without employing physics models? 

2. Can attackers learn the system behavior starting with approximate physics models? 

3. If attackers with approximate physics models can learn the system behavior accurately and 

launch an FDI attack without triggering alarm, i.e. within control limit of current 

anomaly/outlier detection, can model-based defense identify the FDI attack? 

 

All questions will be answered in a virtual sense, where real engineering data, assumed to be 

accessed by the attackers, are generated using a simulator, considered to be inaccessible to the 

attacker. We then compare the model learned based on such data and compare it with the actual 

reactor model. For the first two questions, a preliminary comparison study will provide a 

directional conclusion towards both of model-based and data-driven approaches. For the third 

question, a series of scenarios will serve as case study to illustrate the newly proposed algorithm.   
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2 LITERATURE REVIEW 

2.1 Current strategies adopted for FDI Detection  

The concept of false data injection (FDI) attack was originally introduced in the smart grid domain. 

Specifically, it refers to the case when an attacker corrupts sensor readings in such a stealthy way 

that undetected errors are propagated into the controllers and thereafter lead to miscalculation  of 

the state variables [15]. Due to the prosperity of the digitalization and associated complex control 

systems, cyber attackers are interested in exploiting this type of attacks in other industries and 

domains, such as nuclear industry. Unlike traditional cyber-attacks that target data availability or 

confidentiality, such as denial-of-service, jamming, etc., false data injection (FDI), targeting data 

integrity, is one of the most frequent, realizable and lethal attacks, since the attack vectors could 

be simple as a constant value or trapped as a period of plausible signals. Specifically, the FDI 

attacks is able to circumvent anomaly detection such that the injection measurements will be 

undetected.  In today’s increasingly perilous cyber world of complex adaptive systems, FDI attack 

has become one of the top-priority issues to counter. It is a necessity for strengthening awareness 

and a more sophisticated mechanism to address this attack in the cyberspace. To address this issue, 

scholars in the nuclear industry have proposed various strategies to detect and respond to the FDI 

attacks.  

 

The detection process is accomplished by monitoring system, which can be briefly categorized 

into two types: passive monitoring and active monitoring. In the context of FDI detection, the 

passive monitoring refers to the techniques observing system behavior in search of patterns of 

normal behavior with deviations thereof representing abnormal behavior, without making any 

changes to the system.  Distinctively, the active monitoring, known as synthetic monitoring, refers 

to the other type of techniques involving testing packets injection into the system and then 

measuring its performance to authenticate the system status [16] [17]. Without doubt, adoption of 

both active and passive monitoring would optimize the performance of the control system, but one 

cannot make the most of active monitoring without a good understanding of the physics model, 

which composes an essential content of passive monitoring. As the cybersecurity of nuclear control 

system is still in its adolescence, studies in either active monitoring or passive monitoring are not 

amplified. Therefore this Ph.D. work mainly focuses on passive monitoring with physics insights 
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involved. Passive monitoring OT defenses adopt two general approaches: data-driven or model-

based approaches. Data-driven approaches rely on the use of data mining techniques to establish 

patterns in the engineering data based on past behavior. An adversary trying to change the 

engineering data, e.g., process variables and sensors data, unaware of these patterns, will introduce 

changes that can be detected when deviating from the patterns. Model-based approaches require 

building a faithful mathematical model that describes the behavior of the system. When the 

measurements deviate from the predictions, alarms may be issued. Next, we overview some of the 

methods employing both data-driven and model-based techniques from the literature. 

 

Eggers employs principal component analysis (PCA), independent component analysis (ICA), and 

their variants to detect FDI attack intrusion under different scenarios. This work indicates that 

static ICA and PCA may not be sufficient, but a moving window version of PCA and ICA can 

quantitively identify the onset of the attacks [18]. Her work has primarily focused on FDI attacks 

that introduce noticeable changes to the engineering data, e.g., a sudden drop, patterned sensor 

drifts, or flat-lining of process variables.  Zhang et al. employs auto-associative kernel regression 

(AAKR) to determine whether a sensor data is authentic by using the idea of sensor virtualization, 

wherein a group of sensors are employed to predict the reading of a given suspect sensor. The 

residual between the measured and predicted values serves as a measure of authenticity, i.e., if the 

residuals go beyond the predefined threshold, an SVR-based inference model is employed to 

calculate the countermeasure commands sent to actuators [19]. 

 

W. Wang et al apply a nonparametric cumulative sum (NP-CUSUM) approach to the Advanced 

Lead-cooled Fast Reactor European Demonstrator (ALFRED) for online monitoring of cyber-

attacks to on a multiloop-controller. [20]  In that work, the detection is fulfilled by a constructed 

score function, which will not exceed the prespecified threshold under normal operation. This 

approach is proved to be effective with the practice of the four attack scenarios.  Instead building 

a score function, H.L. Gawand et al employ least square approximation followed with convex hull 

approach to determine the authenticity of the measurement [21]. It is effective for FDI attacks that 

manifest as random bias. 

 

Y. Zhao et al. employ a competitive Markov decision process to model the interactions between 

the defender and the attacker, in which credible state transition probability is provided by 
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probability analysis (PRA) [22]. In this study, each state is quantified as a state value, which is 

taken as reward for defenders and attackers, and the best choice is calculated based on the rewards 

value. This study provides a guide for defenders’ optimal response to cyber-attacks under various 

situations.  Similarly, based on the state transition probability from PRA,  P. K.Vaddi et al. employ 

the dynamic Bayesian Network for inferring the hidden state of the system from the observed 

variables by probabilistic theory [23]. Both works are built based on the state transition probability 

derived from probability risk analysis (PRA), indicating that the success and credibility of the 

whole model highly depend on the reliability of these prior knowledge.  

 

Liu, et al. show that attackers are capable of constructing attack vectors within a constraints in 

order to change state estimations without triggering the alarm, referred to as stealthy FDI[15].  R. 

Smith employs linear and nonlinear physics models to illustrate detectability of stealthy FDI 

attacks with respect to operating point changes, and confirms that when the attackers have more 

sophisticated resources, the probability of keeping attacks undetected will correspondingly 

increase [24]. Sandberg, et al. employ convex optimization tools to evaluate attacks, by taking 

deviations from the true model and attack goals to quantify the least efforts needed to achieve this 

type of attack, i.e. the minimum number of needed compromised sensors in a certain system [25]. 

The same research goal for attack evaluation is fulfilled in [26], the results of which indicate that 

information related to operating conditions and saturation limits is necessary for successful 

stealthy FDI attacks on nonlinear model. Beside, a generalize approach to construct FDI attacks 

with specific constraints on state estimation is proposed in [26].  

 

Other researchers have focused on measuring the consequences of different compromised 

components. Kosut et al. [27] firstly introduced the concept of ‘strong attack regime ’ and ‘weak 

attack regime’, the first of which refers to the attack scenario with a large number of compromised 

meters to keep the attack unobservable. This work employs graphic theoretic method to determine 

the smallest set of compromised meters that the attackers need to manipulate the system to hide 

the attack. Similarly, the ‘weak attack regime’ refers to a smaller set of meters than that in ‘strong 

attack regime’. In this study, the trade-off between raising the state estimation error and reducing 

the  detection probability is investigated.  O. Vukovicet al. study several common attack vectors; 

investigate how a single compromised control center can affect state estimation by tracking the 

evolution of the number of outliers state estimations [28]. Meanwhile, some studies focus on the 
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signature development based on data-driven/physics-based defenses. Hadžiosmanovi´c et al. 

perform a data characterization phase approach based on the data behavior: continuously change, 

state reflection, or constant. These different groups of data are used to fit an autoregressive model, 

which aims to estimate the behaviors of a correlated system state [8]. Since the intrusion detection 

algorithms for SCADA systems look at anomalies in state-based estimation, these approaches are 

usually poorly adopted to process data. Quinn and Sugiyama used a least-squares approach to 

detect anomaly in static and sequential data, but this research was not specifically looking at cyber 

security anomalies. [29] Krotofil and Cardenas  studied the resilience of an industrial control 

system to a cyber-attack using the Tennessee Eastman challenge process in order to develop a 

systematic approach to cyber security assessment of ICSs and analyzing the effects of 

hypothesized cyber-attacks. [30] In addition, game theory techniques were proposed as intrusion 

detection methods as a reactive responses in CPSs. [12] Given the lack of practical experiments, 

data-driven algorithms developed for online equipment condition monitoring may prove to be the 

most useful algorithms for detecting false data injection attacks in NPP process data. 

 

Other researchers have focused on developing requirements to establish effective countermeasures 

for fighting FDI attacks. As few examples, Dan, et al. propose two data-driven algorithms to study 

the costs of specific attack and the cost for implementing defenses [31]. Giani, et al. introduce and 

characterize irreducible cyberattacks to identify the minimum number of needed known-secure 

sensors to disable FDI attacks [32]. Kim, et al. suggest a subset selection algorithm to identify the 

key measurements to be protected when the defenders have limited resources, based on 

constructing attacking vectors developed for linearized measurement models [33].  

 

For employing the model-derived correlations, Li et al. employ dynamic PCA to characterize the 

correlation between multiple variables and consequently use Chi-square detector to distinguish 

adversarial cyber-attacks from ordinary random failures [34]. Urbina et al. suggest a physics-based 

attack detection algorithm, which aims to set up a proper error threshold for the sensor within a 

certain time period [12]. Their algorithm is proved to be capable of adaptive adversary attacks. 

Related works can be found in [35][36][37]. For active monitoring, A. Sundaram et al. propose a 

data analytical approach, which introduces noise into the network, and hence detect unauthorized 

manipulation via assessment with regard to the impact on the system. [38] Y. Zhao and C. Smidts 
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employ a two-step Chi-square hypothesis testing method with physical watermarking for detecting 

and distinguishing replay attacks from other anomalies [39]. 

 

Table. 1. Summary of taxonomy of FDI detection techniques in nuclear industry 

 Application Approach Technique 
category 

Passive 
Monitoring 

Steam Generator of a 2-loop 
PWR simulator[19] 

AAKR  Data-driven 

ALFRED [20] NP-CUSUM Data-driven 

Digital feedwater control 
system [22] 

Game theory (Markov 
decision process) 

Model-based 

SBLOCA of PWR [18] PCA and ICA Data-driven 

Digital Feed water control 
system [23] 

Dynamic Bayesian 
Networks 

Model-based 

Feed water control system 
[34] 

Chi-square detector and 
dynamic PCA 

Model-based 

Active 
Monitoring  

Steam turbine system and 
Gas turbine system [38] 

Colored noise detection Data-driven 

Steam Generator [39] Physical watermarking Data-driven 

 

 Contributions of previous studies 

There is a growing literature on the security of CPS, including the wide application scenarios like 

power plants, electronic devices and so on. In the first place, previous works proposed various 

detection methods and validated these methods with testbeds, comparison with credible simulation 

codes etc. These methods build a library for scholars to find effective detection approaches and 

spark appearance of novel approaches. Based on these works, scholars integrated and subtract 

essence of the current methods with unified taxonomy based on different topics, such as the applied 

venue, attack location, validation metrics, detection algorithms, etc., which allows identification 

of limits and unexplored challenges, and eventually develop a framework to accommodate the 

various methods. [12] 
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Specifically, for FDI detection techniques in nuclear industry, most studies, including both passive 

and active monitoring, take advantage of the easy availability of historical monitoring data via 

implementation of data-driven approaches. [18][20][40] 

 Limitations of previous studies 

In this section, the difficulty levels on detecting FDI attacks depend on the attackers’ knowledge 

about the system. Specifically, as the nuclear simulation has been developing for several decades, 

almost all kinds of simulators for different types of nuclear reactors/systems and the corresponding 

validation studies can be found via open access, such as Ph.D. thesis, published reports and 

research papers. Especially for commercial nuclear power plants whose safety and maturity have 

been proved/validated over decades, the insider/outsider attackers have sufficient resources to be 

familiar with the physics modeling. Most of current work to detect the FDI attacks are constructed 

via the data-driven techniques, which aim to learn the system behavior based on historical data.  

With the rapid development of machine learning techniques, it is feasible for attackers to 

implement different learning algorithms like various kinds of neural networks to learn the system 

details starting with an approximate physics model. Few current works assume attacker’s 

familiarity towards the nuclear systems, which may not be efficacious when dealing with stealthy 

FDI attacks. 

 

Model-based detection has appeared in nuclear cybersecurity in recent years. Some works are 

based on prior knowledge, such as the state transition probability from PRA employed for game 

theoretic detection approach or Bayesian neural network. [22][23] However, for this type of 

approaches, the success and credibility of the whole model highly depend on the reliability of the 

prior knowledge. Either an overly optimistic or pessimistic expectation of the quality of these prior 

beliefs will make the entire network misrepresent the true physics and so nullify the results. 

Besides, the PRA model can be found via open access, in other words, the whole structure of the 

probabilistic analysis can be learned by attackers as well. With this knowledge of the probabilistic 

network, attackers can reproduce the model via various AI techniques.  Specifically, game 

theoretic approaches assume (1) all player act rationally and intelligently; (2) the rules of play are 

known to all the players. If we say the first assumption is more or less impractical, the second 

assumption would be dangerous to defenders, since for well-resourced attackers, both physics 
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model and general defense strategies are known, but defenders have little knowledge about 

novel/creative threats from attackers.  Meanwhile some scholars include physics insights into the 

model construction, by identifying the relationships between various process variables, and the 

FDI detection is based on certain relationships. [34] This type of approaches is sufficiently 

effective for the attacks from the attackers with limit knowledge of the system, who do not know 

the certain physics relationships. As stated above, attackers can learn the system accurately with 

leverage from an approximate physics model and current learning techniques. Also, the 

relationships usually do not show a clearly highly correlated pattern. For example, the pressure 

and temperature of a component in the nuclear system are highly correlated as PV = nRT, but their 

online monitoring data may not show the same clear correlation, since in nuclear system, (1) phase 

change will highly effect both quantities; (2) the error from measurements are not neglectable; (3) 

the physics equation describes the steady state, so the dynamic variations may contain time delays; 

(4) normal operations contain other uncertainties. Due to these reasons, all the possible values for 

the correlated variables in normal operating conditions would appear as a quite large region instead 

of a clear line or curve, which provides potential hides for FDI attacks. Thus, a more delicate 

detection method is needed to identify subtle monitoring measurement changes. 

2.2 Strategy of this work 

These aforementioned methods, developed in different disciplines, share one thing in common: 

they rely on capturing the dominant behavior from operational data or correlation between process 

variables, mathematically referred to as active degrees of freedom (DOFs) or lower order 

components (LOCs), to make predictions. For example, PCA relies on singular value 

decomposition (SVD) to compute the principal components, representing the few right or left 

singular vectors, referred to hereinafter as the LOCs.  

 

For illustration,  Figure 2.1 shows the components of a typical sensor variations as projected onto 

the components identified by PCA. The x-axis represents the index of the components and y-axis 

shows the significance of the components. The components in the blue box represents the LOCs, 

expected to be known by the attackers, which can be captured by data-driven techniques or an 

approximate physics model [15]. This implies that, once the LOCs are learned during initial lie-

in-wait period, the attackers would be able to falsify the measurements respecting the dominant 
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patterns of system behavior. With that, they would be able to bypass detection by techniques 

relying solely on capturing the dominant behavior [41]. The LOCs however remain an effective 

signature for patterns that significantly deviate from normal behavior such as: (1) a constant bias, 

(2) a measurement drift with a function of time, (3) wider noise, (4) dynamic process variable 

freezing as a constant, etc. If the attackers however attempt to falsify the data using the LOCs, the 

majority of FDI techniques described earlier would be potentially bypassed. 

 

To detect these stealthy attack scenarios, one need to rely on capturing more features that capture 

the less-dominant patterns of system behavior, denoted hereinafter as higher order components 

(HOCs), as shown in the yellow box in Figure 2.1. Unlike the LOCs that can be seamlessly captured 

by approximate models, the HOCs are much more sensitive to the system characteristics, e.g., past 

behavior, modeling assumptions, etc. If the attacker has the same exact model as the defender, then 

ultimately the proposed approach may also be bypassed. As mentioned earlier, this extreme scenario 

should be handled using active monitoring which is outside the scope of this work. Instead, it is 

assumed that the attackers are equipped with a sufficiently accurate model, however it does not 

faithfully duplicate the defender’s model, often carefully calibrated to operational data. As shown 

later, the HOCs allow the defender to take advantage of the subtle variations between the attackers 

and defenders’ models, allowing defenders to detect FDI attacks that respect the patterns 

established by the LOCs. The idea is to derive features that are based on both the LOCs and HOCs 

as a basis for classifying normal from FDI behavior masquerading as normal behavior. 

 

This work firstly proposes the use of randomized window decomposition (RWD) to identify the 

LOCs and HOCs-based features [42], which has demonstrated the potential of this OT defense for 

an idealized scenario, where the data were assumed to be available offline. Then this work focuses 

on how it can be used to detect subtle data falsifications in real time with interference from normal 

process noise. Particularly, a stealthy attack called triangle attack [43] which employs a series of 

line segment(s) to respect the system dynamic behavior without prior knowledge of the system 

dynamical model. The RWD algorithm is adapted for real-time and is equipped with a denoising 

algorithm to ensure noise does not interfere with the HOCs. 
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Figure 2.1 Dominance Ordering of Extracted Process Patterns 

 

2.3 Contribution and Limitation of this work 

This work proposes an online monitoring technique that can identify subtle monitoring 

measurement changes. Unlike traditional methods that focus on the most dominant behavior of the 

system, this work exploits the information of the less dominant behavior serving as fingerprints of 

the physics model, since previous studies have proved that well-resourced attackers are able to 

have access to the most dominant behaviors. [44] The experimental work in this dissertation 

mainly consists of two major parts. The first part is denoted as a preliminary study and the other 

part is named as an exploratory study. In the preliminary study, two case studies are employed and 

provide proof for: 

 

1. Solely with historical operation/monitoring data, the attacker can learn the dominant 

behavior of the physics system. 
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2. With historical operation/monitoring data and an approximate physics model that can be 

reached via open access, the attacker can learn the missing information of the 

approximate physics model, i.e. model parameters, and consequently learn the system 

accurately. 

Besides, the current FDI detection approaches mainly focus on addressing sudden changes. To 

cope with the subtle FDI attacks/system variations, this work proposes an algorithm with extracted 

new feature, supported by a new denoising method, which is demonstrated in the exploratory 

study, representing the focus of this study. In the exploratory study, the detection algorithm firstly 

works as an offline technique to detect triangle FDI attack, component degradation and accident, 

and then it develops into an online monitoring toolkit. The offline technique usually takes a long 

snapshot to conduct a detection algorithm, since the goal of offline monitoring is to detect the 

attack and the longer window contains more information and is more robust to noise. However, 

online monitoring requires a smaller window size to enable fast turnaround times for the 

executions of detection algorithm and the possible following countermeasures against attacks. 

Consequently, a denoising approach is needed to cooperate with the detection of subtle triangle 

attacks. Commonly used denoising techniques would smooth out the HOCs together with noise. 

Thus, a novel denoising method is proposed under the same mathematical theoretical frame as the 

detection algorithm to support the subtle FDI detection. In the exploratory study, the mathematical 

developments contain three parts: (1) offline monitoring technique; (2) denoising approach; (3) 

online monitoring toolkit.  

 

The aforementioned assumptions that the attackers have no access to all proprietary design details 

or full library of historical data, reveal the one limitation of this work that this approach can only 

identify the system behaviors that deviate from the patterns/structures within the genuine pattern 

library. For the attacks employing genuine data as the injected signals, e.g. replay attack, the 

methods in this work will not be effective. Besides, since the detection algorithm is based on the 

variation of the relationships between LOCs and HOCs, the attack vector in the null space of the 

identified components will not be identified, which represents another limitation of this work.  
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3 BACKGROUND 

With the definition of problems to study, this section provides a description of research object, 

industrial control system, and previous works focusing on detection of FDI attacks. 

3.1 Background in Industrial Control System (ICS)/Cyber Physical System (CPS) 

At a high level, any industrial control system may be considered as containing four major parts as 

illustrated in Figure 3.1. Actual industrial control systems will typically include multiple 

instantiations of those parts, which enables the system capable of cognition, communication, 

computation and control, denominated as 4C [45]. 

 

Physical process: it represents the core of the system, i.e., the release of energy following fission 

of nuclear fuel, and resulting in the establishment of neutron flux, heating of the fuel, and transfer 

of heat to other parts of the system. This physical process generates a physical response pn 

representing a change in the system state, e.g., fuel temperature increase/decrease, coolant 

temperature, neutron flux, etc.  

 

- Sensor: it is placed in the system to sense a change in its state, and produce a signal, typically 

analog, which is converted into digital form, denoted by yn. No distinction is made here 

between analog and digital signals, since it is currently outside the scope of this article. This 

signal is sent to the next component, the controller. 

 

- Controller: it receives the sensor signals, performs some initial data processing/testing to 

remove noise, detects outliers, ensures physical consistency, etc., and then employs the control 

logic to calculate a command to change the reactor state using actuators. Such change is 

executed to achieve a certain goal, e.g., maintain current power, ramp up power over a given 

time period, etc. 
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- Actuator: it converts the control commands into physical changes, e.g., movement of control 

rods, partially opening or closing a valve, etc.  

 

This work does not discuss how the attackers gain access to the system, and how they will inject 

falsifications to the sensor readings or actuators. For our purposes, we assume that they can inject 

the attacks as direct perturbations to the sensor readings and/or actuator commands, referred to as 

false data injection (FDI). In principle, they can also attack the controller’s logic as well, but these 

details will be left to future work. Mathematically, this may be described as follows: 

 

1( );n np P u +=  
 

( ),  if genuine,  or ( )FDI FDI
n n n n yy S p y S p= = + ∆ if under an FDI attack targeted at the sensor 

readings.  

 

1 ( ),  if genuine, orn nu C y+ = 1 1( ) or ( )FDI FDI FDI
n n n n uu C y u C y+ += = + ∆  if under attack. 

 

The latter attack scenario can be introduced either by changing the sensor readings causing the 

control system to take the wrong action, or by directly changing the control actions. One could 

envision a hybrid approach where both sensor readings and control actions are falsified.  
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Figure 3.1 Generic Industrial Control System 
 

3.2 Vulnerability of CPS  

 Cyber Attacks in Nuclear Fields/Industry (Timeline) 

Recent world is filled with examples indicating that critical infrastructure, like nuclear facilities 

are prone to both ransomware and targeted cyberattacks. Back in 1992, a computer programmer at 

the Ignalina Power Reactor Station in Lithuania inserted a virus into one of the stations computers 

attempting to sabotage a reactor at the plant [46].  Later on in 2003, the MS SQL Server 2000 

worm has infiltrated the Davis-Besse nuclear power station. The infection led to data overload in 

the network, resulting in the failure of the computers to communicate with each other. [47] A 

former employee of a Texas power utility programmed the models which regulated the 

management of EFH power generation facilities to cripple the company’s energy forecast system 

in May 2009 resulting in financial losses. [48] As is now well known, between 2009 and 2010 the 

Stuxnet virus targeted the Natanz uranium enrichment facility in Iran [1]; The virus triggered 

weakened centrifuges and disrupted enrichment operations as well. In fact, this situation is 

noteworthy because the facility was well defended and disconnected from the Internet. Revelations 

of malware discovered in nuclear installations and critical infrastructure have risen in volume after 

news of Stuxnet broke in 2010. In 2014 alone, The German Steel Mill was infiltrated by malware 

which employed spear phishing email w to obtain access to the corporate network and then 
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transferred into the plant network; [49] malware was introduced into the control room at the Monju 

nuclear power plant in Japan; [50] cyber attacks against the Korea Hydro and Nuclear Power in 

South Korea led to leak of a blueprint and details of various support systems. [51] [52] A Japanese 

facility that processes plutonium and other nuclear materials disclosed that it had detected malware 

in its systems in 2015. [53]  In 2016, Gundremmingen nuclear power plant in German reported to 

be compromised with ransomware designed to encrypt files from hacked computers [54] A former 

employee of the DOE and the U.S. NRC attempted to sell the information which was proclaimed 

useful to inject a virus on NRC computers that could allow access to agency information from 

foreign countries or could be used to otherwise shut down the servers of the NRC. [55] In 2017, a 

sophisticated, troubling cyberattack using the Petya ransomware was launched against the 

Ukrainian power grid that temporarily disrupted the electricity supply to consumers for a period 

from one to six hours. [56] Based on the function of  Petya, a destructive malware named as 

NotPetya was enhanced to spread broadly and  was believed to specifically target Ukraine. [57]  

In 2019, an Indian nuclear reactor was infiltrated by North Korean attackers with leakage of huge 

amount of operational data. [58] The detailed description and collection of the previous attacks 

can be found in [3][59][60][61][19]. Based on previous collection, this work adds most recent 

attack incidents as shown in the timeline in Figure 3.2. 

 

From the cyber-events the world witnessed so far, the technological skills of threat actors have 

vastly enhanced and their ability to inflict physical harm is surprising. Stuxnet, for example,  

indicated that cyber-media would have a huge effect on the real universe. Stuxnet was an incredibly 

sophisticated cyber-attack carried out using specialized malware that targeted a particular ICS. A 

crucial lesson learnt from Stuxnet is that whatever device it needs will certainly be attacked by a 

well-financed advanced threat agent, which can create alarm for critical infrastructure. For critical 

infrastructure, the most important lesson to be learnt is improving the ability to detect and recover 

from a cyber attack, since it is not possible to defend all networks from any intruder. We learnt 

from attacks that basic tactics are enough to hack through sensitive networks, implemented by a 

professional and persistent adversary. 
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Figure 3.2 Cyber Attacks against Nuclear Industry 
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 Risk Analysis of CPS in nuclear industry 

Nuclear facilities are vulnerable to a variety of cyberattacks by a variety of malicious attacks. In 

addition to the recent CPS attack accidents in the nuclear industry, several scholars have 

undertaken CPS studies, derivation, and risk identification and control.  

 

T. MacLean et al. examine the existence of potential attack vectors in an NPP; specifically, they 

build a testbed to simulate a boron monitoring system and an FDI attack on the programmable 

logic controller (PLC). Their results indicate the vulnerability of the control system to the attack 

simulated by easily available software and hardware.  [62] 

 

Researchers also put endeavor to identify potential vulnerability in a nuclear system. Researchers 

perform attack vector analyses based on the RG 5.71 which provides a complete set of 

requirements for the cyber security of NPP I&C systems. They analyze the architecture of the CPS 

of NPP in the first place and provide a list of vulnerability and potential penetration.  And they 

consequently propose requirements par each possible vulnerability of the industrial control system.  

[63] [64][65] Varuttamaseni et al. focus on building a cyber attack model for nuclear power plants. 

The propagation of the attack is modeled by considering certain attributes of the digital 

components in the system. These attributes help the identification of the potential vulnerability of 

a component to different classes of attack and the capability gained by the attackers once they are 

in control of the equipment. [66] 

3.3 Official Guide for development of cyber security for nuclear system (Timeline/frame 
structure) 

For the nuclear energy industry, safety is paramount. It is protected by multiple back-up safety 

systems, robust physical defenses, and plant security forces which undergo rigorous training and 

preparation for emerging threats, including natural disasters, cyberattacks on critical operational 

systems etc.  

 

The nuclear sector has suffered from various cyber security issues for a long time. Back in 1997, 

the industry embarked on the investigation of potential issues associated with the growing usage 

of digitalization at power reactors. [67] Specifically, the Nuclear Regulatory Commission (NRC) 
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is the governmental body in the US that formulates policies and develops federal regulations for 

NPPs. In 1997, NRC had issued a series of complimentary documents to resolve the issue of the 

applied digital software in NPP, DG–1206~1210. [68]  During the years 2003 and 2004, the 

nuclear industry embarked on the regulations to support the standard deployment of cyber security 

systems at nuclear reactors. Four nuclear power reactors in the United States completed cyber 

security assessment pilots in July 2003. 

 

These pilots were devised to inform development of NUREG/CR-6847, “Cyber Security Self-

Assessment Method for U.S. Nuclear Power Plants”. [69] The project team was made up of 

representatives from the Pacific Northwest National Laboratory (PNNL) and the Nuclear 

Regulatory Commission (NRC), released in November 2004. The guidance outlines a risk-

informed approach that takes into account the effects on plant functions, as well as how to develop 

a plant-wide cyber security defensive framework that enables various defense layers with 

escalating levels of security protection. 

 

The nuclear industry set up the Nuclear Strategic Issues Advisory Committee (NSIAC) in 

December 2005, compromised of the Chief Nuclear Officers of each nuclear power plant site or 

fleet, which is capable of establishing initiatives that are binding efforts for all nuclear power 

plants. The NRC requires power plants to develop, implement, and assess physical and cyber 

security plans in order to protect against a Design Basis Threat (DBT). In 2007, the NRC revised 

the DBT specification to include a cyberattack as an attribute of the adversary in response to the 

growing threat of cyber-related threats. The NRC published new security requirements in March 

2009, which included thorough programmatic cyber security measures defined primarily in Title 

10 of the Code of Federal Regulations (CFR), Section 10 CFR 73.54, titled as  “Protection of 

Digital Computer and Communication Systems and Networks”. [70] The regulation requires 

nuclear power plants to submit a cyber security plan and implementation schedule for NRC review 

and approval.  In April 2010, NRC approved NEI 08-09 [71], which provides a cybersecurity 

management for nuclear power reactors intends to facilitate nuclear power industries in complying 

with 10 CFR 73.54, as well as a catalog of technical, operational, and management cyber security 

measures adapted from NIST Special Publication (SP) 800-53, "Recommended Security Controls 

for Federal Information Systems".  Serving as implementation milestones, this template includes 

identification of critical digital assets, alleviation of cybersecurity controls and examination of 
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cybersecurity practices, etc.   With regards to the vulnerability of the digital ICS and the 

intermittent attacks against nuclear systems, NRC issued 10 CFR 73.77 “Cybersecurity Event 

Notifications” in Nov. 2015, requiring NPPs to record and report cyber security events. [72] 

3.4 FDI Attack Types 

A literature review on the construction, detection and assessment of FDI attack against CPS is 

conducted in Chapter 2. Here the existing attack vectors injected in time series have been 

categorized into several types according to their trend and the construction of the types.  

 

• Freezing Attack Vector 

As stated in 3.1, the genuine signal displayed in controller is expressed as ( )n ny S p= , where yn 

represents the genuine signal at the nth time step and S(pn) represents the corresponding 

measurements from sensor. Freezing attack vector, expressed in the Eq. (1), is the most popular 

attack vectors studied in the field of cybersecurity of  nuclear industry. [18][40][20] In (1), C is a 

constant value that could be a previous state value of the process variable or an arbitrary state 

value. This type of attack vectors has been proved detectable via different detection algorithms, 

e.g., data-driven techniques, residual based approaches etc.  

 
FDI
ny C=  

(1) 

• Recurring Pattern Attack Vector 

Recurring pattern attack vector can be considered as a sophisticated version of the freezing attack 

vector, instead of replacing the original signals by a constant but a recurring pattern, which can be 

expressed in Eq. (2), where the function of the recurrent pattern is denoted as F. Specifically, F 

could represent a saw pattern, sinusoidal or a defined periodic function. 

 

( )FDI
n ny C F p= +  

(2) 

 

• Bias Attack Vector/ Shifting Attack Vector 
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Bias attack vector can be expressed in Eq. (3), C representing a constant shift for all state values 

after the falsified data intrusion. Also, for different periods of time, the constant can be different, 

which results in a step function as the attack vector.  

 

( )FDI
n ny S p C= +  

(3) 

• Magnified-Noise Attack Vector/Scaling Attack Vector 

As the real-time measurements contains noises, the magnified-noise attack vector usually does not 

change the mean or median of the measurements, which could circumvent the basic statistical 

check of the monitoring system. This attack vector is expressed in Eq. (4), where 0 ( )nS p  

represents denoised or model inferred measurement at nth time step, nδ  and nδ ′  represent the 

original noise and the magnified noise respectively. Generally speaking, the mean of nδ  and nδ ′ is 

0, while the standard deviation of nδ ′ is larger than nδ ′ . 
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• Sensor drift Attack Vector 

Sensor drift attack vector (also denoted as drift attack vector) broadly covers a series of attack 

vectors with a defined function for attack vector construction, whose mathematical expression is 

shown in Eq. (5), where f represents a drift function introducing rapid variation of the process 

variable. Due to this property, drift attack can be easily detected since the value of  process variable 

would exceed the control limit in a short time.  

 

( ) ( )FDI
n n ny S p f p= +  

(5) 

• Triangle Attack Vector 

Triangle attack is proposed in [43], which aims to find a series of line segments to adjust the local 

signal variations. The attack vector is established by sending two rays being sent from an identified 

vertex till the next vertex is reached. This line-segments fit provides a good estimation of a 
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dynamic process, which could result in very plausible attack to circumvent monitoring system 

since the local signal variation pattern in kept in the attack vector. For example, while a process 

variable, denoted as PV1, keeps decreasing, another process variable, PV2, is manipulated by 

reactor practitioners, where PV1 and PV2 are correlated. If the attacker aims to make the operator 

incognizant of the reduction of PV1, he/she has to preserve the variation of PV1 resulting from the 

manipulation of PV2, while removing the decreasing trend of PV1.  

3.5 Detection Techniques 

A physical process defense offers a new security approach that is fundamentally difference IT 

defenses. This strength of physical process defense is derived from the uniqueness and 

sophisticated interactions between three essential elements compromising any cyber physical 

system:  (1) Dynamics of the physical process and all variables associated therewith, such as 

specific design parameters, monitored process variables like sensors readings, actuator commands, 

components status indicators; (2) the computations, the modeling and simulation tools used for 

state inference and control; (3) network communication, including network architecture and the 

employed protocols. This complexity can be leveraged to design equally complex defense 

measures capable of identifying unauthorized manipulation of system state even when the system 

remains digitally penetrated.  

 

Scholars have shown that physical process defenses can employ the well-developed mathematical 

arsenal of data mining and artificial intelligence (AI) techniques to identify the signatures/features 

(mathematical functions) that serves as fingerprints for the physical system. The detection 

techniques adopted in CPS monitoring with the signatures can be grossly categorized into three 

types. The first type is based on the discrepancy between measurements of monitored process 

variables and the inferred measurements from a simulation model. For the second type of detection 

approaches, the signature is constructed from the original measurements/observations in form of 

vectors or tensors as the preprocessing for machine learning techniques. For example, given a 

series of datasets/measurements combination as vector, one can employ support vector machine 

(SVM) to classify or regress the vector to the responses, or employ principal component analysis 

(PCA) to identify the most dominant directions among these vectors. Given the state values of 

certain process variables, one is not required to provide physics insight into the construction of the 
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state variable vectors, therefore these approaches are usually referred to as data-driven. The third 

type of signature is denoted as model-based, since the model information/physics insights are 

involved while implementing the detection techniques. One way to involve the physics information 

is to build the signature from a physics perspective. For example, one can apply fast Fourier 

transform For example, one can employ PCA to obtain the degrees of freedom (DOFs) and 

consequently select the DOFs and treat them as regressors to build an inference model. Albeit data-

driven techniques adopted, the signatures are not plain combination of raw data, but processed 

with data-driven techniques to find the model information, i.e. the DOFs from implementation of 

PCA and the selection of DOFs also requires expertise on the physics.  A summary of the detection 

techniques is shown in Table 1.  
 

Table 1 Summary of taxonomy of related detection techniques in control system 
 Definition Peculiarity Methods 

Basic statistical 
check 
(outlier/anomaly 
check) 

Identification of 
measurements 
that do belong to a 
certain population 

• Easy to implement. 
• Can be bypassed if the threshold is 

known 

Error analysis 

Correlation 
Analysis 

Data-driven 
techniques 

Detection process 
is compelled by 
experimental data 
instead of physics 

• Physics models are not incorporated. 
• Generic and can be duplicated by 

attacker. 
• Requires vast amount of data. 
• Requires information quality of data. 
• Mostly applied on black-box 

problems 

SVM 
PCA/ICA 
Bayesian 
Networks 
Autoencoders 
Neural 
Networks 
Auto-correlation 
regression 
Random Forest 

Model-based 

The predictive 
model 
construction 
employs prior 
knowledge or 
involves physics 
insight 

• Derived from physics or with physics 
insights. 

• Customized for different physics 
model. 
 

Kernel PCA 

FLDA 

Kernel FLDA 

Supervised PCA 

 Basic statistical check 

The first type is a basic outlier/anomaly check, which identifies the measurements which do not 

correspond to normal operational behavior, usually by limiting the discrepancy between the 
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measurements, 𝑦𝑦𝑖𝑖 , where 𝑖𝑖  represents the index of measurements and the estimated process 

variable value at ith time step, 𝑦𝑦�𝑖𝑖, within a bound 𝛿𝛿. For a period of time with n time steps, one can 

get the mean value of the measurements, denoted as 𝑦𝑦�. The mainstream metrics to calculate the 

discrepancy include but are not limited to the following methods. [45] 

 

Table 2 Metrics of Basic Statistical Check 
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Sum of squared error (SSE) ( )2
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𝑅𝑅2 correlation coefficient 1 −
𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆

 

 Data-Driven Techniques 

The data-driven models purely rely on data and preclude the knowledge of the CPS dynamics. 

Attempts for data driven modeling for capturing the dynamics of CPS try to exploit the following 

concepts [73][74]. 

• K Nearest Neighbors 

The most commonly used data-driven technique is kNN due to its fast implementation and 

capability to handle unsupervised data. For the k-nearest neighbor (kNN) technique, the 

fundamental assumption is that the genuine data exists in compact cluster and that deviations arise 

at a distance from the cluster. The number of nearest neighbors within a given distance is calculated 

by a density dependent nearest neighbor process. For example, the local outlier factor (LOF) is a 

mechanism in the dataset that manages different densities [74]. A LOF score is calculated as the 
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ratio of the instance's average local density of kNN and the test instance's local density. A lower 

LOF score distinguishes the anomaly because the anomaly would have a local population lower 

than that of its closest neighbors [74]. 

 

• Bayesian networks/Bayesian learning 

Bayesian networks [75] employ a set of variables and their conditional dependencies via a directed 

acyclic graph (DAG), a hierarchical model, whose nodes represent variables in the Bayesian sense: 

observable quantities, latent variables, unknown parameters or hypotheses. These quantities and 

connected by a set of prior probabilities.  Based on this nature, Bayesian networks can be used to 

find probabilistic queries of the variables, and the learning of the variables. However, one needs 

to pay extra attention when choosing priors for a hierarchical model, especially on the variables at 

higher levels of the hierarchy. In nuclear fields, probability risk analysis (PRA) shares a similar 

hierarchy structure with the Bayesian network, which provides the prior probability for building 

Bayesian networks [23]. 

 

• Autocorrelation regressions 

Autocorrelation refers to the correlation across various observations in the data the same variables. 

In the form of time series data in which observations occur at multiple points along the time axis, 

the principle of the autocorrelation is most frequently debated. [76] In reality, the data would be 

autocorrelated if the observations of a process variable that occurs closer in time would be more 

similar than the temperature values that occurred farther apart in time. In a regression analysis, 

autocorrelation regression residuals would be employed as a metric to determine whether the 

model is incorrectly specified.  For example, if one attempts to model a simple linear relationship 

but the relationship observed is non-linear, then the residual may not be autocorrelated. 

 

 

• Random forest  

The random forest is an ensemble technique that can also be viewed as a kind of predictor of the 

nearest neighbor. Ensembles are a divide-and-conquer technique used for performance 

enhancement. A community of  decision trees, referred to as "small learners", will combine 

together to build a "strong learner", which is the core concept behind ensemble approaches [77]. 
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Random forest is employed as a robust and easy implemented approach and widely adopted in 

CPS intrusion detection [78]. 

 

• Support vector machine (SVM)  

Support vector machines (SVM) [79][80] are a class of machine learning techniques employed in 

this work aiming to construct classifiers for the identification of FDI attacks in a normal or 

anomalous scenario. Besides linear SVM, kernel trick is usually employed when implementing 

SVM, which transforms the data into a higher dimensional space, where linear methods for 

classification become applicable. A radial basis function is employed in this work as the SVM’s 

kernel. The RBF kernel is expressed by Eq. (6) [81], where N is the size of training data, γ is a 

parameter which decides how curvy the classifier’s decision boundary could be, and C is a penalty 

weight. Therefore, when γ is very large, the boundary could be so curvy that the outliers could be 

classified as labeled but isolated from the correct cluster, and that is when overfitting occurs. When 

C is large, the penalty term is heavily weighted to avoid misclassification of data and leads to 

overfitting as well [79]. A comparison study is usually employed to find proper values for γ and C 

for not losing the generalization properties of the SMV when testing new data. 
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(6)  

• Gaussian Processes (GP) 

Gaussian processes are a generic nonparametric method in supervised learning, designed to solve 

regression and probabilistic classification problems. Unlike common regression techniques 

employing least square to minimize the loss function and output one line or curve to fit the 

measurements data, the predictions from a GP model take the form of a full predictive distribution. 

Consequently, the computation of the empirical confidence intervals is appliable, based on which 

one can decide that if a refit of the prediction in certain regions of interest is necessary. Like SVM, 

kernel tricks can be implemented in GP as well to capture more sophisticated data variations. 

However, GP model use the whole samples/features information to perform the prediction, so the 

computation cost could be a pain for high dimensional spaces. [82] 
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• Neural Networks 

There are all sorts of intelligent-related tasks that can be broken down into layers of abstraction.  

The activations in one layer determine the activations in the next layer by the mechanism that 

could conceivably combine raw data into puzzles of patterns, then the puzzles into patterns. [83]  

Specifically, the question towards neural networks is what parameters should the network have so 

that the network is sufficiently expressive to potentially capture the patterns in the output layer. 

This goal is accomplished by assigning a weight to each of the connections between the neurons 

in the ith layer and the neurons in the (i+1)th layer, and then taking all the activations from the ith 

layer and compute their weighted sum according to the weights. [84] And learning via neural 

networks refers to getting the compotation force to find a valid setting for all these weights and 

biases to solve certain tasks, which could be regression, classification, and so on. Purposefully 

tweaking these parameters so that the shallower layers pick up on patterns and the deeper layers 

pick up on signatures.  

 

In recent years, researchers find that building up a little bit of a relationship with what the layers, 

weights, biases actually mean could make the networks performance closer to their anticipation, 

which can be attributed to another popular topic, explainable AI (XAI). [85] The interpretation 

towards the components of the neural network provides a new access to physics insights. And the 

rise of XAI indicates that there is a trend in fusion of data-driven approaches and physics 

discipline. 

 Model-based Techniques 

Strictly speaking, a purely model-based approach requires excellent physics model and good 

specification of the parameter values. However, it would be impractical to harness the complete 

technical specifications and hidden physical interactions from the first principles since an online 

monitoring system requires fast model execution and decision-making on the authenticity. In 

addition, the easy availability of huge online monitoring makes a natural option for using a prudent 

approach that combines data-driven techniques with extracted information from physics insights. 

Current studies adopting these hybrid approaches can be broadly categorized into two types: (1) 

the extracted physics information is represented as features sent to the data-driven models; (2) the 

physics insights represent in the form of regularizations, like the definition of loss function or 
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constraints of the data-driven methods. The approaches of the second type are usually used in case 

of availability of no or less labeled data or insufficient data [45]. But for most monitoring system, 

the huge amount of genuine historical operation data is available, representing that the availability 

of datasets labelled as “Genuine”. In addition, the goal of data science and the related subjects aim 

to subtract as much information from data as possible. Even though sufficient pristine operating 

data and the corresponding labels could serve as sources of information, the raw representations 

are not amendable to learning process. Hence, the first choice for evolving physics insights in the 

control system would be deriving features from raw data.  

 

While investigating the methods and metrics used to evaluate the authenticity of system state and 

the measurements of process variables, features selection and extraction is most significant 

procedure throughout the whole process of the algorithm implementation. Whichever the 

algorithm is employed to recognize patterns in the process variables or identify the correlation 

between variables, essentially this process aims to subtract information from raw data/ 

measurements by building derived values, which is denoted as features. The features will facilitate 

the subsequent learning or modeling steps thereafter; this process is called feature extraction. 

However, for a complete control system monitoring numerous interrelated process variables, some 

of the derived features are suspected to be redundant. Inclusion of the full space of features in 

learning process will lead to impractical computation cost and performance degradation, which are 

often referred to as curse of dimensionality. Feature selection is adopted to address this issue, 

usually employing reduced-order modelling (ROM) techniques to determine a subset of the initial 

feature space, which are expected to contain significant information from the input data. Both 

feature extraction and selection constitute the contents of feature engineering, shown as the second 

step in Figure 3.3 [86]. For the majority learning process, raw data are processed via statistical 

methods or derived from a physics-informed perspective to generate features; then one or more 

learning algorithms are adopted to train the predictive model for CPS; after evaluation of the 

trained predictive model, the CPS can make inference of the process variables, and the 

measurements authentication is fulfilled via comparison between the measurement and the 

inference. After the whole detection process, the measurements are collected to expand the 

historical data for updating the predictive model. As most of the monitoring systems generate 

temporal data, the following background focus on the feature engineering of time series. Based on 
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the nature of the features and the following employed machine learning methods for FDI detection, 

the features can be categorized into three different types.  

 

 

Figure 3.3 Machine learning Execution Flow [86] 

3.6 Feature Engineering 

There is a vast literature of time-series analysis methods for characterizing time-series properties 

that can be leveraged to extract interpretable features from a time series. This section describes 

three types of the most commonly used feature-engineering methods for typical time series. 

Starting with the simplest time-series metrics, progressively more complicated and sophisticated 

approaches are described thereafter. 

 Time domain  

Ignoring the timestamps, analyzing the distribution of the time series usually yields informative 

features for classification, regression, or forecasting. Four simple metrics that simply extract 

statistical characteristics from the marginal distribution of the time series observations are listed 

below: [87] 

• Average — The median or mean of the time series can uncover the trends in the average 

value of a time series. 

• Variability — The time-series measurements of the spread of a distribution, e.g., standard 

deviation, interquartile range, or median absolute deviation, can uncover the trends in the 

spread of the observations. 

• Outliers —In many circumstances, such as predicting component failure or process line 

disruptions, time-series observations that locate many standard deviations away from the 

Data Feature Training Evaluate Inference Measurements 

Offline Online 
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mean value or outside the range of the distribution contain predictive information, e.g., 

revealing potential anomalies in the observations. 

• Distribution — The distribution contains predictive information, including the higher-order 

characteristics of the distribution of a time series (e.g., skewness or kurtosis), or proceeding 

with a statistical test for a specific distribution (e.g., Gaussian or uniform) In addition, a 

more sophisticated set of features that computes windowed statistics entails calculating 

these statistical properties within a specified time window or a series of time windows. For 

example, the statistical features generated within a week of measurements may contain 

predictive information. As a result, windowed discrepancies/similarities can also be 

determined, which could be employed to differentiate/predict the time series from one 

time-window to the next. 

 

Next, more-sophisticated time-series feature extraction technique is proposed, matrix profile [88], 

which measure the similarity of a time series with a lagged version of itself. Specifically, the 

similarity characteristic of a time series compares the original time series to the time series that 

has been shifted to the left by one time lag. While this comparison proceeds along the whole time 

series, one can identify the periodicity and other statistical structure in the time series. Different 

from the statistical features that are usually calculated as a fixed value or a vector if given a certain 

series of measurements, while matrix profile engages its greatness in versatility, generality, 

simplicity, and scalability and refresh time series data. Particularly, it has been broadly applied on 

time series pattern recognition, clustering, density estimation, shapelet discovery/classification, 

time series joins, etc. Taking shapelet discovery as an example, shapelets are time series 

subsequences which are maximal representative of a class. Due to its fast and interpretable 

classification decisions in a large variety of domains, the shapelet discovery has broad application. 

Based on its application, the identified shapelets can be denoted as ‘discord’ in anomaly detection, 

or as ‘motif’ for identifying recurring patterns. In the context of nuclear engineering, the pressure 

variation at reactor core under the LOCA scenario will be different from the one under normal 

operation, which can be identified as different shapelets. Then a library of shapelets can be built 

to include all possible shapelets under various operating conditions, which can be employed for 

classification of online monitoring data.  
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 Domain Transformation — Spectral Domain 

Besides the analysis in time domain, analysis in spectral domain provides another perspective to 

handle the intractable data in time domain, including wavelet transform, Wigner distribution 

function, Fourier transform and so on, among which Fourier analysis is one of the most commonly 

used methods for time-series feature engineering. Fourier analysis aims to decompose a continuous 

function into a sum of sine and cosine functions on a range of frequencies, existing in many real-

world datasets. This decomposition enables quick identification of periodic structure in the 

function. In time series feature engineering, the discrete data could be expressed by a continuous 

function, but in most cases, this decomposition is achieved by discrete Fourier transform. The 

discrete Fourier transform [89] is able to decompose a time series into its spectral components with 

the corresponding frequency information. And these components are single sinusoidal oscillations 

at distinct frequencies each with their own amplitude and phase. Similar approaches that convert 

the 1D representations into 2D time frequency domain, contains wavelet transform [90], empirical 

mode decomposition [91] and the advanced variations of these transformations [92].  

 Correlation/ Dependence Domain  

Unlike the feature extraction methods leading to unique/fixed quantities/values mentioned in the 

previous sections, correlation features measure the statistical correlation of a time series itself 

(autocorrelation) or among different observables/variables (cross-correlation). For example, a time 

series' one-autocorrelation feature correlates the original time series with the same time series 

shifted over by one-time lag to the periodicity and other statistical structure in the time series can 

be captured by shifting the time series in this manner. Expanding this idea for multivariate 

problems, one also can look into the dependencies among various variables, and violation of these 

dependencies can be applied to FDI detections.  Taking principal components analysis (PCA) [93] 

as an example, the number of principal components is usually settled by the decay of singular 

value spectrum, a restricted cumulative variance, or a user-defined error applied on the 

reconstructed matrix to restrict the maximum discrepancy. 

 

Feature extraction methods in both time and spectral domains treat the time series of a process 

variable separately, however, different process variables could be highly correlated, for example, 

the temperature and pressure at the secondary side of the steam generator. From the perspective of 
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information amount, the information among process variables is not fully extracted. Several 

methods are developed to construct features from the variation and distribution of the data, as well 

as the correlations between different variables.  

3.6.3.1 Principal Components Analysis (PCA) 

PCA was first proposed by [94] , which tries to find the orthogonal directions representing the 

variation of the data. Singular value decomposition (SVD), which produces a set of singular 

vectors and singular values, with the singular values being scalar quantities ordered from high to 

low, is usually adopted to implement PCA.  One can show that the variation in a given variable 

can be described by a linear combination of the first few singular vectors. In most application of 

SVD, the singular value spectrum shows a quick decay of its value, the implication is that one 

needs only few singular vectors to describe the variations for the responses of interest. 

Mathematically, this is described in Eq. (7) , where X∈  ℝ𝑚𝑚×𝑛𝑛  represents the normalized raw 

training data; U represents the orthogonal directions of data variations, which are  the eigenvectors 

of the XXT, the covariance matrix; Σ represents the diagonal matrix storing descending singular 

values, and 𝑉𝑉𝑇𝑇 represents the eigenvectors of the XT𝑋𝑋. The projections of data on the dominant 

directions is UT 𝑋𝑋, which are named as principal components [95][93]. 
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3.6.3.2 Kernel PCA 

While PCA tries to find the linear subspace to represent the pattern of data, kernel PCA searches 

for the nonlinear subspace of data. [96] With user-defined nonlinear kernels, the KPCA maps 

original data onto a higher dimensional space, x → ϕ(x), then the corresponding kernel matrix is 

constructed as 𝐾𝐾(𝑥𝑥1, 𝑥𝑥2) = 𝜙𝜙(𝑥𝑥1)𝑇𝑇𝜙𝜙(𝑥𝑥2), which replaces x1T𝑥𝑥2 to implement the kernel trick. [97]  

After applying the kernel trick, SVD is applied on the kernel matrix 𝐾𝐾 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇.  
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Specifically, if the kernel is an identity matrix, i.e.,  ϕ(x) = 𝑥𝑥, the KPCA will reduce to PCA. 

Most popular kernels include polynomial kernel, radial basis function kernel and so on. Broadly, 

the construction of kernel matrix encompasses many linear algebra transformations. For example, 

metric multidimensional scaling (metric MDS), also denoted as Principal Coordinate Analysis 

(PCoA), is a nonlinear feature extraction method, whose kernel matrix is obtained by 𝐾𝐾 =

−1
2
𝐻𝐻𝐷𝐷𝑋𝑋𝐻𝐻. Here, 𝐻𝐻 ≔ 𝐼𝐼 − 1

𝑛𝑛
11𝑇𝑇, is the centering matrix and 𝐷𝐷𝑋𝑋 is based on Euclidean distance. 

Detailed calculation procedures can be found in Ref [98]. Similar methods include but are not 

limited to Isomap, locally linear embedding, Laplacian eigenmap and so on [99]. 

3.6.3.3 Supervised Principal component Analysis (SPCA) 

As stated in 3.6.3.1, PCA is adopted to solve the problem of finding new directions/variables that 

are uncorrelated linear functions with maximized variance. SPCA is initially proposed to solve the 

problems of finding the new variables that are most correlated to one or more responses. The 

responses could be categorical or numerical data. As a generalization of PCA, the construction of 

PCs in SPCA is same with PCA, but there is one more procedure, the screening of PCs which is 

based on the covariance between responses and PCs. As one may think intuitively, regression on 

the first few dominant components would be a natural option, however, this might not always 

result in the optimal performance. Bair et al suggest four steps to implement this idea. [100]  

Firstly, with readily identified PCs, one can compute a set of univariate regression for each PC and 

obtain the corresponding regression coefficients for each PC.  

3.6.3.4 Fisher Linear Discriminant Analysis 

Fisher linear discriminant analysis (FLDA) is proposed by Ronald A. Fisher. [101] This approach 

is often used for classification problems, i.e., analyzing labelled data. Similar to PCA, FLDA also 

calculated the projection of data along identified directions. Yet, rather than maximizing the 

variation of data, FLDA attempts to maximize the separability among known categories while 

minimizing the variation within each category. This goal is fulfilled by maximizing the Fisher 

criterion, which is formulated as below: 
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where w represents the discriminant vectors, SB and SW represent the between-class and within-

class scatter matrix respectively whose mathematical expression is shown as below: [102] 
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(9) 

In Eq. (9), x  refers to the mean of all training samples, cµ represents the mean of a certain 

category, c. The category set is denoted as C. As stated in 3.6.3.1, the U vectors are calculated as 

eigenvectors of a certain matrix, such as XXT for PCA, here the discriminant vector w are 

calculated as eigenvectors of 1
W BS S− .  

3.6.3.5 Independent Component Analysis  

ICA was initially proposed to solve blind source signal separation problem. As the Different from 

PCA, which finds the orthogonal directions from the original data, i.e., each pair of PCs has the 

least covariance, and the significance of these directions are ranked based on the singular values, 

ICA aims to find independent directions, which are non-orthogonal and unranked, but the 

combination of each pair of the ICs has the least mutual information. [103] Due to the properties 

of ICA, ICA can only exploit non-Gaussian data source, since the rotational symmetry of Gaussian 

data introduces ambiguity in separating the data sources. [104] ICA can be implemented using 

different methods, i.e., different objective function and optimization algorithm. For example, 

Hilbert-Schmidt Components Analysis (HSCA) employs Hilbert-Schmidt Independence Criterion 

(HSIC), a measure of dependence between two random variables, as the metric to identify 

eigenvectors, U, with maximized HSIC, which serves as a set of basis to construct features. The 

detailed implementation can be found in [105]. 
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 Evaluation metrics for FDI Detection 

Since FDI detection is usually a bifurcation problem, the datasets used for network anomaly 

detection for classification are usually labelled as ‘no attack’ and ‘attack’ instances. Based on the 

discussion in the earlier sections, it is indispensable to employ proper metrics for FDI attack 

countermeasures evaluation. Based on the prediction and the actual label, there are four types of 

combination, shown in Table 3, denoted as confusion matrix. [106] All correct predictions are 

located in the diagonal of the Table 3. The cases labelled as ‘attack’ is denoted as positive, which 

locate on the first line of the confusion matrix. Therefore, each instance can be represented by the 

alignment between prediction and actual labels as well as the predicted attack condition. One can 

easily find the prediction error happens outside the diagonal of the table, and the false negative 

(FN) instances worth more attention, since there is an attack in these instances while the prediction 

will not issue an alarm. Based on the confusion matrix, a series of probability can be calculated to 

evaluate the correctness/performance of binary classification, as listed below. 

 

Table 3 Confusion Matrix 

 Actual Labels 
Attack No Attack 

Predicted 
Labels 

Attack True positive (TP) False Positive (FP) 
No Attack False Negative (FN) True Negative (TN) 

 

• True Positive Rate (TPR)  

TPR, also denoted as sensitivity or recall, represents the probability of the attack detection, 

expressed in Eq. (10).  

𝑇𝑇PR =  
TP

TP + FN
 

(10) 

• True Negative Rate (TNR) 

TNR also known as specificity and selectivity, represents the probability of the correctly predicted 

normal conditions, expressed as: 

𝑇𝑇NR =  
TN

TN + FP
 

(11) 

• False Positive Rate (FPR) 
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FPR represents the probability false alarm, also denoted as type I error in a binary classification 

problem, expressed in Eq. (12. If all ‘no attack’ cases are predicted as labelled, the FPR will reach 

to 0.0 while the TNR will reach to 1.0. 

𝐹𝐹PR =  
FP

TN + FP
 

(12) 

 

• False Negative Rate (FNR) 

FNR is also denoted as miss rate or type II error, representing the proportion of positives which 

yield negative classification prediction, expressed in Eq. (13). Ideally, if all the attack instances 

are identified, the TPR will reach to 1.0 and the FNR will be 0. 

𝐹𝐹NR =  
FN

TP + FN
 

(13) 

 

• Precision / Positive Predicted Value (PPV) 

Precision represents, among all the instances with predicted as ‘attack’, the portion of the correctly 

labelled ones, expressed as Eq. (14). Like TNR and TPR, but PPV is defined from a perspective 

of the creditability of the predictions. PPV reaches its best value at 1.0 and the worst value as 0.0.  

𝑃𝑃PV =  
TP

TP + FP
 

(14) 

 

• Accuracy 

Accuracy represents the proportion of correct predictions (both true positives and true negatives) 

among the total number of examined instances, expressed as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 

(15) 

 

• F1 score 
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F1 score, as known as F-measure, is a measurement that considers both PPV and TPR to compute. 

The F1 score can be interpreted as a weighted average of the PPV and TPR, where an F1 score 

reaches its best value at 1 and worst value at 0, as expressed in Eq. (16). F1 score is usually more 

useful than accuracy, especially for an uneven class distribution. For instance, if the cases labeled 

as ‘attack’ occupy a small portion of all cases, e.g., 3%, none of which are identified as ‘attack’ 

data, the accuracy will reach 97%, while the corresponding F1 score will be 0, since there is no 

identified true positive case.  
 

𝐹𝐹1 = 2 𝑃𝑃𝑃𝑃𝑃𝑃×𝑇𝑇𝑇𝑇𝑇𝑇
𝑃𝑃𝑃𝑃𝑃𝑃+𝑇𝑇𝑇𝑇𝑇𝑇

   
                                                                                                                                                     (16)
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4 PRELIMINARY STUDY I: LOCS RECOVERY [41] 

(A version of this chapter has been previously published in Nuclear Science and Engineering, 
with DOI: 10.1080/00295639.2020.1840238.) 
 

Each mathematical or physics model consist of different variables and their relationships. These 

variables contains (1) independent variables , x , which represent the quantities that can be 

manipulated in the model or experiments; (2) exogenous variables,  known as parameters, which 

are usually constants showing in the relationship between the independent variables ant the 

observable variables of the mode; (3) random variables, δ, which represent the uncertainties or 

noise of the model, usually obeying a certain statistical distribution; (4) dependent variables, also 

known as response or observable variables, usually denoted as y, which are functions of the above 

three types of variables. Thereinto, independent and dependent variables are outside the model 

function box, which are easier for attackers to have access to. But the model parameters are inside 

the function box, which the attacker cannot directly obtain from operational data. Two preliminary 

studies stated in Chapter 4 and 5, employ different approaches to indicate:  

 

(1) One can leverage data-driven approach to recover the dominant components (LOCs) solely 

with operational data. (Chapter 4) 

(2) Given an approximate model, one can avail of operational data to learn the model 

parameters. (Chapter 5) 

4.1 Current Methods for LOCs Recovery 

As stated in Introduction, the model-based approaches can be either data-driven or physics model 

driven. The methods developed in the Exploratory study (Chapter 6 and Chapter 7) are physics 

based, but in principle, one can learn the model on the fly from the operational data. For 

demonstration, this work employs neural networks to construct surrogate model. The results 

indicate that solely with data repository, one can capture the general trend of the temporal 

evolution, which provides a prototype for the construction of plausible attack vectors to circumvent 

the basic statistical checks. 
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The specific example employed in this Chapter is the simulation of the protected and unprotected 

Shut Down Heat Removal Tests (SHRT-17 and SHRT-45R) for the Experimental Breeder Reactor 

II (EBR-II), modeled using the System Analysis Module (SAM), developed at Argonne National 

Laboratory for advanced non-LWR safety analysis. The data-driven learning process, the basic 

idea is to try to regress one set of variables, referred to as responses, to other set of variables, called 

regressors. To regress, by definition, is to explain the cause of responses. In doing so, the 

relationship between the regressors and responses, referred to as response surface or a surrogate 

model, is often based on trial and error until an acceptable surface is identified which minimizes 

the regression errors. Some of the notable choices for the surrogate model include 

linear/polynomial functions [107], artificial neural network-based functions [108], Gaussian 

process models [109], etc. The selection of a certain surrogate model is often guided by the nature 

of the physics model or phenomena being analyzed, and hence is generally a subjective process. 

Thus, it is not surprising that multiple surrogates could be developed with essentially similar 

accuracy. In this study, both linear regression and artificial neural network (ANN) based reduction 

are employed to construct surrogate models in terms of the active DOFs generated using pattern-

based reduction. 

4.2 Model Description 

This work utilizes SAM transient simulations of the Experimental Breeder Reactor (EBR-II)  

Shutdown Heat Removal Tests (SHRT) SHRT-17 and SHRT-45R tests, protected (scrammed) and 

unprotected (unscrammed), respectively, loss of flow tests performed at the facility to characterize 

and quantify the inherent safety characteristics of the pool-type sodium-cooled fast reactor. In both 

experiments, transient conditions are initiated by tripping the primary coolant pumps from nominal 

system states. In SHRT-45R, this results in an initial increase in primary system coolant 

temperatures. The inherent properties of metal fuel and the core design enable negative reactivity 

insertion, decrease in reactor power, and a subsequent, unassisted cooldown of the primary system 

as natural circulation flow patterns begin to develop. In SHRT-17, with the reactor in a scrammed 

state, the key safety behavior demonstrated included development of natural circulation flow and 

successful performance of the decay heat removal pathway. 
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The goal of this work is to explore the reducibility of the SAM code using pattern-based and 

surrogate-based reduction techniques. The overarching goal here is to determine whether 

additional reducibility can be incorporated into the SAM physics model, based on the range of its 

intended application, thereby providing an efficient solver capable of performing computationally 

intensive analyses such as uncertainty quantification, inference, etc., especially when the number 

of model parameters is significantly increased. A representative model with 25 input model 

parameters expected to directly influence key performance metrics (fuel, clad, and coolant 

temperatures) is employed. the uncertainties of which have been reproduced from Ref. [110] and 

shown in Table 1. The training snapshot are generated based on 1000 model executions, each 

randomizing the input parameters within their prior uncertainties. Each execution records the 

model responses and the associated state. The time-dependent fuel temperature is selected as the 

state variable, while the peak temperature over the transient time is selected as the model response. 

The goal is to create a reliable ROM model relating input parameter variations to both the state 

and response variations over the range of uncertainties for the model parameters. The transient 

time is selected to be 900 seconds, which corresponds to benign termination of the transient. The 

details of two models employed are listed in Table 2. More detailed description of both models 

may be found in Refs [110] [111].  
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Table 4 Input Parameter Uncertainties for SAM TH Model of EBR-II SHRT Experiments 

Input parameter Uncertainty Distribution 
Initial Power 0.5MW Normal 
Initial Pump 1 Head 0.01 bar Normal 
Initial Pump 2 Head 0.01 bar Normal 
IHX Secondary Inlet Temperature 0.5 K Normal 
IHX Secondary Inlet Temperature 0.6% Normal 
Peak Channel Flow Area 1.0% Uniform 
Peak Channel Hydraulic Diameter 1.0% Uniform 
Fuel Pin Gap Size 1.0% Uniform 
System Heat Transfer Coefficient -6.5% +32.8% Uniform 
Fuel Channel Heat Transfer Coefficient 30% Uniform 
IHX Primary Heat Transfer Coefficient 30% Uniform 
System Wall Friction 10% Uniform 
Channel Wall Friction 26% Uniform 
IHX Primary Wall Friction 26% Uniform 
Gap Thermal Conductivity 10% Normal 
Fuel Thermal Conductivity 6% Normal 
Cladding Thermal Conductivity 5% Normal 
Gap Heat Capacity 4% Normal 
Fuel Heat Capacity 5% Normal 
Cladding Heat Capacity 2% Normal 
Coolant Density 0.4% Normal 
Coolant Compressibility 2% Normal 
Coolant Heat Capacity 3% Normal 
Coolant Viscosity 5% Normal 
Coolant Thermal Conductivity 15% Normal 

 

Table 5 Comparison of Simulation Models 

 SHRT-17 (Protected loss-of-flow 
transient) 

SHRT-45R (Unprotected loss-of-
flow transient) 

Incidents description From full power and flow conditions, all coolant pumps are tripped to 
simulate a loss-of-flow accident 

Control rod Control rod insertion was disabled Control rod insertion was disabled 
Power transient Immediate power scram Solely rely on reactivity feedback 
Model difference Lumped core model Detailed core model 
Initial Power 57.3 MW 59.9 MW 
Initial Pump 1 Head 2.930 bar 2.890 bar 
Initial Pump 2 Head 2.929 bar 2.890 bar 
IHX secondary inlet 
temperature 574 K 560 K 

IHX secondary inlet flow -0.83 m/s -0.81 m/s 
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4.3 Obtain LOCs – using Neural Network 

 Data-Driven surrogate modeling for SHRT-17 

The first test case is protected loss of flow test SHRT-17. The second test case is unprotected loss 

of flow test SHRT-45R. In both cases, the temporal profiles of the fuel temperature, cladding, and 

coolant are selected as responses at spatial locations where the peak values are expected.  

 

The fuel, clad, and coolant temperatures versus time are used as the state function representing the 

snapshots collected from each model execution. Employing SVD, the active subspace, i.e. LOCs, 

can be identified. Figure 4.1 plots the error bound obtained as a function of the size of the active 

subspace for each the fuel, clad, and coolant temperatures. Assuming an acceptable tolerance of 

2% of the mean temperature value, a rank of 5 is achieved, which is two orders of magnitude 

smaller than the number of time steps employed in SAM simulation.  

 

 

Figure 4.1 Reduction of Temperature Temporal Evolution 
 

Taking the fuel temperature as an example, Figure 4.2 shows all the snapshots, represented by 

the grey cloud in  Figure 4.2 (a), surrounding the mean value in red, and the first five active 

DOFs, i.e., ( )i tϕ , representing the first five singular vectors from the SVD decomposition as 

shown in Figure 4.2 (b).  
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Figure 4.2 (a) Transient Fuel Temperature Snapshots   (b) Active DOFs along Temporal Axis of 
SHRT-17 

 

The implication is that each of the training snapshots in the left figure can be approximated as 

linear combination of the five basis functions in the right figure per Eq. (1) such that the error 

calculated by Eq. (3) is guaranteed to be less than the user-selected tolerance per Eq. (4). 

 

Next, a regression-based reduction is applied, wherein each of the state’s active DOF is 

functionalized in terms of the input model parameters. After the regression is completed, the fitted 

active DOFs are combined back to estimate the state function. Mathematically, this may be 

described as follows. Let ( )tφ  represent the state, and the corresponding active DOFs be given by: 

( ) ( )T
i i t tα ϕ φ= , representing the inner product between each of the active DOFs basis functions 

( )i tϕ  and the state. A regression-based model is employed to approximate αi as a function of the 

model parameters x, i.e., ( )reg
i xα . This is achieved based on the training data ( )trn

i jxα , 

j=1,….,Ntrn, where xj represents the jth sample for the model parameters, and N the total number of 

training samples. The reg superscript denotes the regression-estimated active DOF, and trn 

superscript denotes the value calculated by the SAM code. After the regression is completed, the 

state is estimated by:  
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( ) ( ) ( )
1

r
reg
i i

i
t x tφ α ϕ

=

=∑  

(17) 

where r denotes the number of active DOFs.  

 

Two different regression-based reductions are employed. First, an ANN-based regression is 

applied using a Python-based package, Keras [112], with two hidden layers. The activation 

function for input and convolution layers is Relu function and for output layer is softmax 

function. The mean squared error is selected for the loss function, and an optimizer using 

stochastic gradient descent algorithm is employed to minimize the loss. The 1000 samples are 

divided into 2 parts: Ntrn=700 for training and Ntst=300 for testing. The layout of the ANN is 

shown as an architecture in Figure 4.3, whose layer is represented as a table with the number 

of activation function for both of input and output layer and the data flows as the direction of 

the arrows The comparison between the predictions to the original temporal temperature 

profile is employed to evaluate the adequacy of the ANN model as shown in Figure 4.4. The 

testing data are employed to validate the trained model, i.e., evaluate the adequacy of the ANN 

models by comparing their predictions to the original model prediction, as shown in Figure 4.4. 

 

 
 

Figure 4.3 Neural Network Layout 
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Figure 4.4 ANN Performance for Coolant Temperature – SHRT-17 

 

Figure 4.5 condenses the above results into one figure, plotting the frequency of the errors recorded 

for all three responses over all 300 testing samples and all time steps. Figure 4.6 displays the results 

in a similar manner but only for the time steps where the peak temperature occurs, since the peak 

temperature represents the basis for thermal margin specification. Results indicate that the errors 

are small enough and below the acceptable safety margin, ranging from 100K to 200K for fuel, 

cladding and coolant, as specified in Ref. [110].  
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Figure 4.5 Overall Surrogate Modeling Error Distribution of SHRT-17 Case Study 

 

 
Figure 4.6 Surrogate modeling Error of Peak Temperature in SHRT-17 Case Study 

 

If the reduction errors are not deemed acceptable, one could gain more insight by plotting the 

reduction errors versus time for all the validation snapshots as illustrated in Figure 4.7 through 

Figure 4.9 which respectively plot the errors for the fuel, clad, and coolant. The z-axis represents 

the discrepancy between predicted temperature and testing data in Kelvin units. For example, for 

the fuel temperature, most of the high errors are concentrated between 550 to 640 seconds. 
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Figure 4.7 Reduction Errors of the Fuel Temperature 

 
 
 

 
Figure 4.8 Reduction Errors of the Cladding Temperature
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Figure 4.9 Reduction Errors of the Coolant Temperature 

 

 Data-Driven surrogate modeling for SHRT-45R 

The above results are repeated for the SHRT-45R test, i.e., the unprotected loss of fluid incident.  

Figure 4.10 shows the transient fuel temperature profile of the SHRT-45R incident. Compared to 

the transient fuel temperature in SHRT-17 case in Figure 4.2, the peak temperature is 50K higher, 

the transient variation is more significant, and it takes more time to reach a steady state, since the 

disabled control rods lead to a dramatic temperature rise and a rapid decay after the peak due to 

the large feedback effects.  
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Figure 4.10 (a)Transient Fuel Temperature Snapshots   (b)Active DOFs of  Fuel Temperature of 

SHRT-45R 
 
 

 
Figure 4.11 (a)Transient Cladding Temperature Snapshots  (b)Active DOFs of Cladding 

Temperature of SHRT-45R 
 

 
Figure 4.12 (a)Transient Coolant Temperature Snapshots (b)Active DOFs of Coolant 

Temperature of SHRT-45R 
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Figure 4.13 ANN Performance of Fuel Temperature – SHRT-45R 
 

 

Figure 4.14 -Figure 4.16 show higher errors as compared to those of the SHRT-17 benchmark, 

which is within the expectation because the SHRT-17 benchmark is modeled by lumped approach 

while the SHRT-45R is simulated with more details in core area. Moreover, for most simulation 

runs, the largest error happens during 580~660 seconds, the natural circulation transition period. 

Due to the complicated physics in this region, it is difficult for the straightforward application of 

neural network to capture this complexity without additional customization based on domain 

knowledge. 
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Figure 4.14 Error Profile of Fuel Temperature in SHRT-45R from Surrogate Modeling 

 
 
 

 
Figure 4.15 Error Profile of Cladding Temperature in SHRT-45R from Surrogate Modeling 
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Figure 4.16 Error Profile of Coolant Temperature in SHRT-45R from Surrogate Modeling 

 

 

Figure 4.17 Overall Surrogate Modeling Error Distribution of SHRT-45R Case Study
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Figure 4.18 Surrogate Modeling Error Distribution of the Peak Temperature in SHRT-45R Case 

Study 

4.4 Results Summary 

The surrogate modeling for both benchmarks of EBR-II has relatively small error, whose statistical 

information can be found in Figure 4.18. The recovery of the temporal evolution of the temperature 

indicates that without any insights/ knowledge of a physics model, neural network can mimic the 

physics model behavior to a great extent. In other words, as long as the attackers have access to 

operational data, they can leverage a data-driven approach to learn a general profile of the reactor 

model, which represents the LOCs of the model. With learned LOCs of different responses/process 

variables, the attackers would be capable of launching a coordinate cyber-attack that intrudes false 

data in different locations or for different responses.   
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5 PRELIMINARY STUDY II: MODEL RECOVERY [113] 

(A version of this chapter has been previously published in Nuclear Technology, with DOI: 
10.1080/00295450.2019.1626170.) 

 

As stated in Chapter 1, attackers are able to learn the LOCs of a physics model with access to 

operational/historical data. To this extend, another question stated in the Introduction that whether 

the  

 

For the first question stated in the introduction, neural networks, including single and deep-layer 

networks, will be used to build predictive models for system behavior using both passive and active 

monitoring. Active monitoring means that the attackers can inject small perturbations to the 

commands sent to the actuators to induce small variations in the system state that can be used to 

improve the attacker self-learning process. Active monitoring is a strategy employed by attackers 

when they have little knowledge about the system dynamics, or the defense measures in place. To 

answer the second question, a simplified physics model based on public information is employed 

with some undetermined parameters, whose true values are assumed hidden from the attacker, e.g., 

representing proprietary design details. Inference techniques will be used to estimate the true 

values of those parameters via an objective-function-guided minimization of the discrepancies 

between monitored and predicted variables. 

5.1 Model Description 

A point kinetic model, based on the Iranian Bushehr nuclear reactor [114], is employed as research 

object. The model is based on four differential equations which follow the evolution of reactor 

flux or power, delayed neutron precursors, Iodine, and Xenon concentrations. Xenon decays 

radioactively and is produced from both fission and the decay of Iodine, which is generated from 

fission. 

net eff
eff

dP P C
dt

ρ β
λ

−
= +

Λ  
(18) 
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eff
eff

dC P C
dt

β
λ= −

Λ  
(19) 

 
(20) 

Xe F I Xe Xe
dXe P I Xe XeP
dt

γ λ λ σ= Σ + − −
 

(21) 

The P(t) is the reactor power, which is assumed to represent the response measured by the sensors. 

In (1),  ρnet denotes the net reactivity, which demonstrates how neutron source and feedback effects 

work on the system, where Xeσ  is an effective value for the Xenon absorption cross section, 

expressed in (6). 

0 0[ ( ) ] [ ( ) ]Xe
net ext P

F

P t P Xe t Xeσρ ρ α
υ

= − − − −
Σ  

(22) 

Xe
Xe

F FE V
σσ =

Σ  
(23) 

The function ρnet may be thought of as the forcing function that is manipulated by the controller, 

the first term can be adjusted via physical changes to the reactor, i.e., moving the control rods, 

increasing flow rate, etc., and the other two terms are natural feedback, and hence cannot be 

controlled. In our notations, ρnet represents un. All design parameters in this point kinetic model 

are listed in Table 6 [114].  

  

I F I
dI P I
dt

γ λ= Σ −



 
 

72 

Table 6.  Designed Parameters in Point Kinetic Model 

Symbol QUANTITY Value 
P(t) Temporal core power P0 =3000MW 
C(t) Temporal precursor concentration  
I(t) Temporal Iodine concentration  

Xe(t) Temporal Xenon concentration  
ρext external reactivity injected into the core  
ρnet net reactivity of the core  
αp power coefficient of reactivity (temperature dependent feedback) 0.48×10-11 W-1 
βeff effective delayed neutron fraction 700×10-5 
λeff effective precursor decay constant 7.841×10-2 s-1 

Λ neutron mean generation time in the core 32×10-6 s 
υ average number of neutrons produced by fission 2.45 

ΣF effective one group fission cross section for the core 0.77×10-2 
γI fission yield for Iodine 6.386×10-2 
λI Iodine decay constant 2.875×10-5 s-1 

γXe fission yield for Xenon 0.228×10-2 
λXe Xenon decay constant 2.092×10-5 s-1 

σXe microscopic neutron capture cross section for Xenon 2.7×10-18 cm2 

EF Energy released per fission 320×10-13 J 
V Core volume 27.8 m3 

5.2 Physics-based model 

This section discusses the basic physics model employed by the attacker, as well as the 

mathematical procedure employed to maximize its predictability against the monitored sensors 

data.  

 

In an adversarial setting, this work assumes the attacker has the equations described in section 

3.1.1, but does not know the exact values of three parameters, namely: the power feedback 

coefficient αp, the microscopic neutron capture cross section of Xenon σXe, and the fission cross 

section ΣF. By relying on the physics model, the attacker can approximate the effect of each 

parameter on the system state via a parametric study. During an initial lie-in-wait period, the 

attacker can insert small perturbations to the commands, un, or by varying the recorded sensor 

signals, yn, can excite state variations that can be used to estimate the true values for the unknown 

parameters using inference techniques. For sake of demonstration, Figure 5.1, Figure 5.2 and 

Figure 5.3 show the effect of the variations of each of these three parameters on the reactor power, 
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found to impact the oscillatory behavior characteristic, in terms of amplitude, phase shift, and 

damping speed. The power coefficient of reactivity affects the natural feedback from fuel 

temperature and coolant temperature, and hence is expected to impact the power amplitude. The 

other two coefficients perturb the balance between the rate of Xenon production and destruction 

and hence are expected to have more impact on the oscillatory behavior in terms of the phase shift 

and damping speed.  
 

 

Figure 5.1 Power Sensitivity due to Parameter αP 

 

 
Figure 5.2 Power Sensitivity due to Parameter ΣF 
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Figure 5.3  Power Sensitivity due to Parameter σXe 

 

To self-learn these three parameters, the problem may be cast as an inverse problem, since one is 

interested in estimating parameters input to a model using the observed model output. A great deal 

of literature exists on how to solve such problems including basic least-squares minimization, L1 

minimization, regularization-based techniques, etc. The choice typically depends on the expected 

noise in the measurement, the parametrization process as well as the stiffness of the physics 

equations. A customized inference process is developed here based on an iterative process starting 

with the simplest approach, e.g., least-squares, and its regularized version, which were found to be 

inadequate. Interestingly though, going through that process provides proof that it is indeed 

difficult for attackers to learn a system behavior if they treat the model as a black-box, which 

certainly supports the premise of model-based defenses. The proposed inference methodology 

relies on a concerted use of Fourier transform, alternating conditional estimation (ACE), and 

regularization techniques. We provide a short discussion of ACE here given that it is a critical 

component of the methodology. Details on Fourier transform and regularization are left to 

references [115][116]. 

 Alternating Condition Estimation 

Solving an inverse problem requires an inexpensive alternative to the forward model, because it is 

impossible to find an analytical or numerical description of the inverse model operator for almost 
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all real-world systems. Therefore, one must be able to execute the forward model efficiently to 

explore the effect of changing the model parameters on the responses of interest. This is true as 

the number of model parameters increases, and the cost of the forward model becomes prohibitive 

for repeated executions. If a simplified physics-based approximation exists for the forward model, 

this is considered to be the best approach and the simplified model is referred to as a low-fidelity 

model as opposed to the high-fidelity model representing the best available approximation of the 

real system behavior. A lower fidelity model can be constructed from a high-fidelity model by 

simplifying the equations and/or the numerical discretization scheme via, for example, the use of 

coarse versus fine meshes. This approach is referred to as physics-based because it attempts to 

retain the physics principles that underpin the behavior of the system. If this is not possible, one 

resorts to the use of parametric methods, also referred to as response surface methods. In this latter 

approach, one assumes a functional form with some unknown features, e.g., undetermined 

coefficients, and fits that form using training data generated by the high-fidelity model. The fitting 

is achieved mathematically using a minimization search that identifies the best coefficients to 

minimize the discrepancies between the high fidelity forward model and the assumed response 

surface. An excellent example of this class of methods is the commonly used least-squares-based 

polynomial fitting approach. With different surfaces, a wide class of methods have been proposed 

over the years. Examples include the use of radial basis functions, polynomial chaos expansion, 

orthogonal polynomials, etc. In the statistics community, this type of function approximation is 

typically referred to as supervised learning. Another class of methods that has gained a lot of 

prominence in the data mining community is the so-called unsupervised learning methods, which 

employ nonparametric methods to design approximations of the high-fidelity model. 

Nonparametric methods preclude the need for parametric surface representation. Instead, the 

approximation is based on employing the training data directly to make predictions. In this work, 

we employ ACE, one of the most famous nonparametric methods, developed by Friedman in the 

1980s, that has since then been further developed by many researchers. The basic implementation 

of ACE is as follows. The algorithm is provided with training data sets for the model parameters 

x1, x2, and x3 and the output response y, limited here to a single response for illustration. ACE 

calculates transforms for each parameter and a model response as follows [117]:  
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1. Initiate all data, 2 1/2( ) / ,  ( ) 0,  [ ( ) ]i iy y y x y E yθ φ= = ≡  

2. 
2 2( , ) [ ( ) ( )]i i ie E y xφ θ θ φ= −Σ  

3. Iterate until 2 ( , )e φ θ  fails to decrease: 

4.   For 1 to k p= , do: 

'( ) [ ( ) ( ) ]k k i k i i kx E y x xφ θ φ≠= −Σ ; 

 

Replace ( )k kxφ  with '( )k kxφ  

     End For Loop; 

   End Inner Iteration Loop; 

1 1'( ) [ ( ) ] / [ ( ) ]p p
i i i i i iy E x y E x yθ φ φ= == Σ Σ  

 

Replace ( )yθ  with '( )yθ  

End Outer Iteration Loop; 

,  θ φ  are solutions, mentioned as transforms. 

 

5. End ACE Algorithm. 

 

If one is interested in estimating y for another set of parameters not used during the training 

process, the ACE algorithms relies on interpolating the transformations at the given parameter 

values to determine the predicted response y. One can show that the transformations are generated 

based on maximizing the mutual information between the linearly combined transformed 

parameters and the transformed response y.  
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 Inference Calculational Procedure 

The calculation procedure is described below and depicted in Figure 5.4. 

1. Starting with estimates for the k  parameters ( 3k = ), generate an estimate for the power 

profile by solving equations (1) through (4). The dimension of the power profile is denoted 

by N, i.e., the number of components, one component per time step. 

2. Generate M randomized perturbations of the parameters and calculate the corresponding 

power profiles. 

3. Apply fast Fourier transform (FFT) on the M power profiles. 

4. Using scatter plots and simple variance measures, identify the dominant Fourier 

coefficients associated with each parameter, where dominance implies strong sensitivity to 

the input parameters. 

5. Combine all identified Fourier coefficients into a K component vector. 

6. This reduces the inverse problem to one with k input parameters and K output responses. 

The goal is to identify the best transfer function relating inputs and outputs. 

7. Apply the ACE (Alternating Conditional Expectation) algorithm to help identify the best 

input-output transfer functions. For this task, given the smoothness of the coefficient 

variations with the parameter perturbations, a 3rd order polynomial is employed. 

8. For a given power shape, one can update the parameters by first identifying the K Fourier 

coefficients, and inverting the transfer function in step 7 to determine necessary adjustment 

for the parameters. 

9. With the fitted functions for transforms and inputs, a numerical solver is employed to find 

a new value for input, given the transform values of responses as well as the initial 

estimation guess.
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Figure 5.4 Methodology Scheme
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Several FFT components are plotted in Figure 5.5, Figure 5.6 and Figure 5.7 to determine which 

of them can be used to infer the parameters. Our criterion is to pick the FFT components with the 

highest variations, found to be components 10, 11, 12, and 13. These components are used as 

responses for the ACE algorithm. 

 

 

 
Figure 5.5 Coefficient variations with perturbed Pα  

 
 
 

 
Figure 5.6 Coefficient variations with perturbed FΣ  
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Figure 5.7 Coefficient variations with perturbed Xeσ  

 
 

The physics model is used to generate 1000 random samples for the responses and model 

parameters, which are split into two groups, one containing 960 samples for training, and the 

remaining samples for testing of the ACE model. Each sample consists of three perturbed 

parameters, and the four FFT components selected for inference. The ACE algorithm employed is 

based on the python rendition developed by Touran [118]. Figure 5.8 shows representative 

transformation plots generated from ACE for FFT coefficient #13 as response. 

 

 
Figure 5.8 Transformation plot of coefficient 13 from ACE 
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Based on the fitted transform functions, a Runge-Kutta based numerical solver is used to find the 

optimal values for the perturbed control parameters for all four FFT responses. The estimated 

perturbation values vs. the real ones of each control parameter are plotted individually in Figure 

5.9, Figure 5.10, and Figure 5.11. These results indicate very good inference for the first parameter 

and less for the second two parameters which are more correlated as would be predicted since they 

both control the oscillatory behavior. The inferred parameters are used to predict the power using 

the second group of data used for testing. Figure 5.12 shows the comparison of ACE predicted 

power and the real power for the 963rd sample, demonstrating the ability to accurately predict 

behavior, even though some of the inference parameters show some correlation.  

 

 
Figure 5.9 Estimated vs. Real Perturbation of Pα  

 
 

 
Figure 5.10 Estimated vs. Real Perturbation of FΣ  



 
 

82 

 
Figure 5.11 Estimated vs. Real Perturbation of Xeσ  

 

 
Figure 5.12 Comparison of Reconstructed Power and Real Power 

 

5.3 Data-Driven Adversarial Learning 

In order to answer the first question posed in section 1, a pure data-driven approach is employed 

to learn reactor behavior without any access to the physics model. This is achieved via the use of 

the MATLAB Deep Learning toolbox [119]. The behavior is learned by using both a single-layered 

and multiple-layered neural network (NN) approach, shown in Figure 5.13. This is done to 

investigate whether the addition of more layers could improve the learning process. The multi-

layered NN (also referred to as deep NN) is composed of three layers with six neurons in each 

layer. Like before, the first group of samples is used for training, and the second smaller set for 

testing. Four different training algorithms and different number of layers are employed to test the 

ability of data-driven techniques. Specifically, the following algorithms are tested: the resilient 
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backpropagation algorithm, the one step secant algorithm, the scaled conjugate gradient algorithm, 

and the conjugate gradient with Powell. The best results are shown in Figure 5.14 Figure 5.15, 

which compare performance using single, 3, and 5-layered NNs against the model-based results 

from section IV. In Figure 5.14, the real power is shown in yellow; the neural network 

reconstructed power is shown in blue; and the model-based power from section IV is shown in 

red. The subplot titled ‘Error’ shows the reconstructed error which clearly demonstrates the 

superior prediction ability of the model-based approach. Figure 5.15 compares the performance of 

the neural network with different numbers of layers. Results indicate only minor improvement is 

possible with added layers, none of which however reaches the prediction performance of the 

model-based approach.  
 

 
Figure 5.13 Structure of deep neural network 

 

 
Figure 5.14 Comparison of Power and Errors
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Figure 5.15 Comparison of Power and Errors with Different Layers of Neural Network 

 

5.4 Results Summary  

This comparison study demonstrated that it is indeed difficult to develop a predictive model for 

reactor behavior by relying solely on data-driven techniques, e.g., machine learning. However, 

with knowledge of the physics, it becomes possible to accurately learn the system behavior. In 

defense of model-based techniques, we note that it was indeed difficult to employ an off-the-shelf 

inference capability to predict the true model parameters, and we had to resort to a complicated 

use of multiple techniques, e.g., FFT, LS, ACE, and regularization. However, considering that the 

attackers are state-sponsored and can be assumed to have unlimited resources, it is reasonable to 

assume that attackers will be able to create high fidelity predictive models of the target systems. 

The results here lead this research to the direction of model-based defense towards the knowledge-

based/ stealthy FDI.  
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6 EXPLORATORY STUDY 1: ALGORITHM FOR STEALTHY FDI 
ATTACKS [42] 

(A version of this chapter has been previously published in Progress in Nuclear Energy, with 
DOI: 10.1016/j.pnucene.2020.103612.) 
 

The third question stated in the beginning will be answered in this part by a new algorithm that 

can detect the FDI attacks without triggering the traditional alarms. In the previous section, the 

signature construction is based on an approximate model to show that relying on a physics model, 

the attackers can establish a basis for the reactor normal behavior. However the proposed algorithm 

in this section is based on a novel idea to build signatures, and its implementation is inspired by 

the dynamic mode decomposition (DMD) algorithm [120]. The idea is that any learning algorithm, 

whether parametric or non-parametric, supervised or unsupervised, attempts to identify dominant 

behavior. For example, in reduced order modeling (ROM) relying on the use of singular value 

decomposition (SVD), the dimensionality of the data is achieved by transforming the data using 

the most dominant components identified by SVD. The criterion employed to select the number 

of dominant components is that the reconstructed data are close enough to the original data, with 

the closeness measured in terms of an error metric, e.g., Euclidean norm, whose magnitude is taken 

to be of the same order as the acceptable level of error in the process that generated the data. For 

example, if the data are generated using a physics model where the modeling uncertainties are 

expected to be in the order of 0.1%, an acceptable criterion for the error metric magnitude would 

be in the order of 0.1%.  

6.1 Mathematical Development 

Unlike popular techniques stated in background, the proposed approach employs the higher order 

components (HOCs) which are typically discarded by standard ROM techniques. The dominant 

components will be referred to as the low-order components (LOCs). In the statistical and data 

mining communities, the LOCs are typically referred to as dominant or influential degrees of 

freedom or principal components, e.g., the first few components in a principal component analysis. 

In our approach, both the HOCs and LOCs are employed to build signature-based classifiers for 

normal and malicious behavior. This is essential, because the defender must look for signatures 
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that are difficult to duplicate by the attacker. The HOCs achieve that purpose because, unlike the 

LOCs, which can be captured using approximate models, they are expected to be sensitive to all 

the specific details about the system behavior, which are assumed unknown to the attacker. By 

way of an example, consider an event that results in an increase in the core flow rate, simulated 

using both an approximate model (that is available to the attacker) and a high-fidelity model 

(owned by the defender). If one expands the resulting power distribution variations using a modal 

analysis, one would expect the first few modes to closely agree as predicted by both models, 

because essentially both models attempt to capture the dominant reactor behavior. The higher order 

modes however, representing the HOCs, will be discrepant due to the inherent differences between 

the two models, which are not all known to the attacker. Interestingly, these differences are not 

only sensitive to the “proprietary” design details but also to the modeling errors resulting from all 

modeling assumptions and numerical approximations inherent in the defender’s model.  

 

Both the LOCs and HOCs can be readily captured using ROM techniques. To put this in 

perspective, Figure 1 shows the components of three typical sensors variations as projected onto 

the components identified by a typical ROM technique. The x-axis is an index for the respective 

components, and y may be thought of as a linear transformation of the variations over both space 

and time. The small components in the yellow box are discarded by ROM as very small (i.e., 

assumed below error criterion). The most dominant components in the blue box, i.e., LOCs, are 

the components expected to be known to the attacker, as they can be captured by approximate 

models. This leaves the intermediate components to serve as defense classifiers. Also, it is 

important to note that the space of HOCs for most reactor models is expected to be much larger 

than the space of LOCs. This has been repeatedly shown by earlier research, where the LOCs are 

several orders of magnitude smaller in number than the nominal dimensionality of the data [121].  

 

In support of searching for signature-based classifiers, the application of ROM is essential to 

reduce the number of LOCs and HOCs employed to build classifiers. This follows because the 

majority of classification techniques suffer from the curse of dimensionality [122], that is an 

exponential increase in computational demands with the dimensions of the training data used to 

calculate the classifiers. This means that the defender must limit the number of HOCs terms 

employed in the construction of signatures. While a limitation at a first glance, this provides great 
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strength for the proposed active OT defense, because now the attacker has to guess which of the 

HOCs have been used by the defender to design signatures. This is nearly an impossible task given 

the huge size of the HOCs space as discussed earlier.  

 

 

Figure 6.1 ROM Components Availability Illustration 
 

To capture the LOCs and HOCs components, we rely on a new RWD algorithm which is inspired 

by the DMD algorithm [123] discussed below. The synthesis of signatures using the identified 

LOCs and HOCs is achieved using support vector machines (SVM). Each of these enabling 

algorithms are discussed next. The following section discussed the overall implementation of the 

RWD algorithm and associated signature-based classifier construction.    

 Dynamic Mode Decomposition (DMD) 

Dynamic mode decomposition is a popular method to construct an analytic emulator (i.e., 

surrogate model) to be used in lieu of a dynamical system model [123]. For physics models 

exhibiting no feedback, one can show that the emulator predictions are exact. The implementation 

is seamlessly achieved by taking a time series generated by the physics model and turning it into 

a matrix by running a window of fixed size over the data, with the window size equal to the number 

of columns of the resulting matrix. Every row corresponds to a shift of the window over the time 

series by a fixed time step, typically taken to be a single time step. If the time signals have n time 

steps, and the window size is k wide, the resulting matrix, X would be k×(n-k+1), where (n-k+1) 
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is taken as the collected dynamic modes along with the temporal data. If we take the first (n-k) 

columns to construct a new matrix X1, and the last (n-k) columns to obtain another matrix X2, 

which is the time-shifted snapshot matrix of X1, then the dynamic behavior can be modeled via a 

constant matrix A as given by Eq. (24)  

 

1 2=X AX  

(24) 

Then apply truncated singular value decomposition on operator A, and get three matrices, U, S, 

and TV .  Then construct the reduced-order operator A  in Eq. (25): 

 
1

1
−= TA UX V S    

(25) 

The eigen-decomposition of A  in Eq. (26) yields eigenvalue and eigenvectors, which can be 

investigated to understand the fundamental characteristics of the underlying system, like unstable 

growth mode, etc.  

 

= ΛAW W  

(26) 

The dynamic mode, Φ, is calculated by Eq. (27) 

 
1' −Φ = X VS W  

(27) 

 

The basic assumption here is that the matrix A, representing the mathematical operator for the time 

evolution, is constant in time. For most practical problems, e.g., reactor analysis, the physics 

feedback forces the operator A to be a function of the time evolution of the solution. Several 

strategies to address this have been proposed [124], but are outside the scope of this project. The 

proposed RWD algorithm constructs a single matrix X by placing the window at random points 

over the temporal scale and over all the snapshots of the solution obtained from repeated 
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randomized execution. The total number of rows of the matrix are much smaller than the number 

of time steps and the number of executions. The goal here is not to compare against DMD 

algorithm, since the objective is not to construct a surrogate model. Instead, the goal to efficiently 

identify a number of LOCs ad HOCs that can be used for signature-based classification of 

behavior.  

 Randomized Window Decomposition (RWD) 

The idea of RWD is to randomize the placement of the window over all the snapshots of the 

response’s temporal behavior as opposed to a sequential movement of the window over a single 

time series as performed by DMD. Different size windows can be employed. The longest window 

corresponds to the length of the time series, which reduces to conventional SVD decomposition, 

where the entire time series represents a single snapshot. Very short time windows are not expected 

to provide useful information about system behavior, given the small number of degrees of 

freedom available. Thus, some experimentation is required to identify a proper size window. From 

a defender viewpoint, this experimentation adds another level of obscurity to the design of the 

defense algorithm.  

 

The input data processed by the RWD algorithms are snapshots of the time series for the given 

responses, obtained via multiple executions of the software under a wide range of conditions 

expected during normal and/or abnormal operation. This can be achieved by rerunning the 

simulation under different scenarios and randomly perturbing relevant initial and boundary 

conditions within expected ranges of variations. The ith simulation generates a temporal variation 

for a given response, denoted by yi, with y0 representing the reference temporal variation. The 

window size is denoted by w. Collect snapshots for the response of interest over time and aggregate 

in a matrix Gd of size t × L, where t is the number of time steps for the response of interest, and L 

is the number of model executions, with each execution generating a different temporal response 

based on perturbed initial and boundary conditions, i.e., the ith column of Gd is given by yi. Next, 

standardize the matrix Gd by subtracting and dividing by y0.  

 

Given the attacker’s familiarity with the system, we assume that the attacker can approximate the 

matrix Gd, denoted by Ga, where d and a refer respectively to defender and attacker.   
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1. Employing a window of size w, randomly place the window over y0 to generate n0 

random snapshots for the window values, and aggregate in a matrix D0 (w×n0). 

Generalization of this could be achieved by placing the window randomly over all the 

columns of the matrix Gd.  

2. Apply SVD on D to determine the rank rL (based on a defined tolerance), LOCs, and 

HOCs, captured in two matrices UL (w×rL), and UH (w×rH). The size of the HOCs matrix 

rH is arbitrary as those components are typically discarded by SVD as non-influential.  

3. Employing a window of the same size w, generate a matrix Di of size (w×n) 

corresponding to the ith column of the matrix Gd run, where n can in general be different 

from n0.  

4. Calculate the projection of each of the n windows from the Di matrix along the rL LOCs 

and the rH HOCs determined using D0. This generates two matrices of sizes rH × n and 

rL × n, denoted respectively by, d
HΠ  and d

LΠ .  

5. Repeat the above steps using the attacker matrix Ga to generate matrices a
HΠ  and a

LΠ . 

6. Using a binary SVM classifier, identify signatures to attack scenarios. 

6.2 Application Demonstration – Subtle FDI Detection 

This section applies the methodology described above to a number of representative scenarios 

during operation. The goal is to distinguish between normal behavior and FDI attacks and the 

system components with different degradation levels. The system analyzed is two representative 

PWR models and the RELAP5 simulator is used for estimating system behavior during both 

scenarios.  

 

Generally speaking, an FDI attack could be introduced to both steady state and transient behavior, 

with transient behavior being the more likely approach to ensure the FDI signals could be masked 

as normal operational maneuvering. Hence for this study, we focus on transient behavior which is 

expected to be normal by the operator. For nuclear reactors, this transient behavior could result 

from normal power maneuvering to meet the electricity grid demand. Load-following operation is 

common for the nuclear industry. For example, both in the US and abroad, e.g., France and 



 
 

91 

Germany, load-follow operational strategies have been adopted to increase the penetration of 

nuclear power to the overall energy demand [125][126]. A technically-savvy attacker will take 

advantage of this power maneuver to first learn system behavior and also to hide their FDI signals 

within the range of variations that is considered acceptable by the operators.  

 Model Description 

Regarding the specific reactor model used for demonstration, a RELAP5 model for a 

representative PWR reactor is used. It consists of a primary loop and a secondary loop producing 

a 50 MW as its peak power. The simulation time is set to 200 seconds when the system reaches a 

steady state. All physics responses are output by RELAP5 every second. The nodalization of this 

model is shown in Figure 6.2 [127]. Each number represents a given component of the system, 

where a component may designate an actual physical component, e.g., steam generator, pipe, etc., 

or a section thereof as dictated by the numerical scheme. To simulate possible response variations, 

either due to modeling or operational uncertainty, ten parameters associated with different 

components are selected for perturbations as shown in Table 7.  
 

 

Figure 6.2 Nodalization of RELAP5 Model (source, Ref [127]) 

Hot Leg Pipe 



 
 

92 

Table 7 Perturbed parameter and range 

Parameter Feedback 
Fuel 

Loss Factor F 
of 210 

Loss Factor 
r of 210 

Loss Factor F 
of 251 

Loss Factor r 
of 251 

Symbol a_f f_loss_210 r_loss_210 f_loss_251 r_loss_251 
Range (-0.2,0.2) (-0.1,0.1) (-0.1,0.1) (-0.1,0.1) (-0.1,0.1) 

Parameter Feedback 
coolant T_feed water T_coolant Power level T_fuel 

Symbol a_c T_inlet T_c power T_f 
Range (-0.2,0.2) (-0.05,0.05) (-0.1,0.1) (-0.1,0.1) (-0.1,0.1) 

 

In general, the attacker is expected to change the time evolution at multiple points during time to 

achieve their goal of manipulating system state. However, for the sake of developing insight and 

assessing the efficacy of the proposed algorithm, we assume the attacker changes the trend at a 

single time window only, which represents the most challenging scenario for the OT defense. To 

simulate the attack, it is assumed that the attacker has access to a physics model that can 

approximate the behavior of the system to a reasonable accuracy. As mentioned earlier, this means 

both the attacker and the defender can approximate the same LOCs. To reproduce this scenario 

here, the RELAP5 is used as a basis for generating the time evolution of the various responses as 

would be done by the defender, collected in the matrix Gd. To simulate a triangle attack that 

captures the LOCs, the time evolution within selected windows, randomly placed over the time 

horizon for the simulation, is converted to simple linear variations as shown in Figure 3. The right 

graph shows a representative time evolution for a given response. It is hypothesized that the attack 

is inserted between the two vertical dashed red lines, where the trend is changed to be linear, which 

preserves the dominant behavior. Thus, each of the columns of the Ga matrix is assumed to contain 

a single attack placed randomly throughout the time horizon for the simulation.  

 

As mentioned above, state-sponsored attackers can duplicate the dominant system behaviors by 

duplicating LOCs. In this case study, part of the LOCs produced by defenders and attackers can 

be found in Figure 6.3. The high correlation between the LOCs from defenders and attackers 

indicates that attackers are able to capture the LOCs almost identically to the defenders’. However, 

the attacker cannot reproduce HOCs at the same accuracy level as LOCs, which is demonstrated 

in Figure 6.4.  
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Figure 6.3 LOCs Produce by Defender and Attacker 
 

 

Figure 6.4 HOCs Produced by Defender and Attacker 
 

Next, regarding the choice of the LOCs and HOCs, one can include all LOCs components and an 

arbitrary number of HOCs to develop the SVM classifier. For this initial study, we focus on 

employing a single component from each set to help develop insight into the mechanics of the 

proposed OT defense. Thus, it is assumed that rL=1 and rH=1, representing a single LOC and a 

single HOC component. In this case, the matrices d
HΠ  and d

HΠ  reduce to two vectors, of length n, 

where n is the number of time windows placed over the time horizon of the simulation. The overall 

calculational process is shown in Figure 6.5. 



 
 

94 

 
Figure 6.5 Methodology Scheme in FDI Detection Case Study
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 Numerical Results 

In this study, RWD is applied to distinguish between a normal operational scenario (denoted by 

“True” in the figures’ legends) and one infected by an FDI attack (denoted by “Attack”). The 

calculational scheme in Figure 6.5 generates two sets of features, denoted by π, for either LOCs 

or HOCs. As one may intuitively think that higher order HOCs will be deployed if the attack has 

more comprehensive physics model, the components with different orders in HOCs are discussed 

in two tests. Here the RWD algorithm is applied to each response separately, i.e., both the LOCs 

and HOCs do not take into account the correlations across difference responses. This will be 

explored in future work.  

 

In the first numerical experiment, the π1 HOC is selected for classifier training.  Figure 6.6 shows 

a scatterplot of the selected HOC and LOC for the normal behavior and the FDI-manipulated 

behavior for the steam generation rate (“Sgen”) using a time window of 70 seconds (“wd = 70”). 

The blue dots (“True”) mark the normal behavior, and the red crosses (“Attack”)  mark the FDI-

manipulated behavior. The left subplot shows the evolution of the LOCs and HOCs over the time 

of the simulation. The right subplot condenses the time-evolution of the LOCs and HOCs using a 

simple Euclidean norm. 
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Figure 6.6 Feature of Steam Generation with Observation Window size = 70 (seconds) 
 

These basic results demonstrate the potential of differentiating between normal and FDI scenarios, 

made possible via the use of HOCs in tandem with LOCs. One can envision many ways to apply 

the SVM classifiers on these training data. For illustration, we apply SVM on the Euclidean-

condensed HOCs and LOCs as plotted in the right subplot of Figure 6.6. The classification results 

are shown in Figure 6.7 and Figure 6.8 for the steam generation rate when the observation window 

size is 70 seconds, with the blue area representing normal operation and the red area representing 

the FDI attack.  

 

The two figures show results for different values of the SVM’s parameters γ and C. Weak 

sensitivity to these parameters is noted. In Figure 6.7Figure 6.7, the values for these two 

parameters, noted on the graph, result in a 79% classification accuracy, meaning that one can detect 

the attack in 79% of the cases analyzed. In Figure 6.8, this accuracy of the classification changes 

slightly to 78%. This weak sensitivity is due to the fact that the HOCs and LOCs have been 

condensed using Euclidean norm prior to the application of SVM classifier. In general, one would 
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expect different behavior for the classifier depending on the type and the manner in which the data 

have been preconditioned. An optimization of the classifier results is certainly needed, however 

these initial results are intended to show that HOCs provide a unique capability to identify FDI 

attacks when the LOCs can be accurately captured/learned by the attacker.   

 

 
Figure 6.7 Classification Results for the Norm of the Feature of Steam Generation Amount 
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Figure 6.8 Classification Results for the Feature Vector of Steam Generation Amount 
Next, Figure 6.9 shows the change in the classification accuracy as the size of the attack window 

is changed. As one would intuitively think, the classification accuracy will generally improve as 

the attack window is increased, e.g. pressure and temperature at the secondary side of the steam 

generator; however, with some noted exceptions, e.g., average core temperature. 

 

 

Figure 6.9 Relationship between classification accuracy and window size  
 

Next, the robustness of the HOCs is assessed with respect to process noise, expected to be inherent 

in all process parameters. The idea here is to assess whether the classification ability based on the 

use of HOCs will degrade under the presence of noise, expected to be inherent in all the 

measurements. Previous results employed the RELAP5 simulation results directly as a basis for 

the training of the classifier. The next set of results repeat the training of the SVM classifier, but 

now with all data, including both generated by the defender and the attacker, contaminated by 

white Gaussian noise. Figure 6.10 compares the time evolution of the normal behavior vs. the FDI-

manipulated behavior but now with the noise added. Figure 6.11 compares the HOCs and LOCs 

as done before in Figure 6.6, but now with the noise insertion. Figure 6.12 shows minor changes 

to the classification accuracy. 
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Figure 6.10 Response Comparison with White Gaussian Noise 

 
 

 
Figure 6.11 Feature of Steam Generation with White Gaussian Noise
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Figure 6.12 Classification Accuracy with White Gaussian Noise 

 

As mentioned earlier, the space of HOCs is expected to be much bigger than that of the LOCs, 

which provides an additional obscurity defense for the design of the OT defense. The idea is that 

the defender has a large palette of HOC components to choose from. To demonstrate this, the 

previous results are repeated but with a different HOC component. Specifically, the fourth 

component in the HOC set is used for classification, (i.e., th π4 HOC). Figure 6.13 shows in a 

similar manner to Figure 6.6 and Figure 6.11 the relationship between the HOCs and LOCs for the 

normal and FDI scenarios. 
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Figure 6.13 Feature of Steam Generation Amount with Observation Window size = 70 (seconds) 
 

The corresponding classification results are shown in Figure 6.14 for the same response, i.e., the 

steam generation amount with a window size of 70 seconds, with the blue area representing normal 

operation and the red area for the FDI attack. Figure 6.15 shows the change in the classification 

accuracy as the size of the attack window is changed in a similar manner to the results shown in 

Figure 6.9. For these scenarios, the same values for the SVM parameters γ and C are employed, 

with notable differences in the classification accuracy. Results indicate notable improvement in 

the classification accuracy as one employs π4 instead of π1 for the HOC set.  The classification 

accuracy jumps to 95%. This result implies that the classification accuracy is intimately tied to the 

way the HOCs are employed to train the classifier. In general, one could use a functional form 

combining the HOCs components to maximize the classification accuracy.  
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Figure 6.14 Classification Results for the Norm of the Feature of Steam Generation Amount 

 

 

 

 

Figure 6.15 Relationship between classification accuracy and window size (with higher order 
HOC)
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6.3 Application Demonstration – Pump Degradation Detection 

Besides the detection of FDI attacks during normal operation like power maneuver, the defender 

needs to accomplish the detection of equipment malfunction. Here, another system is adopted to 

demonstrate the RWD algorithm in the detection of pump degradation case study, as an envision 

of the offline analysis.  

 Model Description 

In this case study, a comprehensive RELAP5 simulated PWR with two primary loops is employed 

to simulate different reactor states. Heat structures are used to represent heat transfer from fuel 

rods, U-tubes in SG, pressure vessel wall, vessel downcomer wall, core shroud, and internals in 

the upper head and lower and upper plena. The two primary loops have a slight difference that one 

represents a single loop, and the other is lumped by three primary coolant loops. Both loops share 

the same boundary and initial conditions except for the coolant flow rate, one triple the other. This 

model prints output every second from 0 to 3000 seconds. The nodalization of the model is 

illustrated in Figure 6.16 and Figure 6.17 [128]. The regular operations with different scenarios 

are simulated by applying perturbations on the input parameters.
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Figure 6.16 RELAP5 Nodalization for PWR: Vessel Model (in Ref. [128]) 



 
 

105 

 

Figure 6.17 RELAP5 Nodalization for PWR: Loop Model (in Ref. [128])
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In this model, the perturbed parameters and their standard deviation are listed in Table 8. Taking 

the pump degradation problem as an example, different from unknown FDI attacks, the transient 

reactor behavior of pump degradation is available via high fidelity model simulations or operation 

history, we identify the active subspace of three scenarios: low level, medium  level and high level 

of pump degradation. Similarly, two signatures are constructed from the observation matrix, both 

of which are 1×no vectors, denoted as αH1 and αH2 for high level degradation pump, αM1 and αM2 

for medium level degradation pump and αL1 and αL2 for low level degradation pump.  

 

 

Table 8 Perturbed Parameters and Standard Deviation 

 Perturbed Parameters Normal_std 

Initial Condition 

Power level 0.05 

Inlet temperature 0.005 

Coolant temperature at core 0.005 

Hydraulic 

Parameters 

Loss coef in SG 1ry inlet 0.05 

Loss coef in SG 1ry outlet 0.05 

Loss coef in cold leg 0.05 

Loss coef in Prszr junction pipe 0.05 

Loss coef in SG 2ndary (loop 1) 0.05 

Loss coef in hot leg(1) 0.05 

Loss coef in hot leg(2) 0.05 

Loss coef in SG 1ry(1) 0.05 

Loss coef in SG 1ry(2) 0.05 

Loss coef in pump outlet 0.05 

Loss coef in SG 2ndary (loop 2) 0.05 

Loss coef in downcomer 0.05 

Loss coef in core 0.05 
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The pump and working fluid relationship is defined by empirically constructed curves relating to 

the volumetric flow and pump velocity of the pump head and torque.  Pump characteristic curves, 

also referred to as four-quadrant curves, present the information in term of actual head, H, torque, 

𝜏𝜏 , volumetric flow Q, and angular velocity 𝜔𝜔 , which are generally available from pump 

manufacturers. For used of RELAP5, the physical quantities like pump head representing 

characteristic curve need to be condensed to a ratio, resulting in new dimensionless versions of 

pump characteristic curve, denoted as homogenous curves. The construction of dimensionless 

curves require a series of rated physical quantities such that the actual head, H, can be 

nondimensionalized as ℎ = 𝐻𝐻/𝐻𝐻𝑅𝑅 , where HR represents the rate pump head. The same 

nondimensionalization of the rest pump parameters is calculated as: 𝛼𝛼 = 𝜔𝜔
𝜔𝜔𝑅𝑅

, 𝑣𝑣 = 𝑄𝑄
𝑄𝑄𝑅𝑅

,𝛽𝛽 = 𝜏𝜏
𝜏𝜏𝑅𝑅

. The 

pump characteristic curves shown in Figure 6.18 represent one version of condensed characteristic 

pump curve, named as HVN, where x-axis is 𝛼𝛼/𝑣𝑣, and y-axis is ℎ/𝑣𝑣2. The blue, orange and grey 

curves represent the homogenous curves with low level, medium level and high level degradation, 

respectively and the corresponding normalized pump flow rate is plotted in Figure 6.19, in red 

line, blue line and green line.  

 

 

 
Figure 6.18 Pump characteristic curve 
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Figure 6.19 Normalized pump flow rate 

 

 Numerical Results 

In this study, RWD is applied to distinguish between a high-level degradation scenario (denoted 

by “H” in the figures’ title) and the cases with medium-level degradation (denoted by “M”).  Figure 

6.20 shows a scatterplot with classification of the selected HOC and LOC for the flow rate with  

high-level degradation and with medium-level pump degradation. For the pump flow rate using a 

time window of 200 seconds (“wd = 70”). The blue dots (“H”) mark the behavior with high level 

degradation, and the red dots (“M”) for data with medium degradation. Figure 6.20 condenses the 

time-evolution of the LOCs and HOCs components using a simple Euclidean norm, from which 

one can see that the data points from different pump degradation levels exist in different clusters 

such that even with small hyperparameters (𝐶𝐶 = 0.01, 𝛾𝛾 = 1), the classification accuracy reaches 

99%. The result indicates the effectiveness of RWD for identification of different degradation level 

of a certain component. 
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Figure 6.20 Classification Results for the Norm of the Feature of Steam Generation Amount 

 

6.4 Results Summary 

With the recent successful attempts against the digital control systems of critical infrastructures, 

there is a need to develop new defense strategies that recognize that state-sponsored attackers can 

ultimately gain access to the raw data used to control system behavior, and can falsify operational 

data in a manner that does not trigger conventional outlier/anomaly detection techniques in order 

to go undetected, which is referred to as false data injection attacks. Recent R&D efforts [12] 

promoting the use of model-based defenses offer a solution to this problem. This is achieved via 

the use of machine learning techniques to continuously compare the measurements from the real 

system with the measurements obtained from a physics-based simulation of the system in order to 

determine differences that may be indicative of false data injection attacks. A key assumption of 

such approaches is that the defender has the upper hand due to his/her sole access to the physics-

based simulator. The preliminary study argues that for critical systems this may not be true because 

their design, operation, and safety, are all based on well-established practices, and their technical 

know-how is well understood. This work demonstrates that it is indeed difficult to develop a 
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predictive model for reactor behavior by relying solely on data-driven techniques, e.g., machine 

learning. However, with knowledge of the physics, it becomes possible to accurately learn the 

system behavior. In defense of model-based techniques, this work indicates that it was indeed 

difficult to employ an off-the-shelf inference capability to predict the true model parameters, and 

a complicated use of multiple techniques is elucidated, e.g., FFT, LS, ACE, and regularization. 

Based on this directional conclusion, this research explores the model-based defense and proposes 

a new OT defense to identify FDI attacks when the attacker has strong familiarity with the system, 

and has access to accurate models for dynamic system behavior. The idea is to rely on both 

dominant, referred to as the LOCs, as well as less dominant features, referred to as the HOCs, to 

derive signatures that can identify FDI attacks. This Chapter has helped introduce the basic idea 

and demonstrated its use to detect falsification in a single response using a single LOC and HOC 

components, and assuming the attack happens once over the time of the simulation. Results 

indicate the potential use of HOCs to build strong classifiers against FDI attacks which assume 

strong familiarity with the system. Future work will expand this work to develop LOCs and HOCs 

components across multiple responses, and will optimize the integration of HOCs components to 

maximize the classification accuracy. 
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7 EXPLORATORY STUDY II: REAL-TIME SUBTLE FDI DETECTION 

The FDI detection in Chapter  6 is for the whole set of temporal measurements, aiming to validate 

the effectiveness and robustness of RWD approach.  This approach is effective for offline data 

analysis, while in reality, the online monitoring system is adopted to track the evolution of the 

quantities of interest and assess the system state so as to ensure that nuclear safety-related facilities 

and instruments meet the objectives. However, the online monitoring data usually comes with 

significant noise.  In Chapter 6, the 10% white noise has a small influence on the Euclidean-norm 

condensed signatures, but for online monitoring measurements without any condensing 

techniques, noise would hide the real information from further feature construction. Hence the 

denoising of the raw measurements is an essential preprocessing procedure. In addition, the 

components employed in this work are not the most dominant ones but with the intermediate 

strength to detect intrusions launched by well-resourced. Thus, normal denoising technique may 

not be qualified to smooth the noisy data without losing the information from the subtle variation.  

In this chapter, a multi-level denoising approach is proposed here to work with the FDI attack 

detection.  

7.1 Mathematical Development  

 Denoising technique 

Current denoising techniques can be briefly categorized into three types based on the underlying 

smoothing model: moving window based, locally regression-based and reduction-based. A 

commonly used window-based smoother is the moving average filer, which calculates a series of 

averages of sequential subsets of the full response profile. The mathematical expression can be 

found in Eq. (28), where the averaging window length is denoted as M, 𝑦𝑦𝑗𝑗
(0) represents the jth 

original noisy signal, 𝑗𝑗 ∈ [𝑖𝑖, 𝑖𝑖 + 𝑀𝑀] and iy  represents the ith smoothed signal.  
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(0)1 i M

i j
i

y y
M

+

= ∑  

(28) 

While in the simple moving average the past observations are weighted equally, exponentially 

weighted moving average (EWMA) assigns exponentially decreasing weights over time; in other 

words, exponential smoothing assigns smaller weights for historic data and larger weights for 

recent data. Moving-window based denoising has variants like autoregressive integrated moving 

average (ARIMA), moving median, Gaussian-weighted moving average, central moving average, 

recursive moving average etc. These approaches are widely adopted due to their easy 

implementation and fast execution. In practice, however, a satisfying denoising result cannot be 

achieved without the setting of appropriate window size and the weights of the data. Regression-

based smoothers were subsequently proposed to approximate segments of the data using 

polynomial functions.  The basic idea of regression-based denoising is to find a proper regression 

model to estimate a segment of the whole profile, which combines the least squares regression 

with the flexibility of nonlinear regressions. Broadly speaking, regression-based smoothing 

encapsulates the moving window based denoising techniques, since the simple moving average is 

a special case of linear regression on each moving window. However, the regression based 

smoothing techniques solve the setting of weights via least-squares or the optimization of other 

loss functions. Examples of commonly used regression-based smoothing techniques include but 

are not limited to locally estimated scatterplot smoothing (LOESS), locally weighted scatterplot 

smoothing (LOWESS), spine smoothing etc. While the locally regression-based denoising 

techniques do not require physics insight to specify a global function of any form to fit a model to 

the data, this type of denoising techniques require a large of computational resources and increase 

the denoising cost. Another commonly used denoising technique, Kalman filtering, can be 

considered as a fast-implemented case of regression-based approach. Different from LOESS or its 

variants that the choice of regression model is more or less arbitrary, Kalman filter estimates the 

state of dynamic system behavior based on prior knowledge; in other words, the choice of the 

regression model depends on expertise of the dynamic model.  

 

Whereas both moving-window based, and regression based denoising approaches function based 

on nearest or historical data, reduction-based approaches take advantage of the reduced complexity 
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of most models. Since noise typically represents the non-dominant/redundant aspect of a model, 

restricting the data to its dominant components often has a denoising effect. The reduction usually 

happens in temporal and frequency domain. In frequency domain, for example, Fourier transform 

decomposes a time series or an image into frequency components and the corresponding Fourier 

spectrum exhibits peaks for dominant frequency components. The reconstruction of the time series 

or image is based on removal of non-dominant frequency components. The same idea implemented 

in temporal domain can be represented by SVD, which decomposes the temporal snapshots into 

orthonormal vectors.  An implementation of the reduction based denoising can be found in 7.1.1.1. 

The data denoising is accomplished by reconstruction of the original data solely depending on 

dominant components. Though the dominant behavior of the system is retained, the arbitrary 

removal of the components may remove part of information together with noise. Especially, the 

whole idea for the detection of subtle data falsification is based on its effect on the variation of 

HOCs, which requires delicate data preprocessing.  To mitigate this dilemma, here a novel 

denoising approach is proposed, adopting a multilevel denoising approach to abstract more 

information and weed off more noise than a single execution of reduction approach. 

7.1.1.1 Denoising Algorithm – Single Level 

The evolution of a process variable is usually described as a certain state variable or output 

response as a function of time, here denoted as ( )tφ . While ( )tφ  can be expanded by different 

ways, like Taylor series expansion, fast fourier transform, matrix factorization etc., generally this 

expansion can be expressed in Eq. (29). In Eq. (29),  j represents the jth samples/observation of 

the variable of interest. ( )i tϕ   is the ith singular function (or vector) of a set of functions (or 

vectors) representing the first r DOFs (active) of the physics model. Also, they represent a 

mathematical basis for the active subspace. The αi are the components of the function ( )tφ  along 

the active DOFs ( )i tϕ .   

( ) ( ),
1

r

j i j i
i

t tφ α ϕ
=

≈∑
 

(29) 
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For computational convenience, the active subspace basis functions ( )i tϕ  are selected to be 

orthonormal, such that the components αi can be readily calculated as inner products of the form: 

( )( )T
i i t tα ϕ φ=  

(30) 

In doing so, the functions ( )i tϕ  are selected such as to minimize the reduction error re , given by:  

( ) ( )
2

,
1 1

min
i

N r

r j i j i
j i

e t t
ϕ

φ α ϕ
= =

= −∑ ∑
 

(31) 

Each one of the basis function is referred to as an active DOF, and collectively as the active 

subspace. The active DOFs are indexed from being most to least dominant, with the dominance 

measuring their contribution to the original function, i.e., the first active DOF is the most dominant 

such that variations in its associated coefficient αj result in the most function variation in ϕ(t). 

 

For monitoring applications, ϕ(t) is formed as a series of discrete time measurements, here denoted 

as a one-dimensional column vector with length n, mathematically expressed in Eq. (32), where yi 

represents the measurement at ith  time step. 

( ) ( )1 2, , , , , , 1, 2, ,i nt y y y y i nφ = = =y     
(32) 

It is assumed that the analyst has access to many snapshots of a series of temporal evolution for 

reference, or normal function variations, either obtained from repeated model execution that 

simulates a plethora of normal operating conditions or from historical data, denoted here as: 

 

( )Ref Ref Ref Ref Ref Ref
1 2, , , , ,i nt y y y yφ  = =  y  

 
(33) 

These profiles are first normalized by their time-averaged values. No distinction between the 

normalized and original values will be made to avoid cluttering the notations.  

 

Next, to get the active subspace basis functions ( )i tϕ  in the context of discrete measurements, one 

relies on a window-based approach for monitoring, where a user-defined signature window of size 
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w is used to capture w-length snapshots of the vector of length n in Eq. (34). If sequential snapshots 

are taken, the vector in Eq. (34) is turned into a rectangular Hankel matrix, Href, 𝑤𝑤 × (𝑛𝑛 − 𝑤𝑤 + 1): 

 
Ref Ref Ref
1 2 1
Ref Ref Ref

Ref Ref Ref Ref 2 3 2
1 2 1

Ref Ref Ref
1

n w

n w
n w

w w n

y y y
y y y

y y y

− +

− +
− +

+

 
 
  = =   
 
  

H h h h







   

  
(34) 

Mathematically, the SVD-based reduction of HRef may be described as follows:  

Ref T T

1

r

k k k
k

s
=

≈∑H = USV u v
 

(35) 

where ( )1 2, , , r=U u u u ,  { }1 2, , , wdiag s s s=S  , ( )1 2, , , r=V v v v , and r represents the rank of the 

Hankel matrix. The column vectors in U matrix form a set of orthonormal bases for the column 

space spanned by ref , 1, 2, ,k k r=h  , where r represents the rank of the Hankel matrix. The row 

vectors in VT form a set of orthogonal bases for of the row space spanned by the rows of RefH . S 

is a diagonal matrix storing singular values in a descending order. The rank of the matrix is usually 

determined by a user-defined tolerance, as expressed in Eq. (31). Then the active subspace basis 

functions ( )i tϕ  can be expressed by the column vectors in U matrix, i.e. ( )i itϕ = u . 

 

Denote a normalized temporal evolution from raw sensor readings (with noise) of the process 

variables as ( )1 2, , , , , ,i ny y y y=y    1, 2, ,i n=   and the corresponding Hankel matrix as 

1 2i i w i w i− + − + =  H h h h , with w taken as window size, where i represents the ith 

simulated/observed temporal measurements. The denoised measurements with single level 

reduction can be implemented via: 
T

1

T
2 2

T

ˆ

ˆ

ˆ

i w i w

i w i w

i i

− + − +

− + − +

=

=

=

h UU h

h UU h

h UU h



   

                                                                                                                                                    (36) 
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Therefore, the corresponding denoised Hankel matrix is expressed as:  
T

1 2
ˆ ˆ ˆ ˆ, ,i i w i w i i− + − +

 = = H h h h UU H  
(37) 

Since one data point can be smoothed a maximum of w times, a given point 𝑦𝑦𝑖𝑖  is no longer 

smoothed after 𝑖𝑖 time steps. The final smoothed value, ŷi, is obtained by the first entry of ˆ
iH . 

 

In the context of FDI detection, it is noteworthy that if a FDI attack vector 𝛿𝛿 is along a direction 

of the null space of U , then this attack vector will be smoothed out after the adoption of the 

reduction-based denoising approach, which ties into the main drawbacks of this denoising 

technique. 

7.1.1.2 Denoising Algorithm –Multilevel Approach 

The multi-level approach can be thought of as simply extending the range of the smoothing 

function, i.e. the final smoothed point 𝑦𝑦𝚤𝚤�  is dependent on the points, ranging from (i-w-v)th to 

(i+w+v-1)th, where v depends on the number of levels and their respective window sizes. While 

implementing multilevel denoising approach, one will get a final denoised data point after (w+v-

1) time steps. Here, taking a two level denoising for demonstration, the implementation process is 

stated as below. 

 

If the u vectors can be thought of as a polynomial approximation to the original curve, the multi-

level u vectors are a good approximation of their components, components of their components, 

and so on. The basic idea of multilevel approach is to find sets of bases for each layer of denoising, 

the first of which is obtained as U matrix in section 7.1.1.1. Then, one needs to identify the basis 

for the second level variations that are stored in the projection matrix refα .  

 
ref αT ref=α U H  

(38) 
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Similarly, SVD is adopted to identify the basis of the second level variations, as shown in Eq.(39), 

where the superscript α represents the second level mapped variation related quantities/matrix and 

the rank of the second level variations spanned space is denoted as s.  
 

ref α α αT α α αT

1

s

k k k
k

s
=

= ≈∑α U S V u v
 

(39) 

 

To capture the main variation of the process variable’s components, i.e., HOCs, one needs to 

project the temporal measurements onto the U matrix to capture most dominant variations for 

current measurements, mathematically, which can be expressed in Eq. (40). Speaking in a context 

of online monitoring, a dynamic Hankel matrix iH is constructed with the window size for the 

second level components, where the superscript i of iH represents the index of the data points. 
Ti i=α U H  

(40) 

1 2
i

i v i v i− + − + =  H h h h  
(41) 

The multilevel denoising works as inner iteration for the high-level variation mapped matrices.  

Here the denoised second level variations is expressed as: 

 
α αTˆ i i=α U U α  

(42) 

 

With the denoised high-level variations, the low-level variations can be recovered by being 

mapped back to the basis at the corresponding level, as shown in Eq. (43): 
Tˆ ˆi i=H UU α  

(43) 

Therefore, the eventually smoothed data points corresponded Hankel matrix can be expressed in 

Eq. (44).  
α αT Tˆ i i=H UU U U H

                                                                                                                                                     (44) 
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As stated on page 116, the final smoothed measurements are stored in the first entry of the updated 

ˆ iH matrix, since the measurement yi is the last entry of the matrix 1i w− +H  and the first entry of the 

matrix 1i w+ −H . Similar to the idea of central difference in the numerical methods, the updating 

process of yi is related to (2w-1) data points, from yi-w+1 to yi+w-1. Expand this scheme to multilevel 

denoising technique, there are [2(w+v) -1] data points are involved in the yi updating process. In 

other words, the system will get the final smoothed data after [(w+v)-1] time steps. 

 

For illustration, overall denoising calculation scheme can be found as below: 
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Figure 7.1 Multilevel denoising calculational scheme 

 

Understanding the basic idea of the multilevel denoising approach, one can easily expand this 

algorithm to more level denoising, which can be expressed as: 
 

T T T T
1 2 3 3 2 1

ˆ i i
m m=H U U U U U U U U H   

(45) 
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where m represents the total number of layers adopted for denoising. Also, the final smoothed yi 

will be obtained after T time steps, expressed as in Eq. (46), where wl represents the window size 

at layer l.  

1
1

m

l
l

T w
=

= −∑
 

(46) 

 

As one may intuitively think, the number of layers, m, will not increase to infinity, since the 

information carried is decreasing as the number of layers increases. Thus, to implement the 

multilevel denoising approach, one needs to conduct a series of tests for a proper selection of the 

number of layers and rank identification of each layer.  

 

While this multilevel denoising technique is robust for it only requires the measurements data of 

process variables instead of physics insights or state estimation, a generic theoretical limit for the 

number of layers is undeveloped. 

 RWD Equipped with Multilevel Denoising for Online Monitoring –Single Process 
Variable 

In this section, RWD is implemented with aid of multilevel denoising to fulfill the online detection 

of triangle FDI attack. The basic idea of RWD stated in 6.1.2  is to track the variation of the 

relationship between LOCs and HOCs in online monitoring. The discrepancy of the relationship 

between genuine data and the online data will issue an alarm. Adopting the same set of notations 

of the denoising section 7.1.1.2, the steps of RWD for online monitoring are stated below: 
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Figure 7.2 Illustration for Sliding Signature Window 
 

1. Employing a signature window of size w, sequentially place this window over the 

denoised genuine signal ( )1ˆ , , , , 1, ,g g g
i w v iy y i w v w v n− − += = + + +y   , within the 

monitoring window, to generate v random snapshots for the window values, and 

aggregate in a matrix Hi (w×v). The illustration of the sliding signature window within 

the monitoring window can be found in Figure 7.2. 

2. Based on a defined tolerance, determine the rank, i.e., the number of components, 
denoted as rL and rH for LOCs and HOCs respectively. The LOCs, and HOCs are 
captured in two matrices UL (w×rL), and UH (w×rH). 

3. Calculate the projection of each of the v windows from the Hi matrix along the rL LOCs 

and the rH HOCs as features and aggregate the features in two matrices of sizes rH × v 

and rL × v, denoted respectively as g
Hα  and g

Lα .  
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4. The above steps are repeated for the attack signals ( )1ˆ , , ,a
i w v iy y− − +=y 

, 1, ,i w v w v n= + + +   to generate matrices a
Hα  and a

Lα , in order to detect attacks 

injected during the period from timestep i to timestep i+w+v-1. The attack signals are 

generated by placing windows randomly throughout the genuine data and replacing the 

values by linear piece-wise trends. Details on this may be found in a previous publication 

[42] and in the subsection 7.2. 

5. Input datasets are prepared as a vector via the concatenation of LOC and HOC.  

6. Label the feature, column vectors in in g
Hα , g

Lα , a
Hα  and a

Lα   that do not contain falsified 

data as ‘0’ and the other ones as ‘1’ for containing altered data. 

7. Train a binary support vector machine (SVM) classifier to identify the feature vectors 

constructed from attack data. 

 

For illustration, the calculational scheme of the algorithm is shown in Figure 7.3.
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Figure 7.3 Calculational Scheme of Detection Algorithm –Single Process variable
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 RWD Equipped with Multilevel Denoising for Online Monitoring –Multi Process 
Variables 

Besides employing LOCs and HOCs from one process variable, another option is to retrieve 

information from different process variables, especially the correlated ones. As one can think 

intuitively, while conducting online monitoring, the relationship between components from 

different process variables contains two sources of information: autocorrelation and cross-

correlation between the process variables. This allows one to detect attack scenarios in which the 

attacker has access to some of the historical sensor’s data, allowing them to perform a reply attack. 

To simulate this, we assume that some of the responses are duplicated from historical data, and the 

rest are falsified by the attacker. We show that the combined use of LOCs and HOCs allows for 

the detection of this attack scenario.  To facilitate the FDI detection algorithm with the cross 

correlation, here we expand the algorithm in 7.1.2 to another version involving multi process 

variables. 

 

The basic idea to employing the components of multi process variables focuses on the construction 

of the input vector for classifying. Specifically, the input vectors contain the HOC or LOC 

information from the different process variables. However, the construction of input vector via 

arbitrarily stacking of components will weaken the classifier performance or add calculational 

burden to the classifier. To mitigate these issues, a pre-analysis of the components of different 

variables is necessary. Taking two process variables as an example, with a user-defined tolerance, 

one can obtain the active DOFs for both variables, denoted as r1 and r2. Then one can build a r1×r2 

correlation matrix, from which one can identify the component pairs with the least uncertainties. 

The identified pairs can be employed to construct input vectors. For illustration, the calculation 

scheme of the algorithm with multi process variables can be found in Figure 7.4, where the 

subscript 1 and 2 represent different process variables and the hat notation represents the denoised 

values. Also, to avoid a verbose notation, the temporal index i for both temporal profile y and 

constructed matrix H is neglected. 
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Figure 7.4 Calculational Scheme of Detection Algorithm –Multi Process variables 

 Denoised Measurements
 ŷ1,  ŷ2

Hankel matrix, Ĥ1, Ĥ2, size w×v

LOC of Ŷ1, Ŷ2: α1L=U1L
TĤ1, α2L=U2L

TĤ2

HOC of Ŷ1, Ŷ2: α1H=U1H
TĤ1, α2H=U2H

TĤ2

Build input vectors, e.g. (α1L, α2H)
Label input

Correlation Analysis

Training data

Hankel matrix, H1
Ref 

H2
Ref , w×(n-w+1)

Reference 
y1

Ref  (0,n)
y2

Ref  (0,n)

HOC and LOC basis 
 U1H, w×r1H 

U1L, w×r1L

 U2H, w×r2H 

U2L, w×r2L

U1H
T, U1L

T

U2H
T, U2L

T

SVD

Denoising 

 Temporal Measurements
y1 , y2

Testing data

Binary SVM Classifier Validate

End

Basis 

Construction 

Feature 
Construction 



 
 

126 

 Evaluation of attack detection 

This section defines a detection criterion based on the results of the SVM classifier. The raw SVM 

results provide information on how often the classifier is triggered. To quantify that over the 

temporal horizon, two metrics are defined, GC and AC. The GC, short for Genuine Coverage, 

measures the number of times the classifier returns a label of ‘0’, denoting the genuine behavior, 

and the AC, short for Attack Coverage, measures the number of times the classifiers return a label 

of ‘1’, denoting the attack behavior. In ideal settings, the classifier is expected to be triggered when 

the monitoring window is overlapping with the attack window.  

 

As would be expected, if the overlap is small, the likelihood of the classifier being triggered will 

be lower than if the overlap is large. To minimize the rate of false positives, a criterion should be 

developed in terms of the AC and GC metrics. Both metrics are normalized by the total number of 

time steps in which the monitoring window has overlap with the attack window. For example, for 

an attack window of 50 seconds, a monitoring window of 25 seconds and a signature window of 

20 seconds, there should be a total of 74 seconds in which the two windows overlap. Recall that 

the monitoring window is advancing one second at a time. Thus, a 20% AC implies that the 

classifier triggered a ‘1’ label for 20% of the 74 seconds. These two metrics are used to determine 

a criterion for detection as follows. An attack is declared when the classifier triggers a ‘1’ label 

five times in a row. This basic criterion is used in this work, however more complicated criteria 

may be used that take into account the score of each label, which is a function of the distance from 

the decision boundary of the classifier. Some of these ideas will be explored in future work. 

 

In addition to the binary decision of attacking detection, it is important to determine the time-delay 

between the onset of the attack and its detection. Hence, a time delay, td, is defined in the context 

of real-time monitoring in Eq. (47), where tp refers to the time step at which the classifier is 

triggered when the classifier declares positive predictions that last t time steps, and ta refers to 

when the attack is injected. Ideally, one would want the detection time delay to approach zero. 

 
d p at t t= −  

                                                                                                                                                   (47) 
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 Limits exploration 

This manuscript focuses on the detection of subtle data falsification for online monitoring of 

nuclear system, which raises the question: how subtle can an attack be and still be detected? To 

explore this limit, a distance metric is defined measuring the discrepancy between the genuine and 

attack values over the attack window. This distance is defined in Eq.  (48) below where g
ly  and 

a
ly  refer to the value of normalized raw genuine and attack response values at lth time step, 

respectively, and wa represents the size of the attack window. Our goal is to find the minimum 

value of dl below which an attack may become indistinguishable from genuine data. Since a 

supervised learning setting is employed for the classifier, we use a threshold of d = 0.35%, such 

that any deviation below that is not considered to be an attack.  
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7.2 Numerical Results 

This section exemplifies the application of the proposed OT defense using a virtual approach, 

wherein real measurements are simulated using a dynamical reactor model based on the RELAP5 

code with noise added to emulate real data collected in a nuclear reactor. For demonstration 

purposes, we focus solely on triangle attacks, proposed recently as a simple yet effective form for 

evading detection by conventional data-driven and/or model-based OT defenses; a short overview 

of triangle attacks is given in the next subsection. Both univariate and multivariate monitoring 

renditions of the proposed OT defense are demonstrated in the following subsections. 

 Subtle data falsification: triangle attack 

The basic idea of triangle attack is that given a sequence of measurements, i.e., signal values of a 

process variable containing noise, a series of line segments are calculated to adjust the trend of the 

process variable variations with artifact noise added to emulate the noise in the raw data before 

they are falsified. Calculation of these line segments does not require knowledge about the 
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dynamical model governing the system behavior, as it employs simple rules to find the best linear 

trends, then superimposes noise that is consistent with the noise in the raw data as illustrated in 

Figure 7.5. The red noisy data set represents the raw measurements, and the black line segments 

represent the calculated trends. The falsified data represent the sum of the linear trends, to be 

selected by the attacker to change the system state, and artifact noise designed to evade replay 

attack detection. The detailed calculational procedures of the triangle attack may be found in [43]. 

 

 
Figure 7.5 Line Segments Fit of Triangle Attack 

 

 Denoising results  

In this subsection, multilevel denoising approach is applied to preprocess the online monitoring 

data.  For demonstration, moving window average denoising and a single-level denoising 

techniques are employed to compare with the multilevel denoising approach, where the single-

level denoising approach share the same idea with the current SVD denoising approach. In Figure 

7.6, the grey dots in all three subplots represent the original noisy measurements of the pressure in 

the secondary side of steam generator, which is generated via a 10% white noise addition onto the 

simulated noise-free response profile, shown as the purple line in the last subplot. The blue line in 

the first subplot represents the smoothing result of EMWA; the green line in the second subplot 

shows the denoising temporal evolution of pressure; the multi-level denoising temporal profile is 
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plotted as red line in the last subplot. Seeing from the first two subplots, one can tell that there are 

some tiny wiggles shown on both green line and blue line, while the multilevel denoising approach 

smooths out the tiny wiggles as shown in the third subplot, which are not represented by the non-

noisy profile. Here the number of components employed for single level denoising is determined 

by a user-defined tolerance shown in Eq.(29). Similarly, the number of components employed in 

the second level denoising is also determined by a user-specified denoising optimal.  Here the 

window size, w, to build the Hankel matrix for the reduction-based smoother is same with the one 

for EMWA smoother, 20.  

 
Figure 7.6 Denoising Results Comparison 

 

From As aforementioned, a key contribution of this paper is the design of a denoising algorithm 

to ensure that subtle variations can be distinguished from the noise. To measure the impact of the 
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noise, two signal-to-noise ratio type metrics are employed, defined as the ratio of the noisy signal 

to the noise within the attack region, mathematically expressed as Snoisy/N; another metric is 

employed as a measure of the meaningful signal, defined as the ratio of the noise free signal to the 

noise within the attack window, mathematically expressed as Sclean/N, where Snoisy, Sclean, and N are 

defined in Eq. (49).  In our context, the both signals refer to the difference between the genuine 

and falsified data, where the subscripts g and a refer to genuine signals and attacked signals, 

respectively; the subscript l refers to the temporal index of the profiles; the attack window length 

is denoted as wa. The noise is defined as the discrepancy between the raw sensor readings g
ly and 

the simulated signals 0g
ly ,where the subscript “0” represents noise-free profiles. To construct the 

subtle attack vector, the meaningful signal, i.e., Sclean should match the noise level or even be 

smaller. 
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 FDI Detection with Univariate Monitoring 

This subsection applies the OT defense to a single monitored process variable, using a two-level 

denoising methodology. For the first level, the first two column vectors in U1 in Eq.(45) are used 

per Eq. (37), and for the second level, the first column vector in U2. The window size for the 

temporal level, w, is taken as 20, and the window size for the components level, v, is 10. The time 

delay resulting from denoising is 29 timesteps based on Eq. (46).  
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The results are shown in the subplots in Figure 7.7 to Figure 7.9. In the first subplot, the noisy 

genuine and attack temporal profiles of the monitored process variable, the temperature at the 

primary side of SG, are shown as green and red dashed lines separately, while the non-noisy 

genuine and attack temporal evolutions are respectively plotted in blue and orange solid lines, 

respectively. The added noise profile follows a normal distribution with mean value as 0 and 

standard deviation as 0.2%. The noisy profile is calculated via Eq. (50), where yi denotes for noisy 

sensor readings, ni denotes for the added noise, and yi
0 denotes for the noise-free/simulated 

variable, the subscript i refers to the index of time step. 

 
0(1 )i i iy n y= + ⋅  

(50) 

 

The second subplot shows the denoised temporal evolution of the monitored process variable. The 

noisy profiles are also represented in here for a complete results demonstration. The third subplot 

contains the relationship between the LOC and the HOC features extracted from genuine and attack 

signals. Here the genuine datasets are labelled as ‘0’ and the others containing falsified data are 

denoted as ‘1’. In the fourth subplot, the blue horizontal dots show the true labels of genuine input 

datasets as a function of time, and the orange dots show the labels of attack datasets. Ideally, for a 

given genuine profile, the OT defense should issue a ‘0’ label for all the time step, and for an attack 

profile, it should issue a ‘1’ label over the attack window, whose onset is marked by a vertical red 

solid line. The fifth subplot shows the prediction of the OT defense when a genuine profile is 

applied, i.e., all predicted labels are ‘0’ as would be expected. The sixth subplot shows the results 

when the OT defense is presented with an attack profile. Results shows that a label ‘1’ is declared 

0.0 ~ 50.0 seconds after the onset of the attack, and the cases with delay not less than 50 seconds 

are considered as undetected.  

 

With the premise stated in subsection Limits exploration7.1.5, here the alarming time limit is 

selected as 5 seconds and the difference limit expressed in Eq. (48) is chosen as 0.35%. In other 

words, when the noisy signal triples the noise, the attack is considered as a valid attack, based on 

which if the predicted alarming time lasts over 5 seconds, the attack can be considered as detected. 

The detection performance is evaluated by AC, GC and detection delay, which are shown in 
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subtitles of the fifth and sixth subplots. The sample index and the corresponding signal to noise 

ratio, Sclean/N are represented in the figure title. 

 

The simulation has been executed 1000 times, all representing a range of operational conditions, 

achieved by randomly sampling initial and boundary conditions as well as some of the model’s 

parameters. A total of 750 samples were used to train the classifier, and the remaining 250 samples 

were used for testing. For each of the training sample, an attack window is randomly placed, and 

the trend is changed to piecewise linear. Noise is added to both the original values (representing 

genuine behavior) and the attack values. Based on the position of attack windows, we select for 

demonstration three different attack regions: a region where the given response is increasing 

(Figure 7.7), decreasing (Figure 7.9), and in-between where a peak is expected (Figure 7.8). These 

three regions will be denoted by the “increasing”, “decreasing”, and “peak” regions, respectively.  

 

Figure 7.7 shows an example of FDI detection results using the developed multilevel denoising 

method, in which the attack is injected in the increasing region. Analysis of the relationship 

between HOC and LOC in the second subplot reveals that a small difference in the temporal 

evolution of a response could lead to a significant difference in the HOC-LOC pattern, based on 

which a classifier can be reliably trained. The classifier predicted labels for genuine data are shown 

in the fifth subplot, all as ‘0’, indicating that the classifier will not misclassify the genuine data as 

attacked data and issue a false alarm. In the last subplot, the predicted labels for attack data 

represent as ‘1’ without a time delay. The bottom left subplot shows that the classifier is triggered 

at 75.6% of the time when the monitoring and attack window overlapped, i.e., AC = 0.756. Based 

on the 5 second detection criterion, this attack is hence detectable. Similar results for the peak and 

decreasing regions are shown in Figure 7.8 and Figure 7.9, respectively. 
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Figure 7.7 FDI detection with Multilevel denoising (Region 1) 

 

Figure 7.8 and Figure 7.9 show the results where the attack vector in injected in a quasi-steady 

region. While the RWD algorithm supported with single level denoising technique cannot detect 

the FDI attack, the multilevel denoising technique is capable of the detection with a delay time 

equals to 11 seconds. 
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Figure 7.8 Univariate FDI Detection with Multilevel denoising (Region 2)
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Figure 7.9 Univariate FDI Detection with Multilevel denoising (Region 3)
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To have an overall assessment of the detection results for all analyzed 250 test cases, the 

relationship between the clean signal-to-noise ratio, Sclean/N, and the detection delay time is plotted 

in Figure 7.10. Results show a trend that for higher signal-to-noise ratio, the detection delay time 

will be shorter, and vice versa. The detectable limit of Sclean/N ratio is 0.933, shown as a red 

horizontal dashed line, demonstrating that when the Sclean/N ratio is above this limit, the attack can 

always be detected. For the cases that are not detected, their meaningful clean signal is very small, 

because the attack and the genuine track almost match each other, an example is shown in Figure 

7.11.   

 

  
Figure 7.10 Detection Delay Time vs. Signal-to-noise Ratio with Univariate Monitoring
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Figure 7.11 Example of Undetected Attack
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 FDI Detection with Multivariate Monitoring  

The last section focused on analyzing behavior using the LOC and HOC associated with a single 

response, i.e., no correlation between responses is employed. In this section, the LOCs and HOCs 

obtained from different responses are employed to design the classifier. Intuitively, this is sought 

to improve the performance of the classifier. An important step here is to devise a procedure by 

which the best LOCs and HOCs from a group of responses are selected to train the classifier. By 

way of an example, consider two responses T_SG150 and T_SG210, and consider a single LOC 

and a single HOC associated with each one of them. A brute force approach could be used to 

incorporate all HOCs and LOCs from multiple responses, this is however is expected to overwhelm 

the training. Instead, we employ a simple criterion, that’s to select the pair of features with the 

highest mutual information. This can be calculated using kernel density estimation of the joint 

probability distribution. An example is shown in Figure 7.12, where the bottom-left subplot shows 

the best pair of features. Here this can be eye-balled by identifying the two features showing the 

most correlation, i.e., least uncertainty. More sophisticated selection criterion, based on fusion of 

multiple features from multiple responses will be sought in our future work.  

 

The subplots in Figure 7.12 plot the components from two process variables among all samples, 

in which the red area indicates where the components data accumulates, and the purple area 

indicates less data accumulation. T_SG150 represents the temperature at the primary side of the 

steam generator, while T_SG210 represents the temperature at the secondary side of the steam 

generator. The LOC and HOC from each process variable are denoted as 𝜶𝜶𝐿𝐿 and 𝜶𝜶𝐻𝐻  respectively. 

From Figure 7.13, one can see there is a trend in every subplot. In other words, the components 

recorded by the x-axis is dependent on the ones for the y-axis. This section focuses on a question 

that whether this dependence can be leveraged to find subtle inconsistency within the data. To 

validate this point, the same attack window in subsection 7.2.3 is injected into the temporal signal 

profile of T_SG150, but the feature construction involves correlated LOC and HOC from different 

process variables. 
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Figure 7.12 Components correlation of Different process variables 

 
 

The next set of figures, Figure 7.13 to Figure 7.15 repeat the detection results but now using the 

LOCs and HOCs from two different responses. It is assumed that the first response T_SG150 is 

attacked, whereas the other response T_SG210 is not attacked. The classifier is trained based on a 

single LOC of the T_SG150 and a single HOC of the T_SG210 as plotted in the middle right 

subplot in Figure 7.13. The second subplot in Figure 7.13shows the noisy, non-noisy and denoised 

temporal profiles of T_SG210. The non-noisy temporal evolution of T_SG210 is shown as the 

orange solid curve; the green dashed line represents the T_SG210 temporal profile with evolution; 

the denoised profile is represented as a blue curve. From the results, one can tell that compared to 

univariate monitoring, the attack data detection coverage increases from AC=0.756 to AC=1.0 

with two responses used for monitoring. Similar behavior is observed for the peak region, where 

AC increased from 0.33 to 0.821. For the decreasing region, the AC did not change much because 

the attack has a very similar trend to the genuine profile.
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Figure 7.13 Multivariate FDI detection with Multilevel denoising (Region 1)
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Figure 7.14 Multivariate FDI detection with Multilevel denoising (Region 2)
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Figure 7.15 Multivariate FDI detection with Multilevel denoising (Region 3)
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As the ultimate goal here is to detect as many falsified data points as possible and to issue the 

alarm as early as possible. The multivariate monitoring does not always lead to a superior detection 

result in every aspect than univariate monitoring. To evaluate the overall performance of the 

multivariate, Figure 7.16 represents the relationship between delayed detection time and the signal-

to-noise ratio. For multivariate monitoring, the Sclean/N detectable limit is 0.726, shown as the red 

dashed line, which is lower than the limit of univariate monitoring. Figure 7.17 shows the 

histogram of detection delay of both monitoring results, which indicates the univariate monitoring 

has a small superiority on detection delay. Scatter plots in Figure 7.18 represent the relationship 

between two S/N ratios, in which different colors indicate the different time periods of detection 

delay. Most attack vectors can be detected within 10 seconds, shown as yellow dots and there are 

less long-time detection delay cases in multivariate monitoring. And for both monitoring 

approaches, the cases with a longer detection time mostly locate at a low S/N region.  From the 

perspective of AC and GC, shown in Figure 7.19, one can tell that the multivariate monitoring can 

lead to a longer warning time.   
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Figure 7.16 Detection Delay Time vs. S/N Ratio with Multilevel denoising 

 
 
 

 
Figure 7.17 Histogram Comparison of Detection Delay  
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Figure 7.18 Relationship between Clean and Total S/N ratio with Detection Delay 

 

 

 

 

Figure 7.19 Histogram of AC and GC for both monitoring methods
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7.3 Results Summary 

In this chapter, a comparison study follows a denoising result analysis to investigate the detection 

for subtle triangle FDI attack vector. The results indicate the effectiveness of the detection 

algorithm for most simulated attack vectors. Moreover, the multilevel denoising approach can 

shorten the detection delay time and identify more imperceptible attack vectors as shown in Figure 

7.8 and Figure 7.9. From the macroscopic perspective, the multilevel denoising method excels the 

single level one due to more identified attacks vectors and shorter detection delay. In 7.2.4, the 

detection results with one more process variable is demonstrated. The feature vector contains both 

of LOC and HOC from two correlated responses. The results indicate that engaging extra 

information will help the classifier distinguish the falsified signals from the genuine ones. Before 

concluding, it is important to remark that the computational cost for the proposed detection 

algorithm may be split into two components, an offline and an online component. The off-line 

component comprises the computational cost to design the HOCs and LOCs which can be done 

during a training phase. Further, because all the attack scenarios are based on the idea of triangle 

attacks, the training of the classifier can also be completed offline. This represents the key cost of 

the overall algorithm as the online component involves only the projection of the windowed time-

series over the HOC/LOC components (which are simple inner product operations) and the 

execution of the already-trained classifier, both are essentially instantaneous. 
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8 CONCLUSION 

Industrial control systems are currently being upgraded with digital instrumentations for efficient 

control, operational convenience, and expeditious data traffic. Despite the numerous benefits of 

digitization, one must address the threats posed by potential adversaries looking for vulnerabilities 

to exploit. The preliminary study demonstrates two key results: (1) the attacker can learn the 

system behavior to a first approximation solely with historical data; (2) equipped with an 

approximate physics model and historical data, the attacker can recover the missing details of the 

model, e.g. model parameters and make accurate predictions of the system behavior. To address 

this threat, the exploratory study presents an OT defense developing unique signatures for the 

individual systems and calculated using machine learning techniques as guided by high-fidelity 

physics model and the system-specific design and historical operational data.   With learned system 

behavior, attackers can launch stealthy attacks to circumvent the detection by conventional 

monitoring techniques. The exploratory study provides a basic detection algorithm based on single 

and multiple-responses, demonstrating how subtle variations can be detected by analyzing both 

the HOCs and LOCs. In practice the number of sensors in a nuclear power plant is very high, 

implying that a brute force application of the proposed approach for each sensor will not be 

computationally feasible. Thus, in practice, another algorithm must be developed to select HOCs 

and LOCs across many sensors. To achieve that, standard SVD-based decomposition techniques 

can be applied on multi-response data, where the idea here is not to reduce the dimensionality but 

to capture a number of LOCs and HOCs that take into account the correlations across the sensors 

data. A window-based approach, akin to the RWD algorithm employed here, will be used to 

generate a joint PDF of candidate pairs of LOCs and HOCs. Next, information-theoretic metrics, 

such as mutual information, will be employed to identify the candidate pairs with the highest 

mutual information. The idea is to rely on both dominant, referred to as the LOCs, as well as less 

dominant features, referred to as the HOCs, to derive signatures that can identify FDI attacks. 

Specifically, this idea is implemented as an offline analysis approach in the first place, and 

consequently improved as a robust online monitoring toolkit in conjunction with a novel denoising 

technique.  Results indicate that the patterns established by the LOCs and HOCs are effective in 

detecting subtle variations, expected to be the mode of attack during an initial lie-in-wait period, 

used to test the attacker’s ability to bypass detection. Results also indicate that attacks comparable 
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to the noise level can be detected, with the detection ability improved with additional responses 

used for monitoring. This is especially important for replay attack, which rely on using older 

genuine data to spoof future sensors readings. Several outstanding developments need to be further 

addressed in support of this work. For example, a more detailed analysis of the binary classification 

results is needed to design a better detection criterion by analyzing the relationship of the points 

trigger the alarm to the classifier’s decision boundary.  
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9 FUTURE WORK  

Aforementioned limitations of this work are mainly on two aspects. The first one is that this 

monitoring algorithm can only identify the attacks/anomaly that deviate from the patterns of the 

genuine signals. One way to solve this issue is introducing active monitoring techniques, e.g., 

physical watermark etc., whose effectiveness have been proved. Another way is to develop online 

adaptive pattern discovery and fault/attack learning capabilities. The other limitation is the 

detection effectiveness for attack vectors in the null space of identified LOCs and HOCs. Future 

work will expand this work to the defense for this type of attacks.  

 

Besides, for online monitoring toolkit, one has to construct feature vector after signal denoising is 

accomplished, which would add more delay time for the attack detection. Future work will include 

the minimize the delay time resulting from denoising. In this study, the way of employing the 

LOCs and HOCs components across multiple responses is naïve. Future work will also optimize 

the integration of HOCs components across multiple process variables to maximize the 

classification accuracy.  

 

This work focuses on the subtle triangle attack vector injected in a single process variable, while 

the attacker with intimate knowledge can launch coordinated attacks for multiple response. For 

long-term goal, future work will expand the attack scenarios and develop the current algorithm 

into a framework to accommodate the needs of online monitoring such as early fault/degradation 

diagnosis. The algorithm implementation to detect component degradation is demonstrated in the 

Appendix. 
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