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ρ = 0.367 (b) ρ = 0.757; 2) Synthetic data on Erdős-Rényi graph with (c)
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ABSTRACT

Recent decades have witnessed the rise of data deluge generated by heterogeneous sources,

e.g., social networks, streaming, marketing services etc., which has naturally created a surge

of interests in theory and applications of large-scale convex and non-convex optimization.

For example, real-world instances of statistical learning problems such as deep learning, rec-

ommendation systems, etc. can generate sheer volumes of spatially/temporally diverse data

(up to Petabytes of data in commercial applications) with millions of decision variables to

be optimized. Such problems are often referred to as Big-data problems. Solving these prob-

lems by standard optimization methods demands intractable amount of centralized storage

and computational resources which is infeasible and is the foremost purpose of parallel and

decentralized algorithms developed in this thesis.

This thesis consists of two parts: (I) Distributed Nonconvex Optimization and (II) Dis-

tributed Convex Optimization.

In Part (I), we start by studying a winning paradigm in big-data optimization, Block

Coordinate Descent (BCD) algorithm, which cease to be effective when problem dimensions

grow overwhelmingly. In particular, we considered a general family of constrained non-convex

composite large-scale problems defined on multicore computing machines equipped with

shared memory. We design a hybrid deterministic/random parallel algorithm to efficiently

solve such problems combining synergically Successive Convex Approximation (SCA) with

greedy/random dimensionality reduction techniques. We provide theoretical and empirical

results showing efficacy of the proposed scheme in face of huge-scale problems.

The next step is to broaden the network setting to general mesh networks modeled as

directed graphs, and propose a class of gradient-tracking based algorithms with global con-

vergence guarantees to critical points of the problem. We further explore the geometry of the

landscape of the non-convex problems to establish second-order guarantees and strengthen

our convergence to local optimal solutions results to global optimal solutions for a wide range

of Machine Learning problems.

In Part (II), we focus on a family of distributed convex optimization problems defined

over meshed networks. Relevant state-of-the-art algorithms often consider limited prob-
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lem settings with pessimistic communication complexities with respect to the complexity of

their centralized variants, which raises an important question: can one achieve the rate of

centralized first-order methods over networks, and moreover, can one improve upon their

communication costs by using higher-order local solvers? To answer these questions, we pro-

posed an algorithm that utilizes surrogate objective functions in local solvers (hence going

beyond first-order realms, such as proximal-gradient) coupled with a perturbed (push-sum)

consensus mechanism that aims to track locally the gradient of the central objective function.

The algorithm is proved to match the convergence rate of its centralized counterparts, up

to multiplying network factors. When considering in particular, Empirical Risk Minimiza-

tion (ERM) problems with statistically homogeneous data across the agents, our algorithm

employing high-order surrogates provably achieves faster rates than what is achievable by

first-order methods. Such improvements are made without exchanging any Hessian matrices

over the network.

Finally, we focus on the ill-conditioning issue impacting the efficiency of decentralized

first-order methods over networks which rendered them impractical both in terms of com-

putation and communication cost. A natural solution is to develop distributed second-order

methods, but their requisite for Hessian information incurs substantial communication over-

heads on the network. To work around such exorbitant communication costs, we propose

a “statistically informed” preconditioned cubic regularized Newton method which provably

improves upon the rates of first-order methods. The proposed scheme does not require

communication of Hessian information in the network, and yet, achieves the iteration com-

plexity of centralized second-order methods up to the statistical precision. In addition,

(second-order) approximate nature of the utilized surrogate functions, improves upon the

per-iteration computational cost of our earlier proposed scheme in this setting.
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1. INTRODUCTION AND MOTIVATIONS

Over the recent decades, rapid advancement of social networks, digital systems, commu-

nication and sensing technologies have led to the rise of distributed systems including the

Internet, mobile ad hoc networks, and wireless sensor networks. Consequently, these systems

have given rise to new network application domains, such as sensor networks, data-based net-

works, robotic networks, unmanned aerial vehicle systems, and smart grid networks; see e.g.

[ 1 ]–[ 6 ]. Such applications usually call for in-network control and optimization techniques to

perform various operations, including resource allocation, coordination, learning, and esti-

mation.

More specifically, these systems are composed of a large number of interconnected sub-

systems (nodes or agents) which are required to communicate and cooperate to accomplish

a joint global objective. The topology of such interconnected networks can vary for different

applications or could be imposed by connectivity restrictions which distinguishes the realm

of distributed and centralized systems. If all the agents communicate through a main center

node, we call it centralized system (equivalent to master-worker type networks); on the other

hand, if the network is ad-hoc and all the agents are treated as identical peers who can only

communicate with their immediate neighbors, we call it a distributed (or decentralized) 

1
 

system (equivalent to ad-hoc or peer-to-peer systems termed in the literature).

Objective of above distributed applications are usually formulated as convex or non-

convex optimization problems where the ultimate goal is that all the agents compute (an

acceptable approximation of) the solution of such problem cooperatively over the network.

However, designing solution methods to accomplish such goals faces multiple challenges, as

outlined next.

1.1 Challenges and Motivations

• Big-data: Distributed optimization/problems in context of big-data applications usu-

ally deal with huge amount of data, partially stored in each of the network agents and, as

well as, large number of optimization variables (see Fig.  1.1 ). Dealing with such enormity
1

 ↑ Throughout the thesis, we use “decentralized” and “distributed”, interchangeably.
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sets the path to developing decentralized and parallel algorithms that exploit horizontal and

vertical scaling of the systems to cope with the curse of dimensionality and accommodate

the need for fast (real-time) processing and optimization. For example, a properly designed

parallel method can utilize hierarchical computational architectures (e.g., multicore systems,

cluster computers, cloud-based networks), if available, to reduce the computation time. The

challenge is that such optimization problems are in general not separable in the optimization

variables, which makes the design of parallel and/or decentralized schemes not a trivial task.

Figure 1.1. Big-data applications.

• Non-convexity: Many well-know applications lead to non-convex problems defined

over networks. Such problems are in general NP-hard [ 7 ], [ 8 ], meaning that computing the

global optimal solution might be computationally prohibitive in several practical applica-

tions. Such distributed non-convex problems have found a wide range of applications in

several areas, including network information processing, machine learning, communications,

and multi-agent control; see, e.g., [ 6 ]. The goal is to design parallel and distributed algo-

rithms that are efficient and are guaranteed to converge to critical points (or more favorably

to local or global minima) of the non-convex problem.
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To this regard, two main ideas can be utilized, mainly: (i) the so-called Successive Con-

vex Approximation (SCA) technique: as proxy of the non-convex problem, a sequence of

“more tractable” (possibly convex) subproblems is solved, wherein the original non-convex

functions are replaced by properly chosen “simpler” surrogates. By tailoring the choice of

the surrogate functions to the specific structure of the optimization problem under consid-

eration, SCA techniques offer remarkable freedom and flexibility in the algorithmic design;

(ii) exploiting the geometric landscape of non-convex problems: it has been revealed that

a wide range of Machine Learning problems, despite the non-convexity, possess some favor-

able geometry [ 7 ], [ 9 ], which enables many prominent algorithms such as gradient descent

(GD) and alternating directions (AD) methods to be quite effective when applied to non-

convex problems. Leveraging such properties, one may design well-tailored algorithms to

solve non-convex problems to their local (or global) minima.

• In-networked optimization: Such networked systems are typically spatially dis-

tributed over a large area (or virtually distributed). Due to the network size (hundreds

to millions of agents), and often to proprietary regulations, these systems do not possess

a single central coordinator or access point with complete information, able to solve the

entire optimization problem. Network/data information is instead distributed among the

entities comprising the network (cf. Fig.  1.2 ). Furthermore, there are some networks such

as surveillance networks or some cyber-physical systems where a centralized architecture is

not desirable, as it makes the system prone to central entity failures and external attacks.

Additional challenges are encountered from the network topology and connectivity that can

be time-varying, due to, e.g., link failures, power outage, and agents’ mobility. In this set-

ting, the goal is to develop distributed solution methods that operate seamless in-network,

by leveraging the network connectivity and local information (e.g., neighbor information) to

cope with the lack of global knowledge on the optimization problem and offer robustness to

possible failures/attacks of central units and/or to time-varying connectivity.

• Ill-conditioning and communication burdens: Ill-conditioned problems have been

a long-time nemesis of first-order methods, rendering them inefficient in terms of communi-

cation cost when utilized over networks. A natural solution, as explored in the literature, is

to utilize higher-order methods in distributed systems, but their requisite for the complete
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Figure 1.2. In-network optimization vs. centralized optimization.

Hessian information similarly imposes substantial communication burdens on the network

(as well as more costly intermediate optimization steps), which is infeasible. These methods

suffer since they are “statistically oblivious”, meaning that they do not exploit statsitical

properties of the loss functions, such as those due to homogeneity of data. Determining

statistical-computational error trade-offs can bring new insights on how to efficiently solve

such problems. Recent developments have been made in context of centralized optimization,

e.g. [ 10 ], [ 11 ], but such methods are not applicable to general decentralized optimization

problems.

In this thesis, we develop novel algorithmic frameworks in both centralized and decen-

tralized system settings to work around the issues described above; see Sec.  1.2 for outline

and contributions.

1.2 Thesis outline and contributions

This section highlights the contributions of this thesis, addressing the challenges posed

in Sec.  1.1 .

• Hybrid deterministic/random parallel algorithms for large-scale non-convex

optimization (Chapter  2 )
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We propose a decomposition framework for the parallel optimization of the sum of a differ-

entiable (possibly non-convex) function and a non-smooth (possibly non-separable), convex

function. The latter term is usually employed to enforce structure in the solution, typically

sparsity. The main contribution of this work is a novel parallel, hybrid random/deterministic

decomposition scheme wherein, at each iteration, a subset of (block) variables is updated

at the same time by minimizing a convex surrogate of the original non-convex function.

To tackle huge-scale problems, the (block) variables to be updated are chosen according to

a mixed random and deterministic procedure, which captures the advantages of both pure

deterministic and random update-based schemes. Almost sure convergence of the proposed

scheme is established. Numerical results show that on huge-scale problems the proposed

hybrid random/deterministic algorithm outperforms random and deterministic schemes on

both convex and non-convex problems.

The novel results of this chapter are published in:

1. Amir Daneshmand, Francisco Facchinei, Vyacheslav Kungurtsev, and Gesualdo Scu-

tari. “Hybrid random/deterministic parallel algorithms for convex and non-convex

big data optimization.” IEEE Transactions on Signal Processing 63, no. 15 (2015):

3914-3929.

2. Amir Daneshmand, Francisco Facchinei, Vyacheslav Kungurtsev, and Gesualdo Scu-

tari. “Flexible selective parallel algorithms for big data optimization.” In proceedings

of the 48th Asilomar Conference on Signals, Systems and Computers, pp. 3-7. IEEE,

2014.

• Decentralized first-order methods for non-convex optimization and second-

order guarantees (Chapter  3 )

We consider distributed smooth non-convex unconstrained optimization over networks,

modeled as a connected graph. We examine the behavior of distributed gradient-based algo-

rithms near strict saddle points. Specifically, we establish that (i) the renowned Distributed

Gradient Descent (DGD) algorithm likely converges to a neighborhood of a Second-order

Stationary (SoS) solution; and (ii) the more recent class of distributed algorithms based on

gradient tracking–implementable also over digraphs–likely converges to exact SoS solutions,
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thus avoiding strict saddle-points. Furthermore, new convergence rate results to first-order

critical points is established for the latter class of algorithms.

The novel results of this chapter are published in:

1. Amir Daneshmand, Gesualdo Scutari, and Vyacheslav Kungurtsev. “Second-order

guarantees of distributed gradient algorithms.” SIAM Journal on Optimization 30, no.

4 (2020): 3029-3068.

2. Amir Daneshmand, Gesualdo Scutari, and Vyacheslav Kungurtsev. “Second-order

guarantees of gradient algorithms over networks.” In proceedings of the 56th Annual

Allerton Conference on Communication, Control, and Computing (Allerton), pp. 359-

365. IEEE, 2018.

• Decentralized first-order methods for (strongly) convex optimization under

statistical similarity (Chapter  4 )

We study a class of multiagent optimization problems over (directed, time-varying)

graphs. We consider the minimization of F + G subject to convex constraints, where F

is the smooth strongly convex sum of the agent’s losses and G is a non-smooth convex func-

tion. The algorithm employs the use of surrogate objective functions in the agents’ subprob-

lems (going thus beyond linearization, such as proximal-gradient) coupled with a perturbed

(push-sum) consensus mechanism that aims to track locally the gradient of F . The algorithm

achieves precision ε > 0 on the objective value in O(κg log(1/ε)) gradient computations at

each node and Õ
(
κg(1 − ρ)−1/2 log(1/ε)

)
communication steps, where κg is the condition

number of F and ρ characterizes the connectivity of the network. This is the first linear rate

result for distributed composite optimization; it also improves on existing (non-accelerated)

schemes just minimizing F , whose rate depends on much larger quantities than κg (e.g., the

worst-case condition number among the agents). When considering in particular empirical

risk minimization problems with statistically similar data across the agents, our algorithm

employing high-order surrogates achieves precision ε > 0 in O
(
(β/µ) log(1/ε)

)
iterations

and Õ
(
(β/µ)(1−ρ)−1/2 log(1/ε)

)
communication steps, where β measures the degree of sim-

ilarity of the agents’ losses and µ is the strong convexity constant of F . Therefore, when

19



β/µ < κg, the use of high-order surrogates yields provably faster rates than what achievable

by first-order models; this is without exchanging any Hessian matrix over the network.

The novel results of this chapter are published in:

1. Ying Sun, Amir Daneshmand, Gesualdo Scutari. “Distributed optimization based on

gradient-tracking revisited: Enhancing convergence rate via surrogation.” arXiv:1905.02637

(2019).

Note: Accepted under minor revision to SIAM Journal on Optimization (SIOPT).

• Decentralized Newton methods over networks (Chapter  5 )

We propose a distributed cubic regularization of the Newton method for solving (con-

strained) empirical risk minimization problems over a network of agents, modeled as undi-

rected graph. The algorithm employs an inexact, preconditioned Newton step at each agent’s

side: the gradient of the centralized loss is iteratively estimated via a gradient-tracking con-

sensus mechanism and the Hessian is subsampled over the local data sets. No Hessian ma-

trices are thus exchanged over the network. We derive global complexity bounds for convex

and strongly convex losses. Our analysis reveals an interesting interplay between sample and

iteration/communication complexity: statistically accurate solutions are achievable roughly

in the same number of iterations of the centralized cubic Newton, with a communication

cost per iteration of the order of Õ
(
1/
√

1− ρ
)
, where ρ characterizes the connectivity of the

network. This represents a significant communication saving with respect to that of existing,

statistically oblivious, distributed Newton-based methods over networks.

The novel results of this chapter are published in:

1. Amir Daneshmand, Gesualdo Scutari, Pavel Dvurechensky, and Alexander Gasnikov.

“Newton Method over Networks is Fast up to the Statistical Precision.” In proceedings

of the 38th International Conference on Machine Learning (ICML), July 18-24, 2021.

• Decentralized bi-convex optimization over time-varying directed networks In

this section, we briefly review other novel results that are not included in this thesis but are

published in:
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1. Amir Daneshmand, Ying Sun, Gesualdo Scutari, Francisco Facchinei, and Brian M.

Sadler. “Decentralized dictionary learning over time-varying digraphs.” Journal of

Machine Learning Research 20 (2019).

2. Amir Daneshmand, Ying Sun, Gesualdo Scutari, and Francisco Facchinei. “D2L: De-

centralized dictionary learning over dynamic networks.” In proceedings of 2017 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.

4084-4088. IEEE, 2017.

3. Amir Daneshmand, Gesualdo Scutari, and Francisco Facchinei. “Distributed dictio-

nary learning.” In proceedings of the 50th Asilomar Conference on Signals, Systems

and Computers, pp. 1001-1005. IEEE, 2016.

We study a general family of Dictionary Learning problems over directed time-varying

network, defined as the minimization of the sum of bi-convex functions (with private and

shared variables coupling local cost functions) plus a non-smooth convex regularizer. We

develop a unified decentralized algorithmic framework for this class of non-convex problems,

which is proved to converge to stationary solutions at a sublinear rate. The new method

hinges on Successive Convex Approximation techniques, coupled with a decentralized track-

ing mechanism aiming at locally estimating the gradient of the smooth part of the sum-utility.

To the best of our knowledge, this is the first provably convergent decentralized algorithm for

Dictionary Learning and, more generally, bi-convex problems over (time-varying) (di)graphs.

1.3 Notation

The set of nonnegative integers is denoted by N+ and we use [n] as a shorthand for

{1, 2, . . . , n}. Given a vector x, ||x|| denotes the `2 norm of x; any other specific vector norm

is subscripted accordingly. x is called stochastic if all its components are nonnegative and

sum to one; and 1 is the vector of all ones (we write 1d for the d–dimensional vector, if the

dimension is not clear from the context). Given sets X ,Y ⊆ Rd, we denote X \ Y , {x ∈

X : x /∈ Y}, X , Rd \X (complement of X ), and x+X = {x+ z : z ∈ X}. Vx and B(x, r)d

denote a neighborhood of x and the d-dimensional closed ball of radius r > 0 centered at x,
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respectively; when the ball is centered at 0, we will write Bdr . We further define an annulus

by Sr,ε , Bdr \ Bdr−ε, with some r > ε > 0. The Euclidean projection of x ∈ Rd onto the

convex closed set X ⊆ Rd is projX (x) , arg miny∈X ||x− y||. The sublevel set of a function

U at u is denoted by LU(u) , {x : U(x) ≤ u}.

Matrices are denoted by capital letters; Aij is the the (i, j)-th element of A; Md(R) is

the set of all d × d real matrices; I is the identity matrix (if the dimension is not clear

from the context, we write Id for the d × d identity matrix); A ≥ 0 denotes a nonnegative

matrix; and A ≥ B stands for A − B ≥ 0. The spectrum of a square real matrix M is

denoted by spec(M) and its spectral radius is spradii(M) , max{|λ| : λ ∈ spec(M)}; the

spectral norm is ||M || , max||x||6=0 ||Mx||/||x||, and any other matrix norm is subscripted

accordingly. Finally, the minimum (resp. maximum) singular value are denoted by σmin(M)

(resp. σmax(M)) and minimum (resp. maximum) eigenvalue by λmin(M) (resp. λmax(M)).
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Part I

Distributed Non-convex Optimization
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2. HYBRID RANDOM/DETERMINISTIC PARALLEL

ALGORITHMS FOR CONVEX AND NON-CONVEX

BIG-DATA OPTIMIZATION

In this chapter, we consider a general family of optimization problems, the minimization of

the sum of a smooth (possibly nonconvex) function F and a nonsmooth (possibly nonsepa-

rable) convex function G:

min
x∈X

V (x) , F (x) +G(x), (2.1)

where X is a closed convex set with a cartesian product structure: X = ΠB
i=1Xi ⊆ Rd. Our

focus is on problems with a huge number of variables, as those that can be encountered, e.g.,

in machine learning, compressed sensing, data mining, tensor factorization and completion,

network optimization, image processing, genomics, etc.. We refer the reader to [ 12 ]–[ 24 ] and

the books [ 25 ], [  26 ] as entry points to the literature.

Block Coordinate Descent (BCD) methods rapidly emerged as a winning paradigm to

attack Big Data optimization, mainly due to their low-cost per-iteration and scalability; see

e.g. [  14 ]. At each iteration of a BCD method one block of variables is updated using first-

order information, while keeping all other variables fixed. The choice of the block of variables

to update at each iteration can accomplished in several ways, for example using a cyclic order

or some greedy/opportunistic selection strategy, which aims at selecting the block leading to

the largest decrease of the objective function. The cyclic order has the advantage of being

extremely simple, but the greedy strategy usually provides faster convergence, at the cost of

an increased computational effort at each iteration. However, no matter which block selection

rule is adopted, as the dimensions of the optimization problems increase, even BCD methods

may result inadequate. To alleviate the “curse of dimensionality”, three different kind of

strategies have been proposed, namely: (a) parallelism, where several blocks of variables are

updated simultaneously in a multicore or distributed computing environment, see e.g. [ 16 ]–

[ 21 ], [ 27 ]–[ 36 ]; (b) random selection of the block(s) of variables to update, see e.g. [ 31 ]–[ 41 ];

and (c) use of “more-than-first-order” information, for example (approximated) Hessians or

(parts of) the original function itself, see e.g. [ 15 ], [ 29 ], [ 30 ], [ 42 ], [ 43 ]. Point (a) is self-
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explanatory and rather intuitive; here we only remark that the vast majority of parallel

BCD methods apply to convex problems only. Points (b) and (c) need further comments.

Point (b): Random selection-based rules are essentially as cheap as cyclic selections while

alleviating some of the pitfalls of cyclic updates. They are also relevant in distributed envi-

ronments wherein data are not available in their entirety, but are acquired either in batches

or over a network. In such scenarios, one might be interested in running the optimization at

a certain instant even with the limited, randomly available information. The main limitation

of random selection rules is that they remain disconnected from the status of the optimiza-

tion process, which instead is exactly the kind of behavior that greedy-based updates try to

avoid, in favor of faster convergence, but at the cost of more intensive computation.

Point (c): The use of “more-than-first-order” information also has to do with the trade-

off between cost-per-iteration and overall cost of the optimization process. Although using

higher order or structural information may seem unreasonable in Big Data problems, recent

studies, as those mentioned above, suggest that a judicious use of some kind of “more-than-

first-order” information can lead to substantial improvements.

The above pros & cons analysis suggests that it would be desirable to design a parallel

algorithm for nonconvex problems combining the benefits of random sketching and greedy

updates, possibly using “more-than-first-order” information. To the best of our knowledge,

no such algorithm exists in the literature. In this chapter, we propose a BCD-like scheme

for the computation of stationary solutions of Problem ( 2.1 ) filling the gap and enjoying all

the following features:

1. It uses a random selection rule for the blocks, followed by a deterministic subselection;

2. It can classically tackle separable convex function G, i.e., G(x) = ∑
i Gi(xi), but also

nonseparable functions G;

3. It can deal with a nonconvex functions F ;

4. It can use both first-order and higher-order information;

5. It is parallel;
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6. It can use inexact updates;

7. It converges almost surely, i.e. our convergence results are of the form “with probability

one”.

The proposed scheme is the first algorithm enjoying all these properties, even in the convex

case. Subsequent relevant parallel algorithms applicable to (  2.1 ) appeared after this work

was published among which, notably, they relax Lispchitz continuity assumption [ 44 ], syn-

chronous updates assumption [ 45 ], and enable random data sample selection [ 46 ] and etc.

The combination of all the features 1-7 in one single algorithm is a major achievement in

itself, which offers great flexibility to develop tailored instances of solutions methods within

the same framework (and thus all converging under the same unified conditions). Last but

not least, our experiments show impressive performance of the proposed methods, outper-

forming state-of-the-art solution scheme (cf. Sec.  2.3 ). As a final remark, we underline that,

at more methodological level, the combination of all features 1-7 and, in particular, the need

to conciliate random and deterministic strategies, led to the development of a new type of

convergence analysis (see Appendix  2.5.1 ) which is also of interest per se and could bring to

further developments.

Below we further comment on some of features 1-7, compare to existing results, and detail

our contributions.

Feature 1: As far as we are aware of, the idea of making a random selection and then

perform a greedy subselection has been previously discussed only in [ 47 ]. However, results

therein i) are only for convex problems with a specific structure; ii) are based on a regularized

first-order model; iii) require a very stringent “spectral-radius-type” condition to guarantee

convergence, which severely limits the degree of parallelism; and iv) convergence results are

in terms of expected value of the objective function. The proposed algorithmic framework

expands vastly on this setting, while enjoying also all properties 2-7. In particular, it is the

first hybrid random/greedy scheme for nonconvex nonseparable functions, and it allows any

degree of parallelism (i.e., the update of any number of variables); and all this is achieved

under much weaker convergence conditions than those in [  47 ], satisfied by most of practical

problems. Numerical results show that the proposed hybrid schemes updating greedily just
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some blocks within the pool of those selected by a random rule is very effective, and seems

to preserve the advantages of both random and deterministic selection rules.

Feature 2: The ability of dealing with some classes of nonseparable convex functions has

been documented in [ 48 ]–[ 50 ], but only for deterministic and sequential schemes; our ap-

proach extends also to parallel, random schemes.

Feature 3: The list of works dealing with BCD methods for nonconvex F ’s is short: [  33 ],

[ 40 ] for random sequential methods; and [ 18 ], [ 28 ]–[ 30 ] for deterministic parallel ones. Ran-

dom parallel methods for nonconvex F ’s (not enjoying the key properties 1, 2, and 6) are

studied, independently from this work but drawing on [ 29 ], [ 30 ], also in [  51 ]. We observe

that for certain classes of specific additively separable F ’s, dual ADMM-like schemes have

been proposed for nonconvex problems shown to be convergent under strong conditions; see,

e.g., [ 52 ] and references therein. However, for the scale and generality of problems we are

interested in, they are computationally impractical.

Feature 4: We want to stress the ability of the proposed algorithm to exploit in a systematic

way “more-than-first-order” information. Differently from BCD methods that use at each

iteration a (possibly regularized) first-order model of the objective function, our method pro-

vides the flexibility of using more sophisticated models, including Newton-like surrogates as

well as more structured functions as those described in the following example. Suppose that

in (  2.1 ) F = F1 +F2, where F1 is convex and F2 is not. Then, at iteration ν, one could base

the update of the i-th block on the surrogate function F1(xi, x
ν
−i) + ∇xiF2(xν)T (xi − xνi ) +

G(xi, x
ν
−i), where x−i denotes the vector obtained from x by deleting xi. The rationale here

is that instead of linearizing the whole function F we only linearize the difficult, nonconvex

part F2. In this light we can also better appreciate the importance of feature 6, since if we

go for more complex surrogate functions, the ability to deal with inexact solutions becomes

important.

Feature 6: Inexact solution methods have been little studied. Papers [ 14 ], [ 53 ], [ 54 ] (some-

what indirectly) consider some of these issues for `2-loss linear support vector machines

problems. A more systematic treatment of inexactness of the solution of a first-order model

is documented in [ 55 ], in the context of random sequential BCD methods for convex prob-

lems.
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As a final remark, we note that a large portion of the aforementioned works focuses on

(global) complexity analysis. Specifically, with the exception of [ 40 ], they all studied (reg-

ularized) gradient-type methods for convex problems. Complexity analysis is an important

topic, but it is outside the scope of this thesis. Given our expanded setting, we believe it is

more fruitful to concentrate on proving convergence and verifying the practical effectiveness

of our algorithms.

This chapter is organized as follows. Section  2.1 formally introduces the optimization

problem along with several motivating examples and also discusses some technical points.

The proposed algorithmic framework and its convergence properties are introduced in Section

 2.2 , while numerical results are presented in Section  2.3 . Section  2.4 draws some conclusions.

2.1 Problem Set-up and Preliminaries

We consider Problem ( 2.1 ), where the feasible set X = X1 × · · · × XB is a Cartesian

product of lower dimensional convex sets Xi ⊆ Rdi , and x ∈ Rd is partitioned accordingly:

x = (x1, . . . , xB), with each xi ∈ Rdi ; we denote by B , {1, . . . , B} the set of the B blocks.

The function F is smooth (and not necessarily convex and separable) and G is convex,

and possibly nondifferentiable and nonseparable. Problem ( 2.1 ) is very general and includes

many popular Big Data formulations; some examples are listed next.

Ex.#1−(group) LASSO: F (x) = ‖Ax − b‖2 and G(x) = c‖x‖1 (or G(x) = c
∑B

i=1 ‖xi‖2,

X = Rd), X = Rd, with A ∈ Rm×d, b ∈ Rm, and c ∈ R++ given constants; (group) LASSO

has long been used in many applications in signal processing and statistics [  12 ].

Ex.#2−linear regression: F (x) = 0 and G(x) = ‖Ax − b‖1, X = Rd, with A ∈ Rm×d,

and b ∈ Rm given constants; the `1−norm linear regression is widely used techniques in

statistics [  56 ]. Note that G is nonseparable.

Ex.#3−The Fermat-Weber problem: F (x) = 0 and G(x) = ∑I
i=1 ωi‖Aix − bi‖2, X = Rd,

with Ai ∈ Rm×d, bi ∈ Rm, and ωi > 0 given constants, for all i; this problem, which consists

in finding x ∈ Rd such that the weighted sum of distances between x and the I anchors

ω1, ω2, . . . , ωI , was widely investigated in the optimization as well as location communities;

see, e.g., [ 57 ]. This is another example of nonseparable G.
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Ex.#4−The TV image reconstruction: F (X) = ‖AX − V ‖2 and G(X) = c · TV(X),

X = Rm×m, where A ∈ Rt×m, X ∈ Rm×m, V ∈ Rt×m, c ∈ R++, and TV(X) , ∑m
i,j=1 ‖DijX‖p

is the discrete total variational semi-norm of X, with p = 1 or 2 and DijX being the discrete

gradient of X defined as DijX , [(DijX)(1), (DijX)(2)], with (DijX)(1) = Xi+1,j−Xi,j if i < m

and (DijX)(1) = 0 otherwise, and (DijX)(2) = Xi,j+1 − Xi,j if i < m and (DijX)(1) = 0

otherwise [ 58 ]. This is the well-known noise-free discrete TV model for compressing sensing

image reconstruction [  58 ]; TV minimizing models have become a successful methodology for

image processing, including denoising, deconvolution, and restoration, to name a few.

Ex.#5−Dictionary learning: F (X, Y ) = 1
2‖M − XY ‖2

F and G(Y ) = c‖Y ‖1, X =

{(X, Y ) ∈ Rs×m × Rm×t : ‖Xei‖2 ≤ αi,∀i = 1, . . . ,m}, where X and Y are the (ma-

trix) optimization variables, M ∈ Rs×t, c > 0, and (αi)mi=1 > 0 are given constants, ei is the

m-dimensional vector with a 1 in the i-th coordinate and 0’s elsewhere, and ‖X‖F and ‖X‖1

denote the Frobenius norm and the `1 matrix norm of X, respectively; this is an example of

the dictionary learning problem for sparse representation [ 59 ] that finds numerous applica-

tions in various fields such as computer vision and signal and image processing. Note that

F (X, Y ) is not jointly convex in (X, Y )

Ex.#6−Matrix completion: F (X, Y ) = ∑
i,j∈Ω(Mij−(XY )ij)2+c (‖X‖2

F+‖Y ‖2
F ), G(X, Y ) =

0, X = Rs×m×Rm×t, where Ω is a given subset of {1, . . . , s}×{1, . . . , t}. Matrix completion

has found numerous applications in various fields such as recommender systems, computer

vision, and system identification.

Other problems of interest that can be cast in the form (  2.1 ) include the Logistic Regres-

sion, the Support Vector Machine, the Nuclear Norm Minimization, the Robust Principal

Component Analysis, the Sparse Inverse Covariance Selection, and the Nonnegative Tensor

Factorization; see, e.g., [ 60 ].

Assumption 2.1.1. Given ( 2.1 ), we make the following blanket assumptions:

2.1.1.1 Each Xi is nonempty, closed, and convex;

2.1.1.2 F is C1 on an open set containing X ;

2.1.1.3 ∇F is Lipschitz continuous on X with constant LF ;
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2.1.1.4 G is continuous and convex on X (possibly nondifferentiable and nonseparable);

2.1.1.5 V is coercive, i.e., limx∈X , ‖x‖→∞ V (x) = +∞.

The above assumptions are standard and are satisfied by many practical problems. For

instance,  2.1.1 .3 holds automatically if X is bounded, whereas  2.1.1 .5 guarantees the exis-

tence of a solution.

With the advances of multi-core architectures, it is desirable to develop parallel solution

methods for Problem ( 2.1 ) whereby operations can be carried out on some or (possibly)

all (block) variables xi at the same time. The most natural parallel (Jacobi-type) method

one can think of is updating all blocks simultaneously: given xν , each (block) variable xi is

updated by solving the following subproblem

xν+1
i ∈ argmin

xi∈Xi

{
F (xi, x

ν
−i) +G(xi, x

ν
−i)
}
. (2.2)

Unfortunately this method converges only under very restrictive conditions [ 61 ] that are

seldom verified in practice (even in the absence of the nonsmooth part G). Furthermore,

the exact computation of xν+1
i may be difficult and computationally too expensive. To cope

with these issues, a natural approach is to replace the (nonconvex) function F (•, xν−i) by a

suitably chosen local convex surrogate F̃i(xi;xν), and solve instead the convex problems (one

for each block)

xν+1
i ∈ argmin

xi∈Xi

{
h̃i(xi;xν) , F̃i(xi;xν) +G(xi;xν−i)

}
, (2.3)

with the understanding that the minimization in ( 2.3 ) is simpler than that in ( 2.2 ). Note

that the function G has not been touched; this is because i) it is generally much more

difficult to find a “good” surrogate of a nondifferentiable function than of a differentiable

one; ii) G is already convex; and iii) the functions G encountered in practice do not make

the optimization problem ( 2.3 ) difficult (a closed form solution is available for a large classes

of G’s, if F̃i are properly chosen). In this work we assume that the surrogate functions

F̃i(z;w) : Xi ×X → R, have the following properties:
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(F1) F̃i(•;w) is uniformly strongly convex with constant q > 0 on Xi;

(F2) ∇xiF̃i(xi;x) = ∇xiF (x) for all x ∈ X ;

(F3) ∇xiF̃i(z; •) is Lipschitz continuous on X for all z ∈ Xi;

where∇xiF̃i is the partial gradient of F̃i with respect to (w.r.t.) its first argument z. Function

F̃i should be regarded as a (simple) convex surrogate of F at the point x w.r.t. the block

of variables xi that preserves the first order properties of F w.r.t. xi. Note that, contrary

to most of the works in the literature (e.g., [ 50 ]), we do not require F̃i to be a global upper

surrogate of F , which significantly enlarges the range of applicability of the proposed solution

methods.

The most popular choice for F̃i satisfying F1-F3 is

F̃i(xi;xν) = F (xν) +∇xiF (xν)T (xi − xνi ) + τi

2 ‖xi − xνi ‖2, (2.4)

with τi > 0. This is essentially the way a new iteration is computed in most (block-)BCDs for

the solution of LASSO problems and its generalizations. When G ≡ 0, this choice gives rise

to a gradient-type scheme; in fact we obtain xν+1
i simply by a shift along the antigradient.

As we discussed in Sec. I, this is a first-order method, so it seems advisable, at least in some

situations, to use more informative F̃i-s. If F (xi, x
ν
−i) is convex, an alternative is to take

F̃i(xi;xν) as a second order expansion of F (xi, x
ν
−i) around xνi , i.e.,

F̃i(xi;xν) = F (xν) +∇xiF (xν)T (xi − xνi ) + 1
2(xi − xνi )T

(
∇2
xixiF (xν) + qI

)
(xi − xνi ), (2.5)

where q is nonnegative and can be taken to be zero if F (xi, x
ν
−i) is actually strongly con-

vex. When G ≡ 0, this essentially corresponds to taking a Newton step in minimizing

the “reduced” problem minxi∈Xi F (xi, x
ν
−i). Still in the case of a uniformly strongly convex

F (xi, x
ν
−i), one could also take just F̃i(xi;xν) = F (xi, x

ν
−i), which preserves the structure of

the function. Other valuable choices tailored to specific applications are discussed in [  30 ],

[ 62 ]. As a guideline, note that our method, as we shall describe in details shortly, is based

on the iterative (approximate) solution of problem ( 2.3 ) and therefore a balance should be
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aimed at between the accuracy of the surrogate F̃ and the ease of solution of ( 2.3 ). Needless

to say, the option ( 2.4 ) is the less informative one, but usually it makes the computation of

the solution of ( 2.3 ) a cheap task.

Best-response map: Associated with each i and point xν ∈ X , under F1-F3, we can define

the following optimal block solution map:

x̂i(xν) , argmin
xi∈Xi

h̃i(xi;xν). (2.6)

Note that x̂i(xν) is always well-defined, since the optimization problem in ( 2.6 ) is strongly

convex. Given ( 2.6 ), we can then introduce the solution map

X 3 y 7→ x̂(y) , (x̂i(y))Bi=1 . (2.7)

Our algorithmic framework is based on solving in parallel a suitable selection of sub-

problems ( 2.6 ), converging thus to fixed-points of x̂(•) (of course the selection varies at each

iteration). It is then natural to ask which relation exists between these fixed points and the

stationary solutions of Problem ( 2.1 ). To answer this key question, we recall first two basic

definitions.

Stationarity: A point x∗ is a stationary point of ( 2.1 ) if a subgradient ξ ∈ ∂G(x∗) exists

such that (∇F (x∗) +ξ)T (y − x∗) ≥ 0 for all y ∈ X .

Coordinate-wise stationarity: A point x∗ is a coordinate-wise stationary point of

( 2.1 ) if subgradients ξi ∈ ∂ξiG(x∗), with i ∈ B, exist such that (∇xiF (x∗) + ξi)T (yi− x∗i ) ≥ 0,

for all yi ∈ Xi and i ∈ B.

In words, a coordinate-wise stationary solution is a point for which x∗ is stationary w.r.t.

every block of variables. Coordinate-wise stationarity is a weaker form of stationarity. It

is the standard property of a limit point of a convergent coordinate-wise scheme (see, for

example [ 48 ]–[ 50 ]).

It is clear that a stationary point is always a coordinate-wise stationary point; the converse

however is not always true, unless extra conditions on G are satisfied. Regularity: Problem
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( 2.1 ) is regular at a coordinate-wise stationary point x∗ if x∗ is also a stationary point of the

problem.

The following two simple cases imply the regularity condition,

(a) G is separable (still nonsmooth), i.e., G(x) = ∑
i Gi(xi);

(b) G is continuously differentiable around x∗.

This is evident from the fact that in the first case, ∂ξiG(x∗) = ∂Gi(x∗) and in the second

case, ∂ξiG(x∗) = ∇iG(x∗) = (∂G(x∗))i.

Of course these two cases are not at all inclusive of situations for which regularity holds.

As an example of a nonseparable function for which regularity holds at a point at which G is

not continuously differentiable, consider the function arising in logistic regression problems

F (x) = ∑m
j=1 log(1 + e−aijyTj x), with X = Rd, and yj ∈ Rd and aj ∈ {−1, 1} being given

constants. Now, choose G(x) = c‖x‖2; the resulting function is continuously differentiable,

and therefore regular, at any stationary point but x∗ 6= 0. It is easy to verify that V is also

regular at x = 0, if c < log 2.

The algorithm we present in this chapter expands upon the literature in presenting the

first (deterministic or random) parallel coordinate-wise scheme that converges to coordinate-

wise stationary points. Under the regularity condition these points are also stationary, and so

among the class of parallel algorithms, the method we present enlarges the class of problems

for which convergence to stationary points is achieved for Problem ( 2.1 ) to include some

classes of nonseparable G. Certainly, proximal gradient-like algorithms can converge to

stationary points for any nonseparable G, but such schemes are inherently incapable of

parallelization, and thus are typically much slower in practice. Thus, our algorithm is a step

towards, if not complete fulfillment of, the desiderata of a parallel algorithm that converges

to stationary points for all classes of Problem (  2.1 ) with arbitrary nonsmooth convex G.

The following proposition is elementary and elucidates the connections between station-

arity conditions of Problem ( 2.1 ) and fixed-points of x̂(•).

Proposition 2.1.1. Given Problem ( 2.1 ) under  2.1.1 .1- 2.1.1 .5 and F1-F3, the following

hold:
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i) The set of fixed-points of x̂(•) coincides with the coordinate-wise stationary points of

Problem ( 2.1 );

ii) If, in addition, Problem ( 2.1 ) is regular at a fixed-point of x̂(•), then such a fixed-point

is also a stationary point of the problem.

Other properties of the best-response map x̂(•) that are instrumental to prove conver-

gence of the proposed algorithm are introduced in Appendix  2.5.2 .

2.2 Algorithmic Framework and convergence guarantees

We begin introducing a formal description of the salient characteristic of the proposed

algorithmic framework−the novel hybrid random/greedy block selection rule.

The random block selection works as follows: at each iteration k, a random set Sν ⊆ B is

generated, and the blocks i ∈ Sν are the potential candidate variables to update in parallel.

The set Sν is a realization of a random set-valued mapping Sν with values in the power set

of B. To keep the proposed scheme as general as possible, we do not constraint Sν to any

specific distribution; we only require that, at each iteration k, each block i has a positive

probability (possibly nonuniform) to be selected. Thus we append the following additional

assumption to Assumption  2.1.1 :

Assumption  2.1.1 . Given ( 2.1 ), we make the following additional assumption:

 2.1.1 .6 The sets Sν are realizations of independent random set-valued mappings Sν such that

P(i ∈ Sν) ≥ p, for all i = 1, . . . , B and ν ∈ N+, and some p > 0.

A random selection rule Sν satisfying  2.1.1 .6 will be called proper sampling. Several

proper sampling rules will be discussed in details shortly.

The proposed hybrid random/greedy block selection rule consists in combining random

and greedy updates in the following form. First, a random selection is performed−the set

Sν is generated. Second, a greedy procedure is run to select in the pool Sν only the subset

of blocks, say Ŝν , that are “promising” (according to a prescribed criterion). Finally all the

blocks in Ŝν are updated in parallel. The notion of “promising” block is made formal next.
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Since xνi is an optimal solution of ( 2.6 ) if and only if x̂i(xν) = xνi , a natural distance of xνi
from the optimality is d νi , ‖x̂i(xν)−xνi ‖. The blocks in Sν to be updated can be then chosen

based on such an optimality measure (e.g., opting for blocks exhibiting larger d νi ’s). Note

that in some applications, including some of those discussed in Sec. II, given a proper block

decomposition, x̂i(xν) can be computed easily in closed form, see Sec. IV for three different

examples. However, this is not always the case, and on some problems, the computation of

x̂i(xν) might be too expensive. In these cases it might be useful to introduce alternative, less

expensive metrics by replacing the distance ‖x̂i(xν) − xνi ‖ with a computationally cheaper

error bound, i.e., a function Ei(x) such that

si‖x̂i(xν)− xνi ‖ ≤ Ei(xν) ≤ s̄i‖x̂i(xν)− xνi ‖, (2.8)

for some 0 < si ≤ s̄i. We refer the interested reader to [ 30 ] for some more details, and to [ 63 ]

as an entry point to the vast literature on error bounds. As an example, if problem ( 2.1 ) is

unconstrained, G(x) ≡ 0, and we are using the surrogate function given by ( 2.4 ), a suitable

error bound is the function Ei(x) = ‖∇xiF (xν) + τi(xi − xνi )‖ with si = τi
2 and s̄i = LF .

The proposed hybrid random/greedy scheme capturing all the features 1)-6) discussed

in Sec. I is formally given in Algorithm 1. Note that in step S.3 inexact calculations of

x̂i are allowed, which is another noticeable and useful feature: one can reduce the cost per

iteration without affecting too much, experience shows, the empirical convergence speed. In

step S.5 we introduced a memory in the variable updates: the new point xν+1 is a convex

combination via γν of xν and ẑν .

The convergence properties of Algorithm  1 are given next.

Theorem 2.2.1. Let {xν} be the sequence generated by Algorithm  1 , under  2.1.1 .1- 2.1.1 .6.

Suppose that {γν} and {ενi } satisfy the following conditions: i) γν ∈ (0, 1]; ii) γν → 0; iii)∑
ν γ

ν = +∞; iv) ∑ν (γν)2 < +∞; and v) ενi ≤ γνα1 min{α2, 1/‖∇xiF (xν)‖} for all i ∈ B

and some nonnegative constants α1 and α2. Additionally, if inexact solutions are used in

Step 3, i.e., ενi > 0 for some i and infinite ν, then assume also that G is globally Lipschitz

on X . Then, either Algorithm  1 converges in a finite number of iterations to a fixed-point
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Algorithm 1: Hybrid Random/Deterministic Flexible Parallel Algorithm
(HyFLEXA)

Data : {ενi } for i ∈ B, {γν} > 0, x0 ∈ X , ρ ∈ (0, 1].
Iterate: ν=1, 2, . . .

[S.1]: If xν satisfies a termination criterion: STOP;

[S.2]: Randomly generate a set of blocks Sν ⊆ {1, . . . , B}

[S.3]: Set Mν , maxi∈Sν{Ei(xν)}. Choose a subset Ŝν ⊆ Sν that contains at least one
index i for which Ei(xν) ≥ ρMν .

[S.4]: For all i ∈ Ŝν , solve ( 2.6 ) with accuracy ενi :

find zνi ∈ Xi s.t. ‖zνi − x̂i (xν) ‖ ≤ ενi ;

Set ẑνi = zνi for i ∈ Ŝν and ẑνi = xνi for i 6∈ Ŝν

[S.5]: Set xν+1 , xν + γν (ẑν − xν);

[S.6]: ν ← ν + 1, and go to (S.1).

of x̂(•) of ( 2.1 ) or there exists at least one limit point of {xν} that is a fixed-point of x̂(•)

w.p.1.

Proof. See Appendix  2.5.3 .

Remark 2.2.1. Note that the conditions on {ενi } imply that ενi → 0 for all i. The Theo-

rem provides minimal conditions under which convergence can be guaranteed. Practically,

of course the choice of ενi will affect the practical performance of the algorithm and the

appropriate choice is problem dependent and given by practical experience.

The convergence results in Theorem  2.2.1 can be strengthened when G is separable.

Theorem 2.2.2. In the setting of Theorem  2.2.1 , suppose in addition that G(x) is separable,

i.e., G(x) = ∑
i∈BGi(xi). Then, either Algorithm  1 converges in a finite number of iterations

to a stationary solution of Problem ( 2.1 ) or every limit point of {xν} is a stationary solution

of Problem ( 2.1 ) w.p.1.

Proof. See Appendix  2.5.4 .
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On the random choice of Sν. We discuss next some proper sampling rules Sν that can

be used in Step 3 of the algorithm to generate the random sets Sν ; for notational simplicity

the iteration index ν will be omitted. The sampling rule S is uniquely characterized by the

probability mass function

P(S) , P (S = S) , S ⊆ B,

which assign probabilities to the subsets S of B. Associated with S, define the probabilities

qj , P(|S| = j), for j = 1, . . . , B. The following proper sampling rules, proposed in [ 36 ] for

convex problems with separable G, are instances of rules satisfying  2.1.1 .6, and are used in

our computational experiments.

− Uniform (U) sampling. All blocks get selected with the same (non zero) probability:

P(i ∈ S) = P(j ∈ S) = E [|S|]
B

, ∀i 6= j ∈ B.

− Doubly Uniform (DU) sampling. All sets S of equal cardinality are generated with equal

probability, i.e., P(S) = P(S ), for all S,S ⊆ B such that |S| = |S |. The density function is

then

P(S) = q|S| d

|S|


.

− Nonoverlapping Uniform (NU) sampling. It is a uniform sampling assigning positive

probabilities only to sets forming a partition of B. Let S1, . . . ,SP be a partition of B, with

each |S i| > 0, the density function of the NU sampling is:

P(S) =


1
P
, if S ∈

{
S1, . . . ,SP

}
0 otherwise

which corresponds to P(i ∈ S) = B/P , for all i ∈ B.

A special case of the DU sampling that we found very effective in our experiments is the

so called “nice sampling”.
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− Nice Sampling (NS). Given an integer 0 ≤ τ ≤ B, a τ -nice sampling is a DU sampling

with qτ = 1 (i.e., each subset of τ blocks is chosen with the same probability).

The NS allows us to control the degree of parallelism of the algorithm by tuning the

cardinality τ of the random sets generated at each iteration, which makes this rule particu-

larly appealing in a multi-core environment. Indeed, one can set τ equal to the number of

available cores/processors, and assign each block coming out from the greedy selection (if

implemented) to a dedicated processor/core.

As a final remark, note that the DU/NU rules contain as special cases fully parallel and

sequential updates, wherein at each iteration a single block is updated uniformly at random,

or all blocks are updated.

− Sequential sampling: It is a DU sampling with q1 = 1, or a NU sampling with P = B and

S j = j, for j = 1, . . . , P .

− Fully parallel sampling: It is a DU sampling with qB = 1, or a NU sampling with P = 1

and S1 = B.

Other interesting uniform and nonuniform practical rules (still satisfying  2.1.1 .6) can be

found in [ 36 ], [  64 ].

On the choice of the step-size γν. An example of step-size rule satisfying Theorem

 2.2.1 i)-iv) is: given 0 < γ0 ≤ 1, let

γν = γν−1
(
1− θ γν−1

)
, ν = 1, 2, . . . , (2.9)

where θ ∈ (0, 1) is a given constant. Numerical results in Section  2.3 show the effectiveness of

( 2.9 ) on specific problems. We remark that it is possible to prove convergence of Algorithm

1 also using other step-size rules, including a standard Armijo-like line-search procedure or

a (suitably small) constant step-size. Note that differently from most of the schemes in

the literature, the tuning of the step-size does not require the knowledge of the problem

parameters (e.g., the Lipschitz constants of ∇F and G).
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2.3 Numerical Results

In this section we present some preliminary experiments providing a solid evidence of the

viability of our approach; they clearly show that our framework leads to practical methods

that exploit well parallelism and compare favorably to existing schemes, both deterministic

and random.

Because of space limitation, we present results only for (synthetic) LASSO problems,

one of the most studied instances of (the convex version of) Problem ( 2.1 ), corresponding

to F (x) = ‖Ax − v‖2, G(x) = c‖x‖1, and X = Rd. Extensive experiments on more varied

(nonconvex) classes of Problem ( 2.1 ) are the subject of a separate work.

All codes have been written in C++ and use the Message Passing Interface for parallel

operations. All algebra is performed by using the Intel Math Kernel Library (MKL). The

algorithms were tested on the General Compute Cluster of the Center for Computational

Research at the SUNY Buffalo. In particular for our experiments we used a partition com-

posed of 372 DELL 32x2.13GHz Intel E7-4830 Xeon Processor nodes with 512 GB of DDR4

main memory and QDR InfiniBand 40Gb/s network card.

Tuning of Algorithm 1: The most successful class of random and deterministic methods

for LASSO problem are (proximal) gradient-like schemes, based on a linearization of F . As a

major departure from current schemes, here we propose to better exploit the structure of F

and use in Algorithm 1 the following best-response: given a scalar partition of the variables

(i.e., di = 1 for all i), let

x̂i(xk) , argmin
xi∈R

{
F (xi, x

k
−i) + τi

2 (xi − xki )2 + λ|xi|
}
. (2.10)

Note that x̂i(xk) has a closed form expression (using a soft-thresholding operator [  19 ]).

The free parameters of Algorithm 1 are chosen as follows. The proximal gains τi and

the step-size γ are tuned as in [ 30 , Sec. VI.A]. The error bound function is chosen as

Ei(xk) = ‖x̂i(xk) − xki ‖, and, for any realization Sk, the subsets Ŝk in S.3 of the algorithm

are chosen as

Ŝk = {i ∈ Sk : Ei(xk) ≥ σMk}. (2.11)
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We denote by cSk the cardinality of Sk normalized to the overall number of variables (in our

experiments, all sets Sk have the same cardinality, i.e., cSk = cS , for all k). We considered

the following options for σ and cS : i) cS = 0.01, 0.1, 0.2, 0.5, 0.8; ii) σ = 0, which leads to a

fully parallel pure random scheme wherein at each iteration all variables in Ŝk are updated;

and iii) different positive values of σ ranging from 0.01 to 0.5, which corresponds to updating

in a greedy manner only a subset of the variables in Ŝk (the smaller the σ the larger the

number of potential variables to be updated at each iteration). We termed Algorithm 1 with

σ = 0 “Random FLEXible parallel Algorithm” (RFLEXA), whereas the other instances with

σ > 0 as “Hybrid FLEXA” (HyFLEXA).

Algorithms in the literature: We compared our versions of (Hy)FLEXA with the most

representative parallel random and deterministic algorithms proposed in the literature to

solve the convex instance of Problem (1) (and thus also LASSO). More specifically, we

consider the following schemes.

• PCDM & PCDM2: These are (proximal) gradient-like parallel randomized BCD meth-

ods proposed in [ 36 ] for convex optimization problems. Since the authors recommend to use

PCDM instead of PCDM2 for LASSO problems, we do so (indeed, our experiments show

that PCDM outperforms PCDM2). We simulated PCDM under different sampling rules

and we set the parameters β and ω as in [ 36 , Table 4], which guarantees convergence of the

algorithm in expected value.

• Hydra & Hydra2: Hydra is a parallel and distributed random gradient-like CDM, pro-

posed in [ 65 ], wherein different cores in parallel update a randomly chosen subset of variables

from those they own; a closed form solution of the scalar updates is available. Hydra2 [ 31 ]

is the accelerated version of Hydra; indeed, in all our experiments, it outperformed Hydra;

therefore, we will report the results only for Hydra2. The free parameter β is set to β = 2β∗1
(cf. Eq. (15) in [ 65 ]), with σ given by Eq. (12) in [ 65 ] (according to the authors, this seems

one of the best choices for β).

• FLEXA: This is the parallel deterministic scheme we proposed in [ 29 ], [ 30 ]. We use

FLEXA as a benchmark of deterministic algorithms, since it has been shown in [ 29 ], [ 30 ] that

it outperforms current (parallel) first-order (accelerated) gradient-like schemes, including

FISTA [ 19 ], SparRSA [  20 ], GRock [  21 ], parallel BCD [ 18 ], and parallel ADMM. The free
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parameters of FLEXA, τi and γ, are tuned as in [ 30 , Sec. VI.A], whereas the set Sk is chosen

as in ( 2.11 ).

• Other algorithms: We tested also other random algorithms, including sequential random

BCD-like methods and Shotgun [ 27 ]. However, since they were not competitive, to not

overcrowd the figures, we do not report results for these algorithms.

In all the experiments, the data matrix A = [A1 · · · AP ] of the LASSO problem is stored

in a column-block manner, uniformly across the P parallel processes. Thus the computation

of each product Ax (required to evaluate ∇F ) and the norm ‖x‖1 (that is G) is divided into

the parallel jobs of computing Aixi and ‖xi‖1, followed by a reduce operation. Also, for all

the algorithms, the initial point was set to the zero vector.

Numerical Tests: We generated synthetic LASSO problems using the random generation

technique proposed by Nesterov [ 17 ], which we properly modified following [ 36 ] to generate

instances of the problem with different levels of sparsity of the solution as well as density

of the data matrix A ∈ Rm×d; we introduce the following two control parameters: sA =

average % of nonzeros in each column of A (out of m); and ssol = % of nonzeros in the

solution (out of d). We tested the algorithms on two groups of LASSO problems, A ∈

R104×105 and A ∈ R105×106 , and several degrees of density of A and sparsity of the solution,

namely ssol = 0.1%, 1%, 5%, 15%, 30%, and sA = 10%, 30%, 50%, 70%, 90%. Because of

the space limitation, we report next only the most representative results. Results for the

LASSO instance with 100,000 variables are reported in Fig.  2.1 and  2.2 . Fig.  2.1 shows the

behavior of HyFLEXA as a function of the design parameters σ and cS , for different values

of the solution sparsity (ssol), whereas in Fig.  2.2 we compare the proposed RFLEXA and

HyFLEXA with FLEXA, PCDM, and Hydra2, for different values of ssol and sA (ranging

from “low” dense matrices and “high” sparse solutions to “high” dense matrices and “low”

sparse solutions). Finally, in Fig.  2.3 we consider larger problems with 1M variables. In all

the figures, we plot the relative error re(x) , (V (x)− V ∗)/V ∗ versus the CPU time, where

V ∗ is the optimal value of the objective function V (in our experiments V ∗ is known). All

the curves are averaged over ten independent random realizations. Note that the CPU time

includes communication times and the initial time needed by the methods to perform all

pre-iterations computations (this explains why the curves associated with Hydra2 start after
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the others; in fact Hydra2 requires some nontrivial computations to estimates β). Given Fig.

 2.1 - 2.3 , the following comments are in order.
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Figure 2.1. HyFLEXA for different values of cS and σ: Relative error vs.
time; ssol = 0.2%, 2%, 5%, sA = 70%, 100.000 variables, NU sampling, 8 cores;
(a) cS = 0.5, and σ = 0.1, 0.5 - (b) σ = 0.5, and cS = 0.1, 0.2, 0.5.

HyFLEXA: On the choice of (cS , σ), and the sampling strategy. All the experiments (includ-

ing those that we cannot report here because of lack of space) show the following trend in

the behavior of HyFLEXA as a function of (cS , σ). For “low” density problems (“low” ssol

and sA), “large” pairs (cS , σ) are preferable, which corresponds to updating at each iteration

only some variables by performing a (heavy) greedy search over a sizable amount of variables.

This is in agreement with [ 30 ] (cf. Remark 5): by the greedy selection, Algorithm 1 is able to

identify those variables that will be zero at the a solution; therefore updating only variables

that we have “strong” reason to believe will not be zero at a solution is a better strategy

than updating them all, especially if the solutions are very sparse. Note that this behavior

can be obtained using either “large” or “small” (cS , σ). However, in the case of “low” dense

problems, the former strategy outperforms the latter. We observed that this is mainly due

to the fact that when sA is “small”, estimating x̂i (computing the products ATA) is com-

putationally affordable, and thus performing a greedy search over more variables enhances

the practical convergence. When the sparsity of the solution decreases and/or the density

of A increases (“large” sA and/or ssol), one can see from the figures that “smaller” values
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Figure 2.2. LASSO with 100.000 variables, 8 cores; Relative error vs. time
for: (a1) sA = 30% and ssol = 0.2% - (a2) sA = 30% and ssol = 5% - (b1)
sA = 70% and ssol = 0.2% - (b2) sA = 70% and ssol = 5% - (c1) sA = 90%
and ssol = 0.2% - (c2) sA = 90% and ssol = 5%.
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Figure 2.3. LASSO with 1M variables, sA = 10%, 16 cores; Relative error
vs. time for: (a)ssol = 1% - (b) ssol = 5%. The legend is as in Fig.  2.2 .

of (cS , σ) are more effective than larger ones, which corresponds to using a “less aggressive”

greedy selection while searching over a smaller pool of variables. In fact, when A is dense,

computing all x̂i might be prohibitive and thus nullify the potential benefits of a greedy

procedure. For instance, it follows from Fig.  2.1 - 2.3 that, as the density of the solution (ssol)

increases the preferable choice for (cS , σ) progressively moves from (0.5, 0.5) to (0.2, 0.01),

with both cS and σ decreasing. Interesting, a tuning that works quite well in practice for

all the classes of problems we simulated (different densities of A, solution sparsity, number

of cores, etc.) is (cS , σ) = (0.5, 0.1), which seems to strike a good balance between not

updating variables that are probably zero at the optimum and nevertheless update a sizable

amount of variables when needed in order to enhance convergence..

As a final remark, we report that, according to our experiments, the most effective

sampling rule among U, DU, NU, and NS is the NU (which is actually the one the figures

refers to); NS becomes competitive only when the solutions are very sparse.

Comparison of the algorithms. For low dense matrices A and very sparse solutions, FLEXA

σ = 0.5 is faster than its random counterparts (RFLEXA and HyFLEXA) as well as its

fully parallel version, FLEXA σ = 0 [see Fig.  2.2 a1), b1) c1) and Fig.  2.3 a)]. Nevertheless,

HyFLEXA [with (cS , σ) = (0.5, 0.5)] remains close. As already pointed out, this is mainly

due to the fact that in these scenarios i) estimating all x̂i is computationally cheap (and
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thus performing a greedy selection over a sizable set of variable is beneficial, see Fig.  2.1 );

and ii) updating only some variables at each iteration is more effective than updating all

(FLEXA σ = 0.5 outperforms FLEXA σ = 0). However, as the density of A and/or the

size of the problem increase, computing all the products [ATA]ii (required to estimate x̂i)

becomes too costly; this is when a random selection of the variables becomes beneficial:

indeed, RFLEXA and HyFLEXA consistently outperform FLEXA [see Fig  2.2 a2), b2) c2)

and Fig.  2.3 b)]. Among the random algorithms, Hydra2 is capable to approach relatively

fast low accuracy, especially when the solution is not too sparse, but has difficulties in

reaching high accuracy. RFLEXA and HyFLEXA are always much faster than current

state-of-the-art schemes (PCDM and Hydra2), especially if high accuracy of the solutions

is required. Between RFLEXA and HyFLEXA (with the same cS), the latter consistently

outperforms the former (about up to five time faster), with a gap that is more significant

when solutions are sparse. This provides a solid evidence of the effectiveness of the proposed

hybrid random/greedy selection method.

In conclusion, our experiments indicate that the proposed framework leads to very effi-

cient and practical solution methods for large and very large-scale (LASSO) problems, with

the flexibility to adapt to many different problem characteristics.

2.4 Conclusions

We proposed a highly parallelizable hybrid random/deterministic decomposition algo-

rithm for the minimization of the sum of a possibly noncovex differentiable function F and

a possibily nonsmooth nonseparable convex function G. The proposed framework is the first

scheme enjoying all the following features: i) it allows for pure greedy, pure random, or mixed

random/greedy updates of the variables, all converging under the same unified set of conver-

gence conditions; ii) it can tackle via parallel updates also nonseparable convex functions G;

iii) it can deal with nonconvex nonseparable F ; iv) it is parallel; v) it can incorporate both

first-order or higher-order information; and vi) it can use inexact solutions. Our preliminary

experiments on LASSO and few selected nonconvex ones showed a very promising behavior

with respect to state-of-the-art random and deterministic algorithms. Of course, a more
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complete assesment, especially in the nonconvex case, require much more experiments and

is the subject of current research.

2.5 Appendix: Proof of Theorem  2.2.1 and  2.2.2 

We first introduce some preliminary results instrumental to prove both Theorem  2.2.1 

and Theorem  2.2.2 . Given Ŝν ⊆ B and x , (xi)i∈B, for notational simplicity, we will denote

by (x)νŜν (or interchangeably xνŜν ) the vector whose component i is equal to xi if i ∈ Ŝν ,

and zero otherwise. With a slight abuse of notation we will also use (xi, y−i) to denote

the ordered tuple (y1, . . . , yi−1, xi, yi+1, . . . , yB); similarly (xi, xj, y−(i,j)), with i < j stands for

(y1, . . . , yi−1, xi, yi+1, . . . , yj−1, xj, yj+1, . . . , yB).

2.5.1 On the random sampling and its properties

We introduce some properties associated with the random sampling rules Sν satisfying

assumption  2.1.1 .6. A key role in our proofs is played by the following random set: let {xν}

be the sequence generated by Algorithm 1, and

iνmx = argmax
i∈{1,...,B}

||x̂i(xν)− xνi ||, (2.12)

define the set Kmx as

Kmx , {ν ∈ N+ : iνmx ∈ Sν} . (2.13)

The key properties of this set are summarized in the following two lemmata.

Lemma 2.5.1 (Infinite cardinality). Given the set Kmx as in ( 2.13 ), it holds that

P (|Kmx| =∞) = 1,

where |Kmx| denotes the cardinality of Kmx.
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Proof. Suppose that the statement of the lemma is not true. Then, with positive probability,

there must exist some ν̄ such that for ν ≥ ν̄, iνmx /∈ Sν . But we can write

P
(
{iνmx /∈ Sν}ν≥ν̄

)
= Π

ν≥ν̄
P
(
iνmx /∈ Sν | (iν̄mx /∈ S ν̄), . . . , (iν−1

mx /∈ Sν−1)
)

≤ lim
ν→∞

(1− p)ν−ν̄ = 0.

where the inequality follows by  2.1.1 .6 and the independence of the events. But this obviously

gives a contradiction and concludes the proof.

Lemma 2.5.2. Let {γν} be a sequence satisfying assumptions i)-iii) of Theorem  2.2.1 . Then

it holds that

P

 ∑
ν∈Kmx

γν <∞

 = 0. (2.14)

Proof. It holds that,

P

 ∑
ν∈Kmx

γν <∞

 ≤ P

⋃
n∈N

∑
ν∈Kmx

γν < n

 ≤ ∑
n∈N

P

 ∑
ν∈Kmx

γν < n

 .
To prove the lemma, it is then sufficient to show that P (∑ν∈Kmx γ

ν < n) = 0, as proved next.

Define K̂i, with i ∈ N+, as the smallest index K̂i such that

K̂i∑
j=0

γj ≥ i · n. (2.15)

Note that since ∑∞ν=0 γ
ν = +∞, K̂i is well-defined for all i and limi→∞ K̂i = +∞. Hence,

P

 ∑
ν∈Kmx

γν < n

 = P

 ⋂
m∈N

 m∑
ν∈Kmx

γν < n

 = lim
m→∞

P

 m∑
ν∈Kmx

γν < n

= lim
i→∞

P

 K̂i∑
ν∈Kmx

γν < n


= lim

i→∞

P
 K̂i∑
ν∈Kmx

γν < n, |Kmx ∩ [0, K̂i]| <
K̂i√

i

+ P

 K̂i∑
ν∈Kmx

γν < n, |Kmx ∩ [0, K̂i]| ≥
K̂i√

i


≤ lim

i→∞

P(|Kmx ∩ [0, K̂i]| <
K̂i√

i

)
︸ ︷︷ ︸

term I

+ P

 K̂i∑
ν∈Kmx

γν < n, |Kmx ∩ [0, K̂i]| ≥
K̂i√

i


︸ ︷︷ ︸

term II

.
(2.16)
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holds for any n ∈ N. Let us bound next “term I” and “term II” separately.

Term I : We have

P
(
|Kmx ∩ [0, K̂i]| <

K̂i√
i

)
(a)= P

 K̂i∑
ν=0

Xν <
K̂i√

i

≤P

∣∣∣∣∣∣
K̂i∑
ν=0

Xν −
K̂i∑
ν=0

pν

∣∣∣∣∣∣ >
K̂i∑
ν=0

pν −
K̂i√

i


(b)
≤


√∑K̂i

ν=0 pν(1− pν)∑K̂i
ν=0 pν − K̂i√

i


2

(c)
≤


√
K̂i

K̂i
(
p− 1√

i

)
2

=

 1√
K̂i
(
p− 1√

i

)


2

−→
i→∞

0

(2.17)

where:

(a): X0, . . . , XK̂i
are independent Bernoulli random variables, with parameter pν , P(ν ∈

Kmx). Note that, due to  2.1.1 .6, pν ≥ p, for all ν;

(b): it follows from Chebyshev’s inequality;

(c): we used the bounds ∑K̂i
ν=0 pν(1− pν) ≤ K̂i and ∑K̂i

ν=0 pν ≥ pK̂i.

Term II : Let us rewrite term II as

P

 ∑K̂i
ν∈Kmx γ

ν

|Kmx ∩ [0, K̂i]|
<

n

|Kmx ∩ [0, K̂i]|

∣∣∣∣∣ |Kmx ∩ [0, K̂i]| ≥
K̂i√

i

 · P(|Kmx ∩ [0, K̂i]| ≥
K̂i√

i

)

(a)
≤ P

 ∑K̂i
ν∈Kmx γ

ν

|Kmx ∩ [0, K̂i]|
<
n
√

i
K̂i

∣∣∣∣∣ |Kmx ∩ [0, K̂i]| ≥
K̂i√

i

)
· P
(
|Kmx ∩ [0, K̂i]| ≥

K̂i√
i

)

(b)
≤ P

 ∑K̂i
ν∈Kmx γ

ν

|Kmx ∩ [0, K̂i]|
<

∑K̂i
ν=0 γ

ν

K̂i
√

i

 (c)
≤ P

∑K̂i
ν=0 γ

νXν

K̂i
<

∑K̂i
ν=0 γ

ν

K̂i

1√
i


≤ P

∣∣∣∣∣∣
∑K̂i
ν=0 γ

νXν

K̂
−
∑K̂i
ν=0 γ

ν pν

K̂i

∣∣∣∣∣∣ >
∑K̂i
ν=0 γ

ν pν

K̂i
−
∑K̂i
ν=0 γ

ν

K̂i

1√
i



≤ P

∣∣∣∣∣∣
∑K̂i
ν=0 γ

νXν

K̂i
−
∑K̂i
ν=0 γ

ν pν

K̂i

∣∣∣∣∣∣ >
(
p− 1√

i

) ∑K̂i
ν=0 γ

ν

K̂i

 (d)
≤


√∑K̂i

ν=0(γν)2 p (1− p)(
p− 1√

i

)∑K̂i
ν=0 γ

ν


2

≤


√∑K̂i

ν=0 γ
ν(

p− 1√
i

)∑K̂i
ν=0 γ

ν


2

=

 1(
p− 1√

i

)√∑K̂i
ν=0 γ

ν


2

−→
i→∞

0,

(2.18)

where:

(a): we used |Kmx ∩ [0, K̂i]| ≥ K̂i√
i , by the conditioning event;

(b): it follows from ( 2.15 ), and P(A⋂B) ≤ P(A);
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(c): X0, . . . , XK̂i
are independent Bernoulli random variables, with parameter pν . The bound

is due to |Kmx ∩ [0, K̂i]| ≤ K̂i;

(d): it follows from the Chebyshev’s inequality.

The desired result ( 2.14 ) follows readily combining ( 2.16 ), (  2.17 ), and ( 2.18 ).

2.5.2 On the best-response map x̂(•) and its properties

We introduce now some key properties of the mapping x̂(•) defined in ( 2.6 ). We also

derive some bounds involving x̂(•) along with the sequence {xν} generated by Algorithm 1.

Lemma 2.5.3 ([ 30 ]). Consider Problem (  2.1 ) under  2.1.1 .1- 2.1.1 .5, and F1-F3. Suppose

that G(x) is separable, i.e., G(x) = ∑
i Gi(xi), with each Gi convex on Xi. Then the mapping

X 3 y 7→ x̂(y) is Lipschitz continuous on X , i.e., there exists a positive constant L̂ such that

‖x̂(y)− x̂(z)‖ ≤ L̂ ‖y − z‖ , ∀y, z ∈ X . (2.19)

Lemma 2.5.4. Let {xν} be the sequence generated by Algorithm 1. For every ν ∈ Kmx

and Ŝν generated as in step S.3 of Algorithm 1, the following holds: there exists a positive

constant c1 such that,

||x̂Ŝν (xν)− xνŜν || ≥ c1 ||x̂(xν)− xν ||. (2.20)

Proof. The following chain of inequalities holds:

(
max
i∈B

s̄i

) ∥∥∥x̂Ŝν (xν)− xνŜν∥∥∥ (a)
≥ s̄iνρ

∥∥∥x̂iνρ(x
ν)− xνiνρ

∥∥∥
(b)
≥ Eiνρ(x

ν)
(c)
≥ ρEiνmx(xν)

(d)
≥ ρ

(
min
i∈B

si

) (
max
i∈B
‖x̂i(xν)− xνi ‖

)
≥ ρ

B

(
min
i∈B

si

)
‖x̂(xν)− xν‖

where: in (a) iνρ is any index in Ŝν such that Eiνρ(xν) ≥ ρ maxi∈Sν Ei(xν). Note that by

definition of Ŝν (cf. step S.3 of Algorithm 1), such a index always exists; (b) is due to

( 2.8 ); (c) follows from the definition of iνρ, and maxi∈Sν Ei(xν) = Eiνmx(xν), the latter due to

iνmx ∈ Sν ⊇ Ŝν (recall that ν ∈ Kmx); and (d) follows from ( 2.8 ).
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Lemma 2.5.5. Let {xν} be the sequence generated by Algorithm 1. For every ν ∈ N+, and

Ŝν generated as in step S.3, the following holds:

(∇xF (xν))TŜν (x̂(xν)− xν)Ŝν ≤ −q ‖ (x̂(xν)− xν)Ŝν ‖
2 +

∑
i∈Ŝν

[
G(xν)−G(x̂i(xν), xν−i)

]
.

(2.21)

Proof. Optimality of x̂i(xν) for the subproblem i implies

(
∇xiF̃i(x̂i(xν);xν) + ξi(x̂i(xν), xν−i)

)T
(yi − x̂i(xν)) ≥ 0,

for all yi ∈ Xi, and some ξi(x̂i(xν), xν−i) ∈ ∂xiG(x̂i(xν), xν−i). Therefore,

0 ≥ ∇xiF̃i(x̂i(xν);xν)T (x̂i(xν)− xνi ) + ξi(x̂i(xν), xν−i)T (x̂i(xν)− xνi ) . (2.22)

Let us (lower) bound next the two terms on the RHS of ( 2.22 ). The uniform strong

monotonicity of F̃i(•;xν) (cf. F1),

(
∇xiF̃i(x̂i(xν);xν)−∇xiF̃i(xνi ;xν)

)T
(x̂i(xν)− xνi ) ≥ q ||x̂i(xν)− xνi ||2, (2.23)

along with the gradient consistency condition (cf. F2) ∇xiF̃i(xνi ;xν) = ∇xiF (xν) imply

∇xiF̃i(x̂i(xν);xν)T (x̂i(xν)− xνi )

=
(
∇xiF̃i(x̂i(xν);xν)−∇xiF̃i(xνi ;xν)

)T
(x̂i(xν)− xνi )

+∇xiF̃i(xνi ;xν)T (x̂i(xν)− xνi )

≥∇xiF (xν)T (x̂i(xν)− xνi ) + q ||x̂i(xν)− xνi ||2.

(2.24)

To bound the second term on the RHS of ( 2.22 ), let us invoke the convexity of G(•, xν−i):

G(xνi , xν−i)−G(x̂i(xν), xν−i) ≥ ξi(x̂i(xν), xν−i)T (xνi − x̂i(xν)) ,

which yields

ξi(x̂i(xν), xν−i)T (x̂i(xν)− xνi ) ≥ G(x̂i(xν), xν−i)−G(xν). (2.25)
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The desired result ( 2.21 ) is readily obtained by combining (  2.22 ) with ( 2.24 ) and ( 2.25 ),

and summing over i ∈ Ŝν .

Lemma 2.5.6. Let {xν} be the sequence generated by Algorithm 1, and {γν}↓ 0. For every

ν ∈ N+ sufficiently large, and Ŝν generated as in step S.3, the following holds:

G(xν+1) ≤ G(xν) + γν LG
∑
i∈Ŝν

ενi + γν
∑
i∈Ŝν

[
G(x̂i(xν), xν−i)−G(xν)

]
. (2.26)

Proof. Given ν ≥ 0 and Ŝν , define x̄ν , (x̄νi )i∈B, with

x̄νi ,

 xνi + γν (x̂i(xν)− xνi ) , if i ∈ Ŝν

xνi otherwise.

By the convexity and Lipschitz continuity of G, it follows

G(xν+1) = G(xν) + (G(xν+1)−G(x̄ν)) + (G(x̄ν)−G(xν))

≤ G(xν) + γν LG
∑

i∈Ŝν ε
ν
i + (G(x̄ν)−G(xν)) ,

(2.27)

where LG is a (global) Lipschitz constant of G. We bound next the last term on the RHS of

( 2.27 ).

Let γ̄ν = γνB, for ν large enough so that 0 < γ̄ν < 1. Define x̌ν , (x̌νi )i∈B, with x̌νi = xνi

if i /∈ Ŝν , and

x̌νi , γ̄ν x̂i(xν) + (1− γ̄ν)xνi (2.28)

otherwise. Using the definition of x̄ν it is not difficult to see that

x̄ν = B − 1
B

xν + 1
B
x̌ν . (2.29)
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Using (  2.29 ) and invoking the convexity of G, the following recursion holds for sufficiently

large ν:
G(x̄ν) =G

( 1
B

(x̌ν1, xν−1) + 1
B

(xν1, x̌ν−1) + B − 2
B

xν
)

=G
( 1
B

(x̌ν1, xν−1) + B − 1
B

(
xν1,

1
B − 1 x̌

ν
−1 + B − 2

B − 1 x
ν
−1

))
≤ 1
B
G
(
x̌ν1, x

ν
−1

)
+ B − 1

B
G
(
xν1,

1
B − 1 x̌

ν
−1 + B − 2

B − 1 x
ν
−1

)
= 1
B
G
(
x̌ν1, x

ν
−1

)
+ B − 1

B
G
( 1
B − 1

(
xν1, x̌

ν
−1

)
+ B − 2
B − 1x

ν
)

= 1
B
G
(
x̌ν1, x

ν
−1

)
+ B − 1

B
G
( 1
B − 1

(
x̌ν2, x

ν
−2

)
+ 1
B − 1

(
xν1, x

ν
2, x̌

ν
−(1,2)

)
+ B − 3
B − 1 x

ν
)

= 1
B
G
(
x̌ν1, x

ν
−1

)
+ B − 1

B
G
( 1
B − 1

(
x̌ν2, x

ν
−2

)
+B − 2
B − 1

(
xν1, x

ν
2,

1
B − 2 x̌

ν
−(1,2) + B − 3

B − 2 x
ν
−(1,2)

))
≤ 1
B
G
(
x̌ν1, x

ν
−1

)
+ 1
B
G
(
x̌ν2, x

ν
−2

)
+ B − 2
B − 1 G

(
xν1, x

ν
2,

1
B − 2 x̌

ν
−(1,2) + B − 3

B − 2 x
ν
−(1,2)

)
≤ ... ≤ 1

B

∑
i∈B
G(x̌νi , xν−i).

(2.30)

Using ( 2.30 ), the last term on the RHS of ( 2.27 ) can be upper bounded for ν sufficiently

large as

G(x̄ν)−G(xν) ≤ 1
B

∑
i∈B

[
G(x̌νi , xν−i)−G(xν)

]
= 1
B

∑
i∈Ŝν

[
G(x̌νi , xν−i)−G(xν)

]
(a)
≤ 1
B

∑
i∈Ŝν

[
γ̄νG(x̂i(xν), xν−i) + (1− γ̄ν)G(xν)−G(xν)

]
=γν

∑
i∈Ŝν

[
G(x̂i(xν), xν−i)−G(xν)

]
,

(2.31)

where (a) is due to the convexity of G(•, xν−i) and the definition of x̌νi [cf. ( 2.28 )].

The desired inequality ( 2.26 ) follows readily by combining ( 2.27 ) with ( 2.31 ).
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Lemma 2.5.7. [ 66 , Lemma 3.4, p.121] Let {Xν}, {Y ν}, and {Zν} be three sequences of

numbers such that Y ν ≥ 0 for all ν. Suppose that

Xν+1 ≤ Xν − Y ν + Zν , ∀ν = 0, 1, . . .

and ∑∞
ν=0 Z

ν < ∞. Then either Xν → −∞ or else {Xν} converges to a finite value and∑∞
ν=0 Y

ν <∞.

2.5.3 Proof of Theorem  2.2.1 

For any given ν ≥ 0, the Descent Lemma [ 61 ] yields: with ẑν , (ẑνi )i∈B and zν , (zνi )i∈B

defined in step S.4 of Algorithm  1 ,

F
(
xν+1

)
≤ F (xν) + γν ∇xF (xν)T (ẑν − xν) + (γν)2 L∇F

2 ‖ẑν − xν‖2 . (2.32)

We bound next the second and third terms on the RHS of ( 2.32 ). Denoting by Ŝ
ν

the

complement of Ŝν , we have,

∇xF (xν)T (ẑν − xν)

=∇xF (xν)T (ẑν − x̂(xν) + x̂(xν)− xν)
(a)=∇xF (xν)TŜν (zν − x̂(xν))Ŝν +∇xF (xν)TŜν (xν − x̂(xν))

Ŝ
ν

+∇xF (xν)TŜν (x̂(xν)− xν)Ŝν +∇xF (xν)TŜν (x̂(xν)− xν)
Ŝ
ν

=∇xF (xν)TŜν (zν − x̂(xν))Ŝν +∇xF (xν)TŜν (x̂(xν)− xν)Ŝν
(b)
≤
∑
i∈Ŝν

ενi ‖∇xiF (xν)‖+∇xF (xν)TŜν (x̂(xν)− xν)Ŝν

(c)
≤
∑
i∈Ŝν

ενi ‖∇xiF (xν)‖ − q ‖ (x̂(xν)− xν)Ŝν ‖
2 +

∑
i∈Ŝν

[
G(xν)−G(x̂i(xν), xν−i)

]

(2.33)

where in (a) we used the definition of ẑν and of the set Ŝν ; in (b) we used ‖zνi − x̂i(xν)‖ ≤ ενi ;

and (c) follows from ( 2.21 ) (cf. Lemma  2.5.5 ).
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The third term on the RHS of ( 2.32 ) can be bounded as

‖ẑν − xν‖2 ≤ 2 ‖(zν − x̂(xν))Ŝν‖
2 + 2 ‖(x̂(xν)− xν)Ŝν‖

2

= 2∑i∈Ŝν ‖zνi − x̂i(xν)‖2 + 2 ‖(x̂(xν)− xν)Ŝν‖
2

≤ 2
∑
i∈Ŝν

(ενi )2 + 2 ‖(x̂(xν)− xν)Ŝν‖
2 ,

(2.34)

where the first inequality follows from the definition of zν and ẑν , and in the last inequality

we used ‖zνi − x̂i(xν)‖ ≤ ενi .

Now, we combine the above results to get the descent property of V along {xν}. For

sufficiently large ν ∈ N+, it holds

V (xν+1) = F (xν+1) +G(xν+1)

≤V (xν)− γν (q − γνL∇F ) ‖(x̂(xν)− xν)Ŝν‖
2 + T ν ,

(2.35)

where the inequality follows from ( 2.21 ), ( 2.32 ), (  2.33 ), and ( 2.34 ), and T ν is given by

T ν , γν
∑
i∈B

ενi (LG + ‖∇xiF (xν)‖) + (γν)2 L∇F
∑
i∈B

(ενi )2.

By assumption (iv) in Theorem  2.2.1 , it is not difficult to show that ∑∞ν=0 T
ν < ∞. Since

γν → 0, it follows from ( 2.35 ) that there exist some positive constant β1 and a sufficiently

large ν, say ν̄, such that

V (xν+1) ≤ V (xν)− γνβ1 ‖(x̂(xν)− xν)Ŝν‖
2 + T ν , (2.36)

for all ν ≥ ν̄. Invoking Lemma  2.5.7 while using ∑∞ν=0 T
ν < ∞ and the coercivity of V , we

deduce from ( 2.36 ) that

lim
t→∞

t∑
ν=ν̄

γν ‖(x̂(xν)− xν)Ŝν‖
2 < +∞, (2.37)
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and thus also
lim
t→∞

t∑
Kmx3 ν≥ ν̄

γν ‖(x̂(xν)− xν)Ŝν‖
2 < +∞. (2.38)

Lemma  2.5.2 together with ( 2.38 ) imply

lim inf
ν∈Kmx

‖(x̂(xν)− xν)Ŝν‖ = 0, w.p. 1,

which by Lemma  2.5.4 implies

lim inf
ν→∞

‖x̂(xν)− xν‖ = 0, w.p. 1. (2.39)

Therefore, the limit point of the infimum sequence is a fixed point of x̂(·) w.p.1.

2.5.4 Proof of Theorem  2.2.2 

The proof follows similar ideas as the one of Theorem 1 in our recent work [ 30 ], but with

the nontrivial complication of dealing with randomness in the block selection.

Given ( 2.39 ), we show next that, under the separability assumption on G, it holds that

limν→∞ ‖x̂(xν)− xν‖ = 0 w.p.1. For notational simplicity, let us define4x̂(xν) , x̂(xν)−xν .

Note first that for any finite but arbitrary sequence {ν, ν + 1, ..., iν − 1}, it holds that

E

 iν−1∑
Kmx3t=ν

γt

 =
iν−1∑
t=ν

γt [P(t ∈ Kmx)] ≥ p
iν−1∑
t=ν

γt,

and thus

P

 iν−1∑
Kmx3t=ν

γt > β
iν−1∑
t=ν

γt

 > 0,

for all ν ∈ K and 0 < β < p. This implies that, w.p.1, there exists an infinite sequence of

indexes, say K1 ⊆ K, such that

iν−1∑
Kmx3t=ν

γt > β
iν−1∑
t=ν

γt, ∀ν ∈ K1. (2.40)
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Suppose now, by contradiction, that lim supν→∞ ‖4x̂(xν)‖ > 0 with a positive probability.

Then we can find a realization such that at the same time ( 2.40 ) holds for some K1 and

lim supν→∞ ‖4x̂(xν)‖ > 0. In the rest of the proof we focus on this realization and get a

contradiction, thus proving that lim supν→∞ ‖4x̂(xν)‖ = 0 w.p.1.

If lim supν→∞ ‖4x̂(xν)‖ > 0 then there exists a δ > 0 such that ‖4x̂(xν)‖ > 2δ for

infinitely many ν and also ‖4x̂(xν)‖ < δ for infinitely many ν. Therefore, one can always

find an infinite set of indexes, say K, having the following properties: for any ν ∈ K, there

exists an integer iν > ν such that

‖4x̂(xν)‖ < δ,
∥∥∥4x̂(xiν )

∥∥∥ > 2δ (2.41)

δ ≤
∥∥∥4x̂(xj)

∥∥∥ ≤ 2δ ν < j < iν . (2.42)

Proceeding now as in the proof of Theorem  2.2.1 in [  30 ], we have: for ν ∈ K1,

δ
(a)
<

∥∥∥4x̂(xiν )
∥∥∥− ‖4x̂(xν)‖

≤
∥∥∥x̂(xiν )− x̂(xν)

∥∥∥+
∥∥∥xiν − xν

∥∥∥ (2.43)
(b)
≤ (1 + L̂)

∥∥∥xiν − xν
∥∥∥ (2.44)

(c)
≤ (1 + L̂)

iν−1∑
t=ν

γt
(∥∥∥4x̂(xt)St

∥∥∥+
∥∥∥(zt − x̂(xt))St

∥∥∥)
(d)
≤ (1 + L̂) (2δ + εmax)

iν−1∑
t=ν

γt, (2.45)

where (a) follows from ( 2.41 ); (b) is due to Lemma  2.5.3 ; (c) comes from the triangle in-

equality, the updating rule of the algorithm and the definition of ẑν ; and in (d) we used

( 2.41 ), (  2.42 ), and ‖zt − x̂(xt)‖ ≤ ∑i∈B ε
t
i , where εmax , maxν

∑
i∈B ε

ν
i <∞. It follows from

( 2.45 ) that

lim inf
K13ν→∞

iν−1∑
t=ν

γt ≥ δ

(1 + L̂)(2δ + εmax)
> 0. (2.46)
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We show next that ( 2.46 ) is in contradiction with the convergence of {V (xν)}. To do

that, we preliminary prove that, for sufficiently large ν ∈ K, it must be ‖4x̂(xν)‖ ≥ δ/2.

Proceeding as in ( 2.45 ), we have: for any given ν ∈ K,

∥∥∥4x̂(xν+1)
∥∥∥− ‖4x̂(xν)‖ ≤ (1 + L̂)

∥∥∥xν+1 − xν
∥∥∥ ≤ (1 + L̂)γν (‖4x̂(xν)‖+ εmax) . (2.47)

It turns out that for sufficiently large ν ∈ K1 so that (1 + L̂)γν < δ/(δ + 2εmax), it must

be

‖4x̂(xν)‖ ≥ δ/2; (2.48)

otherwise the condition ‖4x̂(xν+1)‖ ≥ δ would be violated [cf. ( 2.42 )]. Hereafter we assume

without loss of generality that (  2.48 ) holds for all ν ∈ K1 (in fact, one can always restrict

{xν}ν∈K1 to a proper subsequence).

We can show now that ( 2.46 ) is in contradiction with the convergence of {V (xν)}. Using

( 2.36 ) (possibly over a subsequence), we have: for sufficiently large ν ∈ K1,

V (xiν ) ≤ V (xν)− β1

iν−1∑
Kmx3t=ν

γt
∥∥∥(4x̂(xt)

)
Ŝt

∥∥∥2
+

iν−1∑
Kmx3t=ν

T t

(a)
≤ V (xν)− β2

iν−1∑
Kmx3t=ν

γt
∥∥∥4x̂(xt)

∥∥∥2
+

iν−1∑
t=ν

T t

(b)
≤ V (xν)− β3

iν−1∑
t=ν

γt +
iν−1∑
t=ν

T t,

(2.49)

where (a) follows from Lemma  2.5.4 and β2 = c1 β1 > 0; and (b) is due to ( 2.48 ) and ( 2.40 ),

with β3 = β β2 (δ2/4).

Since {V (xν)} converges and ∑∞
ν=0 T

ν < ∞, it holds that limK13ν→∞
∑iν−1
t=ν γ

t = 0, con-

tradicting ( 2.46 ). Therefore limν→∞ ‖x̂(xν)− xν‖ = 0 w.p.1. Since {xν} is bounded by the

coercivity of V and the convergence of {V (xν)}, it has at least one limit point x̄ ∈ X . By

the continuity of x̂(•) (cf. Lemma  2.5.3 ) it holds that x̂(x̄) = x̄. By Proposition  2.1.1 x̄ is

also a stationary solution of Problem ( 2.1 ). �
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3. DECENTRALIZED FIRST-ORDER ALGORITHMS FOR

NON-CONVEX OPTIMIZATION OVER NETWORKS AND

SECOND-ORDER GUARANTEES

In this chapter we extend the network setting to ad-hoc (directed) topologies and we consider

the minimization of a smooth unconstrained nonconvex function, in the following form:

min
θ∈Rd

F (θ) ,
m∑

i=1
fi(θ), (3.1)

where m is the number of agents in the network; and fi : Rd → R is the cost function of

agent i, assumed to be smooth and known only to agent i. Agents are connected through

a communication network, modeled as a (possibly directed, strongly) connected graph. No

specific topology is assumed for the graph (such as star or hierarchical structure). In this

setting, agents seek to cooperatively solve Problem ( 3.1 ) by exchanging information with

their immediate neighbors in the network.

Main objective: We call θ a critical point of F if ∇F (θ) = 0; a critical point θ is a

strict saddle of F if ∇2F (θ) has at least one negative eigenvalue; and it is a Second-order

Stationary (SoS) solution if ∇2F (θ) is positive semidefinite. Critical points that are not

minimizers are of little interest in the nonconvex setting. It is thus desirable to consider

methods for ( 3.1 ) that are not attracted to such points. When F has a favorable structure,

stronger guarantees can be claimed. For instance, a wide range of salient objective functions

arising from applications in machine learning and signal processing have been shown to enjoy

the so-called strict saddle property: all the critical points of F are either strict saddles or

local minimizers. Examples include principal component analysis and fourth order tensor

factorization [  9 ], low-rank matrix completion [ 67 ], and some instances of neural networks [ 68 ],

just to name a few. In all these cases, converging to SoS solutions–and thus circumventing

strict saddles–guarantees finding a local minimizer.

In this chapter, we study the second-order guarantees of two renowned distributed gradient-

based algorithms for Problem ( 3.1 ), namely: the Distributed Gradient Descent (DGD) [ 69 ],

[ 70 ] and the family of distributed algorithms based on gradient-tracking [ 71 ]–[ 73 ]. The former
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is implementable on undirected graphs while the latter is suitable also for directed graphs.

Convergence of these schemes applied to convex instances of ( 3.1 ) is well understood; how-

ever, less is known in the nonconvex case, let alone second-order guarantees; the relevant

works are discussed next.

3.1 Literature review

Recent years have witnessed many studies proving asymptotic solution- and convergence

rate-guarantees of a variety of algorithms for specific classes of nonconvex optimization prob-

lems (e.g., satisfying suitable regularity conditions); a good overview can be found in [ 74 ].

Since these analyses are heavily tailored to specific applications and it is unclear how to

generalize them to a wider class of nonconvex functions, we omit further details and discuss

next only results of centralized and distributed algorithms for general nonconvex instances

of ( 3.1 ).

3.1.1 Second-order guarantees of centralized optimization algorithms

Second-order guarantees of centralized solution methods for general nonconvex optimiza-

tion ( 3.1 ) have been extensively studied in the literature.

Hessian-based methods: Algorithms based on second-order information have long

been known to converge to SoS solutions of ( 3.1 ); they rely on computing the Hessian to dis-

tinguish between first- and second-order stationary points. The classical cubic-regularization

[ 75 ]–[ 79 ] and trust region (e.g. [ 80 ]–[ 83 ]) methods can provably find approximate SoS solu-

tions in polynomial time (by approximate SoS we mean θ such that ||∇F (θ)|| ≤ εg and

λmin(∇2F (θ)) ≥ −εh, for small εg, εh > 0); they however require access to the full Hessian

matrix. A recent line of works [ 84 ]–[ 86 ] show that the requirement of full Hessian access can

be relaxed to Hessian-vector products in each iteration, hence solving simpler sub-problems

per iteration, but at the cost of requiring more iterations to reach approximate SoS solutions.

First-order methods: For general nonconvex problems, Gradient Descent (GD) is known

to find a stationary point in polynomial time [ 87 ]. In [  88 ], it was proved that randomly

initialized GD with a fixed step-size converges to SoS solutions almost surely. The elegant

59



analysis of [ 88 ], leveraging tools from the theory of dynamical systems (e.g., the Stable Man-

ifold Theorem), has been later extended in a number of follow-up works establishing same

kind of second-order guarantees of a variety of first-order methods, including the proximal

point algorithm, block coordinate descent, mirror descent [ 89 ]; the heavy-ball method and

the Nesterov’s accelerated method [ 90 ]; block coordinate descent and alternating minimiza-

tion [  91 ]; and a primal-dual optimization procedure for solving linear equality constrained

nonconvex optimization problems [ 92 ]. These results are all asymptotic in nature and it is

unclear whether polynomial convergence rates can be obtained for these methods. In [ 93 ]

it was actually proven that, even with fairly natural random initialization schemes and for

non-pathological functions, GD can be significantly slowed down by saddle points, taking ex-

ponential time to escape. Recent work has analyzed variations of GD that include stochastic

perturbations. It has been shown that when perturbations are incorporated into GD at each

step the resulting algorithm can escape strict saddle points in polynomial time [ 9 ]; the same

conclusion was earlier established in [ 94 ] for stochastic gradient methods, although without

escape time guarantees. It has also been shown that episodic perturbations suffice; in partic-

ular, [ 95 ] introduced an algorithm that occasionally adds a perturbation to GD, and proved

that the number of iterations to escape saddle points depends only poly-logarithmically on

dimension (i.e., it is nearly dimension-independent). Fruitful follow-up results show that

other first-order perturbed algorithms escape from strict saddle points efficiently [ 96 ], [  97 ].

3.1.2 Distributed algorithms for ( 3.1 ) and guarantees

Distributed algorithms for convex instances of ( 3.1 ) have a long history; less results are

available for nonconvex objectives. Since the focus on this work is on nonconvex problems,

next, we mainly comment on distributed algorithms for minimizing nonconvex objectives.

• DGD and its variants: DGD (and its variants) is unquestionably among the first and

most studied decentralizations of the gradient descent algorithm for ( 3.1 ) [ 69 ], [ 70 ]. The

instance of DGD considered in this work reads: given x0
i ∈ Rd, i ∈ [m],

xν+1
i =

m∑
j=1

Dij x
ν
j − α∇fi(xνi ), i ∈ [m], (3.2)
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where xνi is the agent i’s estimate at iteration ν of the vector variable θ; {Dij}i,j are suitably

chosen set of nonnegative weights (cf. Assumption  3.4.1 ), matching the graph topology (i.e.,

Dij > 0 if there is a link between node i and j, and Dij = 0 otherwise); and α > 0 is the

step-size. Roughly speaking, the update of each agent i in (  3.2 ) is the linear combination

of two components: i) the gradient ∇fi evaluated at the agent’s latest iterate (recall that

agents do not have access to the entire gradient ∇F ); and ii) a convex combination of the

current iterates of the neighbors of agent i (including agent i itself). The latter term (a.k.a.

consensus step) is instrumental to asymptotically enforcing agreement among the agents’

local variables.

When each fi in ( 3.1 ) is (strongly) convex, convergence of DGD is well understood. With

a diminishing step-size, agents’ iterates converge to a consensual exact solution; if a constant

step-size is used, convergence is generally faster but only to a neighborhood of the solution,

and exact consensus is not achieved. When (  3.1 ) is nonconvex, the available convergence

guarantees are weaker. In [ 98 ] it was shown that if a constant step-size is employed, every

limit point (x∞1 , . . . , x∞m ) of the sequence generated by ( 3.2 ) satisfies ∑m
i=1∇xifi(x∞i ) = 0;

the limit points of agents’ iterates are not consensual; asymptotic consensus is achieved

only using a diminishing step-size. Since in general fi are all different, such limit points

are not critical points of F . Nothing is known about the connection of the critical points

of ∑m
i=1 fi(xi) and those of F , let alone its second-order guarantees. A first contribution

of this research is to establish second-order guarantees of DGD ( 3.2 ) applied to ( 3.1 ) over

undirected graphs.

Several extensions/variants of the vanilla DGD followed the seminal works [ 69 ], [  70 ]. The

projected (stochastic) DGD for nonconvex constrained instances of ( 3.1 ) was proposed in

[ 99 ]; with a diminishing step-size, the algorithm converges to a stationary solution of the

problem (almost surely, if noisy instances of the local gradients are used). The extension

of DGD to digraphs was studied in [ 100 ] for convex unconstrained optimization, and later

extended in [  101 ] to nonconvex objectives. The algorithm, termed push-sum DGD, combines

a local gradient step with the push-sum algorithm [ 102 ]. When a diminishing step-size is

employed, push-sum DGD converges to an exact stationary solution of ( 3.1 ); and its noisy

perturbed version almost surely converges to local minimizers, provided that F does not have
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any saddle point [ 101 ]. To our knowledge, no other guarantees are known for DGD-like

algorithms in the nonconvex setting. In particular, it is unclear whether DGD ( 3.2 ) escapes

strict saddles of F .

• Gradient tracking-based methods: To cope with the speed-accuracy dilemma of DGD,

[ 71 ], [ 72 ] proposed a new class of distributed gradient-based methods that converge to an

exact consensual solution of nonconvex (constrained) problems while using a fixed step-

size. The algorithmic framework, termed NEXT, introduces the idea of gradient tracking

to correct the DGD direction and cancel the steady state error in it while using a fixed

step-size: each agent updates its own local variables along a surrogate direction that tracks

the gradient ∇F of the entire objective (the same idea was proposed independently in [ 73 ]

for convex unconstrained smooth problems). The generalization of NEXT to digraphs–the

SONATA algorithm–was proposed in [ 6 ], [ 103 ]–[ 105 ], with [ 104 ], [ 105 ] proving convergence of

the agents’ iterates to consensual stationary solutions of nonconvex problems at a sublinear

rate. No second-order guarantees have been established for these methods. Extensions of

the SONATA family based on different choices of the weight matrices were later introduced

in [ 106 ], [ 107 ] for convex smooth unconstrained problems. In this chapter, we consider the

following family of distributed algorithms based on gradient tracking, which encompasses

the majority of the above schemes (see, e.g., [ 104 , Sec. 5]), and refer to it as Distributed

Optimization with Gradient Tracking (DOGT):

xν+1
i =

m∑
j=1

Rijx
ν
j − α yνi , (3.3)

yν+1
i =

m∑
j=1

Cijy
ν
j +∇fi(xν+1

i )−∇fi(xνi ), (Gradient Tracking) (3.4)

where (Rij)i,j and (Cij)i,j are suitably chosen nonnegative weights compliant to the graph

structure (cf. Assumption  3.5.1 ); and yi ∈ Rd is an auxiliary variable, controlled by agent i

via the update ( 3.4 ), which aims at tracking locally the gradient sum ∑
i∇fi(xνi ). Overall,

the update ( 3.4 ) in conjunction with the consensus step in ( 3.3 ) is meant to “correct” the

local gradient direction −∇fi(xνi ) (as instead used in the DGD algorithm) and thus nulls

asymptotically the steady error ∇fi(xνi ) − ∇F (xνi ). This permits the use of a constant
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step-size α while still achieving exact consensus without penalizing the convergence rate.

Another important difference between DOGT and DGD in ( 3.2 ) is that the former serves as

a unified platform for distributed algorithms applicable over both undirected and directed

graphs. Convergence of DOGT in the form (  3.3 )-( 3.4 ) when F is nonconvex remains an open

problem, let alone second-order guarantees. A second contribution of this work is to fill this

gap and provide a first- and second-order convergence analysis of DOGT.

• Primal-dual distributed algorithms: We conclude this literature review by comment-

ing on distributed algorithms for nonconvex ( 3.1 ) using a primal-dual form [ 108 ]–[ 110 ]. Be-

cause of their primal-dual nature, all these schemes are implementable only over undirected

graphs. In [ 108 ] a distributed approximate dual (sub)gradient algorithm, coupled with a

consensus step is introduced. Assuming zero-duality gap, the algorithm is proved to asymp-

totically find a pair of primal-dual solutions of an auxiliary problem, which however might

not be critical points of F ; also, consensus is not guaranteed. No rate analysis is provided. In

[ 109 ], a proximal primal-dual algorithm is proposed; the algorithm, termed Prox-PDA, em-

ploys either a constant or increasing penalty parameter (which plays the role of the step-size);

a sublinear convergence rate of a suitably defined primal-dual gap is proved. A perturbed

version of Prox-PDA, P-Prox-PDA, was introduced in [ 110 ], which can also deal with non-

smooth convex, additive functions in the objective of ( 3.1 ). P-Prox-PDA converges to an

ε-critical point (and thus also to inexact consensus), under a proper choice of the penalty

parameters that depends on ε. A sublinear convergence rate is also proved. No second-order

guarantees have been established for the above schemes. The only primal-dual algorithms

we are aware of with provable convergence to SoS solutions is the one in [ 92 ], proposed for

a linearly constrained nonconvex optimization problem. When linear constraints are used

to enforce consensus, the primal-dual method [  92 ] becomes distributed and applicable to

Problem (  3.1 ), but only for undirected graphs (DOGT is instead implementable also over

digraphs). Second-order guarantees of such a scheme are established under slightly stronger

assumptions than those required for DOGT (cf. Remark  3.5.2 , Sec.  3.5.3.3 ). Finally, no-

tice that, since [  92 ] substantially differs from DGD and DOGT–the former is a primal-dual

scheme while the latter are primal methods–the convergence analysis put forth in [ 92 ] is not

applicable to DGD and DOGT. Since DGD and DOGT in their general form encompass
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two classic algorithms for distributed optimization, the open problem of their second-order

properties leaves a significant gap in the literature.

3.2 Summary of the technical results

We establish for the first time second-order guarantees of DGD ( 3.2 ) and DOGT ( 3.3 )-

( 3.4 ). The main results are summarized next.

3.2.1 DGD algorithm ( 3.2 ).

We prove that:

(i) For a sufficiently small step-size α, agents’ iterates {xν} generated by ( 3.2 ) converge

to an O(α)-critical point of F for all initializations–see Lemma  3.4.1 ; neighborhood

convergence to critical points is also established (cf.Theorem  3.4.3 ). This complements

the convergence results in [ 98 ];

(ii) The average sequence {xν , (1/m)∑m
i=1 x

ν
i } converges almost surely to a neighborhood

of a SoS solution of ( 3.1 ), where the probability is taken over the initializations–see

Theorem  3.4.4 .

To prove (ii), we employ a novel analysis, which represents a major technical contribution

of this work. In fact, existing techniques developed to established second-order guarantees

of the centralized GD are not readily applicable to DGD–roughly speaking, this is due to the

fact that DGD ( 3.2 ) converges only to a neighborhood of critical points of F [fixed points

of ( 3.2 ) are not critical points of F ]. We elaborate next on this challenge and outline our

analysis.

The elegant roadmap developed in [  88 ], [  89 ] to establish second-order guarantees of the

centralized GD builds on the Stable Manifold theorem: roughly speaking, fixed-points of the

gradient map corresponding to strict saddles of the objective function are “unstable” (more

formally, the stable set 

1
 of strict saddles has zero measure), implying almost sure convergence

1
 ↑ Given X ⊆ Rd, g : Rd → Rd, and the fixed-point iterate xν+1 = g(xν), the stable set of X is {x :

limν g
ν(x) ∈ X}, i.e., the set of initial points such that {xν} converges to a member of X .
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of GD iterates to SoS points [ 89 , Corollary 2]. It is known that the DGD iterates (  3.2 ) can

be interpreted as instances of the GD applied to the following auxiliary function [ 98 ], [ 111 ]:

denoting x , [x>1 , . . . x>m]>,

Lα(x) ,
m∑

i=1
fi(xi)︸ ︷︷ ︸
,Fc(x)

+ 1
2α

m∑
i=1

m∑
i=j

(eij −Dij)x>i xj, (3.5)

where eij = 1 if there is an edge in the graph between agent i and agent j; and eij = 0

otherwise. Using ( 3.5 ), ( 3.2 ) can be rewritten as: denoting xν , [xν>1 , . . . xν>m ]>,

xν+1 = xν − α∇Lα(xν). (3.6)

One can then apply the above argument (cf. [  89 , Corollary 2]) to (  3.6 ) and readily establish

the following result (see Theorem  3.4.1 for the formal statement)

Fact 1 (informal): For sufficient small α > 0, randomly initialized DGD ( 3.6 ) [and thus

( 3.2 )] converges almost surely to a second-order critical point of Lα.

Unfortunately, this result alone is not satisfactory, as no connection is known between the

critical points of Lα and those of F (note that Lα : Rm·d → R whereas F : Rd → R). To

cope with this issue we prove the following two facts.

Fact 2 (informal): Every limit point x∞ of the average sequence xν = 1/m∑m
i=1 x

ν
i can

be made arbitrarily close to a critical point of F by using a sufficiently small α > 0

(Theorem  3.4.3 );

Fact 3 (informal): Whenever the limit point x̄∞ = 1/m ∑m
i=1 x

∞
i belongs to a sufficiently

small neighborhood of a strict saddle of F , x∞ = [x∞>1 , . . . , x∞>m ]> must be a strict

saddle of Lα (Proposition  3.4.1 and Corollary  3.4.1 ).

The above three facts will then ensure that, for sufficiently small α > 0, with almost complete

certainty, {x̄ν} will not get trapped in a neighborhood of a strict saddle of F–as x∞ would

be a strict saddle of Lα–thus landing in a neighborhood of a SoS solution of ( 3.1 ).
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Facts 2 & 3 above are proved under a regularity condition on F which recalls (albeit

slightly weaker than) [ 112 ]. Roughly speaking, the gradient flow over some annulus must be

uniformly positive correlated with any outward (from the origin) direction (cf. Assumption

 3.3.3 ). This condition is quite mild and is satisfied by functions arising, e.g., from several

machine learning applications, including distributed PCA, matrix sensing, and binary classi-

fication problems; see Sec.  3.3 for more details. Furthermore, this condition is also sufficient

to prove convergence of DGD without assuming the objective function to be globally L-

smooth (but just locally L-smooth, LC1 for short), a requirement that instead is common to

existing (first-order) convergence conditions of DGD. Notice that the loss functions arising

from many of the aforementioned machine learning problems are not globally L-smooth.

3.2.2 DOGT algorithm ( 3.3 )-( 3.4 )

For DOGT, we establish the following three results.

(i) When F is nonconvex and the graph is either undirected or directed, it is proved that

every limit point of the sequence generated by DOGT is a critical point of F . Fur-

thermore, a merit function, measuring distance of the iterates from stationarity and

consensus disagreement is introduced, and proved to vanish at a sublinear rate–see

Theorem  3.5.1 . This extends convergence results [  106 ], [  107 ], established only for con-

vex functions. To deal with nonconvexity, our analysis builds on a novel Lyapunov-like

function [cf. ( 3.44 )], which properly combines optimization error dynamics, consen-

sus and tracking disagreements. While these three terms alone do not “sufficiently”

decrease along the iterates–as local optimization and consensus/tracking steps might

act as competing forces–a suitable combination of them, as captured by the Lyapunov

function, does monotonically decrease.

(ii) When F satisfies the Kurdyka- Lojasiewicz (K L) property [ 113 ], [ 114 ] at any of its critical

points, convergence of the entire sequence to a critical point of F is proved (cf. Theorem

 3.5.2 ), and a convergence rate is provided (cf. Theorem  3.5.3 ). Although inspired by

[ 115 ], establishing similar convergence results (but no rate analysis) for centralized

first-order methods, our proof follows a different path building on the descent of the
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Lyapunov function introduced in (i), which does not satisfy [  115 , conditions H1-H2]);

see Sec.  3.5.2 for details.

(iii) The sequence of iterates generated by DOGT is shown to converge to SoS solutions

of ( 3.1 ) almost surely, when initial points are randomly drawn from a suitably chosen

linear subspace–see Theorem  3.5.5 . This result is proved for undirected and directed

networks. The proofs build on the stable manifold theorem, based upon the inter-

pretation of DOGT dynamics as fixed-point iterates of a suitably defined map. The

challenge in finding such a map is ensuring that the stable set of its undesirable fixed-

points–those associated with the strict saddles of F–has measure zero in the subspace

where the initialization of DOGT takes place. Note that this subspace is not full

dimensional.

The rest of the chapter is organized as follows. The main assumptions on the optimization

problem and network are introduced in Sec.  3.3 . Sec.  3.4 studies guarantees of DGD over

undirected graphs, along the following steps: i) existing convergence results are discussed

in Sec.  3.4.1 ; ii) Sec.  3.4.2 studies convergence to a neighborhood of a critical point of F ;

and iii) Sec.  3.4.3 establishes second-order guarantees. DOGT algorithms are studied in

Sec.  3.5 along the following steps: i) Sub-sequence convergence is proved in Sec.  3.5.1 ; ii)

Sec.  3.5.2 establishes global convergence under the K L property of F ; and iii) Sec.  3.5.3 de-

rives second-order guarantees over undirected and directed graphs. Finally, Sec.  3.6 presents

some numerical results.

The sequence generated by DGD (and DOGT) depends on the step-size α and the ini-

tialization x0. When necessary, we write {xν(α, x0)} for {xν}.

Throughout the chapter, we assume that all the probability measures are absolutely

continuous with respect to the Lebesgue measure.

3.3 Problem & network setting

In this section, we introduce the various assumptions on the functions fi and the graph,

under which our results are derived.
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Assumption 3.3.1 (On Problem  3.1 ). Given Problem ( 3.1 ),

(i) Each fi is r + 1 times continuously differentiable for some r ≥ 1, and ∇fi is Li-

Lipschitz continuous. Denote Lmax , maxi Li;

(ii) F is coercive.

For some convergence results of DGD we need the following slightly stronger condition.

Assumption 2.1’. Assumption  3.3.1 -(i) is satisfied and (ii) each fi is coercive.

We also make the blanket assumption that each agent i knows only its own fi but not

the rest of the objective function.

Note that Assumption  3.3.1 , particularly the global Lipschitz gradient continuity of fi,

is quite standard in the literature. Motivated by some applications of interest (see examples

below), we will also prove convergence of DGD under LC1 only and the mild condition ( 3.8 )

below (cf. Assumption  3.3.3 ). Although strictly not necessary, coercivity in Assumptions

 3.3.1 &  2.1’ simplifies some of our derivations; our results can be extended under the weaker

assumption that ( 3.1 ) has a solution.

Some of the convergence results of DGD and DOGT are established under the assumption

that F satisfies the Kurdyka- Lojasiewicz (K L) inequality [  113 ], [  114 ].

Definition 3.3.1 (K L property). Given a function U : Rd → R ∪ {+∞}, we set [a < U <

b] , {z ∈ Rd : a < U(z) < b}, and

(a) The function U has K L property at ź ∈ dom ∂U if there exists η ∈ (0,+∞], a neigh-

borhood Vź, and a continuous concave function φ : [0, η)→ R+ such that:

(i) φ(0) = 0,

(ii) φ is C1 on (0, η),

(iii) for all s ∈ (0, η), φ(s) > 0,

(iv) for all z ∈ Vź ∩ [U(ź) < U < U(ź) + η], the K L inequality holds:

φ (U(z)− U(ź)) dist(0, ∂U(z)) ≥ 1. (3.7)
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(b) A proper lower-semicontinuous function U is called K L if it satisfies the K L inequality

at every point in dom ∂U .

Many problems involve functions satisfying the K L inequality; real semi-algebraic func-

tions provide a very rich class of functions satisfying the K L, see [ 116 ] for a thorough dis-

cussion.

Second-order guarantees of DGD are obtained under the following two extra assumptions

below; Assumption  3.3.2 is quite standard and widely used in the literature to establish

second-order guarantees of centralized algorithms (e.g., [ 9 ], [  76 ]–[ 79 ], [ 82 ], [ 95 ]) as well as of

distributed algorithms [ 92 ], [ 117 ], [ 118 ]. Assumption  3.3.3 is introduced for the first time in

this work and is commented below.

Assumption 3.3.2. Each fi : Rd → R is twice differentiable and ∇2fi is L∇2
i
-Lipschitz

continuous. The Lipschitz constant of ∇2F and ∇2Fc are L∇2 = ∑m
i=1 L∇2

i
and L∇2

c
=

maxi L∇2
i
, respectively, where Fc is defined in eq. ( 3.5 ).

Assumption 3.3.3. (i) Each fi is LC1; and (ii) there exist 0 < ε < R and δ > 0 such that

inf
θ∈SR,ε

〈
∇fi(θ), θ/

∥∥∥θ∥∥∥〉 ≥ δ, ∀i ∈ [m]. (3.8)

Roughly speaking, the condition above postulates that the gradient ∇fi(θ) is positively

correlated with any radial direction θ/
∥∥∥θ∥∥∥, for all θ in the annulus SR,ε. A slightly more

restrictive form of the above assumption has appeared in [ 112 , Assumption A3]. Many

functions of practical interest satisfy this assumption; some examples arising from machine

learning applications are listed below.

Distributed PCA [ 119 ]: Given matrices Mi ∈ Rd×d, i ∈ [m], the distributed PCA

problem is to find the leading eigenvector of ∑m
i=1Mi by solving

min
θ∈Rd

1
4

∥∥∥∥θθ> − m∑
i=1

Mi

∥∥∥∥2

F
, (3.9)

which can be rewritten in the form ( 3.1 );
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Phase retrieval [ 74 ]: Let {(ai, yi)}mi=1, with ai ∈ Rd and yi ∈ R such that yi =

a>i M
∗ai = (a>i θ∗)2, and M∗ = θ∗θ∗> ∈ Rd×d. The phase retrieval problem reads

min
θ∈Rd

1
4

m∑
i=1

(
||a>i θ||2 − yi

)2
+ λ

2 ||θ||
2, (3.10)

where λ > 0 is a given parameter.

Matrix sensing [ 74 ]: Let {(Ai, yi)}mi=1, with Ai ∈ Rd×d and yi ∈ R such that yi =

〈Ai,M
∗〉, and M∗ = Θ∗Θ∗> ∈ Rd×d, Θ∗ ∈ Rd×r. The matrix sensing problem reads

min
Θ∈Rd×r

1
4

m∑
i=1

(〈
Ai,ΘΘ>

〉
− yi

)2
+ λ

2

∥∥∥Θ∥∥∥2
F , (3.11)

where λ > 0 is a given parameter.

Gaussian mixture model [ 120 ]: Let {zi}mi=1 be m points drawn from a mixture of q

Gaussian distributions, i.e., zi ∼
∑q

j=1N (µ∗j ,Σ), where N (µ∗j ,Σ) is the Gaussian distribution

with mean µ∗j ∈ Rd and covariance Σ ∈ Rd×d. The goal is to estimate the mean values

µ∗1, . . . , µ
∗
q by solving the maximum likelihood problem

min
{θj∈Rd}qj=1

−
m∑

i=1
log

( q∑
j=1

φd(zi − θj)
)

+ λ

2

∥∥∥θj

∥∥∥2, (3.12)

where φd(θ) is the multivariate normal distribution with 0 mean and covariance Σ;

Bilinear logistic regression [ 121 ]: The description of the problem along with some

numerical results can be found in Sec.  3.6.2 ;

Artificial neuron [ 122 ], [  123 ]: Let {(si, ξi)}mi=1 be m samples, with si ∈ Rd, ξi ∈ R,

and measurement model ξi = σ(s>i θ∗), where θ∗ is the optimal weights and σ(·) is a transfer

function; e.g., the logistic regression function σ(θ) = 1/(1+exp(−θ)). The goal is to estimate

θ∗ by solving

min
θ∈Rd

m∑
i=1

1
2m

[(
ξi − σ(s>i θ)

)2
+ λ

2

∥∥∥θ∥∥∥2
]
, (3.13)
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where λ > 0 is a given parameter. Further binary classification models satisfying Assumption

 3.3.3 include fi functions such as [ 123 ]

fi(θ) =1− tanh ξis
>
i θ + λ

2

∥∥∥θ∥∥∥2,

fi(θ) =
(
1− σ(ξis

>
i θ)

)2
+ λ

2

∥∥∥θ∥∥∥2,

fi(θ) =− ln σ(ξis
>
i θ) + ln σ(ξis

>
i θ + µ) + λ

2

∥∥∥θ∥∥∥2,

(3.14)

where λ > 0 and µ > 0 are given parameters. In all these examples, Assumption  3.3.3 is

satisfied for any sufficiently large R and R − ε; the proof can be found in Appendix  3.8.1 .

Note that many of the functions listed above are not L-smooth on their entire domain,

violating thus (part of) Assumption  3.3.1 (i). Motivated by these examples, we will extend

existing convergence results of DGD, replacing Assumption  3.3.1 (i) with Assumption  3.3.3 .

Network model: The network is modeled as a (possibly) directed graph G = (V , E),

where the set of vertices V = [m] coincides with the set of agents, and the set of edges E

represents the agents’ communication links: (i, j) ∈ E if and only if there is link directed from

agent i to agent j. The in-neighborhood of agent i is defined as N in
i = {j|(j, i) ∈ E}∪{i} and

represents the set of agents that can send information to agent i (including agent i itself, for

notational simplicity). The out-neighborhood of agent i is similarly defined N out
i = {j|(i, j) ∈

E} ∪ {i}. When the graph is undirected, these two sets coincide and we use Ni to denote

the neighborhood of agent i (with a slight abuse of notation, we use the same symbol G to

denote either directed or undirected graphs). Given a nonnegative matrix A ∈Mm(R), the

directed graph induced by A is defined as GA = (VA, EA), where VA , [m] and (j, i) ∈ EA if

and only if Aij > 0. The set of roots of all the directed spanning trees in GA is denoted by

RA. We make the following blanket standard assumptions on G.

Assumption 3.3.4 (On the network). The graph (resp. digraph) G is connected (resp.

strongly connected).
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3.4 The DGD algorithm

Consider Problem ( 3.1 ) and assume that the network is modeled as an undirected graph

G. As described previously, the DGD algorithm is based on a decentralization of GD as

described in (  3.2 ). It is convenient to rewrite the update ( 3.2 ) in the matrix/vector form:

Using the definition of aggregate function Fc(x) [cf. ( 3.5 )] and xν , [xν>1 , . . . xν>m ]>, we have

xν+1 = WD x
ν − α∇Fc(xν), (3.15)

given x0 ∈ Rmd, where WD , D⊗ Id, and D ∈Mm(R) satisfying the following assumption.

Assumption 3.4.1. D ∈ Mm(R) is nonnegative, doubly-stochastic, and compliant to G,

i.e., Dij > 0 if and only if (j, i) ∈ E, and Dij = 0 otherwise.

3.4.1 Existing convergence results

Convergence of DGD applied to the nonconvex problem ( 3.1 ) has been established [ 98 ],

[ 111 ], and summarized below.

Theorem 3.4.1 ([ 98 ], [ 111 ]). Let Assumptions  2.1’ ,  3.3.4 hold. Given arbitrary x0 ∈ Rmd

and 0 < α < αmax , σmin(I + D)/Lc, let {xν} be the sequence generated by the DGD

algorithm ( 3.15 ) under Assumption  3.4.1 . Then {xν} is bounded and

(i) [almost consensus]: for all i ∈ [m] and ν ∈ N+,

‖xνi − x̄ν‖ ≤ (σ2)ν ||x0
i ||+

αH

1− σ2
,

where σ2 < 1 is the second largest singular value of D, and H is a universal upper-bound

of {||∇Fc(xν)||};

(ii) [stationarity]: every limit point x∞ of {xν} is such that x∞ ∈ crit Lα.

In addition, if Lα is a K L function, then {xν} is globally convergent to some x∞ ∈ crit Lα.
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Although L-smoothness of fi’s is a common assumption in the literature, above conver-

gence results can also be established without this condition but under Assumption  3.3.3 –see

Remark  3.4.1 and Appendix  3.8.2 for details.

Since ( 3.15 ) is the gradient update applied to Lα (cf. (  3.6 )), non-convergence of the DGD

algorithm to strict saddle points of Lα can be established by applying [ 89 , Corollary 2] to

( 3.6 ); the statement is given in Theorem  3.4.2 below. The following extra assumption on the

weight matrix D is needed.

Assumption 3.4.2. The matrix D ∈Mm(R) is nonsingular.

Theorem 3.4.2. Consider Problem ( 3.1 ), under Assumptions  2.1’ ,  3.3.4 , and further as-

sume that each fi is a K L function. Let {xν} be the sequence generated by the DGD algorithm

with step-size 0 < α < σmin(D)
Lc

and weight matrix D satisfying Assumptions  3.4.1 and  3.4.2 .

Then, the stable set of strict saddles has measure zero. Therefore, {xν} convergences almost

surely to a SoS solution of Lα, where the probability is taken over the random initialization

x0 ∈ Rmd.

As anticipated in Sec.  3.2.1 , the above second-order guarantees are not satisfactory

as they do not provide any information on the behavior of DGD near critical points of

F , including the strict saddles of F . In the following, we fill this gap. We first show

that the DGD algorithm convergences to neighborhood of the critical points of F , whose

size is controlled by the step-size α > 0 (cf. Section  3.4.2 ). Then, we prove that, for

sufficiently small α > 0, such critical points are almost surely SoS solutions of ( 3.1 ), where

the randomization is taken on the initial point (cf. Section  3.4.3 ).

3.4.2 DGD converges to a neighborhood of critical points of F

Let us begin with introducing the definition of ε-critical points of F .

Definition 3.4.1. A point θ ∈ Rd such that ||∇F (θ)|| ≤ ε, with ε > 0, is called ε-critical

point of F . The set of ε-critical points of F is denoted by critεF .

In this section, we prove that when the step-size is sufficiently small and DGD is initialized

in a compact set, the iterates {xνi }, i ∈ [m], converge to an arbitrarily small neighborhood of
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critical points of F–the result is formally stated in Theorem  3.4.3 . Roughly speaking, this

is proved chaining the following intermediate results:

i) Lemma  3.4.1 : Every limit point of DGD is an O(α)-critical point of F ;

ii) Lemma  3.4.2 : Every sequence generated by DGD for given α > 0 and initialization

in a compact set, is enclosed in some compact set, for all α ↓ 0; and

iii) Lemma  3.4.3 : Any ε-critical point of F achievable by DGD is arbitrarily close to

a critical point of F , when ε is sufficiently small. Lemma  3.4.1 implies that, for any given

ε > 0, one can find arbitrarily small α > 0 so that every limit point of each {xνi } (whose

existence is guaranteed by Lemma  3.4.2 ) is an ε-critical point of F . Finally, Lemma  3.4.3 

guarantees that every such ε-critical point can be made arbitrarily close to a critical point

of F as ε ↓ 0. The proof of the above three lemmata follows.

Lemma 3.4.1. Let Assumptions  2.1’ and  3.3.4 hold. Given arbitrary x0 ∈ Rmd and 0 <

α < σmin(I +D)/Lc, every limit point x∞ = [x∞>1 , . . . , x∞>m ]> of {xν} generated by the DGD

algorithm satisfies x̄∞ ∈ critKαF , with x̄∞ , (1/m) ∑m
i=1 x

∞
i and K = m

√
mLcH/ (1− σ2),

where H and σ2 are defined in Theorem  3.4.1 .

Proof. By Theorem  3.4.1 (ii), (1⊗ I)>∇Lα(x∞) = 0, which using ( 3.5 ) and the column

stochasticity of D yields (1⊗ I)> ∇Fc(x∞) = 0. Hence,

∥∥∥∇F (x̄∞)
∥∥∥ =

∥∥∥(1⊗ I)> (∇Fc(1⊗ x̄∞)−∇Fc(x∞))
∥∥∥

≤Lc
√
m
∥∥∥x∞ − 1⊗ x̄∞

∥∥∥ (a)
≤ α · m

√
mLcH

1− σ2
,

(3.16)

where in (a) we used Theorem  3.4.1 (i).

To proceed, we limit DGD initialization to x0
i ∈ Xi, i ∈ [m], where X 0

i ⊆ Rd is some

compact set with positive Lebesgue measure.

Lemma 3.4.2. Consider Problem ( 3.1 ), under Assumptions  2.1’ ,  3.3.3 and  3.3.4 . Let

{xν(α, x0)} be any sequence generated by DGD under Assumption  3.4.1 , with step-size α

and initialization x0. Then, there exists a bounded set Y such that {xν(α, x0)} ⊆ Y, for all

0 < α ≤ αmax = σmin(I+D)/Lc and x0
i ∈ Xi ⊆ BdR, i ∈ [m], where R is defined in Assumption

 3.3.3 .
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Proof. We proceed by induction. For the sake of notation, throughout the proof, we will

use for xν(α, x0) the shorthand xν . Define h , maxi∈[m],θ∈BdR
||∇fi(θ)||. By assumption, there

holds x0
i ∈ BdR, for all i. Suppose xνi ∈ BdR, for all i. If xνi ∈ BdR−ε and α ≤ εDii/h, then

xνi − α
Dii
∇fi(xνi ) ∈ BdR, since

∥∥∥xνi − α

Dii
∇fi(xνi )

∥∥∥ ≤ ∥∥∥xνi ∥∥∥+ α

Dii

∥∥∥∇fi(xνi )
∥∥∥ ≤ R− ε+ αh

Dii
. (3.17)

If xνi ∈ SR,ε and α ≤ 2Diiδ(R− ε)/h2, then xνi − α
Dii
∇fi(xνi ) ∈ BdR, since

∥∥∥xνi − α

Dii
∇fi(xνi )

∥∥∥2
=
∥∥∥xνi ∥∥∥2 − 2α||xνi ||

Dii

〈
xνi
||xνi ||

,∇fi(xνi )
〉

+ α2

D2
ii

∥∥∥∇fi(xνi )
∥∥∥2

≤ R2 − 2αδ(R− ε)
Dii

+ α2h2

D2
ii
.

(3.18)

By agents’ updates xν+1
i = ∑

j 6=iDijx
ν
j +Dii(xνi − α

Dii
∇fi(xνi )) and convexity of the norm,

we conclude that if xνi ∈ BdR, for all i, and 0 < α ≤ αb , mini min{εDii/h, 2Diiδ(R− ε)/h2},

then xν+1
i ∈ BdR. This proves that, for α ∈ (0, αb], any sequence {xνi } initialized in BdR lies in

BdR, for all i.

We prove now the same result for α ∈ [αb, σmin(I + D)/Lc]. Note that since each fi is

coercive (cf. Assumption  2.1’(ii) ), any sublevel set of Lα is compact. Also, since {Lα(xν)} is

non-increasing for all α ∈ (0, σmin(I+D)/Lc] (cf. [ 111 , lemma 2]), then {xν} ⊆ LLα(Fc(x0)+
1

2α ||x
0||2I−W ), and furthermore,

LLα
(
Fc(x0) + 1

2α ||x
0||2I−W

)
⊆ LLα

(
Fc(x0) + 1

2αb
||x0||2I−W

)
⊆LFc

(
Fc(x0) + 1

2αb
||x0||2I−W

)
⊆ LFc

(
max

x0
i ∈B

d
R,i∈[m]

{
Fc(x0) + 1

2αb
||x0||2I−W

})
.

(3.19)

Since ||x0||2I−W ≤ 2||x0||2, it follows

LLα
(
Fc(x0) + 1

2α ||x
0||2I−W

)
⊆ LFc

(
max

x0
i ∈B

d
R,i∈[m]

{
m∑

i=1
fi(x0

i )
}

+ R2

αb

)
︸ ︷︷ ︸

,L̄

. (3.20)

The statement of the lemma hods with Y = L̄ ∪∏m
i=1 BdR.
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The following lemma shows that any ε-critical point of F achievable by DGD (i.e., any

point in critεF ∩ Ȳ) can be made arbitrarily close to a critical point of F , when ε > 0 (and

thus α > 0) is sufficiently small.

Lemma 3.4.3. Suppose F : Rd → R is continuously differentiable. For any given compact

set Ȳ ⊆ Rd, there holds

lim
ε→0

max
q∈critεF∩Ȳ

dist(q, crit F ) = 0. (3.21)

Proof. We prove the lemma by contradiction. Suppose

lim sup
ε→0

max
q∈critεF∩Ȳ

dist(q, crit F ) = γ > 0. (3.22)

Then, one can construct {qν} with qν ∈ crit1/νF ∩ Ȳ such that dist(qν , critF ) ≥ γ for all

ν ∈ N. Since ∇F is continuous, crit1F is closed and crit1F ∩ Ȳ is compact. Note that

{qν} ⊆ crit1F ∩Ȳ , which ensures {qν} is bounded. Let {qtν} be a convergent subsequence of

{qν}; its limit point q∞ satisfies dist(q∞, crit F ) ≥ γ. By construction, for any ν́ ∈ N, {qtν}

eventually settles in crit1/ν́ F∩Ȳ , thus q∞ ∈ crit1/ν́ F∩Ȳ . This means that ||∇F (qν́)|| ≤ 1/ν́,

for all ν́ ∈ N, implying ||∇F (q∞)|| = 0. Hence dist(q∞, crit F ) = 0, which contradicts

( 3.22 ).

We can now combine Lemmas  3.4.1 - 3.4.3 with Theorem  3.4.1 (i) and state the main result

of this section.

Theorem 3.4.3. Let Assumptions  2.1’ ,  3.3.3 and  3.3.4 hold. Let ε > 0. There exists

ᾱ > 0 (which depends on ε) such that with any initialization x0
i ∈ X 0

i ⊆ BdR (R > 0 is

defined in Assumption  3.3.3 ), i ∈ [m], and any step-size 0 < α ≤ ᾱ, all the limit points

x∞(α, x0) = [x∞1 (α, x0)>, . . . , x∞m (α, x0)>]> of the sequence {xν(α, x0)}, generated by DGD

satisfies

dist
(
x̄∞(α, x0), crit F

)
< ε and

∥∥∥x∞(α, x0)− 1⊗ x̄∞(α, x0)
∥∥∥ < ε, (3.23)

where x̄∞(α, x0) , (1/m) ∑m
i=1 x

∞
i (α, x0).
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Proof. Combining Lemmata  3.4.1 - 3.4.3 proves that there exists some α1 > 0 such that

dist(x̄∞(α, x0), crit F) < ε, for all α ≤ α1. In addition, Theorem  3.4.1 (i), with H =

supx∈Y Fc(x), implies that there exists some α2 > 0 such that ||x∞(α, x0)−1⊗x̄∞(α, x0)|| < ε,

for all α ≤ α2. Hence, choosing ᾱ = min{α1, α2} proves ( 3.23 ).

3.4.3 DGD likely converges to a neighborhood of SoS solutions of F

We study now second-order guarantees of DGD. Our path to prove almost sure conver-

gence to a neighborhood of SoS solutions of ( 3.1 ) will pass through the non-convergence of

DGD to strict saddles of Lα (cf. Theorem  3.4.1 ). Roughly speaking, our idea is to show that

whenever x̄∞ = 1/m ∑m
i=1 x

∞
i belongs to a sufficiently small neighborhood of a strict saddle

of F inside the region ( 3.23 ), x∞ = [x∞>1 , . . . , x∞>m ]> must be a strict saddle of Lα. The

escaping properties of DGD from strict saddles of Lα will then ensure that it is unlikely that

{x̄ν = 1/m ∑m
i=1 x

ν
i } gets trapped in a neighborhood of a strict saddle of F , thus ending in

a neighborhood of a SoS solution of ( 3.1 ). Proposition  3.4.1 makes this argument formal;

in particular, conditions (i)-(iii) identify the neighborhood of a strict saddle of F with the

mentioned escaping properties.

Proposition 3.4.1. Consider the setting of Lemma  3.4.2 and further assume that Assump-

tion  3.3.2 hold. Let Ȳ be the image of the compact set Y (defined in Lemma  3.4.2 ) through

the linear operator (1m ⊗ Id)>. Suppose that the limit point x∞ = [x∞>1 , . . . , x∞>m ]> of {xν},

along with x̄∞ = 1/m∑m
i=1 x

∞
i , satisfy

(i) dist(x̄∞, crit F) < δ

2L∇2
,

(ii)
∥∥∥x∞ − 1⊗ x̄∞

∥∥∥ < δ

2mL∇2
c

,

(iii) There exists θ∗ ∈ projcrit F(x̄∞) ∩Θ∗ss,

for some δ such that δ ≤ −λmin (∇2F (θ∗)) ,∀θ∗ ∈ Θ∗ss ∩ Ȳ. Then, x∞ is a strict saddle point

of Lα.
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Proof. Given θ ∈ Rd, let υ(θ) denote the unitary eigenvector of ∇2F (θ) associated with

the smallest eigenvalue, and define υ̃(θ) , 1⊗ υ(θ). Then, we have

υ̃(θ)>∇2Lα(x∞)υ̃(θ) (a)= υ̃(θ)>∇2Fc(x∞)υ̃(θ)

≤υ(θ)>∇2F (θ)υ(θ)

+ ||∇2F (x̄∞)−∇2F (θ)||
∥∥∥υ(θ)

∥∥∥2 + ||∇2Fc(x∞)−∇2Fc(1⊗ x̄∞)||
∥∥∥υ̃(θ)

∥∥∥2

(b)
≤ υ(θ)>∇2F (θ)υ(θ) + L∇2

∥∥∥x̄∞ − θ∥∥∥+mL∇2
c

∥∥∥x∞ − 1⊗ x̄∞
∥∥∥

(3.24)

where (a) follows from υ̃(θ) ∈ null(WD − I); and (b) is due to Assumption  3.3.2 . Let

us now evaluate ( 3.24 ) at some θ∗ as defined in condition (iii) of the proposition; using

υ(θ∗)>∇2F (θ∗)υ(θ∗) ≤ −δ and conditions (i) and (ii), yields υ̃(θ∗)>∇2Lα(x∞) υ̃(θ∗) < 0.

By the Rayleigh-Ritz theorem, it must be λmin(∇2Lα(x∞)) < 0. This, together with x∞ ∈

crit Lα (cf. Theorem  3.4.1 (ii)), proves the proposition.

Invoking now Theorem  3.4.3 , we infer that there exists a sufficiently small α > 0 such

that conditions (i) and (ii) of Proposition  3.4.1 are always satisfied, implying that x∞ is a

strict saddle of Lα if there exists a strict saddle of F “close” to x̄∞ [in the sense of (iii)].

This is formally stated next.

Corollary 3.4.1. Consider the setting of Theorem  3.4.3 and Proposition  3.4.1 . There exists

a sufficiently small α > 0 such that, if projcrit F(x̄∞) ∩Θ∗ss 6= ∅, then x∞ is a strict saddle of

Lα.

To state our final result, let us introduce the following merit function: given x =

[x>1 , . . . , x>m]> let

M(x) , max
(

dist(x̄,XSOS),
∥∥∥x− 1⊗ x̄

∥∥∥),
where XSOS denotes the set of SoS solutions of ( 3.1 ), and x̄ = 1/m∑m

i=1 xi. M(x) capture

the distance of the average x̄ from the set of SoS solutions of ( 3.1 ) and well as the consensus

disagreement of the agents’ local variables x̄i.
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Theorem 3.4.4. Consider Problem ( 3.1 ) under Assumptions  2.1’ ,  3.3.2 ,  3.3.3 , and  3.3.4 ;

further assume that each fi is a K L function. For every ε > 0, there exists sufficiently small

0 < ᾱ < σmin(D)
Lc

such that

Px0

(
M(x∞) ≤ ε

)
= 1,

where x∞ = [x∞>1 , . . . , x∞>m ]> is the limit point of the sequence {xν} generated by the DGD

algorithm ( 3.15 ) with α ∈ (0, ᾱ], the weight matrix D satisfying Assumptions  3.4.1 and

 3.4.2 , and initialization x0 ∈ ∏m
i=1X 0

i ⊆
∏m

i=1 BdR; R is defined in Assumption  3.3.3 and

each X 0
i has positive Lebesgue measure; and the probability is taken over the initialization

x0 ∈ ∏m
i=1X 0

i . Furthermore, any θ∗ ∈ projcrit F(x̄∞) is almost surely a SoS solution of F

where x̄∞ = (1/m)∑m
i=1 x

∞
i .

Proof. For sufficiently small α < ᾱ1, if projcrit F(x̄∞) contains a strict saddle point of F , then

x∞ is also a strict saddle point of Lα (by Corollary  3.4.1 ). Let also ᾱ2 be a sufficiently small

step-size such that every limit point x∞ satisfies dist(x̄∞, crit F ) ≤ ε and
∥∥∥x∞− 1⊗ x̄∞

∥∥∥ ≤ ε

(by Theorem  3.4.3 ). Now consider DGD update ( 3.15 ) with α < min{ᾱ1, ᾱ2} and x0 being

drawn randomly from the set of probability one measure ∏m
i=1X 0

i for which the algorithm

converges to a SoS solution of Lα (by Theorem  3.4.2  

2
 ). Finally, by the above properties of α,

it holds that M(x∞) ≤ ε and projcrit F(x̄∞) must contain only SoS solutions of F . Therefore,

there exists a θ∗ ∈ crit F such that θ∗ ∈ XSoS and ‖x̄∞ − θ∗‖ ≤ ε.

Remark 3.4.1. All (first- and second-order) convergence results of DGD established in this

section remain valid when ∇fi’s are not globally Lipschitz continuous [Assumption  3.3.1 (i)]

but Assumption  3.3.3 holds. Specifically, Theorems  3.4.1 ,  3.4.2 ,  3.4.3 and Lemmata  3.4.1 -

 3.4.2 hold if one replaces Assumption  3.3.1 (i) with Assumption  3.3.3 and the global Lipschitz

constant Lc with the Lipschitz constant of ∇Fc restricted to the compact set Ỹ, defined in

Appendix  3.8.2 , where we refer to for the technical details.
2

 ↑ Note that the conclusion of Theorem  3.4.2 is valid also when the set of initial points is restricted to∏m
i=1 X 0

i , as
∏m

i=1 X 0
i has positive measure (the Cartesian product of sets with positive measure has positive

measure– cf. [  124 , Sec. 35]).
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3.5 DOGT Algorithms

The family of DOGT algorithms is introduced in Sec.  3.1.2 . We begin here rewriting

( 3.3 )-( 3.4 ) in matrix/vector form. Denoting xν , [xν>1 , . . . xν>m ]> and yν , [yν>1 , . . . yν>m ]>, we

have 
xν+1 = WR x

ν − α yν ,

yν+1 = WC y
ν +∇Fc

(
xν+1

)
−∇Fc

(
xν
)
,

(3.25)

where WR , R ⊗ Id and WC , C ⊗ Id with R , (Rij)mi,j=1 and C , (Cij)mi,j=1 being some

column-stochastic and row-stochastic matrices (respectively) compliant to the graph G (cf.

Assumption  3.5.1 below). The initialization of ( 3.25 ) is set to x0 ∈ Rmd and y0 ∈ ∇Fc(x0) +

span (WC − I). Note that the latter condition is instrumental to preserve the total-sum of

the y-variables, namely ∑
i y
ν
i = ∑

i fi(xνi ) (which holds due to the column-stochasticity of

matrix C–cf. Assumption  3.5.1 ). This property is imperative for the y-variables to track

the sum-gradient. Notice that the condition used in the literature [ 72 ], [ 104 ], [ 106 ], [ 125 ],

[ 126 ]–y0 = ∇Fc(x0)–is a special case of the proposed initialization. On the practical side,

this initialization can be enforced in a distributed way, with minimal coordination. For

instance, agents first choose independently a vector y−1
i ∈ Rd; then they run one step of

consensus on the y-variables using the values y−1
i ’s and weights matrix C, and set y0

i =

∇fi(x0
i ) +∑

j∈N in
i
Cijy

−1
j − y−1

i , resulting in y0 ∈ ∇Fc(x0) + span(WC − I).

Different choices for R and C are possible, resulting in different existing algorithms. For

instance, if R = C ∈ Mm(R) are doubly-stochastic matrices compliant to the graph G,

( 3.25 ) reduces to the NEXT algorithm [ 71 ], [ 72 ] (or the one in [ 73 ], when ( 3.1 ) is convex).

If R and C are allowed to be time-varying (suitably chosen) ( 3.25 ) reduces to the SONATA

algorithm applicable to (possibly time-varying) digraphs [ 6 ], [ 103 ]–[ 105 ] [or the one later

proposed in [ 126 ] for strongly convex instances of ( 3.1 )]. Finally, if R and C are chosen

according to Assumption  3.5.1 below, the scheme ( 3.25 ) becomes the algorithm proposed

independently in [ 107 ] and [ 106 ], for strongly convex objectives in ( 3.1 ), and implementable

over fixed digraphs.

Assumption 3.5.1. (On the matrices R and C) The weight matrices R,C ∈Mm(R) satisfy

the following:
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(i) R is nonnegative row-stochastic and Rii > 0, for all i ∈ [m];

(ii) C is nonnegative column-stochastic and Cii > 0, for all i ∈ [m];

(iii) The graphs GR and GC> each contain at least one spanning tree; and RR ∩RC> 6= ∅.

It is not difficult to check that matrices R and C above exist if and only if the digraph G

is strongly connected; however, GR and GC> need not be so. Several choices for such matrices

are discussed in [ 106 ], [  107 ]. Here, we only point out the following property of R and C,

as a consequence of Assumption  3.5.1 , which will be used in our analysis. The result is a

consequence of [ 127 , Lemma 1].

Lemma 3.5.1. Given R and C satisfying Assumption  3.5.1 with stochastic left eigenvector

r (resp. right eigenvector c ) of R (resp. C) associated with the eigenvalue one, then there

exist matrix norms

||x||R , || diag(
√
r)x diag(

√
r)−1||2, (3.26)

||x||C , || diag(
√
c)−1x diag(

√
c)||2, (3.27)

such that ρR , ‖R− 1r>‖R < 1 and ρC , ‖C − c1>‖C < 1. Furthermore, r>c > 0.

Using Lemma  3.5.1 , it is not difficult to check that the following properties hold:

ρR = σ2
(
diag(

√
r)R diag(

√
r)−1

)
, (3.28)

ρC = σ2
(
diag(

√
c)−1C diag(

√
c)
)
, (3.29)

||R||R = ||1rT ||R = ||I − 1rT ||R = 1, (3.30)

||C||C = ||c1T ||C = ||I − c1T ||R = 1. (3.31)

The vector norms associated with above matrix norms are

||x||R = || diag(
√
r)x||2, (3.32)

||x||C = || diag(
√
c)−1x||2; (3.33)
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and || · ||a ≤ Ka,b|| · ||b holds for a, b ∈ {R,C, 2} with

KR,2 = √rmax, K2,R = 1/√rmin,

KC,2 = 1/√cmin, K2,C = √cmax,

KR,C = √rmaxcmax, KC,R = 1/√cminrmin,

(3.34)

where rmin (resp. cmin) and rmax (resp. cmax) are minimum and maximum elements of r

(resp. c).

Convergence of DOGT algorithms in the form ( 3.25 ) (with R and C satisfying Assump-

tion  3.5.1 ) has not been studied in the literature when F is nonconvex. In next subsection

we fill this gap and provide a full characterization of the convergence behavior of DOGT

including its second-order guarantees.

3.5.1 First-order convergence & rate analysis

In this section, we study asymptotic convergence to first-order stationary solutions; we

assume d = 1 (scalar optimization variables); while this simplifies the notation, all the

conclusions hold for the general case d > 1. As in [ 107 ], define the weighted sums

x̄ν , r>xν , ȳν , 1>yν , and ḡν , 1>∇Fc(xν), (3.35)

where we recall that r is the Perron vector associated with R (cf. Lemma  3.5.1 ). Note that

∇Fc is Lc-Lipschitz continuous with Lc , Lmax.

Using ( 3.25 ), it is not difficult to check that the following holds

x̄ν+1 = x̄ν − ζαȳν − αr> (yν − cȳν) and ȳν = ḡν , (3.36)

where c is the Perron vector associated with C, and ζ , r>c > 0 (cf. Lemma  3.5.1 ).
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3.5.1.1 Descent on F

Using the descent lemma along with ( 3.36 ) yields

F (x̄ν+1) = F
(
x̄ν − ζαȳν − αr> (yν − cȳν)

)
≤ F (x̄ν)− ζα 〈∇F (x̄ν), ȳν〉 − α

〈
∇F (x̄ν), r> (yν − cȳν)

〉
+ L

2

∥∥∥ζαȳν + αr> (yν − cȳν)
∥∥∥2.

Adding/subtracting suitably chosen terms we obtain

F (x̄ν+1) ≤F (x̄ν)− ζα 〈∇F (x̄ν)− ȳν , ȳν〉 − ζα|ȳν |2

− α
〈
∇F (x̄ν)− ȳν , r> (yν − cȳν)

〉
− α

〈
ȳν , r> (yν − cȳν)

〉
+ Lζ2α2|ȳν |2 + Lα2

∥∥∥yν − cȳν∥∥∥2

≤F (x̄ν) + ζα

2ε1
|∇F (x̄ν)− ȳν |2 + ζαε1

2 |ȳ
ν |2 − ζα|ȳν |2

+ α

2 |∇F (x̄ν)− ȳν |2 + α

2

∥∥∥yν − cȳν∥∥∥2 + αε2
2 |ȳ

ν |2 + α

2ε2

∥∥∥yν − cȳν∥∥∥2

+ Lζ2α2|ȳν |2 + Lα2
∥∥∥yν − cȳν∥∥∥2

=F (x̄ν) +
(
ζαε1

2 − ζα + αε2
2 + Lζ2α2

)
|ȳν |2

+
(
ζα

2ε1
+ α

2

)
|∇F (x̄ν)− ȳν |2 +

(
α

2 + α

2ε2
+ Lα2

) ∥∥∥yν − cȳν∥∥∥2,

(3.37)

where ε1 and ε2 are some arbitrary positive quantities (to be chosen). By ȳν = ḡν [cf. ( 3.36 )],

it holds that

|∇F (x̄ν)− ȳν | =
∣∣∣∣∣
m∑

i=1
∇fi(x̄ν)−

m∑
i=1
∇fi(xνi )

∣∣∣∣∣ ≤ Lc
√
m
∥∥∥xν − 1x̄ν

∥∥∥. (3.38)
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Combining ( 3.37 ) and ( 3.38 ) yields

F (x̄ν+1)

≤F (x̄ν) +
(
ζαε1

2 − ζα + αε2
2 + Lζ2α2

)
|ȳν |2

+mL2
cK

2
2,R

(
ζα

2ε1
+ α

2

)∥∥∥xν − 1x̄ν
∥∥∥2
R +K2

2,C

(
α

2 + α

2ε2
+ Lα2

) ∥∥∥yν − cȳν∥∥∥2
C ,

(3.39)

where K2,R = 1/√rmin and K2,C = √cmax [cf. ( 3.60 )].

3.5.1.2 Bounding the consensus and gradient tracking errors

Let us bound the consensus error ‖xν − 1x̄ν‖R. Using ‖z + w||2R ≤ (1 + ε) ‖x‖2
R + (1 +

1/ε) ‖y‖2
R, for arbitrary z, w ∈ Rd and ε > 0, along with Lemma  3.5.1 , yields

∥∥∥xν+1 − 1x̄ν+1
∥∥∥2
R =

∥∥∥ (R− 1r>
)

(xν − 1x̄ν)− α
(
I − 1r>

)
(yν − 1ȳν)

∥∥∥2
R

≤ (1 + εx)
∥∥∥ (R− 1r>

)
(xν − 1x̄ν)

∥∥∥2
R + α2

(
1 + 1

εx

) ∥∥∥ (I − 1r>
)

(yν − 1ȳν)
∥∥∥2
R

≤ ρ2
R(1 + εx)

∥∥∥xν − 1x̄ν
∥∥∥2
R + α2

(
1 + 1

εx

)
‖I − 1r>‖2

R

∥∥∥yν − 1ȳν
∥∥∥2
R

( 3.30 )
≤ ρ2

R(1 + εx)
∥∥∥xν − 1x̄ν

∥∥∥2
R + 2α2

(
1 + 1

εx

) ∥∥∥yν − cȳν∥∥∥2
R

+ 2α2(1 + 1
εx

)
∥∥∥(1− c)ȳν∥∥∥2

R

≤ ρ2
R(1 + εx)

∥∥∥xν − 1x̄ν
∥∥∥2
R + α2K2

∥∥∥yν − cȳν∥∥∥2
C + α2K3|ȳν |22,

(3.40)

where εx > 0 is arbitrary and we defined

K2 , 2K2
R,C

(
1 + 1

εx

)
, K3 , 2m(1 + 1

εx
). (3.41)
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Similarly, the tracking error can be bounded as

∥∥∥yν+1 − cȳν+1
∥∥∥2
C =

∥∥∥ (C − c1>) yν +
(
I − c1>

) (
∇Fc(xν+1)−∇Fc(xν)

) ∥∥∥2
C

≤ (1 + εy)
∥∥∥ (C − c1>) (yν − cȳν)

∥∥∥2
C

+ (1 + 1
εy

)
∥∥∥ (I − c1>) (∇Fc(xν+1)−∇Fc(xν)

) ∥∥∥2
C

( 3.31 )
≤ ρ2

C(1 + εy)
∥∥∥yν − cȳν∥∥∥2

C +K2
C,2L

2
c

(
1 + 1

εy

) ∥∥∥xν+1 − xν
∥∥∥2

(a)= ρ2
C(1 + εy)

∥∥∥yν − cȳν∥∥∥2
C

+ 3K2
C,2L

2
c

(
1 + 1

εy

) [∥∥∥(R− I)(xν − 1x̄ν)
∥∥∥2 + α2

∥∥∥yν − cȳν∥∥∥2 + α2|ȳν |2
∥∥∥c∥∥∥2

]
( 3.30 )
≤ ρ2

C(1 + εy)
∥∥∥yν − cȳν∥∥∥2

C

+ 3K2
C,2L

2
c

(
1 + 1

εy

) [
K2

2,R

∥∥∥xν − 1x̄ν
∥∥∥2 +K2

2,Cα
2
∥∥∥yν − cȳν∥∥∥2

C + α2|ȳν |2
]

= ρ2
C(1 + εy)

∥∥∥yν − cȳν∥∥∥2
C

+ 3K2
C,2L

2
c

(
1 + 1

εy

) [
K2

2,R

∥∥∥xν − 1x̄ν
∥∥∥2 +K2

2,Cα
2
∥∥∥yν − cȳν∥∥∥2

C + α2|ȳν |2
]

≤
(
ρ2
C + α2K4

εy

)
(1 + εy)

∥∥∥yν − cȳν∥∥∥2
C + α2K5|ȳν |22 +K6

(
1 + 1

εy

)∥∥∥xν − 1x̄ν
∥∥∥2
R,

(3.42)

where in (a) we used xν+1 − xν = (R− I)(xν − 1x̄ν)− α(yν − cȳν)− αcȳν and the Jensen’s

inequality; and in the last inequality we defined

K4 = 3K2
C,2K

2
2,CL

2
c , K5 = 3K2

C,2L
2
c , K6 = 3K2

C,2K
2
2,RL

2
c . (3.43)

3.5.1.3 Lyapunov function

Let us introduce now the candidate Lyapunov function: denoting JR , 1r> and JC , c1>,

define

L(x, y) , Fc(JRx) +
∥∥∥(I − JR)x

∥∥∥2
R + κ

∥∥∥(I − JC)y
∥∥∥2
C , (3.44)
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where κ > 0 is a positive constant (to be properly chosen). Combining ( 3.39 )-( 3.42 ) and

using ȳν = ḡν = ∑m
i=1∇fi(xνi ) [cf. ( 3.36 )] leads to the following descent property for L:

L(xν+1, yν+1) ≤ L(xν , yν)− d(xν , yν)2, (3.45)

where

d(x, y) ,
√√√√(1− ρ̃R)

∥∥∥(I − JR)x
∥∥∥2
R + κ(1− ρ̃C)

∥∥∥(I − JC)y
∥∥∥2
C + Γ

∣∣∣∣ m∑
i=1
∇fi(xi)

∣∣∣∣2 (3.46)

and

ρ̃R ,ρ
2
R(1 + εx) +

αmL2
cK

2
2,R

2

(
1 + ζ

ε1

)
+ κK6

(
1 + 1

εy

)
,

ρ̃C ,ρ
2
C(1 + εy) +

αK2
2,C

2κ

(
1 + 1

ε2

)
+ α2

(
LK2

2,C +K2

κ
+K4

(
1 + 1

εy

))
,

Γ ,
(
ζ − ε1ζ

2 −
ε2
2

)
α−

(
Lζ2 +K3 +K5κ

)
α2.

(3.47)

Note that the function d(•, •) is a valid measure of optimality/consensus for DOGT: i)

it is continuous; and ii) d(x, y) = 0 implies xi = xj = x∗, for all i, j ∈ [m] and some x∗ such

that ∑m
i=1∇fi(x∗) = 0, meaning that all xi are consensual and equal to a critical point of F .

To ensure ρ̃R < 1, ρ̃C < 1, and Γ > 0 in d(x, y), we choose the free parameters εx, εy, ε1,

ε2, and κ as follows:

0 < εx <
1− ρ2

R

2ρ2
R

, 0 < εy <
1− ρ2

C

ρ2
C

,

ε1 = ε2 = ε, 0 < ε <
2ζ

1 + ζ
, 0 < κ ≤ ρ2

Rεx
K6(1 + 1/εy)

,

(3.48)
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and finally, α > 0 must satisfy

α <
2

mL2
cK

2
2,R

(
1 + ζ

ε

) (1− ρ2
R(1 + 2εx)

)
,

α <
1− ρ2

C(1 + εy)
1

2κK
2
2,C

(
1 + 1

ε
+ 2L

)
+ K2

κ +K4
(
1 + 1

εy

) ,
α <

ζ − ε
2 (ζ + 1)

Lζ2 +K3 +K5κ
.

(3.49)

Substituting (  3.34 ), ( 3.41 ), and ( 3.43 ) in ( 3.49 ) and setting for simplicity

εx = 1− ρ2
R

4ρ2
R

, εy = 1− ρ2
C

2ρ2
C

, ε = ξ

1 + ξ
, κ = cminrmin

24L2
c

(1− ρ2
R)(1− ρ2

C), (3.50)

we obtain the following sufficient conditions for ( 3.49 ):

α ≤ α̃1 ,
rmin(1− ρ2

R)
3mL2

c

,

α ≤ α̃2 ,
(1− ρ2

R)2(1− ρ2
C)2r2

minc
2
min

1152L2
c(2 + L) ,

α ≤ α̃3 ,
rmincmin(1− ρ2

R)
2(L+ 16m) .

(3.51)

A further simplification, leads to the following final more restrictive condition on α:

0 < α ≤ (1− ρ2
R)2(1− ρ2

C)2r2
minc

2
min

1152L2
c(L+ 16m) . (3.52)

The descent property ( 3.45 ) readily implies the following convergence result for {L(xν , yν)}

and {d(xν , yν)}.

Lemma 3.5.2. Under Assumptions  3.3.1 ,  3.3.4 , and  3.5.1 , and the above choice of param-

eter, there hold:

(i) The sequence {L(xν , yν)} converges;

(ii) ∑∞
ν=0 d(xν , yν)2 <∞, and thus limν→∞ d(xν , yν) = 0.

We conclude this subsection by lower bounding d(xν , yν) by the magnitude of the gradient

of the Lyapunov function L. This will allow us to transfer the convergence properties of
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{d(xν , yν)} to {||∇L(xν , yν)||}. The lemma below will also be useful to establish global

convergence of DOGT under the K L property (cf. Sec.  3.5.2.1 ).

Lemma 3.5.3. Let ∇L(xν , yν) , (∇xL(xν , yν),∇yL(xν , yν)), where ∇xL (resp. ∇yL) are

the gradient of L with respect to the first (resp. second) argument. In the setting above, there

holds ∥∥∥∇L(xν , yν)
∥∥∥ ≤Md(xν , yν), ν ≥ 0, (3.53)

with

M =
√

2 max
(

(2rmax + Lc
√
m)2

rmin(1− ρ̃R) ,
2κcmax

c2
min(1− ρ̃C) ,

1
Γ

) 1
2

. (3.54)

Proof. Recall that JR = 1r> and JC = c1>. By definition (  3.44 ) and Lemma  3.5.1 , we can

write
∇xL(xν , yν) = J>R∇Fc(JRxν) + 2(I − JR)> diag(r)(I − JR)xν

(a)= r ȳν + J>R (∇Fc(JRxν)−∇Fc(xν))

+ 2(I − JR)> diag(r)(xν − 1x̄ν),

∇yL(xν , yν) = 2κ(I − JC)> diag(c)−1(I − JC)yν

= 2κ(I − JC)> diag(c)−1(yν − cȳν),

(3.55)

where (a) is due to ȳν = ḡν (cf. ( 3.36 )). Thus there holds

||∇xL(xν , yν)|| ≤ ||r|| |ȳν |+ ||J>R (∇Fc(JRxν)−∇Fc(xν)) ||

+ 2||(I − JR)> diag(r)(xν − 1x̄ν)||
(b)
≤ |ȳν |+K2,R

(
2rmax + Lc

√
m
)
||xν − 1x̄ν ||R,

||∇yL(xν , yν)||
(c)
≤ 2κK2,Cc

−1
min||yν − cȳν ||C ,

(3.56)

where (b) holds due to || diag(r)||R = || diag(r)||2 = rmax, ||r|| ≤ 1, ||JR||2 ≤
√
m and ( 3.30 );

(c) is due to || diag(c)−1||C = || diag(c)−1||2 = c−1
min and ( 3.31 ). Eq. ( 3.53 ) follows readily from

( 3.56 ).

3.5.1.4 Main result

We can now state the main convergence result of DOGT to critical points of F .
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Theorem 3.5.1. Consider Problem ( 3.1 ), and suppose that Assumptions  3.3.1 and  3.3.4 

are satisfied. Let {(xν , yν)} be the sequence generated by the DOGT Algorithm ( 3.25 ), with

R and C satisfying Assumption  3.5.1 , and α chosen according to ( 3.52 ) [or ( 3.50 )]; let {x̄ν}

and {ȳν} be defined in ( 3.35 ); and let {d(xν , yν)} be defined in ( 3.46 ). Given ε > 0, let

Tε = min{ν ∈ N+ : d(xν , yν) ≤ ε}. Then, there hold

(i) [consensus]: limν→∞

∥∥∥xν − 1x̄ν
∥∥∥ = 0 and limν→∞ ȳ

ν = 0;

(ii) [stationarity]: let x∞ be a limit point of {xν}; then, x∞ = θ∞ 1, for some θ∞ ∈ crit F ;

(iii) [sublinear rate]: Tε = o(1/ε2).

Proof. (i) follows readily from Lemma  3.5.2 (ii).

We prove (ii). Let (x∞, y∞) be a limit point of {(xν , yν)}. By (i), it must be (I −

JR)x∞ = 0, implying x∞ = 1θ∞, for some θ∞ ∈ R. Also, limν→∞ 1>∇Fc(xν) = limν→∞ ḡ
ν =

limν→∞ ȳ
ν = 0, which together with the continuity of ∇Fc, yields 0 = 1>∇Fc(1θ∞) =

∇F (θ∞). Therefore, θ∞ ∈ crit F .

We prove now (iii). Using (  3.45 ) and the definition of Tε, we can write

Tε
2 ε

2 ≤
Tε∑

t=bTε2 c+1

d(xt, yt)2 ≤ lb
Tε
2 c+1 − lTε+1, (3.57)

where we used the shorthand lν , L(xν , yν). Consider the following two cases: (1) Tε →∞

as ε → 0, then lb
Tε
2 c+1 − lTε+1 → 0 (recall that {lν} converges, cf. Lemma  3.5.2 (i)); and (2)

Tε <∞ as ε→ 0, then {lν} converges in a finite number of iterations. Therefore, by ( 3.57 ),

we have Tε = o(1/ε2).

Note that, as a direct consequence of Lemma  3.5.3 , one can infer the following further

property of the limit points (x∞, y∞) of the sequence {(xν , yν)}: any such a (x∞, y∞) is a

critical point of L [defined in ( 3.44 )].

3.5.2 Convergence under the K L property

We now strengthen the subsequence convergence result in Theorem  3.5.1 , under the ad-

ditional assumption that F is a K L function [ 113 ], [ 114 ]: We prove that the entire sequence
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{xν} converges to a critical point of F (cf. Theorem  3.5.2 ), and establish asymptotic conver-

gence rates (cf. Theorem  3.5.3 ). We extend the analysis developed in [ 115 ], [ 128 ] for central-

ized first-order methods to our distributed setting and complement it with a rate analysis.

The major difference with [  115 ] is that the sufficient decent condition postulated in [ 115 ]

is neither satisfied by the objective value sequence {F (xν)} (as requested in [ 115 ]), due to

consensus and gradient tracking errors, nor by the Lyapunov function sequence {L(xν , yν)},

which instead satisfies ( 3.45 ). A key step to cope with this issue is to establish necessary

connections between ∇L(x, y) and d(x, y) (defined in ( 3.44 ) and ( 3.46 ), respectively)–see

Lemma  3.53 and Proposition  3.5.1 .

3.5.2.1 Convergence analysis

We begin proving the following abstract intermediate results similar to [ 115 ] but extended

to our distributed setting, which is at the core of the subsequent analysis; we still assume

d = 1 without loss of generality.

Proposition 3.5.1. In the setting of Theorem  3.5.1 , let L defined in ( 3.44 ) is K L at some

ź , (x́, ý). Denote by Vź, η, and φ : [0, η) → R+ the objects appearing in Definition  3.3.1 .

Let ρ > 0 be such that B(ź, ρ)2md ⊆ Vź. Consider the sequence {zν , (xν , yν)} generated

by the DOGT Algorithm ( 3.25 ), with initialization z0 , (x0, y0); and define ĺ , L(ź) and

lν , L(zν). Suppose that

ĺ < lν < ĺ + η, ∀ν ≥ 0, (3.58)

and

KM φ(l0 − ĺ) +
∥∥∥z0 − ź

∥∥∥ < ρ, (3.59)

where

K =
√

3(1 + Lc) max
 4nK2

||

1− ρ̃R
,

K2
||

κ(1− ρ̃C)

(
α + 2

√
m

1 + Lc

)2

, α2/Γ
1/2

, (3.60)

and M > 0 is defined in ( 3.53 ) (cf. Lemma  3.5.3 ).

Then, {zν} satisfies:
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(i) zν ∈ B(ź, ρ)2md, for all ν ≥ 0;

(ii) ∑ν
t=k

∥∥∥zt+1 − zt
∥∥∥ ≤ KM

(
φ(lk − ĺ)− φ(lν+1 − ĺ)

)
for all ν, k ≥ 0 and ν ≥ k;

(iii) lν → ĺ, as ν →∞.

Proof. Throughout the proof, we will use the following shorthand dν , d(xν , yν). Let

dν > 0, for all integer ν ≥ 0; otherwise, {xν} converges in a finite number of steps, and its

limit point is x∞ = 1θ∞, for some θ∞ ∈ crit F .

We first bound the “length” ∑ν
t=k

∥∥∥zt+1 − zt
∥∥∥. By ( 3.25 ), there holds

xν+1 − xν = (R− I) (xν − 1x̄ν)− α (yν − cȳν)− αcȳν ,

yν+1 − yν = (C − I) (yν − cȳν) +∇Fc(xν+1)−∇Fc(xν).

Using ||A||2 ≤
√
m||A||∞ and ||A||2 ≤

√
m||A||1, with A ∈ Mm(R); and ||R− I||∞ ≤ 2 and

||C − I||1 ≤ 2, we get

ν∑
t=k

∥∥∥xt+1 − xt
∥∥∥ ≤ ν∑

t=k
2
√
m
∥∥∥xt − 1x̄t

∥∥∥+ α
∥∥∥yt − cȳt∥∥∥+ α|ȳt|,

ν∑
t=k

∥∥∥yt+1 − yt
∥∥∥ ≤ ν∑

t=k
2
√
m
∥∥∥yt − cȳt∥∥∥+ Lc

ν∑
t=k

∥∥∥xt+1 − xt
∥∥∥,

where Lc is the Lipschitz constant of ∇Fc. The above inequalities imply

ν∑
t=k

∥∥∥zt+1 − zt
∥∥∥

≤
ν∑
t=k

2(1 + Lc)
√
mK||

∥∥∥xt − 1x̄t
∥∥∥R +K||

(
α(1 + Lc) + 2

√
m
) ∥∥∥yt − cȳν∥∥∥C

+ α(1 + Lc)|ȳt| ≤ K
ν∑
t=k

dt,

(3.61)

where K is defined in ( 3.60 ).

91



We prove now the proposition, starting from statement (ii). Multiplying both sides of

( 3.45 ) by φ(lν− ĺ) and using φ(lν− ĺ) > 0 [due to property (iii) in Definition  3.3.1 and (  3.58 )]

and the concavity of φ, yield

(dν)2 φ(lν − ĺ) ≤ φ(lν − ĺ)
(
lν − lν+1

)
≤ φ(lν − ĺ)− φ(lν+1 − ĺ). (3.62)

For all z ∈ Vź ∩ [ĺ < L < ĺ + η], the K L inequality ( 3.7 ) holds; hence, assuming zt ∈

B(ź, ρ)2md for all t = 0, . . . , ν, yields

φ(lt − ĺ)||∇L(zt)|| ≥ 1, t = 0, . . . , ν, (3.63)

which together with (  3.62 ) and ( 3.53 ) (cf. Lemma  3.5.3 ), gives

M
(
φ(lt − ĺ)− φ(lt+1 − ĺ)

)
≥ dt, t = 0, . . . , ν,

and thus

M
(
φ(lk − ĺ)− φ(lν+1 − ĺ)

)
≥

ν∑
t=k

dt. (3.64)

Combining ( 3.64 ) with (  3.61 ), we obtain

ν∑
t=k

∥∥∥zt+1 − zt
∥∥∥ ≤ KM

(
φ(lk − ĺ)− φ(lν+1 − ĺ)

)
. (3.65)

Ineq. ( 3.65 ) proves (ii) if zν ∈ B(ź, ρ)2md for all ν ≥ 0, which is shown next.

Now let us prove statement (i). Letting k = 0 in ( 3.65 ), by ( 3.59 ), we obtain

∥∥∥zν+1 − ź
∥∥∥ ≤ KM

(
φ(l0 − ĺ)− φ(lν+1 − ĺ)

)
+
∥∥∥z0 − ź

∥∥∥ < ρ.

Therefore, zν ∈ B(ź, ρ)2md, for all ν ≥ 0.

We finally prove statement (iii). Inequalities ( 3.53 ) (cf. Lemma  3.5.3 ) and ( 3.63 ) imply

φ(lν − ĺ) dν ≥ 1/M, ν ≥ 0. (3.66)
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On the other hand, by Lemma  3.5.2 -(i), as ν →∞, we have lν → p, for some p ≥ ĺ. In fact,

p = ĺ, otherwise p − ĺ > 0, which would contradict ( 3.66 ) (because dν → 0 as ν → ∞ and

φ(p− ĺ) <∞).

Roughly speaking, Proposition  3.5.1 states that, if the algorithm is initialized in a suitably

chosen neighborhood of a point at which L satisfies the K L property, then it will converge to

that point. Combining this property with the subsequence convergence proved in Theorem

 3.5.2 we can obtain global convergence of the sequence to critical points of F , as stated next.

Theorem 3.5.2. Consider the setting of Theorem  3.5.1 , and furthermore assume that F is

real-analytic. Any sequence {(xν , yν)} generated by the DOGT Algorithm ( 3.25 ) converges

to some (x∞, y∞) ∈ crit L. Furthermore, x∞ = 1⊗ θ∞, for some θ∞ ∈ crit F .

Proof. Let z∞ , (x∞, y∞) be a limit point of {zν , (xν , yν)}. Since {lν , L(zν)} is conver-

gent (cf. Lemma  3.5.2 ) and L is continuous, we deduce lν → l∞ , L(z∞). Since F is real-

analytic, L is real analytic (due to Lemma  3.5.1 and the fact that summation/composition

of functions preserve real-analytic property [ 129 , Prop. 2.2.8]) and thus K L at at z∞ [ 113 ].

Set ź = z∞ and ĺ = l∞; denote by Vź, η, and φ : [0, η) → R+ the objects appearing in

Definition  3.3.1 ; and let ρ > 0 be such that B(ź, ρ)2md ⊆ Vź. By the continuity of φ and the

properties above, we deduce that there exists an integer ν0 such that i) lν ∈ (ĺ, ĺ+ η), for all

ν ≥ ν0; and ii) K M φ(lν0 − ĺ) +
∥∥∥zν0 − ź

∥∥∥ < ρ, with K and M defined in ( 3.60 ) and ( 3.53 ),

respectively. Global convergence of the sequence {zν} follows by applying Proposition  3.5.1 

to the sequence {zν+ν0}.

Finally, by Lemma  3.5.2 (ii), d(xν , yν) → 0 as ν → ∞. Invoking the continuity of ∇L

and Lemma  3.5.3 , we have ∇L(x∞, y∞) = 0, thus (x∞, y∞) ∈ crit L. By Theorem  3.5.1 (ii),

x∞ = 1⊗ θ∞, with θ∞ ∈ crit F .

In the following theorem, we provide some convergence rate estimates.

Theorem 3.5.3. In the setting of Theorem  3.5.2 , let L be a K L function with φ(s) = cs1−θ,

for some constant c > 0 and θ ∈ [0, 1). Let {zν , (xν , yν)} be a sequence generated by

DOGT Algorithm ( 3.25 ). Then, there hold:

(i) If θ = 0, {zν} converges to z∞ in a finite number of iterations;
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(ii) If θ ∈ (0, 1/2], then ||zν − z∞|| ≤ Cτ ν, for all ν ≥ ν̄ for some τ ∈ [0, 1), ν̄ ∈ N+,

C > 0;

(iii) If θ ∈ (1/2, 1), then ||zν − z∞|| ≤ Cν−
1−θ

2θ−1 , for all ν ≥ ν̄ for some ν̄ ∈ N+, C > 0.

Proof. For sake of simplicity of notation, denote dν , d(xν , yν) and define Dν ,
∑∞
t=ν d

t.

By (  3.61 ), we have ∥∥∥zν+1 − z∞
∥∥∥ ≤ ∞∑

t=ν

∥∥∥zt+1 − zt
∥∥∥≤KDν . (3.67)

It is then sufficient to establish the convergence rates for the sequence {Dν}.

By K L inequality ( 3.7 ) and ( 3.53 ), we have

Mdνφ(lν − l∞) ≥ 1 =⇒ M̃(dν)(1−θ)/θ ≥ (lν − l∞)1−θ, ∀ν ≥ ν̄ (3.68)

for sufficiently large ν̄, where M̃ = (Mc(1− θ))(1−θ)/θ, lν , L(zν), and l∞ , L(z∞). In

addition, by (  3.64 ) (setting ĺ = l∞), we have Dν ≤ Mφ(lν − l∞) = Mc(lν − l∞)1−θ, which

together with ( 3.68 ), yields

Dν ≤ M̃Mc(dν)(1−θ)/θ = M̃Mc(Dν −Dν+1)(1−θ)/θ, ∀ν ≥ ν̄. (3.69)

The convergence rate estimates as stated in the theorem can be derived from (  3.69 ), using

the same line of analysis introduced in [  128 ]. The remaining part of the proof is provided in

Appendix  3.8.3 for completeness.

3.5.3 Second-order guarantees

We prove that the DOGT algorithm almost surely converges to SoS solutions of ( 3.1 ),

under a suitably chosen initialization and some additional conditions on the weight matrices

R and C. Following a path first established in [ 88 ] and further developed in [ 89 ], the key

to our argument for the non-convergence to strict saddle points of F lies in formulating

the DOGT algorithm as a dynamical system while leveraging an instantiation of the stable

manifold theorem, as given in [ 89 , Theorem 2]. The nontrivial task is finding a self-map

representing DOGT so that the stable set of the strict saddles of F is zero measure with
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respect to the domain of the mapping; note that the domain of the map–which is the set of

initialization points–is not full dimensional and is the same as the support of the probability

measure.

Our analysis is organized in the following three steps: 1) Sec.  3.5.3.1 introduces the

preparatory background; 2) Sec.  3.5.3.2 tailors the results of Step 1 to the DOGT algorithm;

and 3) finally, Sec.  3.5.3.3 states our main results about convergence of the DOGT algorithm

to SoS solutions of ( 3.1 ).

3.5.3.1 The stable manifold theorem and unstable fixed-points

Let g : S → S be a mapping from S to itself, where S is a manifold without boundary.

Consider the dynamical system uν+1 = g(uν), with u0 ∈ S; we denote by gν the ν-fold

composition of g. Our focus is on the analysis of the trajectories of the dynamical system

around the fixed points of g; in particular we are interested in the set of unstable fixed points

of g. We begin introducing the following definition.

Definition 3.5.1 (Chapter 3 of [ 130 ]). The differential of the mapping g : S → S, denoted

as Dg(u), is a linear operator from T (u) → T (g(u)), where T (u) is the tangent space of S

at u ∈ S. Given a curve γ in S with γ(0) = u and dγ
dt

(0) = v ∈ T (u), the linear operator is

defined as Dg(u)v = d(g◦γ)
dt

(0) ∈ T (g(u)). The determinant of the linear operator det(Dg(u))

is the determinant of the matrix representing Dg(u) with respect to a standard basis. 

3
 

We can now introduce the definition of the set of unstable fixed points of g.

Definition 3.5.2 (Unstable fixed points). The set of unstable fixed points of g is defined as

Ag =
{
u : g(u) = u, spradii

(
Dg(u)

)
> 1

}
. (3.70)

The theorem below, which is based on the stable manifold theorem [ 131 , Theorem III.7],

provides tools to let us connect Ag with the set of limit points which {uν} can escape from.
3

 ↑ This determinant may not be uniquely defined, in the sense of being completely invariant to the basis used
for the geometry. In this work, we are interested in properties of the determinant that are independent of
scaling, and thus the potentially arbitrary choice of a standard basis does not affect our conclusions.
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Theorem 3.5.4 ([ 89 , Theorem 2]). Let g : S → S be a C1 mapping and

det (Dg(u)) 6= 0, ∀u ∈ S.

Then, the set of initial points that converge to an unstable fixed point (termed stable set of

Ag) is zero measure in S. Therefore,

Pu0

(
lim
ν→∞

gν(u0) ∈ Ag
)

= 0,

where the probability is taken over the starting point u0 ∈ S.

3.5.3.2 DOGT as a dynamical system

Theorem  3.5.4 sets the path to the analysis of the convergence of the DOGT algorithm

to SoS solutions of F : it is sufficient to describe the DOGT algorithm by a proper mapping

g : S → S satisfying the assumptions in the theorem and such that the non-convergence of

gν(u0), u0 ∈ S, to Ag implies the non-convergence of the DOGT algorithm to strict saddles

of F .

We begin rewriting the DOGT in an equivalent and more convenient form. Define hν ,

yν −∇Fc(xν); (  3.25 ) can be rewritten as


xν+1 = WRx

ν − α (hν +∇Fc(xν)) ;

hν+1 = WCh
ν + (WC − I)∇Fc(xν),

(3.71)

with arbitrary x0 ∈ Rmd and h0 ∈ span(WC − I). By Theorem  3.5.1 , every limit point

(x∞, h∞) of {(xν , hν)} has the form x∞ = 1m ⊗ θ∞ and h∞ = −∇Fc(1m ⊗ θ∞), for some

θ∞ ∈ crit F . We are interested in the non-convergence of (  3.71 ) to such points whenever

θ∞ ∈ crit F is a strict saddle of F . This motivates the following definition.
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Definition 3.5.3 (Consensual strict saddle points). Let Θ∗ss = {θ∗ ∈ crit F : λmin(∇2F (θ∗)) <

0} denote the set of strict saddles of F . The set of consensual strict saddle points is defined

as

U∗ ,


 1m ⊗ θ∗

−∇Fc(1m ⊗ θ∗)

 : θ? ∈ Θ∗ss

 . (3.72)

Roughly speaking, U∗ represents the candidate set of “adversarial” limit points which

any sequence generated by ( 3.71 ) should escape from. The next step is then to write ( 3.71 )

as a proper dynamical system whose mapping satisfies conditions in Theorem  3.5.4 and its

set of unstable fixed points Ag is such that U∗ ⊆ Ag.

Identification of g and S. Define u , (x, h), where x , [x>1 , . . . , x>m]>, h , [h>1 , . . . , h>m]>,

and each xi, hi ∈ Rd; its value at iteration ν is denoted by uν , (xν , hν). Consider the

dynamical system

uν+1 = g(uν), with g (u) ,

 WRx− α∇Fc (x)− αh

WCh+ (WC − I)∇Fc (x)

 , (3.73)

and u0 ∈ Rmd × span(WC − I). The fixed-point iterate ( 3.73 ) describes the trajectory

generated by the DOGT algorithm (  3.71 ). However, the initialization imposed by DOGT

leads to a g that maps Rmd × span(WC − I) into Rmd × Rmd. We show next how to unify

the domain and codomain of g to a subspace S ⊆ Rmd × Rmd as in form of the mapping in

Theorem  3.5.4 .

Applying ( 3.71 ) telescopically to the update of the h-variables yields: hν = W ν
Ch

0 +

(WC − I) gνacc, for all ν ≥ 1, where gνacc ,
∑ν−1
t=0 W

t
C∇Fc (xν−t−1). Denoting h̄ν , (1>m⊗Id)hν ,

we have

h̄ν = · · · = h̄0, and hν ∈ W ν
Ch

0 + span (WC − I) ∀ν ≥ 1. (3.74)

The initialization h0 ∈ span (WC − I) in (  3.71 ) naturally suggests the following (2m −

1)m-dimensional linear subspace as candidate set S:

S , Rmd × span (WC − I) . (3.75)
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Such an S also ensures that g : S → S. In fact, by (  3.74 ), hν ∈ span(WC − I), for all ν ≥ 1,

provided that h0 ∈ span (WC − I). Therefore, {gν(u0)} ⊆ S, for all u0 ∈ S.

Equipped with the mapping g in ( 3.73 ) and S defined in ( 3.75 ), we check next that the

condition in Theorem  3.5.4 is satisfied; we then prove that U∗ ⊆ Ag.

1) g is a diffeomorphism: To establish this property, we add the following extra

assumption on the weight matrices R and C, which is similar to Assumption  3.4.2 for the

DGD scheme.

Assumption 3.5.2. Matrices R ∈Mm(R) and C ∈Mm(R) are nonsingular.

The above condition is not particularly restrictive and it is compatible with Assumption

 3.5.1 . A rule of thumb is to choose R = (R̃ + I)/2 and C = (C̃ + I)/2, with R̃ and C̃

satisfying Assumption  3.5.1 . The new matrices still satisfy Assumption  3.5.1 due to the

following fact:

given two nonnegative matrices A,B ∈ Mm(R), if the directed graph associated with

matrix A has a spanning tree and B ≥ ρA, for some ρ > 0, then the directed graph associated

with matrix B has a spanning tree as well.

We build now the differential of g. Let g̃ be a smooth extension of (  3.73 ) to Rmd ×Rmd,

that is g = g̃|S . The differential Dg̃(u) of g̃ at u ∈ S reads

Dg̃(u) =

 WR − α∇2Fc(x) −αI

(WC − I)∇2Fc(x) WC

 ; (3.76)

Dg̃(u) is related to the differential of g by Dg(u) = Dg̃(u)PT (u) [ 132 ], where PT (u) is the

orthogonal projector onto T (u). Using T (u) = S, for all u ∈ S (recall that S is a linear

subspace) and denoting by Uh ∈ Rmd×(m−1)d an orthonormal basis of span(WC − I), Dg(u)

reads

Dg(u) =

 WR − α∇2Fc(x) −αI

(WC − I)∇2Fc(x) WC

UU>, with U ,

I 0

0 Uh

 . (3.77)

Note that PS = UU>. We establish next the conditions for g to be a C1 diffeomorphism, as

stated in Theorem  3.5.4 .
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Proposition 3.5.2. Consider the mapping g : S → S defined in ( 3.73 ), under Assumptions

 3.3.1 -(i),  3.5.1 , and  3.5.2 , with S defined in ( 3.75 ). If the step-size is chosen according to

0 < α <
σmin(CR)

Lc
, (3.78)

where Lc = Lmax, then det (Dg(u)) 6= 0, for all u ∈ S.

Proof. Since Dg(u) : S → S, it is sufficient to verify that Dg(u) is an invertible linear

transformation for every u ∈ S. Using the definition of U , this is equivalent to show that

UTDg(u)U is invertible, for all u ∈ S. Invoking (  3.77 ), U>Dg(u)U reads

U>Dg(u)U =U>Dg̃(u)U =

 WR − α∇2Fc(x) −αUh
U>h (WC − I)∇2Fc(x) UT

hWCUh

 . (3.79)

Since U>h WCUh is non-singular, we can use the Schur complement of U>Dg(u)U with respect

to U>h WCUh and write

U>Dg(u)U = S1

WR − α∇2Fc(x) + αΦ (WC − I)∇2Fc(x) 0

0 U>h WCUh

S2, (3.80)

where Φ , Uh
(
U>h WCUh

)−1
U>h , and S1 and S2 are some nonsingular matrices. By ( 3.80 ),

it is sufficient to show that

S ,WR − α∇2Fc(x) + αΦ (WC − I)∇2Fc(x)

=WR − αW−1
C ∇2Fc(x) + α

(
Φ−W−1

C

)
(WC − I)∇2Fc(x)

(3.81)

is non-singular. Using WC − I = Uh∆, for some ∆ ∈ R(m−1)d×md (recall that Uh is an

orthonormal basis of span(WC − I)), we can write

Φ =Uh
(
U>h WCUh

)−1
U>h = Uh (I + ∆Uh)−1 U>h

(a)= UhU
>
h − Uh∆ (I + Uh∆)−1 UhU

>
h

=UhU
>
h − (WC − I)W−1

C UhU
>
h = W−1

C UhU
>
h ,

(3.82)
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where (a) we used the Woodbury identity of inverse matrices. Using ( 3.82 ) in ( 3.81 ), we

obtain
S =WR − αW−1

C ∇2Fc(x)− αW−1
C

(
I − UhU>h

)
(WC − I)︸ ︷︷ ︸

=0

∇2Fc(x).

Therefore, if α < σmin(CR)
Lc

, S is invertible, and consequently, so is U>Dg(u)U .

2) The consensual strict saddle points are unstable fixed points of g (U∗ ⊆ Ag):

First of all, note that every limit point of the sequence generated by ( 3.71 ) is a fixed point of

g on S; the converse might not be true. The next result establishes the desired connection

between the set Ag of unstable fixed points of g (cf. Definition  3.5.2 ) and the set U∗ of

consensual strict saddle points (cf. Definition  3.5.3 ). This will let us infer the instability of

U∗ from that of Ag.

Proposition 3.5.3. Suppose that Assumptions  3.3.1 -(i) and  3.5.1 hold along with one of

the following two conditions

(i) The weight matrices R and C are symmetric;

(ii) d = 1.

Then, any consensual strict saddle point is an unstable fixed point of g, i.e.,

U∗ ⊆ Ag, (3.83)

with Ag and U∗ defined in ( 3.70 ) and ( 3.72 ), respectively.

Proof. Let u∗ ∈ U∗; u∗ is a fixed point of g defined in ( 3.73 ). It is thus sufficient to show

that Dg(u∗) has an eigenvalue with magnitude greater than one.

To do so, we begin showing that the differential Dg̃(u∗) of g̃ at u∗ has an eigenvalue

greater than one. Using ( 3.76 ), Dg̃(u∗) reads

Dg̃(u∗) =

 WR − α∇2F ∗c −αI

(WC − I)∇2F ?
c WC

 , (3.84)
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where we defined the shorthand ∇2F ∗c , ∇2Fc (1⊗ θ∗), and θ∗ ∈ Θ∗ss. We need to prove

det (Dg̃(u∗)− λuI) = 0, for some |λu| > 1. (3.85)

If |λu| > 1, WC − λuI is nonsingular (since spradii(C) = 1). Using the Schur complement of

Dg̃(u∗)− λuI with respect to WC − λuI, we have

Dg̃(u∗)− λuI = S̃1

(Dg̃(u∗)− λuI) / (WC − λuI) 0

0 WC − λuI

 S̃2, (3.86)

for some S̃1, S̃2 ∈ M2md(R), with det(S̃1) = det(S̃2) = 1. Given ( 3.86 ), ( 3.85 ) holds if and

only if

det

WR − λuI − α∇2F ?
c + α (WC − λuI)−1 (WC − I)∇2F ∗c 0

0 WC − λuI

 = 0,

or equivalently

det
(
WR − λuI − α∇2F ∗c + α (WC − λuI)−1 (WC − I)∇2F ∗c

)
= 0. (3.87)

Multiplying both sides of ( 3.87 ) by det(WC − λuI) yields

Q(λu) , det
(

(WC − λuI) (WR − λuI) + α(λu − 1)∇2F ∗c︸ ︷︷ ︸
,T (λu)

)
= 0. (3.88)

Trivially Q(λu) > 0, if λu � 1. Therefore, to show that ( 3.85 ) holds, it is sufficient to prove

that there exists some λu > 1 such that Q(λu) ≤ 0. Next, we prove this result under either

condition (i) or (ii).

Suppose (i) holds; R and C are symmetric. Define υ̃ , 1 ⊗ υ, where υ is the unitary

eigenvector associated with a negative eigenvalue of ∇2F (θ∗), and let λmin(∇2F (θ∗)) = −δ;

we can write

υ̃>T (λu)υ̃ = m(λu − 1) (λu − 1− αδ/m) < 0, (3.89)
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for all 1 < λu < 1 + αδ/m. By Rayleigh-Ritz theorem, T (λu) has a negative eigenvalue,

implying that there exists some real value λ̄u > 1 such that Q(λ̄u) = 0.

Suppose now that conditions (ii) holds; WR and WC reduce to R and C, respectively.

Note that R and C are now not symmetric. Let λu = 1+ε, and consider the Taylor expansion

of

Q(1 + ε) = det
(

(C − I) (R− I) + ε
(
α∇2F ∗c + 2I − C −R

)
+ ε2I

)
, (3.90)

around ε = 0. Define M , (C − I) (R− I) and N , α∇2F ∗c + 2I − C − R. It is clear that

Q(1) = 0; then, by the Jacobi’s formula, we have

Q(1 + ε) = tr
(

adj (M)N
)
ε+O(ε2). (3.91)

Expanding ( 3.91 ) yields

Q(1 + ε) =tr
(

adj (R− I) adj (C − I)N
)
ε+O(ε2)

=tr
(

1r̃>c̃1>N
)
ε+O(ε2) = (r̃>c̃)1>N1ε+O(ε2),

(3.92)

where r̃ and c̃ are the Perron vectors of R and C, respectively. The second equality in ( 3.92 )

is due to the following fact: a rank-(m− 1) matrix A ∈Mm(R) has rank-1 adjugate matrix

adj (A) = ab>, where a and b are non-zero vectors belonging to the 1-dimensional null space

of A and A>, respectively [ 133 , Sec. 0.8.2]. We also have ζ̃ , r̃>c̃ > 0, due to Lemma  3.5.1 .

Furthermore, since θ∗ ∈ Θ∗ss, 1>∇2F ∗c 1 ≤ −δ, for some δ > 0, and

Q(1 + ε) ≤ −δζ̃αε+O(ε2), (3.93)

which implies the existence of a sufficiently small ε > 0 such that Q(1+ε) < 0. Consequently,

there must exist some λ̄u > 1 such that ( 3.85 ) holds. Moreover, such λ̄u is a real eigenvalue

of Dg̃(u∗).
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To summarize, we proved that there exists an eigenpair (λ̄u, vu) of Dg̃(u∗), with λ̄u > 1.

Next we show that (λ̄u, vu) is also an eigenpair of Dg(u∗). Let us partition vu , (vxu, vhu) such

that  WR − α∇2Fc (x∗) −αI

(WC − I)∇2Fc (x∗) WC


vxu
vhu

 = λ̄u

vxu
vhu

 . (3.94)

In particular, we have (WC − I)
(
∇2Fc (x∗) vxu + vhu

)
= (λ̄u − 1)vhu, which implies vhu ∈

span(WC − I), since λ̄u − 1 6= 0. Therefore, vu ∈ S.

Now, let PS be the orthogonal projection matrix onto S. Since vu ∈ S, we have

Dg̃(u∗)vu = λ̄uvu =⇒ Dg̃(u∗)P>S vu = λ̄uvu
(a)=⇒ Dg(u∗)vu = λ̄uvu, (3.95)

where (a) is due to Dg(u∗) = Dg̃(u∗)P>S [cf. ( 3.77 )]. Hence (λ̄u, vu) is also an eigenpair of

Dg(u∗), which completes the proof.

Remark 3.5.1. Note that condition (i) in Proposition  3.5.3 implies that GC and GR are

undirected graphs. Condition (ii) extends the network model to directed topologies under

assumption d = 1. For sake of completeness, we relax condition (ii) in Appendix  3.8.4 to

arbitrary d ∈ N, under extra (albeit mild) assumptions on the set of strict saddle points and

the weight matrices R and C.

3.5.3.3 DOGT likely converges to SoS solutions of ( 3.1 )

Combining Theorem  3.5.4 , Proposition  3.5.2 , and Proposition  3.5.3 , we can readily obtain

the following second-order guarantees of the DOGT algorithms.

Theorem 3.5.5. Consider Problem ( 3.1 ), under Assumptions  3.3.1 and  3.3.4 ; and let

{uν , (xν , hν)} be the sequence generated by the DOGT Algorithm ( 3.71 ) under the fol-

lowing tuning: i) the step-size α satisfies ( 3.49 ) [or ( 3.52 )] and ( 3.78 ); the weight matrices

C and R are chosen according to Assumptions  3.5.1 and  3.5.2 ; and the initialization is set to

u0 ∈ S, with S defined in ( 3.75 ). Furthermore, suppose that either (i) or (ii) in Proposition

 3.5.3 holds. Then, we have

Pu0

(
lim
ν→∞

uν ∈ U∗
)

= 0, (3.96)

103



where the probability is taken over u0 ∈ S.

In addition, if F is a K L function, then {xν} converges almost surely to 1⊗ θ∞ at a rate

determined in Theorem  3.5.3 , where θ∞ is a SoS solution of ( 3.1 ).

Note that ( 3.96 ) implies the desired second-order guarantees only when the sequence

{uν} convergences [i.e., the limit in ( 3.96 ) exists]; otherwise ( 3.96 ) is trivially satisfied, and

some limit point of {uν} can belong to U∗ with non-zero probability. A sufficient condition

for the required global convergence of {uν} is that F is a K L function, which is stated in the

second part of the above theorem.

Remark 3.5.2 (Comparison with [ 92 ]). As already discussed in Sec.  3.1.2 , the primal-dual

methods in [ 92 ] is applicable to ( 3.1 ); it is proved to almost surely converge to SoS solutions.

Convergence of [ 92 ] is proved under stricter conditions on the problem than DOGT, namely:

i) the network must be undirected; and ii) the Hessian of each local fi must be Lipschitz

continuous. It does not seem possible to extend the analysis of [ 92 ] beyond this assumptions.

3.6 Numerical Results

In this section we test the behavior of DGD and DOGT around strict saddles on three

classes of nonconvex problems, namely: i) a quadratic function (cf. Sec.  3.6.1 ); ii) a classi-

fication problem based on the cross-entropy risk function using sigmoid activation functions

(cf. Sec.  3.6.2 ); and iii) a two Gaussian mixture model (cf. Sec.  3.6.3 ).

3.6.1 Nonconvex quadratic optimization

Consider

min
θ∈Rd

F (θ) = 1
2

m∑
i=1

(θ − bi)>Qi (θ − bi) , (3.97)

where d = 20; m = 10; bi’s are i.i.d Gaussian zero mean random vectors with standard

deviation 103; and Qi’s are d × d randomly generated symmetric matrices where ∑m
i=1Qi

has d− 1 eigenvalues {λi}d−1
i=1 uniformly distributed over (0,m], and one negative eigenvalue

λd = −mδ, with δ = 0.01. Clearly ( 3.97 ) is an instance of Problem ( 3.1 ), with F having a

unique strict saddle point θ∗ = (∑i Qi)−1∑
i Qibi. The network of m agents is modeled as a
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Figure 3.1. Escaping properties of DGD and DOGT, applied to Problem
( 3.97 ). Left plot: distance of the average iterates from θ∗ projected onto the
unstable manifold Eu versus the number of iterations. Right plot: distance of
the average iterates from θ∗ versus the number of iterations.

ring; the weight matrix W , {wij}mi,j=1, compliant to the graph topology, is generated to be

doubly stochastic.

To test the escaping properties of DGD and DOGT from the strict saddle of F , we

initialize the algorithms in a randomly generated neighborhood of θ∗. More specifically,

every agent’s initial point is x0
i = θ∗ + δx,i, i ∈ [m]. In addition, for the DOGT algorithm,

we set y0
i = ∇fi(x0

i ) + (wii − 1)δy,i + ∑
j 6=iwijδy,j, where δx,i’s and δy,i’s are realizations of

i.i.d. Gaussian random vectors with standard deviation equal to 1. Both algorithms use the

same step-size α = 0.99σmin(I +W )/Lc, with Lc = maxi{|λi|}; this is the largest theoretical

step-size guaranteeing convergence of the DGD algorithm (cf. Theorem  3.4.1 ).

In the left panel of Fig.  3.1 , we plot the distance of the average iterates x̄ν = (1/m)∑m
i=1 x

ν
i

from the critical point θ∗ projected on the unstable manifold Eu = span(uu), where uu is

the eigenvector associated with the negative eigenvalue λd = −mδ. In the right panel, we

plot ‖x̄ν − θ∗‖ versus the number of iterations. All the curves are averaged over 50 inde-

pendent initializations. Figure in the left panel shows that, as predicted by our theory, both

algorithms almost surely escapes from the unstable subspace Eu, at an indistinguishable

practical rate. The right panel shows that DOGT gets closer to the strict saddle; this can
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be justified by the fact that, differently from DGD, DOGT exhibits exact convergence to

critical points.

3.6.2 Bilinear logistic regression

Consider a classification problem with distributed training data set {si, ξi}mi=1, where

si ∈ Rd is the feature vector associated with the binary class label ξi ∈ {0, 1}. The bilinear

logistic regression problem [  121 ] aims at finding the bilinear classifier ζi(Q,w; si) = s>i Qw,

with Q ∈ Rd×p and w ∈ Rp that best separates data with distinct labels. Let (si, ξi) be

private information for agent i. Using the sigmoid activation function σ(x) , 1/(1 + e−x)

together with the cross-entropy risk function, the optimization problem reads

min
Q,w

− 1
m

m∑
i=1

[
ξi ln

(
σ(s>i Qw)

)
+ (1− ξi) ln

(
1− σ(s>i Qw)

)]
+ τ

2

(∥∥∥Q∥∥∥2
F +

∥∥∥w∥∥∥2
)
. (3.98)

It is not difficult to show that ( 3.98 ) is equivalent to the following instance of (  3.1 ):

min
Q,w

F (Q,w) =
m∑

i=1

1
m

[
− ln

(
σ(ξ̃is

>
i Qw)

)
+ τ

2

(∥∥∥Q∥∥∥2
F +

∥∥∥w∥∥∥2
)]

︸ ︷︷ ︸
=fi(Q,w)

, (3.99)

with

ξ̃i ,

 −1, if ξi = 0;

1, if ξi = 1.

To visualize the landscape of F (Q,w) (2D plot), we consider the following setting for the

free parameters. We set d = p = 1; τ = 0.2; m = 5; and we generate uniformly random

ξ̃i ∈ {0, 1}, and we draw si from a normal distribution with mean ξi and variance 1. The

gradient of the local loss fi reads

∇Qfi(Q,w)

∇wfi(Q,w)

 = 1
m

τQ− ξ̃isiwσ(−ξ̃isiQw)

τw − ξ̃isiQσ(−ξ̃isiQw)

 .

A surface plot of F (Q,w) in the above setting is plotted in the right panel of Fig.  3.2 . Note

that such F has three critical points, two of which are local minima (see the location of

106



-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
DOGT

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
DOGT
DGD

Figure 3.2. Escaping properties of the DGD and DOGT, applied to the
bilinear logistic regression problem (  3.98 ). Top left (resp. top right) plot:
directed (resp. undirected) network; trajectory of the average iterates on the
contour of F ((0, 0) is the strict saddle point and × are the local minima);
DGD and DOGT are initialized at � and terminated after 100 iterations at ∗.
Bottom plot: plot of F .

minima in the left or middle panel of Fig.  3.2 marked by ×) and one strict saddle point at

(0, 0)–the Hessian at (0, 0),

∇2F (0, 0) =

 τ − 1
2m
∑

i ξ̃isi

− 1
2m
∑

i ξ̃isi τ

 ,

has an eigenvalue at τ − 1
2m
∑

i ξ̃isi = −0.26.

We test DGD and DOGT over a network of m = 5 agents; for DGD we considered

undirected graphs whereas we run DOGT on both undirected and directed graphs. Both
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algorithms are initialized at the same random point and terminated after 100 iterations;

the step-size is set to α = 0.9. We denote by Qν
i and wνi the agent i’s ν-the iterate of the

local copies of Q and w, respectively. The trajectories of the average iterates (Q̄ν , w̄ν) ,
1
m

(∑i Q
ν
i ,
∑

iw
ν
i ) are plotted in Fig.  3.2 ; the left panel refers to the directed graph while the

middle panel reports the same results for the undirected network. As expected, the DOGT

algorithm converges to an exact critical point (local minimum) avoiding the strict saddle

(0, 0) while DGD converges to a neighborhood of the local minimum. The consensus error is

1/m
√∑m

i=1 ||(Qν
i , w

ν
i )− (Q̄ν , w̄ν)||2; at the termination, it reads 2.33× 10−4 for DOGT over

the directed network, and 2.18 × 10−4 and 9.74 × 10−2 for DOGT and DGD, respectively,

over undirected networks.

3.6.3 Gaussian mixture model

Consider the Gaussian mixture model defined in Sec.  3.3 . The data {zi}mi=1 where zi ∈ Rd

are realizations of the mixture model zi ∼ 1
2N (µ1,Σ1) + 1

2N (µ2,Σ2). Let each agent i own

zi. Both parameters (µ1, µ2) and (Σ1,Σ2) are unknown. The goal is to approximate (µ1, µ2)

while (Σ1,Σ2) is set to an estimate (Σ̃, Σ̃). The problem reads

min
θ1,θ2∈Rd

−
m∑

i=1
log (φd(zi − θ1) + φd(zi − θ2)), (3.100)

where φd(θ) is the d-dimensional normal distribution with mean 0 and covariance Σ̃. Consider

the case of mixture of two scalar Gaussians, i.e., d = 1. We draw {zi}5
i=1 from the the this

model, with means µ1 = 0, µ2 = −5 and variance σ1 = σ2 = 25. The estimate of variance in

problem ( 3.100 ) is pessimistically set to σ̃ = 1. A surface plot of a random instance of above

problem is depicted in right panel of Fig.  3.3 . Note that this instance of problem has 2 global

minima (marked by ×) and multiple local minima. We test DGD and DOGT on the above

problem over the same networks as described in Sec.  3.6.2 . Both algorithms are initialized

at the same random point and terminated after 250 iterations; the step-size is set to α = 0.1.

In Fig.  3.3 , we plot the trajectories of the average iterates (θ̄ν1 , θ̄ν2) , 1
m

(∑i θ
ν
1,i,
∑

i θ
ν
2,i), where

θν1,i and θν2,i are the agent i’s ν-the iterate of the local copies of θ1 and θ2, respective; the left
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Figure 3.3. Escaping properties of the DGD and DOGT applied to the Gaus-
sian mixture problem ( 3.100 ). Top left (resp. top right) plot: directed (resp.
undirected) network; trajectory of the average iterates on the contour of F
(the global minima are marked by ×); DGD and DOGT are initialized at �
and terminated after 250 iterations at ∗. Bottom plot: plot of F .

(resp. middle) panel refers to the undirected (resp. directed) network. DOGT converges to

the global minimum while DGD happens to converge to neighborhood of a local minima. The

consensus error is measured by (1/m)
√∑m

i=1 ||(θν1,i, θν2,i)− (θ̄ν1 , θ̄ν2)||2 and at the termination it

is equal to 1.9× 10−3 for DOGT on the directed graph; and 2.8× 10−3 and 1.135 for DOGT

and DGD, respectively over the undirected graph.

3.7 Conclusions

We proposed the first second-order distributed algorithm for convex and strongly convex

problems over meshed networks with global communication complexity bounds which, up

to the network dependent factor Õ(1/
√

1− ρ), (almost) match the iteration complexity of
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centralized second-order method [ 134 ] in the regime when the desired accuracy is moderate.

We showed that this regime is reasonable when one considers ERM problems for which there

is no need to optimize beyond the statistical error. Importantly, our method avoids expensive

communications of Hessians over the network and keeps the amount of information sent in

each communication round similar to first-order methods.

This work is just a starting point towards a theory of second-order methods with perfor-

mance guarantees on meshed networks under statistical similarity; many questions remain

open. An obvious one is incorporating acceleration to improve communication complexity

bounds under statistical similarity. A first attempt towards this goal is the follow-up work

[ 135 ], where an accelerated second-order method exploiting statistical similarity has been

analyzed for master/workers architectures. The extension to arbitrary graphs remains an

open problem. Second, our main goal here has been decreasing communications, which does

not guarantee optimal oracle (computational) complexity–this is because we did not take

advantage of the finite-sum structure of the local optimization problems. Stochastic opti-

mization algorithms equipped with Variance Reduction (VR) techniques have been proved

to be quite effective to obtain cheaper iterations while preserving fast convergence [  136 ],

[ 137 ]. However, these methods do not exploit any statistical similarity, resulting in less fa-

vorable communication complexity whenever β/µ � Q/µ. It would be then interesting to

investigate whether VR techniques can improve both communication and oracle complexity

when statistical similarity is explicitly employed in the algorithmic design.

3.8 Appendix

3.8.1 On the problems satisfying Assumption  3.3.3 

We prove that all the functions arising from the examples in Sec.  3.3 satisfy Assumption

 3.3.3 , for sufficiently large R and R−ε. To do so, for each function, we establish lowerbounds

implying 〈∇fi(θ), θ/
∥∥∥θ∥∥∥〉 → ∞ as ||θ|| → ∞.
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a) Distributed PCA: Let us expand the objective function in ( 3.9 ) as

F (θ) =1
4tr

(
θθ>θθ>

)
− 1

2tr
(
θ>

m∑
i=1

Miθ

)
+ 1

4tr
(

m∑
i=1

M>
i

m∑
i=1

Mi

)

=
m∑

i=1

1
4

{ 1
m

∥∥∥θθ>∥∥∥2

F
− 2tr

(
θ>Miθ

)}
︸ ︷︷ ︸

,fi(θ)

+1
4tr

(
m∑

i=1
M>

i

m∑
i=1

Mi

)
.

We have 〈
∇fi(θ), θ/

∥∥∥θ∥∥∥〉 =
〈 1
m
θθ>θ −Miθ, θ

〉
/
∥∥∥θ∥∥∥

= 1
m

∥∥∥θθ>∥∥∥2
F/
∥∥∥θ∥∥∥− θ>Miθ/

∥∥∥θ∥∥∥
≥ 1
mK4

2,4

∥∥∥θ∥∥∥3 − σmax(Mi)
∥∥∥θ∥∥∥,

for some K2,4 > 0, where in the last inequality we used the equivalence of `4 and `2 norms,

i.e. ||θ||2 ≤ K2,4||θ||4,∀θ ∈ Rd.

b) Phase retrieval: It is not difficult to show that for the objective function in ( 3.10 ),

it holds 〈
∇fi(θ), θ/

∥∥∥θ∥∥∥〉 =
(
||a>i θ||2 − yi

)
||a>i θ||2/

∥∥∥θ∥∥∥+ λ
∥∥∥θ∥∥∥

=
(
||a>i θ||2 − yi/2

)2
/
∥∥∥θ∥∥∥− y2

i

4
∥∥∥θ∥∥∥ + λ

∥∥∥θ∥∥∥.
c) Matrix sensing: Consider the objective function in ( 3.10 ). It is not difficult to show

that 〈
∇fi(Θ),Θ/

∥∥∥Θ∥∥∥F〉 =
(
tr
(
Θ>AiΘ

)
− yi

)
tr
(
Θ>AiΘ

)
/
∥∥∥Θ∥∥∥F + λ

∥∥∥Θ∥∥∥F
=tr

(
Θ>AiΘ

)2
/
∥∥∥Θ∥∥∥F − yitr

(
Θ>AiΘ

)
/
∥∥∥Θ∥∥∥F + λ

∥∥∥Θ∥∥∥F
=
(
tr
(
Θ>AiΘ

)
− yi/2

)2
/
∥∥∥Θ∥∥∥F − y2

i

4
∥∥∥Θ∥∥∥F + λ

∥∥∥Θ∥∥∥F .
d-f) We prove the property only for the Gaussian mixture model; similar proof applies

also to the other classes of problems. Denote θ = (θd)qd=1. Since φd is a bounded function,

we have

〈∇θdfi(θd), θd〉 ≥ −Cd + λ
∥∥∥θd∥∥∥2,

for some Cd > 0. Hence,
〈
∇θfi(θ), θ/

∥∥∥θ∥∥∥〉 ≥ −C/∥∥∥θ∥∥∥+ λ
∥∥∥θ∥∥∥, with C = ∑

dCd.
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3.8.2 Convergence of DGD without L−smoothness of fi’s

We sketch here how to extend the convergence results of DGD stated in Sec.  3.4 to the

case when the gradient of the agents’ loss functions is not globally Lipschitz continuous (i.e.

removing Assumption  3.3.1 (i)). Due to the space limitation, we prove only the counterpart

of Theorem  3.4.1 ; the other results in Sec.  3.4 can be extended following similar arguments.

We begin introducing some definitions. Under Assumptions  3.3.3 and  3.4.1 , define the

set Ỹ , Y + Bmdb , with Y = L̄ ∪∏m
i=1 BdR and

L̄ = LFc
(

max
x0

i ∈B
d
R,i∈[m]

{
m∑

i=1
fi(x0

i )
}

+ R2

αb

)
, (3.101)

where
αb = min

i∈[m]
min{εDii/h, 2Diiδ(R− ε)/h2} > 0,

h = max
i∈[m],z∈BdR

||∇fi(z)||, and b = max
α∈[αb,1],θ∈Y

||∇Lα(θ)||.
(3.102)

Note that, under Assumption  2.1’(ii) , Y and Ỹ are compact. Hence, ∇Fc is globally Lipschitz

on Ỹ , and so is ∇Lα; we denote such Lipschitz constants as L̃∇Fc and L̃∇Lα , respectively; it

is not difficult to check that

L̃∇Lα = L̃∇Fc + 1− σmin(D)
αb

. (3.103)

The following result replaces Theorem  3.4.1 in the above setting.

Theorem 3.8.1. Consider Problem ( 3.1 ), under Assumptions  2.1’(ii) ,  3.3.3 and  3.3.4 . Let

{xν} be the sequence generated by DGD in ( 3.15 ) under Assumption  3.4.1 , with x0
i ∈ BdR, i ∈

[m] and 0 < α < ᾱmax , σmin(I +D)/L̃∇Fc. Then, same conclusions of Theorem  3.4.1 hold.

Proof. It is sufficient to show that {xν} ⊆ Y ; the rest of the proof follows similar steps as

those in [ 111 , lemma 2] replacing Lc with L̃∇Fc .

When α < αb, {xν} ⊆ Y can be proved leveraging the same arguments used in the proof

of Lemma  3.4.2 . Therefore, in the following, we consider only the case αb ≤ α < σmin(I +
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D)/L̃∇Fc , with αb < σmin(I + D)/L̃∇Fc . We prove by induction. Clearly x0 ∈ LLα(Lα(x0))

and, by ( 3.20 ) (cf. Lemma  3.4.2 ),

LLα(Lα(x0)) ⊆ L̄ ⊆ Y , ∀α ∈ [αb, 1].

Assume LLα(Lα(xν)) ⊆ Y . Since xν ∈ Y , there hold xν+1 = xν − α∇Lα(xν) ∈ Ỹ and

θxν + (1 − θ)xν+1 ∈ Ỹ , for all θ ∈ [0, 1]. Invoking the descent lemma on Lα at xν+1 [recall

that Lα is L̃∇Lα-smooth on Ỹ ], we have:

Lα(xν+1) ≤ Lα(xν)− α
(
σmin(I +D)− αL̃∇Fc

2

)∥∥∥∇Lα(xν)
∥∥∥2 ≤ Lα(xν). (3.104)

Therefore, LLα(Lα(xν+1)) ⊆ LLα(Lα(xν)) ⊆ Y , which completes the induction.

3.8.3 Proof of Theorem  3.5.3 : Supplement

We first show that, if there exists some ν0 such that dν0 = 0, zν = zν0 , for all ν ≥ ν0

[see updates in ( 3.25 )]; this means that {zν} converges in finitely many iterations. Define

D , {ν : dν 6= 0} and take ν in D. Let θ = 0, then the K L inequality yields ||∇L(xν , yν)|| ≥

1/c, for all ν ∈ D. This together with ( 3.45 ) and Lemma  3.5.3 , lead to lν+1 ≤ lν − 1/(Mc)2,

which by Assumption  3.3.1 -(ii), implies that D must be finite and {zν} converges in a finite

number of iterations.

Consider ( 3.69 ). Let θ ∈ (0, 1/2], then (1−θ)/θ ≥ 1. Since Dν → 0 as ν →∞ [by Lemma

 3.5.2 -(ii)], there exists a sufficiently large ν0 such that (Dν −Dν+1)(1−θ)/θ ≤ Dν −Dν+1. By

( 3.69 ), we have

Dν+1 ≤ M̃Mc− 1
M̃Mc

Dν ,

which proves case (ii).

Finally, let us assume θ ∈ (1/2, 1), then θ/(1− θ) > 1. Eq. ( 3.69 ) implies

1 ≤ M̄(Dν −Dν+1)
(Dν)θ/(1−θ)
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where M̄ = (MM̃c)θ/(1−θ). Define h : (0,+∞) → R by h(s) , s−
θ

1−θ . Since h is monotoni-

cally decreasing over [Dν+1, Dν ], we get

1 ≤ M̄(Dν −Dν+1)h(Dν) ≤ M̄
∫ Dν

Dν+1
h(s)ds = M̄

1− θ
1− 2θ

(
(Dν)p − (Dν+1)p

)
, (3.105)

with p = 1−2θ
1−θ < 0. By ( 3.105 ) one infers that there exists a constant µ > 0 such that

(Dν+1)p − (Dν)p ≥ µ. The following chain of implications then holds: (Dν+1)p ≥ µν +

(D1)p =⇒ Dν+1 ≤ (µν + (D1)p)1/p =⇒ Dν+1 ≤ C0ν
1/p, for some constant C0 > 0. This

proves case (iii).

3.8.4 Extension of Proposition  3.5.3 

We relax conditions (i)-(ii) of Proposition  3.5.3 under the following additional mild as-

sumptions on the set of strict saddle points and the weight matrices R and C.

Assumption 3.8.1. There exists δ > 0 such that λmin(∇2F (θ∗)) ≤ −δ, for all θ∗ ∈ Θ∗ss
(Θ∗ss is the set of strict saddle of F , cf. Definition  3.5.3 ).

Assumption 3.8.2. The matrices R and C are chosen according to

R = R̃ + (t− 1)I
t

, C = C̃ + (t− 1)I
t

,

for some t ≥ 1, and some matrices R̃ and C̃ satisfying Assumption  3.5.1 .

Note that R and C satisfy Assumption  3.5.1 as well. The main result is given in Propo-

sition  3.8.1 . Before proceeding, we recall the following result on spectral variation of non-

normal matrices.

Theorem 3.8.2. [ 138 , Theorem VIII.1.1] For arbitrary d × d matrices A and B, it holds

that

s (σ(A), σ(B)) ≤ (‖A‖+ ‖B‖)1−1/d ‖A−B‖1/d

with

s (σ(A), σ(B)) , max
j

min
i
|αi − βj|,
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where α1, . . . , αd and β1, . . . , βd are the eigenvalues of A and B, respectively.

Following the same reasoning as in the proof of proposition, it is sufficient to show that

for any u∗ ∈ U∗, the Jacobian matrix (recall from eq. ( 3.84 ))

Dg̃(u∗) =

 WR − α∇2F ∗c −αI

(WC − I)∇2F ?
c WC

 ,
has an eigenvalue with absolute value strictly greater than 1; proving that such eigenpair is

also a member of σ(Dg(u∗)) follows equivalent steps as in the proof of proposition and thus

is omitted. Decompose Dg̃(u∗) as

Dg̃(u∗) =

I − α∇2F ∗c −αI

0 I


︸ ︷︷ ︸

,Q

+ 1
t

 W̃R − I 0

(W̃C − I)∇F ?
c W̃C − I


︸ ︷︷ ︸

,Pt

, (3.106)

where W̃R , R̃ ⊗ Id and W̃C , C̃ ⊗ Id. Eq. (  3.106 ) reads the Jacobian matrix Dg̃(u∗)

as a variation of Q by perturbation Pt. For any u∗ ∈ U∗, the spectrum of Q consists of

m · d counts of 1 along with the eigenvalues of I − α∇2F ∗c , which contains a real eigenvalue

λ1 ≥ 1 + αδ/(md), since θ∗ ∈ Θ∗ss . Theorem  3.8.2 guarantees that the spectrum variation

of any perturbed arbitrary non-normal matrices is bounded by the norm of the perturbation

matrix. Thus it is sufficient to show that the perturbed λ1, as a member of σ(Dg̃(u∗)), is

strictly greater than 1.

Applying Theorem  3.8.2 gives the following sufficient conditions: denote d̃ , 2md,

(‖Q+ Pt‖+ ‖Q‖)1−1/d̃ ‖Pt‖1/d̃ < 2αδ/d̃. (3.107)

By sub-additivity of the matrix norm, it is sufficient for ( 3.107 ) that

(‖Pt‖+ 2‖Q‖)1−1/d̃ ‖Pt‖1/d̃ ≤ αδ

d̃
. (3.108)
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Since each ∇fi is Lipschitz continuous (cf. Assumption  3.3.1 ), there exist constants CQ > 0

and CP > 0 such that maxu∗∈U∗ ‖Q‖ ≤ CQ and maxu∗∈U∗ ‖Pt‖ ≤ CP/t. It is not difficult to

show that a sufficient condition for ( 3.108 ) is

t ≥ (CP + 2CQ)d̃−1CP

(αδ/d̃)d̃
, d̃ = 2md. (3.109)

Proposition 3.8.1. Let Assumptions  3.5.1 and  3.8.1 hold, and matrices R and C be chosen

according to Assumption  3.8.2 , with t satisfying ( 3.109 ). Then, any consensual strict saddle

point is an unstable fixed point of g, i.e., U∗ ⊆ Ag, with Ag and U∗ defined in ( 3.70 ) and

( 3.72 ), respectively.

Note that above proposition ensures U∗ ⊆ Ag under ( 3.109 ) and given step-size α. Con-

vergence of the sequence is proved under ( 3.52 ) and (  3.78 ) for the step-size α. However,

( 3.52 ) may not hold for some large t (there can be instances where the set of step-size satis-

fying conditions ( 3.109 ) and ( 3.52 ) is empty). Hence, when d > 1, the statement in Theorem

 3.5.5 is conditioned to the convergence of the algorithm.
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Part II

Distributed Convex Optimization
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4. DECENTRALIZED FIRST-ORDER ALGORITHMS FOR

(STRONGLY) CONVEX OPTIMIZATION OVER

(TIME-VARYING) NETWORKS

In this chapter, we study a general form of constrained non-smooth optimization over net-

works:
min
x

U(x) , 1
m

m∑
i=1

fi(x)︸ ︷︷ ︸
F (x)

+G(x)

s.t. x ∈ K,

(4.1)

where fi : Rd → R is the loss function of agent i, assumed to be smooth and convex

while F is strongly convex on K; G : Rd → R is a nonsmooth convex function on K; and

K ⊆ Rd represents the set of common convex constraints. Each fi is known to the associated

agent only. Agents are connected through a communication network, modeled as a graph,

possibly directed and/or time-varying. The goal is to cooperatively solve ( 4.1 ) by exchanging

information only with their immediate neighbors.

Our focus pertains to such a design in two possible settings (one being a special case of

the other) [ 139 ]: 1) The scenario where no significant relationship can be assumed among

the local functions fi–this is what the literature of distributed optimization has extensively

studied, and will be refereed to as the unrelated setting—and 2) the case where the fi’s are

related, e.g., because they reflect statistical similarity in the data residing at different nodes.

For instance, in the distributed ERM problem above, when data are i.i.d. among machines,

one can show that quantities such as the gradients and Hessian matrices of the local functions

differ only by β = O(1/
√
n), due to concentrations of measure effects [ 140 ], [ 141 ]–we will

refer to this as β-related setting (cf. Sec.  4.1.1.2 ). If properly exploited in the algorithmic

design, such similarity can speed up the optimization/learning process over general purpose

optimization algorithms.

Centralized algorithms Problem ( 4.1 ) in the two settings above has been extensively

studied in the centralized environment, including star-networks wherein there is a master
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node connected to all the other workers. Our interest is in the following (non-accelerated)

algorithms:

1) Unrelated setting: ( 4.1 ) can be solved on star-networks employing the standard proxi-

mal gradient method: to reach precision ε > 0 on the objective value, one needsO
(
κg log(1/ε)

)
iterations (which is also the number of communication rounds between the master and the

workers), where κg is the condition number of F .

2) β-related setting: When the agents’ functions fi are sufficiently similar, a linear rate

proportional to κg may be highly suboptimal. For instance, in the extreme case where all

fi’s are identical (β = 0), the number of iterations/communications to an ε > 0 solution

would remain the same as for β = O(L). In fact, when 1 + β/µ < κg, faster rates can be

obtained exploiting the similarity of the fi’s. Specifically, [ 140 ] proposed DANE: a mirror-

descent type algorithm over star-networks, where each worker i replaces the quadratic term

in its local proximal-gradient update with the Bregman divergence of the reference function

fi + β/2‖ • ‖2; and the master averages the solutions of the workers. DANE is applicable

to (  4.1 ) with G = 0: For quadratic losses, it achieves an ε-solution in O
(
(β/µ)2 · log(1/ε)

)
iterations/communications (it is assumed β/µ ≥ 1) while no improvement is proved over the

proximal gradient if the fi’s are not quadratic. More recently, [ 142 ] proposed CEASE, which

achieves DANE’s rate for ( 4.1 ) with G 6= 0 and nonquadratic losses. Using recent results in

[ 143 ], it is not difficult to check that the mirror-descent algorithm implemented at the master

(thus without averaging workers’ iterates) with the Bregman divergence of f1 + β/2‖ • ‖2

(f1 is the local function at the master) achieves an ε > 0 solution in Õ
(
β/µ · log(1/ε)

)
iterations/communications, improving thus on DANE/CEASE’s rates.

A natural question is whether similar results–in particular the dependence of the rate on

global optimization parameters as obtained on star-networks in the unrelated and β-related

settings–are achievable over general network topologies, possibly time-varying and directed.

The literature of distributed algorithms over general network topologies–albeit vast–do not

provide a satisfactory answer, leaving a gap between rate results over star networks and what

has been certified over general graphs–see Sec  4.0.2 for a review of the state of the art. In

a nutshell, (i) there are no distributed schemes provably achieving linear rate for (  4.1 ) with

G 6= 0 and/or constraints (cf. Table  4.1 ). Furthermore, even considering the unconstrained
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minimization of F (i.e., G = 0 and K = Rd), (ii) linear convergence is certified at a rate

depending on much larger quantities than the global condition number κg–see Table  4.2 ;

and (iii) when 1 + β/µ < κg (β-related setting), no rate improvement is provably achieved

by existing distributed algorithms. These are much more pessimistic rate dependencies than

what achieved over star-topologies. The goal is to close exactly this gap.

4.0.1 Major contributions

Our major results are summarized next.

1. We provide the first linear convergence rate analysis of a distributed algorithm, SONATA

(Successive cONvex Approximation algorithm over Time-varying digrAphs) [ 144 ], ap-

plicable to the composite, constrained formulation ( 4.1 ) over (time-varying, directed)

graphs. It combines the use of surrogate functions in the agents’ subproblems with a

perturbed (push-sum) consensus mechanism that aims at locally tracking the gradient

of F . Surrogate functions replace the more classical first order approximation of the

local fi’s, which is the omnipresent choice in current distributed algorithms, offering

the potential to better suit the geometry of the problem. For instance, (approximate)

Newton-type subproblems or mirror descent-type updates naturally fit our surrogate

models; they are the key enabler of provably faster rates in the β-related setting. We

comment SONATA’s rates below (cf. Table  4.3 ).

2. Unrelated setting (Table  4.3 ): When the network is sufficiently connected or it has

a star-topology, SONATA reaches an ε-solution on the objective value inO
(
κg log(1/ε)

)
iterations/communications, which matches the rate of the centralized proximal-gradient

algorithm. For arbitrary network connectivity, the same iteration complexity is achieved

at the cost of O((1−ρ)−1/2) rounds of communications per iteration (employing Cheby-

shev acceleration), where ρ ∈ [0, 1) is the second largest eigenvalue modulus of the

mixing matrix. Our rates improve on those of existing distributed algorithms which

show a much more pessimistic dependence on the optimization parameters and are

proved under more restrictive assumptions–contrast Table  4.2 with Table  4.3 . Linear

rates over time-varying digraphs are reported in Table  4.4 (cf. Sec.  4.3.2 ).
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3. β-related setting (Table  4.3 ): When the agents’ functions are sufficiently similar

(specifically, 1+β/µ < κg), the use of a mirror descent-type surrogate over linearization

of the fi’s provably yields faster rates, at higher computation costs. This improves on

the rate of existing distributed algorithms, which are oblivious of function similarity (cf.

Table  4.2 ). Notice that this is achieved without exchanging any Hessian matrix over

the network but leveraging function homogeneity via surrogation. When customized

over star-topologies, SONATA’s rates improve on DANE/CEASE’s ones too.

Table 4.1. Existing linearly convergent distributed algorithms. SONATA is
the only scheme achieving linear rate in the presence of G in (  4.1 ) or con-
straints. The explicit expression of the rates of the above nonaccelerated
schemes (for which is available) is reported in Table  4.2 .

Algorithms [ 145 ]–[ 153 ] [  154 ]–[ 157 ] [ 126 ], [  158 ]–[ 161 ] SONATA

Problem:
F (smooth) each fi scvx each fi scvx F scvx F scvx

G (nonsmooth) X

constraints K X

Network:
time-varying only [ 153 ] only [ 126 ], [  161 ] X

digraph X only [  126 ], [  161 ] X

4.0.2 Related works

Early works on distributed optimization aimed at decentralizing the (sub)gradient algo-

rithm. The Distributed Gradient Descent (DGD) was introduced in [ 69 ] for unconstrained

instances of ( 4.1 ) and in [ 165 ] for least squares, bot over undirected graphs. A refined conver-

gence rate analysis of DGD [ 69 ] can be found in [ 166 ]. Subsequent variants of DGD include

the projected (sub)gradient algorithm [ 167 ] and the push-sum gradient consensus algorithm

[ 168 ], the latter implementable over digraphs. While different, the updates of the agents’

variables in the above algorithms can be abstracted as a combination of one (or multiple)

consensus step(s) (weighted average with neighbors variables) and a local (sub)gradient de-

scent step, controlled by a step-size (in some schemes, followed by a proximal operation). A

diminishing step-size is used to reach exact consensus on the solution, converging thus at a
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Table 4.2. Linear rate of existing non-accelerated algorithms over undirected
graphs: communications rounds to reach ε > 0 accuracy; Li and µi are the
smoothness and strong convexity constants of fi’s, respectively; Lmx , maxiLi,
µmn , mini µi; and ρ ∈ [0, 1) is the second largest eigenvalue modulus of
the mixing matrix [cf. ( 4.27 )]. The rates above include the quantities κl, κ̂,
and κ̆ rather than the much desirable global condition number κg , L/µ (L
and µ are the smoothness and strong convexity constants of F , respectively).
Furthermore, they are independent on β, implying that faster rates are not
certified when 1 + β/µ < κg (β-related setting).

Algorithm Problem Linear rate: O
(
δ log(1/ε)

)
EXTRA [ 146 ] F δ = O

( κ2
`

1−ρ
)
, κ` = Lmx

µmn

DIGing [  126 ], [ 159 ] F δ = κ̂1.5

(1−ρ)2 , κ̂ , Lmx
(1/m)

∑
i µi

Harnessing [  145 ] F δ = κ2
`

(1−ρ)2

NIDS [  151 ], ABC [ 162 ] F δ = max
{
κ`,

1
1−ρ

}
Exact Diffusion [ 160 ] F δ = κ̄2

1−ρ , κ̄ , Lmx
µmx

Augmented Lagrangian
[ 150 ] F δ = κ`

1−ρ

ADMM [ 149 ] F
κ4
`

1−ρ

sublinear rate. With a fixed step-size α, linear rate of the iterates is achievable, but it can

only converge to a O(α)-neighborhood of the solution [ 69 ], [  166 ].

Several subsequent attempts have been proposed to cope with this speed-accuracy dilemma,

leading to algorithms converging to the exact solution while employing a constant step-size.

Based upon the mechanism put forth to cancel the steady state error in the individual gra-

dient direction, existing proposals can be roughly organized in three groups, namely: i)

primal-based distributed methods leveraging the idea of gradient tracking [ 73 ], [ 126 ], [ 145 ],

[ 154 ]–[ 156 ], [ 169 ]–[ 174 ]; ii) distributed schemes using ad-hoc corrections of the local opti-

mization direction [ 146 ], [ 157 ], [ 175 ]; and iii) primal-dual-based methods [  147 ]–[ 150 ], [ 164 ].

We elaborate next on these works, focusing on schemes achieving linear rate– Table  4.1 orga-

nizes these schemes based upon the setting their convergence is established while Table  4.2 

reports the explicit expression of the rates.
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Table 4.3. Summary of convergence rates of SONATA over undirected graphs:
number of communication rounds to reach ε-accuracy. In the table, β is the
homogeneity parameter measuring the similarity of the loss functions fi’s (cf.
Definition  5.1.4 ); the other quantities are defined as in Table  4.2 . The extra
averaging steps are performed using Chebyshev acceleration [ 163 ], [ 164 ]. The
Õ notation hides log dependence on κg and β/µ (see Sec.  4.2.4.2 for the ex-
act expressions). Rates over time-varying directed graphs are summarized in
Table  4.4 (cf. Sec.  4.3.2 ).

Surrogate Communication Rounds Extra Averaging ρ (network) β

linearization
O (κg log (1/ε)) 7

ρ = O(κ−1
g (1 + β

L
)−2)

or

star-networks

arbitrary

Õ
(

κg√
1− ρ log(1/ε)

)
3 arbitrary arbitrary

local fi

O (1 · log (1/ε)) 7

ρ = O
((

1 + β
µ

)−2 (
κg + β

µ

)−2
)

or

star-networks
β ≤ µ

Õ
(

1√
1− ρ log(1/ε)

)
3 arbitrary

O
(
β

µ
· log (1/ε)

)
7

ρ = O
((

1 + L
β

)−1 (
κg + β

µ

)−1
)

or

star-networks
β > µ

Õ
(

β/µ√
1− ρ0

· log(1/ε)
)

3 arbitrary

i) Gradient-tracking-based methods: In these schemes, each agent updates its own

variables along a direction that tracks the global gradient ∇F . This idea was proposed

independently in the NEXT algorithm [  169 ], [  170 ] for Problem ( 4.1 ) and in AUG-DGM

[ 73 ] for strongly convex, smooth, unconstrained optimization. The work [ 176 ] introduced

SONATA, extending NEXT over (time-varying) digraphs. A convergence rate analysis of

[ 73 ] was later developed in [ 126 ], [ 145 ], [ 177 ], with [ 126 ] considering also (time-varying)

digraphs. Other algorithms based on the idea of gradient tracking and implementable over

digraphs are ADD-OPT [ 172 ] and [ 154 ]. Subsequent schemes, [ 155 ], the Push-Pull [ 156 ],

and the AB [ 161 ] algorithms, relaxed previous conditions on the mixing matrices used in
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the consensus and gradient tracking steps over digraphs, which neither need to be row- nor

column-stochastic. All the schemes above but NEXT and SONATA are applicable only to

smooth, unconstrained instances of (  4.1 ), with each fi strongly convex. This latter assumption

is restrictive in some applications, such as distributed machine learning, where not all fi are

strongly convex but F is so.

ii) Ad-hoc gradient correction-based methods: These methods developed specific

corrections of the plain DGD direction. Specifically, EXTRA [ 146 ] and its variant over di-

graphs, EXTRA-PUSH [ 157 ], introduce two different weight matrices for any two consecutive

iterations as well as leverage history of gradient information. They are applicable only to it

smooth, unconstrained problems; when each fi is strongly convex, they generate iterates that

converge linearly to the minimizer of F . To deal with an additive convex nonsmooth term in

the objective, [ 178 ] proposed PG-EXTRA, which is thus applicable to (  4.1 ) over undirected

graphs, possibly with different local nonsmooth functions. However, linear convergence

is not certified. A different approach is to use a linearly increasing number of consensus

steps rather than correcting directly the gradient direction; this has been studied in [ 175 ] for

unconstrained minimization of smooth, strongly convex fi’s over undirected graphs.

iii) Primal-dual methods: A common theme of these schemes is employing a prima-

dual reformulation of the original multiagent problem whereby dual variables associated to a

properly defined (augmented) Lagrangian function serve the purpose of correcting the plain

DGD local direction. Examples of such algorithms include: i) distributed ADMM meth-

ods [ 149 ], [ 179 ] and their inexact implementations [  147 ], [ 158 ]; ii) distributed Augmented

Lagrangian-based methods with randomized primal variable updates [ 150 ]; and iii) a dis-

tributed dual ascent method employing tracking of the average of the primal variable [ 153 ].

All these schemes are applicable only to smooth, unconstrained optimization over undirected

graphs, with [ 153 ] handling time-varying graphs. The extension of these methods to digraphs

seems not straightforward, because it is not clear how to enforce consensus via constraints

over directed networks.

To summarize, the above literature review shows that currently there exists no distributed

algorithm for the general formulation ( 4.1 ) that provably converges at linear rate to the exact

solution, in the presence of a nonsmooth function G or constraints (cf. Table  4.1 ); let alone
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mentioning digraphs. Furthermore, when it comes to the dependence of the rate on the

optimization parameters, Table  4.3 shows that, even restricting to unconstrained, smooth

minimization, SONATA’s rates improve on existing ones–in particular, SONATA provably

obtains fast convergence if the agents’ objective functions (e.g., data) are sufficiently similar.

Concurrent works While this work was under peer-review process and publicly avail-

able in [  180 ], a few other related technical reports appeared online [ 181 ]–[ 183 ], which we

briefly discuss next. The authors in [ 181 ] studied a class of distributed proximal gradient-

based methods to solve Problem ( 4.1 ) with G 6= 0, over undirected, static, graphs. The

algorithms reach an ε-solution in O
(
κ̆(1− ρ)−1 log(1/ε)

)
iterations/communications, where

κ̆ , Lmx/µ. The authors in [ 182 ] proposed an inexact distributed projected gradient descent

method for the unconstraint minimization of F and proved a communication complexity of

Õ
(
κg (1 − ρ)−1 log2(1/ε)

)
(Õ hides a log-dependence on L2

max/µ
2), which is determined by

the global condition number κg; the algorithm runs over time-varying, undirected, graphs

(as long as they are connected at each iteration). SONATA’s rates compare favorably with

those above. Furthermore, since both schemes [ 181 ] and [ 182 ] are gradient-type methods,

unlike SONATA, their performance cannot benefit from function similarity, resulting in con-

vergence rates independent on β. On the other hand, [ 183 ] explicitly considered the β-related

setting, and proposed Network-DANE, a decentralization of the DANE algorithm. It turns

out that Network-DANE is a special case of SONATA; there are however some important

differences in the convergence analysis/results. First, convergence in [  183 ] is established only

for the unconstrained minimization of F (G = 0 and K = Rd) over undirected graphs, with

each fi assumed to be strongly convex. Second, convergence rates therein are more pes-

simistic than what predicted by our analysis. In fact, the best communication complexity of

Network-DANE reads Õ
(
(1 + (β/µ)2)(1− ρ)−1/2 log(1/ε)

)
for quadratic fi’s and worsens to

Õ
(
κ`(1+β/µ)(1−ρ)−1/2 log(1/ε)

)
for nonquadratic losses. Note that the latter is of the order

of the worst-case rate of first-order methods, which do not benefit from function similarity.

A direct comparison with Table  4.3 , shows that SONATA’ rates exhibit a better dependence

on the optimization parameters (κg vs. κ`) and β/µ in all scenarios. In particular, in the

β-related setting, SONATA retains faster rates, even when fi’s are nonquadratic.
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4.1 Problem & Network Setting

This section summarizes the assumptions on the optimization problem and network set-

ting. We also introduce a general learning problem over networks, which will be used as case

study throughout the chapter.

4.1.1 Assumptions on Problem ( 4.1 )

Our algorithmic design and convergence results pertain to two problem settings, namely:

i) the one where the local functions fi are generic and unrelated (cf. Sec.  4.1.1.1 ), and ii) the

case where they are related (cf. Sec.  4.1.1.2 ). These two settings are formally introduced

below.

4.1.1.1 The unrelated setting

Consider the following standard assumption.

Assumption 4.1.1 (On Problem (  4.1 )). 4.1.1.1 The set ∅ 6= K ⊆ Rd is closed and convex;

4.1.1.2 Each fi : O → R is twice differentiable on the open set O ⊇ K and convex;

4.1.1.3 F satisfies

µI � ∇2F (x) � LI, ∀x ∈ K,

with µ > 0 and 0 < L <∞;

4.1.1.4 G : K → R is convex possibly nonsmooth.

Note that  4.1.1 .3 together with  4.1.1 .2 imply

µiI � ∇2fi(x) � LiI, ∀x ∈ K, ∀i ∈ [m], (4.2)

for some µi ≥ 0 and 0 < Li < ∞. Unlike existing works (cf. Table  4.1 ), we do not require

each fi to be strongly convex but just F (cf.  4.1.1 .3). Also, twice differentiability of fi is not

really necessary, but assumed here to simplify our derivations.
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Under Assumption  4.1.1 , we define the global conditional number associated to ( 4.1 ):

κg ,
L

µ
. (4.3)

Related quantities determining the (linear) convergence rate of existing distributed algo-

rithms are (cf. Table  4.2 ):

κ` ,
Lmx

µmn
, κ̂ ,

Lmx

(1/m)∑i µi
, κ̆ ,

Lmx

µ
, and κ̄ ,

Lmx

µmx
, (4.4)

where

Lmx , max
i=1,...,m

Li, µmn , min
i=1,...,m

µi, and µmx , max
i=1,...,m

µi. (4.5)

When µi = 0, we set κ` = ∞. It is not difficult to check that κg can be much smaller than

κ̆, κ̄, κ̂ and κ`, as shown in the following example.

Example 1: Consider the following instance of Problem (  4.1 ):

fi(x) = 1
2x
> (aI +m · b diag(ei))x, F (x) = 1

m

m∑
i=1

fi(x) = a + b
2 ‖x‖2,

G = 0, and K = Rd, where ei is the i-th canonical vector, and a, b are some positive

constants. We have µi = a, Li = a +m · b, and µ = L = a + b. Therefore,

κ`
κg

= κ̂

κg
= κ̄

κg
= 1 +m · b

a
and κ̆

κg
= 1 +m · b/a

1 + b/a
,

which all grow indefinitely as b/a or m increase. �

In the setting above, our goal is to design linearly convergent distributed algorithms

whose iterations complexity is proportional to κg, instead of the larger quantities in ( 4.4 ).

4.1.1.2 The β-related setting

This setting considers explicitly the case where the functions fi are similar, in the sense

defined below [ 139 ].
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Definition 4.1.1 (β-related fi’s). The local functions fi’s (satisfying Assumption  4.1.1 ) are

called β-related if ‖∇2F (x)−∇2fi(x)‖2 ≤ β, for all x ∈ K and some β ≥ 0.

The more similar the fi’s, the smaller β. For arbitrary fi’s, β is of the order of

β ≤ max
i=1,...,m

sup
x∈K, ‖u‖=1

∣∣∣u> (∇2F (x)−∇2fi(x)u
)∣∣∣ ≤ max

i=1,...,m
max {|L− µi|, |µ− Li|} . (4.6)

The interesting case is when 1 + β/µ << κg; a specific example is discussed next.

Example 2: Convex-Lipschitz-bounded learning problems over networks Con-

sider a stochastic learning setting whereby the ultimate goal is to minimize some population

objective

x? ∈ argmin
x∈H

F (x), with F (x) , Ez∼P [f(x; z)] , (4.7)

where f : O × Z → R is the loss function, assumed to be C2, convex (but not strongly

convex), and L-smooth on the open set O ⊃ H, for all z ∈ Z; H ⊆ Rd is the set of hypothesis

classes, assumed to be convex and closed; Z is the set of examples; and P is the (unknown)

distributed of z ∈ Z. Furthermore, we assume that any x? ∈ BB , {x : ‖x‖ ≤ B}, for some

0 < B <∞. This setting includes, for example, supervised generalized linear models, where

z = (w, y) and f(x; (w, y)) = `(φ(w)>x; y), for some (strongly) convex loss `(•; y) and feature

mapping φ. For instance, in linear regression, f(x; (w, y)) = (y − φ(w)>x)2, with φ(w) ∈ Rd

and y ∈ R; for logistic regression, we have f(x; (w, y)) = log(1 + exp(−y(φ(w)>x))), with

w ∈ Rd and y ∈ {−1, 1}.

To solve ( 4.7 ), the m agents have access only to a finite number, say N = nm, of i.i.d.

samples from the distribution P , evenly and randomly distributed over the network. Using

the notation introduced earlier, the ERM problem reads:

x̂ , argmin
x∈H

F̂ (x) , 1
m

m∑
i=1

fi(x;D(i)), fi(x;D(i)) = 1
n

n∑
j=1

f(x; z(i)
j ) + λ

2‖x‖
2, (4.8)

where fi is regularized empirical loss of agent i, λ-strongly convex. Clearly ( 4.8 ) is an instance

of ( 4.1 ), satisfying Assumption  4.1.1 .
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For the ERM problems ( 4.8 ) we derive next the associated β/µ and contrasts with κg.

F̂ is λ-strongly convex; therefore, we can set µ = λ. The optimal choice of λ is the one

minimizing the statistical error resulting in using x̂ as proxy for x?. We have [ 184 , Th. 7],

with high probability, F (x̂)− F (x?) ≤ λ
2‖θ

?‖2 +O
( G2

f

λN

)
≤ O

(
λB2 + G2

f

λN

)
, where Gf is the

Lipschitz constant of f(•; z) on H⋂BB, for all z ∈ Z. The optimal choice of λ and resulting

minimum error rate are then

λ = O
√ G2

B2N

 ⇒ F (x̂)− F (x?) ≤ O
√G2B2

N

 . (4.9)

An estimate of β can be obtained exploring the statistical similarity of the local empirical

losses fi in ( 4.8 ). Under the additional assumption that ∇2f(•; z) is M -Lipchitz on H, for

all z ∈ Z, a minor modification of [ 185 , Lemma 6] applied to ( 4.7 )-( 4.8 ), yields: with high

probability,

sup
x∈BB

∥∥∥∇2fi(x; z)−∇2F̂ (x)
∥∥∥ ≤ β, ∀z ∈ Z, i ∈ [m],

with

β =


Õ
(√

L2

n

)
, if M = 0;

Õ
(√

L2 d
n

)
, otherwise,

(4.10)

where Õ hides the log-factor dependence. Note that when f(•; z) is quadratic (i.e., M = 0),

β scales favorably with the dimension d.

Based on ( 4.9 )-( 4.10 ), an estimate of β/µ and κg for (  4.8 ) reads:

1 + β

µ
= 1 + Õ

(
L
√
dm

)
and κg = 1 + Õ

(
L
√
dmn

)
. (4.11)

Note that κg increases with the local sample size n while β/µ does not (neglecting log-factors).

It turns out that algorithms converging at a rate depending on κg exhibit a speed-accuracy

dilemma: small statistical errors in (  4.9 ) (larger n) are achieved at the cost of more iterations

(larger κg). In this setting, it is thus desirable to design distributed algorithms whose rate

depends on β/µ rather than κg.
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4.1.2 Network setting

We will consider separately two network settings: i) the case where the underlying com-

munication graph is fixed and undirected; and ii) the more general setting of time-varying

directed graphs.

Undirected, static graphs: When the network of the agent is modeled as a fixed, undirected

graph, we write G , (V , E), where V , {1, . . . ,m} denotes the vertex set–the set of agents–

while E , {(i, j) | i, j ∈ V} represents the set of edges–the communication links; (i, j) ∈ E iff

there exists a communication link between agent i and j.

Assumption 4.1.2 (On the network). The graph G is connected.

Directed, time-varying graphs In this setting, communication network is modeled as a

time-varying digraph: time is slotted, and at time-frame ν, the digraph reads Gν = (V , Eν),

where the set of edges Eν represents the agents’ communication links: (i, j) ∈ Eν there is

a link going from agent i to agent j. We make the following standard assumption on the

“long-term” connectivity property of the graphs.

Assumption 4.1.3 (On the network). The graph sequence {Gν}, ν = 0, 1, . . ., is B-

strongly connected, i.e., there exists a finite integer B > 0 such that the graph with edge

set ∪(ν+1)B−1
t=νB E t is strongly connected, for all ν = 0, 1, . . ..

The network setting covers, as special case, star-networks, i.e., architectures with a cen-

tralized node (a.k.a. master node) connected to all the others (a.k.a. workers). This is the

typical computational architecture of several federated learning systems.

4.2 The SONATA algorithm over undirected graphs

We recall here the SONATA/NEXT algorithm [ 144 ], [ 170 ], customized to undirected,

static, graphs. Each agent i maintains and updates iteratively a local copy xi ∈ Rd of the

global variable x, along with the auxiliary variable yi ∈ Rd, which estimates the gradient of F .

Denoting by xνi (resp. yνi ) the values of xi (resp. yi) at iteration ν = 0, 1, . . . , the SONATA

algorithms is described in Algorithm  2 . In words, each agent i, given the current iterates xνi
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Algorithm 2: SONATA over undirected graphs
Data: x0

i ∈ K and y0
i = ∇fi(x0

i ), i ∈ [m].
Iterate: ν = 1, 2, ...
[S.1] [Distributed Local Optimization] Each agent i solves

x̂νi , argmin
xi∈K

f̃i(xi;xνi ) +
(
yνi −∇fi(xνi )

)>
(xi − xνi )︸ ︷︷ ︸

F̃i(xi;xνi )

+G(xi), (4.12a)

and updates

x
ν+ 1

2
i = xνi + α · dνi , with dνi , x̂νi − xνi ; (4.12b)

[S.2] [Information Mixing] Each agent i computes
(a) Consensus

xν+1
i =

m∑
j=1

wijx
ν+ 1

2
j , (4.12c)

(b) Gradient tracking

yν+1
i =

m∑
j=1

wij
(
yνj +∇fj(xν+1

j )−∇fj(xνj )
)
. (4.12d)

end

and yνi , first solves a strongly convex optimization problem wherein F̃i is an approximation

of the sum-cost F at xνi ; f̃i in ( 4.12a ) is a strongly convex function, which plays the role of a

surrogate of fi (cf. Assumption  4.2.1 below) while yνi acts as approximation of the gradient

of F at xνi , that is, ∇F (xνi ) ≈ yνi (see discussion below). Then, agent i updates xνi along

the local direction dνi [cf. (  4.12b )], using the step-size α ∈ (0, 1]; the resulting point xν+1/2
i

is broadcast to its neighbors. The update xν+1/2
i → xν+1

i is obtained via the consensus step

( 4.12c ) while the y-variables are updated via the perturbed consensus ( 4.12d ), aiming at

tracking ∇F (xνi ).

The main assumptions underlying the convergence of SONATA are discussed next.

• On the subproblem ( 4.12a ) and surrogate functions f̃i The surrogate functions satisfy

the following conditions.

Assumption 4.2.1. Each f̃i : O ×O → R is C2 and satisfies
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Figure 4.1. Illustration of surrogate function f̃i

(i) ∇f̃i(x;x) = ∇fi(x), for all x ∈ K;

(ii) ∇f̃i(•;x) is L̃i-Lipschitz continuous on K, for all x ∈ K;

(iii) f̃i(•;x) is µ̃i-strongly convex on K, for all x ∈ K;

where ∇f̃i(x; z) is the partial gradient of f̃i at (x, z) with respect to the first argument.

The assumption states that f̃i should be regarded as a surrogate of fi that preserves at

each iterate xνi the first order properties of fi (see Fig.  4.1 ). Conditions (i)-(iii) are certainly

satisfied if one uses the classical linearization of fi, that is,

f̃i(xi;xνi ) = ∇fi(xνi )>(xi − xνi ) + τi

2 ‖xi − xνi ‖2, (4.13)

with τi > 0, which leads to the standard proximal-gradient update for x̂i. Note that if, in ad-

dition, G = 0 andK = Rd, ( 4.12a )–( 4.12c ) reduces to the standard (ATC) consensus/gradient-

tracking step (setting α = 1 and absorbing 1/τi into the common stepsize γ): xν+1
i =∑

jwij(xνi − γ yνi ) [ 73 ], [ 126 ], [ 145 ]. However, Assumption  4.2.1 allows us to cover a much

wider array of approximations that better suit the geometry of the problem at hand, en-
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hancing convergence speed. For instance, on the opposite side of (  4.13 ), we have a surrogate

retaining all the structure of fi, such as

f̃i(xi;xνi ) = fi(xi) + τi

2 ‖xi − xνi ‖2, (4.14)

with τi > 0. Using ( 4.14 ), one can rewrite ( 4.12a ) as:

x̂νi = argmin
xi∈K

(
1 · (∇fi(xνi ) + yνi )︸ ︷︷ ︸

∇g(xνi )

− (∇fi(xνi ) + τix
ν
i )︸ ︷︷ ︸

∇ω(xνi )

)>
xi +

(
fi(xi) + τi

2 ‖xi‖2
)

︸ ︷︷ ︸
ω(xi)

+G(xi), (4.15)

which can be interpreted as a mirror-descent update (with step-size one) for the composite

minimization of g(xi) , fi(xi) + (yνi )>(xi − xνi ), based on the Bregman distance associated

with the reference function ω(xi) , fi(xi) + τi/2‖xi‖2.

We refer the reader to [ 6 ], [ 186 ], [ 187 ] as good sources of examples of nonlinear surrogates

satisfying Assumption  4.2.1 ; here we only anticipate that, when the fi’s are sufficiently

similar, higher order models such as ( 4.14 ) yield indeed faster rates of SONATA than those

achievable using linear surrogates ( 4.13 ). Further intuition is provided next.

Under Assumption  4.2.1 , it is not difficult to check that, for every i ∈ [m], there exist

constants D`
i and Du

i , D`
i ≤ Du

i , such that

D`
i I � ∇2f̃i(x, y)−∇2F (x) � Du

i I, ∀x, y ∈ K; let Di , max{|D`
i |, |Du

i |}. (4.16)

For instance, ( 4.16 ) holds with Di = max{|µ̃i − L|, |L̃i − µ|}. Roughly speaking, the smaller

Di the better F̃i in (  4.12a ) approximates F . To see this, compare F and F̃i up to the second

order: there exist θ1, θ2 ∈ (0, 1) such that

F̃i(xi;xνi ) = f̃i(xνi ;xνi ) +
(
yνi −∇fi(xνi ) +∇f̃i(xνi ;xνi )

)>
(xi − xνi )

+ 1
2(xi − xνi )>∇2f̃i

(
xνi + θ1(xi − xνi );xνi

)
(xi − xνi )

F (xi) = F (xνi ) +∇F (xνi )>(xi − xνi )

+ 1
2(xi − xνi )>∇2F

(
xνi + θ2(xi − xνi );xνi

)
(xi − xνi ).

(4.17)
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Noting that ∇f̃i(xνi ;xνi ) = ∇fi(xνi ) [Assumption  4.2.1 (i)] and ∇F̃i(xνi ;xνi ) = yνi , and antici-

pating ‖∇F (xνi )−yνi ‖ → 0 as ν →∞ (see discussion below), it follows that F̃i approximates

F asymptotically, up to the first order. A better match, is achieved when Di is sufficiently

small. One can then expect that, if the local functions are sufficiently similar (β is small),

surrogates f̃i exploiting higher order information of fi, such as ( 4.14 ), may be more effective

than mere linearization. Our theoretical findings confirm the above intuition–see Sec.  4.2.4 .

• Consensus and gradient tracking steps ( 4.12c )-( 4.12d ) In the consensus and tracking

steps, the weights wij’s satisfy the following standard assumption.

Assumption 4.2.2. The weight matrix W , (wij)mi,j=1 has a sparsity pattern compliant with

G, that is

4.2.2.1 wii > 0, for all i = 1, . . . ,m;

4.2.2.2 wij > 0, if (i, j) ∈ E; and wij = 0 otherwise;

Furthermore, W is doubly stochastic, that is, 1>W = 1> and W1 = 1.

Several rules have been proposed in the literature compliant with Assumption  4.2.2 , such

as the Laplacian, the Metropolis-Hasting, and the maximum-degree weights rules [ 188 ].

Finally, we comment the anticipated gradient tracking property of the y-variables, that

is, ‖∇F (xνi )− yνi ‖ → 0 as ν →∞. Define the average processes

ȳν ,
1
m

m∑
i=1

yνi and ∇Fc
ν
,

1
m

m∑
i=1
∇fi(xνi ). (4.18)

Summing ( 4.12d ) over i ∈ [m] and invoking the doubly stochasticity of W ; we have

ȳν+1 = ȳν +∇Fc
ν+1 −∇Fc

ν
. (4.19)

Applying ( 4.19 ) inductively and using the initial condition y0
i = ∇fi(x0

i ), i ∈ [m], yield

ȳν = ∇Fc
ν
, ∀ν = 0, 1, . . . . (4.20)
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That is, the average of all the yνi ’s in the network is equal to that of the ∇fi(xνi )’s, at every

iteration ν. Assuming that consensus on xνi ’s and yνi ’s is asymptotically achieved, that is,

‖xνi −xνj ‖ −→ν→∞ 0 and ‖yνi −yνj ‖ −→ν→∞ 0, i 6= j, ( 4.20 ) would imply the desired gradient tracking

property ‖∇F (xνi )− yνi ‖ → 0 as ν →∞, for all i ∈ [m].

4.2.1 A special instance: SONATA on star-networks

Although the main focus of this thesis is the study of SONATA over meshed-networks, it

is worth discussing here its special instance over star networks. Specifically, consider a star

(unidirected) graph with m nodes, where one of them (the master node) connects with all

the others (workers). The workers still own only one function fi of the sum-cost F . Two

common approaches developed in the literature to solve ( 4.1 ) in this setting are: (i) based

upon receiving the gradients∇fi from the workers, the master solves ( 4.1 ) and broadcasts the

updated vector variables to the workers; (ii) based upon receiving the full gradient ∇F and

the current iterate from the master, all the workers solve locally an instance of ( 4.1 ) and send

their outcomes to the master that averages them out, producing then the new iterate. Here

we follow the latter approach; the algorithm is described in Algorithm  3 , which corresponds to

SONATA (up to a proper initialization), with weight matrix W = [1, 0m,m−1] [1/m, 0m,m−1]>.

Connection with existing schemes SONATA-star, employing linear surrogates [cf. ( 4.13 )]

and α = 1, reduces to the proximal gradient algorithm. When the surrogates ( 4.14 ) are used

(and still α = 1), SONATA-star coincides with the DANE algorithm [ 140 ] if G = 0 and to

the CEASE (with averaging) algorithm [ 142 ] if G 6= 0. Nevertheless, our convergence rates

improve on those of DANE and CEASE–see Sec.  4.2.4.1 .

4.2.2 Intermediate definitions

We conclude this section introducing some quantities that will be used in the rest of the

chapter. We define the optimality gap as

pν ,
m∑

i=1

(
U(xνi )− U(x?)

)
, (4.21)
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Algorithm 3: SONATA on Star-Networks (SONATA-Star)
Data: x0 ∈ K.
Iterate: ν = 1, 2, ...

[S.1] Each worker i evaluates ∇fi(xν) and sends it to the master node;
[S.2] The master broadcasts ∇F (xν) = 1/m∑m

i=1∇fi(xν) to the workers;
[S.3] Each worker i computes

x̂νi , argmin
xi∈K

f̃i(xi;xν) +
(
∇F (xν)−∇fi(xνi )

)>
(xi − xν) +G(xi),

and sends x̂νi to the master;
[S.4] The master computes

xν+1 = xν + α

(
1
m

m∑
i=1

x̂νi − xν
)
,

and sends it back to the workers.
end

where x? is the unique solution of Problem ( 4.1 ).

We stack the local variables and gradients in the column vectors

xν , [xν>1 , . . . , xν>m ]>, yν , [yν>1 , . . . , yν>m ]>, ∇F ν
c , [∇f1(xν1)>, . . . ,∇fm(xνm)>]>. (4.22)

The average of each of the vectors above is defined as x̄ν , (1/m) ·∑m
i=1 x

ν
i . The consensus

disagreements on xνi ’s and yνi ’s are

xν⊥ , xν − 1m ⊗ x̄ν and yν⊥ , yν − 1m ⊗ ȳν , (4.23)

respectively, while the gradient tracking error is defined as

δν , [δν>1 , . . . , δν>m ]>, with δνi , ∇F (xνi )− yνi , i = 1, . . . ,m. (4.24)
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Recalling Li, L̃i, µ̃i, D`
i and Di as given in Assumptions  4.1.1 and  4.2.1 and ( 4.16 ), we

introduce the following algorithm-dependent parameters

µ̃mn , min
i∈[m]

µ̃i, L̃mx , max
i∈[m]

, L̃i,

D`
mn , min

i∈[m]
D`

i , Dmx , max
i∈[m]

Di.
(4.25)

Finally, given the weight matrix W , we define

Ŵ , W ⊗ Id, and J ,
1
m

1m1>m ⊗ Id. (4.26)

Under Assumptions  4.1.2 and  4.2.2 , it is well known that (see, e.g., [ 189 ])

ρ , σ(Ŵ − J) < 1, (4.27)

where σ(•) denotes the largest singular value of its argument.

4.2.3 Linear convergence rate

Our proof of linear rate of SONATA passes through the following steps. Step 1: We

begin showing that the optimality gap pν converges linearly up to an error of the order

of O(‖xν⊥‖2 + ‖yν⊥‖2), see Proposition  4.2.1 . Step 2 proves that ‖xν⊥‖ and ‖yν⊥‖ are also

linearly convergent up to an error O(‖dν‖), see Proposition  4.2.2 . In Step 3 we close the

loop establishing ‖dν‖ = O(√pν + ‖yν⊥‖), see Proposition  4.2.3 . Finally, in Step 4, we

properly chain together the above inequalities (cf. Proposition  4.2.4 ), so that linear rate is

proved for the sequences {pν}, {‖xν⊥‖2}, {‖yν⊥‖2}, and {‖dν‖2}–see Theorems  4.2.1 and  4.2.2 .

We will tacitly assume that Assumptions  4.1.1 ,  4.1.2 ,  4.2.1 , and  4.2.2 are satisfied.

Step 1: pν converges linearly up to O(‖xν⊥‖2+‖yν⊥‖2)

Invoking the convexity of U and the doubly stochasticity of W , we can bound pν+1 as

pν+1 ≤
m∑

i=1

m∑
j=1

wij

(
U
(
x
ν+ 1

2
j

)
− U(x?)

)
=

m∑
i=1

(
U(xν+ 1

2
i )− U(x?)

)
. (4.28)
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We can now bound U(xν+ 1
2

j ), regarding the local optimization ( 4.12a )-( 4.12b ) as a per-

turbed descent on the objective, whose perturbation is due to the tracking error δν . In fact,

Lemma  4.2.1 below shows that, for sufficiently small α, the local update ( 4.12b ) will decrease

the objective value U up to some error, related to δνi .

Lemma 4.2.1. Let {xνi } be the sequence generated by SONATA; there holds:

U(xν+ 1
2

i ) ≤ U(xνi )− α
((

1− α

2

)
µ̃i + α

2 ·D
`
i

)
‖dνi ‖2 + α‖dνi ‖‖δνi ‖, (4.29)

with D`
i and δνi are defined in ( 4.16 ) and ( 4.24 ), respectively.

Proof. Consider the Taylor expansion of F :

F (xν+ 1
2

i ) =F (xνi ) +∇F (xνi )>(αdνi ) + (αdνi )>H(αdνi ),
( 4.24 )= F (xνi ) +

(
δνi
)>

(αdνi ) +
(
yνi
)>

(αdνi ) + (αdνi )>H(αdνi ),
(4.30)

where H ,
∫ 1
0 (1− θ)∇2F (θxν+ 1

2
i + (1− θ)xνi )dθ.

Invoking the optimality of x̂νi and defining H̃i ,
∫ 1
0 ∇2f̃i(θ x̂νi + (1− θ)xνi ;xνi )dθ, we have

G(xνi )−G(x̂νi ) ≥ (dνi )>
(
∇f̃i(x̂νi ;xνi ) + yνi −∇fi(xνi )

)
= (dνi )>

(
yνi + H̃id

ν
i

)
, (4.31)

where the equality follows from ∇f̃i(xνi ;xνi ) = ∇fi(xνi ) and the integral form of the mean

value theorem. Substituting ( 4.31 ) in ( 4.30 ) and using the convexity of G yield

F (xν+ 1
2

i )

≤F (xνi ) + (δνi )>(αdνi ) + (αdνi )>H(αdνi ) + α
(
G(xνi )−G(x̂νi )− (dνi )>H̃id

ν
i

)
≤F (xνi ) + (δνi )>(αdνi ) + α

(
−(dνi )>H̃id

ν
i + (αdνi )>H(dνi )

)
+G(xνi )−G(xν+ 1

2
i ).

(4.32)
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It remains to bound αH − H̃i. We proceed as follows:

αH − H̃i

=α
∫ 1

0
(1− θ)∇2F (θxν+ 1

2
i + (1− θ)xνi )dθ −

∫ 1

0
∇2f̃i(θx̂νi + (1− θ)xνi ;xνi )dθ

( 4.12b )=
∫ α

0
(1− θ/α)∇2F (θx̂νi + (1− θ)xνi )dθ −

∫ 1

0
∇2f̃i(θx̂νi + (1− θ)xνi ;xνi )dθ

(a)
� −

∫ α

0
(1− θ/α) · (D`

i ) I dθ −
∫ α

0
(θ/α)∇2f̃i(θx̂i + (1− θ)xνi ;xνi )dθ

−
∫ 1

α
∇2f̃i(θ x̂νi + (1− θ)xνi ;xνi )dθ

(b)
� − 1

2α (D`
i ) I −

(
1− α

2

)
µ̃i I,

(4.33)

where in (a) we used ∇2F (θx̂νi + (1− θ)xνi ) � −(D`
i )I +∇2f̃i(θx̂νi + (1− θ)xνi ;xνi ) [cf. ( 4.16 )]

while (b) follows from Assumption  4.2.1 (iii). Substituting ( 4.33 ) into (  4.32 ) completes the

proof

We can now substitute ( 4.29 ) into ( 4.28 ) and get

pν+1 ≤ pν +
m∑

i=1

{
α‖dνi ‖‖δνi ‖ − α

(
1− α

2

)
µ̃i‖dνi ‖2 − D`

i
2 α2‖dνi ‖2

}
(4.34a)

(a)
≤ pν −

((
1− α

2

)
µ̃mn + αD`

mn
2 − 1

2εopt
)
α‖dν‖2 + 1

2ε
−1
opt α · ‖δν‖2, (4.34b)

where in (a) we used Young’s inequality, with εopt > 0 satisfying

(
1− α

2

)
µ̃mn + αD`

mn
2 − 1

2εopt > 0; (4.35)

and D`
mn is defined in ( 4.25 ).

Next we lower bound ‖dν‖2 in terms of the optimality gap.

Lemma 4.2.2. The following lower bound holds for ‖dν‖2:

α ‖dν‖2 ≥ µ

D2
mx

(
pν+1 − (1− α)pν − α

µ
‖δν‖2

)
, (4.36)
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where Dmx is defined in ( 4.25 ).

Proof. Invoking the optimality condition of x̂νi , yields

G(x?)−G(x̂νi ) ≥ −(x? − x̂νi )>
(
∇f̃i(x̂νi ;xνi ) + yνi −∇fi(xνi )

)
. (4.37)

Using the µ-strong convexity of F , we can write

U(x?) ≥ U(x̂νi ) +G(x?)−G(x̂νi ) +∇F (x̂νi )>(x? − x̂νi ) + µ

2‖x
? − x̂νi ‖2

( 4.37 )
≥ U(x̂νi )+

(
∇F (x̂νi )−∇f̃i(x̂νi ;xνi )−

(
yνi −∇fi(xνi )

))>
(x? − x̂νi ) + µ

2‖x
? − x̂νi ‖2

= U(x̂νi ) + µ

2

∥∥∥∥x? − x̂νi + 1
µ

(
∇F (x̂νi )−∇f̃i(x̂νi ;xνi )−

(
yνi −∇fi(xνi )

))∥∥∥∥2

− 1
2µ

∥∥∥∇F (x̂νi )−∇f̃i(x̂νi ;xνi )−
(
yνi −∇fi(xνi )

)∥∥∥2

≥ U(x̂νi )− 1
2µ

∥∥∥∇F (x̂νi )±∇F (xνi )−∇f̃i(x̂νi ;xνi )−
(
yνi −∇fi(xνi )

)∥∥∥2

≥ U(x̂νi )− 1
µ

∥∥∥∇F (x̂νi )−∇F (xνi ) +∇fi(xνi )−∇f̃i(x̂νi ;xνi )
∥∥∥2
− 1
µ
‖δνi ‖2

= U(x̂νi )− 1
µ

∥∥∥∥∫ 1

0

(
∇2F (θx̂νi + (1− θ)xνi )−∇2f̃i(θx̂νi + (1− θ)xνi ;xνi )

)
(dνi ) dθ

∥∥∥∥2
− 1
µ
‖δνi ‖2

≥ U(x̂νi )− D2
i
µ

∥∥∥dνi ∥∥∥2 − 1
µ
‖δνi ‖2.

Rearranging the terms and summing over i ∈ [m], yields

‖dν‖2 ≥ µ

D2
mx

(
m∑

i=1

(
U(x̂νi )− U(x?)

)
− 1
µ
‖δν‖2

)
. (4.38)

Using (  4.28 ) in conjunction with U(xν+ 1
2

i ) ≤ αU(x̂νi ) + (1− α)U(xνi ) leads to

α
m∑

i=1
(U(x̂νi )− U(x?)) ≥ pν+1 − (1− α)pν . (4.39)

Combining ( 4.38 ) with ( 4.39 ) provides the desired result (  4.36 ).

As last step, we upper bound ‖δν‖2 in ( 4.34 ) in terms of the consensus errors ‖xν⊥‖2 and

‖yν⊥‖2.
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Lemma 4.2.3. The following upper bound holds for the tracking error ‖δν‖2:

‖δν‖2 ≤ 4L2
mx‖xν⊥‖2 + 2‖yν⊥‖2, (4.40)

where Lmx is defined in ( 4.5 ).

Proof.
‖δν‖2 ( 4.24 )=

m∑
i=1
‖∇F (xνi )± ȳν − yνi ‖2

( 4.18 )= 1
m2

m∑
i=1

∥∥∥∥ m∑
j=1
∇fj(xνi )−

m∑
j=1
∇fj(xνj ) +m · ȳν −m · yνi

∥∥∥∥2

( 4.2 ), ( 4.5 )
≤ 1

m2

m∑
i=1

2m
m∑

j=1
L2

mx‖xνi − xνj ‖2 + 2m2‖ȳν − yνi ‖2


= 4L2

mx‖xν⊥‖2 + 2‖yν⊥‖2.

We are ready to prove the linear convergence of the optimality gap up to consensus

errors. The result is summarized in Proposition  4.2.1 below. The proof follows readily

multiplying ( 4.34 ) and ( 4.36 ) by µ̃mn − L
2α −

1
2εopt and 6(L2 + L̃2

mx)/µ, respectively, adding

them together to cancel out ‖dν‖, and using ( 4.40 ) to bound ‖δν‖2.

Proposition 4.2.1. The optimality gap pν [cf. ( 4.21 )] satisfies

pν+1 ≤ σ(α) · pν + η(α) ·
(
4L2

mx‖xν⊥‖2 + 2‖yν⊥‖2
)

(4.41)

where σ(α) ∈ (0, 1) and η(α) > 0 are defined as

σ(α) , 1− α

(
1− α

2

)
µ̃mn + D`mn

2 α− 1
2εopt

D2
mx
µ

+
(
1− α

2

)
µ̃mn + D`mn

2 α− 1
2εopt

, (4.42)

η(α) ,
1
2ε
−1
optα · D

2
mx
µ

+ α
µ
·
((

1− α
2

)
µ̃mn + D`mn

2 α− 1
2εopt

)
D2

mx
µ

+
(
1− α

2

)
µ̃mn + D`mn

2 α− 1
2εopt

; (4.43)

εopt satisfies ( 4.35 ); and Lmx and µ̃mn, D`
mn, Dmx are defined in ( 4.5 ) and ( 4.25 ), respectively.
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Step 2: ‖xν⊥‖ and ‖yν⊥‖ linearly converge up to O(‖dν‖) We upper bound ‖xν⊥‖

and ‖yν⊥‖ in terms of ‖dν‖. We begin rewriting the SONATA algorithm ( 4.12a )-( 4.12d ) in

vector-matrix form; using ( 4.22 ) and ( 4.26 ), we have

xν+1 = Ŵ (xν + αdν) (4.44a)

yν+1 = Ŵ (yν +∇F ν+1
c −∇F ν

c ). (4.44b)

Noting that xν⊥ = (I − J)xν [similarly, yν⊥ = (I − J)yν ] and (I − J)Ŵ = Ŵ − J (due to the

doubly stochasticity of W ), it follows from ( 4.44 ) that

xν+1
⊥ = (Ŵ − J)(xν⊥ + αdν) (4.45)

yν+1
⊥ = (Ŵ − J)(yν⊥ +∇F ν+1

c −∇F ν
c ). (4.46)

Using ( 4.45 )-( 4.46 ), Proposition  4.2.2 below establishes linear convergence of the consensus

errors xν⊥ and yν⊥, up to a perturbation.

Proposition 4.2.2. There holds:

‖xν+1
⊥ ‖ ≤ ρ‖xν⊥‖+ αρ‖dν‖, (4.47a)

‖yν+1
⊥ ‖ ≤ ρ‖yν⊥‖+ 2Lmxρ‖xν⊥‖+ αLmxρ‖dν‖, (4.47b)

with ρ and Lmx defined in ( 4.27 ) and ( 4.5 ), respectively.

Proof. We prove next ( 4.47b ); (  4.47a ) follows readily from ( 4.45 ). Using ( 4.44a ), ( 4.46 ),

and the Lipschitz continuity of ∇fi [cf. ( 4.2 )], we can bound ‖yν+1
⊥ ‖ as

‖yν+1
⊥ ‖ ≤ ρ‖yν⊥‖+ ρ‖∇F ν+1

c −∇F ν
c ‖

≤ ρ‖yν⊥‖+ Lmxρ‖(Ŵ − I)xν︸ ︷︷ ︸
=(Ŵ−I)xν⊥

+ αŴdν‖

≤ ρ‖yν⊥‖+ 2Lmxρ‖xν⊥‖+ αLmxρ‖dν‖,

where in the last inequality we used ‖W‖ ≤ 1.
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Step 3: ‖dν‖ = O(√pν + ‖yν⊥‖) (closing the loop) Given the inequalities in Propo-

sitions  4.2.1 and  4.2.2 , to close the loop, one needs to link ‖dν‖ to the quantities in the

aforementioned inequalities, which is done next.

Proposition 4.2.3. The following upper bound holds for ‖dν‖:

‖dν‖2 ≤ 6
µ

(Dmx

µ̃mn
+ 1

)2

+ 4L2
mx

µ̃2
mn

 pν + 3
µ̃2

mn
‖yν⊥‖2. (4.48)

where Lmx and L̃mx, µ̃mn, Dmx are defined in ( 4.5 ) and ( 4.25 ), respectively.

Proof. By optimality of x̂νi and x? we have

(
∇f̃i(x̂νi ;xνi ) + yνi −∇fi(xνi )

)>
(x? − x̂νi ) +G(x?)−G(x̂νi ) ≥ 0,

∇F (x?)> (x̂νi − x?) +G(x̂νi )−G(x?) ≥ 0.

Summing the two inequalities above yields

0 ≤
(
∇F (x?)− yνi +∇fi(xνi )−∇f̃i(x̂νi ;xνi )± ȳν

)>
(x̂νi − x?)

≤

∇F (x?)− 1
m

m∑
j=1
∇fj(xνj ) +∇fi(xνi )−∇f̃i(x̂νi ;xνi )

> (x̂νi − x?)

+ ‖ȳν − yνi ‖‖x̂νi − x?‖

≤
(
∇F (x?)−∇F (xνi ) +∇fi(xνi )−∇f̃i(x̂νi ;xνi )

)>
(x̂νi − x?)

+ ‖ȳν − yνi ‖‖x̂νi − x?‖+
∥∥∥∇F (xνi )− 1

m

m∑
j=1
∇fj(xνj )

∥∥∥∥∥∥x̂νi − x?∥∥∥

≤
(
∇F (x?)−∇F (xνi ) +∇fi(xνi )±∇f̃i(x?;xνi )−∇f̃i(x̂νi ;xνi )

)>
(x̂νi − x?)

+ ‖ȳν − yνi ‖‖x̂νi − x?‖+
 1
m

m∑
j=1

Lj

∥∥∥xνi − xνj ∥∥∥
∥∥∥x̂νi − x?∥∥∥

≤
(∫ 1

0

(
∇2F (θx? + (1− θ)xνi )−∇2f̃i

(
θx? + (1− θ)xνi ;xνi

))
(x? − xνi ) dθ

)>
(x̂νi − x?)

− µ̃i

∥∥∥x̂νi − x?∥∥∥2 + ‖ȳν − yνi ‖‖x̂νi − x?‖+
 1
m

m∑
j=1

Lj

∥∥∥xνi − xνj ∥∥∥
∥∥∥x̂νi − x?∥∥∥
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≤Di

∥∥∥x? − xνi ∥∥∥∥∥∥x̂νi − x?∥∥∥− µ̃i

∥∥∥x̂νi − x?∥∥∥2 + ‖ȳν − yνi ‖‖x̂νi − x?‖

+
 1
m

m∑
j=1

Lj

∥∥∥xνi − xνj ∥∥∥
∥∥∥x̂νi − x?∥∥∥.

Rearranging terms and using the reverse triangle inequality we obtain the following bound

for ‖dνi ‖:

Di

∥∥∥x? − xνi ∥∥∥+ ‖ȳν − yνi ‖+
 1
m

m∑
j=1

Lj

∥∥∥xνi − xνj ∥∥∥
 ≥ µ̃i

∥∥∥x̂νi − x?∥∥∥ ≥ µ̃i (‖dνi ‖ − ‖x? − xνi ‖) .

(4.49)

Therefore,

‖dνi ‖2 ≤ 3
(
Di

µ̃i
+ 1

)2 ∥∥∥x? − xνi ∥∥∥2 + 3
µ̃2

i
‖ȳν − yνi ‖2 + 3

µ̃2
i

 1
m

m∑
j=1

Lj

∥∥∥xνi − xνj ∥∥∥
2

≤ 3
(
Di

µ̃i
+ 1

)2 ∥∥∥x? − xνi ∥∥∥2 + 3
µ̃2

i
‖ȳν − yνi ‖2 + 6L2

mx
µ̃2

im

 m∑
j=1
‖xνj − x?‖2 +m‖xνi − x?‖2

 .
Summing over i = 1, . . . ,m, yields

‖dν‖2 ≤

3
(
Dmx

µ̃mn
+ 1

)2

+ 12L2
mx

µ̃2
mn

 m∑
j=1

∥∥∥xνj − x?∥∥∥2 + 3
µ̃2

mn
‖yν⊥‖2

≤ 6
µ

(Dmx

µ̃mn
+ 1

)2

+ 4L2
mx

µ̃2
mn

 pν + 3
µ̃2

mn
‖yν⊥‖2.

Step 4: Proof of the linear rate (chaining the inequalities)

We are now ready to prove linear rate of the SONATA algorithm. We build on the

following intermediate result, introduced in [ 126 ].

Lemma 4.2.4. Given the sequence {sν}, define the transformations

SK(z) , max
ν=0,...,K

|sν |z−ν and S(z) , sup
ν∈N
|sν |z−ν , (4.50)

for z∈(0, 1). If S(z) is bounded, then |sν | = O(zν).
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We show next how to chain the inequalities ( 4.41 ), ( 4.47 ) and ( 4.48 ) so that Lemma  4.2.4 

can be applied to the sequences {pν}, {‖xν⊥‖2}, {‖yν⊥‖2} and {‖dν‖2}, establishing thus their

linear convergence.

Proposition 4.2.4. Let PK(z), XK
⊥ (z), Y K

⊥ (z) and DK(z) denote the transformation ( 4.50 )

applied to the sequences {pν}, {‖xν⊥‖2}, {‖yν⊥‖2} and {‖dν‖2}, respectively. Given the con-

stants σ(α) and η(α) (defined in Proposition  4.2.1 ) and the free parameters εx, εy > 0 (to be

determined), the following hold

PK(z) ≤ GP (α, z) ·
(
4L2

mxX
K
⊥ (z) + 2Y K

⊥ (z)
)

+ ωp, (4.51a)

XK
⊥ (z) ≤ GX(z) · ρ2α2DK(z) + ωx, (4.51b)

Y K
⊥ (z) ≤ GY (z) · 8L2

mxρ
2XK
⊥ (z) +GY (z) · 2L2

mxρ
2α2DK(z) + ωy, (4.51c)

DK(z) ≤ C1 · PK(z) + C2 · Y K
⊥ (z), (4.51d)

for all

z ∈
(
max{σ(α), ρ2(1 + εx), ρ2(1 + εy)}, 1

)
, (4.52)

where

GP (α, z) , η(α)
z − σ(α) , ωp ,

z

z − σ(α) · p
0 (4.53a)

GX(z) , (1 + ε−1
x )

z − ρ2(1 + εx)
, ωx ,

z

z − ρ2(1 + εx)
· ‖x0

⊥‖2, (4.53b)

GY (z) ,
(1 + ε−1

y )
z − ρ2(1 + εy)

, ωy ,
z

z − ρ2(1 + εy)
· ‖y0

⊥‖2, (4.53c)

C1 ,
6
µ

(Dmx

µ̃mn
+ 1

)2

+ 4L2
mx

µ̃2
mn

 , C2 ,
4
µ̃2

mn
. (4.53d)

Proof. Squaring (  4.47 ) and using Young’s inequality yield

‖xν+1
⊥ ‖2 ≤ ρ2(1 + εx)‖xν⊥‖2 + ρ2(1 + ε−1

x )α2‖dν‖2

‖yν+1
⊥ ‖2 ≤ ρ2(1 + εy)‖yν⊥‖2 + ρ2(1 + ε−1

y )
(

8L2
mx‖xν⊥‖2 + 2α2L2

mx‖dν‖2
)
,

(4.54)
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⊥
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⊥
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( 4.51d )

( 4.51a )

( 4.51a )

( 4.51b )

( 4.51c )

( 4.51c )

( 4.51b )

Figure 4.2. Chain of the inequalities in Proposition  4.2.4 leading to ( 4.55 ).

for arbitrary εx, εy > 0. The proof is completed by taking the maximum of both sides of

( 4.41 ), ( 4.48 ), and ( 4.54 ) over ν = 0, . . . , K and using maxν=0,...,K |sν+1|z−ν ≥ z·maxν=0,...,K |sν | z−ν−

z · |s0|, for any sequence {sν} and z ∈ (0, 1).

Chaining the inequalities in Proposition  4.2.4 in the way shown in Fig.  4.2 , we can bound

DK(z) as (see Appendix  4.6.1 for the proof)

DK(z) ≤ P(α, z) ·DK(z) +R(α, z), (4.55)

where P(α, z) is defined as

P(α, z) , GP (α, z) ·GX(z) · C1 · 4L2
mx · ρ2 · α2

+ (GP (α, z) · 2C1 + C2) ·GY (z) · 2L2
mxρ

2 · α2

+ (GP (α, z) · 2C1 + C2) ·GY (z) · 8L2
mxρ

2 ·GX(z) · ρ2 · α2,

(4.56)

and R(α, z) is a remainder, which is bounded under ( 4.52 ).

Therefore, as long as P(α, z) < 1, (  4.55 ) implies

DK(z) ≤ R(α, z)
1− P(α, z) ≤ B < +∞ (4.57)

where B is a constant independent of K. Therefore, D(z) ≤ B and thus {‖dν‖2} converges

R-linearly to zero at rate at least z (cf. Lemma  4.2.4 ). Applying the same argument to
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the other inequalities in Proposition  4.2.4 , one can conclude that also the sequences {pν},

{‖xν⊥‖2} and {‖yν⊥‖} converge R-linearly to zero.

The last step consists to showing that there exist a sufficiently small step-size α ∈ (0, 1]

and z ∈ (0, 1) satisfying ( 4.52 ), such that P(α, z) < 1. This is proved in the Theorem  4.2.1 

below.

Theorem 4.2.1. Consider Problem ( 4.1 ) under Assumptions  4.1.1 and  4.1.2 ;and the SONATA

algorithm ( 4.12a )-( 4.12d ), under Assumptions  4.2.1 and  4.2.2 , with µ̃mn ≥ D`
mn. Then, there

exists a sufficiently small step-size ᾱ ∈ (0, 1] [see the proof for its expression] such that for

all α < ᾱ, {U(xνi )} converges to U? at an R-linear rate, i ∈ [m].

Proof. The proof is organized in following two steps: Step 1) We first consider the

“marginal” stable case by letting z = 1, and show that there exists ᾱ > 0 so that P(α, 1) < 1,

for all α ∈ (0, ᾱ); Step 2) Then, invoking the continuity of P(α, z), we argue that, for any

α ∈ (0, ᾱ), one can find z̄(α) < 1 such that P
(
α, z̄(α)

)
< 1. This implies the boundedness

of DK
(
z̄(α)

)
, and thus ‖dν‖2 = O

(
z̄(α)ν

)
(cf. Lemma  4.2.4 ).

• Step 1: We begin optimizing the free parameters εx, εy, and εopt. Since the goal is to find

the largest ᾱ so that P(α, 1) < 1, for all α ∈ (0, ᾱ), the optimal choice of εx, εy, and εopt is

the one that minimizes P(α, 1), that is,

ε? = argmin
ε>0

1 + ε−1

1− ρ2(1 + ε) = 1− ρ
ρ

. (4.58)

We then set εx = εy = ε?, and proceed to optimize εopt, which appears in η(α) and σ(α).

Recalling the definition of η(α) and σ(α) (cf. Proposition  4.2.1 ) and the constraint ( 4.35 ),

the problem boils down to minimize

GP (α, 1) = η(α)
1− σ(α) =

1
2ε
−1
opt · D

2
mx
µ

+ 1
µ
·
((

1− α
2

)
µ̃mn + D`mn

2 α− 1
2εopt

)
(
1− α

2

)
µ̃mn + D`mn

2 α− 1
2εopt

,

subject to εopt ∈ (0, 2µ̃mn − α(µ̃mn − D`
mn)). To have a nonempty feasible set, we require

α < 2µ̃mn/(µ̃mn −D`
mn) (recall that it is assumed µ̃mn ≥ D`

mn). Setting the derivative of
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GP (α, 1) with respect to εopt to zero, yields ε?opt =
(
1− α

2

)
µ̃mn + αD`

mn/2, which is strictly

feasible, and thus the solution.

Let P?(α, z) denote the value of P(α, z) corresponding to the optimal choice of the above

parameters. The expression of P?(α, 1) reads

P?(α, 1) , G?
P (α) · C1 · 4L2

mx ·
ρ2

(1− ρ)2 · α
2

+ (G?
P (α) · 2C1 + C2) · 2L2

mx ·
ρ2

(1− ρ)2 · α
2

+ (G?
P (α) · 2C1 + C2) · 8L2

mx ·
ρ4

(1− ρ)4 · α
2,

(4.59)

where

G?
P (α) ,

D2
mx
µ

+ 1
µ
·
((

1− α
2

)
µ̃mn + D`mn

2 α
)2

((
1− α

2

)
µ̃mn + D`mn

2 α
)2 . (4.60)

• Step 2: Since P?(•, 1) is continuous and monotonically increasing on (0, 2µ̃mn/ (µ̃mn −

D`
mn), with P?(0, 1) = 0, there exists some ᾱ < 2µ̃mn/(µ̃mn −D`

mn) such that P?(α, 1) < 1,

for all α ∈ (0, ᾱ). One can verify that, for any α ∈ (0, 2µ̃mn/(µ̃mn − D`
mn)), P?(α, z) is

continuous at z = 1. Therefore, for any fixed α ∈ (0, ᾱ), P?(α, 1) < 1 implies the existence

of some z̄(α) < 1 such that P?(α, z̄(α)) < 1.

We conclude the proof providing the expression of a valid ᾱ. Restricting α ≤ µ̃mn/(µ̃mn−

D`
mn), we upper bound G?

P (α) by G?
P (µ̃mn/(µ̃mn−D`

mn)). Using for G?
P (α) this upper bound

in (  4.59 ) and solving the resulting P?(α, 1) < 1 for α, yield

α < α1 ,

(
G?
P

(
µ̃mn

µ̃mn −D`
mn

)
· C1 · 4L2

mx ·
ρ2

(1− ρ)2

+
(
G?
P

(
µ̃mn

µ̃mn −D`
mn

)
· 2C1 + C2

)
· 2L2

mx ·
ρ2

(1− ρ)2

+
(
G?
P

(
µ̃mn

µ̃mn −D`
mn

)
· 2C1 + C2

)
· 8L2

mx ·
ρ4

(1− ρ)4

)− 1
2

.

(4.61)

Therefore, a valid ᾱ is ᾱ = min{µ̃mn/(µ̃mn −D`
mn), α1}.
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The next theorem provides an explicit expression of the convergence rate in Theorem

 4.2.1 in terms of the step-size α; the constants J , A 1
2
, and α∗ therein are defined in ( 4.104 ),

( 4.102 ) with θ = 1/2, and ( 4.106 ), respectively.

Theorem 4.2.2. In the setting of Theorem  4.2.1 , suppose that the step-size α satisfies

α ∈ (0, αmx), with αmx , min{(1−ρ)2/A 1
2
, µ̃mn/(µ̃mn−Dmn), 1}. Then, U(xνi )−U? = O(zν),

for all i ∈ [m], where

z =


1− J · α for α ∈ (0,min{α∗, αmx}) ,(
ρ+

√
αA 1

2

)2

for α ∈ [min{α∗, αmx}, αmx) .
(4.62)

Proof. See Appendix  4.6.2 .

4.2.4 Discussion

Theorem  4.2.2 provides a unified set of convergence conditions for different choices of

surrogates and network topologies. To shed light on the expression of the rate and its

dependence on the key optimization and network parameters, we customize here Theo-

rem  4.2.2 to specific network topologies and surrogate functions. We begin considering

star-networks (cf. Sec.  4.2.4.1 ) and then move to general graph topologies with no master

node (cf. Sec.  4.2.4.2 ). We will customize the rate achieved by SONATA employing the

following two surrogate functions f̃i, representing the two extreme choices in the spectrum

of admissible surrogates:

• Linearization:

f̃i(xi;xνi ) , ∇fi(xνi )>(xi − xνi ) + L

2 ‖xi − xνi ‖2; (4.63)

• Local fi:

f̃i(xi;xνi ) , fi(xi) + β

2 ‖xi − xνi ‖2. (4.64)
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4.2.4.1 Star-networks: SONATA-Star

Convergence of SONATA-Star (Algorithm  3 ) is established in Corollary  4.2.1 below.

Corollary 4.2.1. Consider Problem ( 4.1 ) under Assumption  4.1.1 over a star-network; let

{xν} be the sequence generated by SONATA-Star (Algorithm  3 ), based on the surrogate func-

tions satisfying Assumption  4.2.1 and step-size α ∈ (0,min(2µ̃mn/(µ̃mn − D`
mn), 1)]. Then,

for all i = 1, . . . ,m,

U(xν)− U? = O(zν), with z = 1− α ·

(
1− α

2

)
µ̃mn + αD`mn

2
D2

mx
2µ +

(
1− α

2

)
µ̃mn + αD`mn

2

. (4.65)

In particular, when the surrogates ( 4.63 ) and ( 4.64 ) are employed along with α = 1, the rate

above reduces to the following expressions:

• Linearization ( 4.63 ): z ≤ 1−κ−1
g . Therefore, U(xν)−U? ≤ ε in at most O

(
κg log(1/ε)

)
iterations (communications);

• Local fi ( 4.64 ):

z ≤ 1− 1
1 + 4 · β

µ
·min{1, β

µ
}
. (4.66)

Therefore, U(xν)− U? ≤ ε in at most


O
(
1 · log

(
1/ε

))
, if β ≤ µ,

O
(
β
µ
· log

(
1/ε

))
, if β > µ,

(4.67)

iterations (communications).

Proof. See Appendix  4.6.3 .

The following comments are in order. When linearization is employed, SONATA-Star

matches the iteration complexity of the centralized proximal-gradient algorithm. When the

fi’s are sufficiently similar, ( 4.66 )-( 4.67 ) proves that faster rates can be achieved if surrogates
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( 4.64 ) are chosen over first-order approximations: when β � L, ( 4.67 ) is significantly faster

than O
(
κg log(1/ε)

)
. As case study, consider Example 2 (cf. Sec.  4.1.1.2 ): plugging ( 4.11 )

into Corollary  4.2.1 shows that using the surrogates ( 4.64 ) yields Õ
(
L
√
dm · log(1/ε)

)
iterations (communications); this contrasts with Õ

(
L
√
dmn · log(1/ε)

)
, achieved by first-

order methods (and SONATA-Star using linearization), which instead increases with the

sample size n.

Comparison with DANE & CEASE Since SONATA-Star contains as special cases

the DANE [ 140 ] and CEASE [ 142 ] algorithms, we contrast here Corollary  4.2.1 with their con-

vergence rates. We recall that DANE is applicable to (  4.1 ) when G = 0: For quadratic losses,

it achieves an ε-optimal objective value in O
(
(β/µ)2 · log(1/ε)

)
iterations/communications

(here β/µ ≥ 1). This rate is worse than ( 4.67 ). For nonquadratic losses, [ 140 ] did not

show any rate improvement of DANE over plain gradient algorithms, i.e., O
(
κg · log(1/ε)

)
while SONATA-star still retains O

(
β/µ · log(1/ε)

)
. The CEASE algorithm is proved to

achieve an ε-solution on the iterates in O
(
(β/µ)2 · log(1/ε)

)
iterations/communications

(with β/µ ≥ 1); SONATA reaches the same error on the iterates in O
(
β/µ · log(κg/ε)

)
iterations/communications, which matches the order of the mirror-decent algorithm.

In the next section we extend the study to networks with no centralized nodes, sheding

lights on the role of the network in achieving the same kind of results.

4.2.4.2 The general case

The convergence rate of SONATA over general graphs is summarized in Corollary  4.2.2 

for the linearization surrogates ( 4.63 ) while Corollaries  4.2.3 and  4.2.4 consider the surrogates

( 4.64 ) based on local fi, with Corollary  4.2.3 addressing the case β ≤ µ and Corollary  4.2.4 

the case β > µ. The step-size α is tuned to obtain favorable rate expressions.

Corollary 4.2.2 (Linearization surrogates). In the setting of Theorem  4.2.2 , let {xν} be

the sequence generated by SONATA, using the surrogates ( 4.63 ) and step-size α = c · αmx,
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c ∈ (0, 1), with αmx = min{1, (1 − ρ)2/(ρ · 110κg(1 + β/L)2)}. The number of iterations

(communications) needed for U(xνi )− U? ≤ ε, i ∈ [m], is

Case I: O (κg log(1/ε)) , if ρ

(1− ρ)2 ≤
1

110κg
(
1 + β

L

)2 , (4.68)

Case II: O


(
κg + β/µ

)2
ρ

(1− ρ)2 log(1/ε)

 , otherwise. (4.69)

Proof. See Appendix  4.6.4 .

Corollary 4.2.3 (local fi, β ≤ µ). Instate assumptions of Theorem  4.2.2 and suppose β ≤ µ.

Consider SONATA using the surrogates ( 4.64 ) and step-size α = c · αmx, c ∈ (0, 1), with

αmx = min{1, (1 − ρ)2/(Mρ)} and M = 193
(
1 + β

µ

)2 (
κg + β

µ

)2
. The number of iterations

(communications) needed for U(xνi )− U? ≤ ε, i ∈ [m], is

Case I: O (1 · log(1/ε)) , if ρ

(1− ρ)2 ≤
1

193
(
1 + β

µ

)2 (
κg + β

µ

)2 , (4.70)

Case II: O
(

κ2
g ρ

(1− ρ)2 log(1/ε)
)
, otherwise. (4.71)

Corollary 4.2.4 (local fi, β > µ). Instate assumptions of Theorem  4.2.2 and suppose β > µ.

Consider SONATA using the surrogates ( 4.64 ) and step-size α = c · αmx, c ∈ (0, 1), with

αmx = min{1, (1 − ρ)2/(Mρ)} and M = 253
(
1 + L

β

) (
κg + β

µ

)
. The number of iterations

(communications) needed for U(xνi )− U? ≤ ε, i ∈ [m], is

Case I: O
(
β

µ
· log(1/ε)

)
if ρ

(1− ρ)2 ≤
1

253
(
1 + L

β

) (
κg + β

µ

) , (4.72)

Case II: O
(

(κg + (β/µ))2 ρ

(1− ρ)2 log(1/ε)
)
, otherwise . (4.73)

The proof of Corollaries  4.2.3 and  4.2.4 can be found in Appendix  4.6.5 .

Several comments are in order.

• Order of the rate of centralized (nonaccelerated) methods (Case I): For a fixed

optimization problem, if the network is sufficiently connected (ρ “small”), its impact on
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the rate becomes negligible (the bottleneck is the optimization), and SONATA matches

the network-independent rate order achieved on star-topologies (cf. Corollary  4.2.1 ) by the

proximal gradient algorithm when linearization is employed [cf. ( 4.68 )] and by the mirror-

descent scheme when the local fi’s are used in the surrogates [cf. ( 4.70 ) and ( 4.72 )].

• Network-dependent rates (Case II): As expected, the convergence rate deteriorates

as ρ increases, i.e., the network connectivity gets worse. This translates in a less favorable

dependence of the complexity on κg and β/µ (by a square factor) and network scalability

of the order of ρ/(1 − ρ)2. When β
√
ρ = O(L) (e.g., the network is decently connected

or β = O(L)), the complexity becomes O
(
κ2
g(1− ρ)−2 log(1/ε)

)
, which compares favorably

with that of existing distributed schemes, determined instead by the more pessimistic local

quantities ( 4.4 ). The scalability of the rate with the network connectivity, (1− ρ)−2, can be

improved leveraging multiple rounds of communications or accelerated consensus protocols,

as discussed below.

• Linearization ( 4.63 ) vs. local fi ( 4.64 ) surrogates: As already observed in the setting

of star-networks, the use of the local losses as surrogates employs a form of preconditioning

in the local agents subproblems. When the fi’s are sufficiently similar to each other, so

that 1 + β/µ < κg, exploiting local Hessian information via ( 4.64 ) provably reduces the

iteration/communication complexity over linear models ( 4.63 )–contrast ( 4.68 ) with ( 4.70 )

and (  4.72 ). Note that these faster rates are achieved without exchanging any matrices over

the network, which is a key feature of SONATA. On the other hand, when the functions fi

are heterogeneous, the local surrogates ( 4.64 ) are no longer informative of the average-loss F

and using linearization might yield better rates. Although these design recommendations are

based on sufficient conditions, numerical results seem to confirm the above conclusions–see

Sec.  4.4 .

• Multiple communications rounds and acceleration: The discussion above shows

that rates of the order of those of centralized methods can be achieved if the network is

sufficiently connected (Case I). When this is not the case, one can still achieve the same

iteration complexity at the cost of multiple, finite, rounds of communications per iteration.

Specifically, let ρ0 be the connectivity of the given network and suppose we run K steps

of communications per iteration (computation) in ( 4.44a )-( 4.44b ); this yields an effective
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network with improved connectivity ρ = ρK0 . One can then choose K so that the ratio

ρK0 /(1−ρK0 )2 satisfies the condition triggering Case I in the Corollaries  4.2.2 – 4.2.4 , as briefly

summarized next.

1) Linearization: Invoking Corollary  4.2.2 , one can check that the order of such a

K is K = O(log(κg(1 + β/L)2)/ log(1/ρ0)) = O(log(κg(1 + β/L)2)/(1 − ρ0)); therefore,

SONATA using the surrogates ( 4.63 ) reaches an ε-solution in O (κg log(1/ε)) iterations and

O (κg · (1− ρ0)−1 log(κg(1 + β/L)2) log(1/ε)) communications. The dependence on the net-

work connectivity ρ0 can be further improved leveraging Chebyshev polynomials (see, e.g.,

[ 163 ], [  164 ]): the final communication complexity of SONATA reads

O
(

κg√
1− ρ0

· log
(
κg(1 + β/L)2

)
log(1/ε)

)
.

2) Local fi surrogates: Considering the case β ≥ µ (Corollary  4.2.4 ), we can show that

SONATA using the surrogates ( 4.64 ) and employing multiple rounds of communications per

iteration, reaches an ε-solution in O (β/µ · log(1/ε)) iterations and

O
(
β/µ

1− ρ0
· log

(
(κg + β/µ)(1 + L/β)

)
log(1/ε)

)

communications. If Chebyshev polynomials are used to accelerate the communications, the

communication complexity further improves to

O
(

β/µ√
1− ρ0

· log
(
(κg + β/µ)(1 + L/β)

)
log(1/ε)

)
.

4.3 The SONATA algorithm over directed time-varying graphs

In this section we extend SONATA and its convergence analysis to solve Problem ( 4.1 )

over directed, time-varying graphs (Assumption  4.1.3 ). Note that (  4.12a )-( 4.12d ) is not read-

ily applicable to this setting, as constructing a doubly stochastic weight matrix compliant

with a directed graph is generally infeasible or computationally costly–see e.g. [ 190 ]. Condi-

tions on the weight matrices can be relaxed if the consensus/tracking schemes (  4.12c )-( 4.12d )

are properly changed to deal with the lack of doubly stochasticity.
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Here, we consider the perturbed push-sum protocols as proposed in [ 144 ] (but in the

Adapt-Then-Combine (ATC) form). The resulting distributed algorithm, still termed SONATA,

is formally described in Algorithm  4 .

Algorithm 4: SONATA over time-varying directed graphs
Data: x0

i ∈ K, y0
i = ∇fi(x0

i ), and φ0
i = 1, i ∈ [m].

Iterate: ν = 1, 2, ...
[S.1] [Distributed Local Optimization] Each agent i solves

x̂νi , argmin
xi∈K

f̃i(xi;xνi ) +
(
yνi −∇fi(xνi )

)>
(xi − xνi ) +G(xi), (4.74a)

and updates

x
ν+ 1

2
i = xνi + α · dνi , with dνi , x̂νi − xνi ; (4.74b)

[S.2] [Information Mixing] Each agent i computes
(a) Consensus

φν+1
i =

m∑
j=1

cνijφ
ν
j , xν+1

i = 1
φν+1

i

m∑
j=1

cνijφ
ν
j x

ν+ 1
2

j , (4.74c)

(b) Gradient tracking

yν+1
i = 1

φν+1
i

m∑
j=1

cνij
(
φνj y

ν
j +∇fj(xν+1

j )−∇fj(xνj )
)
, (4.74d)

end

In the perturbed push-sum protocols ( 4.74c )-( 4.74d ), Cν , (cνij)mi,j=1 satisfies the assump-

tion below.

Assumption 4.3.1. For each ν ≥ 0, the weight matrix Cν , (cνij)mi,j=1 has a sparsity pattern

compliant with Gν, i.e., there exists a constant c` such that, for all ν = 0, 1, . . . ,

4.3.1.1 cνii ≥ c` > 0, for all i ∈ [m];

4.3.1.2 cνij ≥ c` > 0, if (j, i) ∈ Eν; and cνij = 0 otherwise.

Moreover, Cν is column stochastic, i.e., 1>Cν = 1>, for all ν = 0, 1, . . . .
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We conclude this section stating the counterparts of the definitions introduced in Sec.  4.1 ,

adjusted here to the case of directed time-varying graphs. Using the column stochasticity of

Cν and ( 4.74d ), one can see that opposed to ( 4.19 ), the average gradient is now preserved

on the weighted average of the yi’s:

1
m

m∑
i=1

φν+1
i yν+1

i = 1
m

m∑
i=1

φνi y
ν
i +∇Fc

ν+1 −∇Fc
ν
, (4.75)

where ∇Fc
ν is defined in (  4.18 ). This suggests to decompose yν into its weighted average

and the consensus error, defined respectively as

ȳνφ ,
1
m

m∑
i=1

φνi y
ν
i and yνφ,⊥ , yν − 1m ⊗ ȳνφ. (4.76)

Accordingly, we define the weighted average of xν and the consensus error as

x̄νφ ,
1
m

m∑
i=1

φνi x
ν
i and xνφ,⊥ , xν − 1m ⊗ x̄νφ. (4.77)

In addition, we also generalize the definition of the optimality gap as

pνφ ,
m∑

i=1
φνi p

ν
i , with pνi ,

(
U(xνi )− U?

)
. (4.78)

Finally, apart from the problem parameters Li, Lmx, L, µ [cf. ( 4.5 )] and algorithm

parameters µ̃mn, L̃mx, D`
mn, Dmx [cf. ( 4.25 )], we introduce the following network parameters,

borrowed from [  144 , Prop. 1]:

φlb , c
2(m−1)B
` , φub , m− c2(m−1)B

` , (4.79)

with c` and B given in Assumptions  4.3.1 and  4.1.3 , respectively; and

c0 , 2m · 1 + c̃`
−(m−1)B

1− c̃`−(m−1)B , ρB , (1− c̃`(m−1)B)
1

(m−1)B , c̃` , c
2(m−1)B+1
` /m. (4.80)
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Furthermore, we will use the following lower and upper bounds of φνi [ 144 , Prop. 1]

φlb ≤ φνi ≤ φub, for all i ∈ [m], ν = 0, 1, . . . .

4.3.1 Linear convergence rate

The proof of linear convergence of SONATA (Algorithm  4 ) follows the same path of the

one developed in Sec.  4.2.3 for the case of undirected graphs. Hence, we omit similar deriva-

tions and highlight only the key differences. We will tacitly assume that Assumptions  4.1.1 ,

 4.1.3 ,  4.2.1 , and  4.3.1 are satisfied.

Step 1: pνφ converges linearly up O(‖xνφ,⊥‖2 + ‖yνφ,⊥‖2) This is counterpart of Propo-

sition  4.2.1 (cf. Sec.  4.2.3 ), and stated as follows.

Proposition 4.3.1. The optimality gap sequence {pνφ} satisfies:

pν+1
φ ≤ σ(α) · pνφ + η(α) · φub ·

(
8L2

mx‖xνφ,⊥‖2 + 2‖yνφ,⊥‖2
)
, (4.81)

where the constants Lmx and µ̃mn are defined in ( 4.5 ) and ( 4.25 ), respectively; and σ(α) ∈

(0, 1) and η(α) > 0 are defined in ( 4.42 ).

Proof. The proof follows closely that of Proposition  4.2.1 and thus is omitted. For complete-

ness, we report it in the supporting materials. Here, we only notice that, instead of ( 4.28 ),

we built on: ∑m
i=1 φ

ν+1
i U(xν+1

i ) ≤ ∑m
i=1 φ

ν
i U
(
x
ν+ 1

2
i

)
, where we used ∑m

j=1 c
ν
ijφ

ν
j /φ

ν+1
i = 1, for

all i ∈ [m].

Step 2: Decay of ‖xνφ,⊥‖ and ‖yνφ,⊥‖

Lemma 4.3.1. The following bounds hold for ‖xνφ,⊥‖ and ‖yνφ,⊥‖:

∥∥∥xνφ,⊥∥∥∥2 ≤ 2c2
0ρ

2ν
B

∥∥∥x0
φ,⊥

∥∥∥2 + 2c2
0ρ

2
B

1− ρB

ν−1∑
t=0

ρν−1−t
B α2

∥∥∥dt∥∥∥2 (4.82a)

∥∥∥yνφ,⊥∥∥∥2 ≤ 2c2
0ρ

2ν
B

∥∥∥y0
φ,⊥

∥∥∥2 + 2c2
0ρ

2
BmL

2
mxφ

−2
lb

1− ρB

ν−1∑
t=0

ρν−1−t
B

(
8
∥∥∥xtφ,⊥∥∥∥2 + 2α2

∥∥∥dt∥∥∥2
)
. (4.82b)
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where B and ρB are defined in ( 4.79 ), and εx and εy are arbitrary positive constants (to be

determined).

Proof. Using the result in [  191 , Lemma 5] and [  144 , Lemma 3, 11], we obtain

∥∥∥xνφ,⊥∥∥∥ ≤ c0

(
ρνB

∥∥∥x0
φ,⊥

∥∥∥+
ν−1∑
t=0

ρ
(ν−1)−t
B (ρBα

∥∥∥dt∥∥∥)) (4.83)

∥∥∥yνφ,⊥∥∥∥ ≤ c0

(
ρνB

∥∥∥y0
φ,⊥

∥∥∥+
√
mLmxφ

−1
lb

ν−1∑
t=0

ρ
(ν−1)−t
B · ρB

(
2
∥∥∥xtφ,⊥∥∥∥+ α

∥∥∥dt∥∥∥)) . (4.84)

The rest of the proof follows similar steps as [ 73 , Lemma 2], hence it is omitted.

Step 3: ‖dν‖ = O(
√
pνφ + ‖yνφ,⊥‖)

Proposition 4.3.2. The following upper bound holds for ‖dν‖:

‖dν‖2 ≤ 6
µφlb

(Dmx

µ̃mn
+ 1

)2

+ 4L2
mx

µ̃2
mn

 pνφ + 3
µ̃2

mn
‖yνφ,⊥‖2, (4.85)

where Lmx, L̃mx, µ̃mn, and Dmx are defined in ( 4.5 ) and ( 4.25 ), respectively.

Proof. The proof follows similar path of that of Proposition  4.2.3 and thus is omitted.

4.3.2 Establishing linear rate

We can now prove linear rate following the path introduced in Sec.  4.2.3 ; for sake of

simplicity, we will use the same notation as in Sec.  4.2.3 . We begin applying the transfor-

mation ( 4.50 ) to the sequences {pνφ}ν∈N+ , {‖xνφ,⊥‖2}, {‖yνφ,⊥‖2}, and {‖dν‖2}, satisfying the

inequalities ( 4.81 ), (  4.82a ), ( 4.82b ), and ( 4.85 ), respectively.

Proposition 4.3.3. Let PK
φ (z), DK(z), XK

φ,⊥(z), and Y K
φ,⊥(z) denote the transformation

( 4.50 ) of the sequences {pνφ}, {‖dν‖2}, {‖xνφ,⊥‖2} and {‖yνφ,⊥‖2 }. Given the constants σ(α)

and η(α), defined in Proposition  4.3.1 , and the free parameters εx, εy > 0, the following

holds:

PK
φ (z) ≤ GP (α, z) ·

(
8φubL2

mxX
K
φ,⊥(z) + 2φubY K

φ,⊥(z)
)

+ ωp (4.86)
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XK
φ,⊥(z) ≤ GX(z) · ρ2

Bα
2DK(z) + ωx (4.87)

Y K
φ,⊥(z) ≤ GY (z) · 2mφ−2

lb L
2
mxρ

2
B

(
4XK

φ,⊥(z) + α2DK(z)
)

+ ωy (4.88)

DK(z) ≤ C1 · PK
φ (z) + C2 · Y K

φ,⊥(z), (4.89)

for all

z ∈ (max {σ(α), ρB} , 1) , (4.90)

where

GP (α, z) , η(α)
z − σ(α) , ωp ,

z

z − σ(α) · p
0
φ (4.91)

GX(z) , 2c2
0

(1− ρB)(z − ρB) , ωx , 2c2
0

∥∥∥x0
φ,⊥

∥∥∥2 (4.92)

GY (z) , 2c2
0

(1− ρB)(z − ρB) , ωy , 2c2
0

∥∥∥y0
φ,⊥

∥∥∥2 (4.93)

C1 ,
6
µφlb

(Dmx

µ̃mn
+ 1

)2

+ 4L2
mx

µ̃2
mn

 , C2 ,
4
µ̃2

mn
. (4.94)

Proof. The proof of the first two inequalities ( 4.86 ) and ( 4.89 ) follows the same steps of

those used to prove Proposition  4.2.4 . Applying [ 192 , Lemma 21] to ( 4.82a ) and ( 4.82b )

respectively gives (  4.87 ) and ( 4.88 ).

Chaining the inequalities in Proposition  4.3.3 as done in for ( 4.51 ) (cf. Fig.  4.2 ), we can

bound DK(z) as

DK(z) ≤ P(α, z) ·DK(z) +R(α, z), (4.95)

where P(α, z) is defined as

P(α, z) , GP (α, z) ·GX(z) · C1 · 8φubL2
mx · ρ2

B · α2

+ (GP (α, z) · 2φub · C1 + C2) ·GY (z) · 2mφ−2
lb L

2
mx · ρ2

B · α2

+ (GP (α, z) · 2φub · C1 + C2) ·GY (z) · 8mφ−2
lb L

2
mx ·GX(z) · ρ4

B · α2

(4.96)

and R(α, z) is a bounded remainder term.
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Comparing ( 4.96 ) to ( 4.56 ) we can see that they share the same form and only differ in

coefficients. Therefore, with the same argument as in the proof of Theorem  4.2.1 we can

easily arrive at the following conclusion.

Theorem 4.3.1. Consider Problem ( 4.1 ) under Assumptions  4.1.1 , and  4.1.3 ; and SONATA

(Algorithm  4 ) under Assumptions  4.2.1 and  4.3.1 , with µ̃mn ≥ D`
mn. Then, there exists a

sufficiently small step-size ᾱ ∈ (0, 1] such that, for all α < ᾱ, {U(xνi )} converges to U? at

an R-linear rate, i ∈ [m].

Proof. We provide the proof in the supporting material.

For sake of completeness, we provide an explicit expression of the linear rates in terms

of the step-size α in the supporting material–see Theorem  4.6.1 . Table  4.4 summarizes the

expression of the rates achieved by SONATA using the surrogate functions (  4.63 ) and ( 4.64 )–

a formal statement of these results along with the proofs can be found in the supporting

material-see Corollaries  4.6.1 ,  4.6.2 and  4.6.3 .

The rate estimates in Table  4.4 are almost identical to those obtained in Sec.  4.2.4.2 ,

with the difference that the network dependence now is expressed throughout ρB rather

than ρ. Therefore, similar comments–as those stated in Sec.  4.2.4.2 –apply to the rates in

Table  4.4 . For example, if the network is sufficiently connected (ρB “small”), its impact on

the rate becomes negligible and SONATA matches the network-independent rate achieved

on star-topology (cf. Corollary  4.2.1 ) or centralized settings. Specifically, when linearization

surrogate ( 4.63 ) is used, this rate coincides with the rates of centralized proximal gradient

algorithm.

4.4 Numerical Results

In this section, we corroborate numerically the complexity results proved in Corollar-

ies  4.2.2 – 4.2.4 . As a test problem, we consider the distributed ridge regression:

min
x∈Rd

1
m

{ 1
2n‖Aix− bi‖2 + λ‖x‖2

}
, (4.97)
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Table 4.4. Summary of convergence rates of SONATA over time-varying
directed graphs: number of communication rounds to reach ε-accuracy.

Surrogate Communication Rounds ρB (network) β

linearization
O (κg log (1/ε))

ρB = O(κ−1
g (1 + β

L
)−2)

or

star-networks

arbitrary

O


(
κg+β/µ

)2
ρB

(1−ρB)2 log(1/ε)

 arbitrary

local fi

O (1 · log (1/ε))

ρB = O
((

1 + β
µ

)−2 (
κg + β

µ

)−2
)

or

star-networks
β ≤ µ

O
(

κ2
gρB

(1−ρB)2 log(1/ε)
)

arbitrary

O
(
β

µ
· log (1/ε)

) ρB = O
((

1 + L
β

)−1 (
κg + β

µ

)−1
)

or

star-networks
β > µ

O


(
κg+β/µ

)2
ρB

(1−ρB)2 log(1/ε)

 arbitrary

where the loss function of agent i is fi(x) = 1
2n‖Aix − bi‖2 + λ‖x‖2 [agent i owns data

(Ai, bi)]. Problem parameters are generated as follows. Each row of the measurement matrix

Ai is independently and identically drawn from distribution N (0,Σ); and bi is generated

according to the linear model bi = Aix
∗ + ni, where x∗ is the ground truth, generated

according to N (5 · 1, I), and ni ∼ N (0, 0.1 · I) is the measurement noise. The covariance

matrix Σ is constructed according to the eigenvalue decomposition Σ = ∑d
j=1 λjuju

>
j , where

the eigenvalues {λj}dj=1 are uniformly distributed in [µ0, L0]. The eigenvectors, forming U =

[u1, . . . , ud], are obtained via the QR decomposition of a random d×d matrix with standard

Gaussian i.i.d. elements. The network is generated using an Erdős-Rényi model G(m, p),
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with m = 30 nodes and each edge independently included in the graph with probability

p = 0.5.

To investigate the impact of κg and β on the convergence rate, we specifically consider

the following two scenarios:

(S.I) Changing κg with fixed β: We generate a sequence of instances of (  4.97 ) with fixed

β and increasing κg. To do so, we use the same data set {Ai, bi} across the different

instances and change the regularization parameter λ, so that the condition number κg
ranges in [K`, Ku].

(S.II) Changing β with (almost) fixed κg: We generate instances of (  4.97 ) with decreasing

β and (almost) fixed κg. To do so, we set λ = 0 and increased the local sample size n

from N` to Nu; we set N` sufficiently large so that the empirical condition number κg
is close to L0/µ0 for all instances.

We run SONATA using surrogates ( 4.63 ) (linearization) and ( 4.64 ) (local fi)–we term

it as SONATA-L and SONATA-F, respectively. The simulations parameters of the dif-

ferent experiments are summarized in Table  4.5 ; and the algorithmic parameters are set

according to Corollaries  4.2.2 – 4.2.4 . 

1
 We measure the algorithm’s complexity using Tε =

inf
{
ν ≥ 0 | 1

m

∑m
i=1(F (xνi )− F ?) ≤ 10−7}.

In Table  4.6 , we report the corresponding iteration complexity of SONATA for each

simulation setup (s.1)-(s.6) in Table  4.5 . Each figure is generated under one particular

realization of the problem setting. Further, in order to compare the complexity of SONATA

across different settings, all the simulations share the same network parameters, as well as the

same data set whenever the problem parameters are the same. The results of our experiments

are reported in Table  4.6 ; the curve are generated using only one random realization for

visualization clarity. However, the behavior of the curves (e.g., scalability with respect

to the parameters) is representative and consistent across all the random experiments we

conducted.

The following comments are in order.
1

 ↑ The expressions are not tight in terms of the absolute constants. To show convergence rate in both Cases
I and II in Corollary  4.2.2 - 4.2.4 , we enlarged the second term in the expression of αmx by a constant factor.
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Table 4.5. Simulation setup and parameter setting.

Setting (S.I) Setting (S.II)

Linearization

(s.1)
n = 103

µ0 = 1, L0 = 103

K` = 10, Ku = 100

(s.4)
λ = 0

µ0 = 1, L0 = 5, κg ≈ 5
N` = 10, Nu = 103

Local fi (β ≥ µ)
(s.2)

same as above
(s.5)

same as above

Local fi (β < µ)

(s.3)
n = 105

µ0 = 1, L0 = 20
K` = 1.1, Ku = 19

(s.6)
λ = 0

µ0 = 1, L0 = 2, κg ≈ 2
N` = 2× 103, Nu = 105

• Scalability with respect to κg. Consider setting (S.I) wherein β is fixed and λ is

changing. Figures for (s.1)-(s.3) show that when α = 1 (blue curve), the iteration complexity

of SONATA-L scales linearly with respect to κg [as predicted by Corollary  4.2.2 ], while that

of SONATA-F is invariant whenever β < µ [as stated in Corollary  4.2.3 ]. When β ≥

µ, the iteration complexity of SONATA-F grows as λ increases since β/µ decreases [cf.

Corollary  4.2.4 ]. However, the increasing rate is much slower than SONATA-L, due to the

fact that (β/µ)/κg = β/L � 1 for large λ. When α < 1, the iteration complexity scales

quadratically with respect to κg, in all settings, as predicted by our theory.

• Scalability with respect to β. Consider now setting (S.II), where we decrease the

local sample size n to increase β. In contrast to setting (S.I), Figures for (s.4) and (s.5)

show that, with α = 1, the iteration complexity of SONATA-F scales linearly with β/µ

when β > µ, while that of SONATA-L is invariant–this is consistent with Corollaries  4.2.2 

and  4.2.4 . When α < 1, the iteration complexity scales quadratically with respect to β/µ.

Finally, the plot associated with (s.6) simply reveals that when β < µ, iteration complexity

of SONATA-F remains bounded, as stated in Corollary  4.2.3 .

• Linearization versus Local fi. We compare the performance of SONATA-L and

SONATA-F in the setting (S.II), with parameters λ = 0, µ0 = 1, L0 = 100, N` = 10,

Nu = 105. We consider a relatively connected network with edge activation probability

163



Table 4.6. Iteration complexity of SONATA under the simulation settings
in Table  4.5 . Left (S.I): scalability of iteration complexity with respect to the
condition number κg; Right (S.II): scalability of the iteration complexity with
respect to the similarity parameter β.

Setting (S.I) Setting (S.II)

Linearization
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Figure 4.3. Complexity of SONATA-L versus SONATA-F.

p = 0.9 so that the step-size can be set to α = 1, for all experiments. Note that such con-

nectivity can also be achieved with a less connected network by running multiple but fixed

rounds of consensus steps. Fig.  4.3 compares the iteration complexity as β increases, aver-

aged over 100 Monte-Carlo realizations. We can see that for small β SONATA-F converges

faster than SONATA-L; while for large β SONATA-L is faster. This can be explained using

our results in Corollaries  4.2.2 and  4.2.4 . As the complexity of SONATA-F and SONATA-L

scales proportionally to β/µ and κg, respectively, when β/µ is comparatively smaller than κg,

SONATA-F enjoys a better rate. But as β/µ increases, the rate deteriorates and eventually

gets worse than that of SONATA-L.

4.5 Conclusions

In this chapter, we studied distributed multiagent optimization over (directed, time-

varying) graphs. We considered the minimization of F + G subject to convex constraints,

where F is the smooth strongly convex sum of the agent’s losses and G is a nonsmooth convex

function. We build on the SONATA algorithm: the algorithm employs the use of surrogate

objective functions in the agents’ subproblems (going thus beyond linearization, such as

proximal-gradient) coupled with a perturbed (push-sum) consensus mechanism that aims to
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track locally the gradient of F . SONATA achieves precision ε > 0 on the objective value in

O(κg log(1/ε)) gradient computations at each node and Õ
(
κg(1 − ρ)−1/2 log(1/ε)

)
commu-

nication steps, where κg is the condition number of F and ρ characterizes the connectivity

of the network. This is the first linear rate result for distributed composite optimization;

it also improves on existing (non-accelerated) schemes just minimizing F , whose rate de-

pends on much larger quantities than κg (e.g., the worst-case condition number among the

agents). When considering in particular empirical risk minimization problems with statis-

tically similar data across the agents, SONATA employing high-order surrogates achieves

precision ε > 0 in O
(
(β/µ) log(1/ε)

)
iterations and Õ

(
(β/µ)(1 − ρ)−1/2 log(1/ε)

)
commu-

nication steps, where β measures the degree of similarity of the agents’ losses and µ is the

strong convexity constant of F . Therefore, when β/µ < κg, the use of high-order surro-

gates yields provably faster rates than what achievable by first-order models; this is without

exchanging any Hessian matrix over the network.

4.6 Proof of technical results

4.6.1 Proof of ( 4.55 )

Chaining the inequalities in ( 4.51 ) as shown in Fig.  4.2 , we have

DK(z)≤C1 · PK(z) + C2 · Y K
⊥ (z)

≤ C1 ·
(
GP (α, z) ·

(
4L2

mxX
K
⊥ (z) + 2Y K

⊥ (z)
)

+ ωp

)
+ C2 · Y K

⊥ (z)

= C1 ·GP (α, z) · 4L2
mxX

K
⊥ (z) + (C1 ·GP (α, z) · 2 + C2)Y K

⊥ (z) + C1 · ωp

≤ C1 ·GP (α, z) · 4L2
mx ·GX(z) · ρ2α2DK(z)

+ (C1 ·GP (α, z) · 2 + C2) ·GY (z) · 8L2
mxρ

2XK
⊥ (z)

+ (C1 ·GP (α, z) · 2 + C2) ·GY (z) · 2L2
mxρ

2α2DK(z)

+ C1 · ωp + (C1 ·GP (α, z) · 2 + C2) · ωy + C1 ·GP (α, z) · 4L2
mx · ωx

≤ C1 ·GP (α, z) · 4L2
mx ·GX(z) · ρ2α2DK(z)

+ (C1 ·GP (α, z) · 2 + C2) ·GY (z) · 8L2
mxρ

2 ·GX(z) · ρ2α2DK(z)

+ (C1 ·GP (α, z) · 2 + C2) ·GY (z) · 2L2
mxρ

2α2DK(z)
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+ C1 · ωp + (C1 ·GP (α, z) · 2 + C2) · ωy + C1 ·GP (α, z) · 4L2
mx · ωx

+ (C1 ·GP (α, z) · 2 + C2) ·GY (z) · 8L2
mxρ

2 · ωx.

Notice that, under ( 4.52 ), GP (α, z), GX(z), GY (z), and ωp, ωx, ωy are all bounded, which

implies that the reminder R(α, z) in ( 4.51 ) is bounded as well. �

4.6.2 Proof of Theorem  4.2.2 

We find the smallest z satisfying ( 4.52 ) such that P(α, z) < 1, for α ∈ (0, αmx), with

αmx ∈ (0, 1) to be determined.

Let us begin considering the condition z > σ(α) in ( 4.52 ). To simplify the analysis, we

impose instead the following stronger version

z ≥ σ(α) +
(θ · α) ·

((
1− α

2

)
µ̃mn + D`mn

2 α− 1
2εopt

)
D2

mx
µ

+
(
1− α

2

)
µ̃mn + D`mn

2 α− 1
2εopt

(4.98)

for some θ ∈ (0, 1), which will be chosen to tighten the bound. Notice that the RHS of

( 4.98 ) is strictly larger than σ(α) but still strictly less than one, for any α ∈ (0, (2µ̃mn −

εopt)/(µ̃mn −D`
mn)), with given εopt ∈ (0, 2µ̃mn).

Observe that in the expression of P(α, z), the only coefficient multiplying α2 that depends

on α is the optimization gain GP (α, z) , η(α)/(z − σ(α)). Using ( 4.98 ), GP (α, z) can be

upper bounded as

GP (α, z) ≤ inf
εopt∈(0,2µ̃mn−α(µ̃mn−D`mn))

1
2ε
−1
opt · D

2
mx
µ

+ 1
µ
·
((

1− α
2

)
µ̃mn + D`mn

2 α− 1
2εopt

)
(
1− α

2

)
µ̃mn + D`mn

2 α− 1
2εopt

· θ−1

= G?
P (α) · θ−1,

(4.99)

where the minimum is attained at ε?opt , µ̃mn− α
2 (µ̃mn−D`

mn); and G?
P (α) is defined in ( 4.60 ).

Substituting the upper bound ( 4.99 ) in P(α, z) and setting therein εopt = ε?opt, we get the

following sufficient condition for P(α, z) < 1:

G?
P (α) · θ−1 · C1 · 4L2

mx ·GX(z) · ρ2 · α2
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+
(
G?
P (α) · θ−1 · 2C1 + C2

)
·GY (z) · 2L2

mxρ
2 · α2

+
(
G?
P (α) · θ−1 · 2C1 + C2

)
·GY (z) · 8L2

mxρ
2 ·GX(z) · ρ2 · α2 < 1. (4.100)

To minimize the left hand side, we set εx = εy = (
√
z − ρ)/ρ. Furthermore, using the

fact that G?
P (α) is monotonically increasing on α ∈ (0, 2µ̃mn/(µ̃mn −D`

mn)), and restricting

α ∈ (0, µ̃mn/(µ̃mn −D`
mn)], a sufficient condition for (  4.100 ) is

α ≤ α(z) ,
(
A1,θ

1
(
√
z − ρ)2 + A2,θ

1
(
√
z − ρ)2 + A3,θ

1
(
√
z − ρ)4

)−1/2

, (4.101)

where A1,θ, A2,θ and A3,θ are constants defined as

A1,θ , G?
P (µ̃mn/(µ̃mn −D`

mn)) · θ−1 · C1 · 4L2
mx · ρ2

A2,θ ,
(
G?
P (µ̃mn/(µ̃mn −D`

mn)) · θ−1 · 2C1 + C2
)
· 2L2

mxρ
2

A3,θ ,
(
G?
P (µ̃mn/(µ̃mn −D`

mn)) · θ−1 · 2C1 + C2
)
· 8L2

mxρ
4.

Condition ( 4.101 ) shows the rate z must satisfy

z ≥
(
ρ+

√
Aθα

)2
, with Aθ ,

√
A1,θ + A2,θ + A3,θ. (4.102)

Notice that, under εx = εy = (
√
z−ρ)/ρ, ( 4.102 ) implies z > ρ2(1+εx) = ρ2(1+εy) = ρ

√
z,

which are the other two conditions on z in (  4.52 ). Therefore, overall, z must satisfy ( 4.98 )

and (  4.102 ). Letting εopt = ε?opt in ( 4.98 ), the condition simplifies to

z ≥ 1−
µ̃mn − α

2 (µ̃mn −D`
mn)

2D2
mx
µ

+ µ̃mn − α
2 (µ̃mn −D`

mn)
· (1− θ)α.

Therefore, the overall convergence rate can be upper bounded by O(z̄ν), where

z̄ = inf
θ∈(0,1)

max

(
ρ+

√
Aθα

)2
, 1−

µ̃mn − α
2 (µ̃mn −D`

mn)
2D2

mx
µ

+ µ̃mn − α
2 (µ̃mn −D`

mn)
· (1− θ)α

 . (4.103)
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Finally, we further simplify ( 4.103 ). Letting θ = 1/2 and using α ∈ (0, µ̃mn/(µ̃mn −D`
mn)],

the second term in ( 4.103 ) can be upper bounded by

1− µ̃mnµ

4D2
mx + µ̃mnµ

· 1
2︸ ︷︷ ︸

,J

α. (4.104)

The condition z̄ < 1 imposes the following upper bound on α: α < αmx = min{(1 −

ρ)2/A 1
2
, µ̃mn/(µ̃mn −D`

mn), 1}. Eq. (  4.103 ) then simplifies to

z̄ = max

(
ρ+

√
αA 1

2

)2

, 1− Jα
 . (4.105)

Note that as α increases from 0, the first term in the max operator above is monotonically

increasing from ρ2 < 1 while the second term is monotonically decreasing from 1. Therefore,

there must exist some α∗ so that the two terms are equal, which is

α∗ =

−ρ
√
A 1

2
+
√
A 1

2
+ J(1− ρ2)

A 1
2

+ J


2

. (4.106)

To conclude, given the step-size satisfying α ∈ (0, αmx), the sequence {‖dν‖2} converges

at rate O(zν), with z given in ( 4.62 ). �

4.6.3 Proof of Corollary  4.2.1 

Since W = J , we have δν = 0; then ( 4.34a ) and ( 4.36 ) reduce to

pν+1 ≤ pν −
((

1− α

2

)
µ̃mn + αD`

mn
2

)
α‖dν‖2 (4.107)

and

α ‖dν‖2 ≥ 2µ
D2

mx

(
pν+1 − (1− α)pν

)
, (4.108)
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respectively. Combining (  4.107 ) and ( 4.108 ) and using α < 2µ̃mn/(µ̃mn −Dmn), yield

pν+1 ≤

1− α ·

(
1− α

2

)
µ̃mn + αD`mn

2
D2

mx
2µ +

(
1− α

2

)
µ̃mn + αD`mn

2

 pν , (4.109)

which proves ( 4.65 ).

We customize next ( 4.65 ) to the specific choices of the surrogate functions.

• Linearization: Consider the choice of f̃i as in (  4.63 ). We have µ̃mn = L; and we can

set D`
mn = 0, Dmx = L − µ, and α = 1. Substituting these values in ( 4.65 ), we obtain

z ≤ 1− κ−1
g .

• Local fi: Consider now f̃i as in ( 4.64 ). By ∇2fi(x) � 0, for all x ∈ K, and Definition  4.1.1 ,

we have 0 � ∇2f̃i(x, y) − ∇2F (x) � 2βI, for all x, y ∈ K. Therefore, we can set D`
mn = 0,

Dmx = 2β, and µ̃mn = β + (µ− β)+. Using these values in ( 4.65 ), yields

z


= 1− α · β(1−α2 )

2β2
µ

+β(1−α2 ) , if µ ≤ β

≤ 1− α · µ(1−α2 )
2β2
µ

+µ(1−α2 ) , if µ > β.

(4.110)

Finally, setting α = min{1, 2µ̃mn/((µ− β)+ + β)} = 1 in the expression above, yields (  4.66 ).

�

4.6.4 Proof of Corollary  4.2.2 

According to Theorem  4.2.2 , the rate z can be bounded as

z ≤ max{z1, z2}, with z1 , 1− α · J and z2 ,
(
ρ+

√
αA 1

2

)2
, (4.111)

where J and A 1
2

are defined in ( 4.104 ) and ( 4.102 ), respectively.

The proof consists in bounding properly z1 and z2 based upon the surrogate ( 4.63 ) pos-

tulated in the corollary. We begin particularizing the expressions of J and A 1
2
. Since

∇2f̃i(xi;xνi ) = L, one can set µ̃mn = L, and (  4.16 ) holds with D`
mn = 0 and Dmx = L − µ.

Furthermore, by Assumption  4.1.1 , it follows that β ≥ λmax(∇2fi(x)) − L, for all x ∈ K;
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hence, one can set Lmx = L+β. Next, we will substitute the above values into the expressions

of J and A 1
2
.

To do so, we need to particularize first the quantities G?
P

(
µ̃mn

µ̃mn−D`mn

)
[cf. ( 4.60 )], C1 and

C2 [cf. ( 4.53d )]:

G?
P

(
µ̃mn

µ̃mn −D`
mn

)
= G?

P (1) = 4(L− µ)2 + L2

µL2 ,

C1 = 6
µL2

(
(2L− µ)2 + 4(L+ β)2

)
, and C2 = 4

L2 .

Accordingly, the expressions of J and A 1
2

read:

J = 1
2

κg
4(κg − 1)2 + κg

∈
[

1
8κg

,
1
2

]
, (4.112)

and

(A 1
2
)2

= G?
P (1) · 2 · C1 · 4L2

mx · ρ2 + (G?
P (1) · 4 · C1 + C2) · 2L2

mxρ
2

+ (G?
P (1) · 4 · C1 + C2) · 8L2

mxρ
4

= (24G?
P (1) · C1 + 5C2) · 2L2

mxρ
2

=
(

24 · 4(L− µ)2 + L2

µL2 · 6
µL2

(
(2L− µ)2 + 4(L+ β)2

)
+ 20L−2

)
· 2(L+ β)2ρ2

≤
(

24 · 5
µ
· 24
µL2

(
L2 + (L+ β)2

)
+ 20L−2

)
· 2(L+ β)2ρ2

=
24 · 24 · 5

1 +
(

1 + β

L

)2
(1 + β

L

)2

κ2
g + 20

(
1 + β

L

)2
 · 2ρ2

≤1102 · κ2
g

(
1 + β

L

)4

ρ2,

(4.113)

where in the last inequality we have used the fact that κg ≥ 1.

Using the above expressions, in the sequel we upperbound z1 and z2.
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By (  4.113 ), we have

z2 ≤ z̄2 ,
(
ρ+

√
αMρ

)2
, with M , 110 · κg(1 + β/L)2. (4.114)

Since α ∈ (0, 1] must be chosen so that z ∈ (0, 1], we impose max{z1, z̄2} < 1, implying

α ≤ min{J−1, (1− ρ)2/(Mρ), 1}. Since J−1 > 1 [cf. (  4.112 )], the condition on α reduces to

α ≤ αmx , min{(1−ρ)2/(Mρ), 1}. Choose α = c ·αmx, for some given c ∈ (0, 1). Depending

on the value of ρ, either αmx = 1 or αmx = (1− ρ)2/(Mρ).

• Case I: αmx = 1. This corresponds to the case Mρ ≤ (1− ρ)2, which happens when the

network is sufficiently connected (ρ is small). Note that, we also have ρ ≤ 1/110, otherwise

Mρ ≥ 110κg ρ > 1 > (1− ρ)2. In this setting, α = c · αmx = c, and

z1 = 1− c · J,

z̄2 =
(
ρ+

√
cMρ

)2 (a)
≤
(

1− (1− ρ) +
√
c(1− ρ)2

)2

=
(
1−

(
1−
√
c
)

(1− ρ)
)2
≤ 1−

(
1−
√
c
)2

(1− ρ)2

(b)
≤ 1− (1−

√
c)2(1− 1/110)2,

where in (a) we used Mρ ≤ (1− ρ)2 and (b) follows from ρ ≤ 1/110.

Therefore, z can be bounded as

z ≤ max{z1, z̄2} ≤ 1− c ·
(
1−
√
c
)2
· (1− 1/110)2 · J

≤ 1− c ·
(
1−
√
c
)2
· (1− 1/110)2 · 1

8κg
.

(4.115)

• Case II: αmx = (1 − ρ)2/(Mρ). This corresponds to the case Mρ ≥ (1 − ρ)2. We have

α = c · αmx = c · (1− ρ)2/(Mρ),

z1 = 1− J c

Mρ
· (1− ρ)2 and z̄2 = 1−

(
1−
√
c
)2

(1− ρ)2.
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We claim that (J c)/(Mρ) < 1. Suppose this is not the case, that is, Mρ ≤ Jc. Since

Jc < 1/2 [cf. ( 4.112 )] and M ≥ 110κ, Mρ ≤ Jc would imply ρ < 1/(220κg). This however

is in contradiction with the assumption Mρ ≥ (1 − ρ)2, as it would lead to 1/2 > Mρ ≥

(1− ρ)2 > (1− 1/(220κg))2.

Using (J c)/(Mρ) < 1, we can bound z

z ≤ max{z1, z̄2} ≤ 1− c J

Mρ
·
(
1−
√
c
)2

(1− ρ)2

≤ 1− c ·
(
1−
√
c
)2
· 1

8κg
· (1− ρ)2

110 · κg · (1 + β/L)2 · ρ
.

4.6.5 Proof of Corollaries  4.2.3 and  4.2.4 

We follow similar steps as in Appendix  4.6.4 but customized to the surrogate ( 4.64 ). We

begin particularizing the expressions of J and A 1
2
.

In the setting of the corollary, we have: ∇2f̃i(x; y) = ∇2fi(x) + βI, for all y ∈ K;

∇2fi(x) � 0, for all x ∈ K; and, by Assumption  4.1.1 , 0 � ∇2f̃i(x, y) −∇2F (x) � 2βI, for

all x, y ∈ K. Therefore, we can set D`
mn = 0, Dmx = 2β, µ̃mn = β + (µ− β)+ = max{β, µ},

and Lmx = L+β. Using these values, G?
P

(
µ̃mn

µ̃mn−D`mn

)
, C1, and C2 can be simplified as follows:

G?
P

(
µ̃mn

µ̃mn −D`
mn

)
= G?

P (1) = 16β2 + max{β, µ}2

µmax{β, µ}2 ,

C1 = 6
µ

( 2β
max{β, µ} + 1

)2

+ 4(L+ β)2

max{β, µ}2

 , and C2 = 4
max{β, µ}2 .

Accordingly, the expressions of J and A 1
2

read:

J = 1
2

1
1 + 16

(
β
µ

)
·min

{
1, β

µ

} , (4.116)
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and

(A 1
2
)2

≤ (24G?
P (1) · C1 + 5C2) · 2L2

mxρ
2

≤

24 · 16β2 + max{β, µ}2

max{β, µ}2 · 6
µ2

( 2β
max{β, µ} + 1

)2

+ 4(L+ β)2

max{β, µ}2

+ 20
max{β, µ}2

 · 2(L+ β)2ρ2

=


(

24 · 17 · 6 ·
(

9 + 4
(
1 + L

β

)2
)
·
(
κg + β

µ

)2
+ 20

(
1 + L

β

)2
)
· 2ρ2, β > µ,(

24 ·
(

16β2

µ2 + 1
)
· 6
(
κg + β

µ

)2
((

2β
µ

+ 1
)2

+ 4
(
κg + β

µ

)2
)

+ 20
(
κg + β

µ

)2
)
· 2ρ2, β ≤ µ;

≤M2ρ2,

where

M =


253

(
1 + L

β

) (
κg + β

µ

)
, β > µ,

193
(
1 + β

µ

)2 (
κg + β

µ

)2
, β ≤ µ.

(4.117)

Similarly to the proof of Corollary  4.2.2 , we bound z ≤ max{z1, z2} as

z ≤ max{z1, z̄2}, with z1 , 1− α · J and z̄2 ,
(
ρ+

√
αM ρ

)2
, (4.118)

where J and M are now given by ( 4.116 ) and (  4.117 ), respectively. For max{z1, z2} < 1, we

require α ≤ αmx , min{1, (1− ρ)2/(Mρ)}, and choose α = c · αmx, with arbitrary c ∈ (0, 1).

We study separately the cases β > µ and β ≤ µ.

1) β > µ. In this case we have

M = 253
(

1 + L

β

)(
κg + β

µ

)
and J = 1

2
1

1 + 16 (β/µ) ≥
1

34(β/µ) . (4.119)

Since α = cαmx = cmin{1, (1 − ρ)2/(Mρ)}, we study next the case αmx = 1 and αmx =

(1− ρ)2/(Mρ) separately.

• Case I: αmx = 1. We have Mρ ≤ (1− ρ)2, α = c, and thus

z1 = 1− c · J and z̄2 ≤ 1−
(
1−
√
c
)2

(1− ρ)2.
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Since M ≥ 253 and (1 − ρ)2 ≤ 1, it must be ρ ≤ 1/253. Therefore, the rate z can be

bounded as

z ≤ max{z1, z̄2} ≤ 1− c ·
(
1−
√
c
)2
· J · (1− ρ)2

≤ 1− c ·
(
1−
√
c
)2
·
(

1− 1
253

)2
· 1

34 ·
µ

β
.

• Case II: αmx = (1 − ρ)2/(Mρ). This corresponds to Mρ ≥ (1 − ρ)2, α = c · (1 −

ρ)2/(Mρ), and

z1 = 1− J c

Mρ
· (1− ρ)2 and z̄2 ≤ 1−

(
1−
√
c
)2

(1− ρ)2.

Using the same argument as in the proof of Corollary  4.2.2 –Case II, one can show that

(c J)/(Mρ) < 1. Therefore,

z ≤ max{z1, z̄2} ≤ 1−
(
1−
√
c
)2
· c J · (1− ρ)2

Mρ
( 4.119 )
≤ 1− c ·

(
1−
√
c
)2
· 1

34 ·
(1− ρ)2

253
(
κg + β

µ

)2
ρ
.

2) β ≤ µ. In this case we have

M = 193
(

1 + β

µ

)2 (
κg + β

µ

)2

and J = 1
2

1
1 + 16 (β/µ)2 . (4.120)

• Case I: αmx = 1. Following the same reasoning as µ ≤ β, we can prove

z ≤ max{z1, z̄2} ≤ 1− c ·
(
1−
√
c
)2
·
(

1− 1
193

)2
· 1

2 + 32
(
β
µ

)2 . (4.121)
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• Case II: αmx = (1− ρ)2/(Mρ). We claim that (c J)/(Mρ) ≤ 1, otherwise ρ ≤ c/386,

which would lead to the following contradiction c/2 ≥ (c J) > Mρ ≥ (1 − ρ)2 ≥

(1− c/386)2. Therefore,

z ≤ max{z1, z̄2} ≤ 1− c ·
(
1−
√
c
)2
· 1

2 + 32
(
β
µ

)2
(1− ρ)2

193
(
1 + β

µ

)2 (
κg + β

µ

)2
ρ

≤ 1− c′ · (1− ρ)2

κ2
g ρ

,

where c′ ∈ (0, 1) is a suitable constant, independent on β/µ, κg, and ρ. �

4.6.6 Proof of Proposition  4.3.1 

We begin introducing some intermediate results.

Lemma 4.6.1. Consider Problem ( 4.1 ) under Assumption  4.1.1 ; and SONATA (Algo-

rithm  4 ) under Assumptions  4.2.1 and  4.3.1 . Then, there holds

U(xν+ 1
2

i ) ≤ U(xνi )− α
((

1− α

2

)
µ̃i + α

2 ·D
`
i

)
‖dνi ‖2 + α‖dνi ‖‖δνi ‖, (4.122)

with δνi defined in ( 4.24 ).

Proof. Consider the Taylor expansion of F :

F (xν+ 1
2

i ) =F (xνi ) +∇F (xνi )>(αdνi ) + (αdνi )>H(αdνi ),
( 4.24 )= F (xνi ) +

(
δνi
)>

(αdνi ) +
(
yνi
)>

(αdνi ) + (αdνi )>H(αdνi ),
(4.123)

where H ,
∫ 1
0 (1− θ)∇2F (θxν+ 1

2
i + (1− θ)xνi )dθ.

Invoking the optimality of x̂νi , we have

G(xνi )−G(x̂νi ) ≥ (dνi )>
(
∇f̃i(x̂νi ;xνi ) + yνi −∇fi(xνi )

)
= (dνi )>

(
yνi + H̃id

ν
i

)
(4.124)

where the equality follows from ∇f̃i(xνi ;xνi ) = ∇fi(xνi ) and the integral form of the mean

value theorem; and H̃i ,
∫ 1

0 ∇2f̃i(θ x̂νi + (1− θ)xνi ;xνi )dθ.
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Substituting ( 4.124 ) in ( 4.123 ) and using the convexity of G yield

F (xν+ 1
2

i )

≤F (xνi ) + (δνi )>(αdνi ) + (αdνi )>H(αdνi ) + α
(
G(xνi )−G(x̂νi )− (dνi )>H̃id

ν
i

)
≤F (xνi ) + (δνi )>(αdνi ) + α

(
−(dνi )>H̃id

ν
i + (αdνi )>H(dνi )

)
+G(xνi )−G(xν+ 1

2
i ).

(4.125)

It remains to bound αH − H̃i. We proceed as follows:

αH − H̃i

=α
∫ 1

0
(1− θ)∇2F (θxν+ 1

2
i + (1− θ)xνi )dθ −

∫ 1

0
∇2f̃i(θx̂νi + (1− θ)xνi ;xνi )dθ

( 4.12b )=
∫ α

0
(1− θ/α)∇2F (θx̂νi + (1− θ)xνi )dθ −

∫ 1

0
∇2f̃i(θx̂νi + (1− θ)xνi ;xνi )dθ

(a)
� −

∫ α

0
(1− θ/α) · (D`

i ) I dθ −
∫ α

0
(θ/α)∇2f̃i(θx̂i + (1− θ)xνi ;xνi )dθ

−
∫ 1

α
∇2f̃i(θ x̂νi + (1− θ)xνi ;xνi )dθ

(b)
� − 1

2α (D`
i ) I −

(
1− α

2

)
µ̃i I,

(4.126)

where in (a) we used ∇2F (θx̂νi + (1− θ)xνi ) � −(D`
i )I +∇2f̃i(θx̂νi + (1− θ)xνi ;xνi ) [cf. ( 4.16 )]

while (b) follows from the fact that f̃i is µ̃i-strongly convex (cf. Assumption  4.2.1 ). Substi-

tuting ( 4.126 ) into (  4.125 ) completes the proof

We connect now the individual decreases in (  4.122 ) with that of the optimality gap pνφ,

defined in ( 4.78 ). Notice that

m∑
i=1

φν+1
i U(xν+1

i ) ≤
m∑

i=1

m∑
j=1

cijφ
ν
j U
(
x
ν+ 1

2
j

)
=

m∑
i=1

φνi U(xν+ 1
2

i ), (4.127)

due to the convexity of U , column-stochasticity of {cνij}i,j and ∑m
j=1 c

ν
ijφ

ν
j /φ

ν+1
i = 1, for all

i = 1, . . . ,m. Summing ( 4.122 ) over i = 1, . . .m, and using ( 4.127 ), we obtain

pν+1
φ ≤ pνφ +

m∑
i=1

φνi

{
α‖dνi ‖‖δνi ‖ − α

(
1− α

2

)
µ̃i‖dνi ‖2 − D`

i
2 α2‖dνi ‖2

}
(a)
≤ pνφ −

((
1− α

2

)
µ̃mn + αDmn

2 − 1
2εopt

)
α

m∑
i=1

φνi ‖dνi ‖2 + 1
2ε
−1
opt α · φub · ‖δν‖2,

(4.128)
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where in (a) we used Young’s inequality, with εopt > 0 satisfying

(
1− α

2

)
µ̃mn + αDL

mn
2 − 1

2εopt > 0. (4.129)

Next we lower bound ‖dν‖2 in terms of the optimality gap.

Lemma 4.6.2. In the setting of Lemma  4.2.1 , there holds:

α
m∑

i=1
φνi ‖dνi ‖2 ≥ µ

D2
mx

(
pν+1
φ − (1− α)pνφ −

α

µ

m∑
i=1

φνi ‖δνi ‖2
)

(4.130)

with Dmx defined in ( 4.25 ).

Proof. Invoking the optimality condition of x̂νi , yields

G(x?)−G(x̂νi ) ≥ −(x? − x̂νi )>
(
∇f̃i(x̂νi ;xνi ) + yνi −∇fi(xνi )

)
. (4.131)

Using the µ-strong convexity of F , we can write

U(x?) ≥ U(x̂νi ) +G(x?)−G(x̂νi ) +∇F (x̂νi )>(x? − x̂νi ) + µ

2‖x
? − x̂νi ‖2

( 4.37 )
≥ U(x̂νi )+

(
∇F (x̂νi )−∇f̃i(x̂νi ;xνi )−

(
yνi −∇fi(xνi )

))>
(x? − x̂νi ) + µ

2‖x
? − x̂νi ‖2

= U(x̂νi ) + µ

2

∥∥∥∥x? − x̂νi + 1
µ

(
∇F (x̂νi )−∇f̃i(x̂νi ;xνi )−

(
yνi −∇fi(xνi )

))∥∥∥∥2

− 1
2µ

∥∥∥∇F (x̂νi )−∇f̃i(x̂νi ;xνi )−
(
yνi −∇fi(xνi )

)∥∥∥2

≥ U(x̂νi )− 1
2µ

∥∥∥∇F (x̂νi )±∇F (xνi )−∇f̃i(x̂νi ;xνi )−
(
yνi −∇fi(xνi )

)∥∥∥2

≥ U(x̂νi )− 1
µ

∥∥∥∇F (x̂νi )−∇F (xνi ) +∇fi(xνi )−∇f̃i(x̂νi ;xνi )
∥∥∥2
− 1
µ
‖δνi ‖2

= U(x̂νi )− 1
µ

∥∥∥∥∫ 1

0

(
∇2F (θx̂νi + (1− θ)xνi )−∇2f̃i(θx̂νi + (1− θ)xνi ;xνi )

)
(dνi ) dθ

∥∥∥∥2
− 1
µ
‖δνi ‖2

≥ U(x̂νi )− D2
i
µ

∥∥∥dνi ∥∥∥2 − 1
µ
‖δνi ‖2,
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where Di = max{|D`
i |, |Du

i |}.

Rearranging the terms and summing over i = 1, . . . ,m, yields

m∑
i=1

φνi ‖dνi ‖2 ≥ µ

D2
mx

(
m∑

i=1
φνi
(
U(x̂νi )− U(x?)

)
− 1
µ

m∑
i=1

φνi ‖δνi ‖2
)
. (4.132)

Using (  4.28 ) in conjunction with U(xν+ 1
2

i ) ≤ αU(x̂νi ) + (1− α)U(xνi ) leads to

α
m∑

i=1
φνi (U(x̂νi )− U(x?)) ≥ pν+1

φ − (1− α)pνφ. (4.133)

Combining ( 4.132 ) with ( 4.133 ) yields the desired result ( 4.130 ).

As last step, we upper bound ‖δν‖2 in ( 4.34 ) in terms of the consensus errors ‖xν⊥‖2 and

‖yν⊥‖2.

Lemma 4.6.3. The tracking error ‖δν‖2 can be bounded as

‖δν‖2 ≤ 8L2
mx‖xνφ,⊥‖2 + 2‖yνφ,⊥‖2., (4.134)

where Lmx is defined in ( 4.5 ).

Proof.
‖δν‖2 ( 4.24 )=

m∑
i=1
‖∇F (xνi )± ȳνφ − yνi ‖2

( 4.75 )= 1
m2

m∑
i=1

∥∥∥∥ m∑
j=1
∇fj(xνi )−

m∑
j=1
∇fj(xνj ) +m · ȳνφ −m · yνi

∥∥∥∥2

A2, ( 4.5 )
≤ 1

m2

m∑
i=1

2m
m∑

j=1
L2

mx‖xνi − xνj ‖2 + 2m2‖ȳνφ − yνi ‖2


≤8L2

mx‖xνφ,⊥‖2 + 2‖yνφ,⊥‖2.

The linear convergence of the optimality gap up to consensus errors as stated in Propo-

sition follows readily multiplying ( 4.130 ) by
(
1− α

2

)
µ̃mn + αDmn

2 − 1
2εopt and adding with

( 4.128 ) to cancel out ‖dν‖, and using ( 4.40 ) to bound ‖δν‖2.
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4.6.7 Proof of Theorem  4.3.1 

Following the same steps as in the proof of Theorem  4.2.1 , we derive the optimal εopt
appearing in η(α) and σ(α):

ε?opt =
(

1− α

2

)
µ̃mn + αD`

mn/2, (4.135)

where α must satisfy

α < 2µ̃mn/(µ̃mn −D`
mn). (4.136)

Setting εopt = ε?opt and denoting the corresponding P(α, z) as P?(α, z), the expression of

P?(α, 1) reads

P?(α, 1) , G?
P (α) · C1 · 8φubL2

mx ·
2c2

0ρ
2
B

(1− ρB)2α
2

+ (G?
P (α) · 2φub · C1 + C2) · 2mφ−2

lb L
2
mx ·

2c2
0ρ

2
B

(1− ρB̄)2α
2

+ (G?
P (α) · 2φub · C1 + C2) · 8mφ−2

lb L
2
mx ·

4c4
0ρ

4
B

(1− ρB̄)4α
2,

(4.137)

where

G?
P (α) ,

D2
mx
µ

+ 1
µ
·
((

1− α
2

)
µ̃mn + D`mn

2 α
)2

((
1− α

2

)
µ̃mn + D`mn

2 α
)2 . (4.138)

Since P?(•, 1) is continuous and monotonically increasing on (0, 2µ̃mn/(µ̃mn − D`
mn), with

P?(0, 1) = 0. A upperbound of α can be found by setting

α < α2 ,

(
G?
P

(
µ̃mn

µ̃mn −D`
mn

)
· C1 · 8φubL2

mx ·
2c2

0ρ
2
B

(1− ρB)2α
2 (4.139)

+
(
G?
P

(
µ̃mn

µ̃mn −D`
mn

)
· 2φub · C1 + C2

)
· 2mφ−2

lb L
2
mx ·

2c2
0ρ

2
B

(1− ρB̄)2α
2 (4.140)

+
(
G?
P

(
µ̃mn

µ̃mn −D`
mn

)
· 2φub · C1 + C2

)
· 8mφ−2

lb L
2
mx ·

4c4
0ρ

4
B

(1− ρB̄)4

)−1/2

. (4.141)
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Therefore, a valid ᾱ is ᾱ = min{µ̃mn/(µ̃mn −D`
mn), α2}.

4.6.8 Explicit expression of the linear rate in time-varying directed networks

The following theorem provides an explicit expression of the convergence rate in Theorem

 4.3.1 , in terms of the step-size α; the constants J and A 1
2

therein are defined in ( 4.149 ) and

( 4.146 ) with θ = 1/2, respectively.

Theorem 4.6.1. In the setting of Theorem  4.3.1 , suppose that the step-size α satisfies

α ∈ (0, αmx), with αmx , min{(1− ρB)/A 1
2
, , µ̃mn/(µ̃mn−D`

mn), 1}. Then {U(xνi )} converges

to U? at the R-linear rate O(zν), for all i = 1, . . . ,m, where

z =


1− J · α, if α ∈ (0,min{α∗, αmx}) ,

ρB + A 1
2
α, if α ∈ [ min{α∗, αmx}, αmx).

(4.142)

Proof. The proof follows similar steps as the proof of Theorem  4.2.2 . For sake of simplicity,

we used the same notation as therein. We find the smallest z satisfying (  4.90 ) such that

P(α, z) < 1, for α ∈ (0, αmx), and αmx ∈ (0, 1) to be determined[recall that P(α, z) is

defined in (  4.96 )].

Using exactly the same argument as Theorem  4.2.2 we have the following two conditions

on z:

z ≥ σ(α) +
(θ · α) ·

((
1− α

2

)
µ̃mn + D`mn

2 α− 1
2εopt

)
D2

mx
µ

+
(
1− α

2

)
µ̃mn + D`mn

2 α− 1
2εopt

(4.143)

for some θ ∈ (0, 1); and

G?
P (α) · θ−1 ·GX(z) · C1 · 8φubL2

mx · ρ2
B · α2

+
(
G?
P (α) · θ−1 · 2φub · C1 + C2

)
·GY (z) · 2mφ−2

lb L
2
mx · ρ2

B · α2

+
(
G?
P (α) · θ−1 · 2φub · C1 + C2

)
·GY (z) · 8mφ−2

lb L
2
mx ·GX(z) · ρ4

B · α2 < 1.

(4.144)
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Using the fact that G?
P (α) is monotonically increasing on α ∈ (0, 2µ̃mn/(µ̃mn − D`

mn)),

and restricting α ∈ (0, µ̃mn/(µ̃mn −D`
mn)], a sufficient condition for (  4.144 ) is

α ≤ α(z) ,
(
A1,θ

1
z − ρB

+ A2,θ
1

z − ρB
+ A3,θ

1
(z − ρB)2

)−1/2

, (4.145)

where A1,θ, A2,θ and A3,θ are constants defined as

A1,θ , G?
P

(
µ̃mn

µ̃mn −D`
mn

)
· θ−1 · C1 · 8φubL2

mx ·
2c2

0ρ
2
B

1− ρB

A2,θ ,

(
G?
P

(
µ̃mn

µ̃mn −D`
mn

)
· θ−1 · 2φub · C1 + C2

)
· 2mφ−2

lb L
2
mx ·

2c2
0ρ

2
B

1− ρB

A3,θ ,

(
G?
P

(
µ̃mn

µ̃mn −D`
mn

)
· θ−1 · 2φub · C1 + C2

)
· 8mφ−2

lb L
2
mx ·

4c4
0ρ

4
B

(1− ρB)2 .

Lower bounding z − ρB by (z − ρB)2 we obtain

z ≥ ρB + Aθα, with Aθ ,
√
A1,θ + A2,θ + A3,θ. (4.146)

Letting εopt = ε?opt in ( 4.143 ), the condition reduces to

z ≥ 1−
µ̃mn − α

2 (µ̃mn −D`
mn)

2D2
mx
µ

+ µ̃mn − α
2 (µ̃mn −D`

mn)
· (1− θ)α. (4.147)

Therefore, the overall convergence rate can be upper bounded by O(z̄ν), where

z̄ = inf
θ∈(0,1)

max
ρB + Aθα, 1−

µ̃mn − α
2 (µ̃mn −D`

mn)
2D2

mx
µ

+ µ̃mn − α
2 (µ̃mn −D`

mn)
· (1− θ)α

 , (4.148)

with Aθ defined in (  4.146 ).

Finally, we further simplify ( 4.148 ). Letting θ = 1/2 and using α ∈ (0, µ̃mn/(µ̃mn−D`
mn)],

the second term in the max of ( 4.148 ) can be upper bounded by

1− µ̃mnµ

4D2
mx + µ̃mnµ

· 1
2︸ ︷︷ ︸

,J

α. (4.149)
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The condition z̄ < 1 imposes the following upper bound on α: α < αmx = min{(1 −

ρB)/A 1
2
, µ̃mn/(µ̃mn−D`

mn), 1}. Eq. ( 4.148 ) then simplifies to ( 4.142 ) with α∗ = (1−ρB)/(A 1
2
+

J) that equates 1− Jα and ρB + A 1
2
α.

4.6.9 Rate estimate using linearization surrogate ( 4.63 ) (time-varying directed
network case)

Corollary 4.6.1 (Linearization surrogates). In the setting of Theorem  4.6.1 , let {xν} be

the sequence generated by SONATA (Algorithm  4 ), using the surrogates ( 4.63 ) and step-

size α = c · αmx, c ∈ (0, 1), where αmx = min{1, (1 − ρB)2/(CM · κg(1 + β/L)2)} and CM

is a constant defined in ( 4.155 ). The number of iterations (communications) needed for

U(xνi )− U? ≤ ε, i ∈ [m], is

O (κg log(1/ε)) , if ρB
(1− ρB)2 ≤

1
CM · κg

(
1 + β

L

)2 , (4.150)

O


(
κg + β/µ

)2
ρB

(1− ρB)2 log(1/ε)

 , otherwise. (4.151)

Proof. According to Theorem  4.6.1 , the rate z can be bounded as

z ≤ max{z1, z2}, with z1 , 1− α · J and z2 , ρB + A 1
2
α, (4.152)

where J and A 1
2

are defined in ( 4.149 ) and ( 4.146 ), respectively.

The proof consists in bounding properly z1 and z2 based upon the surrogate ( 4.63 ) pos-

tulated in the corollary. We begin particularizing the expressions of J and A 1
2
. Since

∇2f̃i(xi;xνi ) = L, one can set µ̃mn = L, and (  4.16 ) holds with D`
mn = 0 and Dmx = L − µ.

Furthermore, by Assumption  4.1.1 , it follows that β ≥ λmax(∇2fi(x)) − L, for all x ∈ K;

hence, one can set Lmx = L+β. Next, we will substitute the above values into the expressions

of J and A 1
2
.
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To do so, we need to particularize first the quantities G?
P

(
µ̃mn

µ̃mn−D`mn

)
[cf. ( 4.138 )], C1 and

C2 [cf. ( 4.94 )]:

G?
P

(
µ̃mn

µ̃mn −D`
mn

)
= G?

P (1) = 4(L− µ)2 + L2

µL2 ,

C1 = 6
µφlbL2

(
(2L− µ)2 + 4(L+ β)2

)
, and C2 = 4

L2 .

Accordingly, the expressions of J and A 1
2

read:

J = 1
2

κg
4(κg − 1)2 + κg

∈
[

1
8κg

,
1
2

]
, (4.153)

and

(A 1
2
)2

=G?
P (1) · 2 · C1 · 8φub · L2

mx ·
2c2

0ρ
2
B

1− ρB

+ (G?
P (1) · 2 · C1 · 2φub + C2) · 2mφ−2

lb L
2
mx ·

2c2
0ρ

2
B

1− ρB

+ (G?
P (1) · 2 · C1 · 2φub + C2) · 8mφ−2

lb L
2
mx ·

4c4
0ρ

4
B

(1− ρB)2

≤ (G?
P (1) · 2 · C1 · 12φub + C2) · 8mφ−2

lb L
2
mx ·

4c4
0ρ

2
B

(1− ρB)2

≤
[

4(L− µ)2 + L2

µL2 · 12
µφlbL2

(
(2L− µ)2 + 4(L+ β)2

)
· 12φub + 4

L2

]

· 8mφ−2
lb (L+ β)2 · 4c4

0ρ
2
B

(1− ρB)2

≤C2
M · κ2

g

(
1 + β

L

)4

· ρ2
B

(1− ρB)2 ,

(4.154)

where

CM , 608 · φ−1
lb · c0

√
φub
φlb
·m, (4.155)

and in the first inequality we have used the fact that φlb < 1 and c0 > 1, and the last

inequality holds since κg ≥ 1 and φub
φlb
≥ 1. Using the above expressions, in the sequel we

upperbound z1 and z2.
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By (  4.154 ), we have

z2 ≤ z̄2 , ρB + αM · ρB
1− ρB

, with M , CM · κg(1 + β/L)2. (4.156)

Since α ∈ (0, 1] must be chosen so that z ∈ (0, 1], we impose max{z1, z̄2} < 1, implying

α ≤ min{J−1, (1− ρB)2/(MρB), 1}. Since J−1 > 1 [cf. ( 4.153 )], the condition on α reduces

to α ≤ αmx , min{1, (1− ρB)2/(MρB)} < 1. Choose α = c · αmx, for some given c ∈ (0, 1).

Depending on the value of ρB, either αmx = 1 or αmx = (1− ρB)2/(MρB).

• Case I: αmx = 1. This corresponds to the case MρB ≤ (1 − ρB)2. Note that, we

also have ρB ≤ 1/CM , otherwise MρB ≥ CM κg ρB > 1 > (1 − ρB)2. In this setting,

α = c · αmx = c, and

z1 = 1− c · J,

z̄2 = ρB + cM · ρB
1− ρB

(a)
≤ 1− (1− c)(1− ρB)

(b)
≤ 1− (1− c)

(
1− 1

CM

)
,

where in (a) we used MρB ≤ (1− ρB)2 and (b) follows from ρB ≤ 1/CM .

Therefore, z can be bounded as

z ≤ max{z1, z̄2} ≤ 1− c · (1− c)
(

1− 1
CM

)
· J

≤ 1− c · (1− c)
(

1− 1
CM

)
· 1

8κg
.

(4.157)

• Case II: αmx = (1 − ρB)2/(MρB). This corresponds to MρB > (1 − ρB)2. We have

α = c · αmx,
z1 =1− J c

MρB
· (1− ρB)2,

z̄2 =1− (1− c) (1− ρB) .

185



Now we can bound z. Since Jc/(MρB) < 1 (by the same reasoning as in proof of Proposition

 4.2.2 ),
z ≤ max{z1, z̄2} ≤ 1− Jc

MρB
· (1− c) (1− ρB)2

( 4.153 )
≤ 1− c (1− c)

8CM
· (1− ρB)2

κ2
g(1 + β/L)2ρB

= 1− c (1− c)
8CM

· (1− ρB)2

(κg + β/µ)2ρB
.

(4.158)

4.6.10 Rate estimate using local fi ( 4.64 ) (time-varying directed network case)

Corollary 4.6.2 (Local fi, β ≤ µ). Instate assumptions of Theorem  4.6.1 and suppose

β ≤ µ. Consider SONATA (Algorithm  4 ) using the surrogates ( 4.64 ) and step-size α = c·αmx,

c ∈ (0, 1), with αmx = min{1, (1 − ρB)2/(M̃2ρB)} where M̃2 = 1087C̃M
(
1 + β

µ

)2 (
κg + β

µ

)2

and the constant C̃M is defined in ( 4.165 ). The number of iterations (communications)

needed for U(xνi )− U? ≤ ε, i ∈ [m], is

O (1 · log(1/ε)) , if ρB
(1− ρB)2 ≤

1
1087 · C̃M ·

(
1 + β

µ

)2 (
κg + β

µ

)2 , (4.159)

O
(

κ2
gρB

(1− ρB)2 log(1/ε)
)
, otherwise. (4.160)

Corollary 4.6.3 (Local fi, β > µ). Instate assumptions of Theorem  4.6.1 and suppose

β > µ. Consider SONATA (Algorithm  4 ) using the surrogates ( 4.64 ) and step-size α = c·αmx,

c ∈ (0, 1), where αmx = min{1, (1− ρB)2/(M̃1ρB)} with M̃1 = 1428C̃M
(
1 + L

β

) (
κg + β

µ

)
and

the constant C̃M is defined in ( 4.165 ). The number of iterations (communications) needed

for U(xνi )− U? ≤ ε, i ∈ [m], is

O
(
β

µ
log(1/ε)

)
, if ρB

(1− ρB)2 ≤
1

1428 · C̃M ·
(
1 + L

β

) (
κg + β

µ

) , (4.161)

O
(

(κg + (β/µ))2 ρB
(1− ρB)2 log(1/ε)

)
, otherwise. (4.162)
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Proof. In the setting of the corollary, we have: ∇2f̃i(x; y) = ∇2fi(x) + βI, for all y ∈ K;

∇2fi(x) � 0, for all x ∈ K; and, by Assumption  4.1.1 , 0 � ∇2f̃i(x, y) −∇2F (x) � 2βI, for

all x, y ∈ K. Therefore, we can set D`
mn = 0, Dmx = 2β, µ̃mn = β + (µ− β)+ = max{β, µ},

and Lmx = L+ β.

Using these values, G?
P

(
µ̃mn

µ̃mn−D`mn

)
, C1, and C2 can be simplified as follows:

G?
P

(
µ̃mn

µ̃mn −D`
mn

)
= G?

P (1) = 16β2 + max{β, µ}2

µmax{β, µ}2 ,

C1 = 6
µφlb

( 2β
max{β, µ} + 1

)2

+ 4(L+ β)2

max{β, µ}2

 , and C2 = 4
max{β, µ}2 .

Accordingly, the expressions of J and A 1
2

read:

J = 1
2

1
1 + 16

(
β
µ

)
·min

{
1, β

µ

} , (4.163)

and

(A 1
2
)2

≤ (G?
P (1) · 2 · C1 · 12φub + C2) · 8mφ−2

lb L
2
mx ·

4c4
0ρ

2
B

(1− ρB)2

≤

16β2 + max{β, µ}2

µmax{β, µ}2 · 12
µφlb

( 2β
max{β, µ} + 1

)2

+ 4(L+ β)2

max{β, µ}2

 · 12φub + 4
max{β, µ}2


· 8mφ−2

lb (L+ β)2 · 4c4
0ρ

2
B

(1− ρB)2

≤



(
2448 · φub

φlb
·
(

9 + 4
(
1 + L

β

)2
)
·
(
κg + β

µ

)2
+ 4

(
1 + L

β

)2
)
· 8mφ−2

lb ·
4c4

0ρ
2
B

(1−ρB)2 , β > µ,(
144 · φub

φlb
·
(

16β2

µ2 + 1
) (
κg + β

µ

)2
((

2β
µ

+ 1
)2

+ 4
(
κg + β

µ

)2
)

+ 4
(
κg + β

µ

)2
)

·8mφ−2
lb ·

4c4
0ρ

2
B

(1−ρB)2 , β ≤ µ;

≤M̃2 ρ2
B

1− ρ2
B

,
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where

M̃ ,


1428 · C̃M

(
1 + L

β

) (
κg + β

µ

)
, β > µ,

1087 · C̃M
(
1 + β

µ

)2 (
κg + β

µ

)2
, β ≤ µ,

(4.164)

and

C̃M , c2
0φ
−1
lb

√
φub
φlb
·m, (4.165)

and the last inequality holds since κg ≥ 1 and φub
φlb
≥ 1.

Similarly, we bound z ≤ max{z1, z2} as

z ≤ max{z1, z̄2}, with z1 , 1− α · J and z̄2 , ρB + α M̃ · ρB
1− ρB

, (4.166)

where J and M̃ are now given by ( 4.163 ) and ( 4.164 ), respectively. For max{z1, z2} < 1,

we require α ≤ αmx , min{1, (1 − ρB)2/(M̃ρB)}, and choose α = c · αmx, with arbitrary

c ∈ (0, 1).

• Case I: αmx = 1. This correspond to M̃ρB ≤ (1− ρB)2, α = c, hence,

z1 = 1− c · J and z̄2 ≤ 1− (1− c) (1− ρB).

Since M̃ ≥ 1087 · C̃M and (1− ρB)2 ≤ 1, it must be ρB ≤ 1/(1087 · C̃M). Therefore, the rate

z can be bounded as

z ≤ max{z1, z̄2} ≤ 1− c · (1− c) · J · (1− ρB)

≤ 1− c · (1− c) ·
(

1− 1
1087 · C̃M

)
· 1

34 ·
µ

β
,

when β > µ, and

z ≤ 1− c · (1− c) ·
(

1− 1
1087 · C̃M

)
· 1

2 + 32
(
β
µ

)2 ,

when β ≤ µ.
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• Case II: αmx = (1 − ρB)2/(M̃ρB). This corresponds to M̃ρB > (1 − ρB)2. We have

α = c · αmx. Similarly to inequality ( 4.158 ) in proof of Corollary  4.6.1 , we have

z ≤ max{z1, z̄2} ≤ 1− c J

M̃ρB
· (1− c) (1− ρB)2,

which yields

z ≤ 1− c (1− c)
1428 · 34 · C̃M

· (1− ρB)2

(κg + β/µ)2ρB
,

when β > µ, and

z ≤ 1− c (1− c)
34 · 1087 · C̃M

· (1− ρB)2

(1 + β/µ)2(κg + β/µ)2ρB

≤ 1− c (1− c)
34 · 16 · 1087 · C̃M

· (1− ρB)2

κ2
gρB

,

when β ≤ µ; the last inequality holds due to κg ≥ 1.
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5. DECENTRALIZED SECOND-ORDER ALGORITHMS FOR

(STRONGLY) CONVEX OPTIMIZATION OVER NETWORKS

In this chapter, we study the class of Empirical Risk Minimization (ERM) problems over a

network of m agents, modeled as undirected graph. Differently from master/slave systems,

no centralized node is assumed in the network (which will be referred to as meshed network).

Each agent i has access to n i.i.d. samples z(1)
i , . . . , z

(n)
i drawn from an unknown, common

distribution on Z ⊆ Rp; the associated empirical risk reads

fi(x) , 1
n

n∑
j=1

`
(
x; z(j)

i

)
, (5.1)

where ` : Rd × Z → R is the loss function, assumed to be (strongly) convex in x, for any

given z ∈ Z. Agents aim to minimize the total empirical risk over the N = mn samples,

resulting in the following ERM over networks:

x̂ ∈ argmin
x∈K

F (x) , 1
m

m∑
i=1

fi (x) , (5.2)

where K⊆ Rd is convex and known to the agents.

Since the functions fi can be accessed only locally and routing local data to other agents

is infeasible or highly inefficient, solving (  5.2 ) calls for the design of distributed algorithms

that alternate between a local computation procedure at each agent’s side, and a round

of communication among neighboring nodes. The cost of communications is often consid-

ered the bottleneck for distributed computing, if compared with local (possibly parallel)

computations (e.g., [ 193 ], [ 194 ]). Therefore, our goal is developing communication-efficient

distributed algorithms that solve ( 5.2 ) within the statistical precision.

The provably faster convergence rates of second order methods over gradient-based al-

gorithms make them potential candidates for communication saving (at the cost of more

computations). Despite the success of Newton-like methods to solve ERM in a centralized

setting (e.g., [  195 ], [ 196 ]), including master/slave architectures [ 140 ], [ 141 ], [ 197 ]–[ 199 ], their

distributed counterparts on meshed networks are not on par: convergence rates provably
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faster than those of first order methods are achieved at high communication costs [ 200 ],

[ 201 ], cf. Sec.  5.0.2 .

We claim that stronger guarantees of second order methods over meshed networks can be

certified if a statistically-informed design/analysis is put forth, in contrast with statistically

agnostic approaches that look at ( 5.2 ) as deterministic optimization and target any arbitrarily

small suboptimality. To do so, we build on the following two key insights.

• Fact 1 (statistical accuracy): When it comes to learning problems, the ERM ( 5.2 )

is a surrogate of the population minimization

x? ∈ argmin
x∈K

FP (x) , EZ∼P ` (x;Z) . (5.3)

The ultimate goal is to estimate x? via the ERM ( 5.2 ). Denoting by xε ∈ K the estimate

returned by the algorithm, we have the risk decomposition (neglecting the approximation

error due to the use of a specific set of models x ∈ K):

FP (xε)− FP (x?)

=
{
FP (xε)− F (xε)

}
≤statistical error

+
{
F (xε)− F (x?)

}
+
{
F (x?)− FP (x?)

}
≤statistical error

≤ O(statistical error) +
{
F (xε)− F (x̂)

}
=optimization error

(5.4)

where the statistical error is usually of the order O(1/
√
N) or O(1/N) (cf. Sec.  5.1 ). It is

thus sufficient to reach an optimization accuracy F (xε)− F (x̂) = O(statistical error). This

can potentially save communications.

• Fact 2 (statistical similarity): Under mild assumptions on the loss functions and i.i.d

samples across the agents (e.g., [  141 ], [ 202 ]), it holds with high probability (and uniformly

on Z) ∥∥∥∇2fi(x)−∇2F (x)
∥∥∥ ≤ β = Õ(1/

√
n), ∀x ∈ K, (5.5)

with Õ hiding log-factors and the dependence on d. In words, the local empirical losses fi

are statistically similar to each other and the average F , especially for large n.
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The key insight of Fact 1 is that one can target suboptimal solutions of ( 5.2 ) within

the statistical error. This is different from seeking a distributed optimization method that

achieves any arbitrarily small empirical suboptimality. Fact 2 suggests a further reduction

in the communication complexity via statistical preconditioning, that is, subsampling the

Hessian of F over the local data sets, so that no Hessian matrix has to be transmitted over

the network. In thsi chapter, we show that, if synergically combined, these two facts can

improve the communication complexity of distributed second order methods over meshed

networks.

5.0.1 Major contributions

We propose and analyze a decentralization of the cubic regularization of the Newton

method [ 134 ] over meshed networks. The algorithm employs a local computation procedure

performed in parallel by the agents coupled with a round of (perturbed) consensus mecha-

nisms that aim to track locally the gradient of F (a.k.a. gradient-tracking) as well as enforce

an agreement on the local optimization directions. The optimization procedure is an inexact,

preconditioned (cubic regularized) Newton step whereby the gradient of F is estimated by

gradient tracking while the Hessian of F is subsampled over the local data sets. Neither a

line-search nor communication of Hessian matrices over the network are performed.

We established for the first time global convergence for different classes of ERM prob-

lems, as summarized in Table  5.1 . Our results are of two types: i) classical complexity

analysis (number of communication rounds) for arbitrary solution accuracy (right panel);

ii) and complexity bounds for statistically optimal solutions (left panel, VN is the statisti-

cal error). Postponing to Sec  5.3 a detailed discussion of these results, here we highlight

some key novelties of our findings. Convex ERM: For convex F , if arbitrary ε-solutions

are targeted, the algorithm exhibits a two-speed behavior: 1) a first rate of the order of

O((1/
√

1− ρ) ·
√
LD3/ε1+α), as long as ε = Ω(LD3β2); up to the network dependent factor

1/
√

1− ρ, this (almost) matches the rate of the centralized Newton method [ 134 ]; and 2)

the slower rate O((1/
√

1− ρ) · (LD3β2)/ε), which is due to the local subsampling of the

global Hessian ∇2F ; this term is dominant for smaller values of ε. The interesting fact is
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that ε = Ω(LD3β2) is of the order of the statistical error VN . Therefore, rates of the order

of centralized ones are provably achieved up to statistical precision (left panel). Strongly

Convex ERM (β < µ): The communication complexity shows a three-phase rate behaviour

(right panel); for arbitrarily small ε > 0, the worst-case communication complexity is linear,

of the order of Õ
(
(1/
√

1− ρ) · (β/µ) · log(1/ε)
)
. Faster rates are certified when ε = O(VN)

(left panel). Note that the region of superlinear convergence is a false improvement when

the first term m1/4
√
LD/µ is dominant, e.g., F is ill-conditioned and n is not large. This

term is unavoidable [ 134 ]–unless more refined function classes are considered, such as self-

concordant or quadratic (L = 0). The left panel shows improved rates in the latter case or

under an initialization within a O(1/
√
n)-neighborhood of the solution. Strongly Convex

ERM (β ≥ µ): This is a common setting when FP is convex and a regularizer is used in the

ERM (  5.2 ) for learnability/stability purposes; typically, µ = O(1/
√
N), β = O(1/

√
n). We

proved linear rate for arbitrary ε-values. Differently from the majority of first-order methods

over meshed networks (cf. Sec.  5.0.2 ), this rate does not depend on the condition number of

F but on the generally more favorable ratio β/µ. Furthermore, when ε = O(VN), the rate

does not improve over the convex case.

In summary, we propose a second-order method solving convex and strongly convex problems

over meshed networks that, for the first time, enjoys global complexity bounds and commu-

nication complexity close to oracle complexity of centralized methods up to the statistical

precision.

193



Table 5.1. Communication complexity of DiRegINA to ε > 0 suboptimality for (strongly) convex ERM. Right
column: arbitrary ε values. Left column: ε = Ω(VN ), VN is the statistical error [cf. ( 5.4 )]. The other parameters are:
µ and L are the strong convexity constant of F and Lipschitz constant of ∇2F , respectively; D and Dp are estimates of
the optimality gap at the initial point; β measures the similarity of ∇2fi [cf. (  5.5 )]; ρ characterizes the connectivity of
the network; and α > 0 is an arbitrarily small constant.

Problem ε = Ω(VN ) (statistical error) ε > 0 (arbitrary)
Convex
µ = 0
VN =
O(1/

√
N)

Thm.  5.3.1 

Cor.  5.3.1 

Õ
(

1√
1−ρ ·

√
LD3

V 1+α
N

)
Õ
(

1√
1−ρ ·

{√
LD3

ε1+α + LD3β
ε1+α/2

})
L > 0
Thm.  5.3.2 

Cor. 5.3.2 

Õ
(

1√
1−ρ

{
m1/4

√
LD
µ +log log

(
µ3

mL2VN

)}) Õ
(

1√
1−ρ

{
m1/4 ·

√
LD
µ + log log

(
µ2

β2 min
{

1, β
2µ

mL2 · 1
ε

})
Strongly-
convex
0 < β < µ

VN = O(1/N)
µ = O(1)

+β
µ log

(
β2µ
mL2ε

)})
L > 0
+initialization
(Cor.

 5.3.3 )

Õ
(

1√
1−ρ ·

{
log log

(
µ3

mL2 · 1
VN

)})
, β = O

(
1√
n

)
Õ
(

1√
1−ρ

{
log log

(
µ2

β2 ·min
(
1, β2µ

mL2ε

))
+ β

µ log
(
β2µ
mL2ε

)})
L = 0
(Thm.

 5.6.5 ,
appendix

 5.6.5.4 )

Õ
(

1√
1−ρ · log log

(
Dp
VN

))
, β = O

(
1√
n

)
Õ
(

1√
1−ρ ·

{
log log

(
Dp
ε

)
+ β

µ log
(
Dpβ2

µ2ε

)})

Strongly-
convex
(regularized)

0 < µ ≤ β
VN =
O(1/

√
N)

L > 0
(Thm.

 5.3.3 )
Õ
(

1√
1−ρm

1/2
√

LD
VN

)
,

µ = O(VN )

β = O( 1√
n

)
Õ
(

1√
1−ρ

{√
LD
µ

(
1 +m1/4

√
β
µ

)
+ β

µ log
(
β2µ
mL2ε

)})
L = 0
(Thm.

 5.6.6 ,
appendix

 5.6.7 )

Õ
(

1√
1−ρ ·m

1/2 · log
(

1
VN

))
,

µ = O(VN )

β = O( 1√
n

)
Õ
(

1√
1−ρ ·

β
µ · log

(
1
ε

))
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5.0.2 Related Works

The literature of distributed optimization is vast; here we review relevant methods ap-

plicable to meshed networks, omitting the less relevant work considering only master-slave

systems (a.k.a star networks).

• Statistically oblivious methods: Despite being vast and providing different commu-

nication and oracle complexity bounds, the literature (e.g., [  139 ], [ 146 ], [ 203 ]–[ 208 ]) on de-

centralized first-order methods for minimizing Q-Lipschitz-smooth and µ-strongly convex

global objective F mostly focuses on the particular case where n = 1 in ( 5.1 ) and K = Rd,

and does not take into account statistical similarity of the risks. The best convergence results

for nonaccelerated first-order methods certify linear rate, scaling with the condition number

κ = Q/µ (Q is the Lipschitz constant of ∇F ); Nesterov-based acceleration improves the

dependence to
√
κ [ 209 ]. This performance can still be unsatisfactory when 1 + β/µ < κ

(resp. 1 + β/µ <
√
κ). This is the typical situation of ill-conditioned problems, such as

many learning problems where the regularization parameter that is optimal for test predic-

tive performance is very small [ 202 ]. For instance, consider the ridge-regression problem with

optimal regularization parameter µ = 1/
√
mn (Table 1 in [ 141 ]), we have: κ = O(

√
m · n)

while β/µ = O(
√
m). Notice that the former grows with the local sample size n, while the

latter is independent.

A number of second-order methods were proposed for distributed optimization over

meshed networks, with typical results being local superlinear convergence [ 210 ]–[ 212 ] or

global linear convergence no better than that of first-order methods [  213 ]–[ 217 ]. Improved

upon first-order methods global bounds are achieved by exploiting expensive sending lo-

cal Hessians over the network–such as [ 201 ], obtaining communication complexity bound

O((mL‖∇f(x0)‖/µ2)+log log(1/ε))–or employing double-loop schemes [ 200 ] wherein at each

iteration, a distributed first-order method is called to find the Newton direction, obtaining

iteration complexity O( 3
√
LD3/ε) at the price of excessive communications per iteration.

Furthermore, these schemes cannot handle constraints. To the best of our knowledge, no

distributed second-order method over meshed networks has been proved to globally con-

verge with communication complexity bounds even up to a network dependent factor close
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to the standard [  134 ] bounds O(√(LD3)/ε) for convex and O(
√
LD/µ+log log(µ3/L2ε)) for

µ-strongly convex problems. Table  5.1 shows the first results of this genre.

• Methods exploiting statistical similarity: Starting the works [ 139 ], [ 140 ] several

papers studied the idea of statistical preconditioning to decrease the communication com-

plexity over star networks, for different problem classes; example include [  140 ], [ 218 ], [ 219 ]

(quadratic losses), [ 141 ] (self-concordant losses), [ 220 ] (under n > d), and [ 142 ] (composite

optimization), with [ 202 ], [ 221 ] employing acceleration. None of these methods are imple-

mentable over meshed networks, because they rely on a centralized (master) node. To our

knowledge, Network-DANE [ 183 ] and SONATA [ 222 ] are the only two methods that leverage

statistical similarity to enhance convergence of distributed methods over meshed networks;

[ 183 ] studies strongly convex quadratic losses while [ 222 ] considers general objectives, achiev-

ing a communication complexity of Õ((1/
√

1− ρ)·β/µ·log(1/ε)). Both schemes call at every

iteration for an exact solution of local strongly convex problems while our subproblems are

based on second-order approximations, computationally thus less demanding. Nevertheless,

our algorithm retains same rate dependence on β/µ. Our study covers also non-strongly

convex losses.

5.1 Setup and Background

5.1.1 Problem setting

We study convex and strongly convex instances of the ERM ( 5.2 ); specifically, we make

the following assumptions [note that, although explicitly omitted, each fi(x) and thus F

depend on the sample z ∈ Z via `(x, z); all the assumptions below are meant to hold

uniformly on Z].

Assumption 5.1.1 (convex ERM). The following hold:

(i) ∅ 6= K ⊆ Rd is closed and convex;

(ii) Each fi : Rd × Z → R is twice differentiable and µi- strongly convex on (an open set

containing) K, with µi ≥ 0;
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(iii) Each ∇fi is Qi-Lipschitz continuous on K, where ∇fi is the gradient with respect to x;

let Qmax , maxi=1,...,mQi;

(iv) F has bounded level sets.

Assumption 5.1.2 (strongly convex ERM). Assumption  5.1.1 (i)-(iii) holds and F is µ-

strongly convex on K, with µ > 0.

The following condition is standard when studying second order methods.

Assumption 5.1.3. ∇2F : Rd → Rd×d is L-Lipschitz continuous on K, i.e.,
∥∥∥∇2F (x) −

∇2F (y)
∥∥∥ ≤ L

∥∥∥x− y∥∥∥, for some L > 0 and all x, y ∈ K.

Statistical accuracy: As anticipated earlier, we are interested in computing estimates

of the population minimizer ( 5.3 ) up to the statistical error using the ERM rule ( 5.4 ). To

do so, throughout the chapter, we postulate the following standard uniform convergence

property, which suffices for learnability by ( 5.4 ): there exists a constant VN , dependent on

N = mn, such that

sup
x∈K
|F (x)− FP (x)| ≤ VN w.h.p. (5.6)

The statistical accuracy VN has been widely studied in the literature, e.g., [ 223 ]–[ 227 ]. Con-

sistently with these works, we will assume:

1. VN = O(1/N), for µ-strongly convex F and FP , with 0 < µ = O(1);

2. VN = O(1/
√
N) for convex or µ-strongly convex F , with µ = O(1/

√
N).

These cases cover a variety of problems of practical interest. An example of case 1 is a loss

in the form `(x; z) = f(x; z) + (µ/2)‖x‖2, with fixed regularization parameter and f convex

in x (uniformly on z), as in ERM of linear predictors for supervised learning [ 228 ]. Case 2

captures traditional low-dimensional (n > d) ERM with convex losses or regularized losses

as above with optimal regularization parameter µ = O(1/
√
N) [  184 ], [  225 ], [  226 ].

Under ( 5.6 ), the suboptimality gap at given x ∈ K reads: 

1
 

FP (x)− FP (x?) ≤ O(VN) +
{
F (x)− F (x̂)

}
, w.h.p. (5.7)

1
 ↑ We point out that our results hold under (  5.7 ), which can also be established using weaker conditions than

( 5.6 ), e.g., invoking stability arguments [  229 ].
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Therefore, our ultimate goal will be computing ε-solutions xε of ( 5.2 ) of the order ε = O(VN).

Statistical similarity: Towards above goal, we can exploit statistical similarity which

naturally exists in big-data; see Chapter  4 , Sec.  4.1.1.2 for more details. Thus we are

interested in studying problem ( 5.2 ) under statistical similarity of fi’s. We recall Definition

 4.1.1 from Chapter  4 :

Assumption 5.1.4 (β-related fi’s). The local functions fi’s are β-related: ‖∇2F (x)−∇2fi(x)‖2 ≤

β, for all x ∈ K and some β ≥ 0.

The interesting case is when 1 + β/µ � κ , Q/µ, where Q is the Lipschitz constant of

∇F on K (uniformly on Z). Under standard assumptions on data distributions and learning

model underlying the ERM-see, e.g., [  141 ], [ 202 ]–β is of the order β = O (1/
√
n), with high

probability. In our analysis, when we target convergence to the statistical error, we will

tacitly assume such dependence of β on the local sample size. Note that our bounds hold

for general situations when Assumption  5.1.4 may hold due to some other reason besides

statistical arguments.

5.1.2 Network setting

The network of agents is modeled as a fixed, undirected graph G , (V , E), where V ,

{1, . . . ,m} denotes the vertex set–the set of agents–while E , {(i, j) | i, j ∈ V} represents the

set of edges–the communication links; (i, j) ∈ E iff there exists a communication link between

agent i and j. We make the following standard assumption on the connectivity.

Assumption 5.1.5 (On the network). The graph G is connected.

5.2 Algorithmic Design: DiRegINA

We aim at decentralizing the cubic regularization of the Newton method [ 134 ] over undi-

rected graphs. The main challenge in developing such an algorithm is to track and adapt

a faithful estimates of the global gradient and Hessian matrix of F at each agent, without

incurring in an unaffordable communication overhead while still guaranteeing convergence at

fast rates. Our idea is to estimate locally the gradient ∇F via gradient-tracking [ 177 ], [ 230 ]
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while the Hessian ∇2F is replaced by the local subsampled estimates ∇2fi (statistical pre-

conditioning). The algorithm, termed DiRegINA (Distributed Regularized Inexact Newton

Algorithm), is formally introduced in Algorithm  5 , and commented next.

Each agent maintains and updates iteratively a local copy xi ∈ Rd of the global opti-

mization variable x along with the auxiliary variable si ∈ Rd, which estimates the gradient

of the global objective F ; xνi (resp. sνi ) denotes the value of xi (resp. si) at iteration ν ≥ 0.

(S.1) is the optimization step wherein every agent i, given xνi and sνi , minimizes an inexact

local second-order approximation of F , as defined in ( 5.8a ). In this surrogate function, i)

yνi acts as an approximation of ∇F at xνi , that is, sνi ≈ ∇F (xνi ); ii) in the quadratic term,

∇2fi(xνi ) plays the role of ∇2F (xνi ) (due to statistical similarity, cf. Assumption  5.1.4 ) with

τiI ensuring strong convexity of the objective; and iii) the last term is the cubic regulariza-

tion as in the centralized method [  134 ]. In (S.2), based upon exchange of the two vectors

xν+
i and sνi with their immediate neighbors, each agent updates the estimate xνi → xν+1

i via

the consensus step ( 5.8b ) and sνi → sν+1
i via the perturbed consensus ( 5.8c ), which in fact

tracks ∇F (xνi ) [ 177 ], [ 230 ]. The weights (WK)mi,j=1 in ( 5.8b )-( 5.8c ) are free design quantities

and subject to the following conditions, where PK denotes the set of polynomials with degree

less than or equal than K = 1, 2, . . ..

Assumption 5.2.1 (On the weight matrix WK). The matrix WK = PK(W ), where PK ∈

PK with PK(1) = 1, and W ,
(
w̄ij
)m

i,j=1
is a reference matrix satisfying the following condi-

tions:

(a) W has a sparsity pattern compliant with G, that is

i) w̄ii > 0, for all i = 1, . . . ,m;

ii) w̄ij > 0, if (i, j) ∈ E; and w̄ij = 0 otherwise.

(b) W is doubly stochastic, i.e., 1>W = 1> and W1 = 1.

Let ρK , λmax(WK − 11>/m) [λmax(•) denotes the largest eigenvalue of the matrix argu-

ment]

When K = 1, WK = W , that is, a single round of communication per iteration is per-

formed. Several rules have been proposed in the literature for W to be compliant with
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Assumption  5.2.1 , such as the Laplacian, the Metropolis-Hasting, and the maximum-degree

weights rules; see, e.g., [ 231 ] and references therein. When K > 1, K rounds of communi-

cations per iteration ν are employed. For instance, this can be performed using the same

reference matrix W (satisfying Assumption  5.2.1 ) in each communication exchange, resulting

in WK = W
K and ρK = ρK , with ρ = λmax(W −11>/m) < 1. Faster information mixing can

be obtained using suitably designed polynomials PK(W ), such as Chebyshev [  163 ], [ 205 ] or

orthogonal (a.k.a. Jacobi) [ 232 ] polynomials (notice that PK(1) = 1 is to ensure the doubly

stochasticity of WK when W is doubly stochastic).

Although the minimization ( 5.8a ) may look challenging, it is showed in [ 134 ] that its

computational complexity is of the same order as of finding the standard Newton step. Im-

portantly, in our algorithm, these are local steps made without any communications between

the nodes.

Algorithm 5: Distribute Regularized Inexact Newton Algorithm (DiRegINA )
Data: x0

i ∈ K and y0
i = ∇fi(x0

i ), τi > 0, Mi > 0, ∀i.
Iterate: ν = 1, 2, ...
[S.1] [Local Optimization] Each agent i computes xν+

i :

xν+
i = argmin

y∈K
F (xνi ) + 〈yνi , y − xνi 〉

+ 1
2
〈[
∇2fi(xνi ) + τiI

]
(y − xνi ) , y − xνi

〉
+ Mi

6

∥∥∥y − xνi ∥∥∥3.
(5.8a)

[S.2] [Local Communication] Each agent i updates its local variables according
to

xν+1
i =

m∑
j=1

(WK)i,j x
ν+
j , (5.8b)

yν+1
i =

m∑
j=1

(WK)i,j
(
yνj +∇fj(xν+1

j )−∇fj(xνj )
)
. (5.8c)

end
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On the initialization: We will study convergence of Algorithm  5 under two sets of ini-

tialization for the x-variables, namely: i) random initialization and ii) statistically informed

initialization. The latter is given by

x0
i =

m∑
j=1

(WK)i,jx
−1
j , with x−1

i = argmin
x∈K

fi(x). (5.9)

This corresponds to a preliminary round of consensus on the local solutions x−1
i . This second

strategy takes advantage of the statistical similarity of fi’s to guarantee, under (  5.6 ), an

initial optimality gap of the order of: p0 , 1
m

∑m
i=1 (F (x0

i )− F (x̂)) = O(1/
√
n). If we further

assume µi > 0, for all i, one can show that p0 = O(1/n). This will be shown to significantly

improve the convergence rate of the algorithm, at a negligible extra communication cost (but

local computations).

5.3 Convergence Analysis

In this section, we study convergence of DiRegINA applied to convex (cf. Sec.  5.3.1 )

and strongly convex ERM ( 5.2 ), the latter with either β < µ (cf. Sec.  5.3.2 ) or β ≥ µ > 0

(cf. Sec.  5.3.3 ). Our complexity results are of two type: i) classical rate bounds targeting

any arbitrary ERM suboptimality ε > 0; and ii) convergence rates to VN -solutions of ( 5.2 )

(statistical error). Our complexity bounds are established in terms of the suboptimality gap:

pν ,
1
m

m∑
i=1

(F (xνi )− F (x̂)) , (5.10)

where {xνi }mi=1 is the iterate generated by DiRegINA at iteration ν (iterations are counted

as number of optimization steps (S.1)). Similarly to the centralized case [  134 ], our bounds

also depend on the following distance of initial points x0
i , i = 1, . . . ,m, from a given optimum

x̂ of ( 5.2 )

D ,max
xi∈K,∀i

{
max

i=1...,m
||xi − x̂|| :

m∑
i=1

F (xi) ≤
m∑

i=1
F (x0

i )
}
.

Note that D <∞ (cf. Assumption  5.1.1 ).

201



For the sake of simplicity, in the rate bounds we hide universal constants and log factors

independent on ε via Õ-notation; the exact expressions can be found in the supplemen-

tary material along with a detailed characterization of all the rate regions travelled by the

algorithm.

5.3.1 Convex ERM ( 5.2 )

Our first result pertains to convex F (and FP ).

Theorem 5.3.1. Consider the ERM ( 5.2 ) under Assumptions  5.1.1 ,  5.1.3 , and  5.1.4 over a

graph G satisfying Assumption  5.1.5 ; and let {xνi }mi=1 be the sequence generated by DiRegINA

under the following tuning: Mi = L > 0 and τi = 2β, for all i = 1, . . . ,m; WK = PK(W )

(and PK(1) = 1), where W is a given matrix satisfying Assumption  5.2.1 with ρ = λmax(W−

11>/m), and K = Õ(log(1/ε)/
√

1− ρ), with ε > 0 being the target accuracy. Then, the total

number of communications for DiRegINA to make pν ≤ ε reads

Õ
(

1√
1− ρ ·


√
LD3

ε1+α + LD3β

ε1+α/2


)
, (5.11)

where α > 0 is arbitrarily small. In particular, if the G is a star or fully-connected, ρ = 0

and α = 0.

Proof. See Appendix  5.6.4 in the supplementary material.

The rate expression (  5.11 ) has an interesting interpretation. The multiplicative factor

1/
√

1− ρ > 1 accounts for the rounds of communications per iteration (optimization steps)

while the other two terms quantify the overall number of iterations to reach the desired

accuracy ε. Note that the first of these two terms, O(
√
LD3/ε1+α), is “almost” identical to

the rate of the centralized Newton method (with a slight difference definition of D; see [ 134 ])

while the other one, O((LD3β)/ε1+α/2), is a byproduct of the discrepancy between local and

global Hessian matrices. This shows a two-speed behavior of the algorithm, depending on

the target accuracy ε > 0: 1) as long as ε = Ω(LD3β2), O((LD3β2)/ε) can be neglected

and the algorithm exhibits almost centralized fast convergence (up to the network effect),
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O( 1√
1−ρ

√
LD3/ε1+α); 2) on the other hand, for smaller (order of) ε, the rate is determined

by the worst-term O( 1√
1−ρ(LD3β2)/ε).

The interesting observation is that, in the setting above and under ( 5.6 ), (  5.7 ) holds with

VN = O(1/
√
N) and β = O(1/

√
n). Hence, ε = Ω(LD3β2) is of the order of the statistical

error VN , as long as m ≤ n, which is a reasonable condition. This together with Theorem

 5.3.1 implies that fast rates (of the order of centralized ones) can be certified up to the

statistical precision, as formalized next.

Corollary 5.3.1 (VN -solution). Instate the setting of Theorem  5.3.1 , and let VN = O(1/
√
N),

β = O(1/
√
n), and m ≤ n. Then DiRegINA returns a VN -solution of ( 5.2 ) in

Õ

 1√
1− ρ ·

√√√√ LD3

V 1+α
N

 (5.12)

communications.

5.3.2 Strongly-convex ERM ( 5.2 ) with β < µ

We consider now the case of F µ-strongly convex and β < µ. The complementary case

β ≥ µ is studied in Sec.  5.3.3 .

Theorem 5.3.2. Instate the setting of Theorem  5.3.1 with Assumption  5.1.1 replaced by

Assumption  5.1.2 and K = Õ(1/
√

1− ρ); and further assume β < µ. Then, the total

number of communications for DiRegINA to make pν ≤ ε reads

Õ

 1√
1− ρ

m 1
4

√
LD

µ
+ log log

[
µ2

β2 ·min
(

1, β
2µ

mL2 ·
1
ε

)]

+ β

µ
log

[
max

(
1, β

2µ

mL2 ·
1
ε

)]
.

(5.13)

Proof. See Appendix  5.6.5 in the supplementary material.

DiRegINA exhibits a different rate behavior, depending on the value of ε. We notice

three “regions”: 1) a first phase of the order of Õ
(
m1/4

√
LD/µ

)
number of iterations; 2)

the second region is of quadratic convergence, with rate of the order of log log(1/ε); and
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finally 3) the region of linear convergence with rate Õ (β/µ log(1/ε)). This last region is

not present in the rate of the centralized cubic regularization of the Newton method and is

due to the Hessians discrepancy. Clearly, for arbitrarily small ε > 0, ( 5.13 ) is dominated

by the last term, resulting in a linear convergence. This linear rate is slightly worse than

that of SONATA [ 222 ] in sight of first two terms in ( 5.13 ). This is because DiRegINA is an

inexact (and thus more computationally efficient) method than [  222 ]. We remark that more

favorable complexity estimates can be obtained when L = 0 (i.e., fi’s are quadratic)–we refer

the reader to the supplementary material for details.

The algorithm does not enter in the last region if ε = Ω(β2µ/(mL2)). This means that

faster rate can be guaranteed up to VN -solutions, as stated next.

Corollary 5.3.2 (VN -solution). Instate the setting of Theorem  5.3.2 , and let VN = O(1/N),

β = O(1/
√
n), µ = O(1), and m ≤ n. DiRegINA returns a VN -solution of ( 5.2 ) in

Õ
(

1√
1− ρ

m1/4
√
LD

µ
+ log log

(
µ3

mL2VN

)
)

(5.14)

communications.

When the problem is ill-conditioned (i.e. µ � 1) the first term m1/4
√
LD/µ may dom-

inate the log log term in ( 5.14 ), unless n is extremely large (and thus VN very small). This

term is unavoidable–it is present also in the centralized instances of Newton-type methods–

unless more refined function classes are considered, such as (generalized) self-concordant

[ 233 ]–[ 235 ]. In the supplementary material, we present results for quadratic losses (cf. Ap-

pendix  5.6.5.4 ). Here, we take another direction and show that the initialization strategy

( 5.9 ) is enough to get rid of the first phase.

Corollary 5.3.3 (VN -solution + initialization). Instate the setting of Theorem  5.3.2 and

further assume: µi = Ω(1), for all i = 1, . . .m, and n = Ω(L2/µ3 ·m). DiRegINA , initialized

with ( 5.9 ), returns a VN -solution of ( 5.2 ) in

Õ
(

1√
1− ρ

{
log log

(
µ3

mL2 ·
1
VN

)})
(5.15)
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communications.

Proof. See Appendix  5.6.5.5 in the supporting material.

5.3.3 Strongly-convex ERM ( 5.2 ) with β ≥ µ

We now consider the complementary case β ≥ µ. This is a common setting when FP is

convex and a regularizer is used in the ERM ( 5.2 ), making F µ-strongly convex; typically,

µ = O(1/
√
N) while β = O(1/

√
n).

Theorem 5.3.3. Instate the setting of Theorem  5.3.2 with now µ ≤ β ≤ 1. Then, the total

number of communications for DiRegINA to make pν ≤ ε reads

Õ
(

1√
1− ρ

{√
LD

µ

(
1 +m

1
4

√
β

µ

)
+ β

µ
log

(
β2µ

mL2
1
ε

)})
. (5.16)

Proof. See Appendix  5.6.6 in the supplementary material.

For arbitrary small ε > 0, the rate ( 5.16 ) is dominated by the linear term. When we

target VN -solutions, in this setting VN = O(1/
√
N), µ = O(VN) (as for the regularized ERM

setting), and β = O(1/
√
n), (  5.16 ) becomes

Õ
(

1√
1− ρ ·m

1/2 ·
√
LD

VN

)
. (5.17)

Note that this rate is of the same order of the one achieved in the convex setting (with no

regularization)–see Corollary  5.3.1 . If the functions fi are quadratic, the rate, as expected,

improves and reads (see supporting material, Appendix  5.6.7 )

Õ
(

1√
1− ρ ·m

1/2 · log
( 1
VN

))
.

Note that, on star networks (ρ = 0), this rate improves on that of DANE [ 140 ].
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Figure 5.1. Distributed ridge regression: (a) star-topology; and Erdős-Rényi
graph with (b) ρ = 0.20, (c) ρ = 0.41, (d) ρ = 0.69.
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5.4 Experiments

In this section we test numerically our theoretical findings on two classes of problems

over meshed networks: 1) ridge regression and 2) logistic regression. Other experiments can

be found in the supplementary material (cf. Sec.  5.6.1 ).

The network graph is generated using an Erdős-Rényi model G(m, p), with m = 30 nodes

and different values of p to span different level of connectivity.

We compare DiRegINA with the following methods:

• Distributed (first-order) method with gradient tracking: we consider SONATA [ 222 ] and

DIGing [ 204 ]; both build on the idea of gradient tracking, with the former applicable also to

constrained problems. For the SONATA algorithm, we will simulate two instances, namely:

SONATA-L (L stands for linearization) and SONATA-F (F stands for full); the former uses

only first-order information in the agents’ local updates (as DGing) while the latter exploits

functions’ similarity by employing local mirror-descent-based optimization.

• Distributed accelerated first-order methods: we consider APAPC [ 236 ] and SSDA [ 205 ],

which employ Nesterov acceleration on the local optimization steps–with the former using

primal gradients while the latter requiring gradients of the conjugate functions–and Cheby-

shev acceleration on the consensus steps. These schemes do not leverage any similarity

among the local agents’ functions.

• Distributed second-order methods: We implement i) Network Newton-K (NN-K) [ 237 ] with

K = 1 so that it has the same communication cost per iteration of DiRegINA ; ii) SONATA-F

[ 222 ], which is a mirror descent-type distributed scheme wherein agents need to solve exactly

a strongly convex optimization problem; and iii) Newton Tracking (NT) [ 217 ], which has

been shown the outperform the majority of distributed second-order methods.

All the algorithms are coded in MATLAB R2019a, running on a computer with Intel(R)

Core(TM) i7-8650U CPU@1.90GHz, 16.0 GB of RAM, and 64-bit Windows 10.

5.4.1 Distributed Ridge Regression

We train ridge regression, LIBSVM, scaled mg dataset [ 238 ], which is an instance of (  5.2 )

with fi(x) = (1/2n)
∥∥∥Aix−bi

∥∥∥2 + λ
2

∥∥∥x∥∥∥2 and K = Rd, with d = 6. We set λ = 1/
√
N = 0.0269;
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Figure 5.2. Distributed ridge regression. Synthetic data on Erdős-Rényi
graph with ρ = 0.7: a) β/µ = 158.1, κ1/2 = 34.55; b) β/µ = 11.974, κ1/2 =
11.1.

we estimate β = 0.1457 and µ = 0.0929. The graph parameter p = 0.6, 0.33, 0.28, resulting

in the connectivity values ρ ≈ 0.20, 0.41, 0.70, respectively. We compared DiRegINA, NN-1,

DIGing, SONATA-F and NT, all initialized from the same identical random point. The

coefficients of the matrix W are chosen according to the Metropolis–Hastings rule [ 239 ].

The free parameters of the algorithm are tuned manually; specifically: DiRegINA, τ = 2β,

M = 1e − 3, and K = 1; NN-1, α = 1e − 3 and ε = 1; DIGing, stepsize equal to 0.5;

SONATA-F, τ = 0.27; NT, ε = 0.08 and α = 0.1. This tuning corresponds to the best

practical performance we observed.

In Fig.  5.1 , we plot the function residual pν defined in ( 5.10 ) versus the communication

rounds in the four aforementioned network settings. DiRegINA demonstrates good perfor-

mance over first-order methods, and compares favorably also with SONATA-F (which has

higher computational cost). Note the change of rate, as predicted by our theory, with linear

rate in the last stage. NN-1 is not competitive while NT in some settings is comparable with

DiRegINA , but we observed to be more sensitive to the tuning.

The second experiment aims at comparing DiRegINA with the distributed accelerated

methods APAPC [ 236 ] and SSDA [ 205 ] (DIGing is used as benchmark of first-order non-
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accelerated schemes). We tested these schemes on two instances of the Ridge regression

problem using synthetic data, corresponding to β/µ �
√
κ and β/µ ≈

√
κ. Recall that

SSDA and APAPC converge linearly at a rate proportional to
√
κ while the convergence

rate of DiRegINA depends (up to log factors) on β/µ. The problem data are generated as

follows: the ground truth x∗ ∈ Rd is a random vector, x∗ ∼ N (0, I), with d = 40; samples

bi , (b(j)
i )nj=1, with n = 50, are generated according to the linear model b(j)

i = a
(j)>
i x∗ + ε

(j)
i

where ε(j)i ∼ N (0, 1e−4). To obtain controlled values for β, Ai , (a(j)
i )nj=1 are constructed as

follows: we first generate n i.i.d samples A1 , (a(j)
1 )nj=1, with rows drawn from N (0, I); then,

we set each Ai = A1 + Ek, where Ek in a random matrix with rows drawn from N (0, σI).

The choices of σ are considered resulting in two different values of β, namely: σ = 1/(dn)

and σ = 7.5/(dn), resulting in β = 0.31 and β = 4.08, respectively. The values of the

condition number read κ = 123.21 and κ = 1.19e3, respectively. The network is simulated as

the Erdős-Rényi graph with p = 0.28, resulting in ρ ≈ 0.7; the number of agents is m = 30.

The tuning of DiRegINA and DIGing is the same as in Fig.  5.1 while APAPC and SSDA

are manually tuned for best practical performance.

In Fig.  5.2 , we plot the function residual pν defined in ( 5.10 ) versus the communication

rounds; the two panels refer to two different values of (β/µ,
√
κ). The figures show that even

when β/µ is larger than
√
κ, DiRegINA outperforms the accelerated first order methods;

roughly, it is from two to five time faster than the best simulated first order method.

5.4.2 Distributed Logistic Regression

We train logistic regression models, regularized by the `2-ball constraint (with radius

1). The problem is an instance of ( 5.2 ), with each fi(x) = −(1/n)∑n
j=1 [ξ(j)

i ln(z(j)
i ) + (1 −

ξ
(j)
i ) ln(1−z(j)

i )], where z(j)
i , 1/(1+e−〈a

(j)
i ,x〉) and binary class labels ξ(j)

i ∈ {0, 1} and vectors

a
(j)
i , i = 1, . . .m and j = 1, . . . , n are determined by the data set. We considered the LIBSVM

a4a (N = 4, 781, d = 123) and synthetic data (N = 900, d = 150). The latter are generated

as follows: a random ground truth x∗ ∼ N (0, I), i.i.d. sample {a(j)
i }i,j, and {ξ(j)

i }i,j are

generated according to the binary model ξ(j)
i = 1 if 〈a(j)

i , x
∗〉 ≥ 0 and ξ

(j)
i = 0 otherwise. We

consider Erdős-Rényi network models with connectivity ρ = 0.367 and ρ = 0.757.
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Figure 5.3. Distributed logistic regression: 1) a4a dataset on Erdős-Rényi
graph with (a) ρ = 0.367 (b) ρ = 0.757; 2) Synthetic data on Erdős-Rényi
graph with (c) ρ = 0.367 (d) ρ = 0.757.

We compare DiRegINA with SONATA-F and SONATA-L, since they are the only two

algorithms in the list that can handle constrained problems. We report results obtained

under the following tuning: (i) both SONATA variants, α = 0.1; and (ii) DiRegINA ,

M = 1 and τi = 1e − 3. The coefficients of the matrix W are chosen according to the

Metropolis–Hastings rule [ 239 ].

In Fig.  5.3 , we plot the function residual pν defined in ( 5.10 ) versus the communica-

tion rounds, in the different mentioned network settings. On real data [panels (a)-(b)],

DiRegINA and SONATA-F performs equally well, outperforming SONATA-L (first-order

method). When tested on the synthetic problem [panel (c)-(d)] with less local samples n

and larger dimension d, DiRegINA shows a consistently faster rate, while SONATA-F slows

down on less connected networks. Notice also the two-phase rate of DiRegINA , as predicted
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by our theory: an initial superlinear rate up to (approximately) the statistical precision,

followed by a linear one for high accuracy.

5.5 Conclusions

We proposed the first second-order distributed algorithm for convex and strongly convex

problems over meshed networks with global communication complexity bounds which, up

to the network dependent factor Õ(1/
√

1− ρ), (almost) match the iteration complexity of

centralized second-order method [ 134 ] in the regime when the desired accuracy is moderate.

We showed that this regime is reasonable when one considers ERM problems for which there

is no need to optimize beyond the statistical error. Importantly, our method avoids expensive

communications of Hessians over the network and keeps the amount of information sent in

each communication round similar to first-order methods.

This work is just a starting point towards a theory of second-order methods with perfor-

mance guarantees on meshed networks under statistical similarity; many questions remain

open. An obvious one is incorporating acceleration to improve communication complexity

bounds under statistical similarity. A first attempt towards this goal is the follow-up work

[ 135 ], where an accelerated second-order method exploiting statistical similarity has been

analyzed for master/workers architectures. The extension to arbitrary graphs remains an

open problem. Second, our main goal here has been decreasing communications, which does

not guarantee optimal oracle (computational) complexity–this is because we did not take

advantage of the finite-sum structure of the local optimization problems. Stochastic opti-

mization algorithms equipped with Variance Reduction (VR) techniques have been proved

to be quite effective to obtain cheaper iterations while preserving fast convergence [  136 ],

[ 137 ]. However, these methods do not exploit any statistical similarity, resulting in less fa-

vorable communication complexity whenever β/µ � Q/µ. It would be then interesting to

investigate whether VR techniques can improve both communication and oracle complexity

when statistical similarity is explicitly employed in the algorithmic design.
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5.6 Appendix

The appendix is organized as follows. Sec.  5.6.1 provides additional numerical experi-

ments, complementing those in Sec.  5.4 . In Sec.  5.6.3 , we establish asymptotic convergence

of DiRegINA and prove some intermediate results that are instrumental for our rate anal-

ysis. Sec.  5.6.4 - 5.6.7 are devoted to prove the results in Sec.  5.3 , namely: Theorem  5.3.1 is

proved in Sec.  5.6.4 ; Theorem  5.3.2 and Corollary  5.3.3 are proved in Sec.  5.6.5 ; and finally,

Theorem  5.3.3 is proved in Sec.  5.6.6 .

Furthermore, there are some convergence results stated in Table  5.1 for sake of brevity;

they are reported here in the following sections: i) the case of quadratic functions fi in the

setting of Theorem  5.3.2 is stated in Theorem  5.6.5 in Sec.  5.6.5.4 while the case of quadratic

fi’s in the setting of Theorem  5.3.3 is stated in Theorem  5.6.6 , Sec.  5.6.7 .
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Figure 5.4. Distributed ridge regression on space-ga dataset and Erdős-
Rényi graph with (a) ρ = 0.3843 (b) ρ = 0.8032.

5.6.1 Additional Numerical Experiments

5.6.1.1 Distributed ridge regression problem

We consider a (non-strongly) convex instance of the regression problem. Specifically, we

have: fi(x) = (1/2n)
∥∥∥Aix− bi

∥∥∥2 and K = Rd, where Ai and bi are determined by the scaled
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LIBSVM dataset space-ga (N = 3107, d = 6, and β = 0.6353). The network is simulated as

the Erdős-Rényi network model, with m = 30 and two connectivity values, ρ = 0.3843 and

ρ = 0.8032. We compared DiRegINA with the algorithms described in Sec.  5.3 , namely: NN-

1, NT, DIGing and SONATA-F. Note that NN-1 and NT are not guaranteed to converge

when applied to convex (non-strongly convex) functions. The tuning of the algorithm is

the same as the one described in Sec.  5.4.1 . In Fig.  5.4 , we plot the optimization error

versus the communication rounds achieved by the aforementioned algorithms in the two

network settings, ρ = 0.3843 and ρ = 0.8032. As already observed for the other simulated

problems (cf. Sec.  5.4.1 ), SONATA-F shows similar performance of DiRegINA when running

on well-connected networks while its performance deteriorates in poorly connected network.

NT seems to be non-convergent while NN1 and DIGing converge, yet slow, to acceptable

accuracy.

5.6.1.2 Regularized logistic regression

We train logistic regression models, regularized by an additive `2-norm (with coefficient

λ > 0). The problem is an instance of (  5.2 ), with each fi(x) = −(1/n)∑n
j=1 [ξ(j)

i ln(z(j)
i ) +

(1− ξ(j)
i ) ln(1− z(j)

i )] + (λ/2)||x||2 and K = Rd, where z(j)
i , 1/(1 + e−〈a

(j)
i ,x〉) and binary class

labels ξ(j)
i ∈ {0, 1} and vectors a(j)

i , i = 1, . . .m and j = 1, . . . , n are determined by the data

set. We considered the LIBSVM a4a (N = 4, 781, d = 123) and we set λ = 1/
√
mn. The

Network is simulated according to the Erdős-Rényi model with m = 30 and connectivity

ρ = 0.3372 and ρ = 0.7387.

We compare DiRegINA , NN-1, DIGing, SONATA-F and NT, all initialized from the same

random point. The free parameters of the algorithms are tuned manually; the best practical

performance are observed with the following tuning: DiRegINA is tuned as described in

Sec.  5.4.2 , i.e., τ = 1, M = 1e− 3, and K = 1; NN-1, α = 1e− 3 and ε = 1; DIGing, stepsize

equal to 1; SONATA-F, τ = 0.1; NT, ε = 0.2 and α = 0.05.

In Fig.  5.5 , we plot the optimization error versus the communication rounds achieved

by the aforementioned algorithms in two network settings corresponding to ρ = 0.3372

and ρ = 0.7387. In both settings (panels (a)-(b)), NN-1 and DIGing still exhibits slow
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Figure 5.5. Distributed logistic regression on a4a dataset and Erdős-Rényi
graph with (a) ρ = 0.3372 (b) ρ = 0.7387.

convergence, with a slight advantage of DIGing over NN-1. DiRegINA , NT and SONATA-

F, perform similarly, with DiRegINA showing some improvements when the network is better

connected [panel (a)].

5.6.2 Notations and Preliminary Results

We begin introducing some notation which will be used in all the proofs, along with some

preliminary results.

Define

δνi , yνi −∇F (xνi ) and Bν
i , ∇2fi(xνi )−∇2F (xνi ), (5.18)

The local surrogate function F̃i(y;xνi ) in (  5.8a ) can be rewritten as

F̃i(y;xνi ) ,F (xνi ) + 〈∇F (xνi ) + δνi , y − xνi 〉+ 1
2
〈[
∇2F (xνi ) +Bν

i + τiI
]

(y − xνi ), y − xνi
〉

+ Mi

6

∥∥∥y − xνi ∥∥∥3.

(5.19)

Let us recall the following basic result, which is a consequence of Assumption  5.1.3 .
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Lemma 5.6.1 (Lemma 1.2.4 in [ 234 ]). Let F : Rd → R be a twice-differentiable function

satisfying Assumption  5.1.3 . Then, for all x, y ∈ Rd,

∣∣∣F (y)− F (x)− 〈∇F (x), y − x〉 − 1
2
〈
∇2F (x)(y − x), y − x

〉 ∣∣∣ ≤ L

6

∥∥∥y − x∥∥∥3. (5.20)∥∥∥∇F (y)−∇F (x)−∇2F (x)(y − x)
∥∥∥ ≤ L

2

∥∥∥y − x∥∥∥2. (5.21)

Setting x = xνi in ( 5.20 ) implies

F (xνi ) + 〈∇F (xνi ), y − xνi 〉+ 1
2
〈
∇2F (xνi )(y − xνi ), y − xνi

〉
≤ F (y) + L

6

∥∥∥y − xνi ∥∥∥3, ∀y ∈ Rd,

which, together with ( 5.19 ), gives the following upper bound for the surrogate function F̃i

defined in (  5.19 ):

F̃i(y;xνi ) ≤F (y) + 1
2

∥∥∥y − xνi ∥∥∥2
(β+τi)I + Mi + L

6

∥∥∥y − xνi ∥∥∥3 + 〈δνi , y − xνi 〉 , ∀y ∈ Rd, (5.22)

where for a positive semidefinite matrix A, ‖x‖2
A , 〈Ax, x〉. We also denote

∆xνi , xν+
i − xνi , δν , (δνi )mi=1, J , 11>/m, (5.23)

where we remind that xν+
i is obtained by the minimization of the local surrogate function

F̃i(y;xνi ). The rest of the symbols and notations are as defined in the main manuscript.

5.6.3 Asymptotic convergence of DiRegINA

In this section we prove the following theorem stating asymptotic convergence of Di-

RegINA .

Theorem 5.6.1. Let Assumptions  5.1.1 and  5.1.3 - 5.1.4 and  5.1.5 hold, Mi ≥ L and τi = 2β

for all i = 1, . . . ,m. If a reference matrix W satisfying Assumption  5.2.1 is used in steps

( 5.8b )-( 5.8c ), with ρ , λmax(W − J) < 1 and K = Õ(1/
√

1− ρ) (explicit condition is

provided in eq. ( 5.42 )), then pν → 0 and ||xνi − xνj || → 0, as ν →∞ for all i, j = 1, . . . ,m.

We prove the theorem in three main steps:
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Step 1 (Sec.  5.6.3.1 ): Deriving optimization bounds on the per-iteration decrease of

pν optimization error;

Step 2 (Sec.  5.6.3.2 ): Bounding the gradient tracking error δν , which in turn affects

the per-iteration decrease of pν ;

Step 3 (Sec.  5.6.3.3 ): Constructing a proper Lyapunov function based on the error

terms in the previous two steps, whose dynamics imply asymptotic convergence of DiRegINA

. To simplify the derivations, we study the case of strongly convex or nonstronlgy convex F

together, by setting µ = 0 in the latter case.

5.6.3.1 Optimization error bounds

In this subsection we establish an upper bound for pν+1 − pν [cf. ( 5.33 )]. We begin with

two technical intermediate results–Lemma  5.6.2 and Lemma  5.6.3 .

Lemma 5.6.2. Under Assumption  5.1.1 , there holds

F̃i(xν+
i ;xνi ) ≤ F̃i(xνi ;xνi )− Mi

3

∥∥∥∆xνi ∥∥∥3 − µi + τi

2

∥∥∥∆xνi ∥∥∥2. (5.24)

Proof. By the optimality of xν+
i in ( 5.19 ), we infer

〈
yνi +

[
∇2fi(xνi ) + τiI

]
∆xνi ,∆xνi

〉
≤ −Mi

2

∥∥∥∆xνi ∥∥∥3. (5.25)

Since F̃i(xνi ;xνi ) = F (xνi ), we have

F̃i(xν+
i ;xνi )− F̃i(xνi ;xνi )

( 5.19 )=
〈
yνi , x

ν+
i − xνi

〉
+ 1

2
〈[
∇2fi(xνi ) + τiI

]
∆xνi ,∆xνi

〉
+ Mi

6

∥∥∥xν+
i − xνi

∥∥∥3

( 5.25 )
≤ − 1

2
〈[
∇2fi(xνi ) + τiI

]
∆xνi ,∆xνi

〉
− Mi

3

∥∥∥∆xνi ∥∥∥3

≤− Mi

3

∥∥∥xν+
i − xνi

∥∥∥3 − µi + τi

2

∥∥∥xν+
i − xνi

∥∥∥2.
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Lemma 5.6.3. Let Assumptions  5.1.1 and  5.1.3 - 5.1.4 hold. Then, any arbitrary ε > 0, we

have

F (xν+
i )− F̃i(xν+

i ;xνi ) ≤− Mi − L
6 ||∆xνi ||3 −

τi − β − ε
2 ||∆xνi ||2 + 1

2ε

∥∥∥δνi ∥∥∥2. (5.26)

Proof. Taylor’s theorem applied to functions F̃i(·;xνi ) and F (·) around xνi yields

F (xν+
i ) =F (xνi ) + 〈∇F (xνi ),∆xνi 〉+ ∆xν>i Hν

i ∆xνi , (5.27a)

F̃i(xν+
i ;xνi ) =F̃i(xνi ;xνi ) +

〈
∇F̃i(xνi ;xνi ),∆xνi

〉
+ ∆xν>i H̃ν

i ∆xνi , (5.27b)

where
Hν

i =
∫ 1

0
(1− θ)∇2F (θxν+

i + (1− θ)xνi )dθ,

H̃ν
i =

∫ 1

0
(1− θ)∇2F̃i(θxν+

i + (1− θ)xνi ;xνi )dθ.

Since F̃i(xνi ;xνi ) = F (xνi ) and ∇F̃i(xνi ;xνi ) = ∇F (xνi ) + δνi , subtracting ( 5.27a )-( 5.27b ) gives

F (xν+
i )− F̃i(xν+

i ;xνi ) =
〈(
Hν

i − H̃ν
i

)
∆xνi ,∆xνi

〉
− 〈δνi ,∆xνi 〉 . (5.28)

Now let us simplify ( 5.28 ). Note that the hessian of F̃i(·;xνi ) is

∇2F̃i(xi;xνi ) = ∇2F (xνi ) +Bν
i + τiI +MiG(xi;xνi ), (5.29)

where

G (xi;xνi ) , 1
2

∥∥∥xi − xνi
∥∥∥I + (xi − xνi )(xi − xνi )>∥∥∥xi − xνi

∥∥∥
 .
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Hence,

Hν
i − H̃ν

i

=
∫ 1

0
(1− θ)∇2F

(
θxν+

i + (1− θ)xνi
)
dθ −

∫ 1

0
(1− θ)∇2F̃i

(
θxν+

i + (1− θ)xνi ;xνi
)
dθ

( 5.29 )=
∫ 1

0
(1− θ)∇2F

(
θxν+

i + (1− θ)xνi
)
dθ −

∫ 1

0
(1− θ)

[
∇2F (xνi ) +Bν

i

]
dθ −

∫ 1

0
(1− θ)τiIdθ

−
∫ 1

0
(1− θ)MiθG(xν+

i ;xνi )dθ

=
∫ 1

0
(1− θ)

(
∇2F

(
θxν+

i + (1− θ)xνi
)
−∇2F (xνi )

)
dθ

−
∫ 1

0
(1− θ)Bν

i dθ −
∫ 1

0
(1− θ)τiIdθ −

∫ 1

0
(1− θ)MiθG(xν+

i ;xνi )dθ
(a)
�
∫ 1

0
(1− θ)Lθ||xν+

i − xνi ||Idθ

−
∫ 1

0
(1− θ)Bν

i dθ −
∫ 1

0
(1− θ)τiIdθ −

∫ 1

0
(1− θ)MiθG(xν+

i ;xνi )dθ

=− Mi

6 G(xν+
i ;xνi ) + L

6 ||x
ν+
i − xνi ||I −

τi

2 I −
Bν

i
2

(5.30)

where (a) holds since ∇2F is L-Lipschitz continuous. Combining ( 5.28 ) and ( 5.30 ), we

conclude

F (xν+
i )− F̃i(xν+

i ;xνi ) ≤− Mi − L
6 ||∆xνi ||3 −

τi

2 ||∆x
ν
i ||2 −

1
2 〈B

ν
i ∆xνi ,∆xνi 〉 − 〈δνi ,∆xνi 〉

≤ − Mi − L
6 ||∆xνi ||3 −

τi − β − ε
2 ||∆xνi ||2 + 1

2ε

∥∥∥δνi ∥∥∥2,

for arbitrary ε > 0, where the last inequality is due to the Cauchy-Schwarz inequality and

| 〈Bν
i ∆xνi ,∆xνi 〉 | ≤ β||∆xνi ||2, which is a consequence of (  5.18 ) and Assumption  5.1.4 .

We are now in a position to prove the main result of this subsection.

Combining ( 5.24 ) in Lemma  5.6.3 with ( 5.26 ) in Lemma  5.6.2 , and using F̃i(xνi ;xνi ) =

F (xνi ), yields

F (xν+
i )− F (xνi ) ≤−

(
Mi

2 −
L

6

)
||∆xνi ||3 −

(
µi

2 + τi −
β + ε

2

)
||∆xνi ||2 + 1

2ε

∥∥∥δνi ∥∥∥2.
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Since under either Assumption  5.1.1 or Assumption  5.1.2 combined with Assumption  5.1.4 

it holds that µi ≥ max {0, µ− β}, we obtain

F (xν+
i )− F (xνi ) ≤−

(
Mi

2 −
L

6

)
||∆xνi ||3 −

(
max(0, µ− β)

2 + τi −
β + ε

2

)
||∆xνi ||2 + 1

2ε

∥∥∥δνi ∥∥∥2.

(5.31)

Denoting pν+ , (1/m)∑m
i=1

{
F (xν+

i )− F (x̂)
}

, we derive a simple relation with pν+1:

pν+1 + F (x̂) = 1
m

m∑
i=1

F
(
xν+1

i

)
( 5.8b )= 1

m

m∑
i=1

F
( m∑

j=1
(WK)i,j x

ν+
j

)
(a)
≤ 1
m

m∑
i,j=1

(WK)i,jF
(
xν+

j

)
(b)= 1
m

m∑
j=1

F
(
xν+

j

)
= pν+ + F (x̂),

(5.32)

where (a) is due to convexity of F (cf. Assumptions  5.1.1 and  5.1.2 ) and ∑m
j=1(WK)ij = 1

(cf. Assumption  5.2.1 ); and in (b) we used ∑m
i=1(WK)ij = 1 (cf. Assumption  5.2.1 ). Summing

( 5.31 ) over i while setting ε = β, τi = 2β and Mi ≥ L/3 (recall that it is assumed Mi ≥ L),

gives the desired per-iteration decrease of pν when
∥∥∥δν∥∥∥ is sufficiently small:

pν+1 − pν
( 5.32 )
≤ pν+ − pν ≤− max(µ, β)

2 · 1
m

m∑
i=1
‖∆xνi ‖2 + 1

2mβ

∥∥∥δν∥∥∥2. (5.33)

5.6.3.2 Network error bounds

The goal of this subsection is to prove an upper bound for
∥∥∥δν∥∥∥ in terms of the number of

communication steps K, implying that this error can be made sufficiently small by choosing

sufficiently large K. For notation simplicity and without loss of generality, we assume d = 1;

the case d > 1 follows trivially.

Recall that xν , (xνi )mi=1, yν , (yνi )mi=1, J , (1/m)1m1>m, and

xν⊥ , (I − J)xν = xν − 1m
1>mxν
m

, yν⊥ , (I − J)yν = yν − 1m
1>myν
m

, ∆xν , (∆xνi )mi=1.
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Note that the vectors xν⊥ and yν⊥ are the consensus and gradient-tracking errors; when ‖xν⊥‖ =

‖yν⊥‖ = 0, we have xνi = xνj and yνi = yνj for all i, j = 1, . . . ,m. The following holds for xν⊥
and yν⊥.

Lemma 5.6.4 (Proposition 3.5 in [ 222 ]). Under Assumptions  5.1.1 and  5.1.5 and  5.2.1 , for

all ν ≥ 0,

‖xν+1
⊥ ‖ ≤ ρK‖xν⊥‖+ ρK‖∆xν‖, (5.34a)

‖yν+1
⊥ ‖ ≤ ρK‖yν⊥‖+ 2QmaxρK‖xν⊥‖+QmaxρK‖∆xν‖, (5.34b)

where ρK = λmax(WK − J) < 1. Note that in case of K-rounds of communications using a

reference matrix W with ρ , λmax(W − J) < 1, we have ρK = ρK; if Chebyshev acceleration

is employed, we have ρK = (1−
√

1− ρ)K.

Now let us bound δνi defined in ( 5.18 ). Note that by column-stochasticity of WK and

initialization rule s0
i = ∇fi(x0

i ), it can be trivially concluded from ( 5.8c ) that

1>myν =
m∑

j=1
∇fj(xνj ).

Hence, ∥∥∥δνi ∥∥∥2 =
∥∥∥∥yνi − 1>myν

m
+ 1
m

m∑
j=1
∇fj(xνj )−∇F (xνi )

∥∥∥∥2

(a)
≤2

∥∥∥∥yνi − 1>myν
m

∥∥∥∥2
+ 2Q2

max
m

 m∑
j=1

∥∥∥∥xνi ± 1>mxν
m
− xνj

∥∥∥∥2


≤2
∥∥∥∥yνi − 1>myν

m

∥∥∥∥2
+ 4Q2

max
m

(
‖xν⊥‖2 +m

∥∥∥∥xνi − 1>mxν
m

∥∥∥∥2
)
,

(5.35)

where (a) is due to Qmax-Lipschitz continuity of ∇fi. Summing (  5.35 ) over i and taking the

square root, gives ∥∥∥δν∥∥∥ ≤ δ̃ν ,
√

2 (‖yν⊥‖+ 2Qmax‖xν⊥‖) . (5.36)
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It remains to bound δ̃ν defined above:

δ̃ν+1 =
√

2
(
‖yν+1
⊥ ‖+ 2Qmax‖xν+1

⊥ ‖
) (a)
≤ρK

√
2 (‖yν⊥‖+ 4Qmax‖xν⊥‖) + 3

√
2QmaxρK‖∆xν‖

≤2ρK δ̃ν + 3
√

2QmaxρK‖∆xν‖,

where in (a) we used Lemma  5.6.4 [cf. ( 5.34a )-( 5.34b )]. Consequently,

(δ̃ν+1)2 ≤8ρ2
K(δ̃ν)2 + 36Q2

maxρ
2
K‖∆xν‖2. (5.37)

Since ρK decreases as K increases, the latter inequality provides a leverage to make δ̃ν+1

sufficiently small by choosing K sufficiently large.

5.6.3.3 Asymptotic convergence

We combine the results of the previous two subsections to finally prove Theorem  5.6.1 .

Combining ( 5.33 ) and ( 5.36 ), we obtain

pν+1 ≤ pν − max(β, µ)
2m ‖∆xν‖2 + 1

2mβ (δ̃ν)2. (5.38)

Next, we combine ( 5.37 ) with (  5.38 ) multiplied by some weight w > 0 to obtain

wpν+1 + (δ̃ν+1)2 ≤wpν +
(

8ρ2
K + w

2mβ

)
(δ̃ν)2 − w

(
max(β, µ)

2m − 36
w
Q2

maxρ
2
K

)
||∆xν ||2.

(5.39)

Let w = cwβ, for some 0 < cw ≤ 1. Then, if

8ρ2
K + w

2mβ ≤ cw,
max(β, µ)

4m ≥ 36
w
Q2

maxρ
2
K , (5.40)

( 5.39 ) becomes

wpν+1 + (δ̃ν+1)2 ≤wpν + cw(δ̃ν)2 − wmax(β, µ)
4m ||∆xν ||2. (5.41)
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Note that by Lemma  5.6.4 , condition (  5.40 ) holds if

K ≥ 1√
1− ρ log

max
 2

√
2√

cw(1− 1
2m)

,
12
√
mQmax√

cwβmax(β, µ)


 . (5.42)

Denoting

ξν , wpν + (δ̃ν)2, (5.43)

let us show that ξν → 0 as ν →∞, which implies that the optimization error pν and network

error δ̃ν asymptotically vanish. Since ξν ≥ 0, inequality (  5.41 ) implies ∑∞ν=0 ||∆xν ||2 < ∞.

Thus, ||∆xν || → 0; and ||∆xν || ≤ D1, for some D1 > 0 and all ν ≥ 0. Further, {ξν}ν is

non-increasing and ||ξν || ≤ D2 for some D2 > 0 and all ν ≥ 0. Thus, pν ≤ D2/w, which

together with Assumption  5.1.1 (iv) and Assumption  5.1.2 , also implies ||xνi || ≤ D3 for some

D3, all i and ν ≥ 0. Using ||∆xν || → 0 and ( 5.37 ), if 8ρ2
K < 1 (which holds under ( 5.42 )),

we obtain that δ̃ν → 0. Finally, it remains to show that pν → 0. Using optimality condition

of xν+
i defined in (  5.8a ), we get

〈
∇F (xνi ) + δνi +

[
∇2F (xνi ) +Bν

i + τiI
]

∆xνi + Mi

2 ||∆x
ν
i ||∆xνi , x̂− xν+

i

〉
≥ 0.

Rearranging terms gives

〈
∇F (xνi ) +∇2F (xνi )∆xνi , x̂− xν+

i

〉
≥
〈
Mi

2 ||∆x
ν
i ||∆xνi , xν+

i − x̂
〉

+
〈
δνi , x

ν+
i − x̂

〉
+
〈
B̃ν

i ∆xνi , xν+
i − x̂

〉
,

(5.44)

where B̃ν
i , Bν

i + τiI. By convexity of F , we can write

0 ≥F (x̂)− F (xν+
i ) ≥

〈
∇F (xν+

i ), x̂− xν+
i

〉
=
〈
∇F (xν+

i )−∇F (xνi )−∇2F (xνi )∆xνi , x̂− xν+
i

〉
+
〈
∇F (xνi ) +∇2F (xνi )∆xνi , x̂− xν+

i

〉
( 5.44 )
≥

〈
∇F (xν+

i )−∇F (xνi )−∇2F (xνi )∆xνi , x̂− xν+
i

〉
+
〈
Mi

2 ||∆x
ν
i ||∆xνi , xν+

i − x̂
〉

+
〈
δνi , x

ν+
i − x̂

〉
+
〈
B̃ν

i ∆xνi , xν+
i − x̂

〉
.

(5.45)
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Using Lipschitz continuity of ∇F , ||∆xνi || → 0 and δ̃ν → 0 (hence ||δνi || → 0), we conclude

that the RHS of ( 5.45 ) asymptotically vanishes, for all i = 1, . . . ,m. Hence, F (xν+
i )−F (x̂)→

0, for all i = 1, . . . ,m. Using ( 5.32 ), we finally obtain pν → 0.

Finally, by ( 5.36 ) and δ̃ν → 0, we obtain ‖yν⊥‖ → 0 and ‖xν⊥‖ → 0, implying ||xνi −xνj || →

0, for all i, j = 1, . . . ,m as ν →∞. This concludes the proof of Theorem  5.6.1 .

Remark 5.6.1. Note that ( 5.37 ) implies

(δ̃ν)2 ≤ ρ2
KD̄δ, D̄δ , 8D2 + 36Q2

maxD
2
1, ∀ν ≥ 0, (5.46)

since (δ̃ν)2 ≤ ξν ≤ D2 and ||∆xν || ≤ D1, for all ν ≥ 0.

5.6.4 Proof of Theorem  5.3.1 

We first prove a detailed “region-based” complexity of DiRegINA (cf. Theorem  5.6.2 ,

Subsec.  5.6.4.1 ) for the prevalent scenario 0 < β ≤ 1 [recall that typically β = O(1/
√
n)].

For the sake of completeness, the case β ≥ 1 is studied in Theorem  5.6.3 (cf. Subsec.  5.6.4.2 ).

Building on Theorems  5.6.2 - 5.6.3 , we can finally prove the main result, Theorem  5.3.1 (cf.

Subsec.  5.6.4.3 ).

5.6.4.1 Complexity Analysis when 0 < β ≤ 1

Theorem 5.6.2 (0 < β ≤ 1 and L > 0). Let Assumptions  5.1.1 and  5.1.3 - 5.1.4 and  5.1.5 

hold along with 0 < β ≤ 1. Let Mi = L > 0, τi = 2β, and recall the definition of D > 0

implying ||x0
i − x̂|| ≤ D, for all i = 1, . . . ,m. W.l.o.g. assume D ≥ 2/L. Pick an accuracy

ε > 0. If a reference matrix W satisfying Assumption  5.2.1 is used in steps ( 5.8b )-( 5.8c ),

with ρ , λmax(W − J) < 1 and K = Õ(log(1/ε)/
√

1− ρ) (the explicit expression of K can

be found in ( 5.64 )), then the sequence {pν} generated by DiRegINA satisfies the following:

(a) if pν ≥ 2LD3,

pν+1 ≤ 5
6 pν ,
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(b) if β2 · (2LD3) ≤ pν ≤ 2LD3,

pν ≤ 244 · LD3

ν2 ,

(c) if ε ≤ pν ≤ β2 · (2LD3),

pν ≤ 242 · (LD3)2 · β
2

ε
· 1
ν2 .

Proof. Recalling Lemma  5.6.3 from the proof of Theorem  5.6.1 , we can write

F (xν+
i ) ≤ F̃i(xν+

i ;xνi ) + 1
2ε

∥∥∥δνi ∥∥∥2, (5.47)

for arbitrary ε > 0, Mi ≥ L, and τi ≥ β + ε. In addition, by the upperbound approximation

of F̃i(·;xνi ) in (  5.22 ), there holds

F̃i(y;xνi ) ≤F (y) + 1
2

∥∥∥y − xνi ∥∥∥2
(β+τi+ε)I + Mi + L

6

∥∥∥y − xνi ∥∥∥3 + 1
2ε

∥∥∥δνi ∥∥∥2, ∀y ∈ K. (5.48)

Let α0 ∈ (0, 1]. Set ε = β and τi = 2β. By (  5.47 )-( 5.48 ) and xν+
i being the minimizer of

F̃ (·;xνi ) [see ( 5.8a )], we obtain

F (xν+
i )− F (x̂)

≤min
y∈K

{
F (y)− F (x̂) + 2β

∥∥∥y − xνi ∥∥∥2 + Mi + L

6

∥∥∥y − xνi ∥∥∥3 + 1
β

∥∥∥δνi ∥∥∥2
}

≤ min
α∈[0,α0]

{
F (y)− F (x̂) + 2β

∥∥∥y − xνi ∥∥∥2 + Mi + L

6

∥∥∥y − xνi ∥∥∥3 + 1
β

∥∥∥δνi ∥∥∥2

: y = αx̂+ (1− α)xνi
}

≤ min
α∈[0,α0]

{
(1− α) (F (xνi )− F (x̂))

+ 2βα2
∥∥∥x̂− xνi ∥∥∥2 + Mi + L

6 α3
∥∥∥x̂− xνi ∥∥∥3 + 1

β

∥∥∥δνi ∥∥∥2
}
,

(5.49)

where the last inequality holds by the convexity of F . Note that, by definition, ||x0
i −x̂|| ≤ D,

for all i = 1, . . . ,m. Assuming ||xνi − x̂|| ≤ D, for all i = 1, . . . ,m, we prove descent at

iteration ν + 1, i.e. pν+1 < pν , unless pν = 0. Note that by Assumption  5.1.1 (iv), if {pν}ν is
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non-increasing, then ||xνi − x̂|| ≤ D for all ν ≥ 0 and i = 1, . . . ,m. Now set Mi = L in ( 5.49 )

and compute the mean over i = 1, . . . ,m, which yields

pν+1
( 5.32 )
≤ pν+ ≤ min

α∈[0,α0]

{
(1− α)pν + 2βα2D2 + LD3

3 α3 + 1
mβ

∥∥∥δν∥∥∥2
}
. (5.50)

Denote

C1 ,
LD3

3 . (5.51)

Since D ≥ 2
L

, it holds 2βD2 ≤ 3βC1. Then, setting α0 = min{1, pν/(6βC1)} in ( 5.50 ) yields

pν+1 ≤ min
α∈[0,min{1, pν

6βC1
}]

{
(1− α)pν + 3βC1α

2 + C1α
3 + 1

mβ

∥∥∥δν∥∥∥2
}

≤ min
α∈[0,min{1, pν

6βC1
}]

{
(1− α/2)pν + C1α

3 + 1
mβ

∥∥∥δν∥∥∥2
}
.

(5.52)

Let us assess ( 5.52 ) over the following “regions”. Denoting by α∗ the minimizer of the

optimization problem at the RHS of (  5.52 ), we have the following:

(a) If pν ≥ 6C1, then α∗ = 1 and

pν+1 ≤ 1
2p

ν + C1 + 1
mβ

∥∥∥δν∥∥∥2 ≤
(1

2 + 1
6

)
pν + 1

mβ

∥∥∥δν∥∥∥2, (5.53)

and under the condition

1
mβ

∥∥∥δν∥∥∥2 ≤ 1
6p

ν ⇐= 1
mβ

∥∥∥δν∥∥∥2 ≤ C1, (5.54)

( 5.53 ) yields

pν+1 ≤ 5
6 pν .

Note that, by ( 5.46 ) and Lemma  5.6.4 , condition (  5.54 ) holds if

K ≥ 1√
1− ρ ·

1
2 log

(
D̄δ

mβC1

)
. (5.55)

225



(b) If 6β2C1 ≤ pν ≤ 6C1, then α∗ =
√

pν

6C1
and

pν+1 ≤ pν − (pν)3/2

3
√

6C1
+ 1
mβ

∥∥∥δν∥∥∥2, (5.56)

and if (similar to derivation of ( 5.55 ))

K ≥ 1√
1− ρ ·

1
2 log

(
D̄δ

mβ4C1

)
=⇒ 1

mβ

∥∥∥δν∥∥∥2 ≤ β3C1 =⇒ 1
mβ

∥∥∥δν∥∥∥2 ≤ (pν)3/2

6
√

6C1
, (5.57)

( 5.56 ) implies

pν+1 ≤ pν − (pν)3/2

6
√

6C1
. (5.58)

Finally, since pν is non-increasing,

1√
pν+1 −

1√
pν

= pν − pν+1(√
pν +

√
pν+1

)√
pνpν+1

( 5.58 )
≥

1
6
√

6C1
(pν)3/2(√

pν +
√
pν+1

)√
pνpν+1

≥c0 ,
1
12

√
1

6C1
,

and consequently,

pν ≤ 1

c2
0

(
ν + 1

c0
√
p0

)2 ≤
1
c2

0ν
2 .

(c) If ε ≤ pν ≤ 6β2C1, then α∗ = pν

6βC1
and

pν+1 ≤ pν − (pν)2

18βC1
+ 1
mβ

∥∥∥δν∥∥∥2, (5.59)

and if (similar to derivation of ( 5.55 ))

K ≥ 1√
1− ρ ·

1
2 log

(
36C1D̄δ

mε2

)
=⇒ 1

mβ

∥∥∥δν∥∥∥2 ≤ ε2

36βC1
=⇒ 1

mβ

∥∥∥δν∥∥∥2 ≤ (pν)2

36βC1
, (5.60)

we deduce from (  5.59 )

pν+1 ≤ pν − (pν)2

36βC1
. (5.61)
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Since pν is non-increasing,

1√
pν+1 −

1√
pν

= pν − pν+1(√
pν +

√
pν+1

)√
pνpν+1

( 5.61 )
≥

1
36βC1

(pν)2(√
pν +

√
pν+1

)√
pνpν+1

≥c̃0 ,

√
ε

72βC1
,

(5.62)

and consequently,

pν ≤ 1

c̃2
0

(
ν + 1

c̃0
√
p0

)2 ≤
1
c̃2

0ν
2 = 722 · C2

1 ·
β2

ε
· 1
ν2 . (5.63)

Finally, combining all the conditions ( 5.42 ), (  5.55 ),( 5.57 ), and ( 5.60 ), the requirement on

K reads

K ≥ 1√
1− ρ ·

1
2 log

max
16
cw
,

122mQ2
max

cwβmax(β, µ) ,
D̄δ

min
{
mβC1,mβ4C1,

m
36C1

ε2
}

 , (5.64)

where D̄δ and C1 are defined in ( 5.46 ) and ( 5.51 ), respectively.

5.6.4.2 Complexity Analysis when β ≥ 1

Theorem 5.6.3 (β ≥ 1 and L > 0). Let Assumptions  5.1.1 and  5.1.3 - 5.1.4 and  5.1.5 hold

and β ≥ 1. Let Mi = L > 0, τi = 2β, and recall the definition of D > 0 implying

maxi∈[m] ||x0
i − x̂|| ≤ D. W.l.o.g. assume D ≥ 2/L. Pick an arbitrary ε > 0. If a reference

matrix W satisfying Assumption  5.2.1 is used in steps ( 5.8b )-( 5.8c ), with ρ , λmax(W−J) <

1 and K = Õ(log(1/ε)/
√

1− ρ) (the explicit expression is given in ( 5.64 )), then the sequence

{pν} generated by DiRegINA satisfies the following:

(a) if pν ≥ β · (2LD3),

pν+1 ≤ 5
6 pν ,

(b) if ε ≤ pν ≤ β · (2LD3),

pν ≤ 242 · (LD3)2 · β
2

ε
· 1
ν2 .
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Proof. Excluding β, the parameter setting is identical to Theorem  5.6.2 . Recall ( 5.52 ), i.e.,

pν+1 ≤ min
α∈[0,min{1, pν

6βC1
}]

{
(1− α/2)pν + C1α

3 + 1
mβ

∥∥∥δν∥∥∥2
}
, (5.65)

where C1 is defined in (  5.51 ). Denoting by α∗ the minimizer of the optimization problem at

the RHS of ( 5.52 ), we have:

(a) If pν ≥ 6βC1, then α∗ = 1 and under ( 5.64 ), ( 5.65 ) yields

pν+1 ≤ 4 + 1/β
6 pν ≤ 5

6 pν .

(b) If ε ≤ pν ≤ 6βC1, then α∗ = pν

6βC1
. Under (  5.64 ), ( 5.65 ) yields

pν+1 ≤pν − (pν)2

36βC1
,

and following similar steps as in derivation of ( 5.63 ), we obtain

pν ≤ 1
c̃2

0ν
2 = 722 · C2

1 ·
β2

ε
· 1
ν2 .

5.6.4.3 Proof of main theorem

We proceed to prove Theorem  5.3.1 . Given an accuracy 0 < ε � 1, when 0 < β ≤ 1,

Theorem  5.6.2 gives the following expression of rate: to achieve pν ≤ ε, DiRegINA requires

O

log
( 1

6C1

)
+
√
LD3

ε
+ β (LD3)

ε

 = Õ

√LD3

ε
+ β (LD3)

ε

 , (5.66)

iterations, while if β ≥ 1, by Theorem  5.6.3 , DiRegINA requires

O

(
log

(
1

2βLD3

)
+ β (LD3)

ε

)
= Õ

(
β (LD3)

ε

)
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iterations. Therefore, ( 5.66 ) is a valid rate complexity expression (in terms of iterations)

in both discussed cases (i.e. 0 < β ≤ 1 and β ≥ 1). Now, recall that every iteration

requires K rounds of communications, with K satisfying ( 5.42 ) and ( 5.64 ); hence K =

Õ (1/
√

1− ρ · log(1/ε)) = Õ
(
1/
√

1− ρ · ε−α/2
)
, for any arbitrary small α > 0. Therefore

the final communication complexity reads

Õ

 1√
1− ρ ·


√
LD3

ε1+α + β (LD3)
ε1+α

2


 .

5.6.5 Proof of Theorem  5.3.2 and Corollary  5.3.3 

We begin introducing some intermediate technical results, instrumental to proving the

main theorems, namely: i) Lemmata  5.6.6 - 5.6.5 in Sec.  5.6.5.1 ; and ii) a detailed “region-

based” complexity of DiRegINA as in in Theorem  5.6.4 (cf. Sec.  5.6.5.2 ). We prove Theorem

 5.3.2 and the improved rates in case of quadratic functions in Sec.  5.6.5.3 and Sec.  5.6.5.4 ,

respectively. Finally, Corollary  5.3.3 is proved in Sec.  5.6.5.5 .

5.6.5.1 Connections between the optimization error, network error and ||∆xν ||

We establish necessary connections between the optimization error pν , the network error∥∥∥δν∥∥∥ and ||∆xν || in Lemmata  5.6.5 - 5.6.6 :

Lemma 5.6.5. Let Assumptions  5.1.2 - 5.1.4 hold, τi = 2β, and Mi ≥ L/3. Then

1
m

m∑
i=1

∥∥∥∆xνi ∥∥∥2 ≤ 8
µ
pν + 2

mβµ

∥∥∥δν∥∥∥2, (5.67)

where pν is defined in ( 5.10 ).

Proof. By µ-strongly convexity of F and optimality of x̂,

F (xν+
i )− F (x̂) ≥µ2

∥∥∥xν+
i − x̂

∥∥∥2 ≥ µ

4

∥∥∥xν+
i − xνi

∥∥∥2 − µ

2

∥∥∥xνi − x̂∥∥∥2

≥µ4

∥∥∥xν+
i − xνi

∥∥∥2 − (F (xνi )− F (x̂)) .
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Averaging the above inequalities over i = 1, . . . ,m, yields

1
m

m∑
i=1

∥∥∥∆xνi ∥∥∥2 ≤ 4
µ

(
pν+ + pν

)
,

where pν+ = (1/m)∑m
i=1

{
F (xν+

i )− F (x̂)
}

. Using ( 5.33 ) proves ( 5.67 ).

Lemma 5.6.6. Let Assumptions  5.1.2 - 5.1.4 hold and set τi = 2β. Define

ω0 ,
12β√

L2 + 4M2
max

, Mmax , max
i∈[m]

Mi.

Then
1
m

m∑
i=1

{
F (xν+

i )− F (x̂)
}
≤ϕ

(
{xν+

i }i, {xνi }i
)

+ 8
mµ

∥∥∥δν∥∥∥2, (5.68)

where

ϕ
(
{xν+

i }i, {xνi }i
)

=



L2+4M2
max

mµ

(∑m
i=1

∥∥∥xν+
i − xνi

∥∥∥2
)2
, if C:

√∑m
i=1

∥∥∥xν+
i − xνi

∥∥∥2 ≥ ω0;

144β2

mµ

∑m
i=1

∥∥∥xν+
i − xνi

∥∥∥2, if C:
√∑m

i=1

∥∥∥xν+
i − xνi

∥∥∥2 < ω0.

Proof. Recall ( 5.44 ), a consequence of optimality of xν+
i (defined in (  5.8a )), reads

〈
∇F (xνi ) +∇2F (xνi )∆xνi , x̂− xν+

i

〉
≥
〈
Mi

2 ||∆x
ν
i ||∆xνi , xν+

i − x̂
〉

+
〈
δνi , x

ν+
i − x̂

〉
+
〈
B̃ν

i ∆xνi , xν+
i − x̂

〉
,

(5.69)
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where B̃ν
i = Bν

i + τiI and recall ∆xνi = xν+
i − xνi [cf. ( 5.23 )]. By µ-strongly convexity of F ,

F (x̂)− F (xν+
i )

≥
〈
∇F (xν+

i ), x̂− xν+
i

〉
+ µ

2

∥∥∥xν+
i − x̂

∥∥∥2

=
〈
∇F (xν+

i )−∇F (xνi )−∇2F (xνi )∆xνi , x̂− xν+
i

〉
+ µ

2

∥∥∥xν+
i − x̂

∥∥∥2

+
〈
∇F (xνi ) +∇2F (xνi )∆xνi , x̂− xν+

i

〉
( 5.69 )
≥

〈
∇F (xν+

i )−∇F (xνi )−∇2F (xνi )∆xνi , x̂− xν+
i

〉
+ µ

2

∥∥∥xν+
i − x̂

∥∥∥2

+
〈
Mi

2 ||∆x
ν
i ||∆xνi , xν+

i − x̂
〉

+
〈
δνi , x

ν+
i − x̂

〉
+
〈
B̃ν

i ∆xνi , xν+
i − x̂

〉
≥− 1

2µ
∥∥∥∇F (xν+

i )−∇F (xνi )−∇2F (xνi )∆xνi
∥∥∥2

+
〈
Mi

2 ||∆x
ν
i ||∆xνi , xν+

i − x̂
〉

+
〈
δνi , x

ν+
i − x̂

〉
+
〈
B̃ν

i ∆xνi , xν+
i − x̂

〉
,

(5.70)

and by applying Lemma  5.6.1 (cf. inequality (  5.21 )) to the first term on the RHS of ( 5.70 )

along with Cauchy-schwarz inequality, yield

F (x̂)− F (xν+
i )

≥−
(
L2

8µ + Mi

4ε0

)
‖∆xνi ‖

4 − Miε0
4

∥∥∥xν+
i − x̂

∥∥∥2 − 1
2ε1

∥∥∥δνi ∥∥∥2 − ε1
2

∥∥∥xν+
i − x̂

∥∥∥2 +
〈
B̃ν

i ∆xνi , xν+
i − x̂

〉
(a)
≥ −

(
L2

8µ + Mi

4ε0

)
‖∆xνi ‖

4 −
(
Miε0
2µ + ε1

µ

)(
F (xν+

i )− F (x̂)
)
− 1

2ε1

∥∥∥δνi ∥∥∥2 +
〈
B̃ν

i ∆xνi , xν+
i − x̂

〉
,

(5.71)

for arbitrary ε0, ε1 > 0, where (a) is due to the µ-strongly convexity of F and optimality

of x̂. By Assumption  5.1.4 and some algebraic manipulations, the last term on the RHS of

( 5.71 ) is lower-bounded as

〈
∆xνi , xν+

i − x̂
〉
B̃νi
≥− β + τi

2ε2

∥∥∥∆xνi ∥∥∥2 − ε2(β + τi)
2

∥∥∥xν+
i − x̂

∥∥∥2

(a)
≥ − β + τi

2ε2

∥∥∥∆xνi ∥∥∥2 − ε2(β + τi)
µ

(
F (xν+

i )− F (x̂)
)
,

(5.72)
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with arbitrary ε2 > 0, where (a) follows from the µ-strong convexity of F and optimality of

x̂. Set

ε0 = µ

2Mmax
, ε1 = µ

4 , ε2 = µ

4(β + τmax) ,

where τmax , maxi∈[m] τi; then combining ( 5.71 )-( 5.72 ) and averaging over i = 1, . . . ,m,

lead to

1
m

m∑
i=1

(
F (xν+

i )− F (x̂)
)
≤ L2 + 4M2

max
2mµ

m∑
i=1
‖∆xνi ‖

4 + 8 (β + τmax)2

mµ

m∑
i=1

∥∥∥∆xνi ∥∥∥2 + 8
mµ

∥∥∥δν∥∥∥2.

(5.73)

The bound ( 5.68 ) is a direct consequence of ( 5.73 ), with τi = 2β, for all i = 1, . . . ,m.

5.6.5.2 Preliminary complexity results

Theorem 5.6.4. Let Assumptions  5.1.2 - 5.1.4 and  5.1.5 hold. Let also Mi ≥ L and τi = 2β,

for all i = 1, . . . ,m, and denote

C2 , ξ · (Mmax + L)
√

2m
3µ3/2 , Mmax , max

i∈[m]
Mi,

for some arbitrary ξ ≥ 1. If a reference matrix W satisfying Assumption  5.2.1 is used

in steps ( 5.8b )-( 5.8c ), with ρ , λmax(W − J) < 1 and K = Õ(1/
√

1− ρ) (the explicit

expression of K is given in ( 5.98 )), then the sequence {pν} generated by DiRegINA satisfies

the following:

(a) If

pν ≥ p1 ,
µ3

2m(Mmax + L)2ξ2

(
1 + 4β

µ

)4

,

then

(pν)1/4 ≤ (p0)1/4 − ν

12
√

3C2
.

(b) Assume [exclusively in this case (b)] β ≤ µ and denote

p̃ν , pν/c2, c ,
µ
√
µ

8
√
m(L2 + 4M2

max)
, p2 ,

2 · 124

L2 + 4M2
max
· β

2µ

m
.
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If pν ≥ p2 and pν−1 ≤ c2, then p̃ν ≤ (p̃ν−1)2.

(c) If

pν < p3 ,
9

L2 + 4M2
max
· β

2µ

m
, (5.74)

then {pν} converges Q-linearly to zero with rate

(
1 + max(β, µ)

4mb2

)−1

=
(

1 + 1
576 ·

µmax(β, µ)
β2

)−1

. (5.75)

Proof. We organize the proof into three parts, (a)-(c), in accordance with the three cases

in the statement of the theorem.

(a) Recall Lemma  5.6.3 from the proof of Theorem  5.6.1 :

F (xν+
i ) ≤ F̃i(xν+

i ;xνi ) + 1
2ε

∥∥∥δνi ∥∥∥2, (5.76)

for arbitrary ε > 0, where Mi ≥ L and τi ≥ β + ε. In addition, by the upperbound

approximation of F̃i(·;xνi ) in ( 5.22 ), there holds

F̃i(y;xνi ) ≤F (y) + 1
2

∥∥∥y − xνi ∥∥∥2
(β+τi+ε)I + Mi + L

6

∥∥∥y − xνi ∥∥∥3 + 1
2ε

∥∥∥δνi ∥∥∥2, ∀y ∈ K. (5.77)

Set τi = 2β and ε = β, then by ( 5.76 )-( 5.77 ) and xν+
i being the minimizer of F̃ (·;xνi ),

F (xν+
i )− F (x̂)

≤min
y∈K

{
F (y)− F (x̂) + 2β

∥∥∥y − xνi ∥∥∥2 + Mi + L

6

∥∥∥y − xνi ∥∥∥3 + 1
β

∥∥∥δνi ∥∥∥2
}

≤ min
α∈[0,α0]

{
F (y)− F (x̂) + 2β

∥∥∥y − xνi ∥∥∥2 + Mi + L

6

∥∥∥y − xνi ∥∥∥3 + 1
β

∥∥∥δνi ∥∥∥2 : y = αx̂+ (1− α)xνi
}

(a)
≤ min

α∈[0,α0]

{
(1− α) (F (xνi )− F (x̂))− α(1− α)µ

2

∥∥∥xνi − x̂∥∥∥2

+ 2βα2
∥∥∥x̂− xνi ∥∥∥2 + Mi + L

6 α3
∥∥∥x̂− xνi ∥∥∥3 + 1

β

∥∥∥δνi ∥∥∥2
}
,

(5.78)
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where (a) is due to the µ-strong convexity of F . If α0 = 1/(1 + 4β/µ), ( 5.78 ) implies

F (xν+
i )− F (x̂) ≤ min

α∈[0,α0]

{
(1− α) (F (xνi )− F (x̂)) + Mi + L

6 α3
∥∥∥x̂− xνi ∥∥∥3 + 1

β

∥∥∥δνi ∥∥∥2
}
,

where by the µ-strongly convexity of F and optimality of x̂, we also deduce

F (xν+
i )− F (x̂)

≤ min
α∈[0,α0]

{
(1− α) (F (xνi )− F (x̂)) + Mi + L

6 α3
(

2
µ

(F (xνi )− F (x̂))
)3/2

+ 1
β

∥∥∥δνi ∥∥∥2
}
.

(5.79)

Averaging (  5.79 ) over i = 1, 2, . . . ,m while using ( 5.32 ), yields

pν+1 ≤ min
α∈[0,α0]

{
(1− α)pν + C2α

3 (pν)3/2 + 1
mβ

∥∥∥δν∥∥∥2
}
, C2 , ξ · (Mmax + L)

√
2m

3µ3/2 , (5.80)

where Mmax = maxi∈[m] Mi and ξ ≥ 1 is arbitrary.

Denote by α∗ the minimizer of the RHS of ( 5.80 ); then if pν ≥ p1 , 1/(9C2
2α

4
0), we have

α∗ = 1/
√

3C2
√
pν , and

pν+1 ≤pν − 2(pν)3/4

3
√

3C2
+ 1
mβ

∥∥∥δν∥∥∥2. (5.81)

If
1
mβ

∥∥∥δν∥∥∥2 ≤ 1
3
√

3C2
(p1)3/4 =⇒ 1

mβ

∥∥∥δν∥∥∥2 ≤ 1
3
√

3C2
(pν)3/4, (5.82)

( 5.81 ) yields

pν+1 ≤pν − c̃ (pν)3/4, ∀ν ≥ 0, c̃ ,
1

3
√

3C2
. (5.83)

Note that, by ( 5.46 ) and Lemma  5.6.4 , condition (  5.82 ) holds if

K ≥ 1√
1− ρ ·

1
2 log

3D̄δ

√
3C2

mβp
3/4
1

 . (5.84)

We now prove by induction that ( 5.83 ) implies

(pν)1/4 ≤ lν , (p0)1/4 − c̃

4ν, ∀ν ≥ 0. (5.85)
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Clearly, ( 5.85 ) holds for ν = 0. Since the RHS of ( 5.83 ) is increasing (as a function of pν)

when pν ≥ (3c̃/4)4 = 1/(9 · 28C2
2) (which holds since pν ≥ p1), then pν ≤ l4ν implies

pν+1 ≤ l4ν − c̃l3ν ,

which also implies pν+1 ≤ l4ν+1, as by definition of lν in ( 5.85 ),

l4ν − l4ν+1 = (lν − lν+1) (lν + lν+1)
(
l2ν + l2ν+1

)
= c̃

4 (lν + lν+1)
(
l2ν + l2ν+1

)
≤ c̃ l3ν .

(b) Recall (  5.41 ) (from the proof of Theorem  5.6.1 ), which under Assumptions  5.1.2 - 5.2.1 

and condition (  5.42 ), reads

wpν+1 + (δ̃ν+1)2 ≤wpν + cw(δ̃ν)2 − wµ

4m ||∆x
ν ||2. (5.86)

Recall also Lemma  5.6.6 when condition  C is satisfied, which together with ( 5.32 ), implies

pν+1 ≤b1

(
m∑

i=1

∥∥∥xν+
i − xνi

∥∥∥2
)2

+ 8
mµ

∥∥∥δν∥∥∥2, b1 ,
L2 + 4M2

max
mµ

. (5.87)

Note that pν+1 ≥ p2 implies that condition  C in Lemma  5.6.6 holds, as proved next by

contradiction. Suppose pν+1 ≥ p2 but ||∆xν || < ω0. Then Lemma  5.6.6 yields

p2 ≤ pν+1
( 5.32 )
≤ pν+ <

144β2

mµ
· ω2

0 + 8
mµ

∥∥∥δν∥∥∥2
(a)
≤ 2 · 124

L2 + 4M2
max
· β

4

mµ
,

implying β > µ, which is in contradiction with the assumption; note that (a) holds under

(similar to derivation of (  5.84 ))

K ≥ 1√
1− ρ ·

1
2 log

(
D̄δ

18β2ω2
0

)
=⇒ 8

mµ

∥∥∥δν∥∥∥2 ≤ 144β2ω2
0

mµ
. (5.88)
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Now since x 7→ xh is subadditive for 0 ≤ h ≤ 1, i.e. (a + b)h ≤ ah + bh for any a, b ≥ 0,

( 5.87 ) together with ( 5.36 ) imply

−
m∑

i=1
‖∆xνi ‖

2 ≤− b−
1
2

1

(
pν+1

) 1
2 +

√
8

mµb1
δ̃ν . (5.89)

Combining ( 5.86 ) with (  5.89 ) yields

wpν+1 + (δ̃ν+1)2 ≤ wpν + cw(δ̃ν)2 − wµ

4m
√
b1

√
pν+1 + wµ

4m

√
8

mµb1
δ̃ν ,

and since δ̃ν ≤
√
ξν ≤

√
D2,∀ν ≥ 0 (see the discussion in Subsec.  5.6.3.3 , proof of Theorem

 5.6.1 ), we get

wpν+1 + (δ̃ν+1)2 ≤wpν − wµ

4m
√
b1

√
pν+1 + C3δ̃

ν , C3 ,

(
cw
√
D2 + cwβµ

4m

√
8

mµb1

)
. (5.90)

Since pν+1 ≥ p2, under (similar to derivation of ( 5.84 ))

K ≥ 1√
1− ρ ·

1
2 log

(
64D̄δm

2b1C
2
3

c2
wβ

2µ2p2

)
=⇒ C3δ̃

ν ≤
wµ
√
p2

8m
√
b1
, (5.91)

( 5.90 ) yields

pν+1 + c
√
pν+1 ≤ pν , c ,

µ

8m
√
b1
.

Denote by p̃ν , pν/c2, then we get p̃ν+1 +
√
p̃ν+1 ≤ p̃ν which implies quadratic convergence

when pν+1 ≥ p2 and p̃ν ≤ 1 ≡ pν ≤ c2.

(c) Again recall (  5.41 ):

wpν+1 + (δ̃ν+1)2 ≤wpν + cw(δ̃ν)2 − wmax(β, µ)
4m ||∆xν ||2. (5.92)

Invoking Lemma  5.6.6 under condition  C̄ and τi = 2β, along with ( 5.32 ) and ( 5.36 ), we have

pν+1 ≤b2

m∑
i=1

∥∥∥xν+
i − xνi

∥∥∥2 + 8
mµ

(δ̃ν)2, b2 ,
144β2

mµ
. (5.93)
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Combining ( 5.92 ) and ( 5.93 ) yields

w

(
1 + max(β, µ)

4mb2

)
pν+1 + (δ̃ν+1)2 ≤wpν +

(
cw + 2wmax(β, µ)

m2µb2

)
(δ̃ν)2, (5.94)

where by choosing cw to satisfy

(
cw + 2wmax(β, µ)

m2µb2

)
≤
(

1 + max(β, µ)
4mb2

)−1
(a)
≡ cw ≤

(
1 + 2βmax(β, µ)

m2µb2

)−1 (
1 + max(β, µ)

4mb2

)−1

,

(5.95)

[where (a) is due to w = cwβ defined in Sec.  5.6.3.3 ], (  5.94 ) becomes

w

(
1 + max(β, µ)

4mb2

)
pν+1 + (δ̃ν+1)2 ≤wpν +

(
1 + max(β, µ)

4mb2

)−1

(δ̃ν)2,

implying linear convergence of {ξν}ν where

ζν , w

(
1 + max(β, µ)

4mb2

)
pν + (δ̃ν)2,

and decay rate (
1 + max(β, µ)

4mb2

)−1

=
(

1 + 1
576 ·

µmax(β, µ)
β2

)−1

. (5.96)

Therefore, {pν}ν converges Q-linearly with rate ( 5.96 ).

Now let us derive ( 5.74 ) that defines this region. The goal is to identify the region where

 C̄ (cf. Lemma  5.6.6 ) holds. Under the condition (similar to derivation of ( 5.84 ))

K ≥ 1√
1− ρ ·

1
2 log

(
4D̄δ

βµω2
0

)
=⇒ 2(δ̃ν)2

βµ
≤ ω2

o

2 , (5.97)

and Lemma  5.6.5 , there holds

1
m

m∑
i=1

∥∥∥∆xνi ∥∥∥2 ≤ 8
µ
pν + ω2

0
2m,

which implies that  C̄ is necessarily satisfied when

pν <
ω2

0µ

16m = 9
L2 + 4M2

max
· β

2µ

m
.
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Finally, unifying the conditions on K derived in ( 5.42 ). ( 5.84 ), ( 5.88 ), ( 5.91 ), ( 5.97 ), K

must satisfy

K ≥ 1√
1− ρ ·

1
2 log

D̄δ ·max
 16
D̄δcw

,
122mQ2

max

D̄δcwβmax(β, µ)
,

3
√

3C2

mβp
3/4
1
,

1
18β2ω2

0
,
64m2b1C

2
3

c2
wβ

2µ2p2
,

4
βµω2

0


 ,

(5.98)

where recall that cw > 0 must satisfy ( 5.95 ).

5.6.5.3 Proof of Theorem  5.3.2 

Let Mi = L for all i = 1, . . . ,m, and set the free parameter ξ ≥ 1 (defined in Theorem

 5.6.4 ) to ξ = 100
√

5, and define the regions of convergence,

(R0) : Ω0 ≤ pν ,

(R1) : Ω1 ≤ pν < Ω0,

(R2) : max(ε,Ω2) ≤ pν < Ω1,

(R3) : ε ≤ pν < max(ε,Ω2),

where

Ω0 = 244 ·D2µ, Ω1 = c2/2 = 1
640L2 ·

µ3

m
, Ω2 = p2 = 2 · 124

5L2 ·
β2µ

m
,

and c and p2 are defined in Theorem  5.6.4 .

Using Theorem  5.6.2 , region (R0) takes at most
√

LD
µ

iterations. Now using Theorem

 5.6.4 , region (R1) lasts at most ν1 iterations satisfying

(Ω1)1/4 ≥ (Ω0)1/4 − ν1

12
√

3C2
⇐= ν1 ≥ 480

√
3
√

5 ·m1/4 ·
√
LD

µ
.

Let us conservatively consider scenarios Ω1 ≥ ε ≥ Ω2 and ε < Ω2, then the region of

quadratic convergence (R2) lasts for at most

2 log
(

2 log
(

min
{
c2

Ω2
,
c2

ε

}))
≤ 2 log

[
2 log

[
min

{
1

128 · 124 ·
µ2

β2 ,
µ3

320mL2 ·
1
ε

}]]
: c2 ≥ Ω2, ε ≤ c2,
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iterations. Note that conditions pν ≥ p2 and pν < p3 in Theorem  5.6.4 are sufficient con-

ditions identifying the region of quadratic and linear rate (or more specifically  C and  C̄ in

Lemma  5.6.6 ); note that p2 and p3 are identical up to multiplying constants. Hence, to

obtain a valid complexity of overall performance, we pessimistically associate the region of

linear rate (R3) with ε < pν ≤ max(ε,Ω2) rather than ε < pν ≤ max(ε, p3); therefore, this

region at most lasts for O(β/µ · log(max(ε,Ω2)/ε)) iterations. Thus, since the number of

communications per iteration is Õ (1/
√

1− ρ) [cf. ( 5.42 ), ( 5.64 ), ( 5.98 ) and note that ε = Ω0

in ( 5.64 )], the overall complexity reads

Õ

(
1√

1− ρ

{√
LD

µ

(
1 +m1/4

)
+ log

[
log

[
µ2

β2 ·min
{

1, β
2µ

mL2 ·
1
ε

}]]
+ β

µ
log

[
max

(
1, β

2µ

mL2 ·
1
ε

)]})

communications.

5.6.5.4 The case of quadratic fi in Theorem  5.3.2 

Here we refine the proof of Theorem  5.3.2 to enhance the rate when L = 0:

Theorem 5.6.5. Let Assumptions  5.1.2 - 5.1.5 hold with L = 0 and β < µ. Denote by

Dp an upperbound of p0, i.e. p0 ≤ Dp for all ν ≥ 0. Also choose Mi = Θ(µ3/2/
√
mDp)

sufficiently small (explicit condition is provided in ( 5.99 )) and τi = 2β for all i = 1, . . . ,m.

If a reference matrix W satisfying Assumption  5.2.1 is used in steps ( 5.8b )-( 5.8c ), with

ρ , λmax(W − J) < 1 and K = Õ (1/
√

1− ρ) (explicit condition is provided in ( 5.98 )), then

for any given ε > 0, DiRegINA returns a solution with pν ≤ ε after total

Õ

(
1√

1− ρ ·
{

log log
(
Dp

ε

)
+ β

µ
log

(
Dpβ

2

µ2ε

)})

communications. Note that when β = O(1/
√
n), ε = Ω(VN) and n ≥ m, the above commu-

nication complexity reduces to

Õ

(
1√

1− ρ ·
{

log log
(
Dp

VN

)})
.
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Proof. Let us specialize the results established in Theorem  5.6.4 (in particular case (b)-

(c)). Note that, since L = 0, we can impose p0 ≤ c2/2 by a proper choice of Mi, allowing

DiRegINA to circumvent the first region (associated with case (a) in Theorem  5.6.4 ) and

start off in the quadratic rate region. Hence we only need to derive a sufficient condition for

p0 ≤ c2/2. Let us first consider case (b): if Mi = Θ(µ3/2/
√
mDp), ∀i, sufficiently small,

Mi ≤
µ3/2

16
√

2mDp

, ∀i =⇒ p0 ≤ µ3

512mM2
max

=⇒ p0 ≤ c2/2, (5.99)

where Mmax , maxi∈[m] Mi. Let us also evaluate the precision achieved in case (b), i.e. p2:

denote by CM such that Mi ≥ CMµ
3/2/

√
mDp,∀i, then

p2 ,
124

2M2
max
· β

2µ

m
≤ 124

2C2
M

· β
2Dp

µ2 .

Therefore the number of iterations to reach ε = Ω(p2) is O(log log(c2/p2)) = log log(Dp/ε),

and sinceK = Õ (1/
√

1− ρ), the total number of communication will be Õ (1/
√

1− ρ · log log(Dp/ε)).

Now let us derive the complexity when ε = O(p2) (i.e. case (c) in Theorem  5.6.4 ).

Setting L = 0 and following similar arguments, for arbitrary precision ε > 0, we obtain a

communication complexity Õ (1/
√

1− ρ · {log log(Dp/ε) + β/µ log(β2Dp/(µ2ε))}).

5.6.5.5 Proof of Corollary  5.3.3 

Let us customize the rate established in Theorem  5.6.4 (in particular case (b)-(c)). We

derive a sufficient condition for p0 ≤ c2/2 which guarantees that the initial point is in the

region of quadratic convergence. Using initialization policy ( 5.9 ), there holds p0 ≤ C∆/n for

some C∆ > 0. Hence, under

n ≥ 640C∆L
2

µ3 ·m =⇒ p0 ≤ µ3

640mL2 =⇒ p0 ≤ c2/2,

DiRegINA converges quadratically to the precision

p2 ,
2 · 124

5L2 ·
β2µ

m
.
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By β = O(1/
√
n), p2 = O(VN). Hence, since K = Õ (1/

√
1− ρ), the total number of

communication will be Õ (1/
√

1− ρ · log log(µ3/(mL2VN))).

5.6.6 Proof of Theorem  5.3.3 

Let Mi = L for all i = 1, . . . ,m, and set the free parameter ξ = 50β/(3µ) (defined in

Theorem  5.6.4 ) and define the regions of convergence,

(R0) : Ω0 ≤ pν ,

(R1) : Ω1 ≤ pν < Ω0,

(R2) : ε ≤ pν < Ω1,

where

Ω0 = 244 ·D2µ, Ω1 = 0.9
L2 ·

β2µ

m
.

Using Theorem  5.6.2 , region (R0) takes at most
√

LD
µ

iteration; note that µ = Ω(β2) by

assumption n ≥ m, thus Ω0 = Ω(β2 · 2LD3). Now using Theorem  5.6.4 , region (R1) lasts at

most ν1 iteration satisfying

(
Ω1
)1/4
≥ (Ω0)1/4 − ν1

12
√

3C2
⇐= ν1 ≥ 240

√
2 ·

√
βLD

√
m

µ
.

Finally, by case (c) in Theorem  5.6.4 , region (R2) lasts for O(β/µ · log(Ω1/ε)). Thus, since

communication cost per iteration is Õ (1/
√

1− ρ) [cf. ( 5.42 ), ( 5.98 )], the overall complexity

is

Õ

(
1√

1− ρ

{√
LD

µ

(
1 +m1/4 ·

√
β

µ

)
+ β

µ
log

(
β2µ

mL2 ·
1
ε

)})
.

5.6.7 The case of quadratic fi in Theorem  5.3.3 

Theorem 5.6.6. Instate the setting of Theorem  5.3.3 where L = 0. Then, the total number

of communications for DiRegINA to make pν ≤ ε reads

Õ
(

1√
1− ρ ·

β

µ
log

(1
ε

))
.
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When β = O(1/
√
n), ε = Ω(VN) and n ≥ m, the above communication complexity reduces

to

Õ
(

1√
1− ρ ·m

1/2 · log
( 1
VN

))
.

Proof. We customize case (c) in Theorem  5.6.4 , when L = 0. Note that  C̄ in Lemma

 5.6.6 holds for all ν ≥ 0 and condition (  5.97 ) is no longer required. Therefore, the algo-

rithm converges linearly with rate (  5.75 ) and returns a solution within ε precision within

O (β/µ · log(1/ε)) iterations and since K = Õ (1/
√

1− ρ) [cf. (  5.42 )] , the total number of

required communications is Õ (1/
√

1− ρ · β/µ · log(1/ε)).
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[41] P. Richtárik and M. Takáč, “Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function,” Mathematical Programming,
vol. 144, no. 1-2, pp. 1–38, 2014.

[42] I. Dassios, K. Fountoulakis, and J. Gondzio, “A second-order method for compressed
sensing problems with coherent and redundant dictionaries,” arXiv preprint arXiv:1405.4146,
2014.

[43] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, “An improved glmnet for l1-regularized logistic
regression,” The Journal of Machine Learning Research, vol. 13, no. 1, pp. 1999–2030,
2012.

[44] Y. Yang, M. Pesavento, Z.-Q. Luo, and B. Ottersten, “Block successive convex approx-
imation algorithms for nonsmooth nonconvex optimization,” in 2019 53rd Asilomar
Conference on Signals, Systems, and Computers, IEEE, 2019, pp. 660–664.

[45] L. Cannelli, G. Scutari, F. Facchinei, and V. Kungurtsev, “Parallel asynchronous
lock-free algorithms for nonconvex big-data optimization,” in 2016 50th Asilomar
Conference on Signals, Systems and Computers, IEEE, 2016, pp. 1009–1013.

[46] A. Mokhtari, A. Koppel, and A. Ribeiro, “Doubly random parallel stochastic methods
for large scale learning,” in 2016 American Control Conference (ACC), IEEE, 2016,
pp. 4847–4852.

[47] C. Scherrer, A. Tewari, M. Halappanavar, and D. Haglin, “Feature clustering for ac-
celerating parallel coordinate descent,” in Advances in Neural Information Processing
Systems (NIPS2012), Curran Associates, Inc., 2012, pp. 28–36.

[48] A. Auslender, Optimisation: méthodes numériques. Masson, 1976.
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[69] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent opti-
mization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61, Jan. 2009.
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communication efficient distributed optimization,” arXiv:1608.06879, 2016.

[219] X.-T. Yuan and P. Li, “On convergence of distributed approximate newton methods:
Globalization, sharper bounds and beyond,” arXiv:1908.02246, 2019.

[220] S. Wang, F. Roosta-Khorasani, P. Xu, and M. W. Mahoney, “Giant: Globally im-
proved approximate newton method for distributed optimization,” in Proceedings of
the 32nd 32nd International Conference on Neural Information Processing Systems,
vol. 37, 2018, pp. 2338–2348.

[221] P. Dvurechensky, D. Kamzolov, A. Lukashevich, S. Lee, E. Ordentlich, C. A. Uribe,
and A. Gasnikov, “Hyperfast second-order local solvers for efficient statistically pre-
conditioned distributed optimization,” arXiv:2102.08246, 2021.

[222] Y. Sun, A. Daneshmand, and G. Scutari, “Distributed optimization based on gradient-
tracking revisited: Enhancing convergence rate via surrogation,” arXiv:1905.02637,
2019.

[223] V. Vapnik, The nature of statistical learning theory. Springer science & business me-
dia, 2013.

[224] O. Bousquet, Concentration inequalities and empirical processes theory applied to
the analysis of learning algorithms. PhD thesis, Ecole Polytechnique: Department of
Applied Mathematics Paris, France, 2002.

[225] P. L. Bartlett, M. I. Jordan, and J. D. McAulffe, “Convexity, classification, and risk
bounds,” Journal of the American Statistical Association, vol. 101, no. 473, pp. 138–
156, 2006.

[226] R. Frostig, R. Ge, S. M. Kakade, and A. Sidford, “Competing with the empirical risk
minimizer in a single pass,” in Conference on learning theory (COLT), 2015, pp. 728–
763.

[227] S.-S. Shai and S. Ben-David, Understanding Machine Learning: From Theory to Al-
gorihtms. Cambridge University Press, 2014.

261



[228] K. Sridharan, S. Shalev-Shwartz, and N. Srebro, “Fast rates for regularized objec-
tives,” Advances in neural information processing systems, vol. 21, pp. 1545–1552,
2008.

[229] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan, “Learnability, stability
and uniform convergence,” Journal of Machine Learning Research, vol. 11, pp. 2635–
2670, 2010.

[230] P. Di Lorenzo and G. Scutari, “NEXT: In-network nonconvex optimization,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 2, no. 2,
pp. 120–136, Jun. 2016.
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