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ABSTRACT

Robotic-assisted minimally invasive surgery (RMIS) has been steadily increasing since its

introduction in the early 2000s and now has become a medical standard of care in multiple

surgical specialties. In RMIS, the leading surgeon teleoperates a surgical robot from a

console distant from the patient. While on the patient side, there is at least one surgical

assistant supporting the procedure by effective handling surgical instruments. One of the

most important tasks done by the surgical assistant is blood suction and irrigation. This

task is critical to maintaining a clear view of the surgical field and avoid contaminations and

infections. When several tasks are competing for the surgical assistant’s attention, taking

care of blood suction implies leaving unattended other assistive tasks, such as the exchange

of robotic instruments and handling of sutures. An alternative approach to handle bleeding

events is having the leading surgeon teleoperate the suction tool. Likewise, this leads to less

attention allocated to the patient and an increase in their cognitive load.

This thesis describes a semi-autonomous suction assistant to release the main surgeon of

blood suction during a procedure and avoiding the associated cognitive demands of such task.

At the heart of this system, there is a deep learning algorithm that segments and identifies

the location of blood poolings from the endoscopic camera’s images. With the segmented

images, the system extracts navigational information to provide automatic suction, allowing

the leading surgeon to focus exclusively on the main task. The system was integrated into a

Da Vinci Research Kit robot (DVRK). Additionally, an augmented reality (AR) and a real-

time cognitive workload assessment module were developed to improve human-robot work

dynamics. The AR module displayed semi-transparent annotations indicating the robot’s

next target location. These annotations allowed the user to better coordinate his actions

with the surgical robot. The cognitive workload assessment module allowed to classify the

users’ mental state into low and high cognitive workload. Using this information, the robotic

assistant provided suction during periods of high mental demands.

To evaluate the proposed framework, a computational experiment and two user studies

were conducted. The goal of the computational experiment was to assess the prediction per-

formance of the proposed cognitive workload detection system under two different modalities:
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single-user models and multi-user models. In the single-user modality, an average classifica-

tion accuracy of 76% was achieved. This result demonstrates how to effectively use EEG and

eye-tracker features to predict cognitive states in RMIS procedures. In the first user study,

the goal was to evaluate the capability of the autonomous framework to improve the user’s

surgical performance. This was achieved by comparing the autonomous system against a

condition of manual teleoperation of the suction tool. The study’s main finding was a reduc-

tion in the completion time and the reported workload demands when using the autonomous

system. The goal in the second study was to evaluate the integration of the autonomous

system with the cognitive workload framework. In this setting, the robotic assistant would

only act when the user’s mental state was classified as high cognitive workload. To achieve

the study’s goal, the autonomous system was assessed against manual teleoperation of the

suction tool. The main results for this study show a reduction in the completion time and

improved human-robot collaboration fluency. Overall, the experiments’ results shows how

objective and real-time assessment of cognitive load can be used together with surgical au-

tonomy to enhance RMIS surgical outcomes.
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1. INTRODUCTION

Robotic-assisted minimally invasive surgery (RMIS) has become the medical standard for

surgical procedures in multiple specialties such as urology, general surgery, and gynecology

[ 1 ]. Currently, the most predominant robotic platform is the da Vinci surgical robot de-

veloped by Intuitive Surgical, Inc. To date, this company has installed more than 5900

da Vinci systems worldwide, allowing robotic surgeons to perform more than 8.5 million

robotic-assisted procedures [  2 ]. As technology improves and adoption rates increase, it is

expected that the market of surgical robots will rise to a value of USD 11.8 billion by 2025

[ 3 ].

In RMIS, the operating or leading surgeon sits in a console separated from the patient

and teleoperates the surgical robot at the patient side. On the patient side, there is at least

one surgical assistant who helps with several support tasks, such as exchanging the robotic

tools, handling of sutures and specimens, and providing suction and irrigation [ 4 ]. Among

the assistant responsibilities, blood suction and irrigation tasks are critical to maintain a

clear surgical field and avoid complications during a procedure often resulting from bleeding.

Furthermore, bleeding has been associated with leading surgeon’s high cognitive load and

limited visibility of the surgical field. This can lead to increased surgical risks [  5 ] and even

mortality risks [  6 ]. While blood suction does not stop bleeding, it can facilitate proper

hemorrhage control by allowing the surgeon to localize the source of bleeding and treat

it in a timely fashion. In the most severe hemorrhage control cases, the surgeon must

undock the robot and switch to open surgery. However, conversion to open surgery has been

associated with postoperative complications such as morbidity, infections, and increased risk

of subsequent surgeries [ 7 ].

Having good visibility of the operating field can help prevent bleeding complications.

A clear surgical field allows the surgeon to quickly identify and act upon the source of a

hemorrhage [  5 ] and stop bleeding. Increasing visibility during bleeding requires effective use

of the suction/irrigation tools multiple times per procedure [ 5 ]. Standard medical practices

require a surgical assistant to hold the suction tool at the side of the patient while the leading

surgeon operates from a close-by console [  8 ], [ 9 ]. The main drawback of such configuration
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is that it limits the availability of the assisting surgeon to other essential support tasks, such

as tissue retraction, instrument exchange, and suture [ 4 ].

In response, flexible suction systems, such as the ROSI, have been recently developed [ 10 ],

[ 11 ]. These novel technologies allow the surgeon to control the suction tool directly, releasing

the surgical assistant from suction/irrigation tasks. Paradoxically, having the leading surgeon

in charge of blood suction leads to additional cognitive demands (since there are other tasks

that the surgeon is responsible of) that can result in delays and, potentially, medical errors

[ 12 ]. Furthermore, these additional cognitive demands can be particularly detrimental for

surgeons earlier in the learning curve as they diverge their attention from the main procedure.

To alleviate these needs, we propose utilizing an autonomous robotic blood suction sys-

tem. Such a framework would help to improve performance and reduce the cognitive demands

of the medical staff. This system leverages on recent artificial intelligence (AI) advancements

to segment automatically blood pooling regions in endoscopic camera views. Segmentation

of endoscopic images is done with a novel fully convolutional network (FCN) [  13 ]. Such a

network assigns a label to every pixel; a task referred to as semantic segmentation. Later,

the segmented images are used by a da Vinci robot to automatically extract navigational

cues necessary for effective suction of blood accumulations.

To achieve our goal of autonomous blood suction, we first developed a surgical simulator

that allows benchmarking the system’s performance. We then built a platform to gener-

ate mock bleeding events. Such events were designed to increase the operator’s cognitive

workload and test the effectiveness of the system. Additionally, to improve the simulator’s

realism, ballistic gel was used to simulate the muscle tissue. Utilizing such simulator, a

dataset of endoscopic images of users performing a running suturing exercise on the simula-

tor was collected. This exercise was borrowed from the fundamentals of robotic surgery [ 14 ].

This dataset was used to train the semantic segmentation algorithms. Finally, a navigation

and path planning algorithms were developed to move the surgical robot around the surgical

workspace and provide suction.

Enhancing human-robot collaboration is a two-faced problem. On the one hand, it is

required that the autonomous agent adapts its behavior according to the surgeon’s mental

state and needs at a precise moment. On the other hand, the robot must convey its inten-
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tions to the surgeon [  15 ]. In this regard, two additional components were added to boost

the effectiveness of our autonomous framework. First, to improve the robot awareness of

the surgeon’s mental state, a cognitive workload detection algorithm based on EEG and

eye-tracking sensors was designed and implemented. This framework allows to estimate the

cognitive demands of the user in real-time and adapt the autonomous assistant accordingly.

Second, to improve the surgeon’s awareness of the robot’s intentions, transparent AR an-

notations were developed that allowed the user to see the subsequent actions of the robot

before they were executed. Thus, allowing the user to coordinate its actions with the robotic

assistant.

To validate our approach, a user study with a first-generation Da Vinci Research Kit

(DVRK) surgical robot that used the API version 1.7.1 was conducted. This study aimed

to demonstrate that working with the robotic assistant can result in better performance and

lower cognitive demands on the user. To achieve this, we evaluated the user performance in a

surgical exercise under two modalities: manually controlled-suction tool (manual modality)

and autonomy controlled-suction tool (autonomous modality). In the former, the user shifts

between the teleoperation of the main arms and the suction tool as needed during the surgical

training task. In the latter, the robotic assistant provides automatic blood suction directly.

In both modalities, performance and workload metrics were collected to assess the effect of

the AI system on task performance.

1.1 Problem Statement

This research focuses on the development of an algorithmic and mechanic framework to

automate the blood suction surgical task. The autonomy algorithm is expected to enhance

performance in the context of RMIS, therefore, indirectly reducing the cognitive demands of

the user. Our framework was only tested on suction tasks due to recent studies indicating

that a combination of irrigation and suction does not lead to additional surgical benefits

compare to suction alone [ 16 ].
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1.1.1 Research Questions

Research question 1 (RQ1): How to develop computer vision algorithms and

control policies to automate the blood suction task in the context of RMIS?

This question deals with the technical requirements of developing an autonomous system

for blood suction. We focus on the development of computer vision algorithms to extract

critical cues such as the location of the blood pooling and the handling of robotic instruments.

Research question 2 (RQ2): How to predict cognitive load from multimodal

physiological signals in real-time?

A critical step to improve human-robot collaboration in surgery is providing the au-

tonomous system with information about the surgeon’s cognitive demands. This informa-

tion can be used to adapt the level of assistance of the autonomy, i.e., providing additional

help on cognitive demanding situations. This question focuses on the algorithmic design and

implementation of cognitive workload prediction models based on EEG and eye-tracking

sensors.

Research question 3 (RQ3): How the autonomy-controlled suction action can

improve the surgeon’s task performance and cognitive demands?

Our baseline hypothesis is that automating the blood suction surgical subtask improves

the surgeon’s performance. In this regard, demonstrating that our autonomous system leads

to better performance and lower cognitive demands than the suction tool’s manual teleop-

eration is a critical step for this work.

1.2 Contributions

The main contributions of this work are:

1. Design and implementation of a semi-automatic blood suction system deployed in a

DVRK robot.
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2. Design and implementation of a real-time and unobtrusive cognitive workload predic-

tion framework based on physiological sensing.

3. Implementation of transparent augmented reality annotations to improve human-robot

collaboration.

4. Evaluation of the cognitive demands and surgical performance of the surgeon when

working with the semi-autonomous robotic assistant.

1.3 Summary

This chapter discussed the motivation for developing an autonomous robotic blood suc-

tion system in the context of minimally invasive surgery and presented three research ques-

tions related to the design, development, and assessment of the proposed framework. The

rest of this work is divided into the following sections. In chapter 2, we present a review of the

relevant literature. Chapter 3 describes the methodology used to develop the autonomous

system and the cognitive workload prediction algorithms. Chapter 4 discusses the results

obtained from the user study and performance metrics from the system. Finally, in chapter

5, we present conclusions and future work.
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2. LITERATURE REVIEW

This chapter reviews the main research topics in surgical robotics that are related to the

presented research questions. In sections  2.1 and  2.2 , we will describe current commercially

available surgical robot platforms, and the most common research platforms. Next, in sec-

tion  2.3 , we delve into computer vision applications in surgery as this is a key enabling

technology for the development of autonomous platforms. Section  2.4 and  2.5 cover the

main topics of this thesis which are autonomy systems and human-robot integration in sur-

gical robotics. Finally, sections  2.6 and  2.7 , will go over objective performance metrics and

workload assessment techniques.

2.1 Surgical Robotics

Minimally invasive surgery (MIS) is a surgical technique where the surgeon utilizes small

ports (incisions) made in the patient’s body to perform a surgical procedure. This technique

has resulted in improved patient outcomes such as reduced recuperation times, lower risks

of complications, and shorter hospital stays [ 17 ]. The main drawbacks of traditional MIS

are (1) limited dexterity of laparoscopic instruments, (2) lack of tactile feedback, and (3)

the loss of depth perception due to monocular endoscopic cameras and 2D displays. Robotic

surgical platforms were introduced to the market in the early 2000s to improve the surgeon’s

dexterity and visualization. Since then, this technology has evolved into a growing industry

encompassing surgical care in multiple specialties such as general surgery, gynecology, or-

thopedics, and radiotherapy [  18 ]. The main drawbacks of current commercial platforms are

their high costs and large footprints.

The field of surgical robotics originated with researchers and engineers that adapted in-

dustrial robots to clinical tasks. In their seminal work, Kwoh et al. proposed using a PUMA

200 robot to perform a guided brain biopsy with computed tomography images (CT). This

work led to one of the first robotic surgical procedures in 1985. In 1992, THINK Surgi-

cal, Inc introduced the Robodoc, a system capable of autonomously assisting in orthopedic

surgeries [ 19 ]. In 1994, Computer Motion (Goleta, California, USA) released the precursor

of teleoperated surgical robots, the Automated Endoscopic System for Optimal Positioning

19



(AESOP). This system evolved into the ZEUS robot by adding remotely controlled manipu-

lators for laparoscopic instruments. The direct competitor of ZEUS was the da Vinci system

by Intuitive Surgical. Both companies received FDA approval for their products in the early

2000s. In 2003, these rival companies merged, resulting in the da Vinci as the only robot for

MIS in the market for many years [ 18 ].

Today, the most prominent surgical robot is still the da Vinci robot. This system is

composed of three central components: (1) a cable-driven surgical robot with three 7-DOF

patient side manipulators and a 4-DOF endoscopic camera, (2) a master console with 3D

immersive visualization of the surgical field and two teleoperation manipulators, and (3) a

vision-tower with video processing hardware and generators of electrosurgical instruments.

The latest version of the da Vinci is the Xi version, and it was released in 2014 (see figure

 2.1 ). The main criticisms towards da Vinci’s systems are the lack of tactile feedback, high

acquisition price, and oversized design that requires specially designed ORs [ 20 ].

Figure 2.1. Surgical cart of the da Vinci Xi robot. Image taken from [  21 ]
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Currently, multiple other robotic companies have developed novel platforms that address

the main limitations of the da Vinci system. The biggest competitor is the Senhance laparo-

scopic robot (TransEnterix, Morrisville, NC, USA). This robot has 4 robotic manipulators

each one mounted on its own cart. Unlike the Da Vinci console, this system utilizes a

combination of 3D glasses and 3D screens to provide the surgeon with a view of the surgi-

cal field. Additionally, it includes novel haptic feedback and eye-tracking technology. The

console was designed to ease the transition from traditional laparoscopic surgery to robotic

surgery. Two other robotic platforms are the BITRACK (Rob Surgical, Barcelona, Spain)

and Revo-i robots (Meere Company, Seoul, South Korea). Both platforms are similar in

size and functionalities to the Da Vinci and Senhance robot; however, they are expected to

include haptic feedback technology and have a lower cost. Currently, the Revo-i and the

BITRACK systems do not have FDA approval.

Other platforms under active development are attempting to further reduce the footprint

of surgical robots. The main advantage of portable surgical robots is that they do not

require specialized operating rooms, which would allow hospitals and small clinics to reduce

costs [  22 ] as current OR could be used to host such systems. The Versius surgical robot

developed by Cambridge Medical Robotics (Cambridge, UK) has independent surgical arms

mounted in a reduced cart size compared to the Sehance robot. This robot offers a non-

immersive teleoperation platform and the unique feature of allowing the surgeon to stand

while operating. The most compact designs have been achieved by mounting the robotic

arms directly into the surgical table with systems such as the Mirosurge robot by DLR

Institute of Robotics and Mechatronics (Germany).

Commercial surgical robots have also been developed for specialties such as orthopedics

and radiotherapy. In orthopedic surgery, precise models of bones can be calculated with

preoperative images such as CT scans. This allows robots to plan and complete a procedure

autonomously. One of the most notable platforms for knee and hip replacement surgery

(arthroplasty procedures) is the successor of the Robodoc platform, the TSolution-One by

THINK Surgical Inc. (Fremont, CA) [  19 ]. For spinal surgery, the Mazor X Stealth by

Medtronic has been proposed for automatic screw placement. This robot requires a CT 3D

model of the spine to calculate the optimal trajectories [ 23 ]. In radiotherapy, the CyberKnife
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robot by Accuray (Sunnyvale, California, USA) is commercially used for radiation therapy

of cancerous tissue. This computer-guided system uses preoperative images to calculated

radiation angles that maximize exposure of the target and minimize the impact on healthy

structures. The aforementioned are examples of high autonomy levels where the surgeon’s

role is to approve the pre-planned surgical plan instead of performing the procedure.

2.2 Surgical Robotics Research Platforms

The introduction of RMIS platforms became a driver of innovation in health sciences and

engineering. For instance, the da Vinci surgical robot has led to more than 25,000 clinical and

engineering peer-reviewed publications [  24 ] alone. In the 2000s, there were significant barriers

to the field of surgical robotics to multiple research institutions due to the high costs and

commercial limitations that prevented accessing the robots’ kinematic and video information.

Consequently, only two options existed to conduct research in RMIS: customized surgical

robots or industrial platforms adapted for surgery [  24 ]. To address this situation, two open-

source robotic platforms have been introduced: The Raven II robot [ 25 ] and the Da Vinci

Research Kit (DVRK)[ 26 ]. These two platforms have been installed in more than 40 research

institutions around the world and have become a key enabler for the formation of a growing

research community in surgical robotics [  24 ]. These common research platforms offer three

main advantages: (1) the availability of open surgical systems that allow changes of the

software stack, (2) open-source code repositories that facilitate reproducing and validating

other researchers’ work, and (3) access to low-cost surgical hardware.

The DVRK is a modular surgical platform based on first-generation da Vinci surgical

systems provided free of cost by Intuitive Surgical Inc [ 26 ]. The controllers and software were

developed in a collaboration between Johns Hopkins University (JHU) and the Worcester

Polytechnic Institute (WPI). A controller based on Field programmable gate arrays (FPGAs)

serves as a communication bridge between the actuators and sensors of the robot and an

external computer used to control the robot. The main components of this system are the

7 DOF Patient side manipulators (PSM), a 4 DOF Endoscope camera manipulator (ECM),

a 7DOF master tool manipulator (MTM), and a stereo-viewer visualization console. The
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modular architecture of the DVRK allows for each component to be used independently or

to be assembled, mimicking the clinical version of the da Vinci robot.

The Raven II robot is a 7 DOF cable-driven robotic platform developed in the year 2012

by the University of Washington and the University of California Santa Cruz [ 25 ]. This robot

has two coarse 3 DOF positioning mechanisms and allows 4 DOF wrists-like instruments to

be mounted. Additionally, the system was made compatible with DVRK’s laparoscopic

instruments. Its software is open-source and relies on ROS and Linux. Presently, the robot

is being manufactured and distributed by Applied Dexterity Inc. Last, the Taurus Robot by

SRI International (Menlo Park, USA) has been proposed to perform surgical tasks in austere

environments such as the battlefield. This robot has two dexterous 7 DOF manipulators and

a lightweight design that allows the robot to be mounted in a wheeled cart. Madapana et

al. developed a dataset of surgical skills that was used to transfer surgical knowledge from

the DVRK robot to the Taurus [ 27 ].

Multiple open-source simulation platforms have been developed for surgical robots for

testing control algorithms and surgical training. Gondokaryono et al. developed a simula-

tor of the DVRK robot in Gazebo based on a closed-kinematics model [  28 ]. Additionally,

Fontanelli et al. implemented a DVRK kinematic model in the V-rep simulation environment

and 4 surgical scenes to showcase the potential applications of simulation in surgical robotics

[ 29 ]. While these simulators provided full kinematic models for the DVRK, they lack the

adaptation flexibility to different input controllers and robotic architectures. To alleviate this

situation, Munawar et al. proposed a more general and flexible simulation platform called the

Asynchronous Multi-Body Framework (AMBF) [ 30 ]. This framework allows working with

multiple devices such as Razer Hydra and the DVRK master tool manipulators (MTM); and

in addition, it supports the DVRK robot and the Raven II robot.

Last, there has been an effort in the robotics community to standardize the DVRK’s API

to be compatible with Raven II robots through the Collaborative Robotics Toolkit (CRTK)

initiative. The goal of CRTK is to facilitate the reproduction of results and avoid unnecessary

duplication of work by developing a standard interface and specifications for teleoperated

surgical robots [ 24 ].
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2.3 Computer Vision

The advent of minimally invasive techniques (MIS), e.g., laparoscopic and robotic-assisted

procedures, has significantly increased the availability of surgical video data. In MIS proce-

dures, the view of the surgical field is provided by either a monocular or stereo endoscopic

camera. Easy access to datasets of surgical videos has resulted in the development of multiple

computer-aided applications based on data-driven and machine-learning techniques. Exam-

ples of such applications are extracting postoperative information of the patient anatomy,

evaluating the surgical performance of surgeons and residents, and providing real-time nav-

igational information to improve surgical work.

Computer vision applications for MIS can be broadly separated into three categories [ 31 ]:

(1) surgical phases understanding, (2) computer-aided detection, (3) navigation applications.

The first category deals with the problem of automatically separating a surgical procedure

into sub-phases and extracting contextual information about the surgical steps being per-

formed at every phase. The granularity of the temporal divisions depends on the application.

Hager et. al [ 32 ] proposed dividing the surgical maneuvers into atomic actions referred as

to surgemes. The second category addresses the problem of automatically detecting rel-

evant objects or events in the surgical field, such as the surgical instruments, anatomical

structures, and anomalies. Examples of anomalies are lesions and hemorrhages. The last

category focuses on extracting 3D navigational information that can be utilized to improve

motion planning, or autonomous navigation of the arms, or to facilitate surgical instruments

control within the patient’s body. Overall, these applications attempt to harness the power

of data-driven techniques to enhance medical staff performance and patient safety.

2.3.1 Segmentation and Registration of Patient Anatomy and Instruments

Segmentation and registration from surgical images are key techniques to improve per-

formance and safety in the operating room. By registering the observed surgical field with

preoperative scans and 3D models, patient anatomy’s information can be overlayed on top of

the endoscopic images to improve the surgeons’ navigation and decision-making [ 33 ]. Com-

bining registration with instrument segmentation can be used to create safe operating zones
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that avoid vital structures and provide guidance during critical steps in the surgery. Ad-

ditionally, instrument segmentation can be used to evaluate technical skills and generate

labeled datasets for machine learning algorithms [ 31 ].

State-of-the-art models for instrument segmentation are based on convolutional neural

networks (CNN’s)[  34 ]. These models allow segmenting relevant objects by assigning a label

to each pixel in the surgical image. Examples of surgical regions of interest include anatom-

ical structures such as organs, lesions, tissue, bone, and surgical instruments. [ 35 ] proposed

a lesion detection system for gastrointestinal endoscopic images, which used Support Vec-

tor Machine (SVM) and CNNs. This system was designed to detect lesions such as ulcers,

polyps, and bleeding automatically. [  36 ] proposed segmenting connective tissue using a vari-

ant of the U-net architecture. It used RGB depth maps as inputs to the network and was

part of an autonomous tissue retraction application. For instrument segmentation tasks, [ 37 ]

introduced a fully convolutional variation of the residual network Resnet-18. This architec-

ture utilized a combination of low stride convolutional layers with dilated convolutions to

ensure dense feature maps.

Additional challenges for segmenting surgical images are the lack of large-scale surgical

datasets and the occlusion generated due to bleeding and smoke from cutting devices. To

resolve the lack of annotated data, [  38 ] proposed the use surgical instruments on top of green

screens to generate semi-synthetic labeled data quickly. Afterward, models trained with the

synthetic datasets were shown to obtain comparable results as models trained with real data.

To address challenges due to occlusion, [  39 ] proposed a system to segment occluded organs by

fusing preoperative 3D computed tomography scans (CT) and the stereo endoscopic vision

of a surgical robot.

2.3.2 Hemorrhage Detection and Tracking in Surgery

Hemorrhages detection and tracking are needed for an autonomous blood suction and

irrigation robotic system. Traditional blood detection algorithms are based on pixel-wise

classifiers relying on color representations such as RGB and HSV. Fu et al. used RGB fea-

tures from wireless capsule endoscopy (WCE), and trained an SVM model to automatically
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segment bloodstains [  40 ]. This same approach was employed by Okamoto et al. to de-

tect bleeding sources during laparoscopic surgeries [  41 ]. Although computationally efficient,

these methods had limited performance when specular reflections or smoke from ablation

was present in the images [ 42 ].

State-of-the-art models for blood detection are based on convolutional neural networks

(CNN). These models provide robust blood tracking even with specular reflections, but they

also require larger labeled training datasets. While these methods were initially developed

for fluids detection, they were adapted to blood detection [  42 ]. Schenck et al. demonstrated

the effectiveness of fully convolutional networks (FCN) liquid detection on pouring demon-

strations [  43 ]. To build a large, annotated dataset quickly, they used a simulator where

liquids were heated first, acquired using a thermal camera, and subsequently segmented and

annotated automatically. For a liquid tracking application, Yamaguchi et al. demonstrated

that optical flow using Lukas-Kanade method and stereo cameras could be used to create

3D models of flowing liquids [ 44 ]. Subsequently, these models were used by a robot for a liq-

uid manipulation task. Instead of calculating optical flow with traditional methods, Ritcher

et al. utilized pre-trained deep learning architecture to improve the tracking accuracy in

the surgical setting [  42 ]. The resulting optical flow was later filtered using Hidden Markov

models (HMM) to temporally fuse the predictions and increase the tracking robustness.

We build on this previous work on FCN networks, as they provide the most robust results

for blood detection. To alleviate the need for a large training dataset, we leverage pre-trained

models with ImageNet [ 45 ]. These models were later retrained to the specific setting of blood

detection in RMIS with a dataset of 180 images.

2.4 Autonomy in Surgical Robotics

Autonomous systems have been proposed as one of the many important stepstones in

surgical robotics [  46 ]. Because autonomous systems can take over the most repetitive and

tiresome tasks of a surgical procedure, they would reduce the demands on the surgical staff,

enhance the efficiency in the OR and improve the overall patient well-being [  47 ], [  48 ]. Fur-

thermore, autonomous technologies can enable bringing surgical care to locations where
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teleoperation is not possible due to delays and unreliable communication [  49 ]. These hos-

tile environments include war zones, disaster and recovery regions, and space explorations

missions, among others [ 50 ].

Figure 2.2. Classification system for autonomous systems in surgical robotics.
Image taken from [ 46 ]

To guide the progress of this field and address legal and ethical barriers Yang. et. al

proposed a 6-level classification system for autonomous surgical platforms[  46 ] (see figure  2.2 ).

The levels of such system are: (level 0) No autonomy, (level 1) Robot assistance, (level 2)

Task autonomy, (level 3) Conditional autonomy, (level 4) High autonomy, (level 5) Full

autonomy. Level 1 encompasses any system that provides assistance to the surgeon but never

takes full control, e.g., virtual fixtures [  51 ], enhanced visualization [  52 ], and haptic feedback

[ 53 ]. Level 1 autonomy is often referred as shared control teleoperation [  48 ]. Level 2 includes

systems capable of performing autonomously specific subtasks or procedures. At this level,

the goal is to develop systems that can take over the execution of non-critical and repetitive

tasks such as tissue retraction and suturing [ 46 ]. Level 3 systems are capable of automatically

generating strategies to complete a surgical goal; however, the surgeon is still in charge of

selecting among those strategies [  46 ] which one is the most effective. Level 4 systems can
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perform complete surgical procedures under the supervision of a surgeon. Finally, level 5

systems are as proficient as surgeons and do not require human oversight. Currently, there

are no commercial examples of levels 5 systems [  54 ]. Our proposed autonomous blood suction

system corresponds to a level 2 system.

Level 2 autonomous systems can account for changes in their environment to complete a

specific goal even under uncertain conditions [  54 ], such as anatomy variations from patient-

to-patient. These systems differ from traditional automation-based systems that can only

work under controlled and predictable conditions [  54 ]. In this regard, a key capability of such

a system is to estimate a model of the environment based on high-level information from

raw sensory data, e.g., intraoperative images, ultrasound, CT scans [  50 ]. After estimating

an environment model, a mapping function is used to transform the estimated environment

model into actions. This mapping function can be attained through either explicit learning

or implicit learning [ 50 ]. In the former, the robot behavior is explicitly programmed. In the

latter, the robot can learn the surgical skills by observing expert demonstrations or training

in a virtual reality environment using reinforcement learning [ 48 ]. Implicit learning is a

convenient task-independent method for teaching robotics; however, it is computationally

expensive and currently does not generalize well to complex procedures with multiple steps

[ 55 ].

Level 2 autonomous solutions have been proposed for Fundamental of Laparoscopic

Surgery (FLS) tasks, such as peg transfer [  56 ], pattern cutting, and surgical subtasks such as

debridement, tissue retraction, and blunt dissection. Hwang et al. [ 57 ], developed a system

that led to better performance when compared to surgical residents in a peg transfer task.

This system used a Zivid RGBD camera sensor to obtain a 3D reconstruction of the board

and the optimal grasping point for the pegs. This system’s main innovation is high-precision

control that uses a recurrent neural network to estimate the robot’s dynamic state. Addi-

tionally, they proposed a calibration method to reduce inaccuracies due to cabling effects.

Ettorre et. al proposed a system for autonomously grasping needles. To achieve this, they

utilized a color-based needle tracking algorithm and a visual servoing system to approach

the needle [  58 ]. This work was expanded by Sundaresan et al. to automatically extract

needles from tissue phantoms [  59 ]. Their algorithm used a non-color-based and marker-less
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segmentation algorithm to detect optimal grasping points and extraction trajectory. Surgical

automation has also been applied to the task of tissue retraction. Nagy et. al proposed a

soft tissue retraction system using a disparity map in combination with a fuzzy controller to

obtain the optimal retraction angle [  60 ]. This same vision system was used by Elek et al. to

develop an automatic blunt dissection system [ 61 ].

2.5 Human-Robot Interaction in Surgery

Surgical performance and patient care can be improved by enhancing the human and

the robot interaction in RMIS [  18 ]. The challenges faced by surgeons during surgery can be

coarsely organized into three categories: decision-making, navigation, and anatomy recog-

nition capabilities. All of these can be improved by better integration between the robotic

platform and the surgeon.

Decision-making in surgery can be improved by integrating different preoperative and

intraoperative imaging sources at the operator’s console [ 33 ]. Examples of such sources are

ultrasound imaging, Magnetic Resonance Imaging (MRI), and Computed Tomography (CT)

scans. A commercial example of a multi-input display is the TileProTM system developed for

the Da Vinci surgical robot [ 62 ]. This system allows the surgeon to simultaneously visualize

the endoscopic camera along with two other digital data sources. Particularly, ultrasound

probes can be mounted on robotic manipulators to provide intraoperative information of the

patient’s anatomy. For instance, Mohareri et al. proposed a transrectal ultrasound system

probe (TRUS) that can be teleoperated from the da Vinci robot console to obtain real-time

information of cancerous tissue [ 63 ].

Navigation systems can be used to safely move the robotic instruments within the patient

body to minimize damage to tissue and organs. The surgeon’s navigation capabilities can be

improved using advanced visualization techniques such as Augmented Reality (AR) and VR.

AR can increase the surgeon’s situational awareness by adding additional visual information

about occluded regions in the anatomy [  64 ], or identified lessions. Lee et al. proposed using

AR in preoperative CT to highlight critical hidden nerves during robotic thyroid surgery [ 65 ].

To improve the surgical assistant visualization, Qian et al. proposed using a head-mounted
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display to show 3D AR models of the laparoscopic tools and robotic tools in the surgical

field.

Surgeons’ performance can also be enhanced via collaboration with autonomous robotic

assistants [  48 ]. A commercial example of such a system is the VIKY UP robot (Endocontrol,

La Tronche, France). This robot is a uterine positioning system that allows the surgeon to

displace the uterus with voice commands. This system allows to reduce the risk of injury to

the uterus during gynecology procedures [ 18 ]. In urology procedures, the AquaBeam System

was used to autonomously resect tissue from the prostate utilizing a high-velocity water

stream [  66 ]. The surgeon working with this system creates a surgical plan by selecting the

tissue to be removed, and then the robot performs the dissection autonomously under the

surgeon’s supervision.

An alternative scheme for human-robot collaboration is shared-control teleoperation.

Under this scheme, the robotic end-effectors are controlled by the human, and an autonomous

agent at times each. Kaplan et al. demonstrated how precision on a tumor detection task

could be improved with a haptic feedback system and a shared-control strategy[  67 ]. Padoy et

al. developed a human-machine collaborative system that allowed to shift between a manual

and an autonomous teleoperation mode to complete a surgical task[ 68 ]. This system used

a Hidden Markov Model (HMM) to identify procedural sub-tasks that allowed a seamless

transition between the two operation modes.

2.6 Surgical Performance Metrics

The long-established ”See one, do one, teach one” has been the guiding principle for

surgical training [ 69 ]. This training paradigm is based on the idea that becoming proficient

in surgery requires first to learn by demonstration, then to learn by practicing, and finally to

learn by teaching others[  69 ]. This approach to teaching has been increasingly criticized for

being inefficient and inadequate for the standardization of current surgical training [  70 ], [  71 ]

[ 72 ]. One of the limiting factors towards surgical training is the lack of objective skill assess-

ment metrics [ 73 ]. Traditionally, surgical skill has been quantified using patient outcomes

and subjective structured assessments [  72 ]. The former provides indirect metrics about sur-

30



gical skills but are highly variable between patients. The latter is based on surveys completed

by surgical experts during proctoring sessions. One of the most common structured assess-

ment surveys is the Objective Structured Assessment of Technical Skills (OSATS) [ 74 ]. The

main shortcomings of this method are the rater-to-rater variability and the need to have an

available expert for assessment.

A different and arguably more objective approach for skill assessment is to use motion

analysis [ 72 ] metrics. This approach is objective and can provide real-time feedback to

trainees. Motion Analysis techniques can be divided into (1) Descriptive statistics methods

and (2) Language modeling methods [ 72 ]. Descriptive statistics refer to high-level features of

the data of a procedure such as an instrument velocity, economy of motion, and completion

time. In robotic surgery, Kumar et al. showed in a longitudinal study that motion statistics

of the console manipulators, such as the total clutching time and the manipulators’ total

displacement, were strongly correlated with OSATS assessments [ 75 ].

In addition, motion objective metrics were successfully used to classify surgical expertise.

Nguyen et. al proposed a set of automated performance metrics (APM) based on instrument

motion and system events that were correlated with expertise and patient outcomes. In this

thesis, we will leverage instrument motion objective metrics to compare the skill level of the

users when doing a surgical exercise with a manually teleoperated suction action and an

autonomy-teleoperated suction action.

2.7 Workload Assessment Techniques

Surgical robotic platforms have improved the surgeon’s dexterity and ergonomic condi-

tions. Nevertheless, surgeons are still susceptible to high cognitive demands due to the lack

of tactile feedback, and overwhelming visual and audio signals in the OR [ 76 ]. Prolonged

states of high cognitive load can considerably affect surgeons’ performance and reaction to

unexpected events [ 77 ], [  78 ]. Long periods of high cognitive load can be reduced by efficiently

predicting the current and future mental states of the surgeon and by providing real-time

feedback to the surgeon about her cognitive state [  79 ]. If a surgeon is made aware of his
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cognitive load and its effect on performance, they can either request assistance or take a

short break.

Traditionally, quantitative cognitive load assessments were conducted using subjective

metrics such as self-reported evaluations (e.g., NASA TLX) and objective metrics such as

the performance in secondary task [  80 ]. However, these methods are not appropriate for

measuring intraoperative cognitive load as they distract the surgeon and compromise the

safety of the patient [  12 ]. In contrast, the physiological analysis relies on sensor data to

assess cognitive load in an objective, continuous, and unobtrusive manner. Among the phys-

iological signals, electroencephalogram (EEG) stands out because it provides discriminative

information of the operator’s brain activity. Such activity correlates strongly with cognitive

workload [ 81 ], [ 82 ]

Cognitive workload recognition based on EEG was traditionally achieved by classifying

the temporal and spectral signal features into a set of mental states. For instance, the Filter

Bank Common Spatial Pattern was popularly used to construct features based on subject-

specific frequency bands [ 83 ]. Although traditional approaches yielded promising results,

they are often user and task-dependent, i.e., trained models would only work for a specific

task and user. In other words, cognitive assessment models based on EEG data are intra

and inter-user dependent [ 84 ], [ 85 ].

Researchers have proposed using deep learning architectures as an alternative to the

time-intensive feature engineering work required when using EEG classifiers [ 86 ]. EEG clas-

sification using deep learning architectures can be divided into two categories: temporal

and frequency/spatial models. The temporal models utilize raw EEG data as an input and

applies 1D convolutional operators across each channel to obtain low dimensional features

maps. These models are advantageous because they allow building end-to-end workload

classification systems, i.e., systems that skip intermediate preprocessing steps, making pre-

dictions directly from the EEG raw data [ 87 ], [ 88 ].

The frequency/spatial models utilize preprocessed data obtained via either spatial or

frequency decomposition transformations. Such transformations result in features containing

frequency information of the signal [ 89 ]. Common spectral representations for these models

are the Short-Time-Fourier-Transform (STFT) and the spectral power band coefficients. The
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primary benefits of these models are that they can be trained with smaller datasets compared

to temporal models and are easier to understand [ 90 ]. For instance, Wang et al. proposed

a deep learning approach to classify EEG signals encoded as spectrograms (Frequency and

temporal) [  91 ]. In that vein, Jiao et al. [ 92 ] improved that approach by combining the

frequency information with the location of each electrode into a power scalp map.

For our cognitive workload detection module, we leverage previous work on frequency/spa-

tial models as they are more data-efficient and easier to interpret than temporal models.

Mainly, we used the spectral power band coefficients as they have been previously shown to

be discriminative of mental workload demands [ 93 ].

2.8 Discussion

Collaborative autonomous robots in the surgical setting can improve performance and

help reduce surgeons’ cognitive demands during surgery [  48 ]. Additionally, these lower men-

tal demands could lead to improvements on patient care [  12 ]. However, surgery is a very

complex activity that requires physical and cognitive skills far above the machine’s abilities

in its current state of development. To overcome these barriers, novel sensing and visual-

ization technologies are being developed to reach similar perception capabilities than those

found in humans. Dexterous motor control and manipulation are being studied, together

with computer vision algorithms to allow for safe autonomous navigation through the patient

anatomy. Finally, improving the integration between the surgeon and the robot is critical to

ensure technology acceptance and safety.

2.9 Summary

This chapter reviewed all relevant research areas related to semi-supervised telesurgical

robots. First, commercial surgical robotics platforms were presented with an emphasis on

future technologies. Such technologies have the potential to improve patient care and sur-

geons work performance. Second, surgical robot research platforms and their importance

to technology development were presented. Third, an overview of current research trends

in computer vision for surgical applications was discussed as they are a key enabling tech-
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nology for autonomous systems. Then, autonomy in surgical robotics, the main topic of

this thesis, was presented. This section focuses on task autonomy as our system provides

autonomous assistance for blood suction surgical subtask. Then, human-interaction appli-

cations in RMIS were discussed. The last two sections describe objective skill assessment

techniques for surgical skill and workload detection in RMIS.
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3. METHODOLOGY

This chapter describes the techniques, algorithms, and apparatus used to develop and im-

plement the autonomous robotic suction system. First, we describe the da Vinci Research

Kit (DVRK), the open-source surgical robot used to deploy the proposed algorithms, and a

developed surgical bleeding simulator used as a testbed for the system. Next, we present the

core contributions of this dissertation: the autonomous robotic suction system and the cog-

nitive workload prediction module. The section regarding the autonomous module is divided

into the computer vision algorithms, the robot integration module, and the augmented real-

ity visualizations. The section regarding the cognitive prediction module is divided into the

description of the physiological sensors, feature extraction algorithms, classification models,

and real-time synchronization and deployment.

3.1 Da Vinci Research Kit Description

The autonomous robotic system for blood suction was implemented on a DVRK robot

(Refer to section  2.2 ) [ 26 ]. This robot is composed of four central components: (1) three

Patient Side Manipulators (PSMs), (2) an Endoscopic Camera Manipulator (ECM), (3) two

Master Tool Manipulators (MTMs), and (4) a High-Resolution Stereo Viewer (HRSV). The

PSMs and the ECM are mounted in a surgical cart that optimally located the manipulators

over the surgical workspace (See figure  3.1a ). MTMS and the HRSV are located in a console

from where the PSMs can be teleoperated (See figure  3.1b ). The PSMs are 6 DOF wrist-like

instrument arms that allow the surgeon to interact with the surgical environment. The ECM

delivers a stream of stereo images of the robot workspace directly to the console at the user

end. For this work, the PSM1 and PSM2 arms were teleoperated by the user, while the PSM3

moved autonomously following the proposed algorithm. To provide the robot with suction

capabilities, we fabricated a custom suction tool with submersible motor pumps and silicone

tubing attached to the PSM3. The DVRK only allows for the simultaneous teleoperation

of two instrument arms. This means that if a user wanted to teleoperate the suction tool

(PSM3), he would have to tap a pedal to swap the teleoperation between PSM2 and PSM3.
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(a)

(b)

Figure 3.1. DVRK central components. (a) Patient side components. (b)
Console components.

3.2 Simulator Design

To assess the capabilities of the implemented robotic autonomous system, a simulator

was developed to perform a vessel ligation procedure [  94 ]. The simulator was fabricated

with colored ballistic gel, given its resemblance to human muscle tissue. The gel was molded

to enable the formation of several cavities where the artificial blood could accumulate. In

addition, small silicone tubes were incorporated in predetermined locations. One end of

these tubes was connected to submersible water pumps to generate the bleeding events.

The artificial blood used was created by combining water with food coloring. Finally, a

human vessel was synthetically created using flexible rubber tube that was placed in the
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middle of the simulator (See figure  3.7 ). During the evaluation experiments, the robot tool

tip interacted with this vessel to perform a training exercise: running suturing exercise as

described in the fundamentals of robotic surgery [ 14 ] (See subsection  4.1.1 ). Figure  3.2 shows

a sequence of snapshots of the simulator cavities as they fill with blood and the autonomous

robotic system performing the suction tasks.

Figure 3.2. Sequence of snapshots (from a to f) showing the simulated cavity
filling with blood and the autonomous arm navigating through the workspace to
provide suction.

3.3 Autonomous Suction Robotic Assistant

This section describes the design and development of the autonomous suction assistant.

This framework is composed of three main components. (1) The computer vision algorithms

used to segment the blood accumulations automatically on the robot endoscopic images.

(2) The robotic module used to transform the pixel locations of the segmented regions into

spatial coordinates that the robotic manipulator can use. (3) The AR visualization modules

which are used to indicate the future actions of the robot to the user.
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3.3.1 Computer Vision Module

This section starts by describing the procedure to register the autonomous patient side

manipulator (PSM3) to the camera frame. Then, the neural network architecture used to

segment blood accumulations in the endoscopic images is described. The former procedure

allows transforming locations specified in pixels into 3D coordinates for the robot to reach.

The latter procedure was used to automatically segment the blood pooling in the simulator

and obtain the centroid locations of each. Finally, the augmented reality visualizations used

to enhance human and robot collaboration are described.

3.3.1.1 Notation

First, we define all the required coordinate frames and transformations to develop the

autonomous robotic assistant. These coordinates frames are depicted in figure  3.3 . As a con-

vention for this work, all transformation between frames are represented with homogeneous

transformation matrices. Vectors are assumed to be column vectors, and the 3 × 3 identity

matrix is represented with I3. Last, we denote the transformation from frame A to frame B

as BT A where A or B could be any of the following coordinate frames:

Figure 3.3. Relevant coordinate frames of the proposed system

38



1. C is the coordinate frame of the right camera of the endoscope located in the ECM.

2. ECMT is the coordinate frame of the tool-tip of the ECM arm.

3. ECMB is the coordinate frame of the base of the ECM.

4. PSM3T is the coordinate frame of the tool-tip of PSM3.

5. PSM3B is the coordinate frame of the base of PSM3.

6. W is an arbitrarily selected world coordinate system used during the registration pro-

cess.

The transformation matrices P SM3B T P SM3T
and ECMB T ECMT

are provided by the python

API of the DVRK robot. Additionally, the API dynamically updates these transformations

as the robot moves.

3.3.1.2 Manipulator Registration to the Camera Frame

Manipulator registration to the camera frames requires finding the transformation be-

tween the PSM3 base frame to the camera frame. In other words, finding the transformation

matrix CT P SMB
. This transformation is essential to plan trajectories for the manipulator

and create the augmented reality visualizations. This transformation can be calculated by

solving Equation  3.1 , where CT ECMT
and ECMB T P SMB

are unknowns.

CT P SMB
= CT ECMT

ECMT T ECMB

ECMB T P SMB
(3.1)

To calculate CT ECMT
, the intrinsic parameter matrices are computed first, for both cam-

eras of the endoscope using a chessboard calibration pattern (chessboard in figure  3.3 ) and

the OpenCV library. Then CT ECMT
is calculated by constructing a system of equations of

the form AX = Y B, where A and B are a pair of measurable transformation matrices, and

X and Y are fixed unknown transformations. In the literature, this equation is referred to

as the hand-eye calibration problem. In our specific setting, this formulation takes the form

of equation  3.2 .

W T C
CT ECMT

= W T ECMB

ECMB T ECMT
(3.2)
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Equation  3.2 was solved using the Kronecker Product formulation proposed by [  95 ].

This formulation requires measuring W T C and W T ECMB
in different configurations of the

endoscopic manipulator to estimate the unknown transformations. W T C can be calculated

with the intrinsic parameter matrices of the cameras and the calibration chessboard. The

OpenCV function solvePnP to identify the pose of the chessboard with respect to the camera

frame is used. W T ECMB
is given by the robot API.

To calculate ECMB T P SMB
, the equation  3.3 is solved, where W T P SM3B

is unknown. This

transformation was calculated following the 3-point registration procedure described in [ 96 ].

Solving equation  3.3 completely specifies the transformation between the autonomous assis-

tant base frame and the camera frame.

ECMB T P SMB
= ECMB T W

W T P SMB
(3.3)

3.3.1.3 Semantic Segmentation of Endoscopic Images

To provide the autonomous manipulator with navigational information from the cameras,

semantic segmentation architectures were used. Semantic segmentation means grouping

pixels corresponding to the same object part, organ, or anatomic structure. This grouping

can be done by assigning the same index to all the pixels that belong to the same group.

These algorithms allow segmenting from the endoscopic images’ relevant objects such as

bleeding vessels, blood accumulations, and the robotic arms. Once the objects have been

segmented, pixel locations are transformed into 3D coordinates in the robot frame using the

calibration transformation matrices (see section  3.3.1.2 ). We collected a dataset of 180 images

extracted from endoscopic videos while the robot was teleoperated in our surgical simulator

to train the segmentation models. Two techniques were utilized to prevent overfitting of

the models in our dataset. First, the backbone’s weights of our FCN model were initialized

with the weights of a VGG-16 pre-trained in the ImageNet dataset. Second, our dataset was

augmented utilizing spatial and color-space data augmentations techniques.

Segmentation of the endoscopic images was done with fully convolutional networks (FCNs)

[ 13 ]. These models are characterized by their lack of dense layers, meaning they are entirely
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Figure 3.4. Proposed fully convolutional network with a VGG-16 backbone. The
architecture uses the following color coding: (1) green blocks represent convolutional
layers, (2) orange blocks represent maxpooling layers, (3) blue blocks represent
upsampling layers and (4) purple layer represent softmax layers.
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constructed from convolutional layers. Thus, any of the traditional classification architec-

tures, e.g., InceptionNet, AlexNet, VGG, can be repurposed for semantic segmentation by

removing the last dense layers. Another characteristic of FCNs is their use of transposed con-

volutions (also called fractionally-strided convolutional layers) to upsample the feature maps

to the original resolution of the input image. As discussed in [ 13 ], upsampling operations are

not able to accurately reconstruct fine spatial information. To address this, skip connections

are used before the upsampling layers to merge activation maps from convolutional layers.

Last, FCNs allow for variable shape inputs.

For this thesis, a fully convolutional variation of the VGG-16 architecture (see figure

 3.4 )[ 97 ] was utilized. This network is constructed with five downsampling blocks. Each

block is composed of a combination of convolutional and max pooling layers. The former

utilizes a kernel size of 3 and a zero-padding of 1 to preserve the input’s resolution. The

latter utilizes a kernel of size 2 and a stride of 2 to downsample the input by a factor of 2.

As observed in table  3.1 , the downsampling blocks reduce the image resolution by a factor

of 32. Then, transposed convolutional layers were added to upsample the activation maps

to the original resolutions. Skip connections were added between the downsampling and

upsampling layers to maintain fine spatial details at the output.

Table 3.1. Semantic segmentation network downsampling specifications.
Block Descriptions Output Shape

Blocks Convolutional Layers Input Resolution (H, W) Input Resolution (384,480)

1 2 (128, H/2, W/2) (128, 192, 240)

2 2 (128, H/4, W/4) (128, 96, 120)

3 3 (256, H/8, W/8) (256, 48, 60)

4 3 (512, H/16, W/16) (512, 24, 30)

5 3 (512, H/32, W/32) (512, 12, 15)

A model with a dataset of 160 images of resolution (640x480) collected during a simulated

surgical exercise was trained. These images were annotated using an online annotation tool
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called SuperAnnotate [  98 ]. Labels are matrices with the same width and height as the

images, where every entry represents the class for a corresponding pixel in the image. This

dataset had four different labels: blood, instrument, vessel, and background. A sample

image and its corresponding label are shown in figure  3.5 . The convolutional layers of the

VGG-16 were initialized with pre-trained weights on the ImageNet dataset [  45 ]. The model

was trained using the RMSprop optimizer for 250 epochs and a learning rate of 1 × 10−4.

Last, a scheduler was used to decrease the learning rate by a factor of 0.5 every 50 epochs

to improve training stability.

Figure 3.5. Example of semantic segmentation image and label. The following
color code is used for the labels: (1) red pixels correspond to blood poolings, (2)
purple pixels correspond to the simulated vessel, and (3) blue pixels correspond to
the instrument arms.

Overfitting small training datasets is a well-known problem of deep learning architectures

[ 99 ]. Deep models with many convolutional layers, such as the VGG-16, have a high learn-

ing capacity. Thus, when not enough training data is provided, the model can memorize

the training dataset rather than learning a general representation of the data. As creating

large-scale datasets is costly and time-consuming, data augmentation techniques have been

proposed as an alternative. Data augmentation refers to a set of transformations that pre-

serve the labels and create more variability in the data. For this thesis, we leverage four basic

techniques: (1) random cropping, (2) random flipping, (3) color space transformations, and

(4) noise injection techniques. Random cropping involved extracting a rectangular section

of size (384x480) from the full image. This technique allows the model to better segment

partially shown objects. Flipping involved mirroring the images along the vertical or hori-

zontal axis. Color space transformations involved channel shuffling in RGB color space and
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multiplying hue and saturation in HSV color space. Noise injection involved adding salt and

pepper noise and additive white gaussian noise. All transformations were applied using the

Imgaug python library [  100 ]. The first row of figure  3.6 shows 4 images from our dataset.

Rows 2 and 3 show two different versions of the original images obtained by applying in

random order color space transformations and noise injection techniques.

Figure 3.6. Examples of augmented images in the dataset

3.3.2 Robotic module

This section describes the integration between the computer vision algorithms and the

robot to perform the autonomous suction of blood. After segmenting the endoscopic images

with the proposed FCN model, the centroids and the area of the blood blobs are calculated.

The pixel coordinates corresponding to the blob with the biggest area were selected as the

next target of the robotic assistant. These target pixel coordinates were then transformed

using a homography into spatial coordinates for the surgical robot. Last, a straight-line

trajectory from the current position to the calculated target position was calculated and

executed by the robot. The centroids of the accumulations were selected as the target
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location to maximize the amount of blood that the robot could draw in a single retraction

motion.

First, a calibration procedure was used to calculate the homography transformation, H,

that mapped the pixel coordinates [u, v] of the biggest blob into the x, y position of the

end-effector (see equation  3.4 ).


x′

y′

w

 = H3×3


u

v

1

 (3.4)

This matrix was estimated using the linear least-squares function in the OpenCV library

[ 101 ]. The point correspondences, (xi, yi) and (ui, vi), for this function were obtained through

a calibration procedure where the end-effector was manually moved to six different landmarks

in the simulator (see figure  3.7 ). The calculation of the z coordinate was simplified by

assuming a constant height. However, a more accurate solution would be to include force

feedback to avoid tissue damage due to excessive force. The final step to obtaining the end-

effector position vector is dividing the transformed [x′, y′] by the w component as shown in

equation  3.5 to obtain the in-homogeneous representation of the coordinates


x

y

z

 =


x′/w

y′/w

z

 (3.5)

The system computed the centroids and area of all blood pooling regions appearing in

the segmentation maps on deployment. The centroids and the area were calculated using

equation  3.6 and  3.7 respectively.

u

v

 =

M10/M00

M01/M00

 (3.6)

A = M00 (3.7)
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Figure 3.7. Calibration markers used to calculate homography transformation.

where M01, M10, and M00 are image moments. Defining Â as the array containing the area

of all the contours, the centroid [ui, vi] was selected as the next target where i = argmax{Â}

(the contour with the biggest area). Then, based on the previously obtained homography and

the target position specified in pixels, the end-effector target position in world coordinates

was estimated. Finally, the suction tool followed a straight-line trajectory from the predefined

base position to the target position. After suction was completed, the robotic arm returned

to the base position, following another straight-line trajectory.

3.3.3 Augmented Reality Visualization

This section describes the augmented reality (AR) module used in the GUI at the surgeon

side. Such visualization was used to enhance the interaction between the surgeon and the

autonomous suction manipulator. Effective human-robot collaboration requires the surgeon

to anticipate the actions of the robotic assistant. In this regard, AR technology is an attrac-

tive alternative to provide visual cues about the future robot actions. The AR visualizations

can be displayed in the surgical console, thus our module does not require any additional

hardware. Furthermore, no markers were required in the surgical field as the API provides

continuous kinematic information of the robot manipulators. The goal of this module was

to provide transparent visuals that align with the initial robot pose and then updates its
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location to display the immediate robot the trajectory (see figure  3.8 ). These visuals allowed

the user to know what to expect when the robot starts moving.

Drawing the AR visuals requires establishing a correspondence between the world 3D co-

ordinates and the image plane 2D pixels. Figure  3.9 shows all the relevant frames involved in

this process. This mapping was achieved by representing the camera with the pin-hole model

and calculating its projection matrix. After finding this matrix, the relation between 3D co-

ordinates in the camera frame and the pixel coordinates was established through equation

 3.8 . Coordinates are written in their homogeneous representation

−→x =


u

v

1

 =


f 0 px 0

0 f py 0

0 0 1 0





x

y

z

1



(c)

(3.8)

This equation was further simplified to  3.9 where K represents the intrinsic camera

parameter matrix. The matrix of dimensions 3 × 4 performing the mapping is referred to in

the literature as the projection matrix.

−→x = K
[
I3 b

] −→
X (C) (3.9)

The projection equation was modified to include the transformation matrix between the

PSM-B and the camera frame, CT P SMB
(see section  3.3.1.2 ). The final results is shown in

equation  3.10 .

−→x = K
[
I3

−→0
]

CT P SMB

−→
X (P SMB) (3.10)

Using the previous projection matrix, a transparent cuboid was drawn using OpenCV

computer graphic functions to indicate the autonomous PSM’s tool-tip location and orien-

tation. The coordinates of the cuboid’s faces were calculated in the PSMB frame and then

projected them with equation  3.10 into pixels. The cuboid axes correspond to the PSMT

coordinate frame. Thus it was obtained from the transformation matrix P SMB T P SMT
pro-

vided by the robot API. As shown by equation  3.11 the pose information of the tooltip was
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encoded in a rotation matrix R and a translation vector t. Projecting −→rx , −→ry ,−→rz , and
−→
t to

the image plane provided all the necessary information to draw the AR visuals. The anno-

tations were drawn in the initial position of the manipulator and then dynamically updated

to match positions of the planned trajectory.

P SMB T P SMT
=

 R
−→
t

−→0 T 1

 =

−→rx
−→ry

−→rz
−→
t

0 0 0 1

 (3.11)

Figure 3.8. Augmented reality result. (a) Transparent texture aligns with the
autonomous manipulator. (b)-(c) Texture moves to indicate the robot intended
motion. (d) After the texture stops, the manipulator starts its motion.

3.4 Cognitive Workload Sensing Module

This section describes a complementary cognitive workload sensing module used to adapt

the autonomy behavior based on the user’s mental workload. The goal with this module was

to construct a real-time binary classifier to recognize states of low-cognitive and high-cognitive

load from EEG and eye tracker signals. First, we describe the hardware used to measure
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Figure 3.9. Augmented reality implementation diagram

EEG. Second, we detail the steps to extract frequency features from the raw signals. Third,

we explain the learning algorithm used for the classification task. Two different learning

algorithms are proposed for the cognitive estimation problem: a recurrent network used for

workload classification from EEG features and a feed-forward network used for workload

classification of combined features from both sensors. Finally, a framework for real-time

prediction is presented.

3.4.1 Physiological Sensors

This subsection describes the two physiological sensors used to obtain unobtrusive and

continuous physiological measurements. The two sensors are an EEG headset and eye-tracker

glasses.

3.4.1.1 EEG Sensing

EEG recordings were made with a 32 channel G.Nautilus with active electrodes (Gel-

based) from G.tec medical engineering GmbH, Austria. The electrodes’ location in the users’

head can be observed in figure  3.10 . The data was recorded at 250Hz. Additionally, a band-
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pass and notch filter were respectively applied between 0.5 and 30hz, and 58hz and 62hz

with the proprietary g.NEEDaccess python client from G.tec [  102 ]. All the configuration

parameters for the device were chosen based on previous studies with the G.Nautilus [ 102 ],

[ 103 ]. The channel AFZ is the device’s ground, and the reference is the right earlobe. The

preprocessing steps were minimized to allow easy translation to real-time scenarios.

Figure 3.10. EEG channel locations

3.4.1.2 Eye Tracker Based Sensing

Eye movements were recorded with a Tobii Pro Glasses 2.0 (Tobii Technology AB, Dan-

deryd, Sweden). This device has a pair of inner cameras that precisely track the eye move-

ments and the user’s pupil diameter. This sensor provided 2D and 3D gaze positions and

the pupil diameter of both eyes at a sampling rate of 60Hz. No further preprocessing steps

were done to the features provided by the sensor.

3.4.2 Feature Extraction

This subsection describes the low dimensional features extracted from the raw signals to

train the cognitive workload classifiers.
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3.4.2.1 EEG Frequency Features

Previous studies [ 92 ], [ 104 ], [ 105 ] have shown that EEG spectral features such as the band

power coefficients are correlated to the cognitive workload. Therefore, this representation

was used to train our recurrent model. Figure  3.11 illustrates the pipeline to transform EEG

signals into a temporal sequence of band power feature vectors.

First, EEG signals were obtained from each trial into overlapping epochs. The epoch

size was selected depending on the classification modality, i.e., 5 seconds for classification

based on EEG and 15 seconds for multi-sensor classification. Each epoch was represented as

a matrix A(t) with 32 rows, each one corresponding to a channel of the EEG headset, and

n columns, corresponding to the number of data points in each epoch. Thus, the entry ai,j

represents the jth raw sample of the ith channel. Then, the power spectral density (PSD)

was calculated for every row in matrix A(t) using Welch’s method with a sliding window of

4 seconds. The resulting PSDs were concatenated into a new matrix S(t).

Finally, band power coefficients were calculated from the channels’ PSDs. These are sum-

mary statistics that indicate the energy contribution of specific frequency bands. Following

the brain theory of neural oscillations [ 93 ] coefficients were extracted from the following

frequency ranges: the theta band (4-8Hz), the alpha band (8-12Hz), and the gamma band

(12-30Hz). Additionally, the coefficients were normalized to the [0-1] range by dividing the

band values by the total energy of the signal. This process resulted in the normalized feature

vector P (t) of 96 elements (32 channels x 3 coefficients).

To use these features as an input for a recurrent model, a sliding window was used to

group consecutive feature vectors into a matrix G(k) of dimensions (96 × L), where L is the

size of the temporal sequence. The goal of this module was to classify the matrix G(k) as

either low-cognitive or high-cognitive.For the workload classification based on eye-tracker and

EEG, the average of each power coefficient across all channels was calculated. The reason

for this operation was obtaining a similar number of features from the EEG and the eye

tracker. After averaging, the final feature vector contained 3 coefficients for each epoch of

raw data. These three features were concatenated at the end of the eye-tracker features to

train the cognitive load classifier.
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Figure 3.11. Feature extraction pipeline for EEG signals

3.4.2.2 Eye Tracker Features

The eye tracker provided with pupil diameter and 2D gaze position at a sampling rate

of 60 Hz. First, the raw signals were divided into 15 seconds epochs to extract 5 features

related to workload: (1) average pupil diameter ˆPD, (2) number of fixations (NF ), (3)

average fixation time(F̂ T ), (4) scan path length (SSP ), and (5) nearest neighbor index

(NNI). The following metrics were selected since they have been previously related to

mental workload demands [  106 ]. Fifteen seconds was the minimum epoch size to calculate

the eye tracker features based on fixations. First, the average left eye pupil diameter ˆPD

was calculated for each window using the following equation

ˆPD = 1
N

N∑
i=0

PDi (3.12)

To calculate the remaining features, the 2D gaze was transformed into a sequence of

fixations points. A fixation was defined as the period where the gaze is relatively stationary

[ 107 ]. Each fixation was associated with a corresponding duration in milliseconds. In this
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experiment, only fixations of at least 85ms were considered. After obtaining the fixations

of each window, the total number of fixations (NF ) and the average fixation time (F̂ T )

was calculated. Then, the scan path length was computed as the total Euclidean distance

between consecutive fixations with the following equation

SSP =
NF∑
i=2

d(fi−1, fi) (3.13)

where d is the Euclidean distance operator and fi is the ith fixation. Last, the nearest

neighbor index was calculated as the ratio of the nearest neighbor distance of fixations

d(NN) and the average distance of a randomly distributed set of fixations d(ran). The

nearest neighbor distance, d(NN), was calculated by applying equation  3.14 to the fixations

set [ 106 ]. d(ran) was calculated by applying  3.14 to a randomly generated set of fixations.

d(NN) =
NF∑
i=1

[
min(dij)

N

]
, 1 < j < NF (3.14)

3.4.2.3 Feature Synchronization

Features from the EEG and eye tracker from 15 seconds epochs were extracted. For

training purposes, a 50 percent overlap was used among consecutive epochs. For real-time

deployment, an overlap of 14 seconds was used to obtain workload predictions at one Hz

(see figure  3.12 ). Synchronization and recording of the signals were done with the Lab-

StreamingLayer (LSL) [  108 ]. The goal of this cognitive workload module was to classify

the concatenated features from the EEG and the eye tracker as either low-cognitive or high-

cognitive.

3.4.3 Cognitive Workload Classification Models

Two different learning models were proposed for the problem of cognitive workload pre-

diction: a recurrent neural network used for the classification of EEG features and a feed-

forward network for the combination of the eye tracker and EEG. The reason for these two

models is that eye tracker features can only be calculated from an epoch at least 15 seconds,
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Figure 3.12. Diagram showing how the EEG and Eye tracker signals are synchro-
nized for the cognitive load detection system.
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while EEG spectral features can be calculated from much smaller window sizes . Therefore,

using a recurrent model with eye tracker features would result in prediction delays.

3.4.3.1 Recurrent Architecture for EEG Classification

Classification of spectral feature vectors from the EEG was achieved with a compact

architecture based on gated recurrent neural networks. This model was selected because it

models the long-term dependencies of cognitive states. The architecture consisted of two

stages and was implemented in the Keras framework [ 109 ]. In the first stage, an affine trans-

formation was applied to the input at every time-step with equation  3.15 . Thus transforming

the feature vector P (t) into a smaller version P ′(t). In the second stage, multiple time steps

were combined with two bidirectional Long Short-Term Memory (LSTM) layers to predict

the final workload.

P ′(t) = σ(b + UP (t)) (3.15)

LSTM networks were first introduced by Hochreiter et al. [  110 ] to analyze long-term

dependencies in sequences and as a solution to the problem of vanishing or exploding gra-

dients. The basic LSTM cell (see figure  3.13 ) uses a combination of gated mechanisms to

control the flow of information and gradients through time. The four gated mechanisms are

(1) the forget gate f (t), (2) the output gate q(t), (3) the input gate i(t), and (4) the external

input gate g(t). The forward propagation equations of each gate are shown in  3.16 

f (t) = σ(bf + Uf P
′(t) + Wf h

(t−1))

i(t) = σ(bi + UiP
′(t) + Wih

(t−1))

g(t) = σ(bg + UgP ′(t) + Wgh(t−1))

q(t) = σ(bq + UqP ′(t) + Wqh(t−1))

(3.16)
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where Uf , Uq, Ui, Ug, Wf , Wq, Wi and Wg are learnable parameter matrices, and P ′(t) and

h(t−1) are respectively the input features and the hidden state vector.

Figure 3.13. LSTM cell inner mechanisms.

Another key characteristic of the LSTM cell is a recurrent inner state S(t) that is directly

controlled by the forget gate. Lastly, h(t) and y(t) are respectively the hidden state and the

output vector. The former is used to control the gated mechanisms of succeeding cells in

time. The latter provides a workload prediction for every time-step t. Equations for s(t), h(t)

and y(t) are shown in  3.17 .

S(t) = f (t) � S(t−1) + g(t) � i(t)

h(t) = tanh(S(t)) � q(t)

y(t) = softmax(h(t))

(3.17)

To train the described model, a binary cross-entropy loss function shown in equation

 3.18 was used where Li is the label for the ith input sequence, N is the number of training

samples, and y
(T )
i is the output of the last LSTM cell. To optimize the model architecture,

a grid search cross-validation of the following hyperparameters was conducted: (1) number

of LSTM layers, (2) connectivity of the recurrent layers, i.e., unidirectional or bidirectional,
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and (3) dropout rates. The dropout rate adopted was from 0.5 to 0.45 with step size 1 and

the number of LSTM layers from 1 to 3 with a step size of 1.

Loss = − 1
N

N∑
i=0

Li · log
(
y

(T )
i

)
+ (1 − Li) · log

(
1 − y

(T )
i

)
(3.18)

3.4.3.2 Feed Forward Model for Multi Sensor Classification

To classify the physiological features from multiple sensors, a feed-forward neural network

was used. The network used only a combination of fully connected layers with Relu activa-

tion functions, dropout, and batch normalization layers. To train the described model, the

binary cross-entropy function was used (see equation  3.18 and the Adam [  111 ] optimization

algorithm. Models were trained for 100 epochs using a batch size of 10 samples.

To optimize the model architecture, a grid search cross-validation of the following hyper-

parameters was conducted: dropout rate and the number of hidden layers. The dropout rate

from 0.5 to 0.45 was tested with step size one and the number of hidden layers from 4 to 8

with a step size of 1.

3.4.4 Real-time Architecture and Deployment

On deployment, the cognitive workload module receives the extracted features from the

EEG and eye tracker in real-time. Then, the prediction module utilizes these features to

generate a prediction score in the range [0, 1] representing the likelihood that the user is

in a state high cognitive load. This prediction was produced at a sampling rate of 1 Hz.

If the score exceeded a previously predefined threshold, an activation trigger was sent to

the autonomous system to assist the user. After finishing the suction of the blood, the

autonomous system went back to a base position until the next cognitive trigger was received.

The integration diagram of the system is presented in figure  3.14 

The complete system allowed operators to perform the surgical task while the robotic

blood suction assistant assisted during the periods of high cognitive load. This way the

method presented allowed assistance to the main surgeon without taking complete autonomy

of the task.
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Figure 3.14. Cognitive load and autonomous module integration.

3.5 Summary

This chapter described all the components of the proposed autonomous suction assistant.

First, we present the specifications of the DVRK robot used to deploy our system and

a developed surgical simulator. Then, we delve into the specifications of the perception

algorithms. This section included a description of the registration process of the autonomous

manipulator to the endoscopic camera, the proposed semantic segmentation algorithm, and

the augmented reality annotations module. Then, we describe how the integration between

the perception module and the robot results in autonomous behavior. Finally, we present a

complementary cognitive workload sensing module.
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4. EXPERIMENTS AND RESULTS

The following chapter presents three experiments to evaluate the algorithms and systems pro-

posed in the previous chapter. First, an experiment was designed to assess the performance

and workload of the autonomous suction assistant in simulated surgical exercise. Second,

experiment 2 focuses on evaluating the accuracy of our proposed cognitive workload sensing

module. Last, experiment 3 evaluates the integration of the cognitive sensing module and

autonomous algorithms.

4.1 Experiment 1: Evaluating Autonomous Suction Action on Users’ Perfor-
mance

The goal of experiment 1 was to evaluate the effectiveness of the proposed autonomous

system in providing suction assistance. To achieve this, the users’ performance and perceived

workload were recorded under two different modalities: manually-teleoperated suction ac-

tion(MS) and autonomous-suction action by the robotic assistant (AS). In MS, the users

manually teleoperated the suction tool to facilitate their task. In AS, the autonomous

robotic assistant controlled the suction tool. The underlying hypothesis (H1) is that the

autonomous suction action (AS) will lead to better performance and lower mental demands

than the manual teleoperationMS. This claim is supported by the fact that by having the

autonomous system taking over the additional demands of bleeding events, the user can pay

more attention to the primary task.

A within-subject experiment was designed to minimize the effect of individual differences.

In other words, each user did the experimental task under both conditions. Finally, the order

of the experimental conditions was randomized to account for possible learning effects. In

other words, half of the users were randomly selected to start with AS modality and the

remaining half to start with the MS modality. In this experiment, the autonomous system

was configured to initiate a suction immediately after detecting any blood pooling event.

Submersible motors were configured to pump blood into the simulator every 60 seconds to

slowly fill up the simulator cavities as the user worked on the main task.
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The rest of the subsections are divided as follows. First, the study protocol and the

experimental task are described. Then, the objective and subjective metrics used in the

study are explained. Finally, the results and discussion are presented. Part of the content of

this section was published by Barragan et al. in [  112 ] and reported here with modifications.

4.1.1 User Study Protocol

To achieve experiment’s goal, a user study was conducted with eight graduate students.

This study was approved by the Purdue University’s Review Board under the protocol IRB-

2021-22. For our study, users performed two surgical tasks sequentially: a running suture

exercise and search and retrieve exercise. These tasks were selected from the Fundamentals

of Robotic Surgery [  14 ]. On the first task, users were required to do a 3-stitch running suture

on the vessel of the simulator using a needle and a thread. On the second task, users had to

search and retrieve 3 metallic pins that were scattered and attached to the ballistic gel (see

figure  4.1 ). These tasks were selected as their difficulty increased with the number of blood

accumulations events.

The experiment was divided into two sessions conducted on two subsequent. In the first

session, users were informed about the experiment and signed a consent form. Then, users

were familiarized with the teleoperation of the DVRK robot, i.e., moving the patient side

manipulators and endoscopic camera, and using the clutch to swap controls between the

main instruments and suction manipulator. The PSM1 and PSM2 (main patient side ma-

nipulators) were equipped with needle-drivers and the PSM3 with our custom-made suction

tool (see figure  4.1 ). Afterward, users were required to train for 1 hour to become familiar

with the selected surgical tasks. In this session, no simulated bleeding events were presented

to the user.

In the second session, users were asked to complete the previously practiced tasks under

the two experimental conditions; the MS and AS modalities. For this session, the bleeding

functionality was activated while the users performed the tasks, i.e., the cavities of the

simulator were slowly filled with blood. For the MS modality, users were instructed to use

the suction tool in a way that would facilitate the completion of the main task. For the AS
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modality, the suction tool was controlled by the autonomous algorithm. After completing

each task, the user was asked to answer a NASA-TLX (National Aeronautics and Space

Administration Task Load Index) questionnaire. During the experiment, kinematic data

and the endoscopic video were recorded from the robot to assess the user’s performance in

each modality.

Figure 4.1. Sequence of steps to perform a running suture task. (a) Grasp the
needle. (b) Position the needle close to the vessel. (c) Insert the needle. (d) retrieve
the needle.

4.1.2 Evaluation Metrics and Statistical Analysis

To evaluate our system, a combination of objective performance and subjective work-

load metrics were used. The goal of the objective metrics was to assess whether the users’
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surgical performance improved when working with the autonomous system compared to the

direct teleoperation of the suction tool. Subjective metrics were used to evaluate the users’

perceived workload on both conditions. Each subject completed the surgical tasks using

both modalities, manual and autonomous. Thus, a paired t-test was used to evaluate the

differences in performance and workload metrics. P-values below 0.05 were assumed to be

statistically significant in this study.

4.1.2.1 Objective Evaluation Metrics

To evaluate the user’s performance, we calculated objective metrics from the robot kine-

matic and video data. These metrics were grouped into four different categories: (1) time,

(2) motion, (3) system events, and (4) blood metrics. On the time metrics, the completion

and the total clutching time of each experimental condition were measured. On the motion

metrics, the average velocity of the main robotic manipulators (PSM1 and PSM2) and the

suction tool manipulator (PSM3) were calculated. System events accounted for the number

of clutching and tool-changing events. Last, the average number of pixels corresponding

to blood regions, which is a proxy for the volume of blood accumulated, was calculated.

This calculation was accomplished by running our semantic segmentation algorithm on the

recorded videos of each experimental condition. All the included metrics have been previ-

ously used to evaluate surgical expertise in clinical settings [ 113 ], [ 114 ].

4.1.2.2 Subjective Evaluation Metrics

To quantify workload demands, the subjects were asked to fill a NASA-TLX question-

naire [ 115 ] after completing each task. The NASA-TLX divides the workload demands into

six components: (1) Mental Demand, (2) Physical Demand, (3) Temporal Demand, (4) Per-

formance, (5) Effort, and (6) Frustration. A 0-10 score was assigned to each of them, where

0 is associated with low demand and 10 with high demand. A final workload score ranging

from 0 to 60 was calculated by summing up the different components of the questionnaire.
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Table 4.1. Objective performance metrics results. Statistically significant
results (α=0.05) were highlighted in bold.

Type Name Mean (std), N=8 T-test
Autonomous Manual T-statistic p-value

Time completion time (s) 249.91 (87.68) 411.42 (210.64) -3.133 0.017
clutching time (s) 2.66 (3.54) 27.12 (31.18) -2.328 0.053

Motion
psm1 velocity (cm/s) 1.1 (0.38) 0.79 (0.19) 3.250 0.014
psm2 velocity (cm/s) 1.03 (0.43) 0.86 (0.39) 2.237 0.060
psm3 velocity (cm/s) 1.21 (0.02) 0.27 (0.16) 18.283 0.000

Events clutching events 0.88 (1.13) 11.5 (7.41) -4.418 0.003
tool changing events 0 (0) 2.75 (1.98) -3.924 0.006

Blood percentage of blood 0.11 (0.01) 0.18 (0.06) -3.030 0.019

Table 4.2. Nasa-tlx results. Statistically significant results (α=0.05) were
highlighted in bold.

Type Name Mean (std), N=8 T-test
Autonomous Manual T-statistic p-value

NASA-TLX

Mental demand 3.62 (2.39) 4.81 (1.93) -1.584 0.157
Physical demand 2.69 (2.02) 3.88 (2.42) -1.380 0.210
Temporal demand 2.00 (1.28) 4.06 (2.53) -2.855 0.025

Performance 2.38 (1.36) 3.81 (1.25) -2.959 0.021
Effort 3.69 (2.17) 4.94 (1.70) -1.909 0.098

Frustration 2.50 (1.63) 4.31 (2.40) -2.457 0.044
Workload Score 16.88 (9.16) 25.81 (9.58) -2.411 0.047

4.1.3 Results

Summary statistics, i.e., mean and standard, deviation were calculated for each perfor-

mance metric and were shown in the Table  4.1 . Statistically significant differences were

found between the manual and autonomous modalities for all metrics except the clutching

time and the velocity of the PSM2 arm. When the autonomous modality for the blood

suction was used (249.91 ± 87.68s), users finished the task 162s faster than with the manual

modality (411.425 ± 210.64s). The average speed of the main instrument arm (PSM1) was

0.3cm/s higher in the autonomous modality. In terms of the system events, users switched

tools an average of 2.75 times while they used 11.5 clutching events when they were in the

manual condition. In the autonomous modality, no tool changes were performed, and the
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Figure 4.2. Box plots of NASA TLX workload components. Overhead asterisk
indicates statistically significant differences between the two modalities.

number of clutching events was significantly reduced. Finally, the average percentage of

blood detected in the video frames was reduced from 18% in the manual condition to 11%

in the autonomous modality. This indicates that the autonomous modality controlled the

bleeding more effectively.

Table  4.2 shows the self-assessed workload results. The mean of all the NASA-TLX

components was found to be lower for the autonomous modality. However, it was only

statistically significant for the performance (p=0.021), the temporal demand (p=0.025), and

the frustration (p=0.044) indicators. Last, the mean workload score was significantly lower

(p=0.047) for the autonomous modality, indicating the effectiveness of the robotic assistant.

These results can be attributed to the way that the autonomous modality prevented cavities

from flooding – that is only when the regions had a significant blood volume that would

occlude the user’s view.

4.1.4 Discussions

The results of the experiment indicate better performance and lower mental demands in

AS (autonomous suction) than in the MS (manual suction). Users in the AS, completed the

task 162 faster than in MS. This result indicates that switching between the main task and

64



the suction is a time-consuming effort that affects the overall efficiency of the procedure.

Moreover, it indicates that the autonomous system effectively handles the bleeding events

such that they do not affect the user’s performance. Faster completion times on the AS

modality can also be attributed to the higher average speed of the main instrument arms. In

terms of system events, no tool changes were performed, and the number of clutching events

was significantly reduced in the AS. These results imply that the autonomous assistant led

to a more compact workspace at the console side, i.e., the total displacement of the console

manipulators, which is a desirable quality in robotic-assisted procedures [  75 ]. The size of the

console workspace is increased due to the additional clutching of the console manipulators

after manually teleoperating the suction tool. In the AS, these additional clutching events

were not required as the autonomy was in charge of the suction. Last, the average percentage

of the detected blood was significantly lower in the AS, implying that the autonomous suction

system was more effective at providing suction than the user.

In terms of mental workload metrics, 3 components of the NASA-TLX (temporal de-

mands, performance, and frustration) and the overall workload score were significantly lower

in the AS modality. These results can be attributed to how the autonomous modality pre-

vented cavities from flooding – that is only when the regions had a significant blood volume

that would occlude the user’s view. Conversely, in the manual modality, it was seen that

users rushed to complete the suturing tasks before the blood level increased to inoperable

levels. This explains why the users reported higher temporal demands in this condition. The

experimental results ratify the underlying hypothesis (H1) that the autonomous suction ac-

tion can lead to better performance and lower mental demands, demonstrating the benefits

of automating surgical tasks (or subtasks) in the operating room.

4.2 Experiment 2: Evaluation of the Cognitive Detection Framework

The goal of experiment 2 is to evaluate the performance of our real-time cognitive work-

load detection framework. The baseline hypothesis (H2) is that cognitive workload can be

predicted from a combination EEG and eye tracker metrics accurately and in real-time. The
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intuition for this hypothesis comes from previous works showing correlations of EEG and

eye tracker markers to different metal states in surgery [ 116 ], [ 117 ].

To achieve the goal of the experiment, two datasets of physiological signals were collected.

The signals came from users while they were performing surgical exercises using the DVRK

robot. The first dataset contained only EEG data that was collected over multiple sessions

and multiple users. Participants recruited for this experiment performed a surgical exercise

under two difficulty levels to elicit different mental workload states. The goals of this first

dataset were two-fold. First, the session-to-session prediction accuracies of the proposed

recurrent model were evaluated. This is the model’s accuracy when tested on data from a

new day. This evaluation was performed as physiological signals within the same subject can

have high day-to-day variability [  84 ]. The second objective of this dataset was evaluating

the user-to-user predictions of our models. This is the accuracy when testing the models

on unseen users. Last, a connection between the spectral features used in our models and

cognitive load theory was provided [ 93 ] by plotting the features into 2D scalp plots.

The second dataset includes EEG and eye tracker signals from one session and multiple

users. For this, the difficulty level of the tasks was modified by introducing simulated bleeding

events that would elicit different mental states in the users. Models trained from this dataset

were integrated with the autonomous blood suction robotic assistant to predict cognitive

workload in real-time. Two different evaluations were performed on these models. (1) Single

user model predictions where the training and testing data belonged to the same user and

(2) user-to-user prediction accuracies.

4.2.1 EEG Dataset Collection Protocols

Participants were asked to perform the peg transfer task, a crucial part of the funda-

mentals of robotic surgery [  14 ]. The task consisted of transferring an object from one side

of a peg transfer board to the other for 5 minutes (Refer to the Figure  4.3 ). To perform the

exercise correctly, the user had to pick up the object with one of the robotic tooltips, lift it

carefully out of the pole, transfer it to the second robotic tooltip and place it in the peg on

the other side of the board.
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This peg-transfer task was designed to have two difficulty levels to elicit different states

of cognitive load in the user. The easy task or less cognitive demanding task was the peg-

transfer performed with the normal teleoperation mode of the robot. In this condition, the

surgeon’s hand and the robotic gripper would move in the same direction, e.g., when the

surgeon’s hand moves to the right, the robotic gripper moves to the right as well. The

difficult task introduced a motion reversal effect in the teleoperation of the robot. In this

condition, the robot’s tooltip moved in the opposite direction from the user hand movement,

e.g., when the surgeon’s hand moves to the right, the robotic tooltip moves to the left (oppo-

site direction). This inversion effect emulated the fulcrum motion effect seen in traditional

laparoscopic surgery [  118 ]. This task was inspired by the studies showing how mirroring the

hand movements of a previously learned task resulted in significant differences in the EEG

spectral content [ 119 ].

During each session, the user performed six trials of the peg transfer task, three times in

the easy level and three times in the difficult level, each one for 5 minutes, accounting for

the 30 minutes of EEG data per session. Finally, the difficulty level was used to partition

the EEG trials into two categorical labels: low cognitive load and high cognitive load. In

total, 8 subjects were recruited for this experiment, and each of them performed 4 sessions

of data collection.

Figure 4.3. Sequence of actions to perform a peg transfer.
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4.2.2 Evaluation of EEG models

Two evaluations were performed on the EEG models. First, the model’s session-to-

session prediction accuracy was evaluated. Since each session was collected on a different

day, the models were trained with 3 sessions of data and tested on the same user’s remaining

session. Additionally, the effect of the recurrent models’ sequence length (L) on the prediction

accuracy was investigated.

Second, the accuracy was evaluated in a user-to-user transfer scenario. For this exper-

iment, models were first trained on multiple users’ data and tested on an unseen user. A

small calibration set, and fine-tuning techniques were used to optimize the models to the

unseen participant. The efficiency of our algorithm was analyzed by retraining the models

with different proportions of the calibration set. Last, our model was compared against a

convolutional network for EEG temporal features.

Multi-factor ANOVA models were fit on the testing accuracy of all the different trained

models. These statistical tests were used to identify what hyperparameter configurations

resulted in significant performance improvements. A significance level of 0.05 was used for all

the statistical tests(α=0.05). Then, post-hoc Tukey’s HSD (honestly significant difference)

was used to analyze pairwise differences between factor levels. For the session-to-session

evaluation, a two-way ANOVA model was used to analyze the effect of different sequences

lengths (L) and the user’s variability on the accuracy. For the user-to-user evaluation, an

ANOVA model was used to determine the effect of the calibration’s set size on the accuracy.

4.2.2.1 Session-to-Session Model Evaluation

The goal of the session-to-session evaluation was to quantify the generalization of the

model to data from new unseen sessions. Since every session was collected on different days,

this evaluation measures the generalization of the models across multiple days of data. A

leave-one-session-out cross-validation strategy where the model was trained on 3 sessions

and tested on the same user’s remaining session was used. This process was repeated for

each of the users in the dataset. Additionally, our proposed recurrent model was evaluated

against a convolutional LSTM [ 120 ] and a plain feed-forward network.
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4.2.2.2 User-to-User Model Evaluation

The goal of the user-to-user evaluation was to quantify the generalization of the model

to data from new unseen users. For this evaluation, a leave-one-session-out cross-validation

strategy was also used. In other words, only 1 session of data was used for testing on every

cross-validation fold. However, in this case, the models were optimized using a two-stage

training process. In the first round, the model was trained from a pool of multiple users’ data.

In the second round, the model was fine-tuned with the data calibration data from the unseen

testing user. To build the training, calibration, and testing sets, the following procedure was

used. One session was selected from the unseen user’s data as the testing set, and the

remaining 3 sessions were used as a calibration set. Data from the other participants was

used as the training set for the first round of training. To optimize the model to the unseen

user, the model was retrained using fine-tuning techniques and the calibration set during the

second round of training. To evaluate the model performance with limited calibration data,

the fine-tuning training step was repeated using different percentages of the calibration data

ranging from 0% to 100%. 0% of data indicated no calibration data, and 100% represented

the three sessions (90 minutes). This whole process was repeated for every session and user

in the dataset. Last, the proposed model was evaluated against EEGNet [ 88 ], a convolutional

EEG architecture that uses raw temporal features.

4.2.3 EEG Model Results

This section presents the results from the two evaluations performed to the EEG workload

dataset: session-to-session prediction accuracies and user-to-user prediction accuracies. Last,

scalp plots of the EEG spectral features are presented.

4.2.3.1 Session-to-Session Results

On figure  4.4 , it can be seen a positive correlation between the sequence length and the

session-to-session classification accuracy. Increasing the sequence length from 10 seconds

to 100 seconds improved the model’s prediction accuracy from 68% to 78%. Table  4.3b 

69



shows the results of a two-factor ANOVA model on the sequence length and the different

users. Different sequence lengths and users resulted in significant changes in the model’s

accuracy (P<0.000). Compared to the baseline models, the proposed model outperformed

the baseline models at every sequence length (see  4.3b ). The best classification accuracy of

our model was 78% at a sequence length of 170 seconds. The second-best performing model

was the convolutional LSTM with a prediction accuracy of 76%. These results indicate

the effectiveness of the proposed models and the spectral EEG features to predict cognitive

workload.

Figure 4.4. Correlation between accuracy and sequence length

4.2.3.2 User-to-User Results

Figure  4.5 shows the effect of applying the transfer learning training with different per-

centages of calibration data. The primary finding of this evaluation is that using transfer

learning allowed the models to obtain a classification accuracy of 78.9% by using only 12.5%

percent of the calibration data of the new unseen user. These results indicate that the cali-
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Table 4.3. (a) Analysis of accuracy’s for multiple models and sequence
lengths. (b) Results for the from the 2-factor ANOVA model analyzing the
effect inter-subject variations and sequence length.

Mean Test Accuracy (%)
Sequence Length 25 75 125 170

Models
Conv+LSTM 68.09 72.30 76.04 72.04

Neural Network 65.39 73.24 73.20 70.25
Proposed B-LSTM 68.33 76.92 77.28 77.92

(a)

Source DF F-Value P-Value
User 7.00 53.76 0.000

Sequence Length 7.00 25.84 0.000
User * Sequence Length 49.00 1.05 0.377

(b)

bration set’s size can be significantly minimized by leveraging fine-tuning optimization. The

ANOVA model indicated that changes in the accuracy due to the percentage of calibration

(p < 0.000) were significantly different. Additionally, our proposed architecture outperforms

the temporal baseline model. This result suggests that the spectral features are more likely

to generalize to unseen users than the temporal raw features.

4.2.3.3 Physiological Analysis of EEG Features

To visually inspect the EEG features driving the classification of the models, the mean

scalp topographical plots for each band power coefficient (Delta, Theta, Alpha, Beta) was

calculated. This plot was built by calculating the mean spectral features of the low and high

cognitive load conditions. Then, a baseline removal procedure was performed where the

low cognitive features are subtracted from the high cognitive load features. This procedure

allowed us to analyze the changes between the two mental states. After the baseline removal,

the resulting feature vectors are averaged among all the participants and then projected to

a 2D plane. Once in the 2D plane, data points are linearly interpolated to produce the scalp

topography observed in figure  4.6 .
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Figure 4.5. Transfer learning results

To evaluate statistical differences, a two-way ANOVA was calculated for each channel

with a significance level of 0.01 (α = 0.01). The two factors of the model were the user and

workload condition. It is observed suppression of Delta activity on channels F7, FC5, FC6,

T8. Increases in Theta activity were found on channels FP1, AF3, AF4, F7, F3, F4, F8,

FC5, FC2, FC6, T7, C3, C4, T8, CP5. The alpha activity was also found to increase on

channels F7, F8, FC5, FC6, T7, C4, T8, CP5, CP6. Finally, Beta activity increased on F8,

FC6, T8, OZ while it is suppressed on FZ, F4, FC2, C3, CZ, CP5, CP2. It is remarked that

most of the channels presenting significant differences due to cognitive load are in the frontal

and temporal lobes of the brain.

Leveraging cognitive load theory [  93 ] each of the significant trends previously described

can be contextualized into specific cognitive functions that played a role during the exper-

iment. First, Delta activity has been linked to the theory of Attention networks proposed

by corbetta et al [  121 ]. This theory states the existence of two different and competing

attention mechanisms, one dedicated to the processing of external sensory information and

another dedicated to internal concentration. Delta activity has been shown to be more active

when internal concentration is required and suppressed on tasks where sensory information
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Figure 4.6. Spectral analysis of EEG features

is needed [ 122 ]–[ 124 ]. For our experiment, a suppression of Delta activity could imply that

the users were highly dependent on the visual feedback during the inverted teleoperation

condition.

Theta band activity has been associated with increasing use of working memory capacity

[ 125 ]. Additionally, Puma et al. reported increased Theta and Alpha activity levels when

increasing the number of subtasks in a multitask testing environment [  126 ]. These studies

align with the increasing levels of theta and alpha activity found in the fronto-temporal

channels during the high workload conditions. Overall, these results indicate the effectiveness

of our spectral band power features to discriminate between states of high and low cognitive

workload.

4.2.4 Multi Sensors Dataset Collection Protocols

To build a dataset of physiological signals, a study with ten students was conducted at

Purdue University. In this study, participants were required to teleoperate the DVRK robot

to do a needle pass task [  127 ] while wearing the physiological sensors. For this task, our

surgical simulator was used. To elicit different workload demands, the task was designed

to have two different levels of difficulty (see figure  4.7 ). In the low workload task, users

performed the needle pass exercise with no bleeding events. In the high workload task, users

completed the task as the cavity filled up with blood. Ground truth labels for our dataset
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were assigned depending on the difficulty of the task. Users performed ten, 3 minutes trials,

alternating between the difficult task and the easy task. This protocol accounted for 30

minutes of physiological data for each user.

Figure 4.7. Tasks used to construct a dataset of cognitive workload signals. (a)
Low difficulty task: Needle pass exercise without bleeding events. (b) High difficulty
task: the simulator slowly fills up with blood as the user performs the tasks.

/

4.2.5 Multi Sensors Model Evaluation

To evaluate the performance of the multi sensor cognitive workload framework, two

different methodologies were used. First, the performance of single-user models was assessed,

i.e., the training and testing data comes from the samples of a single user. Second, multi-

user models were evaluated, i.e., given K users, training data is obtained from K-1 users and

testing data from the remaining one. In both evaluations, the number of correctly classified

samples (accuracy) was used as a performance metric.

4.2.5.1 Single User Model Evaluation

As described in the data collection protocol (see subsection  4.2.4 ), ten trials were recorded

from each user. To evaluate the single-user-model performance, a five-fold cross-validation

procedure was utilized. First, the data from a user is partitioned into 5 folds, {{X(k), Y (k)} | X(k) ∈

Rl×10, Y (k) ∈ {0, 1}}, where k = 1, .., 5. Then, iterating over the k-folds, a model was trained
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at each iteration using one of the folds as testing data and the remaining folds as the training

data. This procedure was repeated for each one of the participants in the dataset.

4.2.5.2 Multi User Model Evaluation

To evaluate the multi-user model, a leave-one-user-out cross validation strategy was used.

At each iteration, a model was trained using the data from 9 users. Then, the model

was tested with the data of the remaining user. This evaluation allowed to quantify the

generalization capabilities of the model to new users.

4.2.6 Multi Sensors Models Results

Results of single-user models can be observed in table  4.4 . On average, a 75.90% ±

12.75 accuracy score was obtained for the cognitive load detection models. These results

confirm that features from physiological signals provide discriminative information of the

users’ mental state. The highest individual accuracy was 91.36% and the lowest accuracy

was 62.73%. This result could imply that the utilized set of features are not equally effective

with all the users. Results from the multi-user models can be observed in table  4.5 . The

average accuracy in the multi-user evaluation (57.96% ± 1.23%) was 17.84% lower than the

performance in the individual model evaluation. This drop in performance can be explained

by the high subject-to-subject variability of physiological signals [ 84 ]. In this setting, the

highest classification accuracy was 78.11% and the lowest classification 43.33%.

4.2.7 Discussions

In this section, discussion points from the two datasets of physiological signals are pre-

sented.

4.2.7.1 EEG Models

Real-time cognitive load assessment from physiological signals can improve performance

and the learning of surgical skills in RAS. Nevertheless, there are still many challenges that
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Table 4.4. Single user model evaluation results.
Single user model

User id Mean accuracy Std
User 01 91.36% 4.73%
User 02 84.45% 10.16%
User 03 82.50% 8.90%
User 04 78.86% 6.15%
User 05 77.05% 15.23%
User 06 74.77% 25.31%
User 07 74.09% 13.72%
User 08 68.18% 9.20%
User 09 64.04% 20.62%
User 10 62.73% 13.53%
Average 75.80% 12.75%

Table 4.5. Multi user model evaluation results
Multi user model

User id Mean accuracy Std
User 01 69.09% 1.13%
User 02 43.33% 1.94%
User 03 62.80% 0.75%
User 04 51.52% 0.43%
User 05 62.12% 0.92%
User 06 78.11% 1.88%
User 07 63.03% 2.15%
User 08 52.42% 0.84%
User 09 48.70% 0.57%
User 10 48.48% 1.68%
Average 57.96% 1.23%

need to be addressed, such as the high variability of the physiological signals. In this work,

we proposed a recurrent neural network for predicting cognitive workload from EEG signals.

Additionally, the proposed model’s session-to-session and user-to-user prediction accuracies

were evaluated.

In the session-to-session evaluation, the robustness of our models to the day-to-day vari-

ability of physiological signals was tested. In this scenario, the proposed models obtained a

mean classification accuracy of 79.2% when using EEG segments of over 100 seconds. These

experimental results show that the sequence length (i.e., the EEG windows size) and the
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accuracy of the models’ predictions are positively correlated. In other words, there exists a

trade-off between the inference speed and the accuracy of the models. In this regard, the

sequence length of the recurrent models can be fine-tuned according to the application. If

accurate predictions are required, then the sequence length should be increased at the cost

of increasing the latencies of the model. However, in real-time settings, the sequence length

can be decreased to reduce prediction delays.

In a user-to-user scenario, a two-stage training procedure was used to improve the model’s

generalization to new unseen users. With this technique, a previously trained model on

EEG data can significantly improve the classification by applying a recalibration procedure.

Specifically, we showed that our transfer learning technique allowed our model to achieve a

classification accuracy of 78.9% when using only 12.5% of the total calibration data of the

new user.

4.2.7.2 Multi Sensors Models

For the multi-sensors dataset, a combination of EEG features and eye tracker features

was used to classify the user’s mental state as either high cognitive or low cognitive load. The

best performing model achieved an accuracy of 75.90% ± 12.75 in a single-user scenario, i.e.,

the training and testing data came from the same subject. This is evidence that combining

eye tracker and EEG features provide discriminative information to detect different mental

states in RAS. The main drawback of the single-user-models modality is that new users need

to provide calibration before using the system. This requirement would limit the applicability

of this system to time-constrained environments such as the OR.

The second evaluated modality was multi-user models. This modality is more desirable

for deployment as new users can directly use the system without additional calibrations.

However, prediction models have reduced accuracies due to the subject-to-subject variability

of physiological signals. This limitation can be addressed by leveraging the transfer learning

framework developed for the EEG dataset [  84 ], [  128 ]. On deployment, a calibration procedure

can be applied to retrain available models to ensure optimal performance. Provided the

77



superior performance of single-user models, these models were used to drive the behavior of

the autonomous suction system. Results from both datasets validate the H2 hypothesis.

4.3 Experiment 3: Evaluation of Cognitive-Triggered Autonomous Suction Ac-
tion

The goal of experiment 3 was to evaluate the system integration between the cognitive

workload prediction module and the autonomous blood suction framework. In this scenario,

the autonomous robotic assistant remained idle until the workload framework detected high

mental demands on the user. Experiment 3 differs from experiment 1 in that the autonomous

system would wait for cognitive load triggers rather than assisting immediately after detect-

ing a blood accumulation. In this regard, the system only acts when the bleeding creates

additional mental demands for the user. We hypothesize that this closed-loop feedback can

improve surgical performance and lower mental demands on the user (H3 hypothesis). To

assess the effectiveness of the integrated system, a user study with the same experimental

conditions of experiment 1 was conducted. As a reminder the two experimental conditions

were: manual teleoperation of the suction action(MS) and autonomous blood suction action

by the robotic assistant (AS). Following the same guidelines as in experiment 1, a within-

subject study was designed to account for individual differences. Also, the order of the

experimental conditions was randomized to control for the learning effects (see  4.1 ). The

rest of the subsections are divided as follows. First, the integration of the system is de-

scribed. Then, the user study protocol and evaluation metrics are described. Finally, the

experiment’s results and conclusions are presented.

4.3.1 User Study Protocol

To evaluate the cognitive triggered autonomous system, a user study was conducted with

8 students. This study was approved by the Purdue University’s Review Board under the

protocol IRB-2021-22. For this study, the users were asked to come for two sessions occurring

on subsequent days. In the first session, the users were familiarized with the teleoperation

of the robot and the experimental task. For this experiment, the same surgical tasks as
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in experiment 1 were used (see  4.1.1 ). On the second day, we asked the users to wear the

EEG and eye tracker sensors before starting the experiments. After that, they performed

the assigned tasks under the AS and MS modalities while their physiological signals were

monitored in real-time.

4.3.2 Evaluation Metrics

To evaluate the system’s performance, a combination of objective performance and work-

load metrics were used. Additionally, the users completed a NASA TLX questionnaire after

each experimental trial to report subjective workload demands. The objective metrics in-

cluded for this experiment are the same as in  4.1 . As a reminder, this metrics are categorized

into time, motion, system events, and blood metrics (see subsection  4.1.2 ). Additionally, we

included metrics of human-robot collaboration fluency . Collaboration fluency refers to the

capability of a human and robot to work as a team proficiently towards a common goal

[ 129 ]. We included the following fluency metrics. (1) Human idle time, measured by the idle

time of the main instrument arms (PSM1 and PSM2). (2) Robot idle time, measured as the

percentage of time that the autonomous assistant (PSM3) was idle. (3) Concurrent activity,

measured as the percentage of time that both the autonomy and human were simultaneously

active. Low human and robot idle time and high concurrent activity time are indicators of

fluency in human-robot collaboration. To objectively evaluate the users’ cognitive work-

load, the average workload prediction was calculated in both experimental conditions. This

workload index was generated in real-time by the proposed framework

4.3.3 Results

Objective metrics results are presented in table  4.6 . The mean and standard deviation

were calculated for each metric to compare between the autonomous (AS) and manual suc-

tion modalities (MS). Completion time under the AS (371 ± 133) was 162 seconds lower

compared to the MS modality (533 ± 210). These differences were found statistically sig-

nificant. In terms of collaboration fluency, AS lead to a 23% increase of the concurrent

activity. Additionally, AS reduced the PSM1 and PSM2 idle time respectively by 28% and
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Table 4.6. Objective performance metrics results. Statistically significant
results (α = 0.05) were highlighted in bold

Type Name Mean (std), N=8 T-test (alpha=0.05)
Autonomy Manual T-statistic p-value

time clutching time (s) 3.69 (7.17) 17.94 (10.48) -3.357 0.012
completion time (s) 370.86 (133.16) 532.93 (210.51) -3.953 0.006

percentage

concurrent activity (%) 0.23 (0.08) 0 (0) 7.730 0.000
psm1 idle time (%) 0.21 (0.09) 0.49 (0.08) -8.553 0.000
psm2 idle time (%) 0.39 (0.16) 0.58 (0.13) -7.984 0.000
psm3 idle time (%) 0.71 (0.09) 0.81 (0.05) -2.229 0.061

motion
psm1 velocity (cm/s) 1.01 (0.26) 0.73 (0.21) 4.729 0.002
psm2 velocity (cm/s) 0.71 (0.18) 0.51 (0.18) 8.861 0.000
psm3 velocity (cm/s) 0.65 (0.19) 0.39 (0.09) 3.013 0.020

events tool changing events 1 (1.31) 13.13 (8.56) -4.392 0.003
clutching events 0 (0) 4.25 (2.82) -4.269 0.004

blood percentage blood (%) 0.13 (0.03) 0.12 (0.05) 0.686 0.515

18%. There were no statistical differences in the autonomous assistant (PSM3) idle time.

These results imply an increment of the users’ attention on the main task in the AS. The

velocity of the main instruments (PSM1 and PSM2) was found significantly higher in the

AS modality. The respective velocity increments of PSM1 and PSM2 were 0.28cm/s and

0.20cm/s. The PSM3 velocity was not statistically different in both conditions. Finally,

no statistically significant differences were found in the percentage of the detected blood

accumulations.

Cognitive metrics are given in table  4.7 . These metrics were divided between the subjec-

tive metrics from the NASA-TLX questionnaires and objective metrics from the cognitive

workload sensing framework. Similarly, mean and standard deviation were calculated to

compare between experimental conditions. All components of NASA-TLX were found sig-

nificantly lower in the AS modality. Additionally, the overall workload score in AS (23±11)

was reduced 15 points compared to MS (35±12). Both these results indicate, the user expe-

riencing lower cognitive demands when working with the autonomous system. The average

cognitive index was not found statistically different between the two conditions.
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Table 4.7. Nasa-tlx results and measured cognitive workload. Statistically
significant results (α=0.05) were highlighted in bold.

Type Component Mean (std), N=8 T-test
autonomy manual t-statistic p-value

Nasa-TLX

Mental demand 4.38 (3.10) 6.12 (2.60) -4.041 0.005
Physical demand 3.50 (2.35) 6.06 (2.29) -4.432 0.003
Temporal demand 4.94 (2.69) 6.81 (2.33) -4.356 0.003

Performance 2.19 (1.91) 3.38 (2.33) -2.967 0.021
Effort 4.50 (2.63) 6.31 (3.33) -3.200 0.015

Frustration 4.12 (2.53) 6.81 (2.15) -5.480 0.001
Workload score 23.62 (13.62) 35.50 (12.68) -4.799 0.002

Workload prediction Cognitive index 0.527 (0.254) 0.585 (0.230) -1.666 0.14
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Figure 4.8. Cognitive module average predictions box plot

4.3.4 Discussions

In this section, a cognitive-triggered robotic assistant was presented. In this system, the

user’s cognitive workload is monitored in real-time and used to trigger the actions of the

automated assistant. In this regard, autonomous assistance can be viewed as a feedback

mechanism to alleviate the surgeon’s cognitive demands during a procedure. A user study

comparing the cognitive triggered autonomous system against manual teleoperation of the

suction tool was conducted. Objective surgical performance metrics and cognitive metrics

were calculated to validate the benefits of our system. In terms of surgical performance, the

cognitive autonomy allowed the user to complete the suturing exercise 162 seconds faster

than manual teleoperation. This result could be attributed to the improvements in the

collaboration fluency between the robot and the user. On the autonomous modality, the idle

time of the main instruments was reduced by a 32%. This result implies that the surgeon

was able to dedicate more time to the main task. Additionally, it is highlighted that the

suction tool was active the same percentage of time during both conditions (PSM3 idle time
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showed no statistically significant differences). This result suggests that the motions of the

suction tool were more efficient when the autonomous algorithm oversaw the teleoperation.

In terms of cognitive demands, NASA-TLX scores indicate users felt the surgical exer-

cise was less demanding while working with autonomy. These results have two important

implications. First, it indicates the importance of allowing novice users to fully concentrate

on the main surgical exercise to improve surgical performance. Second, it highlights the

effectiveness of our system in handling bleeding events. On the other hand, the cognitive in-

dex showed no statistically significant differences between the experimental conditions. This

finding could be explained by additional challenges created by the autonomous system, such

as occlusion of the surgical view. Certain positions inside the cavity resulted in unavoidable

occlusions from the suction tool. This most likely resulted in some additional mental de-

mands that were not present in the manual teleoperation. This problem can be alleviated

by providing autonomy with information on the current surgical step performed by the user.

In this regard, the autonomy can plan suctions in locations where occlusion is unavoidable

at better timings. Overall, the experiments validate the hypothesis H3 that performance

and workload metrics can be improved using an automated suction system triggered by a

cognitive workload sensing framework.

4.4 Summary

This chapter presents three evaluation experiments for our autonomous suction assistant

and cognitive workload sensing module. In experiment 1, it was evaluated whether surgical

performance could be improved by collaborating with a robotic assistant. In the second ex-

periment, the performance of a proposed cognitive workload prediction module was assessed

in a single-user and multi-user setting. Finally, a closed-loop system was evaluated where the

autonomy was triggered by high cognitive workload as detected with our sensing framework.

This final experiment aimed to validate whether a cognitive triggered autonomy could lead

to improved performance and lower mental demands.
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5. CONCLUSIONS AND FUTURE WORK

The introduction of autonomy in the OR has the potential to transform surgical care by

reducing the number of surgical assistants and improving the overall surgical performance

[ 130 ]. However, autonomous robots are not capable of completing surgical procedures with-

out the supervision of human surgeons [ 54 ]. The deployment of autonomous technology is

even more limited in minimally invasive procedures involving soft tissue interaction as they

are challenging environments to model and manipulate. These environments will require sig-

nificant breakthroughs both at the hardware and at the algorithm level before autonomous

systems are reliable enough to be used with patients.

An initial effort towards AI systems in surgery is developing autonomous systems that

can take over specific surgical subtasks rather than the full task, and thereby alleviating the

cognitive and physical demands on the surgeons and surgical assistants. In this thesis, an

autonomous blood suction robotic assistant was developed and deployed on a DVRK robot.

The goal of this system was to alleviate the cognitive demands created by hemorrhage events

during a procedure. Our framework leveraged state-of-the-art semantic segmentation algo-

rithms to localize blood pooling events in endoscopic images. Then, using the segmented

images, spatial coordinates were calculated and used by the robot to draw the blood ac-

cumulations, improving the visibility of the surgical field, and reducing the potential for

infections.

To create a synergistic human-robot collaboration, a mechanism that monitor the oper-

ator’s cognitive load was developed and an AR module was created to visualize imminent

robot actions. These two developments enable mutual grounding: the surgeon and the robot

can understand the state and intentions of each other. First, a real-time cognitive estimation

system was developed, that allowed the robot to adapt its behavior based on the surgeon’s

current mental state. Cognitive estimation was achieved by continuously monitoring EEG

and eye-tracker physiological markers. Second, an AR annotations module was developed

to indicate the target location for the next action of the robotic assistant. These annota-

tions were displayed in the console of the surgical robot and superimposed over the patient’s

anatomy.
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To evaluate the proposed framework, a computational experiment and two user studies

were conducted. The first experiment was a user study to evaluate the effectiveness of the

autonomous robotic assistant to control a simulated bleeding event. For this experiment,

the autonomous system provided suction immediately after the computer system detected

blood accumulations, while the user performed a suturing surgical exercise. The autonomous

system was compared against manual teleoperation of the suction tool to assess the system’s

benefits in terms of surgical performance and workload demands.

The study’s main finding was a reduction of the completion time, and the reported

workload demands when using the autonomous system. In terms of completion time, users

working with the autonomous system finished the task 162 seconds faster than when manually

teleoperating the suction tool. Furthermore, there was a significant reduction in the number

of clutching events and the percentage of detected blood. These results indicate that the

autonomous system can effectively perform the blood suction without affecting the user’s

work on the main task. Last, a reduced number of clutching events imply a more effective

use of the console space, which has been associated with surgical expertise [  75 ]. These results

address the initial hypothesis H1 that automating surgical sub-tasks in RMIS can improve

performances and lower mental demands.

For the second study, a computational experiment was conducted to assess the prediction

performance of the proposed cognitive workload detection system. For this, two different

datasets of physiological signals were collected. For the first dataset, users were asked to

perform a peg transfer task on multiple days while EEG data was recorded. In this study,

the task’s difficulty was increased to elicit states of high cognitive demands on the users by

modifying the teleoperation of the surgical robot. Using a recurrent neural network and a

set of spectral features from the EEG, the developed framework obtained a 78% session-

to-session prediction accuracy with a sample of 170 seconds of EEG data. This prediction

accuracy was superior to the baseline classification accuracy provided by a convolutional

LSTM model and a feedforward neural network.

Additionally, the effectiveness of the model to predict data from new unseen users was

evaluated. In this regard, a user-to-user classification accuracy of 78.9% was obtained when

using a calibration set of 90 minutes. Using fine-tunning techniques, the calibration set was
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reduced to 11.25 minutes (12.5% of the original size) while maintaining a calibration accuracy

of 78.9%. The two main findings from these experiments are that there the following. (1)

There exists a positive correlation between the size of the EEG sample and the model’s

classification accuracy. In other words, more accurate prediction accuracies can be obtained

at the expense of delays in the predictions. (2) Using fine-tuning techniques on EEG spectral

features allow workload assessments to unseen users with a minimized calibration set of

11.25 minutes of EEG data. Last, spectral features to scalp plots were generated to analyze

changes in the brain regions when increasing the cognitive workload. On the resulting plot, a

significant increase of theta and alpha oscillations on fronto-temporal channels wa s observed

when increasing the task difficulty.

The second dataset of physiological signals included EEG and eye-tracking. This dataset

comprises a single session of multiple users teleoperating the surgical robot to perform a sur-

gical exercise during a bleeding scenario. Models trained with this dataset were evaluated

under two different modalities: single-user models and multi-user models. In the single-user

modality, an average classification accuracy of 76% was achieved. This result shows how to

effectively use EEG and eye-tracker features to predict cognitive states in RMIS procedures.

In the multi-user models, which is a more challenging setting, an average classification ac-

curacy of 58% was obtained. Results from both datasets validate the hypothesis H2 that

cognitive workload can be measured accurately through physiological analysis.

The third study evaluated the integration of the autonomous system with the cognitive

workload framework. In this setting, the robotic assistant would only act when the user’s

mental state was classified as high cognitive workload. To achieve the study’s goal, the system

was assessed against suction tool manual teleoperation. The main results for this study are

reduction of the completion time and improved human-robot collaboration fluency, i.e., the

user was more dedicated to the main task as the robot effectively handled the bleeding events.

In terms of completion time, users completed the proposed task 161 seconds faster than

compared to manual teleoperation. These results can be attributed to the improved human-

robot collaboration fluency. Concurrent activity increased by a 23% in the autonomous

condition. On the other hand, the idle time of the robot’s main instruments dropped from

50% in the manual to 21% in the autonomous condition. Both these metrics indicate a
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more efficient use of the robotic instruments. Overall, the experiments’ results highlight

the benefits of automating surgical subtasks and real-time cognitive workload monitoring in

RMIS.

5.1 Limitations and Future Work

In the following section, the limitations of this work and possible future work solutions are

presented. Additionally, some ideas are presented regarding the use of cognitive workload

sensing and possible enhancements to improve the reliability and interpretability of the

prediction models.

First, the DVRK’s teleoperation software is limited compared to the teleoperation of

commercial da Vinci surgical systems. Notably, the software version 1.7 of the DVRK

presented delays when the user attempted to switch between the main instruments and

the suction tools and tried to move the robot from an idle position. Another limitation is

that the users involved in the experiments were college students and not medical personnel.

Even though participants were allowed to practice the surgical tasks thoroughly before the

experiments, the surgical technique was poor when compared to medical students. These

issues indicate that the findings presented may slightly differ when applied to a setting

outside the laboratory environment. Future work should focus on conducting newer user

studies with training residents or surgeons using a clinical da Vinci system. Provided that

commercials systems do not offer programmable APIs, future experiments would have the

surgeon teleoperating a clinical system and the autonomous algorithm deployed using a single

PSM of the DVRK.

On a different note, and in terms of the usability of the system, some participants noted

that the lack of control of the suction tool led to increased frustration levels while working

with the autonomy framework. This could be due to a lack of trust and familiarization

with the autonomous system. Previous works in human-robot collaboration point out that

trust can be generated by improving the predictability and legibility of the robotic system

[ 131 ], [ 132 ]. In future work, the AR annotations can be enhanced using predictive displays

[ 133 ], i.e., advanced augmented reality graphics to convey the users with the subsequent
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autonomous actions before they occur. Utilizing a graphics engine such as OpenGL, an alpha-

blended CAD model of the suction tool could be rendered in the console screen, providing

better information on how the robotic assistant would move in the surgical field. Other

potential solutions to improve collaboration can include adding voice and gesture control

mechanisms to enhance the interaction between the surgeon and the autonomy.

Another limitation of our framework concerns the simulation setting. Providing suction

in some regions inside the anatomical cavities led to partial visual occlusion, affecting users’

performance. In future work, this issue can be addressed by enhancing the AI algorithm

to select target locations and trajectories that minimize the occlusion in the image space

[ 134 ]. In addition, when occlusion is unavoidable, the AI algorithm could leverage contextual

information about the surgical steps performed by the surgeon. In this regard, the autonomy

would plan suction actions in target locations where occlusion is unavoidable during simple

operator tasks.

Our cognitive workload sensing module was only tested on bleeding events. While this

is one of the most critical stressors in surgery, it is not the only one. Therefore, there is

the question about how well our results generalize to other surgical stressors. In future

work, user studies can be conducted in additional surgical settings to verify the generality

of our framework. Additionally, the prediction models can be enhanced to include other

input modalities, such as the surgeon’s hand motions, position and stance of the surgical

staff, position of the instruments, etc. Dalveren et al. demonstrated that hand state, i.e.,

performing with dominant, non-dominant, or both hands, influenced gaze patterns during

simulated laparoscopic training [  135 ]. These results indicate that hand kinematic data pro-

vides meaningful information about the mental state of the surgeon. Our cognitive workload

sensing module could be easily enhanced to include kinematic data, as it is provided by the

robot API, to improve the robustness of the predictions.
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5.2 Research Questions

In the first chapter, three research questions were introduced and were answered by the

proposed methodology and experiments. Below a summary of the primary outcomes and

answers to each question is presented.

Research question 1 (RQ1): How to develop computer vision algorithms and

control policies to automate the blood suction task in the context of RMIS?

To answer this question, a semantic segmentation algorithm to localize blood accumu-

lations on the robot’s endoscopic images was developed. To perform the automatic seg-

mentation, a fully convolutional adaptation of the VGG-16 network was used. For training

purposes, a dataset of 180 images was collected and labelled. This dataset was used to train

a model to localize and segment relevant surgical objects such as the blood accumulations,

vessels, and the robotic instruments in the images. Then, using geometric computer vision

methods, the robotic instruments to the camera reference frame were registered. This pro-

cess allowed to transform the pixel location of the objects of interest into spatial coordinates

that the robot could use. Last, a simple path planning algorithm was developed to allow the

surgical robot to reach and clear the detected blood accumulations.

Research question 2 (RQ2): How to predict cognitive load from multimodal

physiological signals in real-time?

To answer this question, a multimodal framework based on EEG and eye-tracking to

predict the cognitive workload in real-time was proposed. First, a dataset of physiological

signals was collected, where the difficulty level of the surgical exercises was used to label

the data ground truth values. Then, low dimensional features from the sensors’ raw data

were extracted. From the EEG, frequency domain features were built, which have been

previously correlated with mental workload demands. From the eye tracker, features from

the pupil diameter and the points where the user fixated his gaze were calculated. Using

a combined feature vector from both sensors, a classification accuracy of 75% was obtained

when training and testing our models on data from the same user. Finally, a synchronization
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framework was developed to calculate the physiological features in real time. Results from

the evaluation experiments validate hypothesis H2 that real-time can be measured in real-

time with a combination of EEG and eye tracking signals.

Research question 3 (RQ3): Does the autonomy-controlled suction action im-

prove the surgeon’s task performance and cognitive demands?

To answer this question, a within-user study with the DVRK robot was conducted. In this

experiment, the participants were required to complete a suturing exercise using the main

robotic manipulators. In addition, a custom-made suction tool was attached to the auxiliary

arm of the robot. To measure the benefits of our system, users completed a surgical exercise

under two conditions: (1) manual teleoperation of the suction tool and (2) autonomous

teleoperation of the suction tool. Surgical performance metrics and cognitive metrics were

recorded during both conditions. Surgical performance metrics included completion time,

idle time of the users, concurrent activity, the robotic instruments’ velocity, and the average

percentage of blood in the surgical field. To quantify cognitive demands, the predictions

of the cognitive prediction framework and responses from NASA-TLX questionnaires were

studied. The main findings from this study are that the autonomous system led to faster

completion of the surgical exercise and lower reported mental demands, and those results

were statistically significant. Results from the user studies validate the hypothesis H1 that

surgical performance can be improved and that cognitive demands can be reduced by using

an automated system for blood suction.

5.3 Summary

This chapter presents the main results and findings from our work. The limitations of

the proposed algorithms were discussed, and some future working directions are presented.

Finally, the three research questions that guided this dissertation with their corresponding

answers are presented.
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