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ABSTRACT 

Technological systems contain complex elements and processes with a diverse set of agents and 

problem-solving arrangements. They often interact with and influence multi-lateral stakeholders 

with varying interests and incentives. Recent technological developments and engineering 

advancements such as digital marketplaces and high-tech networks create both new challenges and 

opportunities to understand further about effective mechanism designs. This dissertation attempts 

to answer corporate-level mechanism design issues in two different technological systems: high-

tech biopharmaceutical networks and the online peer-to-peer lending industry.  

The first part of the dissertation focuses on identifying the emergence and evolution of near 

decomposable systems in interorganizational relationships. To do so, first I conceptually discuss 

how near decomposable systems can emerge in interfirm relationships. Second, leveraging 

advancements in network science, I empirically analyze a detailed biopharmaceutical alliance data 

set and find that strategic alliance networks of biopharmaceutical firms exhibit near decomposable 

characteristics. I identify an emerging evolutionary pattern with smaller networks of 

subcommunities organizing hierarchically over time into a larger network structure, with the 

subcommunities generally exhibiting local clustering. A salient finding, compared to previous 

studies in the field of strategic management, is the identification of nested clusters formed in 

hierarchical fashion within this interfirm network. I find the potential for simultaneous 

evolutionary processes to be in play in various subnetworks within the overall industry-level 

network. The accrual of local changes impacting the structural processes of the subnetworks 

slowly diffuses to the larger, less integrated modules of the network. Finally, with the help of a 

simulation model, I identify how fitness heterogeneity among firms, fitness heterogeneity among 

partnerships and the rate of growth of partnerships impact the emergence of near decomposability 

in varying degrees. 

The second study focuses on understanding an important market access control mechanism: 

platform owners granting priority access to a subset of supply-side complementors to grow the 

marketplace and remove potential demand-side bottlenecks. Platform governance mechanisms, 

such as market access control, help to align all market players towards a specific value proposition. 

I study the interplay between priority access and the variation in expertise of the complementors. 

Leveraging a randomized priority access given to expert institutional investors in the online peer-
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to-peer lending industry, I show that it creates negative spillover effects on the performance of 

crowd retail investors. I provide evidence in support of two mechanisms in driving the impact of 

priority access, the intensity of priority access and cream skimming by institutional complementors, 

on the retail crowd market. Again using simulation to extend the analysis, I find that the brunt of 

negative impacts is likely borne by more risk-averse retail investors. 
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 INTRODUCTION 

1.1 Technological Systems and Mechanism Design 

Technological systems contain complex elements and processes with a diverse set of problem-

solving arrangements (Hughes, 1987; Salvendy, 2001; Simon, 1962; Simon, 2000). They often 

deal with multi-lateral stakeholders with varying interests and incentives (Adner, 2017; Baldwin 

et al., 2000; Tiwana, 2013). However, all these components need to be in some form of alignment 

in their objectives, division of responsibilities and operational procedures for the system to 

function effectively (Eisenhardt, 1985; Kretschmer et al., 2020; Perrow, 2011). To do so, scholars 

have noted the importance of uncovering the properties that could explain the tendency of varying 

complex systems with many autonomous components to behave according to a few selective and 

emergent rules (Amaral & Uzzi, 2007; Barabási, 2016; Strogatz, 2004). This is particularly 

important when technological systems can be partially or fully designed by engineers and 

managers (Buede & Miller, 2016; Roth, 2018).  

 Mechanism design methods provide a structure wherein design of economic mechanisms 

and incentives can be done with the systemic outlook towards achieving desired objectives 

(Mookherjee, 2006; Myerson, 1989; Roth & Peranson, 1999; Varian, 1995). It considers “how to 

implement good system-wide solutions to problems that involve multiple self-interested agents, 

each with private information about their preferences” (Parkes, 2001). In technological systems, 

the mechanism design framework helps to identify the collective nature of decision problems such 

as kidney allocation, school choice or task allocation within teams (Abdulkadiroğlu & Sönmez, 

2003; Ashlagi & Roth, 2012; Roth et al., 2004; Su & Zenios, 2006). It specifies then how to 

evaluate the process outcomes. For instance, it allows decision making in the system level to clarify 

the priorities such as efficiency tradeoffs, profit maximization considerations and social welfare 

implications. It will also evaluate the resources the agents possess such as private information and 

identify channels in which they can be transmitted and used in decision making (Roth, 2018; 

Varian, 1995).  

 Recent technological developments and engineering advancements such as digital 

marketplaces and high-tech networks create both new challenges and opportunities to understand 

further about effective mechanism design methods. First, mechanism design questions that once 
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were part of operations-focused decisions have been elevated to the business strategy level by the 

possibilities of solutions enabled by large-scale data. For example, Uber’s demand- and supply-

focused surge pricing goes beyond being a mere revenue and price optimization to a core challenge 

of corporate strategy with implications on their business model. Similarly, if large interfirm 

networks with varying moving parts could be explained by a relatively small set of network 

scientific characteristics, it creates contingencies for firms in their corporate-level planning and 

strategic considerations.  

Second, even as mechanism design has transformed business for several decades thanks to 

contributions from disciplines such as engineering, economics and computer science, scholars 

focused on strategy and entrepreneurship have paid relatively limited attention.1 Traditionally, 

firms devised strategies to succeed in markets by building some distinct and sustainable 

competitive advantage, then focusing on the organizational design aspects needed to realize it. 

Now, the digital transformation and high-tech networks provide an opportunity for engineers and 

managers to design and deploy entire marketplaces, orchestrating the participation of appropriate 

market players and other complementary actors. 

Third, when market design is a possibility, it leads to concerns about relevant incentives 

and other fairness considerations across autonomous firms and other agents participating in them. 

For example, if market designers use governance tools available to them in digital platforms and 

high-tech networks, they may tip the balance in favor of some players depending on their level of 

expertise, potentially raising anti-trust and other regulatory concerns.  

1.2 Summary of the Dissertation 

This dissertation attempts to answer corporate-level mechanism design issues in two different 

technological systems: high-tech biopharmaceutical networks and online peer-to-peer lending 

industry. In the high-tech biopharmaceutical networks, I use network scientific developments to 

show the emergence of near decomposable properties in the interactions among firms. In the online 

peer-to-peer lending industry, I show how an empirical mechanism design perspective helps us to 

understand the dynamics of decision making, incentives and information in platforms. 

 
1 With the general focus on identifying the factors that create heterogeneity in organizational performance, 
issues such as kidney allocation or task allocation within teams are not the ones to capture the attention of 
strategy and entrepreneurship scholarship. 
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1.2.1 Nearly Decomposable Systems in Interfirm Alliance Networks  

The purpose of this chapter is to identify emergence and evolution of near decomposable systems 

in interorganizational relationships. To do so, first I conceptually discuss how near decomposable 

systems can emerge in interfirm relationships. Second, leveraging advancements in network 

science, I empirically analyze a detailed biopharmaceutical alliance data set and find that strategic 

alliance networks of biopharmaceutical firms exhibit near decomposable characteristics. I identify 

an emerging evolutionary pattern with smaller networks of subcommunities organizing 

hierarchically over time into a larger network structure, with the subcommunities generally 

exhibiting local-level clustering. A salient finding, compared to previous studies in the field of 

strategic management, is the identification of nested clusters formed in hierarchical fashion within 

this interfirm network. I find the potential for simultaneous evolutionary processes to be in play in 

various subnetworks within the overall industry-level network. The accrual of local changes 

impacting the structural processes of the subnetworks slowly diffuses to the larger, less-integrated 

modules of the network. Finally, with the help of a simulation model, I identify how fitness 

heterogeneity among firms, fitness heterogeneity among partnerships and rate of growth of 

partnerships impact the emergence of near decomposability in varying degrees. 

1.2.2 Implications of Priority Access in Markets with Experts: Evidence from Online 
Marketplace Lending   

Platform governance mechanisms such as market access control help to align all market players 

towards a specific value proposition. This chapter focuses on understanding an important market 

access control mechanism: platform owners granting priority access to a subset of supply-side 

complementors to grow the marketplace and remove potential demand-side bottlenecks. I study 

the interplay between priority access and variability in the expertise of the complementors. 

Leveraging a randomized priority access given to expert institutional investors in the online peer-

to-peer lending industry, I show that it creates negative spillover effects on the performance of 

crowd retail investors. In this study, I exploit the October, 2012 decision of the largest online peer-

to-peer lending platform, Lending Club, to create a whole loans market and implement a 

randomized process of allocating loans to institutional investors. Loans assigned to the institutional 

investors would be funded wholly by one investor. Before the implementation of this market, 

institutional investors that wanted to participate had to do so in the fractional market where loans 
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are funded by multiple investors. This priority access to institutional expert investors in the whole 

loan market, and the varying levels of access observed over time, offers a unique opportunity to 

capture the negative spillover effects of this allocation on the performance among the retail 

investors. I provide evidence in support of two mechanisms driving the impact of priority access 

on the retail crowd market: the intensity of priority access and cream skimming by institutional 

complementors. Finally, using data-integrated simulation, I conclude that more risk-averse 

fractional investors likely are more strongly impacted by this effect. 

1.3 Contributions  

1.3.1 Research Contributions  

This dissertation makes a number of contributions to the interface of engineering and strategic 

management scholarship. First, recent advancements in methodologies such as network science 

tools and large scale data availability have transformed the way traditional business organizations 

have operated. One such distinction is the sharp change in the way top-level corporate strategies 

are planned and executed within the firms. Corporate managers are starting to not merely rely on 

conceptual frameworks such as simple cost-benefit analysis, Michael Porter’s Five Forces for 

industry analysis and value-based mapping. They are shifting to more nuanced data-integrated 

strategic management approaches. Traditionally the contributions from industrial engineering 

thinking to the management of firms were largely limited to the operations level. This is well 

reflected by the expansive operations research work focusing on business problems and the 

operations management scholarship in business schools. However, new methodological 

capabilities and the availability of data enable the use of systems thinking from engineering in 

multi-stakeholder environments. This dissertation demonstrates how strategic thinking could be 

developed and possibly used in two technological systems.  

 Second, a well demonstrated benefit of network science and other related methodologies 

is their ability to identify small sets of drivers causing large systemic level changes and leave out 

the other noisy elements. Applying this idea to the high-tech biopharmaceutical alliance network, 

I demonstrate how structural properties such as near decomposability will affect the firm- and 

industry-level decision making on innovation. In doing so, I show how strategy questions could 

benefit otherwise intellectually distant methodologies. It also elucidates how, if certain structural 
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patterns create conducive environments, they might be considered in the formation of appropriate 

industries and firms.  

 Third, an empirically-driven mechanism design approach facilitates the development of 

technological systems where incentives, information and decision-making can be aligned towards 

desired goals. However, in complex systems it is vital to see how the interaction among different 

sets of agents may lead to unintended consequences hindering the incentive alignments. 

Exploitation of quasi-natural experimental opportunities with econometric methods provides 

complex systems scholarship a practical pathway to use empirical mechanism designs. For 

example, in my dissertation, I demonstrate that seemingly innocuous mechanism design choices 

made by the platform owner related to lender side expansion can create incentive conflicts and 

negative spillover effects for the retail investors even when the loan allocation process is 

randomized.  

1.3.2 Practical Implications  

This dissertation has several implications for practice. First, my findings provide insights regarding 

how to think about design and development of incentives in networked innovation environments. 

When structural properties can be realized in industry-level networks such as high-tech 

biopharmaceutical partnerships, it draws attention to both engineers and policy makers on how to 

orchestrate them to achieve desirable outcomes for the society. For example, during COVID-19, 

many governments have aggressively used war-time and other emergency powers to foster 

partnerships among otherwise competitors to hasten the discovery, development and production 

of vaccines. The U.S. Government actively worked with and mandated a partnership between 

Johnson & Johnson and Merck to fast-track vaccine manufacturing. Similarly, nonprofit initiatives 

such as a Gates Foundation initiative to get the University of Oxford to partner with AstraZeneca 

has spurred a successful collaboration in a short time. I hope that the theoretical and empirical 

findings in the dissertation provide some ideas for new innovative pathways in complex systems.  

 Second, the digital transformation we see in the economy today has enabled entire 

marketplaces to be developed applying “engineering thinking” to economics and strategy (Roth, 

2018). Complex systems design thinking allows the designers to consider the importance of 

governance mechanisms such as market access control to get a holistic picture about the 

marketplaces. Platform owners can use access controls to grant, restrict and revoke market access 
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to a selective number of complementary players. Practitioners will benefit from carefully assessing 

the pros and cons of available governance to effectively manage their platforms.  

 Third, as these high-tech networks and digital marketplaces open up new possibilities, they 

also create several public policy and anti-trust concerns. Scale-free and hierarchy properties in 

high-tech networks, and intermediated marketplaces with their congregation of experts and non-

experts, create challenges with regard to the level playing field and concerns of unequal access. 

The Stigler Committee on Digital Platforms (2019) articulated this issue as follows: “the proposals 

were reactions to the perceived threat posed by digital platforms, with little to no analysis of the 

underlying root problems, let alone a link between market failures and remedies.” Current policy 

infrastructure often lacks the toolkits required to understand and respond to the emerging 

challenges posed by these novel forms of organizations. For example, status-quo anti-trust 

mechanisms suggest using price theoretic mechanisms for regulating large firms. But how do we 

handle organizations such as digital platforms who appear to provide substantial consumer surplus 

at the lowest cost, yet also happen to kill their competitors and create monopolistic markets? I 

suggest that mechanism design solutions facilitated by big data may help us to understand the 

interactive effects among multiple players in a fine-grained manner, leading to more nuanced 

understanding of the underlying value propositions.  
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 NEARLY DECOMPOSABLE SYSTEMS IN INTERFIRM 
ALLIANCE NETWORKS  

2.1 Introduction 

Scholars have long emphasized the importance of near decomposable systems in engineering and 

management inquiries (Egidi & Marengo, 2004; Gavetti et al., 2005; Simon, 1962). With its 

“boxes-within-boxes arrangement of subsystems and sub-subsystems,” near decomposability 

provides internal steady states within a larger system, facilitates fast-tracked evolutionary 

processes and offers relatively simplified interaction rules among myriad actors within hierarchies 

(Simon, 2000). Much of the research in this area has focused on how near decomposable 

intraorganizational interactions of subunits or managers work and, subsequently, how they bring 

performance and evolutionary implications for the respective firms (Ethiraj & Levinthal, 2004; 

Frenken et al., 1999; Levinthal & Workiewicz, 2018; Simon, 2002).  

 Although Herbert Simon has indicated that near decomposability is “far from rare” in 

broader economic systems beyond formal organizations (Simon, 1996), management researchers 

have paid limited attention to nearly, but not fully, decomposable interorganizational relationships. 

A substantial body of strategic management research elucidates the importance of structural 

position of a firm within interorganizational networks (Ahuja et al., 2012; Gulati, 1999; Schilling 

& Phelps, 2007; Stuart, 1998; Uzzi, 1997). This structural focus facilitates firms to “anticipate 

properly the complex chain of contingencies” (Granovetter, 1985) and identify appropriate 

strategies in networked environments (Borgatti & Foster, 2003; Uzzi, 1996). Identifying whether 

interfirm networks have near decomposable characteristics will allow us to decode the structural 

patterns of complex systems. Herbert Simon articulates the usefulness of uncovering near 

decomposability in systems as “allow[ing] us to factor the system, so that we do not have to deal 

with all of its complexity at once.” (Simon, 2000).  

Uncovering the existence of a structural, interorganizational pattern of clustering with near 

decomposable properties is important for three reasons. First, at the core, strategic-minded scholars 

are interested in the heterogeneity of firms (Barney, 1996; Makadok, 2003; Rumelt et al., 1994). 

Beyond the adjacent neighborhood measures, structural properties pertaining to overall networks 

appear to matter in many performance measures (Borgatti & Halgin, 2011; Powell et al., 2005; 

Schilling & Phelps, 2007). Stated differently, large scale network-wide measures, often at the 
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industry level, can serve as a source of firm heterogeneity, and “network structure reflects much 

about the functioning of organizations and, possibly, their coordination failures or achievements” 

(Salancik, 1995). So if near decomposability exists in interorganizational relationships, they can 

likely assist us in understanding the antecedents of individual firm performance measures. Second, 

patterns formed by an internal congregation of like-minded actors in a network are not static. Firms 

often dynamically evaluate network implications for their value creation process. Zaheer and Soda 

(2009) shows how network actors seek value by creating ties disconnected from a dense and stable 

network; potential for structural and other network opportunities drives the evolution. Conversely, 

disconnected nodes seek out access to denser networks for both informational and control reasons 

(Burt, 2005, 2009; Gulati et al., 2000). It creates an evolving equilibrium over time where network 

patterns prompt deployment of myriad network strategies by the actors, which in turn lead to 

changes in the structural properties of the overall network (Borgatti & Foster, 2003; Walker et al., 

1997). If the dynamics among actors lead to a nearly decomposable system, then many rules from 

the architecture of complexity would apply (Ethiraj & Levinthal, 2004; Simon, 1962). Hence a 

careful analysis of structure helps us to discover the nature of industry-level partnerships and 

understand exactly know what is going on at the systemic level. Third, analyzing the near 

decomposable network patterns helps strategists to identify the latest trends in relevant industries. 

This bird’s-eye view to identify generic features, large-scale organizing principles of the networks, 

and the drivers of change can potentially complement the ego-centric network analysis quite often 

employed by the strategy literature (Schilling, 2009; Uzzi & Spiro, 2005).  

 The purpose of this paper is to identify emergence and evolution of near decomposable 

systems in interorganizational relationships and the potential drivers of such characteristics. To do 

so, first we conceptually establish how near decomposable systems emerge in interfirm 

relationships. Second, leveraging advancements in network science, we empirically analyze a 

widely-studied biopharmaceutical alliance data set (see Schilling (2009) for a review) and find that 

strategic alliance networks of biopharmaceutical firms exhibit near decomposable characteristics. 

The accrual of local changes impacting the structural processes of the subnetworks slowly diffuses 

to the larger, less-integrated modules of the network. We further expand this notion, with the help 

of a simulation model, to identify the contingencies under which near decomposable features 

emerge. Using both analyses, we hope to understand the emergence of near decomposability in 
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real world alliance networks, a manifestation of inter-organizational networks and study 

underlying characteristics that contribute to the emergence of it. 

 The analysis in this paper are two-fold. First, we utilize an existing alliance database to 

study inter-firm alliances and the emergence of near decomposability. We utilize the heavily-

studied Recombinant Capital (RECAP) biopharmaceutical alliances database. The RECAP 

database provides a broad coverage and is generally a well representative sample of the wide range 

of biopharmaceutical alliances (Adegbesan & Higgins, 2011; Schilling, 2009). We identify an 

emerging evolutionary pattern of smaller networks of subcommunities organizing hierarchically 

over time into a larger network structure, with the subcommunities generally exhibiting local-level 

clustering. A salient finding, compared to previous studies in the literature is the identification of 

nested clusters formed in hierarchical fashion within interfirm networks. We find the potential for 

simultaneous evolutionary processes to be in play in various subnetworks within the overall 

industry-level network. Second, we develop a simulation model that tests for various scenarios 

that impact the generation of alliances in the real world.  

 For the first part, we utilize the heavily-studied Recombinant Capital (RECAP) bio 

pharmaceutical alliances database. The RECAP database provides a broad coverage and is 

generally a well representative sample of the wide range of biopharmaceutical alliances 

(Adegbesan & Higgins, 2011; Schilling, 2009). For the second part, we develop a simulation 

model that captures three characteristics that impact inter-firm alliance generation: firm-level 

characteristics (node fitness probability), the dyadic relationship between firms (edge fitness 

probability), and the network-wide propensity to create alliances (rate of growth of partnerships). 

Based on the simulation in this research, we observe that even though firm-level characteristics 

does have an impact on the emergence of scale free property in alliance networks, its variation has 

limited consequential impact on the emergence of hierarchical property. Hence, the overall impact 

on the emergence of near decomposability due to variation in firm-level characteristics is 

consistent. However, the varying degree of dyadic relationship (edge fitness probability) does not 

have a significant impact on scale free property and hierarchical structure. We observe that the 

preexisting relationship between firms has a similar output. The network-wide propensity to create 

alliances (rate of growth of partnerships), has a negative influence on the emergence of near 

decomposability in network structures. Further in depth analysis and detailed modeling that 

captures more granular firm-level, dyadic relationship level, macro-level characteristics and other 
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inter-firm characteristics of alliance networks would be necessary to understand contingencies that 

may affect these results. 

 This paper makes a number of contributions to the literature. First, we expand the notion 

of near decomposability beyond the intra-organizational context. To the best of our knowledge, no 

other study has used either the conceptualization or data-integrated empirical network analysis in 

identifying the underlying near decomposable structure in an industry-level, interfirm strategic 

network. By providing a theoretical foundation and appropriate stylized analysis, we hope this line 

of research will open up new avenues for scholars to further investigate potential mechanisms 

originating from near decomposability on a wide variety of performance and evolutionary outcome 

measures. Second, it introduces new analytical developments and techniques in network science 

to the management literature, where it can help us understand relevant strategic inquiries on how 

the patterns of interfirm clustering emerge. The literature on alliances and networks has long 

recognized the importance of firms interacting with each other in the pursuit of creating and 

capturing value (Ahuja et al., 2012; Gulati, 1998; Gulati et al., 2000; Mesquita et al., 2017). These 

opportunities are often generated and sustained by the ability to have distinctive heterogeneous 

advantage in the networks (Baum et al., 2003; Borgatti & Foster, 2003; Rowley et al., 2000; 

Schilling & Phelps, 2007; Uzzi & Spiro, 2005); we provide an analysis of how heterogeneity 

develops via evolutionary processes and forms hierarchical systems. Finally, a growing stream of 

research takes a structural approach to network studies. This approach suggests that, in networks, 

“beneath the complexity of social relations there are enduring patterns of ‘connectivity and 

cleavage’ [..] that, once revealed, can help explain outcomes at different levels” (Kilduff & Brass, 

2010; Wellman & Berkowitz, 1988). The structuralist strand of scholarship provides an avenue for 

linking micro-level nodal concerns to macro-level observations and, also conversely, macro-level 

contingencies to micro-level changes. By providing a nested hierarchical linkage to local clustering, 

we contribute to this stream of literature. 

 The rest of this paper is organized as follows. Section 2 gives a detailed description of 

interfirm alliances and the characteristics of near decomposable systems. Section 3 covers the 

empirical analysis using RECAP biopharmaceutical alliance data. In section 4, we explain the 

simulation model and report results of the carious scenario analyses that we conduct to tease out 

the firm-level, dyadic-relationship level and macro-level characteristics that impact the emergence 
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of near decomposability in alliance networks. Section 5 summarizes the results observed in this 

paper and highlights future research directions. 

2.2 Industry-Level Inter-Firm Network and Near Decomposability  

2.2.1 Complex Systems Perspective and Near Decomposability 

We adopt Simon’s conception of complex systems as “one made up of a large number of parts that 

interact in a non-simple way... given the properties of the parts and the laws of their interaction, it 

is not a trivial matter to infer the properties of the whole” (Simon, 1962). The implications of 

complexity in a near decomposable system stem from how the interrelated subsystems interact 

each other, and the magnitude and frequency of their relationships (Ethiraj & Levinthal, 2004; 

Simon, 2000). Simon (1962) summarizes the nuances of analyzing complex systems by noting that 

“an in-principle reductionist may be at the same time a pragmatic holist.” 

 The pursuit of strategic alliances by a firm is a conscious decision to collaborate with 

another, believing that partnering is likely to yield a better outcome than internally executing the 

same task themselves. So in an important pragmatic sense, the interdependent interactions among 

firms in an alliance network mean that, at the aggregate level, “the whole is more than the sum of 

the parts.” Due to the intensive nature of competition and the need to be on the cutting edge of 

innovation, biopharmaceutical firms closely monitor developments in the innovation and 

commercialization space of their market. Prior studies suggest that technologically intensive 

strategic alliances are resource-interdependent (Dhanaraj & Parkhe, 2006; Dyer & Singh, 1998; 

Gulati et al., 2012). They seek, synthesize and share information in partnership networks (Gulati, 

1998; Koza & Lewin, 1998).  Alliance partners utilize a recombinatory innovation process to 

resolve innovation problems (Gilsing et al., 2008; Schilling & Phelps, 2007). Though these studies 

indicate “nonsimple” interactions among alliance partners, they also show that, under appropriate 

contingencies, we can tease out the broader principles of partnerships. This tension provides a 

complex systems outlook to alliance networks. 

 The near decomposable property in complex systems, if it exists, provides a pathway to 

handle substantial complexities in the system without having to deal with them all at once. The 

following comment is representative of Simonian thinking on the usefulness of near 

decomposability in complex systems (Simon, 2000):  
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 “Having determined the behavior of subunits at one level, we can replace the details of 

these subunits by a small number of aggregate parameters, and use these to represent the system 

at the next level above. Or, looking from the top down, we can say that the behavior of the units 

at any given level does not depend on the detail of structure at the next level below, but only upon 

the steady state behavior, in which the detail can be replaced by a few aggregated parameters.”  

 Prior research specifically indicates the value of discernible, yet connected, couplings 

where the order emerges as most activities are completed at the local level, e.g., within knowledge 

clusters (Yayavaram & Ahuja, 2008), subproblems (Nickerson & Zenger, 2004), and divided 

managerial labor (Frenken et al., 1999; Levinthal & Workiewicz, 2018). Yet this order is 

consolidated at the complex systemic level due to the fact that “interactions among knowledge sets 

within subproblems are greater than among subproblems” (Nickerson & Zenger, 2004). This 

process helps actors in the complex systems to be able to, if needed, to temporarily neglect broader 

coordination issues and focus on the specific subsystemic issues (Baumann, 2015). Absence of 

this coordination can lead systemic equilibrium to be stuck in suboptimal local peaks in the fitness 

landscape (Rivkin & Siggelkow, 2003). Studies from a more behavioral perspective suggest that 

preemptively acknowledging the need for an appropriate level of coordination can assist 

boundedly rational agents in complex systems to tackle issues such as myopia of learning 

(Levinthal & March, 1993), to identify the right level of landscape search (Gavetti et al., 2005) 

and to use their limited capacity to more effectively process necessary information (Reinstaller, 

2007).  

 Near decomposability, from the Simonian perspective, suggests two additional, and often 

neglected, properties that facilitate systemic functionalities: the nested nature of subsystems 

(Levinthal & Workiewicz, 2018)2 and the general horizontal similarities between those subsystems. 

Nested hierarchy can be crudely described as analogous to nested Russian dolls or Chinese boxes. 

While the hierarchy in the dolls and boxes imply a complete ordering, multiple interlinked sets – 

several cascaded dolls and boxes – suggest a partial order similar to a tree (Simon, 1977; Wu, 

 
2 Levinthal and Workiewicz (2018) summarizes the first part of the concern well here in an NK modeling context: 
“[..]the difference between modularity and near decomposability has not been fully addressed [..]. Scholars have used 
the term modularity to describe patterns of interactions between individual elements of a system in which most of the 
interactions occur within the modules (within interactions), with only relatively few interactions between elements 
lying in different modules (between interactions). The discussion of NK models often uses the terms “modularity” 
and “near decomposability” interchangeably [..]. However, these NK models, with “block-diagonal” interactions, 
capture only a subset 
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2013). This partial order in the form of encapsulating network hierarchy facilitates a vertical 

coupling across different tiers in the hierarchical system and “permits the stable subassemblies to 

be treated as simple givens, whose dynamic behavior is irrelevant to assembling the larger 

structures, only their equilibrium properties affecting the system behavior at the higher levels” 

(Simon, 1977). However, horizontal similarities among those subsystems – for example, if the 

third doll in a set of dolls is similar to the third doll in another set – provide a larger framework for 

the system to rely on. It allows each subsystem to simultaneously and independently execute the 

relevant tasks, needing only the necessary inputs from the rest of the system and producing output 

as needed after the subroutine is performed within the subsystem. This form of loose horizontal 

coupling allows systems to modify internal subroutines without disturbing subsystemic inputs and 

outputs. 

2.3 Near Decomposability and Interfirm Alliances 

In the realm of complex inter-organizational alliance networks, studies already show the 

importance of being at a relevant network position. Research has looked into how firms continue 

to pursue structurally friendly locations (Gulati, 1998; Gulati et al., 2000; Powell et al., 1996; 

Zaheer & Bell, 2005) and, conversely, how the lack thereof can be detrimental for their 

performance and survival (Dyer & Singh, 1998; Koza & Lewin, 1998). Other inquiries of a 

structural nature include studies of the aggregate number of ties (Ahuja, 2000; Shan et al., 1994), 

density of the ego network (Hite & Hesterly, 2001; Rowley et al., 2000), small world properties 

(Baum et al., 2003; Uzzi & Spiro, 2005) depth (Schilling & Phelps, 2007) and relative standing 

(Baum et al., 2000; Ozmel & Guler, 2015). Network measures mostly originating from the field 

of sociology have improved the sophistication of empirical analysis in an interdisciplinary 

literature on network analysis in the field of strategic management (Ahuja et al., 2012; Burt, 2001, 

2009; Coleman, 1988; Coleman, 1994; Zaheer & Soda, 2009). However, conceptual articles such 

as Ahuja et al. (2012) and clinical cases like Gomes-Casseres (1994) notwithstanding, researchers 

have devoted limited inquiry to understanding how aggregate systemic patterns emerge in 

industry-level, interorganizational networks. 3   Network patterns originate from the inherent 

heterogeneity of how nodes interact with their fellow network actors. They start to show clustering 

 
3 Salancik (1995)articulated this general tendency in organizational network studies as the penchant to “focus on the 
trees rather than the forest.” 
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patterns – “the emergence of interconnected subgroups, or network partitions or cliques, suggests 

that the network is being differentiated into a variety of distinct subnetworks or communities” 

(Ahuja et al., 2012). Nearly decomposable systemic patterns in interorganizational relationships 

describe these complex heterogeneous nodal interactions in networks rather efficiently, as 

facilitated by all three mechanisms associated with near decomposable systems – (i) interactions 

within subsystems are greater than among subsystems, hence a higher degree of clustering is 

observed and subsystems exhibit (ii) a nested, hierarchical nature and (iii) horizontal similarities 

among subsystems on the same tier of hierarchy. We discuss their implications below individually. 

 In alliance partnerships, interactions within subnetworks tend to be greater than among 

subnetworks for informational reasons. A structural outlook regarding information transmission 

suggests that it “go[es] beyond the immediate ties of firms and emphasize the informational value 

of the structural position these partners occupy in the network. Information travels not only through 

proximate ties in networks, but through the structure of the network itself” (Gulati, 1998).4  

Clustered subnetworks increase both information transmission and processing capacity (Schilling, 

2009; Yayavaram & Ahuja, 2008). Within subnetworks often a dense, intensively interactive and 

highly frequent participatory process unfolds. 

2.4 Scale Free Property, Hierarchical Networks and Near Decomposability 

A large number of real-world networks are, in some variation, found to have what is known in the 

network science community as hierarchical network modeling properties (Barabási, 2016; 

Barabási et al., 2003; Boccaletti et al., 2006; Clauset et al., 2004; Girvan & Newman, 2002; 

Newman & Girvan, 2004; Ravasz & Barabási, 2003; Ravasz et al., 2002). Some prominent 

examples include internet links, mobile phone calls, collaborations between scientists, actors in 

motion pictures, scholarly citations and metabolic networks. However, the nuances of individual 

hierarchical network properties differ for each of these examples in interesting ways (refer to 

Barabási (2016) for further discussion). Barabási et al. (2003) offers one simple interpretation on 

how hierarchical networks form: “[W]e should not think of... coexistence of relatively independent 

groups of nodes. Instead, we have many small clusters that are densely interconnected. These 

 
4 Gulati (1998) distinguished it from a more relational approach that emphasizes the role of direct cohesive ties in 
promoting a “shared understanding of the utility of certain behavior as a result of discussing opinions in strong, 
socializing relations”. 
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combine to form larger, but less cohesive groups, which combine again to form even larger and 

even less interconnected clusters. This self-similar nesting of different groups or modules into each 

other forces a strict fine structure on real networks.” 

 The emergence of near decomposability can be explained using the scale free property and 

clustering in networks. The scale free property refers to the behavior of a network’s degree 

distribution and its adherence to a power law distribution. The clustering coefficient explains to 

the extent to which nodes are clustered to create tightly knit triplet groups. The emergence of near 

decomposability is where the clustering coefficient is a decreasing function of the degree of a node 

compared to a random network. In the following sections each of these characteristics, their 

technical definitions and how they will be used in the analysis for the purpose of this research will 

be explained in further detail. Figure 2.1 shows the illustration of a hierarchical network. 

2.4.1 Scale-Free Property.  

If a node in a network has links to k  other nodes, then we say that it has degree k ; the average 

degree of all nodes in a network is denoted k . The network satisfies the scale-free property if the 

frequency distribution of node degrees approximates a power-law distribution, i.e., if the 

probability of a randomly-selected node having degree k  is distributed as ( ) ~P k k   for some 

constant  . This indicates that the network has a small number of highly-connected nodes, such 

that the number of nodes with a degree far greater than the average degree of the network (i.e., 

k k? ) with is significantly greater than the number present in a random graph. One of the key 

mechanisms proposed in the network science literature for producing a scale-free network is 

“preferential attachment,” the notion that nodes are more likely to form attachments with other 

nodes that are already highly-connected (Ravasz et al., 2002). Albert and Barabási (2002) provides 

an example in internet, “a webpage will more likely include hyperlinks to popular documents with 

already-high degree, because such highly connected documents are easy to find and thus well-

known, or a new manuscript is more likely to cite well-known and thus much-cited publications 

than less-cited and consequently less-known papers”. It is close to the colloquial saying that “the 

rich get richer, and the poor get poorer.” As a network evolves and forms new links over time, the 

probability of a link attaching to a node is assumed to be an increasing function of the node’s 

degree in the previous time period. The functional form and strength of the preference may vary 
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in different real-world contexts, but this concept of preferential attachment is consistent with 

plausible firm behavior. 

2.4.2 Clustering Coefficient 

 The local clustering coefficient of a node is defined by 
2

( 1)

n
C

k k



, where k  is the node’s degree 

and n  is the number of links between those k neighbors. The average clustering coefficient of the 

network, C , is the average of every node’s local clustering coefficient. We can further define a 

function ( )C k  to be the average clustering coefficient over all nodes with degree k . The 

normalized clustering coefficient of a node is significantly higher in real networks than random 

networks and the clustering coefficient of real networks is independent of the number of nodes in 

the network. 

2.4.3 Emergence of Near Decomposability.  

In a hierarchical network, the clustering coefficient of a node ( )C k  is a decreasing function of 

degree k, and it follows the relationship ( ) ~C k k   for some   with a value that is typically close 

to 1. This indicates that less-connected nodes are highly clustered together; by contrast, well-

connected nodes with high degrees serve as hubs of communication for the network, generally 

linking to less well-connected neighbors. Combined with the scale-free property, this produces 

hierarchical structures wherein clusters of nodes connect to other clusters through their hubs, and 

clusters of clusters connect to each other, in a process analogous to galaxies of [clustered] stars 

forming clusters of galaxies under the weight of gravity. 

 Thus in this research, we test for scale free property of a network and the scaling behavior of 

local clustering with degree (hierarchy) to describe the emergence of near decomposability in the 

overall network. Following these arguments, we hypothesize that in interfirm networks, smaller 

network subcommunities recursively organized hierarchically into a larger network in a nested 

fashion. These nested subcommunities emerging from the hierarchical network exhibit local-level 

clustering. 
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2.5 Empirical Analysis  

2.5.1 Data 

To illustrate the importance of understanding patterns of clustering and hierarchy within a strategic 

management context, we utilize the heavily-studied Recombinant Capital (RECAP) bio 

pharmaceutical alliances database. It has 12,962 instances of alliance partnerships between 5,524 

firms during 1985 - 2001. Recent studies suggested the RECAP database provides the “broadest 

relative coverage” and “representative samples” of the wide range of biopharmaceutical alliances 

(Adegbesan & Higgins, 2011; Schilling, 2009). Hence, it serves well as an appropriate context for 

our study. Also, it is worth noting that substantial strategic inquiries coming from the Coleman-

Burt tradition have used the RECAP data to study partner selection (Laursen et al., 2013; Mindruta 

et al., 2016), reputation and status (Stern et al., 2014), complementarity of assets (Hess & 

Rothaermel, 2011) and exploration and exploitation (Yang et al., 2014) – these studies provide a 

diverse set of examples illustrating the versatility of the database.   

 If firm i created an alliance with firm j at time period t, then the network created for our 

analysis represents this as an edge between nodes i and j. Hence, if there were multiple alliances 

between two firms, then we allow multiple edges between the respective nodes. 5 

2.5.2 Results 

The analysis on the alliance network are explained in the following order. First, we describe the 

evolution of the overall composition of the types of alliances that were created and specific key 

characteristics about firm behavior in the overall network; second, we test for the scale free 

property; third, we test for the clustering coefficient and its behavior over time; then we explain 

the emergence of near decomposability in the network. Finally, we also include a subsection of 

complementary analysis, where we show additional analyses on the overall network for deeper 

understanding of the analyses conducted in the previous sections. 

 
5 We break down the network into periods of 3 years and 5 years respectively. 3 and 5-year periods are used as a 
sensitivity check based on the fact that the data set does not note the duration of alliances. Here we follow the approach 
used by Schilling (2009). 
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2.5.3 Overview of Alliance Networks.  

There are three types of entities create partnerships with each other in the data set. They are biotech 

(Bio), pharmaceutical (Pharma) and universities. Figures 2.2 – 2.4 give a network-based view of 

the evolution of the alliances, and Table 2.1 gives a clear breakdown of how the different types of 

alliances evolved over 5 year consecutive periods from year 1985 to 2001. In the initial 5 year 

period, 1985-1989, we observe that the largest number of alliances were Bio-Pharma (56.19%) 

followed by Bio-University (22.02%). There were comparatively fewer players in the market and 

the thick edges show that a large number of alliances were made between certain established 

entities. However, over time the share of Bio-Pharma drops down to 35.23%, by 1997-2001, 

overtaken by Bio-Bio alliances (42.37%). Bio-Bio alliances is the category that rose most 

drastically, from a mere share of 8.57% in 19851989 period to lead the alliance market at 42.37% 

by 1997-2001. From general observation of the networks we see that: (1) the number of firms 

creating alliances has increased (2) firms tend to create fewer alliances with a given firm (thin 

edges) by 1997-2001, hence diversifying their portfolio of alliance relationships, compared to 

1985-1989 (where we see thicker edges between firms) (3) the number of firms that are not 

connected to the giant component6 is also large. These firms create a single alliance between them 

and are not connected to any firm that is connected to the giant component of the network (they 

are represented in the outer boundary of the network where they are typically connected to only 

one or few other nodes that are not connected to the giant component). 

2.5.4 Testing for Scale-Free Property.  

To test whether the data represents scale free property over time, we need to assess if the degree 

distribution of the network follows a power law curve. Figure 2.5 presents the number of alliances 

a potential firm has with other firms for consecutive 5-year time periods.  

 The graphs represent the cumulative degree distribution for each of the time periods 

considered. As the years become more recent, with a larger number of firms and far more alliances 

created, we see that the graph shifts to the right. The linear relationship in the data become more 

 
6 A giant component of a network considers the connected nodes that constitute a significant part of the complete 
number of nodes and edges that make up the network. In the alliance network data we find that there are a smaller 
number of firms unconnected to the giant component, these tend to be newer firms that are just starting to create 
alliance partnerships that can be considered under bio-pharmaceutical alliances. 
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evident with time. Even though minor deviations from linearity are observed in the data, the overall 

linear relationship stays intact. 

 To test the scale free property, we hypothesize that the linear relationship that seems to 

develop over time in the data follow a power law distribution. In order to test whether the degree 

distribution actually follows a power law distribution, we conducted the Kolmogorov Smirnov 

(KS) test on the data, and power law fitted distribution values. The KS Statistic in this case, will 

help us compare a one dimensional probability distribution (in this case the degree distribution of 

the alliance network), with a reference probability distribution (in this case, a power law 

distribution). The test compares the distance between the two distributions. The test provides the 

numeric scalar, alpha, which is the exponent of the fitted power-law distribution and the KS 

Statistic, which compares the fitness of the empirical distribution to the reference distribution. The 

smaller the score of the KS Statistic, denotes better fit. The p-value of the test gives an indication 

whether the test rejected (or vice versa) the null hypothesis that the empirical data fits a power law 

distribution. A P-value of <0.05 would indicate that the null hypothesis was rejected. 

 Table 2.2 provides the summary KS test statistics. The summary provided here is only for the 

giant component, since applying the KS-Statistic on the entire data set including the loosely 

connected nodes yields poor results, hence it is evident that only the giant component adheres to 

the scale free property. Based on the formal model description, beta is the power law exponent.  If 

the data follows a power law distribution, then 2 ≤   ≤ 3. While it can still be a power law 

distribution with other exponents, empirical analyses commonly find that real-world power law 

distributions to have exponents between two and three.  We see that over time, as the number of 

alliances between firms and the number of firms in the network increases, the scale free property 

emerges. The KS-Statistic column gives the difference between the actual distribution and the 

fitted power law distribution. This value needs to approach zero for perfect fit between the two 

distributions. The P-Value column, represents the p-value of the KS-Statistic, if this value is 

greater than 0.1, then we can conclude that we have sufficient confidence that the alliance data 

follow a power law distribution. 7 

 
7 KS-Statistic was computed such that a p value <0.05 indicated rejection of the null hypothesis, indicating that the 
sample data followed a power law distribution. We increase the threshold to 0.1 in our case as an indication of a higher 
threshold. 
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2.5.5 Testing for Characteristics of Network Clustering.  

Here, we test for the behavior of node-level clustering over time. The logarithm of local clustering 

of nodes are plotted against the logarithm of their degree. In Figure 2.6 this behavior is plotted for 

consecutive 5 year periods. The overall pattern observed in clustering is a downward slope with 

node degree. This behavior illustrates is a correlation between node level clustering and the degree 

of a node. The downward slope, while not completely aligned to a strictly linear line, the 

expectation is to observe whether there is correlation with degree of a node. 

2.5.6 Emergence of Near Decomposability.  

Following the logic articulated in the previous section, we explain the emergence of near 

decomposability using two characteristics in the network structure: the scale free property and 

hierarchical structure. 

 Above we observed that the alliance network, over time, displays the scale free property since 

the degree distribution follows a power law. The adherence of the KS statistic within required 

parameters is consistent with the hypothesis. 

 The next characteristics that determines near decomposability is the hierarchical structure of 

a network. There is a hierarchical nature to a network if there is a scaling behavior between local 

clustering and degree of a node. As the degree of a node increases, the local clustering coefficient 

has to decrease. On the other hand, if there was no hierarchical structure, then there would be no 

scaling relationship between the local clustering coefficient and degree. Again, we observe that 

this scaling behavior is present in the alliance network, hence we can determine with reasonable 

confidence that the network has a hierarchical structure (Refer Figure 2.5 and Figure 2.6). 

2.5.7 Testing for 3 Year Periods.   

We conduct a robustness check to determine whether the conclusions derived regarding scale free 

property and hierarchical structure stand true when we consider 3 year time periods. Figure 2.7 

displays the behavior of degree distribution for consecutive 3 year time periods. The linear 

behavior that develops over time as the graphs move right from left, can be hypothesized to follow 

a power law distribution. Table 2.3 indicates  that even though there are deviations from the power 

law distribution in the initial periods (in the initial periods beta does not fall between 2 and 3), the 
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data start adhering more to power law distribution over time. The existence of limited alliances 

(lower number of nodes and edges) compared to a 5 year period, and hence lesser dense graphs 

potentially contribute to the minor deviations that are observed in the beta values over time 

compared to the 5 year period. Figure 2.8 shows the local clustering against node degree. Again, 

over time we see a clear scaling pattern where the node level clustering reduces as degree increases. 

These behaviors combined, suggest that by and large, the scale free property and hierarchical 

structure exist even when we assume 3 year time periods. However, the emergence of near 

decomposability is more consistent with an assumption of 5 year time periods. 

2.6 Simulation Analysis  

2.6.1 Introduction to the Simulation  

In the empirical analysis, we identified that a hierarchical architecture emerged over time in the 

biopharmaceutical alliance data. This is consistent with the hypothesis that mature strategic 

alliance networks, such as biopharmaceutical firms exhibit near decomposability. The emergence 

of a hierarchical architecture in the alliance network is rooted in who connects to whom over time. 

Since we have a multitude of organization types-bio, pharmaceutical, universities, and non-

medical- in the data, these associations can be influenced by many external organizational and 

macro factors. Hence, delineating what drives the emergence of hierarchy in alliance networks 

becomes challenging. To extract factors that drive the emergence of communities, and the 

hierarchical nature, we must therefore inspect a network’s evolution by removing the noise from 

other external factors. 

 For the purpose of identifying factors that drive hierarchical behavior in alliance networks, 

we develop a robust simulation model to represent inter-firm technology partnerships. We attempt 

to understand under what conditions scale free property and near decomposability would emerge. 

Broader literature suggests that several classes of determinants that play key role in the 

evolutionary process of alliance partnerships. Abstracting out potential underlying real world 

reasons for the emerging structure provide an opportunity to infer some managerial and 

engineering implications based on purely the impact of these determinants on the emergence of 

hierarchical properties in alliance networks. To do so, we assume a fixed environment and focus 

on firm-specific characteristics, alliance-specific characteristics and partnership growth rate. We 
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use the simulation model to develop a fitness landscape in interorganizational setting to help 

understanding the impact of three key determinants on the evolutionary processes of an alliance 

network under a range of scenarios. These key determinants are: 

 

1. Fitness heterogeneity among firms, 

2. Fitness heterogeneity among partnerships and, 

3. Rate of growth of partnerships 

 

The goal of this simulation is to answer the following questions:  

 

1. Do each of the factors mentioned above contribute towards the emergence of hierarchy 

within an alliance network? 

2. Does one factor have a greater impact in the emergence of hierarchy than another?, and 

3. For each of these factors, what is the pattern in which hierarchy emerges in these networks 

over time? 

2.6.2 The Simulation Model  

The simulation is developed to observe the emergence of network patterns over time, in which 

alliances among firms are created and terminated under specific parametric conditions. The 

simulation model is designed to reproduce key characteristics observed in real world alliance 

formation in an inter-firm network; the existence of heterogeneous firms with different levels of 

attraction to form alliances with each other, the formation and termination of alliances over time 

and the increase or decrease of attractiveness of a firm over time as an alliance partner. In the 

following subsection we cover details of the simulation model: parameters and variables used in 

the model, the rule-based attachment and detachment functions and a summary of the model 

execution methodology. 

2.6.3 Simulation Model Formulation  

The formulation of the simulation model for an alliance network and its evolutionary 

characteristics are explained in this section. Representation of firms is limited to a predefined 
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specific number, N , of nodes in the network. Initially, none of these firms have any alliances 

created. Hence, the state space, with N  firms, is defined as the total number of firms that have the 

“potential to participate” in creating alliances within a specified number of time periods, T . Any 

firm i ∈ N can create an alliance with any other firm ( )j N i j  . The simulation begins with no 

edges (alliances) created among any of the nodes (firms). This “clean slate” approach was used so 

as to have a clear baseline that helps compare the results of each of the scenarios that will be tested. 

The model does not discriminate based on “type” of alliance; i.e., no predefined characteristic is 

attached to an edge before or after it is created between two nodes. Two nodes may have more 

than one edge linking them, since there can be multiple independent alliances between two firms, 

each edge created at the same time period or different time periods. Table 2.4 provides the 

definitions for the main parameters and variables in the model.  

 Next we go into details of the simulation model characteristics. The simulation model, as 

summarized below, comprises of the following main characterizations that play a significant role 

in the network evolution process: 1) defining how large the state space should be, 2) randomly 

assigning the starting node and edge fitness probabilities, 3) randomly picking the number of 

alliances to be created and terminated in each time period from predefined distributions, and 4) 

updating the edge fitness probabilities for the next time period. 

Network Alliance Simulation Model: 
Define the state space; a network with set number of firms; N 

Define the time horizon; T 

Assign node and edge fitness probabilities; βi , eij 

For each time period t ∈ 𝑇 
Randomly pick the total number of alliances to be created from a distribution ∅  
Randomly pick the total number of alliances to be terminated from a distribution 𝜑 
Randomly pick the nodes between which alliances will be created 
Randomly pick the nodes between which alliances will be terminated 
Update edge fitness probabilities; eij 

The State Space.  

The state space is defined as a matrix of size *N N . Since there are no alliances between the firms 

at the beginning of the simulation, the state space is initially defined as a null matrix. As time 

progresses, at each time period t T , a number of alliances get created, and a number of alliances 
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get terminated. This populates the state space, helping us to study the conditions under which the 

alliance network evolves to display various real-world network characteristics. 

Node Fitness.  

Extant literature discusses how firm-level characteristics affect the performance of strategic 

alliances and business partnerships (Ahuja, 2000; Powell et al., 2005; Reuer & Ragozzino, 2006). 

Firm-level characteristics such as firm age, firm size, innovative experience, resource and R & D 

capabilities, and firm’s historic alliance experiences are particularly salient in the formation and 

evolution of strategic alliances (Ahuja, 2000; Gulati, 1998; Gulati et al., 2000; Harrigan & 

Newman, 1990; Powell et al., 2005; Reuer & Ragozzino, 2006). This specific attribute pertaining 

to the “firm-level” characteristics is represented by node fitness. 

 The node fitness i   is defined as the “attractiveness” of a firm that impacts the overall 

likelihood of creating an alliance with another firm. For the purpose of the simulation, we assume 

a static node fitness, as defined at 0t  . The node fitness value is randomly picked from a 

predefined distribution. The fitness values are normalized to create node fitness probabilities. As 

explained below, node fitness probabilities are utilized when updating edge fitness probabilities 

that determine the propensity for alliance creation between two firms.  

Edge Fitness.  

The attributes at the alliance level between two partners such as alliance specific investments, prior 

ties, innovation in the partnership, frequency and historic length of alliances between the partners, 

and type of partnerships are particularly important for the formation and evolution of alliances 

(Ahuja et al., 2012; Gulati, 1999; Schilling & Phelps, 2007; Stuart, 1998; Uzzi, 1997). This 

specific attribute pertaining to the strength of “ties” between two firms is indicated by the edge 

fitness. 

 Similar to the node fitness, at time 0t   we also randomly assign edge fitness between two 

firms, i N  and j N  from a predefined distribution. Once this parameter is normalized across 

all *N N , we use the term “edge fitness probability” to denote the probability of an edge, in other 

terms the propensity of an edge to be picked among other edges as a potential alliance at time t . 

Since the attractiveness for a potential alliance between two firms can change over time, the edge 
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fitness probability is updated at every time period, taking into consideration the node fitness 

probabilities between firms ( i  and j ), the number of alliances between i  and j  in the previous 

time period 1t  (we assume that active partnerships play a critical role compared to “all” historical 

partnerships between two firms, since considering every partnership historically may result in over 

crowding of the network) and a constant θ that serves as a network specific parameter. The 

importance of considering the state space at 1t   when adjusting edge fitness probabilities for time 

t  is because a greater number of alliances created between two firms may have a positive spillover 

effect over future alliances. We consider   to represent an alliance network specific constraint; 

the impact of such a constraint and defining it accurately requires empirical analysis at a much 

deeper level than this thesis allows. 

 

 1( , ) ( , )t te i j e i j   (number of alliances) 1( , ) ( )t i ji j          for 1t              (1) 

The Attachment Function.  

In the simulation, alliances are created in each time period t  based on an attachment function. The 

number of alliances to be created in each period is randomly chosen from a specified distribution 

 , where the probability distribution parameters can be adjusted. Once a number of alliances to 

be created is picked, the model does a random sampling of the edges to be created in the state 

space. The random sampling utilizes the edge fitness probability measure explained earlier. Based 

on the formulation of the edge fitness probability for 1t  , agglomeration of nodes takes place over 

time where firms with greater number of alliances become more central in the network.  

The Detachment Function.  

In each time period t , once alliances are created we then proceed to determining which alliances 

need to be detached. The number of alliances that need to be detached in a time period is 

determined based a predefined probability distribution  . In each time period, it is ensured that 

the maximum number of alliances that can be detached is lower than the maximum number of 

alliances created. This ensures that overall, there is a growth in the number of alliances created in 

the network. The edge fitness probabilities are utilized to randomly sample the alliances that need 
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to be detached. Using the same edge fitness probability values for the attachment and detachment 

functions ensures that there is no over indexing on certain nodes, which would affect the overall 

evolution of the alliance network. 

2.6.4 Scenario Generation 

As highlighted in Gulati (1998), the main sequence of events that take place in alliance formation 

are: 1) the decision to enter into an alliance, 2) the choice of an appropriate partner, 3) choice of 

the structure of the alliance, 4) the dynamic evolution of the alliance as the relationship develops 

over time. In our simulation, we use a Monte Carlo simulation technique to determine how many 

alliances will be created in a given period of time and between which firms these alliances will be 

created (the decision of creating an alliance and choice of an appropriate partner). We use two 

firms’ history of alliance partnerships to update the future probability of creating an alliance 

between those firms (a form of the dynamic evolution between two firms and how their 

relationship develops over time), and we study the growth rate of alliances (difference between 

how many alliances are created vs. how many are terminated) as a means of capturing the market’s 

propensity to create alliances. Hence, our simulation focuses on three factors that are critical in 

alliance formation: firm-level characteristics, partnership-level characteristics and external market 

requirements for creating alliances and partnerships. In generating scenarios to analyze what drives 

hierarchy in alliance networks, these factors are brought to life by: the node fitness probability, 

edge fitness probability and the rate of alliance generation. This subsection covers the reasoning 

behind selecting these factors for scenario analysis and a description of the scenarios analyzed. 

Factor 1- Node Fitness Probability:   

 In the simulation model, we use node fitness probability as a factor that helps emulate these 

firm-level characteristics that are highlighted in the extant literature. The node fitness probability 

is initially assigned to a firm based on a probability distribution function. Over the time horizon of 

the simulation. Therefore, while some firms will have a higher probability compared to others in 

the state space, this is assumed to be reflective of a firm’s technological capability, attractiveness 

and maturity in the market, competitive resources offered and being a better alternative compared 

to other firms in the market. We assume that the node fitness probability, once defined, stays 
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constant over the entire time horizon of the simulation. Since a goal of this simulation is to better 

understand the impact of the “propensity” of a firm to create alliances in the state space, and not 

the impact of the evolution of firm-level characteristics over time, it is justifiable to maintain a 

single node fitness probability for a firm over time. 

 In the simulation, we run scenarios for a wide range of parameter values in the distribution 

function. This helps to test a state space for which there is a low distinction between firms to a 

very high variation of firm-level characteristics. Thus, emulating a range in which we see all firms 

have almost same “capability and attractiveness” to create alliance to a much broader variation 

among firms. 

Factor 2 - Edge Fitness Probability:   

In this simulation, the edge fitness probability is a metric that indicates the potential dyadic 

relationship between two firms. Empirical evidence suggests that opportunities for collaboration 

and alliance formation is not merely a “search” for compatibility, but that existing relationships 

among alliance partners plays significant role in creating future alliances. Furthermore, “Social 

networks of prior ties not only influenced the creation of new ties but also affected their design, 

their evolutionary path, and their ultimate success” (Gulati, 1998).  

 In our simulation model, the edge fitness probability is assumed to capture this notion of 

future alliance creation based on compatibility between two firms and their history of being 

alliance partners. In a previous section, we covered how edge fitness is assigned based on a 

predefined probability distribution function and how it is updated in each time period to 

incorporate the prior ties between two firms. 

 In our simulation we explicitly consider the relational strength between two alliance partners 

if they have prior ties between them in time 1t   (see equation 1). However, the structural 

connections of a firm and its influence of creating alliances with a partner of a partner (assume a 

firm A being connected to another firm B that has a large number of alliances with a central node 

C, hence the propensity of A being connected to C) is not explicitly modeled in this simulation. 

Due to computational complexity and the need to focus on understanding the overall impact of a 

direct dyadic relationship over time, we restrict the scope of influence of prior ties in this 

simulation only to direct alliance partners. 

 Similar to the node fitness probability, in the simulation, we run scenarios for a wide range 
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of parameter values in the distribution function. This helps to test a state space for a range of 

potential “propensity of firms to create an alliance” from a low to a very high level of attractiveness 

between two firms.  

Factor 3 – Rate of Growth in Partnership:   

In this Apart from the node fitness probability, a representation of the firm-level characteristics 

that affect alliance formation, and edge fitness probability, a representation of the propensity of 

two firms to create an alliance, we also study the impact of the rate of growth of partnerships on 

the evolution and formation of hierarchical structure in alliance networks. Previous literature has 

shown that environmental attributes such as institutional environment, business climate, growth 

rate and cultural factors (Hamel, 1991; Hitt et al., 2004; Oxley, 1999; Park et al., 2002) are critical 

to do understand strategic alliances. For our purposes control rest of the environmental 

characteristics and focus on the rate of growth in partnerships. We define rate of growth of 

partnerships as the net number of alliances that is formed in a given time period. Therefore, a high 

rate of growth of partnerships corresponds to a greater net number of alliances formed in any given 

time t . 

 Unlike the node and edge fitness probabilities, which capture intrinsic characteristics at firm 

and dyadic levels, the rate of growth of partnerships is used to represent the nature of the market 

and the overall network-wide propensity to create alliances. We use this as a metric that covers the 

impact of industry-wide strategic behavior that may lead to; a greater propensity to form alliances 

that help firms stay competitive, a greater willingness of firms to leverage technological and 

critical knowledge of other firms, potential market growth, increased number of firms entering the 

market (increased number of active participants in the state space), increased efficiencies in the 

market that drive greater collaboration, and a varied number of other reasons driven by macro 

trends (Berg & Friedman, 1978; Hagedoorn, 2002; Madhavan et al., 1998).  

 Similar to the node and edge fitness probabilities, in the simulation, we run scenarios for a 

wide range of parameter values in the distribution function that defines the rate of growth. This 

helps to test a state space for which there is a low overall net new alliances created between firms 

to a very high number of net new alliances created at any given time period t . Thus, emulating a 

range of potential macro-economic trends that drive varying levels of net new alliances created in 

the network. 
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Scenario Generation 

As depicted in Table 2.5, for the simulation, we study a total of 30 scenarios. The first 10 scenarios 

focus on the variation in node fitness probability distribution. For the purpose of generating a 

distribution, we use a uniform distribution model with upper and lower bound parameters. The 

larger the difference between the upper and lower bounds, the greater the variation in node fitness 

probability across the nodes in the entire state space. Scenarios 11-20 focus on the variation in 

edge fitness probability distribution. The larger the difference between the upper and lower bounds 

in the distribution, the greater the variation in the propensity to create alliances between the firms. 

The first 10 scenarios focus on the variation in node fitness probability distribution. Scenarios 21-

30 focus on the variation in rate of growth of partnerships. Since the rate of growth is defined as 

the difference between the potential alliances that are created and those that are detached during a 

time period t, the growth probability distribution is shown as a difference between two uniform 

distributions (distribution function from which umber of alliances to be attached is picked,  , and 

the distribution function from which number of alliances to be detached is picked,  . The larger 

the difference between the upper bounds in each of the distributions, the greater the number of 

potential alliances created in the network. 

 Each simulation run consisted of a state space where N  = 100. The simulation was run for a 

time horizon of  T  = 500. Because we use probability distributions, to ensure that the results in 

the analysis are not skewed, each scenario was re-run 25 times. The results reported in the next 

section, for each scenario, is the average based on 25 runs per scenario. 

2.6.5 Simulation Results and Analysis  

As highlighted previously, to test the emergence of near decomposability in the alliance network, 

two characteristics in the network structure needs to be established: the scale free property and 

hierarchical structure. In this section, we analyze results of the simulation and determine the impact 

of node and edge fitness probability and alliance growth on the emergence of scale free property 

and hierarchy in the simulated networks. 
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Scale Free Property.8  

A network that shows scale free property when the degree distribution follows a power law. 

Therefore, as explained in the earlier section, the degree distribution of a scale free network follows, 

as ( ) ~P k k  for some constant . We can conclude that a network fits the power law distribution 

and displays scale free network properties if 2 3  , and the p-value of the fitted distribution is 

0.1p  , we also include graphs that only have  mean degree,  𝑑̅ ൐ 2 to ensure no sparse graphs 

are included in the analysis (Broido & Clauset, 2019).   

 Figure 2.10 summarizes the simulation analysis for all 30 scenarios. Referring back to Table 

2.4, scenarios 1-10 represent the variation in node fitness probability, scenarios 11-20 represent 

the variation in edge fitness probability and 21-30 represent variation in rate of growth of 

partnerships. (In Appendix 2.2 Figures A2.2 - 12 - 15 summarizes the simulation analysis for the 

selected scenarios 1, 10, 20 and 30 as representative examples for illustration purposes). The solid 

colored lines indicate the results obtained from the simulation, we have incorporated a smoothed 

trend line in black for the variations observed in all 3 graphs. The X axes represent the simulated 

scenario, the Y axes represent the percentage of networks that displayed scale free property (i.e., 

2 < γ < 3, p-value ≥ 0.1, 2 < mean degree). The percentage of scale free networks is calculated in 

the following manner: 

 

1. Run a scenario for T  = 500. Calculate metrics such as mean degree and parameters of 

fitted distribution such as γ and p-value for each of the networks at time t T . 

2. Run the same scenario for 25 iterations. Repeat step 1 for each network at time t T for 

each of the runs. 

3. Summarize metrics and determine average number of networks that depict scale free 

behavior for the scenario (average of scale free networks that emerges from 25 runs * 500 

time periods per scenario). 

 

 Figure 2.10 shows that the variation in node fitness probability results in an increase in the 

percentage of scale free networks, but diminishes as the range of the distribution increases beyond 

a certain threshold. Since the node fitness probability of two firms, i and j, have a direct correlation 

 
8 See Appendix A for detailed scale free graphs of the simulated networks. 
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on the edge fitness probability between them, ije , after 1t  , nodes with greater fitness probability 

act as central nodes and create and scaling effect in the network. However, as the range gets wider 

the central nodes become agglomerates in the network at a faster rate. Hence, the network starts 

becoming pretty dense more rapidly, not adhering to the scale free properties. That results in a 

downward trend as the bounds of the node fitness probability distribution increases. This tells us 

that in an alliance network, having firms with a broader range of characteristics has a direct 

correlation in resulting in more scale free networks. However, if that range is extremely broad, the 

alliance creation process gets centered around central players and makes the alliance network 

extremely dense across firms. 

 Relative to the increase in the upper bound of the distribution, the initial parameters of the 

edge fitness probability have relatively no impact on the emergence of scale free property in the 

network. This is a relatively straightforward implication, since the edge fitness probability 

distribution directly impacts the propensity to create alliances only at 1t  . As explained using 

Equation 1, after 1t   the edge fitness probability, ije , is influenced by the node fitness 

probabilities and the number of alliances that were created between firms i  and j  by the time 

1t  . Hence, as seen in Figure 2.9, the initial propensity to create alliances between i and j does 

not have a long term influence on the emergence of scale free property in these networks. This 

helps us conclude that among firms, even if there is a large variation of propensity to create 

alliances at an initial time period 0t  , that impact will not hold over time if there are other 

influences (such as firm-level characteristics and other macro factors) that affect the overall 

propensity to create alliances. 

 The variation of partnership growth, has an almost linear upward trending relationship with 

the number of scale free networks generated as the upper bound of the number of alliances that 

can be created increases. Beyond a certain range, the percentage of scale free network plateaus 

indicating that there is minimal impact on the scale free property of the alliance networks. Since 

the number of nodes in the state space is restricted to 100N  , greater rate of alliance formation 

tends to create a denser network, that after a specific threshold does not adhere to the scale free 

property. This helps us conclude that, the rate at which alliance formation takes place (due to 

various macro factors), does have a direct correlation on making an alliance network scale free.  
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However, as this rate increases while there will still be alliances created at a faster rate within the 

network, the number of scale free networks that emerge over time will not be impacted. 

Hierarchy Property.  

As described earlier, in order to evaluate whether near decomposability emerges in the simulated 

networks, we need to determine if they display hierarchy in networks. In that section, details of 

how hierarchy emerges when relationship ( ) ~C k k  for some stochastic   (Ravasz & Barabási, 

2003). In line with this theory, we test the impact of each scenario in the simulated networks to 

determine to what degree they depict hierarchical behavior.9  

 Figure 2.11 includes the percentage of networks that show hierarchical property on the right 

and the percentage of networks that display scale free property on the right. As illustrated in the 

previous section, the existence of both, scale free property and hierarchy, is a necessary condition 

for near decomposability. We followed the same process detailed out for measuring the percentage 

of nodes with scale free property for hierarchy as well. Scarce networks were eliminated from the 

analysis, and we assume there will exist no perfect hierarchical network in the real world. Hence, 

in ( ) ~C k k  for some , we consider the range for beta to be less than or equal to 2.5 in order to 

calculate the percentage networks that display hierarchy in the simulated networks. 

 We observed that the scale free property increases with the increase in range in the node 

fitness probability, and then decreases as that range increases beyond a certain threshold. However, 

as seen in Figure 2.10, the increased range in node fitness probability has slowly decreasing effect 

on the percentage of networks that display hierarchical property. The underlying cause is that 

beyond a certain point in a network, regardless of the range of the node probability distribution, 

the network becomes overly clustered and this results in a non-hierarchical network (Appendix 3 

- note the loss of linearity from t = 100 to t = 500 in scenarios 1, 5 and 10). 

 The observation above, in node fitness probability, holds true in the case of varying edge 

fitness probability as well. The percentage of networks that display hierarchical property on 

average remains in the range of 10% to 20%, generally as a slow increasing function. Again, when 

an alliance network’s clustering (when firms start creating more and more alliances with the 

neighbors of firms they already have partnerships with) gets over a certain threshold, we observe 

 
9 Please refer to Appendix A for graphs on clustering vs. degree for the simulated scenarios). 
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that the hierarchical property diminishes (Appendix A - note the loss of linearity from t = 100 to t 

= 500 in scenarios 11, 15 and 20). 

 In contrast to the variation in node fitness probability and edge fitness probability, the rate of 

growth of partnerships has a more pronounced impact on the percentage of networks that display 

hierarchical property. As the upper bound on the distribution for rate of growth of partnerships 

increases, the percentage of networks that display hierarchical property diminishes significantly. 

This shows that, the rate of which partnerships grow (and hence create more inter-connections 

within the alliance network) has a more significant impact on the emergence of hierarchy compared 

to the firm-level or alliance-level characteristics (Appendix A note the loss of linearity from t = 

100 to t = 500 in scenario 21 and 25 and almost non-existence of linear relationship in scenario 

30). 

2.6.6 Additional Analyses 

We conducted multiple additional analyses to evaluate the impact on the simulation results 

explained above. In this section, we highlight two selected analyses for reference. The first, 

analyzes the impact of differing node fitness distribution parameters on selected scenarios between 

scenarios 11-30. This shows the impact of a change in node fitness distribution parameters on the 

select scenarios compared to the baseline that was analyzed earlier. The second analysis, is a heat 

map generated to evaluate the stable time periods where the scale free property emerges. This gives 

a high-level understanding of the time it takes for scale free property to emerge in a simulated 

network and the length of time at which it remains stable, giving an additional layer of 

understanding of the pattern in which the property emerges beyond merely the percentage of time 

periods at which it shows scale freeness.  

Sensitivity Analysis under Differing Node Fitness Conditions 

In Figure 2.9, we observe that scenario 5 results in the highest percentage of networks with scale 

free property. Since scenarios 11-30 were tested under conditions where the node fitness ranged 

between [1,2], additional analysis was conducted to test the variation in results if the node fitness 

ranged between [1,5], which represents the node fitness distribution in scenario 5. This gives a 

comparison to baseline where we tested a node distribution of [1,2] against scenarios 11-30. We 
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tested a selected set of scenarios: 13,18, 23 and 28. To recollect, in scenarios 13 and 18 the edge 

fitness values changes from [1,3] to [1,8]. These two scenarios provide a test case of the impact of 

increasing the upper bound of the node fitness value from [1,2] to [1,5] on already tested scenarios 

for varying edge fitness values. In scenarios 23 and 28 the growth probability distribution values 

change from [1,4] – [1,2] to [1,9] – [1,2]. Thus, these two latter scenarios provide a test case of the 

impact of increasing the upper bound of the node fitness value from [1,2] to [1,5] on already tested 

scenarios for varying growth probability distribution values. 

 In Figure 2.11, the scatter plots represent the percentage of scale free networks when tested 

under conditions where the node fitness is [1,5] instead of [1,2]. We observe that in scenario 13, 

the total percentage of scale free networks increases from 24% to 39%, similarly scenario 18 also 

shows an increase from 22% to 42% when the node fitness distribution increases from [1,2] to 

[1,5]. This shows that the scale free property is positively impacted under increased node fitness 

distribution conditions when compared with varying edge fitness parameters.  

When tested for scale free property under differing growth distribution scenarios we 

observe the following. In scenario 23, the total percentage of scale free networks increases 

significantly from 13% to 46%. But, in scenario 28 we see a decrease from 41% to 27% when the 

node fitness distribution increases from [1,2] to [1,5]. This shows that the scale free property could 

be positively or negatively impacted on certain conditions of growth distribution, which will 

require further detailed analysis to understand if there is a discernible pattern.   

 The scatter plots in Figure 2.12, represent the percentage of hierarchical networks when 

tested under the condition where the node fitness is [1,5]. We observe that in scenario 13, the total 

percentage of hierarchical networks increases from 6% to 15%, whereas scenario 18 shows a 

decrease from 18% to 4% when the node fitness distribution increases from [1,2] to [1,5]. Unlike 

the impact of increased node fitness distribution on scale free property, scenarios 13 and 18 do not 

show a discernible pattern compared to base line for hierarchical property under increased node 

fitness distribution values. When tested for varying growth distribution scenarios we observe the 

that in scenario 23, the total percentage of hierarchical networks decreases slightly from 15% to 

13%. But, in scenario 28 we see an increase from 5% to 9% when the node fitness distribution 

increases from [1,2] to [1,5]. Again, for certain conditions of growth distribution the hierarchical 

property could be positively or negatively impacted, which as mentioned earlier will require 
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further detailed analysis to understand if there is a discernible overall pattern under various growth 

distribution conditions.   

Heat Map to Observe Emergence of Scale Free Property 

In Figure 2.13, we display the emergence of scale free property over time. The Y-axis represents 

the time period in each simulation, ranging from t=1 to t=500. The X-axis represents each of the 

scenarios. Each scenario was run for 25 iterations and the color coding indicates the percentage of 

iterations in which the scale free property emerged for each scenario. 

We observe that under varying node fitness conditions (scenarios 1-10), the scale free 

property emerges only after scenario 3, indicating a minimum threshold that is required for node 

distribution values so that the scale free property emerges. After scenario 3, when the range in the 

node distribution values become greater, scale free property begins to emerge earlier in the time 

horizon and remains stable for a set time range. As the node fitness distribution range increases, 

the stability period, indicating how long the scale free property remains stable, decreases. In 

scenario 3 we observe the stable period to range from approximately between t=150 to t=500 

whereas, by scenario 10, the stable period shrinks from approximately t=50 to t=200.  

 For scenarios 11-20, where the edge fitness varies, the scale free property emerges 

approximately after t=200 in some scenarios, and after t=300 in most scenarios. Thereafter, the 

stable condition remains up until t=500, of these 10 scenarios for 5 of them over 50% of the 

iterations had scale free property emerge  after approximately t=450.  

 For scenarios 21-30, where the growth distribution varies, the scale free property does not 

emerge until the growth distribution reaches a threshold of [1,4]-[1,2] in scenario 23. From 

scenario 23 onwards, scaling property emerges after approximately t=100, and remains stable until 

the end of the time horizon. In general, the greater the growth distribution, the greater the number 

of iterations that displayed scaling property across many time periods.  

 In summary, this analysis shows that the emergence of scaling property across the time 

horizon varies depending on the scenario. When node fitness is varied, the length of the stable 

condition peaks between scenarios 3 and 6, while when the edge fitness and growth distribution is 

varied, the stable condition remains approximately the same after a certain threshold.  
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2.7 Conclusion and Future Research 

2.7.1 Summary of the Research 

In section 2, we hypothesized in interfirm networks, smaller network sub communities recursively 

organized hierarchically into a larger network in a nested fashion. These nested subcommunities 

emerging from the hierarchical network exhibit local-level clustering. Sections 3 and 4, in order, 

explored empirical evidence in inter-firm alliance networks, and simulated the generation of 

alliance networks under various conditions to test the above hypothesis. 

 

From an empirical standpoint, we observe that inter-firm alliances, as observed in the 

expansive biopharmaceutical alliance data, develop near decomposable network characteristics 

over time. Considering a rolling 5 and 3 year window, we show that biopharmaceutical alliances 

develop scale free property and hierarchical property over time, which makes them near 

decomposable systems. Using a simulation, we attempt to emulate firm-level, dyadic relationship 

level and macro level scenarios that will help us understand what underlying characteristics impact 

the emergence of near decomposability. We observe that firm-level characteristics in the form of 

node fitness probability does have an impact on the emergence of scale free property in alliance 

networks, but its variation has no consequential impact on the emergence of networks with 

hierarchical property. Hence, the overall percentage of networks in a given time horizon that show 

near decomposability remain on average between 10% - 20% in our simulated alliance 

environment. However, the varying fitness in the dyadic relationship in the form of edge fitness 

probability does not have a significant impact on scale free property and hierarchical structure. 

Again, in this case the overall percentage of near decomposable networks remain at an average 

between 10% and 20%. Finally, the network-wide propensity to create alliances, rate of growth of 

partnerships, does positively influence the emergence of scale free networks, but negatively 

influences the emergence of hierarchical network structures. This research has paid attention to 

not only develop an empirical understanding of near decomposability in inter-firm networks but 

also simulated the firm-specific, alliance specific and macro level heterogeneity observed in the 

real world. 
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2.7.2 Research Contributions  

This paper makes a number of contributions to the literature. First, we develop both conceptually 

and empirically an approach to think about near decomposability in interorganizational settings. 

In doing so, we offer a pathway to think about the implications of business partnerships both at the 

industry and firm levels. If, as we show, that near decomposability can emerge under specific 

circumstances and there are implications at the industry-level, both the business and government 

policies would want to pay attention to possibly enabling those circumstances. For example, as 

during the case of COVID-19, governments mandating partnerships for the broader welfare 

circumstances (E.g., Johnson & Johnson partnership with Merck to manufacture vaccine), 

industrial policies may enable structural circumstances conducive for the emergence and growth 

of the industries. We hope that the theoretical foundation developed in the paper will provide 

opportunities on how near decomposability can be helpful for wide variety of performance and 

evolutionary outcome measures.  

Similarly, an expansive literature has long recognized the firm-specific implications of 

alliances and networks, and how they affect the process of these firms create and capture value 

(Ahuja et al., 2012; Gulati, 1998; Gulati et al., 2000; Mesquita et al., 2017). How firms embed 

themselves in a network “[..] is a logic of exchange that promotes economies of time, integrative 

agreements, Pareto improvements in allocative efficiency, and complex adaptation” (Uzzi, 1997). 

While articles in this nature provide evidence for complex interactions among firms, broader 

systems-wide mechanisms with nonsimple interactions remains broadly an open question and this 

paper attempts to provide a first step in answering the question. By showing how firms’ distinct 

heterogeneous characteristics can emerge from the overall nature of near decomposability in the 

network, we add to the literature that identifies the sources competitive advantage firms develop, 

sustain and grow during the evolutionary processes (Baum et al., 2003; Borgatti & Foster, 2003; 

Rowley et al., 2000; Schilling & Phelps, 2007; Uzzi & Spiro, 2005). This also helps us to more 

broadly contribute to the growing stream of research that takes a structural approach to network 

studies. This strand of research elucidates that substantial causal drivers in network settings often 

come from the enduring patterns of relationships among the actors in the network (Kilduff & Brass, 

2010; Wellman & Berkowitz, 1988). By providing a treatment on how a macro-level hierarchy we 

observe in the network may emerge from micro-level local clustering and the scaling in network, 

we contribute to this stream of literature. 



 
 

 51

 An important challenge in identifying the patterns of clustering in strategic networks and 

their network evolutionary behavior is empirical. Ahuja et al. (2012) articulates that the “paucity 

of empirical research likely stems from challenges such as the practical difficulties posed by 

obtaining longitudinal network data, the complexities of handling networks over time [..] (f)or the 

field to advance, a cumulative body of empirical evidence is needed to advance our understanding 

about the emergence, evolution, and dynamics of networks”. The most obvious methodological 

challenge here arises from the fact that the typical toolkits of organizational and strategy scholars 

are not the best to identify network patterns. State-of-the-art network science techniques, that has 

made significant inroad in the recent years, typically emerge from scientific disciplines such as 

computer science, engineering and mathematics (Alderson, 2008; Barabási, 2016; Newman & 

Girvan, 2004). Naturally these potential methods for solving these puzzles are intellectually distant 

from the status quo organizational scholarship. These methodological advancements help us to 

capture some the real world network attributes and their potential implications with a reasonable 

degree of confidence. 

2.7.3 Limitations and Future Research 

Several limitations in this study point to future research directions. First, the simulation model 

developed in this research, has been tested purely for node fitness, edge fitness and rate of growth 

of partnerships. These factors are generalized to represent firm-level, dyadic and macro market 

influencing factors that drive alliance creation. An implicit assumption in the paper is that industry 

dynamics is cohesive and evolutionary process could be studied within a specific industry. While 

reasonably cohesive nature of biopharmaceutical industry allows us to make this assumption and 

it gives a valuable high level insight into the factors that impact the emergence of near 

decomposability in alliance partnerships, future work focus on modeling the evolutionary process 

more exhaustively to capture historical trends in alliance partnerships of firms operating in 

multiple industries. This would require a study of detailed alliance data spanning across multiple 

industries, which is much the scope of this paper.  

Second, we are limit our simulation analysis only to rate of growth when thinking about 

the environmental factors. Business partnerships are both facilitated and hampered by several 

environmental factors including the institutional, cultural, legal and other social environments. 

Although limiting the scope of our study helps to tease out some specific mechanisms of interest 
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for this paper, future work should consider relaxing this assumption and explicitly model the 

contingencies it may bring to the formation of near decomposable property in networks      

Third, we test a generalized network propagation mechanism using where the sample is 

drawn from a probability-weighted uniform distribution in Monte Carlo simulation. However, 

testing more empirically driven propagation mechanisms might give insights into their impact on 

the emergence of near decomposable networks. Defining real world alliance network characteristic 

based on historical observations of firm-level and dyadic-level characteristics will be an interesting 

expansion of this simulation. 

Fourth, in this paper we primarily focus on network propagation and formation of alliances. 

However, an important next step is to study how the existence of near decomposability, or lack 

thereof, will affect both traditional firm- and alliance-level performance measures such as financial 

outcomes, R&D performance and innovation measures. We leave these ideas for future research 

opportunities.  
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Figure 2.1 Comparison of Random, Scale-Free and Hierarchical Network  

(Figure is reproduced from Barabasi and Oltvai (2004) with permission.) 
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Figure 2.2 Network Descriptive Plots – Years 1985 – 1989 

 

 

Figure 2.3 Network Descriptive Plots – Years 1991 – 1995 
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Figure 2.4 Network Descriptive Plots – Years 1997 - 2001 
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 Figure 2.5 Degree Distribution of the Network, 5 Year Period (in log – log) 

 

 

Figure 2.6 Hierarchical Structure of the Network, 5 Year Period (in log – log) 
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Figure 2.7 Hierarchical Structure of the Network, 3 Year Period (in log – log) 

 

 

 

Figure 2.8 Hierarchical Structure of the Network, 3 Year Period 
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Figure 2.9 Percentage of Networks that Display Scale Free Property by Scenario 
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Figure 2.10 Percentage of Networks with Hierarchy Property by Scenario 
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Figure 2.11 Percentage of Networks with Scale Free Property Under Differing Node Fitness 
Conditions for Scenarios 13,18, 23 and 28 
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Figure 2.12 Percentage of Networks with Hierarchical Property Under Differing Node Fitness 
Conditions for Scenarios 13,18, 23 and 28 
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Figure 2.13 Heat Map of Emergence of Scale Free Property 
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Table 2.1 Alliance Types – Changes over Time 
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1985-
1989 

56.19 22.02 8.57 8.45 4.64 0.12 

1986-
1990 

55.21 22.25 10.51 7.55 4.30 0.19 

1987-
1991 

54.26 23.97 11.91 6.39 3.31 0.16 

1988-
1992 

48.60 25.22 16.03 5.62 4.34 0.19 

1989-
1993 

45.26 24.24 17.92 4.82 7.51 0.26 

1990-
1994 

43.22 23.03 19.37 3.95 9.79 0.66 

1991-
1995 

43.05 20.87 21.10 3.42 10.25 1.32 

1992-
1996 

42.13 18.48 23.82 3.35 10.78 1.44 

1993-
1997 

42.94 16.31 25.93 3.29 10.14 1.40 

1994-
1998 

42.44 14.81 29.48 3.51 8.44 1.32 

1995-
1999 

42.05 12.96 33.20 3.64 7.05 1.10 

1996-
2000 

38.21 12.59 38.37 4.19 5.90 0.74 

1997-
2001 

35.23 11.98 42.37 4.42 5.32 0.68 
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Table 2.2 KS-Statistic, 5 Year Period  
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Table 2.3 KS-Statistic, 3 Year Period 
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Table 2.4 Definition of Simulation Parameters  
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Table 2.5 Summary of Scenarios Tested in the Simulation 
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APPENDIX - A 

Hierarchical Network Example 

 

 

 

Figure A1 Hierarchical Subnetwork example - Pfizer	
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Scaling of Scale Free Networks for Simulated Scenarios 

This appendix includes figures that highlight the emergence of scale free property for selected 

simulation scenarios. Since the emergence of scale free property shows slight variation, we have 

picked scenarios 1, 10, 20 and 30 as representative scenarios for illustration purposes. 

 

 

Figure A2 Scale Free Property: Scenario 1 

 
 
 

 

Figure A3 Scale Free Property: Scenario 10] 
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Figure A4 Scale Free Property: Scenario 20 

 

 

 

Figure A5 Scale Free Property: Scenario 30
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Scaling of Clustering with Degree For Simulated Scenarios 

This appendix includes figures that highlight the scaling property for selected simulation scenarios. 

For each factor, node fitness, edge fitness and rate of growth, we have included 3 scenarios that 

are representative: Node Fitness - Scenarios 1, 5 and 10; Edge Fitness - Scenarios 11, 15 and 20; 

Rate of Partnership Growth - Scenarios 21, 25 and 30.  

 

 

Figure A6 Hierarchical Property: Scenario 1 

 
 

 

Figure A7 Hierarchical Property: Scenario 5 
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Figure A8 Hierarchical Property: Scenario 10 

 

 

Figure A9 Hierarchical Property: Scenario 11 

 
 

 

Figure A10 Hierarchical Property: Scenario 15 
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Figure A11 Hierarchical Property: Scenario 20 

 

 

 

Figure A12 Hierarchical Property: Scenario 21 

 

 

 

Figure A13 Hierarchical Property: Scenario 25
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Figure A14 Hierarchical Property: Scenario 30
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 IMPLICATIONS OF PRIORITY ACCESS IN MARKETS WITH 
EXPERTS: EVIDENCE FROM ONLINE MARKETPLACE LENDING   

3.1 Introduction 

Effective design and governance of platform markets require all the actors in the platforms, 

including platform owners and other complementary market players on both sides, to align towards 

a specific value proposition (Adner, 2017; McIntyre & Srinivasan, 2017; Tiwana et al., 2010).  To 

realize their desired objectives, platform owners must ascertain appropriate economic mechanisms 

and design rules that can facilitate value creation activities by market players, which in turn, can 

increase the attractiveness of the platform (Anderson Jr et al., 2014; Baldwin & Woodard, 2009; 

Dushnitsky et al., 2020; Helfat & Raubitschek, 2018). However, platform owners’ design approach 

to facilitating the intended value proposition often faces significant challenges. Unlike traditional 

firms, platform owners facilitate transactions between two sides of the market. Inevitably, this role 

involves market designing activities including the configuration of economic incentives (Boudreau 

& Hagiu, 2009; Teece, 2018; Yoo et al., 2010; Zhu & Liu, 2018). This is prominently noticed when 

platform owners have differing objectives or conflict of interest with either one or both sides of the 

complementors (Casadesus‐Masanell & Hałaburda, 2014; Evans & Schmalensee, 2013).  

Whenever the design of markets is a possibility, it is pertinent to ask: “how the design of 

marketplaces influences the functioning of markets” (Roth, 2018). An emerging corpus of literature 

suggests that platform owners frequently use one such design mechanism, platform market 

access—their ability to control platform market access by granting or restricting access to certain 

complementors in either side of the market—to orchestrate economic incentives (Boudreau, 2010; 

Tiwana, 2013). On one hand, platform owners use their ability to leverage platform market access 

to spur positive externalities such as network effects or complementarity across products and 

services to attract more players to the markets and “grow the pie” (Eisenmann et al., 2006; McIntyre 

& Srinivasan, 2017; Rysman, 2009). On the other hand, platforms can restrict access to the market 

to manage the desired quality level and attract the right type of complementary players to the 

platform (Boudreau, 2012; Casadesus‐Masanell & Hałaburda, 2014; Halaburda et al., 2018).      

  This is particularly important as platform owners often resort to targeting 

supplier/producer side (e.g., drivers in Uber, hosts in Airbnb, workers in TaskRabbit) expansion to 

cater to increasing demand in the user/consumer side of the market (e.g., passengers in Uber, guests 
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in Airbnb, consumers in TaskRabbit). It is well known that platforms often create an arrangement 

where they “can affect the volume of transactions by charging more to one side of the market and 

reducing the price paid by the other side by an equal amount” (Rochet & Tirole, 2006). As these 

marketplaces grow, platform owners needed additional mechanisms beyond merely subsidizing 

one side at the expense of the other. Priority access is considered an important design mechanism 

that helps to control platform access and shape complementors’ activities (Cohen, 2017; Evans, 

2012; Tiwana, 2013). For instance, Chinese ride-sharing giant Didi Chuxing has made exclusive 

deals with the local taxi companies to increase the supplier-side availability of the marketplace 

(Tech Crunch, 2018). Similar interventions by platform owners are widely observed in diverse 

industrial marketplaces such as hospitality (e.g., Airbnb agreements with boutique hotel and hybrid 

condo developers), real estate (e.g., Zillow offering partnerships to homebuilders), credit cards (e.g, 

American Express exclusive offers to Delta Airlines), microblogging (e.g., Twitter’s exclusive 

partnership with media companies), video game consoles (e.g., Microsoft Xbox’s partnership with 

Unity Technologies, provider of the Unity multi-platform game engine to augment the supply of 

games and identify synergies) and in myriad others. 

Incentive design concerns are compounded by the fact that platform owners commonly 

intermediate the exchanges between both sides of the market in environments where players have 

heterogeneous levels of expertise in the marketplace (Vallee & Zeng, 2019). Scholars have debated 

the extent to which expertise matters and whether it compares favorably or unfavorably to the 

collective intelligence of the crowds (Greenstein & Zhu, 2018; Mollick & Nanda, 2016). Beyond 

the wisdom of the crowd vs. expert evaluation trade-off analysis, much less is known about how 

the congregation of experts and non-experts in platforms impacts the performance of the relevant 

complementors. This is especially important given that platform owners may use governance tools 

available to them, such as their ability to control market access, to design specific platform markets, 

which in turn, may lead to tipping the balance in favor of some complementors depending on their 

level of expertise.  

As a first step, we address this gap by examining how the interplay between priority access 

provided by the platform and the level of expertise of supplier side of the market impacts 

complementor performance outcomes. Specifically, we study the consequences of platform owners 

providing deeply resourced suppliers with priority access relative to other same side suppliers.  By 

linking the literature on expertise with the emerging research on platform-based organizations, we 
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argue that platform owners’ ability to decide on the platform market access plays a crucial role in 

the value proposition of complementors. Platform owners with their balancing act of “growing the 

pie” while trying to pick the “right” complementors, may unintentionally create negative spillovers 

on the performance and effectiveness of some market participants. We contend that when priority 

access is given to the experts on the supplier side, it can create lemon-type markets for the non-

experts on the same side even when they have similar information about the demand side 

complementors. Building on this insight, we postulate that the level of priority access (how much 

of the demand-side is allocated for the prioritized group of suppliers) and cream skimming in the 

priority market (how much of the demand-side allocated for the prioritized group of suppliers is 

cream skimmed by them) will amplify the negative spillover effect observed.  

To empirically test our predictions, we exploit a novel policy decision with a unique data 

set from Lending Club (LC), the leading online peer-to-peer (P2P) lending platform in the U.S. that 

matches potential borrowers with lenders willing to provide credit. P2P lending platforms were 

established with an initial focus on small, individual, retail investors seeking to participate in the 

personal loans market. Initially, all loans on the platform were fractionally funded, which meant 

that each loan would be funded by multiple investors, with each investor usually investing between 

$50 and $250. This approach was ideal for retail investors, who generally had smaller amounts of 

investing capital, seeking to diversify their portfolios. However, the platform’s growth has required 

the pursuit of larger corporate lenders to sustain the borrower demand and remove the bottlenecks 

faced in fulfilling the demand side.  This led to the introduction of the priority institutional loans 

market in 2012. 

In our study, we exploit Lending Club’s decision in October, 2012 to create a whole loans 

market and implement a randomized process of allocating loans to institutional investors. Loans 

assigned to the institutional investors would be funded wholly by one investor. Before the 

implementation of this market, institutional investors that wanted to participate had to do so in the 

fractional market.   This priority access to institutional expert investors in the whole loan market, 

and the varying levels of it observed over time, offers a unique opportunity to capture the negative 

spillover effects of this allocation on the performance among the retail investors. We examine the 

spillover impact of the platform’s design choice to provide priority access to the institutional 

investors. We find that, despite significant evidence that the platform does initially randomly 

allocate loans, the level of priority access set by the platform has significant negative impact on the 
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returns of the fractional investors. Furthermore, we find that cream skimming by institutional 

investors also plays an important role in driving same side negative outcomes for non-institutional 

market participants. Finally, we conclude that more risk-averse fractional investors likely are more 

strongly impacted by this effect. 

This study makes several research contributions. First, we respond to recent calls for 

researchers to give more attention to mechanism and incentive design issues prompted by the digital 

technology and mobile telecommunications revolutions in platform-based organizations (Adner, 

2017; Adner et al., 2018; Constantinides et al., 2018; McIntyre & Srinivasan, 2017; Teece, 2018; 

Tiwana, 2013). We extend the literature that suggests platform owners play a governance and 

regulatory role by emphasizing how platform market access prioritized to some complementors is 

used as a key design tool (Boudreau & Hagiu, 2009; Evans & Schmalensee, 2013). Understanding 

the use of priority platform market access provides insights into the nuances of value appropriation 

among complementors. We demonstrate how lemon problems can creep into the platform markets 

to some of the complementors on the same side of the market when design changes are undertaken 

by the platform owner to “grow the pie” and serve the demand-side customers. Second, a growing 

stream of literature discusses the challenges of cohabitation of more informed experts and less 

informed amateur crowd in the platform markets (Boudreau, 2018; Greenstein & Zhu, 2018; 

Mollick & Nanda, 2016; Vallee & Zeng, 2019). We undertake an initial effort to mitigate an 

important gap in this literature: the interaction effect of platform design/governance mechanisms 

and the level of expertise of the complementors with their performance. Our study complements 

the prior research that focus on the performance differentials between experts and non-experts by 

showing how negative spillover effects can emerge within supply-side complementors prompted 

by platform design choices. Third, we link new platform market literature with the classic corporate 

strategy research focusing on governance choices. Platform owners unlike traditional firms do not 

have fully formed contractual relationships with the complementary market players. Instead they 

are often associated with the platform through loosely connected alignment structures with possible 

mutual benefits (Adner, 2017; Boudreau, 2017). Therefore, it is essential to expand the corporate 

strategy research beyond conventional means such as hierarchical control or contractual lens to 

understand platform-based organizations (Adner et al., 2018; Barach et al., 2019; Chu & Wu, 2019; 

Helfat & Raubitschek, 2018). In our view, the governance and design perspective illustrated in this 

paper is a useful addition to the conventional corporate strategy research on both within and inter-
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firm relationships that show how governance choices affect the organizational and transactional 

performance.  

3.2 Theoretical Background 

The successful orchestration of a value proposition in platform depends on how effectively 

platform owners can design the market and govern the configuration of economic incentives for 

the complementors (Adner, 2017; Boudreau & Hagiu, 2009; McIntyre & Srinivasan, 2017; Tiwana, 

2013). Prior to the digital revolution, a vast majority of the mechanism and market design 

discussions were restricted to markets such as school choice, marriage matching and kidney 

exchange (Goldfarb & Tucker, 2019; Roth, 2018). However, the intermediating nature of digital 

platforms, as well as the possibilities provided by a vast array of business models, has created the 

opportunities for platform owners to become involved in market design in their platforms. Vulkan 

et al. (2013) summarizes this distinction as follows: 

“Economists often look at markets as given, trying to make predictions about who will do 

what and what will happen in these markets. Market design, in contrast, does not take markets as 

given; instead, it combines insights from economic and game theory together with common sense 

and lessons learned from empirical work and experimental analysis to aid in the design and 

implementation of actual markets.”  

Platform owners need to align appropriate set of actors in the platform to realize a core 

value proposition (Adner, 2017; Teece, 2018). Recent research has shown that platform governance 

is used to shape the complementor activities by effective market design (Boudreau, 2017; 

Dushnitsky et al., 2020; Rochet & Tirole, 2003; Yoo et al., 2010). This is often steered by the 

careful planning and deployment of governance tools such as control mechanisms, decision rights 

and ownership structure (Cumming et al., 2019; Tiwana, 2013).  

Among the possible platform governance instruments for market design, control of platform 

market access has gained particular attention among scholars and practitioners alike (Boudreau, 

2017; Evans & Schmalensee, 2013; Parker & Van Alstyne, 2018; Stigler Committee on Digital 

Platforms, 2019). Platform market access refers to platform owners’ ability to grant or restrict 

access to certain complementors in either side of the market. From a legal and antitrust perspective, 

it has created discussions about the possible challenges resulting from a lack of separation between 

a platform and the commerce conducted on the platform. Moreover, there is significant debate 
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regarding whether platforms should be excused for the substantial amount of consumer surplus 

they create or penalized for not adhering to the common carriage principle of “nondiscriminatory 

public access” and the expected “indifference to the nature of the goods carried” (Cohen, 2017; 

Evans & Schmalensee, 2013; Stigler Committee on Digital Platforms, 2019).   

From a more strategic and organizational perspective, the control of platform market access 

by platform owners generates an important series of inquiries about how the platforms regulate 

value creation and appropriation process by controlling the lever of platform market access. Extant 

research has shown nuances on the impact that economic incentives of the complementors have on 

marketplaces. More generally, platform owners often end up either leveraging their ability to 

control platform market access to achieve desirable outcomes and “grow the pie” (e.g., network 

externalities, offering complementarity products and services) or using it to restrict access to curate 

the marketplace (e.g, monitor the quality of complementors, attract right type of complementors) 

(Boudreau, 2012; Casadesus‐Masanell & Hałaburda, 2014; Eisenmann et al., 2006). Platform 

owners also frequently use the control of market access as a lever of influence to achieve outcomes 

favorable to them. For instance, Amazon often retain rights to sell wholesale, pricing and customer 

data for providing third party sellers access to the marketplace. In a related vein, it is widely 

observed that market access can be used as a tool of competitive actions by the platforms.  For 

example, Facebook denied API access to perceived competitors such as Vine, a Twitter-owned 

feature that let users create short videos when they released a competing product, leading Vine to 

be defunct. Platform owners’ regular use of “market access for data” approach—free or discounted 

access to the platform in lieu of user/ consumer side of the market sharing their data—is also heavily 

discussed and scrutinized.  

Among various methods to control platform market access, priority access has received 

prominent attention as a salient design tool for platform governance (Evans & Schmalensee, 2013; 

Stigler Committee on Digital Platforms, 2019). Priority access refers to platform owners’ ability to 

provide some subset of complementors with preferential treatment in terms of access to the 

marketplace. Priority access can be used by platform owner to shore up one side of the market with 

selected complementors. More importantly, through priority access, the platform owner might be 

able solve demand-side bottlenecks by providing preferential treatment for a portion of the 

supplier-side complementors. For instance, when credible borrower demand in the online lending 

peer to peer (P2P) industry is higher than the lenders’ supply of money, a lending platform owner 
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may resort to giving priority access to expert institutional investors such as investment banks, 

pension funds, commercial trusts, endowment funds, hedge funds, and private equity investors.  

Although existing studies have offered substantial insights into the implications of platform 

market access, how priority access generates spillover effects on the same side complementors 

without priority access remains unclear. Given the heterogeneous levels of expertise in 

complementors on the supplier side of the marketplace, it is vital to understand how the platform 

governance choices such as priority access can bring performance differential due to the interplay 

between the two. For example, what happens to the crowd retail investors when institutional 

investors get the priority access in online P2P lending? This leads to a discussion on the institutional 

details of our research context of online P2P lending platforms below.   

3.3 Institutional Background 

In this paper, we focus on Lending Club (LC), which is the largest P2P lender in the USA. In 2018, 

LC originated $20 billion in personal loans accounting for 45% of the online P2P market share 

(Forbes, 2017). These platforms have experienced tremendous growth since their nascent year with 

loan volume in the US-based online P2P lending platforms growing at an average of 84% since 

2007 (PWC, 2015). By mid-2017, online P2P lending platforms accounted for about one third of 

all the personal loans originated in the US market and estimated to grow to $150 billion in 2025 in 

the United States (PWC, 2015; Trans Union, 2017). Online P2P lending provides a suitable avenue 

to study the interplay between platform governance and the level of expertise of the complementors. 

For the supplier-side lenders, success in the platform depends on their ability to pick the right 

borrowers with the accurate valuation on the future payoff. Financial market literature suggests the 

importance of expertise for investors originating from their institutional knowledge (Shleifer & 

Summers, 1990; Vallee & Zeng, 2019). It provides opportunities to study the implications of having 

experts and non-experts together in a designed marketplace such as online P2P lending and to 

understand how platform governance can create differential performance implications to them.    

 On LC, potential borrowers submit their loan applications and provide details regarding 

their requested loan amount, loan term, and loan purpose. If the borrower passes LC’s initial 

screening phase, LC subsequently assigns a grade, ranging from A1 for the least risky borrowers 

to G5 for the riskiest borrowers. A borrower’s grade is assigned based upon the platform’s 

proprietary algorithm which predicts a borrower’s propensity to default and determines the interest 
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rate they are assigned by the platform. If the borrower accepts the platform’s assigned interest rate, 

the potential loan is then listed and investors can choose whether they wish to participate in the 

funding of this loan. 

Prior to October 2012, all potential loans were listed in the retail loans market. In this market, 

investors could choose to provide fractional funding for a loan with a minimum amount of $25. 

Since LC was initially designed to provide an opportunity for small retail investors to participate 

in the credit market, the fractional loans market was ideal for retail investors, who generally had 

less investing capital, seeking to diversify their portfolios. However, the sustainability of these 

platforms is dependent upon the expansion of both the borrower and lender pools, which has 

necessitated that P2P platforms aggressively pursue new users on both sides of the market. While 

P2P lending platforms were established with an initial focus on retail investors seeking to 

participate in the personal loans market, their growth has required the pursuit of larger institutional 

lenders to sustain the borrower demand. However, the potential growth provided by institutional 

investors incentivized LC to pursue them and provide priority access in the P2P marketplace.  

To fulfill the demands associated with incorporating institutional investors, LC introduced 

the priority institutional loans market in October, 2012 (LC refers to this market as the whole loans 

market). While the fractional retail loans market was ideal for investors with limited capital, 

institutional investors had significantly more investing capital, and their diversification needs could 

be met by purchasing a large portfolio of whole loans instead of small fractions of each loan. 

Lending Club stated the following regarding the introduction of the whole loans market in 2012:  

“To accommodate these requests and while insuring that all investors continue to have 

access to a large number of loans of equal quality, a randomized subset of loans by grade will be 

available to purchase as a whole loan (i.e. not in $25 increments) only for a brief time period (12 

hours), while all other loans will be immediately available for fractional purchase. If the loans are 

not purchased as whole loans in the specified time period, they will become available for purchase 

in the standard, fractional manner.”  

Therefore, after the introduction of the priority institutional loan market in October 2012, 

the platform stated that each listing was randomly allocated to either the retail loan market or the 

newly created priority institutional loan market.  While all investors could participate in the 

fractional retail loan market, the priority institutional loan market was comprised of banks, asset 
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managers, insurance companies, hedge funds, and other large non-bank investors.10 The platform 

seeks to mitigate any negative impact on retail investors that this privileged access would have by 

doing the following: 1) randomly assign loans to each market within grade and 2) provide the retail 

investors the opportunity to fund loans that are not funded by institutional investors if they choose. 

To emphasize the continued importance of the retail investors despite the changes, LC stated the 

following at the introduction of the priority institutional loan market:  

“The design of our platform emphasizes how important retail investors are to LendingClub.  

We see our retail investors as a key component of our diverse marketplace strategy. Retail investors 

are—and will always be—the heart of the LendingClub marketplace.” (Lending Club, 2012) 

LC suggested that the randomization serves to protect the retail investors from any potential 

harm that may come from the priority access given to the institutional investors. Therefore, LC 

argued that this design change will retain the successful aspects of the platform while keeping retail 

investors at the “heart”, while also bringing necessary changes to move to the next step of platform 

growth. This novel setting helps us to study what happens to different type of supplier-side 

investors when platform changes the way the loan allocation process works—randomly assign the 

loans at the grade level to the priority institutional loan market—and, subsequently, the rejected 

loans by the institutional investors sent into the retail market. 

3.4 Hypotheses 

3.4.1 Interplay between Priority Access and Expertise  

Expertise of the complementors vary within a platform. The involvement of expert complementors 

often brings much needed credibility to nascent platforms. The presence of expert complementors 

also attracts additional complementors to both the same and the opposite side of the market, 

facilitating platform owners’ overall pursuit to “grow the pie”. Thus, as marketplaces grow, 

platform owners, realizing the importance of expert complementors to the overall value proposition 

of the platform, tend to cultivate their participation. As said, in online P2P platforms, expert  

 

 
10 LC, in their 2019 10-K filings, state the following description of their Whole Loan Product: “Certain institutional 
investors, such as banks, asset managers, insurance companies, hedge funds and other large non-bank investors, seek 
to hold whole loans on their balance sheets. To meet this need, we sell whole loans to these investors through loan 
purchase and sale agreements.” 
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institutional investors responding to the FinTech revolution have provided a vital supply-side 

solution to platform owners to satisfy increasing customer demand.  

 Evidence in the literature is mixed when comparing the expert performance to the wisdom 

of the crowds. Studies have laid out the contingencies under which wisdom of the crowd may 

supersede expert decision making. On a general level, scholars have noticed that when crowd 

complementors have the ability to coordinate through an appropriate set of authority figures, the 

benefits attributed to the wisdom of the crowd can be realized (e.g., lead developers in large R 

software packages, moderators in successful Reddit forums, dedicated curators in niche news 

platforms such as Hacker News and editors of Wikipedia) (Jeppesen & Frederiksen, 2006; Mollick 

& Nanda, 2016; Poetz & Schreier, 2012). The crowd-based approach works better when the small 

contributions of each crowd complementor can be aggregated towards a large goal or outcomes.  

 In online P2P lending platforms, mitigating circumstances for crowd retail investors to 

perform better than the expert institutional investors are scant. First, retail investors don’t 

coordinate with each other or have an authority figure within them to gain insights from each other. 

Instead they use their own independent judgement in deciding whether to fund a potential borrower. 

Therefore, the benefits often realized in successful crowd-based platforms such as Wikipedia are 

limited. Second, both the institutional and crowd investors use the same set of information in 

making decisions. Experts, when presented with the same information, often utilize it more 

effectively than the crowd (Kim & Viswanathan, 2018). Prior research has also shown that, in the 

financial markets, institutional investors act as “smart money” and perform better through their 

superior selection and screening ability (Shleifer & Summers, 1990). Taken together, we posit that 

expert institutional investors, when utilization of their expertise is plausible, will generate better 

payoffs compared to the crowd retail investors.  

 To examine the impact of priority access accorded to the expert institutional investors by 

the platform policy change, we follow the past research in both platforms and financial markets, 

focusing on the incentives on FinTech platforms such as online P2P lending. We propose that 

priority access granted to the experts benefits them even after accounting for their expertise. 

Selectively given market access could reduce competitive intensity among complementors and 

potentially increase the attractiveness of the platform (Casadesus‐Masanell & Hałaburda, 2014; 

Halaburda et al., 2018). Consider the introduction of priority market for the expert institutional 

investors in online P2P lending discussed previously. For institutional investors, the prioritized 
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allocation of a subset of loan listings as priority institutional loans provides a space to search for 

the right borrowers without getting contaminated by the retail crowd investors. This is consistent 

with the finance research that suggests that when there is reduced competition among the investors 

it can assist the institutional investors to do quick search and fast-track the process of information 

acquisition about the investment landscape. For example, Biais et al. (2015) indicated that the 

delays in execution due to search concerns account for about one-third of total costs for institutional 

investors. Providing priority access to the expert institutional investors help them to alleviate 

potential “arms race” they may otherwise find themselves in (Glode et al., 2012). Taken together, 

priority access provides an avenue for institutional investors to face reduced intensity of 

competition among potential investors, leading to the increase in speed and efficiency with which 

they can determine the value of potential loan listings.  

For the retail investors, priority access given to the institutional investors accentuates their 

disadvantage even after accounting for their lack of expertise. Priority access provided to the expert 

institutional investors shrinks the available loan listings to them even though the overall pool is 

randomized before institutional investors getting the priority access. It forces the retail investors to 

search for suitable loans within vanishingly small set loan listings, increasing an “arms race” within 

competitive pool of lenders. Thus, we hypothesize:     

 

Hypothesis 1: The higher the level of priority access granted to experts, the intensity of the negative 

same-side spillover effects on the crowd increases in online P2P lending platform.   

3.4.2 Cream Skimming and the Emergence of Lemon Market  

A potential source of market failure in the designed markets is that the competitive pressure may 

lead the supplier-side of the market to aggressively focus on the high-demand customers (the 

"cream") and leave the low- demand ones underserved or unserved (Kahn, 1988; Laffont & Tirole, 

1993). This is noticeably prevalent when the supplier-side has limited incentives or obligations to 

satisfy different types of customers (Laffont & Tirole, 1990). Relatedly, prior research has noted 

that supplier-side sellers may opt to ignore the skimmed high cost, low profit market segments even 

if the long run marginal cost is lower than the price charged at least for two reasons. First, 

opportunity cost of serving the skimmed market may not be worth to spend the firm’s resources 

and investments on, leading firms to look elsewhere where the benefits are higher. Secondly, even 
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if the firm opts to serve this segment of the market, they might make themselves vulnerable to other 

competitive players including potential new entrants who may cream skim the market and be able 

to peel off the customers.  Prior literature spanning in wide range of contexts, often in the regulatory 

intensive industries, has observed the implications of cream skimming (e.g., financial markets, 

health insurance, education, telecommunications, cable television, utilities and airlines) and how it 

can impact the effectiveness of the markets.  

  Cream skimming challenges are acutely observed in the financial markets as the informed 

investors or the investors who has acquired costly information (Bolton et al., 2016; Vallee & Zeng, 

2019) devote resources to accurately gauge the future payoff, leading to adverse selection problems 

for the rest (Fishman & Parker, 2015). To avoid the unraveling of the market, institutional 

safeguards are put forward with hard regulations such as the SEC protocols that requires concerning 

parties to disclose all significant information to all investors, or in the extreme cases banning any 

form on insider trading outright. Similarly, softer rules such as the speed limits in which the 

algorithmic transactions and trades are designed to alleviate the concerns arising from cream 

skimming and ensure the “level-playing” field for all.  

Platform owners often play the role of internal regulators. Platform market literature has 

revealed that the design rules are effective for the platform owners to execute a regulatory apparatus. 

For example, to mitigate the cream skimming by the drivers, ride-sharing platform Uber does not 

disclose the passenger’s destination to the drivers until after the driver has picked up the passenger. 

This helps to alleviate drivers from waiting for longer rides or preferred destinations that can lead 

towards longer waiting times for the passenger (Romanyuk & Smolin, 2019). This also avoids 

scenarios where expert drivers strategically pick good rides, leaving relatively bad ones to more 

inexperienced drivers. However, when there is a conflict of interest between the platform and some 

set of complementors, it can create challenging contingencies in the configuration of economic 

incentives regarding cream skimming.  

Priority access to the experts in platforms leads to the unmet demand from the sample 

allocated to the experts directed towards the rest of the pool. In our online P2P lending context, if   

institutional loan market listings are not funded by the institutional investors, they are reassigned 

to the retail market. Despite initially providing priority access to grow the pie, platform owners 

reassign the loans if they are not picked by the institutional investors to the retail market so that the 

demand doesn’t go unfulfilled. As indicated before, expert institutional investors, when they can 
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utilize their expertise, generate better payoff compared to the crowd retail investors. While there is 

no obligation from the retail investors to fund the loans recycled from the institutional loan market, 

a potential issue arises if these recycled loans are systematically inferior and retail investors do not 

incorporate this information into their decision-making process. When benefits of wisdom of the 

crowd is not outweighed by the expert evaluation in online P2P lending, rejected loans by the 

institutional investors perform worse than those picked by them. With the “back door” policy that 

sends the rejected institutional loans to the retail market, platform priority access policy generates 

“lemon” problem for the retail investors, leading to the issue of adverse selection. Thus, we 

hypothesize:     

 

Hypothesis 2a: Cream skimming by the experts has same-side negative spillover effects on the 

payoff of the crowd in online P2P lending platform. 

 

Hypothesis 2b: An increased exposure of the crowd to the residuals of cream skimming by the 

experts leads to higher same-side negative spillover effects in online P2P lending platform.  

3.5 Data and Methods  

3.5.1 Research Design 

To study our proposed hypotheses, we focus on online P2P lending and exploit the introduction of 

the separate priority institutional loans market by LC. Specifically, we utilize periodic variation in 

the level of priority access LC assigns to the institutional investors. Figure 3.1 Panel I displays the 

monthly variation in the proportion of loans LC initially assigns to the institutional investors. This 

figure provides suggestive evidence for the temporal variation in priority access granted by the 

platform. Moreover, Figure 3.1 Panel II provides evidence that proportion of priority access by 

grade also varies temporally. 

Our empirical strategy is to evaluate the conditional expectation of retail loan outcomes on 

changes in platform assigned privileged access levels. We define the level of priority access as the 

proportion of the overall loan requests made that are assigned to the priority institutional loans 

market for a specific week. Figure 3.2 shows the temporal variation in the monthly assignment of 

privileged access by LC. Figure 3.3 displays the weekly variation in level of priority access for 

2013 to 2016.  These figures outline the weekly variation in the level of priority access provided 
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by the platform. Moreover, they negate concerns regarding temporal patterns potentially driving 

the variation we see in priority access set by the platform. In our specifications, we control for year 

level unobservable factors by including grade by year fixed effects, which we discuss in more detail 

below.  

A critical feature of this design is LC’s decision to randomly allocate loans, within grade, 

to either the institutional investors or the retail investors. This is vital to our design as it alleviates 

concerns that the platform might be selectively allocating loans of different quality to each market. 

If LC was not randomizing loan assignment, any evidence relating retail market outcomes to levels 

of institutional market priority access is potentially a result of the platform’s loan allocation 

decisions. In contrast, we seek to identify the impact of the platform implementing various levels 

of priority access and not the decision to assign a specific loan to either market. Randomizing 

allocation creates an ideal situation to isolate the role of priority access on complementor outcomes. 

Furthermore, the nature of P2P lending is such that the transactional outcomes between borrowers 

and lenders have clear comparable outcomes—an A1 grade loan that defaulted is inferior to an A1 

grade loan that does not default. This highlights another important feature of this data set, providing 

a unique insight utilizing detailed transactional level data to study platform markets with priority 

access.  

 Another advantage of this design is that the platform reassigns the loans rejected by the 

institutional investors to the retail loan market. This provides a novel setting to study the interplay 

between priority access and cream skimming by experts. It enables us to empirically examine how 

the retail market may become contaminated due to cream skimming by the experts and the impact 

it would have on the performance of non-expert suppliers.  The platform’s decision to randomize 

loan assignment is beneficial for this analysis as well since it would have been difficult to isolate 

the effect of expert cream skimming from the platform’s decision to assign better or worse loans to 

a group of supply-side investors.  

3.5.2 Sample Construction 

We gather LC data from various sources, obtaining all 3-year term LC loans from October 2012 to 

August 2016. We combine LC publicly available loan data set and note sales from their SEC filings, 
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with loan information obtained from each loan’s information profile on Lendingclub.com.11 By 

matching the SEC note sales and the publicly available loan data we are able to ascertain whether 

loans in the retail loan market were originally provided to the institutional investors and 

subsequently rejected by the institutional investors.12 While LC also offers 5-year loans we focus 

on 3-year loans since we are unable to examine the conclusion of 5-year loans that originated past 

2014.  

Our full data set consists of 783,999 loans. As previously shown in Figures 3.1 – 3.3, LC is 

constantly adjusting the level of privileged access which they are providing to the institutional 

investors. For each loan, we obtain detailed information on each borrowers’ credit characteristics 

including debt-to-income ratio, homeownership status, annual income, FICO score, and the number 

of open credit lines.  We also obtain information on all payments made by each borrower and the 

timing of these payments. This allows us to calculate the rate of return of each loan. Each loan is 

classified into one of three categories: retail loans, institutional loans, and loans rejected by 

institutional investors. Retail loans are those that are randomly assigned to the retail loans market. 

Institutional loans are loans that are randomly assigned to the priority institutional loans market 

and funded by the institutional investors. Loans rejected by institutional investors are loans that 

were initially assigned to the priority institutional loans market but were not funded by the 

institutional investors. Loans rejected by institutional investors are subsequently recycled into the 

retail loans market and made available to the retail investors.   

To evaluate the hypotheses proposed, we construct a sample of loans that includes all retail 

loans and loans rejected by institutional investors. We refer to this sample as the Full Retail Market 

Sample. This sample includes all loans that were made available to the retail investors in the retail 

loan market, whether through initial random allocation or recycled from the priority institutional 

loan market. Since we are interested in evaluating the platform’s assigned level of priority access 

on retail participants, the Full Retail Market Sample is our main sample. There are 378,487 loans 

in this sample.  

 
11  By LC publicly available loan data we refer to data readily accessible on the company’s website. The loan 
information profile information provides extra information such as the number of investors for each loan and the exact 
date the loan was listed and funded.  
12 Prior to October 2014, it is not possible to use the SEC notes sales to identify the rejected institutional loans. This is 
documented by LC. However, we can determine whether a loan is rejected by the institutional investors prior to October 
2014 because the obtained data from the information profile page of each loan provides the number of eventual 
investors that funded each loan. If a loan was initially assigned to the whole loan market but had a large number of 
investors we can ascertain that it was rejected by the institutional investors and was converted to a fractional loan. 
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3.5.3 Variables and Measurement  

Dependent Variables.   

We employ two dependent variables in our specification: Default and Rate of Return. Default has 

a value of 1 if the borrower of the loan defaults on their loan obligations, otherwise Default is 

assigned a value of 0.  Rate of Return is the overall percentage return of a loan.13  For example, if 

a borrower with a $5,000 loan made payments totaling $5,500, the Rate of Return for that loan 

would be 10%. These variables are commonly used to evaluate the performance of loans and 

investors specifically on P2P lending platforms and credit markets in general (See Morse (2015) 

for review). 

 Figure 3.4 outlines the relationship between borrower assigned grade, interest rate, and the 

two outcome variables (Default and Rate of Return). As expected, riskier borrowers are assigned 

higher interest rates and have higher default rates. Since the platform assigns grades based on 

default predictions, this is expected. Figure 3.4 also shows that there is not as much variation in the 

rate of return, however, the variance of returns is higher when the loans are riskier. This figure also 

emphasizes the importance of grades in determining loan outcomes.    

Explanatory Variables.   

To study the various hypotheses prescribed previously, we utilize a collection of explanatory 

variables. Proportion Priority Institutional Loans is the proportion of LC loans that were assigned 

to the priority institutional loan market in a specific week. This represents the level of priority 

access provided by the platform and is used to examine hypothesis 1. Loan Rejected by Institutional 

Investors is an indicator variable which has a value of 1 if the loan was initially assigned to the 

priority institutional loan market but was not funded by the intuitional investors. Recall that if the 

loans are rejected by the institutional investors (Loan Rejected by Institutional Investors has a value 

of 1, otherwise 0) then these loans are recycled to the retail market and retail investors can fund 

them if they wish. This variable is used examine hypothesis 2a.  Proportion Loans Rejected by 

Institutional Investors is the proportion of loans in the retail market in a specific period that were 

initially assigned to the priority institutional loan market but not funded by the institutional 

 
13 Specifically, rate of return is calculated by the following formula: ௌ௨௠ ௢௙ ௉௔௬௠௘௡௧௦ ௠௔ௗ௘ ௕௬ ஻௢௥௥௢௪௘௥

ி௨௡ௗ௘ௗ ஺௠௢௨௡௧
. We also examine 

the robustness of our results to measures of rate of return that incorporate the time-value of each payment. Our results 
are consistent and available upon request.  
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investors. These loans are reassigned to the retail market. As the Proportion Loans Rejected by 

Institutional Investors increases, the greater the spillover to the retail market resulting from the 

platform’s decision to recycle the loans rejected by the institutional investors. This variable is used 

to assess hypothesis 2b. 

Control Variables.   

We also include a collection of variables to control for loan specific attributes that may cause 

changes in the conditional expectation of the loan’s default or rate of return. As portrayed in Figure 

3.4, a borrower’s platform assigned grade is critical in determining the outcome of the loan. 

Moreover, Figure 3.1 Panel II shows that the proportion of priority access varies not only 

temporally, but also temporally by grade. Therefore, we include grade by year fixed effects for 

each unique combination of year and grade. These controls for the differences associated with the 

grade and any temporal changes in the outcomes relative to borrower grade. This is especially 

important given that the platform randomizes by grade. Therefore, when including this control, we 

can ascertain whether platform assigned priority access impacts the retail market after controlling 

for the grade. Consistent with prior research, we further include the following borrower/loan 

specific variables:  Funding Amount, Debt-to-Income, Inquiries in Last 6 Months, Annual Income, 

Revolving Balance, Interest Rate, Homeownership Status, Current Credit Lines (Butler et al., 2017; 

Morse, 2015). Table 3.1 provides a detailed description of each variable. Table 3.2 displays the 

descriptive statistics and correlation of the variables used in our analysis.  

3.6 Results 

3.6.1 Platform Random Allocation of Loans 

LC explicitly state that they randomize loan access between institutional and retail loan markets, 

both on their website and in their 10-K filings. The Securities and Exchange Commission (SEC) 

provides oversight of P2P lending. Therefore, any departure by LC from their stated intention to 

randomize allocation would result in steep legal ramifications. Nevertheless, to empirically 

investigate LC’s within grade randomization of loan assignment, we regress outcome variables 

(Default and Rate of Return) on a binary variable indicating whether a loan was issued to the 

institutional investors or the retail investors. We refer to this variable as Priority Institutional Loan 
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(value equals 1 if the loan is assigned to the priority institutional loan market and 0 if assigned to 

the retail market). Since the platform randomizes loan assignments within grade and this 

randomization pattern has a temporal variation, we control for grade by year fixed effects.  

Controlling for grade by year fixed effects the loan was listed should remove any difference 

between the loan outcomes in the priority institutional loan market and the retail loan market 

respectively. Therefore, we include fixed effects for all the unique combinations of borrower grade 

and year. The specification is as follows: 

 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒௜ ൌ  𝛽଴ ൅  𝛽ଵ ∗ 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑜𝑎𝑛௜ ൅ 𝛾௜ ൅ 𝜖௜  

 

This specification is estimated at the individual loan level (i). 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑜𝑎𝑛௜ has 

a value of 1 if the loan is assigned to the priority institutional loan market and 0 otherwise.  𝛾௜ 

corresponds to the grade by year fixed effect specific to the grade of loan i and the year loan i was 

originated. This model estimates the difference in means, after controlling for the specific grade 

and year of each loan, between the loans initially assigned to the institutional investors and those 

assigned to the retail investors. If the platform is in fact randomizing the loan assignment, there 

should not be a difference between outcomes in the retail or institutional loan market and 𝛽ଵ should 

not be statistically different from 0.  

Columns 1 and 2 of Table 3.3 show the results of this specification and the evidence 

suggests that the platform is indeed randomizing the assignment. Specifically, we find that the 

platform’s initial assignment of a loan to the priority institutional loan or retail loan market does 

not have an impact on the conditional expectation of the loan regarding default nor rate of return 

(p-values are 0.994, column 1, and 0.163, column 2).  To further examine the randomization 

process based on borrower ex-ante characteristics, we replicate the analysis with the dependent 

variables as Annual Income, Debt-to-Income Ratio, and Funding Amount. The results are shown in 

Table 3.3, columns 3, 4, and 5 respectively. We find that the platform is randomizing with respect 

to these ex-ante variables as well (associated p-values are 0.997, 0.194, and 0.298 respectively). 

3.6.2 Expertise of complementors in P2P Lending 

Before investigating our main hypotheses, we provide an analysis regarding the institutional 
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investors’ capacity to utilize their expertise to select superior loans.  We estimate the following 

specification: 

 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒௜ ൌ  𝛽଴ ൅  𝛽ଵ ∗ 𝐿𝑜𝑎𝑛 𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑛𝑣𝑒𝑠𝑡𝑜𝑟𝑠௜ ൅ 𝛾௜ ൅  𝜖௜  

 

where Loan Rejected by Institutional Investors has a value if 1 if the loan was initially assigned to 

the priority institutional investor market but was rejected by the institutional investors and recycled 

to the retail investors. Unlike our main specification, the sample we use in this analysis is from the 

loans that were initially assigned to the priority institutional loan market (including both loans 

rejected and funded by the institutional investors). There are 445,376 loans in this sample. 

We report the results in Table 3.4. Column 1 and 2 show the results for Default and Rate of 

Return respectively. The results indicate that, on average, after controlling for the loan grade and 

origination year, loans rejected by the institutional investors have higher default rates and lower 

rates of return. The results provide empirical support that the loans rejected by institutional 

borrowers perform worse than the loans selected by the institutional investors. 

3.6.3 Main Results 

Moving to testing of hypothesis 1, we examine whether platform assigned level of privileged access 

has an impact on the conditional expectation of Default and Rate of Return. We utilize the following 

specification: 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒௜_௧ ൌ 𝛽଴ ൅  𝛽ଵ ∗ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑜𝑎𝑛𝑠௧ ൅ 𝛽ଶ ∗ 𝑋௜ ൅  𝛾௜_௧ ൅  𝜖௜_௧ 

where Outcomei_t is the Default or Rate of Return for loan i which was originated in week t. The 

level of analysis is the individual loan (i). The sample used is the Full Retail Market Sample, which 

includes all loans that are made available to the retail investors (whether initially assigned or 

recycled from the priority institutional loans market). The Proportion Priority Institutional Loanst 

is the proportion of loans in the retail market, during week t, that were originally assigned to the 

priority institutional loans market. Xi refers to the set of explanatory borrower and loan specific 

characteristics outlined previously in Table 3.1. 𝛾௜_௧  refers to the grade by year fixed effect 

corresponding to loan i and the year corresponding to week t. 

Columns 1 and 2 of Table 3.5 show the results of this specification. Column 1 indicates that 

a 10% increase in the level of priority access increases the conditional probability of default in the 
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retail loans market by approximately 0.16%. Given that the mean level of privileged access in our 

sample is 57%, this corresponds to an increase in default rate of approximately 0.91%. Column 2 

indicates that the equivalent 57% priority access level leads to a decrease in return of approximately 

0.051 percentage points. Compared to the average default rate on the platform, which is 14.65%, 

these changes represent a 6.2% change relative to the average. Similarly, the changes in rate of 

return represent an 8% increase compared to the average rate of return (6.4%).  These results 

provide support for Hypothesis 1.   

In hypothesis 2a, we posit that cream skimming by the experts has a negative spillover 

effect on the payoff of the crowd in online P2P lending platforms. To test this hypothesis, we utilize 

the following specification: 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒௜ ൌ 𝛽଴ ൅  𝛽ଵ ∗ 𝐿𝑜𝑎𝑛 𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑛𝑣𝑒𝑠𝑡𝑜𝑟𝑠௜ ൅ 𝛽ଶ ∗ 𝑋௜ ൅  𝛾௜ ൅  𝜖௜ 

 Similar to the analysis in hypothesis 1, this specification is estimated at the individual loan 

level. As previously discussed, Outcomei refers to either Default or Rate of Return. Loan Rejected 

by Institutional Investorsi is an indicator variable which has a value of 1 if the loan was originally 

assigned to the priority institutional loans market and rejected by the institutional investors. Xi 

refers to the previously described explanatory borrower and loan level characteristics, while 𝛾௜ 

refers to the grade by year dummy fixed effects.   

 If the loans rejected by the institutional investors negatively impact the retail market then we 

would observe a deterioration in the conditional expectation of the retail loan outcomes. Columns 

3 and 4 of Table 3.5 present the results of this specification. The results in column 3 indicate that, 

on average, loans that are recycled from the institutional investor pool have a default rate 0.9 

percentage points higher than the default rate of the loans that were initially assigned to the retail 

loan market by the platform. Moreover, column 4 shows that the loans rejected by the institutional 

investors have a rate of return that is 0.3 percentage points lower. Compared to the mean levels for 

default (rate of return), these changes represent an increase (decrease) of approximately 6.14% 

(4.7%). These results provide support for hypothesis 2a. 

 In hypothesis 2b, we postulate that an increase in exposure of the crowd to the residuals of 

cream skimming by the experts leads to higher same-side negative spillover effects in online P2P 

lending. We can measure the level of cream skimming as the proportion of the retail loan market 

in each week t that is comprised of loans that the institutional investors rejected. Specifically, we 

utilize the following specification: 
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𝑂𝑢𝑡𝑐𝑜𝑚𝑒௜_௧ ൌ 𝛽଴ ൅  𝛽ଵ ∗ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝐼𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑜𝑎𝑛𝑠௧ ൅ 𝛽ଶ ∗ 𝑋௜ ൅  𝛾௜_௧ ൅  𝜖௜_௧ 

This is analogous to the previous specifications except that the variable of interest is the Proportion 

Rejected Institutional Loans which corresponds the proportion of the retail market, in week t, that 

is comprised of loans rejected by institutional investors. This analysis is estimated at the individual 

loan level (i).  

Columns 5 and 6 of Table 3.5 show the results of this specification. Column 5 shows that, 

for a 10% increase in the proportion of rejected loans that comprise the retail market, the estimated 

increase in default rate is 0.37 percentage point.  Column 6 provides the analogous result for rate 

of return and estimates that a 10% increase in the proportion of rejected loans decreases the retail 

market rate of return by approximately 0.15 percentage points These results provide support for 

hypothesis 2b.   

3.6.4 Supplementary Analyses 

We conducted numerous analyses to examine the robustness of our results and broaden our 

understanding of the findings and mechanisms.  

Falsification Test Using Institutional Loans Market. 

One critical assumption of our specifications is that we do not have unobserved variables that 

simultaneously impact level of priority access and retail market outcomes. To examine the 

robustness of our findings, we replicate the analysis used to test hypothesis 1, except we use the 

sample of all loans that were initially assigned to the institutional investors. Given the random 

assignment of loans within grade and the controls we have included in our specification, we should 

not observe an association between the level of priority access (Proportion Priority Institutional 

Loans) and the outcomes in the loans randomly assigned to the institutional investors. Columns 1 

and 2 of Table 3.6 present the results and, reassuringly, we do not find a relationship between the 

level of priority access and the outcomes in the sample comprised of loans randomly assigned to 

the institutional market (p-values are 0.473, column 1, and 0.166 column 2).  

Evaluating Funding Time.   

To delve further into the implications of changes in the level of priority access on the retail loans 
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market, we examine the funding time for loans. Providing institutional investors priority access 

naturally reduces the size of the retail loans market, even though the overall pool is randomized. 

Therefore, the time to fund observed in the retail market can provide us insights into the impact of 

the level of priority access assigned by the platform.  

We obtain the time difference between each individual loan request and the time it was 

funded for each loan in our sample starting in October 2014.14  Before discussing the role of funding 

time as it relates to priority access, we examine whether funding time is related to loan outcomes 

in general. Specifically, we use the following specification:  

 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒௜ ൌ 𝛽଴ ൅  𝛽ଵ ∗ logሺ𝐹𝑢𝑛𝑑𝑖𝑛𝑔 𝑇𝑖𝑚𝑒ሻ௜ ൅ 𝛽ଶ ∗ 𝑋௜ ൅  𝛾௜ ൅  𝜖௜ 

 

where logሺ𝐹𝑢𝑛𝑑𝑖𝑛𝑔 𝑇𝑖𝑚𝑒ሻ௜ is the log of the hours between the time when the loan is requested by 

the borrower and the time when the borrower receives their loan. Xi is the set of borrower and loan 

level explanatory variables and  𝛾௜ is the grade by year dummy that corresponds to loan (i). This 

approximates the time it took the loan to obtain funding. We focus on the Full Retail Market Sample 

as it is the focus of our study. The results are presented in columns 3 and 4 of Table 3.6. They 

suggest that loans that take longer to fund perform worse, on average, than loans that fund quickly.  

 Since funding time is relevant to loan outcomes, it is important to study how changes in 

platform assigned priority access impact the funding time. To evaluate this possibility, use the same 

specification used to test hypothesis 1, except we use log(Funding Time)i_t as the dependent 

variable. The results are presented in column 5 of Table 3.6. The results indicate that a 10% increase 

in the level of privileged access results in 3.5% reduction in funding time in the retail market. Given 

the average level of privileged access is 57%, this indicates a decrease of approximately 20% in 

the funding time in the retail market when there is an average level of priority access prescribed by 

the platform. This provides evidence that, as the platform increases the level of priority access, the 

retail investors are forced to invest in the loans at a faster pace. 

Given that the level of priority access decreases time to fund and time to fund impacts loan 

outcomes, it is natural to subsequently examine how funding time moderates the relationship 

between priority access and retail market outcomes (H1). To examine this we re-estimate the 

 
14 This information is unavailable before this period.  Prior to this period, LC does not provide detail on the listing date 
and funding date of each loan. 
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specification used for hypothesis 1, except we include log(Funding Time)i_t as a moderator for the 

level of priority access.  We present the results in columns 6 and 7 of Table 3.6. The results indicate 

that, as the level of priority access increases, the loans that have a longer funding time are 

performing even worse. 

Evaluating the Number of Investors 

To understand further about how the priority access changes the number of investors needed to 

close the loans, we use number of investors in the log form as a dependent variable. We show in 

Table 3.7 that both intensity of ex ante priority access and cream skimming by institutional 

complementors, increases the numbers of retail investors needed to fund a loan. We posit that it is 

a form of risk diversification by the retail investors reducing the commitment to individual loans 

when they are exposed to the intensity of competition.  

Heterogeneity Using Simulated Investors.   

Thus far, we have identified that a how, LC reallocating the rejected whole loans to the retail 

investor pool, has a detrimental impact on the subset of participants with less expertise. However, 

to understand further the outcomes of this design choice on the retail investors, it is important to 

examine the heterogeneity of this result for different types of investors. Specifically, we ask the 

question: What are the characteristics of the investors that will be most affected by this design 

choice? To answer this question, we estimate the outcomes of five simulated investors during the 

period of our analysis.  

We establish five investing strategies which range in terms of their associated risk profiles. 

Each strategy allocates a portion of loans from each loan grade (A, B, C, and D) to be invested in. 

Table 3.8 outlines the grade proportion allocations for each investment strategy. We examine the 

potential returns for each investment strategy using the following simulation approach: 

1. For a specific month/year combination, starting with October 2014, we create a subset of 

all loans that originated in this period. We consider these loans as an investor’s pool of 

possible investments. We remove all Purchased Whole Loans. As a result, we are left with 

loans that eventually entered the retail market and were funded fractionally. Note that these 

include both Retail Loans and Rejected Whole Loans. 
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2. The investor is allocated $10,000 to invest. The $10,000 is split into 100 shares of $100 

each, where each share is a fractional investment in a loan. The 100 loans are randomly 

chosen based upon the proportions outlined in Table 3.4. Using the rate of return 

calculations previously outlined for each loan, we determine the rate of return of the 

investor’s $10,000 investment.   

3. We replicate Step 2 1,000 times and identify the average return for the investment across 

the 1,000 simulations. This is the investor’s average return for a specific month/year 

combination. 

4. We replicate steps 1-4 for all the month/year combinations (October 2014 - December 

2015). 

In the process outlined above the investor’s pool of potential loans included Retail Loans 

and Rejected Whole Loans. We refer to this as Simulation 1. To examine the impact of the Rejected 

Whole Loans on the returns for each investment strategy, we replicate the steps outlined except we 

remove the Rejected Whole Loans from the pool of possible loans. We refer to this as Simulation 

2. Figure 3.5 compares the returns for each scenario (including and not including Rejected Whole 

Loans) for each investment strategy. The shaded area in each graph indicates periods where the 

proportion of loans initially assigned to the whole loan pool is greater than 50%. Figure 3.5 clearly 

indicates that investment strategy 1 (from Table 3.8) is most impacted by the mechanism design 

choice to reallocate the Rejected Whole Loans to the fractional loan market. This effect is clearly 

evident in the periods where LC assigns more than 50% of loans to the whole loans market (the 

shaded region). The impact is less pronounced as the investment strategies become less dependent 

on loans with higher grade borrowers. 

3.7 Discussion  

3.7.1 Research Contributions  

This study makes several research contributions. First, our study contributes to research on two-

sided platforms by discussing the governance and internal regulatory role played by the platform 

owners (Boudreau & Hagiu, 2009; Evans & Schmalensee, 2013). Prior research has paid extensive 

attention to platform market access and emphasized platform owners ability to grant, deny, and 

remove access to the platform as a key dimension of platform governance  (Boudreau, 2017; Parker 

& Van Alstyne, 2018). In a similar vein, we discuss how granting priority access to a subset of 
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complementors affects the creation and capturing of value in the platform markets. We contribute 

to the literature by showing that, within the same side of the market, negative spillover effects and 

lemon market challenges arise when a governance mechanism such as priority access is deployed 

by the platform to possibly “grow the pie” and remove the potential bottlenecks in serving the 

demand-side of the market. We further elucidate the mechanisms that drive the results from priority 

access―the level of priority access granted to institutional players and cream skimming effects 

resulting from sending rejected priority institutional loans to the retail market, and how it can affect 

the value proposition for the relevant complementors. Our findings highlight how conflict of 

interest between the platform (granting priority access to institutional investors) and some set of 

complementors (retail investors having level-playing access to loan borrowers), can create 

challenging contingencies to the design of economic incentives in the platform markets. 

Second, our study adds to a growing body of literature highlighting the importance of 

understanding the cohabitation of experts and crowd complementors in the two-sided platform 

markets (Boudreau, 2018; Greenstein & Zhu, 2018; Mollick & Nanda, 2016; Vallee & Zeng, 2019).  

We move beyond much of the research that discusses the conditions under which experts or crowds 

perform better, to the role that platform governance plays in creating contingencies on their 

performance, even after pricing for their expertise. We complement the current research by 

providing evidence for the interaction effect of platform design/governance mechanisms and the 

level of expertise of the complementors. Moreover, we unpack the challenges in designing and 

governing the platform market players with varying levels of expertise by linking such differences 

to one such governance mechanism, priority access, within broader platform governance 

framework.  

Third, we coalesce the core corporate strategy literature focusing on governance 

mechanisms with the emerging platform markets (Adner et al., 2018; Barach et al., 2019; Chu & 

Wu, 2019). Platform market scope and boundaries are determined by the type and amount of 

complementors participating on both sides of the market (Boudreau, 2017; McIntyre & Srinivasan, 

2017). Unlike traditional firms, platform owners don’t have hierarchical (within firm) or strict 

contractual (interfirm) relationships with the complementors; instead they attempt to align for a 

value proposition together with the platform owner (Adner, 2017). By zooming in platform market 

access, and priority access in particular, we provide a useful addition to conventional corporate 

strategy, and show the emergence of possibly new governance mechanisms. This adds to the recent 
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corporate strategy discussion on the scale, scope and organization of platform, and how well-known 

corporate instruments such as decision rights, ownership structures and process control methods 

are helpful for managers in achieving desired outcomes (Adner et al., 2018; Chu & Wu, 2019; 

McIntyre & Srinivasan, 2017).  

3.7.2 Practical Implications 

Our research has several implications for practice. First, as Roth (2018) notes, the ability to design 

the marketplaces call for a “microeconomic engineering” thinking from the managers and 

strategists. By empirically evaluating how design choices such as priority access can create 

downstream effects on the complementors, we invite platform designers to delve further into both 

the first order—how the governance mechanisms such as priority access is deployed—and second 

order—how the spillover effects can emerge. According to our research, a fuller understanding of 

the incentive structures and the changes design and deployment of governance mechanisms can 

bring to them is critical to obtaining a holistic picture about the platform.  

 Second, our findings provide insights regarding the antitrust issues potentially faced by the 

platform. The two-sided nature of the platforms require changes to the existing antitrust apparatus 

and a “refrain from mechanically applying standard antitrust ideas where they do not belong” 

(Tirole, 2015). One particular challenge is that platforms often create substantial value for the 

complementors, while often dictating how the value gets appropriated among them (Evans & 

Schmalensee, 2013; Stigler Committee on Digital Platforms, 2019; Zhu & Liu, 2018). However, 

the analysis on the suitable ways to use the regulatory apparatus remains primitive. Stigler 

Committee on Digital Platforms (2019) lamented this limitation as follows: “the proposals were 

reactions to the perceived threat posed by digital platforms, with little to no analysis of the 

underlying root problems, let alone a link between market failures and remedies”. In our paper, we 

show how platform owners’ governance mechanisms can create negative spillover effects on the 

crowd market players even as they proclaim them to be the “heart” of the platform. The set of 

nuanced implications indicated here open up some potential pathways to thinking further about the 

antitrust issues coming from value creation and appropriation in the platform markets.  
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3.7.3 Limitations and Future Research  

Several limitations in this study point to future research directions. First, although we found that 

granting privilege access to institutional investors bring negative spillover effects on the same-side 

retail investors, we haven’t been able to identify different types of institutional investors in the 

platform (such as investment banks, pension funds, commercial trusts, endowment funds, hedge 

funds, and private equity investors) due to data limitations. Prior research in financial markets show 

that there are performance heterogeneities among the type of institutional investors. Future work, 

therefore, should examine them in this context.  

 Second, as noted in the paper, platform owner in our context, Lending Club, resorts to 

providing priority access to institutional investors with the purpose of removing the demand-side 

bottlenecks in the pursuit of expanding the platform. This design approach is followed LC’s main 

rival Prosper Marketplace in the United States as well. However, this also leads to a salient question 

on the counterfactuals: what are the alternative solutions to bringing credible institutional investors 

onboard without granting them priority access? Although, we show the implications of such policy, 

scholars can go beyond merely observing them to proposing viable alternative solutions that we 

suspect would be of interest to wider audience including strategists, market designers, economists 

and legal experts.  

 Third, while our context of online marketplace lending is well suited to study the interplay 

between platform governance and the level of expertise, future work can extend this research to 

other platforms. For instance, we draw from the finance literature to show, ceteris paribus, how 

expert institutional investors perform better than the non-expert crowd investors, which in turn 

helps us to build the theory for the priority access. However, this effect may not be clear in other 

marketplaces. What are the contingency effects on the platforms where the collective intelligence 

of the crowds is better than the expert evaluation? We leave those extensions for future research. 

3.8 Conclusion 

Platform owners often align complementors with varied incentives in two-sides of the market 

towards orchestrating a specific value proposition. Emerging scholarship on platform governance 

suggests that platforms involve in market designing activities including the design of economic 

incentives to shape specific outcomes in the marketplace. Our analysis focuses on platform access 

control, specifically in the form of granting priority access to a subset of supply side complementors, 
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and shows that the interplay between platform governance and the level of expertise can create 

important variations in complementor performance. Using online P2P lending industry, we 

demonstrate how platform market design choices related to lender side expansion, through giving 

priority access to institutional lenders, can have negative spillover effects on the retail lenders. We 

specifically discuss two mechanisms pertaining to priority access, the level of priority access and 

cream skimming in priority market, to explain further about the effects. As platform-based 

organizations proliferate in the digital economy, we hope our study will encourage further interest 

in platform market design, expertise of the market players, and corporate strategy.  
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        (Panel I)      (Panel II) 

Figure 3.1 Monthly Institutional Loan Assignment Distribution 

 

 

 

Figure 3.2 Lending Club Number of Loans Overall and Number of Loans Assigned to 
Institutional Investors 
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Figure 3.3 Weekly Institutional Loan Distribution by Year 

 

Figure 3.4 Interest Rate, Default, and Loan Rate of Return by Borrower Grade 

Note: The bar graph in this figure represents the average loan interest rate for each borrower grade. The dashed line 
indicates the rate of return with the associated error bars representing the variance. The solid line represents the average 
default rate of each borrower grade.  
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Table 3.1Variable Description 

 Variable Description 

Dependent 
Variables 

Default 
1: if the borrower does not default on loan 

0: if the borrower defaults on loan 

Rate of Return 
ௌ௨௠ ௢௙ ௉௔௬௠௘௡௧௦ ௠௔ௗ௘ ௕௬ ஻௢௥௥௢௪௘௥

ி௨௡ௗ௘ௗ ஺௠௢௨௡௧
  

Explanatory 
Variables 

Proportion Priority 
Institutional Loans  

For each week, the proportion of all LC listings that 
are assigned to the institutional investor market. 

Loan Rejected by 
Institutional 
Investors (1/0) 

1: if the loan is initially assigned to the institutional 
investor market but subsequently rejected by the 
institutional investors. These loans are reassigned 
to the retail market. 
0: all other loans, including loans initially assigned 
to the retail market and loans initially assigned to 
and funded by the institutional investors.  

Proportion Loans 
Rejected by 
Institutional 
Investors  

For each week, the proportion of loans funded by 
the retail investors that were originally assigned to 
the priority institutional investor market. 

Control 
Variables 

Funding Amount 
The log of the dollar amount of funding obtained 
by the borrower. 

Debt-to-Income 
Ratio 

The ratio of the borrower’s debt to their income 
prior to obtaining their LC loan. 

Inquiries Last 6 
Months 

The number of credit inquiries made by the 
borrower in the months prior to their LC loan 
request. 

Annual Income 
The log of the annual income of the borrower (in 
$1,000s). 

Revolving Balance 
The log of the revolving credit balance owed by the 
borrower prior to requesting a LC loan (in $1,000s). 

Interest Rate 
The interest rate assigned by LC for the borrower’s 
loan. 

Homeownership 
Status 

1: Borrower rents their home. 
0: Borrower owns home. 

Current Credit Lines 
The log of the number of current credit lines the 
borrower has before obtaining their LC loan. 
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Table 3.2 Descriptive Statistics and Correlations 

Variables Mean S.D. 1 2 3 4 5 6 7 8 9 10 11 12 
                
1 Default 0.16 0.36             

2 Rate of Return 0.07 0.26 -0.85            

3 
Proportion Priority 
Institutional Loans 

0.49 0.21 0.06 -0.07           

4 
Loan Rejected by 
Institutional Investors (1/0) 

0.11 0.31 0.00 -0.02 0.29          

5 
Proportion Loans Rejected 
by Institutional Investors 

0.11 0.15 -0.01 0.02 -0.19 0.15         

6 Funding Amount 12.67 8.02 -0.01 -0.01 0.02 0.03 0.00        

7 Debt-to-Income Ratio (%) 18.44 8.97 0.09 -0.04 0.10 0.07 0.00 -0.01       

8 Inquiries Last 6 Months 0.72 0.99 0.07 -0.03 -0.02 0.02 0.03 -0.03 0.00      
9 Annual Income  71.03 62.91 -0.05 0.02 0.00 -0.02 -0.01 0.36 -0.19 0.04     
10 Revolving Balance 15.56 23.01 -0.04 0.02 0.00 0.03 0.01 0.33 0.11 -0.01 0.30    
11 Interest Rate 12.75 4.11 0.20 -0.02 -0.03 -0.13 0.02 -0.09 0.16 0.25 -0.13 -0.10   
12 Homeownership Status 0.44 0.50 0.07 -0.03 0.01 -0.01 0.00 -0.16 -0.01 -0.04 -0.14 -0.15 0.13  
13 Current Credit Lines 24.49 11.82 -0.02 -0.02 -0.01 0.03 -0.01 0.21 0.20 0.16 0.19 0.18 -0.12 -0.21 

N = 378,487.  All bold values are significant at the p<0.05 level, two-tailed test.  
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Table 3.3 Analysis of LC Randomization of Loan Assignment 

 
DV: 

(1) (2) (3) (4) (5) 

Default 
Rate of 
Return 

Annual 
Income 

Debt-to-
Income 
Ratio 

Funding 
Amount 

Priority 
Institutional Loan 
(1/0) 

-0.000 -0.001 0.007 0.028 0.020 
(0.001) (0.001) (0.170) (0.021) (0.020) 

Grade by Year FE Yes Yes Yes Yes Yes 

Constant 
0.040 

(0.016) 
0.056 

(0.012) 
84.882 
(3.239) 

12.741 
(0.410) 

11.178 
(0.376) 

Num. obs. 
783,99

9 
783,999 783,999 783,999 783,999 

Standard errors are reported in parentheses. 
Notes:   This table reports the results of an examination of LC’s randomization 
process in allocating loans between the retail market and the priority institutional 
loans market. The results indicate that, on average, there is no difference in loans 
assignment based on Default, Rate of Return, Annual Income, Debt-to-Income 
Ratio, and Funding Amount. 
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Table 3.4 Analysis of LC Institutional Investor Performance 

DV: 
(1) 

Default 

(2) 
Rate of 
Return 

Rejected Institutional 
Investor Loan (1/0) 

0.023 
(0.002) 

-0.011 
(0.001) 

Grade by Year FE Yes Yes 

Constant 
0.008 

(0.037) 
0.070 

(0.026) 

Num. obs. 445,376 445,376 

Standard errors are reported in parenthesis. 
Notes: This table provides the performance of the 
institutional investors. Specifically, the results compare 
the differences between the outcomes of the loans funded 
by the institutional investors and those rejected by the 
institutional investors. The results indicate that the loans 
rejected by institutional investors defaulted more often 
and had a lower rate of return than the loans they funded. 
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Table 3.5 Main Results 

 
H1: Level of 

Priority Access 
H2a. Cream 
Skimming 

H2b. Level of 
Cream Skimming 

DV: 
(1) (2) (3) (4) (5) (6) 

Default 
Rate of 
Return 

Default 
Rate of 
Return 

Default 
Rate of 
Return 

Proportion Priority 
Institutional Loans  

0.016 -0.009     
(0.004) (0.003)     

Loan Rejected by  
Institutional 
Investors (1/0) 

  0.009 -0.003   
  (0.002) (0.001) 

  
Proportion Loans 
Rejected by 
Institutional 
Investors 

    0.037 -0.015 
  

  

(0.007) (0.005) 

Funding Amount 
0.032 -0.019 0.032 -0.019 0.032 -0.019 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Debt to Income 
Ratio 

0.001 -0.001 0.001 -0.001 0.001 -0.001 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Inquiries Last 6 
Months 

0.011 -0.010 0.011 -0.010 0.011 -0.010 
(0.001) (0.000) (0.001) (0.000) (0.001) (0.000) 

Annual Income 
-0.038 0.018 -0.037 0.017 -0.038 0.018 
(0.002) (0.001) (0.002) (0.001) (0.002) (0.001) 

Revolving Balance 
-0.016 0.016 -0.016 0.016 -0.016 0.016 
(0.002) (0.001) (0.002) (0.001) (0.002) (0.001) 

Interest Rate 
-0.001 0.010 -0.001 0.011 -0.001 0.011 
(0.002) (0.001) (0.002) (0.001) (0.002) (0.001) 

Homeownership 
Status 

0.031 -0.018 0.031 -0.018 0.031 -0.018 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Current Credit 
Lines 

0.009 -0.016 0.008 -0.016 0.009 -0.016 
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Grade by Year FE Yes Yes Yes Yes Yes Yes 

Constant 
0.001 0.058 0.005 0.055 -0.026 0.070 

(0.020) (0.015) (0.020) (0.015) (0.021) (0.015) 
Num. Obs. 378,487 378,487 378,487 378,487 378,487 378,487 
R-Squared 0.057 0.019 0.057 0.019 0.057 0.019 

Standard errors are reported in parenthesis. 
Notes:   This table presents the main results examining the hypotheses proposed. Columns 1 and 
2 examine hypothesis 1, columns 3 and 4 hypothesis 2a, and columns 5 and 6 hypothesis 2b. 

 



 
 

118 

Table 3.6 Supplementary Analysis – Funding Time 

 Falsification Test Evaluating Funding Time 

DV: 
(1) (2) (3) (4) (5) (6) (7) 

Default 
Rate of 
Return 

Default 
Rate of 
Return 

log(Funding 
Time) 

Default Rate of 
Return 

Proportion Priority 
Institutional Loans 

0.003 -0.004   -0.359 -0.036 0.038 
(0.004) (0.003)   (0.007) (0.047) (0.031) 

Funding Time 
  0.018 -0.007  0.012 -0.001 
  (0.002) (0.001)  (0.005) (0.004) 

Proportion Priority 
Institutional Loans x 
log(Funding Time) 

     0.012 -0.010 
     (0.009) (0.006) 

Loan Controls Yes Yes Yes Yes Yes Yes Yes 

Grade by Year FE Yes Yes Yes Yes Yes Yes Yes 

Constant -0.052 0.092 -0.160 0.167 5.731 -0.151 0.150 

(0.038) (0.027) (0.022) (0.015) (0.028) (0.036) (0.024) 

Num. Obs. 445,338 445,338 223,461 223,461 223,461 223,461 223,461 

Standard errors are reported in parenthesis.   
Notes:   This table provides results from the supplementary analysis. Funding Time refers to the log of the 
time between when the borrower listed their loan and when they received their loan. 
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Table 3.7 Supplementary Analysis – Number of Investors 

DV: Number of Investors (in Log) 

Proportion Priority 
Institutional Loans 

0.371 

(0.008) 

 

Proportion Loans Rejected by 
Institutional Investors 

 0.185 

(0.014) 

Controls Yes Yes 

Grade by Year FE Yes Yes 

Num. Obs. 416,515 416,515 

Standard errors are reported in parenthesis. 

Notes: This table provides results from the supplementary analysis. 
Funding Time refers to the log of the time between when the borrower 
listed their loan and when they received their loan.  
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Table 3.8 Simulated Investor Rate of Return 

 


