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ABSTRACT 

Growing demand for health services provided by outpatient clinics and hospitals caused 

health institutions flow and capacity challenges. Health organizations’ poor response to these 

challenges directly translate into negative patient outcomes and intensified downstream costs. In 

this study, we investigate dynamics and mechanisms that influence patient wait times and capacity 

strains and propose strategies and policies that can improve these issues in both ambulatory and 

inpatient care.  

First, we investigate the access issue in a multidisciplinary memory clinic, which consists of 

three practices and six patient types. Considering patient flow and interactions, we develop an 

empirical simulation model to evaluate the effectiveness of access improvement strategies such as 

overbooking, repatriation (i.e., referring the patient back to primary care), and increasing provider 

hours. Our results suggest that despite the increasing wait times in the multidisciplinary memory 

clinic, increasing provider slots is not always an effective strategy. In fact, overbooking and 

reducing unnecessary follow-up visits can result in more significant performance improvements. 

Second, we study the impact of long-stay patients (i.e., patients with discharge barriers that 

stay in the hospital for non-medical reasons) on flow and capacity. In particular, we focus on the 

patient flow between Intensive Care Unit (ICU), Step-down Unit (SDU), and Medical Unit (MU) 

and quantify the impact of long-stay patient volumes on wait time, length of stay (LOS), and 30-

day readmission probability of other patients transitioning among these units. We find that larger 

proportion of long-stay patients in the MU results in shorter LOS for other patients in the MU, and 

longer wait time for patients leaving the ICU to MU. 

Third, we examine existing patient grouping system based on the service lines at two 

hospitals within the same health system and propose a two-step clustering-classification approach 

to identify new patient clusters. Unlike existing 8 patient clusters (i.e., service lines), our results 

identified 11 patient clusters in Wilmington hospital and 15 patient clusters in Christiana hospital, 

indicating the need to further splitting some of the existing service lines such as internal medicine, 

general surgery, and neurological disorders.  
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 INTRODUCTION 

Among the 30 developed countries in the Organization for Economic Cooperation and 

Development (OECD), the United States has the highest health spending while it ranks near the 

bottom on common health measures (Kane 2012, Peterson and Burton 2009, Schroeder 2007). To 

this end, Schroeder (Schroeder 2007) proposed two focus areas that can impact health status in the 

US, improving the quality of care, and improving patient access to care. Granting the fact that 

quality of care in the US is no worse than that of other OECD countries (Schroeder 2007), access 

to care remains an ongoing issue in the US, especially among underserved populations 

(Bettenhausen et al. 2017, Land 2020, Mayer 2008, Schmidt et al. 2018). 

Improving patient access to ambulatory services requires effective management of patient 

no-shows as well as patient follow-ups. Patient no-show negatively impacts provider productivity, 

clinic efficiency, healthcare costs, and patients access to care (Laganga and Lawrence 2007, 

Ratcliffe et al. 2012). Depending on the clinic type, no-show may vary from 3% to 80% (LaGanga 

and Lawrence 2012). Previous studies estimated patient no-show rates in different clinics. For 

instance, 55% in an outpatient clinic (Vikander et al. 1986), 13.6% up to 23.1% in an academic 

outpatient practice (Parikh et al. 2010), 18% in an Endoscopy clinic (Berg et al. 2013), 18% in 

primary care (Mehrotra et al. 2008), 15.8% in a Swiss university outpatient clinic (Lehmann et al. 

2007), and 8.5% in an endocrinology clinic (Kim et al. 2018).  

In addition to the no-show issue, outpatient clinics also deal with great volumes of follow-

up visits. As reported in several studies, follow-up visits account for about 75% of specialist visits 

in England (Reeve et al. 1997), and nearly 50% of overall outpatient visits in the United States 

(Ackerman et al. 2014). It is believed that proportion of follow-up specialty visits can be handled 

through primary care, hence improve the access to specialty clinics (Ackerman et al. 2014, 

Mehrotra et al. 2011, Naiker et al. 2018). This proportion has been estimated anywhere between 

5.6% to 48% (Ackerman et al. 2014, Hashim 2020, Reeve et al. 1997, U.S. 2013).  

Although the literature supports the need for better no-show and follow-up management, 

there is no study to measure the impact of them on patient access to multidisciplinary clinics. 

Multidisciplinary practice models have gained popularity in recent years due to the potential 

advantages they have to offer, such as early diagnosis and cost savings, process efficiencies, and 
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better health outcomes especially for patients with comorbidities (Bech-Azeddine et al. 2001, Hejl 

et al. 2002, Hodges et al. 2010, Høgh et al. 1999, Verhey et al. 1993, Wolfs et al. 2006).  

In this study, we develop an empirical model of multidisciplinary memory clinic, considering 

different patient flows, no-shows, and follow-up patterns. We then evaluate the effectiveness of 

multiple access improvement strategies related to no-show, follow-up, and capacity management.   

Similar to outpatient setting, inpatient flow can directly impact health outcomes, hospital 

costs, and patient satisfaction (Eriksson et al. 2017, Shi et al. 2018). In addition, proper bed 

allocation of hospital units and smoothing their occupancies shown to improve inpatient flow 

(Armony et al. 2015, Crilly et al. 2015, Hillier et al. 2006).  

To estimate bed requirements, one needs to assess patient needs and their care complexities 

which can be extremely challenging due to the discretionary nature of diagnostics and treatment 

decisions (Lismont et al. 2016), clouding effect of overflowing activities (Lismont et al. 2016), as 

well as patient conditions and their health histories. As such, grouping similar patients is both 

critical and challenging. For that, bed allocation studies in both single-unit setting (Van Riet and 

Demeulemeester 2015, Rodrigues et al. 2018, Saghafian et al. 2015, Tierney and Conroy 2014) 

and cross-units setting (Bhattacharjee and Ray 2014, He et al. 2019) considered overall patient 

groups such as service lines.  

In this study, we shed light on a special patient population, long-stay patients. These patients 

have long length of stays due to either complex care needs or discharge barriers. They comprise a 

fairly small portion of patient population but constitute majority of the patient days (e.g., 4.4% of 

patient population used 63% of the patient days (Naghib et al. 2010)). As such, it is important to 

investigate their impact on patient flow and hospital capacity. Due to the limited research in this 

realm and controversial findings regarding their impacts on flow and capacity (Lantz 2020, 

Woodger 2017, Woodger et al. 2018), this study aims to evaluate their impact on patient flow and 

hospital capacity from multiple perspectives.  

In addition, we identify patient clusters using available data at the time of patient admission. 

Identified clusters can redefine existing service lines and inform reallocation of beds among them. 

They can also inform the hospital about potential anomality and guideline adherences.  
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 LITERATURE REVIEW 

Studies suggest that worse health outcomes are associated with poor access to both outpatient 

(Landon et al. 2005, Wu et al. 2001) and inpatient services (Eriksson et al. 2017, Shi et al. 2018). 

Also, historical patterns represent a constantly growing demand for both outpatient and inpatient 

services. In fact, demand for outpatient services has doubled within the past decade  (Ackerman et 

al. 2014). Similarly, emergency visits and inpatient demands have been growing annually at annual 

rate of 2.3% (Slade et al. 2010). A more recent study suggest that the number of emergency visits 

increased from 128.97 million in 2010 to 144.82 million in 2016 with the cumulative annual 

growth rate of 1.95% which is higher than population growth at the rate of 0.73% (Lane et al. 

2020). These findings indicate the need for efficiency in both ambulatory and inpatient care. 

2.1 Ambulatory Care 

Demand for outpatient services is constantly growing. Ambulatory care visits nearly doubled 

in the past decade (Ackerman et al. 2014). More than a third of patients are referred to outpatient 

services every year (Mehrotra et al. 2011). Growing demand has negatively impacted the patient 

access to ambulatory services. Access issue is even more pronounced among underserved 

populations (Cook et al. 2007, Ferrer 2007, Mayer 2008, Weissman et al. 2003). 

Research has shown that patients who encounter longer wait times for their outpatient 

services are more likely to have worse health outcomes (Pizer and Prentice 2011). For instance, 

Veterans with more than a month wait time for outpatient services are 21% more likely to die, 

compared with patients who waited less than a month (Prentice and Pizer 2007). Similarly, a 10-

day increase in wait time for primary care services among veterans aged 70 or more resulted in 2% 

increase in the odds of mortality and 6% increase in the odds of experiencing a stroke (Pizer and 

Prentice 2011). Other studies also suggest associations between poor access and worse health 

outcomes (Landon et al. 2005, Wu et al. 2001).  

Poor access negatively impacts patient satisfaction. Patient satisfaction mainly depends on 

the aspects that patients can judge, such as timeliness of services (Eilers 2004, Fogarty and Cronin 

2008, Kenagy et al. 1999). Poor access also increases downstream costs and healthcare utilization 

by deferring appropriate diagnosis and treatments (Kenagy et al. 1999) such as for preventable 
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diagnosis in patients with diabetes (Mayfiel et al. 1998). As such, it is crucial to identify effective 

strategies that improve patient access to ambulatory care.   

A recent review of 152 studies, identified three major themes for improving access to 

outpatient clinics (Naiker et al. 2018). The themes included resource alignment strategies (e.g., 

limiting the number of referrals, wait list audits, discharging patients from specialty to primary 

care, and triaging patients), operational efficiencies (e.g., early start of clinics, improved 

scheduling, separating new and follow-up access measures, and matching supply to demand) and 

process improvements (e.g., improving efficiencies, reducing supply and demand variations, no-

show modeling, guidelines to improve efficiency of care processes, referral management, 

telemedicine, and use of technologies such as text messaging, e-referrals, automated scheduling, 

and reminders). 

In the following sub-sections, we discuss the most common access improvement strategies, 

one from each of the above themes. More precisely, we explain overbooking from the process 

improvement theme (Laganga and Lawrence 2007, 2012, Liu et al. 2010), reducing unnecessary 

follow-up visits from the resource alignment theme (Demeere et al. 2009), and increasing 

providers from the operational efficiencies theme (Ponis et al. 2013).     

2.1.1 No-show management 

Patient no-show is a common issue in outpatient clinics, which can vary from 3% to 80% 

(LaGanga and Lawrence 2012). Previous studies estimated patient no-show rates in different 

clinics and location. For instance, 55% in an outpatient clinic (Vikander et al. 1986), 13.6% up to 

23.1% in an academic outpatient practice (Parikh et al. 2010), 18% in an Endoscopy clinic (Berg 

et al. 2013), 18% in primary care (Mehrotra et al. 2008), 15.8% in a Swiss university outpatient 

clinic (Lehmann et al. 2007), and 8.5% in an endocrinology clinic (Kim et al. 2018). Regardless 

of the significance, no-shows negatively impact provider productivity, clinic efficiency, healthcare 

costs, and patients access to care by reducing the effective capacity (Laganga and Lawrence 2007, 

Ratcliffe et al. 2012).  

For instance, 25.4% no-show rate in a family medicine clinic resulted in 14% loss in its 

anticipated daily revenue (Moore et al. 2001). Similar study in an endoscopy clinic revealed 16.4% 

profit loss due to its 18% patient no-show rate (Berg et al. 2013).  
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As such, researchers began to investigate the no-show drivers (Tan et al. 2019, Yang et al. 

2020, Zailinawati et al. 2006), intervene to reduce no-show rates using reminder calls (Parikh et 

al. 2010), and incorporate no-show behaviors into appointment scheduling models through 

overbooking.   

In particular, El-Sharo et al. (El-Sharo et al. 2015) studied overbooking strategies to 

maximize profit in a multi-provider outpatient clinic. Similarly, Ratcliffe et al. formulated an 

optimization model for overbooking and capacity decisions in outpatient clinics with two classes 

of patients and no-shows (Ratcliffe et al. 2012). Overbooking also resulted in significant 

improvements in patient access and provider productivity in different studies (Ahmadi-Javid et al. 

2017, Cayirli and Yang 2014, Laganga and Lawrence 2007, 2012, Liu et al. 2010).  

Huang and Hanauer compared personalized no-show prediction with traditional evenly-

distributed overbooking in a general pediatrics clinic and concluded that earlier resulted in 6-8% 

less average patient wait time and 24-29% less overtime (Huang and Hanauer 2014). Other studies 

also stated the superiority of including personalized no-show rates to fixed or randomized ones 

(Glowacka et al. 2009, Salzarulo et al. 2016). For instance, Reid et al. proposed a predictive 

overbooking that performed better than fixed overbooking (e.g., 19%, 29%, 38%) in minimizing 

underutilization and overutilization of a Veterans Administration healthcare network clinic (Reid 

et al. 2015). Similarly, Daggy et al. used logistic regression to predict patient no-shows, and 

incorporated them into simulation model to optimize patient wait time, clinic utilization, and 

overtime using three years data from Veterans Affairs medical center (Daggy et al. 2010).  

Despite the abundance of overbooking models in monodisciplinary outpatient clinics (i.e., a 

single provider type provides care services), none of the scheduling models in multidisciplinary 

outpatient clinics (i.e., multiple provider types collaborate to deliver care services) studied 

overbooking rules (Leeftink et al. 2018). As such, this study contributes to the literature by 

incorporating overbooking levels into access improvement strategies for a multidisciplinary 

outpatient clinic. Moreover, it considers queue length, as well as patient wait time, provider 

utilization, and number of visits as key performance indicators.  

2.1.2 Managing follow-up visits 

Follow-up patients account for majority of outpatient clinic visits. As reported in several 

studies, follow-up visits account for about 75% of specialist visits in England (Reeve et al. 1997), 
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and nearly 50% of overall outpatient visits in the United States (Ackerman et al. 2014). In specialty 

clinics, some of these follow up patients can be referred back to primary care, which is known as 

repatriation. National Ambulatory Medical Care Survey report in 2013 estimated repatriation for 

different specialties, such as 10% for cardiology, 8% for psychiatry, and 5.6% for otolaryngology 

(U.S. 2013). Other studies reported repatriation estimates across multiple specialties, such as 48% 

in medical clinics (Reeve et al. 1997), 41.3% (Hashim 2020), and 16% (Ackerman et al. 2014).   

Considering the significance of these estimates, it is believed that repatriation can lower 

healthcare costs and improve the access to specialty clinics (Ackerman et al. 2014, Mehrotra et al. 

2011, Naiker et al. 2018). As such, numerous studies investigated repatriation barriers such as 

social, legal, and financial barriers (Ackerman and Gleason 2018), communication, guilt and trust 

difficulties (Burkey et al. 1997, Foy et al. 2010, Reeve et al. 1997), and care coordination issues 

(Liss et al. 2011). Accordingly, strategies have been proposed to facilitate the repatriation process, 

such as implementing gatekeepers and referral guidelines (Kouroukis et al. 2017, Mehrotra et al. 

2011). However, there is no study to measure the impact of repatriation on patient access. To 

support the implementation of effective repatriation levels, the current study measures the impact 

of different repatriations on patient access to a multidisciplinary outpatient clinic, considering the 

complex nature of follow-up patterns, within-clinic referrals between disciplines, and no-show 

behaviors.      

2.1.3 Capacity planning 

Extending provider shifts and increasing capacity can improve patient access if the clinic is 

performing near its maximal capacity (Kritchanchai and Hoeur 2018). In addition, measuring 

access (e.g., mean wait time, queue length and backlog, supply and demand volumes) over long 

period of time can indicate potential capacity strains (van Bussel et al. 2018, Deslauriers et al. 

2017, Johannessen and Alexandersen 2018, Kortbeek et al. 2017, O’Neill et al. 2012). 

Capacity planning based on a target access time for some percentile of new patients is a 

common technique in the literature. For instance, Elkhuizen et al. calculated short-term and 

permanent capacity needed for neurology and gynecology outpatient clinics in order to achieve 

two weeks access time for 95% of new patients (Elkhuizen et al. 2007). As such, they measured 

mean access over time and suggested to have 26 additional consultations per week over two 

months period to clear the neurology backlog, and to have 2 additional weekly consultations to 
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retain the access within two weeks (Elkhuizen et al. 2007). Similarly, Nguyen et al. proposed a 

mixed-integer programming model to minimize the maximum required capacity in an urology 

outpatient clinic where 6 weeks access time for 95% of patients was one of the constraints (Nguyen 

et al. 2015).  

Another common capacity planning technique in the literature is based on demand variations 

and matching it to supply. For instance, capacity planning in an outpatient physical therapy service 

considering different service types and demand variations was studied using a discrete event 

simulation model (Rau et al. 2013). Similarly, capacity planning by matching supply and demand 

in the presence of walk-in and no-show was studied (Jiang et al. 2017).  

Unlike these studies that have been done in monodisciplinary clinics, the current study 

evaluates the effectiveness of different capacity levels on patient access by minimizing overall 

patient wait time and provider idle time in a multidisciplinary outpatient clinic.  

2.2 Inpatient Care 

Hospital capacity planning is the effort of assigning hospital resources into different areas in 

order to match supply to demand (Li and Benton 2003). Assignment of these resources mainly 

depend on planning horizon. While short-term and intermediate-term capacity plans (e.g., 

scheduling, admission and discharge planning, and staffing) focus on operational and tactical goals, 

long-term capacity plans (e.g., allocating beds to different hospital units) aim to achieve strategic 

goals (Hulshof 2013, Hulshof et al. 2012). Among these, bed allocation has always been one of 

the key focus areas for hospitals that strive for excellence in care delivery (L. V. Green 2006).  

Improper allocation of beds results in ceaseless congestion in high traffic units such as 

Intensive Care Unit (ICU), stepdown (Armony et al. 2015) and general medical floor (Crilly et al. 

2015, Hillier et al. 2006). Research has shown the association between capacity strain and adverse 

health outcomes such as readmission (Shi et al. 2018) and mortality (Eriksson et al. 2017). In a 

recent systematic review, mortality rates increased during times of capacity strain in 18 of 30 

studies and in 9 of 12 studies in ICUs (Eriksson et al. 2017), further indicating the importance of 

balanced bed allocation.  
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2.2.1 Single-unit studies 

Initial models studied bed allocation in different hospital units such as Emergency 

Department (ED), ICU, and surgical units separately.  

Bed allocation and improving patient flow in ED is of special importance. ED is the main 

point of entrance to hospitals. In fact, majority of admitted patients to general medicine beds come 

through the ED (Shi et al. 2015). ED visits account for approximately 85% of the admitted patients 

to hospital beds (Hillier et al. 2006).  

Bed allocation based on target occupancy rate of 85% has been a common practice for the 

past decades (L. Green 2006, Green and Nguyen 2001). Bed allocation based on average 

occupancy rate has several issues. Occupancy rate is based on certified number of beds which is 

typically higher than staffed beds. Also, occupancy rate is captured based on midnight census 

which is often the lowest level. Finally, occupancy rate is averaged throughout a year without 

considering seasonal and time varying demands (Saghafian et al. 2015).  As such, it is crucial to 

incorporate demand variations over time into capacity plans. Higginson et al.  studied bed 

allocation problem in ED by tracking demand variation over time within different segmentations 

(e.g., hours of day, weekdays, and seasonal changes) (Higginson et al. 2011). A review of similar 

studies to improve patient flow and bed allocation in ED is provided in (Saghafian et al. 2015).    

In line with bed allocation efforts within the ED, several models have been developed to 

identify avoidable ED visits and estimate potential capacity gains (Brousseau et al. 2006, Hsia and 

Niedzwiecki 2017, Johnston et al. 2017). Among others, NYU algorithm, also known as Billings 

algorithm, is able to classify ED visits into four major categories of non-emergent (i.e., visits that 

didn’t require care within 12 hours), emergent but primary care treatable (i.e., visits that required 

care within 12 hours that could be treated in primary care), emergent but avoidable (i.e., visits that 

could have been avoided through better primary care management such as medication adherence) 

and non-preventable emergent visits (i.e., visits that required emergency care) (Billings et al. 

2000b, a). NYU algorithm was also applied to 2-years Medicare claims data from 5 states (Dowd 

et al. 2014). In this study, about 35% of ED visits were appropriate (i.e., non-preventable emergent), 

about 50% could have been treated in primary care, and about 15% were deemed preventable 

(Dowd et al. 2014).      

Bed allocation in ICU has also been studied widely. Cost of care in the ICU is considered 

expensive, and is expected to increase over the next decade (Angus 2000, Cohen et al. 2010, 
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Halpern et al. 1994). ICU patients account for 5% of total hospital admissions, yet they account 

for 15-20% of hospital budgets (Marlene Gyldmark 1995).  

Wild and Narath studied ICU bed distribution, including percent of total hospital beds and 

number of beds per 100,000 population in the United States, Germany, Austria, Spain, Japan, Italy, 

United Kingdom, and Australia (Wild and Narath 2005). Among others, United States owns the 

highest number of ICU beds (6.3% of all hospital beds, and 30.5 beds per 100,000 population) 

which indicate the need for capacity planning in the US hospitals (Wild and Narath 2005).  

In most countries, ICU capacity is planned based on estimated need, defined as multiplication 

of annual admissions, average Length Of Stay (LOS), and ideal occupancy rate (Wild and Narath 

2005). While the use of aggregated annual admission and average LOS ignores time varying 

fluctuations, determining the ideal occupancy rate is challenging by itself. In this regard, Tierney 

and Conroy (Tierney and Conroy 2014) reviewed ICU studies that recommended capacity 

planning based on occupancy rates. While the US guideline for ICU occupancy rate is around 

80%-85%, which is deemed to be unrealistically high (Halpern et al. 2006), several studies 

suggested 75% or below as the optimal occupancy rate (Green 2002, Valentin and Ferdinande 

2011). Despite these recommendations, capacity planning based on average occupancy rate has 

been criticized. As discussed in the literature (Chrusch et al. 2009), occupancy rate can vary over 

time and increase the chance of adverse outcomes. Moreover, there seems to be a correlation 

between hospital size and its occupancy rate. In fact, Halpern et al. (Halpern et al. 2006) showed 

that larger hospitals tend to  perform in higher occupancy rates than smaller size hospitals. 

Alternative approaches in managing ICU capacity using Operations Research techniques have 

been reviewed in (Bai et al. 2018).  

Upon completion of ICU stay, patients often being transferred to step-down units (SDU). 

SDU is designed to offer intermediate level of care for patients downgraded from ICU or surgery. 

Capacity planning in SDU is also critical due to its vital role on smoothing ICU flow (Armony et 

al. 2018b). As such, one can expect to face the same challenges of ICU bed planning (Armony et 

al. 2018b, Corwin et al. 2005, Fernando et al. 2019, Zimmerman et al. 1999). Rodrigues et al. and 

references therein discussed the potential benefits of SDU on ICU patient flow and cost reductions 

(Rodrigues et al. 2018).  

Capacity planning in surgical units, or operating rooms (OR) is another challenging research 

area due to the involvement of different stakeholders (e.g., elective vs. non-elective patients) as 
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well as uncertainty sources (e.g., no-show, surgery duration) (Van Riet and Demeulemeester 2015). 

It is also one of the major revenue generating units in hospitals (Bekes et al. 2004).  

While majority of works in this area relate to scheduling operating rooms (Cardoen et al. 

2010, Guerriero and Guido 2011, Zhu et al. 2019), bed allocation has often been studied with the 

aim of determining the tradeoff between elective and emergency patient volumes (Van Riet and 

Demeulemeester 2015). In this regard, Helm et al. proposed an admission model for elective 

patients by smoothing the overall occupancy of hospital (Helm et al. 2011). Other studies aimed 

to reduce patient wait time by optimizing the number of required beds for elective and non-elective 

populations (Ferrand et al. 2014, Vanberkel and Blake 2007).  

After surgery, patients either being discharged or held in post-anesthesia care unit (PACU). 

As such, PACU plays a key role in smoothing patient flow in the OR. Hence, capacity planning 

models in PACU and evaluation of their impacts were mainly tied to OR metrics (Dexter et al. 

2005, Khorasanian et al. 2018, Marcon et al. 2003).  

Capacity planning for each hospital unit separately results in sub-optimal plans that require 

practitioners to use different strategies for smoothing real-time flow of patients. For instance, 

hospitals tend to overflow patients to a non-preferred unit when there is capacity strain in the 

preferred unit (i.e., off-service placement). One of the recent studies stated that more than 20% of 

ED admitted patients were overflowed to inpatient wards (Dai and Shi 2019). In another study, 

consequences of overflowing on health outcomes were measured (Song et al. 2019). In this study, 

overflowing resulted in adverse outcomes due to the mismatch in nursing skills and extended 

travelling distance for rounding physicians (Song et al. 2019).  

Another real-time strategy for alleviating congestion is prematurely discharging patients 

from a congested unit, such as ICU, which is also associated with higher risk of mortality 

(Rodríguez-Carvajal et al. 2011). In fact, average Length Of Stay (LOS) in ICU decreases when 

its occupancy rate increases which then increases the likelihood of ICU readmission (i.e., bounce-

back) (Singh and Terwiesch 2012).  

2.2.2 Cross-unit studies 

Studies on multi-unit capacity planning were motivated by findings of earlier works on 

patient flow and its impact on downstream units. For instance, McConnell showed that an increase 

of 20 beds in an ICU can reduce ambulance diversion hours and LOS in ED by 66%, and 10% 
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respectively (McConnell et al. 2005). Similar studies investigated the impact of ICU capacity on 

patient flow within ED and reported potential associations between them (Allon et al. 2013, Pham 

et al. 2006). Studies also repeatedly reported the association between OR and PACU flows 

(Corwin et al. 2005, Dexter et al. 2005, Khorasanian et al. 2018, Marcon et al. 2003). As such, 

researchers began to incorporate multiple units in their capacity planning models. These models 

were reviewed from uncertainty quantification and modeling perspectives (Bhattacharjee and Ray 

2014).  

Similarly, He et al. identified nearly 1,500 scholarly articles published between 2013-2017 

and criticized their static approach  toward the flow (He et al. 2019). In this line, Table 2.1 shows 

some of the most relevant studies that considered multiple hospital units within their bed allocation 

problems.    

Although the systematic approach aims to combine multiple patient groups together, the use 

of this approach requires a method to group and prioritize patients based on their characteristics 

and clinical needs. Bed allocation models need to incorporate metrics that are beyond the 

operational outcomes. For instance, 5 hours reduction in average wait time has different 

significance for a readmitted 80-year patient that seeks an ICU bed, and a 30-year patient that 

seeks a floor bed. Despite the abundance of system-level studies for bed allocation, only one of 

them included risk factors into their surge capacity planning model (Kelen et al. 2006). As shown 

in Table 2.2, majority of these system-level studies included only operational outcomes and 

ignored characteristics, risk factors, and clinical needs of patients. Including such features may 

reform the existing patient clusters, as in the case of type 2 diabetes mellitus domain (Lismont et 

al. 2016).   

 System-level studies require a method to group and prioritize patients based on their overall 

similarities. These similarities can be studied using process analytics (Lismont et al. 2016). Process 

analytics (i.e., process mining) offers a wide variety of techniques to track the movements of 

individual patients between different hospital units and extract the full trajectory of their pathways 

(Hripcsak and Albers 2013, Lismont et al. 2016). These techniques include sequencing events, 

temporal abstraction, clustering, sequence clustering, social network discovery, and decision 

mining (Lismont et al. 2016, Mans et al. 2015).  

Although a recent review of these models identified their potential benefits in healthcare 

resource allocation problems (Garcia et al. 2019), several major challenges exist in their 



 

 

22 

application, including inadequate granularity of recorded data, high complexity of healthcare data, 

and clouding effect of overflowing activities (Lismont et al. 2016), which have limited their 

applications to small size practice.  

Table 2.1. Recent cross-unit studies for bed allocation with included units. 

 ED Ward ICU PACU Ob/Gyn SDU Surgery 

(Burdett et al. 2017)  ✓ ✓ ✓ ✓ ✓ ✓ ✓  

(Burdett and Kozan 2016) ✓  ✓ ✓   ✓ 

(Cochran and Bharti 2006) ✓ ✓ ✓ ✓ ✓ ✓ ✓  

(Hick et al. 2010)  ✓ ✓ ✓ ✓  ✓ 

(Li et al. 2009) ✓ ✓ ✓ ✓ ✓ ✓ ✓  

(Cochran and Roche 2008)   ✓  ✓  ✓ 

(Lee et al. 2019) ✓ ✓ ✓     

(Lee et al. 2016) ✓ ✓ ✓     

(Mathews and Long 2015a)   ✓   ✓  

(Helm et al. 2011) ✓ ✓     ✓ 

(Helm and Van Oyen 2014) ✓  ✓    ✓ 

(Schafermeyer and Asplin 2003) ✓ ✓ ✓     

(Martin Prodel et al. 2013) ✓ ✓      

(Kortbeek et al. 2015) ✓      ✓ 

(Best et al. 2015)  ✓     ✓ 

(Harper and Shahani 2002) ✓ ✓     ✓ 

(Shi et al. 2015) ✓ ✓ ✓    ✓ 

(Armony et al. 2015) ✓ ✓      

(Khanna et al. 2012) ✓ ✓      

  

For instance, Lismont et al. applied process analytics to study pathways of type 2 diabetes 

mellitus patients in primary care setting, and identified ten clusters where each contained a unique 

pathway, except one containing all remained 562 traces (Lismont et al. 2016). Similarly, resource 

allocation rules were extracted from clustering patient traces in a radiology CT-scan facility 

(Huang et al. 2011). Trace or sequence clustering was also combined with text mining to identify 

standard and atypical association rules (De Weerdt et al. 2012).  
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Table 2.2. Classification of cross-unit studies for bed allocation based on outcome measures. 

Operational Outcomes (Akcali et al. 2006, Armony et al. 2015, Best et al. 2015, Burdett 

et al. 2017, Burdett and Kozan 2016, Cochran and Bharti 2006, 

Cochran and Roche 2008, Costa et al. 2003, Feng et al. 2017, 

Gorunescu et al. 2002, Gupta et al. 2007, Harper 2002, Harper 

and Shahani 2002, Helm et al. 2011, Helm and Van Oyen 2014, 

Howell et al. 2007, Khanna et al. 2012, Kortbeek et al. 2015, Lee 

et al. 2016, 2019, Li et al. 2009, Martin Prodel et al. 2013, 

Mathews and Long 2015a, Schafermeyer and Asplin 2003, Shao 

et al. 2013, Shi et al. 2015, Villa et al. 2009, Yang et al. 2016) 

Financial Outcomes (Barz and Rajaram 2015, Chapman and Carmel 1992, Gorunescu 

et al. 2002, Klassen and Rohleder 2001, Li et al. 2009, Li and 

Benton 2003) 

Health Outcomes (Kelen et al. 2006) 

 

Clustering was also applied in an inpatient radiology unit to understand its workflow and 

detect variations such as cancellations, association between certain processes, and neglecting 

guidelines (Rebuge and Ferreira 2012). For instance, they were able to identify cases where instead 

of first requesting an exam, physicians scheduled and completed the exam, then requested the 

exam (Rebuge and Ferreira 2012). Similarly, Mans et al. applied process analytics to stroke 

pathways in two different hospitals and compared their practices, bottlenecks, and preadmission 

processes (Mans et al. 2008).  

In addition, Najjar et al. applied clustering algorithms to hospital visits data for patients over 

65 years old who had kidney and heart problems (Najjar et al. 2018). They also compared different 

clusters in terms of their most frequent diagnosis, specialists, age and sex, and length of stay 

information. Similarly, Antonelli et al. applied frequent diagnostic pathways for colon cancer and 

showed that existing diagnostic guidelines were rarely followed by practitioners (Antonelli et al. 

2012b). They also identified exam frequency, and frequency of exam sequences in the clinic that 

can be used for allocating resources and identifying bottlenecks (Antonelli et al. 2012b).  

Other applications of process analytics and clustering include mining discharge patterns of 

over 60,000 hospitalized patients (Pagnoni et al. 2001), anomaly detection in clinical practices of 

colon cancer and diabetes (Antonelli et al. 2013), redesigning cancer and neuroscience outpatient 

centers (Yoo et al. 2016), predicting revisit probability and revisit disease types in a public health 

center using classification and sequential pattern analysis (Choi et al. 2010), construction of 
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clinical pathways based on nursing order sequences in a hospital (Iwata et al. 2014), extracting 

frequent pathways in a prenatal diagnostic testing clinic to evaluate patient adherence to existing 

medical guidelines (Antonelli et al. 2012a), identifying frequent clinical pathways to  model 

progression of arterial hypertension and evaluate the effectiveness of visits on health outcomes 

(Balakhontceva et al. 2018), studying radiology workflow and care processes in a gynecologic 

oncology department using sequential pattern mining (Caron et al. 2014), understanding ED 

process flow (Delias et al. 2015), identifying most frequent clinical pathways for patients with 

acute coronary syndrome (Funkner et al. 2017), and defining chronic obstructive pulmonary 

disease (COPD) phenotypes using clustering algorithms (Weatherall et al. 2010). Finally, Rojas et 

al. reviewed process mining studies in different healthcare areas such as arthritis, breast 

examination, cardiology, chronic cough, clinical imaging, dentistry, diabetes, ear infection, 

emergency, ICU, oncology, ophthalmology, outpatient care, stroke patients, surgery, trauma, and 

urology (Rojas et al. 2016).  

Despite the potentials of process analytics in clustering patients across all types, none of the 

studies considered more than one patient population. As such, this study aims to extend them to 

multiple patient types and inform system-level approach for bed allocation.  

In a nutshell, we identified the following gaps from literature: 

1. Despite the popularity of multidisciplinary outpatient models in practice, there is no 

study in literature to evaluate access improvement strategies regarding no-show and 

follow-up management among them. 

2. Despite popularity of long-stay patients in medical literature, little is known about their 

impact on hospital flow and capacity.   

3. Improving patient flow in hospitals and reducing the bed wait times require balanced 

distribution of beds among hospital units. While numerous cross-unit bed allocation 

models have been proposed to address this issue, none of them considered grouping 

patients based on their clinical needs, and individual characteristics. Separate body of 

research has shown that patient clustering can improve patient flow, increase 

productivity, reduce misdiagnosis, and improve health outcomes.   

As such, in this study:   

1. We aim to develop an empirical simulation-optimization model for a multidisciplinary 

memory clinic, including multiple patient flows, no-shows, and follow-up patterns. We 
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then evaluate the effectiveness of multiple access improvement strategies related to no-

show, follow-up, and capacity management.  

2. We quantify the impact of long-stay patients on patient flow and hospital capacity.  

3. We develop a two-step clustering and classification based on patient data available at 

the time of admission.   
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 EVALUATING THE EFFECTIVENESS OF ACCESS IMPROVEMENT 

STRATEGIES IN A MULTIDISCIPLINARY MEMORY CLINIC   

 Demand for treatment services related to neurocognitive disorders is growing due to the 

aging of our population, increased life expectancy, and the high prevalence of cognitive symptoms. 

Since these disorders require both acute intervention and long-term care plans from collaborative 

disciplines (e.g., neurologist, geriatrician, psychiatrist, neuropsychologist, social worker, speech 

therapist, physical therapist, care manager), demand for multidisciplinary memory clinics is 

increasing rapidly. In the studied multidisciplinary memory disorders clinic with three disciplines, 

average monthly demand and average wait time of patients to receive their first evaluation have 

increased by five folds and three folds between 2011 and 2017. Reducing this wait time and 

improving access require effective strategies that are tailored for multidisciplinary nature of these 

clinics. In this paper, we investigate the effectiveness of overbooking, reducing unnecessary 

follow-up visits, and increasing provider hours using a simulation-optimization model. Our results 

suggest that despite the increasing wait times in the multidisciplinary memory clinic, increasing 

provider slots is not always an effective strategy. In fact, overbooking and reducing unnecessary 

follow-up visits can result in more significant performance improvements. 

3.1 Introduction  

Demand for multidisciplinary memory disorder clinics is growing due to the chronic nature 

of  neurocognitive disorders (Akushevich et al. 2018) and the advantages of multidisciplinary 

over monodisciplinary approach (Hodges et al. 2010). Early detection and treatment planning in 

the care of these disorders can result in better health outcomes and reduce downstream costs 

(Knopman et al. 2000, Lee et al. 2018, Leifer 2003). Despite these facts, our analysis shows that 

patients in our studied Multidisciplinary Memory Clinic (MMC) need to wait for 1-3 months to 

receive their first evaluation.  

A recent review of 152 studies, identified three major themes for reducing patient wait time 

and improving access to monodisciplinary clinics (Naiker et al. 2018). The themes included 

process improvements (e.g., overbooking, improving efficiencies, reducing supply and demand 

variations, no-show modelling, guidelines to improve efficiency of care processes, referral 
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management, telemedicine, and use of technologies such as text messaging, e-referrals, automated 

scheduling), resource alignment strategies (e.g., reducing unnecessary follow-up visits, wait list 

audits, and triaging patients), operational efficiencies (e.g., increasing provider hours, early start 

of clinics, improved scheduling, separating new and follow-up access measures, matching supply 

to demand). When these strategies are applied within multidisciplinary clinics, shared nature of 

resources and interaction of different patient flows can hinder their effectiveness. Due to the 

popularity of multidisciplinary practices (J. Morrice et al. 2019, Kortbeek et al. 2017, Leeftink et 

al. 2018, 2019, Mutlu et al. 2015), and in the lack of studies to inform the effectiveness of access 

improvement strategies within these practices, this study aims to evaluate the effectiveness of 

overbooking, reducing unnecessary follow-up visits, and increasing provider hours within a 

multidisciplinary memory clinic.  

Overbooking is a common strategy to better utilize resources against patient no-show. 

Depending on the clinic type, no-show can vary from 3% to 80% (LaGanga and Lawrence 2012). 

For instance, 55% in an outpatient clinic (Vikander et al. 1986), 13.6% up to 23.1% in an 

academic outpatient practice (Parikh et al. 2010), 18% in an Endoscopy clinic (Berg et al. 2013), 

18% in primary care (Mehrotra et al. 2008), 15.8% in a Swiss university outpatient clinic 

(Lehmann et al. 2007), and 8.5% in an endocrinology clinic (Kim et al. 2018). In the studied clinic, 

no-show varied between 17.4-34.8% which suggests the need for better scheduling systems 

(Bahalkeh 2015, Bahalkeh et al. 2015, Madraki et al. 2015) or overbooking in order to improve 

the access. In addition to the no-show issue, outpatient clinics serve great volume of follow-up 

patients. As reported in several studies, follow-up visits account for nearly 50% of overall 

outpatient visits in the United States (Ackerman et al. 2014). Since majority of follow-up specialty 

visits can be handled through primary care, referring these visits to primary care can free up the 

capacity in specialty care and improve the access (Ackerman et al. 2014, Mehrotra et al. 2011, 

Naiker et al. 2018). This proportion was estimated between 5.6% to 48% (Ackerman et al. 2014, 

Hashim 2020, Reeve et al. 1997, U.S. 2013). Finally, extending provider shifts and increasing 

capacity can improve patient access if the clinic is performing near its maximal capacity 

(Kritchanchai and Hoeur 2018).  

This study contributes to the literature in several ways. First, we develop generic logic 

flowchart and simulation model for the MMC with multiple provider types. These models can be 

readily extended to other specialty clinics with similar structure. Second, we estimate actual 
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arrivals of new patients as well as follow-up patterns using finite mixture distributions. These 

models can account for latent behaviors such as patient preferences in the scheduling system and 

disrupted patient pathways (Kim et al. 2015, 2018). Finally, through the literature, expert 

knowledge, and supporting evidence based on clinic visits data, we calibrate strategies to reduce 

patient wait time and provide idle time (i.e., overbooking, reducing unnecessary follow-ups, 

increasing provider hours) and quantify their effects using a simulation-optimization model. We 

also draw upon the rich literature on the application of discrete-event simulation in healthcare 

(Günal and Pidd 2010, Hasan et al. 2020, Shoaib et al. 2020, Zhang 2018). 

3.2 Data and Background  

The MMC is a comprehensive outpatient clinic for neurocognitive disorders. It offers 

consultative, diagnostic, and treatment services for six types of patients: memory new, memory 

revisit, neurology initial consultation, neurology follow-up, geriatric psychiatry initial consultation, 

and geriatric psychiatry follow-up. These patients meet with clinicians from three disciplines in a 

shared physical space, supported by a shared clinic staff (registrar, medical assistant).  Moreover, 

the clinicians interact with each other through frequent discussion of practices and approaches as 

well as by referring their patients to each other.     

The MMC operates five days a week, Monday-Friday, from 8:00 AM to 4:30 PM. In addition, 

a full time receptionist handles the check-in process, a full time medical assistant examines patients 

and schedules follow-up appointments, two social workers provide consult to the patients or 

clinicians as needed, a nurse (22 hours/week) sees  memory follow-up patients, four geriatric 

specialist physicians (total 42 hours/week) see both memory new and memory revisit patients, a 

geriatric psychiatrist (8 hours/week) sees geriatric memory disorder patients with psychiatric 

complications. Finally, a neurologist (10 hour/week) sees both initial memory visits as well as 

neurology initial and revisits for memory patients with neurological symptoms or concerns beyond 

the expertise of the other clinicians. Details of appointment length and service distributions are 

shown in Table 3.2.   

The patient intake process is performed over the phone and supplemented through responses 

to a mailed questionnaire. As shown in Figure 3.1, new appointment requests arrive as phone calls. 

These requests are scheduled for the earliest available time. The time interval between a phone 

call and the appointment is often referred as out-clinic wait time. On the other hand, in-clinic wait 
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time is the time a patient spends in the clinic before seeing a provider. Since the in-clinic wait time 

is much shorter than the out-clinic wait time, we only consider the latter, and we refer to it as wait 

time for simplicity.   

Ideally, wait time for new patients should be zero, but follow-up patients may need to wait 

for clinical reasons (e.g., effect of prescriptions on a patient). Therefore, we focus on the wait time 

for new patients only. For simplicity, we use “memory” for “memory new patients”, “geriatric 

psychiatry” for “geriatric psychiatry initial consultation”, and “neurology” for “neurology initial 

consultation” in the rest of the paper.  

 

Figure 3.1. Patient flow in the multidisciplinary memory clinic. 

The data for memory, geriatric psychiatry, and neurology patients cover 06/2011-08/2017, 

11/2015-09/2017, 04/2016-06/2017, respectively. Table 3.1summarizes the average follow-up and 

no-show rates of new and initial consultation patients, estimated from retrospective visits data. 

Apart from the average number of follow-ups, some patients experience a few follow-ups, as low 

as one, within a six-month period or less, while others have as high as ten follow-ups within a 

several year window.  
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Table 3.1. Average follow-up and no-show rates. 

 Cancel and no-show rate (%) Follow-up visit 

rate (%) 

Average number of follow-up 

visits    

Memory 34.8 62 8 

Geriatric psychiatry  17.5 73 7 

Neurology 33.3 25 1 

3.2.1 Supply and demand volumes  

We examine the MMC supply and demand volumes by tracking the number of scheduled 

and the number of requested appointments each month, as shown in Figure 3.2. Both supply and 

demand graphs have upward trends. The sudden drop toward the end is due to incompleteness of 

recorded data. Also, the narrow gap between supply and demand curves indicates clinic’s ability 

to respond to demand changes.       

  

Figure 3.2. Supply and demand volumes for memory patients. 

3.2.2 Average wait time  

The average wait time in a particular month was calculated as the arithmetic mean of the wait 

time of the patients who had any number of appointments in that month.  Figure 3.3 represents the 

average wait time (dashed line) and demand (bar graph) over time. As shown in Figure 3.3, despite 

the constant growth of demand volumes, wait time fluctuates for memory patients, which could be 

caused by many mechanisms over time (e.g., staff changes, backlog in the queue).  
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Figure 3.3. Number of visit requests and average wait time per month for memory patients. 

3.2.3 Queue length 

Queue length is another facet of the access which indicates the overall busyness of a system. 

At a given time 𝑡, queue length is defined as the total number of appointment requests that have 

arrived before 𝑡 and have been scheduled for any time after 𝑡. In our analysis, 𝑡 is a continuous 

variable, updated every day. Figure 3.4 represents a constantly growing queue length for memory 

revisit patients. In addition, queue for memory patients represent an increasing pattern followed 

by a slight drop. This analysis shows that there is a build-up of memory and revisit patients from 

past years, further indicating the need to provide improved access to providers for these patients. 

 

Figure 3.4. Queue length for memory patients. 
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3.3 Methodology 

The studied clinic was interested to evaluate the effectiveness of overbooking, reducing 

unnecessary follow-up visit and increasing provider hours on the providers’ idle time as well as 

wait time of new patients. Revisit and follow-up patients were excluded from this objective 

because often they need to wait for prespecified amount of time for monitoring prescription effects. 

As such, our goal is to determine the optimal level of overbooking, capacity expansion, and follow-

up reduction so that the weighted sum of expected patient wait time and expected provider idle 

time is minimized. To account for differences in scale, we normalized these two objectives 

according to their base (without any intervention) values. A general form of the model can be 

written as  

min ∑ (𝑐𝑘
𝑊𝑇 ∑ 𝐸[𝑊𝑇𝑖𝑘(𝒙)]̂

𝑖 +  𝑐𝑘
𝐼𝑇 ∑ 𝐸[𝐼𝑇𝑗𝑘(𝒙)̂

𝑗 ] )𝑘          (3.1)     

  𝑠. 𝑡. 𝒙 𝜖 𝑿                  (3.2)                                                  

                       

where  

𝑖 = 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖𝑛𝑑𝑒𝑥 

𝑗 = 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑖𝑛𝑑𝑒𝑥 

𝑘 = 𝑝𝑎𝑡𝑖𝑒𝑛𝑡/𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑡𝑦𝑝𝑒 

𝑐𝑘
𝑊𝑇 = 𝑐𝑜𝑠𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑘 

𝑐𝑘
𝐼𝑇 = 𝑐𝑜𝑠𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑘 

𝒙 = 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 

𝐸[𝑊𝑇𝑖𝑘(𝒙)]̂ = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑘, 𝑔𝑖𝑣𝑒𝑛 𝒙 

𝐸[𝐼𝑇𝑗𝑘(𝒙)]̂ = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑗 𝑜𝑓 𝑡𝑦𝑝𝑒 𝑘, 𝑔𝑖𝑣𝑒𝑛 𝒙 

𝑿 = 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑝𝑎𝑐𝑒 (𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑛𝑑 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑎𝑟𝑡𝑖𝑜𝑛𝑠)  

 

The costs of patient wait time and provider idle time can be balanced by defining 𝑐𝑘
𝑊𝑇 +

𝑐𝑘
𝐼𝑇 = 1 where  𝑐𝑘

𝑊𝑇 > 0 and 𝑐𝑘
𝐼𝑇 > 0. Each clinic can specify these weights based on its own 

operational goals and financial constraints. For instance, a high-volume, low-acuity clinics may 

prefer to minimize patient wait times (𝑐𝑘
𝑊𝑇 ≫ 𝑐𝑘

𝐼𝑇)  or a for-profit imaging clinic wants to 

maximize its utilization (𝑐𝑘
𝑊𝑇 ≪ 𝑐𝑘

𝐼𝑇) as discussed in (Froehle and Magazine 2013).     
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To determine the optimal level of overbooking for each patient type, the optimization model 

needs to be evaluated for each feasible combination of overbooking levels across patient types. To 

speed up this process, we developed a discrete-event simulation model in Arena and used the 

OptQuest to search for the optimal solution. The OptQuest is a combination of several heuristic 

methods such as scatter search, Tabu search, and neural network guides a given stochastic 

optimization problem (Klassen and Yoogalingam 2009).  

We developed the simulation model, and incorporated the OptQuest search method based on 

the following details:  

1. To account for differences in date ranges of available data across patient populations, 

we set 01/2017 as simulation start time and initialized the simulation model with the 

snapshot of the clinic on 01/2017. Thus, we set the warm-up period to zero.  

2. The independent effects of each simulation scenario were simulated in Arena by 

modifying the cost coefficients in (3.1), and constraints in (3.2).   

3. For each of the scenarios, we ran the OptQuest for 1,000 iterations. In each iteration, 

a randomly selected feasible solution is evaluated. Each iteration consisted of three 

replications. Each replication ran for a two-year period.   

4. The simulation-optimization algorithms would stop after either reaching the error 

(i.e., difference between two consecutive objective function values) of smaller than 

0.0001, or completing 1,000 iterations.  

5. To refine the solutions upon termination, top 25 solutions were selected, and an 

additional 100 replications were run on each of them. Then, the final solution was 

selected from the updated ranking of the solution set.  

3.3.1 Logic flow 

For each patient type, a new visit request arrives according to a specified interarrival 

distribution. If the patient does not show-up, scheduled resources (e.g., provider, nurse) will remain 

idle. Otherwise, the patient checks in and completes the visit. If the patient does not require a 

follow-up visit, the patient leaves the clinic. Otherwise, returns to the clinic after a random follow-

up interval that is drawn from a specified distribution. Upon arrival as a follow-up patient, the loop 

repeats until the patient completes the random number of required follow-up visits. Figure 3.5 

shows the flowchart of the described logic.  
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Figure 3.5. Logic flowchart of patient visits. 

Figure 3.6 and Figure 3.7 illustrate the implementation of no-show, visit, and follow-up logic 

flows for one of the patient types in Arena.   

 

Figure 3.6. No-show and visit logic flows in Arena for Geriatric Psychiatry patients. 
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Figure 3.7. Follow-up logic flow in Arena for Geriatric Psychiatry patients. 

3.3.2 Service time distributions  

Patients utilize multiple services during their clinic visits. Table 3.2 summarizes these 

services and their estimated durations.    

Table 3.2. Description of service types and service time distributions. 

 

3.3.3 Interarrival distributions  

We examine time-dependency of patient arrivals using retrospective visits data. Among all, 

only memory patients represent such dependency. We model the interarrival of memory patients 

as 1.8479 exp(−0.022𝑇) + 𝜖  where 𝜖~𝑁(0,1 ℎ𝑜𝑢𝑟 ) and 𝑇  is the arrival month. Figure 3.8 

represents the time varying interarrival rates and fitted decaying function (𝑅2 = 83%). Irregular 

patterns at the beginning are due to data limitations (only 7, 6, and 0 datapoints on 3/2012, 4/2012, 

and 5/2012 respectively). 

Definition Duration (min/patient) Capacity (hour/week) 

Check-in  Triang (2,4,6) 40 

Examination Triang (2,4,6) 40 

Follow-up scheduling Triang (2,4,6) 

Social worker consult Triang (24, 30, 36) 80 

Memory new visit    75 64 

Memory revisit 45 

Geriatric psychiatry initial consultation   60 8 

Geriatric psychiatry follow-up  30 

Neurology initial consultation 60 10 

Neurology follow-up 30 
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Figure 3.8. Empirical interarrival time and fitted function for memory patients. 

Interarrival of other patient types do not represent time-varying patterns. In addition, they do 

not satisfy the assumption of equal mean and variance of the Poisson distribution (Kim et al. 2015, 

2018). As such, we used bootstrapping with a confidence level of 95% to estimate the interarrival 

distribution of other patients with Gaussian mixture models. A Gaussian mixture model is a 

linearly weighted sum of multiple Gaussian distributions with known mean and variance. More 

precisely, a Gaussian mixture with 𝐶 components can be written as ∑ 𝜆𝑖𝑁(𝜇𝑖, 𝜎𝑖
2)𝐶

𝑖=1  in which 

∑ 𝜆𝑖 = 1 𝐶
𝑖=1 . Table 3.3 summarizes the estimated Gaussian mixtures.   

Figure 3.9 represents the empirical probability mass function, estimated Kernel density 

function, and fitted Gaussian mixture model for interarrival of memory revisit patients, and Figure 

3.10 visualizes its goodness of fit (Cosma Shalizi 2013).   

 Table 3.3. Gaussian mixture distributions for interarrival times.  

 Interarrival distribution (day) p-value 

Memory revisit  0.07 N(5.72, 17.64) + 0.22 N(40.98, 317.55) + 0.26 N(99.85, 272.58) + 0.45 

N(145.37, 3970.26) 

0.42 

Geriatric psychiatry  0.17 N(2.26,0.75) + 0.46 N(0.48, 0.2) + 0.31 N(4.8, 2.99) + 0.06 N(8.52, 9.06) 0.32 

Geriatric psychiatry 

follow-up 

0.56 N(20.88, 151.78) + 0.34 N(74.43, 522.58) + 0.08 N(183.32, 282.59) + 

0.02 N(365.14, 46.38) 

0.32 

Neurology   0.31 N(0.62, 0.26) + 0.69 N(8.91, 37.95) 0.17 

Neurology follow-up  0.88 N(53.49, 1000.46) + 0.12 N(181.48, 32.04) 0.32 
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Figure 3.9. Empirical and fitted interarrival distributions for memory revisit patients. 

 

Figure 3.10. Goodness of fit for the Gaussian mixtures in memory revisit patients. 

3.3.4 Model validation  

We compared the base simulation model with clinic’s data as shown in Table 3.4. Despite 

changes in the clinic’s staffing and operations throughout the years, our simulation is able to mimic 

the actual behavior of the system for memory and geriatric psychiatry populations. Major 

differences in queue performance measures for neurology population can be explained by its low 

utilization in practice, which is 9%. Increasing this utilization in practice can potentially reduce 

both average wait time and average queue length in practice as estimated in our simulation. Due 

to these differences, simulated results for the neurology population should only be compared with 

those in the simulated base model. 
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Table 3.4. Comparison of queue performance measures from simulation and data.  

3.4 Results 

3.4.1 Overbooking 

For each patient population, the maximum level of overbooking is set to be slightly less than 

no-show rates, estimated from the data. In particular, we set 30% as the overbooking upper-bound 

for memory and neurology patients who had total no-show rates of 34.8% and 33.3%, respectively. 

This upper-bound for geriatric psychiatry patients who had a no-show rate of 17.5% was set to 

15%.   

Table 3.5 represents the impact of overbooking on performance measures under different 

𝐶𝑊𝑇  where 𝐶𝑊𝑇 +𝐶𝐼𝑇 =1. The first column represents the base simulation results without any 

intervention.  

For memory population, when 𝐶𝑊𝑇 = 0.25, overbooking to 29.37% level is the optimal 

action. This can increase the provider utilization from 74% to 87% and increase the average wait 

time by 1 day. Average queue length is also increased significantly. These results are due to the 

low value for cost coefficient of the wait time, 𝐶𝑊𝑇 = 0.25. For that, at 𝐶𝑊𝑇= 0.5 and 𝐶𝑊𝑇 = 0.75, 

optimal overbooking levels are only 0.54% and 0.98% respectively.      

For geriatric psychiatry population, optimal overbooking levels are 14.98%, 15%, and 14.44% 

under 𝐶𝑊𝑇 = 0.25, 𝐶𝑊𝑇 = 0.5 and 𝐶𝑊𝑇 = 0.75 respectively. Opposed to memory population, 

this population needs to be overbooked by almost 15% regardless of  𝐶𝑊𝑇.  

For neurology population, optimal overbooking levels are 28.25%, 19.32%, and 15.68% 

under 𝐶𝑊𝑇 = 0.25 , 𝐶𝑊𝑇 = 0.5  and 𝐶𝑊𝑇 = 0.75  respectively. Unlike two other populations, 

optimal overbooking drops constantly as 𝐶𝑊𝑇 is increased.    

Patient Type Performance Measures Simulation Data 

Memory Average wait time (day) 67.6 68.2 

Average queue length 224.1 212.6 

Geriatric psychiatry Average wait time (day) 14.2 18.8 

Average queue length 5.5 5.7 

Neurology    Average wait time (day) 1.5 44.8 

Average queue length 0.2 3 



 

 

39 

Table 3.5. Performance measures under optimal overbooking per patient type and 𝐶𝑊𝑇. 

3.4.2 Reducing unnecessary follow-up visits  

We tested the effectiveness of reducing unnecessary follow-up visits under three levels of 

25%, 50%, and 75%. To make these levels comparable, we made sure that scenarios produce 

exactly the same number of patients by relaxing the two-year simulation length. As such, we ran 

the simulation model alone, without considering the optimization model. As shown in Table 3.6, 

this intervention does not benefit the memory population unless it’s done at 75%, reducing the 

number of follow-ups from 8 to 2. On the other hand, it benefits geriatric psychiatry population 

significantly. Reducing the average number of follow-ups from 7 to 5.25 results in about 60% 

reduction in both average wait time and queue length. These patterns continue with slower rates as 

the average number of follow-ups decreases more. This change can be explained by the greater 

saturation of available hours. Since the neurology population has only one follow-up per patient 

on average, this intervention has a negligible effect on their average wait time and queue length.   

3.4.3 Increasing provider hours 

We relaxed the capacity constraint by a reasonably large amount to explore total provider 

hours needed for each scenario. As such, we allowed capacity expansion up to three times, even if 

it might be unrealistic in reality. Table 3.7 summarizes the results for different values of 𝐶𝑊𝑇. As 

Patient Type Performance Measures  Base Model CWT = 0.25 CWT = 0.5 CWT = 0.75 

Memory Average wait time (day) 90.8 91.21 87.92 87.9 

Average queue length 327.2 537.57 323.33 330.38 

Number of visits  926.2 1151 913.33 925.67 

Provider utilization (%) 74 87 74 75 

Geriatric 

psychiatry   

 

Average wait time (day) 23.2 27.55 26.72 27.83 

Average queue length 9.3 14.30 14.62 14.88 

Number of visits  153.5 166.33 162.33 161.67 

Provider utilization (%) 92 97 96 95 

Neurology    Average wait time (day) 1.4 1.44 1.40 1.31 

Average queue length 0.2 0.23 0.21 0.18 

Number of visits  49.5 77.33 71.67 65.67 

Provider utilization (%) 6 10 9 8 
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shown, current capacities are optimal for neurology and geriatric psychiatry populations under all 

scenarios. However, the memory population requires more capacity when 𝐶𝑊𝑇=0.95. For this case, 

increasing provider hours from 64 hours/week to 108 hours/week is the optimal level that reduces 

the average wait time from 90.8 days to 86.8 days. It also reduces the providers’ utilization from 

74% to 37%.  

Table 3.6. Percent reduction in average wait time and queue length for different follow-up 

reduction levels compared to the base scenario.  

 

Table 3.7. Performance measures under optimal capacity per patient type and 𝐶𝑊𝑇. 

  Number of follow-up reduction (% base)  

25% 50% 75% 

Memory Average wait time ≅ 0 2% 53% 

Average queue length ≅ 0 8% 65% 

Geriatric psychiatry    Average wait time 59% 68% 70% 

Average queue length  57% 67% 69% 

Neurology    Average wait time ≅ 0 ≅ 0 ≅ 0 

Average queue length  ≅ 0 ≅ 0 ≅ 0 

Patient Type Performance Measures  Base Model CWT = 0.25, 0.5, 0.75 CWT = 0.95 

Memory Average wait time (day) 90.8 90.8 86.8 

Average queue length 327.2 327.2 316 

Number of visits  926.2 926.2 926.2 

Provider utilization (%) 74 74 37 

Geriatric 

psychiatry   

Average wait time (day) 23.2 23.2 23.2 

Average queue length 9.3 9.3 9.3 

Number of visits  153.5 153.5 153.5 

Provider utilization (%) 92 92 92 

Neurology Average wait time (day) 1.4 1.4 1.4 

Average queue length 0.2 0.2 0.2 

Number of visits  49.5 49.5 49.5 

Provider utilization (%) 6 6 6 
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3.5 Discussion and Conclusions 

We studied the effectiveness of overbooking, reducing unnecessary follow-up visits, and 

increasing provider hours on reducing patient wait time and provider idle time in a 

multidisciplinary memory clinic that provides care to six different patient types. We developed 

generic logic flowchart for patient visits, and simulated it using a discrete-event simulation model 

in Arena. Combining retrospective data analysis on queue performance measures and simulation-

optimization results suggests the following: 

1. For the memory population which had the highest demand volume, queue length, wait 

time, no-show rate and follow-up visits, extensive reduction in the number of follow-

ups improved the performance measures. Under extreme values of 𝐶𝑊𝑇, overbooking 

or expanding capacity can be effective as well.  

2. For the geriatric psychiatry population that had medium demand volume, queue 

length, wait time, no-show rates and follow-up visits, reducing the number of follow-

ups by any amount improved the performance indicators significantly. In addition, 

overbooking to the fullest (15%) can improve the overall performance. 

3. For the neurology population that had the lowest demand, wait time, queue length, 

and follow-up visits with high rates of no-show, overbooking can improve the 

provider’s productivity without a significant impact on patient wait time. However, as 

discussed above, due to the nature of neurology practice that is not able to be captured 

in the simulation model, the conclusion above is only true when compared to the base 

case of the model. The base case assumes that patients are scheduled on a first-come, 

first served basis instead of by patient preferences, and providers’ schedules are to be 

made available for seeing patients instead of other duties.  

Despite the long wait times across all patient populations, expanding capacity was not an 

effective strategy for improving access. Instead, reducing no-show or unnecessary follow-up visits 

can result in better improvements in performance measures. These findings are consistent with 

similar access improvement strategies in monodisciplinary clinics that include similar patient flow 

(Naiker et al. 2018).  

Our study has several limitations. First, we tested the impact of reducing unnecessary follow-

up visits numerically. However, a more realistic approach is to perform chart reviews or to conduct 
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a prospective study to capture a more accurate estimation on percent of patients seen in the 

multidisciplinary clinic who should have been repatriated to primary care. Estimating this 

proportion can also provide a more accurate range than that of the literatures which is anywhere 

between 5.6%-48% (Ackerman et al. 2014, Hashim 2020, Reeve et al. 1997, U.S. 2013). 

Reducing unnecessary follow-up visits is challenging in practice. Apart from difficulties in 

defining unnecessary follow-up visits in terms of clinical attributes, repatriating them should 

address the concerns discussed in the literature. These concerns include communication difficulties, 

uncertainties about primary care’s ability to provide care, specialists’ perceptions of their 

responsibilities, specialists’ unease and guilt about discharging patients, organization of follow-up 

care in primary care, resources needed within primary care, flow of information from the clinic to 

primary care, among others (Ackerman et al. 2014, Burkey et al. 1997, Reeve et al. 1997). As an 

alternative, opening a geriatric psychiatry follow-up clinic in Behavioral Health can help the MMC 

to achieve the same goal without jeopardizing the continuity of care.   

Overbooking is also challenging in practice. When all patients show up, the MMC needs to 

whether a) send overbooked patients home unseen, or b) keep overbooked patients waiting in the 

clinic, or c) reduce appointment length of other patients. To avoid overtime issue, we included 

overbooking thresholds based on the estimated no-show rates. As a future work, one could develop 

predictive models to estimate no-show probability of individual patients and incorporate those into 

the overbooking strategy.    

Another limitation of this study relates to the use of past data (that are reflective of past 

decisions) to model future decisions which can induce inherent heterogeneity issues. Future studies 

can attempt to address this issue. In addition, future studies can extend our work in several ways. 

First, including additional performance measures such as cost components, and patient outcomes. 

Second, performing sensitivity analysis on our results and obtain more robust conclusions. Finally, 

future research can quantify the economic trade-off between providers idle time and patient wait 

times, taking into consideration societal costs incurred due to patient wait times, and provide better 

interpretations for CWT and CIT.   
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 IMPACT OF LONG-STAY PATIENTS ON HOSPITAL FLOW AND 

CAPACITY 

Patients with discharge barriers stay in medical units for non-medical reasons (e.g., 

homelessness and guardianship issues) and contribute to flow and capacity issues within and 

beyond medical units. Using patient-level data at two academic hospitals within the same 

healthcare system, we estimate the impact of long-stay patients on length of stay and 30-day 

readmission of other patients in medical units, as well as wait time for patients transitioning from 

both intensive care unit (ICU) and step-down unit (SDU) to medical unit (MU). Inspired by prior 

studies on patient flow between ICU and MU, we include occupancy of origin (i.e., ICU, SDU) 

and destination (i.e., MU) units. We find that larger proportion of long-stay patients in the MU is 

correlated with shorter LOS for other patients in the MU, and longer wait time for patients leaving 

the ICU to MU. Also, proportion of long-stay patients is associated with neither 30-day 

readmission, nor wait time for patients leaving the SDU. For both the ICU and the SDU, we find 

that patients experience shorter wait time leaving these units to the MU as the unit gets busier. 

Finally, busier MU is correlated with longer wait time for patients leaving the SDU.  

4.1 Introduction 

Small number of patients with complex social needs use relatively large amount of hospital 

resources (Lantz 2020). This population is referred as long-stay patients due to their prolonged 

stay in the hospital for non-medical reasons such as lack of social support, lack of economic 

resources, and behavioral issues, among others (Gigantesco et al. 2009). Due to these discharge 

barriers, long-stay patients spend majority of their stay in non-critical Medical Units (MU) 

(Heincelman et al. 2016).  

Changes on proportion of long-stay patients within a medical unit can have several 

implications on the flow of the rest of patients in that unit. From operations perspective, servers 

employ different strategies when they encounter customers with long service times (e.g., long-stay 

patients) such as multitasking (Freeman et al. 2017, Jaeker and Tucker 2017), task reduction 

(Alizamir et al. 2013, Kuntz et al. 2015, Singh and Terwiesch 2012), rushing (Kc and Terwiesch 

2009, Staats and Gino 2012, Tan and Netessine 2012), and early task initiation (Batt and Terwiesch 
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2017). Studies suggest that multi-tasking and early task initiation strategies are common within 

Emergency Departments (ED) where physicians can order tests and lab works before seeing 

patients (Batt and Terwiesch 2017, Freeman et al. 2017, Jaeker and Tucker 2017). In addition, 

several studies indicate that providers tend to discharge patients earlier than expected when 

medical units (Long and Mathews 2018) and cardiothoracic Intensive Care Unit (ICU) (Singh and 

Terwiesch 2012) operate in busy periods. While long-stay patients occupy beds in a medical unit 

for a long period of time, other patients in that unit are more likely to be discharged in order to 

board waiting patients into that unit. As such, we investigate the hypothesis that regular patients 

in medical units will have shorter length of stay (LOS) if proportion of long-stay patients increase 

in that unit.  

Although clinical studies suggest that policies that incentivize short LOS may lead to worse 

patient outcomes (Southern and Arnsten 2015), relationship between shortened LOS due to 

operational behaviors and patient outcomes is challenging to measure. While early discharge from 

ICU due to ICU busyness is likely to result in ICU bounce-back (Singh and Terwiesch 2012), such 

incidents are not correlated with readmission and mortality (Long and Mathews 2018). As such, 

this study investigates the impact of long-stay patients in medical units on 30-day readmission of 

regular patients in that unit.  

Long-stay patients residing in medical units can impact not only regular patients in those 

units, but also patients in upstream units such as ICU and stepdown unit (SDU), especially during 

their busy periods. In particular, ICU patients experience longer wait time for medical beds when 

medical units operate in higher occupancy rates (Long and Mathews 2018, Singh and Terwiesch 

2012). Since long-stay patients occupy medical beds for a long period of time, accumulation of 

these patients in a medical unit can congest that unit and exacerbate the wait time for ICU patients. 

As such, we investigate the impact of long-stay patients on the wait time of ICU patients prior their 

transfer to medical units.    

Despite the critical role of SDU in alleviating ICU flow (Mathews and Long 2015a), little 

attention has been paid to investigate patient flow between SDU and medical units. SDU provides 

intermediate level of care to patients who are in transition between ICU and medical units (Armony 

et al. 2018a). Our study is the first attempt to investigate patient flow between SDU and medical 

units. We investigate the impact of long-stay patients in medical units on the wait time of patients 

exiting SDU to medical units.  
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Our study is motivated by our observation from impacts of long-stay patients on hospital 

flow at two academic hospitals within the same healthcare system. Our study is the first attempt to 

estimate the impact of long-stay patients in medical units on LOS and readmission of other patients 

in those units. In addition, we estimate the impact of long-stay patients on the wait time of ICU, 

and SDU patients being transferred to medical units.  

4.2 Literature Review 

Past studies have mainly focused on identifying long-stay patients through predicting their 

cost (Heincelman et al. 2016, Ng et al. 2019), LOS (Polito et al. 2019), prolonged discharge 

boarding (Shaikh et al. 2018), discharge barriers (Afilalo et al. 2017, Gigantesco et al. 2009, 

Oseran et al. 2019), expert knowledge through survey analysis (Woodger et al. 2018) and 

methodological review of past studies (Grafe et al. 2020). Despite extensive research on 

identifying long-stay patients, there is no study to quantify their impact on hospital flow and patient 

outcomes, which is an important issue from Operations perspective in order to design case mixes 

(Vitikainen et al. 2009).  

Since long-stay patients occupy medical beds for a long period of time, those beds can be 

viewed as closed beds which then will exacerbate occupancy rates. Congested hospital can 

experience higher in-hospital mortality (Schilling et al. 2010, Yu et al. 2020). In fact, mortality 

rates increase when hospitals operate beyond a tipping point of 92.5% (Kuntz et al. 2015). Higher 

occupancy is also correlated with several other issues such as higher rates of overflowing patients 

to less desired units (Song et al. 2020), higher incidence of hospital-acquired infections (Kaier et 

al. 2012), worse patient care (Diwas Singh et al. 2020), and less likelihood of admitting new 

patients (Kim et al. 2020). As such, we study the impact of total occupancy rate, as well as 

proportion of long-stay patients on LOS and 30-day readmission rate of other patients in medical 

units.   

Total occupancy rate of medical units, along with proportion of long-stay patients within 

those medical units can also impact ICU patients that are being transferred to those medical units. 

Numerous studies in the literature pointed out the impact of medical and surgical occupancy rates 

on ICU flow. For example, ICU patients experience longer wait time when downstream medical 

units are busy (Long and Mathews 2018). As a result of higher wait time, ICU can experience 

higher occupancy. Similar to medical units, higher ICU occupancy rate is associated with a lower 
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likelihood of ICU admission (Kim et al. 2016). As such, delayed ICU admission can result in 

negative outcomes. One observational study finds that timely ICU admission reduces 28-day 

mortality by 30% (Edbrooke et al. 2011). Other studies demonstrate that delaying ICU admission 

can prolong ICU length of stay  (Chalfin et al. 2007) and increase the risk of death (Cardoso et al. 

2011). In addition, congested ICU can negatively impact ED boarding time and ambulance 

diversions (Chan et al. 2017, McConnell et al. 2005). Despite these insights from the literature, 

there is no study that investigates the impact of a particular patient population (e.g., long-stay 

patients) on ICU flow. To further investigate the flow between ICU and medical units, we focus 

on patient transfers from ICU to medical units, and evaluate the impact of both total occupancy 

rate of medical units and proportion of long-stay patients in medical units on transfer wait times.  

In addition to medical and ICU units that are designed to provide care for low and high acuity 

levels respectively, some hospitals include Stepdown Unit (SDU) that provides medium level of 

care. Nurse to patient ratio in SDU is lower than ICU, but higher than medical units (Mathews and 

Long 2015a). SDU can provide a higher level of care for patients deteriorating on a ward (“step-

up”), a lower level of care for patients transitioning out of intensive care (“stepdown”) or a lateral 

transfer of care from a recovery room for postoperative patients (Prin and Wunsch 2014). As such, 

SDU play a vital role in improving flow and costs within the hospital. Studies suggest that SDU 

can improve cost per patient-day, and total cost per year (Rodrigues et al. 2018), ICU throughput 

(Gershengorn et al. 2020), as well as bed occupancy and wait time for ICU admission (Mathews 

and Long 2015a). Magnitude of these effects can vary between patient types. For example, ICU 

patients are likely to benefit more, compared to ED patients (Chan et al. 2019). Majority of studies 

in literature focused on either effectiveness of SDU on patient outcomes (Chan et al. 2019, 

Gershengorn et al. 2020, Prin and Wunsch 2014) or determining the optimal SDU size (Armony 

et al. 2018a, Mathews and Long 2015a, Rodrigues et al. 2018). As such, this study investigates the 

impact of overall occupancy rate of medical unit as well as proportion of long-stay patients in 

medical units on wait time of SDU patients that are going to be transferred to medical units.   

4.3 Study Setting and Hypotheses 

Small portion of patients in medical units, known as long-stay patients, experience longer 

LOS than medically needed due to discharge barriers and other non-medical reasons. 

Accumulation of these patients in a medical unit can have several consequences on patient flow. 
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Since long-stay patients have discharge barriers, they will reside in medical units for a long period 

of time. Therefore, beds that are occupied by long-stay patients can be regarded as closed or 

unavailable beds. Therefore, remaining beds in the medical unit will be the only candidate beds to 

accept new patients. As demand for medical beds exceeds the number of available medical beds, 

providers and bed assigners may keep patients waiting until beds become available or decide to 

transfer some of the existing patients off the unit and place new patients in those beds. For the first 

scenario, we consider patient flow between ICU to medical units, as well as SDU to medical units, 

and assess the wait time of patients being transferred to medical units with respect to overall 

occupancy rates, and proportion of long-stay patients in the medical unit. For the second scenario, 

we investigate the LOS and 30-day readmission rate of patients in the medical unit with respect to 

overall occupancy and proportion of long-stay patients in the medical unit.            

4.3.1 ICU to MU flow  

Cost of care in the ICU is considered expensive, and is expected to increase over the next 

decade (Angus 2000, Cohen et al. 2010, Halpern et al. 1994). ICU patients account for 5% of total 

hospital admissions, yet they account for 15-20% of hospital budgets (Marlene Gyldmark 1995). 

As such, numerous studies looked into the flow between the ICU and the ED (Kolker 2009), the 

ICU and the SDU (Mathews and Long 2015b), and the ICU and the medical unit (Long and 

Mathews 2018). Among these, Long and Mathews (Long and Mathews 2018) concluded that the 

wait time is likely to increase if either the medical unit gets busier or the ICU gets less busy. They 

measured occupancy rates of the ICU and the medical unit at transfer times (Long and Mathews 

2018). Since patient transfers occur more within certain shifts (Luyt et al. 2007), capturing 

occupancy rate in a specific timestamp can introduce biases into the model. To resolve this issue, 

we use average occupancy rate over the entire wait time interval. In addition, we measure the 

average proportion of long-stay patients in the medical unit over the entire wait time interval and 

investigate its impact on the wait time. As such, we have the following hypotheses.    

Hypothesis 1A: Higher ICU occupancy is correlated with a shorter wait time.  

Hypothesis 1B: Higher medical unit occupancy is correlated with a longer wait time.  

Hypothesis 1C: Higher proportion of long-stay patients is correlated with a longer wait time.  
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4.3.2 SDU to MU flow  

SDU provides intermediate level of care to patients coming mainly from the ICU and PACU. 

Majority of these patients will then transition to the medical unit. Despite the importance of SDU 

in alleviating the ICU and the medical unit flow, there is no empirical research to understand its 

flow patterns and behaviors. This is the first study to investigate the impact of overall occupancy 

of the medical unit and proportion of long-stay patients in the medical unit on the wait time of 

patients transitioning from the SDU to the medical unit. Similar to the ICU, we have the following 

hypothesis.  

Hypothesis 2A: Higher SDU occupancy is correlated with a shorter wait time.  

Hypothesis 2B: Higher medical unit occupancy is correlated with a longer wait time.  

Hypothesis 2C: Higher proportion of long-stay patients is correlated with a longer wait time.  

4.3.3 MU flow  

Since long-stay patients reside in the medical unit, and have discharge issues, they are more 

likely to stay in the unit even when the unit is congested. As such, other patients in the unit are 

more likely to be transitioned prematurely. Premature discharge from a unit due to capacity strain 

is a common practice (Rodríguez-Carvajal et al. 2011). Studies show that premature ICU discharge 

can result in more readmissions (Chan et al. 2012). As such, we investigate the impact of long-

stay patients on premature discharge as well as 30-day readmission likelihood with the following 

hypotheses.  

Hypothesis 3A: Higher proportion of long-stay patients is correlated with a shorter LOS for 

regular patients. 

Hypothesis 3B: Higher proportion of long-stay patients is correlated with a higher likelihood 

of 30-day readmission for regular patients. 

4.4 Data 

We use patient visits data from Christiana hospital and Wilmington hospital within the same 

health system, ChristianaCare, between 1/1/2018 and 10/31/2019. These hospitals are non-

sectarian, not for profit, urban and suburban, academic and community hospitals. The Christiana 
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hospital with 906 beds, includes Delaware’s only Level I trauma center, and the Wilmington 

hospital consists of 321 beds.  

Visit data excludes patients under age 18, patients who expired within the hospital visit, visits 

to women and children service line (e.g., newborns, obstetrics and gynecology), and all encounters 

with missing values. The dataset includes unit codes, bed requested time (day vs. evening shift, 

day of week, month of year), unit occupancy as ratio of occupied beds to total number of beds, 

ratio of long-stay patients in a medical unit, severity of illness at the time of admission, risk of 

mortality at the time of admission, complications during hospitalization, 30-day readmission, 

number of ICU days during the hospitalization, comorbidity score as a total number of chronic 

conditions identified in the hospitalization, diagnosis related groups (DRG) codes, and patient data 

such as ethnicity, age, sex, and race. Depending on independent variables used for estimation and 

their missing records, our dataset included 1239-1513 records for ICU to MU transfers, 2716-3409 

records for SDU to MU transfers, and 7123-9375 records for transfers out of MU.    

4.4.1 Long-stay patients  

Unlike other studies that identified long-stay patients based on thresholds on LOS such as 

95-percentile (Woodger 2017), our dataset uses the result of a prior project to identify long-stay 

patients in the health system. In that project, long-stay patients were identified in a two-step 

process. In the first step, a team of case managers proactively searched through the EHR to identify 

potential long-stay patients based on LOS and clinical conditions. In the second step, case 

managers reached out to their care teams to verify if patients qualify as long-stay patients. Within 

our study period, total number of 682 unique long-stay patients were identified in both Christiana 

and Wilmington hospitals. Distribution of these patients over specialty is shown in Table 4.1.  

Table 4.1- Total number of long-stay patients in each specialty area. 

Specialty Total Specialty Total Specialty Total 

General Medicine 212 Pulmonary  22 Thoracic Surgery 4 

General Surgery 80 Psychiatry 21 Urology 4 

Neurology 68 Oncology  20 Spinal Surgery 3 

Trauma 33 Complications of Prior Care 12 Ophthalmology 2 

Orthopedics 30 Neurosurgery 12 Aftercare and Other Factors 1 

Vascular Surgery 24 HIV 10 Burns 1 

Cardiology 22 Cardiac Surgery 4 Dermatology  1 
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Majority of long-stay patients stay in the hospital for less than 100 days, but occasionally it 

extends to over a year as shown in Figure 4.1.  

 

Figure 4.1. LOS histogram for long-stay patients. 

4.4.2 Occupancy levels 

We define occupancy as a ratio of occupied beds to total number of beds in that unit. In order 

to investigate the impact of long-stay patients on the flow of regular patients, we divide the 

occupancy into two mutual exclusive components, occupancy of long-stay (i.e., exceptional) 

patients and occupancy of regular patients, and update them every hour. Figure 4.2 represents an 

example of these occupancies in one of the MU. We then convert the occupancy of long-stay 

patients to a ratio and define it as proportion of long-stay patients.   
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Figure 4.2. Occupancy of regular and long-stay patients in an MU. 

4.5 Empirical Specification  

4.5.1 ICU to MU flow  

Our first model considers ICU wait time (𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒𝐼𝐶𝑈𝑖) as the dependent variable and 

examines its relationship with ICU (𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝐼𝐶𝑈𝑖) and medical (𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑀𝐸𝐷𝑖) occupancy 

levels, and proportion of long-stay patients (𝐿𝑜𝑛𝑔𝑆𝑡𝑎𝑦𝑀𝐸𝐷𝑖 ), controlling for unit codes, bed 

requested time (day vs. evening shift, day of week, month of year), severity of illness at the time 

of admission, risk of mortality at the time of admission, complications during hospitalization, 30-

day readmission, number of ICU days during the hospitalization, comorbidity score as a total 

number of chronic conditions identified in the hospitalization, DRG codes, and patient 

characteristics such as ethnicity, age, sex, and race (𝑿𝒊). To capture non-linear effect, we break 

ICU and medical occupancies, and proportion of long-stay patients to four quartiles.  

Because 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒𝐼𝐶𝑈𝑖 is positive and skewed, we use the natural logarithm and obtain the 

following empirical specification to test Hypotheses 1A, 1B, and 1C.  
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ln (𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒𝐼𝐶𝑈𝑖) = 𝛼0 + 𝛼1𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝐼𝐶𝑈𝑖 + 𝛼2𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑀𝐸𝐷𝑖 +

𝛼3𝐿𝑜𝑛𝑔𝑆𝑡𝑎𝑦𝑀𝐸𝐷𝑖 + 𝜸𝑿𝒊 + 휀𝑖          (4.1) 

We used ordinary least square (OLS) method to estimate (4.1), and present nested models 

with base results that include only the control variables. In addition, we include two interaction 

terms. First, for simultaneously high occupancy in the ICU and medical unit where both in the 

highest quartile of occupancies. Second, for 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑀𝐸𝐷𝑖 and 𝐿𝑜𝑛𝑔𝑆𝑡𝑎𝑦𝑀𝐸𝐷𝑖, where both 

in the highest quartile of occupancies. 

4.5.2 SDU to MU flow  

Similar to ICU wait time, our second model considers SDU wait time (𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒𝑆𝐷𝑈𝑖) as 

the dependent variable and examines its relationship with SDU (𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑆𝐷𝑈𝑖) and medical 

(𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑀𝐸𝐷𝑖 ) occupancy levels, and proportion of long-stay patients (𝐿𝑜𝑛𝑔𝑆𝑡𝑎𝑦𝑀𝐸𝐷𝑖 ), 

controlling for same control variables in equation (1) (𝑿𝒊). To capture non-linear effect, we break 

SDU and medical occupancies, and proportion of long-stay patients to four quartiles.  

Because 𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒𝑆𝐷𝑈𝑖 is positive and skewed, we use the natural logarithm and obtain 

the following empirical specification to test Hypotheses 2A, 2B, and 2C.  

ln (𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒𝑆𝐷𝑈𝑖) = 𝛽0 + 𝛽1𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑆𝐷𝑈𝑖 + 𝛽2𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑀𝐸𝐷𝑖 +

𝛽3𝐿𝑜𝑛𝑔𝑆𝑡𝑎𝑦𝑀𝐸𝐷𝑖 + 𝜸𝑿𝒊 + 휀𝑖          (4. 2) 

We used ordinary least square (OLS) method to estimate (4.2), and present nested models 

with base results that include only the control variables. In addition, we include two interaction 

terms. First, for simultaneously high occupancy in the SDU and medical unit where both in the 

highest quartile of occupancies. Second, for 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑀𝐸𝐷𝑖 and 𝐿𝑜𝑛𝑔𝑆𝑡𝑎𝑦𝑀𝐸𝐷𝑖, where both 

in the highest quartile of occupancies. 

4.5.3 MU flow  

Our third model considers LOS in the medical unit (𝑙𝑜𝑠𝑀𝐸𝐷𝑖) as the dependent variable and 

examines its relationship with medical occupancy level (𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑀𝐸𝐷𝑖 ) and proportion of 

long-stay patients (𝐿𝑜𝑛𝑔𝑆𝑡𝑎𝑦𝑀𝐸𝐷𝑖), controlling for unit codes, severity of illness at the time of 

admission, risk of mortality at the time of admission, complications during hospitalization, 30-day 

readmission, number of ICU days during the hospitalization, comorbidity score as a total number 
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of chronic conditions identified in the hospitalization, DRG codes, and patient characteristics such 

as ethnicity, age, sex, and race (𝑿𝒊). Because 𝑙𝑜𝑠𝑀𝐸𝐷𝑖 is positive and skewed, we use the natural 

logarithm and obtain the following empirical specification to test Hypotheses 3A.  

ln(𝑙𝑜𝑠𝑀𝐸𝐷𝑖) = 𝛿0 + 𝛿1𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑀𝐸𝐷𝑖 + 𝛿2𝐿𝑜𝑛𝑔𝑆𝑡𝑎𝑦𝑀𝐸𝐷𝑖 + 𝜸𝑿𝒊 + 휀𝑖   (4.3) 

With the same control variables in equation (4.3), our fourth model considers probability of 

readmission to the hospital within 30 days of discharge (𝑅𝑒𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖) as the dependent variable 

and examines its relationship with medical occupancy level (𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑀𝐸𝐷𝑖) and proportion of 

long-stay patients (𝐿𝑜𝑛𝑔𝑆𝑡𝑎𝑦𝑀𝐸𝐷𝑖 ). We obtain the following empirical specification to test 

Hypotheses 3B. 

ln (
𝑃(𝑅𝑒𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖)

1−𝑃(𝑅𝑒𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖)
) = 𝜌0 + 𝜌1𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑀𝐸𝐷𝑖 + 𝜌2𝐿𝑜𝑛𝑔𝑆𝑡𝑎𝑦𝑀𝐸𝐷𝑖 + 𝜸𝑿𝒊 + 휀𝑖  (4.4) 

In both models (4.3) and (4.4), we break medical occupancy level and proportion of long-

stay patients to four quartiles in order to capture non-linear effect. We also present nested models 

with base results that include only the control variables. In addition, we include an interaction term 

for 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑀𝐸𝐷𝑖  and 𝐿𝑜𝑛𝑔𝑆𝑡𝑎𝑦𝑀𝐸𝐷𝑖 , where both in the highest quartile of occupancies. 

Finally, we use OLS to estimate (4.3), and binomial logistic regression to estimate (4.4).  

4.6 Results 

4.6.1 ICU to MU flow  

We find that higher ICU occupancy is associated with shorter ICU wait time. In particular, 

ICU wait time in the second quartile of ICU occupancy is 17% (1- exp(-0.186)= 1- 0.8303) shorter 

than the first quartile of ICU occupancy. Similarly, ICU wait time in third and fourth quartiles are 

24% and 36% shorter than the first quartile, respectively, as shown in Table 4.2 model (2). These 

findings are consistent with similar studies in other ICU units (Long and Mathews 2018, Singh 

and Terwiesch 2012), and support our Hypothesis 1A, in which higher ICU occupancy is 

correlated with a shorter ICU wait time. We also find that ICU wait time in the third quartile of 

medical unit occupancy is 28% longer than the first quartile of medical unit occupancy (p<0.05). 

In addition, second and fourth quartiles of medical unit occupancy is not correlated with 

significantly longer ICU wait time than the first quartile. After including proportion of long-stay 

patients and interaction terms, we found that medical unit occupancy is no longer associated with 
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ICU wait time, which does not support our Hypothesis 1B (models (3) and (4) in Table 4.2). Unlike 

prior studies that suggest higher medical unit occupancy is associated with longer ICU wait time 

(Long and Mathews 2018), our results show that this association is not significant when we include 

proportion of long-stay patients and interaction terms within the model.  

Similar to other studies (Long and Mathews 2018), we defined binary interaction variables 

to differentiate surge periods from normal periods. In particular, we included 

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝐼𝐶𝑈𝑖(74.4,96] ∗ 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑀𝐸𝐷𝑖(86.2,98]  and 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑀𝐸𝐷𝑖(86.2,98] ∗

𝐿𝑜𝑛𝑔𝑆𝑡𝑎𝑦𝑀𝐸𝐷𝑖(16.3,48.6] in model (4), Table 4.2 that all occupancies indicate fourth quartiles.  

Our results suggest that higher proportion of long-stay patients in medical unit is associated 

with longer ICU wait time, which support our Hypothesis 1C. In particular, ICU wait time in 

second, third and fourth quartiles of proportion of long-stay patients variable are 30%, 34% and 

42% longer than the first quartile, respectively.    

We find that ICU wait time is associated with timing of transfer requests. Transfer requests 

on Sunday and Tuesday are correlated with 30-47% and 32-33% longer ICU wait time than those 

of Friday, respectively. Longer ICU wait time on Sunday is likely due to limited access to hospital 

resources (Black 2016). Due to high volume of admissions from ED on Monday, our studied 

hospitals tend to schedule most of elective surgeries on Tuesday. As such, longer ICU wait time 

on Tuesday is likely due to higher volume of surgeries. In addition, ICU wait time is associated 

with transfer requested month, January being the first month and resulting in the longest ICU wait 

time. Finally, we find that ICU wait time is not associated with transfer requested shift.      

Our results also suggest positive correlations between ICU wait time and age, as well as 

number of days spent in the ICU. Older patients, and patients with longer ICU days are likely to 

have complex issues that need longer time to coordinate their care transfer, resulting in longer ICU 

wait times (Guest 2017, Schoen et al. 2011).  

Table 4.2. Estimated results for ICU wait time. 

  

  

ln(WaitTimeICU) 

1 2 3 4 

OccupancyICU(61.8,69.2]   
-0.186* (-0.375, 

0.003) 

-0.196* (-0.404, 

0.013) 

-0.189* (-0.398, 

0.019) 
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Table 4.2 continued 

OccupancyICU(69.2,74.4]   
-0.274*** (-

0.475, -0.073) 

-0.288** (-

0.512, -0.064) 

-0.274** (-

0.498, -0.051) 

OccupancyICU(74.4,96]   
-0.443*** (-

0.652, -0.235) 

-0.468*** (-

0.702, -0.233) 

-0.450*** (-

0.705, -0.196) 

OccupancyMED(68.6,81.2]   
0.028 (-0.190, 

0.246) 

-0.049 (-0.329, 

0.230) 

-0.037 (-0.316, 

0.243) 

OccupancyMED(81.2,86.2]   
0.249** (0.016, 

0.482) 

0.173 (-0.125, 

0.471) 

0.194 (-0.104, 

0.493) 

OccupancyMED(86.2,98]   
0.168 (-0.066, 

0.403) 

0.070 (-0.230, 

0.371) 

0.214 (-0.118, 

0.546) 

LongStayMED(4.97,11]     
0.268* (-0.021, 

0.557) 

0.266* (-0.023, 

0.555) 

LongStayMED(11,16.3]     
0.294* (-0.006, 

0.593) 

0.291* (-0.008, 

0.590) 

LongStayMED(16.3,48.6]     
0.240 (-0.074, 

0.553) 

0.349** (0.022, 

0.677) 

OccupancyICU(74.4,96]* 

OccupancyMED(86.2,98] 
      

-0.037 (-0.394, 

0.320) 

LongStayMED(16.3,48.6]* 

OccupancyMED(86.2,98] 
      

-0.401** (-

0.753, -0.049) 

NextBedRequestedShift[15-23) 
-0.053 (-0.208, 

0.102) 

-0.057 (-0.211, 

0.097) 

-0.047 (-0.216, 

0.122) 

-0.054 (-0.223, 

0.115) 

NextBedRequestedShift[23-07) 
-0.021 (-0.256, 

0.214) 

0.007 (-0.228, 

0.241) 

0.041 (-0.224, 

0.305) 

0.041 (-0.223, 

0.306) 

NextBedRequestedDayMonday 
0.156 (-0.083, 

0.396) 

0.156 (-0.083, 

0.395) 

0.155 (-0.105, 

0.416) 

0.169 (-0.091, 

0.430) 

NextBedRequestedDaySaturday 
0.116 (-0.126, 

0.357) 

0.094 (-0.147, 

0.336) 

0.108 (-0.160, 

0.376) 

0.133 (-0.136, 

0.401) 

NextBedRequestedDaySunday 
0.264** (0.026, 

0.503) 

0.253** (0.016, 

0.491) 

0.368*** (0.110, 

0.627) 

0.386*** (0.127, 

0.645) 

NextBedRequestedDayThursday 
0.032 (-0.205, 

0.269) 

0.011 (-0.225, 

0.248) 

0.080 (-0.178, 

0.338) 

0.091 (-0.167, 

0.349) 

NextBedRequestedDayTuesday 
0.289** (0.055, 

0.523) 

0.280** (0.047, 

0.512) 

0.275** (0.021, 

0.529) 

0.288** (0.034, 

0.542) 

NextBedRequestedDayWednesday 
0.096 (-0.140, 

0.331) 

0.097 (-0.138, 

0.331) 

0.034 (-0.225, 

0.292) 

0.039 (-0.219, 

0.297) 

NextBedRequestedMonth2 
-0.155 (-0.409, 

0.098) 

-0.106 (-0.360, 

0.148) 

-0.283* (-0.575, 

0.009) 

-0.261* (-0.554, 

0.031) 

NextBedRequestedMonth3 
-0.324** (-

0.579, -0.070) 

-0.269** (-

0.525, -0.013) 

-0.447*** (-

0.741, -0.153) 

-0.449*** (-

0.742, -0.155) 

NextBedRequestedMonth4 
0.074 (-0.182, 

0.330) 

0.092 (-0.164, 

0.348) 

0.068 (-0.218, 

0.355) 

0.075 (-0.212, 

0.362) 
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Table 4.2 continued 

NextBedRequestedMonth5 
-0.124 (-0.384, 

0.135) 

-0.219 (-0.487, 

0.049) 

-0.364** (-

0.672, -0.056) 

-0.364** (-

0.672, -0.057) 

NextBedRequestedMonth6 
-0.217 (-0.483, 

0.050) 

-0.307** (-

0.582, -0.032) 

-0.446*** (-

0.759, -0.133) 

-0.457*** (-

0.769, -0.144) 

NextBedRequestedMonth7 
0.036 (-0.285, 

0.356) 

-0.135 (-0.476, 

0.207) 

-0.180 (-0.550, 

0.190) 

-0.165 (-0.535, 

0.205) 

NextBedRequestedMonth8 
-0.059 (-0.405, 

0.286) 

-0.091 (-0.443, 

0.261) 

-0.216 (-0.615, 

0.183) 

-0.203 (-0.602, 

0.196) 

NextBedRequestedMonth9 
-0.135 (-0.489, 

0.220) 

-0.289 (-0.656, 

0.077) 

-0.483** (-

0.880, -0.087) 

-0.485** (-

0.881, -0.089) 

NextBedRequestedMonth10 
-0.400** (-

0.728, -0.073) 

-0.385** (-

0.722, -0.048) 

-0.521*** (-

0.901, -0.141) 

-0.487** (-

0.867, -0.106) 

NextBedRequestedMonth11 
-0.087 (-0.432, 

0.258) 

-0.096 (-0.443, 

0.250) 

-0.123 (-0.504, 

0.258) 

-0.108 (-0.489, 

0.273) 

NextBedRequestedMonth12 
-0.052 (-0.401, 

0.296) 

-0.102 (-0.454, 

0.250) 

-0.023 (-0.446, 

0.400) 

-0.026 (-0.448, 

0.396) 

CampusW 
-0.155 (-0.476, 

0.165) 

-0.411** (-

0.774, -0.047) 

-0.226 (-0.673, 

0.222) 

-0.265 (-0.713, 

0.183) 

UnitCode Included Included Included Included 

Readmission_30d 
0.097 (-0.094, 

0.289) 

0.098 (-0.093, 

0.289) 

0.054 (-0.158, 

0.266) 

0.059 (-0.153, 

0.271) 

ICU.Days.Obs.from.ICU.File 
0.073*** (0.051, 

0.096) 

0.069*** (0.047, 

0.091) 

0.074*** (0.050, 

0.098) 

0.075*** (0.051, 

0.099) 

ComorbidityScore 
-0.014 (-0.094, 

0.066) 

-0.012 (-0.092, 

0.067) 

-0.039 (-0.125, 

0.048) 

-0.035 (-0.122, 

0.052) 

Admit.Severity.of.Illness Included Included Included Included 

Admit.Risk.of.Mortality Included Included Included Included 

Complication Included Included Included Included 

DRG Included Included Included Included 

Age 
0.005** (0.0002, 

0.009) 

0.005** (0.001, 

0.009) 

0.005** (0.001, 

0.010) 

0.005** (0.001, 

0.010) 

SexMale 
-0.005 (-0.135, 

0.126) 

-0.009 (-0.139, 

0.121) 

0.048 (-0.097, 

0.194) 

0.057 (-0.089, 

0.203) 

Ethnicity Included Included Included Included 

Race Included Included Included Included 
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Note: *p<0.1; **p<0.05; ***p<0.01 

4.6.2 SDU to MU flow  

We find that SDU wait time is not associated with SDU occupancy, unless we include 

proportion of long-stay patients and interactions terms within the model. We added interaction 

terms in model (4) shown in Table 4.3 by defining binary variables that distinguish surge periods 

from regular periods (Long and Mathews 2018). Specifically, we included 

OccupancySDU(82.9,97.3] ∗  OccupancyMED(86.7,97.4]  and LongStayMED(15.3,44.7] ∗

 OccupancyMED(86.7,97.4] where occupancy intervals represent fourth quartile occupancies. 

We find that SDU wait time in second and third quartiles of SDU occupancy are not significantly 

shorter than its first quartile. When SDU occupancy increases from its first quartile to fourth 

quartile, associated SDU wait time reduces by 20% which is consistent with our Hypothesis 2A.  

Similarly, we find that only fourth quartile of medical unit occupancy is correlated with a 

significantly different SDU wait time. As such, when medical unit occupancy changes from its 

first quartile to fourth quartile, SDU wait time extends 21-37%, which supports our Hypothesis 

2B. In addition, we find no significant association between SDU wait time and proportion of long-

stay patients in medical unit and reject our Hypothesis 2C.  

We find that SDU wait time is associated with timing of transfer requests. Transfers within 

the evening shift (i.e., 3:00-11:00pm) have 23-25% shorter SDU wait time than the morning shift 

(i.e., 7:00am-3:00pm). In addition, transfers on Thursday result in 17-21% shorter SDU wait time 

than Friday. Finally, SDU wait time during July and August are longer than that of January.  

Comorbidity score is also positively correlated with SDU wait time which can be explained 

by complexity of care transition processes (Guest 2017, Schoen et al. 2011). In addition, SDU wait 

time in the Christiana campus is almost five times longer than that of the Wilmington campus.  

Table 4.2 continued 

Constant 
4.609*** (2.360, 

6.857) 

4.756*** (2.520, 

6.991) 

4.117*** (1.809, 

6.425) 

4.196*** (1.890, 

6.502) 

Observations 1,513 1,511 1,239 1,239 

R2 0.095 0.111 0.14 0.144 

Adjusted R2 0.043 0.056 0.072 0.075 
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Table 4.3. Estimated results for SDU wait time. 

  

  

ln(WaitTimeSDU) 

1 2 3 4 

OccupancySDU(73.2,78.7]   
0.011 (-0.140, 

0.162) 

-0.035 (-0.214, 

0.143) 

-0.033 (-0.212, 

0.145) 

OccupancySDU(78.7,82.9]   
0.014 (-0.172, 

0.200) 

-0.089 (-0.302, 

0.124) 

-0.088 (-0.301, 

0.125) 

OccupancySDU(82.9,97.3]   
-0.069 (-0.265, 

0.126) 

-0.170 (-0.391, 

0.052) 

-0.220* (-0.453, 

0.014) 

OccupancyMED(69.2,82.1]   
-0.045 (-0.215, 

0.125) 

0.025 (-0.210, 

0.260) 

0.028 (-0.207, 

0.264) 

OccupancyMED(82.1,86.7]   
0.132 (-0.051, 

0.315) 

0.190 (-0.058, 

0.437) 

0.205 (-0.043, 

0.453) 

OccupancyMED(86.7,97.4]   
0.195** (0.010, 

0.381) 

0.261** (0.011, 

0.511) 

0.313** (0.038, 

0.589) 

LongStayMED(3.39,9.95]     
-0.187 (-0.450, 

0.076) 

-0.193 (-0.456, 

0.070) 

LongStayMED(9.95,15.3]     
-0.079 (-0.343, 

0.184) 

-0.091 (-0.355, 

0.172) 

LongStayMED(15.3,44.7]     
-0.081 (-0.354, 

0.192) 

-0.009 (-0.290, 

0.272) 

OccupancySDU(82.9,97.3]* 

OccupancyMED(86.7,97.4] 
      

0.174 (-0.101, 

0.449) 

LongStayMED(15.3,44.7]* 

OccupancyMED(86.7,97.4] 
      

-0.333** (-

0.617, -0.049) 

NextBedRequestedShift[15-23) 
-0.266*** (-0.411, 

-0.121) 

-0.262*** (-0.408, 

-0.117) 

-0.283*** (-

0.449, -0.117) 

-0.289*** (-

0.455, -0.123) 

NextBedRequestedShift[23-07) 
0.159 (-0.082, 

0.400) 

0.152 (-0.089, 

0.393) 

0.129 (-0.147, 

0.405) 

0.141 (-0.135, 

0.416) 

NextBedRequestedDayMonday 
0.026 (-0.150, 

0.202) 

0.022 (-0.155, 

0.199) 

0.028 (-0.169, 

0.225) 

0.025 (-0.172, 

0.222) 

NextBedRequestedDaySaturday 
-0.090 (-0.281, 

0.100) 

-0.083 (-0.274, 

0.108) 

-0.047 (-0.259, 

0.165) 

-0.053 (-0.265, 

0.159) 

NextBedRequestedDaySunday 
-0.010 (-0.195, 

0.175) 

0.0004 (-0.185, 

0.185) 

0.006 (-0.201, 

0.213) 

0.010 (-0.197, 

0.217) 

NextBedRequestedDayThursday 
-0.182** (-0.359, 

-0.005) 

-0.186** (-0.364, 

-0.009) 

-0.235** (-

0.432, -0.037) 

-0.241** (-

0.438, -0.043) 

NextBedRequestedDayTuesday 
-0.065 (-0.242, 

0.112) 

-0.071 (-0.249, 

0.107) 

-0.065 (-0.265, 

0.135) 

-0.063 (-0.263, 

0.136) 

NextBedRequestedDayWednesday 
0.014 (-0.163, 

0.191) 

0.007 (-0.170, 

0.185) 

0.089 (-0.108, 

0.287) 

0.091 (-0.107, 

0.289) 
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Table 4.3 continued 

NextBedRequestedMonth2 
-0.104 (-0.299, 

0.091) 

-0.084 (-0.280, 

0.113) 

-0.048 (-0.273, 

0.178) 

-0.043 (-0.268, 

0.182) 

NextBedRequestedMonth3 
-0.112 (-0.304, 

0.079) 

-0.081 (-0.274, 

0.112) 

-0.025 (-0.248, 

0.198) 

-0.037 (-0.260, 

0.187) 

NextBedRequestedMonth4 
-0.110 (-0.314, 

0.094) 

-0.073 (-0.279, 

0.133) 

0.009 (-0.222, 

0.239) 

0.005 (-0.225, 

0.236) 

NextBedRequestedMonth5 
-0.050 (-0.255, 

0.156) 

-0.024 (-0.232, 

0.184) 

0.140 (-0.102, 

0.382) 

0.146 (-0.096, 

0.388) 

NextBedRequestedMonth6 
-0.054 (-0.268, 

0.159) 

-0.017 (-0.234, 

0.200) 

0.040 (-0.211, 

0.290) 

0.018 (-0.233, 

0.269) 

NextBedRequestedMonth7 
0.302** (0.034, 

0.571) 

0.330** (0.057, 

0.604) 

0.416*** (0.116, 

0.716) 

0.396*** (0.095, 

0.696) 

NextBedRequestedMonth8 
0.197 (-0.081, 

0.474) 

0.248* (-0.038, 

0.533) 

0.450*** (0.114, 

0.786) 

0.450*** (0.114, 

0.785) 

NextBedRequestedMonth9 
0.116 (-0.167, 

0.398) 

0.140 (-0.146, 

0.427) 

0.245 (-0.073, 

0.563) 

0.227 (-0.092, 

0.546) 

NextBedRequestedMonth10 
-0.289** (-0.547, 

-0.031) 

-0.236* (-0.504, 

0.032) 

-0.113 (-0.415, 

0.188) 

-0.113 (-0.414, 

0.189) 

NextBedRequestedMonth11 
-0.231* (-0.481, 

0.019) 

-0.202 (-0.457, 

0.054) 

-0.156 (-0.440, 

0.127) 

-0.160 (-0.443, 

0.123) 

NextBedRequestedMonth12 
-0.074 (-0.304, 

0.156) 

-0.053 (-0.285, 

0.179) 

0.044 (-0.232, 

0.321) 

0.052 (-0.225, 

0.329) 

CampusW 
-1.489*** (-2.191, 

-0.787) 

-1.621*** (-2.336, 

-0.907) 

-1.594*** (-

2.346, -0.841) 

-1.625*** (-

2.378, -0.872) 

UnitCode Included Included Included Included 

Readmission_30d 
-0.052 (-0.189, 

0.084) 

-0.055 (-0.191, 

0.081) 

-0.039 (-0.191, 

0.114) 

-0.038 (-0.191, 

0.114) 

ICU.Days.Obs.from.ICU.File 
0.017 (-0.003, 

0.037) 

0.016 (-0.004, 

0.037) 

0.014 (-0.008, 

0.036) 

0.013 (-0.009, 

0.035) 

ComorbidityScore 
0.053 (-0.013, 

0.118) 

0.050 (-0.016, 

0.115) 

0.073** (0.0004, 

0.145) 

0.075** (0.003, 

0.147) 

Admit.Severity.of.Illness Included Included Included Included 

Admit.Risk.of.Mortality Included Included Included Included 

Complication Included Included Included Included 

DRG Included Included Included Included 
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Table 4.3 continued 

Age 
0.004** (0.00003, 

0.007) 

0.004** (0.00000, 

0.007) 

0.003 (-0.002, 

0.007) 

0.003 (-0.002, 

0.007) 

SexMale 
-0.085* (-0.185, 

0.014) 

-0.087* (-0.187, 

0.013) 

-0.088 (-0.199, 

0.023) 

-0.087 (-0.198, 

0.024) 

Ethnicity Included Included Included Included 

Race Included Included Included Included 

Constant 
7.747*** (4.703, 

10.792) 

7.734*** (4.690, 

10.778) 

7.709*** (4.656, 

10.762) 

7.709*** (4.658, 

10.759) 

Observations 3,409 3,407 2,716 2,716 

R2 0.091 0.094 0.105 0.107 

Adjusted R2 0.063 0.065 0.067 0.069 

Note: *p<0.1; **p<0.05; ***p<0.01 

4.6.3 MU flow  

We find that higher proportion of long-stay patients in a medical unit is correlated with 

significantly shorter unit LOS for other patients in that unit which supports our Hypothesis 3A. As 

shown in Table 4.4, presence of long-stay patients in a medical unit shortens the unit LOS of other 

patients in that unit by 74.31%-76.92%. This pattern is consistent across different quartiles of 

LongStayMED variable. The Wilmington hospital is smaller than the Christiana hospital, and 

provides care for less acute patients. As such, patients in the Wilmington hospital experience 

46.85-74% shorter stay than patents in the Christiana hospital.  

In addition, we find that patients experience longer stay when the unit is busier. Unit LOS 

extends by 39.65-57.78% when unit occupancy increases from its first quartile to fourth quartile. 

Moreover, patients with longer ICU stay or higher comorbidity score experience slightly longer 

stay (i.e., 2-5%) due to their acuter conditions. Readmitted patients within 30-day of discharge are 

associated with 18.78% shorter unit LOS. Finally, older patients are likely to experience slightly 

shorter unit LOS in medical units.   
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Table 4.4. Estimated results for LOS of MU. 

  

  

ln(losMED) 

1 2 3 4 

OccupancyMED(68.7,81.1]   
-0.075 (-0.195, 

0.045) 

-0.101 (-0.261, 

0.059) 

-0.102 (-0.262, 

0.058) 

OccupancyMED(81.1,86.1]   
0.334*** (0.208, 

0.461) 

0.366*** (0.201, 

0.532) 

0.362*** (0.197, 

0.528) 

OccupancyMED(86.1,100]   
0.398*** (0.271, 

0.526) 

0.456*** (0.291, 

0.622) 

0.420*** (0.239, 

0.601) 

LongStayMED(1.94,8.05]     
-1.423*** (-

1.821, -1.025) 

-1.420*** (-

1.819, -1.022) 

LongStayMED(8.05,14.6]     
-1.359*** (-

1.755, -0.962) 

-1.359*** (-

1.756, -0.962) 

LongStayMED(14.6,54.5]     
-1.437*** (-

1.835, -1.040) 

-1.466*** (-

1.867, -1.065) 

LongStayMED(14.6,54.5]* 

OccupancyMED(86.1,100] 
      

0.106 (-0.107, 

0.320) 

CampusW 
-0.301*** (-

0.504, -0.098) 

-0.632*** (-

0.853, -0.411) 

-0.553*** (-

0.834, -0.273) 

-0.538*** (-

0.820, -0.256) 

UnitCode Included Included Included Included 

Readmission_30d 
-0.209*** (-

0.327, -0.091) 

-0.208*** (-

0.326, -0.091) 

-0.208*** (-

0.345, -0.071) 

-0.208*** (-

0.345, -0.070) 

ICU.Days.Obs.from.ICU.File 
0.020** (0.005, 

0.036) 

0.019** (0.004, 

0.035) 

0.018** (0.001, 

0.036) 

0.018** (0.001, 

0.036) 

ComorbidityScore 
0.038 (-0.012, 

0.088) 

0.039 (-0.012, 

0.089) 

0.049* (-0.007, 

0.105) 

0.049* (-0.007, 

0.105) 

Admit.Severity.of.Illness Included Included Included Included 

Admit.Risk.of.Mortality Included Included Included Included 

Complication Included Included Included Included 

DRG Included Included Included Included 

Age 
-0.004** (-0.007, 

-0.001) 

-0.004*** (-

0.007, -0.001) 

-0.005*** (-

0.009, -0.002) 

-0.005*** (-

0.009, -0.002) 

SexMale 
0.097** (0.018, 

0.175) 

0.090** (0.012, 

0.168) 

0.070 (-0.020, 

0.159) 

0.069 (-0.020, 

0.159) 

Ethnicity Included Included Included Included 
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Table 4.4 continued 

Race Included Included Included Included 

Constant 
4.146*** (2.517, 

5.775) 

4.319*** (2.697, 

5.941) 

5.866*** (4.030, 

7.703) 

5.868*** (4.031, 

7.705) 

Observations 9,375 9,374 7,123 7,123 

R2 0.068 0.077 0.097 0.097 

Adjusted R2 0.059 0.068 0.085 0.085 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

As shown in Table 4.5, and in-line with other similar studies (Long and Mathews 2018), we 

find no significant association between proportion of long-stay patients and 30-day readmission; 

hence, reject our Hypothesis 3B. In addition, we find no association between medical unit 

occupancy and 30-day readmission.  

Table 4.5. Estimated results for 30-day readmission probability in MU. 

  P(Readmission) 

  -1 -2 -3 -4 

OccupancyMED(68.6,80.8]   
-0.035 (-0.263, 

0.192) 

-0.054 (-0.360, 

0.252) 

-0.054 (-0.360, 

0.252) 

OccupancyMED(80.8,85.9]   
0.009 (-0.236, 

0.254) 

0.053 (-0.263, 

0.369) 

0.053 (-0.263, 

0.370) 

OccupancyMED(85.9,99.3]   
-0.085 (-0.332, 

0.161) 

-0.100 (-0.416, 

0.216) 

-0.097 (-0.440, 

0.246) 

LongStayMED(3.34,10.2]     
0.213 (-0.143, 

0.569) 

0.213 (-0.143, 

0.569) 

LongStayMED(10.2,15.6]     
0.004 (-0.357, 

0.364) 

0.004 (-0.357, 

0.364) 

LongStayMED(15.6,48.3]     
-0.002 (-0.362, 

0.358) 

0.0002 (-

0.377, 0.378) 

LongStayMED(15.6,48.3]* 

      
-0.009 (-0.427, 

0.409) 
OccupancyMED(85.9,99.3] 
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Note: *p<0.1; **p<0.05; ***p<0.01 

4.7 Discussion and Conclusions 

Our study examined patient flow in different level of care transitions, ICU to medical unit, 

SDU to medical unit, and exiting medical units.  

We re-examined prior studies on ICU to medical unit flow and investigated the impact of 

both ICU and medical unit occupancy on ICU wait time. In addition, we included proportion of 

long-stay patients in medical unit which is believed to negatively impact the flow (Gigantesco et 

al. 2009, Polito et al. 2019). In-line with other studies (Long and Mathews 2018, Singh and 

Table 4.5 continued 

UnitCode Included Included Included Included 

ICU.Days.Obs.from.ICU.File 
-0.109*** (-

0.162, -0.057) 

-0.110*** (-

0.162, -0.057) 

-0.105*** (-

0.161, -0.048) 

-0.105*** (-

0.161, -0.048) 

ComorbidityScore 
-0.103** (-

0.204, -0.001) 

-0.102** (-0.204, 

-0.001) 

-0.117** (-

0.229, -0.005) 

-0.117** (-

0.229, -0.005) 

Admit.Severity.of.Illness Included Included Included Included 

Admit.Risk.of.Mortality Included Included Included Included 

Complication Included Included Included Included 

DRG Included Included Included Included 

Age 
-0.009*** (-

0.015, -0.004) 

-0.009*** (-

0.015, -0.004) 

-0.010*** (-

0.016, -0.004) 

-0.010*** (-

0.016, -0.003) 

SexMale 
0.074 (-0.075, 

0.224) 

0.074 (-0.076, 

0.224) 

0.063 (-0.108, 

0.233) 

0.063 (-0.108, 

0.233) 

Ethnicity Included Included Included Included 

Race Included Included Included Included 

Constant 

-16.835 (-

1,532.886, 

1,499.217) 

-16.795 (-

1,544.152, 

1,510.563) 

-16.220 (-

1,709.604, 

1,677.164) 

-16.221 (-

1,709.600, 

1,677.157) 

Observations 7,096 7,095 5,748 5,748 

Akaike Inf. Crit. 5,122.00 5,126.87 4,045.81 4,047.81 
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Terwiesch 2012), we found that patients likely to spend significantly shorter time to exist the ICU 

when the ICU gets busier. We also found that patients exiting the ICU experience longer wait time 

when the downstream medical unit gets busier; however, this association was insignificant when 

we modified our model by including the proportion of long-stay patients in medical unit. As we 

hypothesized, patients exiting the ICU experience longer wait time when there are more long-stay 

patients in the downstream medical unit. Our empirical results offer support for hospital-wide 

initiatives to identify long-stay patients in advance, and to better distribute these patients across 

hospital units. One extreme approach is to assign long-stay patients into a separate hospital unit. 

By grouping these patients, providers can deliver a focused care, and improve the ICU wait time 

simultaneously (Englander et al. 2017). Alternatively, hospitals can assign long-stay patients 

across different medical units based on a threshold-based rule, and redefine their case mix in unit-

level operations (Vitikainen et al. 2009). In addition, improving ICU admission and discharge 

policies such as increasing the discharge window and balancing the ratio of different patient types 

known to improve the ICU flow and wait time (Hasan et al. 2020).  

Our study is the first attempt to examine SDU wait time. As more and more hospitals begin 

to include SDU (Gershengorn et al. 2020, Prin and Wunsch 2014), this study sheds light on the 

importance of taking system-wide approach in order to achieve smooth flow between SDU and 

medical units. We found that drivers of SDU wait time is different from those of ICU wait time. 

As downstream medical unit gets busier, patients exiting the SDU experience longer wait time. 

Also, this wait time is not associated with the proportion of long-stay patients in the medical unit. 

Different effects of medical occupancy and proportion of long-stay patients in medical unit on 

SDU and ICU wait time provides opportunities to improve both SDU and ICU wait time by 

balancing the overall occupancy of medical unit and proportion of long-stay patients in them.  

Concentration of long-stay patients within a medical unit is associated with significantly 

shorter LOS of other patients in that unit. In addition, proportion of long-stay patients is not 

correlated with the probability of 30-day readmission in the medical unit. Discretionary nature of 

patient transfers between hospital units, and lack of information on transfer reasons within the 

EHR limited our study to further investigate this phenomenon. As such, future study can build 

upon our finding and investigate transfer reasons that result in significant differences in LOS. 

Possibly, units occupied by long-stay patients are used as overflow for regular patients, resulting 

in premature transfers off those units.  
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Our study has several limitations. First, our analysis is for only two academic hospitals within 

the same health system where institution-specific bed capacity constraints and policies likely exist. 

Second, our dataset lacks transfer reasons and notes. Although shorter LOS in medical unit due to 

the presence of long-stay patients is intuitive but cannot be explained empirically due to the data 

limitations. Moreover, we do not observe other key variables such as physician experience, staff 

ratio, and team dynamics that are known to affect providers’ cognitive load and clinical decision 

making (Kuntz et al. 2015).  

Our study investigated the correlation of long-stay patient occupancy levels with wait time, 

LOS, and 30-day readmission. Future studies can extend our work and examine causality between 

long-stay patient occupancy levels with wait time, LOS, and 30-day readmission variations using 

randomized control trials. In addition, future studies can incorporate cost components to the model 

and perform cost effectiveness analysis on different occupancy levels of long-stay patients.   
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 REDEFINING PATIENT GROUPS IN THE HOSPITAL 

Hospital beds are often assigned among several major groups called service lines, each of 

which is aimed to provide care for patients with similar medical needs such as cancer, 

musculoskeletal disorders, vascular, surgical, medical, and women and children, among others. 

Despite benefits of service lines, this division can cause imbalanced capacity allocation, and flow 

issues. In addition, patients with multiple conditions might need interdisciplinary care from 

multiple service lines. Using entire patient records within two academic hospitals under the same 

health system, we propose a two-step clustering-classification approach to identify new patient 

clusters and shed light on existing service line grouping. Unlike existing 8 patient clusters (i.e., 

service lines), our results identified 11 patient clusters in Wilmington hospital and 15 patient 

clusters in Christiana hospital, indicating the need to further splitting some of the existing service 

lines such as internal medicine, general surgery, and neurological disorders.  

5.1 Introduction 

Hospital capacity planning is the effort of assigning hospital resources into different areas in 

order to match supply to demand (Li and Benton 2003). A gap between supply and demand for 

hospital beds results in ceaseless congestion in high traffic units such as Intensive Care Unit (ICU), 

stepdown (Armony et al. 2015) and general medical floor (Crilly et al. 2015, Hillier et al. 2006). 

Research has shown the association between capacity strain and adverse health outcomes such as 

readmission (Shi et al. 2018) and mortality (Eriksson et al. 2017). In a recent systematic review, 

mortality rates increased during times of capacity strain in 18 of 30 studies and in 9 of 12 studies 

in ICUs (Eriksson et al. 2017). As such, matching supply to demand among hospital units has 

always been one of the key focus areas for hospitals to strive for excellence in care delivery (L. V. 

Green 2006).  

Matching supply to demand in hospital units can be challenging because of the way they are 

designed to cater certain patient conditions. Patients may present multiple comorbidity conditions 

(e.g., a medicine patient who is diagnosed with cancer) that require resources from multiple 

different units, and specialties. With the current design, patients will need to transition between 

hospital units or overflowed to non-preferred units, which both negatively impact safety (M.F. et 



 

 

67 

al. 2020) and health outcomes (Song et al. 2019). In addition, patients with common conditions 

could be scattered over different hospital units. Alternatively, grouping these patients into a 

specialized unit and providing specialized care can improve their outcomes, and hospital flow 

(Englander et al. 2017).  

Instead of dividing hospital beds into rigid units and assigning patients among them, hospitals 

need to restructure themselves around patient needs. Focusing on patient needs also promotes 

patient-centered care (de Boer et al. 2013), where patients can receive customized care plans and 

medications (NEJM Catalyst 2017). As such, moving toward patient-centered care requires 

grouping patients based on their similarities. These similarities can be studied using process 

analytics (Lismont et al. 2016). 

Process analytics (i.e., process mining) offers a wide variety of techniques to extract patient 

similarities (Hripcsak and Albers 2013, Lismont et al. 2016). These techniques include clustering, 

sequencing events, temporal abstraction, sequence clustering, social network discovery, and 

decision mining (Lismont et al. 2016, Mans et al. 2015). Despite potentials of these techniques to 

identify similar patients (Garcia et al. 2019), application of process analytics in healthcare resource 

allocation has been limited to single-populations such as type-2 diabetes (Lismont et al. 2016), 

radiology patients (Rebuge and Ferreira 2012), stroke patients (Mans et al. 2008), and kidney and 

heart problems (Najjar et al. 2018). Extending these techniques to multiple patient populations 

across the hospital requires addressing several major challenges such as inadequate granularity of 

recorded data, high complexity of healthcare data, and clouding effect of overflowing activities 

(Lismont et al. 2016).  

This study is the first attempt to cluster entire inpatient populations based on their similarities. 

In this study, we include patient level data that are available at the time of admission at two 

hospitals within the same healthcare system and apply latent class analysis to identify patient 

clusters and membership labels. In addition, we apply interpretable classification models to explain 

determining factors for each cluster membership.   

5.2 Literature Review 

The idea of grouping patients with similar needs started as a solution to the historical method 

of reimbursement problem, per diems, that were based on length of stay regardless of the illness 

of the patients (Goldfield 2010). As such, invention of Diagnosis-related Groups (DRG) by 
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researchers at the Yale School of Public Health was the first attempt to define case types, each of 

which could be expected to receive similar outputs or services from a hospital (Fetter et al. 1980).  

As US hospitals battered by competition, they have begun to pursue product line 

management techniques using DRG systems (Fetter and Freeman 1986). DRGs were used to create 

broader groups of patients, called service lines (Studnicki 1991). Then, service lines were used for 

allocating hospital resources such as beds, nurses, and equipment (Baghai et al. 2008, Studnicki 

1991).  

Although dividing hospital beds into a few service lines can help hospitals provide a focused 

care and reap tremendous fiscal benefits while enhancing their ability to serve their communities 

(Baghai et al. 2008), use of DRG alone to form the service lines can result in several issues. 

Because different DRG systems use different classification variables including treatment 

characteristics, patient characteristics, and provider/setting characteristics, DRGs can result in 

inconsistent patient groups (Pettengill and Vertrees 1982, Quentin et al. 2012, Vitikainen et al. 

2009). In addition, patients within the same DRG can have quite different intensity of medical 

needs (Vitikainen et al. 2009). Moreover, patients can have multiple co-existing comorbidities that 

a single DRG fails to capture patient complexities. As such, patients can experience frequent 

transfers between service lines (Survey 2014).   

Alternatively, process analytics can evaluate patient similarities using a more comprehensive 

list of variables including operational constraints, patient characteristics, and their complex clinical 

conditions. In particular, Latent Class Analysis (LCA) is a powerful statistical method for grouping 

data into classes of an unobserved (latent) variable. LCA is a common method in medical field 

since researchers often interested in phenomena that cannot be directly observed such as eating 

disorder, socialization, and temperament (Porcu and Giambona 2017). LCA applications include 

identifying subgroups of self-injurers among young adults (Klonsky and Olino 2008), analysis of 

cancer risk behaviors among U.S. college students (Kang et al. 2014), identifying clusters of 

alcohol and drug use and health-risk behaviors (Assanangkornchai et al. 2018), understanding 

health lifestyles and suicidal behaviors among US adolescents (Xiao et al. 2019), investigating 

cancer treatments and geriatric interventions (Ferrat et al. 2016), and distinguishing patients with 

low back pain diagnosis (Fop et al. 2017) among others. In addition, LCA can provide insights on 

resource utilization of different patient groups. Hastings et al. applied LCA to understand health 

service use of older adults in emergency department and identified five cluster of patients with 
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distinct patterns of health service use (Hastings et al. 2014). Similarly, Young-Wolff et al. used 

LCA to investigate patterns of resource utilization among women exposed to victimization 

(Young-Wolff et al. 2013). Despite popularity of LCA in healthcare, its application has been 

limited to single patient populations. Our study is the first attempt to apply LCA among entire 

inpatient populations to identify latent patient clusters and their characteristics. These clusters can 

then improve existing service lines for resource allocation purposes.  

Similar to clustering algorithms, LCA is not interpretable and does not provide interpretable 

rules on how the clusters form. To overcome this issue, we combine LCA with decision tree 

classifiers. The classification decision tree is a non-parametric supervised learning method used 

for classification of a target variable (e.g., cluster index from LCA output) by learning simple 

decision rules inferred from the data features. Because of its interpretability, classification decision 

tree is widely used in healthcare field including predicting the survivability of breast cancer 

patients (Khan et al. 2008), characterizing skin diseases (Chang and Chen 2009), and monitoring 

diabetes patients (Kelarev et al. 2012), among others.  

5.3 Data 

We use patient visits data from Christiana hospital and Wilmington hospital within the same 

health system, ChristianaCare, between 1/1/2018 and 12/31/2019. These hospitals are non-

sectarian, not for profit, urban and suburban, academic and community hospitals. The Christiana 

hospital with 906 beds, includes Delaware’s only Level I trauma center, and the Wilmington 

hospital consists of 321 beds.  

To implement our findings in practice, we use the data that are available at the time of patient 

admission such as admission information, and care complexity. Our dataset contains 20,674 unique 

patient visits in the Wilmington hospital, and 61,289 unique patient visits in the Christiana hospital. 

In addition, our datasets include data related to geographic location of patients such as admitting 

unit code and admitting medical section.  

5.3.1 Admission information 

The dataset includes admission source, admission category, and admitting diagnosis code. 

Admission source refers to the source of admitted patients which can be either of born in hospital, 
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born outside hospital, court, emergency room (ER), physician referral, transferred from other 

hospital, transfer from other hospital within same health system. Admission category refers to the 

type of admission which can be either of elective, emergency, newborn, trauma center, urgent.  

Admitting diagnosis code is an ICD-10 code that is assigned to each admitted patient at the 

time of admission. This diagnosis code is different from primary diagnosis code and DRG codes 

that are determined after discharge. We grouped admitting diagnosis codes based on their initial 

alphabetic letters and defined a new variable which includes letters from A to Z, each of which 

reflect a certain illness category.    

5.3.2 Care complexity  

The dataset includes several variables to capture complexity of required medical needs such 

as triage severity of illness, level of care, age, and age adjusted Charlson comorbidity index. Triage 

severity of illness is available for patients admitted from ED and contains five levels, 1 being the 

most urgent patients, and 5 is the least urgent patients. Levels of care indicates the type of 

envisioned care such as nursing, ICU, and SDU. Age adjusted Charlson comorbidity index is 

introduced to account for comorbidity condition of patients by assigning score to each comorbidity 

condition (Charlson et al. 1987, Tian et al. 2017). In our dataset, age adjusted Charlson comorbidity 

index is only available for patients who have been in the hospital before, otherwise, it will be a 

missing index. Average (standard deviation) age adjusted Charlson comorbidity index in the 

Wilmington and Christiana campuses are 7.8 (4.16) and 7.9 (4.39).  

5.4 Methodology 

Since our goal is to implement our findings in practice, interpretability of results is the main 

deciding factor between different methods. As such, we design a two-step clustering, then 

classification approach.  

In the first step, we use Latent Class Analysis (LCA) to form clusters and attach a cluster 

label to each datapoint. Unlike distance-based clustering methods that measure the distance 

between datapoints and assign them into different clusters, LCA is a model-based approach in 

which fits a finite mixture model to the underlying data (Andersen et al. 2003, Melnykov and 

Maitra 2010). To determine the optimal number of latent classes (i.e., clusters) in LCA, we fit 30 
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different models by varying the number of latent classes from 1 to 30 and select the one with the 

lowest Bayesian Information Criterion (BIC). BIC is a penalty-based method to overcome the 

overfitting issue (Schwarz 1978).  

In the second step, we use classification tree models to predict the latent class labels that we 

created in the first step. Among other classification algorithms, classification trees are the most 

interpretable which will enable us to implement our results in practice (Steorts 2009).  

5.4.1 LCA 

LCA is a common method for clustering multivariate categorical data (Drew A. Linzer and 

Jefrey B. Lewis 2011, Fop et al. 2017, Fop and Murphy 2018). In this study, we use “LCAVarsel” 

package in R which is developed by Fop et al. (Fop et al. 2017). We convert numerical variables 

to categorical format. For age, category 1 represent age less than or equal to 10, category 2 

represents age between 10 and 20, etc. Table 5.1 summarizes the distribution of patients in both 

hospitals across age categories. We converted age adjusted Chalrson comorbidity index to 

categorical format directly.    

Table 5.1. Distribution of patients across age categories and hospitals. 

Age Category 1 2 3 4 5 6 7 8 9 10 11 

Christiana 43 493 3257 4276 4935 9924 13745 13679 8795 2110 32 

Wilmington 0 72 607 1154 1848 4008 4628 4345 3016 980 16 

 

To determine the number of clusters for each hospital, we fit different number of clusters and 

calculate Bayesian information criterion (BIC)(G 1978) for each scenario, and select the lowest 

BIC. Figure 5.1 demonstrates BIC values for number of clusters between 1 and 30 in Wilmington 

hospital. We find that 10 and 15 clusters yield minimum BIC in the Wilmington and Christiana 

hospitals, respectively.  
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Figure 5.1. Bayesian information criterion for different number of clusters at the Wilmington 

hospital 

 

Figure 5.2. Bayesian information criterion for different number of clusters at the Christiana 

hospital. 
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5.4.2 Classification tree 

Once we form clusters and label each visit within one of the clusters, we construct a 

classification tree for each hospital using “rpart” package in R. To obtain interpretable decision 

trees, we control for tree parameters as shown in Table 5.2.   

Table 5.2. Classification tree parameters and setting. 

5.5 Results 

5.5.1 Wilmington hospital 

We used LCA to form 10 clusters in the Wilmington hospital, and constructed a classification 

tree with specified parameters in Table 5.2. We then used 20% testing dataset to test the 

performance of our classification tree. The accuracy of the classification tree was 88.04%, as 

shown in Table 5.3.  

Table 5.3. Confusion matrix of classifier for the Wilmington hospital. 

Row=actual 

Col= prediction 1 2 3 4 5 6 7 8 9 10 

1 447 41 0 0 0 0 0 18 19 0 

2 11 1396 0 0 0 0 0 31 12 0 

3 47 1 327 0 0 0 0 41 0 0 

4 0 0 0 714 26 28 1 0 0 0 

5 0 0 0 7 297 9 0 0 0 0 

6 0 0 0 5 25 131 4 0 0 12 

7 0 0 0 1 8 64 284 0 0 5 

8 12 105 0 0 0 0 0 520 6 0 

9 9 29 0 0 0 0 0 0 331 0 

10 0 0 0 0 28 0 13 0 0 104 

 

Decision Tree Parameter Definition Value 

Minimum split The minimum number of observations that must exist in a node 

in order for a split to be attempted. 

50 

Maximum depth  Maximum number of child leaves, root node being depth 0 10 

Cross validation Number of cross validation folds 10 

Complexity parameter (cp) If the cost of adding another variable to the decision tree from 

the current node is above the value of cp, then tree building 

does not continue 

0.01 

Training dataset Percentage of data used for training the algorithm 80 
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First rule in splitting the nodes is based on the triage severity of illness. Clear separation 

between patients admitted from ED and non-emergency patients indicates their significant 

differences. Due to the large number of clusters, and classification tree size, we present the 

constructed classification tree as two separate figures, provided as Figure 5.3 which refers to 

patients admitted from the ED, and Figure 5.4 for all other patients. First observation from these 

two groups relates to their number of leaf nodes. Patients admitted from the ED include 11 leaves, 

while non-emergency admitted patients have only 6 leaves. Apart from natural differences between 

emergency and non-emergency patients, the difference in number of leaves can be explained by 

the number of admitted patients from the ED units (13,778) and non-ED units (6,896) where the 

number of ED admissions is almost twice the size of non-emergency admissions.      
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Figure 5.3. Decision tree for the Wilmington hospital (Part 1/2). 
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Figure 5.4. Decision tree for the Wilmington hospital (Part 2/2). 

As shown in Figure 5.3, patients admitted from the ED are split based on their age. Patients 

older than 60 are assigned to either of the clusters 1, 2, 8, and 9, whereas patients younger than 60 

are assigned to either of clusters 1, 2, 3, and 8. While clusters 1, 2, and 8 are common between this 

separation, clusters 1 and 9 are completely separated. The age difference between clusters 1 and 9 

can be seen in Figure 5.5. Comparison of clusters 1,2, and 8 indicate that cluster 2 includes larger 

volume of patients with higher severity as shown in Figure 5.6. In addition, majority of cardiology 

patients are assigned to clusters 2 and 8 as listed in Table 5.4.  



 

 

 

77 

 

Figure 5.5. Average age between clusters in the Wilmington hospital. 

 

Figure 5.6. Triage severity of illness in the Wilmington hospital. 
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Table 5.4. Distribution of patients across admitting medical sections and clusters in the 

Wilmington hospital. 

Admitting Medical Section 1 2 3 4 5 6 7 8 9 10 

DENTISTRY/ORAL SURGERY 0 0 0 2 2 5 2 0 0 4 

MEDICINE/ CARDIOLOGY 4 299 11 2 0 7 0 85 1 0 

MEDICINE/GASTROENTEROLOGY 0 0 1 0 0 0 0 0 0 0 

MEDICINE/ INFECTIOUS DISEASE 0 0 1 0 0 0 0 0 0 0 

MEDICINE/ INTERNAL MEDICINE 819 2379 535 14 11 55 2 872 559 9 

MEDICINE/ NEUROLOGY 0 2 0 0 0 0 0 0 0 0 

MEDICINE/ PHYSICAL MEDICINE 0 1 0 30 913 31 5 0 3 80 

MEDICINE/ PULMONARY 6 19 7 0 0 1 0 7 1 1 

SURGERY/ GENERAL SURGERY 150 49 65 39 0 147 135 30 144 176 

SURGERY/NEUROLOGIC  0 0 0 0 0 0 1 0 0 0 

SURGERY/ORTHOPEDIC  6 1 0 2759 13 25 1239 0 8 72 

SURGERY/ OTOLARYNGOLOGIC 0 1 0 13 4 57 2 1 0 4 

SURGERY/ PLASTIC SURGERY 1 0 1 15 2 51 3 0 0 9 

SURGERY/ THORACIC SURGERY 0 0 1 0 0 0 0 0 0 0 

SURGERY/ TRAUMA SURGERY 14 3 3 1 0 1 0 5 27 0 

SURGERY/ UROLOGIC SURGERY 0 0 0 3 0 3 5 0 0 0 

 

Figure 5.4  shows that clusters 4, 5, 6, 7, and 10 fall under non-emergency admissions. As 

shown in Figure 5.7, these patients mainly came from physician referral and hospital transfers. 

Among these, clusters 4 and 7 include the same type of patients (i.e., admitting diagnosis letter 

codes M, and T that are admitted to orthopedic surgery section), in which cluster 4 contains patients 

older than 60, and cluster 7 contains remaining patients. Comparison of average age within these 

two clusters is shown in Figure 5.5. In addition, cluster 5 includes patients with admitting diagnosis 

letter code I, R, S, and Z. Majority of these patients are admitted in physical medicine as shown in 

Table 5.4. Finally, clusters 6, and 10 include all other patients that are separated based on age, in 

which cluster 10 includes patients younger than 60, and cluster 6 includes patients older than 60.  
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Figure 5.7. Admission source for patients visited the Wilmington hospital. 

5.5.2 Christiana hospital 

We used LCA to form 15 clusters in the Christiana hospital, and constructed a classification 

tree with specified parameters in Table 5.2. We then used 20% testing dataset to test the 

performance of our classification tree. The accuracy of the classification tree was 78.22%. Due to 

the large number of clusters, and classification tree size, we present the constructed classification 

tree as three figures, provided in Figure 5.8, Figure 5.9, and Figure 5.10.  

 Figure 5.8 includes clusters 1, 2, 5, 6, 8, and 14. These clusters are completely separated 

from the rest of the clusters based on their triage severity of either 5 or non-emergency patient 

visits. Clusters 2, and 14 include patients with admitting diagnosis letter code of “O” which refers 

to pregnancy, childbirth and the puerperium, as listed in Table 5.5. Clusters 5 and 6 include similar 

patients, but different in age adjusted Charlson score as shown in Figure 5.11. In addition, clusters 

1 and 8 are separated based on the admission source.  
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Figure 5.8. Decision tree for the Christiana hospital (Part 1/3). 
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Figure 5.9. Decision tree for the Christiana hospital (Part 2/3).



 

 

 

82 

 

Figure 5.10. Decision tree for the Christiana hospital (Part 3/3). 
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Table 5.5. Admitting diagnosis codes across clusters in the Christiana hospital. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A 0 0 42 53 0 0 261 31 216 51 46 38 0 1 109 

B 0 0 0 19 0 1 35 3 0 4 10 3 0 4 5 

C 168 0 0 0 76 1067 276 75 4 38 14 7 0 0 27 

D 48 0 2 61 122 168 361 36 0 6 77 107 1 20 128 

E 17 0 0 296 19 74 485 24 0 305 238 188 0 2 132 

F 0 0 0 59 0 1 25 1 0 21 193 112 3 0 6 

G 53 0 20 75 102 54 400 105 2 1 173 98 16 49 165 

H 0 0 0 11 0 1 83 6 0 0 71 17 0 0 36 

I 2155 0 840 0 91 0 1616 758 2635 0 879 207 0 7 904 

J 9 0 30 0 10 21 2105 118 467 0 1011 342 0 2 958 

K 65 2 0 927 160 453 1024 175 57 1368 431 330 0 23 508 

L 3 0 0 373 0 9 125 69 0 517 23 121 1 0 29 

M 2 0 2 361 568 2155 212 79 0 877 90 145 64 54 74 

N 6 0 0 345 81 343 619 47 0 1134 158 114 10 7 357 

O 0 1574 0 0 0 0 0 0 0 0 0 7 0 1428 0 

P 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 

Q 8 0 0 0 14 6 0 7 0 1 0 3 0 5 1 

R 58 0 95 802 91 181 6147 651 1127 71 1994 890 80 37 2865 

S 2 0 221 92 11 92 0 149 0 802 200 311 1236 18 184 

T 62 0 62 121 79 213 142 102 57 246 178 151 8 17 42 

Z 20 238 0 2 152 366 14 9 0 0 0 21 3 65 26 

 

 

Figure 5.11. Average age adjusted Charlson score across clusters in the Christiana hospital. 
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Figure 5.9 includes clusters 4, 7, 9, 10, and 11. These clusters include patients with triage 

severity of less than 5 and younger than 90. Majority of patients in cluster 9 fall under stepdown 

or ICU level of care, as shown in Figure 5.12.  

 

Figure 5.12. Level of care for the Christiana hospital. 

Finally, Figure 5.10 includes clusters 10, and 15. These clusters include patients with triage 

severity of less than 5 and older than 90.  

5.6 Discussion and Conclusions 

In this study, we investigated existing patient grouping in two academic hospitals within the 

same health system using a two-step clustering, then classification approach. To facilitate 

implementation of our results in practice, we used available data at the time of patient admission 

and used interpretable classification tree models. Using patient admission data and our 

interpretable results from the classification trees, hospital admins can readily determine cluster 

membership of admitted patients. Currently, there are 8 patient groups (i.e., service lines) within 

these hospitals. Using patient records within a two-year period, and information available at the 

time of patient admission, we applied latent class analysis and BIC criterion to identify new patient 

groups. We identified 10 and 15 patient groups in the Wilmington and Christiana hospitals, 
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respectively. We then constructed a classification tree for each hospital (accuracy of 88.04% in the 

Wilmington hospital, and 78.22% in the Christiana hospital) and analyzed distribution of patient 

types across clusters. High accuracies achieved in our classification trees indicate that available 

information at the time of admission, despite being limited, can provide significant insights to form 

patient groups. We found that existing 8 service lines can be further split into 10 and 15 groups in 

the Wilmington and Christiana hospitals, respectively. Most splits occur between surgery and 

medicine service lines. More specifically, internal medicine, neurological disorders, and general 

surgery patients spread across multiple clusters.     

Comparing patient distribution across clusters with rules extracted from classification trees, 

we can identify some of the clusters that include unique patient populations such as orthopedic 

surgery, cardiology, and physical medicine in the Wilmington hospital, and pregnancy, childbirth 

and the puerperium in the Christiana hospital.  

Our findings also shed light on the usefulness of triage severity index, age adjusted Charlson 

comorbidity score, and age in determining patient condition and required care complexity. In 

particular, we found that using all these information can provide a more robust picture of patient 

conditions. In addition, our classification trees repeatedly split nodes based on age threshold of 60, 

suggesting potential differences among patients younger than 60 and older than 60. 

In the existing design, hospital units are specialized in different levels of care such as ICU, 

stepdown, and ward. Literature suggests that separating ICU and stepdown can exacerbate flow 

issues within the hospital by increasing number of patient transfers (Edbrooke et al. 2011, Hasan 

et al. 2020, Long and Mathews 2018, Singh and Terwiesch 2012). Ideally, a hospital unit should 

be equipped with skilled staff and facilities, and able to provide any needed level of care. As such, 

each unit should be able to provide ICU, stepdown, and ward level of care without being 

specialized in one of these levels. Our findings also support this idea. As shown in Figure 5.12, 

clusters (e.g., 1, 7, 9) include patients from different levels of care.  

Top 3 most common ZIP codes of visited patients from the Wilmington hospital, and their 

racial distribution according to the census data is shown in Table 5.6. While majority of these ZIP 

code residents are black or African American, our records show that black or African American 

make up much smaller number of visits from the Wilmington hospital. Figure 5.13 represents the 

distribution of race across clusters in the Wilmington hospital. Although top three ZIP codes are 
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mainly black or African American residents, majority of hospital visits belong to white race, 

indicating potential issues related to access.  

Table 5.6. Top 3 ZIP codes in the Wilmington hospital and their racial distribution. 

ZIP Code Name Number of Visits 

% Black/African 

American % White 

19802 Wilmington, DE 2491 76.1 18.5 

19805 Wilmington, DE 1990 56 32.7 

19801 Wilmington, DE 1752 74.5 19.5 

 

 

Figure 5.13. Distribution of race across clusters in the Wilmington hospital. 

Although we designed our study to facilitate the implementation phase, there are several 

challenges and barriers to implement our results in practice. Future studies can extend our work 

and attempt to identify these challenges. In addition, future studies can incorporate patient 

outcomes and compare the effectiveness of formed clusters in practice. In this direction, 

counterfactual analysis using simulation models can inform the impacts of these clusters on patient 

flow and capacity within the hospitals.  



 

 

 

87 

 FUTURE WORK 

In this dissertation, we investigated some of the issues related to patient flow and capacity 

management in two major components of health services, namely ambulatory care and inpatient 

care. Using administrative data and quantitative methods, we explored access issue in the 

ambulatory care, as well as flow and capacity challenges in the inpatient care. While our study 

shed light on the effectiveness of current policies regarding access and flow within these settings, 

further studies needed to address some of the limitations of our work.    

 As healthcare delivery is shifting from volume-based to value-based, integration is 

becoming more essential than ever. As such, future studies should investigate access and flow 

issues within ambulatory (e.g., primary care, specialty care, nursing home) and inpatient care 

simultaneousely. Identifying vulnerable patient cohorts and investigating their access and flow 

barriers across the entire healthcare system can provide opportunities to improve both system 

performance and patient outcomes. These studies can also inform health organizations about the 

importance and advantages of implementing integrated information systems across the board.  

To facilitate the Triple aims introduced by the Institute for Healthcare Improvement (IHI), 

flow and capacity policies should be evaluated holistically. As such, future studies should evaluate 

the impact of flow and capacity policies on population health, costs, and quality of care. 

Multidisciplinary nature of these studies can introduce new challenges and opportunities for 

collaboration.  

To bridge the gap between theoretical development and practical implementation, future 

studies should focus on addressing challenges of incorporating algorithms at the provider site and 

aid clinicians in decision making. These efforts can investigate the dynamics between leadership 

support, incentives, training opportunities, global vs. local perception of employees, technology 

infrastructure, user friendliness of products, and efficiency of developed algorithms. 

Amidst the global pandemic, we experienced that health systems were able to adopt rapid 

strategies to restructure their inpatient groups, and facilitated patient access to ambulatory care 

through telemedicine (Bashshur et al. 2020, Patterson et al. 2020). While it is not the end of the 

pandemic, it is definitely the beginning for flow and capacity management in health services.    

 



 

 

88 

REFERENCES 

Ackerman SL, Gleason N (2018) Transitioning patients from specialty care to primary care what 

we know and what we can do. J. Ambul. Care Manage. 41(4):314–322. 

Ackerman SL, Gleason N, Monacelli J, Collado D, Wang M, Ho C, Catschegn-Pfab S, Gonzales 

R (2014) When to repatriate? Clinicians’ perspectives on the transfer of patient management 

from specialty to primary care. J. Gen. Intern. Med. 29(10):1355–1361. 

Afilalo M, Xue X, Soucy N, Colacone A, Jourdenais E, Boivin JF (2017) Patient Needs, Required 

Level of Care, and Reasons Delaying Hospital Discharge for Nonacute Patients Occupying 

Acute Hospital Beds. J. Healthc. Qual. 39(4):200–210. 

Ahmadi-Javid A, Jalali Z, Klassen KJ (2017) Outpatient appointment systems in healthcare: A 

review of optimization studies. Eur. J. Oper. Res. 258(1):3–34. 

Akcali E, Côté MJ, Lin C (2006) A network flow approach to optimizing hospital bed capacity 

decisions. Health Care Manag. Sci. 9(4):391–404. 

Akushevich I, Yashkin AP, Kravchenko J, Ukraintseva S, Stallard E, Yashin AI (2018) Time 

Trends in the Prevalence of Neurocognitive Disorders and Cognitive Impairment in the 

United States: The Effects of Disease Severity and Improved Ascertainment. J. Alzheimer’s 

Dis. 64(1):137–148. 

Alizamir S, De Véricourt F, Sun P (2013) Diagnostic accuracy under congestion. Manage. Sci. 

59(1):157–171. 

Allon G, Deo S, Lin W (2013) The impact of size and occupancy of hospital on the extent of 

ambulance diversion: Theory and evidence. Oper. Res. 61(3):544–562. 

Andersen R, Hagenaars JA, McCutcheon AL (2003) Applied Latent Class Analysis. Can. J. Sociol. 

/ Cah. Can. Sociol. 28(4):584. 

Angus DC (2000) Current and Projected Workforce Requirements for Care of the Critically Ill and 

Patients With Pulmonary Disease:Can We Meet the Requirements of an Aging Population. 

JAMA 284(21):2762–2770. 

Antonelli D, Baralis E, Bruno G, Chiusano S, Mahoto NA, Petrigni C (2012a) Extraction of 

medical pathways from electronic patient records. Med. Appl. Intell. Data Anal. Res. Adv. 

273–289. 

 



 

 

89 

Antonelli D, Baralis E, Bruno G, Chiusano S, Mahoto NA, Petrigni C (2012b) Analysis of 

diagnostic pathways for colon cancer. Flex. Serv. Manuf. J. 24(4):379–399. 

Antonelli D, Bruno G, Chiusano S (2013) Anomaly detection in medical treatment to discover 

unusual patient management. IIE Trans. Healthc. Syst. Eng. 3(2):69–77. 

Armony M, Chan CW, Zhu B (2018a) Critical Care Capacity Management: Understanding the 

Role of a Step Down Unit. Prod. Oper. Manag. 27(5):859–883. 

Armony M, Chan CW, Zhu B (2018b) Critical Care Capacity Management: Understanding the 

Role of a Step Down Unit. Prod. Oper. Manag. 27(5):859–883. 

Armony M, Israelit S, Mandelbaum A, Marmor YN, Tseytlin Y, Yom-Tov GB (2015) On Patient 

Flow in Hospitals: A Data-Based Queueing-Science Perspective. Stoch. Syst. 5(1):146–194. 

Assanangkornchai S, Li J, McNeil E, Saingam D (2018) Clusters of alcohol and drug use and other 

health-risk behaviors among Thai secondary school students: A latent class analysis. BMC 

Public Health 18(1). 

Baghai R, Levine E, Sutaria S (2008) Service-line strategies for US hospitals. McKinsey Q. 

(july):1–9. 

Bahalkeh E (2015) Efficient Algorithms for Calculating the System Matrix and the Kleene Star 

Operator for Systems Defined by Directed Acyclic Graphs over Dioids. (Ohio University). 

Bahalkeh E, Madraki G, Judd R (2015) Efficient system matrix calculation for manufacturing 

systems. IIE Annu. Conf. Expo 2015. (Institute of Industrial and Systems Engineers (IISE)), 

1943–1950. 

Bai J, Fügener A, Schoenfelder J, Brunner JO (2018) Operations research in intensive care unit 

management: a literature review. Health Care Manag. Sci. 21(1):1–24. 

Balakhontceva MA, Funkner AA, Semakova AA, Metsker OG, Zvartau NE, Yakovlev AN, 

Lutsenko AE, Kovalchuk S V. (2018) Holistic modeling of chronic diseases for 

recommendation elaboration and decision making. Procedia Comput. Sci. 138:228–237. 

Barz C, Rajaram K (2015) Elective Patient Admission and Scheduling under Multiple Resource 

Constraints. Prod. Oper. Manag. 24(12):1907–1930. 

Bashshur RL, Doarn CR, Frenk JM, Kvedar JC, Shannon GW, Woolliscroft JO (2020) Beyond 

the COVID Pandemic, Telemedicine, and Health Care. Telemed. e-Health 26(11):1310–1313. 

Batt RJ, Terwiesch C (2017) Early task initiation and other load-Adaptive mechanisms in the 

Emergency Department. Manage. Sci. 63(11):3531–3551. 



 

 

90 

Bech-Azeddine R, Waldemar G, Knudsen GM, Høgh P, Bruhn P, Wildschiødtz G, Gjerris F, 

Paulson OB, Juhler M (2001) Idiopathic normal-pressure hydrocephalus: Evaluation and 

findings in a multidisciplinary memory clinic. Eur. J. Neurol. 8(6):601–611. 

Bekes CE, Dellinger RP, Brooks D, Edmondson R, Olivia CT, Parrillo JE (2004) Critical care 

medicine as a distinct product line with substantial financial profitability: The role of business 

planning. Crit. Care Med. 32(5):1207–1214. 

Berg BP, Murr M, Chermak D, Woodall J, Pignone M, Sandler RS, Denton BT (2013) Estimating 

the cost of no-shows and evaluating the effects of mitigation strategies. Med. Decis. Mak. 

33(8):976–985. 

Best TJ, Sandıkçı B, Eisenstein DD, Meltzer DO (2015) Managing Hospital Inpatient Bed 

Capacity Through Partitioning Care into Focused Wings. Manuf. Serv. Oper. Manag. 

17(2):157–176. 

Bettenhausen JL, Colvin JD, Berry JG, Puls HT, Markham JL, Plencner LM, Krager MK, et al. 

(2017) Association of income inequality with pediatric hospitalizations for ambulatory care-

sensitive conditions. JAMA Pediatr. 171(6). 

Bhattacharjee P, Ray PK (2014) Patient flow modelling and performance analysis of healthcare 

delivery processes in hospitals: A review and reflections (Elsevier Ltd). 

Billings J, Parikh N, Mijanovich T (2000a) Emergency department use: the New York Story. Issue 

Brief (Commonw. Fund) (434):1–12. 

Billings J, Parikh N, Mijanovich T (2000b) Emergency department use in New York City: a 

substitute for primary care? Issue Brief (Commonw. Fund) (433):1–5. 

Black N (2016) Is hospital mortality higher at weekends? If so, why? Lancet 388(10040):108–111. 

de Boer D, Delnoij D, Rademakers J (2013) The importance of patient-centered care for various 

patient groups. Patient Educ. Couns. 90(3):405–410. 

Brousseau DC, Mistry RD, Alessandrini EA (2006) Methods of Categorizing Emergency 

Department Visit Urgency. Pediatr. Emerg. Care 22(9):635–639. 

Burdett R, Kozan E (2016) A multi-criteria approach for hospital capacity analysis. Eur. J. Oper. 

Res. 255(2):505–521. 

Burdett RL, Kozan E, Sinnott M, Cook D, Tian YC (2017) A mixed integer linear programing 

approach to perform hospital capacity assessments. Expert Syst. Appl. 77:170–188. 

 



 

 

91 

Burkey Y, Black M, Reeve H, Roland M (1997) Long-term follow-up in outpatient clinics. 2: The 

view from the specialist clinic. Fam. Pract. 14(1):29–33. 

van Bussel EM, van der Voort MBVR, Wessel RN, van Merode GG (2018) Demand, capacity, 

and access of the outpatient clinic: A framework for analysis and improvement. J. Eval. Clin. 

Pract. 24(3):561–569. 

Cardoen B, Demeulemeester E, Beliën J (2010) Operating room planning and scheduling: A 

literature review. Eur. J. Oper. Res. 201(3):921–932. 

Cardoso LTQ, Grion CMC, Matsuo T, Anami EHT, Kauss IAM, Seko L, Bonametti AM (2011) 

Impact of delayed admission to intensive care units on mortality of critically ill patients: A 

cohort study. Crit. Care 15(1). 

Caron F, Vanthienen J, Vanhaecht K, Limbergen E Van, De Weerdt J, Baesens B (2014) 

Monitoring care processes in the gynecologic oncology department. Comput. Biol. Med. 

44(1):88–96. 

Cayirli T, Yang KK (2014) A Universal Appointment Rule with Patient Classification for Service 

Times, No-Shows, and Walk-Ins. Serv. Sci. 6(4):274–295. 

Chalfin DB, Trzeciak S, Likourezos A, Baumann BM, Dellinger RP (2007) Impact of delayed 

transfer of critically ill patients from the emergency department to the intensive care unit*. 

Crit. Care Med. 35(6):1477–1483. 

Chan CW, Farias VF, Bambos N, Escobar GJ (2012) Optimizing intensive care unit discharge 

decisions with patient readmissions. Oper. Res. 60(6):1323–1341. 

Chan CW, Farias VF, Escobar GJ (2017) The impact of delays on service times in the intensive 

care unit. Manage. Sci. 63(7):2049–2072. 

Chan CW, Green L V., Lekwijit S, Lu L, Escobar G (2019) Assessing the impact of service level 

when customer needs are uncertain: An empirical investigation of hospital step-down units. 

Manage. Sci. 65(2):751–775. 

Chang CL, Chen CH (2009) Applying decision tree and neural network to increase quality of 

dermatologic diagnosis. Expert Syst. Appl. 36(2 PART 2):4035–4041. 

Chapman SN, Carmel JI (1992) Demand/capacity management in health care: an application of 

yield management. Health Care Manage. Rev. 17(4):45–54. 

http://www.ncbi.nlm.nih.gov/pubmed/1428858. 

 



 

 

92 

Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic 

comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 40(5):373–

383. 

Choi K, Chung S, Rhee H, Suh Y (2010) Classification and sequential pattern analysis for 

improving managerial efficiency and providing better medical service in public healthcare 

centers. Healthc. Inform. Res. 16(2):67–76. 

Chrusch CA, Olafson KP, McMillan PM, Roberts DE, Gray PR (2009) High occupancy increases 

the risk of early death or readmission after transfer from intensive care *. Crit. Care Med. 

37(10):2753–2758. 

Cochran JK, Bharti A (2006) A multi-stage stochastic methodology for whole hospital bed 

planning under peak loading. Int. J. Ind. Syst. Eng. 1(1/2):8. 

Cochran JK, Roche K (2008) A queuing-based decision support methodology to estimate hospital 

inpatient bed demand. J. Oper. Res. Soc. 59(11):1471–1482. 

Cohen ER, Feinglass J, Barsuk JH, Barnard C, OʼDonnell A, McGaghie WC, Wayne DB (2010) 

Cost Savings From Reduced Catheter-Related Bloodstream Infection After Simulation-Based 

Education for Residents in a Medical Intensive Care Unit. Simul. Healthc. J. Soc. Simul. 

Healthc. 5(2):98–102. 

Cook NL, Hicks LS, O’Malley AJ, Keegan T, Guadagnoli E, Landon BE (2007) Access to 

specialty care and medical services in community health centers. Health Aff. 26(5):1459–

1468. 

Corwin HL, Surgenor SD, Morgan R, Reeves SA (2005) Impact of Icu and Step-Down Unit 

Organization on Utilization of Critical Care Resources. Crit. Care Med. 33:A25. 

Cosma Shalizi (2013) Advanced data analysis from an elementary point of view (Citeseer). 

Costa AX, Ridley SA, Shahani AK, Harper PR, De Senna V, Nielsen MS (2003) Mathematical 

modelling and simulation for planning critical care capacity. Anaesthesia 58(4):320–327. 

Crilly JL, Boyle J, Jessup M, Wallis M, Lind J, Green D, FitzGerald G (2015) The implementation 

and evaluation of the patient admission prediction tool: Assessing its impact on decision-

making strategies and patient flow outcomes in 2 australian hospitals. Qual. Manag. Health 

Care 24(4):169–176. 

 

 



 

 

93 

Daggy J, Lawley M, Willis D, Thayer D, Suelzer C, Delaurentis PC, Turkcan A, Chakraborty S, 

Sands L (2010) Using no-show modeling to improve clinic performance. Health Informatics 

J. 16(4):246–259. 

Dai JG, Shi P (2019) Inpatient Overflow: An Approximate Dynamic Programming Approach. 

Manuf. Serv. Oper. Manag.:msom.2018.0730. 

Delias P, Doumpos M, Grigoroudis E, Manolitzas P, Matsatsinis N (2015) Supporting healthcare 

management decisions via robust clustering of event logs. Knowledge-Based Syst. 84:203–

213. 

Demeere N, Stouthuysen K, Roodhooft F (2009) Time-driven activity-based costing in an 

outpatient clinic environment: Development, relevance and managerial impact. Health Policy 

(New. York). 92(2–3):296–304. 

Deslauriers S, Raymond MH, Laliberté M, Lavoie A, Desmeules F, Feldman DE, Perreault K 

(2017) Access to publicly funded outpatient physiotherapy services in Quebec: waiting lists 

and management strategies. Disabil. Rehabil. 39(26):2648–2656. 

Dexter F, Epstein RH, Marcon E, De Matta R (2005) Strategies to reduce delays in admission into 

a postanesthesia care unit from operating rooms. J. Perianesthesia Nurs. 20(2):92–102. 

Diwas Singh KC, Scholtes S, Terwiesch C (2020) Empirical research in healthcare operations: 

Past research, present understanding, and future opportunities. Manuf. Serv. Oper. Manag. 

22(1):73–83. 

Dowd B, Karmarker M, Swenson T, Parashuram S, Kane R, Coulam R, Jeffery MM (2014) 

Emergency Department Utilization as a Measure of Physician Performance. Am. J. Med. Qual. 

29(2):135–143. 

Drew A. Linzer, Jefrey B. Lewis (2011) poLCA: An R Package for Polytomous Variable Latent 

Class Analysis. J. Stat. Softw. 42(10). 

Edbrooke DL, Minelli C, Mills GH, Iapichino G, Pezzi A, Corbella D, Jacobs P, et al. (2011) 

Implications of ICU triage decisions on patient mortality: A cost-effectiveness analysis. Crit. 

Care 15(1). 

Eilers GM (2004) Improving patient satisfaction with waiting time. J. Am. Coll. Heal. 53(1):41–

48. 

 

 



 

 

94 

El-Sharo M, Zheng B, Yoon SW, Khasawneh MT (2015) An overbooking scheduling model for 

outpatient appointments in a multi-provider clinic. Oper. Res. Heal. Care 6:1–10. 

Elkhuizen SG, Das SF, Bakker PJM, Hontelez JAM (2007) Using computer simulation to reduce 

access time for outpatient departments. Qual. Saf. Heal. Care 16(5):382–386. 

Englander H, Weimer M, Solotaroff R, Nicolaidis C, Chan B, Velez C, Noice A, et al. (2017) 

Planning and designing the improving addiction care team (IMPACT) for hospitalized adults 

with substance use disorder. J. Hosp. Med. 12(5):339–342. 

Eriksson CO, Stoner RC, Eden KB, Newgard CD, Guise JM (2017) The Association Between 

Hospital Capacity Strain and Inpatient Outcomes in Highly Developed Countries: A 

Systematic Review. J. Gen. Intern. Med. 32(6):686–696. 

Feng YY, Wu IC, Chen TL (2017) Stochastic resource allocation in emergency departments with 

a multi-objective simulation optimization algorithm. Health Care Manag. Sci. 20(1):55–75. 

Fernando SM, Bagshaw SM, Rochwerg B, McIsaac DI, Thavorn K, Forster AJ, Tran A, et al. 

(2019) Comparison of outcomes and costs between adult diabetic ketoacidosis patients 

admitted to the ICU and step-down unit. J. Crit. Care 50:257–261. 

Ferrand YB, Magazine MJ, Rao US (2014) Partially Flexible Operating Rooms for Elective and 

Emergency Surgeries. Decis. Sci. 45(5):819–847. 

Ferrat E, Audureau E, Paillaud E, Liuu E, Tournigand C, Lagrange JL, Canoui-Poitrine F, Caillet 

P, Bastuji-Garin S (2016) Four distinct health profiles in older patients with cancer: Latent 

class analysis of the prospective elcapa cohort. Journals Gerontol. - Ser. A Biol. Sci. Med. 

Sci. 71(12):1653–1660. 

Ferrer RL (2007) Pursuing equity: Contact with primary care and specialist clinicians by 

demographics, insurance, and health status. Ann. Fam. Med. 5(6):492–502. 

Fetter RB, Freeman JL (1986) Diagnosis related groups: product line management within hospitals. 

Acad. Manage. Rev. 11(1):41–54. 

Fetter RB, Shin Y, Freeman JL, Averill RF, Thompson JD (1980) Case mix definition by 

diagnosis-related groups. Med. Care 18(Suppl 2):1–53. 

Fogarty C, Cronin P (2008) Waiting for healthcare: A concept analysis. J. Adv. Nurs. 61(4):463–

471. 

 

 



 

 

95 

Fop M, Murphy TB (2018) Variable selection methods for model-based clustering. Stat. Surv. 

12:18–65. 

Fop M, Smart KM, Murphy TB (2017) Variable selection for latent class analysis with application 

to low back pain diagnosis. Ann. Appl. Stat. 11(4):2080–2110. 

Foy R, Hempel S, Rubenstein L, Suttorp M, Seelig M, Shanman R, Shekelle PG (2010) Meta-

analysis: Effect of interactive communication between collaborating primary care physicians 

and specialists. Ann. Intern. Med. 152(4):247–258. 

Freeman M, Savva N, Scholtesa S (2017) Gatekeepers at work: An empirical analysis of a 

maternity unit. Manage. Sci. 63(10):3147–3167. 

Froehle CM, Magazine MJ (2013) Improving Scheduling and Flow in Complex Outpatient Clinics. 

Handb. Healthc. Oper. Manag. 229–250. 

Funkner AA, Yakovlev AN, Kovalchuk S V. (2017) Towards evolutionary discovery of typical 

clinical pathways in electronic health records. Procedia Comput. Sci. 119:234–244. 

G S (1978) “Estimating the Dimension of a Model.” Ann. Stat. 6(2):461–464. 

Garcia C dos S, Meincheim A, Faria Junior ER, Dallagassa MR, Sato DMV, Carvalho DR, Santos 

EAP, Scalabrin EE (2019) Process mining techniques and applications – A systematic 

mapping study. Expert Syst. Appl. 133:260–295. 

Gershengorn HB, Chan CW, Xu Y, Sun H, Levy R, Armony M, Gong MN (2020) The Impact of 

Opening a Medical Step-Down Unit on Medically Critically Ill Patient Outcomes and 

Throughput: A Difference-in-Differences Analysis. J. Intensive Care Med. 35(5):425–437. 

Gigantesco A, De Girolamo G, Santone G, Miglio R, Picardi A (2009) Long-stay in short-stay 

inpatient facilities: Risk factors and barriers to discharge. BMC Public Health 9(1):306. 

Glowacka KJ, Henry RM, May JH (2009) A hybrid data mining/simulation approach for modelling 

outpatient no-shows in clinic scheduling. J. Oper. Res. Soc. 60(8):1056–1068. 

Goldfield N (2010) The evolution of diagnosis-related groups (DRGs): From its beginnings in 

case-mix and resource use theory, to its implementation for payment and now for its current 

utilization for quality within and outside the hospital. Qual. Manag. Health Care 19(1):3–16. 

Gorunescu F, Millard PH, McClean SI (2002) A queueing model for bed-occupancy management 

and planning of hospitals. J. Oper. Res. Soc. 53(1):19–24. 

 

 



 

 

96 

Grafe CJ, Horth RZ, Clayton N, Dunn A, Forsythe N (2020) How to Classify Super-Utilizers: A 

Methodological Review of Super-Utilizer Criteria Applied to the Utah Medicaid Population, 

2016-2017. Popul. Health Manag. 23(2):165–173. 

Green L (2006) Queueing analysis in healthcare; patient flow: Reducing delay in healthcare 

delivery. (Springer New York), 281–307. 

Green L V. (2002) How Many Hospital Beds? Inq. J. Heal. Care Organ. Provision, Financ. 

39(4):400–412. 

Green L V. (2006) Capacity Planning and Management in Hospitals. Oper. Res. Heal. Care. 

(Kluwer Academic Publishers, Boston), 15–41. 

Green L V, Nguyen V (2001) Strategies for cutting hospital beds: the impact on patient service. 

Health Serv. Res. 36(2):421–42. 

Guerriero F, Guido R (2011) Operational research in the management of the operating theatre: A 

survey. Health Care Manag. Sci. 14(1):89–114. 

Guest M (2017) Patient transfer from the intensive care unit to a general ward. Nurs. Stand. 

32(10):45–51. 

Günal MM, Pidd M (2010) Discrete event simulation for performance modelling in health care: A 

review of the literature. J. Simul. 4(1):42–51. 

Gupta D, Natarajan MK, Gafni A, Wang L, Shilton D, Holder D, Yusuf S (2007) Capacity planning 

for cardiac catheterization: A case study. Health Policy (New. York). 82(1):1–11. 

Halpern NA, Bettes L, Greenstein R (1994) Federal and nationwide intensive care units and 

healthcare costs: 1986-1992. Crit. Care Med. 22(12):2001–2007. 

https://insights.ovid.com/crossref?an=00003246-199412000-00019. 

Halpern NA, Pastores SM, Thaler HT, Greenstein RJ (2006) Changes in critical care beds and 

occupancy in the United States 1985-2000: Differences attributable to hospital size. Crit. 

Care Med. 34(8):2105–2112. 

Harper PR (2002) A framework for operational modelling of hospital resources. Health Care 

Manag. Sci. 5(3):165–173. 

Harper PR, Shahani AK (2002) Modelling for the planning and management of bed capacities in 

hospitals. J. Oper. Res. Soc. 53(1):11–18. 

 

 



 

 

97 

Hasan I, Bahalkeh E, Yih Y (2020) Evaluating intensive care unit admission and discharge policies 

using a discrete event simulation model. Simulation 96(6):501–518. 

Hashim MJ (2020) Provision of primary care by specialist physicians: A systematic review. Fam. 

Med. Community Heal. 8(1):e000247. 

Hastings SN, Whitson HE, Sloane R, Landerman LR, Horney C, Johnson KS (2014) Using the 

Past to Predict the Future: Latent Class Analysis of Patterns of Health Service Use of Older 

Adults in the Emergency Department. J. Am. Geriatr. Soc. 62(4):711–715. 

He L, Chalil Madathil S, Oberoi A, Servis G, Khasawneh MT (2019) A systematic review of 

research design and modeling techniques in inpatient bed management. Comput. Ind. Eng. 

127:451–466. 

Heincelman M, Schumann SO, Riley J, Zhang J, Marsden JE, Mauldin PD, Rockey DC (2016) 

Identification of High Utilization Inpatients on Internal Medicine Services. Am. J. Med. Sci. 

352(1):63–70. 

Hejl A, Høgh P, Waldemar G (2002) Potentially reversible conditions in 1000 consecutive memory 

clinic patients. J. Neurol. Neurosurg. Psychiatry 73(4):390–394. 

Helm JE, Ahmadbeygi S, Van Oyen MP (2011) Design and analysis of hospital admission control 

for operational effectiveness. Prod. Oper. Manag. 20(3):359–374. 

Helm JE, Van Oyen MP (2014) Design and Optimization Methods for Elective Hospital 

Admission. 62(6):1265–1282. 

Hick JL, Christian MD, Sprung CL (2010) Chapter 2. Surge capacity and infrastructure 

considerations for mass critical care. Intensive Care Med. 36(SUPPL. 1):11–20. 

Higginson I, Whyatt J, Silvester K (2011) Demand and capacity planning in the emergency 

department: How to do it. Emerg. Med. J. 28(2):128–135. 

Hillier FS, Editor S, The N, Of P, Chain S, Where M (2006) Patient Flow: Reducing Delay in 

Healthcare Delivery Hall RW, ed. (Springer US, Boston, MA). 

Hodges JR, Berrios GE, Breen K (2010) The multidisciplinary memory clinic approach. Berrios 

GE, Hodges JR, eds. Mem. Disord. Psychiatr. Pract. (Cambridge University Press, 

Cambridge), 101–121. 

Høgh P, Waldemar G, Knudsen GM, Bruhn P, Mortensen H, Wildschiødtz G, Bech RA, Juhler M, 

Paulson OB (1999) A multidisciplinary memory clinic in a neurological setting: Diagnostic 

evaluation of 400 consecutive patients. Eur. J. Neurol. 6(3):279–288. 



 

 

98 

Howell E, Bessman E, Kravet S, Kolodner K, Marshall R, Wright S (2007) Improving patient care. 

Active bed management by hospitalists and emergency department throughput. 

Hripcsak G, Albers DJ (2013) Next-generation phenotyping of electronic health records. J. Am. 

Med. Informatics Assoc. 20(1):117–121. 

Hsia RY, Niedzwiecki M (2017) Avoidable emergency department visits: A starting point. Int. J. 

Qual. Heal. Care 29(5):642–645. 

Huang Y, Hanauer DA (2014) Patient no-show predictive model development using multiple data 

sources for an effective overbooking approach. Appl. Clin. Inform. 5(3):836–860. 

Huang Z, Lu X, Duan H (2011) Mining association rules to support resource allocation in business 

process management. Expert Syst. Appl. 38(8):9483–9490. 

Hulshof PJH (2013) Integrated Decision Making in Healthcare  

Hulshof PJH, Kortbeek N, Boucherie RJ, Hans EW, Bakker PJM (2012) Taxonomic classification 

of planning decisions in health care: a structured review of the state of the art in OR/MS. Heal. 

Syst. 1(2):129–175. 

Iwata H, Hirano S, Tsumoto S (2014) Construction of clinical pathway based on similarity-based 

mining in hospital information system. Procedia Comput. Sci. 31:1107–1115. 

J. Morrice D, F. Bard J, M. Koenig K (2019) Designing and scheduling a multi-disciplinary 

integrated practice unit for patient-centred care. Heal. Syst.:1–24. 

Jaeker JAB, Tucker AL (2017) Past the point of speeding up: The negative effects of workload 

saturation on efficiency and patient severity. Manage. Sci. 63(4):1042–1062. 

Jiang B, Tang J, Yan C (2017) Outpatient capacity allocation considering adding capacity to match 

high patient demand. J. Syst. Sci. Syst. Eng. 26(4):487–516. 

Johannessen KA, Alexandersen N (2018) Improving accessibility for outpatients in specialist 

clinics: Reducing long waiting times and waiting lists with a simple analytic approach. BMC 

Health Serv. Res. 18(1):827. 

Johnston KJ, Allen L, Melanson TA, Pitts SR (2017) A “Patch” to the NYU Emergency 

Department Visit Algorithm. Health Serv. Res. 52(4):1264–1276. 

Kaier K, Mutters NT, Frank U (2012) Bed occupancy rates and hospital-acquired infections-should 

beds be kept empty? Clin. Microbiol. Infect. 18(10):941–945. 

Kane BYJ (2012) Health Costs: How the U.S. Compares With Other Countries. PBS News Hour 

22:1–18. 



 

 

99 

Kang J, Ciecierski CC, Malin EL, Carroll AJ, Gidea M, Craft LL, Spring B, Hitsman B (2014) A 

latent class analysis of cancer risk behaviors among U.S. college students. Prev. Med. 

(Baltim). 64:121–125. 

Kc DS, Terwiesch C (2009) Impact of workload on service time and patient safety: An econometric 

analysis of hospital operations. Manage. Sci. 55(9):1486–1498. 

Kelarev A V., Stranieri A, Yearwood JL, Jelinek HF (2012) Empirical study of decision trees and 

ensemble classifiers for monitoring of diabetes patients in pervasive healthcare. Proc. 2012 

15th Int. Conf. Network-Based Inf. Syst. NBIS 2012:441–446. 

Kelen GD, Kraus CK, McCarthy ML, Bass E, Hsu EB, Li G, Scheulen JJ, Shahan JB, Brill JD, 

Green GB (2006) Inpatient disposition classification for the creation of hospital surge 

capacity: a multiphase study. Lancet 368(9551):1984–1990. 

Kenagy JW, Berwick DM, Shore MF (1999) Service quality in health care. J. Am. Med. Assoc. 

281(7):661–665. 

Khan MU, Choi JP, Shin H, Kim M (2008) Predicting breast cancer survivability using fuzzy 

decision trees for personalized healthcare. Proc. 30th Annu. Int. Conf. IEEE Eng. Med. Biol. 

Soc. EMBS’08 - "Personalized Healthc. through Technol.:5148–5151. 

Khanna S, Boyle J, Good N, Lind J (2012) Unravelling relationships: Hospital occupancy levels, 

discharge timing and emergency department access block. EMA - Emerg. Med. Australas. 

24(5):510–517. 

Khorasanian D, Dexter F, Moslehi G (2018) Analyses of the phase I postanesthesia care unit 

baseline capacity and effect of disruptions to its beds or nurse availability on operating room 

workflow. Int. J. Plan. Sched. 2(4):350. 

Kim SH, Chan CW, Olivares M, Escobar GJ (2016) Association among ICU Congestion, ICU 

Admission Decision, and Patient Outcomes. Crit. Care Med. 44(10):1814–1821. 

Kim SH, Tong J, Peden C (2020) Admission control biases in hospital unit capacity management: 

How occupancy information hurdles and decision noise impact utilization. Manage. Sci. 

66(11):5151–5170. 

Kim SH, Vel P, Whitt W, Cha WC (2015) Poisson and non-Poisson properties in appointment-

generated arrival processes: The case of an endocrinology clinic. Oper. Res. Lett. 43(3):247–

253. 

 



 

 

100 

Kim SH, Whitt W, Cha WC (2018) A Data-Driven Model of an Appointment-Generated Arrival 

Process at an Outpatient Clinic. INFORMS J. Comput. 30(1):181–199. 

Klassen KJ, Rohleder TR (2001) Combining operations and marketing to manage capacity and 

demand in services. Serv. Ind. J. 21(2):1–30. 

Klassen KJ, Yoogalingam R (2009) Improving Performance in Outpatient Appointment Services 

with a Simulation Optimization Approach. Prod. Oper. Manag. 18(4):447–458. 

Klonsky ED, Olino TM (2008) Identifying Clinically Distinct Subgroups of Self-Injurers Among 

Young Adults: A Latent Class Analysis. J. Consult. Clin. Psychol. 76(1):22–27. 

Knopman D, Donohue JA, Gutterman EM (2000) Patterns of Care in the Early Stages of 

Alzheimer’s Disease: Impediments to Timely Diagnosis. J. Am. Geriatr. Soc. 48(3):300–304. 

Kolker A (2009) Process Modeling of ICU Patient Flow: Effect of Daily Load Leveling of Elective 

Surgeries on ICU Diversion. J. Med. Syst. 33(1):27–40. 

Kortbeek N, Braaksma A, Smeenk FHF, Bakker PJM, Boucherie RJ (2015) Integral resource 

capacity planning for inpatient care services based on bed census predictions by hour. J. Oper. 

Res. Soc. 66(7):1061–1076. 

Kortbeek N, van der Velde MF, Litvak N (2017) Organizing multidisciplinary care for children 

with neuromuscular diseases at the Academic Medical Center, Amsterdam. Heal. Syst. 

6(3):209–225. 

Kouroukis T, Ratcliffe J, Running K, Sussman J (2017) Developing and evaluating new models 

of care in hematology. J. Clin. Oncol. 35(8_suppl):53–53. 

Kritchanchai D, Hoeur S (2018) Simulation modeling for facility allocation of outpatient 

department. Int. J. Healthc. Manag. 11(3):193–201. 

Kuntz L, Mennicken R, Scholtes S (2015) Stress on the ward: Evidence of safety tipping points in 

hospitals. Manage. Sci. 61(4):754–771. 

Laganga LR, Lawrence SR (2007) Clinic overbooking to improve patient access and increase 

provider productivity. Decis. Sci. 38(2):251–276. 

Laganga LR, Lawrence SR (2012) Appointment overbooking in health care clinics to improve 

patient service and clinic performance. Prod. Oper. Manag. 21(5):874–888. 

LaGanga LR, Lawrence SR (2012) Appointment Overbooking in Health Care Clinics to Improve 

Patient Service and Clinic Performance. Prod. Oper. Manag. 21(5):874–888. 

 



 

 

101 

Land T (2020) Ambulatory Networks: Innovating and Transforming Healthcare Delivery. Front. 

Health Serv. Manage. 37(2):1–2. 

Landon BE, Wilson IB, McInnes K, Landrum MB, Hirschhorn LR, Marsden P V., Cleary PD 

(2005) Physician specialization and the quality of care for human immunodeficiency virus 

infection. Arch. Intern. Med. 165(10):1133–1139. 

Lane BH, Mallow PJ, Hooker MB, Hooker E (2020) Trends in United States emergency 

department visits and associated charges from 2010 to 2016. Am. J. Emerg. Med. 38(8):1576–

1581. 

Lantz PM (2020) “Super-Utilizer” Interventions: What They Reveal About Evaluation Research, 

Wishful Thinking, and Health Equity. Milbank Q. 98(1):31–34. 

Lee HK, Li J, Musa AJ, Bain PA (2016) A Markov chain model to evaluate patient transitions in 

small community hospitals. Autom. Sci. Eng. (CASE), 2016 IEEE Int. Conf. (vii):675–680. 

Lee HK, Musa AJ, Bain PA, Nelson K, Baker C, Li J (2019) A Queueing Network Model for 

Analysis of Patient Transitions Within Hospitals. IEEE Trans. Autom. Sci. Eng. 16(1):6–20. 

Lee L, Hillier LM, McKinnon Wilson J, Gregg S, Fathi K, Sturdy Smith C, Smith M (2018) Effect 

of Primary Care-Based Memory Clinics on Referrals to and Wait-Time for Specialized 

Geriatric Services. J. Am. Geriatr. Soc. 66(3):631–632. 

Leeftink AG, Bikker IA, Vliegen IMH, Boucherie RJ (2018) Multi-disciplinary planning in health 

care: a review. Heal. Syst.:1–24. 

Leeftink AG, Vliegen IMH, Hans EW (2019) Stochastic integer programming for multi-

disciplinary outpatient clinic planning. Health Care Manag. Sci. 22(1):53–67. 

Lehmann TNO, Aebi A, Lehmann D, Balandraux Olivet M, Stalder H (2007) Missed appointments 

at a Swiss university outpatient clinic. Public Health 121(10):790–799. 

Leifer BP (2003) Early Diagnosis of Alzheimer’s Disease: Clinical and Economic Benefits. J. Am. 

Geriatr. Soc. 51(5s2):S281–S288. 

Li L, Benton W. (2003) Hospital capacity management decisions: Emphasis on cost control and 

quality enhancement. Eur. J. Oper. Res. 146(3):596–614. 

Li X, Beullens P, Jones D, Tamiz M (2009) An integrated queuing and multi-objective bed 

allocation model with application to a hospital in China. J. Oper. Res. Soc. 60(3):330–338. 

 

 



 

 

102 

Lismont J, Janssens AS, Odnoletkova I, vanden Broucke S, Caron F, Vanthienen J (2016) A guide 

for the application of analytics on healthcare processes: A dynamic view on patient pathways. 

Comput. Biol. Med. 77:125–134. 

Liss DT, Chubak J, Anderson ML, Saunders KW, Tuzzio L, Reid RJ (2011) Patient-reported care 

coordination: Associations with primary care continuity and specialty care use. Ann. Fam. 

Med. 9(4):323–329. 

Liu N, Ziya S, Kulkarni VG (2010) Dynamic Scheduling of Outpatient Appointments Under 

Patient No-Shows and Cancellations. Manuf. Serv. Oper. Manag. 12(2):347–364. 

Long EF, Mathews KS (2018) The Boarding Patient: Effects of ICU and Hospital Occupancy 

Surges on Patient Flow. Prod. Oper. Manag. 27(12):2122–2143. 

Luyt CE, Combes A, Aegerter P, Guidet B, Trouillet JL, Gibert C, Chastre J (2007) Mortality 

among patients admitted to intensive care units during weekday day shifts compared with 

“off” hours. Crit. Care Med. 35(1):3–11. 

M.F. L, W.T. S, Y.W. Y, See K.C. AO - Liew MFO http://orcid. org/000. 0002 8880 004X (2020) 

Safe patient transport for COVID-19. Crit. Care 24(1):94. 

Madraki G, Bahalkeh E, Judd R (2015) Efficient algorithm to find makespan under perturbation 

in operation times. IIE Annu. Conf. Expo 2015. (Institute of Industrial and Systems Engineers 

(IISE)), 1474–1481. 

Mans R, Schonenberg H, Leonardi G, Panzarasa S, Cavallini A, Quaglini S, Aalst W van der (2008) 

Process mining techniques: An application to stroke care. Stud. Health Technol. Inform. 

136:573–578. 

Mans RS, van der Aalst WMP, Vanwersch RJB (2015) Process Mining in Healthcare (Springer 

International Publishing, Cham). 

Marcon E, Kharraja S, Smolski N, Luquet B, Viale JP (2003) Determining the number of beds in 

the postanesthesia care unit: A computer simulation flow approach. Anesth. Analg. 

96(5):1415–1423. 

Marlene Gyldmark CP (1995) A review of cost studies of intensive care units. Crit. Care Med. 

23(5):964–972. 

Martin Prodel, Vincent Augusto, Xie X (2013) Hospitalization Admission Control of Emergency 

Patients Using Markovian Decision Processes and Discrete Event Simulation. Proc. 2014 

Winter Simul. Conf.:1433–1444. 



 

 

103 

Mathews KS, Long EF (2015a) A conceptual framework for improving critical care patient flow 

and bed use. Ann. Am. Thorac. Soc. 12(6):886–894. 

Mathews KS, Long EF (2015b) A conceptual framework for improving critical care patient flow 

and bed use. Ann. Am. Thorac. Soc. 12(6):886–894. 

Mayer ML (2008) Disparities in geographic access to pediatric subspecialty care. Matern. Child 

Health J. 12(5):624–632. 

Mayfiel J, Reiber G, Sanders L, Janisse D, Pogach L (1998) Preventive Foot Care in People With 

Diabetes. Diabetes Care 21(12):2178–2179. 

McConnell KJ, Richards CF, Daya M, Bernell SL, Weathers CC, Lowe RA (2005) Effect of 

increased ICU capacity on emergency department length of stay and ambulance diversion. 

Ann. Emerg. Med. 45(5):471–478. 

Mehrotra A, Forrest CB, Lin CY (2011) Dropping the baton: Specialty referrals in the United 

States. Milbank Q. 89(1):39–68. 

Mehrotra A, Keehl-Markowitz L, Ayanian JZ (2008) Implementing open-access scheduling of 

visits in primary care practices: A cautionary tale. Ann. Intern. Med. 148(12):915–922. 

Melnykov V, Maitra R (2010) Finite mixture models and model-based clustering. Stat. Surv. 

4(none):80–116. 

Moore CG, Wilson-Witherspoon P, Probst JC (2001) Time and money: Effects of no-shows at a 

family practice residency clinic. Fam. Med. 33(7):522–527. 

Mutlu S, Benneyan J, Terrell J, Jordan V, Turkcan A (2015) A co-availability scheduling model 

for coordinating multi-disciplinary care teams. Int. J. Prod. Res. 53(24):7226–7237. 

Naghib S, Van Der Starre C, Gischler SJ, Joosten KFM, Tibboel D (2010) Mortality in very long-

stay pediatric intensive care unit patients and incidence of withdrawal of treatment. Intensive 

Care Med. 36(1):131–136. 

Naiker U, FitzGerald G, Dulhunty JM, Rosemann M (2018) Time to wait: A systematic review of 

strategies that affect out-patient waiting times. Aust. Heal. Rev. 42(3):286–293. 

Najjar A, Reinharz D, Girouard C, Gagné C (2018) A two-step approach for mining patient 

treatment pathways in administrative healthcare databases. Artif. Intell. Med. 87:34–48. 

NEJM Catalyst (2017) What Is Patient-Centered Care? NEJM Catal.:1–6. 

 

 



 

 

104 

Ng SHX, Rahman N, Ang IYH, Sridharan S, Ramachandran S, Wang DD, Tan CS, Toh SA, Tan 

XQ (2019) Characterization of high healthcare utilizer groups using administrative data from 

an electronic medical record database. BMC Health Serv. Res. 19(1):452. 

Nguyen TBT, Sivakumar AI, Graves SC (2015) A network flow approach for tactical resource 

planning in outpatient clinics. Health Care Manag. Sci. 18(2):124–136. 

O’Neill S, Calderon S, Casella J, Wood E, Carvelli-Sheehan J, Zeidel ML (2012) Improving 

outpatient access and patient experiences in academic ambulatory care. Acad. Med. 

87(2):194–199. 

Oseran AS, Lage DE, Jernigan MC, Metlay JP, Shah SJ (2019) A “Hospital-Day-1” Model to 

Predict the Risk of Discharge to a Skilled Nursing Facility. J. Am. Med. Dir. Assoc. 

20(6):689–695.e5. 

Pagnoni A, Parisi S, Lombardo S (2001) Analysis of patient flows via data mining. Stud. Health 

Technol. Inform. 84:1379–1383. 

Parikh A, Gupta K, Wilson AC, Fields K, Cosgrove NM, Kostis JB (2010) The Effectiveness of 

Outpatient Appointment Reminder Systems in Reducing No-Show Rates. Am. J. Med. 

123(6):542–548. 

Patterson B, Marks M, Martinez-Garcia G, Bidwell G, Luintel A, Ludwig D, Parks T, et al. (2020) 

A novel cohorting and isolation strategy for suspected COVID-19 cases during a pandemic. 

J. Hosp. Infect. 105(4):632–637. 

Peterson CL, Burton R (2009) The U.S. health care spending: comparisons with other OECD 

countries. Choice Rev. Online 46(05):46-2795-46–2795. 

Pettengill J, Vertrees J (1982) Reliability and validity in hospital case-mix measurement. Health 

Care Financ. Rev. 4(2):101–128. 

Pham JC, Patel R, Millin MG, Kirsch TD, Chanmugam A (2006) The Effects of Ambulance 

Diversion: A Comprehensive Review. Acad. Emerg. Med. 13(11):1220–1227. 

Pizer SD, Prentice JC (2011) What are the consequences of waiting for health care in the veteran 

population? J. Gen. Intern. Med. 26 Suppl 2(S2):676–682. 

Polito A, Combescure C, Levy-Jamet Y, Rimensberger P (2019) Long-stay patients in pediatric 

intensive care unit: Diagnostic-specific definition and predictors Ehrman R, ed. PLoS One 

14(10):e0223369. 

 



 

 

105 

Ponis ST, Delis A, Gayialis SP, Kasimatis P, Tan J (2013) Applying discrete event simulation 

(DES) in healthcare: The case for outpatient facility capacity planning. Int. J. Healthc. Inf. 

Syst. Informatics 8(3):58–79. 

Porcu M, Giambona F (2017) Introduction to Latent Class Analysis With Applications. J. Early 

Adolesc. 37(1):129–158. 

Prentice JC, Pizer SD (2007) Delayed access to health care and mortality. Health Serv. Res. 

42(2):644–662. 

Prin M, Wunsch H (2014) The role of stepdown beds in hospital care. Am. J. Respir. Crit. Care 

Med. 190(11):1210–1216. 

Quentin W, Scheller-Kreinsen D, Geissler A, Busse R (2012) Appendectomy and diagnosis-

related groups (DRGs): Patient classification and hospital reimbursement in 11 European 

countries. Langenbeck’s Arch. Surg. 397(2):317–326. 

Ratcliffe A, Gilland W, Marucheck A (2012) Revenue management for outpatient appointments: 

Joint capacity control and overbooking with class-dependent no-shows. Flex. Serv. Manuf. J. 

24(4):516–548. 

Rau CL, Tsai PFJ, Liang SFM, Tan JC, Syu HC, Jheng YL, Ciou TS, Jaw FS (2013) Using 

discrete-event simulation in strategic capacity planning for an outpatient physical therapy 

service. Health Care Manag. Sci. 16(4):352–365. 

Rebuge Á, Ferreira DR (2012) Business process analysis in healthcare environments: A 

methodology based on process mining. Inf. Syst. 37(2):99–116. 

Reeve H, Baxter K, Newton P, Burkey Y, Black M, Roland M (1997) Long-term follow-up in 

outpatient clinics. 1: The view from general practice. Fam. Pract. 14(1):24–28. 

Reid M, Cohen S, Wang H, Kaung A, Patel A, Tashjian V, Williams DL, Martinez B, Spiegel 

BMR (2015) Preventing patient absenteeism: Validation of a predictive overbooking model. 

Am. J. Manag. Care 21(12). 

Van Riet C, Demeulemeester E (2015) Trade-offs in operating room planning for electives and 

emergencies: A review. Oper. Res. Heal. Care 7:52–69. 

Rodrigues F, Zaric GS, Stanford DA (2018) Discrete event simulation model for planning Level 

2 “step-down” bed needs using NEMS. Oper. Res. Heal. Care 17:42–54. 

 

 



 

 

106 

Rodríguez-Carvajal M, Mora D, Doblas A, García M, Domínguez P, Tristancho A, Herrera M 

(2011) Impact of the premature discharge on hospital mortality after a stay in an intensive 

care unit. Med. Intensiva (English Ed. 35(3):143–149. 

Rojas E, Munoz-Gama J, Sepúlveda M, Capurro D (2016) Process mining in healthcare: A 

literature review. J. Biomed. Inform. 61:224–236. 

Saghafian S, Austin G, Traub SJ (2015) Operations research/management contributions to 

emergency department patient flow optimization: Review and research prospects. IIE Trans. 

Healthc. Syst. Eng. 5(2):101–123. 

Salzarulo PA, Mahar S, Modi S (2016) Beyond patient classification: Using individual patient 

characteristics in appointment scheduling. Prod. Oper. Manag. 25(6):1056–1072. 

Schafermeyer RW, Asplin BR (2003) Hospital and emergency department crowding in the United 

States. Emerg. Med. (Fremantle). 15(1):22–7. 

Schilling PL, Campbell DA, Englesbe MJ, Davis MM (2010) A comparison of in-hospital 

mortality risk conferred by high hospital occupancy, differences in nurse staffing levels, 

weekend admission, and seasonal influenza. Med. Care 48(3):224–232. 

Schmidt A, Bachner F, Rainer L, Zuba M, Bobek J, Lepuschütz L, Ostermann H, Winkelmann J, 

Quentin W (2018) Ambulatory care on the rise? Lessons from the Austrian health care 

reforms. Eurohealth (Lond). 24(4):21–24. 

Schoen C, Osborn R, Squires D, Doty M, Pierson R, Applebaum S (2011) New 2011 survey of 

patients with complex care needs in eleven countries finds that care is often poorly 

coordinated. Health Aff. 30(12):2427–2436. 

Schroeder SA (2007) We can do better - Improving the health of the American people. N. Engl. J. 

Med. 357(12):1221–1228. 

Schwarz G (1978) “Estimating the Dimension of a Model.” Ann. Stat. 6(2):461–464. 

Shaikh SA, Robinson RD, Cheeti R, Rath S, Cowden CD, Rosinia F, Zenarosa NR, Wang H (2018) 

Risks predicting prolonged hospital discharge boarding in a regional acute care hospital. BMC 

Health Serv. Res. 18(1). 

Shao X, Li J, Wiegmann DA (2013) A Markov chain approach to study flow disruptions on surgery 

in emergency care. 2013 IEEE Int. Conf. Autom. Sci. Eng.:990–995. 

Shi P, Chou MC, Dai JG, Ding D, Sim J (2015) Models and Insights for Hospital Inpatient 

Operations: Time-Dependent ED Boarding Time. Manage. Sci. (May):150422112841002. 



 

 

107 

Shi P, Helm J, Deglise-Hawkinson J, Pan J (2018) Timing it Right: Balancing Inpatient Congestion 

Versus Readmission Risk at Discharge. SSRN Electron. J. 

Shoaib M, Prabhakar U, Mahlawat S, Ramamohan V (2020) A discrete-event simulation model of 

the kidney transplantation system in Rajasthan, India. Heal. Syst. 

Singh KCD, Terwiesch C (2012) An econometric analysis of patient flows in the cardiac intensive 

care unit. Manuf. Serv. Oper. Manag. 14(1):50–65. 

Slade EP, Dixon LB, Semmel S (2010) Trends in the duration of emergency department visits, 

2001-2006. Psychiatr. Serv. 61(9):878–884. 

Song H, Tucker AL, Graue R, Moravick S, Yang JJ (2019) Capacity Pooling in Hospitals: The 

Hidden Consequences of Off-Service Placement. Manage. Sci.:mnsc.2019.3395. 

Song H, Tucker AL, Graue R, Moravick S, Yang JJ (2020) Capacity pooling in hospitals: The 

hidden consequences of off-service placement. Manage. Sci. 66(9):3825–3842. 

Southern WN, Arnsten JH (2015) Increased Risk of Mortality among Patients Cared for by 

Physicians with Short Length-of-Stay Tendencies. J Gen Intern Med 30(6):712–720. 

Staats BR, Gino F (2012) Specialization and variety in repetitive tasks: Evidence from a Japanese 

bank. Manage. Sci. 58(6):1141–1159. 

Steorts RC (2009) Tree Based Methods: Classification Trees. 

Studnicki J (1991) Measuring service line competitive position. A systematic methodology for 

hospitals. Health Prog. 72(6):68–72. 

Survey AN (2014) Transfers of Patient Care Between House Staff on Internal Medicine Wards. 

166:1173–1177. 

Tan AL, Chiew CJ, Wang S, Abdullah HR, Lam SS, Ong ME, Tan HK, Wong TH (2019) Risk 

factors and reasons for cancellation within 24 h of scheduled elective surgery in an academic 

medical centre: A cohort study. Int. J. Surg. 66:72–78. 

Tan T, Netessine S (2012) When Does the Devil Make Work? An Empirical Study of the Impact 

of Workload on Worker Productivity. SSRN Electron. J. 

Tian Y, Xu B, Yu G, Li Y, Liu H (2017) Age-adjusted charlson comorbidity index score as 

predictor of prolonged postoperative ileus in patients with colorectal cancer who underwent 

surgical resection. Oncotarget 8(13):20794–20801. 

Tierney LT, Conroy KM (2014) Optimal occupancy in the ICU: A literature review. Aust. Crit. 

Care 27(2):77–84. 



 

 

108 

U.S. D of H and HS (2013) National Ambulatory Medical Care Survey: 2013 State and National 

Summary Tables  

Valentin A, Ferdinande P (2011) Recommendations on basic requirements for intensive care units: 

Structural and organizational aspects. Intensive Care Med. 37(10):1575–1587. 

Vanberkel PT, Blake JT (2007) A comprehensive simulation for wait time reduction and capacity 

planning applied in general surgery. Health Care Manag. Sci. 10(4):373–385. 

Verhey FRJ, Jolles J, Ponds RWHM, Rozendaal N, Plugge LA, De Vet RCW, Vreeling FW, Van 

Der Lugt PJM (1993) Diagnosing dementia: a comparison between a monodisciplinary and a 

multidisciplinary approach. J. Neuropsychiatry Clin. Neurosci. 5(1):78–85. 

Vikander T, Parnicky K, Demers R, Frisof K, Chase N (1986) New-patient no-shows in an urban 

family practice center: Analysis and intervention. J. Fam. Pract. 22(3):263–268. 

Villa S, Barbieri M, Lega F (2009) Restructuring patient flow logistics around patient care needs: 

Implications and practicalities from three critical cases. Health Care Manag. Sci. 12(2):155–

165. 

Vitikainen K, Street A, Linna M (2009) Estimation of hospital efficiency-Do different definitions 

and casemix measures for hospital output affect the results? Health Policy (New. York). 

89(2):149–159. 

Weatherall M, Shirtcliffe P, Travers J, Beasley R (2010) Use of cluster analysis to define COPD 

phenotypes. Eur. Respir. J. 36(3):472–474. 

De Weerdt J, Vanden Broucke SKLM, Vanthienen J, Baesens B (2012) Leveraging process 

discovery with trace clustering and text mining for intelligent analysis of incident 

management processes. 2012 IEEE Congr. Evol. Comput. CEC 2012. (IEEE), 1–8. 

Weissman JS, Moy E, Campbell EG, Gokhale M, Yucel R, Causino N, Blumenthal D (2003) 

Limits to the safety net: Teaching hospital faculty report on their patients’ access to care. 

Health Aff. 22(6):156–166. 

Wild C, Narath M (2005) Evaluating and planning ICUs: Methods and approaches to differentiate 

between need and demand. Health Policy (New. York). 71(3):289–301. 

Wolfs CAG, Dirksen CD, Severens JL, Verhey FRJ (2006) The added value of a multidisciplinary 

approach in diagnosing dementia: A review. Int. J. Geriatr. Psychiatry 21(3):223–232. 

Woodger O (2017) New Perspectives on Long Stay Patients in the Pediatric Intensive Care Unit : 

Definition , Characteristics and Impact. (Carleton University, Ottawa, Ontario). 



 

 

109 

Woodger O, Menon K, Yazbeck M, Acharya A (2018) A Pragmatic Method for Identification of 

Long-Stay Patients in the PICU. Hosp. Pediatr. 8(10):636–642. 

Wu AW, Young Y, Skinner EA, Diette GB, Huber M, Peres A, Steinwachs D (2001) Quality of 

care and outcomes of adults with asthma treated by specialists and generalists in managed 

care. Arch. Intern. Med. 161(21):2554–2560. 

Xiao Y, Romanelli M, Lindsey MA (2019) A latent class analysis of health lifestyles and suicidal 

behaviors among US adolescents. J. Affect. Disord. 255:116–126. 

Yang KK, Lam SSW, Low JMW, Ong MEH (2016) Managing emergency department crowding 

through improved triaging and resource allocation. Oper. Res. Heal. Care 10:13–22. 

Yang M, Xie J, Zhang H, Chen Y, Xie S, Peng R, Jia Y, Chen Y, Wang L (2020) Qualitative 

analyses of the reasons why patients do not attend scheduled inpatient appointments in a 

hospital in Guangzhou, China. Risk Manag. Healthc. Policy 13:2857–2865. 

Yoo S, Cho M, Kim E, Kim S, Sim Y, Yoo D, Hwang H, Song M (2016) Assessment of hospital 

processes using a process mining technique: Outpatient process analysis at a tertiary hospital. 

Int. J. Med. Inform. 88:34–43. 

Young-Wolff KC, Hellmuth J, Jaquier V, Swan SC, Connell C, Sullivan TP (2013) Patterns of 

Resource Utilization and Mental Health Symptoms Among Women Exposed to Multiple 

Types of Victimization. J. Interpers. Violence 28(15):3059–3083. 

Yu H, Wang P, Zheng H, Luo J, Liu J (2020) Impacts of congestion on healthcare outcomes: an 

empirical observation in China. J. Manag. Anal. 7(3):344–366. 

Zailinawati AH, Ng CJ, Nik-Sherina H (2006) Why do patients with chronic illnesses fail to keep 

their appointments? A telephone interview. Asia-Pacific J. Public Heal. 18(1):10–15. 

Zhang X (2018) Application of discrete event simulation in health care: A systematic review. BMC 

Health Serv. Res. 18(1). 

Zhu S, Fan W, Yang S, Pei J, Pardalos PM (2019) Operating room planning and surgical case 

scheduling: a review of literature. J. Comb. Optim. 37(3):757–805. 

Zimmerman J, Seneff M, Wood S, Alzola C, Wagner D, Draper E (1999) A comparison of 

outcome and resource use for step-down unit and ICU patients. Crit. Care Med. 27(1 

SUPPL.):154A. 

 

 


