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ABSTRACT

Applications in materials and biological imaging are currently limited by the ability

to collect high-resolution data over large areas in practical amounts of time. One possi-

ble solution to this problem is to collect low-resolution data and apply a super-resolution

interpolation algorithm to produce a high-resolution image. However, state-of-the-art super-

resolution algorithms are typically designed for natural images, require aligned pairing of high

and low-resolution training data for optimal performance, and do not directly incorporate a

data-fidelity mechanism.

We present a Multi-Resolution Data Fusion (MDF) algorithm for accurate interpolation

of low-resolution SEM and TEM data by factors of 4x and 8x. This MDF interpolation

algorithm achieves these high rates of interpolation by first learning an accurate prior model

denoiser for the TEM sample from small quantities of unpaired high-resolution data and

then balancing this learned denoiser with a novel mismatched proximal map that maintains

fidelity to measured data. The method is based on Multi-Agent Consensus Equilibrium

(MACE), a generalization of the Plug-and-Play method, and allows for interpolation at

arbitrary resolutions without retraining. We present electron microscopy results at 4x and 8x

super resolution that exhibit reduced artifacts relative to existing methods while maintaining

fidelity to acquired data and accurately resolving sub-pixel-scale features.

11



1. INTRODUCTION

The contents of this chapter appear in [ 1 ].

Many important material science problems require the collection of high resolution (HR)

data over large fields of view (FoV). For example, high resolution images are needed to

extract detailed features, such as the 4 nanometer curli fibers structures in E. coli, which

are fundamental in the formation of bacterial biofilms, or the 10-20 nm structures in gold

nanorods materials, which are of interest due to their near-infrared light tunability and

biological inertness [  2 ]. Also, a large FoV is typically required to collect the representative

volumes (RV) of materials that are needed to determine macroscopic properties such as

material toughness and fracture strength [ 3 ].

However, imaging multiple, large FoVs at high resolution is difficult under realistic con-

straints. For example, raster scanning a 1mm× 1mm FoV at a resolution of 10nm requires

the acquisition of approximately 10 Giga-pixels of data, which requires roughly 17 hours

under conditions described in [  4 ]. In fact, the total of all electron microscopy (EM) data

collected was estimated in 1996 as less than a cubic millimeter of actual material [ 5 ].

One approach to overcoming this barrier is to acquire a large FoV at low resolution

(LR) and then to interpolate it to obtain a higher resolution image of sufficient quality.

Ideally, 4x interpolation in each direction leads to a 16x decrease in acquisition time, while

8x interpolation leads to a 64x decrease.

Traditional interpolation methods such as splines [ 6 ] do not offer sufficient quality, but

recent advances using deep neural networks (DNNs) have produced a number of methods

for high quality interpolation of natural images. For example, [  7 ] and [  8 ] use end-to-end

DNNs trained on HR/LR paired images. This approach is improved in SRGAN [  9 ] through

adversarial training and perceptual loss. Another approach is EnhanceNet [  10 ], which uses

automated texture synthesis and perceptual loss but focuses on creating realistic textures

rather than reproducing ground truth images. ESRGAN [  11 ] introduces architectural im-

provements to SRGAN, and ESRGAN+ [  12 ] adds further refinements. DPSR [  13 ] uses a

form of Plug-and-Play as described later, but still requires a CNN super-resolver trained on

12



HR/LR pairs. And finally, DPSRGAN [ 13 ] attempts to fuse these Plug-and-Play methods

with the realistic textures generated by GANs.

An impediment to applying these DNN methods to material imaging problems is that

they are typically trained using a large set of aligned HR/LR patch pairs. However, in

practice it is difficult to acquire large quantities of accurately aligned HR/LR data [ 14 ].

More recently, zero-shot learning has been proposed as a method that does not require aligned

HR/LR data for training. In zero-shot learning, the LR image is further downsampled to

produce paired data to train a small, image-specific CNN that is used to upsample the

original [  15 ]. While this allows for quick and accurate reconstructions, it does not make use

of high-resolution data in its training.

Plug-and-play (PnP) [ 16 ] and Multi-Agent Consensus Equilibrium (MACE) [  17 ] methods

provide a framework in which the forward and prior models can be designed separately, so

they do not require aligned HR/LR training data. In [  18 ], the multi-resolution data fusion

(MDF) architecture was proposed to integrate large quantities of LR image data with a

relatively small amount of HR data. They used PnP with a library-based Non-Local Means

(NLM) prior model to incorporate HR data, but this led to slow reconstruction times due

to the computational cost of NLM [ 19 ]. A similar application of Plug-and-Play in [  20 ] used

the NCSR algorithm combined with sparse coding and dictionary learning to turn a denoiser

into a super-resolver. However this method begins to break down in the presence of noise,

which is quite prevalent in our low-resolution images. A related approach to data fusion in

the MACE framework was recently used in [  21 ] to combine CT and MRI modalities, but was

applied at only a single resolution.

Here, we present a Multi-Resolution Data Fusion (MDF) algorithm for accurate 4x and

8x interpolation of large FoV low-resolution EM images using selected unpaired patches

of HR data. The algorithm includes a forward model that promotes agreement with the

acquired LR data along with a prior model that encourages similarity to the HR training

data. Since the forward model has an analytical form, an advantage of our method is that

it can perform interpolation by any factor without retraining of the prior model.

The novel contributions of this work include:

13



Figure 1.1. Overview of the Multi-resolution Data Fusion (MDF) pipeline.
A small set of high-resolution data (unpaired with low-resolution data) is used
to tune a CNN denoiser. This tuned denoiser is used in the Plug-and-Play
algorithm with a microscopy-based forward model to produce high-resolution
images from low-resolution data.

• An MDF framework for accurate interpolation of low-resolution data at multiple scales

using a limited amount of unpaired HR data.

• The introduction of a relaxed adjoint projector (RAP), which can improve interpolation

results by using a mis-matched back projector and is provably equivalent to using PnP

with a modified prior.

• Experimental results indicating that interpolation factors of 4x to 8x are possible with

realistic TEM and SEM data sets.

In Figure  1.1 , we provide a visual representation of the MDF framework. Using a LR base

image, we train a denoiser on a sparse set of HR patches of the same (or similar) specimen.

This allows the denoiser to learn the underlying manifold of the HR data while simultaneously

being trained to remove additive white Gaussian noise (AWGN). This denoiser is then applied

in the MACE framework to achieve a super-resolution reconstruction of the low-resolution

base image. This approach does not require registered pairs of HR and LR data, allowing for

flexible levels of super resolution and simple generalization to other problems. Additionally

it allows for use of known forward models and has a single parameter that can be used to

control the weight of data fidelity relative to strength of regularization.
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We structure the rest of this document as follows. In Chapter  2 , we give background as

to Model-Based Image Processing, the microscopy image acquisition process, and its appli-

cation to our super-resolution problem and the MACE framework. In Chapter  3 , we discuss

initial experiments with reconstruction texture and quality. In Chapter  4 , we detail the pro-

cess of accomplishing Multi-Resolution Data Fusion and the theory behind Relaxed Adjoint

Projection. In Chapter  5 , we discuss comparison methods, our experimental framework,

and present reconstructions at a variety of resolutions. We discuss these results further in

Chapter  6 and detail future work. We additionally include appendices containing proofs and

relevant code.
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2. BACKGROUND

2.1 Model Based Image Processing

Given a physical system outputting measurements Y , we wish to reconstruct the original

imageX. The physical system has calibration parameters Φ as well as intrinsic characteristics

that may be unknown. Using a chosen inversion method and smoothing parameters Θ, we

can generate a reconstruction X̂. As X is unknown, reconstructing X̂ is clearly an inverse

problem. This framework is shown in Figure  2.1 .

Figure 2.1. A diagram representing the framework of an inverse problem
adapted from [ 22 ]

We may express the physical system and our regularity conditions as probability distribu-

tions. Here we denote p(y|x) as our forward model and p(x) as our prior model. These models

are based on our assumptions of the physical system and the unknown image respectively.

An example algorithm for reconstructing X is shown in Figure  2.2 .

Figure 2.2. A diagram showing the process for reconstructing X̂ adapted from [ 22 ]

16



Note that this algorithm is constantly balancing the weight of the forward and prior

models, as we need a X̂ that matches the measured data Y but also meets our assumptions

on X [ 22 ]. Through iterative methods, we hope to obtain a solution X̂ that meets both

conditions.

2.1.1 Maximum a Posteriori Estimate

The Maximum a Posteriori estimate is defined as

X̂MAP = argmaxx∈Ωpx|y(x|Y ) (2.1)

Noting that the natural logarithm is an increasing function, the argmax will be equivalent

for each. This gives

X̂MAP = argmaxx∈Ω log(px|y(x|Y )) (2.2)

By Bayes Rule, we know that p(x|y) = p(y|x)p(x)
p(y) . Substitution of this into  2.2 gives

X̂MAP = argmaxx∈Ω log(py|x(y|x)px(x)
py(y) ) = argmaxx∈Ω log(py|x(y|x)) + log(px(x))− log(py(y))

(2.3)

We may then drop the log(p(y)) term as it doesn’t depend on x and multiply by a negative

to convert the problem from an argmax to that of an argmin, or

X̂MAP = argminx∈Ω − log(py|x(y|x))− log(px(x)) (2.4)

We may define l(x) = − log(py|x(y|x)) and βs(x) = − log(px(x)) for β a regularizing param-

eter. This then gives that

X̂MAP = argminx∈Ωl(x) + βs(x)) (2.5)

The equation in  2.5 is simpler but still difficult to minimize in its current form.
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2.1.2 Alternating Directions Method of Multipliers (ADMM)

The Alternating Directions Method of Multipliers takes a problem like  2.5 and simplifies

it further by employing variable splitting. Namely we consider the following constrained

optimization problem

X̂ = argminx,v∈Ωl(x) + βs(v))s.t. x = v (2.6)

and construct the scaled augmented Lagrangian below to enforce that x = v and that our

solution X̂ matches both the forward and prior models [ 23 ], [ 16 ].

Lλ(x, v;u) = l(x) + βs(v) + 1
2σ2

λ

‖x− v + u‖2
2 −
‖u‖2

2
2σ2

λ

(2.7)

Here u represents the distance between x and v. Iterations through ADMM are of the

form

x̂← argminxLλ(x, v̂;u) (2.8)

v̂ ← argminvLλ(x̂, v;u) (2.9)

u← u+ x̂− v̂ (2.10)

where v̂ can be initialized as a baseline reconstruction and u is initialized to be 0.

The ADMM iterates converge if the functions l and s are closed, proper, and convex on Ω

and Φ respectively and there exists a saddle point (x∗, v∗, λ∗) such that for all x ∈ Ω, v ∈ Φ,

λ ∈ RK ,

L(x∗, v∗, λ) ≤ L(x∗, v∗, λ∗) ≤ L(x, v;λ∗) (2.11)

as shown in [ 23 ] [ 22 ].
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2.1.3 Plug & Play

The Plug & Play framework takes ADMM one step further by constructing explicit

functions F and H where F is an inversion operator and H is a denoiser. Let x̃ = v− u and

ṽ = x+ u. Define the following operators

F (x̃;σλ) = argminx∈RN{l(x) + ‖x− x̃‖
2
2

2σ2
λ

} (2.12)

H(ṽ;σn) = argminv∈RN{s(v) + ‖v − ṽ‖
2
2

2σ2
n

} (2.13)

where σn =
√
βσλ is the assumed standard deviation of noise for the denoiser H [ 18 ].

This gives rise to the Plug & Play algorithm below.

Algorithm 1: Plug & Play Algorithm
1 Input: Initial Reconstruction v̂
2 Output: Final Reconstruction x∗

3 u← 0
4 while unconverged do
5 x̃← v̂ − u
6 x̂← F (x̃;σλ)
7 ṽ ← x̂+ u
8 v̂ ← H(ṽ;σn)
9 u← u+ (x̂− v̂)

10 end

Note at convergence that x̂ = v̂, so it doesn’t ultimately matter which is returned.

The Plug & Play framework is especially powerful here as it begins with an algorithm for

function minimization and replaces components with direct algorithmic input-output maps.

However by replacing those components, we eliminate the minimization problem and have

no clear replacement problem that’s being solved by the new algorithm. This is solved by

the generalization to  2.3 .

2.2 Problem Formulation

The contents of this section appear in [ 1 ].
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Our goal is to interpolate a rasterized image y ∈ RM to a HR version x ∈ RN . Super-

resolution by a factor of L implies scaling by L in each direction, so that N = L2M . For

such a problem, the forward model is typically

y = Ψx+ ε, (2.14)

where Ψ ∈ RM×N represents the point spread function of the microscope and ε ∼ N(0, σ2
w)

is an M dimensional vector of AWGN. The data-fitting cost function is then 1
2‖y − Ψx‖2,

which will be embedded in a proximal map and balanced by the action of a prior agent in

the MACE formulation described below.

2.2.1 Microscopy Forward Model

In bright-field transmission electron microscopy, a parallel beam of electrons illuminates

a thin material sample, and the resulting transmitted beam is formed into an image using the

microscope’s objective lens. This is then further magnified using the microscope’s projection

lens system. Using this configuration, the TEM can yield a magnification ranging from

1,000X to over 1,000,000X. The magnified beam is sampled at the image plane using a pixel

array detector such as a direct electron detector or CCD camera. Since the electron-optical

magnification can be controlled and the image is detected using a pixel array detector, a

block-averaging forward model is a good approximation for this acquisition modality. In this

forward model, a square region in the high-resolution image is averaged to produce a single

pixel value in the low-resolution image.

For scanning electron microscopy, an electron beam is focused to a small diameter probe

which is then raster scanned across the surface of the sample using beam deflectors. As the

probe strikes the sample, secondary electrons are ejected from the sample and collected with

an integrating detector, which sums the total number of electrons scattered at each point

on the surface of the sample. The raster array dimensions can be controlled to give LR and

HR data, so as in the TEM case a block-averaging forward model is a good approximation

to the imaging system. A diagram representing the image acquisition process for TEM and

SEM is shown in Figure  2.3 .
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Figure 2.3. Illustration of the TEM and SEM image acquisition process.

With this in mind, we can approximate Ψ for super resolution by a factor of L by block-

averaging every non-overlapping neighborhood of L × L pixels in x [ 18 ]. For notational

convenience, we let A represent summation over L × L blocks, in which case Ψ = A/L2 in

( 2.14 ). Also, At is given by replicating each pixel into an L × L block, so AAt = L2I. The

negative log-likelihood is then

l(x) = 1
2σ2

w

∥∥∥∥y − 1
L2Ax

∥∥∥∥2
+ M

2 log(2πσ2
w). (2.15)

As part of the Plug-and-Play algorithm, Sreehari et al. used the proximal map of l(x)

with an additional constraint to ensure nonnegativity:

F (x;σλ) = argmin
x̂≥0

[
1

2σ2
w

∥∥∥∥y − 1
L2Ax̂

∥∥∥∥2

2
+ 1

2σ2
λ

||x− x̂||22

]
(2.16)

They took σ2
w → 0 to obtain the proximal map for the noiseless case as

F (x;σλ) =
[
x+ At

(
y − 1

L2Ax
)]

+
(2.17)

where [ · ]+ enforces positivity [ 18 ] and At is the adjoint or back projection operator.

When σ2
w is positive, this proximal map is
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F (x;σλ) =
[
x+ σ2

λ

σ2
λ + L2σ2

w

At
(
y − 1

L2Ax
)]

+
(2.18)

The block replication inherent inAt can lead to blocky artifacts in the final reconstruction,

which motivates our introduction of the Relaxed Adjoint Projector.

2.3 Multi-Agent Consensus Equilibrium Reconstruction Framework

The contents of this section appear in [ 1 ].

Previous related work used the forward model of Section  2.2.1 in the Plug & Play algo-

rithm with a standard Gaussian denoiser as the prior model [  16 ] [ 18 ]. Plug & Play has also

been used with deep neural network denoisers serving as prior models [ 24 ] [  25 ] [  26 ]. However,

limitations of this previous work include little ability to control regularization strength and

the use of generically trained neural networks as opposed to domain-specific denoisers.

This leads to the use of the Multi-Agent Consensus Equilibrium (MACE) framework

[ 17 ]. The MACE framework provides a problem formulation that is consistent with Plug &

Play but that extends it by allowing for multiple forward and prior models and by providing

parametric control of regularization. The MACE framework also gives us the means to

formulate and understand the Relaxed Adjoint Projection as either a modification to the

update operators in Plug & Play or a modification to the averaging operator.

The motivating problem for MACE is to minimize the function

f(x) =
K∑

i=1
µifi(xi) s.t. xi = x, i = 1, . . . , K, (2.19)

with x, xi ∈ RN and weights µi > 0 with
K∑

i=1
µi = 1.

By analyzing the solution to this problem, Buzzard et al. [ 17 ] proposed a framework

that encompasses the problem in ( 2.19 ) and that generalizes to include algorithmic priors

and forward maps. For K vector valued maps, Fi : RN → RN , i = 1, . . . , K, define the

consensus equilibrium for these maps to be any solution (x∗,u∗) ∈ RN × RNK such that

Fi(x∗ + u∗
i ) = x∗, i = 1, . . . K (2.20)

22



u∗
µ = 0 (2.21)

where u is a vector in RNK constructed by stacking vectors u1, . . . uK , and uµ is the weighted

average uµ =
K∑

i=1
µiui. In the case of (  2.19 ), the maps Fi are chosen to be proximal maps

associated with the fi, but the MACE framework extends this to more general operators.

The conditions in ( 2.20 ) and ( 2.21 ) are equivalent to a related system of equations.

Namely for v ∈ RNK with v = (vT
1 , . . . , v

T
K), vi ∈ RN ∀i, define F, Gµ : RNK → RNK by

F(v) =


F1(v1)

...

FK(vK)

 and Gµ(v) =


v̄µ

...

v̄µ

 . (2.22)

Here vµ =
K∑

i=1
µivi and Gµ copies this weighted average into each entry of the vector. Then

(x∗,u∗) solves ( 2.20 ) and ( 2.21 ) if and only if v∗ = x̂∗ + u∗ satisfies v∗
µ = x∗ and

F(v∗) = Gµ(v∗). (2.23)

As in Plug & Play, the Fi may be replaced by more general operators such as denoisers, in

which case the solution of (  2.23 ) is the fixed point of a generalized Plug & Play algorithm.

Majee et al. [  27 ] provide a reformulation of the algorithm used to find MACE solutions; we

use this approach here and describe it in Algorithm 1 below.

Here, we use two types of agents. One type is a map incorporating the forward model

of the imaging system and is designed to promote fidelity to data. The other type is a set

of denoisers trained to remove additive white Gaussian noise (AWGN) of various standard

deviations and structure from the image. We used the DnCNN archictecture [ 28 ] trained

to remove 10% AWGN as our denoising prior. This prior is further described in  4.1.3 . We

chose the weights associated with the averaging operator in ( 2.22 ) to satisfy

x̄ = µxK+1 + 1− µ
K

K∑
k=1

xk, (2.24)
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where µ ∈ (0, 1) represents the weighting of the forward model and can be used to adjust

the relative importance of data versus regularization, with larger µ giving more weight to

data.

This leads to the following algorithmic framework, adapted from [  17 ] and [ 27 ], shown in

Algorithm 1.

Algorithm 2: MACE Framework for Data Fusion
1 Input: Initial Reconstruction x(0) ∈ RN

2 Output: Final Reconstruction x∗

3 x ← v ←


x(0)

...
x(0)


4 while unconverged do
5 x← F(v)
6 z← G(2x− v)
7 v← v + 2ρ(z− x)
8 end
9 x∗ ← vµ

Here ρ is a user parameter used to control the speed of convergence, which we set to be

ρ = 0.5. While our method differs from Majee et al. in Line 9, at convergence, x1 and vµ

are equal. We chose to adopt vµ in cases of stopping pre-convergence.

Using the MACE framework, the goal now is to reconstruct a HR, wide-field image given

a LR, wide-field image of the same region and a limited set of HR data patches (which may

be disjoint from the area in the LR image).
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3. FORWARD MODEL COMPENSATION

Initially we noticed texture artifacts in MACE reconstructions and began to brainstorm ideas

to improve our methods. We applied 2 ideas in parallel, that of a perceptual loss function

and the idea of Forward Model Compensation (FMC).

Perceptual loss is based on the idea that small differences in pixel value can create a large

difference from a visual perspective. Comparing high level features allows for higher quality

reconstructions. Typically perceptual loss is implemented by passing 2 images through the

VGG network, then taking their L2 difference.

Figure 3.1. Neural network architecture for VGG as in [ 29 ]

We incorporated this architecture into our neural network framework.

FMC is rooted in the idea that we can account for shortcomings in our forward model

by compensating with our prior model. Based in the P&P structure, we often don’t have

control over the model of the physical system. However we are able to choose our denoiser.

Our choice of denoiser was the following: for a given noisy patch xk with noise assumed to

be AWGN with standard deviation σ,

zk = (1− λ)xk + (λ)
L2 (ATAxk) (3.1)

where A and AT are as defined in Chapter  2 and λ ∈ [0, 1] quantifies the blockiness added

to the image. The application of AT induces the blocky artifacts that we’d like to correct.
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Incorporating the artifacts into the training of the denoiser teaches it to remove them. An

example of this is shown in Figure  A.1 . The blocky artifacts are particularly prevalent on

the diagonal line segments.

In Figure  A.2 , we show reconstructions within the MACE framework on E. coli fibers.

All methods contain artifacts, though MDF is able to mitigate some of the blocky artifacts

in the MACE reconstruction. However it induces its own diagonal artifacts likely learned in

the prior training process.

This approach suffered due to poor control over the training process and neural network

instabilities. For our work to come, we made the following adjustments. First, we switched

our training code to the DnCNN code from Zhang [  28 ] which has been shown to be a stable

training process. Additionally we were careful to separate our training, validation, and

testing datasets to reduce overfitting throughout.
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4. METHODS

4.1 RAP and MDF

The contents of this chapter appear in [ 1 ].

A key strength of the MACE framework is the ability to incorporate operators that are

not proximal maps of negative log likelihoods or other cost functions. This allows for the use

of algorithmic denoisers and other operators. In this section, we leverage this observation in

two ways.

First, we replace the forward operator in (  2.18 ) with a related update operator by using

a Relaxed Adjoint Projector (RAP) B in place of At. This operator is sometimes known as

a mismatched backprojector. This change means that the forward operator is no longer the

proximal map for l(x). However, we show using the MACE framework that this formulation

is equivalent to a formulation using the original forward operator in ( 2.18 ) but with an

alternative prior that depends on B. This provides important intuition for the use of RAP

and allows for the application of existing convergence results.

Second, we describe our method of Multi-Resolution Data Fusion (MDF), in which HR

representative patches are collected independently of the LR scan. These patches are then

used to train a denoising prior model, which intrinsically learns the underlying distribution

of the high-resolution modality. We then perform LR scans over a large area and fuse the

two modalities using the Multi-Agent Consensus Equilibrium framework to produce a HR

image encompassing the full FoV.

4.1.1 Relaxed Adjoint Projection

Motivated by earlier work on iterative filtered backprojection in [ 30 ] [  31 ] [  32 ], we consider

an alternative update map given by

F̃ (x;σλ) =
[
x+ σ2

λ

σ2
λ + L2σ2

w

B
(
y − 1

L2Ax
)]

+
(4.1)

where the B operator represents a bicubic upsampling by a factor of L and replaces the block

replication operator At. We call this Relaxed Adjoint Projection (RAP) as the backprojection
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operator is no longer required to be an exact adjoint. The update is driven by y − 1
L2Ax,

the error between the low-resolution data and the current reconstruction, but the block-

replication inherent in At can lead to blocky artifacts in the reconstruction. The bicubic

backprojection is used to provide a smoother update to the HR image, but other interpolants

may be used.

To incorporate this adjoint mismatch into the MACE framework. we first formulate the

equilibrium problem associated with RAP, then prove that the solution of this problem arises

from 3 different formulations:

• RAP forward update, standard prior, equal weight averaging

• standard forward update, standard prior, modified averaging

• standard forward update, modified prior, equal weight averaging.

Thus, the RAP formulation is equivalent to a standard inverse problem using a modified

prior that can be described in terms of the mismatched backprojector.

In general, the update in (  4.1 ) is not a proximal map for any function since the Jacobian

of this map is not symmetric, which is a property of all proximal maps. By converting

the mismatched backprojector with standard averaging into a standard backprojector with

alternative averaging, we recover the ability to use standard proximal maps while maintaining

the benefits associated with mismatched backprojection. We note that results in [  33 ] prove

convergence for an adjoint mismatch in the Proximal Gradient Algorithm but do not address

the equivalence described here.

To motivate this further, note that the first-order optimality condition for a solution of

( 2.19 ) when all µj are equal is

∇f1(x∗) + · · ·+∇fK(x∗) = 0. (4.2)

Also, the proximal map for a convex and differentiable fj is given by Fj(vj) = xj = vj−∇fj(xj);

i.e, the update can be regarded as an implicit gradient descent step, with the gradient

evaluated at the output point Fj(vj) = xj.
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In the case of a mismatched backprojector, we assume for the moment that FRj
j is given

by F
Rj
j (vj) = xj = vj − Rj∇fj(xj) for some matrix Rj, which we think of as close to the

identity. Using this FR and all µ = 1/K in the equilibrium condition ( 2.23 ), we have

v∗
j −Rj∇fj(x∗

j ) = 1
K

∑
k

v∗
k. (4.3)

Since the left hand side is x∗
j for each j and the right hand side is independent of j, we have

x∗
j = x∗ is independent of j. Summing these equations over j and subtracting the sum of the

v∗
j from both sides and taking the negative gives

R1∇f1(x∗) + · · ·+RK∇fK(x∗) = 0. (4.4)

This is the corresponding equilibrium condition for the operators FRj
j and equal weight

averaging.

When the Fj are algorithmic operators without a gradient formulation, we get an analo-

gous result by using v∗
j − F

Rj
j (v∗

j ) in place of ∇fj(x∗
j ).

The theorem below states that the set of solutions of the equilibrium condition with

mismatched backprojection are the same as those obtained using standard back projections

but an alternative averaging operator GR, given by a matrix-weighted average using the Rj

as matrix weights. As before, we stack the operators FRj
j to obtain FR. The details of the

notation, hypotheses, and the proof are given in the appendix.

Theorem 1: Under appropriate hypthotheses on F, and R, there is a map from solutions

v∗ of

FR(v∗) = G(v∗)

to solutions v∗̂ of

F(v∗̂) = GR(v∗̂)

such that for each such pair, G(v∗) = GR(v∗̂). There is also such a map from v∗̂ to v∗.

Note that G(v∗) is obtained by stacking the solution x∗, so this theorem says that these

two formulations have the same set of possible reconstructions. The following theorem applies
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this to give the equivalence between the use of mismatched backprojection in the data-fitting

operator and the use of standard backprojection with an alternative prior.

Theorem 2: With appropriate assumptions on B = RAT and the denoiser H and with

equal weighting µj = 1/2, the following two choices lead to the same MACE solution in

( 2.23 ):

• F1 = F̃ is the RAP update in ( 4.1 ) and F2 = H is a given prior operator;

• F1 = F is the standard update in ( 2.18 ) and F2 = H ◦ ΦR, where ΦR is a function

dependent on the matrix R.

Hence we see that the mismatch in RAP is equivalent to a corresponding modification

to the the update step of the prior operator. By using the mismatch, which is often more

efficiently implemented in the form of RAP than with R−1, we gain the ability to more closely

match the prior to the observed structure of the data without changing the algorithmic nature

of the prior.

In Figure  A.4 , we show the differences in image quality arising from the use of the

block upsampling interpolant At versus the bicubic upsampling interpolant B. The use of

RAP removes the repetitive texture visible in the MACE reconstruction using At while still

preserving the fine detail seen in the ground truth.

4.1.2 Convergence of Relaxed Adjoint Projection (RAP)

From [ 17 ], Algorithm 1 is known to converge when the map v 7→ 2F (v)− v is nonexpan-

sive, and this condition is satisfied when each Fj is the proximal map for a convex function.

When the RAP update is used, then Fj is no longer a proximal map in general.

In Proposition 3 we give conditions under which Fj using RAP is a proximal map after

an appropriate change of coordinates. The key idea, related to work in [ 34 ], is to consider

operators of the form F (x) = Wx + q. When F is a proximal map, then W is symmetric

and positive-definite. A change of variables allows us to recover this property even for some

non-symmetric W . This allows us to prove convergence of the PnP algorithm with a RAP
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forward model in Theorem 2. Since the PnP algorithm is equivalent to Algorithm 1 in the

case of two operators [ 17 ], this also applies to MDF with 2 operators.

Theorem 3: Let F (x) = Wx + q where W = V ΛV −1 is an N × N matrix, Λ is

diagonal with eigenvalues in (0, 1], and q ∈ RN , and let H be a denoiser such that V −1HV

is nonexpansive. Then the PnP algorithm converges using the operators F and H.

The conditions for guaranteed convergence of RAP allow for this method to be generally

applied.

4.1.3 Multi-Resolution Data Fusion

The MACE framework with the standard or RAP forward operator provides a natural

way to incorporate low-resolution data and maintain fidelity of the reconstruction to this

data. For MDF, we need to incorporate selected high-resolution data, either from the image

under reconstruction or from related images. For this we use a neural network denoiser as

our prior agent.

The theoretical foundation of Plug-and-Play implies that the prior operator should be a

denoiser for images in the target distribution perturbed by AWGN, in principle independent

of the noise present in the data itself [ 35 ]. However, as seen in [  16 ] the prior operator can

play a large role in the quality of the final reconstruction. In the context of learned denoisers

such as CNNs, this means that the CNN must denoise well on the images in the distribution

under consideration. Since PnP is an iterative algorithm, the CNN must also denoise well

on neighboring images in order to converge to a high-quality reconstruction. Ideally, the

denoiser should be able to take any image in the reconstruction space and move it closer

to an image in the target distribution, but in practice we must settle for an approximation

based on a sparsely sampled set of images near the distribution.

Since the prior agent operates in the reconstruction space of HR images, we use a CNN

denoiser trained to remove AWGN from high-resolution target images, first using a network

with natural images (DnCNN), then using this same network structure trained on a small set

of domain-specific HR images (MDF). We used code adapted from https://github.com/cszn/KAIR

to implement DnCNN. The network architecture consists of 17 total layers with the following
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structure: (i) Conv+ReLU for the first layer with 64 filters of size 3x3x1. (ii) Conv+Batch-

Norm+ReLU for layers 2-16 with 64 filters of size 3x3x64. (iii) Conv for the last layer with

1 filter of size 3x3x64. The network uses a residual mapping R to learn the structure of the

noise in its training pairs (xclean, xnoisy). A forward pass through the model is thus given by

x̂clean = xnoisy −R(xnoisy).

To train each image-tuned prior for MDF, we randomly extracted 400 180x180 patches

from a high-resolution training image. This represents a naive, sparse sampling of the high-

resolution data. Using these training patches, we generate corresponding noisy patches by

adding AWGN with standard deviation σ = 0.1. These patch pairs are then passed through

the network for training (note that there is no pairing of high-resolution images with low-

resolution images). We used an increase in validation loss as a stopping criterion to avoid

overfitting. Each of our MDF networks trained for 1-2 hours using 1 Nvidia V100 GPU.

We note here that increasing the super-resolution factor L necessarily increases the set

of data-consistent reconstructions – increasing L increases the dimension of the kernel of

A. In particular, given two reconstructions that both fit the data equally well and that are

both equally well-denoised by the denoiser (more precisely, both are equilibrium solutions),

there is no reason to favor one over the other. This means first that the importance of the

prior operator increases with L and second that larger L gives any reconstruction algorithm

more opportunity to “hallucinate” detail that may or may not be present in the true image.

In the context of scientific and medical applications where the reconstruction can influence

important decisions, it can be detrimental to push the limits of super-resolution and/or

regularization beyond reasonable expectations [ 36 ].
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5. PRESENTATION, ANALYSIS, AND INTERPRETATION

Some of the contents of this chapter appear in [ 1 ].

We apply the MDF method on 3 microscopy datasets with pronounced differences in

data distribution: pentacene crystals, gold nanorods, and an E. coli biofilm. The pentacene

crystal images are typically composed of large regions of relatively constant intensity with

sharply defined edges. The gold nanorod images are composed of non-overlapping, nearly

linear segments at various angles with nearly circular impurities. The E. coli biofilm images

contain a wide variety of shapes and textures as well as large regions of nearly-empty space.

The pentacene and nanorod images were obtained using SEM, while the E. coli images were

obtained using TEM.

For the maps Fi, we use the data-fidelity agent in (  2.18 ) and the DnCNN archictecture

[ 28 ] trained to remove 10% AWGN as a denoising prior. We applied Algorithm 1 to determine

the corresponding reconstructions.

We present comparisons of our MDF method with a variety of alternatives for 4x, 8x,

and 16x interpolation. At 4x and 16x, we compare our MDF algorithm, with bicubic inter-

polation, MACE interpolation [  27 ], DPSR, and DPSRGAN [  13 ]. However, at 8x, we do not

compare with DPSRGAN since it is not available for this interpolation rate.

5.0.1 Experimental Methods

Our experiments were run for both partially simulated and fully real data. In the partially

simulated case, we use actual HR data and then apply the forward model to obtain the LR

data but do not use the resulting aligned pairs for CNN training. In the fully real data, both

the HR and the LR data are obtained experimentally. The partially simulated data has

the advantage of providing ground truth for more quantitative measures of accuracy, while

the fully real data results allow for qualitative assessment under more realistic conditions.

Table  5.1 lists the three data sets and the experimental parameters used for data acquisition.

Transmission electron microscopy was performed on a 60-300 Thermo Fisher Titan oper-

ating at 300 kV in bright field mode. Images were collected on a 4k by 4k Gatan K2 Direct

Electron Detector (DED) using Serial EM at various electron optical magnifications. LR

33



Table 5.1. Acquisition parameters for experimental datasets. We omit LR
pixel spacing for E. coli as we do not perform super resolution on measured
data in this case. The 2.2 nm nanorods sample was used for the results shown
in Figures  A.8 , A.9 , A.11 , and  A.12 .

Material HR Pixel Spacing LR Pixel Spacing Data Modality
E. coli 0.98 nm N/A TEM

Nanorods 1.1, 2.2 nm 5.5 nm SEM
Pentacene 41.7 nm 168.9 nm SEM

overview images were first collected, followed by automated aligned HR image montages.

The bright field imaging modality uses a wide illumination that covers the entire imaging

array (DED). SEM images were obtained on a FEI XL30 at 5 kV with a secondary electron

detector and a Zeiss Gemini at 5 kV using an in-lens secondary electron detector. The inter-

action volume of the focused electron beam was on the order of the size of the resulting pixel

size in the image. The Scanning Electron Microscopy modality raster scanned a focused

beam across the sample with a pixel dwell time of 50 nanoseconds. These TEM and SEM

images form our HR datasets.

From this HR data, we create synthetic LR data by applying the A/L2 operator, which

mimics the acquisition of LR data. These LR images were then passed to each method to

generate a super-resolution image. This allows for a ground truth comparison. All data used

in testing the algorithm was separate from data used to train it. This holds for both LR and

HR data used in testing.

Based on the MACE equation F(v) = G(v), we define a measure of convergence error as

Convergence Error = ||G(v)− F(v)||2
σn||G(v)||2

, (5.1)

where σn is the noise level used to train the prior model.

5.0.2 Results on Synthetic Data

In Figures  A.6 – A.11 , we display a HR ground-truth image, the corresponding simulated

LR data, the output of bicubic upsampling (as a baseline), DPSRGAN (when possible),

DPSR, MACE using a CNN trained on natural images as the prior agent, and MDF.
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In Figure  A.6 at 4x super-resolution, MDF removes noise while maintaining data fidelity

and reproducing realistic texture, while the other reconstructions contain blocky artifacts

or texture inaccuracies. We display a zoomed region in Figure  A.7 to further show the

disparities.

In Figure  A.8 at 4x super-resolution, the images are quite similar. This is due to the

rigidity and repetition of the structure. At this level, DPSR produces a high-quality re-

construction but tends to generate overly-thick nanorods. In comparison, MDF is able to

produce a high-quality and high-fidelity reconstruction.

Figure  A.9 illustrates an example of 8x super-resolution on more highly structured data.

In this case the problem is significantly underconstrained, but MDF is able to leverage the

data-fidelity operator and a domain-specific CNN to produce a high-quality reconstruction.

In this case the competing reconstructions each have significant shortcomings.

Table 5.2. Average PSNRs over 100 images for E. coli, Pentacene, and
Nanorods datasets at 4x interpolation. On average, MDF outperforms all
other methods.

Material MDF MACE DPSR DPSRGAN Bicubic
E. coli 20.02 19.95 19.69 14.27 19.98

Pentacene 34.09 33.78 32.65 28.84 30.00
Nanorods 34.89 34.21 34.55 29.87 32.43

In Figure  A.10 , with 4x super-resolution on data with much less regularity and significant

high-frequency components, MDF produces the highest PSNR, although not by a significant

margin. However, MDF arguably provides the best visual compromise between clarity and

fit to data among the competing methods.

In Figure  A.11 , we present 16x super-resolution results. At this level, there is not enough

data present for any method to generate an accurate reconstruction. Moreover MDF begins

to ’hallucinate’ and generate shapes that are both not present in the image nor in its training

data.

In Table  5.2 , we show average results for reconstructions of synthetic LR data at 4x in-

terpolation. For each dataset, we extracted 100 256x256 images and created corresponding

simulated LR data. These images were then passed into each interpolation method for recon-
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struction. Finally we collected the PSNRs relative to the original high-resolution image and

averaged these across the 100 images to generate the values shown. As shown in Table  5.2 ,

MDF outperforms all other interpolation methods tested.

In Figure  A.3 , we plot the average convergence error in (  5.1 ) as a function of iteration

over these 100 256x256 images. For each dataset, MDF converged with under 5% error.

The gold nanorods dataset at 4x super-resolution leads to the highest convergence error,

which is likely due to the existence of multiple data-consistent reconstructions at this level

of super-resolution.

5.0.3 Results on Measured Data

In Figures  A.12 – A.16 , we show results using measured LR data as input. In this case

there is no paired HR data for quantitative comparison, so we provide a measured HR image

of a similar specimen for visual comparison.

In Figure  A.12 , with 4x super-resolution of gold nanorod images, all methods are able to

reconstruct the data. However in comparison, MDF produces a sharper image that is more

faithful to the LR data.

In Figure  A.13 , with 4x super-resolution of gold nanorod images, the data is not severely

undersampled, so each method is able to reconstruct the shape of the nanorods. However,

relative to the other methods, MDF provides a more faithful reconstruction of the nanorod

interiors and ends while removing background noise. We provide a zoomed image in  A.14 

that shows the difference in the individual nanorod reconstructions.

In Figure  A.15 , the majority of the methods produce aliasing artifacts along the edge of

the crystals and texture issues on the crystal itself. MDF minimizes these artifacts relative to

the other methods and again provides a good balance between clarity and realistic texture.

These issues are illustrated further in Figure  A.16 .
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5.0.4 RAP in Practice

It’s worth noting that the assumptions made in Theorem 2 may not always be met.

However we performed experiments across our pentacene, gold nanorods, and E. coli datasets

to show that the error between the methods was acceptable.

This was performed by defining the following:

F1 = ( 2.18 ), G(w) = (I +BA)−1[I(
K−1∑
i=1

wi) + 1
L2 (BA)wK ] (5.2)

F̃1 = ( 4.1 ), G̃(w) = 1
K

∑
k

wk (5.3)

where F2 is the base DnCNN denoiser described in Section  4.1.3 for both F and F̃ . We

then alternated application of the forward and averaging operators in both cases for 200

iterations. Finally, we compiled the error in the final reconstructions and averaged them

across 100 images for each dataset. Here our error is calculated as

Error = ‖w − w̃‖
‖w‖

(5.4)

where w is the reconstruction using the operators in (  5.2 ) and w̃ is the reconstruction using

the operators in ( 5.3 ).

Table 5.3. Error calculation for RAP in the MACE framework. All datasets
have under 4× 10−3 error in practice.

Material SR Factor Error
Pentacene 4x 3.902 ×10−3

E. coli 4x 2.175 ×10−4

Nanorods 4x 1.1891 ×10−7

As shown in Table  5.3 , all methods have error less than 4×10−3. For practical purposes,

this is sufficient for use.
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Table 5.4. Data acquisition speedup with MDF framework. The speedup
factor is calculated by taking the ratio of the number of HR reconstructed
pixels to the sum of the acquired LR pixels and HR training pixels

Material SR Factor LR data HR training data Reconstructed HR data Speed-Up
E. coli 4x 7404 x 7666 5049 x 9827 29616 x 30664 8.54x

Pentacene 4x 1280 x 755 1280 x 755 5120 x 3020 10.05x
Nanorods 5x 2048 x 1388 1232 x 1367 10240 x 6940 15.70x
Nanorods 8x 2048 x 1388 1232 x 1367 16384 x 11104 40.19x

In Table  5.4 , we examine the speedup in acquisition time due to the MDF framework.

The speed-up is calculated by taking the ratio of the pixels necessary for a HR FoV to the

sum of the pixels in the LR FoV and the pixels in the HR training data.

Speed-Up = HR Reconstruction Pixels
Acquired LR pixels + HR Training Pixels

In the ideal case, in which a domain-specific CNN denoiser is already trained, the acquisition

speed-up for Lx interpolation is L2. In the cases shown in Table  5.4 we include the HR data

acquisition needed for CNN training, so the actual speed-up ranges from roughly 50% to

62% of the ideal.
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6. SUMMARY

We introduced a Multi-Resolution Data Fusion framework that incorporates a Relaxed Ad-

joint Projection and a domain-specific neural network prior operator. The Relaxed Adjoint

Projection leads to improved final reconstruction quality, is straightforward to implement,

and is provably equivalent to using the standard data fitting operator with a modified

prior. The domain-specific neural network prior operator is trained on a limited set of

high-resolution images that are not paired with low-resolution images.

In our set of experiments, MDF reduces artifacts relative to existing methods while main-

taining fidelity to acquired data and accurately resolving sub-pixel-scale features. Moreover,

since MDF relies on a denoiser for HR images, it can be used at multiple super-resolution

factors without additional training. By changing the forward model, it can be used for mul-

tiple image acquisition models, again without retraining. This modularity is an important

strength in that each component can be used for multiple applications.

For future work, we’d like to extend this method to alternative forward models and

generative denoisers. Additionally we plan to work on improving the speed-up further by

parallelizing the code and applying it across multiple GPUs.
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A. FIGURES

(a) Ground Truth (b) λ = 0 (c) λ = 0.5 (d) λ = 1

Figure A.1. Example of the blockiness added in Forward Model Compensa-
tion for various λ values.

(a) HR GT (b) Bicubic (c) DPSRGAN

(d) DPSR (e) MACE (f) MDF

Figure A.2. 4x super-resolution reconstructions of a simulated LR EM image
of E. coli fibers. MDF is able to most accurately reconstruct the fibers, but
still suffers from false textures.
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Figure A.3. Convergence Error using MACE and MDF on pentacene, gold
nanorods, and E. coli datasets. All methods converge with under 5% error.

(a) Ground Truth (b) MACE (c) MACE+RAP

Figure A.4. 4x super-resolution reconstructions of a simulated LR EM image
of pentacene crystals. Each shows a field of view 10.68µ wide. Note the
textural differences between the MACE and MACE + RAP reconstructions.

(a) Ground Truth (b) MACE (c) MACE+RAP

Figure A.5. 8x super-resolution reconstructions of a simulated LR EM image
of gold nanorods. Each shows a field of view 568.32 nm wide. Note the pixel-
sized artifacts removed by MACE + RAP
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(a) HR GT (b) Simulated LR (c) Bicubic, 28.94 dB

(d) DSPRGAN, 27.03 dB (e) DPSR, 30.79 dB (f) MACE, 32.18 dB (g) MDF 32.36 dB

Figure A.6. 4x super-resolution reconstructions of a simulated LR EM image
of pentacene crystals. Each shows a field of view 10.68 µ wide. MDF is able
to most accurately reconstruct the crystal without inducing false textures.

(a) HR GT (b) Simulated
LR

(c) Bicubic (d)
DSPRGAN

(e) DPSR (f) MACE (g) MDF

Figure A.7. Zoomed field of view of the 4x super-resolution reconstructions
in Figure  A.6 . Each shows a zoomed field of view 5.34µ wide.
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(a) HR GT (b) Bicubic, 32.38 dB (c) DSPRGAN, 30.38 dB

(d) DPSR, 34.51 dB (e) MACE, 33.87 dB (f) MDF 35.00 dB

Figure A.8. 4x Super Resolution reconstructions of a simulated LR EM
image of gold nanorods. Reconstructions show a field of view 569 nm wide.
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(a) HR GT (b) Simulated LR (c) Bicubic, 27.43 dB

(d) DPSR, 30.09 dB (e) MACE, 28.36 dB (f) MDF 32.43 dB

Figure A.9. 8x super-resolution reconstructions of a simulated LR EM image
of gold nanorods. Each shows a field of view 569 nm wide. Only MDF is able
to reconstruct defined nanorods with the proper shape.
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(a) HR GT (b) Simulated LR (c) Bicubic, 19.90 dB (d) DPSRGAN, 14.54 dB

(e) DPSR, 19.69 dB (f) MACE, 19.84 dB (g) MDF 19.96 dB

Figure A.10. 4x super-resolution reconstructions of a simulated LR EM
image of E coli. Each shows a field of view 251 nm wide. MACE and MDF
are the only methods able to reconstruct the background textures.
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(a) HR GT (b) Simulated LR (c) Bicubic, 23.80 dB

(d) DPSRGAN, 21.10 dB (e) DPSR, 24.04 dB (f) MACE, 23.96 dB (g) MDF 20.32dB

Figure A.11. 16x super-resolution reconstructions of a simulated LR EM
image of gold nanorods. Each shows a field of view 569 nm wide. Note the
artifacts created by the prior in this case of severe ill-conditioning.
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(a) Given LR Image, Bicu-
bically Upsampled

(b) DPSRGAN

(c) DPSR (d) MACE (e) MDF

Figure A.12. 4x super-resolution reconstructions of a measured LR EM
image of gold nanorods. Each shows a field of view 563.2 nm wide. (a) Given
LR image, (b) Bicubic interpolation (c) DPSRGAN, (d) DPSR, (e) MACE,
(f) MDF. Note the poor reconstruction of the thickness of nanorod in (c) and
(d)
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(a) HR Example Image (b) Given LR Image, Bicu-
bically Upsampled

(c) DPSRGAN

(d) DPSR (e) MACE (f) MDF

Figure A.13. 4x super-resolution reconstructions of a measured LR EM
image of gold nanorods. Each shows a field of view 704 nm wide. While all
methods reconstruct the nanorods’ shape, only MDF is able to completely
reconstruct the nanorods without internal gaps.

(a) HR Exam-
ple Image

(b) Given LR
Image

(c) DPSR-
GAN

(d) DPSR (e) MACE (f) MDF

Figure A.14. Zoomed 4x super-resolution reconstructions of in Figure  A.13 .
Each shows a field of view 352 nm wide.
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(a) HR Example Image (b) Given LR Image (c) DPSRGAN

(d) DPSR (e) MACE (f) MDF

Figure A.15. 4x super-resolution reconstructions of a measured LR EM
image of pentacene crystals. Each show a zoomed field of view 21.34 µ wide.
Note the significant aliasing artifacts in all non-MDF reconstructions.

(a) HR Exam-
ple Image

(b) Given LR
Image

(c) DPSR-
GAN

(d) DPSR (e) MACE (f) MDF

Figure A.16. Zoomed 4x super-resolution reconstructions of those in  A.15 .
Each shows a zoomed field of view 10.67 µ wide.
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B. MDF PROXIMAL MAP DERIVATION

The goal of this section is to demonstrate the derivation of the proximal map for the Super

Resolution Forward Model for use in the Plug & Play framework given in [ 18 ]. Namely we

want to show that if AAT = rI, then

F (x̃, σ2
λ) := argmin

x≥0

{
1

2σ2
w

||y − Ax||22 + 1
2σ2

λ

||x− x̃||22

}

= x̃+ σ2
λ

rσ2
λ + σ2

w

AT (y − Ax̃)

Here the forward model is given by y = Ax+ ε where A ∈ RM×N represents the PSF of

the electron microscope and ε ∼ N(0, σ2
w) is a M dimensional vector of i.i.d. additive white

Gaussian noise.

Define the objective function as

f(x) := 1
2σ2

w

||y − Ax||22 + 1
2σ2

λ

||x− x̃||22

Differentiating the objective with respect to x and multiplying by σ2
λ yields the first-order

optimality condition
σ2

λ

σ2
w

AT (Ax− y) + (x− x̃) = 0. (B.1)

Defining ρ = σ2
λ/σ

2
w and solving for the lone x gives

x = x̃+ ρAT (y − Ax).

This shows that x has the form x = x̃+ AT z for some z. Using this form in (  B.1 ) gives

0 = ρAT (A(x̃+ AT z)− y) + ((x̃+ AT z)− x̃)

= ρ(ATAx̃+ ATAAT z − ATy) + AT z.
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Applying AAT = rI, we have

ρ(ATAx̃+ rAT z − ATy) + AT z = 0,

or

(1 + ρr)AT z = ρAT (y − Ax̃).

This has solution

z =
(

ρ

1 + rρ

)
(y − Ax̃)

=
(

σ2
λ

σ2
w + rσ2

λ

)
(y − Ax̃).

Then using x = x̃+ AT z gives

x = x̃+
(

σ2
λ

σ2
w + rσ2

λ

)
AT (y − Ax̃) (B.2)

————-

The above shows that

f(x) := ρ

2 ||y − Ax||
2
2 + 1

2 ||x− x̃||
2
2 (B.3)

has solution

x = x̃+
(

ρ

1 + rρ

)
At(y − Ax̃). (B.4)

Consider now the objective function below, where AAT = L2I.

ρ

2

∥∥∥∥ 1
L2Ax− y

∥∥∥∥2
+ 1

2‖x− x̃‖
2 = ρ

2

∣∣∣∣ 1
L2

∣∣∣∣2 ∥∥∥(Ax− L2y)
∥∥∥2

+ 1
2‖x− x̃‖

2

= ρ

2L4‖Ax− L
2y‖2 + 1

2‖x− x̃‖
2.
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We make the following variable assignments ŷ = L2y, ρ̂ = ρ/L4, which transforms the

objective function to the form of ( B.3 ) with ŷ in place of y and ρ̂ in place of ρ.

Then using r = L2 and the closed form in ( B.4 ) gives

x = x̃+
(

ρ̂

1 + L2ρ̂

)
AT (ŷ − Ax̃)

Using ρ̂ = σ2
λ/(L4σ2

w) and ŷ = L2y yields

x = x̃+
(

σ2
λ/(L4σ2

w)
1 + L2σ2

λ/(L4σ2
w)

)
AT (L2y − Ax̃)

or

x = x̃+
(

σ2
λ

L4σ2
w + L2σ2

λ

)
AT (L2y − Ax̃)

or

x = x̃+
(

σ2
λ

L2σ2
w + σ2

λ

)
AT (y − 1

L2Ax̃)

56



C. RELAXED ADJOINT PROJECTION PROOFS

The contents of this chapter appear in [ 1 ].

We begin with a proposition necessary to define several maps.

Proposition C.0.0.1 Let φ be maximally monotone. Then (I + φ)−1 is globally defined,

single-valued, and nonexpansive.

Proof: See [ 37 , section 6]. �

In the theorem below, we use maps Fi that are implicitly defined in the sense that the

map φi is evaluated at the output of the corresponding map Fi. This is a generalization of

the condition satisfied by a proximal map and is equivalently written as the resolvent of φi,

as indicated.

Theorem C.0.0.1 Assume that each of φi and Riφi are maximal monotone functions from

Rn to itself for each i = 1, . . . , K, where each Ri is an n × n matrix with ∑i Ri invertible.

Define

• Fi(vi) = vi − φi(Fi(vi)) = (I + φi)−1(vi)

• FR
i (vi) = vi −Riφi(FR

i (vi)) = (I +Riφi)−1(vi)

• Gi(v) = 1
K

∑
i vi

• GR
i (v) = (∑i Ri)−1(∑i Rivi)

Then there is a map from solutions v∗ of

FR(v∗) = G(v∗)

to solutions v∗̂ of

F(v∗̂) = GR(v∗̂)

such that for each such pair, G(v∗) = GR(v∗̂). There is also such a map from v∗̂ to v∗.

Moreover, the common value x∗ in the stacked vector G(v∗) satisfies ∑i (Ri∇fi(x∗)) = 0.
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Note that G(v∗) is formed by stacking copies of the consensus solution x∗, so this theorem

says that the two formulations in (i) and (ii) have exactly the same set of consensus solutions.

Proof: Assume that FR(v∗) = G(v∗), and define x∗ to be the identical entries of G(v∗),

so that Fi(v∗
i ) = x∗ for each i. Applying G to both sides yields G(FR(v∗)) = G2(v∗) =

G(v∗). Expanding using the definitions of FR
i and Gi yields

1
K

∑
i

(v∗
i −Riφi(Fi(v∗

i ))) = 1
K

∑
i
v∗

i . (C.1)

Multiplying by K and canceling the sum of the v∗
i gives

∑
i
Riφi(x∗) = 0. (C.2)

Conversely given x∗ such that ∑i Riφi(x∗) = 0, define v∗
i = x∗ + Riφi(x∗) for all i. We will

show that FR(v∗) = G(v∗). Since FR
i (vi) = (I +Riφi)−1(vi), we have

FR
i (v∗

i ) = (I +Riφi)−1(x∗ +Riφ(x∗)) = x∗. (C.3)

Also,

G(v∗)i = 1
N

∑
i

(x∗ +Riφ(x∗)) = x∗ + 1
N

∑
i
Riφi(x∗). (C.4)

Note that the second term in this sum is 0 by assumption, so G(v∗)i = x∗ for all i and hence

FR(v∗) = G(v∗).

Assume now that F(v̂∗) = GR(v̂∗), and let x̂∗ be the identical entries of F(v̂∗). As

before, GR(F(v̂∗)) = GR(v̂∗) and this with the definitions yields

(
∑

Ri)−1(
∑

Ri(v̂∗
i − φi(Fi(v̂∗

i ))))

= (
∑

Ri)−1(
∑

Riv̂
∗
i ). (C.5)

Applying (∑Ri) to both sides, canceling∑Riv̂
∗
i , and using Fi(v̂∗

i ) = x̂∗ gives∑i Riφi(x̂∗) = 0.
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Conversely given x̂∗ such that ∑Riφi(x∗) = 0, define v̂∗
i = x̂∗ + φi(x∗) for all i. A

calculation similar to the previous case shows that F(v̂∗) = GR(v̂∗).

Hence for each v∗ satisfying (i), the identical entries x∗ of G(v∗) satisfy ( C.2 ). This

condition then determines v̂∗ satisfying (ii) and so that x∗ is the common entry in GR(v∗).

The map from v̂∗ to v∗ is the same in reverse. �

Lemma C.0.0.1 The map F in ( 2.18 ) can be expressed as either

1. F (x) = (I +∇f)−1(x)

2. F (x) = (I − r∇f)(x),

where σ2 = σ2
λ

σ2
w

, f = σ2

2 ‖y − Ax‖
2
2 and r = 1/(1 + σ2L2).

Proof: We’ll first establish the form in 1. Note that the first order optimality condition

for F (x) = argminv

{
f(v) + 1

2‖v − x‖
2
}

is ∇f(v) + v − x = 0. Solving for v gives v∗ =

(I + ∇f)−1(x). Since f is a positive, semi-definite quadratic penalty, it has a maximal

monotone subdifferential, hence this inverse is well-defined by Proposition 1.

Using ∇f(v) = σ2AT (Av − y) in the first order optimality condition above and isolating

v∗ gives

v∗ = x− σ2AT (Av∗ − y). (C.6)

Therefore, v∗ is of the form v∗ = x+ AT z for some z. Using this form of v∗ in ( C.6 ) gives

x+ AT z = x− σ2AT (A(x+ AT z)− y). (C.7)

Some algebra and AAT = L2I gives

AT (y − Ax) = (1 + L2σ2)AT z, (C.8)

with a solution of z = σ2

1+σ2L2 (y − Ax). We substitute this into v∗ = x + AT z to obtain

F (x) = v∗ = x+ rσ2AT (y − Ax), or (I − r∇f)(x) where r = 1
1+σ2L2 . �
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Lemma C.0.0.2 Suppose Lip(ψ) ≤ α < 1. Then Ψ = I + ψ is invertible and

Lip(Ψ−1) ≤ 1
1− α (C.9)

Lip(I −Ψ−1) ≤ α

1− α (C.10)

Proof: If ψ is Lipschitz with constant α, then Ψ = I+ψ is also Lipschitz. Consequently

Ψ will be differentiable almost everywhere by Rademacher’s theorem. The forward and

reverse triangle inequalities imply

(1− α)‖x− z‖ ≤ ‖Ψ(x)−Ψ(z)‖ ≤ (1 + α)‖x− z‖. (C.11)

These bounds show that the singular values of Ψ are bounded away from 0, which implies

its Jacobian is of full rank. The Lipschitz Inverse Function Theorem [  38 ] implies that Ψ is

invertible. Defining w = Ψ(x) and v = Ψ(z) transforms the bounds on ‖Ψ(x)−Ψ(z)‖ to

(1− α)‖Ψ−1(w)−Ψ−1(v)‖ ≤ ‖w − v‖

≤ (1 + α)‖Ψ−1(w)−Ψ−1(v)‖. (C.12)

Dividing the left hand side of the inequality by 1− α yields Lip(Ψ−1) ≤ 1
1−α

.

Now fix v1 and v2, and let wj = Ψ(vj) = vj + ψ(vj). Using the Lipschitz constants for ψ

and Ψ−1 gives

‖(I −Ψ−1)(w1)− (I −Ψ−1)(w2)‖ (C.13)

= ‖Ψ(v1)− v1 − (Ψ(v2)− v2))‖ (C.14)

= ‖ψ(v1)− ψ(v2)‖ (C.15)

≤ α‖v1 − v2‖ (C.16)

= α‖Ψ−1(w1)−Ψ−1(w2)‖ (C.17)

≤ α

1− α‖w1 − w2‖. (C.18)

�
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Lemma C.0.0.3 Assume σ2 < 1/L2 and let f and r be as in Lemma  C.0.0.1 with this σ2.

Then there exist constants δ, C1 > 0 such that if R is a matrix satisfying ‖R− I‖ < δ, then

there exists a matrix R̃ depending on R so that

• ‖R̃− I‖ ≤ C1‖R− I‖

• R̃∇f is maximal monotone

and so that

x− rR∇f(x) = (I + R̃∇f)−1(x). (C.19)

Proof: Define W = σ2ATA. Note that ATA can be factored as a projection followed by

scaling by L2, hence ‖rW‖ = σ2L2/(1 + σ2L2) < 1/(1 + σ2L2) by assumption. Hence there

exists δ1 > 0 so that if ‖R − I‖ < δ1, then ‖rWR‖ < 1, hence (I − rWR) is invertible by

Lemma  C.0.0.2 . As motivated below, let

R̃x =


rR(I − rWR)−1x for x ∈ range(AT )

Rx for x ∈ null(A).
(C.20)

Since the orthogonal complement of range(AT ) is null(A), we can extend by linearity to all

of Rn.

Since AAT = L2I, induction shows that W kAT = (σ2L2)kAT . Since σ2L2 < 1, we can

expand the first part of ( C.20 ) at R = I using a convergent power series to get

r(I − rW )−1AT = r
∞∑

k=0
rkW kAT (C.21)

= r
∞∑

k=0
(rσ2L2)kAT (C.22)

= r

1− rσ2L2A
T . (C.23)

Since r = 1/(1 + σ2L2), this is AT .

The same idea shows that for R sufficiently close to the identity, say ‖R − I‖ < δ2 for

some δ2 ∈ (0, 1), R̃ = R̃(R) restricted to range(AT ) can be written as a power series in R
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and satisfies R̃(I) = I. Expanding this power series about R = I gives constants c1, c2 > 0

so that

‖R̃− I‖ ≤ (c1 + c2‖R− I‖)‖R− I‖. (C.24)

Define C1 = max(1, c1 + c2). Since ‖R− I‖ ≤ 1, we have

||R̃− I|| ≤ C1||R− I|| (C.25)

on range(AT ), hence on all of Rn since R̃ = R on null(A).

We now show that R̃∇f(x) is maximal monotone. Note that

R̃∇f(x)− R̃∇f(w) = σ2R̃ATA(x− w), (C.26)

so R̃∇f is maximal monotone when R̃ATA is positive semi-definite Note that if x ∈ null(A),

then xT R̃ATAx = 0. If x ∈ range(AT ), then x = AT z for some z ∈ Rn. Substituting this for

the right-side x gives

xT R̃ATAx = xT R̃ATAAT z. (C.27)

Since AAT = L2I, this is L2xT R̃x. However by reducing δ2 if needed, (  C.25 ) implies that

R̃ is positive definite. Extending by linearity shows that R̃ATA is positive semi-definite, so

R̃∇f is maximal monotone. Let δ = min{δ1, δ2}.

Finally, let F̃ (x) = x−rR∇f(x), so F̃ (x) = (I−rR∇f)(x). Then F̃ (x) = (I+R̃∇f)−1(x)

exactly when

(I + R̃∇f) ◦ (I − rR∇f)(x) = x (C.28)

Expanding and rearranging gives

R̃∇f ◦ (I − rR∇f) = rR∇f. (C.29)
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Let p = σ2ATy, so that ∇f(x) = Wx− p. Using this in (  C.29 ) gives

R̃(Wx− rWR(Wx− p)− p) = rR(Wx− p), (C.30)

and collecting terms gives

R̃(I − rWR)(Wx− p) = rR(Wx− p). (C.31)

Since Wx−p maps Rn onto range(AT ), this is equivalent to R̃(I−rWR) = rR on range(AT ),

which is consistent with ( C.20 ). Hence R̃ as defined in (  C.20 ) satisfies ( C.19 ), thus completing

the proof. �

Lemma C.0.0.4 Let f be as in Lemma  C.0.0.1 and let φ be a Lipschitz and strongly maximal

monotone function with Lipschitz constant k. Then there exists a constant δ > 0 such that

if R is a matrix satisfying ‖R− I‖ < δ, then R̃−1φ is maximal monotone, where the matrix

R̃ is from Lemma  C.0.0.3 . Moreover, there exists a function ΦR and constant C such that

Lip(ΦR − I) ≤ C‖R− I‖

and so that

(I + φ)−1 ◦ ΦR = (I + R̃−1φ)−1.

Proof: It suffices to show ΦR(x) = (I + φ)(I + R̃−1φ)−1(x) has the desired properties.

We add and subtract φ and factor out (I + φ)−1 to obtain

ΦR = (I + φ)(I + φ+ (R̃−1 − I)φ)−1 (C.32)

= (I + φ)[(I + (R̃−1 − I)φ(I + φ)−1)(I + φ)]−1 (C.33)

= (I + (R̃−1 − I)φ(I + φ)−1)−1. (C.34)
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Hence ΦR = (I+ψ)−1 with ψ = (R̃−1−I)φ(I+φ)−1. By Lemma  C.0.0.3 , ‖R̃−I‖ ≤ C1‖R−I‖.

Restrict R so that this is less than 1, so by Lemma  C.0.0.2 with Ψ = R̃,

‖R̃−1 − I‖ ≤ C1‖R− I‖
1− C1‖R− I‖

≤ C2‖R− I‖ (C.35)

where C2 = C1/(1 − C1‖R − I‖). Let d1 = Lip((I + φ)−1) which is at most 1 since the

resolvent of a monotone operator is nonexpansive [ 37 ]. Then

Lip(ψ) ≤ C2kd1‖R− I‖. (C.36)

Hence there exists δ1 > 0 such that if ‖R− I‖ < δ1, then Lip(ψ) < 1, in which case Lemma

 C.0.0.2 implies ΦR = (I+ψ)−1 is well-defined with Lip(ΦR) ≤ 1/(1−Lip(ψ)). Lemma  C.0.0.2 

with Ψ = I + ψ = Φ−1
R implies

Lip(I − ΦR) = Lip(I −Ψ−1) ≤ Lip(ψ)
1− Lip(ψ) . (C.37)

By (  C.36 ), we can choose δ > 0 so that if ‖R− I‖ < δ, then Lip(I−ΦR) ≤ C‖R− I‖, where

C = 2C2kd1.

Recall that φ strongly monotone means that there exists m > 0 so that for all x, v,

(x − v)T (φ(x) − φ(v)) ≥ m||x − v||22. Let η = R̃−1 − I. By (  C.35 ), we can reduce δ to get

‖η‖ < m
2k

. To show that R̃−1φ is maximal monotone, note that

(x− v)T (R̃−1φ(x)− R̃−1φ(v))

= (x− v)T (φ(x)− φ(v))− (x− v)T (η(φ(x)− φ(v)) (C.38)

By assumption, the first term of the sum is bounded below by m||x − v||22. Additionally

‖φ(x)− φ(v)‖ ≤ k‖x− v‖ by assumption, so

(x− v)T (R̃−1φ(x)− R̃−1φ(v)) ≥ m||x− v||22 − k‖η‖‖x− v‖2
2, (C.39)
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which gives a lower bound of m
2 ‖x− v‖

2
2. Hence R̃−1φ is strongly monotone, and since R̃−1

is linear, R̃−1φ is maximal monotone. �

Theorem C.0.0.2 Suppose φ is a Lipschitz and strongly maximal monotone function and

let H = (I + φ)−1 and µ1 = µ2 = 1/2. Assume σ2 < 1/L2. There exist α > 0 and C > 0

such that if R is a matrix satisfying RAT = B and ‖R − I‖ ≤ α < 1, there exists ΦR a

Lipschitz map depending on H and R with Lip(ΦR − I) ≤ C‖R− I‖ such that the following

two choices lead to the same set of solutions x∗ in ( 2.23 ):

• F1 = F̃ is the RAP update in ( 4.1 ) and F2 = H;

• F1 = F is the standard update in ( 2.18 ) and F2 = H ◦ ΦR.

This theorem says that the effect of RAP with a denoiser H can be explained by using

the standard data-fitting term together with a modified denoiser defined by a Lipschitz

transformation of the image domain followed by the original denoiser.

Proof: In order to apply Theorem 1, we verify that each Fj is of the form (I + ω)−1 for

ω a maximal monotone function. By Lemma  C.0.0.1 , we have that F = (I + ∇f)−1 and

∇f is maximal monotone. As φ is maximal monotone, H is of the desired form, and H is

well-defined by Proposition  C.0.0.1 . Since σ2 < 1/L2, Lemma  C.0.0.3 with the same f, r as

defined in Lemma  C.0.0.1 implies that F̃ = (I + R̃∇f)−1. Lemma  C.0.0.3 also gives that

R̃∇f is maximal monotone. Finally as φ is assumed to be a Lipschitz and strongly maximal

function, Lemma  C.0.0.4 gives that H ◦ΦR = (I + R̃−1φ)−1 is well-defined and that R̃−1φ is

maximal monotone. Thus we may apply the results of Theorem 1 to each pair (F̃ , H) and

(F,H ◦ ΦR).

From the proof of Theorem 1, since F̃ = (I + R̃∇f)−1 and H = (I + φ)−1 we see that

v∗ = (v∗
1, v

∗
2) is a solution of F̃ (v∗

1)

H(v∗
2)

 = G(v∗)

if and only if

R̃∇f(x∗) + φ(x∗) = 0,
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where x∗ is the common entry of the stacked vector G(v∗). Since R̃ is invertible, this is

equivalent to

∇f(x∗) + R̃−1φ(x∗) = 0.

Since F = (I +∇f)−1 and H ◦ ΦR = (I + R̃−1φ)−1, again the proof of Theorem 1 implies

that this is if and only if ṽ∗ = (ṽ∗
1, ṽ

∗
2) is a solution of

 F (ṽ∗
1)

H(ΦR(ṽ∗
2))

 = G(ṽ∗)

with x∗ the common entry of the stacked vector G(ṽ∗).

This implies that the two formulations have the same set of consensus solutions, x∗. �

Proposition C.0.0.2 If A is an n × n symmetric matrix with eigenvalues in (0, 1] and

b ∈ Rn, then the mapping F (x) = Ax+ b is a proximal map.

Proof: The conditions on A imply that A−1 − I is symmetric and positive semidefinite,

so the Cholesky decomposition gives an invertible R such that RTR = 1
σ2 (A−1 − I) (for

specified σ2 > 0). Define p so that σ2ARTp = b and consider the proximal map defined by

argmin
u

{1
2 ||Ru− p||

2 + 1
2σ2 ||u− x||

2
}
. (C.40)

The first-order optimality condition yields

RT (Ru∗ − p) + 1
σ2 (u∗ − x) = 0, (C.41)

and gathering the u∗ terms and multiplying by σ2 gives

(I + σ2RTR)u∗ = x+ σ2RTp. (C.42)

Noting that (I + σ2RTR) = A−1 and using the choice of p gives u∗ = Ax + b. Hence

F (x) = Ax+ b is a proximal map. �
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Proposition C.0.0.3 Let F (x) = Wx + q where W = V ΛV −1 with Λ diagonal having

eigenvalues in (0, 1] and q ∈ RN . For x ∈ RN define x̂ = V −1x. Then F̂ (x̂) = V −1F (V x̂) is

a proximal map in the coordinates x̂.

Proof: Expanding F̂ using W = V ΛV −1 gives F̂ (x̂) = Λx̂ + V −1q. Since Λ is diagonal

with eigenvalues in (0, 1], the previous proposition implies that F̂ (x̂) is a proximal map. �

Theorem C.0.0.3 Let F and F̂ be as in Proposition  C.0.0.3 . Let H be a denoiser such that

Ĥ(x̂) = V −1H(V x̂) is nonexpansive in the coordinates x̂. Then the PnP algorithm converges

using the operators F and H.

Proof: An expansion of F and G shows that Algorithm 1 with two operators is equivalent

to the standard PnP algorithm of [  16 ]. By Proposition  C.0.0.3 , F̂ is a proximal map, and

by assumption, Ĥ is nonexpansive. Hence by [ 17 ], Algorithm 1 using operators F1 = F̂ and

F2 = Ĥ converges to a fixed point.

The bilinear change of variables x̂ = V −1x yields a one-to-one correspondence

F̂ (x̂) = V −1F (V x̂) (C.43)

Ĥ(x̂) = V −1H(V x̂) (C.44)

Applying this to each component and map in Algorithm 1 produces a shadow sequence

equivalent to running Algorithm 1 with F1 = F and F2 = H. This shadow sequence

converges by continuity of V and V −1, so the PnP algorithm converges using F and H. �
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D. RELEVANT CODE

All code is publicly available at https://github.com/emmajreid/MDF.

AT function

import numpy as np

import torch

import cv2

from skimage.io import imread

import scipy

#This code performs upsampling by block replication in L x L grids.

#This maps an N x N image to an NL x NL image.

def ATgen(imagearr, L):

outarr = np.zeros((imagearr.shape[0]*L, imagearr.shape[1]*L))

for i in range(0,imagearr.shape[0]):

for j in range(0, imagearr.shape[1]):

outarr[L*i:L*(i+1), L*j:L*(j+1)] = imagearr[i,j]

return outarr

A function

import torch

import cv2

import numpy as np

#This code performs image decimation by taking the sum of the pixel values

#in a L x L grid. From a N x N image, it returns an N/L x N/L image.
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class Conv2D:

def __init__(self, in_channel, o_channel, kernel_size, stride, mode):

self.i = in_channel

self.out = o_channel

self.ker = kernel_size

self.stride = stride

self.mode = mode

def forward(self, input_image, L):

#Here using the // operator under the assumption that we'll only be applying

#kernels that result in no empty columns.

m = self.ker

##Just K1

if self.out == 1 and self.mode == 'known':

kernel = torch.FloatTensor(torch.ones((L,L)))

kernel_list = [kernel]

kernel = torch.stack(kernel_list)

[M,N] = input_image.size()

stride = self.stride

[n,p,q] = kernel.size()

temp = torch.tensor([0])

out_image = torch.zeros((M-m)//stride+1,(N-m)//stride+1, n)

for i in range(0,M-m+1,stride):

for j in range(0,N-m+1,stride):

for l in range(0,n):

#Multiply the input image with the kernel

sub_img = input_image[i:i+m,j:j+m]

temp = torch.FloatTensor([torch.sum(sub_img * kernel[l,:])])
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out_image[i//stride,j//stride] =

out_image[i//stride,j//stride]+(temp)

temp=torch.tensor([0])

return out_image

def Agen(imagearr, L):

img = torch.from_numpy(imagearr)

img = img.float()

params = Conv2D(1,1,L,L,'known')

out_image= params.forward(img,L)

out_image = out_image[:,:,0]

return out_image.numpy()

PSNR function

from math import log10

from math import sqrt

import numpy as np

#This code computes the Peak Signal to Noise Ratio.

#PSNR assumes that gt and recon are 2D image arrays in the range [0,1].

def mse(groundtrutharr, imarr):

imvec = imarr.reshape(-1)

groundtruthvec = groundtrutharr.reshape(-1)

mse = np.mean(np.power(imvec-groundtruthvec,2))

rmse = sqrt(mse)

nrmse = sqrt(mse)/(np.mean(np.power(groundtruthvec,2)))

return [mse, rmse, nrmse]

def error(arr1, arr2):
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#Error (x,v)

vec1 = arr1.reshape(-1)

vec2 = arr2.reshape(-1)

err = sqrt(np.sum(np.power(vec2-vec1,2)))

errnorm = err/sqrt(np.sum(np.power(vec2,2)))

return errnorm

def psnr(gt,recon):

MSE = mse(gt,recon)[0]

out = 10*log10(1/MSE)

return out

MACE framework with MDF

# General imports

import sys

import os

import numpy as np

import argparse

import cv2

from utils import conv2d

from utils import atranspose

from utils import psnr

import torch

from models.network_dncnn import DnCNN as net

def mace(LR,numagents,c,args):

'''
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This is a Python implementation of the MACE framework written about in 4D X-

Ray CT Reconstruction using Multi-Slice Fusion by S. Majee et. al (2019).

Fundamentally it consists of stacked application of the prior and forward models

to our image vectors (L) followed by a weighted averaging (G) and an update step.

Inputs:

LR: Low resolution image scaled to be in [0,1]

args: Dictionary containing command line arguments

SRval: Super resolution factor

beta: User-defined parameter for calculating \sigma^2_\lambda, our

Lagrangian parameter, and c.

This parameter plays a role when sigy is assumed to be nonzero.

iterstop: User-defined parameter for the stopping number of Mann iterations

in the MACE framework.

sign: Noise level that the denoising prior is trained to remove.

For all provided prior models,sign = 0.1.

sigy: Assumed level of noise in the ground truth image

mu: This is the weight of the forward model in the MACE framework,

in [0,1]

mu = 0 -----> Only considering the output of the prior model.

mu = 0.5 ---> Equal consideration of the outputs.

mu = 1 -----> Only considering the output of the forward model.

rho: This is the step size that we take throughout the MACE framework,

generally in (0,1).

Larger rho tends to lead to faster convergence.

model_dir: Path to the directory containing the saved priors.

model_name: Name of the denoising prior model.

hrname: Name of the HR ground truth image.

forwards: Choice of forward model, either using the standard or RAP.

denoisers: Choice of denoising prior model.
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Outputs:

OutW: Super resolved image

PSNR: Array containing the PSNR values for each step of the algorithm.

MACE: Array containing the MACE errors for each step of the algorithm.

'''

# Generate initial guess as starting point for algorithm, write to an image,

# and use it to initialize X and W.

init = cv2.resize(LR,None, fx = args.SRval, fy = args.SRval,

interpolation = cv2.INTER_CUBIC)

mdim,ndim = init.shape

cv2.imwrite('images/results/init.png', init*255)

init = init.reshape(-1)

init = init.reshape(init.shape[0],1)

X = np.tile(init, (1,numagents))

W = np.copy(X)

# Initialize vectors for metric analysis.

PSNR = np.zeros(args.iterstop)

maceerr = np.zeros(args.iterstop)

# MACE Framework

for i in range(0, args.iterstop):

print("Currently on Iteration", i)

X = L(W,X,numagents, mdim,ndim,c, LR, args)

Z = G(2*X-W,numagents,args.mu)

W = W+2*args.rho*(Z-X)
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# Save metrics for this iteration to the vector.

PSNR[i] = psnr.psnr(gt/255,G(W,numagents,args.mu)[:,0].reshape(mdim,ndim))

Y=np.copy(W)

maceerr[i]=(1/args.sign)*np.linalg.norm(G(Y,numagents,args.mu)-L(Y,Y,numagents,

mdim, ndim, c, LR, args))/np.linalg.norm(G(Y,numagents,args.mu))

return G(W,numagents,args.mu)[:,0], PSNR, maceerr

#L takes in all of the state vectors and applies denoisers to the first k state

#vectors and the forward model to the last state vector.

def L(W,X,numagents, mdim,ndim,c, LR, args):

# Prior Model Application

Lout = np.copy(X)

for i in args.denoisers:

iternum = 0

xi =np.copy(W[:,iternum])

xi = xi.reshape(mdim,ndim)

if (args.model_name == 'dncnn_25.pth'):

denoiser = net(in_nc=1, out_nc=1, nc=64, nb=17, act_mode='R')

else:

denoiser = net(in_nc=1, out_nc=1, nc=64, nb=17, act_mode='BR')

denoiser.load_state_dict(torch.load(os.path.join(args.model_dir,

args.model_name)), strict=True)

denoiser.eval()

xi = torch.FloatTensor(xi)
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if torch.cuda.is_available()==True:

denoiser.cuda()

if torch.cuda.is_available() == True:

imagei = (xi.cuda()).reshape(1,1,mdim,ndim)

else:

imagei = xi.reshape(1,1,mdim,ndim)

x = denoiser(imagei)

if torch.cuda.is_available() == True:

x = x.cpu().detach().numpy()

else:

x = x.detach().numpy()

if torch.cuda.is_available():

torch.cuda.synchronize()

x = x.reshape(mdim*ndim)

Lout[:,iternum] = np.copy(x)

iternum += 1

wi =np.copy(W[:,iternum])

wi = wi.reshape(mdim,ndim)

#Forward Model Application

x = forward(wi, LR, c, args)

x = x.reshape(mdim*ndim)

Lout[:,iternum] = np.copy(x)

return Lout

# G outputs the weighted average of the state vectors, weighting the Forward Model's

vector with mu and all others with (1-mu)/(N-1)

# where N is the number of agents.

def G(X,numagents,mu):
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if numagents ==2:

x = mu*X[:,numagents-1,np.newaxis]+

((1-mu)/(numagents-1))*np.sum(X[:,0:numagents-1,np.newaxis],1)

else:

x = mu*X[:,numagents-1]+(1-mu)/((numagents-1))*np.sum(X[:,0:numagents-

1],1)

x = x.reshape(x.shape[0],1)

Xnew = np.tile(x, (1,numagents))

return Xnew

def forward(wi, LR,c,args):

new = LR-(1/args.SRval**2)*conv2d.Agen(wi,args.SRval)

# 0 is for AT, 1 for bicubic

for i in args.forwards:

if i==0:

filt = atranspose.ATgen(new,args.SRval)

elif i==1:

filt = cv2.resize(new,None,fx=args.SRval,fy=args.SRval,

interpolation=cv2.INTER_CUBIC)

else:

print("Invalid filter choice")

break

out = wi+c*filt

if args.sigy==0:

out = np.clip(out, a_min=0, a_max=None)

return out

if __name__ == '__main__':
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'''

Variable Definitions:

beta: User-defined parameter for calculating \sigma^2_\lambda,

our Lagrangian parameter, and c.

This parameter plays a role when sigy is assumed to be nonzero.

iter: User-defined parameter for the number of Mann iterations in

the MACE framework.

Complete convergence is usually achieved by 200 iterations.

sign: Noise level that the denoising prior is trained to remove.

For all provided prior models,sign = 0.1.

sigy: Assumed level of noise in the ground truth image

mu: This is the weight of the forward model in the MACE framework, in [0,1]

mu = 0 -----> Only considering the output of the prior model.

mu = 0.5 ---> Equal consideration of the outputs.

mu = 1 -----> Only considering the output of the forward model.

rho: This is the step size that we take throughout the MACE framework,

generally in (0,1).

Larger rho tends to lead to faster convergence.

'''

parser = argparse.ArgumentParser(description="Gather P&P input parameters.")

parser.add_argument('--SRval', type=int, default=4,help='Super-Resolution factor')

parser.add_argument('--beta', type=float, default= 0.5,

help='Regularization factor')

parser.add_argument('--iterstop', type=int, default=1,

help='Number of iterations to run')

parser.add_argument('--sign', type=float,default=0.1,

help='Noise level trained to remove')

parser.add_argument('--sigy', type=float, default=0,
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help='Noise level in image')

parser.add_argument('--mu', type=float, default=0.5,

help='Weighting factor')

parser.add_argument('--rho', type=float, default=0.5,

help='Convergence factor')

parser.add_argument('--model_dir', default=os.path.join('priors'),

help='directory of the model')

#Options for model names are dncnn_25.pth and MDF.pth

parser.add_argument('--model_name', default='nano.pth', type=str,

help='the model name')

parser.add_argument('--hrname', default='nanotest.png', type=str,

help='the HR image name')

# Choices for forward and prior models should be entered as arrays

separated by commas

# Currently there is only one option for a prior model,

but this will be updated in the future.

parser.add_argument('forwards', nargs = '*', default = [1])

# 0 is for AT, 1 for bicubic

parser.add_argument('denoisers', nargs = '*', default = [1])

# Read in the user-defined arguments.

args = parser.parse_args()

# Name of high-resolution ground truth.

sys.stdout.flush()

base_path = os.path.dirname(os.path.relpath(__file__))

testimg_file = os.path.join(base_path, 'images/')
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lrimg_file = os.path.join(base_path, 'images/LR images')

resultsimg_file = os.path.join(base_path, 'images/results')

lrname = 'lrL='+str(args.SRval)+str(args.hrname)+'noise'+str(args.sigy)+'.png'

# Read in the high-resolution ground truth.

gt = cv2.imread(os.path.join(testimg_file,args.hrname),0)/255

# Initialize synthetic low-resolution image.

if os.path.exists('LR Images/lrL='+str(args.SRval)+str(args.hrname)+'noise'

+str(args.sigy)+'.png'):

lr = cv2.imread('LR Images/lrL='+str(args.SRval)+str(args.hrname)+'noise'+

str(args.sigy)+'.png',0)/255

else:

lr = conv2d.Agen(gt,args.SRval)/(args.SRval*args.SRval)+

np.random.normal(0,args.sigy,(gt.shape[0]//args.SRval,gt.shape[1]//args.SRval))

lr = np.float64(lr)

cv2.imwrite(os.path.join(lrimg_file, lrname), lr*255)

LR = cv2.imread(os.path.join(lrimg_file, lrname), 0)/255

# Initialize other parameters.

varn = args.sign**2

vary = args.sigy**2

varlam = varn/args.beta

c = varlam/(vary/args.SRval + varlam)

numagents = len(args.denoisers) + len(args.forwards)

# Run the MACE algorithm.

outW, PSNR, maceerr= mace(LR,numagents, c, args)
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cv2.imwrite(os.path.join(resultsimg_file,str(args.iterstop)+

'iters-DnCNNmaceout'+str(args.mu)+'.noise'+str(args.sign)+'.png'),

outW.reshape(LR.shape[0]*args.SRval,LR.shape[0]*args.SRval)*255)

# Load images for metric purposes

gt = cv2.imread(os.path.join(testimg_file,args.hrname),0)

srx = cv2.imread(os.path.join(resultsimg_file,str(args.iterstop)+

'iters-DnCNNmaceout'+str(args.mu)+'.noise'+str(args.sign)+'.png'),0)

print("Path to the reconstruction is: ", resultsimg_file)

# Calculate PSNR for the final reconsruction and return our convergence metric.

ps = psnr.psnr(gt/255,srx/255)

print("PSNR for Our Reconstruction: ", ps)

print("MACE Error for Our Reconstruction: ", maceerr[-1])

#Display our reconstruction

cv2.imshow('Reconstruction', srx)

cv2.waitKey(0)

cv2.destroyAllWindows()

cv2.waitKey(1)
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