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ABSTRACT

In the era of big data, the sheer volume and widespread spatial distribution of information

has been promoting extensive research on distributed optimization over networks. Each

computing unit has access only to a relatively small portion of the entire data and can only

communicate with a relatively small number of neighbors. The goal of the system is to

reach consensus on the optimal parametric model with respect to the entire data among all

computing units. Existing work has provided various decentralized optimization algorithms

for the purpose. However, some important questions remain unclear: (I) what is the intrinsic

connection among different existing algorithms? (II) what is the min-max lower complexity

bound for decentralized algorithms? Can one design an optimal decentralized algorithm

in the sense that it achieves the lower complexity bound? and (III) in the presence of

asynchrony and imperfect communications, can one design linearly convergent decentralized

algorithms?

This thesis aims at addressing the above questions. (I) Abstracting from ad-hoc, specific

solution methods, we propose a unified distributed algorithmic framework and analysis for a

general class of optimization problems over networks. Our method encapsulates several ex-

isting first-order distributed algorithms. Distinguishing features of our scheme are: (a) When

each of the agent’s functions is strongly convex, the algorithm converges at a linear rate,

whose dependence on the agents’ functions and network topology is decoupled; (b) When the

objective function is convex, but not strongly convex, similar decoupling as in (a) is estab-

lished for the coefficient of the proved sublinear rate. This also reveals the role of function

heterogeneity on the convergence rate; (c) The algorithm can adjust the ratio between the

number of communications and computations to achieve a rate (in terms of computations)

independent on the network connectivity; and (d) A by-product of our analysis is a tun-

ing recommendation for several existing (non-accelerated) distributed algorithms, yielding

provably faster (worst-case) convergence rate for the class of problems under consideration.

(II) Referring to lower complexity bounds, the proposed novel family of algorithms, when

equipped with acceleration, are proved to be optimal, that is, they achieve convergence rate

lower bounds. (III) Finally, to make the proposed algorithms practical, we break the syn-
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chronism in the agents’ updates: agents wake up and update without any coordination, using

information only from immediate neighbors with unknown, arbitrary but bounded delays.

Quite remarkably, even in the presence of asynchrony, the proposed algorithmic framework

is proved to converge at a linear rate (resp. sublinear rate) when applied to strongly convex

(resp. non strongly convex) optimization problems.
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1. INTRODUCTION

In the era of big data, the sheer volume of information renders centralized data processing

and storage a formidable task. This challenge has been promoting extensive research on

parallel and distributed optimization. Classic parallel and distributed optimization typi-

cally subsumes a master-worker computational architecture wherein the master nodes/ma-

chines/agents gather the necessary information from the worker nodes and are in charge of

updating the optimization variable/model parameter (cf. Fig. 1.1 -left panel). However, when

a large number of worker nodes are spatially scattered, collecting all this local information

and routing them to the master nodes is often infeasible or inefficient, due to energy, privacy

constraints and/or link/hardware failures. Furthermore, there are some networks such as

surveillance networks or some cyber-physical systems, where a master-worker architecture is

not desirable, as it makes the system prone to central entity failure.

Motivated by these practical challenges, in this dissertation, we consider a decentralized

computational architecture, modeled as a general directed graph that does not possess a

central controller/master node (see Fig. 1.1 -right panel). Each computing unit has access

only to a relatively small portion of the entire data and can only communicate with a

relatively small number of neighbors. The goal of the system is to cooperatively solve the

optimization problem under consideration.

This decentralized computational setting arises naturally when data are acquired and/or

stored at the nodes’ side. Examples include resource allocation, swarm robotic control,

network information processing, and multi-agent reinforcement learning [1 ], [2 ]. In scenarios

where both a master-worker and a decentralized architectures are available, decentralized

optimization/learning has the advantage of being robust to single point failures and being

communication efficient. For instance, [3 ] compared the performance of stochastic gradient

descent on both architectures; they show that, the two implementations have similar total

computational complexity, while the maximal communication cost per node of the algorithm

running on the decentralized architecture is O(degree of network), significantly smaller than

the O(m) of the same scheme running on a master-worker system.
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Figure 1.1. Master-worker (left panel) vs. decentralized (right panel) architectures.

As a general model, we consider the following class of (possibly nonconvex) multi-agent

composite optimization:

min
x∈K

U(x) ,
∑

i∈[m]
fi(x) +G(x), (P)

where [m] , {1, . . . ,m} is the set of agents in the system; fi : Rd → R is the cost function

of agent i, assumed to be smooth but possibly nonconvex; G : Rd → R ∪ {−∞,∞} is a

nonsmooth, convex (extended-value) function; and K ⊆ Rd is a closed convex set. We also

define the smooth part of Problem (P ) as F (x) , ∑
i∈[m] fi(x). Each agent has access only to

its own objective fi but not F while G and K are common to all the agents. The communi-

cation network of all agents is modeled as a fixed, directed or undirected graph, depending

on the application. One important instance of the Problem (P ) is decentralized/distributed

supervised learning; examples include logistic regression, SVM and LASSO, and deep learn-

ing. In these problems, each fi is the empirical risk that measures the mismatch between the

model (parameterized by x) to be learnt, and the data set owned only by agent i. G and K

plays the role of regularization that restricts the solution space to promote some favorable

structure, such as sparsity.

Existing work has provided various decentralized optimization algorithms to solve the

Problem (P ). However, some important questions remain unclear:

(I) what is the intrinsic connection among different existing algorithms? Can one find

a unified algorithmic framework to accommodate most existing algorithms, to enable

comparison among them?
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(II) what is the min-max lower complexity bound for decentralized algorithms? Can one

design an optimal decentralized algorithm in the sense that it achieves the lower com-

plexity bound?

(III) for very large-scale networked system, it becomes inefficient and unrealistic to syn-

chronize the updates of all agents. In addition, imperfect communications happen

frequently as link failures and power outage commonly occur. Thus, can one design

provably convergent distributed algorithms in the presence of asynchrony and imper-

fect communications? In particular, when the objective function U is strongly convex,

can one still achieve linear convergence?

This dissertation aims at addressing the above questions, and our contributions are summa-

rized next.

1.1 Research contribution

(I) Abstracting from ad-hoc, specific solution methods, we propose a unified distributed al-

gorithmic framework and analysis for a general class of optimization problems over networks.

Our method encapsulates several existing first-order distributed algorithms. Distinguishing

features of our scheme are: (a) When each of the agent’s functions is strongly convex, the

algorithm converges at a linear rate, whose dependence on the agents’ functions and network

topology is decoupled; (b) When the objective function is convex, but not strongly convex,

similar decoupling as in (a) is established for the coefficient of the proved sublinear rate. This

also reveals the role of function heterogeneity on the convergence rate; (c) The algorithm can

adjust the ratio between the number of communications and computations to achieve a rate

(in terms of computations) independent on the network connectivity; and (d) A by-product

of our analysis is a tuning recommendation for several existing (non-accelerated) distributed

algorithms, yielding provably faster (worst-case) convergence rate for the class of problems

under consideration.

(II) We propose an accelerated distributed optimization algorithmic framework, by em-

ploying acceleration on both the computations and communications of a novel family of

primal-dual-based distributed algorithms. We provide a unified analysis of its convergence
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rate, measured in terms of the Bregman distance associated to the saddle point reformation

of the distributed optimization problem. The rate of the accelerated algorithms is shown

to be optimal, in the sense that it matches, under the proposed metric, existing complexity

lower bounds of distributed algorithms applicable to such a class of problems and using only

gradient information and gossip communications.

(III) Finally, we break the synchronism in the agents’ updates: agents wake up and update

without any coordination, using information only from immediate neighbors with unknown,

arbitrary but bounded delays, and propose asynchronous distributed multi-agent optimiza-

tion algorithms. Quite remarkably, in the presence of asynchrony, the proposed algorithms

converge provably at a linear rate (resp. sublinear rate) when applied to strongly convex

(resp. non strongly convex) optimization problems.

1.2 Outline of the Dissertation

In Chapter 2 , we discuss a unified distributed algorithmic framework and its convergence

analysis. In Chapter 3 , we discuss the lower complexity bound of distributed optimization for

smooth convex problems with respect to the metric of the Bregman distance, and the accel-

erated optimal distributed optimization algorithmic framework OPTRA. The remaining of

the dissertation focuses on asynchronous decentralized/distributed algorithms; specifically,

in Chapter 4 , we introduce an asynchronous signal tracking algorithm, which is also the

building block of the asynchronous distributed optimization algorithms proposed later; in

Chapter 5 , we present the asynchronous distributed algorithm, ASY-SONATA, for smooth

unconstrained optimization; and in Chapter 6 , we discuss the asynchronous distributed al-

gorithm, ASY-DSCA, for general nonsmooth constrained optimization.

1.3 Notation

Throughout this dissertation, we use the following notation. Given the matrix M ,

(mij)mi,j=1, Mi,: andM:,j denote its i-th row vector and j-th column vector. Given the sequence

{M t}kt=s, with k ≥ s, we define Mk:s , MkMk−1 · · ·M s+1M s, if k > s; and Mk:s , M s

otherwise. Given two matrices (vectors) A and B of same size, by A 4 B we mean that
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B − A is a nonnegative matrix (vector). The dimensions of the all-one vector 1 and the

i-th canonical vector ei will be clear from the context. The indicator function 1[E] of an

event E equals to 1 when the event E is true, and 0 otherwise. We use the convention∑
t∈∅ x

t = 0 and ∏t∈∅ x
t = 1. We use null(·) (resp. span(·)) to denote the null space (resp.

range space) of the matrix argument. The inner product between two matrices X,Y is

defined as 〈X,Y 〉 = trace(X,Y ), while the induced norm is
∥∥∥X∥∥∥ =

∥∥∥X∥∥∥F . We use
∥∥∥ · ∥∥∥2

to denote the spectral norm of a matrix. Given a positive semidefinite matrix Q, we define

〈X,X〉Q = 〈QX,X〉 and
∥∥∥X∥∥∥Q =

√
〈QX,X〉. Given G : Rd → R, the proximal mapping

is defined as proxG(x) , argminy∈K G(y) + 1
2

∥∥∥y − x∥∥∥2
2. Let K∗ denote the set of stationary

solutions of (P ), and dist(x,K∗) , miny∈K∗ ‖x− y‖.
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2. UNIFIED ALGORITHMIC FRAMEWORK FOR

COMPOSITE DECENTRALIZED OPTIMIZATION: ABC

In this chapter, we propose a general unified algorithmic framework for solving Problem (P )

and provide a convergence analysis leveraging the theory of operator splitting. Our results

unify and improve several approaches proposed in the literature of distributed optimization.

Distinguishing features of our framework are: (i) When each of the agent’s functions is

strongly convex, the algorithm converges at a linear rate, whose dependence on the agents’

functions and network topology is decoupled; (ii) When the objective function is convex (but

not strongly convex), similar decoupling as in (i) is established for the coefficient of the

proved sublinear rate. This also reveals the role of function heterogeneity on the conver-

gence rate. (iii) The algorithm can adjust the ratio between the number of communications

and computations to achieve a rate (in terms of computations) independent on the network

connectivity; and (iv) A by-product of our analysis is a tuning recommendation for sev-

eral existing (non-accelerated) distributed algorithms, yielding provably faster (worst-case)

convergence rate for the class of problems under consideration.

The novel results of this chapter have been published in

• Jinming Xu, Ying Sun, Ye Tian, and Gesualdo Scutari. ”A unified contraction analy-

sis of a class of distributed algorithms for composite optimization.” In 2019 IEEE 8th

International Workshop on Computational Advances in Multi-Sensor Adaptive Pro-

cessing (CAMSAP), pp. 485-489. IEEE, 2019.

• Jinming Xu, Ye Tian, Ying Sun, and Gesualdo Scutari. ”A unified algorithmic frame-

work for distributed composite optimization.” In 2020 59th IEEE Conference on Deci-

sion and Control (CDC), pp. 2309-2316. IEEE, 2020.

• Jinming Xu, Ye Tian, Ying Sun, and Gesualdo Scutari. ”Distributed algorithms

for composite optimization: Unified framework and convergence analysis.” To appear

on IEEE Transactions on Signal Processing (TSP), DOI: 10.1109/TSP.2021.3086579,

2021.
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2.1 Introduction

The focus of this chapter is to design a unified (first-order) algorithmic framework for

Problem (P ), over undirected graphs, with provably convergence rate. We assume each

fi : Rd → R is L-smooth and µ-strongly convex, with µ ≥ 0. We start from the literature

review.

2.1.1 Literature Review

When G = 0 and µ > 0, several distributed schemes have been proposed in the literature

that enjoy linear rate; examples include EXTRA [4 ], AugDGM [5 ], [6 ], NEXT [7 ], Harness-

ing [8 ], SONATA [9 ], [10 ], DIGing [11 ], NIDS [12 ], Exact Diffusion [13 ], MSDA [14 ], and the

distributed algorithms in [15 ], [16 ]. When µ = 0 and still G = 0, a sublinear rate of O(1/k) (k

counts the number of gradient evaluations) has been certified for some of the above methods

[5 ], [7 ], [8 ] and other primal-dual schemes, including D-ADMM [17 ]. Results for G 6= 0 are

relatively scarce; to our knowledge, the only two schemes achieving linear rate for strongly

convex (P ) are SONATA [10 ] and the one in [18 ]. Sublinear rate of O(1/k) has been proved

for a variety of schemes, including PG-EXTRA [19 ], D-FBBS [20 ] and DPGA [21 ]. Notice

that convergence of some of these algorithms have been studied under weaker assumptions

on F and network topology than those considered here. For instance, linear rate of [4 ], [7 ],

[10 ], [11 ], [13 ], [18 ] is established for F strongly convex (rather than each fi to be so); [9 ]–[11 ],

[22 ], [23 ] are applicable also to directed graphs, with [9 ]–[11 ] considering also time-varying

topologies.

Even restricted to the setting of this chapter, none of the above studies provide a unified

algorithmic design and convergence analysis. Furthermore, for most of the schemes, there

is a gap between theory and practice: tuning recommendations and rate bounds provided

by the analysis are showed numerically being too conservative. To make these algorithms

work in practice, practitioners often use manual, ad-hoc tunings. This however makes the

comparison of different schemes hard. These issues suggest the following questions:

(Q1) Can one unify the design and analysis of distributed algorithms for Problem (P )?
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(Q2) How do provable rates of such schemes compare each other and with that of the

centralized proximal-gradient algorithm applied to (P )?

On (Q1): Recent efforts toward a better understanding of the taxonomy of distributed

algorithms are the following: [15 ] provides a connection between EXTRA and DIGing; [24 ]

provides a canonical representation of some of the distributed algorithms above–NIDS and

Exact-Diffusion are proved to be equivalent; and [25 ] provides an automatic (numerical)

procedure to prove linear rate of some classes of distributed algorithms. These efforts model

only first-order distributed algorithms applicable to Problem (P ) with G = 0 and employing

a single round of communication and gradient computation. Despite these connections,

convergence of these schemes has been established by ad-hoc analysis, resulting in different

rate expressions and stepsize bounds–Table 2.1 summarizes these results within the setting of

this chapter. For instance, a direct comparison between NIDS [12 ] and Exact Diffusion [13 ]

shows that, although equivalent [15 ], [24 ], they exhibit different theretical rate bounds and

admissible stepsize values.

On (Q2): Question (Q2) has been only partially addressed in the literature. For instance,

MSDA [14 ] uses multiple communication steps to achieve the lower complexity bound of (P )

when µ > 0 and G = 0; the OPTRA algorithm [26 ] achieves the lower bound when µ = 0

(still and G = 0); and the algorithms in [27 ] and [12 ] achieve linear rate and can adjust the

number of communications performed at each iteration to match the rate of the centralized

gradient descent. However it is not clear how to extend (if possible) these methods and their

convergence analysis to the more general composite (G 6= 0) setting (P ). Furthermore, even

when G = 0, the rate results of existing algorithms are not theoretically comparable with

each other–see Table 2.1; they have been obtained under different stepsize range values and

problem assumptions (e.g., on the weight matrices). Similarly, when µ = 0, EXTRA [4 ],

DIGing [8 ], [11 ] D-ADMM [17 ], and PG-EXTRA [19 ], D-FBBS [20 ], DPGA [21 ] achieve a

sublinear rate of O(1/k) for G = 0 and G 6= 0, respectively. However, the rate expression

therein lacks of insight on the dependence of the rate on the key design parameters (e.g., the

stepsize).
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Table 2.1. Convergence Properties of Distributed Algorithms for L-Smooth
and µ-Strongly Convex {fi} (µ > 0).

ρ , σmax(W − J) with J = 1
m

11>, λ̌ , λmin(W ), and Wm , {W |W1 = 1,1>W = 1> and ρ < 1}, and Sm , {W |W = W>}.

Algorithm
Original assumption Stepsize Rate: O

(
δ log(1

ε
)
)

W ∈ F, {fi} literature (upper bound) our result (Corollary 2.5.4.1 ) δ, literature δ, our result

EXTRA [4 ] Sm ∩Wm F scvx O
(
µ(1−ρ)
L2

)
2

2L/(1+λ̌)+µ ≥
1−ρ
L+µ

κ2

1−ρ
κ

1−ρ

NEXT [7 ]
Wm F scvx min{ (1−ρ)2

10Lρ
√
n

√
κ
, 1

2L}
2

L+µ

max
{

1
γµ
,

max
{
κ, 1

(1−ρ)2

}
AugDGM [5 ], [6 ] 1

1−ρ−
√

10Lρ
√
n

√
κγ

}
DIGing [11 ] Wm F scvx O

(
(1−ρ)2

µκ1.5√
n

)
2

L/λmin(W 2)+µ ≥
2λmin(W 2)

L+µ
κ1.5

(1−ρ)2 max
{

κ
λmin(W 2) ,

1
(1−ρ)2

}
Exact Diffusion [13 ] Wm F scvx O

(
µ
L2

)
2

L+µ
κ2

1−ρ max{κ, 1
1−ρ}

Harnessing [8 ] Wm {fi} scvx O
(

(1−ρ)2

κL

)
2

L/λmin(W 2)+µ ≥
2λmin(W 2)

L+µ
κ2

(1−ρ)2 max
{

κ
λmin(W 2) ,

1
(1−ρ)2

}
NIDS [12 ] Sm ∩Wm {fi} scvx 2

L
2

L+µ max{κ, 1
1−ρ} max{κ, 1

1−ρ}

[15 ] (b = 0) Sm ∩Wm {fi} scvx O
(

(1−ρ)2

κL

)
2

L/λmin(W 2)+µ ≥
2λmin(W 2)

L+µ
κ2

(1−ρ)2 max
{

κ
λmin(W 2) ,

1
(1−ρ)2

}
[15 ] (b = 1

γ
W ) Sm ∩Wm {fi} scvx N.A. 2

2L/(1+λ̌)+µ ≥
1−ρ
L+µ N.A. κ

1−ρ

[16 ] Sm++ ∩Wm {fi} scvx (14) in this chapter 2
µ+L/((1−λ̌)λ̌K) ≥

2(1−λ̌)λ̌K

L+µ N.A. max
{

1
1−ρK ,

κ
(1−λ̌)λ̌K

}
[18 ] Sm++ ∩Wm F scvx < λ̌

L
2λ̌

L+µλ̌ >
λ̌
L

> max{κ
λ̌
, 1
α(1−ρ)} max{κ

λ̌
, 1
α(1−ρ)}

our result Sm ∩Wm {fi} scvx 2
L+µ max

{
κ, 1

1−ρ

}
Postilla: Not all the algorithms above were studied under the same setting; the different assumptions on F and W are listed above. The expressions of the stepsize as reported above
for DIGing, Exact Diffusion, Harnessing and NIDS (resp. AugDGM and NEXT) are obtained under the extra assumption that W is invertible (resp. W � 0).

2.1.2 Summary of Contributions

This chapter aims at addressing Q1 and Q2 in the setting (P ), over undirected graphs.

Our major contributions are discussed next. 1) Unified framework and rate anal-

ysis: We propose a general primal-dual distributed algorithmic framework that unifies

both ATC (Adapt-Then-Combine)- and CTA (Combine-Then-Adapt)-based distributed al-

gorithms, solving either smooth (G = 0) or composite optimization problems (G 6= 0). Most

of existing ATC and CTA schemes are special cases of the proposed framework–see Table 2.2.

By product of our unified framework and convergence conditions, several existing schemes,

proposed only to solve smooth instances of (P ) [4 ], [5 ], [7 ], [8 ], [12 ], [13 ], gain now their “prox-

imal” extension and thus become applicable also to composite optimization while enjoying

the same convergence rate (as derived in this chapter) of their “non-proximal” counterparts.

2) Improving upon existing results and tuning recommendations: Under the setting

of this work, our results improve on existing convergence conditions and rate bounds, such as

[4 ], [5 ], [7 ], [8 ], [12 ], [13 ]–Table 2.1 shows the improvement achieved by our analysis in terms

of stepsize bounds and rate expression (see Sec. 2.5.3 for more details). The tightness of our

rates as well as the established ranking of the algorithms based on the new rate expressions
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are supported by numerical results. 3) Rate separation when G 6= 0: For ATC-based

schemes, when µ > 0, the dependency of the linear rate on the agents’ functions and the

network topology are decoupled, matching the rate of the proximal gradient algorithm ap-

plied to (P ). Furthermore, the optimal stepsize value is independent on the network and

matches the optimal choice for the centralized proximal gradient algorithm. When µ = 0,

we provide an explicit expression of the sublinear rate (beyond the “Big-O” decay) revealing

a similar decoupling between optimization and network parameters. This expression sheds

also light on the choice of the stepsize minimizing the rate bound, which is not necessarily

1/L but instead depends on the network parameters as well as the degree of heterogeneity of

the agents’ functions (cf. Sec. 5.3.4 ). This shows that one can achieve faster rates when the

agents’ functions are similar, a fact that happens often in machine learning applications, as

discussed in details in Sec. 2.5.4 . These results are a major departure from existing analyses,

which do not show such a clear separation, and complements those in [12 ] applicable only to

smooth and strongly convex instances of (P ). 4) Balancing computation and commu-

nication: When µ > 0, the proposed scheme can adjust the ratio between the number of

communication and computation steps to improve the overall rate. We show that Chebyshev

acceleration can also be employed to further reduce the number of communication steps per

computation.

2.2 Problem Statement

We study Problem (P ) under the following assumption, capturing either strongly convex

or just convex objectives.

Assumption 2.2.1. (i) Each fi : Rd → R is µ-strongly convex, µ ≥ 0, and L-smooth; (ii)

and G : Rd → R ∪ {±∞} is proper, closed and convex. When µ > 0, define κ , L/µ.

Network model: Agents are embedded in a network, modeled as an undirected, static

graph G = (V , E), where V is the set of nodes (agents) and {i, j} ∈ E if there is an edge

(communication link) between node i and j. We make the blanket assumption that G is

connected. We introduce the following matrices associated with G, which will be used to

build the proposed distributed algorithms.
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Definition 2.2.1 (Gossip matrix). A matrix W , [wij] ∈ Rm×m is said to be compliant to

the graph G = (V , E) if wij 6= 0 for {i, j} ∈ E, and wij = 0 otherwise. The set of such matrices

is denoted by WG.

Definition 2.2.2 (K-hop gossip matrix). Given K ∈ N+, a matrix Ŵ ∈ Rm×m is said to be

a K-hop gossip matrix associated to G = (V , E) if Ŵ = PK(W ), for some W ∈ WG, where

PK(·) is a monic polynomial of order K.

Note that, if W ∈ WG, using wij to linearly combine information between two immediate

neighbor agents i and j corresponds to performing a single communication round. Using

a K-hop matrix W = PK(W ) requires instead K consecutive rounds of communications.

K-hop gossip matrices are crucial to employ acceleration of the communication step, which

will be a key ingredient to exploit the tradeoff between communications and computations

(cf. Sec. 2.5.3 ).

A saddle-point reformulation: Our path to design distributed solution methods for (P )

is to solve a saddle-point reformulation of (P ) via general proximal splitting algorithms that

are implementable over G. Following a standard path in the literature, we introduce local

copies xi ∈ Rd (the i-th one is owned by agent i) of x and functions

f(X) ,
m∑

i=1
fi(xi) and g(X) ,

m∑
i=1

1
m
G(xi), (2.1)

with X , [x1, . . . , xm]> ∈ Rm×d; (P ) can be rewritten as

min
X∈Rm×d

f(X) + g(X), s.t.
√
CX = 0, (2.2)

where C satisfies the following assumption (span(•) and null(•) denote the range space and

null space of the argument vector/matrix, respectively):

Assumption 2.2.2. C ∈ Sm+ and null(C) = span(1).
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Under this condition, the constraint
√
CX = 0 enforces a consensus among xi’s and thus

(2.2 ) is equivalent to (P ). The set of points satisfying the KKT conditions of (2.2 ) reads:

SKKT ,
{
X ∈ Rm×d

∣∣∣ ∃Y ∈ Rm×d such that
√
CX = 0, ∇f(X) +

√
CY ∈ −∂g(X)

}
,

(2.3)

where ∇f(X) , [∇f1(x1),∇f2(x2), ...,∇fm(xm)]> and ∂g(X) denotes the subdifferential of

g at X. Then we have the following standard result.

Lemma 2.2.3. Under Assumption 2.2.1 , x? ∈ Rd is an optimal solution of Problem (P ) if

and only if 1mx?> ∈ SKKT.

Building on Lemma 2.2.3 , in the next section, we propose a general distributed algorithm

for (P ) based on a suitably defined operator splitting solving the KKT system (2.3 ).

2.3 A General Primal-Dual Proximal Algorithm

Table 2.2. Special cases of Algorithm (2.4 ) for specific choices of A,B,C
matrices and given gossip matrix −I ≺ W � I.
Algorithm Problem Choice of the A,B,C # communications

EXTRA [4 ] F A = I+W
2 B = I C = I−W

2 1

NEXT [7 ]/AugDGM [5 ], [6 ] F A = W 2 B = W 2 C = (I −W )2 2

DIGing [11 ]/Harnessing [8 ] F A = W 2 B = I C = (I −W )2 2

NIDS [12 ]/Exact Diffusion [13 ] F A = I+W
2 B = I+W

2 C = I−W
2 1

[15 ] (B = bI) F A = W 2 + γb(I −W ) B = I C = (I −W )2 + γb(I −W ) 2

[16 ] F A = WK B = ∑K−1
i=0 W i C = I −WK K

[18 ] F +G A = W B = I C = α(I −W ) with 0 ≺ W � I and α ≤ 1 1

The proposed general primal-dual proximal algorithm, termed ABC−Algorithm, reads

Xk = proxγg
(
Zk
)
, (2.4a)

Zk+1 = AXk − γB∇f(Xk)− Y k, (2.4b)

Y k+1 = Y k + CZk+1, (2.4c)
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with Z0 ∈ Rm×d and Y 0 = 0. In (2.4a ), proxγg (X) , argminY g(Y ) + 1
2γ

∥∥∥X − Y
∥∥∥2 is

the standard proximal operator. Eq. (2.4a ) and (2.4b ) represent the update of the primal

variables, where A,B ∈ Rm×m are suitably chosen weight matrices, and γ > 0 is the stepsize.

Eq. (2.4c ) represents the update of the dual variables.

Define the set

SFix ,
{
X ∈ Rm×d

∣∣∣CX = 0 and 1>(I − A)X + γ 1>B∇f(X) ∈ −γ 1>∂g(X)
}
. (2.5)

Since all agents share the same G, it is not difficult to check that any fixed point (X?, Z?, Y ?)

of Algorithm (2.4 ) is such that X? ∈ SFix. The following are necessary and sufficient condi-

tions on A,B for X? ∈ SFix to be a solution of (2.2 ).

Assumption 2.3.1. The weight matrices A,B ∈ Rm×m satisfy: 1>A1 = m, and 1>B = 1>.

Lemma 2.3.2. Under Assumption 2.2.2 , SKKT = SFix if and only if A,B satisfy Assump-

tion 2.3.1 .

Proof. (⇐) : Suppose Assumption 2.3.1 hold. First, for any X ∈ SFix, we have span(X) ⊂

null(C) = span(1) and so 1>(I − A)X = 0. Then we have 1>∇f(X) = 1>B∇f(X) ∈

−1>∂g(X), i.e., ∃ ξ ∈ ∂g(X) such that span(∇f(X) + ξ) ⊥ span(1) = null(
√
C), which

implies that span(∇f(X) + ξ) ⊂ span(
√
C). Therefore, ∃Y ∈ Rm×d such that ∇f(X) + ξ =

−
√
CY, i.e., ∇f(X) +

√
CY ∈ −∂g(X). Hence, X ∈ SKKT. Secondly, for any X ∈ SKKT, we

have span(X) ⊂ span(1) and so 1>(I − A)X + γ1>B∇f(X) = γ1>
(
∇f(X) +

√
CY

)
∈

−γ1>∂g(X), i.e., X ∈ SFix.

(⇒:) SKKT = SFix implies that, for any arbitrarily given f , g and X, if span(X) ⊂ span(1) and

1>∇f(X) ∈ −1>∂g(X), it must be 1>(I − A)X + γ1>B∇f(X) ∈ −γ1>∂g(X), which, due

to the arbitrary nature of f , g, and X, further implies 1>(I − A)1 = 0 and 1>B = 1>.

2.3.1 Connections with existing distributed algorithms

Algorithm (2.4 ) contains a gamut of distributed (and centralized) schemes, corresponding

to different choices of the weight matrices A,B and C; any A,B,C ∈ WG leads to distributed

implementations. The use of general matrices A and B (rather the more classical choices
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A = B or B = I) permits a unification of both ATC- and CTA-based updates; this includes

several existing distributed algorithms proposed for special cases of (P), as discussed next.

We begin rewriting (2.4 ) in the following equivalent form by subtracting (2.4b ) at iteration

k + 1 from (2.4b ) at iteration k:

Zk+2 = (I − C)Zk+1 + A(Xk+1 −Xk)− γB(∇f(Xk+1)−∇f(Xk)), (2.6)

where Xk = proxγg
(
Zk
)
.

When G = 0, (2.6 ) reduces to

Xk+2 = (I − C + A)Xk+1 − AXk − γB(∇f(Xk+1)−∇f(Xk)). (2.7)

We show next that the schemes in [4 ], [5 ], [7 ], [8 ], [11 ]–[13 ], [15 ], [16 ], [18 ] are all special

cases of Algorithm (2.4 ). Table 2.2 summarizes the specific choices of A,B and C in (2.4 )

yielding the desired equivalence, where W ∈ WG is the weight matrix used in the target

distributed algorithms. Notice that all these choices satisfy Assumptions 2.2.2 and 2.3.1 .

1) EXTRA [4 ]: EXTRA solves (P ) with G = 0, and reads

Xk+2 = (I +W )Xk+1 − W̃Xk − γ(∇f(Xk+1)−∇f(Xk)), (2.8)

where W, W̃ are two design weight matrices satisfying (I +W )/2 � W̃ � W and W̃ � 0.

Clearly, (2.8 ) is an instance of (2.7 ) [and thus (2.4 )], with A = W̃ , B = I, and C = W̃ −W .

2) NIDS [12 ] / Exact diffusion [13 ], [28 ]: The NIDS (Exact Diffusion) algorithm applies

to (P ) with G = 0, and reads

Xk+2 = I +W

2 (2Xk+1 −Xk − γ(∇f(Xk+1)−∇f(Xk))),

which is an instance of our general scheme, with A = B = (I +W )/2 and C = (I −W )/2.
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3) NEXT [7 ] & AugDGM [5 ]: The gradient tracking-based algorithms NEXT/AugDGM

applied to (P ) with G = 0, are:

Xk+1 = W (Xk − γY k), (2.9a)

Y k+1 = W (Y k +∇f(Xk+1)−∇f(Xk)). (2.9b)

Eliminating the Y -variable, (2.9 ) can be rewritten as:

Xk+2 = 2WXk+1 −W 2Xk − γW 2(∇f(Xk+1)−∇f(Xk)),

which is clearly an instance of our general scheme (2.4 ), with A = B = W 2, C = (I −

W )2. Notice that distributed gradient tracking schemes in the so-called CTA form are also

special cases of Algorithm (2.4 ). For instance, one can show that the DIGing algorithm [11 ]

corresponds to the setting A = W 2, B = I, and C = (I −W )2.

4) General primal-dual scheme [15 ], [16 ]: A general distributed primal-dual algorithm

was proposed in [15 ] for (P ) with G = 0 as follows

Xk+1 = WXk − γ(∇f(Xk) + Y k), (2.10a)

Y k+1 = Y k − (I −W )(∇f(Xk) + Y k −BXk), (2.10b)

where B can be bI or bW for some positive constant b > 0 therein. Eliminating the Y -

variable, (2.10 ) reduces to

Xk+2 = 2WXk+1 − (W 2 + γ(I −W )B)Xk − γ(∇f(Xk+1)−∇f(Xk)),

which corresponds to the proposed algorithm, with A = W 2 + γ(I − W )B,B = I, C =

(I −W )2 + γ(I −W )B.
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Similarly, building on a general augmented Lagrangian, another general primal-dual al-

gorithm was proposed in [16 ] for (P ) with G = 0, which reads

Xk+1 = (I − αB)KXk − αC(∇f(Xk) + A>Y k), (2.11a)

Y k+1 = Y k + βAXk+1, (2.11b)

where A,B,C are certain weight matrices therein and C = ∑K−1
i=0 (I − αB)i, with K being

the number of communication steps performed at each iteration. Eliminating Y yields

Xk+2 = (I + (I − αB)K − αβCA>A)Xk+1 − (I − αB)KXk − αC(∇f(Xk+1)−∇f(Xk)),

which corresponds to Algorithm (2.4 ) with A = (I − αB)K , B = C,C = αβCA>A. Notice

that, letting W = I − αB and B = βA>A, we have A = WK , B = ∑K−1
i=0 W i and C =

(I −W )∑K−1
i=0 W i = I −WK , which satisfy Assumption 2.3.1 .

6) Decentralized proximal algorithm [18 ]: A proximal algorithm is proposed to solve (P )

with G 6= 0, which reads

Zk+2 = (I − αB)Zk+1 + (I −B)(Xk+1 −Xk)− γ(∇f(Xk+1)−∇f(Xk)),

whereXk = proxγg
(
Zk
)
and 0 � B ≺ I is some matrix ensuring consensus. It is easy to show

that the above algorithm corresponds to Algorithm (2.4 ) with A = I − B, B = I, C = αB.

Choosing W = I − B, we have A = W,B = I and C = α(I −W ), which clearly satisfy

Assumption 2.3.1 . Note that, since B = I, this algorithm (and thus [18 ]) is of CTA form

and cannot model ATC-based schemes, such as NEXT/AugDGM and NIDS/Exact Diffusion

listed in Table 2.2.

2.4 An Operator Splitting Interpretation

Our convergence analysis builds on an equivalent fixed-point reformulation of Algorithm

(2.4 ), whose mapping enjoys a favorable decomposition in terms of contractive and nonex-

pansive operators. We begin introducing the following assumptions.
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Assumption 2.4.1. The weight matrices satisfy:

i) A = BD;

ii) B and C commute.

Under the above assumption, the following lemma provides an operator splitting form

for Algorithm (2.4 ).

Proposition 2.4.1. Given the sequence {(Zk, Xk, Y k)}k∈N+ generated by Algorithm (2.4 ),

define Uk , [(Zk)>, (Y k)>]>. Under Assumption 2.4.1 , the following hold:

1)
Uk =

B 0

0 B
√
C

 Ũk, with Ũk ,

 Z̃k

√
CỸ k

 ; (2.12)

and {Ũk}k satisfies the following dynamics

Ũk+1 =

 (D − γ∇f) ◦ proxγg ◦B −
√
C

√
C(D − γ∇f) ◦ proxγg ◦B I − C


︸ ︷︷ ︸

T

Ũk, k ≥ 1, (2.13)

with initialization Z̃1 = Ỹ 1 = (D − γ∇f)(X0);

2) The operator T can be decomposed as

T =

 I −
√
C

√
C I − C


︸ ︷︷ ︸

,TC

D − γ∇f 0

0 I


︸ ︷︷ ︸

,Tf

proxγg 0

0 I


︸ ︷︷ ︸

,Tg

B 0

0 I


︸ ︷︷ ︸

,TB

, (2.14)

where TC and TB are the operators associated with communications while Tf and Tg are the

gradient and proximal operators, respectively;

3) Every fixed point Ũ? , [Z̃?,
√
CỸ ?] of T is such that X? , proxγg(BZ̃?) ∈ SFix. Therefore,

X? = 1x?>, where x? is an optimal solution of (P ).
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Proof. From (2.4 ), we have Zk+1 = (I−C)Zk +A(Xk−Xk−1)−γB(∇f(Xk)−∇f(Xk−1)),

which applied recursively yields

Zk+1

=
k∑
t=1

(I − C)k−t
(
A(X t −X t−1)− γB(∇f(X t)−∇f(X t−1)

)
+ (I − C)k

(
AX0 − γB∇f(X0)

)
(∗)=B

(
k∑
t=1

(I − C)k−t
(
D(X t −X t−1)− γ(∇f(X t)−∇f(X t−1)

)
+ (I − C)k

(
DX0 − γ∇f(X0)

))

=B
k∑
t=0

(I − C)k−t(D − γ∇f)(X t)−B
k−1∑
t=0

(I − C)k−1−t(D − γ∇f)(X t),

where in (∗) we used Assumption 2.5.3 i) and 2.5.3 iv).

Define Z̃k such that Zk = BZ̃k, k ≥ 1; and let

Ỹ k+1 ,
k+1∑
t=1

Z̃t =
k∑
t=0

(I − C)k−t(D − γ∇f)(X t), (2.15)

for k ≥ 0. It is clear from the definition of Z̃ and Ỹ that

Z̃k+1

Ỹ k+1

 =

(D − γ∇f) ◦ proxγg ◦B −C

(D − γ∇f) ◦ proxγg ◦B I − C


Z̃k

Ỹ k

 . (2.16)

Introducing Ũk as defined in (2.12 ), it follows from (2.16 ) that Ũk obeys the dynamics

(2.13 ). The equation Y k = BCỸ k follows readily from (2.4c ) and (2.15 ). Finally, the

decomposition of the transition matrix T can be checked by inspection.

We prove now the last statement of the theorem. For every fixed point Ũ? , [Z̃?,
√
CỸ ?]

of T , we have span(Z̃?) ⊂ span(1) and

−1>
(
B(D − γ∇f) ◦ proxγg ◦B

(
Z̃?
))

+ 1>BZ̃? = 0. (2.17)

For X? , proxγg(BZ̃?), it holds span(X?) ⊂ span(1) and

BZ̃? ∈ X? + γ∂g(X?). (2.18)
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Combining (2.17 ) and (2.18 ) leads to 1>(I − A)X? + γ 1>B∇f(X?) ∈ −γ 1>∂g(X?), which

is equivalent to X? ∈ SFix. The proof follows from Lemma 2.2.3 and 2.3.2 .

We summarize next the main properties of the operators TC , Tf , Tg, and TB, which will

be instrumental to establish linear convergence rate of the proposed algorithm. We will use

the following notation: given X ∈ R2m×d, we denote by (X)u and (X)` its upper and lower

m × d matrix-block; for any matrix A ∈ Rm×m, we denote ΛA = diag(A, I) ∈ R2m×2m and

VA = diag(I, A) ∈ R2m×2m.

Lemma 2.4.2 (Contraction of TC). The operator TC satisfies

∥∥∥TC X − TC Y ∥∥∥ΛI−C
=
∥∥∥X − Y ∥∥∥VI−C

, ∀X,Y ∈ R2m×d.

Proof. The result comes readily from the definition of TC and the fact that T>
C ΛI−CTC =

VI−C .

Lemma 2.4.3 (Contraction of Tf ). Consider the operator Tf under Assumption 2.2.1 , with

µ > 0, and 0 ≺ Σ � I. If 0 < γ ≤ γ?(D) with

γ?(D) , 2λmin(D)
L+ µ · λmin(D) , (2.19)

then ∥∥∥(TfX)u − (TfY )u
∥∥∥2 ≤ q(D, γ)

∥∥∥(X)u − (Y )u
∥∥∥2
D,

∀X,Y ∈ R2m×d, where
q(D, γ) = 1− 2γL

κ+ λmin(D) . (2.20)

The stepsize minimizing the contraction factor is γ = γ?(D), resulting in the smallest

achievable q(D, γ), given by

q?(D) ,
(
κ− λmin(D)
κ+ λmin(D)

)2

. (2.21)
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Proof. Since 0 ≺ D � I, we have

∥∥∥DX − γ∇f(X)−DY + γ∇f(Y )
∥∥∥2

≤
∥∥∥DX − γ∇f(X)−DY + γ∇f(Y )

∥∥∥2
D−1

=
∥∥∥X − Y ∥∥∥2

D − 2γ 〈X − Y,∇f(X)−∇f(Y )〉+ γ2
∥∥∥∇f(X)−∇f(Y )

∥∥∥2
D−1 .

(2.22)

Then we proceed to lower bound 〈X − Y,∇f(X)−∇f(Y )〉 . Let X =
√
DX, f̃(X) =

f(
√
D−1X). Given any two points X,Y ∈ Rm×d, we have

〈X − Y,∇f(X)−∇f(Y )〉

=
〈√

D−1X −
√
D−1Y,∇f(

√
D−1X)−∇f(

√
D−1Y )

〉
=
〈
X − Y,∇f̃(X)−∇f̃(Y )

〉
(∗)
≥ Lµ

L+ µ

∥∥∥X − Y ∥∥∥2 + 1
L+ µ

∥∥∥∇f̃(X)−∇f̃(Y )
∥∥∥2

= Lµ

L+ µ

∥∥∥X − Y ∥∥∥2
D + 1

L+ µ

∥∥∥∇f(X)−∇f(Y )
∥∥∥2
D−1

where (∗) is due to [29 , Theorem 2.1.12], with L = L
λmin(D) and µ = µ

λmax(D) . Thus, knowing

that 0 < γ ≤ 2λmin(D)
L+µ·η(D) = 2

L+µ and continuing from (2.22 ), we have

∥∥∥DX − γ∇f(X)−DY + γ∇f(Y )
∥∥∥2

≤
(

1− 2γ Lµ

L+ µ

)∥∥∥X − Y ∥∥∥2
D − ( 2γ

L+ µ
− γ2)

∥∥∥∇f(X)−∇f(Y )
∥∥∥2
D−1

≤
(

1− 2γ Lµ

L+ µ

)∥∥∥X − Y ∥∥∥2
D.

In particular, if we set γ = γ?, we have 1− 2γ? Lµ
L+µ =

(
L−µ
L+µ

)2
=
(
κ−η(D)
κ+η(D)

)2
.

We conclude with the properties of Tg and TB, which follow readily from the non-

expansive property of the proximal operator and the linear nature of TB, respectively.

Lemma 2.4.4 (Non-expansiveness of Tg). The operator Tg satisfies: ∀X,Y ∈ R2m×d,

∥∥∥(TgX)u − (Tg Y )u
∥∥∥2 ≤

∥∥∥(X)u − (Y )u
∥∥∥2, (TgX)` = (X)`.
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Lemma 2.4.5 (Non-expansiveness of TB). The operator TB satisfies: ∀X ∈ R2m×d,

∥∥∥(TBX)u
∥∥∥2 =

∥∥∥(X)u
∥∥∥2
B2 , (TgX)` = (X)`.

2.5 Linear Convergence

In this section we prove linear convergence of Algorithm (2.4 ), under strong convexity of

each fi. Since most of the algorithms in the literature considered only the case G = 0, we

begin with that setting (cf. Sec. 2.5.1 ). Sec.2.5.2 extends our analysis to G 6= 0. Finally,

we comment our results in Sec.2.5.3 .

2.5.1 Convergence under G = 0

Consider Problem (P ) with G = 0. Algorithm (2.4 ) reduces to

Xk+1 = AXk − γB∇f(Xk)− Y k, (2.23a)

Y k+1 = Y k + CXk+1, (2.23b)

with X0 ∈ Rm×d and Y 0 = 0.

Theorem 2.5.2 below establishes linear convergence of Algorithm (2.23 ) under the follow-

ing assumption on A,B and C.

Assumption 2.5.1. The weight matrices A ∈ Rm×m, B, C ∈ Sm and the stepsize γ satisfy:

i) A = BD with D ∈ Sm and 0 ≺ D � I;

ii) 1>D1 = m and 1>B = 1>;

iii) 0 � C ≺ I and null(C) = span(1);

iv) B and C commute;

v) q(D, γ)AB ≺ (I − C) and 0 < γ ≤ γ?(D),

where q(D, γ) and γ?(D) are defined in (2.20 ) and (2.19 ), respectively.
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Assumption 2.5.1 is quite mild and satisfied by a variety of algorithms. For instance, all

the algorithms in Table 2.2 can satisfy it with proper choices ofW . The commuting property

of B and C is trivially satisfied when B,C ∈ PK(W ), for some given W ∈ WG.

Theorem 2.5.2 (Linear rate for TCTfTB). Consider Problem (P ) under Assumption 2.2.1 ,

µ > 0, and G = 0, with solution x?. Let {(Xk, Y k)}k∈N+ be the sequence generated by

Algorithm (2.23 ) under Assumption 2.5.1 . Then,
∥∥∥Xk − 1x?>

∥∥∥2 = O(δk), with

δ , max
(
q(D, γ)λmax(AB(I − C)−1), 1− λ2(C)

)
, (2.24)

where q(D, γ) is defined in (2.20 ).

Proof. Since (2.23 ) corresponds to Algorithm (2.4 ) with G = 0, by Assumption 2.5.1 and

Prop. 2.4.1 , (2.23 ) can be equivalently rewritten in the form (2.13 ), with Tg = I; and thus the

Z- and X-variables coincide. Define X? = Z? , 1x?>. Let Ũk = [(Z̃k)>, (
√
CỸ k)>]> be the

auxiliary sequence defined in (2.12 ) with Ũ? , [Z̃?,
√
CỸ ?] the fixed point of T = TCTfTB.

Then, we have

∥∥∥Xk −X?
∥∥∥2 =

∥∥∥Zk − Z?
∥∥∥2

(2.12 )
≤

∥∥∥Z̃k − Z̃?
∥∥∥2
B2

≤ λmax(B2)
λmin(I − C)

∥∥∥Z̃k − Z̃?
∥∥∥2
I−C ≤

λmax(B2)
λmin(I − C)

∥∥∥Ũk − Ũ?
∥∥∥2

ΛI−C
.

(2.25)

Using (2.13 ) in (2.25 ), it is sufficient to prove that T is contractive w.r.t. the norm
∥∥∥ · ∥∥∥ΛI−C

.

To this end, consider the following chain of inequalities: ∀X,Y ∈ R2m×d, X`, Y` ∈ span(
√
C),

∥∥∥T X − T Y ∥∥∥2
ΛI−C

=
∥∥∥TC ◦ Tf ◦ TB (X)− TC ◦ Tf ◦ TB (Y )

∥∥∥2
ΛI−C

Lem. 2.4.2 =
∥∥∥Tf ◦ TB (X)− Tf ◦ TB (Y )

∥∥∥2
VI−C

Lem. 2.4.3 

≤
∥∥∥TB (X)− TB (Y )

∥∥∥2
diag(q(D,γ)D, I−C)

Lem. 2.4.5 =
∥∥∥X − Y ∥∥∥2

diag(q(D,γ)BDB, I−C).
(2.26)
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Note that: i) for all (Z)u ∈ Rm×d,

‖(Z)u‖2
BDB = ‖(I − C) 1

2 (Z)u‖2
(I−C)−1/2BDB(I−C)−1/2

≤ λmax(AB(I − C)−1)‖(I − C) 1
2 (Z)u‖2 = λmax(AB(I − C)−1)

∥∥∥(Z)u
∥∥∥2
I−C ;

and ii) X`, Y` ∈ span(
√
C). The upper block term of the RHS of (2.26 ) can be upper bounded

by q(D, γ)λmax(AB(I −C)−1)
∥∥∥Xu−Yu

∥∥∥2
ΛI−C

; and the lower block term of that can be upper

bounded by (1−λ2(C))
∥∥∥X`−Y`

∥∥∥2. Together we have
∥∥∥T X−T Y ∥∥∥2

ΛI−C
≤ δ

∥∥∥X−Y ∥∥∥2
ΛI−C

.

Note that Theorem 2.5.2 is the first unified convergence result stating linear rate for

ATC (corresponding to D = I) and CTA (corresponding to B = I) schemes. Because

of this generality and consistency with existing conditions for the convergence of CTA-

based schemes, the choice of the stepsize satisfying Assumption 2.5.1 might depend on some

network parameters. This is due to the fact that λmax(AB(I − C)−1) ≥ 1, since (I −

C)−1/2AB(I − C)−1/21 = 1. Hence, when λmax(AB(I − C)−1) > 1, the stepsize needs to be

leveraged to guarantee that q(D, γ)λmax(AB(I − C)−1) < 1, reducing the range of feasible

values. For instance, this happens for i) CTA schemes (B = I) such that D � I − C does

not hold; of ii) for ATC schemes (D = I) that do not satisfy the condition B2 � I − C.

Corollary 2.5.2.1 below provides a condition on the weight matrices enlarging the range

of the stepsize to [0, γ?(D)]. Furthermore, the tuning minimizing the contraction factor δ in

(2.24 ) is derived.

Corollary 2.5.2.1. Consider the setting of Theorem 2.5.2 , and further assume AB � I−C.

Then,
∥∥∥Xk − 1x?>

∥∥∥2 = O(δk), with

δ = max
(
q(D, γ), 1− λ2(C)

)
. (2.27)

The stepsize that minimizes (2.27 ) is γ = γ?(D) = 2λmin(D)
L+µ·λmin(D) , resulting in the contraction

factor

δ = max
(κ− λmin(D)

κ+ λmin(D)

)2

, 1− λ2(C)
 . (2.28)

The smallest δ is achieved choosing Σ = I, which yields γ = γ? , 2
µ+L and
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δ? = max
{(

κ− 1
κ+ 1

)2
, 1− λ2(C)

}
. (2.29)

Proof. Since (I−C)−1/2AB(I−C)−1/21 = 1 and AB � I−C, we have λmax(AB(I−C)−1) =

1, which together with (2.24 ) yield (2.27 ). Eq. (2.28 ) follows readily from the decreasing

property of q(D, γ) on γ ∈ (0, γ?(D)], for any given 0 ≺ D � I. Finally, (2.29 ) is the result

of the following optimization problem: maxD∈Sm λmin(D), subject to 0 ≺ Σ � I [Assumption

2.5.1 (i)] and 1>Σ1 = m [Assumption 2.5.1 (ii)], whose solution is D = I.

2.5.2 The general case G 6= 0

We establish now linear convergence of Algorithm (2.4 ) applied to Problem (P ), with

G 6= 0. We introduce the following assumption similar to Assumption 2.5.1 for G = 0.

Assumption 2.5.3. The weight matrices A ∈ Rm×m, B, C ∈ Sm and the stepsize γ satisfy:

i) A = BD with D ∈ Sm and 0 ≺ D � I;

ii) 1>D1 = m and 1>B = 1>;

iii) 0 � C ≺ I and null(C) = span(1);

iv) B and C commute;

v) q(D, γ)B2 ≺ (I − C) and 0 < γ ≤ γ?(D),

where q(D, γ) and γ?(D) are defined in (2.20 ) and (2.19 ), respectively.

Condition v) in Assumption 2.5.3 is slightly stronger than its counterpart in Assumption

2.5.1 (as BDB ≺ B2). This is due to the complication of dealing with the nonsmooth

function G (the presence of the proximal operator Tg). However, as shown in Corollary

2.5.4.1 below, this does not affect the smallest achievable contraction rate, which coincides

with the one attainable when G = 0. Note that Assumption 2.5.3 is satisfied by all the

algorithms in Table 2.2.
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Theorem 2.5.4 (Linear rate for T = TCTfTgTB). Consider Problem (P ) under Assump-

tion 2.2.1 with µ > 0, whose optimal solution is x?. Let {(Xk, Zk, Y k)}k≥0 be the sequence

generated by Algorithm (2.4 ) under Assumption 2.5.3 . Then
∥∥∥Xk − 1x?>

∥∥∥2 = O(δk), with

δ , max
(
q(D, γ)λmax(B2(I − C)−1), 1− λ2(C)

)
, (2.30)

where q(D, γ) is defined in (2.20 ).

The proof of Theorem 2.5.4 is similar to that of Theorem 2.5.2 and can be found in the

supplementary material.

Corollary 2.5.4.1. Consider the setting of Theorem 2.5.4 , and further assume B2 � I−C.

Then, the same conclusions as in Corollary 2.5.2.1 hold for Algorithm (2.4 ).

Remark: We point out that linear convergence of Algorithm (2.4 ) can be established re-

quiring that only F is strongly convex (rather than all fi’s). The proof of this result can

be found in the supplementary material. However, differently from (2.30 ), the proved con-

vergence rate does show a coupling between optimization and network parameters. This is

consistent with existing results in the literature.

2.5.3 Discussion

- Unified convergence conditions Theorems 2.5.2 and 2.5.4 offer a unified platform for

the analysis and design of a gamut of linearly convergent algorithms–all the schemes, new

and old, that can be written in the form (2.23 ) and (2.4 ) satisfying Assumption 2.5.1 and

2.5.3 , respectively–e.g., all the algorithms listed in Table 2.1. In particular, our convergence

results embrace both ATC and CTA algorithms, solving either smooth (G = 0) or composite

(G 6= 0) optimization problems. This improves the results in [18 ] and [30 ].

- On the rate expression

We comment the expression of the rate focusing on Theorem 2.5.4 and Corollary 2.5.4.1 

(G 6= 0); same conclusions can be drawn for Algorithm (2.23 ) (Theorem 2.5.2 and Corollary

2.5.2.1 ). Theorem 2.5.4 provides the explicit expression of the linear rate provably achievable

by Algorithm (2.4 ), for a given choice of the weight matrices A, B and C and stepsize γ
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(satisfying Assumption 2.5.3 ). In general, this rate depends on both optimization parameters

(L and µ) and network-related quantities (A, B and C); furthermore, feasible stepsize values

and network parameters are coupled by Assumption 2.5.3 v). CTA-based schemes: This

is consistent with existing convergence results of CTA-based algorithms (known only for

G = 0), which are special cases of Algorithm (2.23 ). For instance, consider EXTRA [4 ] and

DIGing [11 ] (corresponding to Algorithm (2.23 ) with B = I, cf. Table 2.1): γ, C and D

are coupled via the condition q(D, γ) ≺ (I −C), instrumental to achieve linear rate. ATC-

based schemes: For algorithms in the ATC form, i.e., A = B, less restrictive conditions

are required. For instance, when Assumption 2.5.3 v) is satisfied by B2 ≺ I −C–a condition

that is met by several algorithms in Table 2.1–the stepsize can be chosen in the larger region

[0, γ?(D)], resulting in the smaller rate max(q(D, γ), 1 − λ2(C)) ≥ max(q?(D), 1 − λ2(C))

(recall that, in such a case, λmax(B2(I−C)−1) = 1), where the lower bound is achieved when

γ = γ?(D) (cf. Corollary 2.5.4.1 ).

On the other hand, when the algorithm parameters can be freely designed, Corollary

2.5.2.1 offers the “optimal” choice, resulting in the smallest contraction factor, as in (2.29 ).

This instance enjoys two desirable properties, namely:

(i) Network-independent stepsize: The stepsize γ? in Corollary 2.5.2.1 does not de-

pend on the network parameters but only on the optimization and its value coincides with

the optimal stepsize of the centralized proximal-gradient algorithm. This is a major advan-

tage over current distributed schemes applicable to (P ) (but with G 6= 0) and complements

the results in [12 ], whose algorithm however cannot deal with the non-smooth term G and

use more stringent stepsize.

(ii) Rate-separation: The rate (2.29 ) is determined by the worst rate between the one

due to the communication 1− λ2(C) and that of the optimization ((κ− 1)/(κ + 1))2. This

separation is the key enabler for our distributed scheme to achieve the convergence rate of

the centralized proximal gradient algorithm-we elaborate on this property next.

- Balancing computation and communications Note that ρopt , (κ − 1)/(κ + 1) is

the rate of the centralized proximal-gradient algorithm applied to (P ), under Assumption

1. This means that if the network is “sufficiently connected”, specifically 1 − λ2(C) ≤

ρ2
opt, the proposed algorithm converges at the desired linear rate ρopt. On the other hand,
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when 1 − λ2(C) > ρ2
opt, one can still achieve the centralized rate ρopt by enabling multiple

(finite) rounds of communications per proximal gradient evaluations. Two strategies are:

1) performing multiple rounds of consensus using each time the same weight matrix; or 2)

employing acceleration via Chebyshev polynomials. 1) Multiple rounds of consensus:

Given a weight matrix W ∈ WG, as concrete example, consider the case W ∈ Sm++ and

A = B = I − C = WK , with K ≥ 1, which implies B2 � I − C (cf. Corollary 2.5.2.1 ). The

resulting algorithm will require K rounds of communications (each of them using W ) per

gradient evaluation. Denote ρcom , λmax(W −J); we have 1−λ2(C) = λmax(WK−J) = ρKcom.

The value of K is chosen to minimize the resulting rate λ [cf. (2.29 )], i.e., such that ρKcom ≤

ρ2
opt, which leads to K = dlogρcom

(ρ2
opt)e. 2) Chebyshev acceleration: To further reduce

the communication cost, we can leverage Chebyshev acceleration [31 ]. As specific example,

consider the case W ∈ Sm is invertible; we set A = PK(W ) and PK(1) = 1 (the latter is to

ensure the double stochasticity of A), with PK ∈ PK , where PK denotes the set of polynomials

with degree less than or equal than K. This leads to 1 − λ2(C) = λmax(A2 − J). The idea

of Chebyshev acceleration is to find the “optimal” polynomial PK such that λmax(A2− J) is

minimized, i.e., ρC , minPK∈PK ,PK(1)=1 maxt∈[−ρcom,ρcom] |PK(t)|. The optimal solution of this

problem is PK(x) = TK( x
ρcom

)/TK( 1
ρcom

) [31 , Theorem 6.2], with α = −ρcom, β = ρcom, γ = 1

(which are certain parameters therein), where TK is the K-order Chebyshev polynomials

that can be computed in a distributed manner via the following iterates [14 ], [31 ]: Tk+1(ξ) =

2ξ Tk(ξ) − Tk−1(ξ), k ≥ 1, with T0(ξ) = 1, T1(ξ) = ξ. Also, invoking [31 , Corollary 6.3], we

have ρC = 2cK

1+c2K , where c =
√
ϑ−1√
ϑ+1 , ϑ = 1+ρcom

1−ρcom
. Thus, the minimum value of K that leads

to ρC ≤ ρ2
opt can be obtained as K =

⌈
logc

(
1/ρ2

opt +
√

1/ρ4
opt − 1

)⌉
. Note that to be used,

A must be returned as nonsingular. More details of Chebyshev acceleration applied to the

ABC-Algorithm along with some numerical results can be found in [32 ].

- Improvement upon existing results and tuning recommendations Theorems 2.5.2 

and 2.5.4 improve upon existing convergence conditions and rate bounds (when restricted to

our setting, cf. Assumptions 2.2.1 and 2.2.2 ). A comparison with notable distributed algo-

rithms in the literature is presented in Table 2.1. Since all the schemes therein are special

cases of Algorithm (2.23 ) [with the exception of [18 ] that is an instance of Algorithm (2.4 )]

(cf. Table 2.2) and satisfy Assumption 2.5.1 (or Assumption 2.5.3 ), one can readily apply
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Theorem 2.5.2 (or Theorem 2.5.4 ) and determine, for each of them, a new stepsize range

and achievable rate: the column “Stepsize/our result (optimal, Corollary 2.5.2.1 )” reports

the stepsize value γ?(D) for the different algorithms (i.e., given B, C and D) while the

column “Rate/δ our result” shows the resulting provably rate, as given in (2.28 ). A direct

comparison with the columns “Stepsize/literature (upper bound)” and “Rate/δ, literature”

respectively, shows that our theorems provide strictly larger ranges for the stepsize of EX-

TRA [4 ] NEXT [7 ]/AugDGM [5 ], [33 ] and Exact Diffusion [13 ], and faster linear rates for

all the algorithms in the table.

Table 2.1 also serves as comparison of the convergence rates provably achievable by the

different algorithms. For instance, we notice that, although EXTRA and NIDS both require

one communication per gradient evaluation, NIDS is provably faster, achieving a linear rate of

δ? log(1/ε), with δ? defined in (2.29 ), versus the linear rate (κ/(1− ρ)) log(1/ε) of EXTRA.

In Sec. 2.7.1 we show that the ranking based on our theoretical findings in Table 2.1 is

reflected by our numerical experiments–see Fig. 2.3 . For the sake of fairness, we remark

one more time that, the stepsize and rate expressions of some of the algorithms listed in

Table 2.1 were obtained under weaker conditions on F and W than Assumptions 2.2.1 and

2.2.2 .

- Generalizing existing algorithms to the case G 6= 0 All the algorithms listed in

Table 2.1 but [7 ] and [18 ] are designed for Problem (P ) with G = 0. Since they are special

cases of our general framework and Algorithm (2.4 ) can deal with the case G 6= 0, they

inherit the same feature. Their “proximal” extension is given by (2.6 ), with the matrices

A, B and C as in original algorithm (cf. Table 2.2). Theorem 2.5.4 and Corollary 2.5.4.1 

show that these new algorithms enjoy the same convergence rates of their “no-proximal”

counterpart. For instance, consider AugDGM, corresponding to Algorithm (2.23 ) with A =

B = W 2, D = I, C = (I−W )2; it clearly satisfies Assumption 2.5.3 forW � 0. Its extension

to the general optimization with G 6= 0 comes readily substituting these choices of A,B,C

into (2.6 ) (or Algorithm 2.23 ), yielding

Xk+1 = proxγg
(
Zk+1

)
,

Zk+2 = (2W −W 2)Zk+1 +W 2(Xk+1 −Xk)− γ W 2(∇f(Xk+1)−∇f(Xk)).
(2.31)
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As second example, consider the primal-dual scheme such as NIDS and Exact Diffusion; they

correspond to Algorithm (2.23 ) with A = B = I+W
2 , C = I−W

2 . Similarly, we can introduce

their “proximal” version as follows:

Xk = proxγg
(
Zk
)
,

Zk+2 = I +W

2
(
Zk+1 +Xk+1 −Xk − γ(∇f(Xk+1)−∇f(Xk)

)
.

(2.32)

2.5.4 Application to statistical learning

We customize our rate results to the instance of (P ) modeling statistical learning tasks

over networks. This is an example where the local strong convexity and smoothness constants

of the agent functions are different; still, we will show that, when the data sets across the

agents are sufficiently similar, the rate achieved by the proposed algorithm is within a range

of Õ(1/
√
n) of that of the centralized counterpart.

Suppose each agent i has access to n i.i.d. samples {zj}j∈Di following the distribution P .

The goal is to learn a model parameter x using the samples from all the agents; mathemat-

ically, we aim at solving the following empirical risk minimization problem:

min
x∈Rd

∑
i∈[m]

∑
j∈Di

`(x; zj),

where `(x; zj) is the loss function measuring the fitness of the statistical model parameterized

by x to sample zj; we assume each `(x; zj) to be quadratic in x and satisfy µ̃I � ∇2`(x; z) �

L̃I, for all z. This problem is an instance of (P ) with fi(x) , ∑
j∈Di `(x; zj). Denote the largest

and the smallest eigenvalues of ∇2fi(x) (resp. ∇2F (x)) as Li and µi (resp. L̄ and µ̄). Then,

each fi(x) is µ , mini∈[m] µi-strongly convex and L , maxi∈[m] Li-smooth. Recalling κ =

L/µ, the rate in (2.29 ) reduces to ((κ− 1)/(κ+ 1))2, when 1 − λ2(C) ≤ ((κ− 1)/(κ+ 1))2

(possibly using multiple rounds of communications), resulting in O (κ log (1/ε)) overall num-

42



ber of gradient evaluations. On the other hand, the complexity of the centralized gradient

descent algorithm reads O
(
L̄
µ̄

log
(

1
ε

))
. To compare these two quantities, compute

∣∣∣∣∣Lµ − L̄

µ̄

∣∣∣∣∣ =

∣∣∣Lµ̄− L̄µ∣∣∣
µµ̄

≤

∣∣∣L− L̄∣∣∣ µ̄+ L̄ |µ̄− µ|
µ̃2

≤ 1
µ̃2

(
µ̄max

i∈[m]

∣∣∣Li − L̄
∣∣∣+ L̄max

i∈[m]
|µi − µ̄|

)
(a)
≤ µ̄+ L̄

µ̃2

√
32L̃2 log(dm/δ)

n
, with probability 1− δ

≤ 8
√

2 L̃
2

µ̃2

√
log(dm/δ)

n
,

where in (a) we used [34 , Corollary 6.3.8]

max
i∈[m]

(
|µi − µ̄| ,

∣∣∣Li − L̄
∣∣∣) ≤ ∥∥∥∇2fi(x)−∇2f(x)

∥∥∥, (2.33)

and [35 , Lemma 2]

max
i∈[m]

∥∥∥∇2fi(x)−∇2f(x)
∥∥∥ ≤

√
32L̃2 log(dm/δ)

n
(2.34)

with probability at least 1− δ. Therefore, the complexity of our algorithm becomes

O
((

L̄

µ̄
+ Õ

(
L̄2

µ̄2
1√
n

))
· log

(1
ε

))
,

with Õ hiding the factor log(dm/δ). This shows that when agents have enough data locally

(n is large), the above rate is of the same order of that of the centralized gradient descent

algorithm.

2.6 Sublinear Convergence (convex case)

We consider now Problem (P ) when fi’s are assumed to be convex (µ = 0) but not

strongly-convex. We study the sublinear convergence for two splitting schemes, namely: i)

T = TCTfTB applied to (P ) with G = 0; and ii) T = TCTgTfTB applied to (P ) with G 6= 0.
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2.6.1 Convergence under G = 0

We establish sublinear convergence of Algorithm (2.23 ) (corresponding to T = TCTfTB)

under the following assumption.

Assumption 2.6.1. The weight matrices A ∈ Rm×m, B, C ∈ Sm satisfy:

i) A = BD, with B � 0, D ∈ Sm and D � 0;

ii) D1 = 1 and 1>B = 1>;

iii) C � 0 and null(C) = span(1);

iv) B and C commute;

v) I − 1
2C −

√
BD
√
B � 0 (⇔ I − 1

2C − A � 0, if B commutes with D).

We quantify the progress of algorithms towards optimality in this setting using the fol-

lowing merit function:

M(X) , max
{∥∥∥(I − J)X

∥∥∥∥∥∥∇f(X?)
∥∥∥, |f(X)− f(X?)|

}
,

where J , 1
m

11> and X? , 1(x?)>; the first term encodes consensus errors while the second

term measures the optimality gap.

We begin by rewriting Algorithm (2.23 ) in an equivalent form given in Lemma 2.6.2 ,

which does not have a mixing matrix multiplied to the gradient term.

Lemma 2.6.2. Suppose Assumption 2.4.1 holds. Then, Algorithm (2.23 ) can be rewritten

as (with Y 0 , 0):

Xk = BXk, (2.35a)

Xk+1 = DXk − γ(∇f(Xk) + Y k), (2.35b)

Y k+1 = Y k + 1
γ
CXk+1. (2.35c)
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Proof. since Y 0 = 0, we know span(X1), span(Y 1) ⊂ span(B). It is easy then to deduce from

induction that span(Xk), span(Y k) ⊂ span(B), ∀k. Setting Y k = γBY k and Xk = BXk

leads to this equivalent form.

Define φ(X,Y ) = f(X) + 〈Y,X〉 . In Lemma 2.6.3 and 2.6.4 below, we establish two

fundamental inequalities on φ(Xk, Y ) and φ(X,Y ) for X ∈ span(1) and Y ∈ span(C),

instrumental to prove the sublinear rate; the proofs are reported in Sec. 2.9.1 in Appendix.

Lemma 2.6.3. Consider the setting of Theorem 2.6.5 , let {Xk, Xk, Y k}k∈N+ be the sequence

generated by Algorithm (2.35 ) under Assumption 2.6.1 . Then, it holds:

φ(Xk+1, Y ) ≤ φ(X,Y )− 1
γ

∥∥∥Xk+1
∥∥∥2
B−BC−AB −

1
γ

〈
Xk+1 −Xk, Xk+1 −X

〉
D

− γ
〈
Y k+1 − Y, Y k+1 − Y k

〉
B

+ L

2

∥∥∥Xk+1 −Xk
∥∥∥2,

(2.36)

for all X ∈ span(1) and Y ∈ span(C), where B = (C + bJ)−1B, b ≥ 2.

Lemma 2.6.4. Under the same conditions as in Lemma 2.6.3 , if γ ≤ λmin(D)
L

, then

φ(X̂k, Y )− φ(X,Y ) ≤ 1
2k

(1
γ

∥∥∥X0 −X
∥∥∥2
D + γ

ρ(B − J)
λ2(C)

∥∥∥Y ∥∥∥2
)
, (2.37)

for all X ∈ span(1) and Y ∈ span(C), where X̂k , 1
k

∑k
t=1 X

t.

We now prove the sublinear convergence rate.

Theorem 2.6.5 (Sublinear rate for TCTfTB). Consider Problem (P ) under Assumption 2.2.1 

with µ = 0 and G = 0; and let x? be an optimal solution. Let {(Xk, Y k)}k∈N+ be the sequence

generated by Algorithm (2.23 ) under Assumptions 2.6.1 . Then, if 0 < γ ≤ λmin(D)
L

, we have

M(X̂k) ≤ 1
k

( 1
2γ

∥∥∥X0 −X?
∥∥∥2
D + 2γ ρ(B − J)

λ2(C)

∥∥∥∇f(X?)
∥∥∥2
)
, (2.38)

where X̂k = 1
k

∑k
t=1 X

t.
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Proof. Setting X = X? in (2.36 ), it holds

φ(X̂k, Y )− φ(X?, Y ) = f(X̂k)− f(X?)−
〈
X̂k −X?, Y

〉
= f(X̂k)− f(X?)−

〈
X̂k, Y

〉
≤ h(

∥∥∥Y ∥∥∥),
for Y ∈ span(C), where h(·) = 1

2k

(
1
γ

∥∥∥X0−X?
∥∥∥2
D+γ ρ(B−J)

λ2(C) (·)2
)
. Setting Y = −2 (I−J)X̂k

‖(I−J)X̂k‖

∥∥∥Y ?
∥∥∥,

with Y ? = −∇f(X?), we have

f(X̂k)− f(X?) + 2
∥∥∥Y ?

∥∥∥∥∥∥(I − J)X̂k
∥∥∥ ≤ h(2

∥∥∥Y ?
∥∥∥).

By the convexity of f , f(X̂k)− f(X?) +
〈
(I − J)X̂k, Y ?

〉
= f(X̂k)− f(X?) +

〈
X̂k, Y ?

〉
≥ 0,

we have f(X̂k)− f(X?) ≥ −
∥∥∥Y ?

∥∥∥∥∥∥(I − J)X̂k
∥∥∥. Combining the above two relations, we have

M(X̂k) ≤ h(2
∥∥∥Y ?

∥∥∥). This completes the proof.

Finally, we leverage Young inequality to provide the choice of γ that optimizes the rate

given in Theorem 2.6.5 .

Corollary 2.6.5.1. Consider the setting of Theorem 2.6.5 . The stepsize that minimizes the

right hand side of (2.38 ) is

γ = min
λmin(D)

L
,

1
2

√√√√ λ2(C)
ρ(B − J)

∥∥∥X0 −X?
∥∥∥D∥∥∥∇f(X?)
∥∥∥
 , (2.39)

leading to a sublinear rate

M(X̂k) ≤ 1
k

max
{
L
∥∥∥X0 −X?

∥∥∥2
D

λmin(D) , 2

√√√√ρ(B − J)
λ2(C)

∥∥∥X0 −X?
∥∥∥D∥∥∥∇f(X?)

∥∥∥}. (2.40)

Note that the stepsize in (2.39 ) depends on
∥∥∥X0−X?

∥∥∥D/∥∥∥∇f(X?)
∥∥∥, an information that

is not generally available; we discuss this issue in Sec. 2.6.3 .
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2.6.2 Convergence under G 6= 0

We consider now Problem (P ) with G 6= 0 and µ = 0. We study convergence of a

variation of the general scheme (2.4 ), where the proximal operator is employed before Tf
and B = I, yielding the operator decomposition TCTgTf .1  This scheme reads

Xk+1 = DXk − γ(∇f(Xk) + Y k),

Xk+1 = proxγg
(
Xk+1

)
,

Y k+1 = Y k + 1
γ
CXk+1,

(2.41)

with Y 0 , 0. Note that a key difference between (2.4 ) and the above algorithm is that

the former uses X in the update of the dual variable Y , the variable before the operator

proxγg (·), while the latter uses the variable X, i.e., the variable after the operator proxγg (·).

It is not difficult to check that (2.41 ) subsumes many existing proximal-gradient methods,

such as PG-EXTRA [19 ] or ID-FBBS [20 ] (with D = W,C = I −W ). We present a unified

result of the sublinear convergence for the algorithm (2.41 ), under the following assumption.

Assumption 2.6.6. The weight matrices C, D ∈ Sm satisfy:

i) 1>D1 = m;

ii) C � 0 and null(C) = span(1);

iii) 0 ≺ D � I − C
2 .

Note that the above assumption is, indeed, a customization of Assumption 2.6.1 . We

study convergence of Algorithm (2.41 ) using the following merit function measuring the

progresses of the algorithms from consensus and optimality. Define

M(X) , max
{∥∥∥(I − J)X

∥∥∥∥∥∥Y ?
∥∥∥, |(f + g)(X)− (f + g)(X?)|

}
.

where Y ? = −
(
∇f(X?) + 1(ξ?)>

)
, for some ξ? ∈ ∂G(x?) such that ξ? + ∇F (x?) = ξ? +

1
m

∑m
i=1∇fi(x?) = 0. Note that, since 1>Y ? = 0, we have Y ? ∈ span(C).

1↑ It is not difficult to check that any fixed point of TCTgTf has the same fixed-points of the operator in
(2.14 ).
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We are now ready to state our convergence result, whose proof is left to the supplementary

material due to its similarity to that of Theorem 2.6.5 .

Theorem 2.6.7 (Sublinear rate for T = TCTgTf ). Consider Problem (P ) under Assump-

tion 2.2.1 with µ = 0; and let x? be an optimal solution. Let {(Xk, Y k)}k≥0 be the sequence

generated by Algorithm (2.41 ) under Assumptions 2.6.6 . Then, if γ < λmin(D)
L

, we have

M(X̂k) ≤ 1
k

( 1
2γ

∥∥∥X0 −X?
∥∥∥2
D + 2γ 1

λ2(C)

∥∥∥∇f(X?)
∥∥∥2
)
, (2.42)

where X̂k = 1
k

∑k
t=1 X

t.

Corollary 2.6.7.1. Consider the setting of Theorem 2.6.7 . The stepsize that minimizes the

right hand side of (2.42 ) is

γ = min
λmin(D)

L
,

1
2
√
λ2(C)

∥∥∥X0 −X?
∥∥∥D∥∥∥∇f(X?)
∥∥∥
 , (2.43)

leading to a sublinear rate

M(X̂k) ≤ 1
k

max
{
L
∥∥∥X0 −X?

∥∥∥2
D

λmin(D) , 2
√

1
λ2(C)

∥∥∥X0 −X?
∥∥∥D∥∥∥∇f(X?)

∥∥∥}. (2.44)

2.6.3 Discussion

- On rate seperation

Differently from most of the existing works, such as [4 ], [8 ], [21 ], the above convergence

results (Corollary 2.6.5.1 and 2.6.7.1 ) establish the explicit dependency of the rate on the

network parameter as well as the properties of the cost functions. Specifically, the rate

coefficients in (2.40 ) and (2.44 ) show an explicit dependence on the network and optimization

parameters, with the first term on the RHS corresponding to the rate of the centralized

optimization algorithm while the second term related to both the communication network

and the heterogeneity of the cost functions of the agents (i.e.,
∥∥∥∇f(x?)

∥∥∥). The smaller∥∥∥∇f(x?)
∥∥∥, the more similar the objective functions agents have. For instance, when fi’s

share a common minimizer, i.e.,
∥∥∥∇f(x?)

∥∥∥ = 0, the rate will reduce to the centralized one.
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The term
√

ρ(B−J)
λ2(C) accounts for the network effect on the rate. For instance, set C = I −B,

so that λ2(C) = 1 − ρ(B − J). If ρ(B − J) → 0 (meaning a network tending to a fully

connected graph),
√

ρ(B−J)
λ2(C) → 0, leading to the rate of the centralized gradient algorithm [cf.

(2.40 )]. On the other hand, if ρ(B − J) → 1 (poorly connected network),
√

ρ(B−J)
λ2(C) → +∞,

deteriorating the overall rate. As a result, when the agents have similar cost functions (i.e.,

small value of
∥∥∥∇f(x?)

∥∥∥) or the network is well connected, the first term will dominate the

second, leading to the centralized performance. The impact of the heterogeneity quantity∥∥∥∇f(x?)
∥∥∥ on the convergence behavior is validated by our numerical results–see Section 2 .

- On the choice of stepsize

The optimal stepsize, as indicated in (2.39 ) (resp. (2.43 )), is such that the two terms in

(2.38 ) (resp. (2.42 )) are balanced. Albeit (2.39 ) and (2.43 ) generally are not implementable,

due to the unknown quantity
∥∥∥X0 −X?

∥∥∥D/∥∥∥∇f(X?)
∥∥∥, the result is interesting on the theo-

retical side, showing that the “optimal” stepsize is not necessarily 1/L but depends on the

the network and the degree of heterogeneity of the cost functions as well. In particular, the

optimal choice is 1/L when the network is well connected and agents share similar “inter-

ests”, i.e.,
∥∥∥∇f(x?)

∥∥∥ is small. On the other hand, as the connectivity of the network becomes

worse and/or the heterogeneity of local cost functions becomes larger, stepsize values smaller

than 1/L ensure better performance. This observation provides recommendations on stepsize

tuning and it is validated by our numerical experiments as well.

2.7 Numerical Results

We report some numerical results on strongly convex and convex instances of (P ), sup-

porting our theoretical findings. The obtained stepsize bounds and rates are shown to predict

well the practical behavior of the algorithms. For instance, the ATC-based schemes exhibit

a clear rate separation [as predicted by (2.29 )]: the convergence rate cannot be continu-

ously improved by unilaterally decreasing the condition number of the fi’s or increasing the

connectivity of the network.
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2.7.1 Strongly convex problems

We consider a regularized least squares problem over an undirected graph consisting of

50 nodes, generated through the Erdos-Renyi model with activating probability of 0.05 for

each edge. The problem reads

min
x∈Rd

(
1
50

50∑
i=1

∥∥∥Uix− vi

∥∥∥2
)

+ ρ
∥∥∥x∥∥∥2

2 + λ
∥∥∥x∥∥∥1. (2.45)

where Ui ∈ Rr×d and vi ∈ Rr×1 are the feature vector and labels, respectively, only accessible

by node i. For brevity, we denote U = [U1;U2; · · · ;U50] ∈ R50r×d and v = [v1; v2; · · · ; v50] ∈

R50r×1 and use M:,i (resp. Mi,:) to denote the i-th column (resp. row) of a matrix M . In

the simulation, we set r = 20, d = 40, ρ = 20 and λ = 1. We generate the matrix U of

the feature vectors according to the following procedure, proposed in agarwal2010fast: we

first generate an innovation matrix Z with each entry i.i.d. drawn from N (0, 1). Using a

control parameter ω ∈ [0, 1), we then generate columns of U such that the first column is

U:,1 = Z:,1/
√

1− ω2 and the rest are recursively set as U:,i = ωU:,i−1 + Z:,i, for i = 2, . . . , d.

As a result, each row Ui,: ∈ Rd is a Gaussian random vector and its covariance matrix

Σ = cov(U:,i) is the identity matrix if ω = 0 and becomes extremely ill-conditioned as

ω → 1. Finally, we generate x0 ∈ Rd with sparsity level 0.3 and each nonzero entry i.i.d.

drawn from N (0, 1), and set v = Ux0 + ξ, where each component of the noise ξ is i.i.d.

drawn from N (0, 0.04). By changing ω one can control the conditional number κ of the

smooth objective in (2.45 ).

- Validating the rate separation We validate here the rate results predicted by Corol-

lary 2.5.2.1 and 2.5.4.1 . We consider Algorithm (2.4 ), with A = B = I+W
2 and C = I − B,

and run two experiments. 1) We simulated problem (2.45 ), with ρ = 10 and ω = 0.999–this

leads to an extremely large condition number,
(
(κ − 1)/(κ + 1)

)2
≈ 0.9999)–and run the

algorithm over different graphs, namely: a line, a cycle, a star, and a random graph with 637

edges, with 1−λ2(C) being 0.9993, 0.9974, 0.9900 and 0.6948 respectively; Fig. 2.1 plots the

optimality gap 1√
50

∥∥∥Xk − 1x?>
∥∥∥ versus the number of iterations, achieved over the different

graph topologies. 2) On the other extreme, in the second experiment, we considered a poorly
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connected line graph with 1− λ2(C) ≈ 0.9993 and run the algorithm for different instances

of the optimization problem–specifically, ρ = 5 and ω = {0.75, 0.8, 0.85, 0.88}–resulting in(
(κ − 1)/(κ + 1)

)2
being 0.9782, 0.9845, 0.9895 and 0.9922 respectively; Fig. 2.2 plots the

optimality gap (defined as in Fig. 2.1 ) versus the number of iterations, achieved for the differ-

ent optimization problems. These experiments clearly support the rate separation predicted

by our theory: the rate is determined by the bottleneck between the network and optimiza-

tion. Fig. 2.1 : For ill-conditioned problems–meaning
(
(κ − 1)/(κ + 1)

)2
> 1 − λ2(C)–the

algorithm exhibits almost identical rates, irrespectively of the specific graph instances. On

the other hand, Fig. 2.2 shows that, on poorly connected networks, the convergence rate of

the algorithm is not affected by the condition number of the optimization problem, as long

as
(
(κ− 1)/(κ+ 1)

)2
< 1− λ2(C).

- More on the rate separation (2.29 ) We simulated the following instances of Algo-

rithm 2.4 . We set A = B = ( I+W
2 )K and C = I −B, where W is a weight matrix generated

using the Metropolis-Hastings rule [36 ], and K ≥ 1 is the number of inner consensus steps.

When Chebyshev acceleration is employed in the inner consensus steps, we instead used

A = B = (I + PK(W̃ ))/2 and C = I − B (condition of Corollary 2.5.4.1 is satisfied). In

Fig. 2.3 , we plot the number of iterations (gradient evaluations) needed by the algorithm to

reach an accuracy of 10−8, versus the number of inner consensus K, for different values of κ;

solid (resp. dashed) line-curves refer to non-accelerated (Chebyshev) consensus steps. The

markers (diamond symbol) correspond to the number of iterations predicted by (2.29 ) for

the max in (2.29 ) to achieve the minimum value, that is,
⌈
2 log(κ−1

κ+1)/log(1+λm−1(W )
2 )

⌉
. The

following comments are in order. (i) As K increases, the number of iterations needed to

reach the desired solution accuracy decreases till it reaches a plateau; further communication

rounds do not improve the performance, as the optimization component becomes the bot-

tleneck [as predicted by (2.29 )]. (ii) Less number of iterations are needed when κ becomes

smaller (simpler problem). Finally, (iii) Chebyshev acceleration further reduces the number

of iterations. These were all predicted by our theoretical findings.

- Validating Table 2.1: Comparison of the “prox”-versions of existing algorithms

In Fig. 2.4 we compare the “prox” version of several existing algorithms, applied to (2.45 ):

we plot the optimality gap
∥∥∥Xk − 1x?>

∥∥∥ versus the overall number of iterations (gradient
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Figure 2.1. Instance of the ABC algorithm on problems of the same ill-
conditioned optimization data, but over different graph topologies.
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Figure 2.2. Instance of the ABC algorithm on problems over the same line
graph, but with optimization data of different condition numbers.

evaluations). The setting is the same as in the previous example, except that now we set

ω = 0.8. The stepsize of each algorithm is chosen according to (2.19 ). The network is the

Erdos-Renyi model with connection probability of 0.25; in this setting, the max in (2.29 )

is achieved at (κ − 1)/(κ + 1). It follows from the figure that ATC-based schemes, such as

Prox-NEXT/AugDGM, Prox-NIDS, outperform non-ATC ones, such as Prox-EXTRA and

Prox-DIGing, validating the ranking established in (the last column of) Table 2.1.
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Figure 2.3. Elastic net problem: Number of iterations (gradient evaluations)
needed to reach an accuracy of 10−8 by Algorithm 2.4 employing Chebyshev
acceleration (dashed lines) and multiple rounds of consensus (solid lines).
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Figure 2.4. Performance comparison of the proximal extensions of some
existing algorithms–these extension schemes are all new and are instances of
(2.4 ).

2.7.2 Non-strongly-convex problems

To illustrate the results for non-strongly convex problems, we report here a logistic re-

gression problem using the Ionosphere Data Set as follows [37 ]:

min
x∈R34

1
50

50∑
i=1

7i∑
k=7(i−1)+1

log(1 + exp(−vku>
k x)),
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Figure 2.5. Logistic regression problem: Number of iterations (gradient eval-
uations) needed to reach an accuracy of 10−4 by Algorithm 2.23 (equivalently
Algorithm 2.35 ) employing multiple rounds of consensus.

where uk ∈ R34 and vk ∈ {−1, 1} are respectively the feature vector and label of the k-

th sample. We use U = [u1, u2, · · · , u350]> to denote the feature matrix. We construct

several problems with different Lipschitz constant by multiplying the feature matrix U with

different scaling factors. In particular, given the original problem with an L-smooth objective

function f , one can multiply U by a scalar 0 < α < 1 to construct a new α2L-smooth

objective function fα(·). In the simulation, we consider the polynomial method and thus set

A = B = W̃K and C = I −B. The stepsize of the algorithm is chosen2
 according to (2.39 ).

Figure 2.5 plots the number of iterations (gradient evaluations) needed by the algorithm

to reach an accuracy of 10−4 in solving different problems with different difficulty versus

the number of inner loop of consensus. It follows from the figure that, similar as with the

strongly convex case, the number of iterations needed is decreasing with the number of inner

loops of consensus, until it reaches to a turning point which appears later as the Lipschitz

constant L decreases. This observation verifies the result as shown in (2.40 ) where the two

quantities is to be properly balanced with multiple communication steps.

- On the heterogeneity of fi’s We exemplify the role of the heterogeneity measure∥∥∥∇f(X?)
∥∥∥ on the convergence rate, stated in Corollary 25 and Corollary 28. We consider

2↑ This choice is not implementable in practice but only for illustration.
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Figure 2.6. Convergence behavior of the ABC algorithm and the centralized
gradient descent for problems with different level of heterogeneity (measured
by

∥∥∥∇f(X?)
∥∥∥). The blue curves are associated with the ABC algorithm while

the red ones with the centralized gradient descent.

the distributed least squares problem (2.45 ), with ρ = λ = 0. Each row of U is now drawn

i.i.d. from a multivariate normal distribution N (µ, αΣ). Each element of the mean vector

µ is generated i.i.d. from Unif(0, 1) and Σ , BB> with each entry of B generated i.i.d.

from the standard normal. We then generate v as v = U ∗ x̂ + ξ, wherein each element

of x̂ and ξ is drawn i.i.d. from the standard Normal. The local observation matrices Ui’s

become more similar to each other (thus
∥∥∥∇f(X?)

∥∥∥ becoming smaller), when we decrease

the positive scalar α. We generate a graph via the Erdos-Renyi model with a connection

probability 0.05 and a conforming weight matrix W. We set A = B = I+W
2 and C = I−W

2 ,

and compare the convergence of the ABC with that of the centralized gradient descent algo-

rithm, for α = {100, 1, 10−2, 10−3} respectively. Note that all the above generated problems

are ill-conditioned. For fair comparison, we rescale the metric M(X) by 1/50 for the ABC

and use the metric F (x)− F ? for the centralized algorithm. As shown in Fig. 2.6 , when the

agents’ cost functions become more similar (i.e. ‖∇f(X?)‖ becomes smaller), the perfor-
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mance of the ABC algorithm (the red lines) become closer to its centralized counterpart, as

predicted by Corollary 25 and 28.

2.7.3 Other linearly-convergent cases

To corroborate the linear convergent property of the ABC algorithm in the case of G =

0, we generate the same setting as Sec. 2.7.1 with the only exception that λ1 = 0. The

comparison of the performance of several instances of the ABC algorithm is reported in

Fig. 2.7 . On the other hand, we experiment on the setting as Sec. 2.7.1 with the exception

that ρ = 0. In this case, although the average function F (x) is strongly convex, each fi is

not strongly convex. We report the convergence behavior of several instances of the ABC

algorithm in Fig. 2.8 . This result indicates that the ABC algorithm still exhibits linear

convergence as long as the average function F (x) is strongly convex.
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Figure 2.7. Performance comparison of some existing algorithms, which are
instances of (2.4 ) with G = 0.
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Figure 2.8. Performance comparison of several instances of the ABC algo-
rithm on one problem, wherein the average function F (x) is strongly convex
while the individual ones fi(x)’s are not.

2.7.4 Weakly convex cases

We conduct simulations to support Theorem 2.6.5 and Theorem 2.6.7 . In particular, for

Theorem 2.6.5 , we experiment the following two instances of the ABC algorithm:

Algorithm-1: A = I +W

2 , B = I +W

2 , C = I −W
2 ,

Algorithm-2: A = I +W

2 , B = I, C = I −W
2

on the following least squares problem

min
x∈Rd

1
50

50∑
i=1

∥∥∥Uix− vi

∥∥∥2. (2.46)

where Ui ∈ R10×200 and vi ∈ R10×1 are the feature vector and labels accessible by node i. We

generate the matrix U = [U1;U2; · · · ;U50] ∈ R500×200 according to the procedure described

in section VII-A in our manuscript with ω = 0.8. Then we set v = Ux̂ + ξ, where each

component of x̂ and ξ is drawn i.i.d. from the standard normal. The performance of the two

algorithmic instances on this problem is shown in Fig 2.9 .
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Figure 2.9. Performance comparison of two instances of the ABC algorithm
(cf. (34) in the revised manuscript), in solving a weakly convex problem with
G = 0.
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Figure 2.10. Performance comparison of two instances of the ABC algorithm
(cf. (40) in the revised manuscript), in solving a weakly convex problem with
G 6= 0.

For Theorem 2.6.7 , we experiment the following two instances of the algorithm given in

Section VI-B:

Algorithm-3: B = I, C = I −W
2 , D = I +W

2

Algorithm-4: B = I, C = I −W
2 , D =

(
I +W

2

)2
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on the LASSO problem:

min
x∈Rd

(
1
50

50∑
i=1

∥∥∥Uix− vi

∥∥∥2
)

+
∥∥∥x∥∥∥1. (2.47)

The matrix U is generated in the same way as problem (2.46 ). Then we generate x̂ with

sparsity level 0.3 with each nonzero entry drawn i.i.d. from the standard normal. We then

set v = Ux̂ + ξ, with each component of ξ drawn i.i.d. from the standard normal. The

performance of the two algorithmic instances on this problem is shown in Fig 2.10 .

2.8 Conclusion

We proposed a unified distributed algorithmic framework for composite optimization

problems over networks; the framework subsumes many existing schemes. When the agents’

functions are strongly convex, linear convergence is proved leveraging an operator contraction-

based analysis. With a proper choice of the design parameters, the rate dependency on the

network and cost functions can be decoupled, which permits to achieve the rate of the cen-

tralized (proximal)-gradient method (applied in the same setting) using a finite number

of communications per gradient evaluations. Our convergence conditions and rate bounds

improve on existing ones. When the functions of the agents are (not strongly) convex, a sub-

linear convergence rate was established, shedding light on the dependency of the convergence

on the connectivity of the network and the heterogeneity of the cost functions.
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2.9 Appendix: Proofs of Theorems

2.9.1 Proof of Lemma 2.6.3 

Since f is L-smooth, we have

f(Xk+1)

≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+ L

2

∥∥∥Xk+1 −Xk
∥∥∥2

(a)
≤ f(X) +

〈
∇f(Xk), Xk −X

〉
+
〈
∇f(Xk), Xk+1 −Xk

〉
+ L

2

∥∥∥Xk+1 −Xk
∥∥∥2

= f(X) +
〈
∇f(Xk), Xk+1 −X

〉
+ L

2

∥∥∥Xk+1 −Xk
∥∥∥2.

(2.48)

where (a) is due to the fact that f(X) ≥ f(Xk) +
〈
∇f(Xk), X −Xk

〉
from the convexity of

f .

Then, we relate the gradient term ∇f(Xk) to other quantities using (2.35b ) as follows

〈
∇f(Xk), Xk+1 −X

〉
= −1

γ

〈
Xk+1, Xk+1 −X

〉
+ 1
γ

〈
DXk − γY k, Xk+1 −X

〉
= −1

γ

〈
(I − C)Xk+1, Xk+1 −X

〉
+ 1
γ

〈
DXk − γY k+1, Xk+1 −X

〉
,

where we have used (2.35c ) to obtain the last relation. Now, substituting the above relation

into (2.48 ), we further have

f(Xk+1) ≤ f(X)− 1
γ

〈
(I − C)Xk+1, Xk+1 −X

〉
+ 1
γ

〈
DXk, Xk+1 −X

〉
−
〈
Y k+1, Xk+1 −X

〉
+ L

2

∥∥∥Xk+1 −Xk
∥∥∥2

(2.49)
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Adding
〈
Y,Xk+1 −X

〉
, with X ∈ span(1) and Y ∈ span(C), to both sides of the above

equation and noticing (C + bJ)−1C = I − J yields

φ(Xk+1, Y ) ≤ φ(X,Y )− 1
γ

〈
(I − C)Xk+1, B(Xk+1 −X)

〉
+ 1
γ

〈
DBXk, B(Xk+1 −X)

〉
+ L

2

∥∥∥Xk+1 −Xk
∥∥∥2

−
〈
(C + 2J)−1C(Y k+1 − Y ), B(Xk+1 −X)

〉
= φ(X,Y )− 1

γ

〈
(I − C)Xk+1, B(Xk+1 −X)

〉
+ 1
γ

〈
DBXk, B(Xk+1 −X)

〉
+ L

2

∥∥∥Xk+1 −Xk
∥∥∥2 −

〈
Y k+1 − Y,CXk+1

〉
B

= φ(X,Y )− 1
γ

〈
(I − C −DB)Xk+1, B(Xk+1 −X)

〉
+ 1
γ

〈
DB(Xk −Xk+1), B(Xk+1 −X)

〉
− γ

〈
Y k+1 − Y, Y k+1 − Y k

〉
B

+ L

2

∥∥∥Xk+1 −Xk
∥∥∥2,

where we have used (2.35c ) to obtain the last relation. Knowing that X = BX from (2.35a ),

we complete the proof.

2.9.2 Proof of Lemma 2.6.4 

Invoking Lemma 2.6.3 and using the identity

2 〈a− b, a− c〉 =
∥∥∥a− b∥∥∥2 −

∥∥∥b− c∥∥∥2 +
∥∥∥a− c∥∥∥2,
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we have that

φ(Xk+1, Y )

≤ φ(X,Y )− 1
2γ

(∥∥∥Xk+1 −X
∥∥∥2
D −

∥∥∥Xk −X
∥∥∥2
D

)
− 1
γ

∥∥∥Xk+1
∥∥∥2
B−BC−AB −

∥∥∥Xk+1 −Xk
∥∥∥2

1
2γ
D− L

2 I

− γ

2 (
∥∥∥Y k+1 − Y

∥∥∥2
B −

∥∥∥Y k − Y
∥∥∥2
B +

∥∥∥Y k+1 − Y k
∥∥∥2
B)

(a)= φ(X,Y )− 1
2γ

(∥∥∥Xk+1 −X
∥∥∥2
D −

∥∥∥Xk −X
∥∥∥2
D

)
− 1
γ

∥∥∥Xk+1
∥∥∥2
B− 1

2BC−AB −
∥∥∥Xk+1 −Xk

∥∥∥2
1

2γ
D− L

2 I

− γ

2

(∥∥∥Y k+1 − Y
∥∥∥2
B −

∥∥∥Y k − Y
∥∥∥2
B

)
(b)
≤ φ(X,Y )− 1

2γ

(∥∥∥Xk+1 −X
∥∥∥2
D −

∥∥∥Xk −X
∥∥∥2
D

)
− γ

2

(∥∥∥Y k+1 − Y
∥∥∥2
B −

∥∥∥Y k − Y
∥∥∥2
B

)
(2.50)

where (a) is due to the fact that
∥∥∥Y k+1−Y k

∥∥∥2
B = 1

γ2

∥∥∥Xk+1
∥∥∥2
BC since Y k+1−Y k = 1/γCXk+1

and BC2 = (C + bJ)−1C2B = CB; (b) comes from that γ ≤ λmin(D)
L

and B − 1
2BC − AB =

√
B
(
I − 1

2C −
√
BD
√
B
)√

B � 0.

Then, averaging (2.50 ) over k from 0 to t− 1, we have

1
t

t−1∑
k=0

(
φ(Xk+1, Y )− φ(X,Y )

)

≤ − 1
2γt

(∥∥∥X t −X
∥∥∥2
D −

∥∥∥X0 −X
∥∥∥2
D

)
− γ

2t

(∥∥∥Y t − Y
∥∥∥2
B −

∥∥∥Y 0 − Y
∥∥∥2
B

)
(a)
≤ 1

2t

(1
γ

∥∥∥X0 −X
∥∥∥2
D + γ

1
λ2(C)

∥∥∥Y ∥∥∥2
B

)
(b)= 1

2t

(1
γ

∥∥∥X0 −X
∥∥∥2
D + γ

1
λ2(C)

∥∥∥Y ∥∥∥2
B−J

)

≤ 1
2t

(1
γ

∥∥∥X0 −X
∥∥∥2
D + γ

ρ(B − J)
λ2(C)

∥∥∥Y ∥∥∥2
)

(2.51)

where we used: (a) Y 0 = 0 and λmax ((C + bJ)−1) = 1/λmin (C + bJ) = 1/λ2(C) due to

C � 2I; (b) Y ∈ span(1)⊥. Using the convexity of φ we complete the proof.
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2.9.3 Proof of Theorem 2.5.4 

This proof is similar to that of Theorem 2.5.2 , except that in the following chain of

inequalities, we need to tackle the additional operator Tg. For ∀X,Y ∈ R2m×d, X`, Y` ∈

span(
√
C),

∥∥∥T X − T Y ∥∥∥2
ΛI−C

=
∥∥∥Tc ◦ Tf ◦ Tg ◦ TB (X)− Tc ◦ Tf ◦ Tg ◦ TB (Y )

∥∥∥2
ΛI−C

Lm. 2.4.2 =
∥∥∥Tf ◦ Tg ◦ TB (X)− Tf ◦ Tg ◦ TB (Y )

∥∥∥2
VI−C

Lm. 2.4.3 

≤
∥∥∥Tg ◦ TB (X)− Tg ◦ TB (Y )

∥∥∥2
diag(q(D,γ)D, I−C)

≤
∥∥∥Tg ◦ TB (X)− Tg ◦ TB (Y )

∥∥∥2
diag(q(D,γ) I, I−C)

Lm. 2.4.4 

≤
∥∥∥TB (X)− TB (Y )

∥∥∥2
diag(q(D,γ) I, I−C)

Lm. 2.4.5 =
∥∥∥X − Y ∥∥∥2

diag(q(D,γ)B2, I−C).

To obtain the final result, it remains to notice that: i) for all (Z)u ∈ Rm×d,

‖(Z)u‖2
B2 = ‖(I − C) 1

2 (Z)u‖2
B2(I−C)−1 ≤ λmax(B2(I − C)−1)‖(I − C) 1

2 (Z)u‖2

= λmax(B2(I − C)−1)
∥∥∥(Z)u

∥∥∥2
I−C ;

and ii) X`, Y` ∈ span(
√
C).

2.9.4 Proof of Theorem 2.6.7 

Algorithm (2.41 ) reads

Xk+1 = DXk − γ(∇f(Xk) + Y k),

Xk+1 = proxγg
(
Xk+1

)
,

Y k+1 = Y k + 1
γ
CXk+1.

(2.52)

The structure of this proof is similar to the proof of Theorem 2.6.5 . We first establish

two fundamental inequalities that are valid for any pair (X,Y ) such that X ∈ span(1) and
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Y ∈ span(C) (cf. Lemma 2.9.1 and Lemma 2.9.2 ); and then apply these results with X = X?

and two choices of Y to get the result of the sublinear convergence and rate separation.

Lemma 2.9.1. Consider the setting of Theorem 2.6.7 , let {Xk, Xk, Y k}k∈N+ be the sequence

generated by Algorithm (2.52 ) under Assumption 2.6.6 . Then for all X ∈ span(1) and

Y ∈ span(C) it holds

φ(Xk+1, Y ) ≤ φ(X,Y ) + 1
γ

〈
Xk −Xk+1, Xk+1 −X

〉
D

−
〈
Y k+1 − Y,Xk+1 −X

〉
+ L

2

∥∥∥Xk+1 −Xk
∥∥∥2 − 1

γ

∥∥∥Xk+1
∥∥∥2
I−C−D.

Lemma 2.9.2. Under the same conditions as Lemma 2.9.1 , if γ ≤ λmin(D)
L

, then for all

X ∈ span(1) and Y ∈ span(C) it holds

φ(X̂ t, Y )− φ(X,Y ) ≤ 1
2t

(1
γ

∥∥∥X0 −X
∥∥∥2
D + γ

1
λ2(C)

∥∥∥Y ∥∥∥2
)
. (2.53)

2.9.5 Proof of Lemma 2.9.1 

The proof is similar to that of Lemma 2.6.3 .

f(Xk+1)

≤ f(X) +
〈
∇f(Xk), Xk+1 −X

〉
+ L

2

∥∥∥Xk+1 −Xk
∥∥∥2

= f(X) + 1
γ

〈
DXk, Xk+1 −X

〉
−
〈
Y k+1, Xk+1 −X

〉
− 1
γ

〈
Xk+1 − CXk+1, Xk+1 −X

〉
+ L

2

∥∥∥Xk+1 −Xk
∥∥∥2

= f(X) + 1
γ

〈
D(Xk −Xk+1), Xk+1 −X

〉
−
〈
Y k+1, Xk+1 −X

〉
+ L

2

∥∥∥Xk+1 −Xk
∥∥∥2

− 1
γ

〈
Xk+1 − (C +D)Xk+1, Xk+1 −X

〉
.
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According toXk+1 = proxγg
(
Xk+1

)
, we have g(Xk+1)−g(X) ≤ 1

γ

〈
Xk+1 −Xk+1, Xk+1 −X

〉
.

We define φ(X,Y ) = f(X)+g(X)+〈X,Y 〉 . Then we have forX ∈ span(1) and Y ∈ span(C),

φ(Xk+1, Y ) ≤ φ(X,Y ) + 1
γ

〈
D(Xk −Xk+1), Xk+1 −X

〉
−
〈
Y k+1 − Y,Xk+1 −X

〉
+ L

2

∥∥∥Xk+1 −Xk
∥∥∥2 − 1

γ

〈
(I − C −D)Xk+1, Xk+1 −X

〉
= φ(X,Y ) + 1

γ

〈
Xk −Xk+1, Xk+1 −X

〉
D
−
〈
Y k+1 − Y,Xk+1 −X

〉
+ L

2

∥∥∥Xk+1 −Xk
∥∥∥2

− 1
γ

∥∥∥Xk+1
∥∥∥2
I−C−D (2.54)

2.9.6 Proof of Lemma 2.9.2 

Continuing from (2.54 ), we have

φ(Xk+1, Y ) ≤ φ(X,Y )− 1
2γ

(∥∥∥Xk+1 −X
∥∥∥2
D −

∥∥∥Xk −X
∥∥∥2
D

)
−
〈
Y k+1 − Y,CXk+1

〉
(J+C)−1

−
∥∥∥Xk+1 −Xk

∥∥∥2
1

2γ
D− L

2
− 1
γ

∥∥∥Xk+1
∥∥∥I−C−D

= φ(X,Y )− 1
2γ

(∥∥∥Xk+1 −X
∥∥∥2
D −

∥∥∥Xk −X
∥∥∥2
D

)
− γ

2

(∥∥∥Y k+1 − Y
∥∥∥2

(J+C)−1 −
∥∥∥Y k − Y

∥∥∥2
(J+C)−1

)
− 1
γ

∥∥∥Xk+1
∥∥∥
I− C

2 −D −
∥∥∥Xk+1 −Xk

∥∥∥2
1

2γ
D− L

2

≤ φ(X,Y )− 1
2γ

(∥∥∥Xk+1 −X
∥∥∥2
D −

∥∥∥Xk −X
∥∥∥2
D

)
− γ

2

(∥∥∥Y k+1 − Y
∥∥∥2

(J+C)−1 −
∥∥∥Y k − Y

∥∥∥2
(J+C)−1

)
,

where the last step is due to that I − C
2 −D � 0 and γ ≤ λmin(D)

L
. Then, averaging the above

over k from 0 to t− 1, we have

1
t

t−1∑
k=0

(
φ(Xk+1, Y )− φ(X,Y )

)

≤ − 1
2γt

(∥∥∥X t −X
∥∥∥2
D −

∥∥∥X0 −X
∥∥∥2
D

)
− γ

2t

(∥∥∥Y t − Y
∥∥∥2

(J+C)−1 −
∥∥∥Y 0 − Y

∥∥∥2
(J+C)−1

)
≤ 1

2t

(1
γ

∥∥∥X0 −X
∥∥∥2
D + γ

1
λ2(C)

∥∥∥Y ∥∥∥2
)
.

Using the convexity of φ completes the proof.
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For notational simplicity, we set r(X) = f(X) + g(X). From (2.53 ), we have

φ(X̂ t, Y )− φ(X?, Y ) = r(X̂ t)− r(X?)−
〈
X̂ t −X?, Y

〉
= r(X̂ t)− r(X?)−

〈
X̂ t, Y

〉
≤ h(

∥∥∥Y ∥∥∥), (2.55)

where h(·) = 1
2t

(
1
γ

∥∥∥X0 −X?
∥∥∥2
D + γ 1

λ2(C)(·)
2
)
. Now setting Y = −2 (I−J)X̂t

‖(I−J)X̂t‖

∥∥∥Y ?
∥∥∥. The rest

of the proof is similar to that in Theorem 2.6.5 .

2.9.7 Proof of linear rate under strong convexity of F

Theorem 2.9.3. Suppose B2 ≤ I−C. Let κg = L
µg

with µg being the strong convexity of 1
m
F .

Then, if γ ≤ min
{

2µg(1−λm−1(D))
µ2

g+4L2 , λmin(D)
L

}
, we have

∥∥∥T Ũ − T Ũ?
∥∥∥2

ΛI−C
≤ λ

∥∥∥Ũ − Ũ?
∥∥∥2

ΛI−C
,

with λ = max{1− γ µg

2 , I − λ2(C)}

Proof. We prove

∥∥∥DX − γ∇f(X)−DX? + γ∇f(X?)
∥∥∥2 ≤

(
1− γ µg2

) ∥∥∥X −X?
∥∥∥2.

The rest of the proof follows the same steps as Theorem 2.5.2 . Denote X̄ , JX, the following

holds:

〈X −X?,∇f(X)−∇f(X?)〉

=
〈
X̄ −X?,∇f(X)−∇f(X̄)

〉
+
〈
X̄ −X?,∇f(X̄)−∇f(X?)

〉
+
〈
X − X̄,∇f(X̄)−∇f(X?)

〉
+
〈
X − X̄,∇f(X)−∇f(X̄)

〉
≥ µg

∥∥∥X̄ −X?
∥∥∥2 − 2L

∥∥∥X̄ −X?
∥∥∥∥∥∥(I − J)X

∥∥∥ ≥ (µg − β)
∥∥∥X̄ −X?

∥∥∥2 − L2

β

∥∥∥(I − J)X
∥∥∥2,

where we used that the overall function f̄ is µg-strongly convex to obtain the first inequality

and Young’s inequality for the second inequality. Setting β = µg

2 leads to

〈X −X?,∇f(X)−∇f(X?)〉 ≥ µg
2

∥∥∥X̄ −X?
∥∥∥2 − 2L2

µg

∥∥∥(I − J)X
∥∥∥2. (2.56)
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Using the similar steps as in Lemma 2.4.3 and assuming that γ ≤ λmin(D)
L

, we have

∥∥∥DX − γ∇f(X)−DX? + γ∇f(X?)
∥∥∥2

≤
∥∥∥DX − γ∇f(X)−DX? + γ∇f(X?)

∥∥∥2
D−1

(a)
≤
∥∥∥X −X?

∥∥∥2
D − γ (2− γL

λmin(D)) 〈X −X?,∇f(X)−∇f(X?)〉

≤
∥∥∥X −X?

∥∥∥2
D − γ 〈X −X?,∇f(X)−∇f(X?)〉

(2.56 )
≤

∥∥∥X −X?
∥∥∥2
D − γ (µg2

∥∥∥X −X?
∥∥∥2
J −

2L2

µg

∥∥∥X −X?
∥∥∥2
I−J)

=
(

1− γ µg2

) ∥∥∥X −X?
∥∥∥2 + γ (µg2 + 2L2

µg
)
∥∥∥X −X?

∥∥∥2
I−J −

∥∥∥X −X?
∥∥∥2
I−D

(b)
≤
(

1− γ µg2

) ∥∥∥X −X?
∥∥∥2 +

(
γ (µg2 + 2L2

µg
)− 1 + λm−1(D)

)∥∥∥X −X?
∥∥∥2
I−J

(2.57)

where (a) is due to

∥∥∥∇f(X)−∇f(X?)
∥∥∥2
D−1 ≤

1
λmin(D)

∥∥∥∇f(X)−∇f(X?)
∥∥∥2

≤ L

λmin(D) 〈X −X
?,∇f(X)−∇f(X?)〉 ;

and (b) is due to I −D � (1− λm−1(D))(I − J). Setting γ ≤ min
{

2µg(1−λm−1(D))
µ2

g+4L2 , λmin(D)
L

}
gives the desired result.
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3. AN OPTIMAL DECENTRALIZED ALGORITHM: OPTRA

In this chapter, we propose a novel family of primal-dual-based distributed algorithms for

smooth convex optimization over networks. The algorithms can also employ acceleration on

the computations and communications. We provide a unified analysis of their convergence

rate, measured in terms of the Bregman distance associated to the saddle point reformation

of the distributed optimization problem. When acceleration is employed, the rate is shown

to be optimal, in the sense that it matches (under the proposed metric) existing complexity

lower bounds of distributed algorithms applicable to such a class of problems and using only

gradient information and gossip communications. Numerical results show that the proposed

algorithm compares favorably on existing distributed schemes.

The novel results of this chapter have been published in

• Jinming Xu, Ye Tian, Ying Sun, and Gesualdo Scutari. ”Accelerated primal-dual

algorithms for distributed smooth convex optimization over networks.” In International

Conference on Artificial Intelligence and Statistics, pp. 2381-2391. PMLR, 2020.
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3.1 Introduction

We study distributed smooth convex optimization over a fixed undirected graph:

min
x∈Rd

F (x) ,
m∑

i=1
fi(x), (3.1)

which is a special instance of Problem (P ) with G = 0. We assume each fi : Rd → R to be

smooth and convex. The focus of this chapter is on optimal rate decentralized algorithms for

Problem (3.1 ) that use only gradient information and gossip communications. By optimal

we mean that these algorithms provably achieve lower complexity bounds for such a class of

problems and oracle decentralized algorithms. We start from the literature review.

3.1.1 Literature Review

Primal [5 ], [7 ], [8 ], [10 ], [11 ], [38 ]–[41 ] and primal-dual distributed methods [4 ], [17 ], [42 ]–

[44 ] applicable to Problem (3.1 ) have been extensively studied in the literature, enjoying

different convergence rates. In general, these rates are not optimal for several reasons: i) the

schemes do not employ any acceleration on the local optimization step and/or communica-

tions; or ii) they do not balance optimally the number of optimization and communication

steps. Optimal rates of first-order distributed algorithms have been recently studied in [14 ],

[45 ]–[50 ] for different classes of optimization problems and network topologies; they however

are not optimal or applicable to the formulation considered in this chapter.

Optimal lower complexity bounds and matching distributed algorithms have been re-

cently investigated in [14 ] for smooth strongly convex functions, in [45 ] for nonsmooth con-

vex functions, and in [46 ] for smooth nonconvex functions. Fully connected networks have

been considered in [49 ], [50 ]. However, to our knowledge, no first-order gossip algorithm is

known that achieves both computation and communication lower complexity bound for the

minimization of smooth convex functions over graphs. Attempts of designing accelerated

distributed algorithms for Problem (3.1 ) can be found in [47 ], [51 ], [52 ] and briefly discussed

next. The scheme in [52 ] combines the technique of gradient tracking [5 ], [7 ], [11 ] with Nes-

terov acceleration of local computations and achieves an ε > 0 solution in O
(
1/ε5/7

)
gradient
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and communication steps, under the assumption that the solution set of the optimization

problem (3.1 ) is compact. Algorithm 7 in [47 ] is designed for general smooth convex objec-

tives; it reaches an ε solution in O
(√

Lf/(η ε) log 1/ε
)
outer loops of communications and

O
(√

Lf/ε log 1/ε
)
inner loops of computations (per communication), resulting in an overall

gradient evaluations of O
(
Lf/(ε

√
η) log2 1/ε

)
, which do not match existing lower bounds.

The subsequent work [51 ] proposes an accelerated penalty-based method with increasing

penalty values; the algorithm achieves the lower bound of O
(√

Lf/ε
)
gradient evaluations

but at the cost of an increasing number of communications per gradient evaluation (itera-

tion)–namely: O
(√

Lf/ (ηε) log 1/ε
)
, which makes it not optimal in terms of communication

steps.

3.1.2 Summary of Contributions

We propose a novel family of primal-dual-based distributed algorithms for Problem (3.1 )

that use only gradient information and gossip communications. The algorithms can also

employ acceleration on the computation and communications. We provide a unified analy-

sis of their convergence rate, measured in terms of the Bregman distance associated to the

saddle point reformation of (3.1 ). When acceleration on both computation and communi-

cations is properly designed, the proposed algorithms are shown to be optimal, in the sense

that they match existing complexity lower bounds [51 ], rewritten in terms of the Bregman

distance metric. Furthermore, differently from [14 ], [47 ], our algorithms do not require any

information on the Fenchel conjugate of the agents’ functions, which significantly enlarge

the class of functions to which provably optimal rate algorithms can be applied to. Hence,

we termed our algorithms OPTRA (optimal conjugate-free distributed primal-dual methods)

(OPTRA). Our preliminary numerical results show that OPTRA compare favorably with

existing distributed accelerated methods [47 ], [51 ], [52 ] proposed for Problem (3.1 ), which

supports our theoretical findings.

Technical novelties. While the genesis of OPTRA finds roots in the primal-dual algo-

rithm [53 ] and employs Nesterov acceleration similar to [54 ] (which also builds on [53 ]),

there are some substantial differences between the proposed distributed algorithms and the
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aforementioned schemes [53 ], [54 ], which are briefly discussed next. The scheme in [53 ] is

meant for abstract saddle-point problems and so [54 ] does; the focus therein is not on dis-

tributed optimization. Hence, communications over networks are not explicitly accounted

for. Specifically, both [53 ] and [54 ] only accelerate the computation but not the communica-

tion (networking) component (cf., [53 , Alg. 2] and [54 , Alg. 2]). On the other hand, OPTRA

adopts Nesterov and Chebyshev acceleration to balance computation and communication,

so that lower complexity bounds on both are achieved (in terms of Bregman distance). This

is a major novelty with respect to [53 ], [54 ]. Because of these differences, the convergence

analysis of OPTRA can not be deduced or easily adapted from that of [53 ], [54 ]; a new

convergence proof is therefore provided, which shows an explicit dependence of the rate on

key network parameters.

3.2 Problem formulation

3.2.1 Distributed optimization over networks

We study Problem (3.1 ) under the following assumptions.

Assumption 3.2.1. (i) Each cost function fi : Rd → R is convex and Lfi-smooth; define

Lf , maxmi=1 Lfi . (ii) Problem (3.1 ) has a solution.

Network model Agents are embedded in a communication network, modeled as an undi-

rected graph G = (E ,V), where V is the set of vertices–the agents–and E is the set of edges;

{i, j} ∈ E if there is a communication link between agent i and agent j. We assume that the

graph has no self-loops, that is, {i, i} /∈ E . We use Ni , {j|{i, j} ∈ E} to denote the set of

neighbors of agent i.

Definition 3.2.1 (Graph Induced Matrix). The symmetric matrix S = [sij] ∈ Rm×m is said

to be induced by the graph G = (E ,V) if sij 6= 0 only if i = j or {i, j} ∈ E. The set of such

matrices is denoted by WG.

Since we are interested in optimization over networks with no centralized nodes, we will

focus on distributed algorithms whereby agents communicate with their neighbors using a

suitably designed gossip matrix. Standard assumptions on such matrices are the following.
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Assumption 3.2.2. Given the graph G, the gossip matrix L ∈ Rm×m satisfies:

(i) L ∈ WG;

(ii) Positive semi-definiteness: L � 0, with 0 = λ1 ≤ λ2 ≤ λ3 ≤ ... ≤ λm;

(iii) Connectivity: null(L) = span(1);

where {λi}mi=1 are the eigenvalues of L.

It is not difficult to check a gossip matrix satisfying Assumption 3.2.2 always exists if the

associated graph is connected; see, e.g., [55 ]. Several gossip matrices have been considered

in the literature; we refer the reader to [36 ], [56 ] and references therein for specific examples.

3.2.2 Saddle-point reformulation

A standard approach for solving (3.1 ) consists in rewriting the optimization problem in

the so-called consensus optimization form, that is

min
X∈Rm×d

f(X) + ιC(X), (3.2)

where X = [x1, x2, ..., xm]> ∈ Rm×d, with xi being the local estimate of x owned by agent i;

f(X) , ∑m
i=1 fi(xi); and ιC(·) is the indicator function on the consensus space C , {1x> |x ∈

Rd}. Note that ∇f(X) = [∇f1(x1),∇f2(x2), ...,∇fm(xm)]> ∈ Rm×d.

To solve Problem (3.2 ), we consider the following closely related saddle point formulation

max
Y ∈Rm×d

min
X∈Rm×d

Φ(X,Y ) , f(X) + 〈Y,X〉 − ιC⊥(Y ), (3.3)

where C⊥ is the space orthogonal to C and Φ(X,Y ) is the Lagrangian associated to prob-

lem (3.2 ). By Assumption 3.2.1 , strong duality holds for (3.3 ); hence, (3.3 ) admits a primal-

dual optimal solution pair (X?, Y ?) ∈ D , Rm×d × C⊥ that satisfies the following KKT

conditions

(Lagrangian Optimality) Y ? = −∇f(X?), (3.4a)

(Primal Feasibility) X? ∈ C, (3.4b)
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and the saddle-point property Φ(X?, Y ) ≤ Φ(X?, Y ?) ≤ Φ(X,Y ?), for all (X,Y ) ∈ D. Note

that X? solves Problem (3.2 ) and thus it is also a solution of the original formulation (3.1 ).

Using (3.3 ) and (3.4 ), one can write

Φ(X,Y ?)− Φ(X?, Y ) = f(X) + 〈Y ?, X〉 − f(X?)− 〈Y,X?〉
(3.4 )= f(X)− f(X?)− 〈∇f(X?), X −X?〉 ∆= G(X,X?) ≥ 0,

(3.5)

where G(X,X?) is the Bregman distance. The following properties of G are instrumental

for our develoments (the proof is provided in the supporting material).

Proposition 3.2.1. Let X? be any optimal solution of (3.2 ); the following hold for G defined

in (3.5 ):

(a) X̄ is an optimal solution of (3.2 ) if and only if X̄ ∈ C and G(X̄,X?) = 0;

(b) G(X, •) is constant over the solution set of (3.2 ).

Due to (b), for notational simplicity, in what follows, we will write G(X) for G(X,X?).

Remark 3.2.3. We will use G as metric to assess the (worst-case) convergence rate of the

proposed algorithms as well as to state lower complexity bounds. Note that, since f is not

assumed to be strictly convex, G(X) = 0 does not imply X = X?, but it is only a necessary

condition for X to be optimal (cf. Proposition 3.2.1 (a)). Still, G is a valid merit function

for both purposes above, as explained next. First, G(X) > ε implies that X is ε “far” away

(in the G-measure) from any optimal solution of (3.2 ); hence, a lower bound in terms of

G is an informative measure. Furthermore, when it comes to the convergence rate analysis

of distributed algorithms, Proposition 3.2.1 -(a) legitimates the use of (the decay rate of) G

along the agents’ iterates {Xk}∞
k=0, as the distance of Xk from C is proved to be vanishing–see

Sec. 3.4 .

3.3 Preliminaries: Lower Complexity Bounds

To benchmark the distributed algorithms to be introduced, we recall here existing lower

complexity bounds for decentralized first-oder schemes belonging to the same oracle class of
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the proposed algorithms. The difference from the literature is that we will write such bounds

in terms of the Bregman distance G. We begin introducing the distributed oracle model (cf.

Sec. 3.3.1 ), followed by the lower complexity bound (cf. Sec. 3.3.2 ).

3.3.1 Decentralized first-order oracle

Given Problem (3.1 ) over the graph G, we consider distributed algorithms wherein each

agent i controls a local variable xi ∈ Rd, which is an estimate of the shared optimization

variable x in (3.1 ). The value of xi at (continuous) time t ∈ R+ is denoted by x(t)
i . To update

its own variable, each agent i: 1) has access to the gradient of its own function–we assume

that the time to inquire such a gradient is normalized to one; and 2) can communicate values

(vectors in Rd) to (some of) its neighbors j ∈ Ti–this communication requires a time τc ∈ R+

(which may be smaller or greater than one). Each update x(t)
i is generated according to the

following general black-box procedure.

Distributed first-order oracle A: A distributed first order iterative method generates a

sequence
{
X(t)

}
t≥0

, with X(t) , [x(t)
1 , . . . , x(t)

m ], such that

x
(t)
i ∈ span(x(s)

j | j ∈ Ni and 0 ≤ s < t− τc)︸ ︷︷ ︸
local communication

+ span(x(s)
i ,∇fi(x(s)

i ) | 0 ≤ s < t− 1)︸ ︷︷ ︸
local computation

, (3.6)

for all i ∈ V . We made the blanket assumption that each x0
i = 0, without loss of generality.

The oracle (3.6 ) allows each agent to use all the historical values of its local gradients

(local computations) as well as the historical values of the decision variables received from its

neighbors (local communications). Furthermore, (3.6 ) also captures algorithms employing

multiple rounds of communications (resp. gradient computations) per gradient evaluation

(resp. communication). In the supporting material (Appendix 3.4.2 ), we show that, in

fact, the above oracle accounts for most existing distributed algorithms, such as primal-dual

methods [4 ] as well as gradient tracking methods [5 ], [7 ], [8 ], [11 ].

A similar black-box procedure has been introduced in [14 ] for strongly convex instances

of (3.1 ). The difference with [14 ] is that the oracle in (3.6 ) cannot return the gradient of

the conjugate of the fi’s. The reason of considering such “less powerful” methods is that,
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in practice, it is hard to compute the gradient of conjugate functions. This means that the

gossip (dual-based) methods in [14 ] do not belong to the oracle considered in this chapter.

3.3.2 Lower complexity bounds

We state now lower complexity bounds in the G-metric for the class of algorithms A

applied to Problem (3.2 ) [and thus (3.1 )] over a connected graph G. In Section 3.4 we will

introduce a primal-dual distributed algorithm that indeed converges to an optimal solution

of (3.2 ) driving G to zero at a rate that matches the lower complexity bound. Proofs of the

results are available as supporting material.

Theorem 3.3.1. Consider Problem (3.1 ) under Assumption 3.2.1 and let G be a connected

graph. For any given η ∈ (0, 1] and Lf > 0, there exists a gossip matrix L ∈ WG with eigengap

η , λ2(L)
λm(L) , and a set of local cost functions {fi}mi=0, fi : Rd → R, with f(X) = ∑

i fi(xi) being

Lf -smooth such that, for any first-order gossip algorithm in A using L, we have

G
(
X(t)

)
= Ω

 LfR
2

( t

1+
⌈

1
5√

η

⌉
τc

+ 2)2 +
R
∥∥∥∇f(X?)

∥∥∥
t

1+
⌈

1
5√

η

⌉
τc

+ 2

 , (3.7)

for all t ∈
[
0, d−1

2

(
1 +

⌈
1

5√
η

⌉
τc
)]

, where R , ‖X0 −X?‖. Furthermore,

LfR
2

t /
(
1 +

⌈
1

5√
η

⌉
τc
) = Θ

(
R
∥∥∥∇f(X?)

∥∥∥) . (3.8)

Corollary 3.3.1.1. In the setting of Theorem 3.3.1 , the overall time needed by any first-

order algorithm in A using the gossip matrix L to drive G below ε > 0, with f given in

Theorem 3.3.1 , is

Ω
(1 + 1

√
η
τc

)√LfR2

ε
+
R
∥∥∥∇f(X?)

∥∥∥
ε

 . (3.9)
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Notice that, because of (3.8 ), the lower bound (3.9 ) can be equivalently stated as

Ω
(1 + 1

√
η
τc

)√
LfR2

ε

 . (3.10)

It is not difficult to check that the lower bound in terms of the more traditional objective-

error-based metric (FEM):

max
i∈V

(F (xi)− min
x∈Rd

F (x)) (3.11)

has the same expression as (3.7 ) [and thus (3.9 ) and (3.10 )] up to some constants. This

observation is also reported in [51 ] without proof, and stated formally below for completeness

(the proof can be found in the supporting material).

Theorem 3.3.2 (Lower bound on the objective-error). In the setting of Theorem 3.3.1 , the

overall time needed by any first-order algorithm in A using the gossip matrix L to drive the

objective-error-based metric, maxi∈V(F (xi) − minx∈Rd F (x)), below ε > 0, with f given in

Theorem 3.3.1 , is given by (3.9 ) [or, equivalently, by (3.10 )].

Remark 3.3.3 (Balancing computations & communications). The above lower bounds tell

us that one cannot reach an ε-solution of (3.2 ) (measured either in terms of the G or

FEM-metrics) in less than O
(√

LfR2/ε+R‖∇f(X?)‖/ε
)

computing time and O(τc/
√
η ·

(
√
LfR2/ε + R‖∇f(X?)‖/ε)) communication time. Since the time for a single gradient

evaluation has been normalized to one, the former lower bound corresponds also to the

overall number of gradient evaluations while the overall communication steps read

Ω
(

1/√η ·
(√

LfR2/ε+R‖∇f(X?)‖/ε
))

.

This sheds light also on the optimal balance between computation and communication: the

optimal number of communication steps per gradient evaluations is d1/√ηe. In the next

section, we introduce a distributed, gossip-based algorithm that achieves lower complexity

bounds in the G-metric.
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3.4 Distributed primal-dual algorithms

3.4.1 A general primal-dual scheme

A gamut of primal-dual algorithms has been proposed in the literature to solve Prob-

lem (3.2 ) in a centralized setting; see, e.g., [53 ], [57 ] and references therein for details.

Building on [53 ], [57 ], here, we propose a general primal-dual algorithm to solve the saddle

point problem (3.3 ) in a distributed manner. The algorithm reads: given Xk and Y k at

iteration k ∈ T+,

Xk+1 = A(Xk − γ(∇f(Xk) + Ŷ k)), (3.12a)

Y k+1 = Y k + τBXk+1, (3.12b)

Ŷ k+1 = Y k+1 + β(Y k+1 − Y k), (3.12c)

where Y k is the dual vector variable; γ and τ are the primal and dual step-sizes common to

all the agents; β ∈ [ − 1 1] is a free parameter to be determined; and A,B ∈ Rm×m satisfy

the following assumption.

Assumption 3.4.1. The weight matrices A,B in (3.12 ) are such that

(i) A = A>, 0 � A � I, and null(I − A) ⊇ span(1);

(ii) B = B>, B � 0, and null(B) = span(1).

Remark 3.4.2. Several choices for A and B satisfying Assumption 3.4.1 are possible, re-

sulting in a gamut of specific algorithms, obtained as instances of (3.12 ). Note that, when A

and B satisfy also Assumption 3.2.2 , all these algorithms are implementable over the graph

G. Several examples of such distributed algorithms are discussed in details in Appendix 3.4.2 .

Here, we only mention that the gradient tracking methods [5 ], [7 ], [8 ], [11 ] and primal-dual

methods, such as EXTRA [4 ], are all special cases of (3.12 ); the former schemes are ob-

tained setting A = W 2 and B = (I −W )2, where W ∈ WG is the weight matrix used by the

agents to employ the (perturbed) consensus step; and EXTRA is obtained setting A = W
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and B = I −W . We begin studying convergence of the general primal-dual algorithm (3.12 ),

under the following tuning of the free parameters:

γ = ν

νLf + 1 , τ = 1
νλm(B) , (1− γLf )I − γτB � 0, (3.13)

where λm(B) is the largest eigenvalue of B.

Theorem 3.4.3. Consider Problem (3.1 ) under Assumption 3.2.1 . Given (X0, Y 0), let

{(Xk, Y k)}∞
k=1 be the sequence generated by the algorithm in (3.12 ), under Assumption 3.4.1 

and the setting in (3.13 ). Define X̄k , 1
k−1

∑k
t=2 Xt and R , ‖X1−X?‖, Then, the following

hold: (i) {Xk}∞
k=0 converges to an optimal solution X? of (3.2 ) [thus X? = 1x?, with x? being

optimal for (3.1 )]; therefore limk→∞ G(Xk) = 0; and (ii) the number of iterations needed for

G(X̄k) to go below ε > 0 is

O

LfR2

ε
+ 1√

η(B)
R‖∇f(X?)‖

ε

 . (3.14)

The proof of the theorem can be found in the supporting material. Note that the con-

vergence rate (3.14 ) does not match the lower bound given in Theorem 3.3.1 . For instance,

consider as concrete example the choice A = I −L and B = L; and let τc ∈ R+ (resp. 1) be

the time for each agent to perform a single communication to its neighbors (resp. gradient

evaluation). The time complexity of the primal-dual algorithm (3.12 ) becomes

O

(1 + τc)
LfR2

ε
+ 1√

η(L)
R‖∇f(X?)‖

ε

 .
To match the lower lower bound given in Theorem 3.3.1 , our next step is accelerating

the algorithm, both the computational part and the communication step; we leverage Nes-

terov acceleration [29 ] for the optimization step while employ Chebyshev polynomials [31 ]

to accelerate communications. To provide some insight of our construction, we begin with

the former acceleration; the latter is added in Section 3.4.4 .
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3.4.2 Review of existing distributed algorithms and their connections

This section shows the generality of the first-order oracle A in (3.6 ) and the proposed

distributed primal-dual algorithmic framework (3.12 ) by casting several existing distributed

algorithms in the oracle form (3.6 ) and algorithmic form (3.12 ).

- Some distributed optimization methods

Distributed gradient methods One of the first distributed algorithms for Problem (3.1 )

was proposed in the seminal work [58 ] and called Distributed Gradient Algorithm (DGD).

DGD employing constant step-size can be written in compact form as:

Xk+1 = WXk − γ∇f(Xk), (3.15)

where W ∈ WG. Defining X(tk) = Xk, DGD can be rewritten in a piece-wise continuous

form as
X(tk+1) = WX(tk) − γ∇f(X(tk)),

X(t) = X(tk), tk ≤ t < tk+1,
(3.16)

which is an instance of the oracle A.

Distributed gradient tracking methods The distributed gradient tracking algorithm,

first proposed in [5 ], [7 ] and further analyzed in [8 ], [11 ], reads

Xk+1 = WXk − γY k (3.17a)

Y k+1 = WY k +∇f(Xk+1)−∇f(Xk) (3.17b)

where Yk is an auxiliary variable aiming at tracking the gradient of the sum-cost function.

The above algorithm is proved to converge at linear rate to a solution of Problem (3.2 ),

under proper conditions on the stepsize γ. To show its relationship to the oracle, we first

rewrite (3.17 ) absorbing the tracking variable Y , which yields

Xk+2 = 2WXk+1 −W 2Xk − γ(∇f(Xk+1)−∇f(Xk)),
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with X1 = WX0− γ∇f(X0). It is clear that the gradient tracking algorithm belongs to the

oracle S, as each iteration k only involves the historical neighboring information and local

gradients at k − 1 and k − 2.

Distributed primal-dual methods Distributed primal-dual algorithms can be gener-

ally written in the following form [4 ]

Xk+1 = WXk − γ∇f(Xk)− Y k (3.18a)

Y k+1 = Y k + (I −W )Xk+1 (3.18b)

where Yk is the dual variable. When Y 0 = 0, the algorithm 3.18 can solve problem (3.2 ).

Evaluating (3.18a ) at k + 1 and substituting it into (3.18b ) yields

Xk+2 = 2WXk+1 −WXk − γ(∇f(Xk+1)−∇f(Xk)), (3.19)

with X1 = WX0 − γW∇f(X0). It is easy to check that (3.19 ) belongs to the oracle A.

Remark 3.4.4. There are some other distributed algorithms that do not belong to the cat-

egories above such as [59 ]. However, using similar arguments as above, one can show that

they are instances of the oracle A.

- Connections between gradient tracking and primal-dual methods

We reveal here an unknown interesting connection between primal-dual methods and gradient

tracking based methods. More specifically, setting in (3.12a ) A = W 2 and B = (I−W)2,

one can easily recover gradient tracking methods from the primal-dual ones. To simplify the

presentation, we consider a slightly different form of (3.12a ), that is

Xk+1 = W 2(Xk − γ(∇f(Xk)) + (I −W )Y k, (3.20a)

Y k+1 = Y k + (I −W )Xk+1. (3.20b)

Then, from (3.20a ), we have at iteration k + 1

Xk+2 = W 2Xk+1 − γW 2∇f(Xk+1)− (I −W )Y k+1
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Subtracting (3.20a ) from the above equation we have

Xk+2 −Xk+1 = W 2Xk+1 −W 2Xk − γW 2(∇f(Xk+1)−∇f(Xk))− (I −W )(Y k+1 − Y k)

= W 2Xk+1 −W 2Xk − γW 2(∇f(Xk+1)−∇f(Xk))− (I −W )2Xk+1

= 2WXk+1 −Xk+1 −W 2Xk − γW 2(∇f(Xk+1)−∇f(Xk)).
(3.21)

Rearranging terms leads to

Xk+2 −WXk+1 = W (Xk+1 −WXk)− γW 2(∇f(Xk+1)−∇f(Xk)).

Let −γWY k = Xk+1 −WXk and suppose W is invertible. Then, we have

Xk+1 = W (Xk − γY k) (3.22a)

Y k+1 = W (Y k +∇f(Xk+1)−∇f(Xk)) (3.22b)

which is exactly the standard gradient tracking method in the ATC form [5 ], [7 ].

3.4.3 Nesterov-based accelerated primal-dual algorithms

We accelerate the primal-dual algorithm (3.12 ) as follows:

uk+1 = A(Xk − γ(∇f(Xk) + Ŷ k)), (3.23a)

Xk+1 = uk+1 + αk(uk+1 − uk), (3.23b)

X̂k+1 = σkX
k+1 + (1− σk)uk+1 (3.23c)

Y k+1 = Y k + τkBX̂
k+1, (3.23d)

Ŷ k+1 = Y k+1 + βk(Y k+1 − Y k), (3.23e)

where uk, X̂k, Ŷ k are auxiliary variables and αk, σk, τk, βk are parameters to be properly

chosen. Roughly speaking, (3.23a ), (3.23d ) and (3.23e ) are the standard primal-dual steps

while (3.23b ) and (3.23c ) are the extra steps meant for the acceleration, with (3.23b ) being

the standard Nesterov momentum step and (3.23c ) being a correction step. Note that setting
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αk ≡ 0, σk ≡ 1, τk ≡ τ, βk ≡ 1, the algorithm reduces to the primal-dual method (3.12 ). We

provide next an instance of (3.23 ) that is suitable for a distributed implementation.

Choose the free parameters in (3.23 ) as follows: denoting by T ∈ T+ the total number

of iterations k performed by the algorithm, set

A = I − L/λm(L), B = L/λm(L), γ = ν

νLf + T
,

τ = 1
νT λm(B) ,

1
θk

=
1 +

√
1 + 4( 1

θk−1
)2

2 with θ1 = 1,

σk = 1
θk+1

, αk = θk+1

θk
− θk+1, βk = τk+1

τk
, τk = τ

θk
.

(3.24)

The resulting scheme is summarized in Algorithm 1 , and its convergence properties are

stated in Theorem 3.4.5 . We point out that Theorem 3.4.5 , although stated for Algorithm

1 , can be readily extended to the more general accelerated primal-dual scheme (3.23 ), with

other choices of A and B just satisfying Assumption 3.4.1 .

Algorithm 1 OPTRA-N
Input: number of iterations T , Laplacian matrix L, parameter ν =

√
η(B)

Output: (uT , Y T )
Initialization: y1

i = 0,∀i ∈ V and θ1 = 1
1: Ŷ 1 = τ1BX

1, u1 = X1

2: for k = 1, 2, ..., T do
3: compute θk according to (3.24 ),
4: for ∀i ∈ V do in parallel
5: compute the next iterate according to (3.23 ), using the tuning as in (3.24 ),
6: Return (uT , Y T )

Theorem 3.4.5. Consider Problem (3.1 ) under Assumption 3.2.1 ; let u(t) be the value of

the u-vector generated by Algorithm 1 at time t ∈ R+, under Assumptions 3.2.2 and 3.4.1 ,

and the parameter setting in (3.24 ). Then, we have

G(u(t)) = O

 LfR
2(

t
1+τc

)2 +
R2 +

∥∥∥∇f(X?)
∥∥∥2

√
η t

1+τc

 .
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If one can set ν = O
(√

η(B)R/
∥∥∥∇f(X?)

∥∥∥) , the above bound can be improved to

G(u(t)) = O

 LfR
2(

t
1+τc

)2 +
R
∥∥∥∇f(X?)

∥∥∥
√
η t

1+τc

 . (3.25)

Furthermore, the consensus error decays at

∥∥∥(I − 11T

m

)
u(t)

∥∥∥ = O

 LfR
2∥∥∥∇f(X?)
∥∥∥ ( t

1+τc

)2 +
R2 +

∥∥∥∇f(X?)
∥∥∥2∥∥∥∇f(X?)

∥∥∥√η t
1+τc

 . (3.26)

While the convergence time of Algorithm 1 benefits from the Nesterov acceleration of

the computation step, it is not optimal in terms of communications (optimal dependence on

η). In fact, when the network is poorly connected, the second term on the RHS of (3.25 )

becomes dominant with respect to the first one, and (3.25 ) overall will be larger than (3.7 ).

This is due to the fact that Algorithm 1 performs a one-consensus-one-gradient update while

the lower bound shows an optimal ratio of d1/√ηe (cf. Remark 3.3.3 ). This optimal ratio

can be achieved accelerating also the communication step, as described in the next section.

3.4.4 Optimal primal-dual algorithms with Chebyshev acceleration

We employ the acceleration of the communication step in Algorithm 1 by replacing the

gossip matrix L by PK(L), where PK(·) is a polynomial of degree at most K that maximizes

the eigengap of PK(L), for a fixed K. This leads to a widely used acceleration scheme

known as Chebyshev acceleration and the choice PK(x) = 1 − TK(c1(1 − x))/TK(c1), with

c1 = (1 + η(L))/(1− η(L)) and TK(·), are the Chebyshev polynomials [31 ]. It is not difficult

to check that such a PK(L) is still a gossip matrix. Using in (3.23 ) the following setting:

A = I − c2PK(L), B = PK(L), K =
⌈
1/
√
η(L)

⌉
, with

c2 =
(

1 + 2 cK0
(1 + c2K

0 )

)−1

, c0 =
1−

√
η(L)

1 +
√
η(L)

,
(3.27)
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Algorithm 2 OPTRA

Input: number of iterations T , Laplacian matrix L̃, number of inner consensusK =
⌈

1√
η(L)

⌉
,

c0 = 1−
√
η(L̃)

1+
√
η(L̃)

, c1 = 1+η(L̃)
1−η(L̃)

, c2 = 1/
(

1 + 2 cK
0

1+c2K
0

)
, τ = c2

νT
, γ = ν

νLf +T , ν = 1.

Initialization: Y 0 = 0; Preprocessing: L = 2
λ2(L̃)+λn(L̃)

L̃.

Output: (uT , Y T )
1: Ŷ 1 = τ1 ·AcceleratedGossip(X1, L,K), u1 = X1

2: for k = 1, 2, ..., T do
3: uk+ 1

2 = Xk − γ
(
∇f(Xk) + Ŷ k

)
,

4: uk+1 = uk+ 1
2 − c2 ·AcceleratedGossip(uk+ 1

2 , L,K),
5: Xk+1 = uk+1 +

(
θk+1
θk
− θk+1

)
(uk+1 − uk),

6: X̂k+1 = 1
θk+1

Xk+1 +
(
1− 1

θk+1

)
uk+1,

7: Y k+1 = Y k + τ
θk

AcceleratedGossip(X̂k+1, L,K),
8: Ŷ k+1 = Y k+1 + θk

θk+1
(Y k+1 − Y k),

9: Return (uT , Y T ).

10: procedure AcceleratedGossip(X,L,K)
11: a0 = 1, a1 = c1
12: Z0 = X,Z1 = c1(I − L)X
13: for k = 1 to K − 1 do
14: ak+1 = 2c1ak − ak−1
15: Zk+1 = 2c1(I − L)Zk − Zk−1

16: return Z0 − ZK

aK

leads to the distributed scheme described in Algorithm 2 , whose convergence rate achieves the

lower bound (3.9 ), as proved in Theorem 3.4.6 below. Note that, although the idea of using

Chebyshev polynomial has been used in some (centralized and distributed) algorithms in the

literature [14 ], [31 ], Algorithm 2 substantially differs from existing schemes. Furtheremore,

[14 ], [31 ] are not rate optimal in the distributed setting considered in this work.

Theorem 3.4.6. Consider Problem (3.1 ) under Assumption 3.2.1 ; let u(t) be the value of

the u-vector generated by algorithm 2 at time t ∈ R+, under Assumptions 3.2.2 and 3.4.1 ,
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the parameter setting in (3.24 ), and employing the Chebyshev acceleration (3.27 ). Then, the

following hold:

G(u(t)) = O

 LfR
2

( t

1+
⌈

1√
η

⌉
τc

)2 +
R2 +

∥∥∥∇f(X?)
∥∥∥2

t

1+
⌈

1√
η

⌉
τc

 .

If one can set ν = O
(
R/
∥∥∥∇f(X?)

∥∥∥) , the above bound can be improved to

G(u(t)) = O

 LfR
2

( t

1+
⌈

1√
η

⌉
τc

)2 +
R
∥∥∥∇f(X?)

∥∥∥
t

1+
⌈

1√
η

⌉
τc

 .

Furthermore, the consensus error
∥∥∥(I − 11T

m
)u(t)

∥∥∥ decays at

O

 LfR
2∥∥∥∇f(X?)

∥∥∥( t

1+
⌈

1√
η

⌉
τc

)2
+

R2 +
∥∥∥∇f(X?)

∥∥∥2∥∥∥∇f(X?)
∥∥∥ t

1+
⌈

1√
η

⌉
τc

 .

According to Theorem 3.4.6 , given ε > 0, the time needed by the algorithm to drive G

below ε > 0 is

O

(1 + 1
√
η
τc

)√LfR2

ε
+ R‖∇f(X?)‖

ε

 ,
which matches the lower complexity bound given in (3.9 ). Note that the optimality is stated

in terms of the G-metric and does not imply that the algorithm is rate optimal also in the

FEM-metric (3.11 ), which to date remains an open question. In our experiments (cf. Sec.

5.4 ) we observed i) the similar behavior of these two errors measured in different metrics as

a function of the total number of computations and communications; and ii) that Algorithm

2 in fact outperforms existing distributed schemes.
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Figure 3.1. Comparison of distributed first-order gradient algorithms. The
first row of panels shows the objective error versus the total cost (left panel),
the communication cost (middle panel), and the gradient computation cost
(right panel). The second row plots the Bregman distance versus the same
quantities as in the first row. Note that the curves of DIGing/NEXT overlap
with that of EXTRA.

3.5 Numerical Results

We present here some numerical results validating our theoretical findings. We compare

the proposed optimal rate algorithm–OPTRA–with existing accelerated algorithms designed

for convex smooth problems, namely: Acc-DNGD-NSC [52 ] and APM-C [51 ]. We also

incuded the gradient tracking method (DIGing/NEXT) [7 ] and the primal-dual method

EXTRA [4 ]; they are non accelerated schemes but generally perform quite well in practice,

achieving linear rate for smooth and strongly convex optimization problems [10 ], [11 ].
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3.5.1 Decentralized linear regression

We tested the above algorithms on a distributed least squares regression problem, in the

form minx∈Rd

∥∥∥Ax − b
∥∥∥2, where A = [A1;A2; · · · ;Am] ∈ Rmr×d and b = [b1; b2; · · · ; bm] ∈

Rmr×1, with Ai ∈ Rr×d and bi ∈ Rr×1, r = 10, d = 500, and m = 20. Note that each

agent i can only access the data (Ai, bi). We generated the matrix A of the feature vectors

according to the following procedure, proposed in [60 ]. We first generate a random matrix

Z with each entry i.i.d. drawn from T (0, 1). Using a control parameter ω ∈ [0, 1), we

generate columns of A (M:,i and Mi,: denote the i-th column and i-th row of a matrix M ,

respectively) so that the first column is A:,1 = Z:,1/
√

1− ω2 and the rest are recursively set as

A:,i = ωA:,i−1+Z:,i, for i = 2, . . . , d. As result, each row Ai,: ∈ Rd is a Gaussian random vector

and its covariance matrix Σ = cov(A:,i) is the identity matrix if ω = 0 and becomes extremely

ill-conditioned as ω → 1; we set ω = 0.95. Finally we generate x0 ∈ Rd with each entry

i.i.d. drawn from T (0, 1), and set b = Ax0 + ξ, where each component of the noise ξ is i.i.d.

drawn from T (0, 0.25). We simulated a network of m = 20 agents, connected throughout a

communication graph, generated using the Erdös-RéTyi model; the probability of having an

edge between any two nodes is set to 0.1. We calculated Lf from the generated data and

used the exact value whenever this parameter is needed. We tuned the free parameters of the

simulated algorithms manually to achieve the best practical performance for each algorithm.

This leads to the following choices: i) the step size of DIGing/NEXT and EXTRA is set

to 10−5; ii) for Acc-DNGD-NSC, we used the fixed step-size rule, with η = 0.005/Lf (the

one provided in [52 , Th. 5] is too conservative, resulting in poor practical performance); iii)

for APM-C, we set (see notation therein) Tk =
⌈
c · (log k/

√
1− σ2(W ))

⌉
, with c = 0.2 and

β0 = 104; and for iv) for our algorithm, we set ν = 100 and K = 2.

Our experiments are reported in Figure 3.1 , where we plot the Bregman distance (first

row of panels) and FEM-metric (3.11 ) (second row of panels) versus the overall number

of communications and computations performed by each agent (left plot), the number of

communications (middle plot), and the number of computations (right plot). The following

comments are in order. The accelerated schemes converge faster than the non-accelerated

schemes NEXT/DIGing and EXTRA (whose curves are coincident in all panels). In our
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experiments (not all reported), we observed that this gap is quite evident when problems are

ill-conditioned. From the right panel, one can see that APM-C performs better than OPTRA

and Acc-DNGD-NSC in terms of overall number of gradient evaluations, which is expected

since APM-C employs an increasing number of communication steps per gradient evaluation.

On the other hand, APM-C suffers from high communication cost (which is evident from

the middle panel), making it not competitive with respect to the proposed OPTRA in terms

of communications. When both communication and computation costs are considered (left

panel), OPTRA outperforms all the other simulated schemes, which support our theoretical

findings.

3.5.2 Decentralized logistic regression

Figure 3.2. Comparison of distributed first-order gradient algorithms for solv-
ing the decentralized logistic regression problem in terms of both the Bregman
distance and the traditional FEM-metric.
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To further verify the effectiveness of our proposed scheme, we also include a decentralized

logistic regression task on the Parkinson’s Disease Classification Data Set1
 . We preprocess

the data by deleting the first column-id number, rescaling feature values to the range (0, 1),

and changing the label notation from {1, 0} to {1,−1}. We denote the processed data set

as {(ui, yi)}i∈D, where ui ∈ Rd is the feature vector and yi ∈ {1,−1} is the label of the i-th

observation. We simulated a network of 60 agents, generated by the Erdös-RéTyi model

with the parameter of connection probability as 0.1. Then, we distributed the data set to all

agents evenly, corresponding to a partition of the index set D across agents as D = ∪60
i=1Di.

The decentralized logistic regression problem reads

min
x∈R

m∑
i=1

∑
j∈Di

log
(
1 + exp(−yju

>
j x)

)
.

We estimated Lf for the problem as Lf = 24 and tuned the free parameters of the simulated

algorithms manually to achieve the best practical performance for each algorithm. This leads

to the following choices: i) the step size of NEXT/DIGing is set to 0.01; ii) the step size

of EXTRA is set to 0.005; iii) for Acc-DNGD-NSC, we used the fixed step-size rule, with

η = 0.01/Lf ; iv) for APM-C, we set (see notation therein) Tk =
⌈
c · (log k/

√
1− σ2(W ))

⌉
,

with c = 0.2 and β0 = 104; v) for DPSGD, we set its step size as 0.001 and the portion of

batch size to the full local data set as 20% and for vi) for our algorithm, we set ν = 1500

and K = 2.

The experiment result is reported in Figure 3.2 . The first row of panels shows the

Bregman distance versus the total cost (left panel), the communication cost (middle panel),

and the gradient computation cost (right panel). The second row plots the FEM-metric

versus the same quantities as in the first row. Both the communication time unit and the

computation time unit for a full epoch of local data is set as 1. For DPSGD, the computation

time unit is scaled in proportion to the local batch size. The only existing algorithm that

has a comparable performance with the proposed OPTRA is APM-C. As discussed in the

task of decentralized linear regression, APM-C performs better than OPTRA in terms of the
1↑ The data set is available at https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classifica-
tion 
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number of gradient computations, while suffers from high communication cost. In terms of

the overall number of communications and computations, OPTRA outperforms all the other

simulated schemes under the above setting.

Figure 3.3. Comparison for distributed algorithms for solving the decentral-
ized linear regression problem with the communication time unit being “1”
and the computation time unit “5” for a full epoch of local data.

3.5.3 Different ratio of communication time versus computation time

In all the previous experiments, we set both the communication time unit and the com-

putation time unit for a full epoch of local data as 1. To incorporate scenarios where a

full epoch computation of local gradient is much more expensive than one communication

process, we re-conducted the previous experiments in the setting where the communication

90



Figure 3.4. Comparison for distributed algorithms for solving the decentral-
ized logistic regression problem, in the setting where the communication time
unit is 1 while the computation time unit for a full epoch of local data is 5.

time unit is 1 while the computation time unit for a full epoch of local data is 5. Note

that all the process of data generation and parameters tunings are the same as in the Sec.

6.2 . The results are reported in Figure 3.3 and Figure 3.4 respectively for decentralized

linear regression problem and the decentralized logistic regression problem. It can be seen

that OPTRA outperforms all the other simulated schemes in terms of the overall number of

communications and computations, especially when the communication cost is not negligible.

3.6 Conclusion

We studied distributed gossip first-order methods for smooth convex optimization over

networks. We provided a novel primal-dual distributed algorithm that employs Nesterov

acceleration on the optimization step and acceleration of the communication step via Cheby-
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shev polynomials, balancing thus computation and communication. We also proved that the

algorithm achieves the lower complexity bound in the Bregman distance-metric. Prelimi-

nary numerical results showed that the proposed scheme outperforms existing distributed

algorithms proposed for the same class of problems. An open question, currently under in-

vestigation, is whether the proposed distributed algorithms are rate optimal also in terms of

the FEM metric. To the date, no such an algorithm is known in the literature.

3.7 Appendix: Proofs of Theorems

3.7.1 Proof of Proposition 3.2.1 

Statement (a) is a direct result of [61 , Prop. 6.1.1]. We prove next statement (b).

Suppose that there are two optimal solutions X? and X̃? such that

∇f(X?), ∇f(X̃?) ∈ C⊥, X?, X̃? ∈ C and f(X?) = f(X̃?).

SinceG(X,X?) = f(X)−f(X?)−〈∇f(X?), X −X?〉 ≥ 0 for allX ∈ Rm×d, andG(X̃?, X?) =

0, X̃? is the global minimizer of G. Hence, it must be ∇f(X?) = ∇f(X̃?), implying

G(X,X?) = f(X)− f(X?)− 〈∇f(X?), X −X?〉

= f(X)− f(X̃?)−
〈
∇f(X̃?), X − X̃?

〉
= G(X, X̃?), ∀X ∈ Rm×d,

(3.28)

where we have used the fact that 〈∇f(Z), Z〉 = 0 for any optimal solution Z.

3.7.2 Proof of Theorem 3.3.1 

As elaborated in Section 3.3.1 , to study the lower complexity bound of the first order

distributed oracle A solving Problem (3.2 ) [and thus (3.1 )], one can consider ε-solutions (i.e.,

X̄ ∈ Rm×d such that G(X̄) ≤ ε) of the following convex optimization problem:

min
X∈Rm×d

G(X) = f(X)− 〈∇f(X?), X −X?〉 − f(X?). (3.29)
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The proof is based on building a worst-case objective function in (3.29 ) and network graph

for which the lower bound is achieved by the best available gossip, distributed algorithm

in the oracle A. To do so we build on the cost function first introduced in [50 ] for a fully

connected network and later used for a peer-to-peer network in [14 ], both for smooth strongly

convex problems. Since we use a different metric (the Bregman distance) to define the lower

bound and consider smooth convex problems (not necessarily strongly-convex), the analysis

in [14 ] cannot be readily applied to our setting and an ad-hoc proof of the theorem is needed.

The path of our proof is the following: i) We start with a simple network consisting of

two agents such that the diameter of the network will not come into play–see Sec. 3.7.2 ;

and ii) then we extend our results to a general network composed by an arbitrary number

of agents–see Sec. 3.7.3 .

- A simple two-agent network We state the result on the simple two-agent network as

the following.

Theorem 3.7.1. Consider a two-agent network with cost functions given in (3.30 ). Let

{Xk}∞
k=0 be the sequence generated by any first-order algorithm A. Suppose 0 ≤ k ≤ d−1

2 .

Then, we have

G(Xk) = Ω
Lf

∥∥∥X0 −X?
∥∥∥2

(k + 1)2 +

∥∥∥X0 −X?
∥∥∥∥∥∥∇f(X?)

∥∥∥
k + 1

 .
We prove the above result in three steps: i) we construct the hard function in Sec. 3.7.2 ,

which is the worst-case function for all methods belonging to the oracle A; ii) we introduce

some intermediate result in Sec. 3.7.2 , which is related to our specific metric–the Bregman

distance G, and iii) building on step i-ii, we derive the lower bound in Sec. 3.7.2 .

- Construction of the hard function Consider a network composed of two agents. The

idea of the proof of the lower complexity bound relies on splitting the “hard” function used by

Nesterov to prove the iteration complexity of first-order gradient methods for (centralized)
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smooth convex problems across the agents[29 , Chapter 2]. More specifically, consider the

following cost functions for the two agents:


f1,[k](x1) = Lf

8 x
>
1 A1,[k]x1 − Lf

4 e>
1 x1,

f2,[k](x2) = Lf

8 x
>
2 A2,[k]x2,

(3.30)

where

A1,[k] ,



1 0 0 0 0 · · ·

0 1 −1 0 0 · · ·

0 −1 1 0 0 · · ·

0 0 0 1 −1 · · ·

0 0 0 −1 1 · · ·
... ... ... ... ... . . .


, A2,[k] ,



1 −1 0 0 0 · · ·

−1 1 0 0 0 · · ·

0 0 1 −1 0 · · ·

0 0 −1 1 0 · · ·

0 0 0 0 1 · · ·
... ... ... ... ... . . .


(3.31)

are two d×d matrices with their leading principal minors of order k ∈ [1, d] having non-zero

block diagonals while the rest being zero.

The key idea of Nesterov proof for the lower complexity bound of centralized first-order

gradient methods consists in designing the “hardest” function to be minimized by any method

belonging to the oracle. This function was shown to be such that, at iteration k, all these

methods produce a new iterate whereby only the kth component is updated. The choice of

the two agents’ cost functions in (3.30 ) follows the same rationale: the structure of A1,[k]

and A2,[k] is such that none of the two agents is able to make progresses towards optimality,

i.e., updating the next component in their local optimization vector (with odd index for

agent 1 and even index for agent 2) just performing local gradient updates and without

communication with each other. This means that at certain stages a communication between

the two agents is necessary for the algorithm to make progresses towards optimality. Building

on the above idea, we begin establishing the lower complexity bound for the two-agent

network problem in terms of gradient evaluations.

- Intermediate results
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Now substituting f(X) = f1,[k](x1)+f2,[k](x2) in (3.29 ) and ignoring constants, we obtain

min
X∈R2×d

f[k](X) , f1,[k](x1) + f2,[k](x2)−
〈
[∇f1,[k](x?1),∇f2,[k](x?2)]>, X

〉
. (3.32)

We denote the optimal function value of the above problem as f ?[k]. It is obvious that, when

agents reach consensus, i.e., x1 = x2, the function f[k](X) will reduce to the Nesterov’s

“hard” function [29 , Section 2.1.2], for which we have the optimal solution

x?1 = x?2 = [ k

k + 1 ,
k − 1
k + 1 , ...,

1
k + 1︸ ︷︷ ︸

the first k components

, 0, . . . , 0]> ∈ span(e1, e2, ..., ek),

and it yields

∥∥∥X?
∥∥∥2 =

∥∥∥x?1∥∥∥2 +
∥∥∥x?2∥∥∥2 ≤ 2

3(k + 1) (3.33)

and f ?[k] = Lf

8 (−1 + 1
k+1). Also, we have


∇f1,[k](x?1) = Lf

4 (A1,[k]x
?
1 − e1) = −Lf

4
1

k+1a[k]

∇f2,[k](x?2) = Lf

4 A2,[k]x
?
2 = Lf

4
1

k+1a[k],

(3.34)

where

a[k] = [1,−1, 1,−1, 1,−1, ...︸ ︷︷ ︸
1/− 1 alternates k times

, 0, . . . , 0]>.

Thus, we further have

∥∥∥∇f(X?)
∥∥∥ =

√∥∥∥∇f1,[k](x?1)
∥∥∥2 +

∥∥∥∇f2,[k](x?2)
∥∥∥2 =

√√√√2L2
fa

>
[k]a[k]

16(k + 1)2 =
√

2kLf
4(k + 1) . (3.35)
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Note that quantities (3.33 ) and (3.35 ) will be useful later to relate the complexities with∥∥∥X0 −X?
∥∥∥ and

∥∥∥∇f(X?)
∥∥∥. According to (3.34 ), Problem (3.32 ) further becomes

min
X∈R2×d

f[k](X) = f1,[k](x1) + f2,[k](x2) + Lf
4(k + 1)

〈
a[k], x1 − x2

〉
. (3.36)

In the following, we study the above problem when the local variables x1 and x2 are restricted

to the truncating subspace of Rd, as a stepping stone to prove Theorem 3.7.1 .

Let Rk,d , span(ei ∈ Rd | 1 ≤ i ≤ k) denote the subspace composed of vectors whose only

first k components are possibly non-zeros and Lk , span(∇fi(xli) | 0 ≤ l ≤ k − 1, i ∈ V). It

should be noted that the local cost functions constructed in (3.30 ) are dependent on k, but

hereafter subscripts indicating this dependence are omitted for simplicity.

Lemma 3.7.2 (Linear Span). Let {Xk}∞
k=0 be the sequence generated by any distributed

first-order algorithm A with X0 = 0. Then, xki ∈ Lk for all k ≥ 0 and all i ∈ V.

The proof of the above lemma is straightforward, since local communication steps do not

change the space spanned by the historical gradient vectors generated over the network.

Lemma 3.7.3. Let X0 = 0. For the two-agent problem (3.30 ), we have Lk ⊆ Rk,d.

Proof. Since X0 = 0, we have ∇f1(x0
1) = −Lf

4 e1 ∈ R1,d,∇f2(x0
2) = 0 ∈ R1,d and thus

L1 = span(∇f1(x0
1),∇f2(x0

2)) ⊆ R1,d. Now, let xj
i ∈ Lj ⊆ Rj,d. Without loss of generality, let

us assume j is odd. Then, according to the structure of ∇f1, we have ∇f1(xj
1) = Lf

4 (A1,[k]x
j
1−

e1) ∈ Rj,d, but multiplying A1,[k] from the left of xj
1 ∈ Rj,d will not increase the number

of nonzeros to j + 1. By contrast, for ∇f2, we have ∇f2(xj
2) = Lf

4 A2,[k]x
j
2 ∈ Rj+1,d and

A2,[k] is now able to increase the number of non-zeros. Therefore, we have Lj+1 = Lj +

span(∇f1(xj
1),∇f2(xj

2)) ⊆ Rj+1,d and we can complete the proof by induction.

Lemma 3.7.4. Consider Problem (3.36 ). Let f ?[k,j] , minXi∈Rj,d,∀i∈V f[k](X); we have

f ?[k,j] = −Lf8

(
k2

(k + 1)2 + j
(k + 1)2

)
.
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Proof. Let xi ∈ R1,d, i ∈ V . Then, the cost function in (3.36 ) becomes

f[k,1](X) , Lf
4 [0.5x2

11 − x11 + 1
(k + 1)(x11 − x21) + 0.5x2

21]

which attains the optimum f ?[k,1] = Lf

8 (− k2

(k+1)2 − 1
(k+1)2 ).

Likewise, letting xi ∈ R2,d, i ∈ V , we have

f[k,2](X) , Lf
4 [0.5x2

11 + 0.5x2
12 − x11 −

1
k + 1(x21 − x11) + 1

k + 1(x22 − x12) + 0.5(x21 − x22)2]

which yields f ?[k,2] = Lf

8 (− k2

(k+1)2 − 2
(k+1)2 ). Also, for Xi ∈ R3,d, i ∈ V , we have

f[k,3](X) , Lf
4 [0.5x2

11 + 0.5(x12 − x13)2 − x11 −
1

k + 1(x21 − x11) + 1
k + 1(x22 − x12)

− 1
k + 1(x23 − x13) + 0.5(x21 − x22)2 + 0.5x2

23],
(3.37)

which gives f ?[k,3] = Lf

8 (− k2

(k+1)2 − 3
(k+1)2 ).

In fact, by induction, it is not difficult to show that, when j is odd, for Xi ∈ Rj,d, i ∈ V ,

we have

f[k,j](X) , Lf
4

0.5x2
11 −

k

k + 1x11 +
j−1

2∑
i=1

(
0.5(x2(2i) − x2(2i−1))2 − 1

k + 1(x2(2i) − x2(2i−1)

)

+0.5x2
2j −

1
k + 1x2j +

j−1
2∑

i=1

(
0.5(x1(2i) − x1(2i+1))2 − 1

k + 1(x2i − x1(2i+1)

) ,
(3.38)

which yields

f ?[k,j] = −Lf8

(
k2

(k + 1)2 + j
(k + 1)2

)
.
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When j is even, for Xi ∈ Rj,d, i ∈ V , we have

f[k,j](X) = Lf
4

0.5x2
11 −

k

k + 1x11 +
j
2∑

i=1

(
0.5(x2(2i) − x2(2i−1))2 − 1

k + 1(x2(2i) − x2(2i−1)

)

+0.5x2
1j −

1
k + 1x1j +

j
2 −1∑
i=1

(
0.5(x1(2i) − x1(2i+1))2 − 1

k + 1(x2i − x1(2i+1)

)
(3.39)

which also yields

f ?[k,j] = −Lf8

(
k2

(k + 1)2 + j
(k + 1)2

)
.

The proof is completed by combining the two cases above.

- Proof of Theorem 3.7.1 

We can now prove the theorem. Let us fix k and apply the first-order gossip algorithm

A to minimize f[2k+1]. Since X0 = 0, invoking Lemma 3.7.4 , we have

G(Xk) = f[2k+1](Xk)− f ?[2k+1] ≥ min
X∈Rk,d

f[2k+1](X)− f ?[2k+1] = f ?[2k+1,k] − f ?[2k+1]

≥ Lf
8 (1− 1

2(k + 1) −
(2k + 1)2

4(k + 1)2 −
k

4(k + 1)2 )

= Lf
32(k + 1) = Θ

Lf
∥∥∥X0 −X?

∥∥∥2

(k + 1)2 +

∥∥∥X0 −X?
∥∥∥∥∥∥∇f(X?)

∥∥∥
(k + 1)

 ,
(3.40)

where the last inequality comes from the previously developed facts
∥∥∥X?

∥∥∥2 = Θ (k + 1),∥∥∥∇f(X?)
∥∥∥ = Θ

(
Lf√
k+1

)
and thus

∥∥∥X0−X?
∥∥∥2 = Θ

(
k+1
Lf

∥∥∥X0−X?
∥∥∥∥∥∥∇f(X?)

∥∥∥). This completes

the proof for the two-agent network. �

Remark 3.7.5. The lower bound we develop in Theorem 3.7.1 for distributed scenarios has

similar structure of that of the recent paper [62 ], where the lower bound is derived for general

equality-constrained problems in centralized scenarios (i.e., Ax = b). Notice that the results

and techniques therein can not apply to our distributed setting, as we require b = 0 and

A ∈ WG while the lower bound in [62 ] is determined by a choice of b and A that does not

meet our requirement.
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3.7.3 Proof of Theorem 3.3.1 

Following the same path of [14 ], we now extend the above analysis to the general network

setting (arbitrary number of agents) by employing a line graph and constructing certain

number of pairwise two-agent networks as in (3.30 ) from the left and the right of the line

graph, respectively, yielding two subgroups. Between these two subgroups, we place a number

(proportional to the diameter of the network) of agents with zero cost functions to ensure

the necessity of communications between the agents in the two subgroups. To prove the

time complexity lower bound, we then leverage the effect of the network by establishing the

connection between the diameter of the network and the eigengap of the gossip matrix.

Let ηn = 1−cos
(

π

T

)
1+cos

(
π

T

) . For a given η ∈ (0, 1], there exists n ≥ 2 such that ηn ≥ η > ηn+1.

We treat the cases n = 2 and n ≥ 3 separately. Let us first consider the case n ≥ 3.

There exists a line graph of m = n agents and associated Laplacian weight matrix with

eigengap η. Now, let us define two subsets of agents as Al =
{
i
∣∣∣1 ≤ i ≤ dζme

}
and Ar ={

i
∣∣∣b(1− ζ)mc+ 1 ≤ i ≤ m

}
, which lie on the left and the right of the line graph, respectively;

the parameter ζ ∈ (0, 1
2) is to be determined. The distance between the two subsets is thus

dc , b(1− ζ)mc+ 1− dζme. The class of local functions is defined as follows

fi =



Lf

8 x
>
i A1,[k]xi − Lf

4 e>
1 xi ∀i ∈ Al

Lf

8 x
>
i A2,[k]xi ∀i ∈ Ar

0 otherwise

(3.41)

where A1,[k], A2,[k] are the two matrices defined in (3.31 ). Similarly to the two-agent network

case (cf. Sec. 3.7.2 ), we have

∥∥∥X?
∥∥∥2 ≤ m

3 (k + 1),
∥∥∥∇f(X?)

∥∥∥ ≤ √2(ζm+ 1)
√
kLf

4(k + 1) ,

and Problem (3.29 ) becomes

min
X∈Rm×d

f[k](X) =
dζme∑
i=1

fi(xi) + fm+1−i(xm+1−i) + Lf
4(k + 1)

〈
a[k], xi − xm+1−i

〉
(3.42)
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which further yields

f ?[k] = dζmeLf8 (−1 + 1
k + 1) and f ?[k,i] = −dζmeLf8

(
k2

(k + 1)2 + i
(k + 1)2

)
.

Let each row of Xk belongs to Rk,d. Then, since X0 = 0, we have

G(Xk) = f[2k+1](Xk)− f ?[2k+1] ≥ min
xi∈Rk,d

f[2k+1](X)− f ?[2k+1] = f ?[2k+1,k] − f ?[2k+1]

≥ ζmLf
8 (1− 1

2(k + 1) −
(2k + 1)2

4(k + 1)2 −
k

4(k + 1)2 )

= ζmLf
32(k + 1) = Θ

Lf
∥∥∥X0 −X?

∥∥∥2

(k + 1)2 +

∥∥∥X0 −X?
∥∥∥∥∥∥∇f(X?)

∥∥∥
k + 1

 .
(3.43)

Similarly as the two-agent case, one can verify that
∥∥∥X0−X?

∥∥∥2 = Θ
(
k+1
Lf

∥∥∥X0−X?
∥∥∥∥∥∥∇f(X?)

∥∥∥).
To have at least one non-zero element at the kth component among the local copies of

agents in both of the above two subsets, one must perform at least k local computation steps

and (k − 1)dc communication steps. Thus, we have

k ≤ b∗c t− 1
1 + dcτc

+ 1 ≤ t

1 + dcτc
+ 1. (3.44)

Choosing ζ = 1
32 , we have

dc = b∗c(1− ζ)m+ 1− dζme ≥ (1− 2ζ)m− 1

= 15
16m− 1

(a)
≥ 15

16

(√
2
η
− 1

)
− 1

(b)
≥ 1

5√η ,

where (a) is due to η > ηm+1 >
2

(m+1)2 and (b) is due to η ≤ η3 = 1
3 . Further, since dc is an

integer, we have dc ≥
⌈

1
5√

η

⌉
. Combining (3.43 ) and (3.44 ) leads to

G(X(t)) ≥ Ω

 Lf

∥∥∥X0 −X?
∥∥∥2

( t
1+d 1

5√
η

eτc
+ 2)2 +

∥∥∥X0 −X?
∥∥∥∥∥∥∇f(X?)

∥∥∥
t

1+d 1
5√

η
eτc

+ 2

 . (3.45)
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We focus now on the case n = 2. Consider a complete graph of 3 agents with associated

Laplacian matrix having eigengap equal to η. The agents’ cost functions are

fi =



Lf

8 x
>
i A1,[k]xi − Lf

4 e>
1 Xi i = 1

Lf

8 x
>
i A2,[k]xi i = 2

0 i = 3

Following similar steps as above, one can show that

G(Xk) ≥ Ω
Lf

∥∥∥X0 −X?
∥∥∥2

(k + 1)2 +

∥∥∥X0 −X?
∥∥∥∥∥∥∇f(X?)

∥∥∥
(k + 1)

 with k ≤ t

1 + τc
+ 1 and 1 ≥

⌈
1

5√η

⌉
,

which leads to the same expression of the lower bound as in (3.45 ). This concludes the

proofs.

3.7.4 Proof of Theorem 3.3.2 

The proof follows the similar line of [29 , Section 2.1.2]. We consider the same set of local

cost functions as depicted in (3.41 ), with the subscript [k] of the A matrices replaced by

[2k+ 1]. Then, it is not difficult to see that minx∈Rd F (x) = f ?[2k+1] and, for any x ∈ Rk,d, we

have

F (x)− f ?[2k+1] = min
y∈Rk,d

F (y)− f ?[2k+1] = f ?[k] − f ?[2k+1]

= dζmeLf8

(
−1 + 1

k + 1 + 1− 1
2k + 1 + 1

)
= dζmeLf16

1
k + 1 = Θ

(
Lf m

k + 1

)
.

(3.46)

For the cost functions as mentioned above, one can also verify that (cf. Appendix 3.7.2 )

∥∥∥X? −X0
∥∥∥2 = Θ (m(k + 1)) ,

∥∥∥∇f(X?)
∥∥∥ = Θ

(√
mLf√
k + 1

)
,
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and thus Lf‖X?−X0‖2

k+1 = Θ
(∥∥∥X? −X0

∥∥∥∥∥∥∇f(X?)
∥∥∥). As a result, the RHS of (3.46 ) can be

rewritten as:

Θ
Lf

∥∥∥X? −X0
∥∥∥2

(k + 1)2 +

∥∥∥X? −X0
∥∥∥∥∥∥∇f(X?)

∥∥∥
k + 1

 , or equivalently, Θ
Lf

∥∥∥X? −X0
∥∥∥2

(k + 1)2

 ,
which translate to the following lower bounds in terms of number of iterations, respectively:

Ω


√√√√Lf

∥∥∥X0 −X?

∥∥∥2

ε
+

∥∥∥X0 −X?
∥∥∥∥∥∥∇f(X?)

∥∥∥
ε

 and Ω


√√√√Lf

∥∥∥X0 −X?

∥∥∥2

ε

 .

The rest of proof follows by the same argument as in Section 3.7.3 to relate k to the absolute

time t as well as the eigengap η of the network.

3.7.5 Intermediate results

Lemma 3.7.6 (Fundamental Inequality I). Consider Algorithm (3.23 ). We define τ =
1

νTλm(B) . Then we have

σk = 1
θk+1

, αk = θk+1

θk
− θk+1, βk = τk+1

τk
, τk = τ

θk
.

Suppose Assumptions 3.2.1 and 3.4.1 hold. Then, for any X ∈ Rm×d and Y ∈ C⊥, we have

Φ(uk+1, Y )− Φ(AX, Y ) + h(uk+ 1
2 )− h(X)

≤ −
〈
Y k+1 − Y, uk+1 −X

〉
− 1
γ

〈
θk(I −

γτ

θ2
k

B)(X̂k+1 − X̂k), uk+1 − AX
〉

+ Lf
2

∥∥∥uk+1 −Xk
∥∥∥2,

(3.47)

where h(·) = 1
2γ

∥∥∥ · ∥∥∥2
A−A2, uk+ 1

2 = Xk − γ(∇f(Xk) + Ŷ k) and Lf = maxi{Lfi}.

Proof. Since f is Lf -smooth by Assumption 3.2.1 , we have

f(uk+1) ≤ f(Xk) +
〈
∇f(Xk), uk+1 −Xk

〉
+ Lf

2

∥∥∥uk+1 −Xk
∥∥∥2,
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and using f(AX) ≥ f(Xk) +
〈
∇f(Xk), AX −Xk

〉
, further gives

f(uk+1) ≤ f(AX) +
〈
∇f(Xk), uk+1 − AX

〉
+ Lf

2

∥∥∥uk+1 −Xk
∥∥∥2. (3.48)

Also, subtracting Auk+1 from both sides of (3.23a ), multiplying (3.23d ) by γA, and adding

the obtained two equations while using (3.23e ) lead to

(I − A)uk+1 = −A
(
uk+1 −Xk + γ

(
∇f(Xk) + Y k+1

))
− γAB(τk−1βk−1X̂

k − τkX̂k+1)
(∗)= −A

(
uk+1 −Xk + γ

(
∇f(Xk) + Y k+1

))
− γτ

θk
AB(X̂k − X̂k+1),

where in (∗) we used βk−1 = τk

τk−1
, τk = τ

θk
. Notice that, for the above derivation, we implicitly

assume that k ≥ 2. However, with the definition of X̂1 , X1 and the fact that Ŷ 1 = τ1BX
1,

we still have (I − A)u2 = −A (u2 −X1 + γ (∇f(X1) + Y 2))− γτ
θ1
AB(X̂1 − X̂2).

Multiplying uk+ 1
2 −X from both sides of the above equation and using the convexity of

h(·) and the fact that uk+1 = Auk+ 1
2 we obtain

h(uk+ 1
2 ) ≤ h(X)− 1

γ

〈
uk+1 −Xk + γ

(
∇f(Xk) + Y k+1

)
− γτ

θk
B(X̂k+1 − X̂k), uk+1 − AX

〉
.

(3.49)

Since σk = 1
θk+1

and αk = θk+1
θk
− θk+1, using (3.23b ) and (3.23c ) leads to

θkX̂
k+1 = uk+1 − (1− θk)uk (3.50)

and

X̂k+1 − X̂k = 1
θk

(uk+1 − (1− θk)uk)−
1

θk−1
(uk − (1− θk−1)uk−1)

= 1
θk
uk+1 − 1

θk

(
(1− θk)uk + θk

θk−1
uk − θk

θk−1
(1− θk−1)uk−1

)

= 1
θk
uk+1 − 1

θk

(
uk + ( θk

θk−1
− θk)(uk − uk−1)

)
(3.23b )= 1

θk
(uk+1 −Xk).

(3.51)
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We implicitly assumed k ≥ 2; still we have X̂2− X̂1 = 1
θk

(u2 −X1), recalling that X̂1 = X1.

Thus, (3.49 ) becomes

h(uk+ 1
2 ) ≤ h(X)− 1

γ

〈
θk(I −

γτ

θ2
k

B)(X̂k+1 − X̂k) + γ
(
∇f(Xk) + Y k+1

)
, uk+1 − AX

〉
.

(3.52)

Combining (3.48 ) and (3.52 ) yields: for any X ∈ Rm×d and Y ∈ C⊥,

f(uk+1) + h(uk+ 1
2 ) +

〈
Y, uk+1 − AX

〉
− f(AX)− h(X)

≤
〈
−(Y k+1 − Y )− 1

γ
θk(I −

γτ

θ2
k

B)(X̂k+1 − X̂k), uk+1 − AX
〉

+ Lf
2

∥∥∥uk+1 −Xk
∥∥∥2,

(3.53)

which, recalling that Φ(X,Y ) = f(X) + 〈Y,X〉, completes the proof.

Lemma 3.7.7 (Fundamental Inequality II). In the setting of Lemma 3.7.6 , let 1
θ2

k−1
− 1−θk

θ2
k

=

0, that is, 1
θk

=
1+
√

1+4( 1
θk−1

)2

2 , with θ1 = 1 and (1− γLf )I − γτ
θ2

k
B � 0, for all 1 ≤ k ≤ T − 1.

Suppose Assumptions 3.2.1 and 3.4.1 hold. Then, for any X ∈ C, Y ∈ C⊥, we have

Φ(uT , Y )− Φ(X,Y ) ≤ 1
T 2

(
2
γ

∥∥∥u1 −X
∥∥∥2 + 2

τλ2(B)

∥∥∥Y ∥∥∥2
)
. (3.54)

where N is the overall number of iterations.

Proof. Applying Lemma 3.7.6 withX ∈ C, we have (note that AX = X by Assumption 3.4.1 )

Φ(uk+1, Y )− Φ(X,Y ) + h(uk+ 1
2 )− h(X)

≤ −
〈
Y k+1 − Y, uk+1 −X

〉
−
〈

1
γ
θk(I −

γτ

θ2
k

B)(X̂k+1 − X̂k), uk+1 −X
〉

+ Lf
2

∥∥∥uk+1 −Xk
∥∥∥2.

(3.55)

Likewise, with X = uk− 1
2 we have

Φ(uk+1, Y )− Φ(uk, Y ) + h(uk+ 1
2 )− h(uk− 1

2 )

≤ −
〈
Y k+1 − Y, uk+1 − uk

〉
−
〈

1
γ
θk(I −

γτ

θ2
k

B)(X̂k+1 − X̂k), uk+1 − uk
〉

+ Lf
2

∥∥∥uk+1 −Xk
∥∥∥2.

(3.56)
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Let Vk = Φ(uk, Y ) − Φ(X,Y ) + h(uk+ 1
2 ) − h(X). Then, multiplying (3.56 ) by 1 − θk and

(3.55 ) by θk, and combing the obtained equations yield

Vk+1 − (1− θk)Vk

≤ −
〈
Y k+1 − Y, uk+1 − θkX − (1− θk)uk

〉
− 1
γ

〈
θk(I −

γτ

θ2
k

B)(X̂k+1 − X̂k), uk+1 − θkX − (1− θk)uk
〉

+ Lf
2

∥∥∥uk+1 −Xk
∥∥∥2

(3.50 )= −θk
〈
Y k+1 − Y, X̂k+1 −X

〉
− θ2

k

γ

〈
X̂k+1 − X̂k, X̂k+1 −X

〉
I− γτ

θ2
k

B
+ θ2

kLf
2

∥∥∥X̂k+1 − X̂k
∥∥∥2

= −θ
2
k

τ

〈
Y k+1 − Y, Y k+1 − Y k

〉
(B+J)−1

− θ2
k

γ

〈
X̂k+1 − X̂k, X̂k+1 −X

〉
I− γτ

θ2
k

B
+ θ2

kLf
2

∥∥∥X̂k+1 − X̂k
∥∥∥2,

(3.57)

where in the last equality we used 1>Y k = 0,∀k ≥ 1 and the following result (recall BJ =

JB = 0 and Y ∈ C⊥):

〈
Y k+1 − Y, X̂k+1 −X

〉
=
〈
(B + J)−1(B + J)(Y k+1 − Y ), X̂k+1 −X

〉
=
〈
B(B + J)−1(Y k+1 − Y ), X̂k+1 −X

〉
=
〈
Y k+1 − Y,B(X̂k+1 −X)

〉
(B+J)−1

(3.23d )= θk
τ

〈
Y k+1 − Y, Y k+1 − Y k

〉
(B+J)−1

.

(3.58)

Dividing θ2
k from both sides of (3.57 ) leads to

Vk+1

θ2
k

− 1− θk
θ2
k

Vk

≤ −1
γ

〈
X̂k+1 − X̂k, X̂k+1 −X

〉
I− γτ

θ2
k

B
− 1
τ

〈
Y k+1 − Y, Y k+1 − Y k

〉
(B+J)−1

+ Lf
2

∥∥∥X̂k+1 − X̂k
∥∥∥2

= − 1
2γ

(∥∥∥X̂k+1 − X̂k
∥∥∥2

(1−γLf )I− γτ

θ2
k

B +
∥∥∥X̂k+1 −X

∥∥∥2
I− γτ

θ2
k

B −
∥∥∥X̂k −X

∥∥∥2
I− γτ

θ2
k

B

)

− 1
2τ

(∥∥∥Y k+1 − Y k
∥∥∥2

(B+J)−1 +
∥∥∥Y k+1 − Y

∥∥∥2
(B+J)−1 −

∥∥∥Y k − Y
∥∥∥2

(B+J)−1

)
,

(3.59)

105



where in the last equality we used

2 〈a− c, b− c〉G =
∥∥∥a− c∥∥∥2

G +
∥∥∥b− c∥∥∥2

G −
∥∥∥a− b∥∥∥2

G, ∀a, b ∈ Rm×d.

Summing (3.59 ) over k from 1 to T − 1 yields

VT
θ2
T−1
− 1− θ1

θ2
1

V1 +
T−1∑
k=2

(
1

θ2
k−1
− 1− θk

θ2
k

)
Vk

≤ − 1
2γ

T−1∑
k=1

∥∥∥X̂k+1 − X̂k
∥∥∥2

(1−γLf )I− γτ

θ2
k

B −
1

2γ

T−1∑
k=2

γτ( 1
θ2
k

− 1
θ2
k−1

)
∥∥∥X̂k −X

∥∥∥2
B

− 1
2γ

(∥∥∥X̂T −X
∥∥∥2
I− γτ

θ2
T −1

B −
∥∥∥X̂1 −X

∥∥∥2
I− γτ

θ2
1
B

)

− 1
2τ

(
T−1∑
k=1

∥∥∥Y k+1 − Y k
∥∥∥2

(B+J)−1 +
∥∥∥Y T − Y

∥∥∥2
(B+J)−1 −

∥∥∥Y 1 − Y
∥∥∥2

(B+J)−1

)
.

(3.60)

Recalling that 1
θ2

k−1
− 1−θk

θ2
k

= 0 and θ1 = 1, by induction it is easy to see that k + 1 >
1
θk
≥ k+1

2 and thus 1
θ2

k
− 1

θ2
k−1

= 1
θk
> 0. Then, with X̂1 = X1 , u1, Y 1 , 0, (3.60 ) can be

simplified as

T 2

4 VT +
T∑

i=1

1
2τ

∥∥∥Y k+1 − Y k
∥∥∥2

(B+J)−1 + 1
2γ

T−1∑
k=1

∥∥∥X̂k+1 − X̂k
∥∥∥2

(1−γLf )I− γτ

θ2
k

B

≤ 1
2γ

∥∥∥u1 −X
∥∥∥2
I− γτ

θ2
1
B + 1

2τ

∥∥∥Y ∥∥∥2
(B+J)−1 .

(3.61)

Since ρ
(
(B + J)−1

)
= 1

λmin(B+J) = 1
λ2(B) , B � 0 and (1− γLf )I − γτ

θ2
k
B � 0, we further have

T 2

4 VT ≤
1

2γ

∥∥∥u1 −X
∥∥∥2 + 1

2τ

∥∥∥Y ∥∥∥2

λ2(B) ,
(3.62)

which, together with the fact that Vk ≥ Φ(uk, Y )− Φ(X,Y ), completes the proof.

3.7.6 Proof of Theorem 3.4.3 

Note that the primal-dual method (3.12 ) is a special case of the update (3.23 ) with the

setting θk ≡ 1, αk ≡ 0, σk ≡ 1, τk ≡ τ, βk ≡ 1. Furthermore, γ and τ defined in (3.13 ) satisfy
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(1 − γLf )I − γτB ≥ 0 and Xk ≡ uk. Invoking (3.60 ) with these parameter settings and

X , X?, Y , Y ? = −∇f(X?), X̂1 , X1, Y 1 , 0, we have

T∑
k=2

(Φ(Xk, Y ?)− Φ(X?, Y ?)) ≤ 1
2γ

∥∥∥X1 −X?
∥∥∥2 + 1

2τ

∥∥∥Y ?
∥∥∥2

λ2(B) ,
(3.63)

Let X̄T , 1
T−1

∑T
k=2 Xk. Using the convexity of Φ, we furhter have

Φ(X̄T , Y ?)− Φ(X?, Y ?)) ≤ 1
T − 1

 1
2γ

∥∥∥X1 −X?
∥∥∥2 + 1

2τ

∥∥∥Y ?
∥∥∥2

λ2(B)


≤ 1
T − 1

(
Lf
2

∥∥∥X1 −X?
∥∥∥2 + 1

2ν

∥∥∥X1 −X?
∥∥∥2 + ν

2η(B)

∥∥∥Y ?
∥∥∥2
)
.

(3.64)

Setting ν =
√
η(B)‖X1−X?‖

∇f(X?) yields (3.14 ). Finally, it follows from (3.60 ) that X̂T = XT is

bounded, for every T ∈ N+. The rest of proof is to show that XT → X?, which follows the

standard cluster point analysis, as in the proof of [53 , Th. 1] (refer also to [63 , Remark 3]).

3.7.7 Proof of Theorem 3.4.5 

Since γ = ν
νLf +T , τ = 1

νTλm(B) and 1
k+1 < θk <

2
k+1 , we have

(1− γLf )I −
γτ

θ2
k

B � 0,∀1 ≤ k ≤ T − 1. (3.65)

Then, invoking Lemma 3.7.7 with X = X?, Y = Y ? = −∇f(X?) and knowing that

Φ(uk, Y ?) − Φ(X?, Y ?) = G(uk) ≥ 0 (cf., the relation (3.5 ) in the main text), we obtain

G(uT ) ≤
2
γ
Rx + 2

τ
Ry

λ2(B)

T 2 =
2(Lf + T/ν)Rx + 2νTλm(B) Ry

λ2(B)

T 2

= 2LfRx

T 2 +
2
ν
Rx + 2ν Ry

η(B)

T
,

(3.66)

where Rx =
∥∥∥u1 −X?

∥∥∥2, Ry =
∥∥∥∇f(X?)

∥∥∥2. Setting ν =
√
η(B) we have

G(uT ) ≤ 2Lf
T 2 Rx + 2√

η(B)T
(Rx +Ry),
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which, together with the time (1 + tc) needed at each iteration, gives the overall time com-

plexity.

If we set2
 ν =

√
η(B)Rx

Ry
, we have

G(uT , X?) ≤ 2LfRx

T 2 +
4
√
RxRy√
η(B)T

,

which matches the lower bound also with respect to Rx, Ry.

In the following, we show that both consensus error and the absolute value of the objective

error will converge at the same rate as the Bregman distance. Invoking Lemma 3.7.7 with

X = X?, γ = ν
νLf +T , τ = 1

νTλm(B) and ν =
√
η(B), we have

f(uT )− f(X?) +
〈
uT , Y

〉
= Φ(uT , Y )− Φ(X?, Y ) ≤ φ(

∥∥∥Y ∥∥∥) (3.67)

where φ(·) , 2LfRx

T 2 +
2√
η

(Rx+(·)2)
T

.

Now, setting Y = 2 ũT

‖ũT‖

∥∥∥Y ?
∥∥∥ where ũT = (I − 11T

m
)uT , we have

f(uT )− f(X?) + 2
∥∥∥Y ?

∥∥∥∥∥∥ũT ∥∥∥ ≤ φ(2
∥∥∥Y ?

∥∥∥)
Also, since f(uT ) − f(X?) +

〈
uT , Y ?

〉
≥ 0, we have f(uT ) − f(X?) ≥ −

∥∥∥Y ?
∥∥∥∥∥∥ũT ∥∥∥. Thus,

combining the above two inequalities yields

∥∥∥ũT ∥∥∥ ≤ φ(2
∥∥∥Y ?

∥∥∥)∥∥∥Y ?

∥∥∥ and
∣∣∣f(uT )− f(X?)

∣∣∣ ≤ φ(2
∥∥∥Y ?

∥∥∥).
�

2↑ Note that this requires accurate estimates on the ratio of Rx/Ry, which, indeed, plays a key role of trade-off
parameter balancing gradient computation steps and communication steps.
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3.7.8 Proof of Theorem 3.4.6 

Following the similar lines in [14 , Theorem 4], we first consider the normalized Laplacian

L has a spectrum in [1 − c−1
1 , 1 + c−1

1 ]. According to [14 ], [31 ], the Chebyshev polynomail

PK(x) = 1− TK(c1(1−x))
TK(c1) is the solution of the following problem

min
p∈PK ,p(0)=0

max
x∈[1−c−1

1 ,1+c−1
1 ]
|p(x)− 1| .

As a result, we have

max
x∈[1−c−1

1 ,1+c−1
1 ]
|PK(x)− 1| ≤ 2 cK0

1 + c2K
0
. (3.68)

Define δ = 2 cK
0

1+c2K
0
. Since Algorithm 2 amounts to an instance of Procedure (3.23 ) with

A = I − c2 · PK(L) and B = PK(L), its convergence proof follows the same lines as that of

Theorem 3.4.5 with the following properties of PK(L): i) PK(L) is symmetric; ii) according

to (3.68 ), 0 � I − c2 · PK(L) � I and PK(L) � 0, and null(PK(L)) = C; iii) The values

given for γ and τ in Algorithm 2 ensures that (1−γLf )I− γτ
θ2

k
PK(L) � 0, analogus to (3.65 ).

Therefore we have

G(uT ) ≤
2
γ
Rx + 2

τ
Ry

λmin(PK(L)+J)

T 2 ≤
2(Lf + T/ν)Rx + 2νT (1 + δ) Ry

1−δ
T 2

= 2LfRx

T 2 +
2
ν
Rx + 2 ν Ry

1+δ
1−δ

N

(∗)= 2LfRx

T 2 +
4
√
RxRy

N

√
1 + δ

1− δ ,
(3.69)

where (*) requires a specified ν. Finally, we have

√
1 + δ

1− δ =
1 +

(
1−√η
1 +√η

)K/1−
(

1−√η
1 +√η

)K .
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Taking K =
⌈

1√
η

⌉
, we have

(
1−√η
1 +√η

)⌈ 1√
η

⌉
=
(

1−
2√η

1 +√η

)⌈ 1√
η

⌉
≤

1− 2
1 + d 1√

η
e


⌈

1√
η

⌉

(∗)
≤

1− 1
d 1√

η
e


⌈

1√
η

⌉
< e−1,

where (*) is due to the fact that
⌈

1√
η

⌉
≥ 1. Thus, we have

√
1+δ
1−δ ≤

1+e−1

1−e−1 ≤ 2.5, which,

together with the time (1 + Kτc) needed at each iteration, gives the time complexity as

announced. �
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4. ASYNCHRONOUS DECENTRALIZED ALGORITHM -

PART I: P-ASY-PUSH-SUM

In the remaining of the dissertation, we study asynchronous multi-agent distributed/de-

centralized optimization (P ) over static digraphs. We commit to a general asynchronous

decentralized setting, whereby i) agents can update their local variables as well as commu-

nicate with their neighbors at any time, without any form of coordination; and ii) they

can perform their local computations using (possibly) delayed, out-of-sync information from

the other agents. Delays need not be known to the agent or obey any specific profile, and

can also be time-varying (but bounded). As the gradient tracking mechanism is a key en-

abler for synchronous distributed optimization algorithms to match the rate of centralized

algorithms and our ultimate goal is to design asynchronous distributed optimization algo-

rithms, we are motivated to design firstly a gradient tracking mechanism which is robust

against asynchrony. Thus in this chapter, we propose a general asynchronous signal tracking

algorithm. Later with the asynchronous tracking algorithm estimating locally the average

of agents’ gradients, we propose an asynchronous distributed algorithm ASY-SONATA, for

unconstrained smooth, convex and nonconvex optimization in Chapter 5 . We further extend

the algorithm ASY-SONATA to ASY-DSCA to deal with constrained nonsmooth, convex

and nonconvex optimization problems in Chapter 6 .

The novel results of this chapter have been published in

• Ye Tian, Ying Sun, and Gesualdo Scutari. ”ASY-SONATA: Achieving linear con-

vergence in distributed asynchronous multiagent optimization.” In 2018 56th Annual

Allerton Conference on Communication, Control, and Computing (Allerton), pp. 543-

551. IEEE, 2018.

• Ye Tian, Ying Sun, and Gesualdo Scutari. ”Achieving Linear Convergence in Dis-

tributed Asynchronous Multiagent Optimization.” IEEE Transactions on Automatic

Control 65, no. 12 (2020): 5264-5279.
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4.1 Introduction

In the decentralized/distributed setting, due to the lack of global knowledge on Prob-

lem (P ) and the networked setting, computation has to be performed in a collaborative

manner: agents can only receive/send information from/to its immediate neighbors.

As the problem and network size scale, synchronizing the entire multiagent system be-

comes inefficient or infeasible. Synchronous schedules require a global clock, which is against

the gist of removing the central controller as in decentralized optimization. This calls for the

development of asynchronous decentralized learning algorithms. In addition, asynchronous

modus operandi brings also benefits such as mitigating communication and/or memory-

access congestion, saving resources (e.g., energy, computation, bandwidth), and making

algorithms more fault-tolerant. Therefore, asynchronous decentralized algorithms have the

potential to prevail in large scale learning problems. In the remaining of the thesis, we

consider the following very general, abstract, asynchronous model [64 ]:

(i) Agents can perform their local computations as well as communicate (possibly in parallel)

with their immediate neighbors at any time, without any form of coordination or

centralized scheduling; and

(ii) when solving their local subproblems, agents can use outdated information from their

neighbors.

In (ii) no constraint is imposed on the delay profiles: delays can be arbitrary (but bounded),

time-varying, and (possibly) dependent on the specific activation rules adopted to wakeup

the agents in the network. This model captures in a unified fashion several forms of asyn-

chrony: some agents execute more iterations than others; some agents communicate more

frequently than others; and inter-agent communications can be unreliable and/or subject to

unpredictable, time-varying delays.
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In this chapter, we aim to solve the asynchronous signal tracking problem. Each agent

i owns a possibly time-varying signal {uki }k∈N0 ; the goal of the system is to asymptotically

track the average signal ūk , (1/m) ·∑m
i=1 u

k
i , that is,

lim
k→∞

∥∥∥yk+1
i − ūk+1

∥∥∥ = 0, ∀i ∈ V . (4.1)

Note that when the signal is time-invariant, i.e., uki ≡ ui, ∀i ∈ V , the above problem reduces

to the asynchronous average consensus problem.

4.1.1 Literature Review

Distributed average consensus and signal tracking problem has been studied extensively

in the community of control. Continuous-time average consensus has been studied in [65 ],

[66 ]; the counterpart in discrete time has been studied in [36 ], [67 ]–[69 ], with [67 ] proposing

the renowned scheme push-sum on general directed graphs and [36 ] focusing on the fastest

average consensus schemes. As for the signal tracking (dynamic tracking) problem, numerous

schemes have been proposed in the continuous-time domain [70 ], [71 ] and also the discrete-

time domain [72 ].

However, all the schemes mentioned above assume perfect communication and syn-

chronous update. In this dissertation, we are instead interested in schemes that are robust

against unreliable links and asynchrony. In [73 ], the authors designed a synchronous average

consensus algorithm robust to packet losses; the scheme was further extended in [74 ] to deal

with uncoordinated (deterministic) agents’ activations. However, none of them can deal

with arbitrary bounded delays but packet losses; [73 ] is synchronous; and [74 ] is not parallel

scheme, as at each iteration only one agent is allowed to wake up and transmit information

to its neighbors. In particular, [74 ] cannot model synchronous parallel (Jacobi) updates.

4.1.2 Summary of Contributions

The review of the literature clearly showed that there exits no consensus/tracking scheme

that is robust against imperfect communications and asynchrony. This chapter proposes a
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general asynchronous signal tracking algorithm for problem (4.1 ), over directed graphs. The

proposed algorithm has the following attractive features: (a) it is parallel and asynchronous

[in the sense (i) and (ii)]–multiple agents can be activated at the same time (with no

coordination) and/or outdated information can be used in the agents’ updates; (b) it is im-

plementable over digraph; (c) it converges in a geometric rate when solving the asynchronous

average consensus problem; and (d) it does not have any tuning parameter or step size.

On the technical side, the asynchronous agent system is reduced to a synchronous “aug-

mented” one with no delays by adding virtual agents to the graph. While this idea was

first explored in [73 ], [75 ],[76 ], the proposed enlarged system and algorithm differ from those

used therein, which cannot deal with the general asynchronous model considered here–see

Remark 4.4.1 in Sec.4.4 .

4.2 Problem Setup and Preliminaries

4.2.1 Problem Setup

We study Problem (4.1 ) under the following assumptions.

On the communication network: The communication network of the agents is modeled

as a fixed, directed graph G = (V , E), where V = {1, . . . ,m} is the set of nodes (agents),

and E ⊆ V × V is the set of edges (communication links). If (i, j) ∈ E , it means that agent

i can send information to agent j. We assume that the digraph does not have self-loops.

We denote by N in
i the set of in-neighbors of node i, i.e., N in

i , {j ∈ V | (j, i) ∈ E} while

N out
i , {j ∈ V | (i, j) ∈ E} is the set of out-neighbors of agent i. We make the following

standard assumption on the graph connectivity.

Assumption 4.2.1. The graph G is strongly connected. �

4.2.2 Preliminaries: the sum-push algorithm

We first consider the average consensus problem in the multi-agent setting. This problem

can be solved using the push-sum algorithm [67 ]. In view of our asynchronous implementation

later, it is convenient to rewrite the push-sum algorithm breaking the “push” and “sum” steps
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in two separate actions and switch their order. While there is no advantage in doing that in

a synchronous setting, this will simplify the presentation of its asynchronous counterpart as

well as lead to a more flexible asynchronous implementation.

The sum-push reads: given zki , φki , ρkij, and σkij, at iteration k ∈ N+, each agent i ∈ V

performs

Sum:


z
k+ 1

2
i = zki +

∑
j∈N in

i

ρkij,

φ
k+ 1

2
i = φki +

∑
j∈N in

i

σkij;
(4.2)

Push:



zk+1
i = aii z

k+ 1
2

i ,

φk+1
i = aii φ

k+ 1
2

i ,

ρk+1
ji = aji z

k+ 1
2

i , ∀j ∈ N out
i ,

σk+1
ji = aji φ

k+ 1
2

i , ∀j ∈ N out
i ;

(4.3)

yk+1
i = zk+1

i

φk+1
i

; (4.4)

where φ0
i = 1, ρkij = 0, and σ0

ij = 0, for all (j, i) ∈ E , and the weight-matrix A , (aij)mi,j=1

satisfies the following assumption:

Assumption 4.2.2. The weight matrix A , (aij)mi,j=1 satisfy:

(i) ∃ m̄ > 0 such that: aii ≥ m̄, ∀i ∈ V; aij ≥ m̄, for all (j, i) ∈ E ; and aij = 0, otherwise;

(ii) A is column-stochastic, that is, A> 1 = 1.

In words, at iteration k, every agent i first performs the “sum” step (4.2 ) and builds

the new mass zk+1/2
i : it sums its current information zki with the one broadcasted by its

in-neighbors–ρkij is the information sent to i by agent j ∈ N in
i . Then, the “push” step (4.3 )

follows: zk+1/2
i is “pushed back” (sent) to the out-neighbors j ∈ N out

i and agent i itself; out

of the total mass zk+1/2
i , each j ∈ N out

i receives the fraction ρk+1
ji = aji z

k+1/2
i , with agent i
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getting aii z
k+1/2
i , which determines the update zki → zk+1

i . It is not difficult to check that

the overall mass in the system does not change over the time and equals the initial mass:

m∑
i=1

zk+1
i +

∑
(j,i)∈E

ρk+1
ij =

m∑
i=1

zki +
∑

(j,i)∈E
ρkij = · · · =

m∑
i=1

z0
i .

The φ-variables follow the same evolution of the z-variables, thus satisfying a similar prop-

erty. Finally, consistently with the push-sum, the y-variables in (4.4 ), can be regarded as

agent i’s estimate of the average. In fact, it is not difficult to check that, if a consen-

sus is achieved on the yi’s, i.e., limk→∞ zk+1
i /φk+1

i = c∞ for all i ∈ V , then it must be

c∞ = (1/m) ·∑m
i=1 z

0
i .

In the following, we break the synchronism in the sum-push scheme.

4.3 Perturbed Asynchronous Sum-Push

Consider the following asynchronous setting: i) multiple agents compute and commu-

nicate independently without coordination; ii) communication latency and uncoodinated

computations result in (possibly time-varying) delays. This means that some agents can

execute more iterations than others and, in general they no longer use the most recent in-

formation from its neighbors; also, some information can get lost. As a consequence, the

key property of the synchronous sum-push–the preservation of the overall mass–would not

be guaranteed.

We robustify the sum-push building on the idea first introduced in [73 ] and further

developed in [74 ], [77 ]: each ρji (resp. σji) no longer represents the current mass-fraction

aji zi (resp. aji φi), meant for node j ∈ N out
i , but it is instead the running-sum of the mass

aji zi (resp. aji φi) that has been generated for j up to the current activation of agent i. In

addition, every agent i maintains, for every j ∈ N in
i , a local buffer ρ̃ij (resp. σ̃ij) storing the

value of ρij (resp. σij) that it has used in its last (past) update. With this construction, we

build next one iteration of the asynchronous sum-push algorithm. We discuss the updates

of the z, ρ, and ρ̃-variables only; the one of the φ, σ, and σ̃ follows the same argument.
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Suppose agent ik wakes up at iteration k. The state of agent ik is described by the

variables zik , φik , ρjik , ρ̃ikj, σjik , and σ̃ikj. However, the ρ-variables may no longer contain the

current information from its in-neighbors. More specifically, agent ik does not have access

to the current vector ρkikj from j ∈ N in
ik , but it will use instead the delayed estimate ρk−dk

j
ikj ,

where 0 ≤ dkij ≤ D is the delay (assumed to be bounded). By definition, the local buffer

ρ̃kikj stores the value of ρikj that agent ik used in its previous update. If the information in

ρ
k−dk

j
ikj is not older than the one in ρ̃kikj, the difference ρk−dk

j
ikj − ρ̃kikj will capture the sum of the

aikjzj’s that have been generated by j ∈ N in
ik for ik up until k − dkj and not used by agent

ik yet; otherwise ρk−dk
j

ikj will be discarded, as no new information has been acquired. For

instance, in a synchronous setting, one would have ρkij − ρ̃kij = aijz
k
j . This naturally suggests

the following modification of the steps (4.3 )-(4.4 ) to preserve the total mass of the system

at every iteration:

Sum: z
k+ 1

2
ik = zkik +

∑
j∈N in

ik

(
ρ
k−dk

j
ikj − ρ̃kikj

)
, (4.5)

Push:


zk+1

ik = aikik z
k+ 1

2
ik ,

ρk+1
jik = ρkjik + ajik z

k+ 1
2

ik , ∀j ∈ N out
ik ;

(4.6)

Mass-buffer: ρ̃k+1
ikj = ρ

k−dk
j

ikj , ∀j ∈ N in
ik (4.7)

while yk+1
ik = zk+1

ik /φk+1
ik [cf. (4.4 )]; where φ0

i = 1, for all i ∈ V , and ρkij = ρ̃kij = 0, for all

k = −D, . . . , 0, and (j, i) ∈ E . Note that, differently from the synchronous case [cf. (4.3 )],

in (4.6 ), ρkji is now updated recursively, to build the running-sum of the mass ajizi. After

the push-step, in (5.7 ), the buffer is updated to account for the use of new information from

j ∈ N in
ik .

With the above modifications, the total mass in the systems is preserved at each iteration,

as shown next. Consider only the z-variables; similar argument applies to the φ-variables.

The total mass associated with the z-variables at iteration k is defined as

mk
z ,

m∑
i=1

zki +
∑

(j,i)∈E
(ρkij − ρ̃kij). (4.8)
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We show next that mk+1
z = mk

z = · · · = m0
z = ∑m

i=1 z
0
i . Since agent ik triggers k → k + 1, it

is sufficient to show

zk+1
ik +

∑
j∈N in

ik

(ρk+1
ikj − ρ̃

k+1
ikj ) +

∑
j∈N out

ik

(ρk+1
jik − ρ̃

k+1
jik )

= zkik +
∑

j∈N in
ik

(ρkikj − ρ̃kikj) +
∑

j∈N out
ik

(ρkjik − ρ̃kjik). (4.9)

Using (4.5 )-(5.7 ), we can write

zk+1
ik +

∑
j∈N in

ik

(ρk+1
ikj − ρ̃

k+1
ikj ) +

∑
j∈N out

ik

(ρk+1
jik − ρ̃

k+1
jik )

(a)= aikikz
k+ 1

2
ik +

∑
j∈N in

ik

(ρkikj − ρ
k−dk

j
ikj ) +

∑
j∈N out

ik

(ρkjik + ajikz
k+ 1

2
ik − ρ̃kjik)

(b)= z
k+ 1

2
ik +

∑
j∈N in

ik

(ρkikj − ρ
k−dk

j
ikj ) +

∑
j∈N out

ik

(ρkjik − ρ̃kjik)

(4.5 )= zkik +
∑

j∈N in
ik

(ρk−dk
j

ikj − ρ̃kikj) +
∑

j∈N in
ik

(ρkikj − ρ
k−dk

j
ikj ) +

∑
j∈N out

ik

(ρkjik − ρ̃kjik)

= zkik +
∑

j∈N in
ik

(ρkikj − ρ̃kikj) +
∑

j∈N out
ik

(ρkjik − ρ̃kjik) (4.10)

where in (a) we used i) (4.6 )-(5.7 ), ii) ρk+1
ikj = ρkikj, for all j ∈ N in

ik , and iii) ρ̃k+1
jik = ρ̃kjik , for all

j ∈ N out
ik ; and in (b), we used aikik +∑

j∈N out
ik
ajik = 1. The mass preservation property above

ensures that, if a consensus is reached, i.e., limk→∞ zki /φ
k
i = c∞ for all i ∈ V , then it must be

c∞ = (1/m) ·∑m
i=1 z

0
i .

4.3.1 P-ASY-PUSH-SUM

We are now ready to introduce P-ASY-SUM-PUSH. Consider an asynchronous set-

ting wherein agents compute and communicate independently without coordination. Every

agent i maintains state variables zi, φi, yi, along with the following auxiliary variables that

are instrumental to deal with uncoordinated activations and delayed information: i) the

cumulative-mass variables ρji and σji, with j ∈ N out
i , which capture the cumulative (sum)
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information generated by agent i up to the current time and to be sent to agent j ∈ N out
i ;

consequently, ρij and σij are received by i from its in-neighbors j ∈ N in
i ; and ii) the buffer

variables ρ̃ij and σ̃ij, with j ∈ N in
i , which store the information sent from j ∈ N in

i to i and

used by i in its last update. Values of these variables at iteration k ∈ N0 are denoted by the

same symbols with the superscript “k”. Note that, because of the asynchrony, each agent i

might have outdated ρij and σij; ρ
k−dk

j
ij (resp. σk−dk

j
ij ) is a delayed version of the current ρkij

(resp. σkij) owned by j at time k, where 0 ≤ dkj ≤ D < ∞ is the delay. Similarly, ρ̃ij and σ̃ij

might differ from the last information generated by j for i, because agent i might not have

received that information yet (due to delays) or never will (due to packet losses).

The proposed asynchronous algorithm, P-ASY-SUM-PUSH, is summarized in Algo-

rithm 3 . A global iteration clock (not known to the agents) is introduced: k → k + 1 is

triggered based upon the completion from one agent, say ik, of the following actions. (S.2):

agent ik maintains a local variable τikj, for each j ∈ N in
ik , which keeps track of the “age”

(generated time) of the (ρ, σ)-variables that it has received from its in-neighbors and al-

ready used. If k − dkj is larger than the current counter τ k−1
ikj , indicating that the received

(ρ, σ)-variables are newer than those currently stored, agent ik accepts ρk−dk
j

ikj and σk−dk
j

ikj , and

updates τikj as k− dkj ; otherwise, the variables will be discarded and τikj remains unchanged.

Note that (4.11 ) can be performed without any coordination. It is sufficient that each agent

attaches a time-stamp to its produced information reflecting it local timing counter. We de-

scribe next the other steps, assuming that new information has come in to agent ik, that is,

τikj = k − dkj . (S.3.1): In (4.12 ), agent ik builds the intermediate “mass” zk+ 1
2

ik based upon

its current information zkik and ρ̃kikj, and the (possibly) delayed one from its in-neighbors,

ρ
k−dk

j
ikj ; and εk ∈ Rd is an exogenous perturbation (later this perturbation will be properly

chosen to accomplish specific goals, see Sec. 5.3 ). Note that the way agent ik forms its own

estimates ρk−dk
j

ikj is immaterial to the description of the algorithm. The local buffer ρ̃kikj stores

the value of ρikj that agent ik used in its last update. Therefore, if the information in ρk−dk
j

ikj

is not older than the one in ρ̃kikj, the difference ρk−dk
j

ikj − ρ̃kikj in (4.12 ) will capture the sum of

the aikjzj’s that have been generated by j ∈ N in
ik for ik up until k− dkj and not used by agent

ik yet. For instance, in a synchronous setting, one would have ρkikj− ρ̃kikj = aikjz
k+ 1

2
j . (S.3.2):

the generated zk+ 1
2

ik is “pushed back” to agent ik itself and its out-neighbors. Specifically, out
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Algorithm 3 P-ASY-SUM-PUSH (Global View)
Data: z0

i ∈ Rd, φ0
i = 1, ρ̃0

ij = 0, σ̃0
ij = 0, τ−1

ij = −D, for all j ∈ N in
i and i ∈ V ; σtij = 0 and

ρtij = 0, for all t = −D, . . . , 0; and {εk}k∈N0 . Set k = 0.
While: a termination criterion is not met do

(S.1) Pick (ik, dk), with dk , (dkj )j∈N in
ik
;

(S.2) Set (purge out the old information):

τ kikj = max
(
τ k−1

ikj , k − dkj
)
, ∀j ∈ N in

ik ; (4.11)

(S.3) Update the variables performing
• (S.3.1) Sum step:

z
k+ 1

2
ik = zkik +

∑
j∈N in

ik

(
ρ
τk

ikj
ikj − ρ̃kikj

)
+ εk (4.12)

φ
k+ 1

2
ik = φkik +

∑
j∈N in

ik

(
σ
τk

ikj
ikj − σ̃kikj

)

• (S.3.2) Push step:

zk+1
ik = aikik z

k+ 1
2

ik , φk+1
ik = aikik φ

k+ 1
2

ik

ρk+1
jik = ρkjik + ajik z

k+ 1
2

ik , (4.13)

σk+1
jik = σkjik + ajik φ

k+ 1
2

ik , ∀j ∈ N out
ik

• (S.3.3) Mass-Buffer update:

ρ̃k+1
ikj = ρ

τk
ikj

ikj , σ̃k+1
ikj = σ

τk
ikj

ikj , ∀j ∈ N in
ik (4.14)

• (S.3.4) Set: yk+1
ik = zk+1

ik /φk+1
ik .

(S.4) Untouched state variables shift to state k + 1
while keeping the same value; k ← k + 1.

of the total mass zk+ 1
2

ik generated, agent ik gets aii z
k+ 1

2
i , determining the update zki → zk+1

i

while the remaining is allocated to the agents j ∈ N out
ik , with ajik z

k+ 1
2

ik cumulating to the

mass buffer ρkjik and generating the update ρkjik → ρk+1
jik , to be sent to agent j. (S.3.3): each

local buffer variable ρ̃kikj is updated to account for the use of new information from j ∈ N in
ik .

The final information is then read on the y-variables [cf. (S.3.4)].
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Remark 4.3.1. (Global view description) Note that each agent’s update is fully defined,

once ik and dk are given. The selection (ik, dk) in (S.1) is not performed by anyone; it is

instead an a-posteriori description of agents’ actions: All agents act asynchronously and

continuously; the agent completing the “push” step and updating its own variables trig-

gers retrospectively the iteration counter k → k + 1 and determines the pair (ik, dk) along

with all quantities involved in the other steps. Differently from most of the current litera-

ture, this “global view” description of the agents’ actions allows us to abstract from specific

computation-communication protocols and asynchronous modus operandi and captures by

a unified model a gamut of asynchronous schemes.

Convergence is given under the following assumptions.

Assumption 4.3.2 (On the asynchronous model). Suppose:

a. ∃ 0 < T <∞ such that ∪k+T−1
t=k it = V, for all k ∈ N0;

b. ∃ 0 < D <∞ such that 0 ≤ dkj ≤ D, for all j ∈ N in
ik and k ∈ N0. �

Assumption 4.3.2 (a) is an essentially cyclic rule stating that within T iterations all agents

will have updated at least once, which guarantees that all of them participate “sufficiently

often”. Assumption 4.3.2 (b) requires bounded delay–old information must eventually be

purged by the system. This asynchronous model is general and imposes no coordination

among agents or specific communication/activation protocol.

The next theorem studies convergence of P-ASY-SUM-PUSH, establishing geometric

decay of the error ‖yki − (1/m) ·mk
z‖, even in the presence of unknown perturbations, where

mk
z ,

∑m
i=1 z

k
i +∑

(j,i)∈E(ρkij − ρ̃kij) represents the “total mass” of the system at iteration k.

Theorem 4.3.3. Let {yk , [yk1 , . . . , ykm]>, zk , [zk1 , . . . , zkm]>, (ρkij, ρ̃kij)(j,i)∈E}k∈N0 be the se-

quence generated by Algorithm 3 , under Assumption 4.2.1 , 4.3.2 , and with A , (aij)mi,j=1

satisfying Assumption 4.2.2 . Define K1 , (2m − 1) · T + m · D. There exist constants

ρ ∈ (0, 1) and C1 > 0, such that

∥∥∥∥yk+1
i − (1/m) ·mk+1

z

∥∥∥∥ ≤ C1

(
ρk
∥∥∥z0

∥∥∥+
k∑
l=0

ρk−l
∥∥∥εl∥∥∥) , (4.15)
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for all i ∈ V and k ≥ K1 − 1.

Furthermore, mk
z = ∑m

i=1 z
0
i +∑k−1

t=0 ε
t.

Proof. See Sec. 4.4 .

Discussion: Several comments are in order.

- On the asynchronous model

Algorithm 3 captures a gamut of asynchronous parallel schemes and architectures, through

the mechanism of generation of (ik, dk). Assumption 4.3.2 on (ik, dk) is quite mild: (a)

controls the frequency of the updates whereas (b) limits the age of the old information

used in the computations; they can be easily enforced in practice. For instance, (a) is

readily satisfied if each agent wakes up and performs an update whenever some independent

internal clock ticks or it is triggered by some of the neighbors; (b) imposes conditions on the

frequency and quality of the communications: information used by each agent cannot become

infinitely old, implying that successful communications must occur sufficiently often. This

however does not enforce any specific protocol on the activation/idle time/communication.

For instance, i) agents need not perform the actions in Algorithm 3 sequentially or inside

the same activation round; or ii) executing the “push” step does not mean that agents must

broadcast their new variables in the same activation; this would just incur a delay (or packet

loss) in the communication.

Note that the time-varying nature of the delays dk permits to model also packet losses,

as detailed next. Suppose that at iteration k1 agent j sends its current ρ, σ-variables to its

out-neighbor ` and they get lost; and let k2 be the subsequent iteration when j updates again.

Let t be the first iteration after k1 when agent ` performs its update; it will use information

from j such that t − dtj /∈ [k1 + 1, k2], for some dtj ≤ D < ∞. If t − dtj < k1 + 1, no newer

information from j has been used by `; otherwise t− dtj ≥ k2 + 1 (implying k2 < t), meaning

that agent ` has used information not older than k2 + 1.

- Beyond average consensus By choosing properly the perturbation signal εk, P-ASY-

SUM-PUSH can solve different problems. Some examples are discussed next.

(i) Error free: εk = 0. P-ASY-SUM-PUSH solves the average consensus problem and

(4.15 ) reads

122



∥∥∥∥yk+1
i − (1/m) ·

m∑
i=1

z0
i

∥∥∥∥ ≤ C1 ρ
k
∥∥∥z0

∥∥∥.
(ii) Vanishing error: limk→∞ ‖εk‖ = 0. Using [7 , Lemma 7(a)], (4.15 ) reads limk→∞ ‖yk+1

i −

mk+1
z ‖ = 0.

(iii) Asynchronous tracking. Each agent i owns a (time-varying) signal {uki }k∈N0 ; the average

tracking problem consists in asymptotically track the average signal ūk , (1/m) ·∑m
i=1 u

k
i ,

that is,
lim
k→∞

∥∥∥yk+1
i − ūk+1

∥∥∥ = 0, ∀i ∈ V . (4.16)

Under mild conditions on the signal, this can be accomplished in a distributed and asyn-

chronous fashion, using P-ASY-SUM-PUSH, as formalized next.

Corollary 4.3.3.1. Consider, the following setting in P-ASY-SUM-PUSH: z0
i = u0

i , for

all i ∈ V; εk = uk+1
ik − ũkik , with

ũk+1
i =


uk+1

i if i = ik;

ũki otherwise;
ũ0

i = u0
i ;

Then (4.15 ) holds, with mk+1
z = ∑m

i=1 ũ
k+1
i . Furthermore, if limk→∞

∑m
i=1

∥∥∥uk+1
i − uki

∥∥∥ = 0,

then (4.16 ) holds.

Proof. We know that mk
z = ∑m

i=1 z
0
i +∑k−1

t=0 ε
t. Clearly m0

z = ∑m
i=1 z

0
i = ∑m

i=1 ũ
0
i . Suppose for

k = `, we have that m`
z = ∑m

i=1 ũ
`
i . Then we have that

m`+1
z = m`

z + ε` =
(

m∑
i=1

ũ`i

)
+ u`+1

i` − ũ
`
i` =

∑
j6=i`

ũ`j + u`+1
i` =

m∑
i=1

ũ`+1
i .

Thus we have that mk
z = ∑m

i=1 ũ
k
i , ∀k ∈ N0.

Now we assume that limk→∞
∑m

i=1

∣∣∣uk+1
i − uki

∣∣∣ = 0. Notice that for k ≥ T,

∣∣∣εk∣∣∣ =
∣∣∣uk+1

ik − ũkik
∣∣∣ ≤ k∑

t=k−T+1

∣∣∣ut+1
ik − u

t
ik
∣∣∣ ≤ k∑

t=k−T+1

m∑
i=1

∣∣∣ut+1
i − uti

∣∣∣ .
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Therefore we have that limk→∞

∣∣∣εk∣∣∣ = 0. According to Theorem 4.3.3 and [7 , Lemma 7(a)],

we have that

lim
k→∞

∣∣∣∣∣trk+1
i − (1/m) ·

m∑
i=1

ũk+1
i

∣∣∣∣∣ = 0.

On the other hand, we have that

∣∣∣∣∣
m∑

i=1
uk+1

i −
m∑

i=1
ũk+1

i

∣∣∣∣∣ ≤
m∑

i=1

∣∣∣uk+1
i − ũk+1

i

∣∣∣ ≤ m∑
i=1

k∑
t=k−T+1

∣∣∣ut+1
i − uti

∣∣∣ k→∞−→ 0.

By triangle inequality, we get that

lim
k→∞

∣∣∣∣∣trk+1
i − (1/m) ·

m∑
i=1

uk+1
i

∣∣∣∣∣ = 0.

Remark 4.3.4 (Asynchronous average consensus). To the best of our knowledge, the error-

free instance of the P-ASY-SUM-PUSH discussed above is the first (stepsize-free) scheme

that provably solves the average consensus problem at a linear rate, under the general asyn-

chronous model described by Assumption 4.3.2 . In fact, the existing asynchronous consensus

schemes [75 ] [76 ] achieve an agreement among the agents’ local variables whose value is not

in general the average of their initial values, but instead some unknown function of them and

the asynchronous modus operandi of the agents. Related to the P-ASY-SUM-PUSH is

the ra-AC algorithm in [74 ], which enjoys the same convergence property but under a more

restrictive and specific asynchronous model (no delays but packet losses and single-agent

activation per iteration).

4.4 Convergence Analysis of P-ASY-SUM-PUSH

We prove Theorem 4.3.3 ; we assume d = 1, without loss of generality. The proof is

organized in the following two steps. Step 1: We first reduce the asynchronous agent

system to a synchronous “augmented” one with no delays. This will be done adding virtual

agents to the graph G along with their state variables, so that P-ASY-SUM-PUSH will be

rewritten as a (synchronous) perturbed push-sum algorithm on the augmented graph. While
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this idea was first explored in [73 ], [75 ], there are some important differences between the

proposed enlarged systems and those used therein, see Remark 4.4.1 . Step 2: We conclude

the proof establishing convergence of the perturbed push-sum algorithm built in Step 1.

4.4.1 Step 1: Reduction to a synchronous perturbed push-sum

- The augmented graph We begin constructing the augmented graph–an enlarged agent

system obtained adding virtual agents to the original graph G = (V , E). Specifically, we

associate to each edge (j, i) ∈ E an ordered set of virtual nodes (agents), one for each of the

possible delay values, denoted with a slight abuse of notation by (j, i)0, (j, i)1, . . . , (j, i)D; see

Fig. 4.1 . Roughly speaking, these virtual nodes store the “information on fly” based upon

its associated delay, that is, the information that has been generated by j ∈ N in
i for i but not

used (received) by i yet. Adopting the terminology in [75 ], nodes in the original graph G are

termed computing agents while the virtual nodes will be called noncomputing agents. With

a slight abuse of notation, we define the set of computing and noncomputing agents as V̂ ,

V ∪ {(i, j)d| (i, j) ∈ E , d = 0, 1, . . . , D}, and its cardinality as S ,
∣∣∣V̂∣∣∣ = (m+ (D + 1) |E|).

We now identify the neighbors of each agent in this augmented systems. Computing agents

no longer communicate among themselves; each j ∈ V can only send information to the

noncomputing nodes (j, i)0, with i ∈ N out
j . Each noncomputing agent (j, i)d can either send

information to the next noncomputing agent, that is (j, i)d+1 (if any), or to the computing

agent i; see Fig. 4.1 (b).

(i, ℓ)2 (i, ℓ)1 (j, i)0(j, i)1(j, i)2

ℓ i j

(i, ℓ)0

ℓ i j

(a)  Snapshot of the original graph

(b)  Augmented graph associated with  (a)

Figure 4.1. Example of augmented graph, when the maximum delay D = 2;
three noncomputing agents are added for each edge (j, i) ∈ E .
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To describe the information stored by the agents in the augmented system at each iter-

ation, let us first introduce the following quantities: Ti ,
{
k
∣∣∣ ik = i, k ∈ N0

}
is the set of

global iteration indices at which the computing agent i ∈ V wakes up; and, given k ∈ N0, let

T ki ,
{
t ∈ Ti

∣∣∣ t ≤ k
}
. It is not difficult to conclude from (4.13 ) and (4.14 ) that

ρkij =
∑

t∈T k−1
j

aijz
t+1/2
j and ρ̃kij =ρ

τk−1
ij

ij , (j, i) ∈ E . (4.17)

At iteration k = 0, every computing agent i stores z0
i , whereas the values of the noncomputing

agents are initialized to 0. At the beginning of iteration k, every computing agent i will store

zki whereas every noncomputing agent (j, i)d, with 0 ≤ d ≤ D − 1, stores the mass aijzj (if

any) generated by j for i at iteration k−d−1 (thus k−d−1 ∈ T k−1
j ), i.e., aijz

k−(d+1)+1/2
j (cf.

Step 3.2), and not been used by i yet (thus k − d > τ k−1
ij ); otherwise it stores 0. Formally,

we have

zk(j,i)d , aijz
t+1/2
j · 1

[
t = k − d− 1 ∈ T k−1

j & t+ 1 > τ k−1
ij

]
. (4.18)

The virtual node (j, i)D cumulates all the masses aijz
k−(d+1)+1/2
j with d ≥ D, not received by

i yet:
zk(j,i)D ,

∑
t∈T k−D−1

j , t+1>τk−1
ij

aijz
t+1/2
j . (4.19)

We write next P-ASY-SUM-PUSH on the augmented graph in terms of the z-variables

of both the computing and noncomputing agents, absorbing the (ρ, ρ̃)-variables using (4.17 )-(4.19 ).

The sum-step over the augmented graph. In the sum-step, the update of the z-variables

of the computing agents reads:

z
k+ 1

2
ik = zkik +

∑
j∈N in

ik

(
ρ
τk

ikj
ikj − ρ̃

k
ikj

)
+ εk

(4.17 )−(4.19 )= zkik +
∑

j∈N in
ik

D∑
d=k−τk

ikj

zk(j,ik)d + εk; (4.20a)

z
k+ 1

2
j = zkj , j ∈ V \ {ik}. (4.20b)

In words, node ik builds the update zkik→z
k+ 1

2
ik based upon the masses transmitted by the

noncomputing agents (j, ik)k−τk
ikj , (j, ik)k−τk

ikj
+1
, . . . , (j, ik)D [cf. (4.20a )]. All the other com-
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(ik, ℓ)2 (ik, ℓ)1 (j, ik)0

(j, ik)1(j, ik)2

111 1

1

ℓ ik

1

j

1

(ik, ℓ)0

1

1

Figure 4.2. Sum step on the augmented graph: τ kikj = k − 1 (delay one); the
two noncomputing agents, (j, ik)1 and (j, ik)2, send their masses to ik.

(ik, ℓ)2 (ik, ℓ)1 (j, ik)0(j, ik)1(j, ik)2

1

ℓ ik

1

j

1

(ik, ℓ)0

1

1

111

aikik

aℓik

Figure 4.3. Push step on the augmented graph: Agent ik keeps aikikz
k+1/2
ik

while sending a`ikz
k+1/2
ik to the virtual nodes (ik, `)0, ` ∈ N out

ik .

puting agents keep their masses unchanged [cf. (4.20b )]. The updates of the noncomputing

agents is set to

z
k+ 1

2
(j,ik)d , 0, d = k − τ kikj, . . . , D, j ∈ N in

ik ; (4.20c)

z
k+ 1

2
(j′,i)τ , zk(j′,i)τ , for all the other (j′, i)τ ∈ V̂ . (4.20d)

The noncomputing agents in (4.20c ) set their variables to zero (as they transferred their

masses to ik) while the other noncomputing agents keep their variables unchanged [cf. (4.20d )].

Fig. 4.2 illustrates the sum-step over the augmented graph.

The push-step over the augmented graph. In the push-step, the update of the z-

variables of the computing agents reads:

zk+1
ik = aikik z

k+ 1
2

ik ; (4.21a)

zk+1
j = z

k+ 1
2

j , for j ∈ V \ {ik}. (4.21b)
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In words, agent ik keeps the portion aikikz
k+ 1

2
ik of the new generated mass [cf. (4.21a )] whereas

the other computing agents do not change their variables [cf. (4.21b )]. The noncomputing

agents update as:

zk+1
(ik,`)0 , a`ik z

k+1/2
ik , ` ∈ N out

ik ; (4.21c)

zk+1
(i,j)0 , 0, (i, j) ∈ E , i 6= ik; (4.21d)

zk+1
(i,j)d , z

k+ 1
2

(i,j)d−1 , d = 1, . . . , D − 1, (i, j) ∈ E ; (4.21e)

zk+1
(i,j)D , z

k+ 1
2

(i,j)D + z
k+ 1

2
(i,j)D−1 , (i, j) ∈ E . (4.21f)

In words, the computing agent ik pushes its masses a`ikz
k+ 1

2
ik to the noncomputing agents

(ik, `)0, with ` ∈ N out
ik [cf. (4.21c )]. As the other noncomputing agents (i, j)0, i 6= ik, do

not receive any mass for their associated computing agents, they set their variables to zero

[cf. (4.21d )]. Finally the other noncomputing agents (i, j)d, with 0 ≤ d ≤ D − 1, transfers

their mass to the next noncomputing node (j, i)d+1 [cf. (4.21f ), (4.21e )]. This push-step is

illustrated in Fig. 4.3 .

The following result establishes the equivalence between the update of the enlarged sys-

tem with that of Algorithm 3 .

Proposition 4.4.1. Consider the setting of Theorem 4.3.3 . The values of the z-variables

of the computing agents in (4.20 )-(4.21 ) coincide with those of the z-variables generated by

P-ASY-SUM-PUSH (Algorithm 3 ), for all iterations k ∈ N0.

Proof. By construction, the updates of the computing agents as in (4.20a )-(4.20b ) and

(4.21a )-(4.21b ) coincide with the z-updates in the sum- and push-steps of P-ASY-SUM-

PUSH, respectively. Therefore, we only need to show that the updates of the noncomputing

agents are consistent with those of the (ρ, ρ̃)-variables in P-ASY-SUM-PUSH. This follows

using (4.17 ) and noting that the updates (4.21c )-(4.21f ) are compliant with (4.18 ) and (4.19 ).

For instance, by (4.17 )-(4.18 ), it must be zk+1
(ik,j)0 = ajikz

t+1/2
j ·1[t = k ∈ T kik and t+1 > τ kjik ] =

ajikz
k+1/2
j , which in fact coincides with (4.21c ). The other equations (4.21d )–(4.21f ) can be

similarly validated.
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Proposition 4.4.1 opens the way to study convergence of P-ASY-SUM-PUSH via that

of the synchronous perturbed push-sum algorithm (4.20 )-(4.21 ). To do so, it is convenient

to rewrite (4.20 )-(4.21 ) in vector-matrix form, as described next.

We begin introducing an enumeration rule for the components of the z-vector in the

augmented system. We enumerate all the elements of E as 1, 2, . . . , |E| . The computing agents

in V̂ are indexed as in V , that is, 1, 2, . . . ,m. Each noncomputing agent (j, i)d is indexed as

m + d |E| + s, where s is the index associated with (j, i) in E ; we will use interchangeably

zm+d|E|+s and z(j,i)d . We define the z-vector as ẑ = [zi]Si=1; and its value at iteration k ∈ N0 is

denoted by ẑk.

The transition matrix Sk of the sum step is defined as

Skhm ,



1, if m ∈ {(j, ik)d | k − τ kikj ≤ d ≤ D} and h = ik;

1, if m ∈ V̂ \ {(j, ik)d | k − τ kikj ≤ d ≤ D} and h = m;

0, otherwise.

Let εk , εkeik be the S−dimensional perturbation vector. The sum-step can be written in

compact form as
ẑk+ 1

2 = Skẑk + εk. (4.22)

Define the transition matrix P k of the push step as

P k
hm ,



ajik , if m = ik and h = (j, ik)0, j ∈ N out
ik ;

aikik , if m = h = ik;

1, if m = h ∈ V \ ik;

1, if m = (i, j)d, h = (i, j)d+1, (i, j) ∈ E , 0 ≤ d ≤ D − 1;

1, if m = h = (i, j)D, (i, j) ∈ E ;

0, otherwise

Then, the push-step can be written as

ẑk+1 = P kẑk+ 1
2 . (4.23)
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Combing (4.22 ) and (4.23 ), yields

ẑk+1 = Âkẑk + pk, Âk , P kSk, pk , P kεk. (4.24)

The updates of the φ variables and the definition of the φ-vector are similar as above. In

summary, the P-ASY-SUM-PUSH algorithm can be rewritten in compact form as

ẑk+1 = Âkẑk + pk, pk = εk P k eik ; (4.25a)

φ̂k+1 = Âkφ̂k; (4.25b)

with initialization: z0
i ∈ R and φ0

i = 1, for i ∈ V ; and z0
i = 0 and φ0

i = 0, for i ∈ V̂ \ V .

Remark 4.4.1 (Comparison with [73 ]–[76 ]). The idea of reducing asynchronous (consensus)

algorithms into synchronous ones over an augmented system was already explored in [74 ]–[76 ].

However, there are several important differences between the models therein and the proposed

augmented graph. First of all, [74 ] extends the analysis in [73 ] to deal with asynchronous

activations, but both work consider only packet losses (no delays). Second, our augmented

graph model departs from that in [75 ], [76 ] in the following aspects: i) in our model, the

virtual nodes are associated with the edges of the original graph rather than the nodes; ii) the

noncomputing nodes store the information on fly (i.e., generated by a sender but not received

by the intended receiver yet), while in [75 ], [76 ], each noncomputing agent owns a delayed

copy of the message generated by the associated computing agent; and iii) the dynamics (4.25 )

over the augmented graph used to describe the P-ASY-SUM-PUSH procedure is different from

those of the asynchronous consensus schemes [75 , (1)] and [76 , (1)].

4.4.2 Step 2: Proof of Theorem 4.3.3 

- Preliminaries We begin studying some properties of the matrix product Âk:t, which will

be instrumental to prove convergence of the perturbed push-sum scheme (4.25 ).

Lemma 4.4.2. Let {Âk}k∈N0 be the sequence of matrices in (4.25 ), generated by Algorithm 3 ,

under Assumption 4.3.2 , and with A , (aij)mi,j=1 satisfying Assumption 4.2.2 . The following
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hold: for all k ∈ N0, a) Âk is column stochastic; and b) the entries of the first m rows of

Âk+K1−1:k are uniformly lower bounded by η , m̄K1 ∈ (0, 1), with K1 , (2I − 1) · T +m ·D.

Proof. The lemma essentially proves that (Âk+K1−1:k)> is a SIA (Stochastic Indecomposable

Aperiodic) matrix [76 ], by showing that for any time length of K1 iterations, there exists a

path from any node m in the augmented graph to any computing node h. While at a high

level the proof shares some similarities with that of [75 , Lemma 2] and [76 , Lemma 5 (a)],

there are important differences due to the distinct modeling of our augmented system.

We study any entry Âk+K1−1
hm with m ∈ V̂ and h ∈ V . We prove the result by considering

the following four cases.

(i) Assume h = m ∈ V . It is easy to check that Âkhh ≥ m̄, for any k ∈ N0 and h ∈ V .

Therefore, Âk+s−1:k
hh ≥ ∏k+s−1

t=k Âthh ≥ m̄s, for all k, s ∈ N0 and h ∈ V .

(ii) Let (m,h) ∈ E ; and let s be the first time m wakes up in the interval [k, k + T − 1].

We have Âs(m,h)0,m = ahm. The information that node m sent to node (m,h)0 at iteration

s is received by node h when the information is on some virtual node (m,h)d. We discuss

separately the following three sub-cases for d: 1) 1 ≤ d ≤ D − 1; 2) d = 0; and 3) d = D.

1) 1 ≤ d ≤ D − 1: We have

Âs+d:s+1
(m,h)d,(m,h)0 = Âs+d(m,h)d,(m,h)d−1 · · · Âs+1

(m,h)1,(m,h)0 = 1, Âs+d+1
h,(m,h)d = ahh.

Therefore, Âs+d+1:s
hm = Âs+d+1

h,(m,h)dÂ
s+d:s+1
(m,h)d,(m,h)0 Âs(m,h)0,m = ahhahm ≥ m̄2.

2) d = 0: We simply have

Âs+1:s
hm = Âs+1

h,(m,h)0Â
s
(m,h)0,m = ahhahm ≥ m̄2.

Therefore, for 0 ≤ d ≤ D − 1,

Âk+2T+D−1:k
hm = Âk+2T+D−1:s+d+2

hh Âs+d+1:s
hm Âs−1:k

mm ≥ m̄k+2T+D−s−d−2m̄2m̄s−k ≥ m̄2T+D.
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3) d = D: Before agent j wakes up at time s + D + τ , where 1 ≤ τ ≤ T , the information

will stay on virtual nodes (m,h)D. Once agent j wakes up, nodes (m,h)D will send all its

information to it. Then we have

Âs+D:s+1
(m,h)D,(m,h)0 = 1, Âs+D+τ :s+D+1

h,(m,h)D = ahh.

Similarly, we have

Âk+2T+D−1
hm = Âk+2T+D−1:s+D+τ+1

hh Âs+D+τ :s+D+1
h,(m,h)D Âs+D:s+1

(m,h)D,(m,h)0Â
s
(m,h)0,mÂ

s−1:k
mm ≥ m̄2T+D.

To summarize, in all of the three sub-cases, we have

Âk+K1−1
hm ≥ Âk+K1−1:k+2T+D

hh Âk+2T+D−1:k
hm ≥ m̄K1−2T−Dm̄2T+D = m̄K1 .

(iii) Letm 6= h and (m,h) ∈ V×V\E . Since the graph (V , E) is connected, there are mutually

different agents i1, . . . , ir, with r ≤ m− 2, such that (m, i1), (i1, i2), . . . , (ir−1, ir), (ir, h) ⊂ E ,

which is actually a directed path from m to h in the graph (V , E). Then, by result proved

in (ii), we have

Â
k+(m−1)(2T+D)−1:k
hm ≥ Â

k+(m−1)(2T+D)−1:k+(r+1)(2T+D)
hh Â

k+(r+1)(2T+D)−1:k+r(2T+D)
hir · · · Âk+2T+D−1:k

i1m

≥ m̄(m−r−2)(2T+D)m̄(r+1)(2T+D) = m̄(m−1)(2T+D).

We can then easily get Âk+K1−1:k
hm = Â

k+K1−1:k+(m−1)(2T+D)
hh Â

k+(m−1)(2T+D)−1:k
hm ≥ m̄K1 .

(iv) If m is a virtual node, it must be associated with an edge (j, i) ∈ E and there exists

0 ≤ d ≤ D such that m = (j, i)d. A similar argument as in (ii) above shows that any

information on m will eventually enter node i taking 1 ≤ τ ≤ D+T . That is, Âk+τ−1:k
im = aii,

for some 1 ≤ τ ≤ D + T . On the other hand, by the above results, we know

Â
k+T+D+(m−1)(2T+D)−1:k+T+D
hi ≥ m̄(m−1)(2T+D).
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Therefore,

Âk+K1−1:k
hm ≥ Âk+K1−1:k+T+D

hi Âk+T+D−1:k+τ
ii Âk+τ−1:k

im ≥ m̄(m−1)(2T+D)m̄T+D−τm̄ ≥ m̄K1

The key result of this section is stated next and shows that as k − t increases, Âk:t

approaches a column stochastic rank one matrix at a linear rate. Given Lemma 4.4.2 , the

proof follows the path of [75 , Lemma 4, Lemma 5], [76 , Lemma 4, Lemma 5(b, c)] and thus

is omitted.

Lemma 4.4.3. In the setting above, there exists a sequence of stochastic vectors {ξk}k∈N0

such that, for any k ≥ t ∈ N0 and i, j ∈ {1, · · · , S}, there holds

∣∣∣Âk:t
ij − ξki

∣∣∣ ≤ Cρk−t, (4.26)

with
C , 21 + m̄−K1

1− m̄K1
, ρ , (1− m̄K1)

1
K1 ∈ (0, 1).

Furthermore, ξki ≥ η, for all i ∈ V and k ∈ N0.

- Proof of Theorem 4.3.3 

Applying (4.25 ) telescopically, yields: ẑk+1 = Âk:0ẑ0 + ∑k
l=1 Â

k:lpl−1 + pk and φ̂k+1 =

Âk:0φ̂0,which using the column stochasticity of Âk:t, yields

1>ẑk+1 = 1>ẑ0 +
k∑
l=0

1>pl, 1>φ̂k+1 = 1>φ̂0 = m. (4.27)
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Using (4.27 ) and φk+1
i ≥ mη, for all i ∈ V and k ≥ K1− 1 [due to Lemma 4.4.2 (b)], we have:

for i ∈ V and k ≥ K1 − 1,

∣∣∣∣∣ z
k+1
i

φk+1
i
− 1>ẑk+1

m

∣∣∣∣∣ ≤ 1
mη

∣∣∣∣∣zk+1
i − φk+1

i
m

(1>ẑk+1)
∣∣∣∣∣ ≤ 1

mη

∣∣∣zk+1
i − ξki 1>ẑk+1

∣∣∣+ 1
mη

∣∣∣∣∣
(
ξki −

φk+1
i
m

)
1>ẑk+1

∣∣∣∣∣
≤ 1
mη

∣∣∣zk+1
i − ξki 1>ẑk+1

∣∣∣+ 1
mη

∣∣∣∣∣∣ξki − Âk:0
i,: φ̂

0

m

∣∣∣∣∣∣ ·
∣∣∣∣∣1>ẑ0 +

k∑
l=0

1>pl
∣∣∣∣∣

(4.26 )
≤ 1

mη

∣∣∣zk+1
i − ξki 1>ẑk+1

∣∣∣+ Cρk√
mη

(∥∥∥z0
∥∥∥+

k∑
l=0

∣∣∣εl∣∣∣) (4.28)

The next lemma provides a bound of
∣∣∣zk+1

i − ξki 1>ẑk+1
∣∣∣ .

Lemma 4.4.4. Let {ẑk}∞
k=0 be the sequence generated by the perturbed system (4.25a ), under

Assumption 4.3.2 , A = (aij)mi,j=1 satisfying Assumption 4.2.2 , and given {εk}k∈N0. For any

i ∈ V and k ≥ 0, there holds

∣∣∣zk+1
i − ξki 1>ẑk+1

∣∣∣ ≤ C0

(
ρk
∥∥∥z0

∥∥∥+
k∑
l=0

ρk−l
∣∣∣εl∣∣∣) , (4.29)

with {ξk}d∈N0 defined in Lemma 4.4.3 and C0 , C
√

2S/ρ.
Proof.

∣∣∣zk+1
i − ξki 1>ẑk+1

∣∣∣ (4.25a )=

∣∣∣∣∣∣
(
Âk:0

i,: ẑ
0 +

k∑
l=1

Âk:l
i,: p

l−1 + pki

)
− ξki

(
1>ẑ0 +

k∑
l=0

1>pl
) ∣∣∣∣∣∣

≤
∣∣∣pki ∣∣∣+ ∣∣∣1>pk

∣∣∣+ ∥∥∥Âk:0
i,: − ξki 1>

∥∥∥∥∥∥ẑ0
∥∥∥+

k∑
l=1

∥∥∥Âk:l
i,: − ξki 1>

∥∥∥∥∥∥pl−1
∥∥∥

(4.26 )
≤
√
S

ρ
C

(
ρk
∥∥∥ẑ0

∥∥∥+
k∑
l=0

ρk−l
∥∥∥P l

∥∥∥ ∣∣∣εl∣∣∣) (a)
≤ C0

(
ρk
∥∥∥z0

∥∥∥+
k∑
l=0

ρk−l
∣∣∣εl∣∣∣) ,

where in (a) we used
∥∥∥P l

∥∥∥ ≤ √∥∥∥P l

∥∥∥1

∥∥∥P l

∥∥∥∞ ≤
√

2.

Combing Eq. (4.28 ) and (4.29 ) leads to

∣∣∣∣∣ z
k+1
i

φk+1
i
− 1>ẑk+1

m

∣∣∣∣∣ ≤ C1

(
ρk
∥∥∥z0

∥∥∥+
k∑
l=0

ρk−l
∣∣∣εl∣∣∣) ,

where we defined C1 , C0 · 2/(mη).
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Recalling the definition of mk
z ,

∑m
i=1 z

k
i + ∑

(j,i)∈E(ρkij − ρ̃kij), to complete the proof, it

remains to show that
mk
z

(m)=
m∑

i=1
z0

i +
k−1∑
t=0

εt
(II)= 1>ẑk. (4.30)

We prove next the equalities (m) and (II) separately.

Proof of (m): Since m0
z = ∑m

i=1 z
0
i , it suffices to show that mk+1

z = mk
z + εk for all k ∈ N0.

Since agent ik triggers k → k + 1, we only need to show that

zk+1
ik +

∑
j∈N in

ik

(ρk+1
ikj − ρ̃

k+1
ikj ) +

∑
j∈N out

ik

(ρk+1
jik − ρ̃

k+1
jik )

=zkik +
∑

j∈N in
ik

(ρkikj − ρ̃kikj) +
∑

j∈N out
ik

(ρkjik − ρ̃kjik) + εk.

We have

zk+1
ik +

∑
j∈N in

ik

(ρk+1
ikj − ρ̃

k+1
ikj ) +

∑
j∈N out

ik

(ρk+1
jik − ρ̃

k+1
jik )

(a)=aikikz
k+ 1

2
ik +

∑
j∈N in

ik

(ρkikj − ρ
τk

ikj
ikj ) +

∑
j∈N out

ik

(ρkjik + ajikz
k+ 1

2
ik − ρ̃kjik)

(b)=zk+ 1
2

ik +
∑

j∈N in
ik

(ρkikj − ρ
τk

ikj
ikj ) +

∑
j∈N out

ik

(ρkjik − ρ̃kjik)

(c)=zkik +
∑

j∈N in
ik

(ρ
τk

ikj
ikj − ρ̃

k
ikj) + εk +

∑
j∈N in

ik

(ρkikj − ρ
τk

ikj
ikj ) +

∑
j∈N out

ik

(ρkjik − ρ̃kjik)

=zkik +
∑

j∈N in
ik

(ρkikj − ρ̃kikj) +
∑

j∈N out
ik

(ρkjik − ρ̃kjik) + εk,

where in (a) we used: the definition of the push step, ρk+1
ikj = ρkikj for all j ∈ N in

ik , and

ρ̃k+1
jik = ρ̃kjik for all j ∈ N out

ik ; (b) follows from aikik +∑
j∈N out

ik
ajik = 1; and in (c), we used the

sum-step.

Proof of (II): Using (4.27 ), yields 1>ẑk+1 = 1>ẑ0 +∑k
l=0 1>pl = 1>ẑk + 1>εk = ∑m

i=1 z
0
i +∑k

t=0 ε
t.
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5. ASYNCHRONOUS DECENTRALIZED ALGORITHM -

PART II: ASY-SONATA

In this chapter, we study asynchronous multi-agent smooth unconstrained optimization, over

static digraphs. Agents can perform their local computations as well as communicate with

their immediate neighbors at any time, without any form of coordination or centralized

scheduling; furthermore, when solving their local subproblems, they can use outdated infor-

mation from their neighbors. The algorithm builds on the asynchronous tracking algorithm

P-ASY-SUM-PUSH proposed in Chapter 4 , whose goal is to estimate locally the sum of

agents’ gradients When applied to strongly convex functions, we prove that it converges at

an R-linear (geometric) rate as long as the step-size is sufficiently small. A sublinear conver-

gence rate is proved, when nonconvex problems and/or diminishing, uncoordinated step-sizes

are considered. To the best of our knowledge, this is the first distributed algorithm with prov-

able geometric convergence rate in such a general asynchronous setting. Numerical results

demonstrate the efficacy of the proposed algorithm and validate our theoretical findings.

The novel results of this chapter have been published in

• Ye Tian, Ying Sun, and Gesualdo Scutari. ”ASY-SONATA: Achieving linear con-

vergence in distributed asynchronous multiagent optimization.” In 2018 56th Annual

Allerton Conference on Communication, Control, and Computing (Allerton), pp. 543-

551. IEEE, 2018.

• Ye Tian, Ying Sun, and Gesualdo Scutari. ”Achieving Linear Convergence in Dis-

tributed Asynchronous Multiagent Optimization.” IEEE Transactions on Automatic

Control 65, no. 12 (2020): 5264-5279.
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5.1 Introduction

We study convex and nonconvex distributed optimization over a network of agents, mod-

eled as a directed fixed graph. Agents aim at cooperatively solving the optimization problem

min
x∈Rd

F (x) =
m∑

i=1
fi
(
x
)

(5.1)

which is a special instance of the Problem (P ), withG = 0 and K = Rd. Various asynchronous

distributed/decentralized optimization algorithms have been studied in the literature–see

Sec. 5.1.1 for an overview of related works. However, we are not aware of any distributed

algorithm that is compliant to the asynchrony model (i)-(ii), discussed in Sec. 4.1 , and dis-

tributed (nonconvex) setting above. Furthermore, when considering the special case of a

strongly convex function F , it is not clear how to design a (first-order) distributed asyn-

chronous algorithm (as specified above) that achieves linear convergence rate. This chapter

answers these questions– see Sec. 5.1.2 and Table 5.1 for a summary of our contributions.

5.1.1 Literature Review

Since the seminal work [78 ], asynchronous parallelism has been applied to several central-

ized optimization algorithms, including block coordinate descent (e.g., [78 ]–[80 ]) and stochas-

tic gradient (e.g., [81 ], [82 ]) methods. However, these schemes are not applicable to the

networked setup considered in this chapter, because they would require the knowledge of the

function F from each agent. Distributed methods exploring (some form of) asynchrony over

networks with no centralized node have been studied in [33 ], [77 ], [83 ]–[98 ]. We group next

these works based upon the asynchronous features (i)-(ii), discussed in Sec. 4.1 .

(a) Random activations and no delays [33 ], [83 ]–[86 ]: These schemes considered dis-

tributed convex unconstrained optimization over undirected graphs. While substantially

different in the form of the updates performed by the agents–[83 ], [84 ], [86 ] are instances

of primal-dual (proximal-based) algorithms, [85 ] is an ADMM-type algorithm, while [33 ] is

based on the distributed gradient tracking mechanism introduced in[5 ], [7 ], [99 ]–all these

algorithms are asynchronous in the sense of feature (i) [but not (ii)]: at each iteration, a
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Table 5.1. Comparison with state-of-art distributed asynchronous algo-
rithms. Current schemes can deal with uncoordinated activations but only
with some forms of delays. ASY-SONATA enjoys all the desirable features
listed in the table.

Algorithm Nonconvex
Cost Function

No Idle
Time

Arbitrary
Delays Parallel

Step Sizes
Digraph Global Convergence to Exact Solutions

Rate Analysis

Fixed Uncoordinated
Diminishing

Linear Rate for
Strongly Convex Nonconvex

Asyn. Broadcast [93 ] X X X In expectation (w. diminishing step)
Asyn. Diffusion [94 ] X
Asyn. ADMM [95 ] X X Deterministic
Dual Ascent in [96 ] X Restricted Restricted X

ra-NRC [77 ] X X
ARock [97 ] X Restricted X Almost surely In expectation

ASY-PrimalDual [98 ] X Restricted X Almost surely
ASY-SONATA X X X X X X X Deterministic Deterministic Deterministic

subset of agents [83 ], [84 ], [86 ] (or edge-connected agents [33 ], [85 ]), chosen at random, is ac-

tivated, performing then their updates and communications with their immediate neighbors;

between two activations, agents are assumed to be in idle mode (i.e., able to continuously

receive information). However, no form of delays is allowed: every agent must perform its

local computations/updates using the most updated information from its neighbors. This

means that all the actions performed by the agent(s) in an activation must be completed

before a new activation (agent) takes place (wakes-up), which calls for some coordination

among the agents. Finally, no convergence rate was provided for the aforementioned schemes

but [33 ], [85 ].

(b) Synchronous activations and delays [87 ]–[92 ]: These schemes considered distributed

constrained convex optimization over undirected graphs. They study the impact of delayed

gradient information [87 ], [88 ] or communication delays (fixed [89 ], uniform [88 ], [92 ] or

time-varying [90 ], [91 ]) on the convergence rate of distributed gradient (proximal [87 ], [88 ]

or projection-based [91 ], [92 ]) algorithms or dual-averaging distributed-based schemes [89 ],

[90 ]. While these schemes are all synchronous [thus lacking of feature (i)], they can tolerate

communication delays [an instantiation of feature (ii)], converging at a sublinear rate to an

optimal solution. Delays must be such that no losses occur–every agent’s message will even-

tually reach its destination within a finite time.

(c) Random/cyclic activations and some form of delays [77 ], [93 ]–[98 ]: The class of

optimization problems along with the key features of the algorithms proposed in these papers

are summarized in Table 5.1 and briefly discussed next. The majority of these works studied

138



distributed (strongly) convex optimization over undirected graphs, with [94 ] assuming that

all the functions fi have the same minimizer, [95 ] considering also nonconvex objectives, and

[77 ] being implementable also over digraphs. The algorithms in [93 ], [94 ] are gradient-based

schemes; [95 ] is a decentralized instance of ADMM; [97 ] applies an asynchronous parallel

ADMM scheme to distributed optimization; and [98 ] builds on a primal-dual method. The

schemes in [77 ], [96 ] instead build on (approximate) second-order information. All these al-

gorithms are asynchronous in the sense of feature (i): [93 ]–[95 ], [97 ], [98 ] considered random

activations of the agents (or edges-connected agents) while [77 ], [96 ] studied deterministic,

uncoordinated activation rules. As far as feature (ii) is concerned, some form of delays is

allowed. More specifically, [77 ], [93 ]–[95 ] can deal with packet losses: the information sent

by an agent to its neighbors either gets lost or received with no delay. They also assume

that agents are always in idle mode between two activations. Closer to the proposed asyn-

chronous framework are the schemes in [97 ], [98 ] wherein a probabilistic model is employed

to describe the activation of the agents and the aged information used in their updates. The

model requires that the random variables triggering the activation of the agents are i.i.d

and independent of the delay vector used by the agent to performs its update. While this

assumption makes the convergence analysis possible, in reality, there is a strong dependence

of the delays on the activation index; see [80 ] for a detailed discussion on this issue and

several counter examples. Other consequences of this model are: the schemes [97 ], [98 ] are

not parallel–only one agent per time can perform the update–and a random self-delay must

be used in the update of each agent (even if agents have access to their most recent infor-

mation). Furthermore, [97 ] calls for the solution of a convex subproblem for each agent at

every iteration. Referring to the convergence rate, [97 ] is the only scheme exhibiting linear

convergence in expectation, when each fi is strongly convex and the graph undirected. No

convergence rate is available in any of the aforementioned papers, when F is nonconvex.

5.1.2 Summary of Contributions

The review of the literature clearly showed that there exits no distributed asynchronous

[in the sense (i)-(ii)] scheme, even for convex instances of Problem (5.1 ) and undirected
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graphs. Furthermore, it is unknown whether one can design a geometric (globally) convergent

scheme (when U is strongly convex).

This chapter proposes a general distributed, asynchronous algorithmic framework for

(strongly) convex and nonconvex instances of Problem (5.1 ), over directed graphs. The algo-

rithm leverages the P-ASY-SUM-PUSH algorithm, whose goal is to track locally the average

of agents’ gradients. To the best of our knowledge, the proposed framework is the first

scheme combining the following attractive features (cf. Table 5.1): (a) it is parallel and

asynchronous [in the sense (i) and (ii)]–multiple agents can be activated at the same time

(with no coordination) and/or outdated information can be used in the agents’ updates; our

asynchronous setting (i) and (ii) is less restrictive than the one in [97 ], [98 ]; furthermore,

in contrast with [97 ], our scheme avoids solving possibly complicated subproblems; (b) it

is applicable to nonconvex problems, with probable convergence to stationary solutions of

(5.1 ); (c) it is implementable over digraph; (d) it employs either a constant step-size or un-

coordinated diminishing ones; (e) it converges at an R-linear rate (resp. sublinear) when

F is strongly convex (resp. nonconvex) and a constant (resp. diminishing, uncoordinated)

step-size(s) is employed; this contrasts [97 ] wherein each fi needs to be strongly convex;

and (f) it is “protocol-free”, meaning that agents need not obey any specific communica-

tion protocols or asynchronous modus operandi (as long as delays are bounded and agents

update/communicate uniformly infinitely often).

On the technical side, the rate analysis is employed putting forth a generalization of the

small gain theorem (widely used in the literature [100 ] to analyze synchronous schemes),

which is expected to be broadly applicable to other distributed algorithms.

5.2 Problem Setup and Preliminaries

5.2.1 Problem Setup

We study Problem (5.1 ) under the following assumptions.

Assumption 5.2.1 (On the optimization problem).

a. Each fi : Rd → R is proper, closed and Li-Lipschitz differentiable;
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b. F is bounded from below. �

Note that fi need not be convex. We also make the blanket assumption that each agent i

knows only its own fi, but not
∑

j6=i fj. To state linear convergence, we will use the following

extra condition on the objective function.

Assumption 5.2.2 (Strong convexity). Assumption 6.2.1 (i) holds and, in addition, F is

τ -strongly convex. �

5.2.2 Preliminaries: The SONATA algorithm for smooth unconstrained opti-
mization [9 ], [101 ]

The proposed asynchronous algorithmic framework builds on the synchronous SONATA

algorithm, proposed in [9 ], [101 ] to solve (nonconvex) multi-agent optimization problems over

time-varying digraphs. This is motivated by the fact that SONATA has the unique prop-

erty of being provably applicable to both convex and nonconvex problems, and it achieves

linear convergence when applied to strongly convex objectives F . We thus begin reviewing

SONATA, tailored to (5.1 ); then we generalized it to the asynchronous setting (cf. Sec. 5.3 ).

Every agent controls and iteratively updates the tuple (xi, yi, zi, φi): xi is agent i’s copy

of the shared variables x in (5.1 ); yi acts as a local proxy of the sum-gradient ∇F ; and zi

and φi are auxiliary variables instrumental to deal with communications over digraphs. Let

xki , z
k
i , φki , and yki denote the value of the aforementioned variables at iteration k ∈ N0. The

update of each agent i reads:

xk+1
i =

∑
j∈N in

i ∪{i}
wij

(
xkj − αk ykj

)
, (5.2)

zk+1
i =

∑
j∈N in

i ∪{i}
aijz

k
j +∇fi(xk+1

i )−∇fi(xki ), (5.3)

φk+1
i =

∑
j∈N in

i ∪{i}
aijφ

k
j , (5.4)

yk+1
i = zk+1

i /φk+1
i , (5.5)

with z0
i = y0

i = ∇fi(x0
i ) and φ0

i = 1, for all i ∈ V . In (5.2 ), yki is a local estimate of the

average-gradient (1/m)∑m
i=1∇fi(xki ). Therefore, every agent, first moves along the estimated
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gradient direction, generating xki −αk yki (αk is the step-size); and then performs a consensus

step to force asymptotic agreement among the local variables xi. Steps (5.3 )-(5.5 ) represent

a perturbed-push-sum update, aiming at tracking the gradient (1/m)∇F [5 ], [7 ], [9 ]. The

weight matrix W , (wij)mi,j=1 satisfies the following assumption, and A , (aij)mi,j=1 satisfies

the Assumption 4.2.2 .

Assumption 5.2.3. The weight matrix W , (wij)mi,j=1 satisfy:

(i) ∃ m̄ > 0 such that: wii ≥ m̄, ∀i ∈ V; wij ≥ m̄, for all (j, i) ∈ E ; and wij = 0, otherwise;

(ii) W is row-stochastic, that is, W 1 = 1.

In [100 ], a special instance of SONATA, was proved to converges at an R-linear rate when

F is strongly convex. This result was extended to constrained, nonsmooth (composite),

distributed optimization in [102 ]. A natural question is whether SONATA works also in

an asynchronous setting still converging at a linear rate. Naive asynchronization of the

updates (5.2 )-(5.5 )–such as using uncoordinated activations and/or replacing instantaneous

information with a delayed one–would not work. For instance, the tracking (5.3 )-(5.5 ) calls

for the invariance of the averages, i.e., ∑m
i=1 z

k
i = ∑m

i=1∇fi(xk), for all k ∈ N0. It is not

difficult to check that any perturbation in (5.3 )-e.g., in the form of delays or packet losses–

puts in jeopardy this property.

To cope with the above challenges, we robustify the gradient tracking component using

P-ASY-SUM-PUSH, and we present in the next section the proposed distributed asyn-

chronous optimization framework, ASY-SONATA.

5.3 Asynchronous SONATA (ASY-SONATA)

We are ready now to introduce our distributed asynchronous algorithm–ASY-SONATA.

The algorithm combines SONATA (cf. Sec. 6.3.1 ) with P-ASY-SUM-PUSH (cf. Sec. 4.3 ),

the latter replacing the synchronous tracking scheme (5.3 )-(5.5 ). The “global view” of the

scheme is given in Algorithm 4 .

In ASY-SONATA, agents continuously and with no coordination perform: i) their local

computations [cf. (S.3)], possibly using an out-of-sync estimate zkik of the average gradient;
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Algorithm 4 ASY-SONATA (Global View)
Data: For all agent i and ∀j ∈ N in

i , x0
i ∈ Rd, z0

i = ∇fi(x0
i ), φ0

i = 1, ρ̃0
ij = 0, σ̃0

ij = 0,
τ−1

ij = −D. And for t = −D,−D + 1, . . . , 0, ρtij = 0, σtij = 0, vti = 0. Set k = 0.
While: a termination criterion is not met do

(S.1) Pick (ik, dk);
(S.2) Set:

τ kikj = max(τ k−1
ikj , k − dkj ), ∀j ∈ N in

ik .

(S.3) Local Descent:

vk+1
ik = xkik − γkzkik . (5.6)

(S.4) Consensus:

xk+1
ik = wikikv

k+1
ik +

∑
j∈N in

ik

wikjv
τk

ikj
j .

(S.5) Gradient Tracking:
• (S.5.1) Sum step:

z
k+ 1

2
ik =zkik +

∑
j∈N in

ik

(
ρ
τk

ikj
ikj − ρ̃kikj

)
+∇fik(xk+1

ik )−∇fik(xkik)

• (S.5.2) Push step:

zk+1
ik = aikik z

k+ 1
2

ik ,

ρk+1
jik = ρkjik + ajik z

k+ 1
2

ik , ∀j ∈ N out
ik

• (S.5.3) Mass-Buffer update:

ρ̃k+1
ikj = ρ

τk
ikj

ikj , ∀j ∈ N in
ik

(S.6) Untouched state variables shift to state k + 1
while keeping the same value; k ← k + 1.

in (5.6 ), γk is a step-size (to be properly chosen); ii) a consensus step on the x-variables,

using possibly outdated information v
τk

ikj
j from their in-neighbors [cf. (S.4)]; and iii) gradient

tracking [cf. (S.5)] to update the local estimate zkik , based on the current cumulative mass

variables ρ
τk

ikj
ikj , and buffer variables ρ̃kikj, j ∈ N in

ik .

143



Note that in Algorithm 3 , the tracking variable yk+1
ik is obtained rescaling zk+1

ik by the

factor 1/φk+1
ik . In Algorithm 4 , we absorbed the scaling 1/φk+1

ik in the step size and use

directly zk+1
ik as a proxy of the average gradient, eliminating thus the φ-variables (and the

related σ-, σ̃-variables). Also, for notational simplicity and without loss of generality, we

assumed that the v- and ρ- variables are subject to the same delays (e.g., they are transmitted

within the same packet); same convergence results hold if different delays are considered.

We study now convergence of the scheme, under a constant step-size or diminishing,

uncoordinated ones.

5.3.1 Constant Step-size

Theorem 6.4.1 below establishes linear convergence of ASY-SONATA when F is strongly

convex.

Theorem 5.3.1 (Geometric convergence). Consider (P) under Assumption 5.2.2 , and let x?

denote its unique solution. Let {(xki )mi=1}k∈N0 be the sequence generated by Algorithm 4 , under

Assumption 4.2.1 , 4.3.2 , and with weight matrices A and W satisfying Assumption 4.2.2 and

5.2.3 . Then, there exists a constant γ̄1 > 0 [cf. (5.26 )] such that if γk ≡ γ ≤ γ̄1, it holds

Msc(xk) , ‖xk − 1m ⊗ x?‖ = O(λk), (5.7)

with λ ∈ (0, 1) given by

λ =


1− τm̄2K1γ

2 if γ ∈ (0, γ̂1],

ρ+
√
J1γ if γ ∈ (γ̂1, γ̂2),

(5.8)

where γ̂1 and γ̂2 are some constants strictly smaller than γ̄1, and J1 , (1− ρ)2/γ̂2.

Proof. See Sec. 5.3.3 .

When F is convex (resp. nonconvex), we introduce the following merit function to mea-

sure the progresses of the algorithm towards optimality (resp. stationarity) and consensus:

MF (xk) , max{
∥∥∥∇F (x̄k)

∥∥∥2,
∥∥∥xk − 1m ⊗ x̄k

∥∥∥2}, (5.9)
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where xk , [xk>
1 , · · · , xk>

m ]> and x̄k , (1/m)·∑m
i=1 x

k
i . Note thatMF is a valid merit function,

since it is continuous and MF (x) = 0 if and only if all xi’s are consensual and optimal (resp.

stationary solutions).

Theorem 5.3.2 (Sublinear convergence). Consider (P) under Assumption 6.2.1 (thus pos-

sibly nonconvex). Let {(xki )mi=1}k∈N0 be the sequence generated by Algorithm 4 , in the same

setting of Theorem 6.4.1 . Given δ > 0, let Tδ be the first iteration k ∈ N0 such that

MF (xk) ≤ δ. Then, there exists a γ̄2 > 0 [cf. (5.35 )], such that if γk ≡ γ ≤ γ̄2, Tδ = O(1/δ).

The values of the above constants is given in the proof.

Proof. See Sec. 5.3.4 .

Theorem 6.4.1 states that consensus and optimization errors of the sequence generated

by ASY-SONATA vanish at a linear rate. We are not aware of any other scheme enjoying

such a property in such a distributed, asynchronous computing environment. For general,

possibly nonconvex instances of Problem (P), Theorem 6.4.2 shows that both consensus and

optimization errors of the sequence generated by ASY-SONATA vanish at O(1/δ) sublinear

rate.

The choice of a proper stepsize calls for the estimates of γ̄1 and γ̄2 in Theorems 6.4.1 and

6.4.2 , which depend on the following quantities: the optimization parameters Li (Lipschitz

constants of the gradients) and τ (strongly convexity constant), the network connectivity pa-

rameter ρ, and the constants D and T due to the asynchrony (cf. Assumption 4.3.2 ). Notice

that the dependence of the stepsize on Li, τ , and ρ is common to all the existing distributed

synchronous algorithms and so is that on T and D to (even centralized) asynchronous al-

gorithms [64 ]. While Li, τ , and ρ can be acquired following approaches discussed in the

literature (see, e.g., [100 , Remark 4]), it is less clear how to estimate D and T , as they are

related to the asynchronous model, generally not known to the agents. As an example, we

address this question considering the following fairly general model for the agents’ activations

and asynchronous communications. Suppose that the length of any time window between

consecutive “push” steps of any agent belongs to [pmin, pmax], for some pmax ≥ pmin > 0, and

one agent always sends out its updated information immediately after the completion of its

“push” step. The traveling time of each packet is at most Dtv. Also, at least one packet
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is successfully received every Dls successive one-hop communications. Note that there is a

vast literature on how to estimate Dtv and Dls, based upon the specific channel model under

consideration; see, e.g., [103 ], [104 ]. In this setting, it is not difficult to check that one can

set T = (m − 1) dpmax/pmine + 1 and D = m dDtv/pmineDls. To cope with the issue of esti-

mating γ̄1 and γ̄2, in the next section we show how to employ in ASY-SONATA diminishing,

uncoordinated stepsizes.

5.3.2 Uncoordinated diminishing step-sizes

The use of a diminishing stepsize shared across the agents is quite common in synchronous

distributed algorithms. However, it is not clear how to implement such option in an asyn-

chronous setting, without enforcing any coordination among the agents (they should know

the global iteration counter k). In this section, we provide for the first time a solution to

this issue. Inspired by [105 ], our model assumes that each agent, independently and with no

coordination with the others, draws the step-size from a local sequence {αt}t∈N0 , according

to its local clock. The sequence {γk}k∈N0 in (5.6 ) will be thus the result of the “uncoordi-

nated samplings” of the local out-of-sync sequences {αt}t∈N0 . The next theorem shows that

in this setting, ASY-SONATA converges at a sublinear rate for both convex and nonconvex

objectives.

Theorem 5.3.3. Consider Problem (P) under Assumption 6.2.1 (thus possibly nonconvex).

Let {(xki )mi=1}k∈N0 be the sequence generated by Algorithm 4 , in the same setting of Theo-

rem 6.4.1 , but with the agents using a local step-size sequence {αt}t∈N0 satisfying αt ↓ 0 and∑∞
t=0 α

t =∞. Given δ > 0, let Tδ be the first iteration k ∈ N0 such that MF (xk) ≤ δ. Then

Tδ ≤ inf
{
k ∈ N0

∣∣∣∣ k∑
t=0

γt ≥ c/δ
}
, (5.10)

where c is a positive constant.

Proof. See Sec. 5.3.4 .
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5.3.3 Proof of Theorem 6.4.1 

We organize the proof in the following steps: Step 1: We introduce and study conver-

gence of an auxiliary perturbed consensus scheme, which serves as a unified model for the

descent and consensus updates in ASY-SONATA–the main result is summarized in Propo-

sition 5.3.1 ; Step 2: We introduce the consensus and gradient tracking errors along with a

suitably defined optimization error; and we derive bounds connecting these quantities, build-

ing on results in Step 1 and convergence of P-ASY-SUM-PUSH–see Proposition 5.3.2 . The

goal is to prove that the aforementioned errors vanish at a linear rate. To do so, Step 3 in-

troduces a general form of the small gain theorem–Theorem 5.3.7 –along with some technical

results, which allows us to establish the desired linear convergence through the boundedness

of the solution of an associated linear system of inequalities. Step 4 builds such a linear

system for the error quantities introduced in Step 2 and proves the boundedness of its so-

lution, proving thus Theorem 6.4.1 . The rate expression (5.8 ) is derived in Appendix 5.6.3 .

Through the proof we assume d = 1 (scalar variables); and define CL , maxi=1,...,m Li and

L ,
∑m

i=1 Li.

Step 1: A perturbed asynchronous consensus scheme

We introduce a unified model to study the dynamics of the consensus and optimization

errors in ASY-SONATA, which consists in pulling out the tracking update (Step 5) and treat

the z-variables–the term −γkzkik in (5.6 )–as an exogenous perturbation δk. More specifically,

consider the following scheme (with a slight abuse of notation, we use the same symbols as

in ASY-SONATA):

vk+1
ik = xkik + δk, (5.11a)

xk+1
ik = wikikv

k+1
ik +

∑
j∈N in

ik

wikjv
k−dk

j
j , (5.11b)

vk+1
j = vkj , x

k+1
j = xkj , ∀j ∈ V \ {ik}, (5.11c)

with given x0
i ∈ R, vti = 0, t = −D,−D + 1, . . . , 0, for all i ∈ Ṽ . We make the blanket

assumption that agents’ activations and delays satisfy Assumption 4.3.2 .
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Let us rewrite (5.11 ) in a vector-matrix form. Define xk , [xk1, · · · , xkm]> and vk ,

[vk1 , · · · , vkm]>. Construct the (D + 2)m dimensional concatenated vectors

Hk , [xk>
, vk

>
, vk−1>

, · · · , vk−D>]>, δk , δk eik ; (5.12)

and the augmented matrix Ŵ k, defined as

Ŵ k
rh ,



wikik , if r = h = ik;

wikj, if r = ik, h = j + (dkj + 1)m;

1, if r = h ∈ {1, 2, . . . , 2m} \ {ik, ik +m};

1, if r ∈ {2m+ 1, 2m+ 2, . . . , (D + 2)m} ∪ {ik +m} and h = r −m;

0, otherwise.

System (5.11 ) can be rewritten in compact form as

Hk+1 = Ŵ k(Hk + δk), (5.13)

The following lemma captures the asymptotic behavior of Ŵ k.

Lemma 5.3.4. Let {Ŵ k}k∈N0 be the sequence of matrices in (6.18 ), generated by (5.11 ),

under Assumption 4.3.2 and with W satisfying Assumption ?? (i), (ii). The following hold:

for all k ∈ N0, a) Ŵ k is row stochastic; b) there exists a sequence of stochastic vectors

{ψk}k∈N0 such that

∥∥∥Ŵ k:t − 1ψt>
∥∥∥ ≤ C2ρ

k−t, C2 ,
2
√

(D + 2)m(1 + m̄−K1)
1− m̄−K1

(5.14)

Furthermore, ψki ≥ η = m̄K1, for all k ≥ 0 and i ∈ V.

Proof. The proof follows similar techniques as in [75 ], [76 ], and can be found in Appendix 5.6.5 .

We define now a proper consensus error for (6.18 ). Writing Hk in (6.18 ) recursively,

yields
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Hk+1 = Ŵ k:0H0 +
k∑
l=0

Ŵ k:lδl. (5.15)

Using Lemma 6.6.1 , for any fixed N ∈ N0, we have

lim
k→∞

(Ŵ k:0H0 +
N∑
l=0

Ŵ k:lδl) = 1ψ0>
H0 +

N∑
l=0

1ψl>δl.

Define
x0
ψ , ψ0>

H0, xk+1
ψ , ψ0>

H0 +
k∑
l=0

ψl
>
δl, k ∈ N0. (5.16)

Applying (5.16 ) inductively, it is easy to check that

xk+1
ψ = xkψ + ψk

>
δk = xkψ + ψkikδ

k. (5.17)

We are now ready to state the main result of this subsection, which is a bound of the

consensus disagreement ‖Hk+1 − 1xk+1
ψ ‖ in terms of the magnitude of the perturbation.

Proposition 5.3.1. In the above setting, the consensus error ‖Hk+1 − 1xk+1
ψ ‖ satisfies: for

all k ∈ N0, ∥∥∥Hk+1 − 1xk+1
ψ

∥∥∥ ≤ C2ρ
k
∥∥∥H0 − 1x0

ψ

∥∥∥+ C2

k∑
l=0

ρk−l
∣∣∣δl∣∣∣ .

Proof. The proof follows readily from (5.15 ), (5.16 ), and Lemma 6.6.1 ; we omit further

details.

Step 2: Consensus, tracking, and optimization errors

1) Consensus disagreement: As anticipated, the updates of ASY-SONATA are also

described by (5.11 ), if one sets therein δk = −γkzkik (with zkik satisfying Step 5 of ASY-

SONATA). Let hk and xkψ be defined as in (5.12 ) and (5.16 ), respectively, with δk = −γkzkik .

The consensus error at iteration k is defined as

Ek
c ,

∥∥∥Hk − 1xkψ
∥∥∥. (5.18)

2) Gradient tracking error: The gradient tracking step in ASY-SONATA is an instance

of P-ASY-SUM-PUSH, with εk = ∇fik(xk+1
ik )−∇fik(xkik). By Proposition 4.4.1 , P-ASY-

SUM-PUSH is equivalent to (4.25 ). In view of Lemma 4.4.4 and the following property
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1>ẑk = ∑m
i=1∇fi(x0

i )+∑k−1
t=0

(
∇fit(xt+1

it )−∇fit(xtit)
)

= ∑m
i=1∇fi(xki ) where the first equality

follows from (4.30 ) and εk = ∇fik(xk+1
ik ) − ∇fik(xkik) while in the second equality we used

xt+1
j = xtj, for j 6= it, the tracking error at iteration k along with the magnitude of the

tracking variables are defined as

Ek
t ,

∣∣∣zkik − ξk−1
ik ḡk

∣∣∣ , Ek
z ,

∣∣∣zkik ∣∣∣ , ḡk , m∑
i=1
∇fi(xki ), (5.19)

with ξ−1
i , η, i ∈ V . Let gk , [∇f1(xk1), . . . ,∇fI(xkI )]>.

3) Optimization error: Let x? be the unique minimizer of F . Given the definition of

consensus disagreement in (5.18 ), we define the optimization error at iteration k as

Ek
o ,

∣∣∣xkψ − x?∣∣∣ . (5.20)

Note that this is a natural choice as, if consensual, all agents’ local variables will converge

to a limit point of {xkψ}k∈N0 .

4) Connection among Ek
c , Ek

t , Ek
z , and Ek

o : The following proposition establishes bounds

on the above quantities.

Proposition 5.3.2. Let {xk, vk, zk}k∈N0 be the sequence generated by ASY-SONATA, in the

setting of Theorem 6.4.1 , but possibly with a time-varying step-size {γk}k∈N0. The error

quantities Ek
c , Ek

t , Ek
z , and Ek

o satisfy: for all k ∈ N0,

Ek+1
c ≤C2ρ

kE0
c + C2

k∑
l=0

ρk−lγlEl
z. (5.21a)

Ek+1
t ≤3C0CL

k∑
l=0

ρk−l
(
El
c + γlEl

z

)
+ C0ρ

k
∥∥∥g0

∥∥∥; (5.21b)

Ek
z ≤ Ek

t + CL
√
mEk

c + LEk
o (5.21c)

Further assume γk ≤ 1/L, k ∈ N0; then

Ek+1
o ≤

k∑
l=0

(
k∏

t=l+1

(
1− τη2γt

))(
CL
√
mEl

c + El
t

)
γl +

k∏
t=0

(
1− τη2γt

)
E0
o , (5.21d)

where η ∈ (0, 1) is defined in Lemma 4.4.3 and τ is the strongly convexity constant of F .
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Proof. Eq. (6.23 ) follows readily from Proposition 5.3.1 .

We prove now (6.24 ). Recall 1>ẑk = ḡk. Using Lemma 4.4.4 with εk = ∇fik(xk+1
ik ) −

∇fik(xkik), we obtain: for all i ∈ V ,

∣∣∣zk+1
i − ξki ḡk+1

∣∣∣
≤ C0

(
ρk
∥∥∥g0

∥∥∥+
k∑
l=0

ρk−l
∣∣∣∇f l+1

il −∇f lil
∣∣∣) ≤ C0 ρ

k
∥∥∥g0

∥∥∥+ C0CL
k∑
l=0

ρk−l
∣∣∣xl+1

il − x
l
il
∣∣∣

≤ C0 ρ
k
∥∥∥g0

∥∥∥+ C0CL
k∑
l=0

ρk−l
∥∥∥H l+1 −H l

∥∥∥ = C0ρ
k
∥∥∥g0

∥∥∥+ C0CL
k∑
l=0

ρk−l
∥∥∥Ŵ l

(
H l + δl

)
−H l

∥∥∥
(a)= C0 ρ

k
∥∥∥g0

∥∥∥+ C0CL
k∑
l=0

ρk−l
∥∥∥(Ŵ l −m

)(
H l − 1xlψ

)
− γlzlilŴ leil

∥∥∥
≤ C0ρ

k
∥∥∥g0

∥∥∥+ C0CL
k∑
l=0

ρk−l

‖Ŵ l‖γlEl
z +

(
‖Ŵ l‖+ ‖m‖

)
El
c


(b)
≤ C0ρ

k
∥∥∥g0

∥∥∥+ 3C0CL
k∑
l=0

ρk−l
(
El
c + γlEl

z

)
,

where in (a) we used (6.18 ) and the row stochasticity of Ŵ k [Lemma 6.6.1 (a)]; and (b)

follows from ‖Ŵ l‖ ≤
√
‖Ŵ l‖1‖Ŵ l‖∞ ≤

√
3. This proves (6.24 ).

Eq. (5.21c ) follows readily from

Ek
z =

∣∣∣zkik ∣∣∣ ≤ ∣∣∣zkik − ξk−1
ik ḡk

∣∣∣+ ξk−1
ik

∣∣∣ḡk −∇F (xkψ)
∣∣∣+ ξk−1

ik
∣∣∣∇F (xkψ)−∇F (x?)

∣∣∣ .
Finally, we prove (5.21d ). Using (5.21c ) and xk+1

ψ = xkψ − γψkikz
k
ik [cf. (5.17 ) and recall

δk = −γzkik ], we can write

Ek+1
o =

∣∣∣xkψ − γkψkikzkik − x?∣∣∣
≤ γkψkikξ

k−1
ik

∣∣∣∇F (xkψ)− ḡk
∣∣∣+ γkψkik

∣∣∣ξk−1
ik ḡk − zkik

∣∣∣+ ∣∣∣xkψ − γkψkikξk−1
ik ∇F (xkψ)− x?

∣∣∣
(a)
≤
(
1− τη2γk

)
Ek
o + CL

√
mγk

∥∥∥Hk − 1xkψ
∥∥∥+ γkEk

t

(b)
≤

k∑
l=0

(
k∏

t=l+1

(
1− τη2γt

))(
CL
√
mEl

c + El
t

)
γl +

k∏
t=0

(
1− τη2γt

)
E0
o
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where in (a) we used η2 ≤ ψkikξ
k−1
ik < 1 (cf. Lemma 4.4.3 ) and |x− γ∇F (x)− x?| ≤ (1 −

τγ) |x− x?| , which holds for γ ≤ 1/L; (b) follows readily by applying the above inequality

telescopically.

Step 3: The generalized small gain theorem

The last step of our proof is to show that the error quantities Ek
c , Ek

t , Ek
z , and Ek

o vanish

linearly. This is not a straightforward task, as these quantities are interconnected through

the inequalities (5.21 ). This subsection provides tools to address this issue. The key result

is a generalization of the small gain theorem (cf. Theorem 5.3.7 ), first used in [100 ].

Definition 5.3.1 ([100 ]). Given the sequence {uk}∞
k=0, a constant λ ∈ (0, 1), and N ∈ N, let

us define

|u|λ,N = max
k=0,...,N

∣∣∣uk∣∣∣
λk

, |u|λ = sup
k∈N0

∣∣∣uk∣∣∣
λk

.

If |u|λ is upper bounded, then uk = O(λk), for all k ∈ N0.

The following lemma shows how one can interpret the inequalities in (5.21 ) using the

notions introduced in Definition 6.6.1 .

Lemma 5.3.5. Let {uk}∞
k=0, {vki }∞

k=0, i = 1, . . . ,m, be nonnegative sequences; let λ0, λ1, . . . , λm ∈

(0, 1); and let R0, R1, . . . , Rm ∈ R+ such that

uk+1 ≤ R0(λ0)k +
m∑

i=1
Ri

k∑
l=0

(λi)k−lvli , ∀k ∈ N0.

Then, there holds
|u|λ,N ≤ u0 + R0

λ
+

m∑
i=1

Ri

λ− λi
|vi|λ,N ,

for any λ ∈ ( max
i=0,1,...,m

λi, 1) and N ∈ N.

Proof. See Appendix 5.6.1 .

Lemma 5.3.6. Let {uk}∞
k=0 and {vk}∞

k=0 be two nonnegative sequences. The following hold

a. uk ≤ vk, for all k ∈ N0 =⇒ |u|λ,N ≤ |v|λ,N , for any λ ∈ (0, 1) and N ∈ N;
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b.

|β1u+ β2v|λ,N ≤ |β1| |u|λ,N + |β2| |v|λ,N ,

for any β1, β2 ∈ R, λ ∈ (0, 1), and positive integer N .

The major result of this section is the generalized small gain theorem, as stated next.

Theorem 5.3.7. (Generalized Small Gain Theorem) Given nonnegative sequences {uki }∞
k=0, i =

1, . . . ,m, a non-negative matrix T ∈ Rm×m, β ∈ Rm, and λ ∈ (0, 1) such that

uλ,N 4 Tuλ,N + β, ∀N ∈ N, (5.22)

where uλ,N , [ |u1|λ,N , . . . , |um|λ,N ]>. If ρ(T ) < 1, then |ui|λ is bounded, for all i = 1, . . . ,m.

That is, each uki vanishes at a R-linear rate O(λk).

Proof. See Appendix 5.6.2 .

Then following results are instrumental to find a sufficient condition for ρ(T ) < 1.

Lemma 5.3.8. Consider a polynomial p(z) = zm−a1z
m−1−a2z

m−2− . . .−am−1z−am, with

z ∈ C and ai ∈ R+, i = 1, . . .m. Define zp , max
{
|zi|

∣∣∣ p(zi) = 0, i = 1, . . . ,m
}
. Then,

zp < 1 if and only if p(1) > 0.

Proof. See Appendix 5.6.4 .

Step 4: Linear convergence rate (proof of Theorem 6.4.1 )

Our path to prove linear convergence rate passes through Theorem 5.3.7 : we first cast

the set of inequalities (5.21 ) into a system in the form (5.22 ), and then study the spectral

properties of the resulting coefficient matrix.

Given γ < 1/L, define L(γ) , 1− τη2γ; and choose λ ∈ R such that

max (ρ,L(γ)) < λ < 1. (5.23)

Note that L(γ) < 1, as γ < 1/L; hence (5.23 ) is nonempty.
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Applying Lemma 5.3.5 and Lemma 5.3.6 to the set of inequalities (5.21 ) with γk ≡ γ, we

obtain the following with b1 , CL
√
m, b2 , 3C0CL:



|Ez|λ,N

|Ec|λ,N

|Et|λ,N

|Eo|λ,N


4



0 b1 1 L

C2γ
λ−ρ 0 0 0
b2γ
λ−ρ

b2
λ−ρ 0 0

0 b2γ
λ−L(γ)

γ
λ−L(γ) 0


︸ ︷︷ ︸

,K



|Ez|λ,N

|Ec|λ,N

|Et|λ,N

|Eo|λ,N


+



0(
1 + C2

λ

)
E0
c

C0‖g0‖
λ

+ E0
t

1+λ
λ
E0
o


. (5.24)

By Theorem 5.3.7 , to prove the desired linear convergence rate, it is sufficient to show that

ρ(K) < 1. The characteristic polynomial pK(t) of T satisfies the conditions of Lemma 5.3.8 ;

hence ρ(K) < 1 if and only if pK(1) > 0, that is,

((
1 + Lγ

λ− L(γ)

)
b2

λ− ρ
+ b1 + Lb2γ

λ− L(γ)

)
C2γ

λ− ρ
+
(

1 + Lγ

λ− L(γ)

)
b2γ

λ− ρ
, B(λ; γ) < 1.

(5.25)

By the continuity of B(λ; γ) and (5.23 ), B(1; γ) < 1 is sufficient to claim the existence

of some λ ∈ (max (ρ,L(γ)) , 1) such that B(λ; γ) < 1. Hence, setting B(1; γ) < 1, yields

0 < γ < γ̄1, with

γ̄1 ,
τη2(1− ρ)2

(τη2 + L)b2(C2 + 1− ρ) + (b1τη2 + Lb2)C2(1− ρ)
. (5.26)

It is easy to check that γ̄1 < 1/L. Therefore, 0 < γ < γ̄1 is sufficient for Ek
c , E

k
t , E

k
z , E

k
o to

vanish with an R-Linear rate. The desired result,
∣∣∣xki − x?∣∣∣ = O(λk), i ∈ V , follows readily

from Ek
c = O(λk) and Ek

o = O(λk). The explicit expression of the rate λ, as in (5.8 ), is

derived in Appendix 5.6.3 .

5.3.4 Proof of Theorems 6.4.2 and 5.3.3 

Through the subsection, we use the same notation as in Sec.5.3.3 . - Preliminaries We

begin establishing a connection between the merit functionMF defined in (5.9 ) and the error

quantities Ek
c , Ek

t , and Ek
z , defined in (5.18 ), (5.19 ), and (5.20 ) respectively.
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Lemma 5.3.9. The merit function MF satisfies

MF (xk) ≤ C3 (Ek
c )2 + 3 η−2

(
(Ek

t )2 + (Ek
z )2
)
, (5.27)

with C3 , 3C2
Lm+ 3L2

m
+ 6CLL+ 4.

Proof. Define J , (1/m) · 11> and x̄k , (1/m) · 1>xk; and recall the definition of ξki (cf.

Lemma 4.4.3 ) and that xk+1
ψ = xkψ − γkψkikzkik . [cf. (5.17 )]. We have

MF (xk) ≤
∣∣∣∇F (x̄k)

∣∣∣2 +
∥∥∥xk − 1x̄k

∥∥∥2 (5.28)

≤
∣∣∣∇F (x̄k)

∣∣∣2 + 2
∥∥∥xk − 1xkψ

∥∥∥2 + 2
∥∥∥1xkψ − 1x̄k

∥∥∥2 (5.29)

≤
∣∣∣∇F (x̄k)

∣∣∣2 + 2
∥∥∥xk − 1xkψ

∥∥∥2 + 2
∥∥∥J (1xkψ − xk) ∥∥∥2

≤
∣∣∣∇F (x̄k)

∣∣∣2 + 4
∥∥∥xk − 1xkψ

∥∥∥2. (5.30)

We bound now
∣∣∣∇F (x̄k)

∣∣∣; we have

∣∣∣∇F (x̄k)
∣∣∣ ≤ ∣∣∣∇F (xkψ)

∣∣∣+ L
∣∣∣x̄k − xkψ∣∣∣

≤
∣∣∣∇F (xkψ)− ḡk

∣∣∣+ ∣∣∣ḡk − (ξk−1
ik )−1zkik

∣∣∣+ (ξk−1
ik )−1

∣∣∣zkik ∣∣∣+ L√
m

∥∥∥J (xk − 1xkψ
) ∥∥∥

≤
(
CL
√
m+ L√

m

)
Ek
c + η−1 Ek

t + η−1 Ek
z ,

(5.31)

where in the last inequality we used ξkik ≥ η for all k (cf. Lemma 4.4.3 ) and ‖J(xk−1xkψ)‖ ≤

Ek
c .

Eq. (5.27 ) follows readily from (5.30 ) and (5.31 ).

Our ultimate goal is to show that the RHS of (5.27 ) is summable. To do so, we need two

further results, Proposition 5.3.3 and Lemma 5.3.10 below. Proposition 5.3.3 establishes a

connection between F (xk+1
ψ ) and Ek

c , Ek
t , and Ek

z .

Proposition 5.3.3. In the above setting, there holds: k ∈ N0,

155



F (xk+1
ψ ) ≤ F (x0

ψ) + 1
2
(
L+ α−1 + β−1

) k∑
t=0

(Et
z)2(γt)2

− η
k∑
t=0

(Et
z)2γt + α

2C
2
Lm

k∑
t=0

(Et
c)2 + β

2 η
−2

k∑
t=0

(Et
t)2,

(5.32)

where α and β are two arbitrary positive constants.

Proof. By descent lemma, we get

F (xk+1
ψ ) ≤ F (xkψ) + γkψkik

〈
∇F (xkψ),−zkik

〉
+ L(γkψkik)2

2
∣∣∣zkik ∣∣∣2

≤ F (xkψ) + Lγk
2

2
∣∣∣zkik ∣∣∣2 + γkψkik

〈
(ξk−1

ik )−1zkik ,−zkik
〉

+ γkψkik
〈
∇F (xkψ)− ḡk,−zkik

〉
+ γkψkik

〈
ḡk − (ξk−1

ik )−1zkik ,−zkik
〉

≤ F (xkψ) + Lγk
2

2
∣∣∣zkik ∣∣∣2 − γkη ∣∣∣zkik ∣∣∣2 + γkCL

m∑
j=1

∣∣∣xkψ − xkj ∣∣∣ ∣∣∣zkik ∣∣∣+ γkη−1Ek
t

∣∣∣zkik ∣∣∣
≤ F (xkψ) + Lγk

2

2
∣∣∣zkik ∣∣∣2 − γkη ∣∣∣zkik ∣∣∣2 + γkCL

√
mEk

c

∣∣∣zkik ∣∣∣+ γkη−1Ek
t

∣∣∣zkik ∣∣∣
≤ F (xkψ) + Lγk

2

2
∣∣∣zkik ∣∣∣2 − γkη ∣∣∣zkik ∣∣∣2 + α

2C
2
Lm(Ek

c )2 + α−1

2
∣∣∣zkik ∣∣∣2 γk2 + β

2 η
−2(Ek

t )2 + β−1

2
∣∣∣zkik ∣∣∣2 (γk)2

≤ F (xkψ) + 1
2
(
L+ α−1 + β−1

)
(Ek

z )2(γk)2 − η(Ek
z )2γk + α

2C
2
Lm(Ek

c )2 + β

2 η
−2(Ek

t )2.

Applying the above inequality inductively one gets (5.32 ).

The last result we need is a bound of ∑k
t=0(Et

c)2 and ∑k
t=0(Et

t)2 in (5.32 ) in terms of∑k
t=0(Et

z)2(γt)2.

Lemma 5.3.10. Define

%c ,
2C2

2
(1− ρ)2 and %t ,

36 (C0CL)2 (2C2
2 + (1− ρ)2)

(1− ρ)4 .

The following holds: k ∈ N,

k∑
t=0

(Et
c)2 ≤ cc + %c

k∑
t=0

(Et
z)2(γt)2,

k∑
t=0

(Et
t)2 ≤ ct + %t

k∑
t=0

(Et
z)2(γt)2,

(5.33)
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where cc and ct are some positive constants.

Proof. The proof follows from Proposition 5.3.2 and Lemma 5.3.11 below, which is a variant

of [106 ] (its proof is thus omitted).

Lemma 5.3.11. Let {uk}∞
k=0, {vki }∞

k=0, i = 1, . . . ,m, be nonnegative sequences; λ ∈ (0, 1);

and R0 ∈ R+ such that
uk+1 ≤ Rλk +

k∑
l=0

λk−lvl.

Then, there holds: k ∈ N,

k∑
l=0

(ul)2 ≤ (u0)2 + 2R2

1− λ2 + 2
(1− λ)2

k∑
l=0

(vl)2.

Using (5.33 ) in (5.32 ), we finally obtain

k∑
t=0

(Et
z)2γt(η − γtC4(α, β)) ≤ F (x0

ψ)− F inf + C5(α, β) (5.34)

with C4(α, β) , (1/2) (L+α−1+β−1+C2
Lmα%c+η−2β%t) and C5(α, β) = (1/2) (C2

Lmαcc + η−2βct);

and F inf > −∞ is the lower bound of F .

We are now ready to prove Theorems 6.4.2 and 5.3.3 .

- Proof of Theorem 6.4.2 Set γk ≡ γ, for all k ∈ N0. By (5.34 ), one infers that ∑∞
t=0 E

t
z

2
<

∞ if γ satisfies 0 < γ < γ̄2(α, β), with γ̄2(α, β) , η/C4(α, β).Note that γ̄2(α, β) is maximized

setting α = α? =
(
CL
√
m%c

)−1
and β = β? = η%

−1/2
t , resulting in

γ̄2(α?, β?) = (2η)/(L+ 2CL
√
m%c + 2η−1√%t). (5.35)

Let 0 < γ < γ̄2(α?, β?). Given δ > 0, let Tδ be the first iteration k ∈ N0 such that

MF (xk) ≤ δ. Then we have

Tδ · δ <
Tδ−1∑
k=0

MF (xk) ≤
∞∑
k=0

MF (xk)
(5.27 )
≤ C3

∞∑
k=0

(Ek
c )2 + 3η−2

∞∑
k=0

(
(Ek

t )2 + (Ek
z )2
)

(5.33 ),(5.34 )
≤

F (x0
ψ)− F inf + C5(α?, β?)
γ(η − γC4(α?, β?))

· C6 + C7 <∞
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where C6 , C3%c(γ)2 + 3η−2 (%t(γ)2 + 1) and C7 is some constant. Therefore, Tδ = O(1/δ).

- Proof of Theorem 5.3.3 .

We begin showing that the step-size sequence {γt}t∈N0 induced by the local step-size se-

quence {αt}t∈N0 and the asynchrony mechanism satisfying Assumption 4.3.2 is nonsummable.

The proof is straightforward and is thus omitted.

Lemma 5.3.12. Let {γt}t∈N0 be the global step-size sequence resulted from Algorithm 4 ,

under Assumption 4.3.2 . Then, there hold: limt→∞ γt = 0 and ∑∞
t=0 γ

t =∞.

Since limt→∞ γt = 0, there exists a sufficiently large k ∈ N, say k̄, such that η −

γkC4(α?, β?) ≥ η/2 for all k > k̄. It is not difficult to check that this, together with

(5.34 ), yields ∑∞
k=0(Ek

z )2γk <∞. We can then write

∞∑
k=0

MF (xk)γk
(5.27 )
≤ C3

∞∑
k=0

(Ek
c )2γk + 3η−2

∞∑
k=0

(
(Ek

t )2 + (Ek
z )2
)
γk < C8, (5.36)

for some finite constant C8, where in the last inequality we used (5.33 ), ∑∞
k=0(Ek

z )2γk < ∞

and limt→∞ γt = 0.

Let Nδ , inf
{
k ∈ N0 : ∑k

t=0 γ
t ≥ C8/δ

}
. Note that Nδ exists, as ∑∞

k=0 γ
k = ∞ (cf.

Lemma 5.3.12 ). Let Tδ , inf
{
k ∈ N0 : MF (xk) ≤ δ

}
. It must be Tδ ≤ Nδ. In fact, suppose

by contradiction that Tδ > Nδ; and thus MF (xk) > δ, for 0 ≤ k ≤ Nδ. It would imply∑Nδ
k=0 MF (xk)γk > δ

∑Nδ
k=0 γ

k ≥ δ · (C8/δ) = C8, which contradicts (5.36 ). This proves (5.10 ).

5.4 Numerical Results

We test ASY-SONATA on the least square regression and the binary classification prob-

lems. The MATLAB code can be found at https://github.com/YeTian-93/ASY-SONATA  .

5.4.1 Least square regression

In the LS problem, each agent i aims to estimate an unknown signal x0 ∈ Rd through

linear measurements bi = Mix0 + di, where Mi ∈ Rdi×d is the sensing matrix, and di ∈ Rdi
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Figure 5.1. Directed graphs: optimality gap Jk versus number of rounds.

is the additive noise. The LS problem can be written in the form of (P), with each fi(x) =

‖Mix− bi‖2.

Data: We fix x0 with its elements being i.i.d. random variables drawn from the standard

normal distribution. For each Mi, we firstly generate all its elements as i.i.d. random

variables drawn from the standard normal distribution, and then normalize the matrix by

multiplying it with the reciprocal of its spectral norm. The elements of the additive noise di

are i.i.d. Gaussian distributed, with zero mean and variance equal to 0.04. We set d = 200

and di = 30 for each agent. Network model: We simulate a network of m = 30 agents.

Each agent i has 3 out-neighbors; one of them belongs to a directed cycle graph connecting

all the agents while the other two are picked uniformly at random. Asynchronous model:

Agents are activated according to a cyclic rule where the order is randomly permuted at the

beginning of each round. Once activated, every agent performs all the steps as in Algorithm 4 

and then sends its updates to all its out-neighbors. Each transmitted message has (integer)

traveling time which is drawn uniformly at random within the interval [0, Dtv]. We set

Dtv = 40.

We test ASY-SONATA with a constant step size γ = 3.5, and also a diminishing step-

size rule with each agent updating its local step size according to αt+1 = αt (1− 0.001 · αt)

and α0 = 3.5; as benchmark, we also simulate its synchronous instance, with step size
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γ = 0.8. In Fig. 5.1 , we plot Jk , (1/m)
√∑m

i=1 ‖xki − x?‖2
2 versus the number of rounds

(one round corresponds to one update of all the agents). The curves are averaged over

100 Monte-Carlo simulations, with different graph and data instantiations. The plot clearly

shows linear convergence of ASY-SONATAwith a constant step-size.

5.4.2 Binary classification

In this subsection, we consider a strongly convex and nonconvex instance of Problem (P)

over digraphs, namely: the regularized logistic regression (RLR) and the robust classification

(RC) problems. Both formulations can be abstracted as:

min
x

1
|D|

m∑
i=1

∑
j∈Di

V (yj · `x(uj)) + λ
∥∥∥∇`x(·)∥∥∥2

2, (5.37)

where D = ∪mi=1Di is the set of indices of the data distributed across the agents, with agent

i owning Di, and Di ∩ Dl = ∅, for all i 6= l; uj and yj ∈ {−1, 1} are the feature vector

and associated label of the j-th sample in D; `x(·) is a linear function, parameterized by x;

and V is the loss function. More specifically, if the RLR problem is considered, V reads

V (r) = 1
1+e−r while for the RC problem, we have [107 ]

V (r) =



0, if r > 1;

1
4r

3 − 3
4r + 1

2 , if − 1 ≤ r ≤ 1;

1, if r < −1.

Data: We use the following data sets for the RLR and RC problems. (RLR): We set

`x(u) = x>u, d = 100, each |Di| = 20, and λ = 0.01. The underlying statistical model is the

following: We generated the ground truth x̂ with i.i.d. N (0, 1) components; each training

pair (uj, yj) is generated independently, with each element of uj being i.i.d. N (0, 1) and yj

is set as 1 with probability V (`x̂(uj)), and −1 otherwise. (RC): We use the Cleveland Heart

Disease Data set with 14 features [37 ], preprocessing it by deleting observations with missing

entries, scaling features between 0-1, and distributing the data to agents evenly. We set

`x(u) = e>
15x+∑14

d=1 e>
d x e>

d u. Network model: We simulated a digraph of m = 30 agents.
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Each agent has 7 out-neighbors; one of them belongs to a directed cycle connecting all the

agents while the other 6 are picked uniformly at random. One row and one column stochastic

matrix with uniform weights are generated. Asynchronous model: a) Activation lists are

generated by concatenating random rounds. To generate one round, we first sample its length

uniformly from the interval [m,T ], with T = 90. Within a round, we first have each agent

appearing exactly once and then sample agents uniformly for the remaining spots. Finally

a random shuffle of the agents order is performed on each round; b) Each transmitted

message has (integer) traveling time which is sampled uniformly from the interval [0, Dtv],

with Dtv = 90.

We compare the performance of our algorithm with AsySubPush [108 ] and AsySPA [109 ].

AsySubPush and AsySPA differ from ASY-SONATA in the following aspects: i) they do

not employ any gradient tracking mechanism; ii) they cannot handle packet losses and purge

out old information from the system (information is used as it is received); iii) when F

is strongly convex, they provably converge at sublinear rate; and iv) they cannot handle

nonconvex F . The step sizes of all algorithms are manually tuned to obtain the best practical

performance. We run two instances of ASY-SONATA, one employing a constant step size

γ = 0.4 and the other one using the diminishing step size rule αt+1 = αt (1− 0.001 · αt),

where α0 = 0.5 and t is the local iteration counter. For AsySubPush (resp. AsySPA) we set,

for each agent i, αi = 0.0001 (resp. ρ(k) = c/
√
k with c = 0.01) in RLC and αi = 0.00001

(resp. ρ(k) = c/
√
k with c = 0.001) in RC. The result is averaged over 20 Monte Carlo

experiments with different digraph instances, and is presented in Fig. 5.2 ; for each algorithm,

we plot the merit functions Msc (left panel) and MF (right panel) evaluated in the generated

trajectory versus the global iteration counter k. Consistently with the convergence theory,

ASY-SONATA with a constant step size exhibits a linear convergence rate. Also, ASY-

SONATA outperforms the other two algorithms; this is mainly due to i) the presence in

ASY-SONATA of an asynchronous gradient tracking mechanism which provides, at each

iteration, a better estimate of ∇F ; and ii) the possibility in ASY-SONATA to discard old

information when received after a newer one [cf. (4.11 )].
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Figure 5.2. L: regularized logistic regression; R: robust classification.

5.5 Conclusions

We proposed ASY-SONATA, a distributed asynchronous algorithmic framework for con-

vex and nonconvex (unconstrained, smooth) multi-agent problems, over digraphs. The algo-

rithm is robust against uncoordinated agents’ activation and (communication/computation)

(time-varying) delays. When employing a constant step-size, ASY-SONATA achieves a linear

rate for strongly convex objectives–matching the rate of a centralized gradient algorithm–

and sublinear rate for (non)convex problems. Sublinear rate is also established when agents

employ uncoordinated diminishing step-sizes, which is more realistic in a distributed setting.

To the best of our knowledge, ASY-SONATA is the first distributed algorithm enjoying the

above properties, in the general asynchronous setting described in the chapter.
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5.6 Appendix: Proofs of Theorems

5.6.1 Proof of Lemma 5.3.5 

Fix N ∈ N, and let k such that 1 ≤ k + 1 ≤ N . We have:

uk+1

λk+1 ≤
R0

λ

(
λ0

λ

)k
+

m∑
i=1

Ri

λ

k∑
l=0

(
λi

λ

)k−l
vli
λl

≤ R0

λ
+

m∑
i=1

Ri

λ
|vi|λ,N

k∑
l=0

(
λi

λ

)k−l

≤ R0

λ
+

m∑
i=1

Ri

λ− λi
|vi|λ,N .

Hence,

|u|λ,N ≤ max
(
u0,

R0

λ
+

m∑
i=1

Ri

λ− λi
|vi|λ,N

)
≤ u0 + R0

λ
+

m∑
i=1

Ri

λ− λi
|vi|λ,N .

5.6.2 Proof of Theorem 5.3.7 

From [110 , Ch. 5.6], we know that if ρ(T ) < 1, then limk→∞ T k = 0, the series ∑∞
k=0 T

k

converges (wherein we define T 0 , m), m− T is invertible and ∑∞
k=0 T

k = (m− T )−1.

Given N ∈ N, using (5.22 ) recursively, yields: uλ,N ≤ Tuλ,N + β ≤ T
(
Tuλ,N + β

)
+ β =

T 2uλ,N + (T +m) β ≤ · · · ≤ T `uλ,N + ∑`−1
k=0 T

kβ, for any ` ∈ N. Let ` → ∞, we get

uλ,N ≤ (m−T )−1β. Since this holds for any given N ∈ N, we have uλ ≤ (m−T )−1β. Hence,

uλ is bounded, and thus each uki vanishes at an R-linear rate O(λk).

5.6.3 Proof of the rate decay (5.8 ) in Theorem 6.4.1 

Let λ ≥ L(γ) + εγ, with ε > 0 to be properly chosen. Then,

B(λ; γ) ≤
(

1 + L

ε

)
b2γ

λ− ρ
+
((

1 + L

ε

)
b2

λ− ρ
+ b1 + Lb2

ε

)
C2γ

λ− ρ
. (5.38)

Using λ− ρ < 1, a sufficient condition for Eq. (5.25 ) is [RHS less than one]

(
b1C2 + Lb2C2

ε
+
(

1 + L

ε

)
b2(1 + C2)

)
γ ≤ (λ− ρ)2 . (5.39)
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Now set ε = (τη2)/2. Since the RHS of the above inequality can be arbitrarily close to

(1− ρ)2, an upper bound of γ is

γ̂2 , (1− ρ)2
/(

b1C2 + 2Lb2C2

τη2 +
(

1 + 2L
τη2

)
b2(1 + C2)

)
︸ ︷︷ ︸

,J1

.

According to λ ≥ L(γ) + εγ and (5.39 ), we get

λ = max
(

1− τη2γ

2 , ρ+
√
J1γ

)
. (5.40)

Notice that when γ goes from 0 to γ̂2, the first argument inside the max operator decreases

from 1 to 1− (τη2γ̂2)/2, while the second argument increases from ρ to 1. Letting 1− τη2γ
2 =

ρ+
√
J1γ, we get the solution as γ̂1 =

(√
J1+2τη2(1−ρ)−

√
J1

τη2

)2
. The expression of λ as in (5.8 )

follows readily.

5.6.4 Proof of Lemma 5.3.8 

“⇐=:” From p(1) > 0, we know that ∑m
i=1 ai < 1. We prove by contradiction. Suppose

there is a root z∗ of p(z) satisfying |z∗| ≥ 1, then we have

zm∗ = a1z
m−1
∗ + a2z

m−2
∗ + . . .+ am−1z∗ + am.

Clearly z∗ 6= 0, so equivalently

1 = a1
1
z∗

+ a2
1
z2

∗
+ . . .+ am−1

1
zm−1

∗
+ am

1
zm∗
.

Further,

1 =
∣∣∣∣∣a1

1
z∗

+ a2
1
z2

∗
+ . . .+ am−1

1
zm−1

∗
+ am

1
zm∗

∣∣∣∣∣
≤ a1

1
|z∗|

+ a2
1
|z∗|2

+ . . .+ am−1
1

|z∗|m−1 + am
1
|z∗|m

≤ a1 + a2 + . . .+ am−1 + am < 1.
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This is a contradiction.

“=⇒:” If p(1) = 0, we clearly have that zp ≥ 1. Now suppose p(1) < 0. Because

limz∈R,z→+∞ p(z) = +∞ and p(z) is continuous on R, we know that p(z) has a zero in

(1,+∞) ⊂ R. Thus zp > 1.

5.6.5 Proof of Lemma 6.6.1 

We interpret the dynamical system (6.18 ) over an augmented graph. We begin construct-

ing the augmented graph obtained adding virtual nodes to the original graph G = (V , E). We

associate each node i ∈ V with an ordered set of virtual nodes i[0], i[1], . . . , i[D]; see Fig. 5.3 .

We still call the nodes in the original graph G as computing agents and the virtual nodes as

noncomputing agents. We now identify the neighbors of each agent in this augmented sys-

tem. Any noncomputing agent i[d], d = D,D − 1, · · · , 1, can only receive information from

the previous virtual node i[d − 1]; i[0] can only receive information from the real node i or

simply keep its value unchanged; computing agents cannot communicate among themselves.

ℓ i j

j[2]ℓ[0]ℓ[1]ℓ[2] i[2] i[1] i[0] j[0]j[1]

ℓ i j

(a) Snapshot of the original graph

(b) Augmented graph associated with (a)

Figure 5.3. Example of augmented graph, when the maximum delay isD = 2;
three noncomputing agents are added for each node i ∈ V .

At the beginning of each iteration k, every computing agent i ∈ V will store the informa-

tion xki ; whereas every noncomputing agent i[d], with d = 0, 1, · · · , D, will store the delayed

information vk−d
i . The dynamics over the augmented graph happening in iteration k is de-

scribed by (6.18 ). In words, any noncomputing agent i[d] with i ∈ V and d = D,D−1, · · · , 1

receives the information from i[d − 1]; the noncomputing agent ik[0] receives the perturbed
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information xkik + δk from node ik; the values of noncomputing agents j[0] for j ∈ V \ {ik}

remain the same; node ik sets its new value as a weighted average of the perturbed infor-

mation xkik + δk and v
k−dk

j
j ’s received from the virtual nodes j[dkj ]’s for j ∈ N in

ik ; and the

values of the other computing agents remain the same. The dynamics is further illustrated

in Fig. 5.4 . The following Lemma shows that the product of a sufficiently large number of

any instantiations of the matrix Ŵ k, under Assumption 4.3.2 , is a scrambling matrix.

ℓ i
k j

ℓ[0]ℓ[1]ℓ[2] i
k[2] i

k[1] i
k[0] j[0]j[1]

j[2]

1

wikik

wikj

1 1

1

1 1

1

1 1
1

1

Figure 5.4. The dynamics in iteration k. Agent ik uses the delayed informa-
tion vk−1

j from the virtual node j[1].

Lemma 5.6.1. Let {Ŵ k}k∈N0 be the sequence of augmented matrices generated according to

the dynamical system (5.11 ), under Assumption 4.3.2 , and with W satisfying Assumption ??

(i), (ii). Then, for any k ∈ N0, Ŵ k is row stochastic and Ŵ k+K1−1:k has the property that

all entries of its first m columns are uniformly lower bounded by η.

Proof. We study any entry Ŵ k+K1−1
hm with m ∈ V and h ∈ V̂ . We prove the result by

considering the following four cases.

(i) Assume h = m ∈ V . Since Ŵ k
hh ≥ m̄ for any k ∈ N0 and any h ∈ V , we have Ŵ k+s−1:k

hh ≥∏k+s−1
t=k Ŵ t

hh ≥ m̄s for ∀ k ∈ N0, ∀ s ∈ N and ∀h ∈ V .

(ii) Assume that (m,h) ∈ E . Suppose that the first time when agent h wakes up during the

time interval [k + T + D, k + 2T + D − 1] is s, and agent h uses the information vs−dm from

the noncomputing agent m[d]. Then we have

Ŵ s:s−d
h,m[0] ≥ Ŵ s

h,m[d] · · · Ŵ s−d
m[1],m[0] = whm ≥ m̄d+1.

Then suppose that the last time when agent m wakes up during the time interval [s − d −

T, s− d− 1] is s− d− t. The noncomputing agent m[0] receives some perturbed information
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from agentm at iteration s−d−t and then performs self-loop (i.e., keep its value unchanged)

during the time interval [s− d− t+ 1, s− d− 1]. Thus we have

Ŵ s−d−1:s−d−t
m[0],m = Ŵ s−d−1:s−d−t+1

m[0],m[0] Ŵ s−d−t
m[0],m = 1 · 1 ≥ m̄t−1.

Therefore we have

Ŵ k+2T+D−1:k
hm ≥ Ŵ k+2T+D−1:s+1

hh Ŵ s:s−d
h,m[0]Ŵ

s−d−1:s−d−t
m[0],m Ŵ s−d−t−1:k

mm

≥ m̄k+2T+D−s−1m̄d+1m̄t−1m̄s−d−t−k ≥ m̄2T+D.

Further we have

Ŵ k+K1−1
hm ≥ Ŵ k+K1−1:k+2T+D

hh Ŵ k+2T+D−1:k
hm ≥ m̄K1−2T−Dm̄2T+D = m̄K1 .

(iii) Assume that m 6= h and (m,h) ∈ V × V \ E . Because the graph (V , E) is connected,

there are mutually different agents i1, . . . , ir with r ≤ m− 2 such that

(m, i1), (i1, i2), . . . , (ir−1, ir), (ir, h) ⊂ E ,

which is actually a directed path from m to h. Then, by result proved in (ii), we have

Ŵ
k+(m−1)(2T+D)−1:k
hm

= Ŵ
k+(m−1)(2T+D)−1:k+(r+1)(2T+D)
hh Ŵ

k+(r+1)(2T+D)−1:k+r(2T+D)
hir · · · Ŵ k+2(2T+D)−1:k+2T+D

i2i1 Ŵ k+2T+D−1:k
i1m

≥ m̄(m−r−2)(2T+D)m̄(r+1)(2T+D) = m̄(m−1)(2T+D).

Then we can easily get

Ŵ k+K1−1:k
hm = Ŵ

k+K1−1:k+(m−1)(2T+D)
hh Ŵ

k+(m−1)(2T+D)−1:k
hm

≥ m̄K1−(m−1)(2T+D)m̄(m−1)(2T+D) = m̄K1 .
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(iv) If h is a noncomputing node, it must be affiliated with a computing agent j ∈ V , i.e.,

there exists 0 ≤ d ≤ D such that h = j[d]. Then we have

Ŵ k+K1−1:k+K1−d
h,j[0] = Ŵ k+K1−1

j[d],j[d−1] · · · Ŵ
k+K1−d
j[1],j[0] = 1.

Suppose that the last time when agent j wakes up during the time interval [k + K1 − d −

T, k +K1 − d− 1] is s. We have

Ŵ k+K1−d−1:s
j[0],j = Ŵ k+K1−d−1:s+1

j[0],j[0] Ŵ s
j[0],j = 1.

By results proved before, we have

Ŵ k+K1−1:k
hm ≥ Ŵ k+K1−1:k+K1−d

h,j[0] Ŵ k+K1−d−1:s
j[0],j Ŵ

s−1:k+(m−1)(2T+D)
jj Ŵ

k+(m−1)(2T+D)−1:k
jm

≥ 1 · 1 · m̄s−k−(m−1)(2T+D)m̄(m−1)(2T+D) ≥ m̄K1 .

Based on Lemma 5.6.1 , we get the following result according to the discussion in [75 ].

Lemma 5.6.2. In the setting above, there exists a sequence of stochastic vectors {ψk}k∈N0

such that for any k ≥ t ≥ 0,

∥∥∥Ŵ k:t − 1ψt>
∥∥∥∞ ≤

2(1 + m̄−K1)
1− m̄−K1

ρk−t.

Furthermore, ψki ≥ η = m̄K1 for all k ≥ 0 and i ∈ V.

The above result leads to Lemma 6.6.1 by noticing that

∥∥∥Ŵ k:t − 1ψt>
∥∥∥ ≤ √(D + 2)m

∥∥∥Ŵ k:t − 1ψt>
∥∥∥∞ ≤ C2ρ

k−t.
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6. ASYNCHRONOUS DECENTRALIZED ALGORITHM -

PART III: ASY-DSCA

In this chapter, we propose the asynchronous distributed algorithm ASY-DSCA for multi-

agent optimization over static digraphs. Compared to the algorithm ASY-SONATA proposed

in the previous chapter, ASY-DSCA is meant for general nonsmooth constrained problems.

When the objective function is nonconvex, ASY-DSCA provably converges to a stationary

solution at a sublinear rate. ASY-DSCA converges at an R-linear rate to the optimal solution

when the problem is convex and satisfies the Luo-Tseng error bound condition, which is

weaker than the strong convexity. This is another improvement on the result of the previous

chapter, as a strongly convex objective function is required for ASY-SONATA to converge

linearly. The Luo-Tseng error bound condition is satisfied by several non-strongly-convex

functions arising from machine learning applications; examples include LASSO and logistic

regression problems. ASY-DSCA is the first distributed algorithm provably achieving linear

rate for such a class of problems.

The novel results of this chapter are available online at

• Ye Tian, Ying Sun, and Gesualdo Scutari. ”Asynchronous decentralized successive

convex approximation.” arXiv preprint arXiv:1909.10144 (2019).
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6.1 Introduction

In this chapter, we introduce ASY-DSCA, the first distributed asynchronous algorithm

[in the sense (i) and (ii) discussed in Sec. 4.1 ] applicable to the composite, constrained op-

timization (P ). ASY-DSCA builds on successive convex approximation techniques (SCA)

[111 ]–[114 ]–agents solve strongly convex approximations of (P )–coupled with a suitably de-

fined perturbed push-sum mechanism that is robust against asynchrony, whose goal is to

track locally and asynchronously the average of agents’ gradients. No specific activation

mechanism for the agents’ updates, coordination, or communication protocol is assumed,

but only some mild conditions ensuring that information used in the updates does not be-

come infinitely old. We remark that SCA offers a unified umbrella to deal efficiently with

convex and nonconvex problems [111 ]–[114 ]: for several problems (P) of practical interest

(cf. Sec. 6.2.1 ), a proper choice of the agents’ surrogate functions to minimize leads to

subproblems that admit a closed form solution (e.g., soft-thresholding and/or projection to

the Euclidean ball). ASY-DSCA generalizes ASY-SONATA, by i) enabling SCA models in

the agents’ local updates; and ii) enlarging the class of optimization problems to include

constraints and nonsmooth (convex) objectives.

We are not aware of any provably convergence scheme applicable to the envisioned de-

centralized asynchronous setting and Problem (P )–specifically in the presence of constraints

or the nonsmooth term G–see Sec. 6.1.1 for a discussion of related works. This chapter fills

exactly this gap.

6.1.1 Literature Review

On the asynchronous model: The literature on asynchronous methods is vast; based

upon agents’ activation rules and assumptions on delays, existing algorithms can be roughly

grouped in three categories. 1) Algorithms in [87 ]–[92 ] tolerate delayed information but

require synchronization among agents, thus fail to meet the asynchronous requirement (i)

above. 2) On the other hand, schemes in [33 ], [83 ]–[86 ], [115 ], [116 ] accounts for agents’

random (thus uncoordinated) activation; however, upon activation, they must use the most

updated information from their neighbors, i.e., no delays are allowed; hence, they fail to
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meet requirement (ii). 3) Asynchronous activations and delays are considered in [93 ]–

[95 ], [97 ], [98 ] and [77 ], [96 ], [108 ], [117 ], [118 ], with the former (resp. latter) schemes

employing random (resp. deterministic) activations. Some restrictions on the form of delays

are imposed. Specifically, [77 ], [93 ]–[95 ] can only tolerate packet losses (either the information

gets lost or is received with no delay); [108 ] handles only communication delays (eventually

all the transmitted information is received by the intended agent); and [97 ], [98 ] assume that

the agents’ activation and delay as independent random variables, which is not realistic and

hard to enforce in practice [80 ].

The only schemes we are aware of that are compliant with the asynchronous model (i)

and (ii) are those in [117 ], [118 ]; however, they are applicable only to smooth unconstrained

problems. Furthermore, all the aforementioned algorithms but [95 ], [117 ] are designed only

for convex objectives U .

On the convergence rate: Referring to convergence rate guarantees, none of the aforemen-

tioned methods is proved to converge linearly in the asynchronous setting and when applied

to nonsmooth constrained problems in the form (P ). Furthermore, even restricting the focus

to synchronous distributed methods or smooth unconstrained instances of (P), we are not

aware of any distributed scheme that provably achieves linear rate without requiring U to

be strongly convex; we refer to [10 ] for a recent literature review of synchronous distributed

schemes belonging to this class. In the centralized setting, linear rate can be proved for first

order methods under the assumption that U satisfies some error bound conditions, which

are weaker than strongly convexity; see, e.g., [119 ]–[122 ]. A natural question is whether such

results can be extended to (asynchronous) decentralized methods. This chapter provides a

positive answer to this open question.

6.1.2 Summary of Contributions

• Convergence rate: Our convergence results are the following: i) For general nonconvex

F in (P ), a sublinear rate is established for a suitably defined merit function measuring both

distance of the (average) iterates from stationary solutions and consensus disagrement; ii)

When (P ) satisfies the Luo-Tseng (LT) error bound condition [121 ], we establish R-linear
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convergence of the sequence generated by ASY-DSCA to an optimal solution. Notice that

the LT condition is weaker than strong convexity, which is the common assumption used in

the literature to establish linear convergence of distributed (even synchronous) algorithms.

Our interest in the LT condition is motivated by the fact that several popular objective

functions arising from machine learning applications are nonstrongly convex but satisfy the

LT error bound; examples include popular empirical losses in high-dimensional statistics

such as quadratic and logistic losses–see Sec.6.2.2 for more details. ASY-DSCA is the first

asynchronous distributed algorithm with provably linear rate for such a class of problems

over networks; this result is new even in the synchronous distributed setting.

• New line of analysis: We put forth novel convergence proofs, whose main novelties are

highlighted next.

- New Lyapunov function for descent Our convergence analysis consists in carefully

analyzing the interaction among the consensus, the gradient tracking and the nonconvex-

nonsmooth-constrained optimization processes in the asynchronous environment. This in-

teraction can be seen as a perturbation that each of these processes induces on the dynamics

of the others. The challenge is proving that the perturbation generated by one system

on the others is of a sufficiently small order (with respect to suitably defined metrics), so

that convergence can be established and a convergence rate of suitably defined quantities

be derived. Current techniques from centralized (nonsmooth) SCA optimization methods

[111 ]–[114 ], error-bound analysis [121 ], and (asynchronous) consensus algorithms, alone or

brute-forcely put together, do not provide a satisfactory answer: they would generate “too

large” perturbation errors and do not exploit the interactions among different processes. On

the other hand, existing approaches proposed for distributed algorithms are not applicable

too (see Sec. 6.1.1 for a detailed review of the state of the art): they can neither deal with

asynchrony (e.g., [10 ]) or be applicable to optimization problems with a nonsmooth function

in the objective and/or constraints.

To cope with the above challenges our analysis builds on two new Lyapunov functions, one

for nonconvex instances of (P ) and one for convex ones. These functions are carefully crafted

to combine objective value dynamics with consensus and gradient errors while accounting

for asynchrony and outdated information in the agents’ updates. Apart from the specific
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expression of these functions, a major novelty here is the use in the Lyapunov functions

of weighting vectors that endogenously vary based upon the asynchrony trajectory of the

algorithm–see Sec.6.6 (Step 2) and Sec.6.7 (Remark 6.7.1 ) for technical details. The descent

property of the Lyapunov functions is the key step to prove that consensus and tracking

errors vanish and further establish the desired converge rate of valid optimality/stationarity

measures.

- Linear rate under the LT condition The proof of linear convergence of ASY-DSCA

under the LT condition is a new contribution of this work. Existing proofs establishing

linear rate of distributed synchronous and asynchronous algorithms [4 ], [8 ], [10 ], [30 ], [100 ]

(including the previous convergence proof for ASY-SONATA) are not applicable here, as

they all leverage strong convexity of F , a property that we do not assume. On the other

hand, existing techniques showing linear rate of centralized first-order methods under the LT

condition [121 ], [123 ] do not customize to our distributed, asynchronous setting. Roughly

speaking, this is mainly due to the fact that use of the LT condition in [121 ], [123 ] is subject to

proving descent on the objective function along the algorithm iterates, a property that can no

longer be guaranteed in the distributed setting, due to the perturbations generated by the

consensus and the gradient tracking errors. Asynchrony complicates further the analysis,

as it induces unbalanced updating frequency of agents and the presence of the outdated

information in agents’ local computation. Our proof of linear convergence leverages the

descent property of the proposed Lyapunov function to be able to invoke the LT condition

in our distributed, asynchronous setting (see Sec.6.6 for a technical discussion on this matter).

6.2 Problem setup

We study Problem (P ) under the following assumptions.

Assumption 6.2.1 (On Problem (P )). The following hold:

(i) The set K ⊂ Rd is nonempty, closed, and convex;

(ii) Each fi : O → R is proper, closed and l-smooth, where O ⊃ K is open; F is L-smooth

with L , m · l;

(iii) G : K → R is convex but possibly nonsmooth;
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(iv) U is lower bounded on K.

Note that each fi need not be convex, and each agent i knows only its own fi but not∑
j6=i fj. The regularizer G and the constraint set K are common knowledge to all agents.

6.2.1 Case study: Collaborative supervised learning

A timely application of the described decentralized setting and optimization Problem (P )

is collaborative supervised learning. Consider a training data set {(us, ys)}s∈D, where us is

the input feature vector and ys is the outcome associated to item s. In the envisioned decen-

tralized setting, data D are partitioned into m subsets {Di}i∈[m], each of which belongs to

an agent i ∈ [m]. The goal is to learn a mapping p(· ;x) parameterized by x ∈ Rd using all

samples in D by solving minx∈K 1/|D|∑s∈D ` (p(us;x), ys)+G(x), wherein ` is a loss function

that measures the mismatch between p(us;x) and ys; and G and K play the role of regulariz-

ing the solution. This problem is an instance of (P ) with fi(x) , 1/|D|∑s∈Di ` (p(us;x), ys).

Specific examples of loss functions and regularizers are give next.

1) Elastic net regularization for log linear models: ` (p(us;x), ys) , Φ(u>
s x)− ys ·

(u>
s x) with Φ convex, us ∈ Rd and ys ∈ R; G(x) , λ1

∥∥∥x∥∥∥1 + λ2

∥∥∥x∥∥∥2
2 is the elastic net

regularizer, which reduces to the LASSO regularizer when (λ1, λ2) = (λ, 0) or the ridge

regression regularizer when (λ1, λ2) = (0, λ);

2) Sparse group LASSO friedman2010note: The loss function is the same as that in

example 1), with Φ(t) = t2/2; G(x) = ∑
S∈J wS

∥∥∥xS∥∥∥2 + λ
∥∥∥x∥∥∥1, where J is a partition

of [d];

3) Logistic regression: ` (p(us;x), ys) , ln(1 + e−ys·u>
s x); popular choices of G(x) are

G(x) , λ
∥∥∥x∥∥∥1 or G(x) , λ

∥∥∥x∥∥∥2
2. The constraint set K is generally assumed to be

bounded.

For large scale data sets, solving such learning problems is computationally challenging

even if F is convex. When the problem dimension d is larger than the sample size |D|, the

Hessian of the empirical risk loss F is typically rank deficient and hence F is not strongly
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convex. Since linear convergence rate for decentralized methods is established in the lit-

erature only under strong convexity, it is unclear whether such a fast rate can be achieved

under less restrictive conditions, e.g., embracing popular high-dimensional learning problems

as those mentioned above. We show next that a positive answer to this question can be ob-

tained leveraging the renowned LT error bound, a condition that has been wide explored in

the literature of centralized optimization methods.

6.2.2 The Luo-Tseng error bound

Assumption 6.2.2. (Error-bound conditions [121 ], [124 ], [125 ]):

(i) F is convex;

(ii) For any η> infx∈KU(x), there exists ε, κ > 0 such that:

U(x) ≤ η and
∥∥∥x− proxG(x−∇F (x))

∥∥∥ ≤ ε (6.1)

⇓

dist(x,K∗) ≤ κ
∥∥∥x− proxG(x−∇F (x))

∥∥∥. (6.2)

Assumption 6.2.2 (ii) is a local growth condition on U around K∗, crucial to prove linear

rate. Note that for convex F , condition 6.2.2 (ii) is equivalent to other renowned error bound

conditions, such as the Polyak-Łojasiewicz [126 ], [127 ], the quadratic growth [128 ], and the

Kurdyka-Łojasiewicz [120 ] conditions. A broad class of functions satisfying Assumption 6.2.2 

is in the form U(x) = F (x) + G(x), with F and G such that (cf. [129 , Theorem 4], [119 ,

Theorem 1]):

(i) F (x) = h(Ax) is L-smooth, where h is strongly convex and A is any linear operator;

(ii) G is either a polyhedral convex function (i.e., its epigraph is a polyhedral set) or has

a specific separable form as G(x) = ∑
S∈J wS

∥∥∥xS∥∥∥2 + λ
∥∥∥x∥∥∥1, where J is a partition of

the set [d], and λ and wS’s are nonnegative weights (we used xS to denote the vector

whose component i is xi if i ∈ S, and 0 otherwise);
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(iii) U(x) is coercive.

It follows that all examples listed in Section 6.2.1 satisfy Assumption 6.2.2 . Hence,

the proposed decentralized asynchronous algorithm, to be introduced, will provably achieve

linear rate for such a general classes of problems.

6.3 Algorithmic development

Solving Problem (P ) over G poses the following challenges: i) U is nonconvex/nonsmooth;

ii) each agent i only knows its local loss fi but not the global F ; and iii) agents perform

updates in an asynchronous fashion. Furthermore, it is well established that, when fi are

nonconvex (or convex only in some variable), using convex surrogates for fi in the agents’

subproblems rather than just linearization (as in gradient algorithms) provides more flex-

ibility in the algorithmic design and can enhance practical convergence [111 ]–[114 ]. This

motivated us to equip our distributed asynchronous design with SCA models.

To address these challenges, we develop our algorithm building on SONATA [9 ], [10 ],

as to our knowledge it is the only synchronous decentralized algorithm for (P ) capable to

handle challenges i) and ii) and incorporating SCA techniques. Moreover, when employing

a constant step size, it converges linearly to the optimal solution of (P) when F is strongly

convex; and sublinearly to the set of stationary points of (P ), when F is nonconvex. We

begin briefly reviewing SONATA.

6.3.1 Preliminaries: the SONATA algorithm for nonsmooth constrained opti-
mization [9 ], [10 ]

Each agent i maintains a local estimate xi of the common optimization vector x, to be

updated at each iteration; the k-th iterate is denoted by xki . The specific procedure put forth

by SONATA is given in Algorithm 5 and briefly described next.

(S.1): Local optimization. At each iteration k, every agent i locally solves a strongly

convex approximation of Problem (P ) at xki , as given in (6.3a ), where f̃i : K × K → R is

a so-called SCA surrogate of fi, that is, satisfies Assumption 6.3.1 below. The second term

in (6.3a ), (myki −∇fi(xki ))> (
x− xki

)
, serves as a first order approximation of ∑j6=i fj(x)
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Algorithm 5 The SONATA Algorithm
Data: For all agent i and ∀j ∈ N in

i , x0
i ∈ Rd, z0

i = y0
i = ∇fi(x0

i ), φ0
i = 1. Set k = 0.

While: a termination criterion is not met, each agent i ∈ [m] do
(S.1) Local optimization:

x̃ki = argmin
x∈K

{
Ûi
(
x;xki ,m yki −∇fi(xki )

)
,

f̃i(x;xki ) + (myki −∇fi(xki ))>
(
x− xki

)
+G(x)

}
,

(6.3a)

vk+1
i = xki + γ

(
x̃ki − xki

)
. (6.3b)

(S.2) Consensus step:

xk+1
i = wiiv

k+1
i +

∑
j∈N in

i

wijv
k+1
j . (6.4)

(S.3) Gradient tracking:

zk+1
i =

m∑
j=1

aij
(
zkj +∇fj(xk+1

j )−∇fj(xkj )
)
,

φk+1
i =

m∑
j=1

aijφ
k
j , yk+1

i = zk+1
i

φk+1
i

.

(6.5)

k ← k + 1

unknown to agent i, wherein myki tracks the sum gradient ∑m
j=1∇fj(xki ) (see step (S.3)). We

then employ a relaxation step (6.3b ) with step size γ.

Assumption 6.3.1. f̃i : K ×K → R satisfies:

(i) ∇f̃i(x;x) = ∇fi(x) for all x ∈ K;

(ii) f̃i(·; y) is uniformly strongly convex on K with constant µ̃ > 0;

(iii) ∇f̃i(x; ·) is uniformly Lipschitz continuous on K with constant l̃.

The choice of f̃i is quite flexible. For example, one can construct a proximal gradient

type update (6.3a ) by linearizing fi and adding a proximal term; if fi is a DC function, f̃i can

retain the convex part of fi while linearizing the nonconvex part. We refer to [111 ]–[114 ] for

more details on the choices of f̃i, and Sec. 6.5 for specific examples used in our experiments.
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(S.2): Consensus. This steps aims at enforcing consensus on the local variables xi via

gossiping. Specifically, after the local optimization step, each agent i performs a consensus

update (6.4 ) with mixing matrix W = (wij)mi,j=1 satisfying the Assumption 5.2.3 .

Note that SONATA uses a row-stochastic matrix W for the consensus update and a

column-stochastic matrix A for the gradient tracking. In fact, for general digraph, a doubly

stochastic matrix compliant with the graph might not exist while one can always build

compliant row or column stochastic matrices. These weights can be determined locally by

the agents, e.g., once its in- and out-degree can be estimated.

(S.3): Gradient tracking. This step updates yi by employing a perturbed push-sum

algorithm with weight matrix A satisfying Assumption 4.2.2 . This step aims to track the

average gradient (1/m)∑m
i=1∇fi(xi) via yi. In fact, using the column stochasticity of A and

applying the telescopic cancellation, one can check that the following holds:

m∑
i=1

φki =
m∑

i=1
φ0

i = m,
m∑

i=1
zki =

m∑
i=1
∇fi(xki ). (6.6)

It can be shown that for all i ∈ [m], zki and φki converges to ξki ·
∑m

i=1 z
k
i and ξki ·

∑m
i=1 φ

k
i ,

respectively, for some ξki > 0. Hence, yki = zki /φ
k
i converges to (1/m)∑m

i=1∇fi(xki ), employing

the desired gradient tracking.

Notice that the extension of the gradient tracking to the asynchronous setting is not

trivial, as the ratio consensus property discussed above no longer holds if agents naively

perform their updates using in (6.5 ) delayed information. In fact, packets sent by an agent,

corresponding to the summand in (6.5 ), may get lost. This breaks the equalities in (6.6 ).

Consequently, the ratio yki cannot correctly track the average gradient. To cope with this

issue, our approach is to replace step (S.3) by the asynchronous gradient tracking mechanism

developed in [117 ].

6.3.2 Asynchronous decentralized SCA (ASY-DSCA)

We now break the synchronism in SONATA and propose ASY-DSCA (cf. Algorithm 6 ).

All agents update asynchronously and continuously without coordination, possibly using

delayed information from their neighbors. More specifically, a global iteration counter k,
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Algorithm 6 The ASY-DSCA Algorithm
Data: For all agent i and ∀j ∈ N in

i , x0
i ∈ Rd, z0

i = y0
i = ∇fi(x0

i ), φ0
i = 1, ρ̃0

ij = 0, σ̃0
ij = 0,

τ−1
ij = −D. And for t = −D,−D + 1, . . . , 0, ρtij = 0, σtij = 0, vti = 0. Set k = 0.

While: a termination criterion is not met do
Pick: (ik, dk);
Set: τ kikj = max(τ k−1

ikj , k − dkj ), ∀j ∈ N in
ik ;

(S.1) Local optimization:

x̃kik = argmin
x∈K

Ûik
(
x; xkik , m ykik −∇fik(xkik)

)
,

vk+1
ik = xkik + γ

(
x̃kik − xkik

)
;

(6.7)

(S.2) Consensus step (using delayed information):

xk+1
ik = wikikv

k+1
ik +

∑
j∈N in

ik

wikjv
τk

ikj
j ; (6.8)

(S.3) Robust gradient tracking:

yk+1
ik = F

(
ik, k, (ρ

τk
ikj

ikj )j∈N in
ik
, (σ

τk
ikj

ikj )j∈N in
ik
, ∇fik(xk+1

ik )−∇fik(xkik)
)

(6.9)

Untouched state variables shift to state k+ 1 while keeping the same value; k ← k+ 1.

procedure F(i, k, (ρij)j∈N in
i
, (σij)j∈N in

i
, ε)

Sum step:
z
k+ 1

2
i = zki +

∑
j∈N in

i

(
ρij − ρ̃kij

)
+ ε,

φ
k+ 1

2
i = φki +

∑
j∈N in

i

(
σij − σ̃kij

)
;

(6.10)

Push step:
zk+1

i = aii z
k+ 1

2
i , φk+1

i = aii φ
k+ 1

2
i ; ∀j ∈ N out

i ,

ρk+1
ji = ρkji + aji z

k+ 1
2

i , σk+1
ji = σkji + aji φ

k+ 1
2

i ;
(6.11)

Mass-Buffer update:

ρ̃k+1
ij = ρij, σ̃k+1

ij = σij, ∀j ∈ N in
i ; (6.12)

return zk+1
i /φk+1

i .

unknown to the agents, is introduced, which increases by 1 whenever a variable of the
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multiagent system changes. Let ik be the agent triggering iteration k → k + 1; it executes

Steps (S1)-(S.3) (no necessarily withih the same activation), as described below.

(S.1): Local optimization. Agent ik solves the strongly convex optimization problem

(6.7 ) based on the local surrogate Ûik . It is tacitly assumed that Ûik is chosen so that (6.7 )

is simple to solve (i.e., the solution can be computed in closed form or efficiently). Given

the solution x̃kik , v
k+1
ik is generated.

(S.2): Consensus. Agent ik may receive delayed variables from its in-neighbors j ∈

N in
ik , whose iteration index is k − dkj . To perform its update, agent ik first sorts the “age”

of all the received variables from agent j since k = 0, and then picks the most recently

generated one. This is implemented maintaining a local counter τikj, updated recursively as

τ kikj = max(τ k−1
ikj , k−dkj ). Thus, the variable agent ik uses from j has iteration index τ kikj. Since

the consensus algorithm is robust against asynchrony [117 ], we simply adopt the update of

SONATA [cf. (6.4 )] and replace vkj by its delayed version v
τk

ikj
j .

(S.3): Robust gradient tracking. As anticipated in Sec. 6.3.1 , the packet loss caused

by asynchrony breaks the sum preservation property (6.6 ) in SONATA. If treated in the

same way as the x variable in (6.8 ), yi would fail to track (1/m)∑m
i=1∇fi(xi). To cope with

this issue, we leverage the asynchronous sum-push scheme P-ASY-SUM-PUSH introduced

in Chapter 4 .

6.4 Convergence of ASY-DSCA

We study ASY-DSCA under the asynchronous assumption – Assumption 4.3.2 . The

convergence of ASY-DSCA is established under two settings, namely: i) convex F and error

bound Assumption 6.2.2 (cf. Theorem 6.4.1 ); and ii) general nonconvex F (cf. Theorem

6.4.2 ).

Theorem 6.4.1 (Linear convergence). Consider (P) under Assumption 6.2.1 and 6.2.2 ,

and let U? denote the optimal function value. Let {(xki )mi=1}k∈N be the sequence generated by

Algorithm 6 , under Assumption 4.2.1 , 4.3.2 , and with weight matrices W and A satisfying
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Assumption 5.2.3 and 4.2.2 . Then, there exist a constant γ̄cvx > 0 and a solution x? of (P )

such that if γ ≤ γ̄cvx, it holds

‖U(xki )− U(x?)‖ = O(λk), ‖xki − x?‖ = O
(
(
√
λ)k

)
,

for all i ∈ V and some λ ∈ (0, 1).

Theorem 6.4.1 establishes the first linear convergence result of a distributed (synchronous

or asynchronous) algorithm over networks without requiring strong convexity but the weaker

LT condition. Linear convergence is achieve on both function values and sequence iterates.

We consider now the nonconvex setting. To measure the progress of ASY-DSCA towards

stationarity, we introduce the merit function

MF (xk) , max
{
‖x̄k − proxG(x̄k −∇F (x̄k))‖2,

m∑
i=1
‖xki − x̄k‖2

}
, (6.13)

where x̄k , (1/m) ·∑m
i=1 x

k
i , and proxG is the prox operator (cf. Sec. 6.2.2 ). MF is a valid

merit function since it is continuous and MF (xk) = 0 if and only if all the xi’s are consensual

and stationary. The following theorem shows that MF (xk) vanishes at sublinear rate.

Theorem 6.4.2 (Sublinear convergence). Consider (P) under Assumption 6.2.1 (thus pos-

sibly nonconvex). Let {(xki )mi=1}k∈N0 be the sequence generated by Algorithm 6 , in the same

setting of Theorem 6.4.1 . Given δ > 0, let Tδ be the first iteration k ∈ N such that

MF (xk) ≤ δ. Then, there exists a γ̄ncvx > 0, such that if γ ≤ γ̄ncvx, Tδ = O(1/δ).

The expression of the step-size can be found in (6.55 ).

6.5 Numerical Results

We test ASY-DSCA on a LASSO problem (a convex instance of (P )) and an M-estimation

problem (a constrained nonconvex formulation) over both directed and undirected graphs.

The experiments were performed using MATLAB R2018b on a cluster computer with two

22-cores Intel E5-2699Av4 processors (44 cores in total) and 512GB of RAM each. The

setting of our simulations is the following.
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(i) Network graph. We simulated both undirected and directed graph, generated ac-

cording to the following procedures. Undirected graph: An undirected graph is generated

according to the Erdos-Renyi model with parameter p = 0.3 (which represents the prob-

ability of having an edge between any two nodes). Doubly stochastic weight matrices are

used, with weights generated according to the Metropolis-Hasting rule. Directed graph:

We first generate a directed cycle graph to guarantee strong connectivity. Then we randomly

add a fixed number of out-neighbors for each node. The row-stochastic weight matrix W

and the column-stochastic weight matrix A are generated using uniform weights.

(ii) Surrogate functions of ASY-DSCA and SONATA. We consider two surrogate

functions: f̃ 1
i (x;xki ) = ∇fi(xki )>(x − xki ) + µ̃

2‖x − x
k
i ‖2 and f̃ 2

i (x;xki ) = ∇fi(xki )>(x − xki ) +
1
2(x− xki )>H(x− xki ) + µ̃

2‖x− x
k
i ‖2, where H is a diagonal matrix having the same diagonal

entries as ∇2fi(xki ). We suffix SONATA and ASY-DSCA with “-L” if the former surrogate

functions are employed and with “-DH” if the latter are adopted.

(iii) Asynchronous model. Each agent sends its updated information to its out-

neighbors and starts a new computation round, immediately after it finishes one. The length

of each computation time is sampled from a uniform distribution over the interval [pmin, pmax].

The communication time/traveling time of each packet follows an exponential distribution

exp( 1
Dtv

). Each agent uses the most recent information among the arrived packets from its

in-neighbors, which in general is subject to delays. In all our simulations, we set pmin = 5,

pmax = 15, and Dtv = 30 (ms is the default time unit).

(iv) Comparison with state of arts schemes. We compare the convergence rate of

ASY-DSCA, AsyPrimalDual [98 ] and synchronous SONATA in terms of time. The parame-

ters are manually tuned to yield the best empirical performance for each–the used setting is

reported in the caption of the associated figure. Note that AsyPrimalDual is the only asyn-

chronous decentralized algorithm able to handle constraints and nonsmoothness additive

functions in the objective and constraints, but only over undirected graphs and under re-

stricted assumptions of asynchrony; also AsyPrimalDual is provably convergence only when

applied to convex problems.
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6.5.1 LASSO
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Figure 6.1. LASSO. Left: undirected graph. We set µ̃ = 8 and γ = 0.008 in
ASY-DSCA-L; µ̃ = 1 and γ = 0.008 in ASY-DSCA-DH; α = 0.06 and η = 0.6 in
AsyPrimalDual; µ̃ = 1 and γ = 0.002 in SONATA-L; and µ̃ = 1 and γ = 0.005 in
SONATA-DH. right: directed graph (each agent is of 10 out-neighbors). We set
µ̃ = 10 and γ = 0.01 in ASY-DSCA-L; µ̃ = 10 and γ = 0.03 in ASY-DSCA-DH;
µ̃ = 10 and γ = 0.03 in SONATA-L; and µ̃ = 10 and γ = 0.05 in SONATA-DH.

The decentralized LASSO problem reads

min
x∈Rd

U(x) ,
∑

i∈[m]
‖Mix− bi‖2 + λ

∥∥∥x∥∥∥1. (6.14)

Data (Mi, bi)i∈[m] are generated as follows. We choose x0 ∈ Rd as a ground truth sparse

vector, with density ∗ d nonzero entries drawn i.i.d. from N (0, 1). Each row of Mi ∈ Rr×d

is drawn i.i.d. from N (0,Σ) with Σ as a diagonal matrix such that Σi,i = i−ω. We use ω

to control the conditional number of Σ. Then we generate bi = Mix0 + δi, with each entry

of δi drawn i.i.d. from N (0, 0.01). We set r = 10, d = 300, m = 20, λ = 2, ω = 1.1 and

density = 0.3. Since the problem satisfies the LT condition, we use 1
m

∑
i∈[m] U

(
xki
)
− U? as

the optimality measure. The result are reported in Fig. 6.1 .
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Figure 6.2. Logistic regression. Left: undirected graph. We set µ̃ = 10 and
γ = 0.06 in ASY-DSCA-L; α = 0.1 and η = 0.7 in AsyPrimalDual; and µ̃ = 10 and
γ = 0.08 in SONATA-L. right: directed graph (each agent is of 10 out-neighbors).
We set µ̃ = 10 and γ = 0.05 in ASY-DSCA-L; and µ̃ = 10 and γ = 0.1 in SONATA-
L.

6.5.2 Sparse logistic regression

We consider the decentralized sparse logistic regression problem in the following form

min
x∈Rd

∑
i∈[m]

∑
s∈Di

log(1 + exp(−ys u>
s x)) + λ

∥∥∥x∥∥∥1,

Data (us, ys), s ∈ ∪i∈[m]Di, are generated as follows. We first choose x0 ∈ Rd as a ground

truth sparse vector with density ∗ d nonzero entries drawn i.i.d. from N (0, 1). We generate

each sample feature us independently, with each entry drawn i.i.d. from N (0, 1); then we set

ys = 1 with probability 1/(1 + exp(−u>
s x0)), and ys = −1 otherwise. We set |Di| = 3,∀i ∈

[m], d = 100, m = 20, λ = 0.01 and density = 0.3. We use the same optimality measure

as that for the LASSO problem. The results and the tuning of parameters are reported in

Fig. 6.2 .
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Figure 6.3. m-estimator. Left: undirected graph. We set µ̃ = 300 and γ = 0.1 in
ASY-DSCA-L; α = 0.01 and η = 0.6 in AsyPrimalDual; and µ̃ = 100 and γ = 0.1
in SONATA-L. right: directed graph (each agent is of 7 out-neighbors). We set
µ̃ = 1000 and γ = 0.08 in ASY-DSCA-L; and µ̃ = 1000 and γ = 0.2 in SONATA-L.

6.5.3 M-estimator

As nonconvex (constrained, nonsmooth) instance of problem (P ), we consider the follow-

ing M-estimation task [130 , (17)]:

min
‖x‖2≤r

1
|D|

∑
i∈[m]

∑
s∈Di

ρα(u>
s x− ys) + λ

∥∥∥x∥∥∥1, (6.15)

where ρα(t) = (1− e−α t2/2)/α is the nonconvex Welsch’s exponential squared loss and D ,

∪i∈[m]Di. We generate x0 ∈ Rd as unit norm sparse vector with density ∗ d nonzero entries

drawn i.i.d. from N (0, 1). Each entry of us ∈ Rd is drawn i.i.d. from N (0, 1); we generate

ys = us
>x0 + 0.1 ∗ εs, with εs i.i.d.∼ N (0, 1). We set |Di| = 10, for all i ∈ [m], d = 100, m = 30,

α = 0.1, r = 2, λ = 0.01, and density = 0.1. Since (6.15 ) is nonconvex, progresses towards

stationarity and consensus are measured using the merit functionMF (·) in (6.13 ). The result

and tuning of parameters are reported in Fig. 6.3 .
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6.5.4 Discussion

All the experiments clearly show that ASY-DSCA achieves linear rate on LASSO and

Logistic regression, with nonstrongly convex objectives, both over undirected and directed

graphs–this supports our theoretical findings (Theorem 6.4.1 ). The flexibility in choosing the

surrogate functions provides us the chance to better exploit the curvature of the objective

function than plain linearization-based choices. For example, in the LASSO experiment,

ASY-DSCA-DH outperforms all the other schemes due to its advantage of better exploiting

second order information. Also, ASY-DSCA compares favorably with AsyPrimalDual. ASY-

DSCA exhibits good performance also in the nonconvex setting (recall that no convergence

proof is available for AsyPrimalDual applied to nonconvex problems). In our experiments,

asynchronous algorithms turned to be faster than synchronous ones. The reason is that, at

each iteration, agents in synchronous algorithms must wait for the slowest agent receiving the

information and finishing its computation (no delays are allowed), before proceeding to the

next iteration. This is not the case of asynchronous algorithms wherein agents communicate

and update continuously with no coordination.

6.6 Proof of Theorem 6.4.1 

6.6.1 Roadmap of the proof

We begin introducing in this section the roadmap of the proof. Define xk , [xk1, · · · , xkI ]>,

vk , [vk1 , · · · , vkI ]> ∈ Rm×d; and let S , (D + 2)m. Construct the two S × d matrices:

δk , eik
(
∆xk

)>
, with ∆xk , x̃kik − xkik ,

Hk , [(xk)>, (vk)>, (vk−1)>, · · · , (vk−D)>]>,

with vt = 0, for t ≤ 0. Our proof builds on the following quantities that monitor the progress

of the algorithm.

• Optimality gaps:

Ek
z , ‖x̃kik − xkik‖, Ek

o , max
i∈[S]

U(Hk
i )− U∗; (6.16a)
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• Consensus errors (xkψ is some weighted average of row vectors of Hk and will be defined

in Sec. 6.6.2 ):

Ek
c ,

∥∥∥Hk − 1 · xkψ
∥∥∥, Ek

t ,
∥∥∥ykik − ḡk∥∥∥; (6.16b)

• Tracking error:
Ek
t ,

∥∥∥Iykik −∇F (xkik)
∥∥∥2. (6.16c)

Specifically, Ek
z and Ek

o measure the distance of the xki ’s from optimality in terms of step-

length and objective value. Ek
c and Ek

t represents the consensus error of xi’s and yi’s, re-

spectively while Ek
t is the tracking error of yki . Our goal is to show that the above quantities

vanish at a linear rate, implying convergence (at the same rate) of the iterates generated by

the algorithm to a solution of Problem (P ). Since each of them affects the dynamics of the

others, our proof begins establishing the following set of inequalities linking these quantities

(the explicit expression of the constants below will be given in the forthcoming sections):

Ek+1
t ≤ 3C1l

k∑
l=0

ρk−l
(
El
c + γEl

z

)
+ C1ρ

k
∥∥∥g0

∥∥∥, (6.17a)

Ek+1
c ≤ C2ρ

kE0
c + C2

k∑
l=0

ρk−lγEl
z, (6.17b)

Ek
t ≤ 8ml2(Ek

c )2 + 2m2(Ek
t )2, (6.17c)

Ek+1
o ≤ C4(γ) ζ(γ)kE0

o + C3(γ)C4(γ)
ζ(γ)

k∑
`=0

ζ(γ)k−`E`
t , (6.17d)

(Ek
z )2 ≤ 1

γ
(
µ̃− ε

2 −
γL
2

)Ek
o + 1

2 ε
(
µ̃− ε

2 −
γL
2

)Ek
t . (6.17e)

We then show that Ek
z , Ek

o , Ek
c , Ek

t and Ek
t vanish at linear rate chaining the above inequal-

ities by means of the generalized small gain theorem [117 ].

The main steps of the proof are summarized next.

• Step 1: Proof of (6.17a )-(6.17c ) via P-ASY-SUM-PUSH. We rewrite (S.2) and (S.3)

in ASY-DSCA (Algorithm 6 ) as instances of the perturbed asynchronous consensus scheme

and the perturbed asynchronous sum-push scheme (the P-ASY-SUM-PUSH) introduced in

Chapter 4. By doing so, we can bound the consensus errors Ek
c and Ek

t in terms of ∆k and
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then prove (6.17a )-(6.17b )–see Lemma 6.6.2 and Lemma 6.6.3 . Eq. (6.17c ) follows readily

from (6.17a )-(6.17b )–see Lemma 6.6.4 .

• Step 2: Proof of (6.17d )-(6.17e ) under the LT condition. Proving (6.17d )–contraction

of the optimality measure Ek
o up to the tracking error–poses several challenges. To prove

contraction of some form of optimization errors, existing techniques developed in the lit-

erature of distributed algorithms [4 ], [8 ], [10 ], [30 ], [100 ], including the convergence proof

of ASY-SONATA, leverage strong convexity of F , a property that is replaced here by the

weaker local growing condition (6.2 ) in the LT error bound. Hence, they are not applicable

to our setting. On the other hand, existing proofs showing linear rate of centralized first-

order methods under the LT condition [121 ] do not readily customize to our distributed,

asynchronous setting, for the reasons elaborated next. To invoke the local growing condition

(6.2 ), one needs first to show that the sequences generated by the algorithm enters (and stays

into) the region where (6.1 ) holds, namely: a) the function value remains bounded; and b)

the proximal operator residual is sufficiently small. A standard path to prove a) and b) in

the centralized setting is showing that the objective function sufficiently descents along the

trajectory of the algorithm. Asynchrony apart, in the distributed setting, function values on

the agents’ iterates do not monotonically decrease provably, due to consensus and gradient

tracking errors. To cope with these issues, in this Step 2, we put forth a new analysis. Specif-

ically, i) Sec. 6.6.3 : we build a novel Lyapunov function [cf. (6.28 )] that linearly combines

objective values of current and past (up to D) iterates (all the elements of Hk); notice that

the choice of the weights (cf. ψk in Lemma 6.6.1 ) is very peculiar and represents a major

departure from existing approaches, including the result of ASY-SONATA–ψk endogenously

vary according to the asynchrony trajectory of the algorithm. The Lyapunov function is

proved to “sufficiently” descent over the asynchronous iterates of ASY-DSCA (cf. Propo-

sition 6.6.1 ); ii) Sec. 6.6.3 : building on such descent properties, we manage to prove that

xkik will eventually satisfy the aforementioned conditions (6.1 ) (cf. Lemma 6.6.6 & Corollary

6.6.5.1 ), so that the LT growing property (6.2 ) can be invoked at xkik (cf. Corollary 6.6.6.1 );

iii) Sec. 6.6.3 : Finally, leveraging this local growth, we uncover relations between Ek
o and

Ek
t and prove (6.17d ) (cf. Proposition 6.6.2 ). Eq. (6.17e ) is proved in Sec. 6.6.3 by product

of the derivations above.
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• Step 3: R-linear convergence via the generalized small gain theorem. We com-

plete the proof of linear convergence by applying [117 , Th. 23] to the inequality system

(6.17 ), and conclude that all the local variables {xi}i∈[m] converge to the set of optimal

solutions K∗ R-linearly.

6.6.2 Step 1: Proof of (6.17a )-(6.17c )

We interpret the consensus step (S.2) in Algorithm 2 as an instance of the perturbed

asynchronous consensus scheme [117 ]: (6.8 ) can be rewritten as

Hk+1 = Ŵ k(Hk + γδk), (6.18)

where Ŵ k is a time-varying augmented matrix induced by the update order of the agents

and the delay profile. The specific expression of Ŵ k can be found in [117 ] and is omitted

here, as it is not relevant to the convergence proof. We only need to recall the following

properties of Ŵ k.

Lemma 6.6.1. [117 , Lemma 17] Let {Ŵ k}k∈N+ be the sequence of matrices in the dynamical

system (6.18 ), generated under Assumption 4.3.2 , and with W satisfying Assumption 5.2.3 .

Define K1 , (2I − 1) · T + m · D, C2 ,
2
√

(D+2)m(1+m̄−K1 )
1−m̄−K1 , η , m̄K1 and ρ , (1 − η)

1
K1 .

Then we have for any k ≥ 0:

a. Ŵ k is row stochastic;

b. all the entries in the first m columns of Ŵ k+K1−1:k are uniformly bounded below by η;

c. there exists a sequence of stochastic vectors {ψk}k≥0 such that: i) for any ` ≥ t ≥ 0,∥∥∥Ŵ `:t − 1ψt>
∥∥∥2 ≤ C2ρ

`−t; ii) ψki ≥ η for all i ∈ V.

Note that Lemma 6.6.1 implies

1ψt> = lim
d→∞

Ŵ d:t = ( lim
d→∞

Ŵ d:t+1)Ŵ t = 1ψt+1>
Ŵ t, (6.19)
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and thus ψt+1>
Ŵ t = ψt

>, for all t ≥ 0. Then we define

xkψ = ψk
>
Hk; (6.20)

xkψ evolves according to the following dynamics:

xk+1
ψ = ψ0>

H0 +
k∑
l=0

γψl
>∆H l. (6.21)

This can be shown by applying (6.18 ) recursively, so that

Hk+1 = Ŵ d:0H0 +
k∑
l=0

Ŵ d:lγ∆H l, (6.22)

and multiplying (6.22 ) from the left by ψk+1> and using (6.19 ). Taking the difference be-

tween (6.21 ) and (6.22 ) and applying Lemma 6.6.1 the consensus error Ek
c can be bound as

follows.

Lemma 6.6.2. Under the condition of Lemma 6.6.1 , {Ek
c } satisfies

Ek+1
c ≤ C2 ρ

k E0
c + C2

k∑
l=0

ρk−lγ El
z, ∀k ≥ 0. (6.23)

To establish similar bounds for Ek
y , we build on the fact that the gradient tracking update

(6.9 ) is an instance of the P-ASY-SUM-PUSH in [117 ], as shown next. Define

gk = [∇f1(xk1),∇f2(xk2), · · · ,∇fI(xkI )]>,

ḡk = (1/m) · (gk)>1, Ek
t ,

∥∥∥ykik − ḡk∥∥∥.
We can prove the following bound for Ek

t .

Lemma 6.6.3. Let {xk, ykik}∞
k=0 be the sequence generated by the Algorithm 6 under Assump-

tion 4.2.1 , 4.2.2 , 5.2.3 , and 4.3.2 . Then, there exists a constant C1 = 4
√

2S(1+m̄−K1 )
mη ρ(1−m̄K1 ) such

that
Ek+1
t ≤ 3C1 l

k∑
l=0

ρk−l
(
El
c + γEl

z

)
+ C1ρ

k
∥∥∥g0

∥∥∥. (6.24)

Proof. See Appendix 6.9.1 .
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Finally, using Lemma 6.6.2 and Lemma 6.6.3 , we can bound ∑k
t=0(Et

c)2 and ∑k
t=0(Et

t)2

in terms of ∑k
t=0 γ

2(Et
z)2, and Ek

t in terms of Ek
c and Ek

t , as given below.

Lemma 6.6.4. Under the setting of Lemma 6.6.2 and Lemma 6.6.3 , we have: for any k ≥ 1,

k∑
t=0

(Et
c)2 ≤ cx + %x

k∑
t=0

γ2(Et
z)2,

k∑
t=0

(Et
t)2 ≤ cy + %y

k∑
t=0

γ2(Et
z)2,

Ek
t ≤ 2m2(Ek

t )2 + 8ml2 (Ek
c )2. (6.25)

with %x , 2C2
2

(1−ρ)2 , and %y ,
36(C1L)2(2C2

2 +(1−ρ)2
)

(1−ρ)4 . (The expressions of the constants cx and cy

are omitted as they are not relevant).

Proof. The proof of the first two results follows similar steps as in that of [117 , Lemma 26]

and thus is omitted. We prove only the last inequality, as follows:

Ek
t =

∥∥∥mykik ±mḡk −∇F (xkik)
∥∥∥2 ≤ 2m2(Ek

t )2 + 2
∥∥∥∥ m∑

j=1
fj(xkj )± F (xkψ)−∇F (xkik)

∥∥∥∥2

≤ 2m2(Ek
t )2 + 8ml2 (Ek

c )2.

6.6.3 Step 2: Proof of (6.17d )-(6.17e ) under the LT condition

- A new Lyapunov function and its descent We begin studying descent of the objective

function U along the trajectory of the algorithm; we have the following result.

Lemma 6.6.5. Let {(xk, yk)} be the sequence generated by Algorithm 6 under Assump-

tions 6.2.1 and 6.3.1 , it holds

U(vk+1
ik ) ≤U(xkik)− γ

(
µ̃− γL

2

) ∥∥∥∆xk∥∥∥2 + γ ·
(
∇F (xkik)−mykik

)>
∆xk. (6.26)

Proof. Applying the first order optimality condition to (6.7 ) and invoking the strong con-

vexity of f̃ik (Assumption 6.3.1 ) we have
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− (∆xk)>Iykik +G(xkik)−G(x̃kik) ≥ −(∆xk)>(∇fik(xkik)−∇f̃ik(x̃kik ;xkik))

= (∆xk)>
(
∇f̃ik(x̃kik ;xkik)−∇f̃ik(xkik ;xkik)

)
≥ µ̃ ·

∥∥∥∆xk∥∥∥2.
(6.27)

As F is L-smooth, applying the descent lemma gives

F (vk+1
ik ) ≤ F (xkik) + γ · ∇F (xkik)>∆xk + L

2 γ
2
∥∥∥∆xk∥∥∥2

= F (xkik) + γ · (mykik)>∆xk + γ ·
(
∇F (xkik)−mykik

)>
∆xk + L

2 γ
2
∥∥∥∆xk∥∥∥2

(6.27 )
≤ F (xkik) + γ

(
G(xkik)−G(x̃kik)− µ̃

∥∥∥∆xk∥∥∥2
)

+ L

2 γ
2
∥∥∥∆xk∥∥∥2 + γ ·

(
∇F (xkik)−mykik

)>
∆xk.

By the convexity of G, we have

γ
(
G(xkik)−G(x̃kik)

)
≤ G(xkik)−G(vk+1

ik ).

Combining the above two results proves (6.26 ).

We build now on (6.26 ) and establish descent on a suitable defined Lyapunov function.

Define the mapping Ũ : RS×d → RS as Ũ(H) = [U(h1), · · · , U(hS)]> for H = [h1, · · · , hS]> ∈

RS×d. That is, Ũ(H) is a vector constructed by stacking the value of the objective function

U evaluated at each local variable hi. Recalling the definition of the weights ψk (cf. Lemma

6.6.1 ), we introduce the Lyapunov function

Lk , ψk
>
Ũ(Hk), (6.28)

and study next its descent properties.

Proposition 6.6.1. Let {(xk, vk, yk)} be the sequence generated by Algorithm 6 under As-

sumptions 6.2.1 , 4.2.1 , 6.3.1 , 4.2.2 , and 5.2.3 . Then,

Lk+1 ≤ L0 −
k∑
t=0

(Et
z)2γ

(
ηµ̃− γ

(
L

2 + l m
3
2
√
%x +m

√
%y

))
+ C, (6.29)

for all k ≥ 0, where C is some constant independent of γ and k; and %x and %y are defined

in Lemma 6.6.4 .

192



Proof. By the row stochasticity of Ŵ and the convexity of U :

Ũ(Hk+1) = Ũ
(
Ŵ k(Hk + γ∆Hk)

)
4 Ŵ k Ũ

(
Hk + γ∆Hk

)
4 Ŵ k

(
Ũ(Hk)−

(
γ

(
µ̃− γL

2

)∥∥∥∆xk∥∥∥2 − γ ·
(
∇F (xkik)−mykik

)>
∆xk

)
eik

)
,

where in the last inequality we applied Lemma 6.6.5 . Using now Lemma 6.6.1 , we have

Lk+1

≤ Lk − ψkik
(
γ

(
µ̃− γL

2

)∥∥∥∆xk∥∥∥2− γ
(
∇F (xkik)−mykik

)>
∆xk

)

≤ Lk − γηµ̃
∥∥∥∆xk∥∥∥2 + L(γ)2

2

∥∥∥∆xk∥∥∥2 + ψkik γ
(
∇F (xkik)−mykik

)>
∆xk

≤ Lk − γ
(
ηµ̃− γL

2

) ∥∥∥∆xk∥∥∥2 + ψkikγ
(
∇F (xkik)±mḡk −mykik

)>
∆xk

≤ Lk − γ
(
ηµ̃− γL

2

) ∥∥∥∆xk∥∥∥2 + γ m l
m∑

j=1

∥∥∥xkψ − xkj ∥∥∥∥∥∥∆xk∥∥∥+ γ mEk
t ·

∥∥∥∆xk∥∥∥
≤ Lk − γ

(
ηµ̃− γL

2

) ∥∥∥∆xk∥∥∥2 + γ lm
3
2Ek

c

∥∥∥∆xk∥∥∥+ γ mEk
t ·

∥∥∥∆xk∥∥∥2

(∗)
≤ Lk − γ

(
ηµ̃− γ

(
L

2 + 1
2ε1

+ 1
2ε2

)) ∥∥∥∆xk∥∥∥2 + ε1

2 l2 m3(Ek
c )2 + ε2

2 m2(Ek
t )2

≤ L0 − γ
(
ηµ̃− γ

(
L

2 + 1
2ε1

+ 1
2ε2

)) k∑
t=0

∥∥∥∆xt∥∥∥2 + ε1

2 l2 m3
k∑
t=0

(Et
c)2 + ε2

2 m2
k∑
t=0

(Et
t)2,

where (∗) follows from the Young’s inequality with ε1,2 > 0. Invoking Lemma 6.6.4 and

setting γl ≡ γ gives (6.29 ), where the free parameters ε1,2 are chosen as ε1 = 1/(l m 3
2
√
%x)

and ε2 = 1/(m√%y), respectively.

- Leveraging the LT condition We build now on Proposition 6.6.1 and show next that

the two conditions in (6.1 ) holds at xki , for sufficiently large k; this will permit to invoke the

LT growing property (6.2 ).

The first condition–U(xki ) bounded for large k–is a direct consequence of Proposition

6.6.1 and the facts that U is bounded from below (Assumption 6.2.1 ) and ψki ≥ η, for all

i ∈ [m] and k ≥ 0. Formally, we have the following.

Corollary 6.6.5.1. Under the setting of Proposition 6.6.1 and step-size 0 < γ < γ̄ ,

2ηµ̃
L+2l m

3
2

√
%x+2I√

%y

, it holds:
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a. U(xki ) is uniformly upper bounded, for all i ∈ V and k ≥ 0;

b. ∑∞
t=0(Et

z)2 <∞, ∑∞
t=0(Et

c)2 <∞, and ∑∞
t=0(Et

t)2 <∞.

We prove now that the second condition in (6.1 ) holds for large k–the residual of the

proximal operator at xkik , that is
∥∥∥xkik − proxG(xkik − ∇F (xkik))

∥∥∥, is sufficiently small. Since

Ek
z and the gradient tracking error Ek

t are vanishing [as a consequence of Corollary 6.6.5.1 ii)

and Lemma 6.6.4 ], it is sufficient to bound the aforementioned residual by Ek
z and Ek

t . This

is done in the lemma below.

Lemma 6.6.6. The proximal operator residual on xkik satisfies
∥∥∥xkik−proxG(xkik−∇F (xkik))

∥∥∥2 ≤

4
(
1 + (l + l̃)2

)
(Ek

z )2 + 5Ek
t .

Proof. For simplicity, we denote x̂k = proxG(xkik − ∇F (xkik)). According to the variational

characterization of the proximal operator, we have, for all w ∈ K,

(
x̂k −

(
xkik −∇F (xkik)

))>
(x̂k − w) +G(x̂k)−G(w) ≤ 0.

The first order optimality condition of x̃kik implies

(
∇f̃ik(x̃kik ;xkik) + Iykik −∇fik(xkik)

)>
(x̃kik − z) +G(x̃kik)−G(z) ≤ 0, ∀z ∈ K. (6.30)

Setting z = x̂k and w = x̃kik and adding the above two inequalities yields

0 ≥
(
∇f̃ik(x̃kik ;xkik) + Iykik −∇fik(xkik)− x̂k + xkik −∇F (xkik)

)>

(x̃kik − x̂k)

=
(
Iykik − x̂k + xkik −∇F (xkik)

)>
(x̃kik − xkik) +

(
∇f̃ik(x̃kik ;xkik)−∇fik(xkik)

)>
(x̃kik − xkik)

+
∥∥∥x̂k − xkik∥∥∥2 +

(
∇f̃ik(x̃kik ;xkik) + Iykik −∇fik(xkik)−∇F (xkik)

)>

(xkik − x̂k)

≥ −1
2

∥∥∥Iykik −∇F (xkik)
∥∥∥2 − 1

2

∥∥∥∆xk∥∥∥2 − 1
4

∥∥∥x̂k − xkik∥∥∥2

−
∥∥∥∆xk∥∥∥2 + µ̃

∥∥∥∆xk∥∥∥2 +
∥∥∥x̂k − xkik∥∥∥2 − 1

4

∥∥∥x̂k − xkik∥∥∥2

− 2
(

(l + l̃)2
∥∥∥∆xk∥∥∥2 +

∥∥∥Iykik −∇F (xkik)
∥∥∥2
)
.

Rearranging terms proves the desired result.
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Corollary 6.6.5.1 in conjunction with Lemma 6.6.6 and Lemma 6.6.4 show that both

conditions in (6.1 ) hold at {xk}, for large k. We can then invoke the growing condition (6.2 ).

Corollary 6.6.6.1. Let {xk} be the sequence generated by Algorithm 6 under the setting of

Corollary 6.6.5.1 . Then, there exists a constant κ > 0 and a sufficiently large k̄ such that,

for k ≥ k̄,

dist(xkik ,K∗) ≤ κ
∥∥∥xkik − proxG(xkik −∇F (xkik))

∥∥∥. (6.31)

Proof. It is sufficient to show that (6.1 ) holds at xkik . By Corollary 6.6.5.1 (i), U(xkik) ≤ B,

for all k ≥ 0 and some B < +∞. Lemma 6.6.6 in conjunction with Corollary 6.6.5.1 (ii) and

Lemma 6.6.4 yields lim
k→∞

∥∥∥xkik − proxG(xkik −∇F (xkik))
∥∥∥ = 0.

- Proof of (6.17d ) Define

C3(γ) ,
γ
(
c6(µ̃− ε

2 −
γL
2 ) + c7

2ε

)
c7 + µ̃− ε

2 −
γL
2

, (6.32)

C4(γ) ,
(

1−
(

1− σ(γ)
)
η
)−1

, (6.33)

ζ(γ) ,
(

1−
(

1− σ(γ)
)
η
) 1

K1
, (6.34)

σ(γ) ,
c7 +

(
µ̃− ε

2 −
γL
2

)
(1− γ)

c7 + µ̃− ε
2 −

γL
2

, (6.35)

where K1 = (2I− 1) ·T +m ·D, and c6, c7 are polynomials in (1, l, l̃, L, κ) whose expressions

are given in (6.60 ) and (6.42 ); and ε ∈ (0, 2µ̃) is a free parameter (to be chosen).

In this section, we prove (6.17d ), which is formally stated in the proposition below.

Proposition 6.6.2. Let {(xk, yk)} be the sequence generated by Algorithm 6 under Assump-

tions 6.2.1 , 4.2.1 , 6.2.2 , 6.3.1 , 5.2.3 , and 4.2.2 . Then, for k ≥ k̄, it holds

Ek+1
o ≤ C4(γ) ζ(γ)kE0

o + C3(γ)C4(γ)
ζ(γ)

k∑
`=0

ζ(γ)k−`E`
t . (6.36)

Since σ(γ) < 1 for 0 < γ < supε∈(0,2µ̃)
2µ̃−ε
L

= 2µ̃
L

and η ∈ (0, 1], Proposition 6.6.2 shows

that, for sufficiently small γ > 0, the optimality gap Ek
o converges to zero R-linearly if Ek

t
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does so. The proof of Proposition 6.6.2 follows from Proposition 6.6.3 and Lemma 6.6.8 

below.

Proposition 6.6.3. Let {(xk, yk)} be the sequence generated by Algorithm 6 in the setting of

Proposition 6.6.2 . Let pk , Ũ(Hk)−U(x∗)1; let Σk be the diagonal matrix with all diagonal

entries 1 and Σk
ikik = σ(γ); and let (ŴΣ)k:` , Ŵ kΣk · · · Ŵ `Σ`. Then, for k ≥ k̄,

pk+1 4
(
ŴΣ

)k:0
p0 + C3(γ)

k∑
`=1

(
ŴΣ

)k:`
Ŵ `−1ei`−1E`−1

t + C3(γ)Ŵ keikE
k
t , (6.37)

where C3(γ) is defined in (6.32 ).

Proof. By convexity of U and (6.18 ), we have

pk+1 = Ũ(Hk+1)− U(x∗)1 4 Ŵ k
(
Ũ
(
Hk + γ∆Hk

)
− U(x∗)1

)
. (6.38)

Since Ũ
(
Hk + γ∆Hk

)
differs from Ũ

(
Hk
)
only by its ik-th row, we study descent occurred

at this row, which is (vk+1
ik )> = (xkik + γ

(
x̃kik − xkik

)
)>. Recall that by applying the descent

lemma on F and using the convexity of G we proved

U(vk+1
ik )− U(xkik) ≤ L

2 γ
2
∥∥∥∆xk∥∥∥2 + γ

(
∇F (xkik)>

(
x̃kik − xkik

)
+G(x̃kik)−G(xkik)

)
︸ ︷︷ ︸

T1

. (6.39)

The above inequality establishes a connections between U(vk+1
ik ) and U(xkik). However, it is

not clear whether there is any contraction (up to some error) going from the optimality gap

U(vk+1
ik ) − U∗ to U(xkik) − U∗. To investigate it, we derive in the lemma below two upper

bounds of T1 in (6.39 ), in terms of U(vk+1
ik ) − U(x∗) and

∥∥∥∆xk∥∥∥ (up to the tracking error).

Building on these bounds and (6.39 ) we can finally prove the desired contraction, as stated

in (6.43 ).

Lemma 6.6.7. T1 in (6.39 ) can be bounded in the following two alternative ways: for k ≥ k̄,

T1 ≤
(
−µ̃+ ε

2

)
·
∥∥∥∆xk∥∥∥2 + 1

2ε E
k
t , (6.40)

T1 ≤−
1

1− γ
(
U(vk+1

ik )− U(x∗)
)

+ 1
1− γ

(
c5

∥∥∥∆xk∥∥∥2 + c6E
k
t

)
, (6.41)
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where c5 and c6 are polynomials in (1, l, l̃, L, κ) whose expressions are given in (6.60 ).

Proof. See Appendix 6.9.2 .

Using Lemma 6.6.7 in (6.39 ) yields

U(vk+1
ik )− U∗ ≤ (1− γ)

(
U(xkik)− U∗)

)
+
(
L

2 γ(1− γ) + c5

)
γ
∥∥∥∆xk∥∥∥2 + c6 · γEk

t

≤ (1− γ)
(
U(xkik)− U(x∗(xkik))

)
+ (c5 + L/8)︸ ︷︷ ︸

c7

γ
∥∥∥∆xk∥∥∥2 + c6 · γEk

t ,
(6.42a)

and

U(vk+1
ik )− U∗ ≤ U(xkik)− U∗ −

(
µ̃− γL

2 −
ε

2

)
γ
∥∥∥∆xk∥∥∥2 + γ

2εE
k
t . (6.42b)

Canceling out
∥∥∥∆xk∥∥∥2 in (6.42a )-(6.42b ) yields: for k ≥ k̄,

U(vk+1
ik )− U(x∗) ≤ σ(γ)

(
U(xkik)− U(x∗)

)
+ C3(γ)Ek

t , (6.43)

where σ(γ) and C3(γ) are defined in (6.32 ). Thus we observed a contraction from
(
U(xkik)− U(x∗)

)
to U(vk+1

ik )− U(x∗). Continuing from (6.38 ), we have

pk+1
(6.43 )
4 Ŵ k

(
Σkpk + C3(γ)Ek

t eik
)

4
(
ŴΣ

)k:0
p0 + C3(γ)

k∑
`=1

(
ŴΣ

)k:`
Ŵ `−1ei`−1E`−1

t + C3(γ)Ŵ keikE
k
t .

The lemma below shows that the operator norm of (ŴΣ)k:` induced by the `∞ norm

decays at a linear rate.

Lemma 6.6.8. For any k ≥ ` ≥ 0,

∥∥∥(ŴΣ)k:`
∥∥∥∞ ≤ C4(γ) ζ(γ)k−`,

where the expression of ζ(γ), C4(γ), and K1 are given in (6.32 ).
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Proof. See Appendix 6.9.3 .

- Proof of (6.17e ) Eq. (6.17e ) follows directly from the second inequality of (6.42 ) and the

fact that U(xkik)− U(vk+1
ik ) ≤ Ek

o . This completes the proof of the inequality system (6.17 ).

6.6.4 Step 3: R-linear convergence via the generalized small gain theorem

The last step is to show that all the error quantities in (6.17 ) vanish at a linear rate. To

do so, we leverage the generalized small gain theorem [117 , Th. 17]. We use the following.

Definition 6.6.1 ([100 ]). Given the sequence {uk}∞
k=0, a constant λ ∈ (0, 1), and N ∈ N,

let us define

|u|λ,N = max
k=0,...,N

∣∣∣uk∣∣∣
λk

, |u|λ = sup
k∈N0

∣∣∣uk∣∣∣
λk

.

If |u|λ is upper bounded, then uk = O(λk), for all k ∈ N0.

Invoking [117 , Lemma 20 & Lemma 21], if we choose λ such that max (ρ2, ζ(γ)) < λ < 1,

by (6.17 ) we get

|Et|
√
λ,N ≤ 3C1l√

λ− ρ
(|Ec|

√
λ,N + γ

∣∣∣Ek
z

∣∣∣√λ,N) + E0
t +

C1

∥∥∥g0
∥∥∥

√
λ

(6.44)

|Ec|
√
λ,N ≤ C2γ√

λ− ρ

∣∣∣Ek
z

∣∣∣√λ,N + E0
c + C2E

0
c√
λ

(6.45)

|Eo|λ,N ≤
C3(γ)C4(γ)

ζ(γ) (λ− ζ(γ)) |Et|
λ,N + E0

o + C4(γ)E0
o

λ
(6.46)

|Et|λ,N ≤ 8ml2
∣∣∣(Ec)2

∣∣∣λ,N + 2m2
∣∣∣(Et)2

∣∣∣λ,N (6.47)∣∣∣(Ek
z )2
∣∣∣λ,N ≤ 1

2 ε
(
µ̃− ε

2 −
γL
2

) |Et|λ,N + 1
γ
(
µ̃− ε

2 −
γL
2

) |Eo|λ,N (6.48)
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Taking the square on both sides of (6.44 ) & (6.45 ) while using
(
|u|q,N

)2
= |(u)2|q

2,N , and

writing the result in matrix form we obtain:



|(Et)2|λ,N

|(Ec)2|λ,N

|Eo|λ,N

|Et|λ,N∣∣∣(Ek
z )2
∣∣∣λ,N


4



0 36C2
1 l

2

(
√
λ−ρ)2 0 0 36C2

1 l
2γ2

(
√
λ−ρ)2

0 0 0 0 3C2
2γ

2

(
√
λ−ρ)2

0 0 0 C3(γ)C4(γ)
ζ(γ)(λ−ζ(γ)) 0

2I2 8I l2 0 0 0

0 0 1
γ
(
µ̃− ε

2 − γL
2

) 1
2 ε
(
µ̃− ε

2 − γL
2

) 0


︸ ︷︷ ︸

,G



|(Et)2|λ,N

|(Ec)2|λ,N

|Eo|λ,N

|Et|λ,N∣∣∣(Ek
z )2
∣∣∣λ,N


+ εN .

(6.49)

We are now ready to apply [117 , Th. 17]: a sufficient condition for Et, Ec, Eo, Et, and

E2
z to vanish at an R-linear rate is ρ(G) < 1. By [117 , Lemma 23], this is equivalent to

requiring pG(1) > 0, where pG(z) is the characteristic polynomial of G, This leads to the

following condition:

B(λ; γ)

=
(

72m2 C2
1 l

2 γ2

(
√
λ− ρ)2

+ 24ml2 C2
2γ

2

(
√
λ− ρ)2

+ 216m2 C2
1 C

2
2 l

2 γ2

(
√
λ− ρ)4

)

·

 1
2ε
(
µ̃− ε

2 −
γL
2

) + C3(γ)C4(γ)
ζ(γ) (λ− ζ(γ))

1
γ
(
µ̃− ε

2 −
γL
2

)
 < 1.

It is not hard to see that B(λ; γ) is continuous at λ = 1, for any γ ∈ (0, 2µ̃−ε
L

). Therefore,

as long as

B(1; γ) =
(

72m2 C2
1 l

2

(1− ρ)2 + 24ml2 C2
2

(1− ρ)2 + 216m2 C2
1 C

2
2 l

2

(1− ρ)4

)
γ· γ

2ε
(
µ̃− ε

2 −
γL
2

) + C3(γ)C4(γ)
ζ(γ) (1− ζ(γ))

1(
µ̃− ε

2 −
γL
2

)
 < 1,

(6.50)

there will exist some λ ∈ (0, 1) such that B(λ; γ) < 1.
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We show now that B(1; γ) < 1, for sufficiently small γ. We only need to prove bounded-

ness of the following quantity when γ ↓ 0:

C3(γ)C4(γ)
ζ(γ) (1− ζ(γ)) =

c6(µ̃− ε
2 −

γL
2 ) + c7

2ε(
c7 + µ̃− ε

2 −
γL
2

)
ζ(γ)K1+1︸ ︷︷ ︸

,h(γ)

· γ

1− ζ(γ) .

It is clear that h(γ) is right-continuous at 0 and thus limγ↓0 h(γ) < ∞. Hence, it is left to

check that γ
1−ζ(γ) is bounded when γ ↓ 0. According to L’Hôpital’s rule,

lim
γ ↓0

γ

1− ζ(γ) = − K1

(1− (1− σ(γ)) η)
1

K1
−1

1
ησ(γ)

∣∣∣∣∣
γ=0

=
K1

(
c7 + µ̃− ε

2

)
η
(
µ̃− ε

2

) <∞.

Finally, we prove that all (xki )k≥k̄ converge linearly to some x?. By the definition of the

augmented matrix H and the update (6.18 ), we have: for k ≥ k̄,

‖hk+1 − hk‖ = ‖(Ŵ −m)hk + γδk‖

≤ ‖(Ŵ −m)(Hk − 1 · (xkψ)>)‖+ γ‖δk‖ ≤ 3Ek
c + γEk

z .

Since both Ek
c and Ek

z are O
(
(
√
λ)k

)
, ∑∞

k=0 ‖hk+1 − hk‖ < +∞; thus {Hk}k∈N is Cauchy

and converges to some 1(x?)>, implying all xki converges to x?. We prove next that xki
converges to x? R-linearly. For any k > k ≥ k̄, we have ‖Hk −Hk‖ ≤ ∑k−1

t=k ‖H t −H t+1‖ ≤∑k−1
t=k (3Et

c + γEt
z) = O

(
(
√
λ)k

)
. Taking k →∞ completes the proof.

6.7 Proof of Theorem 6.4.2 

In this section we prove the sublinear convergence of ASY-DSCA. We organize the proof

in two steps. Step 1: we prove ∑∞
k=0(Ek

z )2 < +∞ by showing the descent of a properly

constructed Lyapunov function. This function represents a major novelty of our analysis–

see Remark 6.7.1 . Step 2: we connect the decay rate of Ek
z and that of the merit function

MF (xk).
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6.7.1 Step 1: Ek
z is square summable

In Sec. 6.6.2 we have shown that the weighted average of the local variables xψ evolves

according to the dynamics Eq. (6.21 ). Using x0
ψ = ψ0>

H0, (6.21 ) can be rewritten recursively

as

xk+1
ψ = xkψ + γψk

>∆Hk = xkψ + γψkik∆xk. (6.51)

Invoking the descent lemma while recalling Ek
z =

∥∥∥∆xk∥∥∥, yields
F (xk+1

ψ ) ≤ F (xkψ) + γψkik∇F (xkψ)>∆xk + L(γψkik)2

2 (Ek
z )2

(6.27 )
≤ F (xkψ) + Lγ2

2 (Ek
z )2 − γψkik

(
µ̃(Ek

z )2 +G(x̃kik)−G(xkik)
)

+ γψkik
(
∇F (xkψ)−mḡk

)>
∆xk + γψkik

(
mḡk − Iykik

)>
∆xk

≤ F (xkψ) + Lγ2

2 (Ek
z )2 − γψkik

(
µ̃(Ek

z )2 +G(x̃kik)−G(xkik)
)

+ γl
√
mEk

c E
k
z + γmEk

t E
k
z .

(6.52)

Introduce the Lyapunov function

Lk , F (xkψ) + ψk
>
G̃(Hk) (6.53)

where G̃ : RS×d → RS is defined as G̃(H) , [G(h1), · · · , G(hS)]>, for H = [h1, · · · , hS]> ∈

RS×d.

Remark 6.7.1. Note that Lk contrasts with the functions used in the literature of distributed

algorithms to study convergence in the nonconvex setting. Existing choices either cannot deal

with asynchrony [9 ], [10 ] (e.g. the unbalance in the update frequency of the agents and the

use of outdated information) or cannot handle nonsmooth functions in the objective and

constraints [117 ]. A key feature of Lk is to combine current and past information throughout

suitable dynamics, {xkψ}, and weights averaging via {ψk}.

Using the dynamics of Hk as in (6.18 ), we get

G̃(Hk+1) 4 Ŵ k
(
(1− γ)G̃(Hk) + γG̃(Hk + δk)

)
.
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where we used the convexity of G and the row-stochasticity of Ŵ k. Thus

ψk+1>
G̃(Hk+1) ≤ ψk+1>

Ŵ k
(
(1− γ)G̃(Hk) + γG̃(Hk + δk)

)
= ψk

> ((1− γ)G̃(Hk) + γG̃(Hk + δk)
)
,

where in the last equality we used ψt+1>
Ŵ t = ψt

> [cf. (6.19 )]. Therefore,

γψkik
(
G(xkik)−G(x̃kik)

)
= γ

(
ψk

>
G̃(Hk)− ψk>

G̃(Hk + δk)
)
≤ ψk

>
G̃(Hk)− ψk+1>

G̃(Hk+1).

Combining the above inequality with (6.52 ), we get

Lk+1 ≤ Lk − ηµ̃(Ek
z )2γ + L

2 (Ek
z )2γ2 + ε1

2 l
2m(Ek

c )2 + 1
2ε1

γ2(Ek
z )2 + ε2

2 m
2(Ek

t )2 + 1
2ε2

γ2(Ek
z )2

= Lk − (Ek
z )2γ

(
ηµ̃− γ

(
L

2 + 1
2ε1

+ 1
2ε2

))
+ ε1

2 l
2m(Ek

c )2 + ε2

2 m
2(Ek

t )2

≤ L0 −
k∑
t=0

(Et
z)2γ

(
ηµ̃− γ

(
L

2 + 1
2ε1

+ 1
2ε2

))
+ ε1

2 l
2m

k∑
t=0

Et
c
2 + ε2

2 m
2

k∑
t=0

Et
t
2
.

(6.54)

To bound the last two terms in (6.54 ), we apply Proposition 6.6.4 :

Lk+1 ≤ L0 −
k∑
t=0

(Et
z)2γ

(
ηµ̃− γ

(
L

2 + 1
2ε1

+ 1
2ε2

+ ε1

2 l
2m%x + ε2

2 m
2%y

))
+ ε1

2 l
2mcx + ε2

2 m
2cy

= L0 −
k∑
t=0

(Et
z)2γ

(
ηµ̃− γ

(
L

2 +
√
l2m%x +

√
m2%y

))
+ l2mcx

2
√
l2m%x

+ m2cy

2
√
m2%y

,

where in the last equality we set ε1 = 1/
√
l2m%x and ε2 = 1/

√
m2%y. Note that

Lk = F (xkψ) + ψk
>
G̃(Hk) ≥ F (xkψ) +G(ψk>

Hk) = U(xkψ) ≥ U∗,

for all k ∈ N+. Thus, for sufficiently small γ, such that

γ ≤ γ̄ncvx , ηµ̃
(
L+ 2

√
l2m%x + 2

√
m2%y

)−1
, (6.55)
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we can obtain the following bound

∞∑
t=0

(Et
z)2 ≤

2L0 − 2U∗ + l2mcx√
l2m%x

+ m2cy√
m2%y

γηµ̃
. (6.56)

6.7.2 Step 2: MF (xk) vanishes at sublinear rate

In this section we establish the connection betweenMF (xk) and Ek
z , Ek

c , and Ek
t . Invoking

Lemma 6.6.6 we can bound ‖x̄k − proxG(x̄k −∇F (x̄k))‖ as

‖x̄k − proxG(x̄k −∇F (x̄k))‖2

≤ 3‖x̄k − xkik‖2 + 3‖xkik − proxG(xkik −∇F (xkik))‖2

+ 3‖proxG(xkik −∇F (xkik))− proxG(x̄k −∇F (x̄k))‖2

(∗)
≤3‖x̄k − xkik‖2 + 3‖xkik − proxG(xkik −∇F (xkik))‖2 + ‖xkik −∇F (xkik)− (x̄k −∇F (x̄k))‖2

≤(5 + 2L2)‖x̄k − xkik‖2 + 3‖xkik − proxG(xkik −∇F (xkik))‖2

≤4(5 + 2L2)(Ek
c )2 + 3‖xkik − proxG(xkik −∇F (xkik))‖2

≤4(5 + 2L2)(Ek
c )2 + 3

(
4
(
1 + (l + l̃)2

)
(Ek

z )2 + 5Ek
t

)
,

where (*) follows from the nonexpansiveness of a proximal operator. Further applying

Lemma 6.6.4 and (6.17c ), yields:

k∑
t=0

MF (xt)

≤
k∑
t=0
‖x̄k − proxG(x̄k −∇F (x̄k))‖2 +

k∑
t=0

(Et
c)2

≤
k∑
t=0

(
(21 + 8L2)(Et

c)2 + 3
(
4(1 + (l + l̃)2)(Et

z)2 + 5Et
t

))

≤
k∑
t=0

(
(21 + 8L2)(Et

c)2 + 15
(
8Il2(Et

c)2 + 2m2(Et
t)2
))

+ 12(1 + (l + l̃)2)
k∑
t=0

(Et
z)2
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≤
(
21 + 8L2 + 120ml2

)(
cx + %x

k∑
t=0

γ2(Et
z)2
)

+ 30m2
(
cy + %y

k∑
t=0

γ2(Et
z)2
)

+ 12(1 + (l + l̃)2)
k∑
t=0

(Et
z)2

=
( (

21 + 8L2 + 120ml2
)
%xγ

2 + 30κ2m2%yγ
2 + 12(1 + (l + l̃)2)

)
k∑
t=0

(Et
z)2 +

(
21 + 8L2 + 120ml2

)
cx + 30κ2m2cy

(6.56 )
≤
( (

21 + 8L2 + 120ml2
)
%xγ

2 + 30κ2m2%yγ
2 + 12(1 + (l + l̃)2)

)2L0 − 2U∗ + l2mcx√
l2m%x

+ m2cy√
m2%y

γηµ̃


+
(
21 + 8L2 + 120ml2

)
cx + 30κ2m2cy , Bopt,

where %x and %y are defined in Lemma 6.6.4 .

Let Tδ = inf{k ∈ N |MF (xk) ≤ δ}. Then it holds: Tδ · δ <
∑Tδ−1
k=0 MF (xk) ≤ Bopt and

thus Tδ = O(Bopt/δ).

6.8 Conclusion

We proposed ASY-DSCA, an asynchronous decentralized method for multiagent con-

vex/nonconvex composite minimization problems over (di)graphs. The algorithm employs

SCA techniques and is robust against agents’ uncoordinated activations and use of outdated

information (subject to arbitrary but bounded delays). For convex (not strongly convex) ob-

jectives satisfying the LT error bound condition, ASY-DSCA achieves R-linear convergence

rate while sublinear convergence is established for nonconvex objectives.
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6.9 Appendix: Proofs of Theorems

6.9.1 Proof of Lemma 6.6.3 

Applying [117 , Th. 6] with the identifications: εt = ∇fit(xt+1
it )−∇fit(xtit) and

mk
z =

m∑
i=1

z0
i +

k−1∑
t=0

εt =
m∑

i=1
∇fi(x0

i ) +
k−1∑
t=0

(
∇fit(xt+1

it )−∇fit(xtit)
) (∗)= m · 1

m

m∑
i=1
∇fi(xki )︸ ︷︷ ︸
,ḡk

,

we arrive at Ek+1
t ≤ C1

(
ρk
∥∥∥g0

∥∥∥+∑k
l=0 ρ

k−l‖εl‖
)
, where in (∗) we have used xt+1

j = xtj for

j 6= it. The rest of the proof follows the same argument as in [117 , Prop. 18]. �

6.9.2 Proof of Lemma 6.6.7 

Using (6.27 ), we have: for any ε > 0,

T1 =
(
∇F (xkik)± Iykik

)> (
x̃kik − xkik

)
+G(x̃kik)−G(xkik)

≤− µ̃ ·
∥∥∥∆xk∥∥∥2 + 1

2ε E
k
t + ε

2

∥∥∥∆xk∥∥∥2.

Next we prove (6.41 ). For any z ∈ K, let x∗(z) ∈ PK∗(z). By the Mean Value Theorem,

there exists ξk = β x∗(xkik) + (1− β)vk+1
ik , with β ∈ (0, 1), such that

U(vk+1
ik )− U(x∗(xkik)) = ∇F (ξk)>

(
vk+1

ik − x∗(xkik)) +G(vk+1
ik

)
−G(x∗(xkik)). (6.57)

To deal with the inner product term, we invoke the algorithmic update (6.7 ) and the first

order optimality condtion (6.30 ) (with z = x∗(xkik)):

(
∇f̃ik(x̃kik ;xkik) + Iykik −∇fik(xkik)

)> (
vk+1

ik − x∗(xkik)
)

=
(
∇f̃ik(x̃kik ;xkik) + Iykik −∇fik(xkik)

)> (
x̃kik − x∗(xkik) + (γ − 1)(x̃kik − xkik)

)
≤− (1− γ)

(
∇f̃ik(x̃kik ;xkik) + Iykik −∇fik(xkik)

)>
(x̃kik − xkik) +G(x∗(xkik))−G(x̃kik).
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Therefore

U(vk+1
ik )− U(x∗(xkik))

=
(
∇F (ξk)±

(
∇f̃ik(x̃kik ;xkik) + Iykik −∇fik(xkik)

))> (
vk+1

ik − x∗(xkik)) +G(vk+1
ik

)
−G(x∗(xkik))

≤
(
∇f̃ik(x̃kik ;xkik) + Iykik −∇fik(xkik)

)
(vk+1

ik − x∗(xkik)) +G(vk+1
ik )−G(x∗(xkik))

+
(∥∥∥∇F (ξk)−∇F (xkik)

∥∥∥+
∥∥∥∇F (xkik)− Iykik

∥∥∥+
∥∥∥∇f̃ik(x̃kik ;xkik)−∇fik(xkik)

∥∥∥)∥∥∥vk+1
ik − x∗(xkik)

∥∥∥︸ ︷︷ ︸
R1

≤− (1− γ)
(
∇f̃ik(x̃kik ;xkik) + Iykik −∇fik(xkik)

)>
(x̃kik − xkik)− (1− γ)(G(x̃kik)−G(xkik)) +R1,

(6.58)

where in the last inequality we have used the convexity of G. We thus arrive at the following

bound on T1:

T1 =
(
∇F (xkik)±

(
∇f̃ik(x̃kik ;xkik) + Iykik −∇fik(xkik)

))> (
x̃kik − xkik

)
+G(x̃kik)−G(xkik)

≤− 1
1− γ

(
U(vk+1

ik )− U(x∗(xkik))
)

+ 1
1− γ ·R1

+
(∥∥∥∇f̃ik(x̃kik ;xkik)−∇fik(xkik)

∥∥∥+
∥∥∥∇F (xkik)− Iykik

∥∥∥)∥∥∥∆xk∥∥∥︸ ︷︷ ︸
R2

.

(6.59)

It remains to bound the remainder terms R1 and R2. Note that

∥∥∥vk+1
ik − x∗(xkik)

∥∥∥ =
∥∥∥vk+1

ik ± xkik − x∗(xkik)
∥∥∥ ≤ dist(xkik ,K∗) + γ

∥∥∥∆xk∥∥∥,∥∥∥ξk − xkik∥∥∥ ≤ β
∥∥∥xkik − x∗(xkik)

∥∥∥+ (1− β)
∥∥∥vk+1

ik − xkik
∥∥∥ ≤ dist(xkik ,K∗) + γ

∥∥∥∆xk∥∥∥.
Applying Lemma 6.6.6 and Corollary 6.6.6.1 , the following holds: for k ≥ k̄,

(
dist(xkik ,K∗)

)2
≤ κ2

∥∥∥xkik − proxG(xkik −∇F (xkik))
∥∥∥2 ≤ κ2

(
4
(
1 + (l + l̃)2

) ∥∥∥∆xk∥∥∥2 + 5Ek
t

)
.

With the above inequalities and using the fact that γ ≤ 1 we can bound R1 as
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R1 ≤
∥∥∥∇F (ξk)−∇F (xkik)

∥∥∥2 +
∥∥∥∇F (xkik)− Iykik

∥∥∥2 +
∥∥∥∇f̃ik(x̃kik ;xkik)−∇fik(xkik)

∥∥∥2 +
∥∥∥vk+1

ik − x∗(xkik)
∥∥∥2

≤L2
∥∥∥ξk − xkik∥∥∥2 + Ek

t + (l + l̃)2
∥∥∥∆xk∥∥∥2 + 2 dist(xkik ,K∗)2 + 2γ2

∥∥∥∆xk∥∥∥2

≤
(
2L2 + 2

)
dist(xkik ,K∗)2 + Ek

t +
(
2L2γ2 + 2γ2 + (l + l̃)2

) ∥∥∥∆xk∥∥∥2

≤
(
8κ2(L2 + 1)

(
1 + (l + l̃)2

)
+ 2L2 + 2 + (l + l̃)2

)
︸ ︷︷ ︸

c3

∥∥∥∆xk∥∥∥2 +
(
10κ2(L2 + 1) + 1

)
︸ ︷︷ ︸

c4

Ek
t .

Similarly, R2 can be bounded as

R2 ≤
∥∥∥∇F (xkik)− Iykik

∥∥∥2 +
∥∥∥∇f̃ik(x̃kik ;xkik)−∇fik(xkik)

∥∥∥2 +
∥∥∥∆xk∥∥∥2 ≤ Ek

t +
(
1 + (l + l̃)2

) ∥∥∥∆xk∥∥∥2.

Substituting the bounds of R1 and R2 in (6.59 ) yields

T1 ≤ −
1

1− γ
(
U(vk+1

ik )− U(x∗(xkik))
)

+ Ek
t + 1

1− γ ·
(
c3

∥∥∥∆xk∥∥∥2 + c4E
k
t

)
+
(
1 + (l + l̃)2

) ∥∥∥∆xk∥∥∥2

≤ − 1
1− γ

(
U(vk+1

ik )− U(x∗(xkik))
)

+ 1
1− γ

(
c5

∥∥∥∆xk∥∥∥2 + c6E
k
t

)
,

where

c5 , 8κ2(L2 + 1)
(
1 + (l + l̃)2

)
+ 2L2 + 2 + (l + l̃)2 + 1 + (l + l̃)2,

c6 , 10κ2(L2 + 1) + 2.
(6.60)

�

6.9.3 Proof of Lemma 6.6.8 

We know from Lemma 6.6.1 (ii): for all k ≥ 0, all elements in the first m columns of

Ŵ k+K1−1:k are no less than η. Since Ŵ k+K1−1:kΣk is nonnegative, we have for each i ∈ [S]

∥∥∥Ŵ k+K1−1:kΣk
∥∥∥∞ ≤ max

i=1,...,S

{
1−

(
1− σ(γ)

)
Ŵ k+K1−1:k

i,ik
}
≤ 1−

(
1− σ(γ)

)
η.

On the other hand, because 0 4 Σk 4 m for all k, we know
(
ŴΣ

)m:k
4 Ŵm:k Σk, ∀m ≥

k. Thus ∥∥∥(ŴΣ)k+K1−1:k
∥∥∥∞ ≤

∥∥∥Ŵ k+K1−1:kΣk
∥∥∥∞ ≤ 1− (1− σ(γ)) η.
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Finally for any k ≥ ` ≥ 0,

∥∥∥(ŴΣ)k:`
∥∥∥∞ ≤

 b k+1−`
K1

c∏
t=1

∥∥∥ (ŴΣ
)`+tK1−1:`+(t−1)K1

∥∥∥∞

∥∥∥ (ŴΣ
)k:`+b k+1−`

K1
cK1

∥∥∥∞

≤
b k+1−`

K1
c∏

t=1

∥∥∥ (ŴΣ
)`+tK1−1:`+(t−1)K1

∥∥∥∞

≤
(
1−

(
1− σ(γ)

)
η
)b k+1−`

K1
c
≤
(
1−

(
1− σ(γ)

)
η
) k−`

K1
−1

= 1
1−

(
1− σ(γ)

)
η

((
1−

(
1− σ(γ)

)
η
) 1

K1

)k−`
,

where we defined ∏0
t=1 x

t = 1, for any sequence {xt}.
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7. SUMMARY

This dissertation provides a unified distributed algorithmic framework, which encapsulates

the majority of existing first-order distributed algorithms. We also propose optimal dis-

tributed optimization algorithm, to reach the min-max lower complexity bound of first-order

distributed algorithms. Finally, we break synchronism in the networked system and propose

asynchronous distributed algorithms for practical large-scale optimization. Extensive simu-

lation results validate our theoretical findings and the efficacy of the proposed algorithms.

Our accelerated distributed optimization algorithmic framework OPTRA provides a class

of algorithms which are optimal for smooth convex optimization. One research question

that remains open is, how to design distributed optimization algorithms which are optimal

in terms of both computation and communication, for strongly convex problems. Although

algorithms proposed in [51 ], [131 ] can achieve the optimal computation complexity, they are

not optimal in terms of the communication complexity.

For asynchronous distributed/decentralized algorithms, one question is whether one can

break the Assumption 4.3.2 of the partial asynchrony, and still design asynchronous dis-

tributed algorithms which converge linearly in the deterministic sense.

Note that an instance of particular interest to the Problem (P ) is the distributed empirical

risk minimization: a training data set {(us, ys)}s∈D, with us being the input feature vector

and ys the outcome associated to item s, is partitioned intom subsets {Di}i∈[m], each of which

is assigned to a machine i ∈ [m]. The goal is to learn a mapping p(· ;x) parameterized by x ∈

Rd using all samples in D by minimizing the empirical risk ∑s∈D ` (p(us;x), ys) +G(x), with

each agent having access to only fi(x) = 1/|D|∑s∈Di ` (p(us;x), ys). Real applications usually

impose high-dimensional variables, leading to the challenge of designing communication-

efficient distributed algorithms. In the meantime, when the data are i.i.d. among machines,

the Hessian matrices of local functions are related (cf. Sec. 2.5.4 ). As discussed partially in

Sec. 2.5.4 and Sec. 2.6.3 , the statistical similarity/homogeneity of local functions significantly

impacts the convergence rate of distributed optimization algorithms. Therefore, another

promising research direction is to exploit such statistical similarity in the algorithmic design,
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and further study the accelerated/optimal distributed algorithms in such a setting, in order

to minimize the communication cost.
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