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ABSTRACT 

Data scarcity is intrinsic to many problems in chemical engineering due to physical constraints or 

cost. This challenge is acute in chemical and materials design applications, where a lack of data is 

the norm when trying to develop something new for an emerging application. Addressing novel 

chemical design under these scarcity constraints takes one of two routes: the traditional forward 

approach, where properties are predicted based on chemical structure, and the recent inverse 

approach, where structures are predicted based on required properties. Statistical methods such as 

machine learning (ML) could greatly accelerate chemical design under both frameworks; however, 

in contrast to the modeling of continuous data types, molecular prediction has many unique 

obstacles (e.g., spatial and causal relationships, featurization difficulties) that require further ML 

methods development. Despite these challenges, this work demonstrates how transfer learning and 

active learning strategies can be used to create successful chemical ML models in data scarce 

situations. 

Transfer learning is a domain of machine learning under which information learned in 

solving one task is transferred to help in another, more difficult task. Consider the case of a 

forward design problem involving the search for a molecule with a particular property target with 

limited existing data, a situation not typically amenable to ML. In these situations, there are often 

correlated properties that are computationally accessible. As all chemical properties are 

fundamentally tied to the underlying chemical topology, and because related properties arise due 

to related moieties, the information contained in the correlated property can be leveraged during 

model training to help improve the prediction of the data scarce property. Transfer learning is thus 

a favorable strategy for facilitating high throughput characterization of low-data design spaces. 

Generative chemical models invert the structure-function paradigm, and instead directly 

suggest new chemical structures that should display the desired application properties. This 

inversion process is fraught with difficulties but can be improved by training these models with 

strategically selected chemical information. Structural information contained within this chemical 

property data is thus transferred to support the generation of new, feasible compounds. Moreover, 

this transfer learning approach helps ensure that the proposed structures exhibit the specified 

property targets. Recent extensions also utilize thermodynamic reaction data to help promote the 

synthesizability of suggested compounds. These transfer learning strategies are well-suited for 
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explorative scenarios where the property values being sought are well outside the range of 

available training data.  

There are situations where property data is so limited that obtaining additional training data 

is unavoidable. By improving both the predictive and generative qualities of chemical ML models, 

a fully closed-loop computational search can be conducted using active learning. New molecules 

in underrepresented property spaces may be iteratively generated by the network, characterized by 

the network, and used for retraining the network. This allows the model to gradually learn the 

unknown chemistries required to explore the target regions of chemical space by actively 

suggesting the new training data it needs. By utilizing active learning, the create-test-refine 

pathway can be addressed purely in silico. This approach is particularly suitable for multi-target 

chemical design, where the high dimensionality of the desired property targets exacerbates data 

scarcity concerns. 

The techniques presented herein can be used to improve both predictive and generative 

performance of chemical ML models. Transfer learning is demonstrated as a powerful technique 

for improving the predictive performance of chemical models in situations where a correlated 

property can be leveraged alongside scarce experimental or computational properties. Inverse 

design may also be facilitated through the use of transfer learning, where property values can be 

connected with stable structural features to generate new compounds with targeted properties 

beyond those observed in the training data. Thus, when the necessary chemical structures are not 

known, generative networks can directly propose them based on function-structure relationships 

learned from domain data, and this domain data can even be generated and characterized by the 

model itself for closed-loop chemical searches in an active learning framework. With recent 

extensions, these models are compelling techniques for looking at chemical reactions and other 

data types beyond the individual molecule. Furthermore, the approaches are not limited by choice 

of model architecture or chemical representation and are expected to be helpful in a variety of data 

scarce chemical applications.  
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 INTRODUCTION 

Whether we consider the development of new medicines, devices for energy storage, or 

membranes for water purification, our future is largely contingent on our ability to create 

specialized chemistries. These excursions into the unknown are monumentally difficult (the 

material and time costs to bring a new drug to market, for example, are enormous) because they 

require us to grapple with the problem of data scarcity. Our scientific approaches are guided by 

the work that came before us, the “giants” on whose shoulders we stand and whose data we rely 

on. What happens when the information that we do have available is not enough to guide us 

towards the next step, and we have nowhere to stand? While computational techniques have 

emerged as powerful resources, allowing us to efficiently explore design spaces before committing 

time and resources to wet-lab trials, high throughput computation alone cannot save us from data 

limitations. To this end, I have focused my PhD work on devising ways to help overcome this 

fundamental issue of data scarcity in the chemical sciences. The results of this work may be 

broadly recapitulated into three categories of research: i) improved prediction of the application 

properties of small molecules, ii) improved generation of new compounds expressing desired 

properties, and iii) extensions of these approaches to chemical reaction data. 

1.1 Improved Property Prediction 

In a perfect scenario, the answer to the problem of limited data is simply to collect more. However, 

for chemical data it is often infeasible to do so, whether due to cost, safety, or the urgency of the 

problem at hand. There is also no guarantee that further experimentation will lead to a useful result. 

Indeed, one of the critical bottlenecks in the search for a new material lies in the search for and 

screening of potential candidate molecules, the vast majority of which are unsuccessful. 

Computational methods have served admirably in this regard, providing avenues for high 

throughput screening and characterization of molecular candidates. However, physics-based 

modeling provides accuracy commensurate with the level of theory applied. For the precision 

required in chemical applications, common approaches such as DFT are not suitable for high-

throughput exploration of chemical space.  
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Statistical approaches, including machine learning (ML), provide an alternative route to 

property prediction, inferring properties from structure based on learned trends. Ordinarily, these 

methods would be subject to the same data scarcity constraints outlined above; however, these 

methods provide a means to automatically extract the latent topological features that correlate with 

certain property expressions. As all chemical features are fundamentally based on molecular 

topology, it is intuitive that related features are described by similar structural arrangements. Now 

consider the case where an experimental property, or high-cost computational property, is desired 

but available in limited numbers, but a correlated property may be calculated quickly and in 

abundance. Naïve structure-function relationships may be learned on abundant data and fine-tuned 

on sparse data to properly predict the feature of interest. The bulk of the physics may then be 

learned on the abundant data, with the deviation at higher levels of theory learned on the high-

accuracy data. This approach is utilized in the improved prediction of experimental aqueous pKa 

from chemical structure by leveraging data from free energy calculations, and further explored in 

the improved prediction of bandgap at the DFT level utilizing information from semi-empirical 

calculations. 

1.2 Inverse-Design Approaches 

The number of possible candidates may often preclude efforts to fully enumerate a materials design 

space in the hopes that a match will be found. An attractive alternative is found in the inverse-

design approach: directly predicting a structure exhibiting a specified property. Although this 

concept has existed for decades in the literature, it is only within the last decade that the inverse-

design problem has been made computationally tractable with the advent of deep-learning 

approaches. Preliminary results have been promising, but the general problem of inverting function 

to structure remains unsolved. The problem is further exacerbated by data limitations, making it 

even more difficult to learn which structural features give rise to particular property expressions. 

Failure modes are thus observed in the form of outputs that do not correspond with accessible 

chemistries, such as chemical formulae that violate basic valency rules, or reasonable outputs that 

do not match the desired properties. These failure modes, an inability to generate valid structures 

and an inability to predict the properties of the proposed structures a priori, are related. Training 

the model to predict properties that are first-order functions of the chemical topology, such as the 

dependence of zero-point vibrational energy on the number and type of covalent bonds present in 
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a structure or the relationship between internal energy and the number of atoms present, provides 

the generative process with additional information on the structure-function relationship of valid 

compounds. The transferred information can then help the model to propose valid chemistries, 

even when the primary property target is in an extrapolative region, by ensuring energetically 

reasonable connectivity. This transfer learning approach for improved generative performance is 

examined for the case of generating new molecules with optimized bandgap and internal energy. 

In other applications, the desired functionalities may be so distinct from the available 

training data that it no longer becomes a question of distilling more chemical information, but of 

acquiring more information in those underrepresented regimes. Active learning is a favorable 

paradigm for this problem, where the model can indicate the maximally informative data it needs 

to train on to reach the target objective. A generative chemical model with good predictive 

capability can generate new data that is at least close to the desired functionalities; the model can 

iteratively retrain on the new data that it itself is suggesting to gradual improve its understanding 

of the necessary chemistries to reach the target range. Active learning is particularly well suited 

for multi-target chemical design, where high dimensionality of the target parameter spaces can 

lead to limited representation even in substantial databases and is demonstrated in this work in the 

generation of compounds with simultaneous vertical ionization potential, electron affinity, and 

dipole moment targets. 

1.3 Machine Learning for Chemical Reactions 

Assuming that a generative chemical model can propose a candidate molecule representing valid 

chemistry and displaying the desired application properties, one question still remains: can it be 

synthesized? Answering this question requires consideration of not only distinct molecules, but 

also the chemical reactions that connect them. Recent approaches to inverse-design have attempted 

to ensure synthesizability by constraining models to operate with chemical reactions rather than 

molecules; for a given output, not only is a target molecule obtained, but also the necessary 

reactants. Unfortunately, just as the outputs of a chemical model are not guaranteed to be valid, 

the proposals of a reaction-based model often do not correspond with thermodynamically or 

kinetically favorable reactions. 

 However, just as the reaction case shares the drawbacks of the individual molecule problem, 

it also mirrors many of the same solutions. By including relevant thermodynamic reaction data 
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during training, generative reaction-based models can be biased to propose reactions that tend to 

be thermodynamically favorable, while also producing products that display desired properties, 

thus emerging as a necessary condition for further model development. In particular, the final main 

body chapter of this work outlines how a bandgap optimization problem may be improved by 

folding in enthalpy of reaction data, leading to optimized products and a feasible reaction pathway 

to attain them. Avenues for overcoming data scarcity in chemical engineering are thus provided 

from the level of individual molecules up to one-step chemical reactions. 

1.4 Dissertation Outline 

Chapter 2 provides an overview of the guiding theory behind this work. The origins of the materials 

search problem are discussed, starting with forward approaches of predicting function from 

molecular structure. After describing traditional approaches, ML approaches are then introduced. 

A brief history and review of ML fundamentals follows, after which the inverse-problem is 

formally introduced. Traditional approaches are recapitulated before modern deep-learning 

methodologies are discussed. This chapter concludes with a discussion on the transfer learning 

methodologies central to much of this work.  

 Chapter 3, “Improved Chemical Prediction from Scarce Data Sets via Latent Space 

Enrichment”, discusses a transfer-learning based approach to improving the prediction of aqueous 

pKa/pKb of small molecules through the use of free-energy change calculations performed in 

excess.  

 Chapter 4, “Simpler is Better: How Linear Prediction Tasks Improve Transfer Learning in 

Chemical Autoencoders”, provides an enhancement to the methodology discussed in the previous 

chapter through use of a novel autoencoder architecture, and also demonstrates its effectiveness 

on a wider array of properties across varying levels of data scarcity. 

 Chapter 5, “Improving the Generative Performance of Chemical Autoencoders through 

Transfer Learning,” provides insight on how generative chemical models may be improved 

through the inclusion of relevant chemical property data. In particular, an improved ability to 

generate new molecules with targeted internal energy and bandgap is demonstrated.   

 Chapter 6, “Actively Searching: Inverse Design of Novel Molecules with Simultaneously 

Optimized Properties”, introduces an active learning framework to improve the performance of 

generative chemical models when operating under multiple functional constraints or other 
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especially data-scarce regimes. The approach is demonstrated for optimization of dipole moment, 

electron affinity, and vertical ionization potential, both simultaneously and individually, in 

extrapolative and interpolative sampling paradigms. 

Chapter 7, “Thermodynamic Property Prediction Improves Structural 

Realism/Synthesizability/Accessibility of Deep Generative Models”, discusses some of the most 

recent reaction-based approaches to generative chemical models, and illustrates how their rapid 

proliferation may have come at the expense of focusing on experimentally accessible compounds. 

The dangers of thermodynamically unconstrained molecular design are demonstrated with respect 

to synthetic feasibility, and a demonstration is provided for the case of bandgap that the inclusion 

of thermodynamic reaction data is a crucial component of ensuring the experimental feasibility of 

materials suggested by ML-based routines. 

Chapter 8 summarizes the key findings of this work and suggests avenues for continued 

research. A forecast for future work in the field is also provided. 
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 LITERATURE REVIEW 

2.1 Background 

Clean water and sanitation. Affordable and clean energy. Industry, innovation, and infrastructure. 

Good health and well-being. These represent a small variety of the United Nations’ Sustainable 

Development Goals for 2030, identified as critical milestones in the attainment of a sustainable 

future.[1] These goals are all ambitious, multi-faceted, and necessitate broad, multidisciplinary 

approaches, but what the quoted goals above, in particular, all share is a significant materials 

development aspect. From the creation of advanced membranes for water filtration and fuel cells, 

to rational drug design and optimization, the research, development, and deployment of novel 

materials will prove crucial in working towards these goals. For many applications, materials that 

exhibit the requisite properties do not yet exist. However, what we do not lack are opportunities to 

solve these problems; there are estimated to be more synthesizable molecules (on the order of 1060 

distinct structures) [2] than there are stars within the universe.[3] For a given materials problem, 

it is not an overgeneralization to suggest that a compound could be created to exactly solve it. But, 

it is within this vast chemical space that a truly daunting challenge emerges: our coverage of this 

chemical space is woefully limited, with an estimated 108 unique molecules in the subset of 

synthesized compounds.[4] Even accounting for nearly synthesizable structures, our exploration 

brings us comparatively no closer, with 1020 – 1024  imminently synthesizable compounds 

estimated.[5] 

 The design of novel compounds forces us to grapple with the problem of data scarcity, and 

its reconciliation entails an enormous expenditure of resources. The latest estimates for the cost to 

bring a new drug to market now exceeds 1 billion USD and requires a thirteen year development 

cycle on average.[6],[7] These figures are representative of a design problem with standardized 

approaches and a mature interconnection between government and private sector actors (since 

much of the early formalization of the molecular search problem has its origin in rational drug 

design). If we consider the general case, estimates of lab-to-market translation time can exceed 

three decades.[8] The problem is made even more apparent when we consider the urgency of the 

problems for which these novel materials are intended to solve, from drug design to efficient 

energy storage media. Although high-throughput assays and other experimental screening 
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techniques are powerful in their own right,[9] full experimental exploration of chemical space is 

an intractable problem. There are simply not enough resources, researchers, or time to fully explore 

even a massively constrained design space. Thus, while many material advances have been made 

by contemporary material development workflows, some of the most important materials 

discoveries (such as the discoveries of Teflon and Kevlar, among others) have relied upon luck.[10] 

 In regard to more efficient screening and procurement of chemical data, computational 

resources have long been a powerful ally against data scarcity in chemical science. Methods such 

as density functional theory (DFT) are now common tools for the synthetic chemist or catalyst 

researcher. DFT and other physics-based simulations leveraging quantum chemistry and/or 

molecular dynamics allow us to accurately probe chemical systems without devoting additional 

resources to experimental study. Of course, their utility goes beyond simply serving as surrogates 

for experimentation. The parallelizability of computational methods on modern hardware allows 

chemical and parameter spaces to be surveyed at scales far exceeding what is experimentally 

possible.  

 One of the earliest frameworks for computer-aided chemical design thus emerged in high-

throughput virtual screening (HTVS).[11] In HTVS, computational methods are used to down-

select molecular candidates for more accurate simulations or experimental analysis. It is the 

imposition of this “computational funnel” coupled with automatic techniques to rapidly address 

problems normally requiring significant time scales that generally defines the high-throughput 

formula. HTVS has enjoyed exposure as a tool for drug design, and has also found recent success 

for energy materials, such as the US Government’s Materials Genome Initiative and the Harvard 

Clean Energy project.[12] Here, distributed computing resources were used to obtain DFT-level 

geometry and electronic structure calculations for over 3 million photovoltaic candidates, several 

of which were down-selected for synthesis and successfully tested in photovoltaics. 

 Despite the force multiplication that computational methods bring, the success of a HTVS 

approach still depends on intelligent deployment of these resources. Statistical approaches such as 

Monte Carlo methods allow for efficient sampling of probable candidate molecules to avoid 

explicit enumeration of entire chemical spaces.[12] However, even enhanced sampling techniques 

still require validation at each step, thus the search time is still limited by the efficiency of the 

property calculation method. Rather than relying on physics-based simulation, from an early stage 

computational chemists have considered the possibility of data-driven approaches to property 
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prediction, where the structure-function relationships are not rigorously calculated but inferred 

from the available data.[13] Data science techniques, and later machine learning methodologies, 

arose to fill this need. 

2.2 Machine Learning Fundamentals 

2.2.1 Origins and Motivation 

Before discussing the applications of machine learning in chemical science, the origins and 

contemporary definitions of the terms “neural network” and “machine learning” need to be 

explained. Modeling their work after the approximate function of biological neurons, which accept 

signals from other cells and “fire” or send a signal of their own if a certain threshold is reached 

(e.g. pain, cold, instructions to move a body part), McCulloch and Pitts posited the idea of an 

“artificial neuron” in 1943, comprising a mathematical model where numerical inputs could be 

summed and produce a binary output; 1 if a defined threshold is reached, 0 otherwise.[14] Despite 

the simple premise, the authors there and in subsequent work provided mathematical proof that a 

sufficiently complex network of these neurons (i.e. a “neurological network”) could model any 

logical function, even approximating the function of the optical nerves for detecting spatial 

patterns.[15] Imagining the monolithic computers of the time, with connections between 

computing elements facilitated by manually plugging in wires and inputs provided via punch card, 

it is easy to see how the term “machine learning” rose to prominence around this time.[16] 

Although there was much excitement surrounding the concept of the artificial neural network, 

including machines that could play checkers and simple games, it nonetheless took over a decade 

for these concepts to be consolidated into a general approach.  
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Figure 2.1: Rosenblatt’s original perceptron formulation. Modern perceptron frameworks can be 

considered a more general approach than Rosenblatt’s, and do not include the “Retina” or 

“Associative units” intended to mimic biological vision processing. Figure reproduced from [23] 

 

In the mid-1950s, Rosenblatt brought the theories of neural computing to a practical 

implementation with his development of the “perceptron.” Modeled as a generalized class of 

networks that attempt to model the processes of the human brain, the perceptron has become a 

term that remains familiar even today as a fundamental element of machine learning. [17] Figure 

2.1 provides insights into one of its earliest implementations and demonstrates how these early 

approaches mimicked proven-biological processes to solve tough problems such as image 

recognition. Inputs from “associative units” reading punch cards are subjected to a weighted sum. 

If this sum exceeds a threshold value, the “response unit” outputs a value of 1, or 0 otherwise. This 

Heaviside “activation function” was intended to mirror the activation of a biological neuron in 

response to stimulus. In today’s machine learning parlance, what Rosenblatt referred to by 

“perceptron” would now be considered a specific type of perceptron, “neuron”, or “node” and the 

terms are often used interchangeably, although perceptron as a standalone unit has fallen out of 

favor outside of the context of “multi-layer perceptrons” which will be discussed shortly. Note that 

there appears to be a case of circular referencing in the literature with respect to the original form 

of the “perceptron.” While Rosenblatt later constructed a specific device implementing the 

perceptron idea, the “Mark 1 Perceptron”, Rosenblatt notes in his 1962 book “Principles of 
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neurodynamics; perceptrons and the theory of brain mechanisms” that he intended for “perceptron” 

to refer to a class of neural networks rather than a specific device.[18] 

2.2.2 The Neuron 

A neuron is a computational model that accepts a set of inputs x and scales them according 

to w, its set of weights. The sum of these elementwise multiplications, along with the addition of 

a bias or intercept term b, are operated on by an activation function, f in Figure 2.2, which defines 

the output of the network y.  

Activation functions for the final output of a neural network (the single neuron in this case)  

 

 

Figure 2.2: Schematic of a neuron. More advanced network architectures are possible by various 

combinations and connections between multiple neurons. 

 

are largely mediated by the intended problem that is to be modeled. For regression of a real-valued 

variable, a variety of non-linear activation functions or a simple linear combination can be used. 

In the latter case, the single neuron would simply reduce to a linear regression, as 𝑦 = 𝒘𝑻𝒙 =

∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖𝑛𝑝𝑢𝑡𝑠
𝑖=1 . For binary classification tasks, a step function was historically used to 

distinguish between two classes (0 or 1). This “single layer perceptron” is fairly limited in the 

problems it is capable of addressing. It cannot, for instance, model the XOR logical operator, nor 

can it in general handle problems that are not linearly separable.[19] 
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2.2.3 Multi-Layer Perceptrons 

 Despite the limitations of the single perceptron, by connecting multiple perceptron units 

together in a “feed-forward” fashion, such that the outputs of a given “layer” of perceptrons are 

the inputs to the next layer, a much wider variety of problems may be solved. Consider the network 

presented in Figure 2.3. It consists of 3 layers: an input layer that simply feeds in the input features, 

an output layer that computes the objective, and between the two is an additional “hidden” layer, 

so called because its output values are not outwardly observed. Each input value is separately 

connected to each hidden node with its own weight. Each hidden node then computes an output 

value in exactly the same fashion as the single perceptron described earlier, as  ℎ𝑖 =

𝑓(∑ 𝑤1,𝑖𝑥𝑖 + 𝑏ℎ
𝑖𝑛𝑝𝑢𝑡𝑠
𝑖=1 ), where f is the activation function, the subscript 1 denotes the first node, 

and the subscript i indexes the input nodes. The subscript h denotes the constant bias term within 

the layer. As an example, h1 in Figure 2.3 may be computed as ℎ1 = 𝑓(𝑤1,1𝑥1 + 𝑤1,2𝑥2 +

𝑤1,3𝑥3 + 𝑤1,4𝑥4 + 𝑤1,5𝑥5 + 𝑏ℎ), with analogous expressions for the other nodes.  

Couching the weight and bias terms as elements in multidimensional tensors, the output of 

the hidden layer may be represented by the vector h = f(wh
Tx+bh), with the activation function 

operating in elementwise fashion. Similarly, the output of the network can be represented as y = 

g(wo
T + bo), where here the subscript o indicates the output layer, and this matrix representation 

allows for efficient network calculations. Crucially, the connections between the hidden and output 

layers must be governed by nonlinear activation functions, or a network of any depth will 

mathematically collapse to the single layer perceptron case. In modern applications, this activation 

function typically takes the form of the rectified linear unit (ReLU) due to easy and favorable 

gradient calculations. [20] Now, the hidden layers can be thought of as a nonlinear transformation 

of the input features into a space where the target function may be approximated. A sufficiently 

large “multi-layer perceptron” with nonlinear activation in the hidden layers is capable of 

approximating almost any function.[21],[22] 
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Figure 2.3: Schematic of a multi-layer perceptron. Inputs are passed to a hidden layer and nonlinear 

activation function prior to being operated upon by the output node. "Deep" neural networks are 

simply those with more than one hidden layer and are capable of capturing highly nonlinear and 

complex relationships in the input data. 

 

 The question of course arises as to how that target function is approximated. This question 

may be answered by considering a regression task as an example. For a given input, xi the model 

will produce an estimate yi. that should ideally match the true target value �̂�𝑖, that is, the difference 

between the two must be minimized. The “training” of a neural network can thus be approached 

as an optimization problem, with the goal of selecting the weights and biases which minimize an 

error or cost function that describes the objective of the network. In the case of regression (chosen 

for simplicity, not as a limitation), a suitable loss function may be defined in terms of the mean-

squared error (MSE) between the predictions and target values, or 𝐽𝑖(𝒘, 𝒃, 𝒙𝒊) =
(�̂�𝒊−𝒚𝒊)𝟐

𝟐
. MSE 

tends to be a better choice than mean absolute error (MAE) for regression because it more greatly 

penalizes outliers and is continuously differentiable, although MAE is commonly used as a readily 

interpretable metric during model training. MSE can also be used for classification problems, but 

cross-entropy is typically a better option when dealing with probabilities of classes 
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2.2.4 Gradient Descent and Backpropagation 

For an entire set of input samples, the loss function is computed as the average across all 

instances, or 𝐽(𝒘, 𝒃, 𝒙) =
𝟏

𝒔𝒂𝒎𝒑𝒍𝒆𝒔
∑

(�̂�𝒊−𝒚𝒊)𝟐

𝟐

𝒔𝒂𝒎𝒑𝒍𝒆𝒔
𝒊=𝟏 .  To optimize the neural network (that is, the 

function it is approximating) for a fixed set of data, it is necessary to find the set of network weights 

and biases (w and b) that minimize the loss function. For a nonlinear and often non-convex 

problem, gradient descent provides an efficient method for adjusting the parameters of the network. 

As the name would imply, gradient-descent based approaches involve computing the derivative of 

the cost function with respect to the parameter of interest. The gradient provides the direction of 

greatest change of the loss function with respect to the given weight/bias, and by descending along 

this direction the loss function may be minimized. Thus, for a given iteration of gradient descent, 

the network weights (and biases with an analogous expression) may be updated as 𝒘𝑡+1 = 𝒘𝑡 −

𝜂∇𝐖𝐭
 𝐽(𝒘𝒕, 𝒃𝒕, 𝒙), where 𝜂 represents the learning rate, a term which describes how large of an 

adjustment should be made in the direction of the gradient. The major difficulty lies in computing 

the gradient of the loss function with respect to each weight. The gradient further away from the 

output of the network depends on the values of the weights that follow it. Despite the limitations 

of single layer perceptrons being known even in Rosenblatt’s time, as well as how deeper networks 

could resolve some of the problems, lack of a procedure for adjusting the parameters of such a 

network meant that deep neural networks were infeasible until the popularization of the 

backpropagation algorithm.[23] Backpropagation provides a systematic approach to calculate the 

gradient with respect to the parameters at any location in a network. Applying the chain rule, 

derivatives computed at the output of the network are used to determine derivatives at earlier 

positions in the network. This process is repeated until the gradient has been computed with respect 

to all network weights/biases. As an example, for the MLP under consideration (Figure 2.3), the 

derivative of the loss function with respect to the weights associated with the hidden layer of the 

network, 
𝜕𝐽

𝜕𝑤1
, can be computed to be a function of the output of the hidden layer via chain rule as 

𝜕𝐽

𝜕𝑤1
=

𝜕𝐽

𝜕𝑧ℎ
×

𝜕𝑧ℎ

𝜕𝑤1
. While the second term in the right side may be computed directly, the derivative 

with respect to the raw (i.e., prior to being operated on by the activation function) output from the 

hidden layer is unknown and must be determined by derivatives further down the network. The 

full expression for the gradient at the hidden layer may be represented as  
𝜕𝐽

𝜕𝑤1
=
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𝜕𝐽

𝜕𝑦
×

𝜕𝑦

𝜕𝑧𝑜
×

𝜕𝑧𝑜

𝜕ℎ
×

𝜕ℎ

𝜕𝑧ℎ
×

𝜕𝑧ℎ

𝜕𝑤1
 , with analogous expressions for the other weights and biases at the 

hidden layer. Looking at the terms of the expression from left to right, the backwards propagation 

of errors becomes clear. First the derivative of the loss with respect to the network output is 

computed, then the derivative of the network output with respect to the output prior to activation, 

followed by the derivative of the output prior to activation with respect to the activated output of 

the hidden layer, and so on, moving backwards from the output until the error reaches the 

parameter under consideration. Through the use of backpropagation, the gradient of the loss with 

respect to any parameter in the network may be obtained, thus allowing for the use of gradient 

descent for optimization.  

2.2.5 Training a Neural Network in Practice 

There are, however, a few caveats. For a large dataset, computing the loss function across 

the entire dataset may be computationally prohibitive. Additionally, considering a modern network 

with millions of tunable parameters (Imagenet, a common model for image detection contains 60 

million adjustable parameters[24]) modeling very nonlinear problems leads to a loss surface that 

is extremely-high dimensional and decidedly non-convex. Moving in the direction of the “true” 

gradient may lead directly into a saddle point, a point where the gradient is zero, but does not 

represent an extremum as the loss function increases/decreases in the neighboring regions. If 

parameter adjustment is based solely on the gradient, the optimization will be unable to escape this 

point as all step sizes will be zero. Now, rather than computing the loss function based on the entire 

set of training data, consider the case of performing the calculation and weight update on a subset 

of the data. Calculation of the gradient on this subset, which can range from size 1 (stochastic 

gradient descent) to the number of samples less one (minibatch gradient descent) should provide 

a reasonable, but noisy estimate of the true error due to variations within particular random subsets 

and outliers. This stochasticity can allow the network to still converge to a minimum on the loss 

surface, while providing it an opportunity to escape from saddle points or even shallow local 

minima. In fact, optimization with stochastic gradient descent is guaranteed to converge to a local 

minimum, and in the case of a convex loss surface, optimization will converge to the global 

minimum.[25],[26] Additionally, the requirement to compute the gradient only with respect to a 

small subset of the data is much more computationally efficient, making it well suited for large 
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datasets and allowing for more frequent weight updates. Thus, some form of batch gradient descent 

(with the batch size referring to the number of samples used in the gradient calculation) is observed 

more often than true gradient descent. There are several other commonly used optimization 

algorithms used in machine learning, such as Adam[27] and RMSprop1, among others [28], but an 

understanding of gradient descent lays the groundwork for understanding these newer methods. 

These approaches build off of standard gradient descent, but typically add an additional parameter 

such as a regularization term to control network weight magnitudes to prevent overfitting, or 

momentum and momentum-like terms that mix in information about the gradient at previous 

timesteps to aid in convergence and avoiding shallow local minima. Regardless of the choice of 

algorithm, each parameter update is referred to as a “step” and a complete pass through all of the 

inputs is known as one “epoch”.   

2.2.6 Training, Validation, and Testing Sets 

As the goal of a predictive statistical model is not necessarily to maximize performance on 

known data, but rather to provide insights on new data, it is critical that the generalizability of a 

neural network be demonstrated. This demonstration is often performed by inference on a test set. 

To contrast the set of data used for training the network, the test set is completely isolated from 

both the network and those developing it. Once fully trained, the network’s performance on this 

unseen data illustrates how well it generalizes. A model which performs poorly on the testing set 

despite good performance during training is said to be overtrained; the model has isolated some 

nuances of the training set that are not present or that do not describe the data as a whole. As failure 

on the testing data would necessitate a complete redo of the data selection, training, and evaluation 

procedure, it is worthwhile to have some gauge of how the model will perform on new data. Further 

splitting the data into a training, testing, and validation set can help in this regard. The validation 

set is also not utilized in training the model; however, at any time the model/user can perform 

inference on (or look at) the data to estimate general performance. The distinction between 

validation and testing data is made because information from the validation set may still leak into 

model development; while it will not directly affect the weights of the network, it can influence 

 
1 Despite its prominence as an optimization algorithm for machine learning applications, RMSprop was never formally 

published, and instead owes its provenance to a lecture by George Hinton, linked here for reference: 

https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf 
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the choice of network architecture and training parameters (batch size, learning rate, number of 

epochs, etc.) and thus represents a biased estimation of generalizability. 

Typical heuristics for training/validation/testing splits typically follow a 70-80/10-20/10-

20 split as a percentage of the available data. In very data scarce scenarios, it may not be feasible 

to utilize an independent validation set as withholding this data will have notable effects on the 

network performance. In these situations, cross-validation is a frequently used technique.  

Although there are various formulations, a commonly observed example can be found in k-fold 

cross validation. Here, the data is first split into k folds. One fold is withheld for validation, and 

the remaining k-1 folds are utilized for training. This process is repeated for all k folds, such that 

all data has a chance to be in both the training and validation sets, and results are averaged across 

the folds to determine the set of network parameters that, in general, provide the best results. 

2.2.7 Other Network Architectures 

Convolutional Networks 

The multi-layer perceptron is the simplest and most common form of deep neural network 

observed today, and an understanding of them predicates an understanding of other network types. 

However, the large number of parameters of deep MLPs and their corresponding training difficulty 

has motivated the development of other neural network architectures that more judiciously add 

parameters to address features common to many learning problems. Two of the most important 

alternative architectures for chemical data are the convolutional neural network (CNN) and the 

recurrent neural network (RNN). 

The key feature of the CNN archetype is the use of convolutional layers. These layers, 

demonstrated in Figure 2.4, consist of a matrix of weights, known as a kernel or filter, in an 

analogous fashion to the weights of an MLP. The key difference lies in how the weights are 

connected to input features. For a given input matrix, the kernel will convolve about it. The nature 

of this convolution varies on the dimensionality of the input data, but typical applications see either 

a one-dimensional convolution (where the kernel moves either left-right or up-down across the 

input data) or two-dimensional convolution (where the kernel winds around the input matrix in a 

series of one-dimensional steps both up-down and left-right). For Figure 2.4, the convolution 

proceeds as follows. The kernel is first centered at the top left of the input. Element-wise 
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multiplication is performed across all cells where the kernel and input overlap, and these values 

are summed to produce the corresponding value on the feature map. The kernel then convolves to 

the next 2x2 submatrix to the right. Once it reaches the edge of the input matrix, it wraps back 

around to the leftmost side of the input matrix, now shifted one row down. This proceeds until the 

kernel has convolved across the entire input matrix and produced a feature map as output.  

 

 

Figure 2.4: Operation of a convolutional layer with one kernel (center matrix) operating on an 

input matrix (left) to produce a feature map (right) as output. The highlighted green square 

indicates the superposition of the kernel in its first position over the input matrix and the red 

highlighted square in the feature map denotes the output of this operation. The remaining elements 

of the feature map corresponding to the full set of convolutions is also shown. 

 

 Note the nature of the output feature map. High values in the input matrix do not necessarily 

correspond with high values in the output. Rather, there is a spatial dependence between the input 

and the signal passed through the network. For this given kernel, only high values in the right 

diagonal will produce a high output value, such as in the third column, first and third rows in the 

feature map of Figure 2.4. High values in the left diagonal are not picked up, as observed in the 

third column, second row of the feature map. This ability to detect spatial relationships within data 

has been a primary driver in the development and deployment of CNNs. They have been widely 

employed in image detection tasks, where the filters can detect edges and other features specific 

to classes of objects they are attempting to detect. As the weights of a filter are updated during 

training, just as the weights of an MLP are updated, not only do these spatial features need not be 

explicitly hardcoded, they are in fact learned as a part of training so that the network can identify 

those features most relevant to the objective at hand (usually classification). These learned features 

are often not human interpretable, yet have been demonstrated to outperform expert selected 

heuristics.[29] For chemical data, the kernels may learn to detect spatial relationships in the input 
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tensor which are directly related to spatial relationships within the corresponding molecular graph. 

A given layer of a convolutional neural network may have multiple kernels of various sizes, 

allowing each filter to detect specific input that describe particular moieties, such as particular 

functional groups or a ring of a given size. Crucially, the use of CNNs allow these features to be 

automatically inferred from the data. 

Recurrent Neural Networks 

In addition to spatial dependence, another key relationship to expose lies in temporal variation, 

where previous inputs have bearing on future outcomes (and vice versa). Natural language 

processing is a classic example of a situation where it is vital to capture temporal relationships. If 

a given input is an adjective, for instance, the next input becomes relatively constrained as either 

a noun or another adjective. Without capturing this dependence, a network designed to translate 

languages, for instance, could make the obvious mistake of connecting word types that do not go 

together, or transposing words in the wrong order. Even if these trivial syntactic errors are 

restricted via hand selected output rules, a network could easily “forget” its place in a sentence. 

All of the output words could be used properly and be in the proper positions, but without any 

knowledge about the context of the input the network is operating on, the underlying meaning 

could be lost. Ideally, the network should be able to leverage information about its prior outputs 

to inform its future decisions; this is the idea behind recurrent neural networks. As the schematic 

in Figure 2.5 demonstrates, at each successive timestep yi, the previous outputs are mixed in to 

provide a more accurate prediction.  
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Figure 2.5: Example of a recurrent neural network architecture for text processing. The architecture 

shown here mimics that of Figure 2.3, but with the addition of a feedback loop that allows for 

network outputs at each timestep to influence subsequent output. 

 

Although processing molecules with string representations leads to difficulties in producing 

meaningful output, as the characters within a representation such as a SMILES string (defined in 

Chapter 2.3 below) must be self-consistent, it also provides the opportunity to borrow techniques 

perfected for language and text processing. These include advancements in recurrent neural 

network design, such as long short-term memory units (LSTMs) and gated recurrent units (GRUs) 

that have become staples of generative chemical models. 

2.3 Molecular Representations 

Consider the generic neural network defined in the previous section, which accepts some 

numerical data as input, and through a series of weighted sums and nonlinear transfer functions 

outputs some numerical value such as a class or property value. A question that immediately arises 

is: how can a neural network operate on molecular input? In comparison to image recognition, 

where the input domain naturally consists of real valued tensors (e.g., a bitmap image), it is not 

obvious how to represent molecular data in a machine-readable format. While a Lewis structure is 

immediately recognizable to a trained person, and encodes all necessary information about 

bonding arrangements, atom types, aromaticity, stereochemistry, and other salient chemical 

features in a human interpretable fashion, it lacks uniqueness and has a spatial dependence and a 

particular context that would be a challenge for a machine to identify, let alone perform useful 
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operations with.[10] However, the drawing of a Lewis structure represents a graph structure, where 

the atoms are nodes and the bonds are edges between the nodes. Representations can be utilized 

that take advantage of this natural graph structure, such as the Simplified Molecular Input Line 

Entry System, or SMILES.[30] A SMILES string consists of the heavy atoms within a structure, 

with positional arrangement in the string corresponding to traversal through the graph across 

connected atoms. The string CCO would represent ethanol, c1cccc1 would represent benzene (the 

use of lowercase letters represents aromatic atoms, with the “1” characters representing a ring 

opening/closure), and C#C would represent acetylene, as a few examples. While a given molecule 

may have multiple SMILES strings, a “canonicalization” convention exists to guarantee a 

standardized, unique SMILES for a given molecule regardless of the method used to generate it. 

While other, potentially more explicit string-based methods such as InChI exist, they have largely 

fallen out of favor for machine learning applications due to a more complex string “grammar” 

which requires arithmetic to fully parse and are difficult for a neural network to learn to interpret.  

 To then convert a 1D machine readable text format into one accessible by a neural network 

(i.e., a real valued tensor) a common approach is to form a “one-hot encoding”. Here, a matrix is 

constructed with a number of rows equal to the maximum size of the string (as neural networks 

require input of a fixed size) and columns equal to the possible characters in the string (e.g., “C”, 

“O”, “N”, “1”). Reading down a string (and thus down the rows of the one-hot encoding) a “1” is 

placed corresponding to the column of the observed character, and a “0” is placed elsewhere. This  
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Figure 2.6: Several of the most common molecular representations used for computational 

chemistry and machine learning. Representations are all equivalent to the structure denoted by the 

ball and stick model in the center. Figure adapted from [10]. 

 

process is repeated until the entire string has been embedded in the one-hot encoding matrix, with 

strings that fall below the maximum length being “padded” out to the fixed size with a “blank” 

character that has a corresponding column in the encoding matrix. The one-hot encoding, with 

binary elements, can be fed directly as input to a neural network. 

 There are numerous other chemical representations in use, some of which are illustrated in 

Figure 2.6. A notable example for machine learning applications is the molecular fingerprint. A 

hashing function can be applied to a molecular graph to identify the presence or lack of certain 

molecular features, which are stored in a fixed length vector. The hashing function, and thus the 

relevant features, can either be calculated via a fixed function [31] or the hashing function may be 

learned as part of a neural network.[32] Determination of optimal chemical representations is still 

an active area of research.[33],[34],[35] 
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2.4 Machine Learning for Chemical Science 

Statistical approaches can connect structural features with target properties, obviating the need for 

expensive physics-based simulations. Identification and application of quantitative structure-

activity/property relationship (QSAR/QSPR) models have long played a role in computational 

design of pharmaceuticals, [36] where it was discovered that many important drug-target features 

could be expressed as linear (and later more complex) functions of some structural parameters, 

such as the pH at which extraction of antimalarials occurs as a function of molecular weight.[37] 

More advanced statistical methods, such as support vector machines, [38] provided the opportunity 

to unearth more complex structure-function relationships, from classifying molecules based on 

their drug-likeness [39] to the design and subsequent experimental validation of anticonvulsants. 

[40] Modern deep-learning approaches, however, were not known to the literature until 2012, 

when a deep-neural network won a competition held by Merck to predict drug targets on a set of 

withheld testing compounds, beating out teams of chemists and other domain experts.[36] Deep 

learning approaches for drug screening have since enjoyed success in the prediction of aqueous 

solubility of lead-compounds, [41] a wide variety of toxicity prediction problems, [42],[43],[44] 

and drug-drug and drug-food interaction prediction [45] as a few examples, with toolboxes and 

automated frameworks still an active area of research.[46] Applications beyond drug design have 

burgeoned in the meantime, including prediction of atomization energies [47], determination of 

the ability of electrolytes to inhibit dendrite formation, [48] and computational routines that may 

allow for the prediction of quantum chemical properties to within a greater accuracy than DFT 

alone.[49] 

 As a direct example of the potential for deep-learning to assist in the HTVS process, 

researchers lead by Alán Aspuru-Guzik developed a HTVS approach to design organic LEDs.[50] 

With a starting set of over 1.6 million candidate molecules obtained via a fragment growth 

procedure, traditional physics-based simulation at the required time-dependent DFT (TD-DFT) 

level was infeasible. To efficiently pare down the search space, the authors trained a deep-neural 

network to accept a molecular structure as input via molecular fingerprint and to output a 

prediction for the decayed fluorescence rate constant. Only those candidates falling within the 

specified bounds for the rate constant were considered for the next stage of the computational 

funnel and subjected to the expensive TD-DFT calculations. As a result of this ML-aided HTVS 

process, they were able to synthesize and experimentally validate the proposal of new OLED 
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candidates with high external quantum efficiency. This work and subsequent examples in 

screening for bimetallic catalysts [51] and clean energy materials, [8] among others, have proven 

the utility of ML as a complementary technique in the HTVS process across a variety of disciplines. 

2.5 The Inverse Problem 

Regardless of the usage of enhanced sampling techniques and methodologies to speed up 

computation, the key drawback of the HTVS process remains: it is, at its core, a trial-and-error 

approach. A closed set of substances is obtained that ideally contains a sufficiently optimized 

structure, and hopefully that structure is not missed when explicit enumeration is avoided. Even 

iterating on this procedure and broadening the search space at each step using the knowledge 

gained from previous trials still represents limited, incremental advances in chemical space. Rather 

than attempting to “catch” a target molecule by searching across structures until one with the 

desired properties is found, it would be more efficient to invert this procedure and directly 

determine a suitable structure displaying a given property. The idea of “inverse-design” is fairly 

old, with an appearance in the literature as early as 1983 in the context of protein folding.[52],[53] 

Here, and in subsequent work [54], the desired conformation of the protein backbone is first 

specified and a stabilizing amino acid is then predicted, contrasting with the traditional and 

difficult approach of attempting to determine the conformation of the protein given a particular 

sequence of amino acids. This idea was given mathematical grounding with Kuhn and Beretan’s 

Inverse Strategies for Molecular Design in 1996.[55] They considered the construction of 

Hamiltonians, achieved by tuning coefficients of the linear combination of atomic orbitals-

molecular orbitals (LCAO-MOs), that directly optimize transition dipole moment. This approach 

is capable of providing information on classes of compounds, but it is difficult to disentangle a 

chemical structure, or even actionable chemical information, from the optimized Hamiltonian (e.g., 

inverting the Hamiltonian). Later approaches focused on the optimization of properties with 

respect to atomic potentials.[56] This approach combines the advantage of a mathematical 

framework, with well-defined gradients for optimization routines, together with a more clearly-

defined inversion strategy; structures could be inferred such that they match the optimized 

potential. While theoretically allowing for the exploration of a broad range of chemical space, 

these approaches have the notable downside that a full optimization tends to lead to potentials that 

are non-invertible in that they do not correspond to a valid chemical structure. 
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Other approaches deemphasize the width of chemical space that may be probed and focus 

more heavily on producing valid chemical structures. Genetic algorithms have proven to be a 

popular and successful framework for materials design. These approaches are inspired by 

biological processes of evolution, and mimic actions such as iteratively performing “selection” of 

the fittest candidates (the molecules scoring highest on the objective function), followed by 

operations such as  “mutation” (predefined bond breaking/forming operations), and “crossover” 

(combination of candidates or fragments from candidates) to obtain the next generation of 

candidate molecules.[57] They have been a part of computational materials design for decades, 

and have been demonstrated in applications as wide as antireflection coatings, [58] catalysts, [59] 

determining the arrangements of laminates to maximize buckling load, [60] and even radar 

absorbing materials.[61] Genetic algorithms find success even today, such as in the design of 

polymers with optimized bandgap and glass transition temperatures.[62] However, genetic 

algorithms are still relatively constrained in the amount of chemical space they can search. They 

rely on modifications to known compounds, and as they require reevaluation of the fitness function 

at every step, they may be computationally intractable for the data scarce, computationally 

constrained design spaces they are intended to probe. An ideal approach would combine the ability 

of continuous representations to operate freely within chemical space along with the more concrete 

physical significance and assurances of valid chemistry that genetic algorithms provide. The 

nascent development of such an approach is still observable in current research on deep, generative 

chemical models. 

2.6 Deep Generative Chemical Models 

2.6.1 Autoencoder 

A generative chemical model is one that is capable of producing unseen molecules as output. To 

do so, it must learn the underlying distribution of chemical data; just as we can consider a given 

experimental variable as being drawn from some underlying distribution, we can also consider the 

same for compounds. 

 To train such a model, it is clear that we have to provide it with a set of training inputs, {𝑥}, 

and that it should also output the same type of data. In the absence of any other labels or 

information, a natural thought is to simply have the expected output of the model be the input, that 
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is, we set 𝑥𝑖 = 𝑦𝑖, or 𝑥𝑖 = �̂�𝑖, for each input. The model now is simply learning to “generate” data 

by learning an identity mapping. Now, if we truly allowed the network to learn the identity function, 

it would not be particularly useful as a generative model (or otherwise). Instead, an information 

bottleneck is imposed on the network that prevents it from learning direct mappings from input to 

output. Consider the case of input data that consists of 5-dimensional vectors. For a simple 

autoencoder with an input layer size of 5, and an output layer size of 5 by necessity, we can 

consider a single hidden layer with 3 units, as presented in Figure 2.7. 

 

 

Figure 2.7: Example of a simple autoencoder. 5-dimensional bit-vectors are compressed to a 3-

dimensional representation and then expanded back to full dimensionality, ideally restoring the 

input vector. The problem presented here is essentially a multi-label classification task, where a 1 

in the input vector corresponds to presence of that class, and a 0 indicating that the input does not 

belong to that class. The output vector thus corresponds to a list of probabilities of belonging to 

each class. During training, the model attempts to adjust these output distributions to be more 

confident in its class predictions. Input and output vectors were chosen arbitrarily. 

 

In this situation, the autoencoder cannot carry all of the information through the encoding and 

decoding process. Instead, it must learn an efficient way to compress the data such that it can be 

decompressed to reproduce the input data; hence, autoencoder, as the encoder and decoder are 
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trained in tandem to automatically find an efficient way to represent the data. The ability of 

autoencoder models to extract the most important latent features for describing the input data has 

led to their success in image denoising.  

Given an input image, traditionally a handwritten digit, that contains significant levels of 

artifacts or other noise, the autoencoder retains the key, describable features (i.e., the digits) while 

discarding the features that are not descriptive of the underlying data (i.e., the unpredictable noise). 

The efficient compression provided by the autoencoder also provides a convenient avenue for 

visualization of high dimensional data in terms of a few, maximally important dimensions. This 

mechanism of extracting the most salient descriptors within the data also means that the latent 

vectors serve as informative inputs to other model types, such as classifiers or regressors based on 

some property of the input data. These networks may even be trained in tandem, with the effect 

being, due to backpropagation of error, that the encoding process will also be better suited to 

predict the features of interest in addition to achieving efficient encoding and decoding. In the past 

few years, this approach has gained traction within chemical research. Winter et al. demonstrated 

that the use of latent vectors from a chemical autoencoder as molecular descriptors were far 

superior to traditional descriptors such as chemical fingerprints in various molecular-virtual 

screening tasks.[63] Chapter 4 of this dissertation builds off of their work and demonstrates how 

the autoencoder and its associated latent space of chemical representations provide a unique and 

powerful transfer learning mechanism to facilitate information exchange between related chemical 

property prediction tasks for improved predictive ability of scarce experimental data. 

2.6.2 Variational Autoencoder 

 As posed, the autoencoder framework seems to have the makings of a generative model. 

The decoder is trained to decode from continuous vectors back to elements of the original input 

space during training; generating new data should simply be a matter of sampling arbitrary points 

in the latent space and passing them to the decoder. However, first consider the form of the 

autoencoder latent space. There is no guarantee of continuity within the latent space; while similar 

input data should be encoded into points which are less distant that dissimilar input data, arbitrary 

points within the latent space will tend to be meaningless. The latent space is ill-conditioned in 

this case, as the autoencoder only tried to ensure that decoding the exact points provided to it by 

the encoder returns the input structure. For the generation task, that is decoding arbitrary points in 
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the latent space that do not necessarily correspond with a known input, the decoder is hopelessly 

overfit, and will not extrapolate well to new data.[64] A regularization term must be applied to 

improve the generalizability of the decoding procedure and provide an avenue for generative 

applications; the encodings must be spread out to fill up the latent space such that every position 

in the latent space is related to the distribution of the training data. Rather than allowing the encoder 

to map inputs directly to latent vectors, resulting in a sparsely populated latent space, noise can be 

added to the encodings such that encodings no longer correspond to discrete points, but rather a 

distribution. The decoder must then learn that not merely single vectors, but a distribution of 

vectors may all correspond to the same input structure, reducing the amount of “dead space”.  

 Functionally, this approach is realized by changing the output of the encoder from a single 

latent vector describing a particular input, to parameters (i.e. mean, variance, etc.) describing a 

distribution of points corresponding to the input structure.[65],[66] Stochasticity may be thus be 

added to the training of the autoencoder by sampling vectors from the distribution described by 

the encoder and passing these through to the decoder. While the form of the encoded distribution 

is not theoretically restricted, closed form solutions for loss functions and ease of computation are 

facilitated by the use of a Gaussian distribution, thus the encoder produces as output values of the 

mean and variance describing the given input data. During training, an auxiliary distribution is 

sampled to provide a noise vector, which can then be scaled by the latent variance and added to 

the latent mean value to efficiently “sample” the encoded distribution.  

 Simply training the network using this probabilistic approach to encoding and decoding 

will not solve the issues relating to poor decoding inference. Rather, an autoencoder trained in this 

way has the freedom to reduce its reconstruction loss by simply driving the encoding variances to 

zero (removing the noise) or adjusting the mean such that encodings are as far apart as needed to 

effectively isolate them. Both cases recover the standard autoencoder and remove the utility of the 

distribution-based approach. To prevent this behavior, the distribution of latent vectors can be 

assumed to follow a Gaussian distribution with zero mean and unitary covariance (again, for 

convenience). The divergence of the latent encoded distributions with this prior can then be 

penalized as part of the training loss, that is, distributions that are not centered lead to higher loss, 

and those that are either too spread out or too tight will also lead to higher loss. Mathematically, a 

Gaussian latent prior is assumed (𝑝(𝑧) = 𝑁(0, 𝐼)) and the KL-divergence between it and the 

approximate posterior latent distribution is added to the objective function. It is here that the 
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variational aspect arises, as a family of distributions (the latent encoding of each training element) 

are chosen to model the intractable posterior latent distribution, and the parameters of those model 

distributions (the mean and variance of each training element) are updated to minimize the 

divergence with the true distribution, a process also known as variational inference. The objective 

function of this model can now be represented as 𝐽(𝒘, 𝒃, 𝒙𝑖) =
1

2
∑ (1 + log(𝜎𝑗𝑖

2) − 𝜇𝑗𝑖
2 −𝐷

𝑗=1

𝜎𝑗𝑖
2) + ∑ 𝑥𝑗𝑖 log(𝑦𝑗𝑖) + (1 − 𝑥𝑗𝑖)log (1 −𝐷

𝑗=1 𝑦𝑗𝑖). The loss term of this variational autoencoder 

(VAE) includes both a reconstruction error term (the second summation), which encourages the 

autoencoder to make meaningful latent encodings to reconstruct the input data, and a regularization 

term in the form of the KL-divergence (the first summation), which promotes the generative 

potential of the model by promoting dense and smoothly varying latent distributions. After the 

work of Kingma and Welling formally defining the variational autoencoder as a in 2013, the stage 

was set for a new class of generative-ML models. However, it was not until 2018 that the 

variational autoencoder, and generative ML in general, was finally applied to chemical data.  

2.7 The Chemical Variational Autoencoder 

The “modern” age of ML-aided inverse-design is often regarded as having its origins in Gomez-

Bombarelli’s seminal work Automatic Chemical Design Using a Data-Driven Continuous 

Representation of Molecules.[67] The authors applied the variational autoencoder framework to 

encode and decode molecules in the form of SMILES strings, shown schematically in Figure 2.8. 
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Figure 2.8: Overview of the chemical variational autoencoder framework. (a) a schematic of the 

model architecture. Discrete chemical structures are encoded to a continuous latent representation, 

and then decoded to return the original input. Vectors may be sampled from the latent space and 

passed to an ancillary property prediction network, which estimates properties of the 

corresponding molecule. (b) a schematic of the molecular optimization routine suggested by the 

authors. Because the chemical variational autoencoder develops a continuous chemical latent 

space, traditional gradient based optimization techniques can be employed to determine regions of 

the latent space to sample to attain optimized molecules. Figure reproduced from [67] 

 

The projection of discrete molecules into latent distributions resulted in the formation of a 

continuous chemical latent space, from which arbitrary points could be decoded to yield novel 

compounds. Because the VAE distills key topological features for efficient encoding and decoding, 

the position within the latent space dictates the type of compound that will be drawn. Sampling 

around the neighborhood of a known compound will result in similar compounds. Sampling 

between two compounds will result in compounds representing an interpolation of features 

between the two, resulting in a gradual structural transformation moving from one known point to 

another. By sampling outside of the convex hull of the training set, or in sparsely populated regions 

of the latent space (an extrapolative sampling), the possibility opens of generating compounds 

structurally dissimilar to those in the training set. The ability to simply generate new molecules 

representing perturbations off of known compounds is still of limited advantage compared to 

traditional generative methods. The true advantage lies in the capabilities of having a continuous, 

mathematical representation of chemistry.  
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By training only on encoding and decoding, the organization of the chemical latent space 

is such that compounds with similar structural features are located closely and those with dissimilar 

features are farther apart. For physical properties, there is no guarantee that position in the latent 

space will correlate with expression of a particular property as Figure 2.9 demonstrates. The VAE 

architecture can be expanded to also include a property prediction network. This network accepts 

input from the latent space and uses it to predict the properties of the associated structure, and is  

 

 

Figure 2.9: Comparison of latent space for chemical variational autoencoders trained on 

encoding/decoding as well as prediction of water-octanol partition coefficient and quantitative 

estimate of drug-likeness. The 156-dimensional mean encodings are projected down to the first 

two principal components for visualization. Without a property prediction task, there is little 

organization of compounds with respect to properties. The addition of a property prediction task 

based on latent encodings ensures meaningful organization with respect to properties, although as 

the case of QED shows this organization is not always linear. Figure reproduced from [67]. 
 

trained in tandem with the encoding and decoding process. As errors are propagated back through 

the network during training, errors stemming from the property prediction result in the encoder 

weights being updated to provide latent representations that better allow for the prediction tasks; 

that is, the latent encodings are now forced to explicitly contain information about the target 

property. Latent chemical representations thus become organized such that compounds with 

similar properties are clustered together. Because a method of characterizing new compounds on 

the fly is available (the predictor networks), combined with the meaningful organization of latent 
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encodings with respect to properties in a continuous space, optimization techniques may be applied 

directly to molecules. The authors apply Bayesian optimization techniques to their autoencoder 

model trained to jointly on encoding/decoding and the prediction of a drug-likeness target allowing 

them to determine the optimal regions of the latent space to sample to maximize the objective 

function. They found this approach capable of consistently producing molecules with higher drug-

likeness than either a random search or a genetic algorithm, demonstrating the potential of this 

approach for targeted generative design. 

Although the VAE approach is equipped with all of the prerequisites to facilitate true 

inverse design, its practical utility remains limited. The decoder, which simply outputs strings, is 

not guaranteed to produce strings that actually correspond with real molecules, particularly when 

sampling in areas away from known compounds. These “nonsense” strings are produced over 95% 

of the time with a general molecular search, which precipitated the development of additional 

networks, such as Kusner’s work on the grammar variational autoencoder, [68] a model discussed 

in depth in Chapters 5 and 6, as well as further network paradigms presented in Figure 2.10. 

Regardless of the exact architecture or molecular representation used, these networks still suffer 

from the same data scarcity constraints inverse-design is intended to solve. Due to the difficulty 

of learning efficient chemical representations and structure function relationships, these generative 

networks tend to require large amounts of data to train. Because of the cost associated with 

compiling large datasets for experimentally relevant properties (pKa, Hr, Ea, etc.), these 

implementations are largely limited to simple cheminformatics properties such as the water-

octanol partition coefficient, quantitative estimate of drug-likeness, and synthetic accessibility 

score. As these objectives may not be universally relevant, and are in fact noted as being of 

questionable utility for inverse-design due to the easy manner in which these simple structure-

function relationships may be exploited by a generator, data scarcity significantly impinges on the 

utility of inverse-chemical models.[69] Improving the performance of these networks, both from 

a predictive (forward-problem) and generative (inverse problem) standpoint is of paramount 

importance, and relief of the data scarcity aspect can be accelerated through the use of transfer 

learning methodologies. 
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Figure 2.10:  A timeline showing the development of generative chemical models, beginning with 

(e) the chemical variational autoencoder and followed by (a) generative adversarial networks, (b) 

recurrent neural networks, (f) the grammar variational autoencoder,  (g) graph-based VAEs, (c) 

graph-based RNNs, and (d)  graph-based GANs. Figure reproduced from [12]. 

2.8 Transfer Learning 

In the broadest of terms, transfer learning is a technique whereby information learned in one task 

is transferred to help in another related task.[70] Considering the case of human learning, where 

information learned in past experiences motivates behavior in new situations, it is natural to 

postulate on whether the same principle may be applied to ML. Historically, this has taken the 

form of what is alternatively known as fine-tuning. After training a network on a task with 

abundant data, such as predicting instances of certain objects in standard computer vision 

databases, the network weights are further updated using the few training samples available for the 

object class that is desired to be detected in practice. This approach can be utilized for chemical 

data in the form of multi-fidelity training. While experimental data is laborious to collect and 

calculations at high levels of theory can require extensive time and computational resources, cost-

effective calculations at lower levels of theory can often be calculated in abundance to serve as 

surrogates.  
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How can this multi-fidelity data best be leveraged? (Note: there is a growing schism in the 

literature on whether or not multi-fidelity and more generally, multi-task training should be 

considered a subclass of transfer learning or a different mechanism altogether. In this text, I have 

chosen to use the term to refer to any technique design to facilitate information exchange across 

various tasks) As Ramakrishnan et al. note, the majority of the operant physics involved in a single-

point energy calculation are already accounted for in classic approaches such as Hartree-Fock or 

very efficient semi-empirical methods such as GFN2-xTB, producing results with only a 10% 

deviation from chemical accuracy in some cases.[71] Accounting for the remaining discrepancy is 

where the bulk of the theoretical difficulty and computational time are found. Attempting to train 

a statistical model to accurately predict the results of wave-function based methods solely from a 

chemical structure, particularly in situations where training data is limited by the difficulty in 

running such calculations, is an unreasonable proposition. The model must learn both the core-

physics describing the majority of the property of interest (i.e., the contributions from lower levels 

of theory) and the complexities and nuances that fully explain that property (i.e., the remaining 

contributions/deviations from higher levels of theory) all from limited training data. The idea 

behind the difference-model approach to transfer learning is to instead attempt to predict the 

difference between the higher-fidelity and lower-fidelity approaches. The difficulty associated 

with predicting the bulk contributions to the property of interest are abstracted away, either by 

means of simply performing the lower-level calculation on the fly (if it may be computed quickly 

enough) or by training an auxiliary model to predict the low fidelity value which is available in 

abundance and should be comparatively easier to train. The target high-fidelity value can then be 

computed directly from chemical structure as the sum of the output of the difference model plus 

the output of the low-fidelity approach. Difference learning, also known as Δ-ML in chemistry 

applications, provides a robust approach to leveraging multi-fidelity data, and has been used 

successfully in the prediction of covalent binding-energies as well as isomerization and 

atomization enthalpies to within chemical accuracy at the computational cost of DFT or even semi-

empirical methods with enough training data. Recently, it has proved integral to the prediction of 

vibrational spectroscopic maps [72] and NMR-chemical shifts with greater precision than DFT, 

[73] accurate potential energy surfaces, [74],[75] and an efficient means of obtaining accurate 

orbital energy data.[76],[77]. 
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Despite these impressive results, there are situations in which difference models are not 

effective. Difference models are not amenable to classification tasks (e.g., predicting a class of 

reactions, or binary labels such as toxicity or mutagenicity), nor are they suitable for situations 

where abundant data is available but for different goals (e.g., different quantum chemical 

properties) where the difference in values has little physical meaning and no anticipated correlation. 

In these situations, it was discovered that training on multiple properties at once actually improves 

the performance of all properties under consideration, so long as the data all arise from the same 

underlying relationships.[78] Intuitively, all chemical properties are fundamentally related to 

chemical topology, so learning structure-function relationships for one property will help in 

identifying connections for another. These multi-task approaches are well suited for molecular 

screening, as there are often multiple properties that must be accounted for simultaneously. 

Ramsundar et al. used this approach to improve prediction accuracy for up to 259 drug-design 

targets and found that increasing both the number of tasks and the amount of data for each resulted 

in continuous improvement of all associated prediction tasks.[79] Subsequent studies proved the 

robustness of the multi-task approach to changes in model architecture, from statistical models like 

random forests to deep learning approaches, and the identities of the target tasks by demonstrating 

strong performance on pharmacology datasets which had hitherto never been analyzed in the 

literature. [80] Chapters 3 and 4 of this work demonstrate how the use of variational autoencoders 

with a continuous chemical latent space provide new and effective avenues for transfer learning 

on chemical data, whereby the learned representations of chemistry are modified by the inclusion 

of new data, leading to better predictive accuracy on limited experimental or computational data. 

These improved representations are further explored in Chapter 5, which demonstrates how multi-

target approaches can improve the performance of generative models by transferring structural 

information contained in chemical property data to help in the generation of new structures 

optimized for a separate set of application properties.  
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 IMPROVED CHEMICAL PREDICTION FROM SCARCE DATA SETS 

VIA LATENT SPACE ENRICHMENT 

Reprinted with permission from J. Phys. Chem. A 2019, 123 (19), 4295-4302. DOI: 

10.1021/acs.jpca.9b01398 Copyright 2019 American Chemical Society. 

 

Modern machine learning provides promising methods for accelerating the discovery and 

characterization of novel chemical species. However, in many areas experimental data remains 

costly and scarce, and computational models are unavailable for targeted figures of merit. Here we 

report a promising pathway to address this challenge by using chemical latent space enrichment, 

whereby disparate data sources are combined in joint prediction tasks to enable improved 

prediction in data-scarce applications. The approach is demonstrated for pKa prediction of 

moderately sized molecular species using a combination of experimentally available pKa data and 

DFT-based characterizations of the (de)protonation free energy. A novel autoencoder framework 

is used to create a continuous chemical latent space that is then used in single and joint training 

tasks for property prediction. By combining these two datasets in a jointly-trained autoencoder 

framework, we observe mutual improvement in property prediction tasks in the scarce data limit. 

We also demonstrate an enrichment mechanism that is unique to latent space training, whereby 

training on excess computational data can mitigate the prediction losses associated with scarce 

experimental data and advantageously organize the latent space. These results demonstrate that 

disparate chemical data sources can be advantageously combined in an autoencoder framework 

with potential general application to data-scarce chemical learning tasks. 

3.1 Introduction 

Modern machine learning provides promising methods for accelerating the discovery and 

characterization of novel chemical species. These include generative networks, [81] QSAR based 

property prediction tasks, [82] and convolutional networks among others.[32],[10] In a typical 

supervised learning application, molecules are pre-processed into a machine-readable 

representation, paired with experimental and/or computational properties, and then one of a variety 

of machine learning methods are applied to develop a model (e.g., a set of weights, network 

topology, and activation functions for use in a prediction task). Every aspect of this paradigm is 
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under active investigation, from understanding the optimal representation of molecules for specific 

applications, [83],[84],[85],[86],[87] optimal model architectures, [88],[89],[90] optimal training 

algorithms, [91],[92],[68] and increasing model interpretability.[49],[93],[94] Despite the early 

stage of much of this research, accomplishments have already been achieved in many areas, 

including drug activity prediction, [95],[91] de-novo protein design, [96],[97],[98] electronic 

structure prediction, [99],[47],[71] representation of complex energy surfaces, [100],[101] and 

materials discovery.[102],[48],[103],[104] 

In the current paradigm, data scarcity represents a formidable challenge [105] since 

enormous amounts of data are typically required for model training.[106] High-throughput 

physics-based calculations represent a pathway around the problem of experimental data scarcity 

for molecular properties that can be calculated directly from quantum chemistry and classical 

simulation.[50] For example, large DFT-based datasets for crystalline materials and small 

molecules have been used to predict novel catalytic surfaces, [107] provide lead optimization of 

organometallic compounds, [108] discover new ion conductors, [109],[110] and design new 

analytes and catholytes for flow batteries, [111] among other applications. There has also been a 

decades long effort to utilize small molecule docking data from classical molecular dynamics and 

Monte Carlo for use in drug discovery.[112] Cheminformatics characterizations also provide an 

inexpensive means of generating large datasets that are amenable to deep learning, albeit with 

shortcomings associated with low and inconsistent accuracy.[113] 

Despite these promising advances, many critical molecular and materials properties are not 

amenable to direct calculation and have associated experimental data that is intrinsically scarce. 

For instance, soft materials properties are strongly sensitive to processing leading to poor 

reproducibility of what is constitutively the same material, and also unavailability of detailed 

molecular structures that can be used in computation.[114] Likewise, materials properties related 

to stability and failure involve multiple chemical processes occurring over many timescales that 

are not accessible via direct simulation.[104] In such applications, it is more common for 

computational studies to generate correlates of materials figures of merit (e.g., reorganization 

energies and densities of states for organic semiconductors, or activation energies and minimum 

energy pathways for degradation reactions) that can supplement scarce experimental data. In this 

context, transfer learning paradigms that effectively combine disparate data sources to improve 

prediction accuracy are highly advantageous. Examples of transfer learning include multitask 
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models (i.e., individual models trained on multiple prediction tasks), [95],[79] difference models 

(i.e., models trained on calculating differences between different properties), [115] and latent 

variable models (i.e., composite models where outputs from learning tasks feed into one 

another).[76]  

 

 

Figure 3.1: Autoencoder architecture displaying continuous latent space and joint prediction tasks. 

The hypothesis investigated in this work is whether joint training of the latent space on a data-rich 

prediction task can improve the performance of a correlated data-scarce prediction task through 

the enrichment of the common latent space variable. 

 

Here we investigate the potential of a novel autoencoder machine learning approach for 

transfer learning (Fig. 3.1). An autoencoder comprises two jointly-trained models: an encoder, 

which maps a discrete chemical representation into a continuous vector space, as well as a decoder 

that converts points in this continuous space back into a discrete representation. The encoder and 

decoder are trained to minimize the reconstruction error associated with encoding and decoding 

operations, thus learning efficient representations of molecular structures in a continuous vector 

space (i.e., the chemical latent space). As was recently demonstrated by Goḿez-Bombarelli et al., 

joint training of the autoencoder with a latent space prediction task results in a reorganization of 

the latent space such that molecules become organized according to predicted properties.[67] 

When combined with the ability to decode latent space vectors to new compounds, this approach 

has exciting potential for molecular discovery. Furthermore, this approach also presents a unique 

opportunity for transfer learning, since the latent space can be trained on several prediction tasks, 

thus yielding a framework for combining disparate and sparse chemical data to mutually improve 

prediction tasks. In this work we have tested the performance of an autoencoder in transfer learning 

for pKa prediction of small molecules using a combination of experimental and quantum chemistry 
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data on several hundred species. The autoencoder was trained in combination with multilayer 

perceptron models, both separately and jointly, on prediction tasks utilizing training sets of varying 

size. We then examined the prediction accuracy of these models on sets of unseen compounds, as 

well as corresponding trends within the resulting chemical latent space. In all cases, transfer 

learning yields improved predictions over single prediction training, with dramatic results in the 

scarce data regime. The results demonstrate a significant potential for using the autoencoder latent 

space as a shared variable in transfer learning applications on scarce chemical datasets.  

3.2 Computational Methods 

3.2.1 Databases 

For autoencoder training, we obtained approximately 160 million compounds from the ZINC15 

database with molecular weights between 200 Daltons and 500 Daltons and partition coefficient 

between -1 and 5.[116] These compounds were then screened using RDKit to strip salts and 

stereochemistry designations, and remove nonorganic compounds and those with less than 3 heavy 

atoms.[117] From the nearly 100 million remaining compounds, we selected a random 128,000 

compound subset for use in autoencoder training. Training sets of similar size have been utilized 

in previous work,[67] although recently autoencoders trained on substantially larger training sets 

(72 million compounds) have been demonstrated.[63]  

For the property tasks, we obtained experimentally determined pKa values for 819 organic 

acids and bases from the Handbook of Chemistry and Physics, 98th edition.[118] Compounds with 

more than 40 atoms were removed, as well as ions and species that exhibited (de)protonation steps 

requiring structural rearrangement unforeseeable by the automatic protomer generation routine. 

This process led to the removal of 92 species in total. Quantum chemistry characterizations were 

performed on the neutral, protonated, and deprotonated species associated with the remaining 

compounds. At this stage, an additional 56 compounds were removed due to self-consistent field 

(SCF) convergence failure of their associated anionic deprotonated species; these were species 

where the deprotomer algorithm (see below) yielded chemically unstable structures. The 

remaining 673 compounds were successfully subjected to complete quantum chemistry 

calculations. From this set of 673 compounds, 30 random testing and training splits were 
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constructed for model training and evaluation, each consisting of 131 and 512 compounds, 

respectively, for property prediction tasks.  

3.2.2 Quantum Chemistry Methods 

DFT-based predictions of pKa are sensitive to conformer selection, solvation model, and choice 

of (de)protomer.[119],[120],[121] In practice, these choices are often motivated by heuristics and 

factorial testing on specific chemical species, as no high-throughput generally applicable method 

currently exists. In the current study, we applied an algorithm to generate the all-trans conformer 

of each species to use as the initial geometry. These all-trans geometries were further refined with 

the Universal force-field [122] before being used in quantum chemistry calculations. Based on 

these geometries, the semi-empirical Geometry, Frequency, Noncovalent, eXtended Tight Binding 

method (GFN-xTB), was applied to energetically screen (de)protomers.[123],[124] The 

energetically most favorable deprotonated and protonated forms, based on GFN-xTB, were then 

selected for further quantum chemistry analysis. As noted above, for 56 compounds we were 

unable to converge the SCF of the resulting deprotomer and these compounds were removed from 

the data set.  

After (de)protomer generation, DFT geometry optimization and frequency calculations 

were performed on all species to obtain the inputs to the free energy calculations. Geometry 

optimizations were performed at incrementally increasing levels of theory to robustly converge 

the geometries. Initial optimization was performed using B97/def2-SVP exchange-correlation 

functional and basis set, respectively, followed by optimization at the B97/def2-TZVP level of 

theory, and a final geometry optimization and frequency calculation at the ωB97XD3/def2-TZVP 

level of theory with the CPCM solvation model. In the case of anions, augmented versions of the 

listed basis set were used. A dielectric of 80.7 was used for the CPCM model to approximate water. 

All DFT calculations were performed in ORCA 4.0.1.[125] 

The free energy of protonation, ∆G+H, and deprotonation, ∆G-H, were calculated on the 

basis of the optimized single point energies of the neutral compounds and protomers, with zero-

point energy corrections and standard statistical mechanical corrections for the finite temperature 

enthalpy and entropy.[126] For comparison with the experimental pKa values, we note that the 

Handbook of Chemistry and Physics does not explicitly state whether reported values correspond 

to the neutral species (acidic) or the conjugate acid (basic).  To resolve this ambiguity during model 
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training, all species were classified as acidic or basic based on the relative free energy change, 

∆∆G, associated with protonation and deprotonation: 

𝛥𝛥𝐺=𝛥G−H-𝛥G+H 

Compounds which displayed a positive ∆∆G were classified as acids, those with negative ∆∆G 

were classified as bases, and the corresponding ∆G±H value of (de)protonation was used in the joint 

training activities. The single point energy, Esp, of each optimized neutral species was also retained 

for each compound. ∆G±H is a known correlate of pKa (Fig. 3.2A) for chemically similar 

compounds, whereas Esp does not correlate with pKa and is used as a control property (Fig. 3.2B).  

 

 

Figure 3.2: Correlation plots of (A) G±H and (B) Esp with pKa. For chemically similar compounds, 

it is possible to predict pKa as a linear function of G±H to a high degree of accuracy, as 

demonstrated by the regression of 7 amines (highlighted in red, R2 = 0.98). However, without a 

priori knowledge of chemical structure, such a strategy fails in the general case, as shown by the 

remainder of uncorrelated points in green. In contrast, Esp does not exhibit correlation with pKa 

and is used here as a chemically significant, but uncorrelated, control property. 
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3.2.3 Machine Learning Architecture 

Models were constructed using the Keras [127] 2.1.5 API with Tensorflow [128] 1.4.0 backend. 

Our choice of autoencoder architecture was informed by the recent work of Winter et al., which 

showed excellent performance of the resulting latent space in prediction tasks.[63] For the encoder 

portion of the network, SMILES strings were taken as input in batch size of 128 and converted 

into character index arrays, where each integer value from 1 to 44 indicated a valid SMILES 

character. These arrays were then padded out to a uniform length of 80 characters (the maximum 

length of SMILES strings within the pKa dataset is 75 characters) and converted into one-hot 

representations, which were flattened and used as input sequences to a gated recurrent unit (GRU) 

layer with 512 cells. The output of this layer was fed to an additional GRU layer with 1024 cells, 

followed by a subsequent GRU layer with 2048 cells. The outputs of the three GRUs were 

concatenated and used as input to a dense layer which produces a 512-dimensional projection of 

the input compound in the chemical latent space. Points in this high dimensional space were used 

as inputs to a decoder with an identical architecture to the encoder but reversed in order, to produce 

an output array containing the probability distribution of the 44 valid SMILES characters. 

Following the procedure of Winter et al., the autoencoder training was performed for converting 

from noncanonical SMILES to canonical SMILES; this ‘translation’ method was found to exhibit 

better performance in property prediction than a simple SMILES-to-SMILES reconstruction.  

The 512-dimensional latent space was in turn used as an input to feed-forward property 

prediction networks for pKa, ∆GH, and Esp. These networks were comprised of a series of two 

fully connected layers of 512 and 128 nodes, respectively, and one output node, producing a single 

scalar output. A separate prediction network of this form was trained and utilized for each property. 

3.2.4 Model Training 

Before being utilized in property prediction tasks, the autoencoder was first pretrained on a large 

subset of the ZINC15 database in order to learn efficient chemical encodings and decodings. The 

network was trained to minimize the categorical cross entropy of the predictions using the Adam 

optimizer with an initial learning rate of 5x10-4, set to decay by a factor of 0.9 every 3 epochs for 

a total of 100 epochs. Noise was added to the one-hot encodings from a zero-centered normal 
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distribution with standard deviation of 0.05, and a dropout fraction of 0.15 was applied to the 

inputs to the first GRU to reduce overfitting.  

The pretrained autoencoder was used as a starting point for joint-training with the 

prediction networks. At this stage, in addition to minimizing the categorical cross-entropy of the 

autoencoder, the model was also trained to minimize the mean squared error (MSE) in property 

prediction. The Adam optimizer was utilized without a learning rate decay for a total of 300 epochs 

using a batch size of 64, 32, and 16 for the models trained using 512, 256, and 128 pKa values, 

respectively (these datasets are further described in the next section). The learning rate was reduced 

to 2x10-4 and dropout at a 0.5 rate was applied between the fully connected layers to reduce 

overfitting. To assist in the hyperparameter search, we utilized 8-fold cross validation on a separate 

testing/training split before utilizing these parameters on the remaining splits (See Appendix A). 

During all joint training tasks, we observed that more predictive models were obtained by first 

jointly training with respect to pKa only before introducing the second property into training.  

We considered three paradigms for the pKa prediction task: prediction of pKa only, 

prediction of pKa and ∆GH, and prediction of pKa and Esp of the neutral species. Training the 

network on both pKa and ∆GH was anticipated to generate a more representative latent space, 

organized according to correlated properties, and provide better prediction accuracy. Esp is 

chemically relevant but is not anticipated to be correlated with pKa, so joint training with the single 

point energy was taken to be diagnostic of the effect of using correlated properties in transfer 

learning. 

3.2.5 Latent Space Enrichment 

To investigate the transfer learning potential of the latent space in scarce data applications, the 

prediction models were also trained with variable amounts of input data. A scarce data set was 

generated from the 512 compounds by randomly selecting 128 compounds, and an intermediate 

sized data set of 256 compounds was generated by adding an additional 128 compounds to the 

scarce dataset. On these reduced sets, we investigated the potential for latent space “enrichment”, 

whereby models were trained on limited pKa data, while having access to the full set of 

computationally derived data (i.e., for all 512 compounds). This situation is typical of applications 

where limited experimental data exists, while computational data on unseen compounds can be 
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calculated. During training of the enriched latent spaces, the loss weights for the pKa prediction 

task of the subset of hidden data was set to 0; the net effect was that the network was only able to 

access the computational data for that particular compound, and the pKa value was treated as 

missing.  

3.3 Results and Discussion 

The pKa prediction results for models utilizing varying amounts of data, as well as latent space 

enrichment, are presented in Figure 3.3. The results consist of a summary of mean absolute 

prediction errors (MAE) on the 30 test sets for each of the 30 individually trained models.  

 

 

Figure 3.3: Box and whisker plot showing errors statistics for final models. 30 independent 

testing/training splits were generated, and independent models were trained on each split. The box 

and whiskers thus correspond to the MAE across the 30 test sets for each of the model paradigms. 

Median pKa prediction errors are shown as a blue line, and whiskers are drawn to extend to the 

range of observed errors. The notches represent the 95% confidence interval about the median. 

 

 Comparing the models that were trained on pKa alone (i.e., 𝑀𝑝𝐾𝑎
128 , 𝑀𝑝𝐾𝑎

256 , and 𝑀𝑝𝐾𝑎
512 ) we 

observe, as expected, consistent improvement in median prediction accuracy as the dataset grows, 

up to a final value of 1.5 pKa units for 𝑀𝑝𝐾𝑎
512 . Notably, attempts to train feed-forward multilayer 

perceptron networks (i.e., latent-space free models) utilizing a similar number of parameters failed 

to achieve the same accuracy; such networks were unable to find a correlation between input and 
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pKa and instead return the mean value of the pKa for every queried compound. For additional 

comparison, the pKa of compounds in the full dataset ranges from -3.8 to 15.5. Interestingly, as 

the data size associated with each model increases, we do not observe a contraction in MAE range 

of the pKa models across different training/test splits; both the 𝑀𝑝𝐾𝑎
128  and 𝑀𝑝𝐾𝑎

512  models display 

ranges of prediction errors of about 1.1 pKa units, while the 𝑀𝑝𝐾𝑎
256  model displays a range of 1.6 

pKa units. The large prediction variance suggests that the predictor model complexity is relatively 

large for all of these datasets (i.e., all samples are in the data-scarce regime) and that there is an 

increased tendency to memorize data and exhibit poor transferability for the smaller datasets. For 

the case of 𝑀𝑝𝐾𝑎
256 , the large range may be due to some data splits being particularly difficult to train 

on despite the median error decreasing.  

 To investigate the influence of multi-task training on prediction accuracy we also trained 

models on both pKa/∆G±H and pKa/Esp, while keeping the amount of data for each property constant 

(i.e., 𝑀𝑝𝐾𝑎,∆𝐺
512,512

 in Fig. 3.3 and 𝑀𝑝𝐾𝑎,𝑠𝑝
512,512

 in Fig. A3). In comparison with the pKa-only model, we 

observe overall better prediction accuracy for both 𝑀𝑝𝐾𝑎,∆𝐺
512,512

 and 𝑀𝑝𝐾𝑎,𝑠𝑝
512,512

 with median MAE 

values of 1.37 and 1.40, respectively. We note that ∆G±H is a correlate of pKa, while Esp is 

chemically relevant but uncorrelated to pKa. Therefore, the small improvement of 𝑀𝑝𝐾𝑎,∆𝐺
512,512

 

compared with 𝑀𝑝𝐾𝑎,𝑠𝑝
512,512

 could be explained by the model benefiting from learning on a correlated 

prediction task, although the effect in this case is small. Likewise, the much lower variance of both 

multi-task models compared with 𝑀𝑝𝐾𝑎
512  suggests that adding chemically relevant data of any kind 

provides improvement on data-scarce property prediction.  

Although it is expected that the models utilizing more data would also exhibit better 

predictions, in a many applications additional data generation for all properties is unfeasible. It is 

more typical that computational data exceeds experimental data and is used to prioritize synthetic 

targets. To investigate this we also trained models where multi-task training was performed on 

both pKa/∆G±H and pKa/Esp but with limited amounts of experimental pKa data (i.e.,  𝑀𝑝𝐾𝑎,∆𝐺
128,512

, 

𝑀𝑝𝐾𝑎,∆𝐺
256,512

 and 𝑀𝑝𝐾𝑎,𝑠𝑝
128,512

, 𝑀𝑝𝐾𝑎,𝑠𝑝
256,512

 in Fig. 3.3 and Fig. A3, respectively). Since both training tasks 

are performed on a common latent space, we refer to these as “enriched” models where the 

computational data is used to train regions of the latent space that have not been sampled 

experimentally. Across all enriched models we observe improvement in median MAE predictions. 
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Likewise, we observe a strong contraction in the variance of the enriched models, (e.g., 𝑀𝑝𝐾𝑎
128 and 

𝑀𝑝𝐾𝑎
256  exhibit MAE ranges of 1.1 and 1.6, respectively, while their corresponding enriched models 

have ranges of 0.6 and 0.5) suggesting that enrichment helps prevent memorization in the scarce 

data regime. Similar to the jointly trained models described above, we also observe that the 

enriched models that utilize ∆G±H data exhibit a small but consistent improvement in median MAE 

compared with the models utilizing Esp data.  

 

Table 3.1: pKa prediction results before and after enrichment for test sets associated with median 

performance of each enriched model. The three sections of the table, shown in gray, blue, and dark 

gray, represent 128, 256, and 512 pKa values, respectively. The expected and predicted pKa values 

are shown with MAE in pKa prediction across each test set at the bottom. The presented 

compounds were selected by ordering the test set according to increasing absolute prediction error 

and selecting 10 compounds at equally spaced intervals. Aside from the very best performing 

compounds, enrichment tends to improve pKa predictions across all compounds. 

 

 

 pKa prediction results for a subset of the test compounds for each model are reported in 

Table 3.1 (individual prediction results for all associated test compounds are reported in the 

supporting information).  Note that as we have generated 30 distinct testing/training splits, we have 

30 distinct models for each of the 9 training paradigms. In an effort to consider the most 
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representative systems, we selected three splits with prediction errors within the interquartile range 

(IQR) for the unenriched models (𝑀𝑝𝐾𝑎
128 , 𝑀𝑝𝐾𝑎

256 , 𝑀𝑝𝐾𝑎
512 )  and used those same splits for evaluating 

the jointly-trained models with the same pKa training data. First, we note that compounds with 

poor representation in the training set are likewise poorly predicted by all models. For instance, 

thiourea is the only example of a thiourea in the pKa dataset, and as such predictions for the pKa 

of thiourea display large errors (>10 pKa units), although enrichment improves the prediction 

slightly. Note that the autoencoder networks are trained on a much larger set of structures (128,000 

compounds) than is used for the property prediction tasks. Hypothetically, the latent space 

developed from this larger dataset encodes chemical relationships that could improve property 

predictions in latent space regions that are unrepresented in the property training data but reside 

along interpolation contours of chemically similar training compounds. Although there is an acidic 

carbamide in the pKa training data it does not appear that it is chemically similar enough for most 

of the models to predict the behavior of thiourea. This behavior may not generalize to data rich 

applications and may also be affected by the size of the auto-encoder training data; however, it 

points to the deeper issues of the extent to which chemical relationships are encoded in the 

organization of the latent space and the ability of models to infer chemical relationships that are 

not directly represented in property training data. Second, we also note that some of the models 

show poor performance even on well represented molecules. For example, 𝑀𝑝𝐾𝑎
512  exhibits 

anomalously poor performance on nicotinamide despite the prevalence of amides and nitrogen 

containing heterocycles in the training data. Significantly, this is rectified through multi-task 

training with ∆G±H ( 𝑀𝑝𝐾𝑎,∆𝐺
512,512

) reducing the error from ~9 to ~0.4 pKa units. This suggests that 

hyperparameter optimization would likely improve prediction results, although exhaustive model 

optimization is beyond the scope of the current study. 

To gain insight into how enrichment reorganizes the chemical latent space, principal 

component analysis (PCA) was performed on the latent space encodings for each model. The 673 

compounds in the dataset were then encoded into vectors in the 512-dimensional vector latent 

space, standardized and analyzed by PCA, then projected on the first two principal components 

and plotted with respect to the training properties. The organization of each latent space is 

quantified by the coefficient of determination, R2, and the Spearman rank order coefficient, 𝜌 

(calculation details for each metric are in Appendix A). The R2 value characterizes the proportion 

of the property variance that is predicted by the first two principal components. The 𝜌 value is a 
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metric of monotonicity between variables, with values ranging from -1 to 1 (perfectly 

monotonically decreasing and increasing, respectively). High values of 𝜌 indicate that the property 

of interest consistently increases or decreases along a particular direction in the latent space, which 

is advantageous for generative applications.  

The results of this analysis are displayed in Fig. 3.4 for the jointly trained pKa and ∆G±H 

models (corresponding plots for other models are shown in the SI). In the enriched models 

(𝑀𝑝𝐾𝑎,∆𝐺
128,512

 and 𝑀𝑝𝐾𝑎,∆𝐺
256,512) we observe mutual organization of the latent space according to both pKa 

and ∆G±H, with the data-rich property exhibiting much higher R2 and comparable 𝜌.  

 

 

Figure 3.4: Principal component analysis of chemical latent spaces trained on pKa with ∆G±H 

enrichment showing latent space reorganization. Each point represents a compound from the full 

dataset with its encoding vector projected onto the first two principal components of the specified 

model latent space. Points are colored according to the indicated property. Standardized values are 

used for ∆G±H coloration.  Coefficient of determination and Spearman rank order coefficient are 

shown in each panel. 

 

Notably, in the 𝑀𝑝𝐾𝑎,∆𝐺
128,512

 models we observe organization of ∆G±H and pKa in non-

orthogonal directions (dot product of the gradient vectors of 0.9), with ∆G±H organized along both 

principal components and pKa organized primarily along the second principal component. This 

non-orthogonal reorganization supports the hypothesis that the latent space reorganization leads to 

transfer learning between correlated properties. We also note that this phenomenon decreases as 
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the size of the dataset increases before nearly disappearing at dataset parity; the dot product of the 

gradients drops to 0.4 for the 𝑀𝑝𝐾𝑎,∆𝐺
256,512

 models and we observe nearly orthogonal organization in 

the 𝑀𝑝𝐾𝑎,∆𝐺
512,512

 models with a dot product of 0.1. In contrast, we observe that enrichment with Esp 

data leads to nearly orthogonal organization of Esp and pKa in the latent space in all cases (Fig. 

A2), with gradient vector dot products of 0.3, 0.3, and 0.0 for the 𝑀𝑝𝐾𝑎,𝑠𝑝
128,512

, 𝑀𝑝𝐾𝑎,𝑠𝑝
256,512

 , and 𝑀𝑝𝐾𝑎,𝑠𝑝
512,512

 

models, respectively, leading to little direct transfer learning. The PCA analysis also suggests why 

the variance of the models decreases for all jointly-trained models. Comparing the jointly-trained 

latent spaces with the unenriched results (Fig. A1) we note that enrichment generally leads to a 

small reduction in R2 and 𝜌 for pKa, but large improvement in R2 and 𝜌 for the data rich properties. 

Joint-training thus results in better overall organization of the high-dimensional latent space, which 

regularizes the prediction tasks and lowers the prediction variance on unseen compounds.  

 

 

Figure 3.5: Depiction of the latent space enrichment process. PCA analysis of the latent space of 

the unenriched (A) and enriched (B) models 𝑀𝑝𝐾𝑎
128  and 𝑀𝑝𝐾𝑎,∆𝐺

128,512
, demonstrating organization with 

respect to ∆G±H upon enrichment. (C) Illustration of the proposed enrichment mechanism. (Left) 

Sparse datasets result in regions of latent space with little organization. (Middle) Joint training on 

correlated computational data results in organization of experimentally uncharacterized regions of 

latent space. (Right) A more continuous latent space with well-defined property gradients is 

formed. 
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A visualization of the effect of enrichment on data-scarce prediction tasks is provided in 

Figure 3.5. The PCA analysis suggests that there are two transfer learning mechanisms associated 

with enrichment: first, that correlated properties will partly organize along similar latent space 

dimensions resulting in improved prediction for data-scarce properties (correlation), and second, 

that adding chemically relevant data of any kind helps to improve the overall organization of the 

high-dimensional latent space even for data rich properties (regularization). It is difficult at this 

point to quantitatively separate the impact of these two mechanisms on the resulting property 

prediction performance. As observed earlier, the median performance of the models enriched with 

∆G±H data shows a marginal improvement over those enriched with Esp data, indicative of the 

contribution from the correlation effect, but the small magnitude of the effect suggests that 

regularization is the dominant factor for the current set of enriched models. It is possible that for 

lower dimensional latent spaces, autoencoders trained on larger datasets, or latent spaces trained 

on many independent properties, that the relative contributions of the two mechanisms would 

change.  

The enrichment mechanism explored here also suggests further research directions related 

to how organization of the latent space relates to property prediction and transferability. For 

instance, it is intuitive that organization of the latent space with respect to chemical properties 

should lead to better transferability on prediction tasks, but this has not yet been systematically 

investigated and the presented enrichment results only indirectly address this question. One way 

this could be studied is to incorporate a combination of R2 and 𝜌 into the training objective function 

in order to systematically control the organization of the latent space. Likewise, a useful 

comparison would be to property prediction networks that are trained on unorganized latent spaces 

(e.g., by only training on the predictor networks without backpropagation through the encoder). 

We also note that joint training of the latent space on prediction tasks does not necessarily lead to 

linear organization with respect to the trained properties. For example, in the case of 𝑀𝑝𝐾𝑎,∆𝐺
512,512

, 

although the free energy projections are very well organized (R2=0.97, using a cubic transform of 

the property data), they are not organized in a manner such that any particular direction is 

correlated with free energy (𝜌=0.56). For applications where the latent space is used to identify 

new compounds, the functional form of the latent space reorganization could be crucial and would 

need to be addressed through more specific training algorithms.  
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3.4 Conclusions 

A unique aspect of autoencoder models is that joint-training restructures the latent space according 

to property similarity. This feature has been previously exploited to generate new structures with 

targeted properties based on their location in a jointly trained latent space. In the multitask training 

that we have performed here, we have demonstrated that multiple training properties can 

simultaneously be used to restructure the latent space and provide mutually improved performance 

in property prediction tasks. A novel aspect of this study is our exploration of the enrichment 

paradigm where scarce experimental data is supplemented in learning tasks with more abundant 

computational properties. By organizing the chemical latent space with respect to the abundant 

dataset, we observe improved performance for scarce property prediction from transfer learning in 

all cases. These improvements include both higher prediction accuracy and lower variance in 

models trained to predict the properties of novel species and also increased overall organization of 

the chemical latent space projections. We anticipate that this approach will be useful in other 

chemical and material prediction tasks where experimental data is scarce but computational data 

can be inexpensively obtained. Likewise, there is obvious potential to extend the enrichment 

procedure reported here to contexts where the latent space is used to iteratively generate additional 

experimental and computational targets, followed by further refinement of the latent space, and 

continued target selection. In this manner, latent space enrichment provides a useful framework 

for basing predictions on all available data until reaching a chemical solution.  
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 SIMPLER IS BETTER: HOW LINEAR PREDICTION TASKS 

IMPROVE TRANSFER LEARNING IN CHEMICAL 

AUTOENCODERS 

Reprinted with permission from J. Phys. Chem. A 2020, 124 (18), 3679-3685. DOI: 

10.1021/acs.jpca.0c00042 Copyright 2020 American Chemical Society. 

 

Transfer learning is a subfield of machine learning that leverages proficiency in one or more 

prediction tasks to improve proficiency in a related task. For chemical property prediction, transfer 

learning models represent a promising approach for addressing the data scarcity limitations of 

many properties by utilizing potentially abundant data from one or more adjacent applications. 

Transfer learning models typically utilize a latent variable that is common to several prediction 

tasks and provides a mechanism for information exchange between tasks. For chemical 

applications, it is still largely unknown how correlation between the prediction tasks affects 

performance, the limitations on the number of tasks that can be simultaneously trained in these 

models before incurring performance degradation, and if transfer learning positively or negatively 

affects ancillary model properties. Here we investigate these questions using an autoencoder latent 

space as a latent variable for transfer learning models for predicting properties from the QM9 

dataset that have been supplemented with semi-empirical quantum chemistry calculations. We 

demonstrate that property prediction can be counter-intuitively improved by utilizing a simpler 

linear predictor model, which has the effect of forcing the latent space to organize linearly with 

respect to each property. In data scarce prediction tasks, the transfer learning improvement is 

dramatic, whereas in data rich prediction tasks, there appears to be little to no adverse impact of 

transfer learning on prediction performance. The transfer learning approach demonstrated here 

thus represents a highly advantageous supplement to property prediction models with no downside 

in implementation.  

4.1 Introduction 

Machine learning (ML) has made rapid and profound inroads into many areas of chemical science. 

The prospect of extracting value from dormant data using ML has energized the proliferation of 

chemical and materials databases.[105],[47],[129],[130],[131],[132],[133] The use of ML in 
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property prediction is being exploited to cut the cost of physics-based computations and 

experimental testing. There are also areas like drug and materials discovery, where machine 

learning is promising to address previously intractable problems like inverse design [10],[92],[134] 

and optimal retrosynthesis.[135],[136],[137]  Despite the early stage of these efforts, the routine 

implementation of ML is becoming a reality and there are very few areas where machine learning 

models are not presently being tested against or in conjunction with traditional experimentation, 

expert systems, and physics-based methodologies. While these promises are exciting, the 

translation of ML methodologies to applications with intrinsic data scarcity is not straightforward. 

Datasets for image classification [138], object recognition, [24] and some molecular properties 

[105],[139] may contain millions of samples, but more typical chemical applications have access 

to only a few hundred to a few thousand samples.[140],[141] For reaction data the situation is more 

stark. Although dozens of substantial molecular property databases exist, only three significant 

reaction databases currently exist, and two of them are proprietary.[142],[143],[144] 

The developing subfield of transfer learning provides some strategies that might alleviate 

data limitations.[76],[145],[99],[146],[147] In transfer learning, model proficiency in one learning 

task is leveraged in one or more related learning tasks.[70],[148] Transfer learning is potentially 

very promising in chemical applications since all observable properties are ultimately tied to 

chemical structures. Thus, the underlying topology of chemical properties is strongly connected, 

and intuitively should be amenable to transferring knowledge from data rich properties to predict 

data scarce properties of the same compounds. We recently demonstrated a transfer learning 

method based on chemical autoencoders for this purpose.[149] In this approach, we utilize a shared 

latent variable generated from a data-rich pretrained autoencoder as an input for property 

prediction tasks. We demonstrated that joint training of property prediction models led to 

organization of compounds in the latent space that, in turn, provided an interpretable mechanism 

for transfer learning between prediction tasks. Encouraged by this initial demonstration, we have 

subsequently explored additional strategies for effectively organizing chemical latent spaces with 

the goal of improving transfer learning efficiency.  

In the current study we demonstrate how simple linear prediction models can be used to 

efficiently organize chemical latent spaces and improve property prediction accuracy in data scarce 

applications (Fig. 4.1). To date, all chemical autoencoder models that utilize latent space 

organization have employed complex predictor networks in model training,[63],[67],[103],[68] but  
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Figure 4.1: Overview of chemical autoencoder (CAE) architectures for transfer learning. The 

autoencoder generates a compressed vectorial representation of chemical space by employing a 

low dimensional intermediate layer in the model (i.e., the latent space). This compressed 

representation is obtained by training the CAE on a reconstruction task using abundant chemical 

structure data. In transfer learning applications, the latent space serves as a common input feature 

for two or more property prediction tasks. (A) When utilizing complex predictor networks for joint 

property training, latent space organization is incomplete due to the predictor’s ability to learn 

complex surfaces. (B) When a linear predictor network (i.e., a single unit with a linear combination 

of latent space features) is used for joint training, prediction errors must be minimized by 

backpropagation through the encoder, resulting in a linear organization restraint on the training 

objective function. 

 

as demonstrated here, this is actually detrimental to latent space organization. During 

backpropagation, the prediction error is minimized by jointly adjusting predictor and encoder 

network weights. In models with complex predictor networks, this only leads to partial 

organization of the latent space since complex networks can learn complex latent space structures. 

The incomplete organization of the latent space limits the information exchange between learning 

tasks and the interpretability of the latent space dimensions, as the relationship between position 

in the latent space and property values may be unclear. In contrast, utilizing a simple linear model 

for property prediction tasks forces the encoder to organize the latent space in order to minimize 

prediction errors. The net result of this is that the objective function has a linear organization 

restraint with respect to property organization within the latent space.  

Using this alternative predictor network, we present a systematic transfer learning study 

utilizing the QM9 dataset supplemented with semi-empirical calculations.[150] With hybrid DFT 

level property data for over 100,000 species, this dataset is used to assess the improvement in 

bandgap prediction from the very data scarce regime up to near saturation, as well as the potential 
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for multi-property prediction. The DFT level HOMO-LUMO gap (Eg,DFT) is used as a prediction 

objective, with varying levels of data scarcity simulated by utilizing varying fractions of the QM9 

data for training each model. Comparisons are performed between the prediction accuracy of 

models trained solely on scarce Eg,DFT data and models jointly trained for data rich prediction tasks 

(i.e., latent space “enrichment”). The use of latent space enrichment via multitask training is found 

to improve property prediction across all levels of data scarcity, reducing the prediction error for 

Eg,DFT by as much as 0.6 eV and reducing the dependence on dataset size for prediction accuracy 

by up to two orders of magnitude. The results also demonstrate that information from multiple data 

rich properties can be incorporated into the models with little to no adverse impact on prediction 

performance. 

4.2 Computational Methods 

4.2.1 Datasets 

The QM9 dataset, consisting of DFT level (B3LYP/6-31G(2df,p)) calculations for over 134,000 

molecules with up to 9 heavy atoms, was utilized for training all models.[150] Based on the dataset 

specifications, training (80%), validation (10%), and testing (10%) splits were randomly selected. 

The validation set was utilized for hyperparameter selection, with the testing set withheld until 

final evaluations. Eg,DFT , as calculated by DFT within the QM9 database, was used as the 

prediction target in all models. To investigate the effect of model performance on data scarcity, 

Eg,DFT  prediction models were trained on variable amounts of Eg,DFT data alone and in combination 

with one or more data rich properties, including the QM9 reported single point energy (U0), 

electronic spatial extent (R2), heat capacity (Cv), and zero-point vibrational energy (ZPVE). 

Additionally, the geometries provided in the QM9 dataset were used as initial guesses for a 

geometry optimization and single point evaluation at the GFN2-xTB (xTB) semi-empirical 

level.[151] The HOMO-LUMO gap obtained at the semi-empirical level (Eg,xTB), was used as a 

correlated property for multi-property prediction (Fig. B1).  

4.2.2 Machine Learning Architecture 

We have evaluated the performance of 90 models on molecular property prediction tasks. All 

models share a common autoencoder architecture; individual models are distinguished by their 
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associated training data and by one or more linear prediction units connected to the autoencoder 

latent space. The autoencoder architecture was adapted from the grammar variational autoencoder 

previously developed by Kusner et al., [68] which utilizes a one-hot representation of allowable 

grammar rules to mitigate latent space voids that result from the fragility of the SMILES 

representation.[67] The autoencoder accepts one-hot inputs of grammar parse trees to an encoder 

network comprising three one-dimensional convolutional layers with filter sizes 9, 9, and 10, 

respectively, and kernel sizes of 9, 9, and 11, respectively. The outputs from the convolutional 

layers are passed to a fully connected layer of 435 units, that are then separately connected to two 

fully connected layers of 56 units (i.e., the dimensionality of the latent space) defining the mean 

and log variance of the encoding distribution, respectively. The decoder accepts samples from the 

encoding distributions and passes them to a fully connected layer of 56 units that is connected to 

three gated recurrent units of 501 cells each before terminating in a final fully connected layer 

outputting probability distributions for the output sequence. ReLU activation functions were used 

for all units in the autoencoder. A diagram of the autoencoder architecture is provided in Figure 

B2. Models were created using Keras [127] 2.2.4 with Tensorflow [128] 1.14.0 backend. 

 After pre-training of the autoencoder on a reconstruction task, the 56-dimensional latent 

space represents a compressed vectorial representation of chemistry that is utilized as an input 

feature in subsequent property prediction models. The architecture for each property prediction 

model thus consists of the pretrained autoencoder connected to one linear unit at the latent space 

layer for each property prediction task. Preliminary testing of prediction models with other simple 

forms, including the L2 norm of the latent space vector or a single component of the latent vector, 

confirmed that a single fully connected unit provided optimal latent space organization with 

respect to multi-task prediction. A more complex predictor network, consisting of a network of 3 

fully connected layers of 64 units trained with dropout rate of 0.15, was also considered to provide 

a comparison to the linear unit. This network also utilizes the ReLU activation function between 

layers and terminates in a single linear unit.  

 Since the autoencoder training data and representation do not distinguish between 

conformers of the same compound, the latent vectors likewise do not distinguish between 

conformers. When using this architecture for property prediction, the predictions thus reflect the 

conformational sampling represented in the training data. In the case of QM9, this implies 

predictions for locally minimized DFT geometries. To predict the conformational dependence of 
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these properties requires an autoencoder representation that distinguishes between molecular 

geometries, which is beyond the scope of the present work.  

4.2.3 Model Training 

To obtain a useful compressed representation of chemistry, the shared autoencoder was first pre-

trained on a reconstruction task. For this purpose, the SMILES strings corresponding to all training 

compounds were first converted into one-hot grammar parse trees and used as both inputs and 

labeled outputs for autoencoder pretraining. Pretraining was performed using the Adam 7[27] 

algorithm with learning rate of 0.005 on the categorical cross entropy loss function for 100 epochs 

with batch size of 500. Validation loss was monitored every epoch and the learning rate was halved 

in the event of a plateau.  

 The initial guess for individual property prediction models consisted of the pretrained 

autoencoder fully connected to a randomly initialized single unit at the latent space layer for each 

property prediction task. The model is then retrained with both the reconstruction task and the 

property prediction tasks, with an additional mean squared error loss term for each included 

property. ‘Missing’ property data was handled by setting the loss weight of the associated sample 

to zero. In all cases, the validation set was held fixed at the full ~13k entries. 

4.2.4 Training Data 

Each model reported here is distinguished by the amount of data and the number of property 

prediction tasks utilized during training. To investigate the effect of data scarcity on prediction 

accuracy, varying fractions of the Eg,DFT data were utilized for training each model. These fractions 

were sampled logarithmically with ten points per decade from 0.0001 to 0.8 (corresponding to ~10 

to ~100,000 compounds, respectively) and Eg,DFT-only models (MDFT) were trained on each of the 

thirty-eight fractions as a reference for multi-task transfer learning models. To provide a 

comparison between predictor networks of varying complexity, two additional single task models 

were trained using only Eg,xTB data at a fraction of 0.8 with either a linear predictor or the multi-

layer fully connected predictor described in the model architecture section. 

To evaluate the effect of data scarcity with respect to the transfer learning property 

prediction task, models were trained with variable fractions of Eg,xTB and Eg,DFT data. In these 
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models, fractions of 0.0001, 0.001, 0.01, 0.1, and 0.8 of the total Eg,xTB and Eg,DFT data were 

included for joint property prediction (i.e., separate models were trained for all combinations of 

the fractions Eg,xTB = 0.0001, 0.001, 0.01, 0.1, and 0.8  with Eg,DFT = 0.0001, 0.001, 0.01, 0.1, and 

0.8).  

To evaluate the effect of transfer learning with respect to multiple enrichment properties, 

multi-task models were trained with variable fractions of the Eg,DFT data,  and each of the following 

five sets of enrichment properties: (1) Eg,xTB, (2) Eg,xTB and U0, (3) Eg,xTB, U0, and  R2
 , (4) Eg,xTB, 

U0, R
2, and ZPVE, and (5) Eg,xTB, U0, R

2, ZPVE, and Cv. Each multi-task model was trained with 

respect to all QM9 training data for the enrichment properties (i.e., the full 0.8 training split), in 

combination with variable Eg,DFT fractions of 0.0001, 0.001, 0.01, 0.1, and 0.8.  

The smaller spacing of Eg,DFT fractions in the transfer learning models compared with the 

reference MDFT models was necessary to yield a tractable number of total models while still 

evaluating performance across orders of magnitude differences in available data. The reported 

results thus consist of 88 models for Eg,DFT prediction and 2 models for Eg,xTB prediction.  

For the data scarce models, randomly selecting training sets can lead to poor representation 

of the testing data and correspondingly large variations in the prediction errors that would 

confound the evaluation of transfer learning efficiency. We have minimized this source of error 

by training ten independent models for each fraction size, with training sets shuffled between each 

iteration, and the best performing model on the validation data was selected for use in evaluation 

on the testing set. Thus, the model performance represents transfer learning efficiency in the limit 

that training sets are well optimized with respect to testing use cases. 

4.3 Results and Discussion 

A comparison of the Eg,DFT prediction results for MDFT and models jointly trained with varying 

fractions of Eg,xTB data is shown in Figure 4.2. The results demonstrate that by enriching the models 

with correlated Eg,xTB data, the Eg,DFT prediction accuracy increases in situations with  
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Figure 4.2: Mean Absolute Error (MAE) in Eg,DFT prediction using models trained on varying 

fractions of DFT data (gray) and models jointly trained on Eg,DFT and Eg,xTB data (lines). In 

situations where less than ten percent of the DFT data is available for training, the identity of the 

compounds within the dataset becomes an important consideration. For all of these models we 

train 10 models, each on a different random subset of the training data, and select the one exhibiting 

the best performance on the validation set for final evaluation on the test set. The 95% confidence 

interval about the mean values are within marker size. 

 

limited DFT data, decreasing by as much as half an electron volt in extremely data scarce 

applications. Several quantitative aspects of this comparison provide insight into the efficiency of 

transfer learning and the conditions under which it applies.  

First, we observe that there is a clear power law relationship (R2=0.99) between the amount 

of DFT training data and the mean absolute prediction error (MAE) for MDFT. Above the smallest 

DFT fraction of 0.0001, models outperform the baseline mean prediction error of 1.07 eV. Models 

trained with the maximum fraction of Eg,DFT data exhibit a MAE of 0.21 eV, equal to the 

performance observed in other studies utilizing autoencoders in QM9 bandgap prediction.[67]  

Second, we note that the enrichment effect saturates after supplying a threshold fraction of 

0.01 for the Eg,xTB enrichment data (yellow curve in Fig. 4.2). This illustrates that a relatively small 

fraction of the data is sufficient for these models to learn the difference between the enrichment 

property, Eg,xTB, and the data scarce property, Eg,DFT. At this point, the degree of latent space 

organization begins to converge (vide infra), and the limited DFT data available to train the 

predictor node serves as a hard limit to the achievable accuracy. Models enriched with fractions of 



 

 

77 

the Eg,xTB enrichment data greater than 0.01 show a transfer learning enhancement further into the 

data rich Eg,DFT regime, although the improvement is smaller.  

Third, we note that when the supplied DFT data exceeds the enrichment data, the enriched 

models perform similarly to MDFT. This demonstrates that the enrichment prediction task does not 

inhibit learning of the Eg,DFT structure-function relationship, as long as the latent space has 

sufficient dimensionality to accommodate the organization of multiple properties. In general, the 

enriched models show MAE improvement compared to MDFT up to the point of data parity, after 

which the enriched model error curve collapses down to the DFT only cases.  

  It is significant that the joint-training leads to improved predictions for the test set of 

compounds, and not merely the training compounds for which enrichment data was provided. This 

is evidence that the latent space training organizes regions of chemical space, rather than just 

specific compounds. To elucidate the relationship between latent space organization and transfer 

learning efficiency, we also trained a model on Eg,xTB data alone using a more complex predictor 

and performed principal component analysis (PCA) on the latent space encodings of the training 

compounds.  

The resulting principal component plots are presented in Figure 4.3 with a comparison 

between the organization of Eg,xTB and Eg,DFT. Both models exhibit similar levels of prediction 

accuracy on the withheld test set of Eg,xTB, however the latent space organization is inversely 

related to the predictor model complexity. We have intentionally selected an auxiliary model that 

produces complex organization to demonstrate that sufficiently complex predictors are capable of 

learning nonlinear latent structures. While complex predictor networks can result in linear 

organization within the latent space, only the simplest linear predictor model ensures a continuous 

gradient and results in an interpretable latent space dimension corresponding to Eg,xTB. The 

organization of the latent space with respect to Eg,xTB in the linear model also results in the 

organization of Eg,DFT, which was not supplied as training data. 
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Figure 4.3: Principal component analysis (PCA) performed on latent encodings of the entire QM9 

dataset. Both models were trained solely on Eg,xTB training set data and are distinguished by the 

complexity of the predictor network. PCA results, MAE, and linear coefficient of determination 

(R2) are presented for (left) a predictor network comprised of three fully connected layers of 64 

nodes terminating in a single linear unit; and (right) a predictor network comprised of a single 

linear unit. Both networks achieve comparable performance with respect to MAE on the Eg,xTB 

prediction task (differing by less than 1% of the range of Eg,xTB training data) while exhibiting 

qualitatively different latent space organization. Only the simple linear predictor results in an 

interpretable latent space dimension (PC1), corresponding to the HOMO-LUMO gap.   

 

The original motivation for latent space organization through joint training on a property 

prediction task was not for transfer learning, but to facilitate molecular discovery.[67] However, 

the PCA results in Figure 4.3 clarify that property prediction accuracy is not necessarily connected 

with latent space organization. A sufficiently complex predictor network can achieve accurate 

predictions despite a highly nonlinear relationship between the position of the compound within 

the latent space and the property of interest. A complex predictor is thus unsuitable for transfer 

learning as the latent space organization will not necessarily reflect the intrinsic correlations 

between data scarce prediction tasks. As non-linear organization of the latent space can make the 

relationship between position in the latent space and exhibited property nonintuitive, previous 
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work using autoencoders in generative applications have utilized importance sampling algorithms 

(e.g., Gaussian processes and genetic algorithms) when searching for promising 

compounds.[67],[92],[152] Organization via a simple linear predictor provides an alternative, 

human interpretable approach and a framework for continuously incorporating new data to refine 

the latent space organization.  

4.3.1 Multi-Property Prediction 

 

Figure 4.4: Mean Absolute Error (MAE) in DFT bandgap prediction using varying fractions of 

DFT data as well as up to 5 additional properties. While the fraction of available DFT data is 

allowed to vary, the auxiliary properties are included at the full training fraction. The inclusion of 

multiple property prediction tasks during training has a negligible impact on prediction accuracy 

while providing additional organization of the latent space. The 95% confidence interval about the 

mean values are within marker size. 

 

Beyond the use of correlated properties for latent space enrichment, we have also explored 

models trained with multiple enrichment properties. Including data from multiple sources and for 

multiple properties would be useful in practical data scarce scenarios or in generative applications 

where multiple orthogonal properties are being optimized. Likewise, including multiple 

independently correlated properties could induce additional enrichment improvements for data 

scarce property prediction. To investigate these effects, multi-task models were trained with 

variable fractions of the Eg,DFT data, and each of the following five sets of enrichment properties: 

(1) Eg,xTB, (2) Eg,xTB and U0, (3) Eg,xTB, U0, and  R2
 , (4) Eg,xTB, U0, R

2, and ZPVE, and (5) Eg,xTB, U0, 

R2, ZPVE, and Cv. Figure 4.4 compares the prediction accuracy of the multi-task models with MDFT. 
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Up to an Eg,DFT data fraction of 0.1, all of the enriched models exhibit improved Eg,DFT accuracy 

compared with MDFT results. Moreover, the inclusion of additional properties within the data 

scarce regime results in a difference in MAE of less than 10% across the multi-property models. 

At higher Eg,DFT data fractions there appears to be a consistent increase in error for models trained 

with two or more enrichment properties due to the compromise in organizing the latent space 

against multiple properties. For data rich applications on multiple orthogonal properties, there may 

be a tradeoff between the simplicity of the latent variable model and predictive performance that 

necessitates the use of more complex predictors. However, in the transfer learning regime this 

effect is minute in comparison with the overall consistency of the accuracy curves across all of the 

enriched models. Thus, multi-property training has little to no adverse effect on data scarce 

property prediction, but it does potentially provide additional latent space organization that could 

be beneficial in generative applications. 

The effect of multi-property enrichment on latent space organization was investigated by 

performing PCA on the latent space of a model enriched with both Eg,DFT and R2 data (Fig. 4.5).  

 

 

Figure 4.5: Principal component analysis performed on latent encodings for compounds within the 

training set for a model trained on both DFT data and electronic spatial extent. The projections 

along the first two principal components are colored according to (A) Eg,DFT and (B) R2. The 

chemical landscape shows excellent organization with respect to both properties (R2=0.98 for both). 

Latent space organization occurs in orthogonal directions for uncorrelated properties. 

 

Figures B3 and B4 provide a similar analysis for Eg,xTB and Cv with linear and non-linear predictors, 

respectively. Since R2 is simply a measure of the spatial extent of each molecule, it exhibits little 

correlation with Eg,DFT. After joint training, we observe a distinct advantage for linear predictors 
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over complex predictors in multi-property organization. Figure B4 demonstrates that more 

complex predictor networks may have difficulty operating on disjoint properties, leading to latent 

spaces with poor, non-linear organization. By instead utilizing a linear predictor, the encoder 

manages to organize compounds linearly with respect to both molecular properties. However, the 

lack of correlation between the properties results in R2 and Eg,DFT organization along orthogonal 

principle components. In contrast, we observed that for correlated properties, compounds are 

organized along colinear directions within the latent space (Fig. 4.3). Thus, the inclusion of non-

correlated properties in the enriched models exhibits little adverse impact on prediction accuracy 

in the data scarce regime provided the latent space is of sufficient dimensionality to organize with 

respect to all properties. Although adding additional uncorrelated properties exhibits no advantage 

with respect to prediction accuracy, it does provide additional interpretability to the latent space 

as particular directions will now have direct, linear correlation with their respective properties. 

Likewise, adding additional physical information in the latent space organization may have 

beneficial effects in generative applications that will be explored in future work.   

4.4 Conclusions 

Data scarcity remains an impediment to applying ML to many problems in molecular property 

prediction. We have demonstrated that chemical autoencoders provide a powerful framework for 

combining data from multiple sources to improve the prediction of data scarce molecular 

properties. These results provide a systematic demonstration that enrichment data can come from 

multiple sources, be comprised of multiple properties, and vary in quantity while still enhancing 

performance on data scarce property prediction tasks. Moreover, the transfer learning models 

converge to the prediction accuracy of analogous ML models in the data rich regime. Thus, the 

presented transfer learning framework represents a flexible strategy for circumventing data 

limitations with little observable drawback.  

We have also demonstrated that the use of simpler linear predictor models for latent space 

organization positively impacts both transfer learning efficiency and the interpretability of the 

latent space by directly relating position along the various latent axes with chemical properties. 

Multi-property training results in latent space organization such that correlated properties are 

collinearly arranged and non-correlated properties occupy orthogonal dimensions. Effective 

organization is achievable utilizing only a few hundred training samples in the case of strong 
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correlation between data scarce and data rich prediction properties. Similarly, transfer learning 

improvements are observable with as little as an order of magnitude excess enrichment data and 

are not significantly affected by the inclusion of additional uncorrelated properties. Although the 

inclusion of multiple uncorrelated properties does not assist the targeted molecular prediction tasks 

presented here, it provides an avenue for multi-objective optimization and chemical discovery that 

will be explored in future work.  
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 IMPROVING THE GENERATIVE PERFORMANCE OF CHEMICAL 

AUTOENCODERS THROUGH TRANSFER LEARNING  

Reprinted with permission from Mach. Learn.: Sci. Technol.  2020, 1 (4), 045010. DOI: 

10.1088/2632-2153/abae75 Copyright 2020 IOP Publishing. 

 

Generative models are a sub-class of machine learning models that are capable of generating new 

samples with a target set of properties. In chemical and materials applications, these new samples 

might be drug targets, novel semiconductors, or catalysts constrained to exhibit an application-

specific set of properties. Given their potential to yield high-value targets from otherwise 

intractable design spaces, generative models are currently under intense study with respect to how 

predictions can be improved through changes in model architecture and data representation. Here 

we explore the potential of multi-task transfer learning as a complementary approach to improving 

the validity and property specificity of molecules generated by such models. We have compared 

baseline generative models trained on a single property prediction task against models trained on 

additional ancillary prediction tasks and observe a generic positive impact on the validity and 

specificity of the multi-task models. In particular, we observe that the validity of generated 

structures is strongly affected by whether or not the models have chemical property data, as 

opposed to only syntactic structural data, supplied during learning. We demonstrate this effect in 

both interpolative and extrapolative scenarios (i.e., where the generative targets are poorly 

represented in training data) for models trained to generate high energy structures and models 

trained to generated structures with targeted bandgaps within certain ranges. In both instances, the 

inclusion of additional chemical property data improves the ability of models to generate valid, 

unique structures with increased property specificity. This approach requires only minor 

alterations to existing generative models, in many cases leveraging prediction frameworks already 

native to these models. Additionally, the transfer learning strategy is complementary to ongoing 

efforts to improve model architectures and data representation and can foreseeably be stacked on 

top of these developments.  
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5.1 Introduction 

The proliferation of machine learning (ML) research in the context of the chemical sciences has 

yielded powerful modeling paradigms for increasing the accuracy and reducing the cost of 

predicting the properties of molecules and materials. As this work reaches maturity, the so-called 

“forward-problem” of predicting function from a given chemical structure is becoming more 

routine and with new datasets coming online more properties will soon become accessible to 

prediction using ML models. However, the “inverse-problem” of finding an optimal set of 

structures under functional constraints is more directly relevant to chemical design and remains 

unsolved. Deep generative models are one class of ML modeling that is potentially capable of 

addressing the inverse problem by yielding exemplary structures from the same population as the 

training distribution. Such models have been effective in generating images that accurately match 

a desired caption, [153] novel musical scores, [154] and have recently been under intense study in 

chemical applications to discover new functional molecules and materials.[10] Common 

generative methods include variational autoencoders, [92],[67],[155] recurrent neural networks, 

[156],[157],[158] generative adversarial networks, [159],[160] and adversarial autoencoders, [161] 

among others, and the optimal model architecture and data representation for chemical generation 

is still an area of active research. These models have been extensively applied towards the design 

of drug-like molecules, but other applications also include the generation of novel solar cell 

materials [103] and crystalline species.[162]  

 Several of the early papers on generative chemical models have noted low generative 

validity [67] and diversity [163] when using typical chemical representations (e.g., using SMILES, 

InChI, and grammar based representations) and architectures. Thus, intense research has been 

devoted to developing model architectures that guarantee or improve the chemical validity and 

uniqueness of the molecules produced by deep generative models.[155],[164],[165],[166] In 

contrast, the role of training data and the possible impact of including additional chemical property 

information during training remains largely unexplored. In particular, although generative models 

are typically trained using abundant syntactic data (i.e., molecules with valid Lewis structures from 

databases like QM9 and ZINC) limited chemical property data is typically incorporated into model 

training. Likewise, research on which properties are conducive to inverse design has been scarce, 

and the properties that have been investigated tend to be either narrow in scope, such as simple 

cheminformatics data like molecular weight and the water-octanol partition coefficient, or 
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properties that may not be directly verified and are instead based on similarity to known lead 

molecules.[156] A general approach for targeted generation of compounds based on general 

quantum chemical properties has not yet been developed.  

In the present work we investigate whether transfer learning 

[148],[70],[167],[146],[168],[169] (TL) improves the performance of generative models in 

comparison with baseline models trained to generate molecules with a single property. We focus 

on multi-task TL, [76],[170],[79],[149] whereby modifications to model architecture are minimal, 

save only through the inclusion of additional property prediction tasks. Since multi-task TL is 

largely model independent, it provides a potentially complementary strategy for improving 

generative models to contemporary efforts to modify model architecture and data representation. 

The hypothesis driving our exploration of multi-task TL for generative models is that the limited 

validity and uniqueness exhibited by many generative models is a symptom of insufficient 

chemical property data being utilized during training. In particular, elementary chemical properties 

including internal energy, bandgap, and zero-point vibrational energy can be routinely calculated 

from quantum chemistry and may provide relevant information about validity and molecular 

stability that cannot be learned from molecular structures alone. This hypothesis is explored using 

a generative variational autoencoder model with multi-task TL trained on the QM9 dataset, along 

with semi-empirical calculations for validation of generative predictions. We consider internal 

energy at zero Kelvins (U0), zero-point vibrational energy (ZPVE), and HOMO-LUMO gap (Eg) 

evaluated at the DFT level as multi-task prediction properties for training, and compare how 

generative performance with respect to validity, uniqueness, and property specificity is affected 

by inclusion of additional ancillary chemical property data. Since QM9 is a database of small 

molecules, relatively few high |U0| samples or low Eg samples exist in the training data. Thus, by 

characterizing generative results in these property spaces we can characterize how generative 

performance in an extrapolative task is affected by transfer learning. For targeted structure 

generation, we observe that multi-task TL increases the percentage of valid and unique high |U0| 

structures up to sevenfold with increased property specificity. Searching within areas of physically 

accessible property values tends to greatly increase the proportion of valid chemical species 

generated. Even within property regimes with limited representation in the training data, such as 

structures within the optical bandgap of 1.5-2.0 eV, the inclusion of additional property data 

improves the ability of the generative models to discover new valid structures. Thus, multi-task 
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TL can be utilized in both extrapolative and interpolative applications to generate novel 

compounds with optimized or targeted molecular properties with a higher success rate.  

5.2 Computational Methods 

5.2.1 Datasets 

All models were trained and evaluated using structures from the QM9 dataset. This dataset 

contains molecular properties computed at the B3LYP/6-31G(2df,p) level for small molecules 

ranging from 1-9 heavy atoms (C, O, N, F). 80% of the structures and their associated properties 

were utilized for model training, 10% were withheld as part of a validation set to gauge model 

performance during training, and the final 10% were kept as an independent testing set for the 

property prediction tasks. The internal energy at 0K (U0), zero-point vibrational energy (ZPVE), 

and HOMO-LUMO gap (Eg) were used individually, or in combination, for training multi-task 

models.  

5.2.2 Machine Learning Architecture 

Approximately 100 models were evaluated in total, with models distinguished by the number and 

kind of prediction tasks utilized during training. Unless otherwise noted, model types were 

evaluated in an ensemble fashion, with 10 models trained per ensemble. Sampling results for each 

model type are averaged across the ensemble to provide uncertainty estimates. The autoencoder 

model utilized in this study was based on the grammar variational autoencoder (GVAE) developed 

by Kusner et al.[68] The major alterations from the original implementation lies in the use of linear 

predictor networks during model training and evaluation, which have been previously shown to be 

advantageous for multi-task training.[170] Models were trained using the RMSprop algorithm with 

a learning rate of 0.001 for 100 epochs. The loss corresponding to predictor MSE was scaled by 

100, KL divergence was scaled by 750, and the categorical cross entropy loss weight from 

encoding/decoding was scaled by 50 initially, before decaying to 1 according to a sigmoid function. 

These loss weights were selected to ensure well-balanced performance with respect to both 

reconstruction on the training data and property prediction accuracy. Exemplary trained models, 

model schematic, and full training details may be found in Appendix C. 
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 Over 6 million compounds were cumulatively generated in the present study. Since it is 

infeasible to characterize all of these compounds at the B3LYP/6-31G(2df,p) level, GFN2-xTB 

(xTB) was utilized to evaluate U0 and Eg of newly generated species.[151] DFT level predictions 

for Eg were estimated from a random forest model trained to predict the difference between xTB 

and B3LYP/6-31G(2df,p) (Fig. C1). The random forest model consists of 120 regressors expanded 

to max depth and trained to predict the difference in xTB and DFT computed bandgap given a 

Morgan fingerprint of depth two with 1024 bits. Fingerprints were calculated using the RDKit 

implementation, and the random forest model followed the Scikit-Learn implementation. xTB 

predictions for |U0| were found to be linear correlates for the DFT values (Fig. C2) and were used 

without modification.  

5.2.3 Sampling Paradigms 

In the variational chemical autoencoder studied here, new compounds are generated by 

sampling points from the latent chemical distribution and passing these points to the decoder. By 

including an ancillary property prediction task, molecular properties vary linearly along particular 

directions within the latent space (i.e., a principal component). The regions of the latent space to 

target can thus be determined by linear regression of the target property of training compounds 

with respect to their position along the principal components. The generative performance of the 

models was investigated using both extrapolative and interpolative sampling approaches. 

Extrapolative property sampling was achieved using a one-sided distribution with mean equal to 

the extreme latent position along the sampled principal component in the training data and variance 

determined from the variance of the training data along the sampled principal component. All other 

dimensions were normally sampled according to the training set distribution. 

 In interpolative sampling, the goal is to recover compounds whose properties lie within a 

given range (with at least some representation within the training data). The maximum and 

minimum position along the latent dimension corresponding to the high and low end of the targeted 

property range were determined via linear regression. This dimension was then sampled from a 

uniform distribution with specified high and low values. All other dimensions were sampled 

normally according to the training set distribution. 
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5.3 Results and Discussion 

5.3.1 Extrapolative Sampling 

To explore whether adding property prediction tasks can improve generative models we 

investigated two simplified models: one trained only on encoding and decoding, and another also 

trained to predict U0 from the latent encoding. The latent dimensionality was set at two to allow 

comprehensive sampling to evaluate the validity of generated compounds and for direct 

visualization of the latent space. 1000 points were sampled from this 2D latent space using the 

quasi-random Sobol algorithm to maximize the area of the latent space sampled. Due to the 

stochastic nature of the decoding process, each point was decoded 500 times to determine the 

average sampling validity. These models are not optimized for either predictive or generative  

 

 

Figure 5.1: Comparison of latent space Sobol sampling for 2D autoencoders trained on (a) 

chemical reconstruction only and those with (b) an ancillary U0 prediction. All compounds utilized 

in training the models have been projected into the latent space and are colored according to U0. 

The points corresponding to the Sobol sampling are colored according to their average validity 

across 500 decodings. For the model trained to predict U0, we observe a clear relationship between 

increasing validity and decreasing |U0|, whereas for the model trained only on reconstruction, there 

are no observable trends with respect to either validity or property values. 

 

performance, but have been aggressively simplified to illustrate the basic transfer learning 

mechanism explored in this work. The results from these experiments are presented in Figure 5.1. 

This example illustrates two salient features of adding a property prediction task to the 

generative model. First, by learning to predict a chemical property the models also learn to 
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discriminate between valid and invalid structures. For the autoencoder trained without property 

prediction tasks (Fig. 5.1a), the latent space is organized syntactically, with a region containing 

almost exclusively aromatic compounds in the top left, separated by a gap from other non-aromatic 

ring-containing structures (Fig. C3). However, we observe no discernable trend with respect to 

decoding validity or |U0| across the latent dimensions. In contrast, the model trained to predict |U0| 

(Fig. 5.1b) exhibits sampling validity trends that follow the physical property. Second, adding a 

property prediction task exposes both training data limitations and features of chemistry that affect 

generative behavior. The sampling validity of the model trained to predict |U0| approaches nearly 

100% for small molecules (i.e., low |U0|) and lower validity for large structures (i.e., high |U0|). 

This is consistent with the observation that small molecules are easier to validly decode and are 

well represented in the training data. In contrast, high |U0| structures are relatively rare in QM9 

given that the dataset is curated for small molecules.  

Motivated by this example, we then explored whether generative validity also follows 

chemical property trends in higher dimensional autoencoders that are more typical of generative 

applications.[67],[161],[81],[92] In particular, higher dimensional latent spaces are required to 

effectively compress chemical data when multiple properties are utilized during training (Figs. C4-

5). We compared the generative performance of two 56-dimensional autoencoders, one trained 

only on encoding and decoding and the other also trained to predict U0 from the latent encoding. 

Both models were sampled in an extrapolative mode along their first principal component as 

determined by the latent encodings of the training data, with 30,000 unique structures generated 

for each model type. For the model trained without property prediction, the extrapolative sampling 

validity is found to be 25% +/- 7% with uniqueness of 23% +/- 5%, regardless of direction along 

the first principal component and consistent with no organization of the latent space with respect 

to validity. Conversely, sampling in the low absolute internal energy regime of the jointly trained 

model nearly doubles the average validity, raising it to 45%+/-3%, but drastically reduces the 

uniqueness to 3% +/- 2%, as there are only a small number of C, N, H, O, and F containing 

molecules as U0 approaches zero. Conversely, extrapolating to high |U0| produces a valid structure 

only 3% +/- 2% of trials with similar values for uniqueness. These results establish that validity 

trends in high-dimensional autoencoders follow chemical property values, consistent with the 

experiments on the low-dimensional models.  
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 It is clear that the inclusion of chemical property data during generative model training 

affects sampling validity and suggests that supplying additional chemical information may further  

 

 

Figure 5.2: Average sampling validity and uniqueness for the high |U0| extrapolation trial. Results 

are averaged across 10 distinct models for each training paradigm, with error bars denoting 

standard deviation. Baseline models exhibit very limited ability to generate structures with high 

|U0|. The addition of ancillary property prediction tasks greatly improves the generative utility of 

these models. 

 

improve generative performance. We therefore examined the effect of including additional 

property prediction tasks based on available QM9 data, including ZPVE, which is expected to scale 

with the number of bonds in the molecule, and Eg, which is not anticipated to correlate with the 

internal energy of a compound, and repeated the U0 extrapolation outlined above. The validity and 

uniqueness statistics for the baseline model trained only on U0, and models trained on U0/ZPVE, 

and U0/ZPVE/Eg are summarized in Figure 5.2. The addition of ancillary ZPVE and Eg prediction 

tasks improves the ability of the multitask models to generate high absolute internal energy 

structures. Inclusion of ZPVE alone leads to an increase in the average sampling validity and 

fraction of unique structures. Including an additional Eg prediction task results in little further 

change in sampling validity, but the proportion of unique structures generated increases and the 

variance of both quantities decrease.  

To investigate if the increased validity and uniqueness of the multi-task models also 

reflected increased property specificity, we have histogrammed the predicted |U0| of the generated 

compounds for each model in Figure 5.3. We note a root mean square deviation of ~11 Hartrees  
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Figure 5.3: Distribution of U0 for structures for the training set (a) compared with structures 

generated from extrapolation along the first principal component of models trained on (b) encoding 

and decoding alone, (c) an ancillary U0 prediction task, (d) U0 and ZPVE prediction tasks, and (e) 

U0, ZPVE, and Eg prediction tasks. For each paradigm, 3000 unique structures are generated across 

the 10 duplicate models for a total of 30,000 structures. The mean of each distribution is denoted 

with a dashed red line and the largest |U0| value in the training data is indicated by the dashed green 

line. The percentage of generated compounds with |U0| greater than observed in the training data 

is shown on the right.   

 

between |U0| calculated at the DFT and xTB level (Fig. C2), thus we expect this to be the minimum 

uncertainty in the resulting estimates and also contributes to width of the resulting distributions. 

Extrapolative sampling of the base autoencoder (Fig. 5.3b) exhibits a broader distribution of |U0| 

values than observed in the training distribution, however the mean |U0| is consistent with the 

training data and <5% of the structures exceed the maximum |U0| of the training data (Fig. 5.3a). 

Fig. 5.3b shows that including the U0 prediction task leads to an increase in the number of high 

|U0| structures and shifts the mean relative to the training data; however, the mean of the predicted 

distribution is still within the training distribution, indicating a limited ability to extrapolate beyond 

the training data. Figure 5.3d shows that inclusion of the ZPVE prediction task shifts the 

distribution towards higher |U0| structures well beyond the training data, with ~20% of the 

generated structures displaying |U0| greater than the maximum value in the training set. Thus, the 

increase in observed valid/unique structures comes from the higher density of desired structures 

within the sampling region.  Interestingly, while the further addition of a Eg prediction task in 

Figure 5.4e increases the validity and uniqueness of the generated structures, the bias towards 

higher |U0| structures has been removed. It appears that inclusion of Eg saturates the latent space 

with valid structures, albeit biased towards the training population. The disparate impact on |U0| 
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extrapolation of including the ZPVE and Eg prediction tasks can be understood in terms of their 

correlation with |U0|. ZPVE scales with molecular size, and so supplying this chemical information 

improves the extrapolative sampling of high |U0| structures; however, Eg is weakly correlated with 

U0, but still provides chemical information that improves the overall validity of sampled molecules.  

5.3.2 Interpolative Sampling 

The extrapolative sampling that was investigated above is representative of chemical 

discovery applications where champion property values are being sought for new compounds 

outside of the convex hull of the training data. In contrast, interpolative sampling is relevant to 

applications where a range of property values are desired with some representation in the training 

data. For instance, in photovoltaic applications it is relevant to target structures within the optical 

bandgap of 1.0-2.0 eV rather than compounds with extreme values. To investigate the baseline 

performance of interpolative sampling we trained autoencoders on an Eg prediction task. Ten 

separate models were trained to evaluate model variance, and novel compounds were generated 

for the target Eg ranges of 1.5-2.0 eV, 5.5-6.0 eV, and 9.5-10.0 eV based on the principal  

 

 

Figure 5.4: Distribution of Eg for the training data (a) and structures generated from models trained 

to predict Eg by targeting (b) 1.5-2.0 eV, (c) 5.5-6.0 eV, and (d) 9.5-10.0 eV. While (c) and (d) 

show good specificity, the model is unable to resolve structures in the 1.5-2.0 eV range (a). For 

each target, 3000 unique structures are generated across the 10 duplicate models for a total of 

30,000 structures. The median of each distribution is indicated by a dashed red line. Targeted 

regions are highlighted in blue. 
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component corresponding to Eg (see methods). For each range, 3000 unique structures for each of 

the ten models were decoded and subjected to xTB calculation to determine Eg.   

The histograms of Eg values resulting from the interpolative sampling procedure are shown 

in Figure 5.4. Although all of the targeted ranges have some representation in the training data, the 

impact of data imbalance is apparent in the results. The generative performance in the 5.5-6.0 eV 

range, which is well represented in the training set, exhibits good specificity (Fig. 5.4c). A narrow 

distribution develops with its most frequent value within the targeted region. Structures with 

bandgap between 9.5-10.0 eV (Fig. 5.4d) are much less well represented in the training data, and 

consequently the distribution is much broader and is not centered about the target range, although 

generation is still shifted towards high Eg structures, and a large number of structures are still 

recovered within the targeted region. The situation is much starker for the lowest bandgap target 

of 1.5-2.0 eV (Fig. 5.4b), which shows almost no representation in the training data (Fig. 5.4a) due 

to the rarity of such low bandgap structures in a dataset comprised of small molecules. The models 

exhibit limited ability to target compounds within this region, as evidenced by the distribution  

 

 

Figure 5.5: Average sampling validity and uniqueness for the three targeted Eg paradigms. Results 

are averaged across 10 distinct models for each training paradigm, with error bars denoting 

standard deviation. The models show difficulty in generating compounds within the poorly 

represented 1.5-2.0 eV range and are comparatively much stronger in generating structures with 

Eg between 5.5-6.0 and 9.5-10.0. The addition of ancillary U0 and ZPVE prediction tasks greatly 

increases the proportion of valid and unique structures generated in the 1.5-2.0 eV range. 

 

centered at 4.5-5.0 eV. Only 200 structures with a bandgap of 1.5-2.0 were generated by these 

models, out of a total of 30000 generated compounds. Sampling in this region also tends to produce 

a much lower fraction of valid/unique structures than the higher Eg targets (Fig. 5.5).  
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Given the scarcity of training compounds exhibiting Eg in the 1.5-2.0 eV range, this 

generation task is closely analogous to the extrapolative sampling experiments performed for high  

 

 

Figure 5.6: Distribution of Eg for structures generated from model trained to predict U0, ZPVE, 

and Eg. Eg is targeted within 1.5-2.0 eV while U0 is extrapolated to bias the discovery of larger 

compounds. Compared to targeting Eg alone, the distribution of Eg is much wider, which allows 

for the generation of approximately twice as many low Eg structures compared with models trained 

on Eg alone. The targeted region is highlighted in blue. 

 

|U0| structures. The number of structures with bandgap of 1.5-2.0 eV is severely limited within the 

QM9 database, making this a particularly difficult region to target. Because QM9 exhausts small 

molecule space, there is also a limited amount of target compounds to actually discover within the 

space spanned by the training data. In order to effectively target this underrepresented region, it is 

also necessary to expand the search beyond QM9 towards larger molecules. To investigate if multi-

task TL could improve targeted generative performance, we followed the same procedure of high 

|U0| extrapolation while also targeting structures with Eg within 1.5-2.0 eV. We trained ten separate 

models on Eg/ZPVE/U0 prediction tasks and performed targeted sampling for Eg in the 1.5-2.0 eV 

range while extrapolating along the U0 principal component to facilitate the generation of larger 

structures. As shown in Figure 5.5, the inclusion of these ancillary prediction tasks more than 

triples the number of unique structures generated. However, it is clear from observing the bandgap 

histogram in Figure 5.6 that the increase in unique structures is not due to greater specificity. In 

fact, the distribution has been shifted towards higher Eg structures compared to the model trained 

to predict Eg alone, and the distribution has broadened. It is this broadening of the distribution that 
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is responsible for the increase in the number of unique structures generated, however it also allows 

the model to generate compounds with a bandgap of 1.5-2.0 eV. In particular, the number of 

structures within this range has more than doubled, with 440 structures compared to 200 for models 

trained on Eg prediction alone. The additional chemical property information provided by the |U0|  

and ZPVE prediction tasks has been transferred to the task of generating unique structures with 

targeted properties by improving the ability of the model to sample within these underrepresented 

regions of chemical space. For the other bandgap targets, the inclusion of ZPVE and U0 data also 

serves to broaden the distribution of generated compounds (Fig. C6); however, as these regions 

are already targeted effectively, it is not advantageous to add in the additional property data in 

these cases. 

5.4 Conclusions 

These results demonstrate that multi-task transfer learning can be extended beyond property 

prediction towards improving generative performance. We observe that including chemical 

property data during generative model training provides complementary information to the 

syntactic, structural data that is typically used during training, with a generic positive impact on 

generative validity and performance on extrapolation tasks. In particular, by constraining the 

search to physically accessible property values, the validity of generated species is increased. For 

extrapolative sampling, it may prove difficult to generate structures that are not well represented 

in the training data due to significant differences in atom connectivity and topology; however, the 

information learned in an ancillary property prediction task can be transferred to the generation 

task, giving the model enough additional information to successfully resolve these new structures. 

For targeted structure generation within property regimes that may not be well represented in the 

training data, this mechanism may also be exploited to help the model effectively sample these 

underrepresented regions of chemical space and resolve compounds with the desired property 

values. We anticipate that this effect can be employed in other extrapolative applications to 

generate novel compounds with optimized molecular properties with a higher success rate. 

  



 

 

96 

 ACTIVELY SEARCHING: INVERSE DESIGN OF NOVEL 

MOLECULES WITH SIMULTANEOUSLY OPTIMIZED 

PROPERTIES  

The contents of this chapter in its entirety, including figures and supporting information, 

are currently under review for publication in the Journal of Chemistry and Physics A. 

 

Combining quantum chemistry characterizations with generative machine learning models has the 

potential to accelerate molecular searches in chemical space. In this paradigm, quantum chemistry 

acts as a relatively cost-effective oracle for evaluating the properties of particular molecules while 

generative models provide a means of sampling chemical space based on learned structure-

function relationships. For practical applications, multiple potentially orthogonal properties must 

be optimized in tandem during a discovery workflow. This carries additional difficulties associated 

with specificity of the targets and the ability for the model to reconcile all properties 

simultaneously. Here we demonstrate an active learning approach to improve the performance of 

multi-target generative chemical models. We first demonstrate the effectiveness of a set of baseline 

models trained on single property prediction tasks in generating novel compounds with various 

property targets, including both interpolative and extrapolative generation scenarios. For property 

ranges where accurate targeting proves difficult, the novel compounds suggested by the model are 

characterized using quantum chemistry to obtain the true values, and these new molecules closest 

to expressing the desired properties are fed back into the generative model for additional training. 

This gradually improves the generative models’ understanding of unknown areas of chemical 

space and shifts the distribution of generated compounds towards the targeted values. We then 

demonstrate the effectiveness of this active learning approach in generating compounds with 

multiple chemical constraints, including vertical ionization potential, electron affinity, and dipole 

moment targets, and validate the results at the B97X-D3/def2-TZVP level. This method requires 

no modifications to extant generative approaches, but rather utilizes their inherent generative and 

predictive aspects for self-refinement and can be applied to situations where any number of 

properties with varying degrees of correlation must be optimized simultaneously. 
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6.1 Introduction 

Machine learning (ML) has emerged as a powerful tool for solving previously intractable problems 

by extracting latent information from domain data, and has been effectively employed in areas as 

distinct as manufacturing analytics [172] and cancer detection.[173] In recent years, it has proved 

particularly successful in the chemical sciences, where ML has been used to predict interatomic 

potentials [83], quantum chemical properties [49], and structural data of polymers [174],[175] and 

crystals.[176] Moving beyond the “forward-problem” of predicting molecular properties from a 

given chemical structure, generative chemical models have garnered significant interest in solving 

the “inverse-problem” of predicting a chemical structure from a given descriptor. As a large body 

of research in chemistry is devoted to creating novel compounds under functional constraints, these 

generative models have the potential to supplement and automate much of the often-laborious 

manual chemical optimization methods by providing reasonable chemical suggestions for more 

expensive experimental synthesis and characterization. Generative adversarial networks 

[177],[164],[160],[178] (GANs) and various formulations of autoencoder networks 

[152],[179],[180],[161],[92],[181],[182] have emerged as some of the more popular frameworks 

for generative machine-learning based chemical design. These methods often provide for a 

predictive aspect which allows suggestions to be biased towards compounds with particular 

properties.[67] Much effort has been directed to solving issues related to the ability of these models 

to generate valid chemistries [183],[164],[165],[166], and they have been successfully 

demonstrated in generating compounds with specific properties such as bandgap [103] and thermal 

conductivity.[184] 

While models capable of optimizing one molecular property are compelling proof-of-

principle demonstrations, multi-property optimization is required in any practical chemical 

discovery application. Because of the exponential scaling of search spaces with respect to the 

number of properties, multi-property chemical searches are fundamentally more challenging 

because they will typically be operating in an extrapolative regime (i.e., searching for properties 

outside the convex hull of training data ranges) and training data density drops in high dimensions.  

Several recent studies have highlighted the challenges and potential solutions to pursuing multi-

property searches. Janet et al. balanced solubility and redox potential in the design of transition 

metal complexes for redox flow batteries using efficient global optimization to explore an 

enumerated space of 2.8 million candidate complexes.[185]  Domenico et al. utilize reinforcement 
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learning for the design of drug-like molecules where the trade-offs among relevant physiochemical 

properties like molecular weight and hydrogen bond donors/acceptors, as well as similarity 

constraints to known drugs, are minimized. [186] Ståhl et al. also used a reinforcement learning 

approach to target and modify fragments in known structures to develop novel structures similar 

to known lead compounds but with optimized molecular weight, logP, and polar surface area. [187] 

Nigram et al. recently proposed the STONED algorithm, which side-steps the data limitations 

associated with training deep generative models and instead relies on string permutations of seed 

structures represented with semantically robust SELFIES.[188]  Zhou et al. developed a 

reinforcement learning method based on atom/bond addition/removal to optimize compounds with 

respect to logP and quantitative estimate of drug likeliness (QED).[189] Interestingly, they also 

note that common targets for generative models may not be suitable for real world applications. 

LogP, for instance, may be trivially improved by simply increasing the length of carbon chains in 

a structure. Of interest is a method that can be applied generally to experimental properties or 

computational analogues.  

Despite the large datasets available (and in many cases necessary) for training, certain 

combinations of properties are difficult for a generative model to achieve, either because they 

contradict basic physical relationships, or because they simply have limited representation within 

the training data. Rather than filtering an enumerated set of compounds or guiding the generation 

process with methods such as reinforcement learning, we propose leveraging the generative aspect 

of these models to enrich training data in targeted regions of chemical space. Generative chemical 

models have the unique feature that syntactically valid outputs are guaranteed to belong within 

chemical space, meaning that they are suitable samples for further model training. By sampling 

underrepresented regions of chemical space, new compounds may be discovered that are closer to 

the desired property space than any elements in the training set. By introducing the model to these 

new chemistries, the model can better learn which features correlate with the designated figures of 

merit. This framework falls under the paradigm of active learning. In active learning, a model can 

ask an expert source (i.e., the oracle) to annotate unlabeled training data that the model believes 

will be helpful.[190] This is particularly useful in situations where generating labeled data is 

difficult, as is often the case with chemical property data, because in the optimal case the model 

will utilize as little data as possible. This method was exploited by Konze et al. who used an active 

learning-based approach to more efficiently screen a large set of ligands without conducting 
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expensive free energy perturbations on the entire set.[191] This approach was extended in their 

recent follow-up to train a goal-directed generative model to generate promising ligands for further 

screening.[192] We propose formulating the entire goal of multi-target chemical optimization as 

an active learning problem. Rather than attempting to determine optimal regions of chemical space 

to sample or train on, we query to model to obtain its suggestions for compounds with the desired 

properties. These compounds are then screened via semi-empirical calculation (i.e., the oracle) and 

the model is retrained on those new compounds that actually match the target property profiles. In 

this way, the model develops its own training data to better understand new chemistries and 

iterating on this procedure provides the opportunity to continuously improve a model’s ability to 

target compounds with underrepresented properties. 

Herein we examine this active learning framework to improve the performance of multi-

objective generative chemical models. Utilizing a subset of compounds from the ZINC15 database 

[116], we develop our own dataset of quantum chemical properties including vertical ionization 

potential (VIP), electron affinity (EA), and dipole moment (DM) calculated at the semi-empirical 

level for training. We demonstrate the effectiveness of generative chemical models trained to 

propose compounds with a single targeted property, as well as multiple properties at once. We also 

demonstrate the shortcomings of such models, particularly when the combination of desired 

properties is not found in the training data, and how they may be overcome with active learning. 

We then validate the properties of the newly suggested compounds at the B97X-D3/def2-TZVP 

level. This active learning scheme can be applied to both single property and multi-property 

models to extrapolate to new regions of chemical space. 

6.2 Methodology 

6.2.1 Datasets 

All models are initially trained and evaluated using structures from the ZINC15 dataset. This 

dataset contains 3D structural data for hundreds of millions of small molecules, from which we 

have chosen a subset of 250,000 compounds with molecular weight between 200 and 500 Daltons 

and logP between -1 and 5. These compounds were subjected to geometry optimization and 

electronic structure calculation with GFN2-xTB[151] (xTB) to obtain their DM, VIP, and EA. 

After removing compounds that failed the initial geometry optimization, we were left with 224,742 
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structures and their associated properties. 80 percent were utilized for training, with the remaining 

20 percent withheld for validation. Additional structures generated during the active learning step 

were subjected to the same property calculation methods to expand the dataset. In order to validate 

the properties of the structures generated in the multi-objective active learning study, xTB 

optimized geometries are used as input to a geometry optimization at the B97X-D3/def2-TZVP 

level to determine the dipole moment of the neutral species.[193] Using the optimized neutral 

geometries, the DFT calculations are repeated for the cation and anion to calculate the vertical 

ionization potential and electron affinity, respectively. All DFT calculations were conducted using 

Orca 4.0.1.[125] 

6.2.2 Machine Learning Architecture 

Three models were developed for single target predictions and one model was developed for multi-

property prediction tasks. We utilize the grammar variational autoencoder [68] (GVAE) to achieve 

generation of molecules with targeted properties, with the alteration of using a single linear 

predictor layer so that properties tend to vary linearly along the latent dimensions.[170] Training 

was conducted using the RMSprop algorithm with a learning rate of 0.001, which was set to decay 

by a factor of 0.3 in the case of a plateau in the validation loss. KL divergence loss was scaled by 

750, and the categorical cross-entropy loss associated with encoding and decoding was decayed 

from 50 to 1 during training according to a sigmoid function. All properties were normalized to 

fall within a range of -20 to 20. The normalization and scaling factors were selected to balance 

property prediction accuracy, encoding and decoding accuracy, and the ability to decode novel 

structures from arbitrary latent points. Additional training details are provided in Appendix D. 

6.2.3 Sampling Paradigms 

With a fully trained autoencoder, new molecules may be decoded from arbitrary points in the 

chemical latent space. Jointly training the autoencoder with a property prediction task based on a 

linear prediction network ensures that those properties will vary linearly along the principal 

components of the latent encodings.[170] Compounds with specific properties can then be 

generated by targeting regions of the latent space based on univariate linear regression between 

the property of interest and the position along one of the principle components. In the case of multi-
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property models, correlation between the properties may lead to latent space organization not being 

exactly orthogonal. To find the direction to sample, we linearly regress the angles that the points 

must be rotated by to maximize the R2 between position along a particular principal component 

and the property of interest. This allows us to continue to utilize a simple linear regression to target 

specific properties. All other dimensions are sampled normally with mean and standard deviation 

determined by the training data. 

6.2.4 Active Learning Technique 

Depending on the nature of the property and the range for which it is sampled, and particularly for 

extrapolative property searches, the model may not be able to generate structures with properties 

that match those suggested by the regression outlined above. To circumvent this, structures are 

sampled from the regions of latent space that the model predicts to be of interest, which are then 

used for retraining the model. In each iteration, 100,000 unique structures are sampled from the 

model and the canonical SMILES of these structures are checked against the training and 

validation datasets to ensure novelty of the generated structures. Those novel structures are then 

subjected to xTB calculations for characterization. As the sampling routine is not perfect, these 

compounds are filtered to ensure they fall within the desired range before usage in retraining. In 

situations where no compounds fall within the desired range, we instead select molecules with 

properties that fall above or below (depending on the extrapolated target region) the median value 

in the training set, thus still providing the model with compounds exhibiting properties that are 

closer to the targeted range than the original training data. It was found that simply retraining the 

model on this newly generated data significantly harmed performance; this effect could be due to 

the significant differences between the new data and the original training data leading to 

catastrophic forgetting. Instead of only retraining with the new data, which due to the screening 

process always contains less than 100,000 total structures, compounds from the training set are 

randomly sampled and added to this new dataset until reaching 100,000 total training structures. 

This dataset size was found to train effectively using the same hyperparameters initially used in 

training. This routine was repeated until the desired number of structures with the targeted property 

ranges was obtained.  
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6.3 Results and Discussion 

6.3.1 Single Property Searches 

In previous work, we have demonstrated that the use of chemical autoencoders for targeted 

structure searching is effective for properties within the GDB19 dataset [150], namely internal 

energy, zero-point vibrational energy, and HOMO-LUMO gap.[194] To examine the generality of 

this approach, we investigated three models trained to individually predict VIP, EA, and DM, and 

sampled 100,000 structures in property ranges poorly represented in the training data. The targeted 

ranges for VIP, EA, and DM were 10.0 to 11.0 eV, -2.0 to -1.0 eV, and 0.0 to 1.0 Debye, 

respectively (Fig. 6.1). For VIP and EA, the chosen property ranges are not found within the 

training data at all, whereas for DM a poorly represented range was instead selected due to the 

lower bound on DM values and the long tail for compounds with very high DM in the training 

data. The sampling technique proves very effective for EA, with the mean and the majority of the 

sampling  

 

 

Figure 6.1: Property histograms for molecules generated by models trained on (A) vertical 

ionization potential, (B) electron affinity, and (C) dipole moment. For each model, 100,000 

structures were generated and subsequently characterized at the xTB level. Training distributions 

are shown in red with generated data in blue. Means of the training distributions and generated 

distributions are indicated by green and purple dotted lines, respectively. Models are tasked with 

extrapolating to compounds with property values not observed in the training data, shown in 

orange. 

 

distribution (57%) falling within the target region. While the results for VIP and DM are not as 

extreme, both distributions undergo a clear shift towards the targeted region, with a high number 

of generated structures (17% and 11%, respectively) fulfilling the target criterion in both situations. 

We also note for the case of DM that the lower bound on possible values may impact the number 



 

 

103 

of generated structures in this regime. For all three properties, the model has learned enough 

chemical information from the initial training set alone to determine the relationship between the 

property of interest and the targeted structures. 

6.3.2 Single-Property Active Learning 

For property ranges that represent fundamentally different chemistries than those found in the 

training data, the model may not have learned the necessary structure-function relationships to 

effectively generate new structures with the targeted properties. As a demonstration, we performed 

a generative search for structures exhibiting EA values between 1.0 and 2.0 eV, which is 

approximately one standard deviation higher than the mean EA of the training data, but still in the 

interpolative regime (Fig. 6.2). While 17% of structures sampled from the model are in the targeted 

EA range, this is only marginally higher than the training distribution and reflects limited 

specificity for high EA species. Although the model has not yet learned a strong relationship 

between chemical structure and the targeted EA range, the sampling still yields a large number of 

new structures exhibiting EA within or near the targeted range. Using the iterative approach 

outlined in the methods section, these new structures were incorporated into the training data to 

allow the network to resolve the functional relationships in the targeted EA region. After 4 

iterations of sampling and retraining, the bulk of the sampled distribution shifted, with 30% of 

structures falling within the desired range. After 9 iterations, the mean of the distribution shifted 

squarely within the 1-2 eV range and 35% of the sampled structures exhibited EA values within 

the target. Thus, even for single property optimization, the active learning approach is effective in 

teaching the model the missing chemistries it needs to understand and generate high EA 

compounds. 
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6.3.3 Multi-Target Optimization 

 

 

Figure 6.2: Property histograms for model trained to predict electron affinity. Training distribution 

is shown in purple (TOP), means are indicated by dashed green line, and the target region of 1-2 

eV is highlighted in yellow. Initially, the model has difficulty generating structures with the 

specified EA (Iteration 1). After 4 and finally 9 iterations, the mean of the generated EAs has 

shifted to be within the target range, where the distribution also peaks. 

 

While one property may be of primary interest in a particular molecular search (i.e., single-target 

optimization), there are often multiple properties that must be optimized simultaneously. This is 

often a much more difficult task, as these properties may have varying degrees of correlation and 

representation in the training data, an issue that is further compounded when considering the 

exponential growth of property space with respect to the number of optimized properties. For 

instance, the challenge of multi-property optimization is apparent if we consider searching for 
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compounds with EA between 1.5-4.0 eV, DM between 4.0-5.0 Debye, and VIP above 10.0 eV. 

The DM and EA ranges are represented in the training data, and the property range for VIP may 

be individually sampled effectively, as the experiment in Figure 6.1 demonstrated. However, when 

considering all three properties in tandem, no training structures simultaneously exhibit this range 

of values. Moreover, attempting to sample structures from this region of the latent space is 

 

 

Figure 6.3: 2D property histogram for model trained to predict VIP, EA, and DM, and tasked with 

targeted structure generation for these properties. For visualization, only compounds with VIP 

greater than 10.0 eV are considered. The targeted region, with DM between 4-5 Debye and EA 

between 1.5-4.0 eV, is indicated with a box. Ionization potential is extrapolated beyond the training 

data, while the electron affinity range has little representation, and the dipole moment range is very 

well represented. Initially, (A) the model is not effective in generating compounds that fulfil all 

three criteria together. After 8 iterations of the active learning procedure (B), the property 

distribution of proposed structures has shifted to cover the targeted region and the model is now 

capable of proposing over 1600 structures fulfilling all three property criteria. 
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unsuccessful (Fig. 6.3A), with none of 100,000 sampled compounds falling within the desired 

property ranges. Figure 6.3A also demonstrates that simply retraining on new molecules optimized  

for individual properties would be ineffective, as their other properties are highly unlikely to fall 

within the desired range. However, after 8 iterations of retraining and resampling (Fig. 6.3B), the 

sampling distribution shifted towards the multi-dimensional property target, with over 1600 target 

structures being successfully generated. This demonstrates the potential for active learning as a 

framework to effectively fill in a model’s chemical understanding, particularly in the case of multi-

target extrapolative searching, where the increased dimensionality of the search space decreases 

potential coverage of the training data. 

6.3.4 External Validation 

In a practical scenario, the active learning-based search procedure discussed above would be the 

first step in a computational funnel to pare down the search space of viable molecules to a 

promising set for experimental study. However, we can further tighten this computational funnel 

through additional screening at a higher level of theory. Given the discrepancy between property 

calculations at the semi-empirical xTB and DFT levels, when selecting molecules for further 

screening we allowed for a soft-cutoff by adding +/-20% of the target range to the property bounds 

in order to avoid screening out near-misses. To focus only on those compounds with the potential 

to be easily synthesized, we further reduced the list by screening out radicals, charged species, 

zwitterions, and structures with experimentally infeasible structures, such as those with linear 

oxygen chains of more than two atoms. This resulted in 307 candidate structures, which were then 

characterized at the B97X-D3/def2-TZVP level. After DFT characterizations, 22 structures 

passed the soft-cutoff criteria for all properties (Fig. D1), and 5 passed the exact criteria for all 

properties (Fig. 6.4). Inspecting the passing structures provides insight into the structure-function 

relationships that the model has learned to meet the targeted property ranges. We immediately note 

that all of the proposed structures are oxygen-rich. This is consistent with the high ionization 

potential target, which is promoted by including highly electronegative atoms and associated  
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Figure 6.4: Final five structures simultaneously achieving desired vertical ionization potential, 

electron affinity, and dipole moment values validated at B97X-D3/def2-TZVP level. The model 

has learned to make heavy use of oxygen atoms to achieve a high ionization potential while 

simultaneously maintaining a high electron affinity. 

 

functional groups. Only one electronegative fluorine substitution is present in the final structures, 

although several examples occur in the structures that satisfy the relaxed criteria (Fig. D1). We 

provisionally interpret the preference for oxygen substitutions over fluorine substitutions as being 

due to the interplay between the dipole moment and ionization potential targets. In particular, we 

only observe isolated fluorine substitutions, which is consistent with the relatively high dipole 

moment target. The high occurrence of oxygen, as well as nitrogen and fluorine, also promotes 

high electron affinity, the second targeted property. Finally, we note that the model has also learned 

to avoid symmetric structures, which is necessary for the generation of molecules with a large 

dipole moment.  

As an additional demonstration, we conducted an analogous study on multi-property 

optimization in an interpolative regime with respect to the training data. The targeted property 

values (VIP[6.0,7.0eV], EA[0.5,1.0eV], and DM[4,5D]), had some representation in the 

training data (~160 samples), but were shifted from the mean of each property value (Fig. D2). 

Vertical ionization potential was shifted downwards by approximately two standard deviations, 

while electron affinity was shifted upwards by approximately one standard deviation. Dipole 

moment was not shifted relative to the mean to ensure some representation of the selected property 

ranges in the training data. After 6 iterations of the active learning-based retraining, 1599 novel 

structures were sampled that satisfy the targeted property ranges at the xTB level, and of these 16 

matched all property ranges after validation at the B97X-D3/def2-TZVP level (Fig. D3). 
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Intuitively, fewer cycles of retraining were required to find more matching structures, since the 

property ranges already exhibited some representation with the training dataset.  

6.4 Conclusions 

Multi-objective chemical optimization presents unique challenges compared with single-objective 

optimization, such as achieving simultaneous specificity for multiple targets, and data sparsity due 

to the increased dimensionality of the property search space. We have demonstrated that generative 

models can be coupled with active learning-based retraining to predict novel structures designed 

to have specific properties, even when these properties may not be observed in the training data. 

For difficult targets, particularly multi-objective targets, a generative chemical model can learn the 

prerequisite chemistries by iteratively retraining on compounds it proposes that are similar to those 

that are desired. In this way, the model generates its own nascent structure-function relationships 

that it refines by sampling predicted structures. We have shown the ability of this method to 

propose compounds with specific vertical ionization potential, electron affinity, and dipole 

moment individually and simultaneously, and anticipate its utility for other sets of chemical 

properties. We also note that the quality of training data is a critical factor to ensure the properties 

of proposed molecules accurately match their true values. The discrepancy noted between property 

values at the xTB and DFT levels could be relieved by using an auxiliary difference model that 

predicts the difference between the low and high accuracy computational methods and optimizing 

with respect to this variable instead. This may allow for more efficient sampling and fewer 

iterations of the active learning procedure. 
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 THERMODYNAMIC PROPERTY PREDICTION IMPROVES 

STRUCTURAL REALISM/SYNTHESIZABILITY/ACCESSIBILITY OF 

DEEP GENERATIVE MODELS 

The contents of this chapter in its entirety, including figures and supporting information, 

are currently in preparation for journal submission 

 

Generative chemical models have undergone significant development to improve the quality of 

their proposals, including improving property specificity and eliminating the prediction of invalid 

molecules (e.g., molecules that violate elementary bonding rules, or exhibit impossible Lewis 

structures). Despite this progress, contemporary generative models have limited ability to 

eliminate spurious structures that are not prima facie absurd, but nevertheless are neither stable 

nor synthesizable. Recent approaches have attempted to address this limitation by using 

established sets of reactants to bias generated molecules towards regions of chemical space that 

are already known to be synthetically accessible. Here we expand on this by testing whether 

including thermodynamic criteria during the generative process can improve the realism of 

sampled structures. We first demonstrate that a reaction-proposal framework can be extended to 

propose reactants that yield a product with targeted bandgap, even if the target lies above or below 

the extent of the training data. We go on to show how the same method can be applied to target 

individual reactions with specific enthalpy of reaction in both exothermic and endothermic regimes. 

We then demonstrate that thermodynamically unconstrained optimization of molecular properties 

leads to proposals that are thermodynamically unfavorable and show that by combining the product 

property data with thermodynamic descriptors of the related reaction, we can optimize the 

properties of our target molecule, while ensuring that it can be approached in a thermodynamically 

favorable reaction. By leveraging thermodynamic data in tandem with property optimization 

routines, the question of synthesizability may be approached in a data driven fashion. 

7.1 Introduction 

Machine learning (ML) methodologies are currently under intense investigation for all stages of 

materials development, including discovery, screening, characterization, and device translation. 

With respect to discovery, a compelling line of research is focused on whether deep generative 



 

 

110 

models can meaningfully contribute to the creative process of materials conceptualization. 

Specifically, while ML-approaches have a long history of assisting the “forward-problem” of 

predicting the properties of given structures, the “inverse-problem” of extracting and applying 

structure-function relationships to generate prospective structures has typically been the job of 

domain experts. Slightly more sophisticated versions of solving the forward-problem are provided 

by algorithmic searches of chemical space (e.g., genetic algorithms) that bypass the need to 

actually learning structure-function relationships. In contrast, contemporary deep generative 

models attempt to directly solve the inverse problem by predicting putative structures that match 

property values. In the ideal scenario, researchers could reduce costly and time-consuming 

synthesis-test-refine cycles, and instead select the properties they require and simply have the 

generative model suggest appropriate structure(s). Nevertheless, there is a large gap between this 

vision and the capabilities of contemporary models.   

In an effort to achieve this vision, the evolution of molecular generative models has been 

largely driven by the desire to improve the quality of these proposed compounds. Initially this took 

the form of simply generating valid chemical graphs. While early work on deep generative 

chemical models brought the idea of inverse-design to the forefront of ML for chemistry, it also 

shed light on the difficulty of generating valid compounds. General molecular searches resulted in 

success rates as low as 4% [67], or produced output with a tendency to be too similar to the training 

data or of questionable design, [157] dampening the utility of these methods.  

Follow-up approaches focused on more robust chemical representation, [68] while 

contemporary deep generative models will often apply a constraint to ensure the syntactic validity 

of generated compounds, such as recursively generating molecular graphs using a predefined 

vocabulary of compatible moieties [183] and valency rules [195]; by definition, these methods 

produce valid chemical graphs 100% of the time. However, it is not enough to consider only the 

syntactic validity of proposed species; it is crucial to also consider semantic constraints. 

Particularly for targeted structure generation, there is a high risk of generating chemical graphs 

that do not violate any valency rules, but nonetheless refer to clearly unreasonable chemical 

structures.[69] The structure-function relationships that a generative model learns while 

optimizing a given property value or fitness score may not necessarily correlate with ease of 

synthesis. A common failure mode for generative models is to generate unphysical samples in an 

attempt to "cheat" the scoring function. For instance, while a chain of oxygen atoms may not 
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violate valency rules, it is neither stable nor synthesizable under ordinary conditions. Despite the 

clear impracticality of such structures, this type of semantic error is a common failure mode 

observed in deep generative models.[196] 

Recent efforts have explored several strategies for incorporating synthesizability as a 

learning target for generative models. Numerical proxies like the synthetic accessibility (SA) score 

[197] have been employed as surrogates for synthesizability with varying levels of success.[69] 

However, synthesizability is noted to be a much more nuanced function of chemical structure than 

many other properties, since small perturbations in molecular structure can necessitate 

dramatically different synthesis routes. Compared with molecular validity, synthesizability is a 

much more complicated function that requires expert analysis and/or rigorous computation to 

evaluate. In an attempt to ensure synthesizability, Bradshaw et al. introduced “MoleculeChef,” 

[198] a framework based on a Wasserstein auto-encoder, [199] along with an ancillary reaction 

prediction network, with an operating domain constrained to a predefined set of commonly found 

reagents. In this way, the authors were able to obtain high metrics for the validity, novelty, and 

even quality [200] of their proposed compounds while also providing for a path towards synthesis 

by simultaneously suggesting a suitable set of reactants. They go on to demonstrate the potential 

of this method for computer-aided retrosynthesis by generating a potential set of reactants for a 

desired product molecule. Analogous to the development of higher levels of density functional 

theory that more and more closely approach "chemical accuracy", [201] we can cast the 

development of molecular generative models as attempts to climb the “Jacob's Ladder” of de novo 

design, and move closer to the ideal of true inverse design. Just as earlier approaches represented 

our first attempts at bridging the experimental gap in the discovery workflow by ensuring 

syntactically valid structures, we can consider MoleculeChef as an attempt to move to the next 

rung of the ladder by ensuring synthesizability. 

Mirroring constraint and vocabulary-based approaches for improving validity of proposed 

molecules, constraining the operating space of a generative model to common reagents only 

partially addresses the issue of synthesizability. For instance, the products predicted from 

MoleculeChef have no formal constraint on atom balance, and thus can still deviate substantially 

from the reagent-centered search space to predict unphysical structures. Additionally, the lack of 

relevant thermodynamic data during training, combined with a reaction predictor that must 

necessarily be operating outside of the bounds of its training set, may hinder the actual 
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synthesizability of the proposed compounds. Beyond synthesizability, the efficacy of the synthesis 

pathway is also a relevant design feature. While a given synthetic pathway may be theoretically 

possible, difficult operating conditions (e.g., extreme temperatures or pressures), troublesome (or 

even hazardous) byproducts, and kinetic limitations (specificity, yield, rate, etc.) may render it 

physically impractical. To bridge the gap from in silico predictions to the process scale, we cannot 

only consider a recipe to go from A to B; we must find an optimal path from some set of reactants 

A (i.e., the common reagents a chemist may have in the lab) to some targeted compound B. 

Herein, we demonstrate the importance of including thermodynamic considerations during 

generative model development. We first demonstrate how generative chemical models can be 

adapted to not only propose target molecules (in this case, product molecules) exhibiting desirable 

properties as has been conclusively demonstrated in the literature but can also extended to also be 

selective towards the thermodynamic favorability of the proposals. We go on to compare the 

enthalpies of reactions between proposals that only target the product property and those that also 

constrain the enthalpy of reaction, and we provide evidence that thermodynamically-unbounded 

generative design results in a high proportion of physically unobtainable molecules. We conclude 

by demonstrating the importance of including thermodynamic data in the chemical design 

framework as a means of not only targeting specific molecular properties, but as a prerequisite for 

ensuring synthesizability. 

7.2 Computational Methods 

7.2.1 Reaction Autoencoder 

The molecular design framework utilized in this study is based off of the MoleculeChef 

paradigm, consisting of a reactant autoencoder coupled with an ancillary reaction prediction 

network. Molecules from a predefined set of reactants are converted into a vectoral representation 

using a stand-alone gated graph neural network (GGNN).[202] For a given multiset of reactants, 

graph embeddings are summed together to provide an invariant representation with respect to 

isomorphisms. The reactant set representations are passed to a feed-forward neural network whose 

outputs define the mean and standard deviation of the encoding distribution. The decoder samples 

from this latent distribution to initialize a recurrent neural network (RNN) that outputs probability 

distributions associated with the possible reactants. Output reactants are passed to the next timestep 
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of the RNN, and the process is repeated until a “stop” token is returned, ideally returning the 

original reactant "bag". In learning to encode and decode sets of reactants, the model learns an 

efficient, compressed chemical representation in its latent space; these reactant latent vectors serve 

as suitable inputs to property prediction networks. In a departure from the original MoleculeChef 

implementation, we consider any properties to be simple linear functions of the latent encoding. 

Our prediction networks thus take the form of a single node with linear activation function. For 

properties associated with the reaction (Δ𝐻𝑟
⊖

), the property is computed at training time from the 

enthalpies of formation (Δ𝐻𝑓) of the reactants and their known products. For properties associated 

with the product molecules, we take the maximum value observed in our set of products. 

Three reactant autoencoder models were trained in total. All were trained to encode and 

decode sets of reactants, while one was trained to also predict the bandgap of the product associated 

with each reactant bag, one was trained to predict the enthalpy of reaction of the associated reaction, 

and one was trained to predict both.  

7.2.2 Reaction Prediction 

Because MoleculeChef encodes and decodes sets of reactants, information on the products and 

associated reaction is only handled implicitly through the property prediction layers. To actually 

obtain a predicted product from a sampled set of reactions, an auxiliary reaction prediction model 

must be employed. We utilize the open source implementation of MolecularTransformer (MT). 

[203] This attention-based seq-2-seq model does not rely on atom-mapped reactions to obtain its 

state-of-the-art predictions and is thus particularly well suited to the MoleculeChef problem where 

only the identities of the reactants are known. The use of a multiheaded attention-based 

architecture in lieu of the earlier RNN based models is particularly novel because it allows the 

encoder and decoder to simultaneously analyze multiple tokens, preventing the RNN-like 

inductive bias against tokens farther away in a SMILES sequence. MT is the first documented 

model to achieve up to 90.4% top-1 accuracy on the USPTO_MIT dataset and up to 78.1% top-1 

accuracy on the USPTO_STEREO dataset. However, in a similar vein to the atom discrepancy 

observed in the USPTO dataset, because MT does not rely on atom mapping, it may make edits 

that lead to atom types not observed in the reactants. Again, here we assume that these additional 

atoms enter the reaction in their standard state and do not contribute to the enthalpy of reaction. 
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7.2.3 Datasets 

We utilize the same split of the Lowe's USPTO reaction dataset [204] as the authors of 

MoleculeChef, [205] and also filter out any spectator molecules [206] and remove any duplicate 

reactions across the train, validate, test splits. We refine the reaction screening compared to the 

original implementation as follows: 1) we consider only those reactions containing C, H, N, O, F, 

Cl, and Br, 2) we remove 21 pathological cases that could not be handled by our Δ𝐻𝑓 

characterization method at the time of writing, 3) we remove any charged species, including 

zwitterions, 4) we remove any molecules with radical groups, and 5) we remove any reactions 

containing species with fused rings. In order to maintain a similar number of reactions for training 

purposes, we relax the constraint that all reactants must appear in least 15 reactions to be included 

in our fixed reactant vocabulary, and instead only ensure that they appear at least 10 times. After 

this enhanced screening, we are left with 17910, 1012, and 1384 reactions in the training, 

validation, and testing sets, respectively, with an overall 2789 unique reactants among them. We 

note that within the USPTO dataset there are many reactions where the product molecule(s) may 

be missing atoms compared to the reactant molecules (within the training dataset, the median 

discrepancy is one heavy atom). In such situations, we assume that the missing heavy atoms have 

been reduced to standard state, and thus do not contribute to the enthalpy of reaction. 

7.2.4 Product Characterization 

The close connection of the HOMO-LUMO gap 𝐸𝑔 to physical properties such as bandgap, and 

its inclusion in a variety of molecular databases, such as QM9, motivated its use as the target 

product property in this study. Due to the lack of property data within the USPTO dataset, we have 

constructed our own property dataset for model development. RDKit [117] is used to embed the 

original SMILES representation into a 3D structure based on simple connectivity rules, after which 

the structure is optimized with the Merck molecular force field (MMFF). [207] These geometries 

are used as input to a geometry optimization at the semi-empirical level using GFN2-xTB [151]. 

Subsequently, these geometries are used to seed an optimization at the BP86/def2-SVP [208] [209] 

level of theory before a final optimization and property calculation at the B97X-D3/def2-TZVP 

[210][211] level. 
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During the course of this work, 15,000 additional novel reactions were generated. Δ𝐻𝑓data 

was computed using the same TCIT calculation routine, while 𝐸𝑔was calculated at a simpler level 

of theory. Product proposals had their geometries optimized at the xTB level, the results of which 

were used directly for a single-point calculation at the B97X-D3/def2-TZVP level to determine 

𝐸𝑔. 

7.2.5 Reaction Characterization 

Enthalpies of reaction are computed based on the standard enthalpies of formation at 298K of the 

constitutive product and reactant molecules. Accurate and efficient calculation of Δ𝐻𝑟 is achieved 

via Taffi Component Increment Theory (TCIT). [212] TCIT is the first component theory derived 

exclusively from quantum chemistry data, which can provide Δ𝐻𝑓 predictions for linear molecules 

close to chemical accuracy (~1 kcal/mol) in an on-the-fly manner. In recent work, [213] TCIT has 

been extended to cyclic molecules by introducing a transfer-leaning based ring correction model 

which proved to be transferable and cost-effective. Currently, TCIT covers a large swathe of 

organic chemical space which makes it feasible to efficiently generate high throughput Δ𝐻𝑟
⊖

data 

sources. Because the space of reactants is closed, only the new products generated as a result of 

this study require additional characterization with TCIT. 

7.2.6 Sampling Techniques 

Because a continuous latent space of chemical reactions is obtained through training, arbitrary 

points in the latent space can be decoded to obtain new sets of reactions, and therefore new 

products. By including a property prediction task on top of this latent space, we fold in additional 

chemical information to these encodings, which has been demonstrated to generically improve 

generative [77] and predictive [170] (that is, of other properties) performance. Importantly, it also 

ensures that properties tend to vary predictably along particular directions in this latent space. The 

use of a linear predictor from latent encoding to property vector not only pushes the bulk of the 

training difficulty to the encoder, ensuring that the properties are embedded within the encoding, 

but it also ensures that properties vary linearly along the directions of greatest variance (principal 

components). This provides for easy targeted sampling of new reactions with particular enthalpies 

of reaction and/or product 𝐸𝑔, as the position in the latent space to sample may be determined 
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through simple linear regression. To avoid duplicate reactions, we store the multiset of reactants 

in the training and validation sets and screen sampled reactions against them. While MT could 

suggest multiple products from a given set of reactants, we only consider the most likely product 

and thus consider a unique set of reactants as having only one set of products. 

7.3 Results and Discussion 

7.3.1 Single Target Search: Bandgap 

As a baseline test of the performance of this network paradigm for chemical design, we can 

perform the common test of generative chemical models and task the model with proposing 

molecules optimized for a particular property, but now with the added benefit of also obtaining a 

guess for a potential set of reactants to synthesize the target molecule. We anticipate that there may 

be some difficulty in this regard, as compared to other approaches the model must implicitly 

optimize the product molecule through multiple levels of abstraction: it must select a set of 

reactants which, when subjected to a reaction as defined by the ancillary Molecular Transformer, 

produce a molecule with that has the desired property. To gauge the performance of the framework 

in this task, we examine a model trained to encode and decode sets of reactants and to predict the 

bandgap of the associated product molecule. We then consider the task of generating molecules 

whose bandgap lies in extreme ranges of the training set, either less than 8 eV or greater than 12 

eV, representing the 2nd and 97th percentiles, respectively. Observing the results in Figure 7.1, 

we note that despite the similar representation of both data ranges, extrapolating to high bandgap 

molecules results in a higher success rate than attempting to generate low bandgap molecules. 

Considering the bandgap as a measure of the kinetic stability vs. reactivity of a molecule [214] it 

is unsurprising that our training data, obtained from published patent data, tends to be primarily 

composed of stable molecules, hence a relatively high 𝐸𝑔 . We would therefore expect the 

generation of stable compounds to be easier than an extrapolation to unstable moieties which were 

not observed during training. Regardless, in both the low and high bandgap generation attempts, 

we produce a distribution of structures that, on average, approaches the bounds of the target 

property. Inspecting the subset of structures drawn from each sampling regime, we can speculate 

on the chemical relationships the model has learned. Compared to structures in the training data, 

the low 𝐸𝑔  structures exhibit a higher prevalence of aromatic rings, corresponding with more 
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reactive structures. In contrast, we observe no aromatic structures within the high bandgap 

examples, although we do see a preference towards smaller, aliphatic rings. We also note a 

comparative lack of halogens in the high 𝐸𝑔 compounds, as well as the substitution of sulfide and 

thioketone groups with more stable sulfone groups. A multitude of stable groups have been learned 

and are utilized to achieve the target of high 𝐸𝑔 by generating unreactive structures. 

 

 

Figure 7.1: The "Jacob's Ladder" of inverse-design. In attempting to reconcile the domains of 

computation and the physical world, the first step is ensuring that proposed compounds do not 

violate valency and atom-type constraints ("Does it Exist?") The next step requires consideration 

of thermodynamic limitations, as without a priori constraints it is possible for the discovery 

workflow to suggest thermodynamically inaccessible molecules ("Can it be Synthesized?"). In this 

work, we attempt to address how we can reach this rung, as well as suggest methods for moving 

closer to true inverse design. We anticipate that further development of generative chemical 

methods will see methods designed to encapsulate bulk-phase morphologies, processing concerns, 

and other higher order considerations. 
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Figure 7.2: Property histograms and example molecules generated by models trained to predict 

molecular bandgap compared to distribution of training data (TOP). For each sampling paradigm, 

we generated 2000 novel reactions and subsequently characterized them at the B97X-D3/def2-

TZVP level, with geometries obtained via xTB. We consider generating reactions that lead to a 

product with (MIDDLE) a bandgap lower than any member of the training set, and (BOTTOM) 

higher than any compound in the training set. Means of the training distribution and each generated 

distribution are indicated by dotted green lines, and the validated 𝐸𝑔 are listed below each example 

molecule. 

7.3.2 Single-Target Search: Enthalpy of Reaction 

We have demonstrated the ability of this framework to propose molecules optimized for quantum 

chemical properties, along with providing a set of suitable reagents for synthesis. Now, equipped 

with the ability to natively handle reaction data, we examine the ability of our model to propose 

reactions exhibiting certain Δ𝐻𝑟 . In particular, we investigate a model trained to encode and 

decode sets of reactants along with predicting the Δ𝐻𝑟 of their associated reaction and sample 2000 

reactions from various property ranges. We consider the potential of biasing reactions to be: 

endothermic, exothermic, and strongly endothermic, and summarize the results in Figure 7.3. We 

observe that the training data tends to consist of slightly endothermic reactions, a detail we attribute 

to the provenance of the dataset as a compilation of published reactions in the patent literature. 

This training bias contributes to the comparative ease in generating endothermic reactions, even 

those approaching thermodynamic infeasibility (Δ𝐻𝑟 above ~400 kJ/mol). Additionally, since our 

set of reactants tend to have negative enthalpy of formation, -209 kJ/mol on average, there are 

more avenues for moving up the energy landscape than moving down. Nonetheless, we still see 

the capability of the model to suggest exothermic reactions and can bias its proposals such that 
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they tend to have negative Δ𝐻𝑟 on average. For the model to do so, it must learn which types of 

reactions tend to produce stable products, a complex function described only implicitly in the 

training data. Through the addition of a reaction characterization routine, we can consider not only 

the optimization of individual molecules, but also the reactions that link them together. 

 

 

Figure 7.3: Property histograms and example reactions generated by models trained to predict 

enthalpy of reaction compared to distribution of training data (FIRST ROW). For each sampling 

regime, we generated 2000 novel reactions and subsequently characterized their products using 

TCIT. We considered generating reactions biased to be (SECOND ROW) endothermic, (THIRD 

ROW) exothermic, and (FOURTH ROW) strongly endothermic. Means of the training distribution 

and each generated distribution are indicated by dotted green lines. For each histogram, three 

example reactions are shown, with reactants separated from products by an arrow listing their 

associated enthalpy of reaction. 

7.3.3 Multi-Target Search: Enthalpy and Bandgap 

To this point, we have considered the generation of reactions with certain Δ𝐻𝑟 and the proposal of 

product molecules with particular bandgap as distinct tasks. However, as we have alluded to 

previously, the advancement of molecular searches in chemical space requires the union of the 

domains of property specificity and thermodynamic quality. We can see this need clearly 

represented with a closer look at the results of our single-target bandgap search. If we characterize 

the reactions associated with the proposals and examine their enthalpy of reaction, as presented in 

Figure 7.4 (TOP), we see that many proposals are extremely unfavorable, with exceedingly high 

enthalpies of reaction. Here we observe the key failing of non-thermodynamically restricted 

molecular discovery workflows: after a few reasonable proposals exhibiting the desired property, 

the model will be pushed towards more and more extravagant chemistries to achieve the target, 

"cheating" the generative process analogously to the failure modes observed in molecular-

generative models.  
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Earlier, we demonstrated that reaction data can be directly folded into the molecular search 

framework to propose reactions with specific Hr. We can combine the two tasks, and now consider 

a model trained to encode and decode sets of reactants, predict the properties of a potential product 

if they were to react, and predict the enthalpy of reaction of the associated reaction. We sample 

2000 reactions where the enthalpy of reaction is constrained to fall below -50 kJ/mol (to bias 

towards exothermic reactions while accounting for error in the model's Hr prediction) with 

bandgap targets of 6-8 eV as in the single-target bandgap trial. We compare the results of this 

search to the bandgap-only case in Figure 7.4. Compared to optimizing for bandgap alone, we are 

not only able to shift the generation of new reactions such that they tend to exhibit a higher or 

lower bandgap, critically we are able to ensure that their associated reactions tend to be 

thermodynamically favorable.  Although the reactions do not strictly fall within the target range, 

the inclusion of the thermodynamic property data ensures that we do not observe the same broad 

Δ𝐻𝑟 distribution associated with nonphysical reactions, and we are able to more than double the 

number of successful proposals from 50 reactions to 120. Utilizing this framework, we have 

subsequently been exploring an enhanced retrosynthesis algorithm. Given a molecule with a 

particular characteristic, 𝐸𝑔  in this case, and a known synthesis pathway, we can suggest a 

molecule with similar properties, but that has been converted to either an exo- or endothermic 

reaction. We plan to discuss this application further in future work. 
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Figure 7.4: Kernel density estimates for distribution of bandgap and enthalpy of reaction for 

reactions generated from (TOP) a model trained only on predicting bandgap and (BOTTOM) a 

model trained to predict both enthalpy of reaction and product bandgap. Both models were tasked 

with generating 2000 reactions that produce a product molecule with bandgap between 6 and 8 eV, 

but the model trained on enthalpy of reaction was also requested to limit proposals to have enthalpy 

of reaction less than -50 kJ/mol. This more than doubles the number of thermodynamically feasible 

reactions attaining the bandgap target, from 50 to 120. Multidimensional means are indicated by 

green crosshairs. The extent of the bandgap-only histogram is outlined in white for comparison. 

7.4 Conclusions 

Connecting computationally designed molecules to actionable data has emerged as one of the key 

barriers to the realization of true inverse design. Much as early generative chemical models strove 

to address the topological validity of their proposals, recent developments have focused on 

ensuring the synthesizability of suggested molecules. We have demonstrated the acute need to 

include thermodynamic data as part of a ML-aided materials design pipeline to address questions 

of synthetic feasibility. While the ability of generative chemical models to propose novel species 

with targeted property data has been shown in the literature, we have demonstrated that without a 

priori constraints on their thermodynamic properties, proposals (even those with a topologically 

reasonable set of proposed reactants) can be experimentally inaccessible. We have gone on to show 
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that the enthalpy of reaction, a property associated with the reaction as a whole and not the 

individual molecules, may also be targeted in a data driven fashion and optimized in tandem with 

molecular property targets to ensure the proposal of a thermodynamically sound reaction leading 

to a champion molecular proposal. As the method we have utilized and the mechanism we have 

exposed are both decoupled from the input/output representations, we hope to motivate the general 

use of thermodynamic data during model training and deployment to help address concerns as to 

the synthesizability, stability, real-world potential of molecules produced via ML-aided techniques.  

Finally, we note that even with aggressive reaction screening the nature of the Lowe patent 

dataset means that many reactions remain problematic. Often, only the major or target product is 

listed in the literature, leaving an incomplete atom balance and few clues as to the form the missing 

atoms have assumed. With a more robust reaction predictor, the reactions in the training set could 

be fully enumerated by use of a double-ended search, as both the reactants and major products are 

known, leaving the missing products to be those most likely to form under the given constraints. 

This would allow for more accurate estimates of the enthalpy of reaction and improve the quality 

of proposed reactions. In future work, we plan to correct for these limitations through the use of a 

forthcoming reaction prediction method, [215] allowing us to also account for activation energy 

of proposed reactions. In this way, we can fully modulate the path through reaction space our 

proposals follow, and therefore address both thermodynamic and kinetic considerations of the 

design process. With this work and subsequent studies, we hope to take one step closer to the goal 

of true inverse design. 
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 CONCLUSIONS AND OUTLOOK 

8.1 Summary 

In the effort to bridge the gap between in silico predictions and true inverse design, there is still 

much work to be done. Current efforts are just now addressing the question of synthesizability, 

with many higher order considerations (stability, kinetic favorability, processing concerns, bulk-

phase effects, etc.) still outstanding. Despite significant progress, with the inverse-design 

revolution beginning in 2016 and with further improvements are already under development, the 

application of modern ML approaches to chemistry is hindered by data constraints for crucial 

application properties. The provenance of available data, the complexity and scope of media 

utilized in engineering, and the dearth of data for specific applications confound traditional 

analysis techniques. In my research to date, I have focused on methods for circumventing the issue 

of data scarcity in the development of effective models for chemical design applications, 

particularly approaches based on transfer and active-learning methodologies.  

Transfer learning is an approach that leverages proficiency in one task to help in another, 

related task. My first study as a graduate student focused on applying transfer learning towards the 

prediction of the aqueous pKa of small molecules. While experimental pKa data is extremely 

limited in scope compared with other molecular properties, deprotonation free energy data can be 

calculated relatively easily using quantum chemistry and is a direct correlate of pKa. By 

constructing the largest free-energy change database of its kind in the literature, an effective model 

for the prediction of pKa could be developed with minimal experimental data requirements. In 

subsequent work, it was demonstrated that that this transfer learning approach can be generalized 

to the prediction of other molecular properties in data scarce scenarios, and that its efficiency could 

be improved with a novel neural network architecture. 

Beyond the “forward-problem” of predicting molecular properties from a given chemical 

structure, the “inverse-problem” of finding an optimal set of molecular structures under functional 

constraints was also considered. It was postulated that the failure modes observed in contemporary 

inverse models, namely poor functional selectivity and high occurrence of unphysical chemical 

structures, were symptoms of insufficient chemical property data being utilized during training. 

Thus, the effect of tasking a neural network to predict these auxiliary properties along with targeted 
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properties for structure generation was examined. Several key findings were produced from this 

study. By simply constraining the search to compounds with physically accessible property values, 

the synthesizability of generated species is increased. This also increases property specificity of 

the suggested compounds. When attempting to reach property ranges beyond those in the training 

data, it may prove difficult to generate corresponding structures due to significant differences in 

atom connectivity and topology. By transferring the information learned in an ancillary property 

prediction task to the generation task, the model is given enough additional chemical information 

to successfully resolve these new structures. This provides for a closed-loop computational method 

to iteratively refine predictions and generate molecules with specific properties by continuously 

retraining the model on new compounds with unfamiliar chemistries that it itself proposes. This 

active-learning approach was recently demonstrated for multi-objective chemical optimization of 

materials with simultaneous ionization potential, electron affinity, and dipole moment targets. The 

curse of dimensionality for multi-target chemical design can lead to data scarce situations even 

among substantial datasets, making the closed-loop approach a particularly favorable method. 

To help resolve issues with the synthetic feasibility of the proposals of generative chemical 

networks, an extension of the aforementioned frameworks and methodologies to reaction data was 

also explored. By operating with sets of reactants and including key thermodynamic data 

describing reaction feasibility, generative chemical models can be upgraded to not only target 

compounds with specific application properties, but also provide a reasonable set of reactants to 

get there. Anticipated improvements in reaction prediction tools and property characterization 

routines will help to further the benefits of this approach. 

While data scarcity presents a unique problem for chemical science, it may be navigated 

with the enhanced learning methodologies and approaches addressed in this work. Their utility has 

been demonstrated in myriad applications, from more accurate property prediction to the discovery 

of new compounds with targeted features, and they are expected to be useful in any application 

where chemical data, whether experimental or computational, is difficult or laborious to collect.  

8.2 Future Work and Outlook 

Despite the significant progress of machine learning in the realm of small molecules and recent 

incursions into reaction space, the reaction prediction problem remains unsolved. In contrast to 

molecular property prediction, the reaction prediction problem has many distinct attributes that 
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require further ML methods development, including the causal relationships between reactants and 

products, specific featurization challenges (e.g., how to account for solvation conditions), and a 

uniquely large domain space, dwarfing the already vast space of individual molecules, contrasting 

with a uniquely limited space of available property data. The inability to handle reactions cascades 

into an inability to manage bulk phase data in much the same way due to the effect of processing 

history on most relevant mesoscale properties. For these reasons, further development of reaction-

based models requires both fundamental methods development that addresses the unique 

challenges of reaction prediction and applied ML thrusts focused on discovering new reactions 

and elaborating complex reaction networks. Addressing the reaction problem will allow research 

to ascend to the next rung of the Jacob’s Ladder of inverse design (Fig. 7.1) and allow 

morphological and processing limitations to be addressed. Additionally, advancements in 

processing power and development of more advanced and more affordable graphics processing 

units (GPUs) will allow for the deployment of new neural network architectures better suited to 

solving chemical problems, particularly those relying on multimodal data (e.g., spectra, optical 

imaging, time-series information) that will become prevalent when addressing reactions and bulk 

phase arrangements. To provide an example, training the chemical autoencoders used in this work 

on a standard CPU would have taken on the order of one year; however, GPU-equipped 

community clusters did not become available to the general research community at Purdue until 

2017 with the Halstead-GPU and Brown-GPU clusters. Proliferation and advancement of 

chemical-ML research is thus anticipated not only on the basis of greater processing power, but 

also more widespread access to the resources necessary for development of ML-models. 
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APPENDIX A. SUPPORTING INFORMATION FOR: IMPROVED 

CHEMICAL PREDICTION FROM SCARCE DATA SETS VIA LATENT 

SPACE ENRICHMENT  

Principal Component Analysis 

Additional principal component projections are shown below, including models trained solely on 

pKa and those enriched with Esp data. 

 

 

 

Figure A1. Projections within the principal component space for the unenriched models. We note 

that the resulting projections only display any significant ordering with respect to pKa. The pKa 

projections are of similar quality to those obtained with enrichment, but the secondary property 

projections are greatly improved after enrichment. 
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Figure A2. Principal component projections for models enriched with Esp data. In contrast to G 

enrichment, Esp and pKa properties are organized along orthogonal principal components 

dimensions  
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Latent Space Metric Summary 

 

Statistical summaries of several latent space organization metrics are provided in Tables A1-3 with 

explanations of the metrics in the following section. 

 

Table A1: Statistical summaries of latent space projections based on pKa. Data highlighted in 

green to indicate transform providing best fit to data. 

 

 

 

In general, organization of compounds with respect to pKa follows a linear or quadratic trend along 

the principal components, with goodness of fit increasing as the amount of pKa data used for 

training increases. The Spearman rank order coefficient, , also increases in a similar manner, and 

appears to be invariant with respect to enrichment.  
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Table A2: Statistical summaries of latent space projections based on GH. Data highlighted in 

green to indicate transform providing best fit to data. 

 

 

 

GH favors a different organization mechanism compared to pKa, with either log transformation 

or cubic transformations providing the best fit. In the case of the jointly trained models, data points 

are extremely well organized after a cubic transformation according to G. 
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Table A3: Statistical summaries of latent space projections based on Esp. Data highlighted in 

green to indicate transform providing best fit to data.  

 

 

 

Esp exhibits similar trends in R2 found for GH, with dramatic improvement in R2 upon enrichment. 

Without enrichment, Esp shows the best organization with respect to the inverse transform but is 

still only weakly organized.  
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MAE Box and Whisker Plot 

 

We include the box and whisker plot of the MAE in pKa prediction for all model paradigms, 

including those models enriched with single-point energy data. 

 

 

Figure A3: Box and whisker plot showing test error statistics for all model paradigms over thirty 

independently trained models for thirty independent training/testing splits. Median MAE values 

are indicated by an orange line, and whiskers extend to the range of observed errors. Notches 

represent the 95% confidence interval about the median. We note that those models enriched using 

free energy data exhibit lower median MAE values than those enriched with single point energy, 

although the overall effects are comparable.  
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Cross Validation Analysis 

 

To aid in the hyperparameter search, we utilized cross-validation on a single testing/training split 

to gain insight as to how our models should perform on unseen data. For a given set of data 

(128,256,512 pKa values), the data is divided into 8 folds, one serving as a “testing” fold. The 

model is trained on the remaining 7 “training” folds and evaluated on the held-out fold. This is 

repeated across the 8 folds until each has an opportunity to act as the testing fold. The final model, 

trained on all 8 folds, should ideally similar or better performance to that observed during cross 

validation. The results of this cross-validation procedure are shown in Figure A4 below. 

 

 

Figure A4: MAE for 8-fold cross validation on a particular testing and training split. Median MAE 

shown by the orange line. Notches representing the confidence interval about the median are not 

included as they extend beyond the IQR. We observe that, in all cases, enrichment results in a 

reduction in median MAE as well as a contraction in both the range of MAE values and the IQR.  
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Latent Space Characterization Methods 

 

R2 Calculation: The projections in the principal component space may be considered as elements 

of R3 having components x (principal component 1), y (principal component 2), and z (property 

value, e.g., pKa). Assuming the points in this space are well-organized, we can envision the 

scenario in which these points lie on a two-dimensional plane defined by 

 

𝒛 = 𝑎𝒙 + 𝑏𝒚 + 𝑐 

 

Where a,b,c are constants and x,y,z represent the set of all projected points. The equation of the 

plane can then be determined by solving the expression   

 

𝑿𝒂 = 𝒛 

 

𝑿 = (
𝑥1 𝑦1 1
⋮ ⋮ ⋮

𝑥𝑁 𝑦𝑁 𝑁
)      𝒂 = [

𝑎
𝑏
𝑐

]      𝒛 = [

𝑧1

⋮
𝑧𝑁

] 

 

Because X is linearly dependent, we compute the pseudoinverse to obtain the least squares solution: 

 

(𝑿𝑻𝑿)−𝟏𝑿𝑻𝑿𝒂 = 𝑿+𝑿𝒂 = 𝑿+𝒛   

 

𝒂 = 𝑿+𝒛 
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Figure A5. Illustrative examples of regression analysis of latent spaces. (A) the plane indicated by 

the green wireframe is fit to the principal component projections of the pKa data for the 𝑀𝑝𝐾𝑎

512 

model. We see that the projections within the latent space exhibit a strong linear correlation with 

position (R2=0.89) and clear gradient in pKa across the regression plane ( = 0.92). (B) In the case 

of the GH projections for the 𝑀𝑝𝐾𝑎,G
512,512

 model, the data displays a clear gradient in GH but the 

ordering within the latent space is non-linear. It was found that a cubic transform significantly 

improved R2 in this example.  

 

Figures A5a and A5b provide examples of this fitting procedure for the 𝑀𝑝𝐾𝑎

512 and 𝑀𝑝𝐾𝑎,G
512,512

 with 

respect to pKa and GH, respectively. As evidenced by Figure A5b, training does not always 

linearly organize the latent space, so various transformations are applied to the property data in an 

attempt to linearize it. The transforms are illustrated below, where f is a linear function of x and y. 

 

𝑧 = 𝑓(𝑥, 𝑦) Linear 

𝑧2 = 𝑓(𝑥, 𝑦) Square 

𝑧3 = 𝑓(𝑥, 𝑦) Cubic 

𝑧
1
2 = 𝑓(𝑥, 𝑦) Root 

log(𝑧) = 𝑓(𝑥, 𝑦) Log 

𝑧−1 = 𝑓(𝑥, 𝑦) Inverse 

 

In the case of the transformed data, the preceding expression becomes 

 

A B 
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𝒂 = 𝑿+𝒛𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒅 

 

R2 is then calculated according to standard statistical procedure 

 

𝑆𝑆𝐸 =  ∑(𝑧𝑖 − 𝑧̅)2

640

𝑛=1

 

 

𝑆𝑆𝑅 =  ∑(𝑧�̂� − 𝑧̅)2

640

𝑛=1

 

 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝐸
 

 

Where 𝑧𝑖 represents the true property value, 𝑧̅ represents the average value, and �̂�𝑖 represents the 

regressed value of 𝑧 

 

Spearman Correlation ( 𝜌 ) Calculation: 𝜌  is typically calculated for rank-ordered bivariate 

systems to provide a measure of monotonic behavior. In order to reduce the three-dimensional 

principal component space (composed of the two principal components and the property value) 

into one suitable for bivariate analysis, we treat the direction of the gradient, represented by the 

unit vector �̂�, as a variable that is optimized with respect to 𝜌.  In the case of perfect ordering, the 

gradient should vary monotonically along this direction. The angle between this directional vector 

and the x-axis is calculated, and the data is transformed such that the gradient direction becomes 

collinear with the x-axis (principal component 1).  

 

𝜃 = 𝑎𝑟𝑐𝑜𝑠(�̂� ⋅ �̂�1) 

 

𝑹𝜽 = [
cos (−𝜃) −sin (−𝜃)
sin (−𝜃) cos (−𝜃)

] 

 

𝑿𝑹𝜽 = 𝑿′ 
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We then rank the points according to position along the x-axis, such that elements of 𝑋𝑅 contain 

the rank of the corresponding entry in 𝑋′, and consider the bivariate problem of how the rank of 

the property value varies with increasing rank along the x-axis. 𝜌 is then calculated as follows 

 

𝑥𝑅 = 𝑟𝑎𝑛𝑘𝑒𝑑(𝑋′)           𝑧𝑅 = 𝑟𝑎𝑛𝑘𝑒𝑑(𝑧) 

 

𝐶𝑜𝑣(𝑥𝑅 , 𝑧𝑅) = (𝑥𝑅 − 𝑥�̂�)(𝑧𝑅 − 𝑧�̂�)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

𝜌 =
𝐶𝑜𝑣(𝑥𝑅 , 𝑧𝑅)

𝜎(𝑥𝑅)𝜎(𝑧𝑅)
 

 

We iteratively solve for the gradient direction using the Nelder-Mead algorithm as implemented 

in the SciPy package to determine the direction which maximizes the value of 𝜌. 
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APPENDIX B. SUPPORTING INFORMATION FOR: SIMPLER IS 

BETTER: HOW LINEAR PREDICTION TASKS IMPROVE TRANSFER 

LEARNING IN CHEMICAL AUTOENCODERS  

 

  

 

 

Figure B1: Correlation plot between bandgap calculated at the DFT and xTB levels of theory 

(R2=0.78). Eg,xTB systematically overestimates the bandgap compared with Eg,DFT. All values are 

positive. Utilizing a linear regression on all available DFT and xTB training data results in a 

MAE in predicting the DFT bandgap of the test set of 0.47 eV.  
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Model Architecture 

 

 

Figure B2. Variational autoencoder architecture utilized for property prediction and latent space 

analysis as implemented in Keras 2.2.4 with Tensorflow 1.14.0 backend.  
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Multi-property Prediction PCA Plots 

 

 

 

 

 

Figure B3: Principal component analysis performed on latent encodings for entire QM9 dataset for a 

model trained on both xTB data and heat capacity with a predictor network consisting of a single linear 

node. Projections are colored according to (A) Cv and (B) Eg,xTB. In contrast to the more complex 

predictor network utilized in Figure B4, the linear network is capable of organizing multiple properties 

linearly and along orthogonal directions within the latent space  

 

Figure B4: Principal component analysis performed on latent encodings for entire QM9 dataset for a 

model trained on both xTB data and heat capacity with a predictor network consisting of 3x64 nodes. 

Projections are colored according to (A) Cv and (B) Eg,xTB. While the latent space is well organized in a 

linear fashion according to Cv, the organization with respect to Eg,xTB is poorly organized. Rather than 

varying linearly, the projections suddenly ramp up to very high Eg,xTB  structures. 



 

 

140 

APPENDIX C. SUPPORTING INFORMATION FOR: IMPROVING THE 

GENERATIVE PERFORMANCE OF CHEMICAL AUTOENCODERS 

THROUGH TRANSFER LEARNING  

DFT and GFN2-xTB Comparison 

The DFT and GFN2-xTB (xTB) predictions for Eg on the training set of compounds is presented 

in Figure C1A. xTB significantly underpredicts the bandgap in comparison with DFT with a bias 

towards predictions of ~4 eV. To correct for this discrepancy, a random forest (RF) model was 

trained to predict the difference between Eg computed at the xTB and DFT level using the Morgan 

fingerprint of each compound as a feature. RF test set predictions are presented in Figure C1B. 

 

Figure C2 shows a comparison of xTB and DFT values for U0 on the training set of compounds. 

Although differing in absolute magnitude, the xTB calculated U0 is a linear correlate of the DFT 

value and is used in the main text without modification for characterizing generated compounds. 

A       B 

 
Figure C1: (A) Eg distributions for structures within the training set calculated at the xTB and 

DFT levels of theory. (B) structures within the test set calculated at the DFT level of theory 

and xTB level after correction with the ancillary random forest model.  
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2D Latent Space Organization 

Figure C3 shows the 2D latent space for the model trained solely on reconstruction, where the 

structures have been colored according to aromaticity. The compression leads to isolation of 

encodings for aromatic compounds in the top left of the plot.  

 

 

Figure C3: Latent space of 2D autoencoder trained only on chemical reconstruction. Training 

compounds have been colored according to aromaticity. Purple corresponds to non-aromatic 

structures, while yellow corresponds to aromatic structures. Even without a property prediction 

task, compounds have been organized according to similar structure, with nearly all aromatic 

compounds found in a narrow strip to the leftmost side of the latent space, offset from the rest 

of the non-aromatic compounds. 

 

Figure C2: Correlation plot between U0 calculated at the xTB and DFT levels of theory for 

compounds in the training set. The xTB value is linearly correlated with the DFT value (R2 = 

0.64). 
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Effect of Latent Space Dimensionality on Validity and Multi-Task Training 

The dimensionality of the latent space determines the level of data compression performed by the 

autoencoder and correspondingly the amount of chemical property data that can be accommodated 

during training before incurring information loss. Models with latent space dimensionality ranging 

from 2 to 128 were trained on reconstruction and benchmarked for validity (Fig. C4). Increasing 

the dimensionality of the latent space increases the proportion of valid structures but quickly levels 

off. A similar effect is noted for reconstruction accuracy but is much more pronounced. Below a 

certain dimensionality, there is no chance for an accurate reconstruction. Above this threshold, the 

increase in reconstruction accuracy quickly plateaus. The original choice of a 56D latent space 

thus appears justified, as further increases do not improve the capability of the model. 

The dimensionality of the latent space likewise impacts that number of property prediction tasks 

that can simultaneously be trained while maintaining prediction accuracy. Models with latent space 

dimensionality ranging from 2 to 56 were trained on reconstruction and between 1-5 property 

prediction tasks, then benchmarked for property prediction accuracy (Fig. C5). We observe a 

 

Figure C4: Analysis of validity (blue) and reconstruction accuracy (orange) as a function of 

latent space dimensionality. 5,000 structures are randomly selected from the test set and encoded 

into the latent space. These encodings are then decoded 100 times and tested for validity (blue) 

or equality against the input structure (orange). This process is repeated for 10 models each 

evaluated on a different random 5,000 structure subset of the test set. The results are averaged 

across 5,000,000 decodings for each dimensionality  
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straightforward trend such that an N-dimensional latent space is capable of effectively training on 

N-unrelated property prediction tasks, above which model performance degrades significantly.  

 

Effect of Multi-Property Training in Well-Represented Generative Tasks 

In the main text we present results showing that multi-task TL increases the number of low Eg 

structures that can be generated. We have also compared the generative performance of models 

trained on Eg vs. U0/ZPVE/Eg for generating structures in the Eg ranges of 5.5-6.0 eV and 9.5-10.0 

eV (Figure C6). In these cases, the Eg only model outperforms the multi-task models with U0 

extrapolation, which reflects that these Eg ranges are already well represented in the training data. 

 

 

 

 

 

 

Figure C5: The dimensionality of the latent space provides a hard limit to the number of 

property prediction tasks that can be effectively trained. Up to N properties may be encoded 

into an N dimensional latent space without impacting prediction accuracy, although very small 

dimensionalities (N < 5) may perform worse in general on property prediction tasks. Once the 

number of properties exceeds the dimensionality of the latent space, it results in a massive 

penalty to predictive accuracy. MAE is presented with respect to U0, which all models shared 

in common as a prediction task. 
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A       B 

 

Figure C6: Distributions of Eg for structures generated by targeting (A) 5.5-6.0 eV and (B) 9.5-

10.0 eV. Models were trained to predict Eg only (red bars) or Eg in combination with ZPVE and 

U0. For these targeting regimes, the model trained on Eg alone is already capable of generating 

the desired compounds, and the inclusion of additional properties does not provide further 

benefit. 
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Complete Model Training Details 

The autoencoder accepts one-hot inputs of grammar parse trees to an encoder network comprising 

three one-dimensional convolutional layers with filter sizes 9, 9, and 10, respectively, and kernel 

sizes of 9, 9, and 11, respectively. The outputs from the convolutional layers are passed to a fully 

connected layer of 435 units, that are then separately connected to two fully connected layers of 

56 units (i.e., the dimensionality of the latent space) defining the mean and log variance of the 

encoding distribution, respectively. The decoder accepts samples from the encoding distributions 

and passes them to a fully connected layer of 56 units that is connected to three gated recurrent 

units of 501 cells each before terminating in a final fully connected layer outputting probability 

distributions for the output sequence. ReLU activation functions were used for all units in the 

autoencoder. Property prediction is achieved by passing latent vectors to a single linear unit 

producing scalar output. An additional unit is included for each property. A diagram of the 

autoencoder architecture is provided in Figure C7. Models were created using Keras 2.2.4 with 

Tensorflow 1.14.0 backend. To obtain a useful compressed representation of chemistry, the shared 

autoencoder was first pre-trained on a reconstruction task. For this purpose, the SMILES strings 

corresponding to all training compounds were first converted into one-hot grammar parse trees 

and used as both inputs and labeled outputs for autoencoder pretraining. Pretraining was performed 

using the RMSprop algorithm with learning rate of 0.005 on the categorical cross entropy loss 

function for 100 epochs with batch size of 500. Validation loss was monitored every epoch and 

the learning rate was halved in the event of a plateau. The pretrained models were utilized as 

initializations for joint training on property prediction tasks, where in addition to encoding and 

decoding the model was tasked with predicting up to four chemical properties from the latent 

encodings. For each property, the latent chemical encoding is fed to a single linear unit producing 

the desired property as scalar output.  Here, the learning rate was reduced to 0.001, and the loss 

weights assigned to the different tasks were adjusted. Loss corresponding to predictor MSE was 

scaled by 100, variational loss was scaled by 750, and the categorical cross entropy loss weight 

from encoding/decoding was set to 50 initially, before decaying to 1 according to a sigmoid 

function. 

 

 

\ 
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Figure C7: Variational autoencoder architecture utilized in this study as implemented in Keras 

2.2.4 with Tensorflow 1.14.0 backend. 
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APPENDIX D. SUPPORTING INFORMATION FOR: ACTIVELY 

SEARCHING: INVERSE DESIGN OF NOVEL MOLECULES WITH 

SIMULTANEOUSLY OPTIMIZED PROPERTIES  

Model Training Details 

The implemented autoencoder accepts one-hot inputs of grammar parse trees to an encoder 

network comprising three one-dimensional convolutional layers with filter sizes 9, 9, and 10, and 

kernel sizes of 9, 9, and 11. The outputs from the convolutional layers are passed to a fully 

connected layer of 435 units, that are then separately connected to two fully connected layers of 

56 units (i.e., the dimensionality of the latent space) defining the mean and log variance of the 

encoding distribution. The decoder accepts samples from the encoding distributions and passes 

them to a fully connected layer of 56 units that is connected to three gated recurrent units of 501 

cells each before terminating in a final fully connected layer outputting probability distributions 

for the output sequence. ReLU activation functions were used for all units in the autoencoder. 

Property prediction is achieved by passing latent vectors to a single linear unit producing scalar 

output. An additional unit is included for each property. Models were created using Keras[127] 

2.2.4 with Tensorflow[128] 1.14.0 backend.  

It is difficult to train a network on both encoding/decoding and property prediction from 

scratch. It often proves much easier to first train the network on the encoding/decoding task first 

to obtain useful compressed chemical representations before transferring those weights for use in 

a joint training task. For this purpose, the SMILES strings corresponding to all training compounds 

in the original GVAE dataset were first converted into one-hot grammar parse trees and used as 

both inputs and labeled outputs for autoencoder pretraining. Pretraining followed the same routine 

used in the original GVAE implementation.[68] The pretrained model was then utilized as 

initialization for joint training on property prediction tasks, where in addition to encoding and 

decoding the model was tasked with predicting up to three chemical properties from the latent 

encodings. For each property, the latent chemical encoding is fed to a single linear unit producing 

the desired property as scalar output.  Training was conducted using the RMSprop algorithm with 

a learning rate of 0.001, which was set to decay by a factor of 0.3 in the case of a plateau in the 

validation loss. In order to balance the performance across all tasks and to ensure stable training,  

the loss weights assigned to the different tasks were adjusted. Variational loss was scaled by 750, 
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and the categorical cross-entropy loss from encoding/decoding was set to 50 initially, before 

decaying to 1 according to a sigmoid function. The MSE losses for the property predictors were 

not scaled, but all properties were normalized to fall in the range -20 to 20.  

 

 Multi-Target Active Learning: Extrapolation 

In the main text, we report the results of an active learning study for generating structures 

exhibiting properties in the extrapolative regime (VIP>10.0eV, EA[1.5,4.0eV], and DM[4,5D]) 

with respect to the training data. After validation of the sampled structures at the B97X-D3/def2-

TZVP level, 5 structures were found that exhibited properties within all three targeted ranges, and 

22 structures were found that exhibited properties within 20% of all targeted property ranges (Fig. 

D1). 

 

 

Figure D1. Final 22 structures for the extrapolative study reported in the main text simultaneously achieving 

property targets within +/-20% of the targeted ranges for vertical ionization potential, electron affinity, and 

dipole moment. All properties were validated by DFT calculations at B97X-D3/def2-TZVP level. Only the 

5 compounds reported in the main text fall strictly within the desired range, but we can still observe many of 

the same moieties and structural arrangements in this expanded set, including the ubiquity of oxygen, the 

lack of symmetric structures, and low prevalence of rings. 
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Multi-Target Active Learning: Interpolation 

Figure D2 presents results for a case study where the targeted property ranges are in the 

interpolative regime with respect to the training data (VIP[6.0,7.0eV], EA[0.5,1.0eV], and 

DM[4,5D]), but still relatively poorly represented. After 6 iterations of the active learning-based 

retraining, 1599 structures were discovered that satisfy the targeted property ranges at the xTB 

level, and of these 16 match all property ranges after validation at the B97X-D3/def2-TZVP level 

(Fig. D3). Here, the lower targeted VIP and EA ranges result in nitrogen-rich structures, compared 

with the extrapolative sampling case study. 

 

 

 

 

 

Figure D2. 2D property histogram for a model iteratively trained to predict VIP, EA, and DM, and tasked 

with targeted structure generation for these properties. VIP, EA, and DM targets are 6.0 to 7.0 eV, 0.5 to 1.0 

eV, and 4 to 5 Debye, respectively. For visualization, only compounds with VIP between 6-7 are considered. 

The targeted region, with DM between 4-5 Debye and EA between 0.5-1.0 eV, is indicated with a box. All 

property ranges have some representation in the training data. Initially, (A) the model is capable of suggesting 

811 compounds that display the three property targets simultaneously. After 6 iterations of the active learning 

procedure (B), the property distribution of proposed structures has shifted closer to the targeted region and 

the specificity of the model has doubled, with 1599 of the proposed structures displaying all three property 

targets. 
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