
A MACHINE LEARNING APPROACH FOR UNIFORM INTRUSION

DETECTION

by

Saurabh Devulapalli

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science

Department of Computer and Information Technology

West Lafayette, Indiana

August 2021

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Thomas J. Hacker, Chair

Department of Computer and Information Technology

Dr. John A. Springer

Department of Computer and Information Technology

Dr. Baijian Yang

Department of Computer and Information Technology

Approved by:

Dr. John A. Springer

3

ACKNOWLEDGMENTS

I would like to thank my major advisor, Dr. Thomas Hacker, for his guidance, encouragement,

and supervision as well as for teaching me to be persistent in my research.

I would also like to thank the Graduate Committee members, Dr. John Springer and Dr. Baijian

Yang for serving on my graduate committee.

4

TABLE OF CONTENTS

LIST OF TABLES .. 6

LIST OF FIGURES .. 7

LIST OF ABBREVIATIONS ... 8

GLOSSARY ... 9

ABSTRACT .. 10

 INTRODUCTION .. 11

1.1 Background ... 11

1.1.1 Machine Learning and Deep Learning in Intrusion Detection .. 12

1.2 Problem ... 12

1.3 Significance... 13

1.4 Purpose .. 13

1.5 Research Questions ... 13

1.6 Assumptions .. 14

1.7 Limitations .. 14

1.8 Delimitations ... 14

1.9 Summary ... 14

 REVIEW OF LITERATURE ... 15

2.1 Related Work .. 15

2.1.1 Individual Machine Learning Models .. 15

2.1.2 Ensemble Models ... 16

2.1.3 Deep Learning Models ... 17

2.2 Important Concepts Pertaining to the Proposed Approach ... 18

2.2.1 Ensemble Learning .. 18

2.2.2 Multilayer Perceptron .. 20

2.3 Important Inferences ... 21

2.4 Summary ... 23

 METHODOLOGY.. 24

3.1 Dataset... 24

3.2 Approach ... 26

5

3.3 Experiment Structure .. 27

3.3.1 Data pre-processing ... 27

3.3.2 Training the MLP ... 28

3.3.3 Testing the MLP .. 28

3.3.4 Creating the soft-voting ensemble ... 28

3.3.5 Adding to soft-voting ensemble to improve results ... 29

3.4 Analysis Methods .. 30

 EXPERIMENT AND RESULTS ... 31

4.1 Experiment .. 31

4.1.1 MLP + SVM .. 34

4.1.2 MLP + SVM + Random Forest .. 35

4.1.3 MLP + Random Forest .. 36

4.1.4 MLP + Decision Tree ... 37

 DISCUSSION AND CONCLUSION .. 40

5.1 Discussion ... 40

5.1.1 Answers to research questions ... 41

5.1.2 Practical Consideration .. 42

5.2 Conclusion .. 42

REFERENCES ... 44

APPENDIX A. MODEL CODE .. 47

6

LIST OF TABLES

Table 2.1. Previous IDS models and their results ... 18

Table 3.1. Various attacks in the NSL-KDD dataset ... 25

Table 3.2. NSL-KDD dataset composition .. 25

Table 4.1. A section of the dataset before one-hot encoding of protocol variable. 32

Table 4.2. Section of the dataset shown in table 4.1 after one-hot encoding of protocol variable. 32

Table 4.3. Training set composition ... 32

Table 4.4. Testing set composition... 33

Table 4.5. Confusion matrix of the MLP ... 33

Table 4.6. MLP Recall ... 33

Table 4.7. Confusion matrix of MLP + SVM ... 35

Table 4.8. Confusion matrix of MLP + SVM + Random Forest .. 35

Table 4.9. Confusion matrix of MLP + Random Forest with SMOTE .. 36

Table 4.10. Confusion matrix of MLP + Random Forest with class balancing 36

Table 4.11. Confusion matrix of MLP + Random Forest with SMOTE + class balancing 37

Table 4.12. . Confusion matrix of MLP + J48 .. 38

Table 4.13. Confusion matrix of MLP + J48 with SMOTE ... 38

Table 4.14. Summary of the various models evaluated in this research ... 39

Table 4.15. Weka vs Python .. 39

Table 4.16. Statistics of classification time for new instance ... 39

Table 5.1. Detection time comparison ... 42

7

LIST OF FIGURES

Figure 2.1. Ensemble model predicting the class with most votes.. 19

Figure 2.2. Multilayer perceptron with 1 hidden layer. ... 21

Figure 3.1. Flowchart depicting the steps involved in the experiment ... 29

8

LIST OF ABBREVIATIONS

ML Machine Learning

DL Deep Learning

IDS Intrusion Detection System

NIDS Network Intrusion Detection System

DoS Denial of Service

R2L Remote to Local

U2R User to Root

SVM Support Vector Machine

ANN Artificial Neural Network

MLP Multilayer Perceptron

SMOTE Synthetic Minority Oversampling Technique

9

GLOSSARY

Intrusion detection – Intrusion detection is the process of safeguarding computers and data

networks from attacks and misuse. (Mukherjee, Heberlein, & Levitt, 1994)

Machine Learning – A branch of computer science that deals with learning statistical and

probabilistic distribution of data and improving with data augmentation without explicit

programming (Shalev-Shwartz & Ben-David, 2014)

Ensemble learning – It is the process of combining multiple machine learning models to achieve

better predictive performance than that achieved by any of the individual models.

(Dietterich et al., 2002)

Deep Learning – “A branch of machine learning involving the use of artificial neural networks to

automatically learn features of data.” (Goodfellow, Bengio, Courville, & Bengio, 2016)

Training – The process of providing a Machine Learning model with data to learn from.

Testing – The process of evaluating the performance of the Machine Learning algorithm

developed.

10

ABSTRACT

Intrusion Detection Systems are vital for computer networks as they protect against attacks that

lead to privacy breaches and data leaks. Over the years, researchers have formulated intrusion

detection systems (IDS) using machine learning and/or deep learning to detect network anomalies

and identify four main attacks namely, Denial of Service (DoS), Probe, Remote to Local (R2L)

and User to Root (U2R). However, the existing models are efficient in detecting just few of the

aforementioned attacks while having inadequate detection rates for the rest. This deficiency makes

it difficult to choose an appropriate IDS model when a user does not know what attacks to expect.

Thus, there is a need for an IDS model that can detect, with uniform efficiency, all the four main

classes of network intrusions. This research is aimed at exploring a machine learning approach to

an intrusion detection model that can detect DoS, Probe, R2L and U2R attack classes with uniform

and high efficiency. A mulitlayer perceptron was trained in an ensemble with J48 decision tree.

The resultant ensemble learning model achieved over 85% detection rates for each of DoS, probe,

R2L, and U2R attacks.

11

 INTRODUCTION

This chapter talks about the problem addressed in this research. It gives a background to

the problem and talks about its significance. It also discusses the scope of the research.

1.1 Background

In the computer security world, the term intrusion refers to any unauthorized access to an

information system. Intrusion Detection Systems (IDS) are technologies that identify unauthorized

access and suspicious activity and policy violations in computer systems and networks (Rowland,

2002). They can be in the form of devices or software applications and are meant for preserving

confidentiality, integrity, and availability of computer systems (Forouzan, 2007). Network

Intrusion Detection Systems (NIDS) are intrusion detection systems that monitor network traffic

for malicious activity and attacks. According to Cole (2011) there are four main classes of network

attacks:

1. Denial of Service (DoS): In this type of attack, computer users are unable to access a

computer network because the attacker has flooded it with traffic.

2. Probe Attacks: This is a type of attack where the hacker surveys a computer network for its

vulnerabilities.

3. Remote to Local (R2L): In this type of attack, the hacker gains unauthorized access to a

machine on a network he/she is not a part of.

4. User to Root (U2R): In this kind of attack, the hacker attempts to illegally gain

administrative privileges to a computer.

The task of an IDS is generally to classify network traffic behaviour as normal or

abnormal.

12

1.1.1 Machine Learning and Deep Learning in Intrusion Detection

Machine Learning (ML) is one of the branches of artificial intelligence that deals with

programming computers to improve automatically by learning from past experience (Bishop,

2006). Deep learning (DL) is a field in ML with a similar goal but deals with artificial neural

networks for learning from past experience (Goodfellow et al., 2016). In the past two decades,

these two branches of artificial intelligence have helped IDS become smarter and more threat-

aware, improving the security of networks significantly. Researchers incorporated ML and DL

into IDS so that they learn attack features from known attacks and identify incoming unseen

attacks. Machine learning and deep learning tasks can be categorized as classification or

regression. Classification is the process of categorizing data based on what is learned from

previous data while regression is the process of predicting the value of an unseen data sample

based on what on learned from previous data. In the context of intrusion detection, machine

learning and deep learning based IDS learn network connection features from existing data and

perform classification tasks on unseen network traffic by categorizing them as normal or

abnormal. These tasks can be considered as two-class problems - normal or abnormal or a multi-

class problems - normal, DoS, probe, R2L, or U2R.

1.2 Problem

In the real world, computer users cannot predict which class of attacks out of DoS, Probe,

R2L, and U2R they can expect. Even though one class of attacks may be more common than the

others, it is wise to be prepared for all kinds of attacks. Although the existing ML and DL based

IDS achieve high average classification accuracy for DoS, probe, R2L, and U2R classes of attacks,

the difference among the classification accuracy figures for individual attack classes is

considerable. For instance, if the IDS works well in detecting DoS, probe and R2L attacks, it is

less efficient in detecting U2R attacks (Yang, Zheng, Wu, Niu, & Yang, 2019). With regard to

security of computer networks, such an IDS might not be very effective when the majority of

attacks the network sees in the future are U2R attacks. This poses a problem for the computer

users or network security administrators in selecting an appropriate IDS model, especially when

13

the user does not know what attacks to anticipate. This deficiency in capability of the existing

IDS creates a need for a machine learning or deep learning based IDS that works uniformly

across all attack classes so that network security is improved.

1.3 Significance

With the expansion of the internet and computer networks, security has become a crucial

aspect of computer networks. According to a blog written by the East Coast Polytechnic

University, no computer network is invulnerable to attacks and a solid network security system is

required to protect it from malicious entities (”Why Do We Need Network Security?”, n.d.). An

Intrusion Detection System is one such network security system that monitors computer systems

for cyber attacks. Intrusion detection systems identify and report malicious behaviour in computer

networks so that network administrators can activate defense protocols in a timely manner to

mitigate the attack. Over the years, cyber attacks have become more and more sophisticated and

will only continue to become more complex. Therefore, the modern world IDS needs to be

adaptable and learn from previous attacks so that new and unseen attacks can be automatically

detected. For this purpose, researchers incorporated machine learning into IDS so that they

automatically learn from known past data and detect new and unfamiliar attacks by recognizing

attack patterns.

1.4 Purpose

The purpose of this study is to explore machine learning approaches to build an artificial

intelligence based Intrusion Detection System that is capable of automatically detecting four main

classes of network intrusions, i.e., Denial of Service, Probe, User to Root, and Remote to Local,

with uniform efficiency.

1.5 Research Questions

The questions addressed by this study are:

1. Is it possible to have a artificial intelligence based IDS model that can classify all the

four kinds of network intrusions with uniform efficiency?

14

2. Would there be a trade-off between achieving uniform efficiency across all attack

classes and achieving high efficiency for individual classes?

1.6 Assumptions

This research uses a benchmark dataset for intrusion detection called NSL-KDD (NSL-KDD

dataset, n.d.) to evaluate the proposed IDS model. The underlying assumption is that the results

obtained on this benchmark dataset are applicable to the real world.

1.7 Limitations

This research’s limitation is that the proposed intrusion detection model needs all or most

of the data on network connections to perform efficiently. Incomplete or missing information on

connections may lead to misclassification of attacks. Also, the speed of the proposed model

depends upon the computational power of the underlying hardware (Graphics Processing Unit).

Inefficient hardware can slow down the proposed model.

1.8 Delimitations

The study’s scope is limited to the four main classes of network intrusions, i.e., Denial of

Service (DoS), Probing, User to Remote (U2R), and Remote to Local (R2L) attacks. The proposed

model will be trained and tested on these four classes of attacks only and the findings of this

research are not be applicable to other classes of attacks.

1.9 Summary

This chapter introduced the concepts of intrusion detection system, machine learning, and

deep learning. It provided a background to the research problem and summarized the purpose,

research questions, assumptions, and limitations involved in this study. In addition to that, the

delimitations were also discussed to provide the reader an understanding of the scope of this

research.

15

 REVIEW OF LITERATURE

This chapter involves a discussion of the literature relevant to the problem of intrusion

detection systems that are based on machine learning and deep learning techniques.

2.1 Related Work

This section summarizes the previous research related to machine learning and deep

learning based IDS. Mishra et al. (2018) provided a detailed survey of a number of ML based

intrusion detection systems. Liu and Lang (2019) surveyed intrusion detection models that were

based on ML and also deep learning. Gamage and Samarabandu (2020) presented a

comprehensive survey of previous surveys of ML and DL based IDS. Based on the findings in

these three surveys, the intrusion detection models that have been presented so far by previous

researchers can be categorized into three main divisions – Individual Machine Learning models,

Ensemble models and Deep Learning models.

2.1.1 Individual Machine Learning Models

Kim and Park (2003) introduced a Support Vector Machine (SVM) (Cortes & Vapnik, 1995)

based IDS that treated the intrusion detection problem as a two-class (normal/attack) classification

task as well as a multiclass (normal/DoS/Probe/U2R/R2L) classification task. Kim’s model was

trained on KDD Cup 99 dataset (Tavallaee et al., 2009) and while it was good at classifying probe

and DoS attacks with accuracies of 83.3% and 97.1% respectively, the classification accuracies for

U2R and R2L attacks were just 13.2% and 8.4% due to insufficient training samples in the dataset.

Amor, Benferhat, and Elouedi (2004) also worked on the same KDD Cup 99 dataset but proposed

an approach to network intrusion detection that was based on Naive Bayes algorithm. Amor’s

results, however, were very similar to Kim’s in the sense that the classification accuracy was poor

for classes with few training samples (U2R and R2L). Lee, Lee, Sohn, Ryu, and Chung (2008)

evaluated the performance of decision trees in intrusion detection and found out that decision trees

performed unsatisfactorily in detecting network intrusions, achieving classification accuracies of

just 75.5%, 82.6%, 58.6% and 78.1% on DoS, Probe, U2R and R2L respectively. Stein, Chen, Wu,

16

and Hua (2005) also used decision trees for intrusion detection but by employing Genetic

Algorithms (Mitchell, 1998) based feature selection. This inclusion of genetic algorithms made

feature selection more efficient as they determined what features are used in creating the decision

tree, thereby producing an optimized tree. Interestingly, the combined model achieved a very high

overall classification accuracy on KDD Cup 99 dataset. The accuracy figures reached 97.8%, 99.1%

and 99.9% for DoS, Probe and U2R attacks respectively but could not go higher than 80.4% for

R2L attacks. Hasan, Nasser, Pal, and Ahmad (2014) tried to solve the intrusion detection problem

using Random Forests on the KDD Cup 99 dataset and achieved classification accuracy of 98.9%

for DoS, 100% for U2R but only 55.1% for Probe and 66.7% for R2L. Lin, Ke, and Tsai (2015)

used an unsupervised learning approach (Barlow, 1989) to intrusion detection by empying k-

nearest neighbours algorithm (Keller, Gray, & Givens, 1985). Lin’s approach could not yield

satisfactory results as the classification accuracy for R2L and U2R attacks was just 57% and 3.9%

respectively. Once again, the proposed model failed on at least one of the classes of network

intrusions. Based on the findings above, and especially by comparing the works of Lee et al. (2008)

and Stein et al. (2005), it can be concluded that traditional ML models are not very effective in

intrusion detection when they are used individually. This brings us to the next category – Ensemble

methods.

2.1.2 Ensemble Models

Ensemble learning is the process by which two or more machine learning models are

combined to produce a model with higher predictive power (Dietterich et al., 2002). Over the

years, researchers have employed ensemble methods for intrusion detection to achieve better

classification results. Mukkamala et al. (2005) proposed an ensemble of hard computing and soft

computing paradigms (Zadeh, 1996) to efficiently detect network intrusions. Their model was a

combination of a feedforward artificial neural network (Bebis & Georgiopoulos, 1994), SVM

(Cortes & Vapnik, 1995) and multivariate adaptive regression splines (Friedman, 1991).

Mukkamala evaluated each individual model as well as the ensemble on the KDD Cup 99 dataset

and observed that the ensemble outperformed each of the component models. The ensemble

model achieved classification accuracies of 99.8% on Probe, 99.9% on DoS, 76.0% on U2R and

100% on R2L attacks. These accuracy figures are much superior to those achieved by researchers

17

referenced in the previous section, who used machine learning algorithms individually.

Aburomman and Reaz (2016) introduced another ensemble method that combined support vector

machines, k-nearest neighbors (Keller et al., 1985) and particle swarm optimization (Kennedy et

al., 1995). When trained and evaluated on the KDD Cup 99 dataset, Aburomman’s model

achieved 96.7% classification accuracy for Probe attacks, 98.8% for DoS, 99.8% for U2R and

84.8% for R2L. Once again, the ensemble methods proved to be better than individual ML

algorithms for intrusion detection. However, in both the ensemble approaches discussed above,

the drawback is that the accuracies are not uniform for all attack classes. For instance,

Mukkamala’s model is not as efficient for U2R as it is for the other classes while Aburomman’s

model is less efficient for R2L than it is for the other classes.

2.1.3 Deep Learning Models

In recent years, researchers have started using deep learning as a solution to the problem of

intrusion detection. Yin et al. (2017) introduced a deep learning based intrusion detection model

which employed recurrent neural networks (Gers, Schmidhuber, & Cummins, 1999) to extract

feature representations from attack data and automatically learn attack patterns. Yin studied the

relation between depth of the neural network and its performance and developed a model that has

a very low overall false positive rate of 1.27%. Yin evaluated their model on the NSL-KDD dataset

and achieved classification accuracies of 83.4% for Probe, 83.5% for DoS, 11.5% for U2R and 24.7%

for R2L attacks. Yang et al. (2019) proposed the use of deep belief networks (Hinton, Osindero, &

Teh, 2006) for network intrusion detection. They achieved classification accuracies of 90.5%,

92.3%, 68.4% and 95.9% for probe, DoS, U2R and R2L classes of attacks respectively. While deep

learning models seem to perform better than traditional ML models, once again, it can be observed

that the accuracy figures are not uniform for all the attack classes. Yang’s model underperforms

for R2L attacks while Yin’s model underperforms for U2R and R2L attacks. Based on the above

findings, it can be concluded that there is a need for an intrusion detection model that achieves

uniformly high classification accuracies for all attack classes.

18

Table 2.1. Previous IDS models and their results

Literature Method DatasetClassification Accuracy (%)

 DoS Probe R2L U2R

Kim et al. (2003) SVM KDD Cup 99 97.1 83.3 8.4 13.2

Amor et al. (2004) Naive Bayes KDD Cup 99 96.4 78.2 7.1 11.8

Stein et al. (2005) Decision Tree KDD Cup 99 97.8 99.13 80.4 99.9

Lee et al. (2008) Decision Tree DARPA 82.6 75.5 78.1 58.6

Lin et al. (2015) CANN KDD Cup 99 99.7 87.6 57.0 3.9

Hasan et al. (2014) Random Forest KDD Cup 99 98.9 66.7 66.7 100

Mukkamala et al. (2005) ANN + SVM + MARS DARPA 99.9 99.8 100 76.0

Aburomman et al. (2016) SVM + kNN + PSO KDD Cup 99 98.8 96.7 84.8 99.8

Yin et al. (2017) RNN NSL-KDD 83.5 83.4 24.7 11.5

Potluri et al. (2018) CNN NSL-KDD 84.2 85.4 0 0

Yang et al. (2019) DBN NSL-KDD 92.3 90.5 95.9 68.4

2.2 Important Concepts Pertaining to the Proposed Approach

This section talks about some concepts that are needed to understand the proposed

approach, which will be discussed in the subsequent section.

2.2.1 Ensemble Learning

This subsection explains ensemble learning and discusses the various kinds of ensemble

methods that are used in practice. According to their book on hands-on machine learning, Géron

(2019) explained ensemble learning as follows:

”Suppose you ask a complex question to thousands of random people, then aggregate

their answers. In many cases you will find that this aggregated answer is better than an

expert’s answer. This is called the wisdom of the crowd. Similarly, if you aggregate the

predictions of a group of predictors (such as classifiers or regressors), you will often get

better predictions than with the best individual predictor. A group of predictors is called

an ensemble; thus, this technique is called Ensemble Learning, and an Ensemble

Learning algorithm is called an Ensemble method.” (p. 189)

19

Figure 2.1. Ensemble model predicting the class with most votes.

In other words, ensemble learning is a technique which combines individual machine

learning algorithms to achieve better prediction results than those achieved by the said individual

algorithms. In the context of this research, prediction refers to the task of classification. The

advantages of using ensemble methods over individual machine learning algorithms are: 1) as

discussed above, their predictive power is better than that of their constituent algorithms, and 2)

the variance in the predictions is reduced.

There are various kinds of ensemble methods but for the scope of this research, listed

below are two of them:

• Voting Classifier: This type of ensemble method performs classification tasks based on

voting. The class predictions from each of its constituent ML algorithms are aggregated and

the class with the most predictions (votes) is deemed as the class predicted by the

ensembles. This kind of ensemble method usually yields performance better than any of its

20

constituent models (Géron, 2019). An important advantage of this method of ensemble

learning is that the weights of the constituent ML algorithms can be adjusted to improve

model averaging.

• Stacking: In this kind of ensemble, there is no process of voting. Instead, an ML algorithm

is trained to combine the predictions of the constituent algorithms. Just like voting

classifiers, this stacking ensemble also usually yields results better than its constituent

models. (Wolpert, 1992)

2.2.2 Multilayer Perceptron

Multilayer Perceptron (MLP) is an artificial neural network in which the information flows

through the network in one direction only. This means that the information from the first (input)

layer reaches the last (output) layer without any feedback (Goodfellow et al., 2016). Due to this

feature, MLPs are also called feedforward neural networks. An MLP contains layers of neurons or

nodes, where each neuron propagates information to every neuron of the subsequent layer, making

it a fully connected network. An MLP is made up of multiple layers of neurons, out of which the

first is the input layer, and the last is the output layer. All the layers in between are called hidden

layers, whose number can be varying. The ultimate goal of an MLP is to create an approximate

function, that maps the input to its output. Figure 2.2 shows a pictorial representation of an MLP.

21

Figure 2.2. Multilayer perceptron with 1 hidden layer.

At each layer of the MLP, the input is multiplied by a weight assigned to that neuron. A

bias is added, and the sum of the weighted input and the bias is passed through an activation

function. Common activation functions are 1) Rectified linear unit (ReLU), 2) Sigmoid, and 3)

Hyperbolic tangent function (tanh). In the context of classification tasks like intrusion detection,

the input x to the MLP would be the samples of network connections and the output y would be

their respective classes. (Goodfellow et al., 2016)

As with any other machine learning models, MLPs are trained by optimizing the loss

function. The loss is the difference between the output predicted by the model and the actual

output for a given input. The MLP approximates the mapping function f by minimizing this loss.

(Goodfellow et al., 2016)

2.3 Important Inferences

Based on the literature discussed above in the previous section, following are some

important points to note that shape the approach for the desired IDS model for this research:

1. According to Yin et al. (2017), deep learning has a higher potential to create intrusion

detection models as compared to traditional ML models because machine learning

constitutes shallow learning, which is not suitable in cases where the training data is very

high-dimensional. In such cases of high-dimensional data, deep learning techniques have

22

better representational power. Moreover, shallow learning techniques depend on feature

engineering, which is not required for training deep learning models.

2. According to a survey by Gamage et al. (2020), among the various deep learning approaches

that have been used for intrusion detection, feed-forward deep neural networks achieved

better results as compared to recurrent neural networks like Gated Recurrent Units and Long

Short-Term Memory.

3. A notable observation in the previous ML based intrusion detection approaches proposed

by researchers is that ensemble models of machine learning algorithms outperformed their

individual counterparts by achieving higher classification accuracy and less variance.

4. Based on previous research on intrusion detection systems that used ML and deep learning,

most IDS models face difficulties in accurately classifying R2L and U2R attacks. This is

because in NSL-KDD dataset and other benchmark datasets for intrusion detection, the

number of samples from R2L and U2R attack classes is much smaller in comparison to the

number of samples from the DoS and probe attack classes. Therefore, in most cases, the

performance of the intrusion detection model against R2L and U2R attacks is the critical

factor in determining its efficiency.

5. Ensemble learning combines individual machine learning algorithms to achieve better

prediction results than those achieved individually by the said ML algorithms. Besides this,

weights on the members of the ensemble can be adjusted or learn to improve classification.

Looking at point 4, whatever ML or DL model is used for intrusion detection should strive

to achieve good classification results for R2L and U2L attacks. For this reason, and also based on

the above points, this research uses a Multilayer Perceptron (MLP) in an ensemble with the

machine learning algorithms used by previous IDS researchers, that were effective against R2L

and U2R attacks. This way, the ensemble can be trained to focus better on classifying R2L and

U2R attacks. The details of this approach will be elaborated in the next chapter.

23

2.4 Summary

This chapter summarized the ML, ensemble, and DL models for intrusion detection given

by previous IDS researchers and described their effectiveness against DoS, probe, R2L, and U2R

classes of attacks. The chapter also talked about the deficiencies of each of those models and

highlighted the need for a uniform intrusion detection model. Some important inferences that

which help in building the required uniform model were explained.

24

 METHODOLOGY

This chapter talks about a methodology to explore a machine learning based approach to

an IDS that can detect all classes of network attacks uniformly. It also talks about the data

collection methods, performance evaluation metrics, and the proposed timeline for the

experiment.

3.1 Dataset

The data required to conduct this research is obtained from a publicly available dataset

called NSL-KDD (NSL-KDD dataset, n.d.). This dataset is a newer and refined version of the

KDD Cup 1999 dataset (Tavallaee et al., 2009), which was created by the “Association for

Computing Machinery” (ACM). ACM’s “Special Interest Group on Knowledge Discovery and

Data mining” collected flow-based connection data of over 4.9 million network connections that

include normal and malicious connections. Among these malicious connections are connections

from the four main attack classes – DoS, Probe, U2R and R2L. But most of these connection

instances in the dataset consist of redundant records, which skewed the learning of AI models

trained on this dataset towards the duplicate records (Tavallaee et al., 2009). The NSL-KDD

dataset also has the same classes of connections but has fewer instances, owing to removal of

redundant records. Since there are no redundant records, the dataset gives a better representation

of normal and malicious connections.

The NSL-KDD dataset is meant for data mining experiments, which, along with no

redundant records, makes it an ideal dataset for evaluating the proposed model. This dataset is also

the benchmark dataset for research in intrusion detection as its primary purpose is to train and

evaluate predictive data mining models that can classify legitimate and illegitimate connections.

Each sample in the dataset has 43 features depicting the properties of the connection. These

features include numerical features like connection duration, source bytes, destination bytes, etc.

as well as categorical features like protocol, service, and flag. Each sample in the dataset is marked

as normal or malicious – malicious attacks being labeled according to their respective types such

as smurf, ipsweep, buffer-overflow, etc. There are 39 such attacks that can be categorized into four

classes, namely DoS, probe, R2L, and U2R (as shown in table 3.1). Table 3.2 depicts the

distribution of instances in the dataset among various attack classes. As seen from table 3.2, the

25

number of R2L and U2R instances is significantly less than that of DoS and probe attacks.

Therefore, classification models need to learn the features of R2L, and mainly U2R attacks, as they

are very few in number in the dataset.

Table 3.1. Various attacks in the NSL-KDD dataset

DoS Probe R2L U2R

processtable

worm

udpstrom

pod

mailbomb

smurf

apache2

neptune

land

teardrop

back

ipsweep

portsweep

satan

mscan

saint

nmap

warezmaster

warezclient

snmpgetattack

xsnoop

xlock

named

spy

sendmail

multihop

phf

snmpguess

guess passwd

ftp write

httptunnel

imap

rootkit

sqlattack

perl

ps

buffer overflow

loadmodule

xterm

Table 3.2. NSL-KDD dataset composition

Instance type Count

Normal 77,053

DoS 53,386

Probe 14,077

R2L 3,880

U2R 119

Total 148,515

26

3.2 Approach

This research uses a multilayer perceptron (MLP) in a soft voting ensemble (Géron,

2019) with machine learning models that effectively classify R2L and U2R attacks. These

machine learning models are the ones proposed by previous researchers that were effective

against either R2L and/or U2R attacks. The reasons for this approach were discussed in chapter 2.

To summarize the reasons:

1. Feedforward neural networks work best in intrusion detection tasks, when compared to

other kinds of neural networks like recurrent networks. Hence, the use of a multilayer

perceptron.

2. An ensemble model often makes better predictions than the best individual predictor inside

it. Besides, classification accuracy of the model for R2L and U2R attacks is extremely

important to achieve uniform efficiency. Hence, the combination of MLP with previous ML

models.

The approach used in the experiments discussed in chapter 4 is as follows: A multilayer

perceptron was initially trained on the benchmark dataset for intrusion detection, NSL-KDD.

Based on the results, appropriate machine learning models were combined with the MLP to form

a soft-voting ensemble. For example, if the initial results of the MLP showed that it needed

improvement in classifying U2R attacks, a previously researched machine learning model, which

was effective against U2R, such as the random forest model given by Hasan et al. (2014), was

added, and the performance of the resultant soft voting ensemble was evaluated. Now if the

ensemble needed improvement in classifying another class, a model which has been proven to be

effective for that class was added and so on. Soft-voting was preferred to hard-voting because

unlike hard voting, where the final vote is decided by majority, soft voting operates using

probabilities of the output. For every class in the dataset, each predictor predicts the probability

that an instance belongs to that class. Finally, the class that receives the most cumulative vote

(probability) from all predictors becomes the final output. This is better than majority voting

because output probability takes vote confidence into consideration and hence, the votes with low

confidence (or probabilities) receive low importance and vice versa (Géron, 2019). The ensemble

27

was further tuned to focus on tricky classes like R2L and U2R by adding more weight to their

instances. This entire process is discussed in detail in Chapter 4.

3.3 Experiment Structure

This section talks about how the experiment discussed in the next chapter (chapter 4) is

outlined. The experiment is iterative in nature as it is performed repetitively to improve results.

Below is an ordered list of the various stages of the proposed experiment:

1. Data pre-processing

2. Training the MLP

3. Testing the MLP

4. Creating the soft-voting ensemble

5. Adding to soft-voting ensemble to improve results

The following subsections explain in detail, what each stage of the experiment entails.

3.3.1 Data pre-processing

As mentioned in section 3.1, the dataset used for this experiment is NSL-KDD dataset

(NSL-KDD dataset, n.d.). It is publicly available and can be downloaded from the internet. The

first step of the experiment was data pre-processing. Pre-processing involved procedures like

feature scaling and converting categorical variables into numerical variables. Many machine

learning algorithms work with numerical features. So, it is important to convert categorical

features into numerical features so that there is no loss of information for the machine learning

model. This conversion can be done by one-hot encoding, which expresses the categorical

features as binary values (Géron, 2019). The details of this procedure will be discussed in chapter

4. After pre-processing the data, the final step was to split the dataset into training and testing

sets (more details in chapter 4).

28

3.3.2 Training the MLP

After splitting the pre-processed NSL-KDD dataset into training and testing sets, the first

step was to train the Multilayer Perceptron on the training set. During training, the model was

validated using K-fold cross validation, which is a re-sampling technique to assess machine

learning models, where the training data is split randomly into k equal parts, and the machine

learning model is trained on K-1 parts of the training set, and its learning is validated using the

one remaining part. This is repeated k times for all k combinations of training and validation sets.

Chapter 4 elaborates on the training procedure and MLP configuration.

3.3.3 Testing the MLP

After training and validating the MLP, its performance was evaluated on the test set using

the analysis methods discussed in section 3.4. If there was any class of attacks that needed

improvement in classification accuracy, an appropriate machine learning model was added to

create a soft-voting ensemble, as discussed in the approach in section 3.2.

3.3.4 Creating the soft-voting ensemble

This step of the experiment involved adding a machine learning model to the MLP to

improve its performance against the most challenging attack class. After assessing the test results

of the MLP, based on what class of attack needs better classification accuracy, an appropriate

machine learning model, which is proven to work by previous researchers, was chosen for addition

to the MLP to create a soft-voting ensemble. For example, if the model under-performed against

U2R attacks, a random forest was added to the MLP as it was previously proven to work against

U2R attacks by Hasan et al. (2014), and the resulting ensemble was again trained and tested.

29

3.3.5 Adding to soft-voting ensemble to improve results

The soft-voting ensemble created in the previous step of the experiment was trained on the

training set, validated using K-fold cross validation, and its performance was evaluated on the test

set. Based on the results, if a class of attacks still needed improvement in classification accuracy,

another machine learning model, just like in the previous step, was added to the ensemble.

Chapter 4 talks about this procedure in more detail.

Figure 3.1 shows a flowchart depicting the stages of the experiment.

Figure 3.1. Flowchart depicting the steps involved in the experiment

30

3.4 Analysis Methods

As the purpose of this research is to develop an IDS model that can classify all kinds of

network intrusions with uniform efficiency, the most important performance metric in this

research is the classification efficiency of the proposed IDS model for each class of network

intrusion. This is defined as the percentage of attack instances correctly classified for each class

of attack. This metric is also called as recall. Another evaluation metric that can judge the model’s

performance is the overall precision of the ML model. Precision is defined as the percentage of

correct classifications done by the model. To visually depict precision and recall of the ML model,

a confusion matrix is used. Another important factor to consider while evaluating the machine

learning model is the count of false positives. Since the task of an IDS is to identify attacks in

network traffic, false alarms can cause unnecessary problems. Therefore, a good intrusion

detection model should have few false positives.

To determine if the model developed in this research was successful, the minimum

required recall for each class of attack was set to 80%. This way, there is a guarantee of a

minimum classification efficiency against every class of attacks, thus making the machine

learning model uniformly effective against all attack classes.

31

 EXPERIMENT AND RESULTS

This chapter talks about the experiments conducted in this research and the

obtained results. The chapter also discusses the various combinations of soft-voting

ensemble machine learning models and their respective results.

4.1 Experiment

As discussed in chapter 3, to build a uniform intrusion detection model, a multlilayer

perceptron was trained and evaluated on the NSL-KDD dataset initially. Based on the

evaluation results, if the MLP needed to perform better against a certain attack class, the ML

algorithms that were proven by previous researchers to be efficient against that attack class,

were trained and tested in an ensemble with the MLP. Different ML algorithms were added

or removed from the ensemble to improve results.

The experiments involved in the research were conducted with the help of Weka

(Holmes, Donkin, & Witten, 1994), which is an open-source software for ML and data mining.

Weka was used for data-preprocessing as well as building the machine learning models. As

discussed in chapter 3, the experiment started with pre-processing the NSL-KDD dataset. The

categorical features in the dataset were converted to numerical by one-hot encoding, which is

a method of converting the categorical feature values into binary values. For example, the

‘protocol’ feature in the dataset takes three categorical values, namely tcp, udp, and, icmp.

After one-hot encoding, this ‘protocol’ feature was replaced by three features – tcp, udp, and

icmp. The values of these features are 1’s and 0’s, with 1 meaning that the feature is present

in the instance, while 0 meaning that the feature is absent. This is shown in tables 4.1 and 4.2.

Table 4.1 shows a section of the NSL-KDD dataset before one-hot encoding. The instances

have protocol values as tcp, icmp, or udp. Table 4.2 shows the same section of the dataset after

one-hot encoding. Notice how each value under the protocol feature became a feature of its

own with binary values.

The numerical attributes were normalized for feature scaling. After data pre-processing,

the dataset was divided into two parts – training and testing sets. 80% of the total instances in

the dataset formed the training set while the remaining 20% formed the testing set. These

32

training and testing sets files were converted to .arff format for better compatibility with

Weka. The distribution of instances of various attack classes in the training and test sets is

shown in tables 4.3 and 4.4.

Table 4.1. A section of the dataset before one-hot encoding of protocol variable.

src bytes protocol

300 tcp

520 icmp

54 udp

76944 tcp

Table 4.2. Section of the dataset shown in table 4.1 after one-hot encoding of protocol variable.

src bytes tcp udp icmp

300 1 0 0

520 0 0 1

54 0 1 0

76944 1 0 0

Table 4.3. Training set composition

Instance type Count

Normal 61,509

DoS 42,731

Probe 11,351

R2L 3,125

U2R 96

Total 118,812

After splitting the NSL-KDD dataset into training and testing sets, the multilayer

perceptron was trained on the training set. The MLP was designed based on the feature

variables and labels in the dataset. Each of the 42 features or attributes in the dataset was an

input to the MLP. Hence, the number of neurons in the input layer of the MLP was 42. The

number of neurons in the output layer of the MLP was decided by the number of classes or

labels in the dataset.

33

Since the dataset has 5 classes – normal, DoS, probe, U2R, and R2L, the number of neurons

in the output layer was 5. Weka sets the number of hidden layers in the MLP to the average

of number of features (42) and number of classes in the training data (5) by default. Therefore,

the MLP in this experiment had 23 hidden layers. The MLP was trained over the training set

and validated using k-fold cross validation with 6 folds for 50 epochs. The trained MLP was

then tested on the test set and the results were observed using a confusion matrix which is

shown in table 4.5.

Table 4.4. Testing set composition

Instance type Count

Normal 15,544

DoS 10,655

Probe 2,726

R2L 755

U2R 23

Total 29,703

Table 4.5. Confusion matrix of the MLP

 Normal DoS R2L Probe U2R

Normal 15259 14 63 205 3

DoS 2 10607 2 44 0

R2L 5 2 721 25 2

Probe 9 2 3 2712 0

U2R 0 0 4 10 9

Based on the confusion matrix above, the MLP performed well in classifying

instances of normal connections, DoS, probe, and R2L attacks but underperformed against

U2R attacks. The recall values for each class is given in table 4.6.

Table 4.6. MLP Recall

Instance type Recall

Normal 98.2%

DoS 99.5%

Probe 99.5%

R2L 95.5%

U2R 39.1%

34

Every class except U2R had a recall value of over 80% which was the minimum

required value to achieve the desired model as discussed in chapter 3. Since the model

required improvement in performance against U2R class of attacks, it needed to be

augmented with machine learning models used by previous researchers, that were effective

against U2R attacks. From table 2.1, it can be seen that SVM, Random Forest, and Decision

Tree were the algorithms effective against U2R attacks. Therefore, the MLP would be trained

in a soft-voting ensemble with each of these three algorithms. The results of the different

combinations of the ensembles will be discussed in the following subsections.

4.1.1 MLP + SVM

The first machine learning algorithm trained in a soft-voting ensemble with the MLP

was SVM. The SVM was built with a radial basis function kernel with the help of Weka. Only

a third of the original dataset was used to reduce the time taken for training. Based on the how

the model performs on the partial dataset, the best model would be chosen and evaluated on

the full dataset. This partial dataset was divided into training and testing sets using an 80-20

split. The ensemble was trained on the training data after synthetically up-sampling the

minority class, i.e., U2R, using “Synthetic Minority Oversampling Technique” (SMOTE)

(Chawla et al., 2002). The reason behind this was that most machine learning algorithms

under-perform against the minority class due to learning from only few instances. To better

learn the features of the minority class instances, SMOTE was used. Although Generative

Adversarial Networks (GANs) (Goodfellow et al., 2014) could also be used to synthesize

minority class instances, the computational cost to build and train a GAN is very high

(Creswell et al., 2018). For this reason, SMOTE was preferred as the upsampling technique.

The training time was high as the SVM was slow in computation. The performance of this

ensemble model on the test set is depicted in the confusion matrix in table 4.7.

35

Table 4.7. Confusion matrix of MLP + SVM

 Normal DoS R2L Probe U2R

Normal 4601 3 2 8 0

DoS 136 3227 2 8 0

R2L 53 0 550 5 0

Probe 100 39 0 799 0

U2R 14 0 0 0 0

As seen, the model’s performance against U2R instances worsened as no instance of

U2R class was correctly classified. Hence, this model, along with the current SVM, needed to

be augmented with another machine learning algorithm, i.e., either random forest or decision

tree. In the next experiment (section 4.1.2), the MLP + SVM soft-voting ensemble was

augmented with a Random Forest.

4.1.2 MLP + SVM + Random Forest

A random forest with 100 trees was added to the soft-voting ensemble using Weka.

The new ensemble of MLP, SVM, and Random Forest yielded better results against U2R

instances with a significant increase in recall. The confusion matrix in table 4.8 depicts how

the model performed on the same test set used in the previous subsection.

Table 4.8. Confusion matrix of MLP + SVM + Random Forest

 Normal DoS R2L Probe U2R

Normal 4606 1 4 3 0

DoS 4 3366 0 3 0

R2L 8 0 596 0 4

Probe 12 1 1 924 0

U2R 6 0 1 0 7

7 out of 14 instances of U2R were correctly classified, meaning the recall was 50%.

Even though the recall increased with the addition of Random Forest, it was still below 80%

and the model was extremely slow in training. For this reason, this chain of ensemble model

was not extended further and SVM was not considered for subsequent models.

36

4.1.3 MLP + Random Forest

The next combination of soft-voting ensemble that was tried was MLP with a random

forest. Like in the previous experiment, the minority class (U2R) was upsampled before

training. The ensemble model was trained, validated using k-fold cross validation, and

evaluated on the test set. From the confusion matrix in table 4.9, the recall for this model

is 10 out of 14, i.e., 71%, which is higher than that of the previous models. The training

speed also increased with the exclusion of SVM. However, the recall can still be

improved. For this reason, another pre-processing technique called class-balancing

(Laurikkala, 2001) was tried. This is a method of adding weights to instances in the

dataset so that each class has the same total weight. This way, the minority class

instances have higher weights as compared to the majority class instances. The

performance of the ensemble with class-balancing is shown in the confusion matrix in

table 4.10:

Table 4.9. Confusion matrix of MLP + Random Forest with SMOTE

 Normal DoS R2L Probe U2R

Normal 4570 8 25 10 1

DoS 1 3369 0 2 1

R2L 5 0 596 0 7

Probe 6 8 5 916 3

U2R 0 0 4 0 10

Table 4.10. Confusion matrix of MLP + Random Forest with class balancing

 Normal DoS R2L Probe U2R

Normal 3753 0 0 0 861

DoS 0 2868 0 0 505

R2L 0 0 464 0 144

Probe 0 0 0 736 202

U2R 0 0 0 0 14

37

Class balancing helped in achieving a perfect 100% recall for U2R instances but

caused a significant number of instances from other classes to be classified as U2R, thus

drastically diminishing the model’s precision. Because of the high amount of false positives

for U2R attacks, this model is deemed to be poor although it achieves 100% recall.

To mitigate false positives, class balancing and SMOTE were used together. This

approach could mitigate false positives because balancing the classes after upsampling

the minority class results in a lower additional weight on the minority class instances,

resulting in lower bias towards them. The test results of the MLP + random forest

ensemble on this new processed training data are shown in table 4.11.

Table 4.11. Confusion matrix of MLP + Random Forest with SMOTE + class balancing

 Normal DoS R2L Probe U2R

Normal 4433 36 81 63 1

DoS 4 3341 12 15 1

R2L 1 0 571 3 33

Probe 1 6 17 912 2

U2R 0 0 3 0 11

The false positives have significantly reduced and the recall is better than the one

achieved with just upsampling but it is still below 80%.

4.1.4 MLP + Decision Tree

After training the MLP in combinations of soft-voting ensembles involving SVM and

random forest, the final remaining algorithm, decision tree was tried. This was a J48 decision

tree (Quinlan, 2014). Without SMOTE, on the full dataset, the MLP + J48 ensemble learning

model gave the following results (see table 4.12).

38

Table 4.12. . Confusion matrix of MLP + J48

 Normal DoS R2L Probe U2R

Normal 15503 8 12 19 2

DoS 4 10643 1 6 1

R2L 12 1 732 3 7

Probe 6 2 1 2717 0

U2R 0 0 4 1 18

The recall for U2R instances was 78% without any up-sampling used while training.

The training speed of the model was also higher than all the previous ensembles, making it a

good fit for the desired model. With upsampling the minority class, the recall increased to 87%

as seen in the confusion matrix in table 4.13.

This soft-voting ensemble model resulted in a recall that was well above the required

80%. The overall precision was 99.6% and overall false positive percentage was 0.1%. Since

the performance objectives discussed in section 3.4 of chapter 3 were met, this model was fit

to be the final required model in this research.

Table 4.13. Confusion matrix of MLP + J48 with SMOTE

 Normal DoS R2L Probe U2R

Normal 15489 14 17 21 3

DoS 21 10642 2 7 1

R2L 9 1 736 6 3

Probe 8 1 0 2714 3

U2R 0 0 3 0 20

Table 4.14 shows a summary table showing the recall values for U2R as well as all

other class instances achieved by all the models tried in this experiment.

39

Table 4.14. Summary of the various models evaluated in this research

Model Recall (in %)

Normal DoS Probe R2L U2R

MLP 98.2 99.5 99.5 95.5 39.1

MLP + SVM 99.7 95.6 85.1 90.4 0

MLP + SVM + Random Forest 99.8 99.8 98.5 98.0 50.0

MLP + Random Forest 96.1 99.1 97.6 93.9 78.6

MLP + J48 (with SMOTE) 99.6 99.7 99.6 97.5 86.9

The MLP + J48 soft-voting ensemble model was built again using Python (Keras +

Scikit-learn) and evaluated to see if there was any improvement in performance. While the

confusion matrix was similar, the training speed was significantly higher as compared to

Weka’s (as shown in table 4.15).

Table 4.15. Weka vs Python

Tool Training time (in seconds)

Weka 782.35

Python 611.94

The time taken by the model to classify a new unknown instance was calculated

using Python’s time library. The time() method in Python’s time library retrieves the

current time.

Using this method, the current time was recorded just before testing the ensemble

model on the testing set and once again just after finishing testing. The difference between

the two time values will give the training time. This time depends on the underlying hardware.

This experiment used a 2.7 GHz Dual-Core Intel Core i5 processor and the average

classification time for the model was 23.75 microseconds. This testing time was calculated

10 times and averaged out. The mean classification time per new instance is given in table

4.16.

Table 4.16. Statistics of classification time for new instance

Mean 23.75 µs per instance

Standard deviation 1.79 µs per instance

40

 DISCUSSION AND CONCLUSION

This chapter talks about some concluding remarks on this research and discusses if the

objectives of the research were met and research questions were answered. It also talks about the

feasibility of the intrusion detection model in the real world and throws light on scope for further

research.

5.1 Discussion

Based on the experiments conducted in this research, a soft-voting ensemble learning

model consisting of a multilayer perceptron and a J48 decision tree emerged as an ML model for

uniform intrusion detection. The model trained using Weka achieved more than 80% detection rate

for all four of DoS, Probe, R2L, and U2R classes of attacks, overcoming the classification barriers

faced by machine learning based intrusion detection models given by previous IDS researchers.

The time taken for training the model using Weka was about 13 minutes which could be reduced to

10 with the help of Python and its Keras and Scikit-learn libraries. This training time can be further

reduced using a hardware accelerator like the GPU (Graphics Processing Unit). The presence of a

decision tree in the MLP + J48 ensemble model tackles the problem of class imbalance in the

dataset used in this research. This is because decision trees have a hierarchical structure due to

which they are even able to learn the characteristics of the minority class with good efficiency

(How to Handle Imbalanced Classes in Machine Learning, 2020). In addition, upsampling

techniques like SMOTE help in synthesizing minority class instances so that the model better learns

the features of the minority class.

The significance of this research is that network security administrators need not worry

about the kind of network intrusion detection model to use when they do not know what attacks to

anticipate. Instead, they have one model that is effective against all four classes of network attacks,

and they can work on simply improving its performance in the future.

41

5.1.1 Answers to research questions

In chapter 1 of this document, there were two research questions that were posed. The

questions addressed two important problems involved in achieving uniform efficiency across

various attack classes by intrusion detection models.

Research question 1: Is is possible to have an artificial intelligence based IDS model that can

classify all the four kinds of network intrusions with uniform efficiency?

Answer: Yes. Based on the experiments conducted in the research and the final MLP + J48 ensemble

learning model which achieved detection rates of at least 87% for each of DoS, probe, R2L, and

U2R attack classes, it can be seen that it is possible to have an AI based IDS model that is

uniformly effective against all classes of network attacks.

Research question 2: Would there be a trade-off between achieving uniform efficiency across

all attack classes and achieving high efficiency for individual classes?

Answer: Based on the evaluations of the various models tried out in the experiments, this trade-off

came into play only when the training data was class-balanced. The model suffered from too

many false positives as many instances from other classes were being classified as minority

class instances. As seen in table 4.8, the confusion matrix shows that 861 normal connection

instances, which are about 19% of the total normal instances, were classified as attacks. This

problem was eliminated by removing class balancing and changing the algorithms used in the

ensemble from random forest to J48 decision tree.

Therefore, the answer to this question is: While there can be trade-off between achieving

uniform efficiency across all attack classes and achieving high efficiency for individual classes,

the trade-off can be avoided using the right ML algorithms in the intrusion detection model. As

seen in chapter 4 section 4.1.4, the final MLP + J48 model did not have this trade-off and could

successfully achieve high recall rates for all attack classes.

42

5.1.2 Practical Consideration

As discussed in chapter 4, the average time taken by the MLP + J48 soft-voting ensemble

model to detect a new unknown connection instance was 23.75 microseconds. To check if this

speed is practical and the model can be used in real world intrusion detection systems, its detection

speed was compared to the speeds of two popular IDS software used in the real world – Snort

(Roesch et al., 1999) and Suricata (Suricata, n.d.). Snort is a popular and widely used open source

rule-based IDS, which is now developed by Cisco. Suricata is also an open source IDS but is

developed by “Open Information Security Foundation”. According to Shah and Issac (2018),

Snort’s processing power is 31,333 packets per second, which means that it takes 31.92

microseconds to process a single packet, and Suricata’s processing power is 52,333 packets per

second, which is 19.11 microseconds per packet. The MLP + J48 ensemble learning model built

in this research could detect a new connection instance in 23.75 microseconds, which is

comparable to the detection speeds of Snort and Suricata. Therefore, this model might be useful

in a real world intrusion detection system.

Table 5.1. Detection time comparison

Model/Software Detection time per packet/connection (in µs)

Snort 31.92 per packet

Suricata 19.11 per packet

MLP + J48 23.75 per connection

5.2 Conclusion

Artificial intelligence based intrusion detection systems developed by previous IDS

researchers, although effective overall, were not uniformly effective against different kinds of

attacks. The need for an artificial intelligence based uniform intrusion detection model is important

as it allows network security admins to use a ’one-for-all’ intrusion detection model to protect their

computer networks from all kinds of malicious connections, instead of having to choose the right

model. By leveraging the power of deep neural networks and incorporating them in ensemble

learning models, based on a simple idea that ensemble learning models yield more

43

efficient models than their individual counterparts, this uniform intrusion detection model was

made possible. The developed model was carefully evaluated and found to achieve good detection

rates for all the attack classes considered in this research. Besides, the model resulted in very few

false positives and high overall precision. This uniform intrusion detection model provides

opportunities for further research into how to further increase its efficiency as it is incorporated in

the real world.

44

REFERENCES

Aburomman, A. A., & Reaz, M. B. I. (2016). A novel svm-knn-pso ensemble method for

intrusion detection system. Applied Soft Computing, 38, 360–372.

Amor, N. B., Benferhat, S., & Elouedi, Z. (2004). Naive bayes vs decision trees in intrusion

detection systems. In Proceedings of the 2004 acm symposium on applied computing (pp.

420–424).

Barlow, H. B. (1989). Unsupervised learning. Neural computation, 1(3), 295–311.

Bebis, G., & Georgiopoulos, M. (1994). Feed-forward neural networks. IEEE Potentials, 13(4),

27–31.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Cole, E. (2011). Network security bible (Vol. 768). John Wiley &

Sons.

Cortes, C., & Vapnik, V. (1995). Support vector machine. Machine learning, 20(3), 273–297.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018).

Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35(1),

53–65.

Dietterich, T. G., et al. (2002). Ensemble learning. The handbook of brain theory and neural

networks, 2, 110–125.

Forouzan, B. A. (2007). Cryptography & network security. McGraw-Hill, Inc.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics, 1–67.

Gamage, S., & Samarabandu, J. (2020). Deep learning methods in network intrusion detection: A

survey and an objective comparison. Journal of Network and Computer Applications, 169,

102767.

Géron, A. (2019). Hands-on machine learning with scikit-learn, keras, and tensorflow: Concepts,

tools, and techniques to build intelligent systems. O’Reilly Media.

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual prediction

with lstm.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1) (No. 2).

MIT press Cambridge.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . . Bengio, Y.

(2014). Generative adversarial nets. Advances in neural information processing systems,

27.

45

Hasan, M. A. M., Nasser, M., Pal, B., & Ahmad, S. (2014). Support vector machine and random

forest modeling for intrusion detection system (ids). Journal of Intelligent Learning

Systems and Applications, 2014.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural

computation, 18(7), 1527–1554.

Holmes, G., Donkin, A., & Witten, I. H. (1994). Weka: A machine learning workbench. In

Proceedings of anziis’94-australian new zealnd intelligent information systems conference

(pp. 357–361).

How to handle imbalanced classes in machine learning. (2020, May). Retrieved from

https://elitedatascience.com/imbalanced-classes

Keller, J. M., Gray, M. R., & Givens, J. A. (1985). A fuzzy k-nearest neighbor algorithm. IEEE

transactions on systems, man, and cybernetics(4), 580–585.

Kim, D. S., & Park, J. S. (2003). Network-based intrusion detection with support vector

machines. In International conference on information networking (pp. 747–756).

Laurikkala, J. (2001). Improving identification of difficult small classes by balancing class

distribution. In Conference on artificial intelligence in medicine in europe (pp. 63–66).

Lee, J.-H., Lee, J.-H., Sohn, S.-G., Ryu, J.-H., & Chung, T.-M. (2008). Effective value of decision

tree with kdd 99 intrusion detection datasets for intrusion detection system. In 2008 10th

international conference on advanced communication technology (Vol. 2, pp. 1170–1175).

Lin, W.-C., Ke, S.-W., & Tsai, C.-F. (2015). Cann: An intrusion detection system based on

combining cluster centers and nearest neighbors. Knowledge-based systems, 78, 13–21.

Liu, H., & Lang, B. (2019). Machine learning and deep learning methods for intrusion detection

systems: A survey. Applied Sciences, 9(20), 4396.

Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.

Mukherjee, B., Heberlein, L. T., & Levitt, K. N. (1994). Network intrusion detection. IEEE

network, 8(3), 26–41.

Nsl-kdd dataset. (n.d.). Retrieved from https://www.unb.ca/cic/datasets/nsl.html

Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.

Roesch, M., et al. (1999). Snort: Lightweight intrusion detection for networks. In Lisa (Vol. 99,

pp. 229–238).

Rowland, C. H. (2002, June 11). Intrusion detection system. Google Patents. (US Patent

6,405,318)

http://www.unb.ca/cic/datasets/nsl.html

46

Shah, S. A. R., & Issac, B. (2018). Performance comparison of intrusion detection systems and

application of machine learning to snort system. Future Generation Computer Systems,

80, 157–170.

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to

algorithms. Cambridge university press.

Stein, G., Chen, B., Wu, A. S., & Hua, K. A. (2005). Decision tree classifier for network

intrusion detection with ga-based feature selection. In Proceedings of the 43rd annual

southeast regional conference-volume 2 (pp. 136–141).

Suricata. (n.d.). Retrieved from https://suricata.io/

”why do we need network security?”. (n.d.). Retrieved from https://www.ecpi.edu/blog/why-

do-we-need-network-security

Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2), 241–259.

Yang, Y., Zheng, K., Wu, C., Niu, X., & Yang, Y. (2019). Building an effective intrusion

detection system using the modified density peak clustering algorithm and deep belief

networks. Applied Sciences, 9(2), 238.

Zadeh, L. A. (1996). Fuzzy logic, neural networks, and soft computing. In Fuzzy sets, fuzzy logic,

and fuzzy systems: Selected papers by lotfi a zadeh (pp. 775–782). World Scientific.

https://suricata.io/
http://www.ecpi.edu/blog/why-do-we-need-network-security
http://www.ecpi.edu/blog/why-do-we-need-network-security

47

APPENDIX A. MODEL CODE

Below is the code used to build, train, and test the MLP + J48 ensemble learning model in

Python.

import pandas as

pd import numpy

as np import

tensorflow as tf

import time

import statistics

from keras.models import

Sequential from keras.layers

import Dense

from sklearn.metrics import

confusion_matrix from

sklearn.ensemble import

VotingClassifier from sklearn.tree

import DecisionTreeClassifier

Reading the training data into a dataframe and dividing it into

input matrix # X and label matrix y.

48

dataframe_train =

pd.read_csv(’/content/Full_Train.xls’) array =

dataframe_train.values

x1 =

array[:,0:38]

x2 =

array[:,39:40] y

= array[:,38:39]

X = np.concatenate((x1, x2), axis=1)

X_tensor = np.asarray(X).astype(’float32’) #Converting X from an array

to a

#tensor as the MLP built

using #Keras takes a

tensor as input.

Reading the testing data into a dataframe and dividing it into

input matrix # X_test and label matrix y_test.

dataframe_test =

pd.read_csv(’/content/Full_Test.xls’) array1 =

dataframe_test.values

x1_test = array1[:,0:38]

x2_test =

49

array1[:,39:40] y_test =

array1[:,38:39]

X_test = np.concatenate((x1_test, x2_test),

axis=1) X_tensor_test =

np.asarray(X_test).astype(’float32’)

Function to build the MLP with 23

layers. def build_nn():

mlp = Sequential()

mlp.add(Dense(39, kernel_initializer=‘he_uniform’,

activation=‘relu’)) mlp.add(Dense(39,

kernel_initializer=‘he_uniform’, activation=‘relu’))

mlp.add(Dense(39, kernel_initializer=‘he_uniform’,

activation=‘relu’)) mlp.add(Dense(39,

kernel_initializer=‘he_uniform’, activation=‘relu’))

mlp.add(Dense(39, kernel_initializer=‘he_uniform’,

activation=‘relu’)) mlp.add(Dense(39,

kernel_initializer=‘he_uniform’, activation=‘relu’))

mlp.add(Dense(39, kernel_initializer=‘he_uniform’,

activation=‘relu’)) mlp.add(Dense(39,

kernel_initializer=‘he_uniform’, activation=‘relu’))

mlp.add(Dense(39, kernel_initializer=‘he_uniform’,

activation=‘relu’)) mlp.add(Dense(39,

kernel_initializer=‘he_uniform’, activation=‘relu’))

50

mlp.add(Dense(39, kernel_initializer=‘he_uniform’,

activation=‘relu’)) mlp.add(Dense(39,

kernel_initializer=‘he_uniform’, activation=‘relu’))

mlp.add(Dense(39, kernel_initializer=‘he_uniform’,

activation=‘relu’)) mlp.add(Dense(39,

kernel_initializer=‘he_uniform’, activation=‘relu’))

mlp.add(Dense(39, kernel_initializer=‘he_uniform’,

activation=‘relu’)) mlp.add(Dense(39,

kernel_initializer=‘he_uniform’, activation=‘relu’))

mlp.add(Dense(39, kernel_initializer=‘he_uniform’,

activation=‘relu’)) mlp.add(Dense(39,

kernel_initializer=‘he_uniform’, activation=‘relu’))

mlp.add(Dense(39, kernel_initializer=‘he_uniform’,

activation=‘relu’))

mlp.add(Dense(39, kernel_initializer=‘he_uniform’,

activation=‘relu’)) mlp.add(Dense(39,

kernel_initializer=‘he_uniform’, activation=‘relu’))

mlp.add(Dense(5,

activation=‘sigmoid’))‘ mlp.compile(loss=‘categorical_crossentro

py’, optimizer=‘adam’)

return mlp

51

Scikit-learn wrapper for the MLP so that it can be used

with the # voting classifier built using sklearn.

model1 = tf.keras.wrappers.scikit_learn.KerasClassifier(build_nn,

epochs=50,

verbose=False)

model1._estimator_type = "classifier"

model2 = DecisionTreeClassifier() # Creating the J48

decision tree. classifiers = []

classifiers.append((’mlp’,

model1))

classifiers.append((’j48’,

model2))

Creating the voting ensemble.

voting =

VotingClassifier(estimators

=classifiers, voting=’soft’,

flatten_transform=True)

Training the voting

ensemble startTime =

time.time()

52

voting.fit(X_tensor, y)

stopTime = time.time()

print(f"Training time: {stopTime - startTime}s")

Testing the voting ensemble and printing the confusion matrix

start = time.time()

y_pred_voting =

voting.predict(X_tensor_test) stop =

time.time()

confusion_matrix(y_test, y_pred_voting, labels=["normal", "dos",

"probe",

"r2l", "u2r"])

print(f"Testing time: {stop - start}s")

Calculating the classification time per

instance. testing_times = []

detection_tim

es = [] for i in

range(10):

start = time.time()

53

y_pred_voting =

voting.predict(X_tensor_test) stop =

time.time()

testing_time = stop - start

detection_time = testing_time / 29703 *

1000 * 1000

testing_times.append(testing_time)

detection_times.append(detection_time)

Printing the mean and standard deviation of classification times.

avg_detection_time = statistics.mean(detection_times)

std_dev = statistics.stdev(detection_times)

print(f"Average detection time = {avg_detection_time}

microseconds") print(f"Standard deviation = {std_dev}

microseconds")

