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ABSTRACT 

The SPECT-CT machines manufactured by Siemens consists of two heavy detector 

heads(~1500lbs each) that are moved into various configurations for radionuclide imaging. These 

detectors are driven by large torque powered by motors in the gantry that enable linear and 

rotational motion. If the detectors collide with large objects – stools, tables, patient extremities, 

etc. – they are very likely to damage the objects and get damaged as well. This research work 

proposes an intelligent real-time object detection system to prevent collisions between detector 

heads and external objects in the path of the detector’s motion by implementing an end-to-end 

deep learning object detector. The research extensively documents all the work done in identifying 

the most suitable object detection framework for this use case, collecting, and processing the image 

dataset of target objects, training the deep neural net to detect target objects, deploying the trained 

deep neural net in live demos by implementing a real-time object detection application written in 

Python, improving the model’s performance, and finally investigating methods to stop detector 

motion upon detecting external objects in the collision region. We successfully demonstrated that 

a Caffe version of MobileNet-SSD can be trained and deployed to detect target objects entering the 

collision region in real-time by following the methodologies outlined in this paper. We then laid 

out the future work that must be done in order to bring this system into production, such as training 

the model to detect all possible objects that may be found in the collision region, controlling the 

activation of the RTOD application, and efficiently stopping the detector motion. 
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 INTRODUCTION 

The absence of a collision detection and prevention system around the detectors of the 

SPECT-CT machine has led to many collision-related accidents in the research bays, production 

floors, and scanning rooms. This project lays the groundwork for an intelligent collision prevention 

system by leveraging deep learning frameworks for computer vision to detect objects in the path 

of the detector’s motion in real-time. Significant advancements have been made in object detection 

technology in the past decade thanks to numerous breakthroughs in Deep Neural Nets, made 

possible by large datasets and powerful computers. These breakthroughs have enabled widespread 

use of AI-powered computer vision in medical imaging, security and surveillance, automotive 

industry, robotics, and various other applications. However, research on collision detection is still 

in its early stages and the implementation methodologies can vary a lot from one use case to 

another. This project tackles the challenges involved with this unique case of collision prevention. 

Figure 1.1 below shows a standard SPECT-CT machine found in the prototype bay, where 

research and development of the machine takes place. There are two detector heads in each 

machine, the bottom one is not visible in this picture as it is behind the patient bed. The detectors 

move into the space in front of the gantry on either side for various scan configurations, and that 

is the region where an object can collide with the detector heads. The detection mechanism is 

physically implemented by having two cameras monitor the region of potential collision on either 

side from a fixed diagonal angle and height, where 75-80% of the video frame consists of the 

region of collision, which covers the full range of detector motion. The live video feed in the 

camera is launched from an RTOD application, which uses a trained deep learning model and an 

object detection framework to detect external objects entering the region of collision in real time. 

Once an object is detected, a stop signal is triggered to halt detector motion. The implementation 

of this system follows five chronological stages: 

1) Collecting, Preparing, and Processing Image Dataset 

2) Training Deep Learning model with Image Data 

3) Running Real-Time Object Detection Application 

4) Optimizing Deep Learning Model to Improve Performance 

5) Stopping Detector Motion when Object is Detected in Path of Collision 
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Before diving into the research work and findings in each stage, a choice had to be made on 

which objection detection framework was best suited for this use case. The next section discusses 

all the deep learning object detection frameworks that were explored in order to make this choice.    

 

 

Figure 1.1. Frontal view of a SPECT-CT machine in a prototype bay with the detector head., gantry,  and 

patient bed labelled.  
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 DEEP LEARNING OBJECT DETECTORS 

Object Detection can be performed with Deep Learning or other Computer Vision 

techniques. However, both approaches build on image classification and seek to localize the exact 

locations of objects within an image. When performing standard image classification, an input 

image is fed into the neural network to obtain a single class label, possibly with the probability 

score for the predicted label. This prediction is made for a single object in the entire image. When 

performing object detection, given an input image, we wish to obtain: 

- A set of bounding boxes, or (x,y)-coordinates, locating each object in the image. 

- The class labels predicted for each bounding box. 

- The confidence score for each bounding box, which is the probability that the predicted 

object is within the bounding box. 

 

The difference between image classification and object detection is illustrated in figure 2.  

 

 

Figure 2.1. Image Classification vs. Object Detection [1]. 

 

Given a Convolutional Neural Network that has been trained to classify target objects in 

an image, object detection methods that do not use end-to-end deep learning utilize sliding 

windows in conjunction with image pyramids to locate objects. The sliding window slides from 

left-to-right and top-to-bottom to localize objects in different locations and the image pyramid 

detects the target objects at varying scales, as depicted in figure 2.2. 
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Figure 2.2. Left picture depicts Sliding Windows, right picture depicts Image Pyramids [2]. 

 

 The problem with this traditional approach is that it is generally slow and a bit error prone. 

This method would not work for a real-time collision prevention system as a collision is very likely 

to occur by the time an object is detected. Therefore, implementing an end-to-end deep learning 

method was the best choice for this project. In this method, the pre-trained image classification 

network is fitted in as a base network within a deep learning object detection framework – the 

two core components of a deep learning object detector. The next step was to select a deep learning 

object detection framework that is best suited for this project. There are three well-established 

object detection frameworks – Faster RCNN [3], You Only Look Once (YOLO) [4], and Single-

shot Detection (SSD) [5]. To decide which model is the most suitable choice, the features and 

detection results of each framework is explored without diving deep into the architectures. 

2.1 Comparing Faster R-CNN, SSD, and YOLO 

Faster R-CNN was first published in 2015, and it is the third and latest version of the  

R-CNN family [3]. It utilizes Region Proposal Networks (RPN) followed by Region of Interest 

(ROI) pooling to generate bounding boxes, then followed by feature extraction of objects within 

the boxes using a CNN, and finally a classification layer to predict which class the object belongs 

to. Although Faster R-CNN achieved state of the art accuracy, the whole process runs at a speed 

between 5 and 7 frames per second, making it unsuitable for real-time detection. YOLO, which 

has a similar architecture to Faster R-CNN, uses k-means clustering strategy on the training dataset 
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to determine suitable anchor box sizes [4]. However, it is much faster than R-CNN with a speed 

of 45 frames per second and it also makes less background errors compared to Faster R-CNN. Due 

to the high speed of YOLO, it is quite popular in real-time object detection tasks in computer 

vision. However, YOLO’s main weakness is that it leaves much accuracy to be desired, with 

relatively low recall and high localization error compared to Faster R-CNN. It also struggles to 

detect close objects and small objects. SSD, originally developed by Google researchers in 2016 

[5], consists of the following key features: 

- Single Shot: the tasks of object localization and classification are done in a single 

forward pass of the network. 

- MultiBox: name of the technique used for bounding box regression developed by 

Szegedy et al. 

- Detector: To indicate that the network is an object detector which also classifies the 

objects detected. 

 

SSD uses VGG-16, an image classification network, as the base model because of its strong 

performance in high quality image classification tasks as well as its utility in transfer learning, 

which is discussed later. It builds on the VGG-16 architecture by removing the fully connected 

layers and adding a set of auxiliary convolutional layers, as depicted in figure 2.2 below. 

 

 

 

Figure 2.3 . Architecture of Single Shot Multibox Dectector (input is 300x300x3) [5]. 
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SSD achieves accuracies that are similar, and in some cases even better, than Faster R-

CNN while speeding up the detection process by eliminating RPN’s and using low resolution 

images. SSD therefore provides a great balance between Faster R-CNN and YOLO with its high, 

real-time compatible speed and high detection accuracies, making it the obvious choice for this 

project. There are two models of SSD – SSD 300 and SSD512. SSD300 fixes input size to 300x300 

and SSD512 fixes input size to 512x512. SSD300 uses lower resolution images to achieve faster 

processing speeds, but it is less accurate than SSD512. The table below compares the results of the 

three architectures on the Pascal VOC2007, an image dataset for object class recognition. 

Accuracy is measured in mAP(mean average precision), which is the most reliable evaluation 

metric in object recognition tasks, and speed is measured in FPS(frames per second) for a batch 

size of 1. 

 

Table 2.1. Results of Faster R-CNN, YOLO, SSD300, and SSD512 on Pascal VOC2007 dataset. All 

methods used a batch size of 1. 

Framework mAP FPS No. of Boxes 
Input 

Resolution 

Faster R-CNN 

(VGG16) 

73.2 7 ~ 6000 ~ 1000x600 

YOLO (VGG16) 66.4 21 98 448x448 

SSD300 74.3 46 8732 300x300 

SSD512 76.8 19 24564 512x512 

 

2.2 MobileNet SSD 

As discussed in the previous section, SSD300 would be the most suitable choice for this 

project due its high processing speed, high mAP, and low resolution of input images. Most 

commercially available USB cameras would be compatible with real-time detection speeds of 

30-45 FPS, making it an economic option as well. We then had to choose the most suitable 

image classification network that would fit in as the base network given the needs and 

constraints of this project. VGGNet, ResNet, MobileNet, and AlexNet are among the most 

reliable CNN architectures that have performed very well on large image datasets, such as 

ImageNet. Although SSD300 was originally built using VGGNet, this base model has a large 
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network size which requires a high number of computations. The same applies for ResNet and 

AlexNet, with sizes ranging from 200 to 500 MB. MobileNet is a lightweight network 

architecture designed by Google researchers [6] for resource constrained devices, such as 

smartphones and Raspberry Pi. It has a simple architecture consisting of a 3x3 depthwise 

convolution followed by a 1x1 pointwise convolution as illustrated in figure 2.4, making it 

much lighter compared to its counterparts. This does come at the cost of lower accuracy than 

the heavier architectures. However, when the MobileNet architecture is combined with the 

SSD framework, we arrive at a fast, efficient deep-learning method for object detection. A 

MobileNet-SSD model that was first trained on the COCO dataset to detect 20 common objects 

and then fine-tuned on the Pascal VOC dataset reached a record high mAP of 72.7%. Thus, 

MobileNet-SSD stood out as the most suitable choice for indoor object detection. The next 

section discusses the work done to collect and process the image dataset for this project. 

 

 

Figure 2.4. Left: Standard convolutional layer with batchnorm and ReLU. Right: depthwise separable 

convolutions with depthwise and pointwise layers followed by batchnorm and ReLU. [6]. 
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 COLLECTING, PREPARING, AND PROCESSING IMAGE DATASET 

The quality of results produced by Deep Learning methods is highly dependent on the 

quality of data that is fed as input. This is well described by the phrase ‘Garbage In, Garbage 

Out’, which is often used among machine learning practitioners to emphasize the importance of 

good quality data. Even the best performing machine learning architectures will produce 

inaccurate, incomplete, and incoherent results if the input data is not properly standardized and 

processed according to the needs of the pertinent use case. This section discusses the work done 

to collect, prepare, and process images for this particular use case. 

3.1 Collecting and Preparing Image Dataset 

For our use case, we need to ensure that the detectors are not misclassified during motion 

when there are no external objects present in the collision region, thereby causing an unintended 

stop. To prevent such misclassifications, the object detector must be trained to detect various 

angles and configurations of the SPECT detectors with high accuracies from the camera’s 

viewpoint. To do this, an object detection framework requires several pictures of various detector 

configurations as viewed by the cameras on either side. However, we need not ensure high 

detection accuracies for external objects entering the collision region since false classifications 

will also stop detector motion. For example, if a tray table in the path of collision is misclassified 

as a chair, it will still halt detector motion as all objects that are not detectors trigger the 

stop. Nonetheless, the object detector should be trained to detect a wide variety of common objects 

that may be present around the detectors – even for generating misclassifications.  

Collecting reliable data for image classification takes a lot of time and effort. While image 

datasets for common objects are available on the internet, images of uncommon objects, such as 

SPECT detectors, must be manually taken and processed. As a rule of thumb, it is widely 

recommended to keep at least 1000 images per class for deep learning image classification. Due 

to the limitations of conducting a solo project, two external objects were selected for testing the 

efficacy of MobileNet-SSD in our use case – People and Collimator Carts.  These are the two most 

common objects found near the SPECT detectors, and therefore the most likely to collide with it. 

If we get the desired object detection results in real-time, the same methodologies can be applied 
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to include other objects in the future. The following sections discuss the methods used to collect 

images and ensure that the training data for all three object classes are well optimized for our use 

case.   

3.1.1 SPECT Detector Images 

The rule of thumb of having at least 1000 images per class was derived from the results of 

the ImageNet challenge, where classifiers like AlexNet was successfully trained to classify 1000 

classes with high accuracies by using a dataset consisting around 1000 images per class (most 

classes had around seven or eight hundred). Since we are training MobileNet to correctly classify 

only 3 classes, it follows that a smaller fraction of the number needed to train 1000 classes should 

prove to be sufficient. We can further reduce the number of images needed for robust training by 

using a method known as transfer learning. Indeed, we will be using this method as discussed later. 

It is also important to note that training deep learning networks is a highly iterative process, where 

all the variables that can affect the results need to be adjusted with every iteration to obtain better 

results. Therefore, there is no formula to pre-determine the ideal settings for a variable without 

testing it. The amount of training data used per class is another such variable, for which we take a 

‘best guess’ estimate on a good starting point and iteratively improve upon it.  

After taking these factors into consideration, 300-400 images of SPECT detectors were 

deemed as a good starting point. The dataset had to include images of all the common detector 

configurations for various scans, as well as mid-motion images of the detector heads as they move 

into a specific configuration. This is illustrated in figure 3.1, where images of the detector were 

taken as they moved from the home position to CT scan position as viewed by the fixed camera 

positions on either side. The same method was followed for five of the other configurations, with 

ten photos of each configuration per side. 60 photos of various detector configurations and 40 mid-

motion photos were taken from each side, summing up to 200 images of the detector heads without 

any external objects present. To robustly detect collision scenarios, rest of the detector images 

were taken with the object of interest, the collimator cart, present in the path of collision. Therefore, 

180 pictures of the various detector configurations were taken with the collimator cart present in 

the path of collision, bringing the total number of detector images to 380. The SPECT/CT machine 

used for this project is a Symbia T series model located in a prototype bay. Although other models 

look very similar to this, they can come in different colors and sizes. If the data collection methods 
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used for this prototype proves to be successful, the same methods can be applied to train a deep 

learning network to detect detector heads in all the other models and colors. 

 

 

Figure 3.1. Photos of Detector Heads were taken in Home position, CT scan position, and mid-motion 

while moving to CT scan position from both sides. 

3.1.2 Person Images 

The PASCAL VOC datasets [7] contain more than 10,000 images of 20 object classes in 

everyday scenes, including people. The images have been standardized and annotated for object 

recognition training, thus saving a lot of pre-processing time. Furthermore, a MobileNet-SSD 

model that reached a mAP of 72.7% after 73,000 iterations of training on the VOC0712 dataset 

was made available for users. Pre-trained models enable the utilization of transfer learning, which 

is a highly effective optimization method in machine learning for accelerating the training and 

improving the performance of a neural network model. It is essentially a technique that allows us 

to bypass the time, effort, and computational resources needed for training a model from scratch 
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on a very large dataset. The curve in figure 3.2 depicts the three ways in which transfer learning 

can improve training performance and inference results: 

i) Higher start: The learned parameters from the original model start training of a new 

model from a higher skill-level. 

ii) Higher slope: The rate of skill improvement is higher than it is for the original 

model trained from scratch. 

iii) Higher asymptote: The converged skill of the new model is better than the original 

model. 

 

 

Figure 3.2. Three ways in which transfer learning improves performance. [8] 

 

In deep learning, learning can be transferred by passing in the weights of a pre-trained 

model as a starting point for training a new model. Implementing transfer learning as a weight 

initialization scheme is especially useful for object recognition problems where other models have 

been trained to detect some or all target classes. However, the datasets used in the pretrained model 

and the new model must be of a similar domain to reap the benefits of transfer learning. For 

example, weights of a model trained to recognize indoor objects will not transfer well to a model 

being trained on images of CT scans and satellite photos. Since our target classes and the VOC 

classes are all indoor objects, we will not run into this problem. By initializing weights that have 

been pre-trained to detect the ‘person’ class, we do not need to feed the new model with all the 
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original images of people used for training the pre-trained model. Due to all these reasons, the 

VOC2007 dataset was the ideal source for gathering people images for this use case. 

Although it is possible to train a new model well using as few as 20-30 images of a 

transferred class, 100 was determined as a prudent starting number for people images. Since the 

deployed model will be seeing an indoor setting with no more than 2-3 people in the frame, 100 

indoor images with 1-3 people were selected from the VOC2007 dataset. Although it is ideal to 

include images of people standing in the collision region for our use case, doing so was not 

tractable during this research. 

3.1.3 Collimator Cart Images 

The SPECT collimator is a thick, specialized sheet that is fixed on the detector heads for 

capturing radiation from a patient’s target area. There are different types of collimators, and each 

type is designed for a specific type of scan. This means that collimators on the detector heads may 

need to be replaced if a scan being performed requires collimators of another type. The collimator 

cart is a rolling cart which has four drawers, and each drawer holds a specific type of collimator. 

When collimators on the detector heads need to be replaced with ones in the cart, the collimator 

cart is rolled into a docking slot fixed underneath the patient bed and the desired collimator pair is 

placed into the integrated drawers from the cart’s drawer before being placed on the detectors. 

Therefore, collimator carts are usually kept close to SPECT/CT machines, posing a potential 

collision risk. These carts come in one design whereas people and detectors come in various 

shapes, colors, and orientations. This means that we can obtain good detection results for 

collimator carts by using fewer images compared to people or detectors. Keeping this in mind, 

200-250 images were deemed as a good starting number for collimator carts. 60 cart pictures were 

taken from various angles with no other target objects present, while 180 cart pictures were taken 

in collision scenarios alongside the detectors, totaling to 240 pictures with collimator carts in it. 

Figure 3.3 shows a ‘collimator cart only’ picture versus a ‘collimator cart in collision scenario’ 

picture from the dataset, and table 3.1 shows the final image count of images in our dataset. 
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Figure 3.3. Left: Collimator Cart only. Right: Collimator Cart in collision region alongside detectors. 

 

Table 3.1. Image Count Breakdown 

Objects 
Detectors 

only 

Carts 

only 
Detectors + 

Carts 
People 

Total 

Detector 

Images 

Total 

Cart 

Images 

Overall 

Total 

Image 

Count 
200 60 180 100 380 240 540 

 

3.2 Processing Image Dataset 

Once the image data set was collected, the next step was to annotate the images. Annotation 

is essentially the process of adding metadata to the dataset by tagging the data with target classes. 

This allows supervised machine learning models to compute errors due to differences in 

predictions and the ‘true’ labels read from the tagged metadata. Therefore, these labels help 

machine learning models recognize pixels within the annotated area as a distinct type of object. 

Drawing ‘bounding boxes’ around target objects in images, also known as ‘ground truth’ labels, 

is a common annotation technique for image datasets, and it is also used in MobileNet-SSD. For 

real-time videos, deep learning object detectors process video streams on a frame-by-frame basis 

where each frame is an image for which predictions are generated in the form of bounding boxes. 

Image annotation is a very time-consuming process as all target classes present in each image in 
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the dataset must be labeled. The people images taken from the VOC2007 dataset came with 

annotations but the remaining 440 images in our dataset had to be labelled manually. This was 

done using labelImg [16], an image annotation tool written in Python. Figure 3.4 depicts the 

process of labelling an image within the tool and the XML file generated for the labelled image. 

Just like the people annotations, XML files for all the images were saved in the PascalVOC format 

since our implementation of MobileNet-SSD parses annotations in this format. Although people 

images did not require labelling, objects that are not included as targets had to be omitted from the 

annotations. This was done by simply removing all object tags that were not ‘person’ from the xml 

files. 

 

Figure 3.4. Left: Annotating a picture of a collision scenario in labelImg by drawing a blue bounding box 

around the detector and a green bounding box around the collimator cart. Right: Annotation of the image 

as an xml file, which includes heights and widths of each object’s bounding box in pixels. 

  

Normalizing data is the final stage of pre-processing input data prior to feeding it to a deep 

neural network. Normalization methods assign a common mean and unit variance to all input data 

samples, thereby normalizing all inputs to a standard scale. This allows learning algorithms to 

converge to optimal parameters more quickly. Luckily, the framework being implemented auto-

normalizes all input images after re-scaling each image to 300x300 pixels. The framework also 

implements batch normalization, where input to each layer in the network is also normalized.  
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 TRAINING AND DEPLOYING MOBILENET-SSD MODEL FOR 

FIRST DEMO 

4.1 Caffe SSD 

   A Caffe [9] version of the original TensorFlow implementation of MobileNet-SSD was 

used for this project. Caffe is an open-source deep learning framework developed by Berkeley AI 

Research (BAIR) that offers several advantages with training deep neural networks, such as: 

- Network architectures defined as human-readable plaintext schema in the form of 

‘prototxt’ files [A.1], making network alterations much easier. 

- Caffe is very fast at processing image data, reaching a speed of 60 million images per 

day with a single Nvidia K40 GPU.  

- Hyperparameters and optimization methods can be tuned easily from “solver” text files 

[A.2] as well as from “prototxt” files. 

- Switching between CPU and GPU mode by setting a single flag. 

 

These features make the process of training a deep neural network very fast and convenient. 

Furthermore, some users have successfully implemented the Caffe version of MobileNet-SSD on 

image datasets of common objects, reaching high mAP values, and shared their pre-trained models 

online as downloadable ‘caffemodel’ files. By using the Caffe implementation, these pre-trained 

models can be leveraged to greatly speed up and optimize training. As mentioned in section 3.1.2, 

a caffemodel trained by GitHub user chuanqi305 [10] reached a mAP of 72.7% after 73,000 

training iterations on the COCO dataset followed by finetuning on the PascalVOC dataset. The 

network was initialized with weights from this pre-trained caffemodel to reap the benefits of 

transfer learning. Since Caffe and many of its dependencies are only compatible with Linux, it was 

installed on an Ubuntu 20.04 machine after all its dependencies for GPU mode was installed and 

configured. This paper will not go over details on installing and configuring Caffe, however, it is 

important to note that the SSD version of the original Caffe repository was installed from source 

in order to implement MobileNet SSD. Wei Liu, author of the SSD paper, forked the main Caffe 

branch and made the requisite modifications to support SSD. Once Caffe and MobileNet-SSD 

were correctly installed and configured for GPU training, three additional steps were taken to 

prepare the image dataset for training: 
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i) The ‘labelmap.prototxt file’ within MobileNet SSD was modified to detect the three 

target classes: detector, person, and cart. 

ii) The image data was split into training and testing sets with 80% of images set aside for 

training and validation, and 20% set aside for testing. 

iii) The train and test sets were converted to LMDB format, which is one of the two formats 

in which Caffe reads input data.  

4.2 Choosing Hyperparameters for Initial Training Run 

In neural networks, hyperparameters comprise of all the adjustable variables that influence 

the learned parameters during supervised training. The learned parameters, which consist of the 

entire set of weights and biases for each unit(neuron) in the network, are ultimately responsible for 

generating predictions on unseen data. The hyperparameters that can influence training results can 

be categorized into two groups – ones related to network architecture and ones related to training. 

Network-related hyperparameters include number of hidden layers, number of units in each hidden 

layer, choice of activation functions etc., and training-related hyperparameters include number of 

iterations, learning rate, batch size, gradient descent optimization method, and many more. With 

so many hyperparameters that can affect results, it is impossible to know which set of 

hyperparameters will produce optimum results without iterating on different combinations. Thus, 

applied Deep Learning is a very empirical process where the choice of hyperparameters need to 

be adjusted iteratively until we approach optimum results. However, it is very important to start 

with a set of hyperparameters that serve as a good baseline for improvement. Although methods 

for choosing hyperparameters is still an active area of research among the deep learning 

community, there are various methods for selecting an initial set of hyperparameters that have 

proven to work very well for computer vision. Since MobileNet-SSD’s network architecture is 

already well designed for detecting common objects, this paper focuses on tuning hyperparameters 

that are specific to training. In this this section, the initial selection of key hyperparameters for 

training our model is explained. 
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4.2.1 Base Learning Rate 

Given a neural network structure that is well suited for a learning task, the learning rate is 

often the most important hyperparameter when configuring the training process. The parameters 

within a neural network consist of weights and biases, and the learning process by which the 

network converges towards optimal parameters is known as Gradient Descent. In each step of 

gradient descent, weights and biases for each unit is updated to minimize the Cost Function, which 

computes the sum of losses for each prediction based on the differences between predicted values 

and true values. Moving in the direction of the steepest descent, as defined by the negative gradient 

of the cost function with respect to weights and biases, minimizes the cost, thereby increasing the 

accuracy of predictions. The learning rate determines the size of step towards this downward 

direction for each update. The basic equations for updating weight and bias for a given unit in each 

updating step is as follows: 

 

𝑤 ∶=  𝑤 −  𝛼
𝑑𝐽(𝑤,𝑏)

𝑑𝑤
  ,  𝑏 ∶=  𝑏 −  𝛼

𝑑𝐽(𝑤,𝑏)

𝑑𝑏
 (4.1) 

 

In equation 4.1, w is weight, b is bias, α is learning rate, and J(w,b) is the cost function. A 

value of α that is too small may result in very long training periods without ever converging near 

a satisfactory minimum of J(w,b), whereas a value too large may result in overshooting the 

minimum to end up with a sub-optimal set of parameters. This can be visualized using 2D plots 

of loss functions as shown in figure 4.1, where θ represents a set of parameters in the x-axis, loss 

is represented in the y-axis, and each arrow in the loss function J(θ) represents an updating step. 
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Figure 4.1. Left: α is too small, resulting in too many steps to converge near minimum. Right: α is too 

large, resulting in overshooting the minimum. 

 The base learning rate is the initial value of α for training a network. As the algorithm 

approaches a minimum, the learning rate can be reduced to ensure that smaller steps are taken in 

an attempt to end up as close to the minimum as possible. For training deep learning object 

detection networks from scratch, base learning rates are typically in the range of 0.01 – 0.001. 

Once the low-level features have been learned, the learning rate is dropped in order to fine-tune 

the weights for learning more nuanced, higher-level features. Since we are initializing weights 

from a pre-trained model, many of the generic, low-level features for classifying objects have 

already been learned. This means that we can bypass the initial phase of training and start from the 

fine-tuning phase, where a lower base learning rate is used. Therefore, a base learning rate of 0.001 

was used for the first training run. 

4.2.2 Learning Rate Policy 

As explained earlier, it is often useful to reduce, or ‘decay’, learning rate as the training 

progresses. This can either be done manually, by stopping training at self-determined points, or by 

using pre-defined scheduling policies. In most cases, it is practically unfeasible to constantly 

monitor training progress and manually pause training to change the learning rate. Therefore, 

learning rate schedules, also known as learning rate policy, are often used in practice. In Caffe, 

the following learning rate decaying policies are available for use: 
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- Fixed: always return base_lr. 

- Step: return base_lr * gamma ^ (floor(iter / step)) 

- Exponential: return base_lr * gamma ^ iter 

- Inverse: return base_lr * (1 + gamma * iter) ^ (- power) 

- Multistep: similar to step but it allows non uniform steps defined by stepvalue 

- Poly: the effective learning rate follows a polynomial decay, to be zero by the max_iter. 

return base_lr (1 - iter/max_iter) ^ (power). 

- Sigmoid: The effective learning rate follows a sigmoid decay return base_lr ( 1/(1 + 

exp(-gamma * (iter - stepsize)))) 

 

In these decay equations, ‘base_lr’ is the base learning rate, ‘iter’ is the current iteration, 

and ‘max_iter’ is the maximum number of iterations. Values for gamma, step, stepvalues, and 

power can be varied from the solver file to get desired results. The learning rate policy selected for 

the first run was ‘multistep’, with gamma set to 0.5 so that the learning rate is halved at the 

stepvalues. The stepvalues were set to 20,000 iterations and 40,000 iterations, so that the learning 

rate is halved at those intervals with maximum number of iterations set to 50,000. Prior to the very 

first training run, it is not possible to know the range of iterations where parameters will be 

approaching a minimum. Therefore, the stepvalues were selected arbitrarily and kept equidistant 

from each other. The minimum is usually found in the range where training loss plateaus before it 

starts to increase. The range for a potential minimum can therefore be identified after monitoring 

training loss in the first run, and stepvalues can then be adjusted accordingly in later runs. 

4.2.3 Batch Size 

Batch size is the number of training examples passed through the network for each step of 

gradient descent. Batch sizes for gradient descent can be configured in three ways: 

i) Batch Gradient Descent (BGD) – Batch size is set to the total number of examples 

in the training set. 

ii) Stochastic Gradient Descent (SGD) – Batch size is set to one. 

iii) Minibatch Gradient Descent (MGD) – Batch size is set to more than one but less 

than the total number of training examples in the training set. 
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Since forward and backward computations are performed on each sample for every 

updating step, training time increases with batch size. However, using more examples lead to a 

more accurate estimation of the direction towards the minimum of the error gradient. Conversely, 

using fewer examples lead to faster training times at the cost of less accurate, ‘noisier’ steps down 

the error gradient. Consequently, parameter updates are noisiest for SGD as shown in figure 4.2, 

and the noise in updates decrease as batch size increases. Due to this tradeoff between speed and 

accuracy of updates, the convergence of the learning process can be very sensitive to batch size.  

 

 

Figure 4.2. Updates in Batch vs Mini-batch vs Stochastic Gradient Descent [11]. 

  

When using large datasets, BGD is not a viable option due to restrictions in time and 

computational memory. On the other hand, SGD may require too many steps to converge near a 

minimum due to very noisy updates. Therefore, MGD is the most optimal choice for most deep 

learning tasks as it provides a balance between the two extremes. Batch size is typically chosen 

between 1 and a few hundreds, and for datasets with more than 1000 examples, 32 is a good default 

value [12]. Since our dataset contains 540 images with 432 used for training, batch size for the 

first training run was set to 12. Thus, one epoch will be reached in 36 iterations, and with maximum 

number of iterations set to 50,000, 1388 epochs will be reached after training ends.  

4.2.4 Optimization Algorithm 

As explained in the previous section, using minibatch results in ‘noisy’ steps where the 

estimated gradient descent step is directed away from the minimum of the cost function. Although 

the noise can help with generalizing the model to make correct predictions on unseen test samples, 

having too much noise over many steps rapidly slows down convergence towards a minimum. 

This is because the number of steps taken to approach the minimum increases a lot when too many 
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steps significantly diverge away from the direction of the minimum. Gradient-based optimization 

algorithms speed up the convergence by ‘dampening’ out the noise so that each step ends up being 

closer to the minimum, thereby reducing the number of steps taken to approach closer to the 

minimum. The effect of using optimization algorithms is illustrated in figure 4.3 below, where the 

contours represent the error function, the red dot represents the minimum, the blue arrows 

represent gradient descent steps without using an optimization algorithm, and the orange arrows 

represent gradient descent steps when using an optimization algorithm.  

 

  

Figure 4.3. Effect of using Optimization Algorithms for Gradient Descent. 

 

 We can see in the figure that the number of steps taken to reach the same point near the 

minimum is greatly reduced when using a gradient-based optimization algorithm. Caffe provides 

implementations of six different methods for gradient-based optimizations, and all these methods 

aim to speed up convergence. Elaborating on the implementation details of each method is out of 

the scope of this paper, so we will only justify the selection of the method that is used for the first 

run – RMSprop. Unlike the other methods, RMSprop automatically adjusts the learning rate and 

chooses a different learning rate for each parameter. This makes it a suitable fit for the multistep 

learning rate decay policy used in the first training run. 

 

The key hyperparameter settings for the first training run can be summarized as follows: 

- Base Learning Rate: 0.001 

- Learning Rate Policy: Multistep. Stepvalue 1 = 20,000 iterations, Stepvalue 2 = 40,000 

iterations. 

- Minibatch Size: 12 

- Optimization Algorithm: RMSprop.  
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4.3 Results of First Training Run 

4.3.1 MobileNet-SSD training 

Once the training hyperparameters were configured, weights from the caffemodel that was  

pretrained for 73,000 iterations were transferred to the network for the first training run. To 

monitor training progress, the iteration number, training loss, and testing loss is printed to the 

terminal in regular intervals, as shown in figure 4.4. 

  

 

Figure 4.4. Training log printed on terminal window every 10 iterations. 

 

We can see from the figure that the interval for printing training loss was set to 10 iterations 

and the interval for printing test accuracy, measured in mAP, was set to 1000 intervals. Trained 

weights were being saved as caffemodel files in the ‘snapshot’ folder after every 1000 iterations. 

Once training was complete after 50,000 iterations, we went over the test mAP values at every 

1000 iterations to identify the three caffemodels with the highest mAP values. These were the 

models trained for 16000, 20000, and 26000 iterations. The next step was to deploy these models 

in a real-time video stream of the collision region by launching the Real-Time Object Detection 

(RTOD) application. 
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4.3.2 Real-time Object Detection Application Demo 

The Real-Time Object Detection (RTOD) application, real_time_object_detection.py, 

along with the three caffemodels and their deployment prototxt files were moved into a folder for 

the demo. The RTOD python script, originally taken from pyimagesearch [13] and altered for this 

use case, imports various OpenCV libraries for accessing the camera,  deploying a pre-trained deep 

neural network within a live video stream, and displaying customized bounding boxes of detected 

objects. The fully commented code of the application can be found in Appendix B [B.1]. The script 

is launched from the terminal window, and it takes two mandatory arguments – the pre-trained 

caffemodel file being deployed, the deployment prototxt file defining the network. For example, 

the command for running the script with the caffemodel trained for 20000 iterations can be as 

follows: “$ python3 real_time_object_detection.py --prototxt no_bn_20k.prototxt --model 

mobilenet_iter_20000.caffemodel”. The prototxt file being deployed has the prefix “no_bn” 

because the BatchNorm layers were removed. Batch normalization layers are only required for 

training and redundant for deployment purposes. The minimum confidence threshold for detecting 

objects were set to 30% in the code, meaning any bounding boxes with a lower confidence score 

will not be detected. For the demos, each of the three caffemodels were separately deployed from 

the application and the results were evaluated. 

A Logitech C270 720p Webcam was used to monitor the collision regions for the demos. 

With a throughput of 30fps, the webcam is highly compatible with MobileNet-SSD’s detection 

frame rate. Once the camera was fixed in the correct position looking into the collision region from 

one side, the RTOD application was launched for the three caffemodels in three separate scenarios: 

1) Only the detectors are present as the gantry rotates. 

2) A cart is pushed into the region of collision. 

3) A person walks into the region of collision. 

 

After testing all three caffemodels by running multiple demos per model, the one trained 

for 16000 iterations produced the best results. The demos were screen recorded and the links to 

the demos have been attached in Appendix C1. 
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Figure 4.5. RTOD demo with no objects entering collision region. 

 

 

 
Figure 4.6. RTOD demo with cart entering collision region. 
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Figure 4.7. RTOD demo with person entering collision region. 

4.3.3 Inferring Results of Demos 

At the time of running this demo, the issue of stopping detector motion upon detecting external 

objects was not yet resolved. To simulate a stop, the following message was printed to the terminal 

“[object] found in potential collision path, sending e-stop”. The results and corresponding 

inferences of the demos are as follows: 

1) Detectors are not being detected in some configurations while being detected with low 

confidence scores in other configurations. We can see in the ‘16k-30-detector’(16000 

iterations and default confidence of 30% being used in RTOD script) demo that the bottom 

detector is not detected while the top detector is detected with low confidence scores. As 

the gantry rotates in an anti-clockwise direction, the confidence score keeps increasing. 

This means the model is good at detecting the top of the detectors around the 45-degree 

angle, but it was not trained well enough to detect them in other configurations. These poor 

detections are primarily due to training with an insufficient number of images for every 

configuration. Only 15-20 images were used per configuration, such as Gurney mode, CT 

mode, 180 degree, and so on. However, the model should be trained with many more 

images per configuration to ensure high confidence detections at different angles. 
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Fortunately, we are not concerned with failure to detect the detectors at some angles for 

this use case. The detectors have been included only to prevent misclassifications that 

would stop the detector motion when no external objects are present. 

2) The cart and person classes are being detected almost instantaneously (within milliseconds) 

with high confidence scores as they enter the region of potential collision, as seen in the 

‘16k-30-person’ and ‘16k-30-cart’ demos. Thus, the model was successfully trained to 

detect these two classes in real-time, and the same methodologies can be applied for 

training MobileNet-SSD models to detect more objects. Again, the number of images 

required for robustly detecting an object depends on the dimensions and color patterns of 

the object. Since the dimensions and color patterns of carts are highly consistent, 240 

images from various angles proved to be enough to generate high confidence detections. 

3) The application incorrectly labels random regions with the ‘person’ class, as seen in the 

person and cart demos. This is the most concerning issue, as we do not want the model to 

unnecessarily stop motion due to incorrect detections. These misclassifications are most 

likely being caused by the model overfitting the training data due to an imbalance in the 

dataset. Weights for the person class trained for 73000 iterations were initiated in training 

whereas the detector class was trained from scratch with 380 images. This may be causing 

a biased training process where the network leans heavily towards “person” predicitons. 

Investigating and resolving this issue required a deeper dive into the methodologies behind 

improving the performance of a deep learning model, which is tackled in the next section. 
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 IMPROVING AND OPTIMIZING MODEL PERFORMANCE 

5.1 Image Augmentation 

As discussed in the previous section, the model may have been overfitted with the person 

class as evident from the misclassifications in the demos. The best strategy for counteracting this 

imbalance is training the model with more images of the detector heads, while reducing the number 

of person images. We reduced the number of person images to 50, but manually taking hundreds 

of detector images is a highly cumbersome process. Image augmentation is a very useful technique 

by which a dataset can be artificially expanded without taking pictures manually. This is done by 

altering the existing pictures of an object to create more pictures of the same object through 

transformations such as rotation, cropping, shifting, flipping, etc. The altered images also add more 

variety to the model, which can result in better generalization of unseen test data. Therefore, the 

existing pictures of the detector heads were augmented to add more images to the training data.  

The Keras deep learning neural network library provides image augmentation capabilities 

via the ImageDataGenerator class. The code that was written to implement the library on detector 

images can be found in Appendix B [B.2]. By using the ImageDataGenerator class, we applied 

random rotation, shifting, cropping, and horizontal flipping with only a few lines of code. 200 

images of the detector heads were augmented to generate 200 modified versions, bringing the total 

number of detector images to 580 and the training split to 464. Figure 5.1 shows some of the 

original images and their augmented versions side by side. 

 

 

Figure 5.1. Second from left: randomly rotated and cropped version of leftmost image. Rightmost: 

Randomly rotated and flipped version of second from right image. 
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Table 5.1. Image Count Breakdown for Optimized Training Runs 

Objects 
Detectors 

only 

Carts 

only 
Detectors + 

Carts 
People 

Total 

Detector 

Images 

Total 

Cart 

Images 

Overall 

Total 

Image 

Count 
400 60 180 50 580 240 690 

 

5.2 Regularization 

After adding more data, we can implement a technique called Regularization to prevent 

overfitting. This technique reduces the complexity of a model by shrinking weights of parameters, 

resulting in a classifier that fits more “loosely” with the training data which helps the model 

generalize better with unseen test data. Figure 5.2 illustrates the basic concept with a simple 

example where price is predicted from size. We see that using a linear classifier causes underfitting 

and using a 4th degree polynomial causes overfitting, while a 2nd degree polynomial provides just 

the “right fit”. Regularization helps prevent a model from becoming overly complex by reducing 

variance and increasing bias, thereby bringing a classifier closer to the “right fit”. 

 

 

Figure 5.2. Bias and Variance tradeoff [14]. 

  

It is important to note we need several parameters to form the non-linearities required to 

solve complex deep learning problems, unlike the figure above. So instead of eliminating 

parameters, regularization works by adding a penalty to the loss function that shrinks, or even 
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nullifies, the weights associated with “less important” parameters that do not weigh heavily on a 

specific outcome. For this use case, we are using “L2” regularization which is also known as Ridge 

Regression. The penalty term added to the loss function for this is: weight_decay*sum(w2), where 

weight decay determines how dominant the regularization term will be during gradient 

computation, and sum(w^2) is the sum of the squares of all the weights for the layer being 

computed. As a rule of thumb, the higher the number of training examples, the weaker this term 

should be, and the deeper the neural net, the higher this term should be. Since we do not have many 

training examples and we are training a very deep neural network, we increased the weight decay 

from 0.00005 in the first run to 0.001 for the upcoming runs. 

5.3 Hyperparameter Tuning 

As discussed in section 4, the key hyperparameters which dictate the performance of a deep 

learning model are learning rate, batch size, and optimization algorithm. To improve model 

performance, we need to tune these hyperparameters based on the results of the first run. After 

choosing a set of hyperparameter settings, we will train models on all these combinations in the 

upcoming runs to determine which one delivers the best results. The following sub-sections 

explain the settings chosen for these hyperparameters. 

5.3.1 Tuning Learning Rate 

For the first run, the base learning rate was set to 0.001 and it was consecutively halved at 

20,000 iterations and 40,000 iterations, with the maximum number of iterations set to 50,000. 

However, we reached the highest mAP values on the testing set between 16,000 and 26,000 

iterations, and the model trained for 16,000 iterations performed best in the live demo. This clearly 

indicates that we reach the optimal region by 20,000 iterations when setting the base learning rate 

to 0.001. Also, the longer we train beyond 26,000 iterations, the higher the chances of overfitting. 

Therefore, we will be setting the multistep values to 10,000 and 20,000 iterations, and the 

maximum number of iterations to 30,000 for this base learning rate. Halving the learning rate prior 

to 16000 iterations should result in the model approaching closer to the minimum. 

To see if we can improve convergence by starting with a higher learning rate and halving 

it after 20,000 iterations, we will also try increasing the base learning rate to 0.01 while setting the 
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multistep values to 20,000 and 30,000 iterations, and the maximum number of iterations to 40,000. 

Unlike the first training run, we will be plotting the training loss and test accuracy against number 

of iterations with the help of a python script in the upcoming runs. Based on the results of these 

plots, we can change the stepvalues to further optimize the model. 

5.3.2 Tuning Batch Size 

As discussed in 4.2.3, the batch size was set to 12 to strike a good balance between training 

speed and optimal convergence. The first training run took a very long time to finish as it was 

performed on a CPU. The upcoming runs will be performed on GPU processors, which perform 

better when batch sizes are powers of 2 [15]. Therefore, we will be trying batch sizes of 4, 8, and 

16 in the upcoming runs to see which delivers the best results. As explained earlier, we will not 

use batch sizes of 32 or more since we are using less than 1000 images in our dataset. 

5.3.3 Using Momentum and Adam Optimizer 

In 4.2.4, we justified the selection of RMSprop as our gradient descent optimizer. Although 

RMSprop dampens out oscillations that are directed away from a minimum, it does not accelerate 

the search that is directed towards a minimum. Momentum is a very effective technique that can 

be used to accomplish the latter. Momentum implements exponentially weighted averages in 

which the gradients of previous updates are weighed in during each updating step. This has the 

effect of making the updates less sensitive to points of high curvature in the loss function where 

the search could be directed significantly away from a minimum. 

Adam, or Adaptive Moment Optimization, combines both Momentum and RMSprop to 

reap the benefits of both techniques. Adam does this by incorporating both algorithms in the 

updating step, thereby impeding the search in the direction of oscillations while accelerating it in 

the direction of minima. This enables us to use a higher base learning rate and a lower maximum 

number of iterations. Although this speeds up the training process, it comes at the risk of 

converging to a sharp minimum. If the minimum is sharp, the loss is very sensitive to changes in 

parameters near the minimum. Flatter minima tend to generalize better with unseen samples than 

sharp minima [17] and for this reason, we will be implementing Momentum, Adam, and RMSprop 
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separately for each combination of hyperparameters in our upcoming runs to determine which 

optimizer delivers the best results. 

5.4 Results of Optimized Training Runs 

The table below summarizes all the combinations of hyperparameter settings that have been 

selected. The terminal output for each of these training runs will be copied to a log file, which will 

then be used to plot graphs of training and testing loss versus number of iterations. The plots will 

tell us how each combination is performing. Ideally, we want the training loss to decrease to a 

plateau  while test accuracies are above 0.75 mAP. An indication of poor performance is when the 

training loss does not decrease steadily until reaching a plateau. Based on the plots, we will shortlist 

the combinations that performed the best and deploy those models in live demos. 

 

Table 5.2. Selection of Hyperparameter Settings 

Combinations 
Base 

Learning 

Rate 

Stepvalue 1 Stepvalue 2 
Maximum 

number of 

iterations 

Batch 

Size 
Optimizer 

Combo 1 0.001 10,000 20,000 30,000 4 Momentum 

Combo 2 0.001 10,000 20,000 30,000 8 Momentum 

Combo 3 0.001 10,000 20,000 30,000 16 Momentum 

Combo 4 0.01 20,000 30,000 40,000 4 Momentum 

Combo 5 0.01 20,000 30,000 40,000 8 Momentum 

Combo 6 0.01 20,000 30,000 40,000 16 Momentum 

Combo 7 0.001 10,000 20,000 30,000 4 RMSprop 

Combo 8 0.001 10,000 20,000 30,000 8 RMSprop 

Combo 9 0.001 10,000 20,000 30,000 16 RMSprop 

Combo 10 0.01 20,000 30,000 40,000 4 RMSprop 

Combo 11 0.01 20,000 30,000 40,000 8 RMSprop 

Combo 12 0.01 20,000 30,000 40,000 16 RMSprop 

Combo 13 0.001 10,000 20,000 30,000 4 Adam 

Combo 14 0.001 10,000 20,000 30,000 8 Adam 

Combo 15 0.001 10,000 20,000 30,000 16 Adam 

Combo 16 0.01 20,000 30,000 40,000 4 Adam 

Combo 17 0.01 20,000 30,000 40,000 8 Adam 

Combo 18 0.01 20,000 30,000 40,000 16 Adam 

 

  After completing all 18 training sessions, loss plots were generated from the logs of each 

session. Upon analyzing all the plots, combo 5 and combo 15 stood out as the most promising 
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candidates. We can see in figure 5.3 that the average training loss in both plots steadily decrease 

until levelling out. The erratic spikes in the loss plots are due to noisy updates associated with 

using mini-batches, so we are only looking at the average loss represented by lines of best-fit. As 

discussed in 4.2.3, smaller mini-batch sizes result in noisier updates. Since the batch size of combo 

5 is half of that of combo 15, the loss plot has larger and more erratic spikes.  
 

 

 

Figure 5.3. Top: Loss plot for Combo 5. Bottom: Loss plot for Combo 15. The spiky red lines are training 

loss, the spiky blue lines are test accuracy, and the smooth lines represent average loss/accuracy. 

 The links to the demos recorded for both combos have been attached in Appendix C2.  
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The training loss for combo 5 reached its lowest average level between 25000 and 35000 

iterations while the training loss for combo 15 reached its lowest average level between 18000 and 

25000 iterations before it began rising. The test accuracy of combo 5 remained steady at around 

0.86 mAP while the test accuracy of combo 15 remained steady at around 0.78 mAP. When the 

training loss reaches a plateau, the risk of overfitting keeps increasing with training duration. 

Therefore, we will be deploying the caffemodels trained up till the point where training loss just 

enters the plateau and go from there. For combo 5, this is around 25000 iterations and for combo 

15, this is around 18000 iterations. 

 

Finally, both caffemodels were deployed in live demos. The screen-recorded demos are 

viewable via the links attached in Appendix C2. In both demos, we can see that the top detector 

heads were being correctly detected without any misclassifications. Thus, both caffemodels were 

successful in preventing misclassifications. However, the detections in combo 15 were more 

frequent and generally had higher confidence scores than those in combo 5. Furthermore, combo 

15 performed better than combo 5 when detecting carts and people. Therefore, the hyperparameter 

settings in combo 15 serve as a better baseline than combo 5 for all future training. 
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 STOPPING DETECTOR MOTION 

Once an object is detected in the path of collision, detector motion must be stopped in real-

time (less than or equal to 1 second). The only way to stop detector motion with a software-

generated signal is by sending a stop command to the SCONA board, which is the central control 

board of the SPECT/CT camera. The host computer communicates with SCONA via CPI 

commands. CPI, which stands for ‘Camera Primitives Interface’, is the interface protocol which 

defines the format in which commands are processed by the camera control. The command for 

stopping camera motion, called System-Stop, is ‘0001mD’. 

For a device to be registered as a host computer, it must be configured with the requisite 

proprietary software to communicate with SCONA, and this requires multiple security 

authorizations. Due to these security restrictions, it was not possible to configure a host computer 

with the software required to run the RTOD script, and any non-host device running this script 

cannot send CPI commands to SCONA. However, it is possible to send the command as a TCP 

packet to the Gateway Processor within SCONA, shown in figure 6.1. 

 

 

Figure 6.1. Architecture of SCONA and Camera Control. 

 

 The GCON Core in SCONA is responsible for processing all the commands being sent to 

camera control. As indicated by circle 1 in figure 6.1, it is the only module within SCONA that 

can send commands to the camera control. Camera control includes all the amplifiers and motors 

that drive camera motion. Therefore, the stop command sent to the Gateway as a TCP packet must 
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be extracted and sent to the GCON Core. At the time of undertaking this project, there was no way 

to send CPI commands from the Gateway to the GCON Core, so this had to be set aside as a future 

assignment. However, a Python script was written for sending the stop command as a TCP message 

to the Gateway [A3]. The script is invoked as a subprocess within the if condition in the RTOD 

script that is set to true when an external object is detected. The host IP address and port number 

of the Gateway are passed into the “tcp_send_command.py script” along with the “system stop” 

CPI command as three separate arguments. The “execute_tcp_cmd” function within the script  then 

opens a TCP socket for sending the stop command to the Gateway. 

 A potential workaround for bypassing the SCONA to send a stop command is setting up 

an external circuit that toggles the stop button located on the machine. The script would trigger an 

electric signal within the external circuit when an external object is detected, which would then 

toggle the stop button. If the script can trigger the electric signal in one second or less, this method 

would meet real-time requirements. During the undertaking of the project, it was not possible to 

work on this method due to logistical and temporal restrictions. 
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 CONCLUSION AND FUTURE WORK 

This thesis paper laid out a comprehensive end-to-to end deep learning method for real-time 

object detection to prevent collisions in a real-world scenario. The experiments carried out in this 

project successfully implemented the methodologies described in the paper to detect external 

objects that are in the path of motion of the SPECT-CT detectors in real-time. Consequently, this 

project laid the groundwork for expanding on these successful methodologies to include all 

potential objects that could be found in the path of the detector’s motion. However, three issues 

must be resolved before the collision prevention system can be deployed in production. 

7.1 Training Models to Detect More Objects and Detectors 

The methodologies outlined in this project can be applied to collect and process images of 

several indoor objects. For example, using publicly available datasets and pretrained models can 

be utilized for several common objects as it was for the person class, while the collection and 

annotation techniques used for the cart and detector heads can be applied to other custom objects. 

It is important to reiterate that false positives on external objects are desirable for our use case. 

Training models on a wide range of common indoor objects would allow false positives for 

uncommon objects that may be found in scanning rooms or production floors.  

 

However, it is imperative to prevent false positives on the detector heads and to do so, 

models must be trained to detect all types of detector heads that come with different models of 

SPECT-CT cameras. For each model, using more images per configuration than the amount used 

in this project will also improve the chances of robust detections while reducing the likelihood of 

misclassifications. Models must also be trained to detect any other unique objects that are found 

in scanning rooms and productions floors, such as the collimator cart. Once a list of all potential 

objects is finalized, the next step is to collect images and prepare the dataset for MobileNet-SSD 

training, as demonstrated in this research. During the training phase, many of the model 

optimization methods outlined in this paper can be utilized to improve the accuracy of detections. 
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7.2 Efficiently Stopping Detector Motion  

As discussed in section 6, detector motion can be halted either by sending a system stop 

command through SCONA or by setting up an external circuit that can toggle the stop button. Both 

these methods must be tested in order to determine which triggers a faster stop. Although a script 

was written to send the command through the Gateway, it may introduce an additional lag that 

fails real-time requirements. To avoid this lag, the RTOD application can be set up within a host 

computer. However, configuring all the necessary third-party software in a host computer can be 

very difficult due to security restrictions. Setting up an external circuit may be the fastest method 

and one that does not entail multiple security steps to install and configure the requisite third-party 

software. Therefore, the external method should be explored first. 

7.3 Controlling the Activation of the RTOD script 

There may be some scenarios where we do not want to stop detector motion whenever an 

external object is detected, such as when a patient is on the bed or standing by the detectors during 

a scan. In such scenarios, the application should not label the patient as an external object. To 

account for these scenarios, we must add more conditions to the code based on the position of the 

patient and the type of scan. Otherwise, we could simply disable the script during such scans if no 

collision hazards are expected. 
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APPENDIX A. CAFFE MOBILENET SSD RAW FILES 

A.1 Caffe Prototxt Files 

 

Caffe prototxt files are text files that hold information about the structure of the neural 

network and processing of input data: 

- Resizing, scaling, and normalization of input. 

- Batch size, batch sampling, and data format. 

- The list of layers in the neural network. 

- The parameters of each layer, such as its name, type, input and output dimensions. 

- The connections between layers. 

Network structure and parameters can be changed by adding or removing layers and modifying 

parameters inside layers. The table below sequentially shows contents of the prototxt file generated 

for the training model used in the first run, starting with the data layer later up till the activation 

layer of the first convolution, “conv0”. 

 

Table A.1. Data layer and Conv0 layers in MobileNetSSD_train.prototxt 

Data Transformation Batch Processing Conv0 Layers 
name: "MobileNet-SSD" 

layer { 

  name: "data" 

  type: "AnnotatedData" 

  top: "data" 

  top: "label" 

  include { 

    phase: TRAIN 

  } 

  transform_param { 

    scale: 0.007843 

    mirror: true 

    mean_value: 127.5 

    mean_value: 127.5 

    mean_value: 127.5 

    resize_param { 

      prob: 1.0 

      resize_mode: WARP 

      height: 300 

      width: 300 

      interp_mode: LINEAR 

      interp_mode: AREA 

      interp_mode: NEAREST 

  data_param { 

    source: "trainval_lmdb/" 

    batch_size: 12 

    backend: LMDB 

  } 

  annotated_data_param { 

    batch_sampler { 

      max_sample: 1 

      max_trials: 1 

    } 

    batch_sampler { 

      sampler { 

        min_scale: 0.3 

        max_scale: 1.0 

        min_aspect_ratio: 0.5 

        max_aspect_ratio: 2.0 

      } 

      sample_constraint { 

        min_jaccard_overlap: 0.1 

      } 

      max_sample: 1 

      max_trials: 50 

    } 

layer { 

  name: "conv0" 

  type: "Convolution" 

  bottom: "data" 

  top: "conv0" 

  param { 

    lr_mult: 0.1 

    decay_mult: 0.1 

  } 

  convolution_param { 

    num_output: 32 

    bias_term: false 

    pad: 1 

    kernel_size: 3 

    stride: 2 

    weight_filler { 

      type: "msra" 

    } 

  } 

} 

layer { 

  name: "conv0/bn" 

  type: "BatchNorm" 
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      interp_mode: CUBIC 

      interp_mode: LANCZOS4 

    } 

    emit_constraint { 

      emit_type: CENTER 

    } 

    distort_param { 

      brightness_prob: 0.5 

      brightness_delta: 32.0 

      contrast_prob: 0.5 

      contrast_lower: 0.5 

      contrast_upper: 1.5 

      hue_prob: 0.5 

      hue_delta: 18.0 

      saturation_prob: 0.5 

      saturation_lower: 0.5 

      saturation_upper: 1.5 

      random_order_prob: 0.0 

    } 

    expand_param { 

      prob: 0.5 

      max_expand_ratio: 4.0 

    } 

  } 

 

    batch_sampler { 

      sampler { 

        min_scale: 0.3 

        max_scale: 1.0 

        min_aspect_ratio: 0.5 

        max_aspect_ratio: 2.0 

      } 

      sample_constraint { 

        min_jaccard_overlap: 0.3 

      } 

      max_sample: 1 

      max_trials: 50 

    } 

    batch_sampler { 

      sampler { 

        min_scale: 0.3 

        max_scale: 1.0 

        min_aspect_ratio: 0.5 

        max_aspect_ratio: 2.0 

      } 

      sample_constraint { 

        min_jaccard_overlap: 0.5 

      } 

      max_sample: 1 

      max_trials: 50 

    } 

    batch_sampler { 

      sampler { 

        min_scale: 0.3 

        max_scale: 1.0 

        min_aspect_ratio: 0.5 

        max_aspect_ratio: 2.0 

      } 

      sample_constraint { 

        min_jaccard_overlap: 0.7 

      } 

      max_sample: 1 

      max_trials: 50 

    } 

    batch_sampler { 

      sampler { 

        min_scale: 0.3 

        max_scale: 1.0 

        min_aspect_ratio: 0.5 

        max_aspect_ratio: 2.0 

      } 

      sample_constraint { 

        min_jaccard_overlap: 0.9 

      } 

      max_sample: 1 

      max_trials: 50 

    } 

    batch_sampler { 

      sampler { 

        min_scale: 0.3 

        max_scale: 1.0 

  bottom: "conv0" 

  top: "conv0" 

  param { 

    lr_mult: 0 

    decay_mult: 0 

  } 

  param { 

    lr_mult: 0 

    decay_mult: 0 

  } 

  param { 

    lr_mult: 0 

    decay_mult: 0 

  } 

} 

layer { 

  name: "conv0/scale" 

  type: "Scale" 

  bottom: "conv0" 

  top: "conv0" 

  param { 

    lr_mult: 0.1 

    decay_mult: 0.0 

  } 

  param { 

    lr_mult: 0.2 

    decay_mult: 0.0 

  } 

  scale_param { 

    filler { 

      value: 1 

    } 

    bias_term: true 

    bias_filler { 

      value: 0 

    } 

  } 

} 

layer { 

  name: "conv0/relu" 

  type: "ReLU" 

  bottom: "conv0" 

  top: "conv0" 

} 

layer { 

  name: "conv1/dw" 

  type: "Convolution" 

  bottom: "conv0" 

  top: "conv1/dw" 

  param { 

    lr_mult: 0.1 

    decay_mult: 0.1 

  } 

  convolution_param { 

    num_output: 32 

    bias_term: false 
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        min_aspect_ratio: 0.5 

        max_aspect_ratio: 2.0 

      } 

      sample_constraint { 

        max_jaccard_overlap: 1.0 

      } 

      max_sample: 1 

      max_trials: 50 

    } 

    label_map_file: 

"labelmap.prototxt" 

  } 

} 

 

    pad: 1 

    kernel_size: 3 

    group: 32 

    engine: CAFFE 

    weight_filler { 

      type: "msra" 

    } 

  } 

} 

 

A.2 Caffe Solver Files 

 

Solver files hold information of hyperparameter settings used for training and testing. Table 

A.2 shows the solver files for training and testing used in the initial run. 

 

Table A.2. Solver_train and Solver_test file contents for Initial Run 

Solver_train Solver_test 

train_net: "example/MobileNetSSD_train.prototxt" 

test_net: "example/MobileNetSSD_test.prototxt" 

test_iter: 673 

test_interval: 10000 

base_lr: 0.001 

display: 10 

max_iter: 120000 

lr_policy: "multistep" 

gamma: 0.5 

weight_decay: 0.00005 

snapshot: 1000 

snapshot_prefix: "snapshot/mobilenet" 

solver_mode: GPU 

debug_info: false 

snapshot_after_train: true 

test_initialization: false 

average_loss: 10 

stepvalue: 20000 

stepvalue: 40000 

iter_size: 1 

type: "RMSProp" 

eval_type: "detection" 

ap_version: "11point" 

train_net: "example/MobileNetSSD_train.prototxt" 

test_net: "example/MobileNetSSD_test.prototxt" 

test_iter: 22 

test_interval: 1000 

base_lr: 0.001 

display: 10 

max_iter: 0 

lr_policy: "multistep" 

gamma: 0.5 

weight_decay: 0.00005 

snapshot: 1000 

snapshot_prefix: "snapshot/mobilenet" 

solver_mode: GPU 

debug_info: false 

snapshot_after_train: false 

test_initialization: true 

average_loss: 10 

stepvalue: 10000 

stepvalue: 30000 

iter_size: 2 

type: "RMSProp" 

eval_type: "detection" 

ap_version: "11point" 
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APPENDIX B. CODE FILES 

B.1 RTOD Script 

# import the necessary packages 

from imutils.video import VideoStream 

from imutils.video import FPS 

import numpy as np 

import argparse 

import imutils 

import time 

import cv2 

 

# construct the argument parse and parse the arguments 

ap = argparse.ArgumentParser() 

ap.add_argument("-p", "--prototxt", required=True, 

   help="path to Caffe 'deploy' prototxt file") 

ap.add_argument("-m", "--model", required=True, 

   help="path to Caffe pre-trained model") 

ap.add_argument("-c", "--confidence", type=float, default=0.3, 

   help="minimum probability to filter weak detections") 

args = vars(ap.parse_args()) 

 

# initialize the list of class labels MobileNet SSD was trained to 

# detect, then generate a set of bounding box colors for each class 

CLASSES = ["background", "person", "detector", "cart"] 

COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) 

 

# load our serialized model from disk 

print("[INFO] loading model...") 

net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) 

 

# initialize the video stream, allow the camera sensor to warmup, 

# and initialize the FPS counter 

print("[INFO] starting video stream...") 

vs = VideoStream(src=4).start() 

time.sleep(2.0) 

fps = FPS().start() 

 

# loop over the frames from the video stream 

while True: 

   # grab the frame from the threaded video stream and resize it 

   # to have a maximum width of 400 pixels 

   frame = vs.read() 

   frame = imutils.resize(frame, width=1600) 

 

   # grab the frame dimensions and convert it to a blob 

   (h, w) = frame.shape[:2] 

   blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 

      0.007843, (300, 300), 127.5) 

 

   # pass the blob through the network and obtain the detections and 

   # predictions 

   net.setInput(blob) 
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   detections = net.forward() 

 

   # loop over the detections 

   for i in np.arange(0, detections.shape[2]): 

      # extract the confidence (i.e., probability) associated with 

      # the prediction 

      confidence = detections[0, 0, i, 2] 

 

      # filter out weak detections by ensuring the `confidence` is 

      # greater than the minimum confidence 

      if confidence > args["confidence"]: 

         # extract the index of the class label from the 

         # `detections`, then compute the (x, y)-coordinates of 

         # the bounding box for the object 

         idx = int(detections[0, 0, i, 1]) 

         box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) 

         (startX, startY, endX, endY) = box.astype("int") 

 

         # draw the prediction on the frame 

         label = "{}: {:.2f}%".format(CLASSES[idx], 

            confidence * 100) 

         cv2.rectangle(frame, (startX, startY), (endX, endY), 

            COLORS[idx], 2) 

         y = startY - 15 if startY - 15 > 15 else startY + 15 

         cv2.putText(frame, label, (startX, y), 

            cv2.FONT_HERSHEY_SIMPLEX, 1.5, COLORS[idx], 2) 

         if CLASSES[idx] != "detector": 

            #msg = "0001mD" 

            #host = "192.168.1.1" 

            #port = 55 

            #response = execute_tcp_cmd(msg, host, port)       

            print(CLASSES[idx]+" found in potential collision path, sending 

e-stop")    

 

   # show the output frame 

   cv2.imshow("Frame", frame) 

   key = cv2.waitKey(1) & 0xFF 

 

   # if the `q` key was pressed, break from the loop 

   if key == ord("q"): 

      break 

 

   # update the FPS counter 

   fps.update() 

 

# stop the timer and display FPS information 

fps.stop() 

print("[INFO] elapsed time: {:.2f}".format(fps.elapsed())) 

print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) 

 

# do a bit of cleanup 

cv2.destroyAllWindows() 

vs.stop() 
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B.2 Augmentation Script 

from keras.preprocessing.image import ImageDataGenerator, array_to_img, 

img_to_array, load_img 

import os 

 

datagen = ImageDataGenerator( 

        rotation_range=40, 

        width_shift_range=0.2, 

        height_shift_range=0.2, 

        shear_range=0.2, 

        zoom_range=0.2, 

        horizontal_flip=True, 

        fill_mode='nearest') 

 

imgs = os.listdir('/home/tahrir/Desktop/thesis/Augmented_detector_pics') 

 

for pic in imgs: 

    #print(pic) 

    img = 

load_img('/home/tahrir/Desktop/thesis/Augmented_detector_pics/'+pic) 

    x = img_to_array(img) 

    x = x.reshape((1,) + x.shape) 

 

    i = 0 

    for batch in datagen.flow(x, batch_size=1, save_to_dir='preview', 

save_prefix='aug', save_format='jpg'): 

     

        i += 1 

        if i > 1: 

            break 

 

B.3 tcp_send_command.py Script 

#!/usr/bin/env python3 

 

import subprocess 

import sys 

import os 

import time 

import struct 

import socket 

import select 

import datetime 

 

 

#--------------------------------------------------- 

#  constants 

 

#defaults 

HOST_DEFAULT             = "192.168.0.1" 

PORT_DEFAULT           = 2050 

TIMEOUT_SECS = 15 

 

 

#--------------------------------------------------- 
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#  misc globals 

socket_is_open = False   #main command socket 

 

# poll for incoming data ready on a socket using select() 

def is_data_ready( sock, timeout=0.0 ): 

   rlist = [sock] 

   wlist = [] 

   xlist = [] 

   (rr,ww,xx) = select.select( rlist, wlist, xlist, timeout ) 

   for s in rr: 

      if s is sock: 

         return True 

   return False 

 

def wait_for_incoming_data( seconds, sock, verbosity=False, 

sleep_between_polls=True ): 

   if verbosity: 

      print( "waiting on socket:", sock ) 

   data = b'' 

   timestart   = datetime.datetime.now() 

   done= False; 

   while not done: 

      #print( "polling..") 

      if is_data_ready( sock ): 

         #data = sock_cmd.recv( 2048 ) 

         data = sock.recv( 2048 ) 

         str_recvd = data.decode( "utf-8") 

         if( verbosity ): 

            print( "recvd %d bytes: '%s'" % ( len(data), str_recvd ) ) 

         done = True; 

      #print( "done polling") 

 

      time_now = datetime.datetime.now(); 

      dt = time_now - timestart 

      if( dt.total_seconds()  >= seconds ): 

         string_recvd = '!! timed out !!' 

         print( "timed out waiting for response") 

         done=True 

      if sleep_between_polls: 

         time.sleep( 0.01 ) 

   return( data ) 

 

#  executes, returns response in binary form 

#  msg is a string 

#  verbosity values: 

#     0: silent 

#     1: print only errors 

#     2: normal 

#     3: lots of stuff  (i.e.debug) 

def execute_tcp_cmd(   msg, host, port, verbosity=2, 

close_socket_when_done=True  ): 

   global sock_cmd, socket_is_open 

   ip_descr = host 

 

 

   if verbosity>=2: 

      print( "Executing dpi cmd: '%s' to %s:%d ..." % (msg, HOST, PORT )  ) 
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   if not socket_is_open: 

      sock_cmd = socket.socket( socket.AF_INET, socket.SOCK_STREAM ) 

      server_addr_port = ( ip_descr, port ) 

      try: 

         sock_cmd.connect( server_addr_port ) 

      except Exception as e: 

         print( "connect to %s:%d failed" %  (ip_descr, port) ) 

         print(e) 

         exit() 

   if verbosity>=3: 

      print( "connection established to %s:%d" % (ip_descr, port) ) 

   socket_is_open = True 

 

   if verbosity>=3: 

      print( "sending '%s'" % msg ) 

 

   bytes_to_send = msg.encode( "utf-8") 

   bytes_to_send +=  b'\00' 

 

   sock_cmd.sendall( bytes_to_send ) 

   if verbosity>=3: 

      print( "sent '%s'" % msg ) 

 

   bin_recvd = wait_for_incoming_data( TIMEOUT_SECS, sock_cmd ) 

 

   if close_socket_when_done: 

      if verbosity>=3: 

         print( "closing socket") 

      sock_cmd.close() 

      socket_is_open = False 

 

   if verbosity>=3: 

      string_recvd = bin_recvd.decode( "utf-8" ) 

      print( "Received: %d bytes: '%s'" %  (len(bin_recvd), string_recvd) ) 

   return( bin_recvd )       

 

 

def usage_bail(): 

   print( "usage: tcp_client_example.py server[:port] cmd [cmd_args]" ) 

   exit() 

 

def main( argv ): 

   #global HOST, PORT 

 

   if len(argv)<3:  

      usage_bail() 

 

   host_port = argv[1] 

 

   if ':' in host_port: 

      try: 

         HOST,port_str = host_port.split( ':' ) 

         PORT = int(port_str) 

      except: 

         print( "invalid host[:port] : '%s'" % host_port) 

         usage_bail() 
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   else: 

      HOST=host_port 

      PORT=PORT_DEFAULT 

 

   cmd  = ' '.join( argv[2:] ) 

 

   response = execute_tcp_cmd(  cmd, HOST, PORT ) 

   print( "command returned:", response ) 

 

#------------------------------- 

if __name__ == "__main__": 

   main( sys.argv ) 

   exit() 
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APPENDIX C: LINKS TO DEMOS 

C.1 Link to Demos after Initial Training Run 

 

1) Link to the Demo of only detectors with no object entering the collision regions: 

16k_30_Detector 

2) Link to the Demo of cart entering collision region: 

16k_30_Cart 

3) Link to the Demo of person entering collision region: 

16k_30_Person 

 

C.2 Links to Combo 5 and Combo 15 Demos 

 

1) Demo of combo 5 trained for 18000 iterations:  

18k_Combo5 

2) Demo of combo 15 trained for 25000 iterations: 

25k_Combo15 

 

  

https://ind657-my.sharepoint.com/:v:/g/personal/siddti01_pfw_edu/EYWnji1_g2xIoNTWPtIg2pwBIeb2IsoLByO8BbhmmtWjlQ
https://ind657-my.sharepoint.com/:v:/g/personal/siddti01_pfw_edu/ERuLTdlzqPJGtn8tcguJqTIBfxZ5JCtK6Hf-8BljcLExdg?e=WIzJce
https://ind657-my.sharepoint.com/:v:/g/personal/siddti01_pfw_edu/ERvZF6mk05tFrKawI_rO64wBAgiwbkB31ZwwZw_b9W0ptQ?e=loEwDy
https://ind657-my.sharepoint.com/:v:/g/personal/siddti01_pfw_edu/ETJsfb0KOPtFrSkpGSpYbV8BfxOpViUoZ1o97OR1Jgl86g?e=Wa9yO5
https://ind657-my.sharepoint.com/:v:/g/personal/siddti01_pfw_edu/Ef2Z_H5f5wlHh0vEMJbRuIoBFnxp1GP5mNuRog6wzmu8qg?e=AUg9eZ
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