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ABSTRACT

The ability to solve problems creatively has been crucial for the adaptation and survival of

humans throughout history. In many real–life situations, cognitive processes are not isolated.

Humans are social, they communicate and form groups to solve daily problems and make

decisions. Therefore, the final output of cognitive processes can come from multi–brains

in groups rather than an individual one. This multi–brain output can be largely different

from the output that an individual person produces in isolation. As a result, it is essential to

include team–level processes in cognitive models to make a more accurate description of real–

world cognitive processes in general and problem solving in particular. This research aims

to answer the general question of how working in a team affects creative problem solving.

For doing that, first, we propose a computational model for multi-agent creative problem

solving. Then, we show how the model can be used to study the factors that are involved

in creativity in teams and potentially will suggest answers to questions such as, ‘how team

size is related to creativity’.
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1. INTRODUCTION AND PREVIOUS RESEARCH

These days, many countries, governments, universities, scientific institutions, and organi-

zations eagerly try to improve their innovation and creativity. Creativity has become an

essential base for economic growth, development, and finding solutions for social and envi-

ronmental issues. Moreover, for solving today’s complex problems in society, science, and

tech teams of diverse backgrounds are commonly used. Therefore, the importance of cre-

ativity has been shifted from individuals into teams [ 1 ].

Due to the growing interest in creativity, studies on individual and team creativity have

become increasingly popular in different fields [  2 ]. These studies used different approaches

and consider a variety of aspects of creativity: some of these studies focus on how creativity

can be measured [ 3 ], while others ask about the differences between artistic and scientific

creativity [  4 ]. There are studies on finding connections between personality characteristics

and creativity [  5 ], [  6 ]. Other scientists are trying to understand the neural basis of creative

processes in the brain [ 7 ], [ 8 ]. Furthermore, some studies focused on understanding the

underlying mechanism and the important parameters in idea generation [ 9 ]–[ 12 ].

Given the variety of fields working on creativity, it is not surprising to encounter ambi-

guities in the definition of creativity. Table  1.1 provides an overview of previous attempts

in defining creativity. Kampylis and Valtanen [ 13 ] found four components that are more

common among these definitions:

1. Creativity can be considered as a key ability in an individual.

2. Creativity presumes to be an intentional activity.

3. Creative activities happen in a specific environment or context.

4. The result of creative activities is tangible or intangible products, which are novel

(unconventional), and appropriate (useful or valuable) for at least the individual.

Other research alongside novelty and usefulness add the surprise factor to the definition

of creativity [  12 ], [ 14 ]–[ 18 ]. Based on this previous work, in this research we define creativity

as producing tangible products, which are novel, surprising, and useful.
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Table 1.1. Definition of creativity in different literature.

The Table is adapted from Kampylis and Valtanen [ 13 ].

Author(s) Year Page Definition

Guilford 1950 444 “... refers to the abilities that are most characteristic of

creative people. Creative abilities determine whether

the individual has the power to exhibit creative behav-

ior to a noteworthy degree.”

Stein 1953 311 “... that process which results in a novel work that is

accepted as tenable or useful or satisfying by a group

at some point in time”.

Rhodes 1961 305 “... is a noun naming the phenomenon in which a per-

son communicates a new concept (which is the prod-

uct). Mental activity (or mental process) is implicit in

the definition, and of course no one could conceive of

a person living or operating in a vacuum, so the term

press is also implicit.”

Mednick 1962 221 “... the forming of associative elements into new com-

binations which either meet specified requirements or

are in some way useful. The more mutually remote the

elements of the new combination, the more creative the

process or solution.”

Welsch 1980 97 “... the process of generating unique products by trans-

formation of existing products. These products,tangible

and intangible, must be unique only to the creator, and

must meet the criteria of purpose and value established

by the creator.”

Boone and

Hollingsworth

1990 3 “... any form of action that leads to results that are

novel, useful, and predictable.”
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Csikszentmiha-

lyi

1999 314 “... a phenomenon that is constructed through an in-

teraction between producers and audience.Creativity is

not the product of single individuals,but of social sys-

tems making judgments about individuals’ products.”

Carayiannis and

Gonzalez

2003 588 “... the ability to perceive new connections among ob-

jects and concepts – in effect, reordering reality by using

a novel framework for organizing perceptions.”

Sawyer 2006 33 “... the emergence of something novel and appropriate,

from a person, a group, or a society.”

Ferrari, Cachia,

and Punie

2009 14 “... is skill for everyone; ability to make new connec-

tions; capacity to generate new ideas; divergent think-

ing; ability to get out of the rails; capacity to produce

original and valuable outcomes.

Saariluoma,

Berki, and

Saariluoma

2009 18 “... the activity (both mental and physical) that occurs

in a specific time-space, social and cultural framework

and leads to tangible or intangible outcomes that are

original, useful, ethical and desirable, at least to the

creator(s).”

Walia 2019 242 “Creativity is an act arising out of a perception of

the environment that acknowledges a certain disequi-

librium, resulting in productive activity that challenges

patterned thought processes and norms, and gives rise

to something new in the form of a physical object or

even a mental or an emotional construct.”

The word creative also has been used colloquially with meanings that are beyond the

precise definition. For example, creativity likely means satisfaction when we say we did a

creative work [  19 ]. Therefore, the creativity concept involves more meanings in real life than

12



the definitions described in previous paragraphs. As a result, the precise definitions that we

will use in this research are based on simplifications in the meaning of creativity.

The thinking process in identifying creative solutions for ill-defined problems falls into two

categories: convergence thinking and divergence thinking [ 20 ], [ 21 ]. Typically, in convergent

thinking, there is one unique solution and thinking is directed toward reaching that solution.

However, in divergent thinking, the problem solver searches various directions, and it usually

happens when there is no unique solution for the problem [ 20 ].

Regarding the social aspects of creativity, there are debates based on a belief that creativ-

ity cannot be seen as an individual’s attribute. It should be defined based on the judgments

that social systems make about the individual [  22 ]. Therefore, studying creativity may be

more meaningful if it is done in a social environment.

One of the recent approaches for studying creativity is computational modeling. To

date, different attempts have been made to make a computational model of the underlying

processes of creativity in an individual human [  10 ], [  23 ], [  24 ]. A unified theory and a widely

accepted theory of creative problem solving is the Explicit-Implicit Interaction (EII) that is

introduced by Hélie and Sun [  10 ]. In this theory, the combination of simultaneous explicit

rule-based and implicit associative processes describes the four stages of creative problem

solving: preparation, incubation, insight, and verification [  9 ].

The first stage, preparation, is a period of initial search by using logic and reasoning. If

this search is successful and a solution is found, then the problem is solved and there is no

need for other stages. However, in case of an ill defined or complex problem, it is unlikely

for the preparation stage to find a solution by only using logic and reasoning. When an

impasse is reached, the person stops attempting to find a solution for the problem. It is the

beginning of the incubation stage in which the attention of the person is no longer devoted

to the problem. There is no time limit for incubation, it can last from minutes to years.

Insight happens when a solution spontaneously comes to consciousness. In the last stage,

verification, the correctness of the insight solution is investigated. This stage, similar to

the preparation stage uses deliberative thinking based on logic and reasoning. The insight

problem might not be validated in the verification stage, in this case typically the person

goes back to the preparation or incubation stages and tries to solve the problem again [ 10 ].
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The models based on the EII theory are the only computational models of creativity that

account for all of these four stages, and they were able to successfully reproduce different

experimental studies [  10 ]. However, a model of an individual human is not sufficient for

capturing all aspects of creative problem solving. Nowadays, creativity and solving problems

become more and more reliant on teams: scientific collaborations, organizational meetings,

and online problem solving social networks are examples of the growing importance of teams

in problem solving. Therefore, a computational model of the team–level processes of creative

problem solving can lead to a more accurate understanding of these processes. Furthermore,

this model can help to find the most efficient team characteristics that lead to a higher

degree of creativity in a shorter time. To date, there are only a few computational models of

multi-agent creativity [ 25 ], [  26 ], and none of them are modeling the four stages of creative

problem solving.

Based on the Wallas [  9 ] widely accepted four stages of creativity, excluding any of these

stages limits the model in presenting some important aspects of problem solving. This

research uses the EII theory for modeling the underlying processes of an individual agent.

Therefore, using EII provides the model with the possibility of including all four creative

problem solving stages and results in a more comprehensive model of multi-agent creativity.

This document is organized as follows: the rest of this chapter provides information on

previous models that are related to individual and team–level creativity. Then, in Chapter

 2 , a new model of team–level creativity is proposed and the relation between this model and

the previous models is explained. Next, in Chapter  3 , four experiments that are used towards

model validation are presented. Finally, Chapter  4 provides a summary and discusses the

limitations and real world applications of this work.

1.1 Individual Creativity

To date, different attempts have been made to introduce theories of creativity in an

individual person. In this section, first in Subsection  1.1.1 , we provide a summary of these

attempts. Then, in Subsection  1.1.2 , we explain the details of the EII theory. The EII

theory later will be of our interest in designing a multi-agent model of creativity.
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1.1.1 Theories of Creativity

This subsection provides an overview of important theories on incubation, insight, and

the EII theory.

Unconscious work theory of Incubation: First, the problem solver starts working

consciously on the problem. Then, if she cannot find a solution, at some point, she stops

the conscious work. In this theory, after stopping the conscious work, she continues to work

unconsciously on the problem. The solutions that she has found during the unconscious work

later may come to her consciousness [ 27 ], [ 28 ]. The theory of Unconscious work is compatible

with the ‘aha’ moments that we experience and happened in the history of science. However,

doing experiments on unconscious work is not an easy process [ 10 ], [ 28 ].

Conscious work theory of Incubation: In this theory, the problem solver continues

to work on the problem in the incubation phase even if her attention is not fully dedicated

to the problem. Unlike the Unconscious work theory, this continuing work on the problem

is conscious. The problem solver intermittently works on the problem while her attention

is on unrelated work such as driving. The problem solver’s attention switches between the

unrelated work and the incubated problem very fast. Therefore the problem solver forgets

the short episodes of work on the incubated problem, and only the solution (the final step)

is remembered. The Conscious work theory does not have the difficulties in experimental

assessments that we had in Unconscious work theory [ 10 ], [ 28 ].

Remote association theory of Incubation: In this theory, the incubation phase

is used for eliminating unrelated and stereotypical solutions. When the problem solver

encounters a new problem, she first searches for similar problems and automatically retrieves

their related stored solutions (starting from most likely solutions). These solutions may not

be the best solution, or even they may not be correct. The incubation phase helps with

retrieving more stored solutions (the unlikely ones) and finding more appropriate solutions

[ 10 ].

Evolutionary theory of insight: This theory is based on the three principles of Dar-

win’s evolution theory: 1- solutions are blindly generated 2- Solutions are evaluated and

selected. 3- The retention of selected solutions is performed. In this theory, knowledge is
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represented by nodes of a graph. The evolutionary selection principles form the links or as-

sociations between nodes of this graph. Generating solutions is done by forming associations

in unconscious processes. At any point, if one association or solution adequately solves the

problem, then it comes to consciousness and is experienced as insight [ 10 ], [ 29 ]–[ 34 ].

Although the Darwinian idea generation approach was successful in many cases, there are

arguments that evolutionary theories of creativity should not necessarily follow Darwinian

principles. Gabora [ 35 ] explains that in the Darwinian approach, the ideas undergoing selec-

tive pressure should be generated at the same iteration. This may not be accurate because

after an idea is generated, the context for generating other ideas is changed. Therefore, differ-

ent ideas cannot be generated in the same context and undergo the same selective pressure.

However, by considering sequential idea generation and change of context after each gener-

ated idea still, the evolutionary approach can be beneficial in explaining creativity processes

[ 29 ], [ 35 ].

Constraint theory of insight: In this theory, the problem solver constructs a mental

structure of initial states (problem) and the final state(s) (solution). Then, she tries to fill

the gap between the initial and final states. It should be noted that the set of constraints on

the problem can be very large [ 36 ], and the problem solver may not have enough cognitive

resources to satisfy this large set simultaneously. Therefore, when the satisfaction of this

large set occurs, the problem solver experiences an intense experience of insight [ 10 ].

Associationistic theory of insight: In this theory knowledge is represented in nodes

of a graph [  31 ], [  32 ]. The problem solver’s goal is to use a parallel search and find a path

from one node to another (solution). If the association between the two nodes is strong, then

insight is experienced. In other words, in this theory, insight only depends on the association

of the two nodes and is not dependent on a separate system [ 10 ], [ 37 ], [ 38 ].

The EII Theory: The EII theory, which is introduced by Hélie and Sun [  10 ] is a

unified theory of all previously discussed theories. Unlike the previous theories, the EII

theory considers all four stages of Wallas creative problem solving: preparation, incubation,

insight, and verification [  9 ], [  10 ]. Moreover, the models based on the EII theory were able to

successfully simulate the results of different creativity experiments [  10 ], [  39 ]. In Subsection
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 1.1.2 , we explain the details of the EII theory and provide information on the simulations

done by using this theory.

1.1.2 The EII Theory

The design of the EII theory is based on the non–action–centered subsystem of the

CLARION cognitive architecture [ 40 ], [  41 ]. As shown in Figure  1.1 , the EII theory consists

of two processing levels: explicit (top) and implicit (bottom). The EII theory accounts

for Wallas’s (1926) four stages of creative problem solving. First, Wallas explained the

preparation stage as “the whole traditional art of logic”. In the EII theory, the Explicit

level, is also based on rule–based knowledge and can present logic–based reasoning [ 10 ].

Second, Wallas described incubation as the stage during which “we do not voluntarily or

consciously think on a particular problem” and stated that incubation can continue for an

extended period of time. In the EII theory, the Implicit level, in contrast to the Explicit level,

is not consciously accessible. Furthermore, the implicit level does not require attentional

resources to process information [  10 ]. Third, Wallas viewed insight as “the appearance of

the ‘happy idea’ together with the psychological events, which immediately preceded and

accompanied that appearance.” In the EII theory, insight is the integration of implicit and

explicit knowledge that leads to a sudden change in the subject’s confidence in a solution

[ 10 ]. Fourth, the last stage is verification. Wallas stated that the verification stage “closely

resembles the first stage of preparation.” Based on the above explanations, the preparation

and verification phases rely mostly on the Explicit level, while the incubation phase relies

more on the Implicit level [  10 ]. The EII theory is based on five main and two auxiliary

principles:

1. There are two types of knowledge:

• Explicit (easier to verbalize, needs more attention, symbolic, ...)

• Implicit (harder to verbalize, noisier, inaccessible, ...)

2. The Explicit and Implicit subsystems can work simultaneously.
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3. There is redundant information such as the representation of a problem in both Explicit

and Implicit levels.

4. The results of the processes at the Implicit level are integrated into the results from

the Explicit level.

5. It is possible to have iterative processes.

Auxiliary principles:

1. There is an internal confidence level (ICL) that refers to metacognition and shows how

much a person is confident about her proposed solution.

2. If the ICL is above a threshold (ψ), then a stochastically selected solution is experienced

as insight. Hélie and Sun [  10 ] implemented this stochastic selection by representing

each solution with one node and translating the activity of each node into a Boltzmann

distribution. Equation  1.1 calculates the probability of selecting each solution as the

output of EII and adds randomness to the results.

P (Si) = eSj/α∑
j eSj/α

(1.1)

Where Si is the activity of solution i, and α is the temperature parameter. Higher α

corresponds to higher noise and results in a complete search of the hypothesis space.

On the other hand, lower α corresponds to lower noise and a narrow search of the

hypothesis space, and it might lead to stereotyped responses.

The EII theory has been validated by accounting for different creativity–related exper-

iments. Hélie and Sun [ 10 ] successfully reproduced multiple experiments. The first one is

an experiment by Yaniv and Meyer [  42 ] who showed that in a task with two subsequent

problems of rare–association and lexical tasks, feeling–of–knowing the answer to the first

problem primes the second problem on the same answer. The second experiment was done

by Smith and Vela [  43 ] who performed a two–phased free–recall task of memorizing line

drawings in different incubation intervals. They showed that smaller incubation intervals
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Figure 1.1. The EII theory is composed of top explicit and bottom implicit
subsystems. The figure is from Hélie and Sun [  10 ].
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result in smaller reminiscence scores in comparison to longer incubation intervals. Reminis-

cence is defined as the recall of materials by an individual who was not successful in recalling

them on a previous attempts [ 43 ].

The third experiment was done by Durso, Rea, and Dayton [ 44 ] in which participants

were asked to read a story and answer insight questions about the story. They showed that

participants’ knowledge graphs before and after the occurrence of insight can be used for

observing the insight. In addition to these experiments, Calic and Hélie [  39 ] used the EII

theory to simulate the effects of paradoxical creativity on creative outcomes. Paradoxical

creativity is defined as an individual’s attempt in achieving competing demands while simul-

taneously trying to creatively resolve a contradiction. The results from their EII simulation

showed that creative outcomes are dependent on two factors: 1- the willingness of an agent

to tolerate new ideas 2- The agent’s capacity to search for new information [ 39 ].

1.2 Team–level Creativity

In this section, an overview of three different views on modeling team–level processes is

provided: cognitive Science, communication studies, and information theory.

1.2.1 Cognitive Science Viewpoint

Bayesian Inference of Other Minds

Bayesian models are among the most popular models for describing human communica-

tion and group decision making [ 45 ]–[ 48 ].

In a multiple-round group decision making such as an organizational series of meetings,

uncertainties about the intention and behavior of other team members are not fixed and

can always be modified [  48 ]. Therefore, a probabilistic reasoning model, which can update

uncertainties of newly available information is useful for modeling team–level processes.

Park, Goı̈ame, O’Connor, et al. [ 46 ] studied how social influence and interaction with a

group pull one’s decision towards the group decision. They proposed a Bayesian model of

decision making. In this model, decisions are represented by normal distributions. The mean

and the variance of each distribution show decision and confidence in decision respectively.
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Figure 1.2. A Bayesian model of social influence on decision making. First,
an agent makes a decision individually (left panel). Then, the agent observes
the (average) decision of the group (Middle panel). Finally, the agent’s decision
(blue) and the group’s decision (green) are integrated and form the agent’s new
decision (red). The change from the agent’s first and second decision can be
estimated by the Kullback–Leibler divergence (DKL). The figure is from Park,
Goı̈ame, O’Connor, et al. [ 46 ] .

The variance has an inverse relation with confidence. As the variance becomes smaller, the

person is more confident in her decision.

Park, Goı̈ame, O’Connor, et al. [ 46 ] showed that their Bayesian model provides a good

account for observed behavior in a collective judgment decision making task. This task

had two steps: first, subjects read a murder case and decided on the number of years that

the criminal should be punished in prison (J1) and rated their confidence in this decision.

Second, subjects were informed about the average decision of other jurors. They were told

that the other jurors were previous participants and they had a high confidence in their

decision. After receiving this information, subjects were allowed to change their decision

(J2). The results of this experiment showed that people tend to pull their decision towards

the decision of the group, and their confidence in their decision has an inverse relation with

the magnitude of pulling. Figure  1.2 presents an overview of this model. In this figure, the

horizontal axis represent the years of punishment and the y axis is the confidence of the

subject about her decision.

The Bayesian model also accounts for neuro imaging data. Park, Goı̈ame, O’Connor, et

al. [ 46 ] performed a fMRI experiment of the collective judgment decision making task. The

results from the experiment showed that the level of belief update is computed by the dorsal

anterior cingulate cortex (dACC). However, they observed more activity in the bilateral
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frontopolar cortex (FPC) in individuals who credit more to the judgment of a larger group.

Moreover, an increase in functional connectivity between the dACC and the FPC led to a

higher influence of group size on credibility of social information. This increase in functional

connectivity and having separate brain regions for the belief update and group credits are

consistent with the Bayesian model [ 46 ].

A Neural Circuit Model of Decision Uncertainty and Change–of–mind

Decision confidence, persuasion, and change–of–mind are important aspects of decision

making in a team. In this subsection, a recent neural circuit model of change–of–mind in-

troduced by Atiya, Rañó, Prasad, et al. [ 49 ] (Figure  1.3 ) is presented. This model consists

of three modules: 1- Sensorimotor, 2- Uncertainty monitoring and 3- Motor module. Each

module contains two neural populations that mimic a canonical cortical microcircuit [ 49 ].

The model works as follows: first, the Sensorimotor module receives stimuli that activate

its neural populations (in this module each neural population represents one possible choice

option in a decision). Second, the Inhibitory neural population (green circle) inside the

Uncertainty monitoring module receives activation from both neural populations in the Sen-

sorimotor module. Third, the Inhibitory neural population inhibits the Uncertainty neural

population (magenta circle). The Uncertainty neural population also receives a constant

tonic excitatory input, which may differ in each trial. These two modules represent one

cortical column [  49 ], [  50 ]. The tonic input is included to solve flooring effects. Due to the

flooring effects (the non-negativity of neural firing) the Inhibitory neural population only

can transmit signals if the destination neurons are not silent. Therefore, the tonic activity

assures that the transmission between the Inhibitory and the Uncertainty neural populations

can properly be done [  49 ]. Fourth, the Uncertainty neural population feeds back excitatory

signals to each neural population in the Sensorimotor module. This feedback loop allows

the model to alter an initial choice into a new one. Finally, there is a Motor module, which

is composed of neural populations of choice options (Each neural population in the Motor

module corresponds to one neural population in the Sensorimotor module and vice versa).

Each neural population in the Motor module receives temporally integrated input from the
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corresponding neural population in the Sensorimotor module. If the activity of one of the

Motor neural populations exceeds a pre-defined threshold, then the corresponding choice is

selected as an output decision [ 49 ].

The change–of–mind model is compatible with behavioral and neural recording data [ 49 ].

This model successfully reproduced the following results: 1 - The level of uncertainty that

affects subsequent decisions in a multi–stage decision task paradigm [  51 ]; 2 - Increasing the

quality of evidence, under certain circumstances, monotonically decreases the probability of

the change–of–mind [  52 ]; 3 - Based on neural recording data, the neural activities that are

related to a choice are reversely associated with the instantiation of the neural activity of

change–of–mind [ 53 ].
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Figure 1.3. Schematic diagram of the change–of–mind model. Each circle
represents a neural population and the connections between neural populations
are shown by lines with arrows (excitatory) or filled circles (Inhibitory). In
this example, there are only two choice options: R and L that represent right
and left in a motion task [ 49 ].
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1.2.2 Communication Studies Viewpoint

Communication Networks

Communication networks are regular patterns of information exchange among the mem-

bers of a team. Sometimes, communication patterns in a team are deliberately set, for

example, in a company with a hierarchical structure. However, even with the lack of a delib-

erate set of communication patterns, usually an informal network of communication forms

between the team members. As the size of a team increases, patterns of communication

become more complex. There are some common basic patterns in small teams as shown in

Figure  1.4 [ 54 ].

One important aspect of communication networks is the degree of centralization. In a

centralized network, there is one vertex, which is located at the crossroads of communications.

In decentralized networks, the number of channels at each vertex is roughly equal. In Figure

 1.4 , ‘Y’ and ‘Wheel’ represent a centralized network. The ‘Y’ network, as the name suggests,

has a Y–shaped structure and the ‘Wheel’ network has a central node, which is connected

to isolated nodes. ‘Circle’ and ‘All–Channel’ are considered as decentralized networks [ 54 ].

The ‘Circle’ structure as the name suggests is a series of consecutively connected nodes that

represent a circular shape, and ‘All–channel’ network is a fully connected network.

Studies done by Bavelas [  55 ], [  56 ] showed that teams with a centralized structure out-

perform decentralized teams in solving less complex problems. For example, it is shown that

during solving a problem, teams with the ‘Wheel’ structure in comparison to decentralized

teams send fewer messages, detect and correct more errors, and are quicker in finding a so-

lution. Furthermore, in the ‘Wheel’ structure teams are more successful in improving their

performance by practice [  54 ], [ 57 ], [ 58 ]. However, in more complex tasks, decentralized teams

outperform centralized ones [ 54 ].

1.2.3 Information Theory Viewpoint

The Information Transfer model by Shannon and Weaver [  59 ] is one of the earliest models

of communication. This model is linear and a source sends a message to a receiver through
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Figure 1.4. Five common types of architecture in a five-member team (The
figure is from wisdomjobs.com).
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a channel. In this model, the source puts thoughts into words or body language (encoding),

then transmits them through a channel towards the receiver. The receiver assigns meaning

to the message (decoding), but the message might not be fully transmitted. An interference

that distracts the communicators can potentially intercept, interrupt or alter the message by

adding noise [  60 ]. There are four types of noise: physical, physiological, psychological, and

semantic. Physical noise is a distraction caused by the external environment, such as sounds

that interfere with hearing. Physiological noise is a biological influence, such as feeling sick,

a pounding heart and butterflies in the stomach caused by speech anxiety. Psychological

noise comes in the form of biases, preconceptions, and assumptions. Semantic noise appears

in a choice of words that are not comprehensible, confusing or distracting, such as using an

abbreviation that is not familiar to the listener and can draw attention to terminology and

delude the content of the message [ 61 ].

One difficulty in using the Information Transfer model to describe team communications

is its one-way transmission, which cannot capture human interactions. Therefore, a two–

way Interactive model and a Transactional model are more appropriate for modeling team

communications [ 60 ].

The Interactive model views communication as the sharing of meaning by allowing the

receiver to act as a source. In this model, although communicators are both a source and

a receiver, they take turns to act as a receiver or source. Since the Interactive model has

loops between the communicators, it is no longer linear [  60 ], [  61 ]. Figure  1.5 illustrates the

Interactive model.

The Transactional model of communication differs from the Interactive model in two

ways. First, in the Transactional model, each communicator can simultaneously be a source

or receiver. These characteristics make this model more compatible with the real–world

human communication, because even when a person is listening, she sends verbal words such

as “uh-huh”s or non-verbal messages through levels of eye contact, head nods, and hand

gestures. Second, the Transactional model assigns a field of meaning to each communicator.

A field of meaning consists of attitudes, beliefs, and ideas that a communicator has developed

throughout her life. Figure  1.6 provides an overview of this model [ 60 ], [ 61 ].
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Figure 1.5. The Interactive model of communication. In this model, there is
a two–way communication channel between communicators, however, commu-
nicators take turns to send or receive a message (Figure from Tran, Director,
Hugel, et al. [ 60 ]).
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Figure 1.6. The Transactional model of communication. In this model,
each communicator has a field of meaning and communicators simultaneously
engage in encoding and decoding of messages [ 60 ].
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The Transactional model identifies overlapped (shared) and non–overlapped areas in

fields of meaning. This helps to model misunderstanding as a meaning that is outside of

the shared field of meaning. A shared field of meaning is not fixed during a conversation.

Persuasion (a form of influence) is a way to expand the shared field of meaning [ 60 ], [ 61 ].

1.3 Summary and Discussion

As stated earlier, this research intends to build a computational model of team–level

creativity. This model describes two distinct processes: individual and team–level processes.

The EII theory will be used in modeling individual creativity. We believe that it is an

appropriate choice because it unifies previous models of creative problem solving and it was

compatible with multiple behavioral experiments. However, there is not a comprehensive

model to describe team–level creativity processes. A model of team–level processes needs to

include communications between agents, the influence of agents on each other, and change–

of–mind. Modeling communications between humans was a popular topic in different fields

such as Cognitive Neuroscience (Section  1.2.1 ), communication sciences (Section  1.2.2 ) and

Information Theory (Section  1.2.3 ). Ideas from all of these fields will be used for modeling

different aspects of communication. For modeling the influence of agents on each other, we

will borrow ideas from the Social Bayesian model that is presented in Section  1.2.1 . The

reason for choosing this model is its success in explaining both behavioral and fMRI data.

To model change–of–mind, ideas from the neural circuit model that is presented in Section

 1.2.1 will be applied. The reason for choosing this model is because it accounts for both

neural imaging and behavioral data. Finally, we will use the widely used communication

network models in Section  1.2.2 to structure interactions and noise between agents. The

next chapter explains the details of using these models in building a model of team–level

creativity.
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2. PROPOSED MODEL

This chapter proposes a model of team–level creativity. First, Section  2.1 presents the details

of the model for an individual and a team. Then, Section  2.2 justifies the proposed model

and explains how the proposed model is related to the previous models that are presented

in Chapter  1 .

2.1 A Model for Team–level Creative Problem Solving (TCP)

In this proposed model, the focus is on creative problem solving by two or more agents

who are communicating with each other. This model works based on the following scenario:

first, each agent receives a representation of a problem and tries to solve it in isolation. Then,

all agents participate in a meeting and share their found solutions (if any) along with their

confidence in those solutions. Agents, under the influence of other team members, might

change their confidence, which ultimately can lead to an agents’ change–of–mind. When

all agents have one solution in their mind, then that solution will be considered as team

output. In future meetings, other solutions will be discussed and new meetings are held

until reaching the pre-defined maximum number of meetings. The final output of the team

is all the solutions that the team members agree on during the meetings.

2.1.1 Modeling Processes in an Individual Agent

The first step is a model of an individual agent who sends and receives information. An

individual agent needs to do creative problem solving, determine confidence in solutions, and

have the ability of change–of–mind. For including these characteristics, the previous models

that are presented in Chapter  1 are incorporated. Each individual agent in the TCP model

consists of three modules: Explicit–Implicit Interaction (EII), Uncertainty monitoring, and

Speech. A schematic view of this model is presented in Figure  2.1 . For simplicity, at this

point, we assume that there are only two possible solutions for each problem.

The individual part of the TCP model works based on Algorithm  1 . First, each agent

receives a representation of a problem and by applying the EII module tries to solve the
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Figure 2.1. The individual agent
section of the TCP model. It includes three modules: EII, Uncertainty monitoring, and
Speech modules in an individual agent who interacts with other team members. ‘S1’ and
‘S2’ represent solution 1 and solution 2 respectively. The input can be a problem (prior to

meetings) or received information from other team members.
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problem in isolation. If the activity of a solution in the Explicit EII 

1
 passes the EII threshold

(ψ) then the agent is successful in finding a solution (Subsection  1 ). Then, the agent after

receiving signals from the Uncertainty module may change her mind and find a new solution

(Subsection  1 ). Finally, if the activity of one or more solutions in the Speech module exceeds

the Speech threshold, then in a meeting, the agent talks about the solution that she has found

(Subsection  1 ).
1

 ↑ the Explicit EII refers to the explicit level of the EII module.
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input : 1- Representation of a problem:

a) Count of nodes in the EII Explicit left layer,

b) Count of nodes in the EII Explicit right layer,

c) Connections between EII Explicit nodes.

output: Normal(solution number, Inverse(confidence)) or Null

The agent attempts to solve the problem prior to the meetings:

while activity (confidence) in each solution in the Explicit EII < EII threshold do

if time limit is not reached then

The EII module process the representation of the problem ;

Run the uncertainty module ;

else

Output = Null (the agent is not successful in finding a solution) ;

Break the While loop ;

end

end

Speech module activity = ζ * Explicit EII activity

if A solution’s confidence in Speech module > Speech threshold then

Output = Normal (The solution’s number, 1/the solution’s activity);

else
Output = Null (the agent was successful in finding a solution, but not willing to

talk about the solution in the meeting) ;

end

return Output

Algorithm 1: Algorithm for modeling an individual agent who communicates with a

team based on the model that is presented in Figure  2.1 .
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Figure 2.2. Implementation of the EII theory. The Explicit
level is a two layer linear network and the Implicit level is a non-linear neural network

(NDRAM). The figure is from Hélie and Sun [ 10 ].
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Implementing the EII Module

The EII module is adapted from Hélie and Sun [  10 ], and as explained in Section  1.1.2 , it

consists of two levels of processing: Explicit (top) and Implicit (bottom). Figure  2.2 presents

this structure. The representation of a problem in the Explicit level can be implemented by

a linear two–layer network: each node represents a concept or hypothesis, and a link between

the left and right layer nodes is an explicit rule that relates these two concepts to each other.

Each node in the left layer is one piece of knowledge that is required for solving the problem,

and each node in the right layer represents one solution to the problem. In this modeling,

it is assumed that the preparation stage is finished, and we are in the incubation stage.

Therefore, the representation of the problem is modified from the preparation stage, and now

all solutions in the right layer are relevant, and useful. The activity of each node in the right

layer shows the confidence that the problem solver has in that node’s corresponding solution.

If this activity goes above the threshold ψ, then that solution comes into consciousness, and

the problem is solved. These activities are changed in two ways: 1- propagation of activities

from the Explicit left layer to the Explicit right layer using matrix V (change of confidence

in the solution due to explicit processes). 2- propagation from the EII Implicit level to the

Explicit right layer using matrix F (change of confidence in the solution due to implicit

processes). In the following paragraphs, we explain this propagation and the corresponding

matrices.

Matrix V in the Explicit level encodes the explicit rules. This matrix is pre-trained

by using standard Hebbian learning [  62 ] to to implement pre-existing (known) associations.

This Hebbian learning rule ensures that the value of vij is one if there is an explicit rule that

connects the i node in the Explicit left to the j node in the Explicit right, otherwise the value

of vij is zero.

The activity of the left layer propagates to the right by using the following formula:

yi = 1
ki

n∑
j=1

vijxj (2.1)
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where, y = {y1, y2, . . . , ym} and x = {x1, x2, . . . , xn} are activation of nodes in the right and

left sides respectively. V = (vij) is a (simplified) explicit rule from node ‘i’ to node ‘j’. ki is

the number of nodes in the left side that are connected to yi in the right side.

In the Implicit level, implicit knowledge is encoded by the weight matrix ‘W’. By using

a contrastive Hebbian learning rule, the Implicit level is pretrained to learn implicit associ-

ations [  10 ], [  63 ]. The associations between the EII Explicit and Implicit levels are encoded

using two weight matrices: E and F. These matrices are trained using a similar linear Heb-

bian rule used in training V. These matrices translate the activity in the Explicit nodes to

the Implicit nodes and vice versa. The implicit processes are based on training the non-

linear neural network (NDRAM) with random patterns for each explicit association (rule).

The activity of Explicit left layer is translated into activation of nodes in the Implicit level

through matrix E. Next, NDRAM produces a pattern and then this pattern is translated

into activation of corresponding solutions in Explicit right layer through Matrix F .

For implementing the Implicit level, a non-linear neural network, NDRAM with ‘r’ nodes

is used as shown in the following equation:

zi[t+1] = g

 r∑
j=1

wijzj[t]

 (2.2)

where z[t] =
{
z1[t], z2[t], . . . , zr[t]

}
represents the activity of nodes in the Implicit network at

time t. W = (wij) is the implicit associations between node i and j, and g is a non–linear

function. The nodes in the Implicit level are linearly linked to the corresponding (concept-

wise) nodes in the Explicit level. Once the Implicit network converges or a time–limit is

reached, the information is sent to the Explicit level based on the following equation:

y[bottom-up ]i = (k2i)−1.1
r∑

j=1
fj:izj (2.3)

where, y[bottom-up] i =
{
y[bottom-up] 1, y[bottom-up] 2, ..., , y[bottom-up] m

}
is the bottom–up acti-

vation of the Explicit right layer nodes. zj represents the activation of node j in the

Implicit–level. k2i is the number of Implicit–level nodes (in z), which are connected to
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y[bottom-up ]i (k2i ≤ r) and F = (fij) is a weight matrix that connects the distributed Implicit–

level representations to their corresponding Explicit right layer representations.

In the next step, each y[bottom−up]i integrates with the corresponding nodes in the Explicit

right layer based on the following equation:

ySi = Max
[
yi, λ× y[ bottom-up ]i

]
(2.4)

where, ySi = {y[ S ]1, y[ S ]2, ..., y[ S ]m} is the integrated activity in nodes on the right side of

the explicit level, and λ is a scaling parameter for determining the degree of being implicit

in the task processing.

If the activity of one node in the explicit level is more than the EII threshold (ψ), then

the corresponding concept to that node suddenly comes into consciousness and is known

as insight. If the activity of more than one node passes the threshold, the node with the

highest activity is selected as the output solution. The activity of this node is considered as

IAL (Internal Activity level). Otherwise, a new iteration starts and before starting the new

iteration, the activity of the right layer of the Explicit is sent back to the left layer and the

activity of the Implicit level is kept and added to the bottom–up integration during the next

iteration. By having the Uncertainty module in the TCP model, there is no need for using

the Boltzmann distribution as stated in Section  1.1.2 . In other words, in the TCP model,

the activity of nodes in the Explicit EII are directly compared with the EII threshold.

Implementing the Uncertainty Module

The Uncertainty monitoring module (adapted from Atiya, Rañó, Prasad, et al. [ 49 ])

has two functions: measuring the overall uncertainty of all possible solutions and change–

of–mind. As shown in Figure  2.1 , the Explicit EII sends excitatory signals to the Inhibitory

neural population of the Uncertainty monitoring module. The activity of the Inhibitory
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neural population is coordinated with the overall activity (confidence) of solutions in the

Explicit EII based on the following equation:

y[inhibition] = β
m∑

j=1
ySj, (2.5)

where y[inhibition] is the activation of the Inhibitory neural population. β is a constant pa-

rameter, which may be different in each individual and affects the involvement of internal

confidence. m is the number of nodes in the right layer of the Explicit EII. Because of

the inhibitory connection between the Inhibitory and Uncertainty neural populations, the

higher (lower) overall confidence in the Explicit EII results in lower (higher) activity in the

Uncertainty neural population. It should be mentioned that the Uncertainty neural popu-

lation also receives a constant tonic excitatory signal to prevent the network from a floor

effect. The activity of the Uncertainty neural population is calculated by using the following

equation:

y[uncertainty] = −θ × y[inhibition] + y[tonic], (2.6)

where y[uncertainty] is the activation of the Uncertainty neural population, θ is a constant

parameter that shows the effect of the inhibitory population on uncertainty, and y[tonic] is a

positive parameter to prevent a floor effect.

The overall uncertainty can lead to change–of–mind. Change–of–mind is implemented

by feedback loops from the Uncertainty neural population into the solutions in the Explicit

EII. The Uncertainty neural population sends equal but noisy excitatory signals to each

solution in the Explicit EII. This feedback signal changes the activity of the solutions, which

may result in having the highest activity in a solution that was not selected before (change–

of–mind). The following equation shows how change–of–mind happens:

ySi = ySi + γ × y[uncertainty] +RN(µ, σ2), (2.7)

where ySi is the current activation of the solution ‘i’ in the Explicit EII, γ is a constant

parameter that determines the effects of the uncertainty population on the Explicit EII. The

RN function produces normal random noise with a mean µ and variance σ2 (noise). By
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applying Equation  2.7 , activity of all solutions (ySi) is updated (each solution is assigned to

each node). This update may change the order of solutions based on their activity. Therefore,

a different solution might now have the highest activation, passes the EII threshold, and be

selected as the output of the EII. In this model, we should note that the required knowledge

(Explicit left nodes) and solutions (Explicit right nodes) are finite. We assumed the EII

model passed the preparation stage. As a result, unrelated knowledge, solutions that are not

accessible during the limited time of meetings, and solutions that are not useful are removed

from the representation of the problem.

Implementing the Speech Module

Finally, there is a Speech module. This module is inspired by the motor module that

is described in Section  1.2.1 . It determines if the subject talks about her solution in the

meeting or prefers not to talk. When a solution in the Explicit EII is selected (pass the EII

threshold), then the associated node in the Speech module receives activity of the selected

solution (Internal Activity Level (IAL)) based on the following equation:

y[SiSpeech] = ζ × IALi, (2.8)

where y[SiSpeech] is the activation of the node in the Speech module, which is associated with

the EII’s selected node, ζ is a constant parameter that determines the relation between

internal confidence (Activity) and external confidence (the confidence that the agent shows

in the meeting). y[Sselected] is the activation of the selected node in the Explicit EII.

If the activity of a solution in the Speech module passes the Speech threshold (αm), then

the agent becomes confident enough to talk in the meeting and shares her solution and IAL

to other agents (more detail in Section  1 ). Otherwise, the agent is silent in the meeting

although she has found a solution to the problem. In the case of having several solutions

above the Speech threshold, the agent talks about all of these solutions consecutively.
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Modeling Communication Networks, Weights, and Updates

The next step is modeling the processes that are related to a meeting. In a meeting, each

team member takes a turn and based on Algorithm  2 , sends her solution and confidence in

the form of a normal distribution to other team members. In other words, each message

between two agents contains two values: a mean and variance. These two numbers let the

receiver generate a Normal distribution based on the sender’s distribution. Each receiver

agent updates her own confidence immediately after receiving the new information. In other

words, the agent pulls her distribution towards the weighted solution of other agents.

input : N(µagent, σ
2
agent)

output: N(µupdated, σ
2
updated)

if The agent’s turn to talk in the meeting == True then
The agent sends N(µ, σ2) to all other agents.

else
#The agent receives a distribution and updates hers in two steps:

1- Adjusting the received distribution based on the weight of the connection

from the sender:

µadj = (σ2
sender ∗µwsender−>receiver

+σ2
wsender−>receiver

∗µsender)/(σ2
sender +σ2

wsender−>receiver
)

σ2
adj = (σ2

sender ∗ σ2
wsender−>receiver

)/(σ2
sender + σ2

wsender−>receiver
)

2- Updating the Agent’s mean and variance based on the adjusted distribution:

µ
updated=(σ2

adj∗µagent+σ2
agent∗µadj)/(σ2

adj+σ2
agent)

σ2
updated = (σ2

adj ∗ σ2
agent))/(σ2

adj + σ2
agent)

end

return N(µupdated, σ
2
updated)

Algorithm 2: The algorithm of sending and receiving of information in a meeting by

an individual agent
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In more detail, normal distributions and Bayesian inference are used to encode and inte-

grate trust, input, and output of an individual agent. solution and inverse of confidence (ac-

tivity of the solution node in the Speech module (Cm))  

2
 are the mean and the variance of the

normal distribution 

3
 : N (µ = Sselected, σ

2 = f(Cm)). f is a function that translates confidence

into variance. Cm is confidence of the agent. There is an inverse relation between confidence

and variance or in other words, a large variance indicates a low degree of confidence and a

small variance indicates a high degree of confidence. Weights on the communication network

are considered as priors and they represent trust or the influence of the sender agent (i)

on the receiver agent (j) before transferring the information: N
(
µ = S[guess], σ

2 = f(C[ij])
)
.

C[ij] is related to the influence of agent i on agent j. Each weight shows that the receiver

predicts the sender’s solution S[guess]. In most cases, this prediction (S[guess]) or bias is equal

to the sender’s solution, however, in the case of miscommunication this prediction is different

from the sender’s solution. C[ij] is the inverse of the variance of the weight between agent i

and agent j, and it shows the influence of the agent i on agent j.

2.1.2 Architecture of Communication Networks

As presented in Section  1.2.2 , there are different architectures for networks of communi-

cation. These architectures may have significant effects on the outcome of a team. In the

TCP model, a fully connected network is considered (e.g. a meeting in which all members

can communicate with all other members). Figure  2.3 presents a fully connected network

between three agents. As can be seen, the EII module receives the input and the Speech

module manages the output.

In this model of communication, weights are directional and they show social influence.

In other words, they are the degree of change in the receiver’s output after listening to the

sender’s opinion.
2

 ↑ Cm is ysi when i is the selected solution in the speech module.
3

 ↑ For simplicity, this research only considers normal distributions.
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Figure 2.3. A fully connected communication network for a team of size three.
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2.2 The Relation of the Proposed Model with Previous models

This section briefly explains how the proposed model is related to the previous models

that are presented in Chapter  1 .

Explicit–Implicit Interaction model (Section  1.1.2 ): the EII module is the core processing

module of the TCP model. It simulates all processes that are involved in individual creative

problem solving.

Bayesian Inference (Section  1.2.1 ): input, output, and weights (priors) are presented by

normal distributions and integration of these distributions is based on Bayesian inference.

Neural circuit model (Section  1.2.1 of Chapter  1 ): the main architecture and algorithm

of the proposed model are adapted from the neural circuit model. Similar to the circuit

model, the TCP model consists of three modules with similar goals. Since the circuit model

is compatible with cortical circuits (Section  1.2.1 ), the TCP model also partially represents

biological circuits in the brain.

Communication networks (Section  1.2.2 ): a fully connected network is the most gen-

eral architecture of networks. A fully connected network can easily be modified to other

architectures by using ineffective weight values.

2.3 Discussion

This research aims to build the TCP model for human interactions and influence in

the context of creative problem solving. The TCP model is formulated in terms of agent

communication and influence. It is not meant to constitute a new individual creative problem

solving model. We use the EII model in our work to obtain the output of an agent’s problem

solving process when it is performed in isolation. We then apply our proposed interaction and

influence model to determine how team members agree on known solutions or identify new

ones. the EII model underlies the individual processes in TCP, any features or limitations

associated with the EII model are correspondingly transferred to the TCP model. As stated

in [  10 ], the simulations by EII focus on incubation and insight and are not on fine-grained

modeling of the tasks. Similar to these simulations, the TCP model assumes the preparation
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stage is complete and simulates the processes of incubation and insight. The consequence of

this assumption is that all solutions in EII are finite, relevant, and useful.

The TCP model assumes that a latent one-dimensional Normal distribution represents

an agent’s identified solutions. The solutions reside on a one-dimensional continuum, and

can be ordered based on this dimension. If we have more than one group of independent

solutions, a Multivariate Normal distribution is required in the modeling of solutions.

Although the output of the TCP model can differ from the outputs of the team members

when they work in isolation, the underlying thinking process belongs more in the category

of convergence rather than divergent processes. The solutions in EII are relevant, and the

only possible outputs for the TCP model. Although some of these solutions may not be in

the consciousness of any of the team members, the TCP model processes may lead to one of

these solutions.

The parameters used in the TCP model were successfully used in previous research

to model individual creative problem solving, uncertainty, change of mind, influence, and

decision-making in a judgment task. Therefore, we assume that the parameters in the TCP

model are relevant for capturing the essential characteristics of the type of cognition that we

aim to simulate. We proceed to demonstrate in the next chapter that these parameters are

adequate for replicating the results of three experiments and making additional predictions.
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3. SIMULATION AND ANALYSES

This chapter presents four simulations that were implemented based on the TCP model.

The first three simulations reproduce the results from human-subject experiments. The last

simulation makes predictions on team performance. The general setup of these simulations

is provided in Section  3.1 . Our use of the simulation model to investigate the effects of

emotions (Section  3.2 ), personality (Section  3.3 ), industrial organization factors (Section

 3.4 ), and team size (Section  3.5 ) on team creativity are described in the remaining sections

in this chapter. The first simulations (Sections  3.2 ,  3.3 , and  3.4 ) involve the comparison

of the outputs of the simulations to the corresponding human-subject experimental results.

These experiments were selected because they capture team creativity in terms of both team-

level and individual agent-level characteristics. The first experiment focuses on changeable

characteristics of agents (e.g., happiness), and the second studies fixed characteristics (e.g.,

extroversion). The third experiment investigates team characteristics relating to communi-

cation (e.g., vision or discussions with individuals outside of a particular team). These three

experiments ultimately enable us to test the TCP model with respect to different types of

parameters at different levels.

3.1 Setup of Simulations

3.1.1 Description of Agents and Team Formation

All simulations in this chapter share the feature of individual agents who first solve

a problem in isolation and then later form teams in which they can communicate with

one another to identify solutions. This shared feature in the simulations motivated our

decision to perform the simulations by generating a single pool of 6440 agents with random

characteristics and then grouping them in teams across the different simulations.

To generate random agents, we focused on three main characteristics, which involve all

three modules of an individual agent: the ability to find solutions, the ability to talk and

share solutions in meetings, and the possibility of change of mind in isolation. The following

parameters in an individual agent affect these characteristics and are selected in random:
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the connections between the left and right layers of the EII (which determine the solution

that an agent finds), the EII threshold ψ (which determines the minimum confidence the

agent needs to bring a solution into consciousness), Speech threshold (which determines their

ability to speak in a meeting), and Uncertainty feedback (which determines their frequency of

changing their proposed solution). All these parameters are selected at random to produce

agents with different random characteristics. The specified ranges used for choosing the

parameters are described on Table  3.1 alongside all other parameters of an individual agent,

which are fixed to facilitate the simulations. Only randomly selected parameters are used

to define differences in agents. These parameters are selected to affect every module of an

individual agent: 1- The parameters that are related to problem representation and the

required confidence for having a solution in consciousness. 2- The parameter that affects

the change of mind. 3- The parameter that influences the frequency of talking in meetings.

To facilitate simulations, we selected fixed values for the rest of the parameters. Agents

share similar characteristics in those parameters. For example, the degree of involvement

of implicit processes in problem solving, which is controlled by the parameter β is fixed for

all agents. The values of these parameters are either selected by using previous simulations

of the EII model in Hélie and Sun [  10 ] and Calic and Hélie [  39 ] or by trial and error. The

histograms of the Speech and EII thresholds are provided in Figures  3.1 ,  3.2 .

3.1.2 Team Communication and Collaboration

Once teams are generated, the objective of our algorithm for team communication and

collaboration is to simulate the dynamics of problem solving among the team members in

a series of team meetings. The performances of the individual team members and the en-

tire teams for solving randomly generated representation of problems will be obtained. The

ultimate outcomes of interest are the performances of the teams. Finally, the results are cat-

egorized based on the requirements of each experiment and analyzed. Detailed information

on these steps are provided in the remainder of this subsection.

This algorithm proceeds along three major steps. The first step occurs prior to any

meeting, and just involves actions of the individual team members. The second major step
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Table 3.1. Parameters used for generating an individual agent.
Parameter Value

EII-Explicit Right nodes count Uniform(2,20)
EII-Explicit Left nodes count Uniform(2,10)

vij Bernoulli(0.1)
EII threshold (ψ) Uniform(0,1)
Speech Threshold ψ + Uniform(0, 0.1)

EII-Implicit nodes count 500
EII-Implicit nodes associated to EII-ExplicitLeft 400

λ 0.4
λr 0.75
δ 0.4
xi 0.4
η 0.4

EIIImplicit-spines-learning 0.4
EIIImplicit-spines-recall 0.4

EIIImplicit-learn-iterations 0.4
EII-timeLimit 100

β 1
θ 1
ζ 1
µRN

0
σRN

Uniform(0, .1)
γ 1

y[tonic] EII-Explicit Right-nodes count
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Figure 3.1. Histogram of the values that are added to the EII threshold to
generate the Speech threshold for our simulations (The speech threshold is the
summation of the EII threshold and a randomly generated value.)
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Figure 3.2. Histogram of EII threshold parameters.
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captures the interactions of the team members in their meetings. The final outcome variable

of interest is defined in the final step. Before the first team meeting, a problem is assigned

to each team and the team members work on the problem individually. The problem is the

same for all team members, however the agents use different representations of the problem

Sternberg [ 64 ]. In other words, the number of nodes in the Explicit right and left layers are

the same for all team members, but the connections between left and right layer (explicit

rules) are different, which provide the agents with different representations of the problem.

In more detail, the simulation of each problem is performed by means of the EII system

(Section  2.1 ) and consists of two parts: knowledge and solutions. Each piece of knowledge

in our problem simulation is represented by a node in the left layer of EII, and each solution

is represented by a node in the right layer (Figure  3.3 ). The number of left and right nodes

are randomly generated. Although agents may have different rules, knowledge, and solutions

in general, to facilitate our simulations we assume all the knowledge that agents require for

solving a problem are available in the problem itself. Thus, the left and right layers of the

EII will be the same for all agents for a single problem given to them, all the nodes in the left

layer will have the same numerical value of “1”, and the connections between the left and

right layers will differ across agents because the agents’ rules may differ. Consequently, some

solutions may not be accessible for some agents. The individual agents’ solutions are obtained

by executing the EII system. We represent the output of an agent as a Normal distribution

with mean corresponding to the solution number and variance corresponding to the inverse

of the activity or confidence in the solution. Two agents whose output means are the same

are said to have identified identical solutions. Our selected representation of a problem in

our algorithm is compatible with the definition of problems given by newell1959, namely, as

initial state (knowledge), final states (solutions), and the rules used by the problem solver

in identifying a path to a final state from the initial state. The network of Explicit EII is

more similar to a semantic network than a neural network. Accordingly, we assume that

each node represents a concept without focusing on having a precise concept definition.

It should be noted that the scope of the TCP model is limited by only allowing the

simulation of solutions that can be ordered by a shared meaning. For example, in the

problem of sharing a new space between an owner of an ice-cream shop and a bakery, the
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solutions can start from entirely favoring the ice-cream shop owner to entirely favoring the

bakery shop owner:

1. All the new space is given to the ice-cream shop owner.

2. The new space is given to the ice-cream shop owner, but she put shelf and sells bakery

products.

3. The shop is given to the ice-cream owner in six warm months and the bakery in 6 cold

months.

4. The new place is given to the bakery, but they put a fridge and sell ice cream.

5. All the new space is given to the bakery.

Another example of an ordered solution is as follows. Many smartwatches face battery

charging problems. They need to be charged a few hours every day that stops the owner

from having a complete record of her activity or sleep. It can make the report ineffective or

useless in some cases. The solutions to this problem range from entirely depending on the

owner to entirely depending on the company:

1. The owner for charging the battery needs to find a time that is not affecting her per-

formance (e.g., the owner charges the watch whenever she sits and uses her computer).

2. The company bans battery demanding software (e.g., the software that use vibration);

now the battery will last for a few days, but the owner cannot use some software.

3. The company adds more powerful batteries to the watch that can work for a week;

then, the owner does not need to charge the battery frequently.

4. The company needs to develop a new series of batteries that can be charged by hand

movement. Therefore the owner does not need to charge the battery.

When agents in TCP talk to each other or pull each other’s solutions toward their own

solutions, they may stop on solutions that were not accessible to any of the team members

at first. Furthermore, all solutions in the Explicit right layer of EII have some degree of
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creativity (we assume the preparation stage passed and relevant and useful solutions have

remained in the incubation stage). Therefore, we argue that the TCP model is more than

a consensus model. In addition to being a consensus model, it provides the team with the

possibility of identifying creative solutions that were not available to any team members at

first.

In the series of meetings that follow the first major step, all team members will join team

meetings and share their individual solutions and confidence levels for their solutions. They

will also further communicate about the problem with one another. During these meetings

the team members can potentially change each other’s proposed solutions and confidence

levels for the newly selected solutions. Algorithm  3 formally describes the procedure taken

by the team members when they join the meetings. In this procedure, each agent will

send the mean and variance of her distribution to the other agents, which corresponds to

communication about the solution. The other agents will receive the means and variances

and update the mean and variances of their respective Normal distributions. The meeting is

concluded once all agents have spoken. We assumed that agents do not work on the problem

between two meetings. If no solution is identified by the team members in the first meeting,

then they will not have any additional meetings, and it will be recorded that the team had

only one meeting. Otherwise, the team will continue to have new meetings until all agents

come to a consensus and select the same solution. The chosen solution is then removed from

the right layer and the process is repeated for the same problem to identify new solutions.

We place an upper limit of 20 on the total number of team meetings, irrespective of the

number of solutions. It should be noted that the order of agents’ talks remains the same in

all meetings, i.e., the agent who talks first in the first meeting will also talk first in the rest

of the meetings.

The weights of the connections between agents is a normal distribution with randomly

generated variances. We assumed that agents do not have bias and difficulty in understanding

each other, therefore the mean of the weight is the same as the mean of the sender. The

variance or trust between the two agents is generated randomly from a Uniform distribution

in the range of 0 and 1. The histogram of the weights that are used in one simulation is

provided in Figure  3.4 
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Figure 3.3. Illustration of the EII system used to simulate the problems
that are assigned to the team members. Connections from the left to right
layers represent rules that enable one to determine which piece of knowledge
(left nodes) will lead to which solution (right nodes). Identifying each solution
requires some specific knowledge. The right layer node’s number with the
highest activity becomes the mean, and the inverse of the node’s activity is
the variance of the normal distribution.
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Figure 3.4. Histogram of the variance of the weights between the agents.
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Each simulation used a different team with randomized agents and problem representa-

tions. The individual simulation results were averaged. Therefore, the model is not limited

to specific team members’ characteristics and representations of problems. This ensures the

generalizability of the results.

The final outcome variable for a team is the summation of the non-negative creativity

scores of the solutions that the team members identified. We assume all solutions in EII

passed the preparation stage, and as result, only related and useful solutions have remained

in the incubation stage. The solutions are assumed to be equally related and useful. There-

fore, novelty is the determining factor for creativity. Novelty falls on a continuum and is

determined by the rarity of the solution. We assign creativity scores to the different possible

solutions based on the idea described in Calic, Hélie, Bontis, et al. [ 11 ] that less obvious or

less accessible solutions often correspond to higher creativity. In our algorithm, solutions

that have fewer connections will be less likely to be selected. We take the average of the

number of connections to each solution for all agents in the team, and calculate the reverse

ranking of the solutions based on the number of connections. Under this reverse ranking,

the solution with the least connections will have the highest rank. The ranks serve as the

creativity scores of the solutions. Our specified variable will ultimately capture the perfor-

mance for the success of the team. Higher creativity scores indicate better performance.

We first identify appropriate ranges for the parameters’ possible values so as to select a

simulation model that adequately reproduces the results of the kung2018impact experiment.

To choose the ranges, we examined insight problems conducted by helie2010incubation and

calic2018creative. Based on this examination, the upper bound for the number of nodes in

the left and right layers were selected as m = 20 and n = 10, respectively. We then randomly

connected left and right nodes based on the Bernouilli distribution with parameter 0.1, i.e.,

the probability that a left node is connected to a right node is 0.1 and the connections be-

tween left and right nodes are independently generated.
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input : Agents and a problem

output: Total Creativity score

number-of-meetings = 0 ;

creativity–score = 0 ;

while number-of-meetings < 20 do

while At least one agent has a different mean (solution) do
#Meeting starts:

for Agent i ∈ (1, n) do
#Agent i talks and sends her mean(mi) and variance(vi) to all other

agents ;

for Agent j ∈ (1, n) and j 6= i do
#before the agent receives, mi and vj are modified by trust between

agents i and j (wij : (mij, vij))

mreceived = (vi ∗mij + vij ∗mi)/(vi + vij)

vreceived = (vi ∗ vij)/(vi + vij)

#Updating Agent j’s mean(mj) and variance (vj):

mj = (vreceived ∗mj + vj ∗mreceived)/(vreceived + vj)

vj = (vreceived ∗ vj)/(vreceived + vj)
end

end

Increase number-of-meetings by 1
end

creativity–score = creativity–score + score of the agreed solution

#Preparing agents for next meetings:

Remove the agreed solution from all agents

Each agent selects her most active solution as her mean and inverse of the

solution’s activity as her variance.
end

return creativity–score

Algorithm 3: The general algorithm used in simulations for team communication and

collaboration.
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Table 3.2. Sample phrases that subjects in the experiment of Kung and Chao
[ 65 ] were instructed to use to express anger and happiness.

Angry “this offer makes me really angry; “this offer is really getting
Condition I think I will offer. . .” on my nerves! I’m not happy at all.”
Happy “I am happy with this offer; “this offer pleases me much!

Condition I think I will offer. . .” I’m very happy.”

3.2 Analysis of Simulation 1: Effects of Emotions on Team Creativity

Our first analysis utilizes our simulation model to reproduce the results from a human

experiment with respect to the effects of emotions on team creativity. This analysis serves

to validate the simulation model in terms of the factor of emotion.

3.2.1 Description of the Experiment

kung2018impact performed an experiment to study how mixed emotions affect creativity in

groups of two people (i.e., dyads). The experiment involved a face-to-face dyadic negotiation

between two randomly assigned subjects. Prior to the negotiations, subjects were given

negotiation packages that contained instructions for emotional manipulation. Some of the

negotiation packages were randomly selected to instruct the subjects to express happiness

during the negotiations, and the remaining packages instructed the subjects to express anger.

This intervention was applied by means of instructions in the negotiation packages for the

subjects to use phrases such as those in Table  3.2 to express either happiness or anger during

the negotiations.

After practicing their role, the subjects completed a dyadic standardized negotiation task

referred to as the “The Sweet Shop”. In this task, one subject’s role is as the owner of an ice

cream shop, and the other’s is as the owner of a bakery shop. The subjects are tasked to plan

to share a space in a new location. However, there are four core issues involved in the task:

temperature, staffing, maintenance, and design. Two optional issues also exist that must be

resolved by negotiations: website design and delivery plans. Two to five solutions exist for

each of the core issues, and subjects are not prevented from reaching any of the potential
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solutions. Points were assigned to each solution based on the creativity level involved in the

solution, and the creativity performance of the dyad is measured by the sum of the individual

gains for the two negotiators.

The experiment consisted of 105 total dyads: 37 happy-happy subject pairs, 35 angry-

angry subject pairs, and 33 happy-angry pairs. The analysis of the experiment focused on

the comparison of the emergence of creativity in the three different dyad groups against the

zero-sum threshold. The summary of the results in Figure  3.5 indicate that the joint gains in

mixed emotion dyads are statistically significantly higher than the zero-sum threshold. The

other groups did not reach such statistical significance. Furthermore, based on exploratory

pairwise comparisons involving Fisher’s Least Significance Difference Kung and Chao [ 65 ,

p. 7], the authors identified a statistically significant difference between mixed emotions and

happy-happy emotion dyads.

3.2.2 Details of Simulation

The simulation algorithm for this case involves two agents per team who either demon-

strate the characteristics of anger/unwillingness to cooperate, or happiness/easy-going in

negotiation. The agents will try to agree on one solution in a fixed time period. The creativ-

ity score of the solution is be recorded, and the score is zero in the case that the agents do not

agree on one solution. This process is repeated for 644 random dyads who work on distinct

problems. The average score across the random dyads is reported. A problem is different

from other problems in the knowledge it needs for solving the problem and the achievable

solutions. Each agent has her representation of the problem by having different rules or

connections between knowledge and solutions in her mind. Using the random representation

of problems helps generalize the results and does not restrict us to one specific problem.

Model parameters that enable us to simulate anger and happiness in the agents are deter-

mined so as to respect the following two definitions of these emotions given by [p. 4]kung2018im-

pact:

• “An angry negotiator tends to appear tough. Although the display of anger sometimes

elicits more concession from the negotiation counterpart.”
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Figure 3.5. Average joint gains (i.e., average points earned by a dyad) for
each of the dyad groups. The zero-sum threshold is defined so as to distinguish
betwen creative and non-creative dyads. This figure is taken from Kung and
Chao [ 65 , p. 7].
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• “A happy negotiator seems easygoing. The display of happiness can sometimes lead the

counterpart to cooperate, implement the final agreement, and be willing to negotiate

again in the future.”

The two major characteristics of anger in the above definition are “appear tough” and “more

concession from the negotiation counterpart”. Appearing tough implies that an agent will

have a smaller likelihood of changing her mind, or being under the influence of other team

members. This characteristic can be achieved by selecting a large value for the variance of

inward connections, as it makes the output from other team member less impactful on the

angry agent. The second characteristic can be induced in the simulation model by selecting

a small value for the variance of outward connections, as this results in the angry agent

becoming more impactful and having a greater likelihood of changing the mind of the other

team member. Similar to the case of anger, happiness involves two major characteristics

of being “easy-going” and making the counterpart agent “more cooperative”. These two

characteristics can be induced in the simulation model by selecting a small value for the

variance of both inward and outward connections. This is because both agents will have a

higher degree of influence on each other under this situation. Specifically, a small variance

on inward connections encourages the happy agent to quickly change her mind towards

her counterpart’s solution, and a small variance for outward connections similarly pulls the

counterpart agent’s mind more towards the happy agent’s solution.

In this simulation, all the parameter values are similar to the ones explained in Section

 3.1 , the only additional parameters that we need are thresholds on weights’ variances to

determine the following connections (sender-to-receiver): happy-to-happy, happy-to-angry,

angry-to-happy and angry-to-angry agents. These variances are dependent on both the

outward connection from the sender and the inward connection to the receiver. Therefore,

the happy-to-happy connection has a low variance (a happy sender highly affects the receiver

and a happy receiver is highly affected by the sender). Similarly, we have a low variance

for angry-to-happy agents. However, the angry-to-angry and happy-to-angry connections

have a medium variance. By trial and error, we chose the threshold of 0.5 to determine a

low variance and 0.76 to determine a large variance. Variances between 0.5 and 0.76 are
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Figure 3.6. Simulated the results of the experiment by Kung and Chao [ 65 ].

considered as medium. Figures  3.6 summarizes the results of this simulation. The creativity

score is linearly mapped to the range of the creativity score that is used in the experiment

(Figure  3.5 ). As demonstrated in Figure  3.6 , Happy-Happy teams receive lower creativity

scores compared to Angry-Angry teams, which corresponds to the results from Kung and

Chao [  65 ]. The RMSD value is calculated. It is 91.58, which is small in comparison to the

(14000,18000) range of creativity score. Furthermore, we investigate the relation between

agent’s connections to each other and creativity score. The results are provided in Figure  3.7 .

This figure demonstrates that when connections have similar values (i.e., similar variances),

creativity scores are at their lowest values. Furthermore, as the difference between the values

of the variances of the two connections between the agents becomes large, the creativity scores

increase.
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Figure 3.7. Illustration of the relation between differences in connections and
team creativity.
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3.2.3 Discussion

The results of the Kung and Chao [ 65 ] experiment shows that there is a difference between

happy-happy and mixed emotions groups. We suggest that this result is due to the difference

between inward and outward weights. If the weights are more similar, which would lead to

lower creativity scores in Angry-Angry and Happy-Happy teams. Specifically, similar weights

would lead to teams that lack agents who could convince others easily, and hence a great

deal of back-and-forth on ideas that will take time for the teams to conduct. At the end of

such processes, the teams would have agreed on fewer solutions. In other words, both the

Happy-Happy and Angry-Angry teams have similar variances on the connections between the

two agents, which lead to them earning lower creativity scores compared to mixed emotion

teams who have different variances on the connections between the two agents.

3.3 Analysis of Simulation 2: Effects of Personality on Team Creativity

3.3.1 Description of the Experiment

Personality factors are essential for modeling human-like social agents and creating di-

versity in multi-agent systems. It is believed that personality is stable over decades in life

in nearly every setting McCrae and John [  66 ]. One of the most popular theories of person-

ality is the Five-Factor Model Prada, Ma, and Nunes [  67 ]. In this model, people’s specific

behaviors are captured by means of the five dimensions of extroversion, agreeableness, con-

scientiousness, neuroticism, and openness to experience. These dimensions are described as

follows:

• Extroversion can be described as self assured, sociable, and talkative Baer, Oldham,

Jacobsohn, et al. [ 6 ] and McCrae and Costa Jr [ 68 ]. extroverts are comfortable with

expressing their ideas and they do not fear of being criticized by other team members

Thoms, Moore, and Scott [ 69 ].

• Agreeableness relates to the degree to which agents agree, encourage, and assist others

on their term. For example, an agent possessing high agreeableness will agree more

often with other team members, will encourage them, and will perform more actions
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for the benefit of the entire team rather than for herself Baer, Oldham, Jacobsohn, et

al. [ 6 ].

• Conscientiousness refers to both the degree to which an agent is under the influence of

the successful members of her team, and the amount of effort she puts into a task. For

example, an agent with a high degree of conscientiousness is more influenced by her

successful team members and not particularly influenced by the less successful team

members, and she puts more effort into performing a task. High conscientiousness is

associated with a higher likelihood of success Prada, Ma, and Nunes [ 67 ].

• Neuroticism is defined as the extent to which an agent attaches value to negative events

compared to positive events. An agent with a high degree of neuroticism gives more

value to negative events Baer, Oldham, Jacobsohn, et al. [ 6 ].

• Openness to experience can be described as broad minded, original, imaginative and

curious Baer, Oldham, Jacobsohn, et al. [ 6 ] and Costa and McCrae [  70 ]. People with

higher degrees of openness are insightful and they experience unusual thought processes

McCrae and John [ 66 ].

baer2008personality conducted an experiment to study the effects of the five personality

factors on team creativity. The participants in this experiment first completed a survey

to assess their personalities. They were then randomly grouped into teams of size three.

Each team worked on an idea generation task across two sessions in which they were asked

to generate as many creative solutions as they possibly could to different problems in the

sessions. Each subject reported their confidence in their team’s performance after the first

session. The “team creative confidence” score was calculated based on the reports given by

all members of a team. At the end of the experiment, an expert rated the solutions of each

team across both sessions based on the level creativity involved in the solutions. The results

of this experiment in high confidence cases are summarized in Figures  3.8 ,  3.9 and  3.10 .

These graphs demonstrate that generally the teams with high confidence perform better in

the second session if they have more members with high openness, high extroversion, and

low conscientiousness Baer, Oldham, Jacobsohn, et al. [ 6 ]. In addition, these results did
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Figure 3.8. The effect of high openness on creativity of high confidence teams;
adapted from Baer, Oldham, Jacobsohn, et al. [ 6 , p. 270].

not provide any significant evidence for the effects of neuroticism and agreeableness on team

performance in the second session.

3.3.2 Details of Simulation

Some aspects of personality have previously been simulated using the EII model. calic2018cre-

ative conducted a simulation study on the effects of paradox 

1
 on creativity of individuals

with different thinking styles. Each thinking style included some of the personality factors,

and was determined by the degree of integration (i.e., “the search for new and novel infor-

mation”) and differentiation (i.e., “the tolerance of novel ideas”). An individual with greater

integration and/or differentiation is described as being more complex Calic and Hélie [ 39 ,
1

 ↑ Examples of paradox in management are being efficient and effective Van Thiel and Leeuw [  71 ]; being
competitive and also showing cooperation Brandenburger and Nalebuff [  72 ]; making the company profitable
and charitable Hahn, Preuss, Pinkse, et al. [ 73 ], and explore and exploit Andriopoulos and Lewis [ 74 ] and
March [ 75 ]. It is believed that adapting adopting paradoxical frames can increase creative output Calic,
Hélie, Bontis, et al. [ 11 ].
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Figure 3.9. The effect of high extroversion on creativity of high confidence
teams; adapted from Baer, Oldham, Jacobsohn, et al. [ 6 , p. 271].

Figure 3.10. The effect of low conscientiousness on creativity of high confi-
dence teams; adapted from Baer, Oldham, Jacobsohn, et al. [ 6 , p. 272].
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Table 3.3. Three personality factors and their corresponding parameters in
the TCP model. The defined values for small, and large are presented in Table
 3.4 

Personality factor
(high degree)

Implementing in TCP

Extroversion Speech threshold is small. As a result, it is more likely for the agent
to talk and express their ideas in meetings.

Conscientiousness 1- Variance of inward weights from agents who identified high cre-
ative solutions (successful agents) is small. As a result, the agent
is more under the influence of successful agents.
2- The agent has identified solutions with high creativity score. As
a result, the agent is considered as successful.

Openness Adding noise to solutions’ activities of an agent (As the result, the
agent will explore unusual thought processes and it is more likely
for her to identify more creative solutions).

p. ]. The noise level α and the threshold ψ in the EII model were used to control the de-

gree of integration and differentiation respectively. The results from the simulation study

of calic2018creative suggest that paradox is beneficial for integrative simple thinkers, but

that it has negative effects on the creative output of individuals who are intermediate in

integration and low in differentiation.

In this setting, our simulations consist of teams of size three, and the parameters of our

algorithm are specified so as to simulate agents with different personalities. The significant

results of the experiment as shown in Figures  3.8 – 3.10 indicate that we need only to consider

extroversion, conscientiousness, and openness. Due to the complications of showing null

results, we do not consider neuroticism and agreeableness in our simulations. Furthermore,

since the agents in our simulation are always influencing each other, there is always a chance

of change of mind and agreeing on one or more solutions. For this reason, we assumed

our agents are optimistic about team success and therefore they are categorized as high

confidence teams. Now, we proceed to identify the relationships between the TCP parameters

and the personality factors. A summary of our simulation parameters is in Table  3.3 .

Extroversion, or the frequency of interaction, can be controlled by the Speech threshold

parameter. A small Speech threshold corresponds to high extroversion. Specifically, a small

Speech threshold enables an agent to talk with less activity in her Speech neurons, or equiv-
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alently, to talk with less activity in her right Explicit EII. A small threshold also implies

that the agent interacts with other agents even when she is less confident in her solution.

To simulate extroversion, we define high and low degrees of speech threshold. If the Speech

threshold is low (high), then the agent is more (less) likely to talk in meetings and, she will

be considered as a high (low) extrovert agent. The value of high Speech threshold along with

other personality parameters are determined by a grid search and are provided in Table  3.4 .

Conscientiousness is governed by the variance of inward weights from the agents who are

successful in finding creative solutions. Decreasing this variance leads to agents with a higher

degree of conscientiousness because they are more under the influence of successful agents. In

addition, agents with high conscientiousness put more effort into solving a problem, and they

have a higher likelihood of being successful in finding more solutions with high creativity

scores. To simulate these two, we need to define small and large values for variance and

high values for creativity scores. When the selected solution of an agent has a high creative

score, we consider the agent as being successful. To summarize, agents with a high degree

of conscientiousness have these two characteristics: the first solution that the agent has

identified has a high creativity score. Second, the variance of inward weights from successful

agents is small. The values that define small and large variances and high creativity scores

are determined by grid search and are provided in Table  3.4 .

As stated earlier, people with higher degrees of openness explore unconventional solutions.

To achieve this, we add noise to the activity of an individual’s solutions. As a result, the

solutions that are unconventional now have the chance to gain the highest activity and

be selected. To simulate this noise we added a randomly generated value from a normal

distribution with mean 0 and standard deviation of ‘Openness noise’ to each solution’s

activity. This noise increases the likelihood of getting more activity in solutions that are

naturally less accessible (more creative). Each agent has a 50% chance to be selected for

representing high openness. The value of ‘Openness noise’ is determined by trial and error

and is provided in Table  3.4 .
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Figure 3.11. The results of the simulation (solid line) and the experiment
(dashed line) on the effect of high openness on creativity of high confidence
teams.
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Figure 3.12. The results of the simulation (solid line) and the experiment
(dashed line) on the effect of high extrov

ersion on creativity of high confidence teams.
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Figure 3.13. The results of the simulation (solid line) and the experiment
(dashed line) on the effect of low conscientiousness on creativity of high con-
fidence teams.
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Table 3.4. Parameters used for simulating personality factors.
Parameter Value

High Speech Threshold (Used in Extroversion Simulation) > 2.5
High Creativity (Used in Conscientiousness simulation) > 3
Low variance (Used in Conscientiousness simulation) < 0.5

Noise (Used in Openness simulation) Normal(0, 1)

The results of the simulation is provided in Figure  3.11 , Figure  3.12 , and Figure  3.13 .

The Root Mean Square Error for the simulation of openness, extroversion and conscientious-

ness are respectively as follows: 0.37, 0.01, 0.13. As can be seen, the results are generally

consistent with the trend that is observed in the experiment. However, there are some

incompatibilities that we will explain in the following Subsection.

3.3.3 Discussion

The results from openness and conscientiousness are not entirely matching the results

from the experiment. The general trend of the results of the simulations and the experiments

is the same. However, unlike the experimental results, in the conscientiousness simulation,

the mean creativity score of the teams with one member with high conscientiousness is higher

than the teams with no high conscientiousness members. In the openness case, the simulation

shows that teams with two high openness members gain a lower creativity score than teams

with no members with high openness. The experiment shows a reversed pattern in this

comparison. One possibility of these differences is the experiment’s specific condition: high

confidence of team members. We assumed that team members always have high confidence

in the team’s success, because there is always a chance of change-of-mind and agreeing

on solutions with high creativity score. However, in real-world situations, there might be

conditions that people become pessimistic about the performance of teams even when there

is a chance of success. We do not have all the real-world parameters that affect a team

member’s perception of success. The lack of these parameters might be one reason for the

discrepancies in the results. Furthermore, the standard errors of the results of the experiment

are not available. There is a possibility that the simulation results fall inside the acceptable
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range of the results. In future work, we will add new parameters such as an optimism

parameter to the model to make it closer to real-world systems. The other direction of

future work for solving this issue is replicating the experiment and finding the standard

error bars for each data point. It can help us to check if the difference between the results

of the simulation and the experiment is statistically significant or not.

3.4 Analysis of Simulation 3: Effects of Industrial Organization Factors on Team
Creativity

3.4.1 Description of the Meta-Analysis

Interest in understanding the effects of different factors on creativity at work has grown

over the past few decades. hulsheger2009team conducted a comprehensive meta-analysis of

104 studies on this topic. They identified 15 factors of interest. Among these 15 factors,

vision, task orientation, and external communication exhibited a strong positive correlation

with team creativity Hülsheger, Anderson, and Salgado [  76 ]. Similar to the factors in Section

 3.3.1 , these factors are defined based on team behaviors.

• Vision corresponds to an idea of a valued outcome, and a force of motivation at work

West [ 77 ]. In high vision teams, goals are clear to the members of the team. These goals

are perceived as highly valued and attainable. Therefore, team members are motivated

and feel committed to achieve these goals. Vision gives meaning to their work and

motivates team members to increase innovative performance Hülsheger, Anderson,

and Salgado [ 76 ].

• Task orientation or climate for excellence refers to a shared concern among team mem-

bers with the excellence of quality of task performance towards shared outcomes West

[ 77 ]. In the description of this factor, hulsheger2009team noted that teams that are

highly task oriented strive to achieve the highest standards of performance. This may

be the result of regular appraisals of ideas, feedback, and mutual monitoring of team

members. The high task oriented teams reflect upon procedures, strategies and team

objectives. Team members listen and evaluate each other’s work in order to explore

opposing ideas and improve the quality of their decisions.
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• External communication relates to the sharing of information and ideas with people

outside one’s own team or organization. It enables team members to obtain new

knowledge and new perspectives that may lead to the identification of new, creative

solutions Hülsheger, Anderson, and Salgado [ 76 ].

3.4.2 Details of Simulation

Corresponding to the results of the meta-analysis, the objective of our simulation study

in this setting is to demonstrate the existence of the effects of vision, task orientation, and

external communication on creativity. Due to the complications of proving a Null effect, we

do not simulate the parameters with Null effects. In these simulations, We consider teams

of size three, and identify relations between the TCP parameters and the three industrial

organization (IO) factors, to specify our simulation. These relations are described below and

summarized in Table  3.5 .

The following definition of vision: “If vision is high, team and organizational goals are

highly valued, perceived as attainable, and team members feel committed to these goals.”

leads to the assumption in our simulation model that agents who do not share the same

goal will either sit idle in a meeting, have less motivation at work, or produce unrelated

solutions that do not affect those of the other members. In other words, “idle agents” are

those team members who either do not produce solutions, talk in the meetings, listen to other

team members, or who produce unrelated solutions (with corresponding scores of zero). We

simulated lack of vision by turning some agents into idle agents. In more detail, each agent

in each meeting, by 50% chance turns into an idle agent whose mean and variance are neither

affected by the other team members, nor do they change the means and variances of others.

Finally, the creativity score of a team that lacks vision is compared with a similar, paired

team that has no idle agents or have a normal degree of vision.

“Task orientation” as defined in our simulation algorithm relates to the agents’ attempts

in increasing task performance quality. This is achieved by having more effective communica-

tion among agents. We directly incorporate this into our simulation via the amount of noise

in the communication networks. Specifically, we added Normal(0, 1) noise random variables
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Table 3.5. Industrial Organization (IO) factors and their corresponding pa-
rameters in the TCP model.

IO factors corresponding parameter in the TCP model
Vision idle agents
Task Orientation noise in communication networks
External Commu-
nication

one or more agents participate in the external team’s meetings
as a member and then participate in their original team’s
meetings

to both the means and variances of all agents participating in the meeting. If after adding

noise, the mean becomes zero, then the mean is modified to the largest solution number and

if the mean becomes greater than the largest solution number, then the mean is modified

to zero. The addition of noise in our simulation leads to low task oriented teams, which

we then compare to their respective similar, paired teams that have normal task orientation

without any noise in their communication network.

The final factor of external communication is straightforward to incorporate into the

simulation algorithm. First, we create a three member team to work on a problem. We

call this team the original team. Then, before the start of the meetings, each team member

joins another team with two new random members to work on a similar problem. These

teams are considered as external teams. The external teams are similar to the original team

in algorithm and parameters, only they differ in team members (one member is the same

and two members are different). After the external teams finish working on the problem,

the original team members come back and form a team. Due to participation in external

meetings, the team member’s mean and confidence may have been changed. Then, the

original team works on the problem based on the algorithm and parameters that are explained

in Section  3.1 . Finally, we compare the results of these teams with their respective similar,

paired teams that did not have external communication.

3.4.3 Results

The results of the simulation for vision, task orientation and external communication are

analyzed by using nonparameteric bootstrap because the sample of paired differences are not
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Table 3.6. 95% confidence intervals of the expected differences in the cre-
ativity scores between the teams who lack the IO factor and those who have
normal IO factor levels.

IO factor Confidence Interval
Normal Vision - Low Vision (12.93, 16.41)

Normal Task Oriented - Low Task Oriented (27.45, 32.52)
With External Communication - Without External Communication (5.75, 13.83)

Normally distributed. As such, we utilize the nonparametric bootstrap Efron [  78 ] and Efron

and Tibshirani [  79 ] to perform inferences on the mean of the paired differences. We sampled

105 elements from the data with replacement to build the distribution. Specifically, from

the built distribution, we create the 95% nonparametric bootstrap confidence interval for

the mean of the paired differences based on the 0.025 and 0.975 percentiles of the bootstrap

distribution of the paired differences. Statistical significance is determined by checking to

see whether 0 lies within the interval.

Table  3.6 summarizes the results of the simulations. None of the 95% confidence intervals

in this table contain 0. This implies that we have statistically significant evidence at the

α = 0.05 level that vision, task orientation, and external communication have effects on

team creativity.

3.4.4 Discussion

The results of the simulation show that the TCP model is capable of simulating ex-

perimental data on vision, task orientation and external communication. Furthermore, the

simulation shows that the effects of low degrees of vision , low degrees of task orientation,

and lack of external communication are negative on team creative performance.

To explain how these results are observed, we focus on the effects of each interference.

In the low vision simulation, idle agents deprive the team by refusing to offer their solutions.

Therefore, a high confidence agent pulls other agents’ opinions toward her own opinion, but

it may not result in consensus on the solution. In the next meeting, she may become idle,

and another agent will start to convince people; therefore, the previous meeting is wasted

and does not result in an agreed solution. Therefore, it is likely that it takes more time for
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the team to agree on one solution, and the total creativity score is negatively affected. In

teams with low task orientation level, noise in the communication network affects both the

variance and the mean. As the result, there will be changing solutions and confidence of

team members. If an agent is confident about one solution and pulls other peoples’ opinions

toward that solution, in the next meeting, she may have another solution and will no longer

convince other people on her original solution. This behavior increases the probability of

pulling back and forth between solutions and having difficulty on agreeing on one solution.

Therefore, the total creativity score is negatively affected in teams with low task orientation.

In the external communication case, the agents who participated in external meetings may

have an exceptionally high degree of confidence in their identified solutions because they

would have already worked on the problem in the external team. This may result in very

confident team members who are able to convince other team members easily, so the team

is likely to produce more solutions at the conclusion of the simulation.

3.5 Analysis of Simulation 4: The Effects of Team Size on Team Performance

Our fourth analysis is used for predicting the effects of team size on creative problem

solving. We perform this analysis based on a simulation of an organizational meeting. The

set-up and parameter values are described in Subsection  3.1 . The simulation commences

with teams of size three and continually increases to teams of size 10. The result for each

team size is calculated based on the average of the 644 simulations.

Figure  3.14 summarizes the results of the analyses for this simulation. As demonstrated

in this figure, teams of size 5 have maximum creativity on average. Furthermore, creativity

continually increases on average as a function of team size until size 5, after which the

creativity decreases and essentially stabilizes in a small range of creativity values.

3.5.1 Discussion

The result shows that there is not a monotonic effect of team size on creativity. One pos-

sible real-world explanation for this result is that increasing the team size may be beneficial

up to a certain point, as new ideas will be brought and discussed in an effective manner by a
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Figure 3.14. The relation between team size and creativity. The creativity
score on the y-axis corresponds to the average creativity scores of the teams
across the 644 simulations.
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moderate number of team members during the meetings. However, after a critical threshold

on the team size is reached, the many ideas that would be discussed in the meeting would

entail the agents to go back and forth on different potential solutions, consequently makes

it more difficult to reach a consensus.

These results agree with previous studies by Hülsheger, Anderson, and Salgado [ 76 ],

Anderson and King [  80 ], and Stewart [ 81 ] on the positive effect of team size on creative

problem solving. Ultimately, the results of the last simulation study suggest that the positive

effects identified in the literature may exist only to a certain team size, and that larger teams

after the critical team size may not be as effective.

80



4. DISCUSSION

This chapter first, in Section  4.1 , provides a summary of the TCP model and the four

simulations that are performed in Chapter  3 . Then, in Section  4.2 , the advantages of the TCP

model and the limitations associated with using this model are discussed. Afterward, the

implications of the TCP model is provided. Finally, Section  4.4 states the future directions

on developing and using the TCP model.

4.1 Summary

This research introduces a new model of multi-agent creative problem solving. This

model is inspired by previous models of creativity, uncertainty, change-of-mind, influence,

and communication. The difference between the TCP model and these previous models is

discussed in the following Subsection.

For testing the TCP model, we considered three categories of parameters: 1- changeable

characteristics of individuals such as emotions 2- fixed characteristics of individuals such

as extroversion 3- characteristics related to team dynamics such as vision, and external

communication. The results from the three first simulations in Chapter  3 show that the

TCP model is capable of simulating all of these characteristics and produce results that are

similar to human subjects’. The fourth experiment in Chapter  3 makes a prediction by using

the TCP model. It predicts that on average, teams of size 5 achieve the highest creativity

score compared to smaller or larger teams. It should be noted that the problems in TCP

were presented in an abstract form, and this abstract form can represent problems with a

continuous problem space.

4.2 Advantages and Limitations

The TCP model is different from previous models in both individual and team–level

characteristics. Unlike the previous models, the underlying processes in the TCP model

benefit from the EII theory. In our implementations, similar to simulations in Hélie and Sun

[ 10 ], only incubation and insight stages are considered. Based on EII theory, other stages
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of creative problem solving can be added to the EII module in future work. Furthermore,

the TCP model uses probability distributions for describing the weights of the connections

between agents. It allows the model to effectively capture the uncertainty that naturally

appears in human communications and use Bayesian inference concepts in modeling social

influence, trust, and bias. Moreover, using biologically motivated models of Bayesian com-

munication, uncertainty, and change–of–mind potentially makes the TCP model close to the

processes in the brain and leads to a more accurate model of human problem solving. One

other characteristic of the TCP model is separate subsystems. This allows the TCP model

to go further than a model for problem solving by substituting the EII module with the

desired model of a cognitive process such as decision making.

Along with the advantages of using the TCP model as explained in the previous para-

graph, there are some limitations. First, this model uses only a few parameters to represent

different real-world systems’ characteristics and structures. The abundant number of pa-

rameters that can affect social communications can decrease the accuracy of the results that

this model produces. Secondly, for modeling social interactions on a large scale such as a

million-user social network, the TCP model becomes overly complex (It should be noted

that reducing the complexity of the TCP model may decrease accuracy sharply and may

not be appropriate). Furthermore, The solutions in the TCP model are described continu-

ously: there is an assumption that solutions with close assigned numbers are more similar

to each other. This type of modeling may not be appropriate for describing the independent

solutions from each other. In those cases, multi-variate Normal distribution or putting an

independent solution far from other solutions in tails of a Normal distribution can be used

for describing different independent groups of solutions, which is not implemented in this

version of the TCP model.

One other limitation in simulations of this research is using parameter values that may not

fully capture the characteristics of humans. For example, we used fixed values for weighting

the transferred activity from the EII module to the Uncertainty module. These values surely

are not be fully capturing the characteristics of a human subject. Furthermore, uniform and

normal distributions are used for producing random numbers. These distributions may not

be the appropriate distribution for producing real-world phenomena. New human subjects
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experiments need to be done for understanding these phenomena and using more accurate

values for the parameters of the TCP model.

4.3 Implications

One important application of the TCP model is in organizational management. The

TCP model can suggest the most effective use of resources such as the number of people

in a team or a communication structure to reach the desired level of creative output. Also,

the TCP model can be used in human resource sections of organizations by specifying the

personality and other characteristics of an applicant that matches most with other team

members, structure, and organization’s goals.

Another application of the TCP model that we briefly discussed is using the TCP model

as a human communication model. It can be achieved by replacing the subsystems related

to problem solving with a cognitive model of interest. Since human communication models

are popular in many fields such as Information Theory, Social Psychology, and Robotics, the

TCP model can be used in these fields too. For example, in building swarm robots, the TCP

model can be used in robots’ communication algorithms.

The TCP model also can be used in interactive computer programs. Many modern

programs communicate with users and try to show human–like behavior. A TCP model

in programs can simulate the coder’s behavior based on her specific characteristics such as

personality factors and adjusts the program interactions based on the user’s needs. For

example, the program first takes a personality test from the coder. Then, it simulates a

series of meetings of problem solving with an agent with similar personality characteristics.

By doing this simulation, the program can guess the timing (meeting number) for suggesting

a solution that leads to the highest creativity.

4.4 Future work

The future work on the TCP model can be directed in two main ways. The first one is

developing the model and performing more accurate simulations. The second direction is
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using the TCP model in predicting team performance in different scenarios. The following

paragraphs provide information on these two directions, respectively.

In future work, we can add learning to the TCP model. One possible types of learning

is over all the sessions of meetings. Currently, the bias and trust of team members in each

other are constant in all meetings. Reinforcement learning can be used to modify these

parameters when agents learn more about each other. For example, trust in team members

who frequently generate highly creative solutions will increase over time.

The TCP model uses parameters for quantifying uncertainty, bias, change-of-mind, per-

sonality factors, etc. Some experiments are previously done that can help us in guessing

the appropriate values of these parameters. However, the exact values of many of these

parameters are still unknown. We used grid search for guessing these parameters. To use

more accurate values, we need to design and perform human-subject experiments to make

more appropriate choices for these parameter values.

The other direction of future work is using the TCP model in simulating and predicting

the effects of different factors on team performance. For example, on the topology of teams,

Bavelas [ 55 ], [  56 ] proposed that teams with the centralized structure are more successful

than decentralized teams in solving less complex problems. They showed that the ‘Wheel’

structure needs fewer messages and can solve problems faster than centralized teams. This

characteristic first can be tested by simulating centralized and decentralized teams and fur-

thermore, the TCP model can be used to evaluate all possible team structures that are not

yet tested on human teams.
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