K-THEORY OF CERTAIN ADDITIVE CATEGORIES ASSOCIATED WITH VARIETIES

by
Harrison Wong

A Dissertation
Submitted to the Faculty of Purdue University
In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Mathematics
West Lafayette, Indiana
August 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF COMMITTEE APPROVAL

Dr. Deepam Patel, Chair
Department of Mathematics

Dr. Donu Arapura
Department of Mathematics

Dr. Kenji Matuski
Department of Mathematics

Dr. Saugata Basu
Department of Mathematics

Approved by:
Dr. Plamen Stefanov

ACKNOWLEDGMENTS

My graduate career was an enriching and joyful time, and I will look back fondly on this privileged period of my life. I would like to thank those that made this time so special for me.

I thank my advisor Deepam Patel for his patience, attention to detail, generosity, foresight, and support. I would also like to thank Donu Arapura for accepting me as a student, guiding me through the graduate program, and putting me on the path that led to this thesis. I thank Kenji Matsuki and Jarek Włodarczyk for listening to me as I struggled to learn algebraic geometry. I recognize Jim McClure and Laszlo Lempert for teaching wonderful courses with great style and precision. I would also like to thank the Department of Mathematics at Purdue for the financial support, and for the many opportunities to teach in a variety of formats. I found teaching and personal interaction with students to be rewarding.

My family, loved ones, and friends gave me tremendous support, sincere encouragement, and good company, and they made the tough times a bit easier. I am inspired by their cheerful and positive attitude, their talents, hobbies, and skills, their love of having a good time, their camaraderie, their mathematical knowledge and enthusiasm, their perseverance, and their genuineness. These special people include Mom, Dad, Adelaide, Angelica and her family, Pockets, Graham, Michael, Dan, Matt, Monte and Paula, Roberto, Jake, and Daniel. Thank you also to all my friends from San Diego. It was always a joy to visit again and pick up right where we left off. Everyone here are amongst the best people I've met, and you all inspire me to be a better person and to discover life.

Finally, as I look towards the future, I would like to thank those who have taught me so much in preparation for a career in industry. I thank the organizers of the IMA Math-toIndustry Bootcamp and my mentors at ITM Twentyfirst for an engaging project. I would also like to thank the NSF for an internship at ORNL. I would like to recognize my mentor Jong Choi at ORNL for his kindness and diligence. I am grateful for all the opportunities I had to learn something new and exciting.

TABLE OF CONTENTS

ABSTRACT 6
1 INTRODUCTION 7
2 BACKGROUND 11
2.1 Notation and conventions 11
2.2 Review of selected topics from category theory 13
2.2.1 Preadditive and additive categories 13
2.2.2 Free preadditive and additive categories 16
2.2.3 Localization of categories 19
2.2.4 Localization of preadditive and additive categories 21
2.2.5 Exact categories 21
2.2.6 K_{0} of an exact category and of an additive completion 22
2.3 Symmetric monoidal structures 23
2.3.1 Symmetric monoidal structure on free additive categories 25
2.3.2 Symmetric monoidal structure on localized categories 29
2.3.3 Ring structure on K_{0} 31
2.4 The Ax-Grothendieck theorem 32
3 ADDITIVE COMPLETION OF VARIETIES AND SCHEMES 34
3.1 Properties of additive completions associated to varieties 34
3.2 A localization of additive completions associated to varieties and schemes 36
3.3 K_{0} of the localized additive completion of varieties and schemes 45
4 DIRECT SYSTEMS 49
4.1 Preliminary setup for proofs in later sections 49
4.2 Direct system of classical K_{0}-theory of varieties 53
4.3 Direct system of categorical K_{0}-theory of varieties 56
4.4 The quotient category $\operatorname{Add}\left(\operatorname{Var}^{n}\right)_{S} / \operatorname{Add}\left(\operatorname{Var}^{n-1}\right)_{S}$ and its K_{0}-theory 58
5 COMPARISONS BETWEEN $K_{0}\left(\operatorname{Var}_{k}\right)$ and $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right)$ 64
6 MOTIVIC MEASURES 67
REFERENCES 75
VITA 77

ABSTRACT

Let $K_{0}\left(\operatorname{Var}_{k}\right)$ be the Grothendieck group of varieties over a field k. We construct an exact category, denoted $\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}$, such that there is a surjection $K_{0}\left(\operatorname{Var}_{k}\right) \rightarrow K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right)$. If we consider only zero dimensional varieties, then this surjection is an isomorphism. Like $K_{0}\left(\operatorname{Var}_{k}\right)$, the group $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right)$ is also generated by isomorphism classes of varieties, and we construct motivic measures on $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right)$ including the Euler characteristic if $k=\mathbb{C}$, and point counting measures and the zeta function if k is finite.

1. INTRODUCTION

Let k be a field. Let Var_{k} be the category of varieties over k; that is, separated reduced schemes of finite type over Spec k. The Grothendieck group of k-varieties, $K_{0}\left(\operatorname{Var}_{k}\right)$, is the free abelian group generated by the isomorphism classes of k-varieties, modulo the subgroup generated by relations

$$
[X]=[U]+[Z]
$$

where $Z \hookrightarrow X$ is a closed immersion and $U:=X \backslash Z$ is the open complement. The fiber product of varieties, with the reduced structure, induces a ring structure, and the unit is the class of Spec k.

Let χ be a function on the isomorphism classes of varieties into an abelian group, such that $\chi(X)=\chi(U)+\chi(Z)$, for all X, U, and Z as above. Important examples of such functions include the Euler characteristic, the Hodge-Deligne polynomial, the Hasse-Weil zeta function, the Kapranov motivic zeta function, and point counting measures. The ring $K_{0}\left(\mathrm{Var}_{k}\right)$ is universal amongst all such functions χ. The Grothendieck ring is also of interest in birational geometry: Larsen and Lunts show a certain quotient of $K_{0}\left(\operatorname{Var}_{k}\right)$ detects stably birational equivalence classes ([1]).

However, the ring structure of $K_{0}\left(\mathrm{Var}_{k}\right)$ is complicated and difficult to understand. For example, Poonen shows $K_{0}\left(\mathrm{Var}_{k}\right)$ is not a domain if the characteristic of k is zero ([2]). If $k=\mathbb{C}$, then Borisov shows specifically that the class of the affine line is a zero divisor ([3]). On the other hand, if k is algebraically closed of characteristic zero, then Bittner ([4]) gives a convenient presentation of the group as generated by classes of smooth projective varieties modulo the subgroup generated by relations $\left[\mathrm{Bl}_{Y} X\right]-[E]=[X]-[Y]$, whenever $\mathrm{Bl}_{Y} X$ is the blowup of a subvariety Y at X with exceptional fiber E. We refer to [5] for an excellent introduction to the above theorems.

As with the case of the Grothendieck group of the exact category of vector bundles, we desire a higher K-theory of varieties. However, there is an immediate obstruction and we cannot proceed as usual: the category of varieties is not exact, let alone additive - there is
no natural addition of morphisms, and while products and coproducts (disjoint union) exist, there are no biproducts. Others have overcome these difficulties and successfully define a higher K-theory of varieties. In [6], Zakharevich defines a object called an assembler and constructs a functor that assigns a spectrum to each assembler. It turns out the category of k-varieties is an assembler, and she constructs a spectrum whose zeroth homotopy group is $K_{0}\left(\mathrm{Var}_{k}\right)$. Campbell takes a similar approach in [7]. He defines the formalism of a SWcategory and adapts the Waldhausen S_{\bullet}-construction to SW-categories. He applies this to the category of varieties and also constructs a spectrum whose zeroth homotopy group is also $K_{0}\left(\operatorname{Var}_{k}\right)$. In [8], Campbell and Zakharevich construct a more general CGW-category which generalize both exact categories and the category of varieties. This machinery is used to show there is a weak equivalence between the two spectra constructed above.

In this thesis, we pursue a different strategy to define higher K-theory of varieties. The key observation motivating our approach is: while $K_{0}\left(\operatorname{Var}_{k}\right)$ is named the "Grothendieck group of varieties", it is not the Grothendieck group associated with an exact category (see Definition 2.2.28). Therefore our strategy is to find an exact category \mathcal{C} such that its Grothendieck group, $K_{0}(\mathcal{C})$, is isomorphic to $K_{0}\left(\operatorname{Var}_{k}\right)$. In this way, we will have access to all the existing K_{0}-theory framework developed by Quillen and Waldhausen (see [9], [10] for a survey). However, as we observed, there are obstructions. The first obstruction is there is no natural addition of morphisms in Var_{k}. The second obstruction is biproducts do not exist. We address these issues by applying the following two universal constructions from category theory. The first construction takes a category and associates to it a preadditive category. This repairs the first problem. The second construction takes a preadditive category and produces an additive category. This repairs the second problem. Both constructions also have universal properties, detailed in Section 2.2.1. We subsequently apply these constructions to Var_{k} and obtain an additive category $\operatorname{Add}\left(\mathrm{Var}_{k}\right)$, which we view with the split exact structure. We note, in $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)\right)$, biproducts split: $[X \oplus Y]=[X]+[Y]$. However, the group $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)\right)$ lacks the desired universal relations $[X]=[U]+[Z]$. To overcome this difficulty, we forcibly make X and $U \oplus Z$ isomorphic by localizing $\operatorname{Add}\left(\operatorname{Var}_{k}\right)$ at a appropriate localizing set S. We put S the smallest set of morphisms in $\operatorname{Add}\left(\operatorname{Var}_{k}\right)$, which

1. contains isomorphisms and morphisms $U \oplus Z \rightarrow X$ given by the open immersion and the closed immersion, and
2. is closed under direct sum and compositions.

Thus, in the Grothendieck group of the localized category $\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}$, we have the desired relation:

$$
[X]=[U \oplus Z]=[U]+[Z] .
$$

To establish some desirable properties of the Grothendieck group of $\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}$, we restrict to working with the faithful subcategory of k-varieties and locally closed immersions. Lastly, we remark the construction is flexible and applies to other categories such as schemes, the category $\operatorname{Var}_{k}^{n}$ of at most n-dimensional varieties, topological spaces, or even sets.

The main results of this thesis are listed below.

1. The localizing set S described above is a left multiplicative system (Corollary 3.2.7). This gives the localized category $\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}$ a more tractable construction, and it follows that $\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}$ is additive (Proposition 2.2.24).
2. There are natural homomorphisms

$$
K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}^{n-1}\right)_{S}\right) \rightarrow K_{0}\left(\operatorname{Add}^{\left.\left(\operatorname{Var}_{k}^{n}\right)_{S}\right)}\right.
$$

induced by inclusion, and we show the cokernel is the free abelian group of n-dimensional birational classes (Theorem 4.3.5).
3. There is a surjective ring homomorphism

$$
\begin{equation*}
K_{0}\left(\operatorname{Var}_{k}\right) \rightarrow K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right) \tag{1.1}
\end{equation*}
$$

(Proposition 5.0.1).
4. If we restrict to zero dimensional varieties over an algebraically closed field, then the surjection in Eq. (1.1) is an isomorphism (Proposition 5.0.3).
5. We construct the following motivic measures on $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right)$.
(a) If k is a finite field, then we construct the point counting measures (Example 6.0.4), the Hasse-Weil zeta function (Example 6.0.7), and compactly supported Euler characteristic given by ℓ-adic étale cohomology (Proposition 6.0.11).
(b) If $k=\mathbb{C}$, then we construct the compactly supported Euler characteristic given by singular cohomology (Theorem 6.0.12).

This thesis is organized as follows. We begin in Chapter 2 with some of the required background from category theory. Topics we review include: the free preadditive and additive categorical constructions, localization of categories, exact categories, (symmetric) monoidal structures, and the Ax-Grothendieck theorem.

Next in Chapter 3, we apply the free additive construction to the categories of varieties and schemes, and study the resulting K_{0}-theory. We also construct the left multiplicative system S described above and form the localization.

In Chapter 4, we consider two direct systems, indexed by dimension, whose direct limits are $K_{0}\left(\operatorname{Var}_{k}\right)$ and $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right)$. We compute the cokernels of the connecting homomorphisms.

In Chapter 5, we compare $K_{0}\left(\operatorname{Var}_{k}\right)$ and $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right)$. We establish the homomorphism in Eq. (1.1) and show it is a surjection. If the base field is algebraically closed, then we show the surjection is an isomorphism in dimension zero. We indicate a possible strategy to prove the surjection is an isomorphism in all dimensions.

In Chapter 6, we recall the definition of motivic measure, and construct the motivic measures listed above.

2. BACKGROUND

This chapter contains the background for this thesis. We begin with some notations and definitions. Next, we proceed to a detailed review of some elements of category theory, with an emphasis on the localization of a category at a multiplicative system and free (pre)additive categories. We continue with some details on how localization of categories and free additive categories respect symmetric monoidal structures. Finally, we record the Ax-Grothendieck theorem for later use.

2.1 Notation and conventions

In this section, we fix notation and recall definitions for use throughout the rest of this thesis.

Notation 2.1.1. 1. If $X \subseteq Y$ is a locally closed subvariety, then $i_{X}: X \hookrightarrow Y$ denotes the inclusion map.
2. (a) If S is a set, then $\mathbb{Z}[S]$ denotes the free abelian group generated by the elements of S.
(b) If \mathcal{C} is a (essentially small) category, then $\mathbb{Z}[\mathcal{C}]$ denotes the free abelian group generated by the isomorphism classes of the objects of \mathcal{C}.
3. Let S be a set (S will usually be a set of morphisms in a category). We shall assume every element f in $\mathbb{Z}[S]$ is written as $\sum n_{i} f_{i}$ in reduced form, meaning $f_{i} \neq f_{j}$ for every $i \neq j$ and all n_{i} are nonzero integers.
4. If \mathcal{C} is a category then $\operatorname{Ob}(\mathcal{C})$ denotes the objects of \mathcal{C}.
5. If \mathcal{C} is a category and x an object in \mathcal{C}, then id_{x} or 1_{x} denotes the identity map on x. We occasionally drop the subscript if clear from context.
6. If X is a finite set, then $\# X$ is the cardinality of X.
7. Let k be a field. A k-variety is a separated reduced scheme of finite type over Spec k.

Definition 2.1.2. Let $n \in \mathbb{N} \cup\{\infty\}$.

1. Let Sch_{T} denote the category of schemes of finite type over a noetherian base scheme T and morphisms of finite presentation. We usually suppress the base scheme and write Sch.
2. Let $\operatorname{Var}_{k}^{n}$ denote the category of varieties over a field k of dimension at most n and morphisms given by locally closed immersions. We usually suppress the base field k. If $n=\infty$ we simply write Var_{k} or Var. Note $\operatorname{Var}_{k}^{n}$ is a faithful subcategory of the usual category of varieties and regular maps.
3. Let $\operatorname{Var}_{k}^{=n}$ denote the category of varieties of dimension exactly n and locally closed immersions. We usually suppress the base field k and write $\mathrm{Var}^{=n}$.
4. Let FinSet denote the category of finite sets. For k an algebraically closed field, we identify $\operatorname{Var}_{k}^{0}$ with FinSet.
5. The prefix Irr indicates the full subcategory of irreducible varieties. For instance, $\operatorname{IrV} \mathrm{Var}^{=n}$ denotes the full subcategory of $\operatorname{Var}{ }^{=n}$ whose objects are irreducible n-dimensional varieties.
6. Let Bir^{n} denote the category of irreducible varieties of dimension n and birational maps. If X is a n-dimensional irreducible variety, then $\{X\}_{n}$ (or just $\{X\}$ if clear for context) denotes the birational class of X. Note the set of isomorphism classes in Bir^{n} is the set of n-dimensional birational classes.
7. Let

$$
\iota_{n}: \mathrm{IrrVar}^{=n} \rightarrow \mathrm{Bir}^{n},
$$

be the functor which is the identity on objects and morphisms. Indeed, every locally closed immersion of n-dimensional irreducible varieties is an open immersion.

Definition 2.1.3. Let $n \in \mathbb{N} \cup\{\infty\}$. Let k be a field. The (classical) Grothendieck group of (at most n-dimensional) varieties $K_{0}\left(\operatorname{Var}_{k}^{n}\right)$ is the free abelian group generated by isomorphism classes of varieties in $\operatorname{Var}_{k}^{n}$ modulo the subgroup generated by the relations

$$
[X]-[U]-[Z],
$$

whenever Z is a closed subvariety of $X \in \operatorname{Var}_{k}^{n}$ and U is the open complement. Such relations are known as scissor relations. If $n=\infty$, we may also write $K_{0}\left(\operatorname{Var}_{k}\right)$ or $K_{0}(\mathrm{Var})$, depending on context.

2.2 Review of selected topics from category theory

In this section, we give a detailed review of selected topics from category theory to be used later.

2.2.1 Preadditive and additive categories

We recall the definitions and properties of preadditive and additive categories and direct sums. See [11, page 198, \#5, \#6] and [Stacks, Section 09SE] for a reference.

Definition 2.2.1. A preadditive category is a category \mathcal{C} where each set of morphisms is an abelian group, and the compositions

$$
\operatorname{Hom}_{\mathcal{C}}(y, z) \times \operatorname{Hom}_{\mathcal{C}}(x, y) \rightarrow \operatorname{Hom}_{\mathcal{C}}(x, z)
$$

are bilinear, for all objects x, y, and z in \mathcal{C}.
Definition 2.2.2. Let x_{1}, \cdots, x_{n} be objects in a preadditive category \mathcal{C}. A (finite) biproduct or direct sum of x_{1}, \cdots, x_{n} is the following data:

1. an object x in \mathcal{C},
2. morphisms $i_{j}: x_{j} \rightarrow x$, for all $1 \leq j \leq n$, called inclusions,
3. morphisms $p_{j}: x \rightarrow x_{j}$, for all $1 \leq j \leq n$, called projections,
such that
4. $p_{j} \circ i_{j}=\operatorname{id}_{x_{j}}$, for all $1 \leq j \leq n$,
5. $p_{j} \circ i_{k}=0$, for all $j \neq k$ between 1 and n, and
6. $i_{1} p_{1}+\cdots+i_{n} p_{n}=\mathrm{id}_{x}$.

See [Stacks, Tag 0102, 0103].
Remark 2.2.3. Let x be the direct sum in the notation of Definition 2.2.2. The direct sum carries a product and coproduct structure as follows.

For the product structure, let z be an object and let $f_{j}: z \rightarrow x_{j}$ be morphisms. Then $\sum i_{j} \circ f_{j}: z \rightarrow x$ is the unique morphism that commutes with the f_{j} and p_{j}.

For the coproduct structure, let w be an object and let $g_{j}: x_{j} \rightarrow w$ be morphisms. Then $\sum g_{j} \circ p_{j}: x \rightarrow w$ is the unique morphism that commutes with the g_{j} and i_{j}.

Remark 2.2.4. Let \mathcal{C} be a preadditive category. We show morphisms between two direct sums can be expressed as a matrix of morphisms. Let X be a direct sum of $X_{1}, \cdots, X_{n} \in \mathcal{C}$ with inclusions i_{1}, \cdots, i_{n} and projections p_{1}, \cdots, p_{n}. Let Y be a direct sum of $Y_{1}, \cdots, Y_{m} \in \mathcal{C}$ with inclusions j_{1}, \cdots, j_{m} and projections q_{1}, \cdots, q_{m}. The set of morphisms $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ and the set of m by n matrices $\left\{\left(f_{l k}\right) \mid f_{l k} \in \operatorname{Hom}_{\mathcal{C}}\left(X_{k}, Y_{l}\right)\right\}$ are in bijection. The bijection is follows.

Given a morphism $F: X \rightarrow Y$, we form the m by n matrix whose entries are the composites

$$
X_{k} \xrightarrow{i_{k}} X \xrightarrow{F} Y \xrightarrow{q_{l}} Y_{l} .
$$

Conversely, suppose we are given a matrix $\left(f_{l k}\right)$. We use the coproduct structure on X to define F. The morphisms

$$
\sum_{l} j_{l} f_{l k}: X_{k} \rightarrow Y
$$

define the morphism

$$
\sum_{k, l}\left(j_{l} f_{l k}\right) \circ p_{k}: X \rightarrow Y
$$

for each $1 \leq k \leq n$.
It follows from the definition of direct sum that these two operations are inverses. Indeed, starting with a morphism $F: X \rightarrow Y$, we have the matrix whose entries are $q_{l} \circ F \circ i_{k}$. This matrix defines the morphisms

$$
\sum_{l} j_{l} \circ q_{l} \circ F \circ i_{k}: X_{k} \rightarrow Y
$$

In turn, these morphisms define the morphism

$$
\sum_{k, l} j_{l} q_{l} \circ F \circ i_{k} p_{k}: X \rightarrow Y
$$

On the other hand,

$$
\left(\sum_{l} j_{l} q_{l}\right) \circ F \circ\left(\sum_{k} i_{k} p_{k}\right)=\operatorname{id}_{Y} \circ F \circ \mathrm{id}_{X}=F .
$$

Conversely, begin with a matrix $\left(f_{l k}\right)$. This defines the morphism

$$
\sum_{k, l} j_{l} \circ f_{l k} \circ p_{k}: X \rightarrow Y
$$

The $k^{\prime} l^{\prime}$ entry of this matrix is

$$
q_{l^{\prime}} \circ\left(\sum_{k, l} j_{l} \circ f_{l k} \circ p_{k}\right) \circ i_{k^{\prime}}=f_{l^{\prime} k^{\prime}}
$$

as desired.
In view of this bijection, we implicitly identify a morphism between direct sums with its associated matrix of morphisms. We refer to the entries $f_{l k}$ of the associated matrix as components (of f). Under this bijection, composition of morphisms corresponds with
matrix multiplication. In particular, suppose the morphisms $F: X \rightarrow Y$ and $G: Y \rightarrow Z$ are represented by matrices A and B. Then $G \circ F: X \rightarrow Z$ is represented by the matrix $B A$.

Definition 2.2.5. An additive category is a preadditive category \mathcal{C} that admits a zero object and all finite biproducts.

Convention 2.2.6. Let \mathcal{C} be an additive category. For every finite ordered set of objects of \mathcal{C}, we assume \mathcal{C} comes with a fixed choice of direct sum. That is, if $\left\{X_{1}, \cdots, X_{n}\right\} \subseteq \mathcal{C}$ is a finite ordered set, there is a canonical direct sum of X_{1}, \cdots, X_{n}, which we denote by $X_{1} \oplus \cdots \oplus X_{n}$ or $\oplus_{i} X_{i}$ (leaving the set and ordering implicit).

Definition 2.2.7. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor between preadditive categories. We say F is additive if each homomorphism $\operatorname{Hom}_{\mathcal{C}}\left(C_{1}, C_{2}\right) \rightarrow \operatorname{Hom}_{\mathcal{D}}\left(F C_{1}, F C_{2}\right)$ is a group homomorphism.

There is an equivalent definition of an additive functor as follows ([Stacks, Tag 0DLP]). Let x and y be objects in \mathcal{C} and let $z=x \oplus y$. There are natural morphisms $F(x) \oplus F(y) \rightarrow$ $F(z)$ and $F(z) \rightarrow F(x) \oplus F(y)$, induced by applying F to the inclusions and projections of z. Then F is additive if and only if these natural morphisms are isomorphisms, for all such x, y, and z in \mathcal{C}. In particular, additive functors send direct sums to direct sums.

Definition 2.2.8. Let \mathcal{A}, \mathcal{B}, and \mathcal{C} be preadditive categories. We say a bifunctor $F: \mathcal{A} \times \mathcal{B} \rightarrow$ \mathcal{C} is additive in each factor if,

1. for all objects $A \in \mathcal{A}$, the functor $F(A,-): \mathcal{B} \rightarrow \mathcal{C}$ is additive, and
2. for all objects $B \in \mathcal{B}$, the functor $F(-, B): \mathcal{A} \rightarrow \mathcal{C}$ is additive.

2.2.2 Free preadditive and additive categories

We recall the universal construction of the free preadditive category associated with a category and the free additive category associated with a preadditive category.

Definition 2.2.9. Given a category \mathcal{A}, the free preadditive category $\mathbb{Z}(\mathcal{A})$ is the following category.

1. The objects of $\mathbb{Z}(\mathcal{A})$ are the same as the objects of \mathcal{A} :

$$
\operatorname{Ob} \mathbb{Z}(\mathcal{A}):=\operatorname{Ob}(\mathcal{A})
$$

2. The morphisms of $\mathbb{Z}(\mathcal{A})$ are the free abelian groups generated by morphisms in \mathcal{A} :

$$
\operatorname{Hom}_{\mathbb{Z}(\mathcal{A})}(X, Y):=\mathbb{Z}\left[\operatorname{Hom}_{\mathcal{A}}(X, Y)\right] .
$$

Remark 2.2.10 (Universal property of $\mathbb{Z}(\mathcal{A})$). Let $i: \mathcal{A} \rightarrow \mathbb{Z}(\mathcal{A})$ be the faithful functor which is the identity on objects, and on morphisms, the natural inclusion of a set into the free abelian group on that set.

The functor i admits the following universal property: given a functor $F: \mathcal{A} \rightarrow \mathcal{B}$ where \mathcal{B} is a preadditive category, there exists a unique additive functor $G: \mathbb{Z}(\mathcal{A}) \rightarrow \mathcal{B}$ such that $G i=F$. Indeed, G is same as F on objects and sends a morphism $\sum_{i} n_{i} f_{i} \in \operatorname{Hom}_{\mathcal{A}}(X, Y)$ to $\sum_{i} n_{i} F f_{i} \in \operatorname{Hom}_{\mathcal{B}}(F X, F Y)$. Uniqueness is clear.

Remark 2.2.11. In view of the universal property, $\mathbb{Z}(-)$ is a functor from the category of categories and functors into the category of preadditive categories and additive functors.

Definition 2.2.12. Given a preadditive category \mathcal{B}, the free additive category $\operatorname{Add}(\mathcal{B})$ is the following category.

1. The objects of $\operatorname{Add}(\mathcal{B})$ are n-tuples of objects in \mathcal{B} for each $n \geq 0$:

$$
\operatorname{Ob}(\operatorname{Add}(\mathcal{B})):=\bigcup_{n \geq 0}\left\{\left(X_{1}, \cdots, X_{n}\right) \mid X_{1}, \cdots, X_{n} \in \mathcal{B}\right\}
$$

2. The morphisms of $\operatorname{Add}(\mathcal{B})$ are matrices of morphisms in \mathcal{B} :

$$
\operatorname{Hom}_{\operatorname{Add}(\mathcal{B})}\left(\left(X_{1}, \cdots, X_{n}\right),\left(Y_{1}, \cdots, Y_{m}\right)\right):=\left\{\left(f_{j i}\right)_{1 \leq i \leq n, 1 \leq j \leq m} \mid f_{j i} \in \operatorname{Hom}_{\mathcal{B}}\left(X_{i}, Y_{j}\right)\right\}
$$

More explicitly, the j th row corresponds to the morphisms into Y_{j} and the i th column corresponds to the morphisms out of X_{i}. Composition is given by matrix multiplication, which makes sense because \mathcal{B} is preadditive.

The tuple of length 0 is called the empty tuple (sometimes denoted \emptyset), and it is the distinguished zero object in $\operatorname{Add}(\mathcal{B})$. Given r many tuples $\left(X_{1,1}, \cdots, X_{1, n_{1}}\right), \cdots,\left(X_{r, 1}, \cdots, X_{r, n_{r}}\right)$ in \mathcal{B}, a direct sum is the concatenation of all tuples $\left(X_{1,1}, \cdots, X_{1, n_{1}}, \cdots, X_{r, 1}, \cdots, X_{r, n_{r}}\right)$. In view of Convention 2.2.6, we shall fix this choice of direct sum.

Remark 2.2.13 (Universal property of $\operatorname{Add}(\mathcal{B})$). Let $i^{\prime}: \mathcal{B} \rightarrow \operatorname{Add}(\mathcal{B})$ be the fully faithful functor which sends an object of \mathcal{B} to the 1-tuple whose entry is that object, and sends an arrow to the 1 by 1 matrix whose entry is that arrow.

The functor i^{\prime} admits the following universal property: if \mathcal{C} is an additive category and $F^{\prime}: \mathcal{B} \rightarrow \mathcal{C}$ an additive functor, then there exists an additive functor $G^{\prime}: \operatorname{Add}(\mathcal{B}) \rightarrow \mathcal{C}$ such that $G^{\prime} i^{\prime}=F^{\prime}$. Indeed, on objects, G^{\prime} sends a tuple $\left(X_{1}, \cdots, X_{n}\right)$ to the fixed direct sum $\bigoplus_{i} F^{\prime} X_{i}$ in \mathcal{C}. The empty tuple is sent to a zero object of \mathcal{C}. On morphisms, G^{\prime} sends a morphism represented by the matrix $\left(f_{j i}\right)$ to the morphism in \mathcal{C} represented by the matrix $\left(G^{\prime}\left(f_{j i}\right)\right)$ (recall Remark 2.2.4).

Definition 2.2.14. If \mathcal{C} is a category, we form the additive category $\operatorname{Add}(\mathbb{Z}(\mathcal{C}))$, or just $\operatorname{Add}(\mathcal{C})$ for short. We say $\operatorname{Add}(\mathcal{C})$ is the additive completion of \mathcal{C}.

Remark 2.2.15. Let \mathcal{C} be a category. There is a functor $|-|$ from $\operatorname{Add}(\mathcal{C})$ into the category whose objects are Euclidean spaces and whose morphisms are matrices. For $X=$ $\left(X_{1}, \cdots, X_{n}\right)$, declare $|X|=\mathbb{R}^{n}$. If $f=\left(f_{j i}\right)$ is a morphism in $\operatorname{Add}(\mathcal{C})$, then $|f|$ is the integer valued matrix whose entry $|f|_{j i}$ is the sum of the coefficients of $f_{j i}$.

Note the functor $|-|$ may also be obtained in the following way. Let Vect denote the category of pairs (V, \mathcal{B}) where V is a real vector space with basis \mathcal{B}, and whose morphisms are real-valued matrices. Let $F: \mathcal{C} \rightarrow$ Vect be the constant functor which sends every object to the pair $(\mathbb{R},\{1\})$ and sends every morphism to the 1 by 1 identity matrix. Applying the universal properties in Remarks 2.2.10 and 2.2.13 yields the functor $|-|$.

Lemma 2.2.16. Let \mathcal{C} be a category. In $\operatorname{Add}(\mathcal{C})$, let $X=\left(X_{1}, \cdots, X_{r}\right)$ and $Y=\left(Y_{1}, \cdots, Y_{s}\right)$ be two tuples. If $A: X \rightarrow Y$ and $B: Y \rightarrow X$ are inverse morphisms, then $r=s$, and the matrices $|A|$ and $|B|$ are invertible.

Proof. Apply the functor $|-|$ to see $|A|: \mathbb{R}^{r} \rightarrow \mathbb{R}^{s}$ and $|B|: \mathbb{R}^{s} \rightarrow \mathbb{R}^{r}$ are invertible real valued matrices, and $r=s$.

2.2.3 Localization of categories

We give an overview of localizations of categories, mainly to establish notation and record lemmas for later use. We refer the reader to [12, Chapter 7], [13, Chapter 2], [9, Chapter II, Appendix], or [Stacks, Tag 04 VB] for details on localizing a category. In this section, let \mathcal{C} be a category and S be a set of morphisms in \mathcal{C}.

We recall the following theorem:
Theorem 2.2.17 ([14, Chapter 1]). There exists a category \mathcal{C}_{S} (also written $\mathcal{C}\left[S^{-1}\right]$), and a functor $Q: \mathcal{C} \rightarrow \mathcal{C}_{S}$ with the following universal property: given a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ such that $F(s)$ is an isomorphism for all $s \in S$, there is a functor $G: \mathcal{C}_{S} \rightarrow \mathcal{D}$ such that $G Q=F$.

If S is a "left multiplicative system" (defined below), then \mathcal{C}_{S} has a particularly tractable construction, which we spend the rest of the section recalling.

Definition 2.2.18. S is a left multiplicative system if the following hold:

1. S is closed under composition and contains all identity morphisms.
2. S is a left Ore set. That is, given a diagram

in \mathcal{C} with $s \in S$, there exist morphisms $t: W \rightarrow X$ and $W \rightarrow Z$ with $t \in S$ such that the diagram

commutes.
3. S is left cancellative. That is, given a commutative diagram in \mathcal{C},

$$
X \xrightarrow[g]{\stackrel{f}{\longrightarrow}} Y \xrightarrow{s} Z
$$

with $s \in S$, there exists a morphism $t: W \rightarrow X$ in S such that $f t=g t$.
In [Stacks], a "right multiplicative system" is a "left multiplicative system" in our notation.
Definition 2.2.19. For $X, Y \in \mathcal{C}$, a left roof (from X to Y) is a pair of morphisms $X \leftarrow$ $Z \rightarrow Y$ where $Z \rightarrow X$ lies in S. Two left roofs $X \stackrel{f}{\leftarrow} Z \xrightarrow{g} Y$ and $X \stackrel{f^{\prime}}{\leftarrow} Z^{\prime} \xrightarrow{g^{\prime}} Y$ are equivalent if there is a third left roof $X \stackrel{f^{\prime \prime}}{\leftarrow} Z^{\prime \prime} \stackrel{g^{\prime \prime}}{\longrightarrow} Y$ and morphisms $u: Z^{\prime \prime} \rightarrow Z$ and $v: Z^{\prime \prime} \rightarrow Z^{\prime}$ such that the following diagram commutes:

It is true that the above equivalence is an equivalence relation on the set of left roofs.
Definition 2.2.20. When S is a left multiplicative system, let $\mathcal{C}_{S}=\mathcal{C}\left[S^{-1}\right]$ be the category whose objects are the same as \mathcal{C}, and whose morphisms are equivalence classes of left roofs. There is a well-defined composition given by the Ore condition. Let $Q: \mathcal{C} \rightarrow \mathcal{C}_{S}$ be the functor which is the identity on objects, and sends a morphism $X \rightarrow Y$ to the class of $X \stackrel{\text { id }}{\leftarrow} X \rightarrow Y$. Each object in \mathcal{C}_{S} may be written as $Q X$ for an object $X \in \mathcal{C}$. If $s: X \rightarrow Y \in S$, then the inverse of $Q(s)$ is $Y \stackrel{s}{\leftarrow} X \xrightarrow{\text { id }} X$. The class of a left roof $X \stackrel{s}{\leftarrow} Y \xrightarrow{f} Z$ may be written as $Q(f) \circ Q(s)^{-1}$.

The following lemma characterizes isomorphisms in a localization.
Lemma 2.2.21 ([12, Proposition 7.1.20]). Let S be a left multiplicative system. Let $P \leftarrow$ $Z \xrightarrow{f} W$ be a left roof. Then the class of left roof $P \leftarrow Z \xrightarrow{f} W$ is an isomorphism if and only if there exist morphisms $h: X \rightarrow Y$ and $g: Y \rightarrow Z$ such that $f g$ and $g h$ are in S.

The following lemma allows us to obtain "a common denominator" of left roofs.
Lemma 2.2.22 ([Stacks, Tag 04VI]). Let \mathcal{C} be a category and S a left multiplicative system. Given finitely many morphisms $g_{i}: X \rightarrow Y_{i}$ in \mathcal{C}_{S}, there exists a morphism $s: X^{\prime} \rightarrow X$ in S and morphisms $f_{i}: X^{\prime} \rightarrow Y_{i}$ such that each g_{i} is represented by $X \stackrel{s}{\leftarrow} X^{\prime} \xrightarrow{f_{i}} Y_{i}$.

2.2.4 Localization of preadditive and additive categories

If \mathcal{C} is (additive) preadditive and S is a left multiplicative system, then localization respects the (additive) preadditive structure of \mathcal{C}. We recall some details.

Proposition 2.2.23 ([Stacks, Tag 05QC]). If \mathcal{C} is a preadditive category, and S is a left multiplicative system, then there is a canonical preadditive structure on \mathcal{C}_{S} such that the localization functor $Q: \mathcal{C} \rightarrow \mathcal{C}_{S}$ is additive.

The addition is defined as follows. Suppose $g_{1}, g_{2}: X \rightarrow Y$ are two morphisms in \mathcal{C}_{S}. Let s, f_{1}, f_{2} be as in Lemma 2.2.22. Define $g_{1}+g_{2}$ to be represented by the left roof $X \stackrel{s}{\leftarrow}$ $X^{\prime} \xrightarrow{f_{1}+f_{2}} Y$.

Proposition 2.2.24 ([Stacks, Tag 05QE]). If \mathcal{C} is additive and S is a left multiplicative system, then \mathcal{C}_{S} is an additive category, and $Q: \mathcal{C} \rightarrow \mathcal{C}_{S}$ is an additive functor. The distinguished zero object is $Q 0$. The direct sum of $Q X_{1}, \cdots, Q X_{n}$ is $Q\left(X_{1} \oplus \cdots \oplus X_{n}\right)$.

2.2.5 Exact categories

We do not recall the definition of exact category and exact functor, but instead refer the reader to standard references, such as [15] or [9, Section II.7].

Example 2.2.25. Every additive category admits the structure of an exact category by declaring a sequence $X \rightarrow Y \rightarrow Z$ to be exact if there exists a commutative diagram

where the vertical morphisms are isomorphisms, and i_{A} and p_{B} are the canonical inclusion and projection of $A \oplus B$. This exact structure is called the split exact structure.

Convention 2.2.26. If \mathcal{C} is additive and the exact structure on \mathcal{C} is unspecified, we implicitly assume \mathcal{C} carries the split exact structure.

Remark 2.2.27. If \mathcal{C} and \mathcal{D} are additive categories with the split exact categories and $F: \mathcal{C} \rightarrow \mathcal{D}$ is an additive functor, then F is exact.

2.2.6 K_{0} of an exact category and of an additive completion

We recall the definition of the Grothendieck group of an exact category. We also compute the Grothendieck group of the additive completion of a category with a special property. We shall see $\operatorname{Var}_{k}^{n}$ has the special property in Chapter 3.

Definition 2.2.28. Let \mathcal{C} be an exact category. The Grothendieck group $K_{0}(\mathcal{C})$ is the free abelian group on the isomorphism classes of \mathcal{C} modulo the subgroup generated by relations $[Y]-[X]-[Z]$, whenever $X \rightarrow Y \rightarrow Z$ is an exact sequence.

If $F: \mathcal{C} \rightarrow \mathcal{D}$ is an exact functor between exact categories, then there is a natural group homomorphism

$$
K_{0} F: K_{0} \mathcal{C} \rightarrow K_{0} \mathcal{D}
$$

which sends the class of X to the class of $F(X)$.
In this way, K_{0} is a functor from the category of exact categories and exact functors into the category of abelian groups.

Definition 2.2.29. We say a category \mathcal{C} has the permutation isomorphism property if, given two isomorphic tuples $\left(X_{1}, \cdots, X_{r}\right)$ and $\left(Y_{1}, \cdots, Y_{s}\right)$ in $\operatorname{Add}(\mathcal{C})$, then $r=s$ and there is a permutation σ on r letters and isomorphisms $X_{i} \cong Y_{\sigma(i)}$ in \mathcal{C}, for all $1 \leq i \leq r$.

Proposition 2.2.30. Let \mathcal{C} be a category with the permutation isomorphism property. Then there is a group isomorphism

$$
\alpha: K_{0}(\operatorname{Add}(\mathcal{C})) \rightarrow \mathbb{Z}[\mathcal{C}]
$$

which sends the class of the tuple $\left(X_{1}, \cdots, X_{r}\right)$ to $\sum\left[X_{i}\right]$.
Proof. The homomorphism α is well-defined on the isomorphism classes of $\operatorname{Add}(\mathcal{C})$ by the permutation isomorphism property. Also, α respects the relation: given an exact sequence $X \rightarrow Y \rightarrow Z$ in $\operatorname{Add}(\mathcal{C})$, in the notation of Eq. (2.1), the permutation isomorphism property implies

$$
\alpha(Y)=\alpha(A \oplus B)=\alpha(A)+\alpha(B)=\alpha(X)+\alpha(Z)
$$

Hence α is a well-defined surjective map. The left inverse is the map $\beta: \mathbb{Z}[\mathcal{C}] \rightarrow K_{0}(\operatorname{Add}(\mathcal{C}))$ which sends the isomorphism class of X to the class of X in the Grothendieck group; this is independent of representative of isomorphism class.

2.3 Symmetric monoidal structures

We begin with technicalities of (symmetric) monoidal structures, and proceed to verify the free additive construction and localization at a left multiplicative system respect the (symmetric) monoidal structure. We refer to Section 1 and 7 in Chapter 7 of [11] or the monoidial category article at [nLab].

Definition 2.3.1. A category M with

1. a bifunctor $\square: M \times M \rightarrow M$,
2. a unit object $1 \in M$,
3. a natural isomorphism a between the functors

from $M \times M \times M$ to M, whose components are denoted $a_{x, y, z}:(x \square y) \square z \rightarrow x \square(y \square z)$,
4. a natural isomorphism λ between the functors
$1 \square$and id_{M}
from M to M, whose components are denoted $\lambda_{x}: 1 \square x \rightarrow x$,
5. a natural isomorphism ρ between the functors

$$
-\square 1 \quad \text { and } \quad \operatorname{id}_{M}
$$

from M to M, whose components are denoted $\rho_{x}: x \square 1 \rightarrow x$,
is said to be monoidal if the following diagrams in M commute, for all objects of M :

1. (triangle equality)

2. (pentagon equality)

Definition 2.3.2. Let M be a monoidal category. If M is additionally equipped with a natural isomorphism B (called a braiding) between the functors

$$
x, y \mapsto x \square y \quad \text { and } \quad x, y \mapsto y \square x
$$

from $M \times M$ to M and the following hold, then M is said to be symmetric monoidal:

1. The equality

$$
\begin{equation*}
B_{y, x} \circ B_{x, y}=1_{x \square y} \tag{2.4}
\end{equation*}
$$

holds for all x and y in M.
2. The equality $\rho_{x}=\lambda_{x} \circ B_{x, 1}$ holds for all x in M :

3. The following diagram, known as the hexagon equation, commutes, for all x, y, and z in M.

2.3.1 Symmetric monoidal structure on free additive categories

We verify taking additive completion respects (symmetric) monoidal structures, by first defining the required bifunctor and then verifying the axioms.

Proposition 2.3.3. Let M be a category and $\square: M \times M \rightarrow M$ a bifunctor. There is a bifunctor $\square: \mathbb{Z}(M) \times \mathbb{Z}(M) \rightarrow \mathbb{Z}(M)$ which extends \square on $M \times M$, and another bifunctor $\square: \operatorname{Add}(M) \times \operatorname{Add}(M) \rightarrow \operatorname{Add}(M)$ which extends \square on $\mathbb{Z}(M) \times \mathbb{Z}(M)$. Both bifunctors \square on $\mathbb{Z}(M)$ and $\operatorname{Add}(M)$ are additive in each factor.

Proof. We begin by defining $\square: \mathbb{Z}(M) \times \mathbb{Z}(M) \rightarrow \mathbb{Z}(M)$ to be the same as $\square: M \times M \rightarrow M$ on objects. If $\sum_{i=1}^{n} n_{i} f_{i}: X \rightarrow X^{\prime}$ and $\sum_{j=1}^{m} m_{j} g_{j}: Y \rightarrow Y^{\prime}$ are morphisms in $\mathbb{Z}(M)$, then declare

$$
\left(\sum_{i=1}^{n} n_{i} f_{i}\right) \square\left(\sum_{j=1}^{m} m_{j} g_{j}\right):=\sum_{i=1}^{n} \sum_{j=1}^{m} n_{i} m_{j}\left(f_{i} \square g_{j}\right) .
$$

The functor \square is additive on $\mathbb{Z}(M)$ in each factor: fix an object Z. Let $\sum_{j=1}^{m} m_{j} g_{j}: X \rightarrow X^{\prime}$ be another morphism. Then, we compute:

$$
\begin{aligned}
\left(\sum_{i=1}^{n} n_{i} f_{i}+\sum_{j=1}^{m} m_{j} g_{j}\right) \square \mathrm{id}_{Z} & =\sum_{i=1}^{n} n_{i}\left(f_{i} \square \mathrm{id}_{Z}\right)+\sum_{j=1}^{m} m_{j}\left(g_{j} \square \mathrm{id}_{Z}\right) \\
& =\left(\sum_{i=1}^{n} n_{i} f_{i}\right) \square \mathrm{id}_{Z}+\left(\sum_{j=1}^{m} m_{j} g_{j}\right) \square \mathrm{id}_{Z}
\end{aligned}
$$

A similar argument holds for the second factor.
To define $\square: \operatorname{Add}(M) \times \operatorname{Add}(M) \rightarrow \operatorname{Add}(M)$, put

$$
\left(\bigoplus_{i} X_{i}\right) \square\left(\bigoplus_{j} Y_{j}\right):=\bigoplus_{i, j} X_{i} \square Y_{j},
$$

which is the tuple whose elements are $X_{i} \square Y_{j}$ in dictionary order ${ }^{1}$. If either $\oplus_{i} X_{i}$ or $\oplus_{j} Y_{j}$ is the empty tuple, then we understand $\bigoplus_{i, j} X_{i} \square Y_{j}$ to be the empty tuple. Given two morphisms

$$
f=\left(f_{j i}: X_{i} \rightarrow Y_{j}\right): \bigoplus_{i} X_{i} \rightarrow \bigoplus_{j} Y_{j} \quad \text { and } \quad g=\left(g_{l k}: Z_{k} \rightarrow W_{l}\right): \bigoplus_{k} Z_{k} \rightarrow \bigoplus_{l} W_{l},
$$

define the morphism

$$
\left(\bigoplus_{i} X_{i}\right) \square\left(\bigoplus_{j} Y_{j}\right)=\bigoplus_{i j} X_{i} \square Y_{j} \rightarrow \bigoplus_{k l} Z_{k} \square W_{l}=\left(\bigoplus_{k} Z_{k}\right) \square\left(\bigoplus_{l} Z_{l}\right)
$$

by the matrix whose entries are $f_{j i} \square g_{l k}: X_{i} \square Y_{j} \rightarrow Z_{k} \square W_{l}$, where \square is on $\mathbb{Z}(M)$. The functor \square is additive in each factor: fix an object V. Then the matrices of the morphisms $\left(f+f^{\prime}\right) \square \mathrm{id}_{V}$ and $\left(f \square \mathrm{id}_{V}\right)+\left(f^{\prime} \square \mathrm{id}_{V}\right)$ have the entries $\left(f_{j i}+f_{j i}^{\prime}\right) \square \mathrm{id}_{V}$ and $f_{j i} \square \mathrm{id}_{V}+f_{j i}^{\prime} \square \mathrm{id}_{V}$, which are the same by definition of \square on $\mathbb{Z}(M)$.

[^0]Proposition 2.3.4. Let M be a (symmetric) monoidal category with product $\square: M \times M \rightarrow$ M. The category $\operatorname{Add}(M)$, with the bifunctor $\square: \operatorname{Add}(M) \times \operatorname{Add}(M) \rightarrow \operatorname{Add}(M)$ defined in Proposition 2.3.3, has the structure of a (symmetric) monoidal category.

Proof. In $\operatorname{Add}(M)$, let $x=\oplus_{i} x_{i}, y=\oplus_{j} y_{j}, z=\oplus_{k} z_{k}$, and $w=\bigoplus_{l} w_{l}$. The unit object is $1 \in M \subseteq \operatorname{Add}(M)$. The natural isomorphism $a: \operatorname{Add}(M) \times \operatorname{Add}(M) \times \operatorname{Add}(M) \rightarrow \operatorname{Add}(M)$ is defined by the components $a_{x, y, z}:(x \square y) \square z \rightarrow x \square(y \square z)$, which is the morphism

$$
\bigoplus_{i j k} a_{x_{i}, y_{j}, z_{k}}: \bigoplus_{i j k}\left(x_{i} \square y_{j}\right) \square z_{k} \cong \xlongequal{\rightrightarrows} \bigoplus_{i j k} x_{i} \square\left(y_{j} \square z_{k}\right) .
$$

The natural isomorphism $\lambda: \operatorname{Add}(M) \rightarrow \operatorname{Add}(M)$ is defined by the components $\lambda_{x}: 1 \square x \rightarrow$ x, which is the morphism

$$
\bigoplus_{i} \lambda_{x_{i}}: \bigoplus_{i} 1 \square x_{i} \cong \bigoplus_{i} x_{i} .
$$

The natural isomorphism $\rho: \operatorname{Add}(M) \rightarrow \operatorname{Add}(M)$ is defined by the components $\rho_{x}: x \square 1 \rightarrow$ x, which is the morphism

$$
\bigoplus_{i} \rho_{x_{i}}: \bigoplus_{i} x_{i} \square 1 \stackrel{\cong}{\Rightarrow} \bigoplus_{i} x_{i} .
$$

The following triangle diagram commutes by Eq. (2.2):

The pentagon diagram commutes by Eq. (2.3):

Hence M is a monoidal category.
Suppose M is symmetric. Define the braiding B on $\operatorname{Add}(M)$ as follows. Suppose $x=$ $\oplus_{i} x_{i}$ and $y=\bigoplus_{j} y_{j}$ are in $\operatorname{Add}(M)$. Let the morphism

$$
B_{x, y}: \bigoplus_{i j} x_{i} \square y_{j} \rightarrow \bigoplus_{j i} y_{j} \square x_{i}
$$

be given by components $B_{x_{i}, y_{j}}: x_{i} \square y_{j} \rightarrow y_{j} \square x_{i}$. The category $\operatorname{Add}(M)$ is symmetric monoidal:

1. We see $B_{y, x} \circ B_{x, y}=1_{x \square y}$ by computing on components.
2. The following diagram commutes by Eq. (2.5):

3. The following hexagon diagram commutes by Eq. (2.6):

$$
\begin{gathered}
\oplus_{i j k}\left(x_{i} \square y_{j}\right) \square z_{k} \xrightarrow{\oplus_{i j k} a_{x_{i}, y_{j}, z_{k}}} \bigoplus_{i j k} x_{i} \square\left(y_{j} \square z_{k}\right) \xrightarrow{B_{x, y \square z}} \oplus_{j k i}\left(y_{j} \square z_{k}\right) \square x_{i} \\
\oplus_{k} B_{x, y} \square 1_{z_{k}} \downarrow \\
\quad \oplus_{j i k}\left(y_{j} \square x_{i}\right) \square{\underset{y}{k k i}}^{\bigoplus_{j i k} a_{y_{j}, x_{i}, z_{k}}} \oplus_{j i k} y_{j} \square\left(x_{i} \square z_{k}\right) \xrightarrow[\bigoplus_{j}, z_{k}, x_{i}]{ } \\
\bigoplus_{y_{j} \square B_{x, z}} \bigoplus_{j k i} y_{j} \square\left(z_{k} \square x_{i}\right)
\end{gathered}
$$

2.3.2 Symmetric monoidal structure on localized categories

In this subsection, let M be a category, and $S \subseteq M$ a left multiplicative system. We show a (symmetric) monoidal structure on M induces a (symmetric) monoidal structure on M_{S} such that the localization functor $M \rightarrow M_{S}$ respects the (symmetric) monoidal structure. We proceed by first defining the bifunctor and then verifying the axioms hold.

Proposition 2.3.5. Let $\square: M \times M \rightarrow M$ be a bifunctor such that $s_{1} \square s_{2}$ is in S, whenver s_{1} and s_{2} are in S. Then \square extends to $M_{S} \times M_{S} \rightarrow M_{S}$. If M is preadditive and $\square: M \times M \rightarrow M$ is additive in each factor, then $\square: M_{S} \times M_{S} \rightarrow M_{S}$ is also additive in each factor.

Proof. Define $\square: M_{S} \times M_{S} \rightarrow M_{S}$ on objects to be the same as \square on M. For $i=1,2$, let $b_{i} \stackrel{g_{i}}{\stackrel{~}{f_{i}}} c_{i} a_{i}$ be two left roofs in M_{S}. Put

$$
\left(b_{1} \stackrel{g_{1}}{\leftarrow} c_{1} \xrightarrow{f_{1}} a_{1}\right) \square\left(b_{2} \stackrel{g_{2}}{\leftarrow} c_{2} \xrightarrow{f_{2}} a_{2}\right):=b_{1} \square b_{2} \stackrel{g_{1} \square g_{2}}{\longleftrightarrow} c_{1} \square c_{2} \xrightarrow{f_{1} \square f_{2}} a_{1} \square a_{2} .
$$

We show this definition is independent of representative of left roof equivalence class. Suppose $b_{1} \stackrel{g_{1}^{\prime}}{\leftarrow} c_{1}^{\prime} \xrightarrow{f_{1}^{\prime}} a_{1}$ and $b_{1} \stackrel{g_{1}}{\leftarrow} c_{1} \xrightarrow{f_{1}} a_{1}$ are equivalent, which is the data of a diagram

Hence, the second equality in

$$
\begin{aligned}
& \left(b_{1} \stackrel{g_{1}}{\leftarrow} c_{1} \xrightarrow{f_{1}} a_{1}\right) \square\left(b_{2} \stackrel{g_{2}}{\rightleftarrows} c_{2} \xrightarrow{f_{2}} a_{2}\right)=b_{1} \square b_{2} \stackrel{g_{1} \square g_{2}}{\rightleftarrows} c_{1} \square c_{2} \xrightarrow{f_{1} \square f_{2}} a_{1} \square a_{2} \\
& =b_{1} \square b_{2} \stackrel{g_{1}^{\prime} \square g_{2}}{\stackrel{1}{2}} c_{1}^{\prime} \square c_{2} \xrightarrow{f_{1}^{\prime} \square f_{2}} a_{1} \square a_{2} \\
& =\left(b_{1} \stackrel{g_{1}^{\prime}}{\leftarrow} c_{1}^{\prime} \xrightarrow{f_{1}^{\prime}} a_{1}\right) \square\left(b_{2} \stackrel{g_{2}}{\rightleftarrows} c_{2} \xrightarrow{f_{2}} a_{2}\right),
\end{aligned}
$$

follows from the following diagram

A similar argument shows the definition is independent of representative of the second factor.
Suppose M is preadditive and $\square: M \times M \rightarrow M$ is additive in each factor. Fix an object $d \in M$. The preadditive structure on M_{S} was given in Proposition 2.2.23. Let $F_{1}, F_{1}^{\prime}: b_{1} \rightarrow a_{1}$ be two morphisms in M_{S}. By Lemma 2.2.22, we represent them by $b_{1} \stackrel{s}{\leftarrow} c_{1} \xrightarrow{f_{1}} a_{1}$ and $b_{1} \stackrel{s}{\leftarrow} c_{1} \xrightarrow{f_{1}^{\prime}} a_{1}$. Then \square is additive in the first factor:

$$
\begin{aligned}
\left(F_{1}+F_{1}^{\prime}\right) \square \mathrm{id}_{d} & =\left(b_{1} \stackrel{s}{\leftarrow} c_{1} \stackrel{f_{1}+f_{1}^{\prime}}{\longrightarrow} a_{1}\right) \square\left(d \stackrel{\mathrm{id}_{d}}{\leftarrow} d \stackrel{\mathrm{id}_{d}}{\longrightarrow} d\right) \\
& =b_{1} \square d \stackrel{s \square \mathrm{id}_{d}}{\leftarrow} c_{1} \square d \xrightarrow{\left(f_{1}+f_{1}^{\prime}\right) \square \mathrm{id}_{d}} a_{1} \square d \\
& =b_{1} \square d \stackrel{s \square \mathrm{id}_{d}}{\longleftarrow} c_{1} \square d \xrightarrow{\left(f_{1} \square \mathrm{id}_{d}\right)+\left(f_{1}^{\prime} \square \mathrm{id}_{d}\right)} a_{1} \square d \\
& =\left(b_{1} \square d \stackrel{s \square \mathrm{id}_{d}}{\stackrel{s}{ }} c_{1} \square d \xrightarrow{f_{1} \square \mathrm{id}_{d}} a_{1} \square d\right)+\left(b_{1} \square d \stackrel{s \square \mathrm{id}_{d}}{\rightleftarrows} c_{1} \square d \xrightarrow{f_{1}^{\prime} \square \mathrm{id}_{d}} a_{1} \square d\right) \\
& =F_{1} \square \mathrm{id}_{d}+F_{1}^{\prime} \square \mathrm{id}_{d} .
\end{aligned}
$$

A similar argument holds for the second factor.

Proposition 2.3.6. If M is (symmetric) monoidal and S is closed under the bifunctor, then M_{S} is also (symmetric) monoidal under the product defined in Proposition 2.3.5.

Proof. Apply the localization functor $Q: M \rightarrow M_{S}$ to the components of a, λ, and ρ to obtain the required natural isomorphisms a, λ, and ρ on M_{S} in Definition 2.3.1. The required diagrams commute because Q is a functor. Hence M is monoidal. A similar argument shows M is symmetric monoidal.

2.3.3 Ring structure on K_{0}

We discuss a ring structure on K_{0} induced by a bifunctor. We begin with some definitions and lemmas.

Definition 2.3.7. Let \mathcal{A}, \mathcal{B}, and \mathcal{C} be exact categories. A functor $F: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ is biexact if:

1. for all objects $A \in \mathcal{A}$, the functor $F(A,-): \mathcal{B} \rightarrow \mathcal{C}$ is exact, and
2. for all objects $B \in \mathcal{B}$, the functor $F(-, B): \mathcal{A} \rightarrow \mathcal{C}$ is exact.

Remark 2.3.8. Let M be an additive category. Let $\square: M \times M \rightarrow M$ be a functor additive in each factor. Then \square is biexact.

Lemma 2.3.9 ([9, Lemma 7.4]). Let \mathcal{A}, \mathcal{B}, and \mathcal{C} be exact categories. A biexact functor $F: \mathcal{A} \times \mathcal{B} \rightarrow \mathcal{C}$ induces a bilinear map

$$
K_{0} \mathcal{A} \times K_{0} \mathcal{B} \rightarrow K_{0} \mathcal{C}
$$

which sends a pair $([A],[B])$ to $[F(A, B)]$.

As a consequence, we have the following.
Corollary 2.3.10. Let (M, \square) be a (symmetric) monoidal additive category. Suppose \square is additive in each factor. Then $K_{0} M$ has the structure of a (commutative) ring, where the product is given by $[x] \cdot[y]=[x \square y]$ and the unit is the class of the unit object in M.

Proof. The proof follows from Remark 2.3.8 and Lemma 2.3.9.
Corollary 2.3.11. For $i=1,2$, let $\left(M_{i}, \square_{i}\right)$ be monoidal additive categories. Suppose both \square_{i} are additive in each factor. Let $F: M_{1} \rightarrow M_{2}$ be a functor such that the diagram

commutes. Then $K_{0} F$ is a ring homomorphism with respect to the ring structure defined in Corollary 2.3.10.

Proof. We compute, for all objects X and Y in M_{1} :

$$
\begin{aligned}
\left(K_{0} F\right)([X] \cdot[Y]) & =\left(K_{0} F\right)\left(\left[X \square_{1} Y\right]\right) \\
& =\left[F\left(X \square_{1} Y\right)\right] \\
& =\left[F X \square_{2} F Y\right] \\
& =[F X] \cdot[F Y] \\
& =\left(K_{0} F\right)([X]) \cdot\left(K_{0} F\right)([Y])
\end{aligned}
$$

2.4 The Ax-Grothendieck theorem

We record the Ax-Grothendieck theorem and a corollary for later use.

Theorem 2.4.1 (Ax-Grothendieck, [EGA4], 17.9.6). Let S be a scheme, and X a scheme of finite presentation over S. Every S-endomorphism of X that is an monomorphism is a isomorphism.

Corollary 2.4.2. Let F be an endomorphism of a k-variety X. If F is a locally closed immersion, then F is an isomorphism.

Proof. Follows from the following lemma.

Lemma 2.4.3. Let $i: Z \hookrightarrow Y$ be a locally closed immersion of k-varieties. Then i is a monomorphism in the category of schemes of finite presentation over $\operatorname{Spec} k$.

Proof. Let $f_{1}, f_{2}: X \rightarrow Z$ be morphisms such that $i \circ f_{1}=i \circ f_{2}$. The morphism i is injective on the level of sets. Hence f_{1} and f_{2} are equal on the level of sets. As for the morphism of sheaves, for every $x \in X$, there is an equality of maps of stalks

$$
\begin{aligned}
& \left(i \circ f_{1}\right)_{x}^{\#}: \mathcal{O}_{Y, i f_{1}(x)} \xrightarrow{i_{f_{1}(x)}^{\#}} \mathcal{O}_{Z, f_{1}(x)} \xrightarrow{\left(f_{1}\right)_{x}^{\#}} \mathcal{O}_{X, x} \\
& \left(i \circ f_{2}\right)_{x}^{\#}: \mathcal{O}_{Y, i f_{2}(x)} \xrightarrow{i_{f_{2}(x)}^{\#}} \mathcal{O}_{Z, f_{2}(x)} \xrightarrow{\left(f_{2}\right)_{x}^{\#}} \mathcal{O}_{X, x}
\end{aligned}
$$

The maps $i_{f_{1}(x)}^{\#}$ and $i_{f_{2}(x)}^{\#}$ are equal (because i is injective) and surjective (because i is a locally closed immersion). Hence $\left(f_{1}\right)_{x}^{\#}=\left(f_{2}\right)_{x}^{\#}$, for all $x \in X$. We conclude the morphisms f_{1} and f_{2} are equal.

3. ADDITIVE COMPLETION OF VARIETIES AND SCHEMES

In this section, we undertake the strategy outlined in the introduction. Recall the idea: we seek an exact category \mathcal{C} whose Grothendieck group is isomorphic to $K_{0}\left(\operatorname{Var}_{k}\right)$. The first obstacle is the lack of a natural exact structure, or even additive structure, on Var_{k}. This leads us to take the additive completion of Var_{k} to obtain $\operatorname{Add}\left(\operatorname{Var}_{k}\right)$. In Section 3.1, we establish basic properties of $\operatorname{Add}\left(\operatorname{Var}_{k}\right)$ and compute its Grothendieck group. However, there is a second problem: the desired scissors relations do not hold in $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)\right)$. We shall force the relation by localizing $\operatorname{Add}\left(\operatorname{Var}_{k}\right)$ at a certain localizing set S, which makes X and $U \oplus Z$ isomorphic, for every closed immersion $Z \hookrightarrow X$ and $U:=X \backslash Z$. We spend Section 3.2 defining S and showing it is a left multiplicative system. Finally in Section 3.3, we establish basic properties of $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right)$.

3.1 Properties of additive completions associated to varieties

In this section, we study the category Var^{n} of at most n-dimensional varieties and locally closed immersions, and show isomorphisms in $\mathbb{Z}\left(\operatorname{Var}^{n}\right)$ and $\operatorname{Add}\left(\operatorname{Var}^{n}\right)$ imply isomorphisms in Var^{n}. We also compute $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}^{n}\right)\right)$.

Theorem 3.1.1. If $f: X \hookrightarrow Y$ and $g: Y \hookrightarrow X$ are locally closed immersions of varieties, then f and g are isomorphisms. Let $n \in \mathbb{N} \cup\{\infty\}$. If X and Y are isomorphic in $\mathbb{Z}\left(\operatorname{Var}^{n}\right)$, then X and Y are isomorphic in Var.

Proof. We prove the first statement. The locally closed immersions $g f: X \hookrightarrow X$ and $f g: Y \hookrightarrow Y$ are isomorphisms by Corollary 2.4.2. Let α and β are inverses to $g f$ and $f g$:

$$
\alpha g f=\operatorname{id}_{X}=g f \alpha \quad \text { and } \quad \beta f g=\operatorname{id}_{Y}=f g \beta .
$$

Therefore, f and g have two sided inverses.
We prove the second statement. Suppose $\sum_{i \in I} n_{i} f_{i}: X \rightarrow Y$ and $\sum_{j \in J} m_{j} g_{j}: Y \rightarrow X$ are inverses in $\mathbb{Z}\left(\operatorname{Var}^{n}\right)$. Neither index set I or J can be empty so there exist locally closed
immersions from X to Y and from Y to X. We apply the first statement to conclude the proof.

Now we turn to $\operatorname{Add}(\mathrm{Var})$. The following definition and remark are gadgets meant to facilitate the proofs of Theorem 3.1.4 and Proposition 3.1.5.

Definition 3.1.2. Let \mathcal{C} be a category. Fix a n by m matrix $N=\left(n_{j i}\right)$. Let $T_{N} \subseteq \operatorname{Add}(\mathcal{C})$ be the set of morphisms $f=\left(f_{j i}\right)$ such that f maps from a n-tuple $\left(X_{1}, \cdots, X_{n}\right)$ to a m tuple $\left(Y_{1}, \cdots, Y_{m}\right)$ and there exists a morphism $X_{i} \rightarrow Y_{j}$ in \mathcal{C} whenever $n_{j i} \neq 0$, despite $f_{j i}$ possibly being zero. The equality $n_{j i}=0$ does not necessarily mean that there are no locally closed immersions $X_{i} \rightarrow Y_{j}$ or that $f_{j i}=0$.

For example, let $\mathcal{C}=$ Var. The morphisms $\left(i_{U}, i_{Z}\right)$ and $\left(i_{U}, 0\right)$ from (U, Z) to X lie in both $T_{(1,1)}$ and $T_{(0,0)}$. The morphism (id, 0$):\left(\operatorname{Spec} \mathbb{C}, \mathbb{A}^{1}\right) \rightarrow \operatorname{Spec} \mathbb{C}$ is not in $T_{(1,1)}$, since there is no locally closed immersion $\mathbb{A}^{1} \rightarrow$ Spec \mathbb{C}.

If $M \in T_{N}$ and $M^{\prime} \in T_{N^{\prime}}$, then $M M^{\prime} \in T_{N N^{\prime}}$, provided the compositions make sense. Recall the convention for composition in Remark 2.2.4.

Remark 3.1.3. If $N=\left(b_{i j}\right)$ is an invertible r by r real matrix, then there exists a permutation of the rows of N such that N has no zeros along its diagonal. If not, for each permutation σ on r letters, an entry $b_{i, \sigma(i)}$ would be zero for some $1 \leq i \leq r$. Thus $\operatorname{det} N=\sum_{\sigma \in S_{r}}\left(\operatorname{sgn}(\sigma) \prod_{i=1}^{r} b_{i, \sigma(i)}\right)$ would be 0 .

Theorem 3.1.4. Let $n \in \mathbb{N} \cup\{\infty\}$. Let $X=\left(X_{1}, \cdots, X_{r}\right)$ and $Y=\left(Y_{1}, \cdots, Y_{s}\right)$ be in $\operatorname{Add}\left(\operatorname{Var}^{n}\right)$. Suppose $A: X \rightarrow Y$ and $B: Y \rightarrow X$ are inverse morphisms. Then $r=s$, and there is a permutation σ on r letters such that X_{i} and $Y_{\sigma(i)}$ are isomorphic, for all i.

Proof. Lemma 2.2.16 implies $r=s$, and $|A|$ and $|B|$ are invertible. By Ax-Grothendieck, it suffices to construct two morphisms $X \rightarrow Y$ and $Y \rightarrow X$ in $T_{I_{r}}$, where I_{r} is the r by r identity matrix, to conclude X and Y are coordinate wise isomorphic. By Remark 3.1.3, we may relabel X_{1}, \cdots, X_{r} such that $|A|$ has no zeros along its diagonal. Hence A is in $T_{I_{r}}$. The invertibility of $|B|$ implies the morphism B is in T_{E}, for some permutation matrix E. Therefore $B=(B A)^{r-1} B$ is in $T_{\left(E I_{r}\right)^{r-1} E=I_{r}}$.

Proposition 3.1.5. Let $n \in \mathbb{N} \cup\{\infty\}$. Let $X=\left(X_{1}, \cdots, X_{r}\right)$ and $Y=\left(Y_{1}, \cdots, Y_{s}\right)$ be in $\operatorname{Add}\left(\operatorname{Bir}^{n}\right)$. Suppose $A: X \rightarrow Y$ and $B: Y \rightarrow X$ are inverse morphisms. Then $r=s$, and there is a permutation σ on r letters such that X_{i} and $Y_{\sigma(i)}$ are birational, for each i.

Proof. Lemma 2.2.16 implies $r=s$, and $|A|$ and $|B|$ are invertible. By Remark 3.1.3, we may relabel X_{1}, \cdots, X_{r} such that $|A|$ has no zeros along its diagonal. This means there exist birational maps $X_{i} \rightarrow Y_{i}$ for each i, as desired.

Corollary 3.1.6. Let $n \in \mathbb{N} \cup\{\infty\}$. There is a group isomorphism

$$
K_{0}\left(\operatorname{Add}\left(\operatorname{Var}^{n}\right)\right) \rightarrow \mathbb{Z}\left[\operatorname{Var}^{n}\right],
$$

which sends the class of the tuple $\left(X_{1}, \cdots, X_{r}\right)$ to $\sum_{i=1}^{r}\left[X_{i}\right]$. There is a group isomorphism

$$
K_{0}\left(\operatorname{Add}\left(\operatorname{Bir}^{n}\right)\right) \rightarrow \mathbb{Z}\left[\operatorname{Bir}^{n}\right],
$$

which sends the class of the tuple $\left(X_{1}, \cdots, X_{r}\right)$ to $\sum_{i=1}^{r}\left\{X_{i}\right\}$.
Proof. Theorem 3.1.4 and Proposition 3.1.5 show Var^{n} and Bir^{n} have the permutation isomorphism property (Definition 2.2.29), and the corollary follows from Proposition 2.2.30.

3.2 A localization of additive completions associated to varieties and schemes

In this section, we define a left multiplicative system in $\operatorname{Add}(V a r)$. The motivation is to form a new localized exact category such that a variety is identified with the direct sum of a closed subvariety and open complement in the Grothendieck group.

Definition 3.2.1. Let X be a variety. Let $i_{Z}: Z \hookrightarrow X$ be a closed immersion. Let $i_{U}: U \hookrightarrow$ Z be the complement. In $\operatorname{Add}(\mathrm{Var})$, we call the morphism $\left(i_{U}, i_{Z}\right):(U, Z) \rightarrow X$ an open closed cover of X.

In $\operatorname{Add}(\mathrm{Var})$, define the following sets of morphisms:

1. Let S_{0} be the set of all open closed covers together with the set of all isomorphisms.
2. Let S_{1} be the set of direct sums of morphisms in S_{0}. For instance, given two open closed covers $\left(i_{U}, i_{Z}\right):(U, Z) \rightarrow X$ and $\left(i_{U^{\prime}}, i_{Z^{\prime}}\right):\left(U^{\prime}, Z^{\prime}\right) \rightarrow X^{\prime}$, the direct sum map $\left(\begin{array}{cccc}i_{U} & i_{Z} & 0 & 0 \\ 0 & 0 & i_{U^{\prime}} & i_{Z^{\prime}}\end{array}\right):\left(U, Z, U^{\prime}, Z^{\prime}\right) \rightarrow\left(X, X^{\prime}\right)$ is an example.
3. Let S_{2} be the set of compositions of morphisms in S_{1}. Put $S:=S_{2}$.

Remark 3.2.2. The definition of S works equally well for other categories such as Var^{n}, Sch, or even topological spaces. All of the results in the remainder of this section hold true with similar proofs.

The remainder of this section is devoted to showing S is a left multiplicative system.
Lemma 3.2.3. The set S is closed under direct sum.
Proof. Let $f, g \in S$. Write $f=X_{0} \xrightarrow{s_{1}} X_{1} \xrightarrow{s_{2}} \cdots \xrightarrow{s_{r}} X_{r}$ and $g=Y_{0} \xrightarrow{t_{1}} Y_{1} \xrightarrow{t_{2}} \cdots \xrightarrow{t_{m}} Y_{m}$, where all s_{i} and t_{j} lie in S_{1}. Assume without loss of generality $m \geq r$. The morphism $f \oplus g: X_{0} \oplus Y_{0} \rightarrow X_{r} \oplus Y_{m}$ factors as

$$
X_{0} \oplus Y_{0} \xrightarrow{s_{1} \oplus t_{1}} \cdots \xrightarrow{s_{r} \oplus t_{r}} X_{r} \oplus Y_{r} \xrightarrow{\mathrm{id}_{X_{r}} \oplus t_{r+1}} \cdots \xrightarrow{\mathrm{id}_{X_{r}} \oplus t_{m}} X_{r} \oplus Y_{m}
$$

Because each s_{i} and t_{i} is a direct sum of morphisms in S_{0}, each $s_{i} \oplus t_{i}$ is in S_{1}. Similarly, each $\operatorname{id}_{X_{r}} \oplus t_{i}$ is in S_{1}. Hence the composite lies in S.

Recall the category of varieties is symmetric monoidal with respect to fiber product. Let $\square: \operatorname{Add}(\operatorname{Var}) \times \operatorname{Add}(\mathrm{Var}) \rightarrow \operatorname{Add}(\mathrm{Var})$ denote the fiber product bifunctor obtained from Proposition 2.3.3.

Lemma 3.2.4. The set S is closed under fiber product bifunctor \square on $\operatorname{Add}(\operatorname{Var})$. That is, $s_{1} \square s_{2}$ is in S, for all s_{1} and s_{2} in S.

Proof. We proceed in steps.
Step 0: Let $s \in S$. If W is the empty tuple \emptyset, then $s \square \mathrm{id}_{W}$ and $\mathrm{id}_{W} \square s$ are both the zero by zero matrix on \emptyset, which is the identity on \emptyset and lies in $S_{0} \subseteq S$. For the remainder of the proof, we assume W is a nonempty tuple and write $W=\left(W_{1}, \cdots, W_{n}\right)$.

Step 1: Let $s \in S_{0}$. We show $s \square \mathrm{id}_{W}$ and $\operatorname{id}_{W} \square s$ are in S, for all nonempty tuples $W \in \operatorname{Add}(\operatorname{Var})$. If $s: X \rightarrow Y$ is an isomorphism, then $s \square \mathrm{id}_{W}$ is the isomorphism

$$
\bigoplus_{i} s \times \operatorname{id}_{W_{i}}: \bigoplus_{i} X \times W_{i} \rightarrow \bigoplus_{i} Y \times W_{i},
$$

which is in $S_{0} \subseteq S$. If s is the open closed cover $\left(i_{U}, i_{Z}\right):(U, Z) \rightarrow X$, then $s \square \mathrm{id}_{W}$ is the direct sum of open closed covers:

$$
\bigoplus_{i}\left(i_{U} \times \operatorname{id}_{W_{i}}, i_{Z} \times \operatorname{id}_{W_{i}}\right):\left(U \times W_{1}, \cdots, U \times W_{n}, Z \times W_{1}, \cdots, Z \times W_{n}\right) \rightarrow\left(X \times W_{1}, \cdots, X \times W_{n}\right)
$$

Hence $s \square \mathrm{id}_{W}$ is in $S_{1} \subseteq S$. Similar remarks apply to $\mathrm{id}_{W} \square s$.
Step 2: Let $s \in S_{1}$. We show $s \square \mathrm{id}_{W}$ and $\operatorname{id}_{W} \square s$ are in S, for all nonempty tuples $W \in \operatorname{Add}(\mathrm{Var})$. Write $s=\oplus f_{i}$, where each $f_{i}: X_{i} \rightarrow Y_{i}$ is in S_{0}. Then $s \square \mathrm{id}_{W}$ is the direct sum

$$
\bigoplus_{i, j} f_{i} \times \operatorname{id}_{W_{j}}: \bigoplus_{i, j} X_{i} \times W_{j} \rightarrow \bigoplus_{i, j} Y_{i} \times W_{j}
$$

of morphisms $f_{i} \times \mathrm{id}_{W_{j}}$. Step 1 and Lemma 3.2 .3 show $s \square \mathrm{id}_{W}$ is in S. A similar argument applies to $\operatorname{id}_{W} \square s$.

Step 3: Suppose $s: X_{1} \rightarrow Y_{1}$ and $t: X_{2} \rightarrow Y_{2}$ are in S. We show $s \square t$ is in S. Write $s=s_{n} \circ \cdots \circ s_{1}$ for $s_{i} \in S_{1}$ and $t=t_{m} \circ \cdots \circ t_{1}$ for $t_{j} \in S_{1}$. Then $s \square t$ is the composite

$$
\left(s_{n} \square \mathrm{id}_{Y_{2}}\right) \circ \cdots \circ\left(s_{1} \square \mathrm{id}_{Y_{2}}\right) \circ\left(\operatorname{id}_{X_{1}} \square t_{m}\right) \circ \cdots \circ\left(\mathrm{id}_{X_{1}} \square t_{1}\right) .
$$

By Step 2, each factor lies in S so the composite lies in S.
Proposition 3.2.5. The set S is a left Ore set.
Proof. Suppose we are given the diagram

in $\operatorname{Add}(\mathrm{Var})$ with $s \in S$. We produce two maps $W \rightarrow Z$ and $W \rightarrow X$ in S such that the diagram commutes.

Step 0: In general, X is a tuple, but we reduce to the case where X is a variety. If X is the empty tuple, then the diagram

commutes. Here $0: \emptyset \rightarrow \emptyset$ denotes the zero by zero matrix, which is the identity map on \emptyset and lies in S_{0}. The morphism $0: \emptyset \rightarrow Z$ is also a zero dimensional matrix. Otherwise write $X=\left(X_{1}, \cdots, X_{n}\right)$. Suppose we have a diagram

and morphisms $t_{i} \in S$ and g_{i} such that the following diagram commutes:

Then the diagram

commutes, and $t_{1} \oplus \cdots \oplus t_{n}$ lies in S by Lemma 3.2.3. Assume for the remainder of the proof X is the 1 -tuple of a variety.

Step 1: Suppose $s \in S_{0}$. If s is an isomorphism, then the following diagram commutes:

Assume s is an open closed cover $(U, Z) \rightarrow Y$:

where $f=\sum_{i=1}^{n} n_{i} f_{i}$. Let U_{i} and Z_{i} be the pullbacks of U and Z along f_{i} :

Given a multi-index $I=\left(i_{1}, \cdots, i_{n}\right) \in\{0,1\}^{n}$, consider the subvarieties of X :

$$
\begin{aligned}
U_{I} & =\bigcap_{\left\{j \mid i_{j}=0\right\}} U_{j} \\
Z_{I} & =\bigcap_{\left\{j \mid i_{j}=1\right\}} Z_{j} \\
W_{I} & =U_{I} \cap Z_{I}=U_{I} \times{ }_{X} Z_{I} .
\end{aligned}
$$

For instance, $U_{(1,0,1)}=U_{2}, Z_{(1,0,1)}=Z_{1} \cap Z_{3}$, and $W_{(1,0,1)}=U_{2} \cap\left(Z_{1} \cap Z_{3}\right)$. Put $W=$ $\oplus_{I \in\{0,1\}^{n}} W_{I}$ the tuple of length 2^{n}, written in dictionary order.

We define two morphisms $W \rightarrow(U, Z)$ in $\operatorname{Add}(\operatorname{Var})$ and $W \rightarrow X$ in S that make Eq. (3.3) commute. Fix a multi-index $I=\left(i_{1}, \cdots, i_{n}\right) \in\{0,1\}^{n}$. The components of $W \rightarrow(U, Z)$ are as follows. Let $W_{I} \rightarrow U$ be the composite $W_{I} \subseteq U_{I} \rightarrow U$ where the morphism $U_{I} \rightarrow U$ is
$\sum_{\left\{j \mid i_{j}=0\right\}} n_{j} g_{j}$. Similarly, let $W_{I} \rightarrow Z$ be the composite $W_{I} \subseteq Z_{I} \rightarrow Z$ where the morphism $Z_{I} \rightarrow Z$ is $\sum_{\left\{j \mid i_{j}=1\right\}} n_{j} h_{j}$. For example, the morphism $W_{(1,0,1)} \rightarrow U$ is

$$
W_{(1,0,1)} \subseteq U_{(1,0,1)} \xrightarrow{n_{2} g_{2}} U
$$

and the morphism $W_{(1,0,1)} \rightarrow Z$ is

$$
W_{(1,0,1)} \subseteq Z_{(1,0,1)} \xrightarrow{n_{1} h_{1}+n_{3} h_{3}} Z
$$

This defines $W \rightarrow(U, Z)$.
Next, define $s: W \rightarrow X$ as the composite of a direct sum of open closed covers, obtained by restricting to $\left(U_{i}, Z_{i}\right)$:

$$
\begin{aligned}
X & \leftarrow\left(U_{1}, Z_{1}\right) \\
& \leftarrow\left(U_{1} \cap U_{2}, U_{1} \cap Z_{2}, Z_{1} \cap U_{2}, Z_{1} \cap Z_{2}\right) \\
& \leftarrow\left(U_{1} \cap U_{2} \cap U_{3}, U_{1} \cap U_{2} \cap Z_{3}\right. \\
& U_{1} \cap Z_{2} \cap U_{3}, U_{1} \cap Z_{2} \cap Z_{3} \\
& Z_{1} \cap U_{2} \cap U_{3}, Z_{1} \cap U_{2} \cap Z_{3} \\
& \left.Z_{1} \cap Z_{2} \cap U_{3}, Z_{1} \cap Z_{2} \cap Z_{3}\right) \\
& \leftarrow \cdots \\
& \leftarrow W
\end{aligned}
$$

The two defined morphisms $W \rightarrow(U, Z)$ and $W \rightarrow X$ make Eq. (3.3) commute: the morphism $W_{I} \rightarrow X \rightarrow Y$ is $\left.\sum_{j} n_{j} f_{j}\right|_{W_{I}}$, and the morphism $W_{I} \rightarrow(U, Z) \rightarrow Y$ is

$$
i_{U} \circ\left(\sum_{\left\{j \mid i_{j}=0\right\}} n_{j} g_{j} \mid W_{I}\right)+i_{Z} \circ\left(\sum_{\left\{j \mid i_{j}=1\right\}} n_{j} h_{j} \mid W_{I}\right),
$$

which are the same.

Step 2: Suppose $s \in S_{1}$, and write s as the direct sum

$$
s_{1} \oplus \cdots \oplus s_{n}: Z_{1} \oplus \cdots \oplus Z_{n} \rightarrow Y_{1} \oplus \cdots \oplus Y_{n}
$$

where each $s_{i}: Y_{i} \rightarrow Z_{i} \in S_{0}$. We proceed by induction on n. If $n=1$, then we are done by Step 1. Suppose $n>1$. We abbreviate $\tilde{Z}=Z_{1} \oplus \cdots \oplus Z_{n-1}, \tilde{Y}=Y_{1} \oplus \cdots \oplus Y_{n-1}$, and $\tilde{s}=s_{1} \oplus \cdots \oplus s_{n-1}$. Label the arrow $X \rightarrow Y$ in Eq. (3.1) as f. We may write f as a matrix $\binom{\tilde{f}}{f_{n}}$ where $\tilde{f}: X \rightarrow \tilde{Y}$ and $f_{n}: X \rightarrow Y_{n}$ are the components.

By inductive hypothesis, there are morphisms $s^{*}: X^{*} \rightarrow X$ in S and $f^{*}: X^{*} \rightarrow \tilde{Z}$ such that the diagram

commutes. Hence the diagram
commutes, where $M=\left(\begin{array}{cc}\tilde{s} & 0 \\ 0 & \text { id }\end{array}\right)$.
By Step 1, there are morphisms $s_{n}^{*}: X^{* *} \rightarrow X^{*}$ in S and $f^{* *}: X^{* *} \rightarrow Z_{n}$ such that the diagram

commutes. Hence the diagram

commutes, where $N=\left(\begin{array}{cc}\text { id } & 0 \\ 0 & s_{n}\end{array}\right)$.
Finally, stacking Eq. (3.5) over Eq. (3.4) completes the proof.
Step 3: Suppose $s \in S$. Write $s=s_{n} \circ \cdots \circ s_{1}$ where each $s_{i} \in S_{1}$. By Step 2, we obtain a commutative diagram for each s_{i}, and we form a tower in a similar way to the proof of Step 2 to obtain the required commutative diagram for s.

Proposition 3.2.6. The set S is left cancellative.

Proof. Suppose we are given the commutative diagram

$$
\begin{equation*}
X \xrightarrow[g]{\stackrel{f}{\longrightarrow}} Y \xrightarrow{s} Z \tag{3.6}
\end{equation*}
$$

in $\operatorname{Add}(\mathrm{Var})$ with $s \in S$. We produce a morphism t in S such that $f t=g t$.
Step 1: Suppose $s \in S_{0}$. Say s is an isomorphism, and Eq. (3.6) is the diagram

$$
X=\left(X_{1}, \cdots, X_{n}\right) \xrightarrow[\left(g_{1}, \cdots, g_{n}\right)]{\left(f_{1}, \cdots, f_{n}\right)} Y \xrightarrow{s} Y^{\prime}
$$

Then $s f_{i}=s g_{i}$, for all i, so $f_{i}=g_{i}$. Hence we let t be the identity map on X.
Say s is an open closed cover, and Eq. (3.6) is the diagram

$$
X=\left(X_{1}, \cdots, X_{n}\right) \xrightarrow[g]{\stackrel{f}{\longrightarrow}}(U, Z) \xrightarrow{\left(i_{U}, i_{Z}\right)} Y
$$

Write $f=\left(\begin{array}{ccc}f_{1}^{\prime} & \ldots & f_{n}^{\prime} \\ f_{1}^{\prime \prime} & \ldots & f_{n}^{\prime \prime}\end{array}\right)$ and $g=\left(\begin{array}{ccc}g_{1}^{\prime} & \ldots & g_{n}^{\prime} \\ g_{1}^{\prime \prime} & \ldots & g_{n}^{\prime \prime}\end{array}\right)$. For each $1 \leq j \leq n$, the equation

$$
i_{U}\left(f_{j}^{\prime}-g_{j}^{\prime}\right)=i_{Z}\left(g_{j}^{\prime \prime}-f_{j}^{\prime \prime}\right)
$$

holds in $\mathbb{Z}\left[\operatorname{Hom}\left(X_{j}, Y\right)\right]$. Both $i_{U}\left(f_{j}^{\prime}-g_{j}^{\prime}\right)$ and $i_{Z}\left(g_{j}^{\prime \prime}-f_{j}^{\prime \prime}\right)$ equal zero because i_{U} and i_{Z} have disjoint image. It suffices to show $f_{j}^{\prime}-g_{j}^{\prime}$ and $g_{j}^{\prime \prime}-f_{j}^{\prime \prime}$ are zero so that the identity map on X will do the job.

To that end, in general, if $\phi: X \rightarrow Z$ is in $\mathbb{Z}(V a r)$ and $i: Z \hookrightarrow Y$ is a locally closed immersion with $i \phi=0$, then ϕ is zero. Indeed, write $\phi=\sum n_{p} \phi_{p}$ in reduced form. If ϕ were nonzero, there would be indices $p \neq q$ such that $i \phi_{p}=i \phi_{q}$. But Lemma 2.4.3 would absurdly imply $\phi_{p}=\phi_{q}$.

Step 2: Suppose $s \in S_{1}$, and Eq. (3.6) is the diagram

$$
\begin{equation*}
X \xrightarrow[\left(g_{1}, \cdots, g_{n}\right)]{\stackrel{\left(f_{1}, \cdots, f_{n}\right)}{\longrightarrow}} \oplus_{i=1}^{n} Y_{i} \xrightarrow{\bigoplus_{i=1}^{n} s_{i}} \oplus_{i=1}^{n} Z_{i}, \tag{3.7}
\end{equation*}
$$

where all $s_{i}: Y_{i} \rightarrow Z_{i}$ are in S_{0}. We proceed by induction on n. If $n=1$, we are done by Step 1. If $n \geq 2$, write $f^{\prime}=f_{1} \oplus \cdots \oplus f_{n-1}, g^{\prime}=g_{1} \oplus \cdots \oplus g_{n-1}, s^{\prime}=s_{1} \oplus \cdots \oplus s_{n-1}$, $Y^{\prime}=Y_{1} \oplus \cdots \oplus Y_{n-1}$, and $Z^{\prime}=Z_{1} \oplus \cdots \oplus Z_{n-1}$. The diagram

$$
X \xrightarrow[g^{\prime}]{\xrightarrow[f^{\prime}]{\longrightarrow}} Y^{\prime} \xrightarrow{s^{\prime}} Z^{\prime}
$$

commutes so induction grants a morphism $t^{\prime}: W^{\prime} \rightarrow X$ in S such that $f^{\prime} t^{\prime}=g^{\prime} t^{\prime}$. Next, the diagram

$$
W^{\prime} \xrightarrow[g_{n} t^{\prime}]{\stackrel{f_{n} t^{\prime}}{\longrightarrow}} Y_{n} \xrightarrow{s_{n}} Z_{n}
$$

commutes so Step 1 gives a morphism $t: W \rightarrow W^{\prime}$ in S_{0} such that $f_{n} t^{\prime} t=g_{n} t^{\prime} t$. Then the morphism $W \xrightarrow{t} W^{\prime} \xrightarrow{t^{\prime}} X$ in S is the desired morphism; we compute:

$$
f t^{\prime} t=\left(f^{\prime} \oplus f_{n}\right) \circ\left(t^{\prime} t\right)=f^{\prime} t^{\prime} t \oplus f_{n} t^{\prime} t=g^{\prime} t^{\prime} t \oplus g_{n} t^{\prime} t=g t^{\prime} t
$$

Step 3: Suppose $s \in S$. Write s as

$$
Y \xrightarrow{s_{1}} Z_{1} \xrightarrow{s_{2}} Z_{2} \rightarrow \cdots \xrightarrow{s_{n}} Z_{n}=Z
$$

where all $s_{i} \in S_{1}$. We proceed by induction on n. If $n=1$, we are done by Step 2 . If $n \geq 2$, write $s^{\prime}=s_{n-1} \circ \cdots \circ s_{1}$. The diagram

$$
X \xrightarrow[s^{\prime} g]{\xrightarrow[s^{\prime} f]{\longrightarrow}} Z_{n-1} \xrightarrow{s_{n}} Z
$$

commutes so Step 2 gives a morphism $t: W \rightarrow X$ in S such that $s^{\prime} f t=s^{\prime} g t$. Therefore, the diagram

$$
W \xrightarrow[g t]{\xrightarrow{f t}} Y \xrightarrow{s^{\prime}} Z_{n-1}
$$

commutes and induction gives a morphism $t^{\prime}: W^{\prime} \rightarrow W$ in S such that $f t t^{\prime}=g t t^{\prime}$. Hence the morphism $W^{\prime} \xrightarrow{t^{\prime}} W \xrightarrow{t} X$ in S is the desired morphism.

Corollary 3.2.7. S is a left multiplicative system.

Proof. The set S contains all isomorphisms and all identities, and the corollary follows from Propositions 3.2.5 and 3.2.6.

3.3 K_{0} of the localized additive completion of varieties and schemes

Let T be a base scheme. By Propositions 2.2.24 and 2.3.6 and Lemma 3.2.4, the category $\operatorname{Add}\left(\mathrm{Sch}_{T}\right)_{S}$ is additive and symmetric monoidal under fiber product. The same is true for $\operatorname{Add}\left(\operatorname{Var}_{k}^{n}\right)_{S}$, for all $n \in \mathbb{N} \cup\{\infty\}$. In the remainder of this thesis, we study the K_{0}-theory of these split exact categories where the class of a scheme is indeed identified with the direct sum of a closed subscheme and open complement.

In this section, we establish a few basic properties of $K_{0}\left(\operatorname{Add}\left(\operatorname{Sch}_{T}\right)_{S}\right)$. In Chapter 4, we view the family $\left\{K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}^{n}\right)_{S}\right)\right\}_{n}$ as a direct system of groups, and compute the direct limit and cokernels of the connecting morphisms. In Chapter 5, we compare this K_{0}-theory with $K_{0}\left(\operatorname{Var}_{k}\right)$. In Chapter 6, we show how to construct motivic measures on $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right)$.

Definition 3.3.1. The inclusion functor $\operatorname{Var}^{n-1} \rightarrow \operatorname{Var}^{n}$ induces, by universal property of additive completions and localizations, a functor

$$
j_{n, n-1}: \operatorname{Add}\left(\operatorname{Var}^{n-1}\right)_{S} \rightarrow \operatorname{Add}\left(\operatorname{Var}^{n}\right)_{S}
$$

Explicitly, it is the identity on objects and maps the class of a left roof to the same class.

Definition 3.3.2. Let

$$
g_{n, n-1}=K_{0}\left(j_{n, n-1}\right): K_{0}\left(\operatorname{Add}\left(\operatorname{Var}^{n-1}\right)_{S}\right) \rightarrow K_{0}\left(\operatorname{Add}\left(\operatorname{Var}^{n}\right)_{S}\right)
$$

be the group homomorphism obtained by applying the functor K_{0} to the inclusion functors $j_{n, n-1}$.

Lemma 3.3.3. The functor $j_{n, n-1}$ is fully faithful.
Proof. Let X and Y be in $\operatorname{Add}\left(\operatorname{Var}^{n-1}\right)_{S}$. Consider a morphism in $\operatorname{Hom}_{\operatorname{Add}\left(\operatorname{Var}^{n}\right)_{S}}(X, Y)$ represented by left roof $X \leftarrow P \rightarrow Y$. It suffices to show: if a morphism $f: P \rightarrow X$ in S where X is in $\operatorname{Add}\left(\operatorname{Var}^{n-1}\right)$, then P also is in $\operatorname{Add}\left(\operatorname{Var}^{n-1}\right)$.

Let $f \in S_{0}$. If f is an isomorphism, then Theorem 3.1.4 shows all the entries of P are of dimension less than n. If f is the open closed cover $(U, Z) \rightarrow X$, then the entries of $P=(U, Z)$ are of dimension less than n.

Let $f \in S_{1}$. Write f as the direct sum of the morphisms $f_{i}: P_{i} \rightarrow X_{i}$ in S_{0}. The previous step shows all P_{i} are in $\operatorname{Add}\left(\operatorname{Var}^{n-1}\right)$, hence so is their direct sum.

Let $f \in S_{2}$. Write f as the composite $f_{r-1} \circ \cdots \circ f_{0}$ where $f_{i}: Z_{i} \rightarrow Z_{i+1}$ is in S_{1} and $Z_{0}=P$ and $Z_{r}=X$. Starting from $f_{r-1}: Z_{r-1} \rightarrow Z_{r}=X$, we inductively conclude, from the previous step, each Z_{i} is in $\operatorname{Add}\left(\operatorname{Var}^{n-1}\right)$.

Proposition 3.3.4. The abelian groups $K_{0}\left(\operatorname{Add}\left(\operatorname{Sch}_{T}\right)\right)$ and $K_{0}\left(\operatorname{Add}\left(\operatorname{Sch}_{T}\right)\left[S^{-1}\right]\right)$ have the structure of a commutative ring, induced by fiber product over T. Also, the localization functor $Q: \operatorname{Add}\left(\mathrm{Sch}_{T}\right) \rightarrow \operatorname{Add}\left(\mathrm{Sch}_{T}\right)\left[S^{-1}\right]$ induces a ring homomorphism

$$
K_{0} Q: K_{0}\left(\operatorname{Add}\left(\operatorname{Sch}_{T}\right)\right) \rightarrow K_{0}\left(\operatorname{Add}\left(\operatorname{Sch}_{T}\right)\left[S^{-1}\right]\right) .
$$

Proof. The category Sch_{T} is a symmetric monoidal category under fiber product. By Proposition 2.3.4, $\operatorname{Add}\left(\mathrm{Sch}_{T}\right)$ is also symmetric monoidal with bifunctor described in Proposition 2.3.3. By Proposition 2.3.6, $\operatorname{Add}\left(\mathrm{Sch}_{T}\right)_{S}$ is symmetric monoidal with bifunctor described in Proposition 2.3.5. Both bifunctors on $\operatorname{Add}\left(\mathrm{Sch}_{T}\right)$ and $\operatorname{Add}\left(\mathrm{Sch}_{T}\right)_{S}$ are additive in each
factor. Therefore by Corollary 2.3.10, both $K_{0}\left(\operatorname{Add}\left(\operatorname{Sch}_{T}\right)\right)$ and $K_{0}\left(\operatorname{Add}\left(\operatorname{Sch}_{T}\right)\left[S^{-1}\right]\right)$ are rings. Corollary 2.3.11 implies $K_{0} Q$ is a ring homomorphism.

Remark 3.3.5 (Pullback). Let $f: T^{\prime} \rightarrow T$ be a morphism of schemes. The natural pullback functor $\mathrm{Sch}_{T} \rightarrow \mathrm{Sch}_{T^{\prime}}$ induces an additive functor $\operatorname{Add}\left(\mathrm{Sch}_{T}\right) \rightarrow \operatorname{Add}\left(\mathrm{Sch}_{T^{\prime}}\right)$, which induces a group homomorphism

$$
f^{*}: K_{0}\left(\operatorname{Add}\left(\operatorname{Sch}_{T}\right)\right) \rightarrow K_{0}\left(\operatorname{Add}\left(\operatorname{Sch}_{T^{\prime}}\right)\right) .
$$

It is easy to verify f^{*} respects the ring structure.
The functor $\operatorname{Add}\left(\mathrm{Sch}_{T}\right) \rightarrow \operatorname{Add}\left(\mathrm{Sch}_{T}^{\prime}\right) \rightarrow \operatorname{Add}\left(\mathrm{Sch}_{T}^{\prime}\right)_{S}$ sends S into isomorphisms. Therefore there is another group homomorphism

$$
f^{*}: K_{0}\left(\operatorname{Add}\left(\operatorname{Sch}_{T}\right)\left[S^{-1}\right]\right) \rightarrow K_{0}\left(\operatorname{Add}\left(\operatorname{Sch}_{T^{\prime}}\right)\left[S^{-1}\right]\right)
$$

which also respects the ring structure.
The pullback maps commute with the ring homomorphism in Proposition 3.3.4.
Remark 3.3.6 (Pushforward). Let $f: T^{\prime} \rightarrow T$ be a morphism of finite presentation. There is a functor $\mathrm{Sch}_{T^{\prime}} \rightarrow \mathrm{Sch}_{T}$ which maps a scheme X^{\prime} over T^{\prime} to X^{\prime} with structure morphism $X^{\prime} \rightarrow T^{\prime} \rightarrow T$, and sends a morphism over T^{\prime} to a morphism over T. Note the morphism $X^{\prime} \rightarrow T^{\prime} \rightarrow T$ is also of finite presentation. This induces an additive functor $\operatorname{Add}\left(\operatorname{Sch}_{T^{\prime}}\right) \rightarrow$ $\operatorname{Add}\left(\mathrm{Sch}_{T}\right)$, which induces a group homomorphism

$$
f_{!}: K_{0}\left(\operatorname{Add}\left(\operatorname{Sch}_{T^{\prime}}\right)\right) \rightarrow K_{0}\left(\operatorname{Add}\left(\operatorname{Sch}_{T}\right)\right)
$$

Usually, $f_{!}$is not a ring homomorphism because it sends the unit T^{\prime} to $T^{\prime} \rightarrow T$.
The functor $\operatorname{Add}\left(\operatorname{Sch}_{T^{\prime}}\right) \rightarrow \operatorname{Add}\left(\mathrm{Sch}_{T}\right) \rightarrow \operatorname{Add}\left(\mathrm{Sch}_{T}\right)_{S}$ sends S into isomorphisms. Therefore there is another group homomorphism

$$
f_{!}: K_{0}\left(\operatorname{Add}\left(\operatorname{Sch}_{T^{\prime}}\right)\left[S^{-1}\right]\right) \rightarrow K_{0}\left(\operatorname{Add}\left(\operatorname{Sch}_{T}\right)\left[S^{-1}\right]\right)
$$

compatible with K_{0} applied to the localization functors and $f_{!}$on the K_{0}-theory of the unlocalized category.

4. DIRECT SYSTEMS

In this chapter, we view the families $\left\{K_{0}\left(\operatorname{Var}_{k}^{n}\right)\right\}_{n}$ and $\left\{K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}^{n}\right)\right)_{S}\right\}_{n}$ as a direct system of groups. In Sections 4.2 and 4.3, we show their direct limits are $K_{0}\left(\operatorname{Var}_{k}\right)$ and $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right)$. We also compute the cokernels of the connecting homomorphisms. In Section 4.4, we show a quotient category $\operatorname{Add}\left(\operatorname{Var}_{k}^{n}\right)_{S} / \operatorname{Add}\left(\operatorname{Var}_{k}^{n-1}\right)_{S}$ exists, and we show the K_{0}-theory of the quotient category is the cokernel of $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}^{n-1}\right)_{S}\right) \rightarrow K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}^{n}\right)_{S}\right)$. We begin this chapter with some technicalities.

4.1 Preliminary setup for proofs in later sections

In this section, we set up notations and define some functors for proofs in the following sections of this chapter.

Remark 4.1.1. Let X be an n-dimensional variety. Let (U, Z) be a open closed cover of X. We set up some notation for the irreducible decomposition of U and Z in terms of the irreducible decomposition of X. Label the irreducible decomposition of X as follows:

1. Let Y_{1}, \cdots, Y_{t} be the components of X of dimension less than n.
2. Let $Y_{1}^{\prime}, \cdots, Y_{r}^{\prime}$ be the components of X of dimension n that meet U.
3. Let $Y_{1}^{\prime \prime}, \cdots, Y_{s}^{\prime \prime}$ be the components of X of dimension n that avoid U.

We have

$$
U=\left(\bigcup_{i=1}^{r} U \cap Y_{i}^{\prime}\right) \cup\left(\bigcup_{k=1}^{t} U \cap Y_{k}\right)
$$

After deleting every empty $U \cap Y_{k}$, what remains is the irreducible decomposition of U because every nonempty open of an irreducible space is irreducible. The only n-dimensional components of U are $U \cap Y_{i}^{\prime}$.

Next, we have

$$
Z=\left(\bigcup_{i=1}^{r} Z \cap Y_{i}^{\prime}\right) \cup\left(\bigcup_{j=1}^{s} Z \cap Y_{j}^{\prime \prime}\right) \cup\left(\bigcup_{k=1}^{t} Z \cap Y_{k}\right)
$$

We obtain the irreducible decomposition of Z by collecting the components of $Z \cap Y_{i}^{\prime}, Z \cap Y_{j}^{\prime \prime}$, and $Z \cap Y_{k}$ into a poset, ordered by inclusion, and taking the maximal elements. Notice:

1. $Z \cap Y_{i}^{\prime}$ is a proper closed subvariety of Y_{i}^{\prime} because U meets Y_{i}. Therefore the components of $Z \cap Y_{i}^{\prime}$ are of dimension less than n.
2. $Z \cap Y_{j}^{\prime \prime}$ equals $Y_{j}^{\prime \prime}$ because $Y_{j}^{\prime \prime}$ avoids U.
3. The components of $Z \cap Y_{k}$ are of dimension less than n.

The only n-dimensional components of Z are $Y_{j}^{\prime \prime}$.
Definition 4.1.2. We define a functor

$$
\operatorname{comp}_{n}: \operatorname{Var}^{n} \rightarrow \operatorname{Add}(\operatorname{IrrVar}=n),
$$

which picks out the n-dimensional components of a variety. For every variety Y of dimension n, fix, once and for all, an ordering of the n-dimensional components of Y. For $X \in \operatorname{Var}^{n}$, put $\operatorname{comp}_{n} X:=\bigoplus_{i \in I} X_{i}$, where I is the ordered set indexing the n-dimensional components X_{i} of X. If I is empty (X has no n-dimensional components), then $\operatorname{comp}_{n} X=0$.

Let $f: X \hookrightarrow Y$ be a locally closed immersion and write $\operatorname{comp}_{n} Y=\bigoplus_{j \in J} Y_{j}$. Define $\operatorname{comp}_{n} f: \operatorname{comp}_{n} X \rightarrow \operatorname{comp}_{n} Y$ as follows.

1. If $\operatorname{dim} X$ or $\operatorname{dim} Y$ is less than n, then $\operatorname{comp}_{n} X$ or $\operatorname{comp}_{n} Y$ is zero, and we define $\operatorname{comp}_{n} f=0$.
2. Otherwise $\operatorname{dim} X=n=\operatorname{dim} Y$, and we define the components $\left(\operatorname{comp}_{n} f\right)_{j i}: X_{i} \rightarrow Y_{j}$ of $\operatorname{comp}_{n} f$ as follows.
(a) If f does not map X_{i} into Y_{j}, then put $\left(\operatorname{comp}_{n} f\right)_{j i}=0$.
(b) Otherwise f maps X_{i} into Y_{j}, and put $\left(\operatorname{comp}_{n} f\right)_{j i}=f$. Note in this case f maps X_{i} into Y_{j} as an open subvariety.

In other words, $(\operatorname{comp} f)_{j i}$ is nonzero if and only if f maps X_{i} into Y_{j}.

Proposition 4.1.3. The above assignment makes comp $_{n}$ into a functor.
We require a lemma before proving Proposition 4.1.3.
Lemma 4.1.4. Let $f: X \hookrightarrow Y$ be a locally closed immersion between varieties of dimension n. This means f is an open immersion and we identify X with an open subvariety of Y. If $X^{\prime} \subseteq X$ is a component of dimension n, then X^{\prime} is contained in a unique n-dimensional component of Y.

Proof of Lemma 4.1.4. The irreducible subvariety X^{\prime} in Y must be contained in some component of Y. Also, X^{\prime} cannot be contained in two different components Y_{1} and Y_{2} of Y, as this would mean the n-dimensional subspace X^{\prime} would be contained in the lower dimensional subspace $Y_{1} \cap Y_{2}$.

Proof of Proposition 4.1.3. We show comp_{n} is functorial. Let $f: X \hookrightarrow Y$ and $g: Y \hookrightarrow Z$ be locally closed immersions. Write $h=g f: X \hookrightarrow Z$. If any of X, Y, or Z are of dimension less than n, then both $\operatorname{comp}_{n} h$ and $\operatorname{comp}_{n} g \circ \operatorname{comp}_{n} f$ are zero. Assume $n=\operatorname{dim} X=\operatorname{dim} Y=$ $\operatorname{dim} Z$. Write $\operatorname{comp}_{n} X=\bigoplus_{i \in I} X, \operatorname{comp}_{n} Y=\bigoplus_{j \in J} Y_{j}$, and $\operatorname{comp}_{n} Z=\bigoplus_{k \in K} Z_{k}$. Fix $i \in I$ and $k \in K$. We verify the equality

$$
\left(\operatorname{comp}_{n} h\right)_{k i}=\sum_{j}\left(\operatorname{comp}_{n} g\right)_{k j} \circ\left(\operatorname{comp}_{n} f\right)_{j i} .
$$

By Lemma 4.1.4, there is a unique index $j^{\prime} \in J$ such that $f\left(X_{i}\right) \subseteq Y_{j^{\prime}}$, or equivalently, $\left(\operatorname{comp}_{n} f\right)_{j^{\prime} i}$ is nonzero. Hence we are reduced to verifying

$$
\begin{equation*}
\left(\operatorname{comp}_{n} h\right)_{k i}=\left(\operatorname{comp}_{n} g\right)_{k j^{\prime}} \circ\left(\operatorname{comp}_{n} f\right)_{j^{\prime} i} \tag{4.1}
\end{equation*}
$$

The following are equivalent:

1. $\left(\operatorname{comp}_{n} g\right)_{k j^{\prime}}$ is nonzero
2. g maps $Y_{j^{\prime}}$ into Z_{k}
3. h maps X_{i} into Z_{k}
4. $\left(\operatorname{comp}_{n} h\right)_{k i}$ is nonzero

The first and second statements, and third and fourth statements, are equivalent by definition of comp_{n}. The second statement implies the third statement because $f\left(X_{i}\right) \subseteq Y_{j^{\prime}}$ so

$$
h\left(X_{i}\right)=g f\left(X_{i}\right) \subseteq g\left(Y_{j^{\prime}}\right) \subseteq Z_{k} .
$$

Conversely, assume the third statement. Because $f\left(X_{i}\right)$ is open in Y_{j} and g is continuous, we have

$$
g\left(Y_{j}\right)=g\left(\overline{f\left(X_{i}\right)}\right) \subseteq \overline{g\left(f\left(X_{i}\right)\right)} \subseteq \overline{Z_{k}}=Z_{k}
$$

as desired.
Finally we conclude, either

1. both $\left(\operatorname{comp}_{n} g\right)_{k j^{\prime}}$ and $\left(\operatorname{comp}_{n} h\right)_{k i}$ are zero, in which case both sides of Eq. (4.1) are zero, or
2. both $\left(\operatorname{comp}_{n} g\right)_{k j^{\prime}}$ and $\left(\operatorname{comp}_{n} h\right)_{k i}$ are nonzero, in which case Eq. (4.1) reduces to $h=g f$.

Thus comp_{n} is a functor on Var^{n}.
Definition 4.1.5. Consider the composite functor

$$
\operatorname{bir}_{n}: \operatorname{Add}\left(\operatorname{Var}^{n}\right) \xrightarrow{\operatorname{Add}\left(\operatorname{comp}_{n}\right)} \operatorname{Add}(\operatorname{IrrVar}=n) \xrightarrow{\operatorname{Add}\left(\iota_{n}\right)} \operatorname{Add}\left(\operatorname{Bir}^{n}\right),
$$

where the functor ι_{n} was defined in Definition 2.1.2. We calculate bir $_{n}$ explicitly. Let $X=$ $\left(X_{1}, \cdots, X_{r}\right)$ be a tuple. Let $\left\{X_{i j}\right\}_{j \in J_{i}}$ be the (ordered) set of n-dimensional components of X_{i}. Then bir ${ }_{n}$ sends X to $\left(\oplus_{j \in J_{1}} X_{1 j}\right) \oplus \cdots \oplus\left(\oplus_{j \in J_{r}} X_{r j}\right)$.

Lemma 4.1.6. The functor bir_{n} extends to $\operatorname{Add}\left(\operatorname{Var}^{n}\right)_{S}$.

Proof. We verify bir_{n} sends S into isomorphisms. Let $f \in S_{0}$. If f is an isomorphism in $\operatorname{Add}\left(\operatorname{Var}^{n}\right)$, then $\operatorname{bir}_{n} f$ is an isomorphism by Theorem 3.1.4. Otherwise f is an open closed cover $(U, Z) \rightarrow X$. Then, in the notation of Remark 4.1.1, up to reordering,

$$
\operatorname{bir}_{n} X=\bigoplus_{i} Y_{i}^{\prime} \oplus \bigoplus_{j} Y_{j}^{\prime \prime} \quad \text { while } \quad \operatorname{bir}_{n} U=\bigoplus_{i} U \cap Y_{i}^{\prime} \quad \text { and } \quad \operatorname{bir}_{n} Z=\bigoplus_{j} Y_{j}^{\prime \prime}
$$

The morphism $\operatorname{bir}_{n} f: \operatorname{bir}_{n} X \rightarrow \operatorname{bir}_{n} U \oplus \operatorname{bir}_{n} Z$ is a square matrix with two diagonal blocks. One block consists of open immersions $Y_{i}^{\prime} \cap U \rightarrow Y_{i}^{\prime}$ along the diagonal, and the other block has the identity maps $Y_{j}^{\prime \prime} \rightarrow Y_{j}^{\prime \prime}$ along the diagonal. Hence $\operatorname{bir}_{n} f$ is an isomorphism in $\operatorname{Add}\left(\mathrm{Bir}^{n}\right)$. If f is a direct sum of morphisms in S_{0}, then $\operatorname{bir}_{n} f$ is a direct sum of isomorphisms. If f is a composition of morphisms in S_{1}, then $\operatorname{bir}_{n} f$ is a composition of isomorphisms. Therefore bir_{n} extends to an additive functor on $\operatorname{Add}\left(\operatorname{Var}^{n}\right)_{S}$.

4.2 Direct system of classical K_{0}-theory of varieties

In this section, we consider the direct system $\left\{K_{0}\left(\operatorname{Var}_{k}^{n}\right)\right\}_{n}$, and compute the direct limit and the cokernels of the connecting morphisms.

Definition 4.2.1. Define the direct system of groups

$$
F^{n} K:=K_{0}\left(\operatorname{Var}^{n}\right)
$$

For a variety X in Var^{n}, let $[X]_{n}^{K}$ denote its class in $F^{n} K$. We may also write $[X]_{n}$ or $[X]$, if clear from context. For $n \leq m$, there are homomorphisms $f_{m, n}: F^{n} K \rightarrow F^{m} K$ given by $f_{m, n}[X]_{n}=[X]_{m}$.

Proposition 4.2.2. The direct limit of the direct system $F^{n} K$ is $K_{0}(\mathrm{~V} a \mathrm{r})$.
Proof. There is a compatible system of homomorphisms $\phi_{i}: F^{i} K \rightarrow K_{0}(\operatorname{Var})$ where $\phi_{i}\left([X]_{i}\right)=$ $[X]$. We show $K_{0}(\operatorname{Var})$ carries the universal property. Let $\psi_{i}: F^{i} K \rightarrow H$ be a compatible system of homomorphisms.

We define a homomorphism $u: K_{0}(\operatorname{Var}) \rightarrow H$ compatible with the ψ_{k}. Send the class $[X]$ in $\mathbb{Z}[\operatorname{Var}]$ to $\psi_{k}\left([X]_{k}\right)$ in H, where k is any integer larger than $\operatorname{dim} X$. This is independent of choice of k : if $l \geq k \geq \operatorname{dim} X$, then

$$
\psi_{k}[X]_{k}=\psi_{l} f_{l k}[X]_{k}=\psi_{l}[X]_{l} .
$$

This map on $\mathbb{Z}[\mathrm{Var}]$ respects scissors relations: the relation $[X]-[U]-[Z]$ is sent to

$$
[X]-[U]-[Z] \mapsto \psi_{k}[X]_{k}-\psi_{k}[U]_{k}-\psi_{k}[Z]_{k}=\psi_{k}\left([X]_{k}-[U]_{k}-[Z]_{k}\right)=0
$$

Therefore u is a homomorphism such that $u \circ \phi_{i}=\psi_{i}$ for all i.
Next, we show uniqueness. Suppose $u^{\prime}: K_{0}(\mathrm{Var}) \rightarrow H$ is another homomorphism compatible with the ψ_{k}. Consider a generator $[X]$ in $K_{0}(V a r)$ and let $k \geq \operatorname{dim} X$. Then $u([X])=\psi_{k}\left([X]_{k}\right)=u^{\prime} \phi_{k}\left([X]_{k}\right)=u^{\prime}([X])$. The homomorphisms u and u^{\prime} agree on the generators of $K_{0}(\mathrm{Var})$.

Proposition 4.2.3. There is a group homomorphism $\phi_{n}: F^{n} K \rightarrow \mathbb{Z}\left[\mathrm{Bir}^{n}\right]$, which maps the class of a variety X to $\sum_{j}\left\{Y_{j}\right\}$, where the Y_{j} are n-dimensional components of X.

Proof. We show ϕ_{n} respects scissors relations. Let (U, Z) be a open closed cover of X. In the notation of Remark 4.1.1, we have:

$$
\phi_{n}(X)=\sum_{i}\left\{Y_{i}^{\prime}\right\}+\sum_{j}\left\{Y_{j}^{\prime \prime}\right\}=\sum_{i}\left\{Y_{i}^{\prime} \cap U\right\}+\sum_{j}\left\{Y_{j}^{\prime \prime}\right\}=\phi_{n}(U)+\phi_{n}(Z)
$$

as desired.

Theorem 4.2.4. There is an exact sequence of groups

$$
F^{n-1} K \xrightarrow{f_{n, n-1}} F^{n} K \xrightarrow{\phi_{n}} \mathbb{Z}\left[\mathrm{Bir}^{n}\right] \rightarrow 0
$$

Proof. It is clear ϕ_{n} is surjective, and the image of $F^{n-1} K$ is in the kernel of ϕ_{n}. We show the kernel of ϕ_{n} is in the image of $F^{n-1} K$ in two steps.

Step 1: Suppose

$$
\phi_{n}\left(n_{1}\left[X_{1}\right]+\cdots+n_{r}\left[X_{r}\right]\right)=0
$$

where each X_{i} is an irreducible variety of dimension n. We show the sum $\sum_{i} n_{i}\left[X_{i}\right]$ lies in the image of $F^{n-1} K$. We proceed by induction on r. If $r=1$, then X_{1} has no n-dimensional components so $n\left[X_{1}\right]$ is in the image of F^{n-1}. Assume $r>1$. Fix $\left\{X_{1}\right\}$, and relabel $\left\{X_{1}\right\}, \cdots,\left\{X_{r}\right\}$ such that:

1. X_{i} is birational to X_{1}, for all $1 \leq i \leq s$. That is, $\left\{X_{i}\right\}=\left\{X_{1}\right\}$.
2. X_{i} is not birational to X_{1}, for all $i>s$. That is, $\left\{X_{i}\right\} \neq\left\{X_{1}\right\}$.

This implies $n_{1}+\cdots+n_{s}=0$. For each $1 \leq i \leq s$, let $U_{i} \subseteq X_{1}$ and $V_{i} \subseteq X_{i}$ be isomorphic opens. Let U be the open $\bigcap_{i=1}^{s} U_{i}$ contained in X_{1}. Let W_{i} be the image of U in V_{i} under the isomorphism $U_{i} \rightarrow V_{i}$. Put $Z_{i}=X_{i} \backslash W_{i}$. Then in $F^{n} K$, we write

$$
\left[X_{i}\right]=\left[W_{i}\right]+\left[Z_{i}\right]=[U]+\left[Z_{i}\right] .
$$

Because $n_{1}+\cdots+n_{s}=0$,

$$
\sum_{i=1}^{s} n_{i}\left[X_{i}\right]=\sum_{i=1}^{s} n_{i}\left([U]+\left[Z_{i}\right]\right)=\sum_{i=1}^{s} n_{i}\left[Z_{i}\right],
$$

lies in the image of $F^{n-1} K$. Thus

$$
0=\phi_{n}\left(\sum_{i=1}^{r} n_{i}\left[X_{i}\right]\right)=\phi_{n}\left(\sum_{i=1}^{s} n_{i}\left[Z_{i}\right]+\sum_{i>s} n_{i}\left[X_{i}\right]\right)=\phi_{n}\left(\sum_{i>s} n_{i}\left[X_{i}\right]\right) .
$$

Since $\sum_{i>s} n_{i}\left[X_{i}\right]$ has fewer than r terms, we proceed by induction on r and conclude $\sum_{i=1}^{r} n_{i}\left[X_{i}\right]$ is a sum of terms in the image of $F^{n-1} K$.

Step 2: Suppose

$$
\phi_{n}\left(n_{1}\left[X_{1}\right]+\cdots+n_{r}\left[X_{r}\right]\right)=0
$$

where all the X_{i} are arbitrary (possibly reducible) varieties. We will conclude $\sum n_{i}\left[X_{i}\right]$ lies in the image of $F^{n-1} K$ by reducing to Step 1 . We may assume $\operatorname{dim} X_{i}=n$, for all i.

In general, if Y is a n-dimensional variety, we may write $[Y]$ as a sum of classes of irreducible varieties of dimension n, plus terms from $F^{n-1} K$. Indeed, let $Y=Z_{1} \cup \cdots \cup Z_{s}$ be an irreducible decomposition. For each $1 \leq i \leq s$, put $Y_{i}=Z_{i}-\bigcup_{j \neq i} Z_{j}$. In other words, Y_{i} is the open in Z_{i} consisting of points of Z_{i} that lie only in Z_{i}, and no other Z_{j}. Let $U=\bigcup_{i} Y_{i}$. Since the Y_{i} are disjoint, write

$$
[Y]=[Y \backslash U]+[U]=[Y \backslash U]+\sum_{i=1}^{s}\left[Y_{i}\right]
$$

Group the irreducibles Y_{i} of dimension n together. The rest are in the image of $F^{n-1} K$.
Now onto the proof of Step 2. Using the above argument, write each $\left[X_{i}\right]=A_{i}+B_{i}$, where A_{i} is a sum of classes of n-dimensional irreducible varieties and B_{i} is a sum of terms in the image of $F^{n-1} K$. Then

$$
0=\phi_{n}\left(n_{1}\left[X_{1}\right]+\cdots+n_{r}\left[X_{r}\right]\right)=\phi_{n}\left(n_{1} A_{1}+\cdots+n_{r} A_{r}\right) .
$$

Step 1 shows $\sum_{i} n_{i} A_{i}$ is in the image of $F^{n-1} K$.

4.3 Direct system of categorical K_{0}-theory of varieties

In this section, we consider the direct system $\left\{K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}^{n}\right)\right)_{S}\right\}_{n}$, and compute the direct limit and the cokernels of the connecting morphisms.

Definition 4.3.1. If $X=\left(X_{1}, \cdots, X_{r}\right)$ is a tuple in $\operatorname{Add}\left(\operatorname{Var}^{n}\right)$, the dimension $\operatorname{dim} X$ is the integer $\max _{i} \operatorname{dim} X_{i}$.

Definition 4.3.2. Define the direct system of groups

$$
F^{n} G:=K_{0}\left(\operatorname{Add}\left(\operatorname{Var}^{n}\right)_{S}\right)
$$

For a tuple $\left(X_{1}, \cdots, X_{r}\right)$ in $\operatorname{Add}\left(\operatorname{Var}^{n}\right)_{S}$, let $\left[X_{1}, \cdots, X_{r}\right]_{n}^{G}$ denote its class in $F^{n} G$. We may also write $\left[X_{1}, \cdots, X_{r}\right]_{n}$ or $\left[X_{1}, \cdots, X_{r}\right]$, if clear from context. Let $n \leq m$. Let the
connecting homomorphism $F^{n} G \rightarrow F^{m} G$ be $g_{m, n}$, which was defined in Definition 3.3.2. Explicitly, $g_{m, n}$ sends $\left[X_{1}, \cdots, X_{r}\right]_{n}$ to $\left[X_{1}, \cdots, X_{r}\right]_{m}$.

Proposition 4.3.3. The direct limit of the direct system $F^{n} G$ is $K_{0}\left(\operatorname{Add}(\operatorname{Var})_{S}\right)$.

Proof. The proof is similar to the proof of Proposition 4.2.2.
Proposition 4.3.4. There is a group homomorphism $\psi_{n}: F^{n} G \rightarrow \mathbb{Z}\left[\mathrm{Bir}^{n}\right]$, defined by sending the class of a tuple $\left(X_{1}, \cdots, X_{r}\right)$ to $\sum_{i, j}\left\{X_{i j}\right\}$, where $\left\{X_{i j}\right\}_{j \in J_{i}}$ is the set of n-dimensional components of X_{i}.

Proof. The homomorphism ψ_{n} is the composite

$$
K_{0}\left(\operatorname{Add}\left(\operatorname{Var}^{n}\right)_{S}\right) \xrightarrow{K_{0}\left(\operatorname{bir}_{n}\right)} K_{0}\left(\operatorname{Add}\left(\operatorname{Bir}^{n}\right)\right) \xrightarrow{\cong} \mathbb{Z}\left[\operatorname{Bir}^{n}\right],
$$

where the isomorphism is in Corollary 3.1.6. Indeed, we compute

$$
\left[X_{1}, \cdots, X_{r}\right] \mapsto\left(\bigoplus_{j \in J_{1}} X_{1 j}\right) \oplus \cdots \oplus\left(\bigoplus_{j \in J_{r}} X_{r j}\right) \mapsto \sum_{\substack{1 \leq i \leq r \\ j \in J_{i}}}\left\{X_{i j}\right\}
$$

Theorem 4.3.5. There is an exact sequence of groups

$$
F^{n-1} G \xrightarrow{g_{n, n-1}} F^{n} G \xrightarrow{\psi_{n}} \mathbb{Z}\left[\mathrm{Bir}^{n}\right] \rightarrow 0 .
$$

Proof. It is clear ψ_{n} is surjective and the image of $F^{n-1} G$ lands in the kernel of ψ_{n}. Suppose $\psi_{n}\left(\sum_{i=1}^{m} n_{i}\left[X_{i}\right]\right)=0$ where $X_{i}=\left(X_{i, 1}, \cdots, X_{i, n_{i}}\right) \in \operatorname{Add}\left(\operatorname{Var}^{n}\right)$. Then, in $F^{n} G$, we have

$$
\sum_{i=1}^{m} n_{i}\left[X_{i}\right]=\sum_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n_{i}}} n_{i}\left[X_{i, j}\right] .
$$

An argument similar to the proof of Theorem 4.2 .4 shows $\sum_{i=1}^{m} n_{i}\left[X_{i}\right]$ is in the image of $F^{n-1} G$.

4.4 The quotient category $\operatorname{Add}\left(\operatorname{Var}^{n}\right)_{S} / \operatorname{Add}\left(\operatorname{Var}^{n-1}\right)_{S}$ and its K_{0}-theory

We abbreviate $V^{n}:=\operatorname{Add}\left(\operatorname{Var}^{n}\right)$ and $V_{S}^{n}:=\operatorname{Add}\left(\operatorname{Var}^{n}\right)_{S}$. In this section, we show there is a quotient category V_{S}^{n} / V_{S}^{n-1}, relate the K_{0}-theories of V_{S}^{n}, V_{S}^{n-1}, and V_{S}^{n} / V_{S}^{n-1}, and compute the K_{0}-theory of the quotient.

Proposition 4.4.1. There is an additive category V_{S}^{n} / V_{S}^{n-1} and an additive, essentially surjective functor $Q: V_{S}^{n} \rightarrow V_{S}^{n} / V_{S}^{n-1}$ with the following properties:

1. if X is in V_{S}^{n}, then $Q X \cong 0$ if and only if $X \in V_{S}^{n-1}$,
2. (universal property) given an additive functor $F: V_{S}^{n} \rightarrow \mathcal{D}$ such that $F(X) \cong 0$ whenever $X \in V_{S}^{n-1}$, there exists an additive functor $G: V_{S}^{n} / V_{S}^{n-1} \rightarrow \mathcal{D}$ such that $F=G \circ Q$.

Proof. Let I be the set of morphisms of V_{S}^{n} that factor through an object of V_{S}^{n-1}. Let $I(X, Y):=I \cap \operatorname{Hom}_{V_{S}^{n}}(X, Y)$. We show $I(X, Y)$ is a subgroup of $\operatorname{Hom}_{V_{S}^{n}}(X, Y)$. For $i=1,2$, let $f_{i}: X \rightarrow Y$ be in $I(X, Y)$, and write f_{i} as the composite $X \xrightarrow{g_{i}} Z_{i} \xrightarrow{h_{i}} Y$ where $Z_{i} \in V_{S}^{n-1}$. Then $f_{1}+f_{2}$ is the composite

$$
X \xrightarrow{\binom{g_{1}}{g_{2}}} Z_{1} \oplus Z_{2} \xrightarrow{\left(h_{1} h_{2}\right)} Y
$$

and $Z_{1} \oplus Z_{2}$ lies in V_{S}^{n-1}. Also the zero morphism $0: X \rightarrow Y$ is the composite of the zero morphism in and out of the empty tuple so 0 lies in $I(X, Y)$. Hence $I(X, Y)$ is a subgroup. The set I is an ideal; that is, if $f \in \operatorname{Hom}_{V_{S}^{n}}(X, Y), g \in I(Y, Z)$, and $h \in \operatorname{Hom}_{V_{S}^{n}}(W, X)$, then $g f \in I(X, Z)$ and $f h \in I(W, Y)$.

Define the additive category V_{S}^{n} / V_{S}^{n-1} as follows. The objects of V_{S}^{n} / V_{S}^{n-1} are as the same as V_{S}^{n}. Let $\operatorname{Hom}_{V_{S}^{n} / V_{S}^{n-1}}(X, Y)$ be the quotient group $\operatorname{Hom}_{V_{S}^{n}(X, Y)}(X, Y) / I(X, Y)$. Composition is well-defined because I is an ideal. The functor $Q: V_{S}^{n} \rightarrow V_{S}^{n} / V_{S}^{n-1}$ is given by
the identity on objects and the quotient map on morphisms. It is clear Q is additive and essentially surjective.

Let $X \in V_{S}^{n}$. Suppose $Q X \cong 0$. The isomorphism must be given by the classes of the maps $0 \rightarrow X$ and $X \rightarrow 0$. Hence the zero map $X \rightarrow 0 \rightarrow X$ is equivalent to the identity $\operatorname{map~id}_{X}$ so $_{\operatorname{id}_{X}} \in I(X, X)$. This means X has no terms of dimension n because we cannot decompose the identity map of a n-dimensional variety into locally closed immersions through a lower dimensional variety. Conversely, suppose $X \in V_{S}^{n-1}$. Then id_{X} is in $I(X, X)$ so id $_{X}$ and the zero map $X \rightarrow 0 \rightarrow X$ are equivalent.

We verify the universal property. Given an object $Q X \in V_{S}^{n} / V_{S}^{n-1}$, put $G(Q X)=F X$. For a morphism in $\operatorname{Hom}_{V_{S}^{n} / V_{S}^{n-1}}(X, Y)$ represented by $f \in \operatorname{Hom}_{V_{S}^{n}}(X, Y)$, put $G(\bar{f})=F(f)$. This is independent of representative: if $f^{\prime}-f \in I(X, Y)$, then $f^{\prime}-f$ factors through some $Z \in V_{S}^{n-1}$, so $F\left(f^{\prime}-f\right)$ factors through $F(Z) \cong 0$, and $F\left(f^{\prime}\right)=F\left(f^{\prime}-f\right)+F(f)=F(f)$. It is routine to verify G is an additive functor.

Proposition 4.4.2 ([Stacks, Tag 02MX]). There is an exact sequence

$$
K_{0}\left(V_{S}^{n-1}\right) \xrightarrow{K_{0} i} K_{0}\left(V_{S}^{n}\right) \xrightarrow{K_{0} Q} K_{0}\left(V_{S}^{n} / V_{S}^{n-1}\right) \rightarrow 0
$$

of abelian groups, where the functor $i: V_{S}^{n-1} \rightarrow V_{S}^{n}$ is the localization of the additive functor $V^{n-1} \rightarrow V^{n} \rightarrow V_{S}^{n}$.

Proof. The composition $K_{0}\left(V_{S}^{n-1}\right) \rightarrow K_{0}\left(V_{S}^{n} / V_{S}^{n-1}\right)$ is zero by construction of V_{S}^{n} / V_{S}^{n-1}, and the functor $K_{0} Q$ is surjective because the objects of V_{S}^{n} and V_{S}^{n} / V_{S}^{n-1} are the same. We show the kernel of $K_{0} Q$ is contained in the image of $K_{0}\left(V_{S}^{n-1}\right)$.

Each element in $K_{0}\left(V_{S}^{n}\right)$ may be written as $[A]-\left[A^{\prime}\right]$, for some objects A and A^{\prime} in V_{S}^{n}. Indeed, let $X=\sum_{i \in I} n_{i}\left[X_{i}\right] \in K_{0}\left(V_{S}^{n}\right)$. Then the objects $A=\bigoplus_{\left\{i \in I \mid n_{i}>0\right\}} \bigoplus_{j=1}^{n_{i}} X_{i}$ and $A^{\prime}=\bigoplus_{\left\{i \in I \mid n_{i}<0\right\}} \bigoplus_{j=1}^{n_{i}} X_{i}$ in V_{S}^{n} fit the bill.

Let $[A]-\left[A^{\prime}\right]$ be in the kernel of $K_{0} Q$, and put $B=Q A$ and $B^{\prime}=Q A^{\prime}$. Since $K_{0} Q([A]-$ $\left.\left[A^{\prime}\right]\right)=0$, there exists

1. a finite set $I=I^{+} \sqcup I^{-}$, and
2. for each $i \in I$, an exact sequence $B_{i} \rightarrow B_{i}^{\prime} \rightarrow B_{i}^{\prime \prime}$ in V_{S}^{n} / V_{S}^{n-1},
such that the equality

$$
[B]-\left[B^{\prime}\right]=\sum_{i \in I^{+}}\left(\left[B_{i}^{\prime}\right]-\left[B_{i}\right]-\left[B_{i}^{\prime \prime}\right]\right)-\sum_{i \in I^{-}}\left(\left[B_{i}^{\prime}\right]-\left[B_{i}\right]-\left[B_{i}^{\prime \prime}\right]\right)
$$

holds in the free abelian group of isomorphism classes of objects of V_{S}^{n} / V_{S}^{n-1}. Rewrite this as

$$
[B]+\sum_{i \in I^{+}}\left(\left[B_{i}\right]+\left[B_{i}^{\prime \prime}\right]\right)+\sum_{i \in I^{-}}\left[B_{i}^{\prime}\right]=\left[B^{\prime}\right]+\sum_{i \in I^{-}}\left(\left[B_{i}\right]+\left[B_{i}^{\prime \prime}\right]\right)+\sum_{i \in I^{+}}\left[B_{i}^{\prime}\right]
$$

Thus, there is a bijection of sets

$$
\tau:\{B\} \sqcup \bigsqcup_{i \in I^{+}}\left\{B_{i}\right\} \sqcup \bigsqcup_{i \in I^{+}}\left\{B_{i}^{\prime \prime}\right\} \sqcup \bigsqcup_{i \in I^{-}}\left\{B_{i}^{\prime}\right\} \rightarrow\left\{B^{\prime}\right\} \sqcup \bigsqcup_{i \in I^{-}}\left\{B_{i}\right\} \sqcup \bigsqcup_{i \in I^{-}}\left\{B_{i}^{\prime \prime}\right\} \sqcup \bigsqcup_{i \in I^{+}}\left\{B_{i}^{\prime}\right\}
$$

such that, for all M in the domain of τ, there are isomorphisms $M \cong \tau(M)$ in V_{S}^{n} / V_{S}^{n-1}.
If $F_{1} \rightarrow F_{2} \rightarrow F_{3}$ is an exact sequence in V_{S}^{n} / V_{S}^{n-1}, then there is an exact sequence $E_{1} \rightarrow$ $E_{2} \rightarrow E_{3}$ in V_{S}^{n} such that $Q E_{i} \cong F_{i}$, for $i=1,2,3$. We are not asserting $Q E_{1} \rightarrow Q E_{2} \rightarrow Q E_{3}$ is isomorphic to $F_{1} \rightarrow F_{2} \rightarrow F_{3}$ as an exact sequence, but rather there are only term-wise isomorphisms. Since V_{S}^{n} / V_{S}^{n-1} is split exact, there are objects X and Y in V_{S}^{n} / V_{S}^{n-1} such that $X \cong F_{1}, X \oplus Y \cong F_{2}$, and $Y \cong F_{3}$ in V_{S}^{n} / V_{S}^{n-1}. The sequence $X \rightarrow X \oplus Y \rightarrow Y$ in V_{S}^{n} will do the job.

For each $i \in I$, let $A_{i} \rightarrow A_{i}^{\prime} \rightarrow A_{i}^{\prime \prime}$ be such an exact sequence in V_{S}^{n} corresponding to $B_{i} \rightarrow B_{i}^{\prime} \rightarrow B_{i}^{\prime \prime}$. Then there is a bijection of sets

$$
\pi:\{A\} \sqcup \bigsqcup_{i \in I^{+}}\left\{A_{i}\right\} \sqcup \bigsqcup_{i \in I^{+}}\left\{A_{i}^{\prime \prime}\right\} \sqcup \bigsqcup_{i \in I^{-}}\left\{A_{i}^{\prime}\right\} \rightarrow\left\{A^{\prime}\right\} \sqcup \bigsqcup_{i \in I^{-}}\left\{A_{i}\right\} \sqcup \bigsqcup_{i \in I^{-}}\left\{A_{i}^{\prime \prime}\right\} \sqcup \bigsqcup_{i \in I^{+}}\left\{A_{i}^{\prime}\right\}
$$

such that, for all N in the domain of π, the objects N and $\pi(N)$ are isomorphic after passing to V_{S}^{n} / V_{S}^{n-1} via Q. In $K_{0}\left(V_{S}^{n}\right)$, we have the equality

$$
\begin{aligned}
\sum_{N \in \text { domain of } \pi}[N]-[\tau(N)] & =\left([A]+\sum_{i \in I^{+}}\left(\left[A_{i}\right]+\left[A_{i}^{\prime \prime}\right]\right)+\sum_{i \in I^{-}}\left[A_{i}^{\prime}\right]\right)-\left(\left[A^{\prime}\right]+\sum_{i \in I^{-}}\left(\left[A_{i}\right]+\left[A_{i}^{\prime \prime}\right]\right)+\sum_{i \in I^{+}}\left[A_{i}^{\prime}\right]\right) \\
& =[A]-\left[A^{\prime}\right]
\end{aligned}
$$

where the cancellations are due to the exact sequences $A_{i} \rightarrow A_{i}^{\prime} \rightarrow A_{i}^{\prime \prime}$. It remains to see each $[N]-[\pi(N)]$ lies in the image of $K_{0}\left(V_{S}^{n-1}\right)$. This will be proved in Lemma 4.4.4.

We record the following lemma for use in the proof of Lemma 4.4.4.
Lemma 4.4.3. The functor $\operatorname{bir}_{n}: \operatorname{Add}\left(\operatorname{Var}^{n}\right)_{S} \rightarrow \operatorname{Add}\left(\operatorname{Bir}^{n}\right)$ descends to the quotient V_{S}^{n} / V_{S}^{n-1}.

Proof. This follows from the universal property of the quotient.
Lemma 4.4.4. Let X and Y be in V_{S}^{n}. If $Q X$ and $Q Y$ are isomorphic in V_{S}^{n} / V_{S}^{n-1}, then the element $[X]-[Y]$ in $K_{0}\left(V_{S}^{n}\right)$ is in the image of $K_{0}\left(V_{S}^{n-1}\right)$.

Proof. Let I denote the image of $K_{0}\left(V_{S}^{n-1}\right)$ in $K_{0}\left(V_{S}^{n}\right)$. We begin with two claims.
Claim 1. If M and N are n-dimensional birational varieties, then $[M]-[N]$ lies in I.

Proof of Claim 1. If $M \supseteq U \subseteq N$ is an isomorphic open, then

$$
[M]-[N]=[U, M \backslash U]-[U, N \backslash U]=[M \backslash U]-[N \backslash U] \in I
$$

Claim 2. Let W be a n-dimensional variety with irreducible decomposition

$$
W=\left(\bigcup_{i} W_{i}\right) \cup\left(\bigcup_{j} W_{j}^{\prime}\right)
$$

where all $\operatorname{dim} W_{i}=n$ and all $\operatorname{dim} W_{j}^{\prime}<n$. Then $[W]-\sum_{i}\left[W_{i}\right]$ lies in I.
Proof of Claim 2. Let

$$
Z=\left(\bigcup_{i, i^{\prime}} W_{i} \cap W_{i^{\prime}}\right) \cup\left(\bigcup_{i, j} W_{i} \cap W_{j}\right) \cup\left(\bigcup_{j, j^{\prime}} W_{j} \cap W_{j^{\prime}}\right)
$$

be the closed set in W consisting of points lying in at least two components of W. So $W \backslash Z$ is the disjoint union of the opens $W_{i} \backslash Z$ and $W_{j}^{\prime} \backslash Z$. Then the element

$$
\begin{aligned}
{[W]-\sum_{i=1}^{r}\left[W_{i}\right] } & =[W \backslash Z]+[Z]-\sum_{i=1}^{r}\left[W_{i}\right] \\
& =\left(\sum_{i=1}^{r}\left[W_{i} \backslash Z\right]+\sum_{j=1}^{s}\left[W_{j}^{\prime} \backslash Z\right]\right)+[Z]-\sum_{i=1}^{r}\left[W_{i}\right]
\end{aligned}
$$

of $K_{0}\left(V_{S}^{n}\right)$ lies in I because $W_{i} \backslash Z$ and W_{i} are birational for all i, and Z and each $W_{j}^{\prime} \backslash Z$ are of dimension less than $n-1$.

Now onto the proof of Lemma 4.4.4. Write X^{\prime} for the tuple consisting of terms of X of dimension n, and $X^{\prime \prime}$ for the tuple consisting of terms of X of dimension less than n; similiarly for Y^{\prime} and $Y^{\prime \prime}$. There is a permutation isomorphism $X \cong X^{\prime} \oplus X^{\prime \prime}$. In $K_{0}\left(V_{S}^{n}\right)$, we have

$$
[X]-[Y]=\left[X^{\prime}\right]-\left[Y^{\prime}\right]+\left[X^{\prime \prime}\right]-\left[Y^{\prime \prime}\right]
$$

so it suffices to show $\left[X^{\prime}\right]-\left[Y^{\prime}\right]$ lies in I. There are isomorphisms

$$
\begin{equation*}
Q X \cong Q\left(X^{\prime} \oplus X^{\prime \prime}\right) \cong Q X^{\prime} \quad \text { and } \quad Q Y \cong Q\left(Y^{\prime} \oplus Y^{\prime \prime}\right) \cong Q Y^{\prime} \tag{4.2}
\end{equation*}
$$

in V_{S}^{n} / V_{S}^{n-1}. Therefore the hypothesis gives an isomorphism $Q X^{\prime} \cong Q Y^{\prime}$ in V_{S}^{n} / V_{S}^{n-1}. Write $X^{\prime}=\left(X_{1}^{\prime}, \cdots, X_{p}^{\prime}\right)$ and $Y^{\prime}=\left(Y_{1}^{\prime}, \cdots, Y_{q}^{\prime}\right)$, and let $X_{i, 1}^{\prime}, \cdots, X_{i, n_{i}}^{\prime}$ be the n-dimensional components of X_{i}^{\prime}, and similarly for $Y_{i, 1}^{\prime}, \cdots, Y_{i, m_{i}}^{\prime}$. Let

$$
M=\left\{(i, j) \mid 1 \leq i \leq p, 1 \leq j \leq n_{i}\right\} \quad \text { and } \quad N=\left\{(i, j) \mid 1 \leq i \leq q, 1 \leq j \leq m_{i}\right\}
$$

be sets indexing the n-dimensional components of all the summands of X^{\prime} and Y^{\prime}. By Eq. (4.2) and Lemma 4.4.3, the tuples

$$
\operatorname{bir}_{n}\left(Q X^{\prime}\right)=\bigoplus_{(i, j) \in M} X_{i, j}^{\prime} \quad \text { and } \quad \operatorname{bir}_{n}\left(Q Y^{\prime}\right)=\bigoplus_{(i, j) \in N} Y_{i, j}^{\prime}
$$

in $\operatorname{Add}\left(\mathrm{Bir}^{n}\right)$ are isomorphic. By Proposition 3.1.5, there is a bijection $\tau: M \rightarrow N$ of index sets such that $X_{i, j}^{\prime}$ is birational to $Y_{\tau(i, j)}^{\prime}$, for all $(i, j) \in M$. Lastly, in $K_{0}\left(V_{S}^{n}\right) / I$,

$$
\begin{array}{rlrl}
{\left[X^{\prime}\right]-\left[Y^{\prime}\right]} & =\sum_{(i, j) \in M}\left[X_{i j}^{\prime}\right]-\sum_{(i, j) \in N}\left[Y_{i j}^{\prime}\right] \\
& =\sum_{(i, j) \in M}\left[\tau\left(X_{i j}^{\prime}\right)\right]-\sum_{(i, j) \in N}\left[Y_{i j}^{\prime}\right] & & (\text { Claim 2) } \tag{Claim1}\\
& =0 . & & (\tau \text { is bijective })
\end{array}
$$

Proposition 4.4.5. Consider the homomorphism

$$
\alpha: K_{0}\left(V_{S}^{n} / V_{S}^{n-1}\right) \rightarrow \mathbb{Z}\left[\mathrm{Bir}^{n}\right],
$$

which sends the class of a tuple $\left(X_{1}, \cdots, X_{r}\right)$ in V_{S}^{n} / V_{S}^{n-1} to $\sum_{i, j}\left\{X_{i j}\right\}$, where $\left\{X_{i j}\right\}_{j \in J_{i}}$ is the set of n-dimensional components of X_{i}. Then α is a group isomorphism.

Proof. We may write α as the composite

$$
K_{0}\left(V_{S}^{n} / V_{S}^{n-1}\right) \xrightarrow{K_{0}\left(\operatorname{bir}_{n}\right)} K_{0}\left(\operatorname{Add}\left(\operatorname{Bir}^{n}\right)\right) \xrightarrow{\cong} \mathbb{Z}\left[\mathrm{Bir}^{n}\right],
$$

where the last isomorphism is from Corollary 3.1.6. Hence α is well-defined.
Let $\beta: \mathbb{Z}\left[\mathrm{Bir}^{n}\right] \rightarrow K_{0}\left(V_{S}^{n} / V_{S}^{n-1}\right)$ be the homomorphism which sends the birational class $\{X\}$ of a variety X to the class of X in the Grothendieck group. It follows from Claim 1 in the proof of Lemma 4.4.4 that β is well-defined on birational classes.

It is clear $\alpha \circ \beta$ is the identity on $\mathbb{Z}\left[\mathrm{Bir}^{n}\right]$. Conversely, given a tuple $\left(X_{1}, \cdots, X_{r}\right)$ in V_{S}^{n} / V_{S}^{n-1}, we have

$$
\beta \alpha\left(\left[X_{1}, \cdots, X_{r}\right]\right)=\beta\left(\sum_{i, j}\left\{X_{i j}\right\}\right)=\sum_{i, j}\left[X_{i j}\right]=\sum_{i}\left[X_{i}\right],
$$

where the last equality holds by Claim 2 in the proof of Lemma 4.4.4.

5. COMPARISONS BETWEEN $K_{0}\left(\operatorname{Var}_{k}\right)$ and $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right)$

In this chapter, we show there is a surjection from the classical K_{0}-theory of at most n dimensional varieties onto the K_{0}-theory of the localized additive completion of at most n-dimensional varieties. If $n=0$ and the base field k is algebraically closed, then the surjection is an isomorphism, and we identify the K_{0}-theory of zero dimensional varieties with \mathbb{Z}.

Proposition 5.0.1. For all $n \in \mathbb{N} \cup\{\infty\}$, there are surjective group homomorphisms

$$
\alpha_{n}: K_{0}\left(\operatorname{Var}^{n}\right) \rightarrow K_{0}\left(\operatorname{Add}\left(\operatorname{Var}^{n}\right)_{S}\right)
$$

which sends the class of a variety X to the class of 1-tuple of X. Both α_{∞} and α_{0} respect the ring structure.

Proof. Let $[X]-[U]-[Z]$ in $K_{0}\left(\operatorname{Var}^{n}\right)$ be a relation in $K_{0}\left(\operatorname{Var}^{n}\right)$. This relation maps to $[X]-[U]-[Z]$ in $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}^{n}\right)_{S}\right)$. But

$$
[X]-[U]-[Z]=[U, Z]-[U]-[Z]=[U]+[Z]-[U]-[Z]=0
$$

It is clear α_{0} and α_{∞} respect the ring structure.
Note the first equality in the proof of Proposition 5.0.1 motivated the construction of S.

Remark 5.0.2. The diagram

commutes where the rows are from Theorems 4.2.4 and 4.3.5.
Proposition 5.0.3. Suppose the base field k is algebraically closed. In Eq. (5.1), the morphisms ϕ_{0}, ψ_{0}, and α_{0} are isomorphisms.

Proof. Since k is algebraically closed, the only object in the category Bir^{0} is the point Spec k. Hence $\mathbb{Z}\left[\mathrm{Bir}^{0}\right]$ is isomorphic to \mathbb{Z}.

The surjectivity of ϕ_{0} was shown in Theorem 4.2.4. We begin with the injectivity of ϕ_{0}. Suppose $\phi_{0}\left(\sum n_{i}\left[X_{i}\right]\right)=0$. Recalling $\# X$ denotes the cardinality of a finite set X, we have

$$
\sum_{i} n_{i}\left[X_{i}\right]=\sum_{i} n_{i} \cdot \# X_{i}[\operatorname{Spec} k]
$$

and

$$
0=\phi_{0}\left(\sum_{i} n_{i} \cdot \# X_{i}[\operatorname{Spec} k]\right)=\sum_{i} n_{i} \cdot \# X_{i} .
$$

This concludes the proof of injectivity of ϕ_{0}.
A similar argument shows ψ_{0} is an isomorphism. The commutativity of Eq. (5.1) shows α_{0} is an isomorphism.

Fix an algebraically closed field k. There is an equivalence of categories between the category of finite sets FinSet and the category of zero dimensional varieties $\operatorname{Var}_{k}{ }_{k}^{0}$. Under this equivalence of categories, let $S \subseteq$ FinSet correspond to the left multiplicative system defined for $\operatorname{Var}_{k}^{0}$ in Section 3.2.

Corollary 5.0.4. There is a ring isomorphism

$$
\#: K_{0}\left(\operatorname{Add}(\text { FinSet })_{S}\right) \rightarrow \mathbb{Z}
$$

which sends the class of a tuple $\left(X_{1}, \cdots, X_{r}\right)$ to $\sum_{i} \# X_{i}$.
Proof. The map \# is the composite of ring isomorphisms

$$
K_{0}\left(\operatorname{Add}(\operatorname{FinSet})_{S}\right)=K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}^{0}\right)_{S}\right) \xrightarrow{\alpha_{0}} \mathbb{Z}\left[\operatorname{Bir}^{0}\right] \cong \mathbb{Z}
$$

Question 5.0.5. We wish to show the surjective map $K_{0}\left(\operatorname{Var}_{k}\right) \rightarrow K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right)$ is an isomorphism. Here is a possible approach. It suffices to show the surjective maps in Propo-
sition 5.0.1 are isomorphisms because we could pass to the direct limit, and conclude the isomorphism from Propositions 4.2.2 and 4.3.3. We have already seen α_{0} is an isomorphism if k is algebraically closed. Consider Eq. (5.1). If we could show the kernel of $f_{n, n-1}$ surjects onto the kernel of $g_{n, n-1}$, then the Five Lemma would show us inductively each α_{n} is an isomorphism, completing the proof.

6. MOTIVIC MEASURES

Invariants such as the Euler characteristic or Hasse-Weil zeta function are important tools for understanding the geometry of an algebraic variety. The classical Grothendieck group of varieties $K_{0}\left(\mathrm{Var}_{k}\right)$ is interesting because these invariants factor through $K_{0}\left(\mathrm{Var}_{k}\right)$. In this chapter, we show how to construct analogous functions on $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right)$. If k is a finite field, we construct the point-counting measures, the Hasse-Weil zeta function, and ℓ-adic Euler characteristic. If $k=\mathbb{C}$, we construct the Euler characteristic given by singular cohomology. We treat étale cohomology as a black box and refer the reader to standard references such as [16].

Definition 6.0.1. Let G be an abelian group. A (motivic) measure (with values in G) is a group homomorphism $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right) \rightarrow G$.

Notation 6.0.2. Let X be a variety over a field k. Let ℓ a prime different from the characteristic of k. Let \bar{X} denote the base change of X to an algebraic closure of k.

1. Let $H_{\text {et }, c}^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)$ denote the degree i compactly supported l-adic cohomology.
2. Let $\chi_{c}^{\text {ét }, \ell}(X)$ denote the (compactly supported) l-adic Euler characteristic:

$$
\chi_{c}^{\mathrm{ét}, \ell}(X):=\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{Q}_{\ell}} H_{\mathrm{et}, c}^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right) .
$$

Notation 6.0.3. Let X be a variety over \mathbb{C}.

1. Let $H_{c}^{i}\left(X^{\text {an }}, \mathbb{Q}\right)$ denote the degree i compactly supported singular cohomology of the analytic space $X^{\text {an }}$ with rational coefficients.
2. Let $\chi_{c}(X)$ denote the (compactly supported) Euler characteristic:

$$
\chi_{c}(X):=\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{Q}} H_{c}^{i}\left(X^{\mathrm{an}}, \mathbb{Q}\right)
$$

Example 6.0.4. Let k be a finite field and K / k a finite extension field. There is a functor

$$
-(K): \operatorname{Var}_{k} \rightarrow \text { FinSet, }
$$

which assigns a variety X to the finite set $X(K)$ of its K-valued points. The point counting motivic measure (associated to K_{0}) is the group homomorphism

$$
\#_{K}: K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right) \rightarrow K_{0}\left(\operatorname{Add}(\text { FinSet })_{S}\right) \xrightarrow{\#} \mathbb{Z},
$$

which sends the class of the tuple $\left(X_{1}, \cdots, X_{r}\right)$ to $\# X_{1}(K)+\cdots+\# X_{r}(K)$. The first arrow is obtained by applying the functor $K_{0}(\operatorname{Add}(-))$ to $-(K)$. The second arrow is the isomorphism in Corollary 5.0.4.

Definition 6.0.5. Let $k=\mathbb{F}_{q}$. Let X be a variety over k. Let $\#_{\mathbb{F}_{q^{m}}}(X)$ be the cardinality of $X\left(\mathbb{F}_{q^{m}}\right)$. The Hasse-Weil zeta function is the formal power series

$$
Z(X, t)=\exp \left(\sum_{m \geq 1} \frac{\#_{\mathbb{F}_{q^{m}}}(X)}{m} t^{m}\right) \in 1+t \mathbb{Q}[[t]]
$$

Remark 6.0.6. If X is a variety over a finite field, the zeta function $Z(X, t)$ is rational. See, for instance, [17, Theorem 7.4.1].

Example 6.0.7. Let $k=\mathbb{F}_{q}$. We extend the zeta function to a motivic measure. Assemble the above point counting measures into the group homomorphism

$$
Z(-, t): K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}\right) \rightarrow(1+t \mathbb{Q}[[t]], \cdot)
$$

which sends the class of $\left(X_{1}, \cdots, X_{r}\right)$ to the power series

$$
\begin{aligned}
\exp \left(\sum_{m \geq 1} \frac{\#_{\mathbb{F}_{q^{m}}}\left(\left[X_{1}, \cdots, X_{r}\right]\right)}{m} t^{m}\right) & =\exp \left(\sum_{i=1}^{r} \sum_{m \geq 1} \frac{\#_{\mathbb{F}_{q^{m}}}\left(\left[X_{i}\right]\right)}{m} t^{m}\right) \\
& =\prod_{i=1}^{r} \exp \left(\sum_{m \geq 1} \frac{\#_{\mathbb{F}_{q^{m}}}\left(\left[X_{i}\right]\right)}{m} t^{m}\right) \\
& =\prod_{i=1}^{r} Z\left(X_{i}, t\right) .
\end{aligned}
$$

Remark 6.0.8. Let $f(t)$ be a rational function (a quotient of polynomials over \mathbb{C}) such that $f(0)=1$. Then we may uniquely write f as a finite product corresponding to the zeros and poles of f :

$$
f(t)=\prod_{z \in \mathbb{C}^{\times}}(1-z t)^{-n_{f}(z)}
$$

where $-n_{f}(z)$ is the order of zero or pole of f at $1 / z$. The minus sign convention is required for Proposition 6.0.10 to hold.

If k is a finite field, we will define a family of motivic measures, indexed by the integers, which interpolate between the point counting measures and l-adic Euler characteristic.

Proposition 6.0.9. Fix an integer m. Let $\left(X_{1}, \cdots, X_{r}\right)$ be a tuple in $\operatorname{Add}\left(\operatorname{Var}_{k}\right)_{S}$. Let $n_{i}(z)$ be the integers obtained from the decomposition of the rational function $Z\left(X_{i}, t\right)$ in Remark 6.0.8. Then there is a group homomorphism

$$
\Psi_{m}: K_{0}\left(\operatorname{Add}(\operatorname{Var})_{S}\right) \rightarrow \mathbb{C}
$$

which maps the class of a tuple $\left(X_{1}, \cdots, X_{r}\right)$ to the finite sum

$$
\sum_{z \in \mathbb{C}^{\times}}\left(n_{1}(z)+\cdots+n_{r}(z)\right) z^{m}
$$

Proof. We will decompose Ψ_{m} into two group homomorphisms.
Let $G \subseteq(1+t \mathbb{Q}[[t]], \cdot)$ be the multiplicative subgroup of rational power series (power series that can be written as a quotient of polynomials). The measure $Z(-, t)$ in Example 6.0.7 lands in G by Remark 6.0.6. Define the group homomorphism

$$
\tau:(G, \cdot) \rightarrow(\mathbb{C},+)
$$

as follows. Given a rational power series f in G, let $n_{f}(z)$ be the integers from the decomposition in Remark 6.0.8. Define $\tau(f):=\sum_{z \in \mathbb{C} \times} n_{f}(z) z^{m}$. This is clearly a group homomorphism. Therefore Ψ_{m} is the composite

$$
K_{0}\left(\operatorname{Add}(\mathrm{Var})_{S}\right) \xrightarrow{Z(-, t)} G \xrightarrow{\tau} \mathbb{C} .
$$

Proposition 6.0.10. Let $k=\mathbb{F}_{q}$. Let $m \geq 1$ be an integer. Then Ψ_{m} is equal to the point counting measure $\#_{\mathbb{F}_{q^{m}}}$ in Example 6.0.4.

Proof. It is enough to show both measures agree on the class of a 1-tuple (X), since these generate $K_{0}\left(\operatorname{Add}(\operatorname{Var})_{S}\right)$. Write $Z(X, t)=\prod_{z \in \mathbb{C}^{\times}}(1-z t)^{-n(z)}$. Recall the power series expansion $-\log (1-x)=\sum_{m \geq 1} x^{m} / m$. We compute:

$$
\begin{aligned}
\sum_{m \geq 1} \#_{\mathbb{F}_{q^{m}}}(X) \frac{t^{m}}{m}=\log Z(X, t) & =\sum_{z \in \mathbb{C}^{\times}}-n(z) \log (1-z t) \\
& =\sum_{z \in \mathbb{C}^{\times}} n(z) \sum_{m \geq 1} \frac{(z t)^{m}}{m} \\
& =\sum_{m \geq 1}\left(\sum_{z \in \mathbb{C}^{\times}} n(z) z^{m}\right) \frac{t^{m}}{m} \\
& =\sum_{m \geq 1} \Psi_{m}(X) \frac{t^{m}}{m}
\end{aligned}
$$

Note we introduce the minus sign in Remark 6.0.8 to make the calculation in the proof of Proposition 6.0.10 work.

Proposition 6.0.11. Let k be a finite field. Fix a prime ℓ different from the characteristic of k. Then Ψ_{0} sends the class of a tuple $\left(X_{1}, \cdots, X_{r}\right)$ to $\sum_{i} \chi_{c}^{\text {ét } \ell}\left(X_{i}\right)$. In view of this result, we sometimes denote Ψ_{0} by $\chi_{c}^{\text {ét }, \ell}$.

Proof. It is suffices to verify the claim on the class of a 1-tuple (X). Abbreviate $n(z)=$ $n_{Z(X, t)}(z)$. By [16, Theorem 13.1], we have

$$
\prod_{z \in \mathbb{C}^{\times}}(1-z t)^{-n(z)}=Z(X, t)=\prod_{i} \operatorname{det}\left(\mathrm{id}-t F \mid H_{\mathrm{et}, c}^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)\right)^{(-1)^{i+1}}
$$

where \bar{X} is the base change of X to an algebraic closure of k, and \bar{F} is the Frobenius on \bar{X}. The degree of the polynomial $\operatorname{det}\left(\mathrm{id}-t F \mid H_{\mathrm{et}, c}^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)\right)$ in variable t is $\operatorname{dim}_{\mathbb{Q}_{\ell}} H_{\mathrm{et}, c}^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)$. Therefore,

$$
\Psi_{0}(X)=\sum_{z \in \mathbb{C}^{\times}} n(z)=\sum_{i}(-1)^{i} \operatorname{dim}_{\mathbb{Q}_{\ell}} H_{\text {êt }, c}^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)=\chi_{c}^{\text {ét }, \ell}(X) .
$$

The remainder of this section is devoted to constructing a measure on $K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{\mathbb{C}}\right)_{S}\right)$ analogous to the Euler characteristic.

Theorem 6.0.12. Let $\tilde{X}=\left(\tilde{X}_{1}, \cdots, \tilde{X}_{r}\right)$ and $\tilde{Y}=\left(\tilde{Y}_{1}, \cdots, \tilde{Y}_{s}\right)$ be isomorphic tuples in $\operatorname{Add}\left(\operatorname{Var}_{\mathbb{C}}\right)_{S}$. Then $\sum_{i} \chi_{c}\left(\tilde{X}_{i}^{\text {an }}\right)=\sum_{j} \chi_{c}\left(\tilde{Y}_{j}^{\text {an }}\right)$. In other words, there is a group homomorphism

$$
\chi_{c}: K_{0}\left(\operatorname{Add}\left(\operatorname{Var}_{\mathbb{C}}\right)_{S}\right) \rightarrow \mathbb{Z}
$$

which maps the class of a tuple $\left(X_{1}, \cdots, X_{n}\right)$ to $\sum_{i} \chi_{c}\left(X_{i}^{\mathrm{an}}\right)$.

Proof. We collect two claims and then prove the proposition.
Claim 1: Let A be a finitely generated \mathbb{Z}-algebra contained in \mathbb{C}. Let U in $\operatorname{Spec} A$ be nonempty open. Fix a prime ℓ. Then there exists a closed point in U whose residue characteristic is different from ℓ.

Proof of Claim 1: The structure morphism $F: \operatorname{Spec} A \rightarrow \operatorname{Spec} \mathbb{Z}$ maps a point to the prime ideal generated by its residue characteristic. Hence the set of points in U with residue characteristic different from ℓ is the open set $V:=F^{-1}(\operatorname{Spec} \mathbb{Z} \backslash\{\ell\}) \cap U$. We first argue V is nonempty, and V has a closed point.

The \mathbb{Z}-module A is flat by [Stacks, Tag 00 HD$]$: the homomorphisms $n \mathbb{Z} \otimes_{\mathbb{Z}} A \rightarrow A$, are injective, for all n, because A is torsion free. By [18, Exercise III.9.1], F is an open map. Hence $F^{-1}(\ell) \cap U$ is a proper subset of U (otherwise U would map into $\{(\ell)\}$, which is not open in $\operatorname{Spec} \mathbb{Z}$.). In other words, V is nonempty.
$\operatorname{Spec} A$ is a Jacobson space ([Stacks, Tag 01P1, 00GB]) so the set of closed points of $\operatorname{Spec} A$ is dense. Hence there is a closed point in the open set V.

Claim 2: Let X be a variety over \mathbb{C}. Then $\chi_{c}^{\text {ét }, \ell}(X)=\chi_{c}\left(X^{\mathrm{an}}\right)$.
Proof of Claim 2. By Artin comparison ([19, Section 4.2]), there is an isomorphism

$$
H_{\mathrm{et}, c}^{i}\left(X, \mathbb{Q}_{\ell}\right) \cong H_{c}^{i}\left(X^{\mathrm{an}}, \mathbb{Q}\right) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}
$$

of \mathbb{Q}_{ℓ}-vector spaces. Since $H_{c}^{i}\left(X^{\text {an }}, \mathbb{Q}\right)$ is a finite dimensional vector space over \mathbb{Q}, we have

$$
\operatorname{dim}_{\mathbb{Q}_{\ell}} H_{\text {êt }, c}^{i}\left(X, \mathbb{Q}_{\ell}\right)=\operatorname{dim}_{\mathbb{Q}} H_{c}^{i}\left(X^{\mathrm{an}}, \mathbb{Q}\right)
$$

The equality follows.
Now onto the proof of the proposition. By Lemma 2.2.21, there is a diagram

in $\operatorname{Add}\left(\operatorname{Var}_{\mathbb{C}}\right)$ such that $\tilde{Z}_{1} \rightarrow \tilde{Z}_{3}$ and $\tilde{Z}_{2} \rightarrow \tilde{Y}$ are in S. There exists a finitely generated \mathbb{Z}-algebra A such that the diagram

lies in $\operatorname{Add}\left(\operatorname{Sch}_{\text {Spec } A}\right)$, and whose base change to \mathbb{C} is Eq. (6.1). Indeed, we can take A to be \mathbb{Z} adjoined with all the coefficients of equations for all varieties appearing in the diagram.

Write $X=\left(X_{1}, \cdots, X_{r}\right)$ and $Y=\left(Y_{1}, \cdots, Y_{s}\right)$; in other words, $X_{i} \times_{\operatorname{Spec} A} \operatorname{Spec} \mathbb{C}=\tilde{X}_{i}$ and similarly for Y_{j}.

Step 1: Fix a prime ℓ. Suppose W is a variety over $\operatorname{Spec} A$. By [20, Proposition 10.1.17, 10.1.5], there exists a dense open set $U \subseteq \operatorname{Spec} A$ such that for every geometric point $\operatorname{Spec} L \rightarrow U$, the étale cohomologies $H_{\text {et, }, c}^{k}\left(W_{L}, \mathbb{Z}_{\ell}\right)$ are isomorphic, for all k. Let U_{i} and V_{j} be such open sets corresponding to X_{i} and Y_{j}. Put

$$
U=\left(\bigcap_{i=1}^{r} U_{i}\right) \cap\left(\bigcap_{j=1}^{s} V_{j}\right)
$$

By Claim 1, select a closed point $P \in U$ such that the characteristic of A / P is not ℓ. Put $K=A / P$. Then Spec $\bar{K} \rightarrow$ Spec $K \rightarrow U$ is a geometric point in U. Also Spec $\mathbb{C} \rightarrow U$ is a geometric point in U (Spec \mathbb{C} maps to the generic point of $\operatorname{Spec} A$, which lies in every nonempty open). Hence, for every summand W of X and Y, the groups $H_{\text {et, }, c}^{i}\left(W_{\bar{K}}, \mathbb{Z}_{\ell}\right)$ and $H_{\mathrm{et}, c}^{i}\left(\tilde{W}, \mathbb{Z}_{\ell}\right)$ are isomorphic, and we conclude

$$
\chi_{c}^{\text {ét }, \ell}\left(W_{\bar{K}}\right)=\chi_{c}^{\text {ét }, \ell}(\tilde{W}) .
$$

Step 2: Claim 2 and Step 1 give the equalities

$$
\sum_{i=1}^{r} \chi_{c}\left(\tilde{X}_{i}^{\mathrm{an}}\right)=\sum_{i=1}^{r} \chi_{c}^{\mathrm{et}, \ell}\left(\tilde{X}_{i}\right)=\sum_{i=1}^{r} \chi_{c}^{\mathrm{et}, \ell}\left(\left(X_{i}\right)_{K}\right)=\chi_{c}^{\mathrm{et}, \ell}\left(X_{K}\right)
$$

and

$$
\sum_{j=1}^{s} \chi_{c}\left(\tilde{Y}_{j}^{\mathrm{an}}\right)=\sum_{j=1}^{s} \chi_{c}^{\text {ét }, \ell}\left(\tilde{Y}_{j}\right)=\sum_{j=1}^{s} \chi_{c}^{\text {ét, } \ell}\left(\left(Y_{j}\right)_{K}\right)=\chi_{c}^{\text {ét }, \ell}\left(Y_{K}\right)
$$

To complete the proof, it remains to see the right hand sides are equal. Reducing modulo P, we have the diagram

in $\operatorname{Add}\left(\operatorname{Var}_{K}\right)$. The morphisms $\left(Z_{1}\right)_{K} \rightarrow\left(Z_{3}\right)_{K}$ and $\left(Z_{2}\right)_{K} \rightarrow Y_{K}$ are in S because open and closed immersions, isomorphisms, direct sums, and compositions are closed under base change. Therefore X_{K} and Y_{K} are isomorphic in $\operatorname{Add}\left(\operatorname{Var}_{K}\right)$. Since P is a closed point of a finitely generated \mathbb{Z}-algebra, K is a finite field. Therefore we may apply Proposition 6.0.11 to conclude $\chi_{c}^{\text {ét, } \ell}\left(X_{K}\right)=\chi_{c}^{\text {ét, } \ell}\left(Y_{K}\right)$.

Remark 6.0.13. In Chapter 5, we only established a surjection from the classical K_{0}-theory of varieties onto the K_{0}-theory of our localized category. A priori, there is the possibility that our K_{0}-theory is zero. However, in view of the measures we construct in this chapter, our K_{0}-theory is nonzero, at least in the case where k is the complex numbers or a finite field.

REFERENCES

[1] M. Larsen and V. Lunts, "Motivic measures and stable birational geometry," Moscow Mathematical Journal, vol. 3, no. 1, pp. 85-95, 2003.
[2] B. Poonen, "The grothendieck ring of varieties is not a domain," Mathematical Research Letters, vol. 9, no. 4, pp. 493-497, 2002. Doi: 10.4310/mrl.2002.v9.n4.a8. [Online]. Available: https://doi.org/10.4310\%2Fmrl.2002.v9.n4.a8.
[3] L. A. Borisov, "The class of the affine line is a zero divisor in the grothendieck ring," Journal of Algebraic Geometry, vol. 27, no. 2, pp. 203-209, Jun. 2017. DOI: 10.1090/jag/701. [Online]. Available: https://doi.org/10.1090\%2Fjag\%2F701.
[4] F. Bittner, "The universal euler characteristic for varieties of characteristic zero," Compositio Mathematica, vol. 140, no. 04, pp. 1011-1032, Jul. 2004.
[5] M. Mustaţă, Zeta functions in algebraic geometry. [Online]. Available: http://wwwpersonal.umich.edu/~mmustata/.
[6] I. Zakharevich, "The k-theory of assemblers," Advances in Mathematics, vol. 304, pp. 1176-1218, Jan. 2017.
[7] J. A. Campbell, "The K-theory spectrum of varieties," Transactions of the American Mathematical Society, vol. 371, no. 11, pp. 7845-7884, Feb. 2019.
[8] J. A. Campbell and I. Zakharevich, Devissage and localization for the grothendieck spectrum of varieties, 2018.
[9] C. Weibel, The K-book: An Introduction to Algebraic K-theory. American Mathematical Society (AMS), 2013.
[10] V. Srinivas, Algebraic K-Theory. Birkhäuser Boston, 1991.
[11] S. Mac Lane, Categories for the Working Mathematician. Springer New York, 1971.
[Stacks] Stacks project authors. "The stacks project." (2021), [Online]. Available: https: //stacks.math.columbia.edu.
[12] M. Kashiwara and P. Schapira, Categories and Sheaves. Springer Berlin Heidelberg, 2006.
[13] A. Neeman, Triangulated Categories. Princeton University Press, Dec. 2001.
[14] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory. Springer Berlin Heidelberg, 1967. DOI: 10.1007/978-3-642-85844-4.
[15] M. Schlichting, "Higher algebraic k-theory (after quillen, thomason and others)," in Topics in Algebraic and Topological K-Theory, Springer Berlin Heidelberg, Sep. 2010, pp. 167-241.
[nLab] nLab authors, Nlab, 2021. [Online]. Available: https://ncatlab.org.
[EGA4] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique IV, ser. Publications Mathématiques. Institute des Hautes Études Scientifiques., 1964-1967, vol. $20,24,28,32$.
[16] J. S. Milne, Etale Cohomology (PMS-33). Princeton University Press, Dec. 1980.
[17] B. Poonen, Rational Points on Varieties. American Mathematical Society, Dec. 2017.
[18] R. Hartshorne, Algebraic Geometry. Springer New York, 1977.
[19] J.-P. Serre, Lectures on $N_{X}(p)$. CRC Press, 2011.
[20] L. Fu, Etale Cohomology Theory. World Scientific, Jan. 2011.

VITA

Harrison was born in Los Angeles, CA. He graduated in 2012 from the University of California, San Diego with a Bachelor of Science in Mathematics. In 2013, he began the mathematics graduate program at Purdue University. He participated in the 2021 Winter IMA Math-to-Industry Bootcamp. He is currently an intern at Oak Ridge National Laboratory, where he uses deep learning techniques to compress fusion energy data.

[^0]: ${ }^{1} \uparrow$ Given two ordered sets $\left(X_{1}, \leq_{1}\right)$ and $\left(X_{2}, \leq_{2}\right)$, the dictionary order \leq_{3} on the product set $X_{1} \times X_{2}$ is defined by $\left(x_{1}, x_{2}\right) \leq_{3}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ if and only either $x_{1}<_{1} x_{2}$, or $x_{1}=x_{2}$ and $x_{1}^{\prime} \leq_{2} x_{2}^{\prime}$.

