
COMPUTE-IN-MEMORY PRIMITIVES FOR
ENERGY-EFFICIENT MACHINE LEARNING

by

Amogh Agrawal

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

August 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Kaushik Roy, Chair

School of Electrical and Computer Engineering

Dr. Anand Raghunathan

School of Electrical and Computer Engineering

Dr. Sumeet K. Gupta

School of Electrical and Computer Engineering

Dr. Vijay Raghunathan

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2

This work is dedicated to Baba, Amma, Mausi, Nanaji and Nani.

3

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Prof. Kaushik Roy for his

continued support and guidance during my PhD study and research. His exceptional men-

torship helped me shape myself as a researcher and allowed me to explore various interesting

topics, while building my skills and critical thinking. I could not have imagined a better

mentor for my PhD study.

I would also like to thank my committee members Prof. Anand Raghunathan, Prof.

Sumeet Gupta, and Prof. Vijay Raghunathan for their encouragement and always being

easily approachable. Their invaluable advice at each step of my PhD journey helped me stay

motivated and focused.

My sincere thanks also goes to Dr. Ajey Jacob, Dr. Steven Woo and Dr. Thomas

Vogelsang for offering me the summer internship opportunities for working on very exciting

projects, which helped me broaden my scope and build network outside academia.

I thank all my fellow NRL members and alumni. Special thanks to Dr. Akhilesh Jaiswal

for helping me get started on my first project, Dr. Ankit Sharma for all his help initially,

and Dr. Minsuk Koo for the very helpful insights during the tapeout process. Also I thank

all my collaborators: Mustafa, Nitin, Dr. Indranil Chakraborty, Dr. Deboleena Roy, Dr.

Aayush Ankit, Dr. Chankyu Lee, Adarsh, Sangamesh, Dong Eun, Tanvi, Deepika, Utkarsh,

Shubham, Eunseon, and Dr. Cheng Wang, with whom I had the pleasure of working, having

stimulating discussions, and all the fun times together.

I would also like to acknowledge Nicole for efficiently administering C-BRIC and always

being ready to offer help with almost anything.

Lastly, but most importantly, I would like to thank my parents Dr. Vivek Agrawal and

Dr. Jolly, my sister Dr. Akanksha Agrawal, my brother-in-law Dr. Shrihari Kulkarni, and

all friends and family for their unconditional love and support.

4

TABLE OF CONTENTS

LIST OF TABLES . 11

LIST OF FIGURES . 12

ABSTRACT . 21

1 INTRODUCTION . 23

2 ENABLING IN-MEMORY BOOLEAN COMPUTATIONS IN STANDARD 8T

SRAM ARRAYS . 27

2.1 Introduction . 27

2.2 In-Memory Computations in 8-Transistor SRAM Bit-Cells 31

2.2.1 8-Transistor SRAM: NOR operation 33

2.2.2 8-Transistor SRAM: NAND operation 35

2.2.3 8 Transistor SRAM: Voltage Divider Scheme for IMP and XOR gates 36

2.2.4 Proposed ‘read-compute-store’ (RCS) scheme 40

2.3 8+ Transistor Differential Read SRAM . 42

2.4 Discussions . 45

2.5 X-SRAM based non-standard von-Neumann Computing for AES Encryption 47

2.5.1 Simulation Methodology . 48

2.5.2 Results and Discussion . 49

2.6 Conclusion . 50

5

3 ACCELERATING BINARY CONVOLUTIONAL NEURAL NETWORKS IN 10T

SRAM ARRAYS . 51

3.1 Introduction . 51

3.2 In-memory Binary Convolution − Proposal-A 54

3.2.1 Circuit Description . 55

3.2.2 Dual Read-Wordline based Dual-stage ADC 57

3.2.3 Sectioned Memory Array for Parallel Computing 61

3.2.4 Results . 63

3.3 In-memory Binary Convolution − Proposal-B 64

3.3.1 Bitwise XNORs . 65

3.3.2 Popcount . 66

3.3.3 Results . 67

3.4 System-level Evaluation Framework for BNN 68

3.4.1 Simulation Methodology . 69

3.4.2 Mapping Weights and Activations to Xcel-RAM 70

3.4.3 Results and Discussion . 72

3.5 Conclusion . 74

4 ENABLING DOT-PRODUCT COMPUTATIONS IN STANDARD 8T-SRAMAR-

RAYS USING CHARGE ACCUMULATION AND SHARING 75

4.1 Introduction . 75

4.2 Related Works . 78

6

4.3 Charge Sharing based In-Memory Dot-Product Operation 79

4.3.1 8T-SRAM: Structure and Operation 80

4.3.2 8T-SRAM: Charge sharing based Dot-Product Operation 81

4.3.3 SPICE Characterization . 82

4.3.4 Self-Compensation . 84

4.3.5 Compensating for Transistor Non-linearity 85

4.4 System Integration of CASH-RAM for Accelerating Ternary Weight Neural

Networks . 87

4.4.1 Cache Integration . 88

4.4.2 Subarray Details . 88

4.4.3 Data Mapping . 89

4.5 Results . 89

4.5.1 Experimental methodology . 90

4.5.2 Impact of Non-idealities on Classification Accuracy 90

4.5.3 Energy, Delay and Area Estimates 92

4.6 Conclusion . 97

5 LOOKUP TABLE BASED COMPUTING USING ROM-EMBEDDED SRAM . . 98

5.1 Introduction . 98

5.2 RECache: Design and Operation . 100

5.2.1 8T-SRAM . 100

7

5.2.2 8+T Differential Read SRAM . 103

5.3 Evaluating RECache on realistic workloads 105

5.4 Conclusions . 107

6 SPIKING NEURAL NETWORK ACCELERATION USING LOOKUP TABLE

BASED IN-MEMORY-COMPUTING . 108

6.1 Introduction . 108

6.2 Background . 110

6.2.1 ROM-Embedded RAMs . 110

6.2.2 SNN: Spiking Neural Networks . 115

6.2.3 LUT based storage in R-SRAMs and R-MRAMs 116

6.3 SPARE: SNN Accelerator using ROM-embedded RAMs 117

6.3.1 SPARE Organization . 117

6.3.2 Inter-layer pipelining . 120

6.3.3 Processing Element (PE) . 121

6.3.4 Modeling complex neuro-synaptic functionality 123

6.4 Experimental Methodology . 124

6.5 Results . 126

6.5.1 Energy . 126

6.5.2 Area . 130

6.5.3 Performance . 130

8

6.5.4 Complex neuro-synaptic models . 130

6.6 Conclusion . 131

7 A 65-NMDIGITAL COMPUTE-IN-MEMORYMACRO ENABLING SPIKE-BASED

SEQUENTIAL LEARNING IN 10T SRAM ARRAY 133

7.1 Introduction . 133

7.2 IMPULSE: Structure and Operation . 134

7.2.1 Reconfigurable Column Peripherals 136

7.2.2 In-Memory SNN Instructions . 137

7.2.3 Multiple Neuron Functionalities . 139

7.3 Implementation Results . 139

7.4 Multi-macro Architecture . 143

7.4.1 Introduction . 143

7.4.2 Zero-skipping . 145

7.4.3 Macro Pipeline . 146

7.4.4 Support for Multiple Bit-precision 148

7.4.5 Configurations for Low and High Fan-in CNN Layers 149

7.4.6 Timestep Pipelining: Leveraging Additional Weight Re-use 151

7.4.7 Preliminary Results . 152

7.5 Conclusion . 153

8 SUMMARY AND FUTURE DIRECTIONS . 155

9

A CHALLENGES WITH 6T SRAM FOR ENABLING COMPUTE-IN-MEMORY . 156

A.1 Operation of 6T SRAM . 156

A.2 Read Stability Challenges due to CIM . 156

A.2.1 Short-circuit paths . 156

A.2.2 Pseudo-write . 158

REFERENCES . 159

VITA . 174

PUBLICATIONS . 175

10

LIST OF TABLES

2.1 Summary of proposals described in the manuscript. The table shows average
energy consumption per-bit and latency for the in-memory operations on various
bit-cells. Pros and cons of each proposal are also listed. 44

3.1 Benchmark Binary Neural Network [6] used for classifying CIFAR10 and SVHN
datasets. 71

4.1 Hardware Parameters Description . 94

4.2 Network Parameters Description . 95

4.3 Energy, Delay, and Area Comparison . 95

4.4 Area breakdown . 96

5.1 Benchmarks used to evaluate RECache [49], [118] 105

5.2 ROM and RAM energy per-access for various array sizes obtained from CACTI. 106

7.1 Energy Efficiency of SNN over LSTM. 142

7.2 Comparison with prior works. 143

11

LIST OF FIGURES

1.1 (a) Intel Xeon CPU [18]. (b) NVIDIA Turing GPU [19]. (c) Google TPU
[20]. (d) Eyeriss chip [21]. 25

2.1 Illustration of the von-Neumann bottleneck. Frequent to-and-fro data trans-
fers between the processor and memory units incur large energy consumption
and limits the throughput. Computing within the memory array enhances the
memory functionality thereby reducing the number of unnecessary transfers
of data for certain class of operations like vector bit-wise Boolean logic etc. . 28

2.2 A summary of In-Memory computing schemes proposed. With respect to the
8T cell, we present bit-wise NAND, NOR and XOR operations using skewed
inverter sensing. Further, we present the voltage-divider based operation of
8T-cells for IMP and XOR gates. With respect to the 8+T-cells, we present
bit-wise NAND, NOR and XOR operations using asymmetric differential SAs.
Moreover, a ‘read-compute-store’ operation has been presented for both types
of bit-cells. 29

2.3 a) Schematic of a standard 8T-SRAM bit-cell. In addition to the standard
6T cell, two additional transistors form the read path using a separate read
bit-line (RBL). b) Single ended sensing of NAND/NOR using gated skewed
inverters. Figure also shows the truth table for NAND/NOR/XOR opera-
tions. c) Timing diagram for reading NOR output of Cell 1 and Cell 2. d)
Timing diagram for reading NAND output of Cell 1 and Cell 2. 32

2.4 Monte-Carlo simulations in SPICE for NAND and NOR outputs for all pos-
sible input cases − ‘00,01,10,11’, in presence of 30mV sigma variations in
threshold voltage. 33

2.5 Monte-Carlo simulations across process corners (TT corner and SS corner
shown) under voltage and temperature variations for NAND outputs for the
borderline cases − ‘01/10’ and ‘11’. The distribution of RBL voltage is plotted
under 30mV sigma threshold voltage variations for two different temperatures
and ±10% variation in nominal VDD. . 34

2.6 a) Circuit schematic of the 8T-SRAM for implementing the voltage-divider
scheme. b) Equivalent circuit traced by transistors M1 − M4 while data is
read from Cell 1 and Cell 2. c) Monte-Carlo simulations in SPICE for all
possible input cases, showing the output of the two asymmetric inverters. . . 37

12

2.7 Monte-Carlo simulations with variations in supply voltage and temperature
across process corners for the voltage-divider scheme for the case (1,1). Verror

is defined as the difference between the RBL voltage (when both the operands
are ‘1’) and the initial pre-charge voltage Vpre. The distribution of Verror

is plotted under 30mV sigma threshold voltage variations for two different
temperatures and ±10% variation in nominal VDD. The variations in Vpre are
also accounted for. 38

2.8 a) Proposed ‘read-compute-store’ (RCS) scheme. RWL1 and RWL2 are en-
abled, corresponding to the data to be computed. The computation output
is selectively passed to the write-driver of that column, while simultaneously
enabling the WWL3, where data is to be stored. b) Block diagram showing
the RCS blocks in the memory array. The NAND of row 1 and row 2 is to
be stored in row 3. c) Monte-Carlo simulations in SPICE, showing the final
state of Cell 3 stores the desired output. 40

2.9 a) Circuit schematic of an 8+T Differential SRAM bit-cell [45]. b) Timing
diagram used for in-memory computations on the 8+T Differential SRAM. c)
Circuit schematic of the proposed asymmetric differential sense amplifier. . . 41

2.10 Monte-Carlo simulations in SPICE for SA outputs for all possible input cases
− ‘00,01,10,11’, in presence of 30mV sigma variations in threshold voltage. . 42

2.11 Monte-Carlo simulations across process corners under VT and temperature
and supply-voltage variations for the 8+T SRAM configuration for the cases
‘01/10’ and ‘11/00’. Vdiff is defined as the absolute difference between the
RBL and RBLB voltages at the instant when the sense amplifier is enabled.
The distribution of Vdiff is plotted under 30mV sigma threshold voltage vari-
ations for two different temperatures and ±10% variation in nominal VDD. . 43

2.12 a) Thin cell layout for the standard 8T-SRAM bit-cell shown in Fig. 2.3 (a).
b) Thin cell layout for the 8+T Differential SRAM bit-cell [45] illustrated in
Fig. 2.9 (a). Left- and right-most diffusion tracks are shared with adjacent
bit-cells. The ninth transistor in Fig. 2.9 (a) is common for the row and is
connected at the periphery to the node ‘VX’. 46

2.13 (a) System-level implementation of a typical von-Neumann architecture with
X-SRAM as the memory block. The processor, data-memory and the instruction-
memory blocks are connected via a shared system bus. (b) Illustration of cus-
tom in-memory instructions added to the instruction set of the Nios-II pro-
cessor. Substituting in-memory instructions reduces unnecessary read-writes
into the memory. 47

2.14 Normalized number of memory accesses for various AES encryption and de-
cryption modes and two different key-sizes, with and without using X-SRAM
custom in-memory instructions. The total memory transactions are split into
memory read instructions, memory write instructions and custom in-memory
instructions. 48

13

2.15 (a) Realistic scenario for a typical system with multiple masters over a shared
bus. An arbiter keeps track of the memory traffic and controls which master
has access to the bus at a given point in time. (b) Data-parallelism in memory
arrays. X-SRAM performs bit-wise operations throughout the row, where
each row may store multiple data words. Thus multiple computations occur
in parallel. 49

3.1 The 10 transistor SRAM cell featuring a differential decoupled read-port com-
prising of transistors M1-M2 and M1’-M2’. The write port is constituted by
write access transistors connected to WWL. 54

3.2 Illustration of the binary convolution operation within the 10T-SRAM array.
a) Step 1: Pseudo-read. RBLs/RBLBs are pre-charged and RWL for a row
storing the input activation (A1) is enabled. Depending on the data A1,
RBLs/RBLBs either discharge or stay pre-charged. The SAs are not enabled,
in contrast to a usual memory read. Thus, the charge on RBLs/RBLBs repre-
sent the data A1. b) Step 2: XNOR on SL. Once the charges on RBLs/RBLBs
have settled, RWL for the row storing the kernel (K1) is enabled. Charge shar-
ing occurs between the RBLs/RBLBs and the SL, depending on the data K1.
The RBLs either deposit charge on the SL, or take away charge from SL. c)
The truth table for Step 2 is shown. The pull-up and pull-down of the SL
follow the XNOR truth table. Moreover, since the SL is common along the
row, the pull-ups and pull-downs are cumulative. Thus, the final voltage on
SL represents the XNOR + popcount of A1 and K1. 56

3.3 a) Dual RWL technique. b) Dual-stage ADC scheme. 57

3.4 The plot shows the final SL voltage with and without the Dual RWL ap-
proach. A larger sense margin is obtained with our Dual RWL approach,
thus relaxing the constraints on the low-overhead ADC. Note that with Dual
RWL technique we restrict the distinct voltage levels on SL to 32 at a time,
instead of 64. However, the voltage swing on SL remains the same, thereby
increasing the sense margin between the states. 58

3.5 The figure shows the timing diagrams for the dual-stage ADC scheme. The
figure plots the SL voltage for various popcount cases. In the first-stage,
the sub-class SC1-4 is determined using multiple references (0.25V, 0.5V and
0.75V). In the second-stage, charge is pumped-in/out of SL successively, de-
pending on the SC. The number of cycles it takes for SL to reach VREF are
counted. VREF for SC1-4 is 0.25V,0.5V, 0.5V and 0.75V, respectively. 59

14

3.6 a) Typical SRAM memory array with row and column peripherals storing the
activations A1-Am, and kernels K1-Kn. b) Proposed sectioned-SRAM array.
By introducing switches along the RBLs, the array is divided into sections.
The kernels are mapped into the sectioned-SRAM with each section storing
different kernel. Once the activations are read onto the RBLs, the switches
are opened, and the memory array is divided into sections. c) Since the RBLs
for each section have been decoupled, one RWL in each section can be si-
multaneously enabled such that each section performs the binary convolution
concurrently. The Row-MUX connects the corresponding SL to the sensing
circuit. For example, if A1 was read onto the RBLs before sectioning, en-
abling the rows K1 and K2 in Section 1 and 2 respectively, we obtain A1*K1
and A1*K2 in parallel on the SLs, which are sensed by the ADC. 61

3.7 Monte-Carlo simulations. The figure plots the histogram of the second-stage
output of the ADC, for various popcount cases, in presence of process vari-
ations. Inset: Each histogram is fitted with a Gaussian distribution. The
average standard deviation of the counts is ∼0.4359. The trend repeats for
higher popcount cases with modulo-8, since only the lower 3bits of the output
are generated in the second-stage. 64

3.8 (a) A 10T-SRAM bitcell schematic is repeated here for convenience. (b)
Timing diagram used for in-memory computing with 10T-SRAM bitcells. (c)
Circuit schematic of the asymmetric differential sense amplifier. [61] 65

3.9 Modified peripheral circuitry of the SRAM array to enable binary convolution
operations. It consists of two asymmetric SAs - SANOR and SANAND which
pass the XNORed data vector to a bit-tree adder. The adder has log(N)
layers, where N is the number of inputs to the adder. It sums the input bits
to generate the popcount. 67

3.10 (a) Modified von-Neumann architecture based on Xcel-RAM memory banks
and enhanced instruction set architecture (ISA) of the processor. (b) Snip-
pet of assembly code for performing a binary convolution operation using
conventional instructions and custom instructions. 68

3.11 Mapping of weights and activations of a convolutional neural network to Xcel-
RAM. The kernels and the input feature maps are flattened and stored into
multiple rows in the memory array. Xcel-RAM banks have dedicated rows
for storing kernels and activations. 70

3.12 Layer-wise energy consumption and latency, for running the CIFAR-10 (a-b),
and SVHN (c-d) image classification benchmarks on the proposed designs,
and the baseline. . 72

3.13 Energy, latency and accuracy tradeoff for classifying CIFAR-10 and SVHN
dataset with BNN, using the proposed techniques. 73

15

4.1 (a) Schematic of the standard 8T-SRAM bitcell (b) Parasitic capacitance
CBL and CSL for an array of 8T-SRAM cells. The dotted arrows show the
charge-sharing path used in our approach. 80

4.2 Data obtained from SPICE simulations. (a) Final SL voltage as a function
of input voltage vi. Three cases of K=1,16,32 are shown. (b) Final SL
voltage as a function of K. Three cases for vi=0.2,0.4,0.6V are shown. (c)
Representation of VSL as a function of ideal dot product A. The degree
of spread represents the non-idealities, as illustrated in the figure taking an
example of VSL=0.25V. 83

4.3 Data obtained from SPICE simulations and Â estimated from Eq. 4.8 . (a)
Â as a function of input voltage vi. Three cases of K=1,16,32 are shown.
(b) Â as a function of K. Three cases for vi=0.2,0.4,0.6V are shown. (c)
Representation of Â as a function of ideal dot product A. The degree of
spread is significantly lower than in Fig. 4.2 (c). 85

4.4 Data obtained from SPICE simulations and Â estimated from Eq. 4.9 . (a)
Â as a function of input voltage vi. Three cases of K=1,16,32 are shown.
(b) Â as a function of K. Three cases for vi=0.2,0.4,0.6V are shown. (c)
Representation of Â as a function of ideal dot product A. The degree of
spread has further reduced significantly than in Fig. 4.3 (c). 86

4.5 CASH-RAM system integration for accelerating TWNNs. A typical multi-
bank cache hierarchy is shown on the right, where each bank consists of mul-
tiple sub-arrays. The subarray is shown on the left, with additional peripheral
circuitry to augment dot-product computations within the cache. 87

4.6 Classification accuracy obtained on MNIST and CIFAR-10 datasets for differ-
ent benchmarks, for with and without self-compensation. Approach-1 corre-
sponds to self-compensation while Approach-2 corresponds to compensating
for transistor non-linearity. 91

5.1 (a) Schematic of a standard 8T-SRAM bitcell. Transistors M1 and M2 form
the decoupled read port of the SRAM cell. (b) Proposal-A for RECache.
The cell has an extra RWL, and the ROM data stored is ‘1’ if the access
transistor is connected to RWL1, and ‘0’ if it is connected to RWL2. The node
voltages for RAM and ROM modes of operation are listed. (c) Proposal-B
for RECache. This configuration has two SLs, instead of two RWLs. ROM
data stored is ‘1’ if the access transistor is connected to SL1, and ‘0’ if it is
connected to SL2. 99

5.2 Timing diagrams generated from HSPICE for Proposal-A,B. The correct
ROM Output data is generated, without disturbing the RAM data stored
in the cell. The circuit shown in Fig. 5.1 (b-c) are simulated. 100

16

5.3 (a) Thin cell layout of a standard 8T-SRAM cell. The circled contacts, RWL
and SL, are common to adjacent bitcells in the horizontal and vertical direc-
tion, respectively. (b) Thin cell layout of the 8+T-SRAM bit-cell. The circled
contacts (VX) on either side of the bitcell are shared by adjacent bitcells. . . 101

5.4 (a) Schematic of the differential 8+T-SRAM bitcell. Transistors M1 and M2
form a differential read port decoupled from the 6T write port. The ninth
transistor connected to RWL is common for the entire row. (b) RECache
using the differential 8+T-SRAM. The connection of M1 to either VX1 or
VX2 determines the ROM bit stored in the cell. The ROM retrieval process
is exactly same as the 8T-RECache. The node voltages for ROM and RAM
mode of operation are listed. 102

5.5 Timing diagrams obtained from HSPICE. The correct ROM Output data is
generated, without disturbing the RAM data stored in the cell. The circuit
shown in Fig. 5.4 (b) was simulated. 103

5.6 Normalized cache miss-rate for various benchmarks − artificial neural network
(ANN), spiking neural network (SNN) and advanced encryption standard
(AES), with RECache and standard SRAM caches. 104

6.1 R-SRAM Schematic: Standard 6T-SRAM embedded with ROM. The only
difference is the addition of extra word-line (WL1 and WL2) to embed ROM
functionality. 109

6.2 Operation of R-SRAM in a) Normal RAM Mode and b) ROM Mode. 111

6.3 R-MRAM Schematic: Standard STT-MRAM array with two bit-lines (BL1
and BL0) to embed ROM functionality. The peripheral circuitry for RAM
and ROM mode of operation is highlighted. 112

6.4 Typical SNN dynamics. The input spikes are modulated by the synaptic
weights, and the accumulated synaptic current in fed to the neuron. The
neuron integrates the current and outputs a spike (fires) once its membrane
potential exceeds a threshold. 113

6.5 Storage of LUTs for various functions within the same ROM-Embedded RAM
array. The starting address for each type of LUT is predefined. An offset
address (calculated from the input) is added to the starting address to perform
the table lookup from the R-SRAM/R-MRAM. The number of memory rows
required by each LUT type is predefined based on the desired precision of the
transcendental function to be stored. 113

17

6.6 Block level diagram of SPARE. (a) Figure shows how a deep neural network
is mapped to a 2-D array of PEs connected together. The global memory
stores the spiking events at every layer output, and broadcasts them to the
input of next layer. (b) Figure zooms into the logical diagram of the PE. It
consists of a ROM-embedded RAM to store the state variables along with
LUTs of synapse, neuron and synaptic plasticity models, computation core
to generate output spikes, input buffers to store incoming spike broadcast,
event controller to schedule memory transactions, state updater to update
the entries in the memory, and an output buffer to store the output spikes
generated. 114

6.7 Mapping of CNNs in SPARE: The input map is window-split based on the
kernel size of the particular layer. These are then broadcast to all PEs mapped
to that layer. Each PE stores different kernels, and process the data in parallel
as they receive the inputs in a window split-manner. Each PE computes part
of the output feature map, highlighted through color coding of PEs in figure.
The output is rearranged and stored back to the global memory unit. 118

6.8 Logical flow diagram of the event controller, describing SNN computations
performed in the PE. The subsequent computation is subdivided into three
main blocks. 1) Synapse model block: computes output synaptic current.
2) Neuron model block: keeps track of the membrane potential of output
neurons. 3) Plasticity model block: updates synaptic weights during the
training phase. This block is skipped during the inference phase. 119

6.9 Timing diagram illustrating the inter-layer pipelining in SPARE. As soon as
the PEs receive and buffer the input data, they start processing. Meanwhile,
data for PEs mapped to subsequent layers is transmitted. Since the data
transfer time is small compared to the computation time within the PE, all
PEs process data in parallel. 120

6.10 Differential equations describing the dynamics of neurons and an LUT based
approach to implement them in SPARE. (a) Leaky-integrate-fire neuron (b)
Izhikevich neuron (c) Hodgkin-Huxley neuron 122

6.11 Energy and latency for read-write accesses from all designs considered −
SRAM, R-SRAM, STT-MRAM, and R-MRAM. (* ROM Read for R-SRAM
includes additional overhead of buffering RAM, retrieving ROM data and
storing back the buffered RAM data, as described in Section 6.2.1). 123

6.12 uArchitecture design parameters used for simulations. 123

6.13 SNN benchmarks used in SPARE evaluation [118], [129]. The figure tabu-
lates the number of PEs required, memory requirement, and the RAM/ROM
content for each benchmark and neuron model. 124

18

6.14 Normalized energy consumption for a) Training phase and b) Inference phase,
for benchmarks ‘MNIST1-3’. The simulations are performed for max firing
rate fp = 0.4 and 1. The energy bars are further split into RAM (read/write
energy + leakage), ROM (read energy + leakage) and Rest (core energy).
The energy values are normalized to the common base reference. 126

6.15 Normalized energy consumption for benchmarks ‘MNIST4’ and ‘CIFAR10’.
The simulations are performed for max firing rate fp = 0.4 and 1. The energy
bars are further split into RAM (read/write energy + leakage), ROM (read
energy + leakage) and Rest (core energy). The energy values are normalized
to the common base reference. 127

6.16 per-PE area with SRAM, R-SRAM, STT-MRAM and R-MRAM as memory
units (for iso-storage). 129

6.17 Normalized energy consumption for using Hodgkin-Huxley neuron models on
SNN benchmarks. The simulations are performed for max firing rate fp = 0.4.
The energy bars are further split into RAM (read/write energy + leakage),
ROM (read energy + leakage) and Rest (core energy). The energy values are
normalized to the common base reference. 129

7.1 (a) LSTM having hidden state (ht, Ct) for processing sequential tasks. (b)
Intrinsic temporal dynamics of neuron membrane potentials (Vt

MEM) in SNNs
for processing sequential tasks. 134

7.2 Limitations of current digital SNN hardware accelerators and our proposed
approach of fused weight and membrane potential CIM SRAM. 134

7.3 (a) Organization of the fused WMEM/VMEM 10T-SRAM macro. (b) Mapping
of FC and Conv layers on the proposed macro. 135

7.4 Detailed description of the reconfigurable column peripherals. 136

7.5 Illustration of supported in-memory SNN instructions. 137

7.6 Multiple neurons can be implemented using in-memory instructions. 138

7.7 Die micrograph, area breakdown, and Shmoo plot for CIM operations. . . . 139

7.8 (a) Measured average power and energy-efficiency for AccW2V instruction.
(b) SNN architecture and accuracy on IMDB and MNIST datasets. 140

7.9 Progression of the final output neuron’s membrane potential with timesteps,
where each word is presented to the SNN for 10 timesteps. 141

7.10 (a) Average sparsity obtained at each layer of SNN for each timestep. (b)
Measured EDP per-neuron per-timestep with varying sparsity. 142

19

7.11 Limited fan-in of single macro (left). Multi-macro architecture is shown on
the right consisting of compute and neuron macros and moving partial VMEM
among them to compute the final spikes (right). The block diagram showing
each processing element (bottom). 144

7.12 Zero-skipping using leading-one detector. 145

7.13 Macro Pipeline. Pipeline stages Read, Compute and Store corresponding to
the column peripheral blocks SINV, BLFA and CWD, respectively (right).
Timing diagram of the macro processing is shown on the left. 147

7.14 Amortizing the reconfigurability overhead for processing odd and even columns,
by maintaining two queues having appropriate depth. The graph on the
right plots the energy per operation as a function of number of consecutive
odd/even operations. 148

7.15 Variable bit-precisions can be supported by introducing RBL switches to de-
couple the RBL between the WMEM and VMEM subarrays. 148

7.16 Two supported configurations to efficiently run low fan-in and high fan-in
CNN layers with high throughput. 149

7.17 Timing diagram showing the top-level timestep pipelining among the macros
(top). Once all timesteps are performed for one group of neurons, we can start
processing the next group and so on, thereby leveraging weight re-use across
neurons and across timesteps. The plot (bottom right) shows the dependency
of compute cycles on the data-sparsity, showing the benefits of zero-skipping. 150

7.18 Energy-efficiency of the proposed multi-macro architecture, as a function of
data-sparsity and the bit-precision, for the two proposed configurations. . . . 151

7.19 Throughput of the proposed multi-macro architecture, as a function of data-
sparsity and the bit-precision, for the two proposed configurations. 152

7.20 Energy breakdown for two levels of sparsity (75% and 99%). 152

A.1 Schematic showing a 6T-SRAM array. The red and blue arrows show the cur-
rent path and the charge discharge path, respectively, causing read-stability
issues for performing in-memory computing. 157

A.2 Staggered activation of wordlines to avoid short circuit paths, leading to bit-
line discharge [90] . 158

20

ABSTRACT

Machine Learning (ML) workloads, being memory and compute-intensive, consume large

amounts of power running on conventional computing systems, restricting their implementa-

tions to large-scale data centers. Thus, there is a need for building domain-specific hardware

primitives for energy-efficient ML processing at the edge. One such approach is in-memory

computing, which eliminates frequent and unnecessary data-transfers between the memory

and the compute units, by directly computing the data where it is stored. Most of the

chip area is consumed by on-chip SRAMs in both conventional von-Neumann systems (e.g.

CPU/GPU) as well as application-specific ICs (e.g. TPU). Thus, we propose various cir-

cuit techniques to enable a range of computations such as bitwise Boolean and arithmetic

computations, binary convolution operations, non-Boolean dot-product operations, lookup-

table based computations, and spiking neural network implementation − all within standard

SRAM memory arrays.

First, we propose X-SRAM, where, by using skewed sense amplifiers, bitwise Boolean

operations such as NAND/NOR/XOR/IMP etc. can be enabled within 6T and 8T SRAM

arrays. Moreover, exploiting the decoupled read/write ports in 8T SRAMs, we propose read-

compute-store scheme where the computed data can directly be written back in the array

simultaneously.

Second, we propose Xcel-RAM, where we show how binary convolutions can be enabled

in 10T SRAM arrays for accelerating binary neural networks. We present charge sharing

approach for performing XNOR operations followed by a population count (popcount) using

both analog and digital techniques, highlighting the accuracy-energy tradeoff.

Third, we take this concept further and propose CASH-RAM, to accelerate non-Boolean

operations, such as dot-products within standard 8T-SRAM arrays by utilizing the parasitic

capacitances of bitlines and sourcelines. We analyze the non-idealities that arise due to

analog computations and propose a self-compensation technique which reduces the effects of

non-idealities, thereby reducing the errors.

Fourth, we propose ROM-embedded caches, RECache, using standard 8T SRAMs, useful

for lookup-table (LUT) based computations. We show that just by adding an extra word-line

21

(WL) or a source-line (SL), the same bit-cell can store a ROM bit, as well as the usual RAM

bit, while maintaining the performance and area-efficiency, thereby doubling the memory

density. Further we propose SPARE, an in-memory, distributed processing architecture built

on RECache, for accelerating spiking neural networks (SNNs), which often require high-order

polynomials and transcendental functions for solving complex neuro-synaptic models.

Finally, we propose IMPULSE, a 10T-SRAM compute-in-memory (CIM) macro, specif-

ically designed for state-of-the-art SNN inference. The inherent dynamics of the neuron

membrane potential in SNNs allows processing of sequential learning tasks, avoiding the

complexity of recurrent neural networks. The highly-sparse spike-based computations in

such spatio-temporal data can be leveraged for energy-efficiency. However, the membrane

potential incurs additional memory access bottlenecks in current SNN hardware. IMPULSE

triew to tackle the above challenges. It consists of a fused weight (WMEM) and membrane

potential (VMEM) memory and inherently exploits sparsity in input spikes. We propose

staggered data mapping and re-configurable peripherals for handling different bit-precision

requirements of WMEM and VMEM, while supporting multiple neuron functionalities. The

proposed macro was fabricated in 65nm CMOS technology. We demonstrate a sentiment

classification task from the IMDB dataset of movie reviews and show that the SNN achieves

competitive accuracy with only a fraction of trainable parameters and effective operations

compared to an LSTM network.

These circuit explorations to embed computations in standard memory structures shows

that on-chip SRAMs can do much more than just store data and can be re-purposed as

on-demand accelerators for a variety of applications.

22

1. INTRODUCTION

In the past decade, we have seen a tremendous growth in Machine Learning (ML) algo-

rithms, especially Deep Neural Networks (DNNs). DNNs have been shown to be extremely

effective for various cognitive applications, such as classification, recognition, detection and

autonomous systems, which are being adopted into various disciplines [1], [2]. The primary

reason for their exponential growth and widespread adoption in the past decade can be

attributed to the advancements in computational power and resources [3]. Availability of

powerful large-scale CPU and GPU servers and clusters enabled execution of computation-

ally expensive DNN models, leading to superior performance [3]. Even today, the size of the

state-of-the-art DNNs grows exponentially [4]. Although large-scale data-centers having mul-

tiple CPU clusters and GPUs, enable large parallelism and faster execution of DNNs, they

are extremely power hungry. This is because DNN compute models are inherently different

from general-purpose workloads and are immensely memory- and compute-intensive. Run-

ning data-intensive applications on such von-Neumann machines, like artificial intelligence,

search engines, neural networks, biological systems, financial analysis etc., are limited by

the von Neumann bottleneck [5]. This bottleneck results due to frequent and large amounts

of data transfer between the physically separate memory units and compute cores. More-

over, frequent to-and-fro data transfers incur large energy overheads in addition to limiting

the overall throughput. This has largely restricted the execution of DNNs to large-scale

data-centers, due to such high power demands.

Nowadays, most real-time data is generated at the edge-devices, such as sensor nodes,

drones, and IoT devices. Most of these devices are battery-operated, and thus have limited

battery life. Transferring large amounts of data from the edge devices to the cloud is not

only energy expensive, but sometimes undesirable due to security reasons, such as in defense

or automotive applications. Thus, there is a need for processing data at the edge, to enable

energy-efficient DNN inference. There have been innovations in both algorithmic as well

as hardware fronts, to mitigate the energy problem of exploding DNNs. Recently, there

have been emergence of memory-friendly quantized networks, such as binary networks [6],

XNOR-Net [7], and ternary networks [8], [9]. The basic idea is to reduce the bit-precision of

23

the network parameters (weights, or activations, or both), from full-precision (32-bit or 64-

bit floating point) to low-precision fixed-point notation (1-bit, 2-bit, etc.). This drastically

reduces the computational complexity of the network, while also reducing the amount of data

movement, without significant loss in state-of-the-art accuracies owing to the error-resiliency

of neural networks, and their ability to re-train.

On the hardware side of things, there have been significant interest in beyond von-

Neumann computing, especially the paradigm of in-memory computing [10], which aims to

embed logic within the memory array in order to reduce memory-processor data transfers.

In-memory techniques tend to bypass the von-Neumann bottleneck by accomplishing com-

putations right inside the memory array. In other words, in-memory-compute blocks store

data exactly like a standard memory, however, they enable additional operations without

expensive area or energy overheads. By enabling logic computations in-memory, significant

improvements, both in energy efficiency and throughput are expected [11]–[14].This approach

embeds some basic computations within the memory arrays, where the data is stored. By

using such enhanced memory structures, frequent and unnecessary data-transfers between

the memory and the compute units can be eliminated, without significantly changing the

memory hierarchy and the conventional read/write functionality of memory arrays. More-

over, this opens up the internal bandwidth of memory arrays, which is much larger than the

external input/output bandwidth, and can be exploited to enable parallelism.

Due to the potential impact of in-memory computing on future computing platforms,

various proposals spanning right from conventional complementary metal-oxide semiconduc-

tor (CMOS) to beyond-CMOS technologies can be found in the literature. For example,

Ref. [15] proposed integrating an ALU (arithmetic-logic-unit) close to the memory unit to

exploit the wide memory bandwidth, while Ref. [11] reconfigures a standard 6 transistor

(6T) static random-access memory (SRAM) cells as content addressable memories (CAMs)

and enable bit-wise logical operations. 6T-SRAM cells have also been used to implement

machine learning classifiers [16], and dot-products in analog domain for pattern recognition

[13]. The underlying idea is to enable multiple rows of memory bit-cells and directly read

out a voltage at the pre-charged bit-lines corresponding to the desired operation. However,

the 6T-SRAM bit-cells have a coupled read-write path that imposes conflicting constraints

24

Figure 1.1. (a) Intel Xeon CPU [18]. (b) NVIDIA Turing GPU [19]. (c)
Google TPU [20]. (d) Eyeriss chip [21].

on the design of the 6T cell, thereby raising issues of read-disturb failures. Moreover, ac-

tivating multiple word-lines may cause short-circuit paths, thereby flipping the cell states

non-deterministically. The read-disturb failure is further accentuated by the fact that once

the BL has discharged, activating subsequent word-lines perform a pseudo-write operation

on the 6T cell, given the shared read-write path. A 6T-SRAM based on the deeply depleted

channel (DDC) technology [17] was recently proposed for searching and in-memory com-

puting applications, which had decoupled read-write paths. However, all of these proposals

perform the computation in the peripheral circuits and read out the data. A subsequent

memory-write operation is required to store the data back in the memory array.

Looking at the die area of both standard systems (for example, CPU and GPU), as

well as the domain-specific accelerators built for ML workloads (for example TPU[22] and

25

Eyeriss[23]), as shown in Fig. 1.1 , we can observe that a significant chip area is consumed by

on-chip caches, giving us significant opportunity for enhancing these memories with compute

capabilities, at various levels of hierarchies. Standard on-chip caches use CMOS 6-Transistor

Static Random Access Memories (6T-SRAMs) which are optimized for fast read and write

operations. However, 6T-SRAMs have a shared read/write port, and are not suited for in-

memory computing applications due to read-stability concerns. In 8T-SRAMs, there is an

additional read port, thereby decoupling the read and write operations at the cost of two

extra transistors. This provides additional SRAM stability, thereby enabling the possibility

of in-memory computations [24]. Going to 9T- and 10T-SRAM cells improves the SRAM

stability further, but at the cost of reduced storage density. Thus, there is a tradeoff between

the in-memory computing functionality and storage density.

In addition, almost all beyond CMOS non-volatile technologies have been extensively

explored for possible applications to in-memory computing [25]. These include works based

on resistive RAMs [26]–[32], spin-based magnetic RAMs [33]–[39], phase change materials

[40], and ferroic materials [41]. Such emerging non-volatile technologies promise denser

integration, energy-efficient operations and non-volatility as compared to the CMOS based

memories, and are suitable for in-memory computations [42]. However, these emerging

technologies are still under extensive research and development phase and their large scale

commercialization for on-chip memories is far-fetched.

26

2. ENABLING IN-MEMORY BOOLEAN COMPUTATIONS IN

STANDARD 8T SRAM ARRAYS

2.1 Introduction

Since the invention of transistor switches [43], there has been an ever-increasing demand

for speed and energy-efficiency in computing systems. Almost all the state-of-the-art comput-

ing platforms are based on the well-known von-Neumann architecture which is characterized

by decoupled memory storage and computing cores. Running data-intensive applications on

such von-Neumann machines, like artificial intelligence, search engines, neural networks, bi-

ological systems, financial analysis etc., are limited by the von Neumann bottleneck [5]. This

bottleneck results due to frequent and large amounts of data transfer between the physically

separate memory units and compute cores. Moreover, frequent to-and-fro data transfers

incur large energy overheads in addition to limiting the overall throughput.

In order to overcome the von-Neumann bottleneck, there have been many efforts to

develop new computing paradigms. One of the most promising approach is the in-memory

computing, which aims to embed logic within the memory array in order to reduce memory-

processor data transfers. Conceptually, the in-memory compute paradigm is illustrated

in Fig. 2.1 . It shows two physically separated blocks − the processor and the memory

unit and the associated computing bottleneck. In-memory techniques tend to bypass the

von-Neumann bottleneck by accomplishing computations right inside the memory array, as

shown in the figure. In other words, in-memory-compute blocks store data exactly like a

standard memory, however, they enable additional operations without expensive area or

energy overheads. By enabling logic computations in-memory, significant improvements,

both in energy efficiency and throughput are expected [11]–[14].

Due to the potential impact of in-memory computing on future computing platforms,

various proposals spanning right from conventional complementary metal-oxide semiconduc-

tor (CMOS) to beyond-CMOS technologies can be found in the literature. For example,

Ref. [15] proposed integrating an ALU (arithmetic-logic-unit) close to the memory unit to

exploit the wide memory bandwidth, while Ref. [11] reconfigures a standard 6 transistor

(6T) static random-access memory (SRAM) cells as content addressable memories (CAMs)

27

Processor

Von-Neumann
Bottleneck

‘In-memory’ Computing

Memory Array

Figure 2.1. Illustration of the von-Neumann bottleneck. Frequent to-and-
fro data transfers between the processor and memory units incur large energy
consumption and limits the throughput. Computing within the memory array
enhances the memory functionality thereby reducing the number of unneces-
sary transfers of data for certain class of operations like vector bit-wise Boolean
logic etc.

and enable bit-wise logical operations. 6T-SRAM cells have also been used to implement

machine learning classifiers [16], and dot-products in analog domain for pattern recognition

[13]. The underlying idea is to enable multiple rows of memory bit-cells and directly read

out a voltage at the pre-charged bit-lines corresponding to the desired operation. However,

the 6T-SRAM bit-cells have a coupled read-write path that imposes conflicting constraints

on the design of the 6T cell, thereby raising issues of read-disturb failures. Moreover, ac-

tivating multiple word-lines may cause short-circuit paths, thereby flipping the cell states

non-deterministically. The read-disturb failure is further accentuated by the fact that once

the BL has discharged, activating subsequent word-lines perform a pseudo-write operation

on the 6T cell, given the shared read-write path. A 6T-SRAM based on the deeply depleted

channel (DDC) technology [17] was recently proposed for searching and in-memory com-

puting applications, which had decoupled read-write paths. However, all of these proposals

perform the computation in the peripheral circuits and read out the data. A subsequent

memory-write operation is required to store the data back in the memory array. Thus, we

28

8T SRAM 8+T SRAM

• NAND
• NOR
• XOR

• IMP
• XOR
• Possible 2 bit read operation

• NAND
• NOR
• XOR

Skewed Inverter Sensing

Voltage Divider Scheme

Asymmetric Sense Amplifier
Differential Sensing

Proposal for ‘Read-Compute-Store’ Operation

Proposed ‘In-Memory’ Techniques

Figure 2.2. A summary of In-Memory computing schemes proposed. With
respect to the 8T cell, we present bit-wise NAND, NOR and XOR operations
using skewed inverter sensing. Further, we present the voltage-divider based
operation of 8T-cells for IMP and XOR gates. With respect to the 8+T-cells,
we present bit-wise NAND, NOR and XOR operations using asymmetric dif-
ferential SAs. Moreover, a ‘read-compute-store’ operation has been presented
for both types of bit-cells.

use standard CMOS 8T- and 8+T Differential SRAM cells due to their decoupled read-write

mechanisms, for performing in-memory computations. Moreover, we go a step further and

propose the novel ‘read-compute-store’ scheme, where the computed result can be stored

in-situ, within the memory array, without the need for latching the result and performing

a subsequent memory-write instruction. In addition, recently memristor like multi-bit dot

product computations using 8T cells has been proposed in [44].

In addition, almost all beyond CMOS non-volatile technologies have been extensively

explored for possible applications to in-memory computing [25]. These include works based

on resistive RAMs [26], spin-based magnetic RAMs [33]–[35], and phase change materials

[40]. Such emerging non-volatile technologies promise denser integration, energy-efficient

operations and non-volatility as compared to the CMOS based memories, and are suitable for

29

in-memory computations [42]. However, these emerging technologies are still under extensive

research and development phase and their large scale commercialization for on-chip memories

is far-fetched.

We explore in-memory vector operations in standard CMOS 8T- and 8+T Differential

SRAM cells with minimal modifications in the peripheral circuitry. We call the augmented

version of the SRAM bit-cells with extra in-memory compute features as the X-SRAM [24].

We propose at least six different techniques to enable Boolean computations. The 8T and 8+T

cells lend themselves easily for enabling in-memory computations because of the following

three factors. 1) The read ports of the 8T and 8+T cells are isolated and can be easily

configured to enable in-memory operations. 2) Also, in sharp contrast to the 6T cells, 8T

and 8+T cells do not suffer from read disturb and hence multiple read word-lines within

the memory array can be simultaneously activated. 3) In addition, in this manuscript, we

exploit the two port structure of the 8T and 8+T cells to propose a novel read-compute-

store operation, wherein, the computed Boolean data can be stored into the memory array

without actually latching the data followed by a subsequent memory write-operation. Later

in Appendix, we describe the in-memory computations in standard 6T-SRAMs using the

staggered activation of word-lines, as was presented for analog computing in Ref. [13].

Some of the key highlights in comparison to previous works are enumerated below.

1. We firstly leverage the fact that two simultaneously activated read-word-lines for the

standard 8T cells are inherently ‘wire NORed’ through the read bit-line. By using a

skewed inverter at the sensing output, we demonstrate that NOR operation can be

easily achieved. Further, we also show that NAND logic can similarly be accomplished

using another skewed inverter. Note, unlike 6T cells, simultaneous activations of two

read word-lines do not impose any read-disturb concerns, thereby opening up a wider

design space for optimization.

2. Further, by applying appropriate voltages, we show that two activated read ports of

the 8T cell can be configured as a voltage divider. Based on such voltage divider

scheme we present in-memory vector IMP as well as XOR logic gates. The voltage

30

divider scheme not only allows in-memory computations, but also augments the read

mechanism by allowing a possible two bit-read operation under specific conditions.

3. Subsequently, we also present in-memory NAND and NOR computations (along with

XOR) in the recently proposed 8+T cells [45], using asymmetric sense amplifiers (SA).

The 8+T cells are more robust since they allow differential read sensing as opposed

to the standard 8T cells that are characterized by single ended sensing. The usual

memory read/write functionality of the SRAM cell is not disturbed due to the use

of asymmetric sense amplifiers. We also show that the same hardware, including the

SA, can be shared for an in-memory operation and also for the normal memory read

operation. Moreover, the extra hardware enhances the memory read operation, by

acting as a check for read failures.

4. We propose a novel ‘read-compute-store’ scheme for the 8T and 8+T bit-cells, wherein

the computed data can directly be written into the desired memory location, without

having to latch the output and perform a subsequent memory write operation. This

exploits the decoupled read-write paths of the 8T and 8+T bit-cells.

5. We perform Monte-Carlo simulations including voltage and temperature variations to

verify the robustness of the proposed in-memory operations for the 8T and the 8+T

bit-cells. Energy, delay and area numbers have been presented for each of the proposed

scheme.

6. We demonstrate the effectiveness of using in-memory bitwise computations in a typical

von-Neumann machine, wherein the conventional SRAM is replaced by the proposed

X-SRAM for Advanced Encryption Standard (AES) algorithm. Our system level sim-

ulations indicates 75% reduction in memory accesses thereby saving energy expensive

data transfers.

2.2 In-Memory Computations in 8-Transistor SRAM Bit-Cells

As discussed in the introduction, 8T cells have favorable bit-cell structure to enable in-

memory computing. Specifically we would exploit the isolated read mechanism and the two

31

WWL WWL

RBL

RWL

WBL WBLB

Q QB

(a)

RBL
RWL1

Cell 1

RWL2
Cell 2

NAND

NOR

(b) (d)

RBL
Case 00

Case 11

RWL1/
RWL2

Case 01/10

RBL

Case 00

Case 11

RWL1/
RWL2

Case 01/10

(c)

INV1 INV2

INV3 INV4

A B NAND NOR XOR

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 0 0 0

M1

M2

Figure 2.3. a) Schematic of a standard 8T-SRAM bit-cell. In addition to the
standard 6T cell, two additional transistors form the read path using a sepa-
rate read bit-line (RBL). b) Single ended sensing of NAND/NOR using gated
skewed inverters. Figure also shows the truth table for NAND/NOR/XOR
operations. c) Timing diagram for reading NOR output of Cell 1 and Cell 2.
d) Timing diagram for reading NAND output of Cell 1 and Cell 2.

port cell topology to embed NAND, NOR, IMP and XOR logic within the memory array.

Further, by leveraging the separate read and write ports of the 8T cell, we also propose

a ‘read-compute-store’ scheme, wherein, by minimal changes in the peripheral circuits, the

computed Boolean results can be stored in the desired row of the memory array in the same

cycle without the need of latching the results and performing a subsequent write operation.

For each proposal, we first describe the circuit operation using representative illustrations

of the transient waveforms followed by actual SPICE based transient simulations under

Monte-Carlo analysis. Further, we also present a distribution graph for the key voltages

that represent worst case scenarios including temperature as well as voltage variations. Note,

in general global process variations can be taken care by proper calibrations, therefore, we

concentrate on intra-die threshold voltage variation along with variations in temperature

and supply voltage. Towards the end of the manuscript, we tabulate the pros-and-cons of

the proposed techniques in a comparative manner.

32

N
A

N
D

N
O

R

CASE ‘00’

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

0 1n 2n 3n 4n

RBL

NAND

V
o

lt
ag

e
(V

)

Time (s)

CASE ‘00’

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

0 1n 2n 3n 4n

RBL

NOR

V
o

lt
ag

e
(V

)

Time (s)

CASE ‘11’

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

0 1n 2n 3n 4n

RBL

NOR
V

o
lt

ag
e

(V
)

Time (s)

CASE ’01/10’

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

0 1n 2n 3n 4n

RBL

NOR

V
o

lt
ag

e
(V

)

Time (s)

CASE ‘11’

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

0 1n 2n 3n 4n

RBL

NAND

V
o

lt
ag

e
(V

)

Time (s)

CASE ’01/10’

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

0 1n 2n 3n 4n

RBL

NAND

V
o

lt
ag

e
(V

)

Time (s)

Figure 2.4. Monte-Carlo simulations in SPICE for NAND and NOR out-
puts for all possible input cases − ‘00,01,10,11’, in presence of 30mV sigma
variations in threshold voltage.

2.2.1 8-Transistor SRAM: NOR operation

The 8T SRAM cell is shown in Fig. 2.3 (a). It consists of the usual 6T cell augmented

by additional read port constituted by transistors M1-M2. The write operation is similar

to the 6T cell, whereas for the read operation, RWL is activated (WWL is low). The RBL

is initially pre-charged and if Q = ‘1’ the RBL discharges otherwise it stays at its initial

precharged condition. This decoupled read port for the 8T cell allows to have large voltage

swing (almost rail-to-rail) on the RBL during the read operation without any concerns of

read disturb failure.

The output of a NOR operation is ‘1’ only if both the inputs are ‘0’. Consider we

activate two RWLs corresponding to the rows storing vector operand ‘A’ and vector operand

‘B’, respectively, as shown in Fig. 2.3 (b). Due to the decoupled read ports, both the RWLs

can be activated simultaneously without any read disturb concerns as opposed to the 6T

cell. The precharged RBL line retains its precharged state if and only if both the bits Q

corresponding to operands ‘A’ and ‘B’ are ‘0’. In other words, as shown in Fig. 2.3 (c) RBL

remains high only if Q = ‘0’ for both ‘A’ and ‘B’. Thus, merely by activating the two RWLs,

33

VRBL(V) VRBL(V)

T=298K
T=353K

(c) VDD VDD

(b) Nominal VDD

(a) VDD VDD

Case 11 Case 01/10

Figure 2.5. Monte-Carlo simulations across process corners (TT corner and
SS corner shown) under voltage and temperature variations for NAND outputs
for the borderline cases − ‘01/10’ and ‘11’. The distribution of RBL voltage
is plotted under 30mV sigma threshold voltage variations for two different
temperatures and ±10% variation in nominal VDD.

data stored in the two bit-cells are ‘wire NORed’. A gated inverter (INV1) is connected to the

RBL such that the inverter output goes low if the RBL remains high. Thereby, the output

of the cascaded inverter (INV2) mimics the NOR operation. Note, the NOR operation is

same as the usual read operation except that we have turned ON two RWLs instead of one.

Thus, NOR can be easily achieved in the 8T bit-cell without any significant overhead. The

timing diagram for the NOR operation is shown in Fig. 2.3 (c). It is also interesting to

observe that although we have discussed the NOR operation for two inputs, the proposed

scheme can in fact be extended to n-input NOR operations. For an n-input NOR operation

34

n-read world-lines can be simultaneously activated and RBL would remain high only if all

the corresponding operands are ‘0’ which would represent the n-input NOR truth table.

2.2.2 8-Transistor SRAM: NAND operation

Let us consider that we activate two RWLs corresponding to vector operands ‘A’ and

‘B’, respectively. The precharged RBL will eventually go to 0V if Q for any one of the input

operand is ‘1’. However, the fall time of the signal at RBL from the precharged value to 0V

would depend strongly on the fact, whether any one Q is high or if both the Q bits are high

simultaneously. In other words, only if both the Qs are ‘1’, the discharge of the precharged

RBL line would be fast enough. In Fig. 2.3 (d), we have shown schematically the state of

the RBL for all input cases. In order to exploit the different discharge rates of the RBL,

the RWL signal had to be timed such that the RBL does not discharge completely in cases

‘01/10’. This allows a difference in voltage levels on RBL in the two cases (‘01/10’ and ‘11’).

The trip point of the inverter INV3 is chosen such that it goes high only for the case ‘11’,

thus output of inverter INV4 mimics the NAND operation.

Fig. 2.4 shows the SPICE transient simulation for the NAND and NOR proposals,

under 30mV sigma threshold voltage variation in transistors. We used 45-nm Predictive

Technology Models (PTM) [46] for simulating the circuits. A BL and BLB capacitance of

10fF was assumed for all the simulations. As discussed earlier, the NAND computation has

a narrower design margin due to its timing critical operation as opposed to the NOR logic.

Specifically, for the NAND operation a discharge path with two parallel transistors needs

to be distinguished from the discharge path with one transistor. To analyze the robustness

and the design margin, we performed a rigorous variation analysis across process corners

including voltage and temperature variations for the NAND operation, as shown in Fig. 2.5 .

Monte-Carlo simulations with 30mV sigma threshold voltage variation were performed along

with a ±10% variation in nominal VDD (∆VDD). The simulations were repeated for two

different temperatures. The figure shows the resultant distribution of voltage on RBL for

the borderline cases ‘11’ and ‘01/10’, at the instant when RWL is pulled LOW.

35

In order to study the effect of variations due to different process corners, we also per-

formed simulations assuming global variations in the threshold voltage, the simulations were

performed for all possible corners including SS (slow NMOS, Slow PMOS), SF (Slow NMOS,

Fast PMOS), FS (Fast NMOS, Slow PMOS) and FF (Fast NMOS, Fast PMOS). The thresh-

old voltages for respective corners were globally shifted in appropriate directions for each of

the process corners for both the PMOS and the NMOS transistors. For example, for the SS

and FF corners, the threshold voltages were increased or decreased by ∼90mV to imitate the

affect of process corners. These global shifts in threshold voltages were then super-imposed

by random VT variations to evaluate the cumulative effect. In Fig. 5, we have shown the

Monte-Carlo results for two different process corners − the nominal case (TT) and for the

SS corner, for two different temperatures including ± 10% variation in supply voltage. Note,

similar results were obtained for other process corners as well, however to avoid clutter,

we have shown two representative results for the process corners. It can be observed, we

obtain a 50mV worst cases sense margin in Fig. 2.5 (a) for a −10% nominal VDD. Also,

the timing for the NAND operation can be controlled by a digitally programmable delay

based control signal for tuning the pulse activation of the RWL [47]. Such a programmable

delay path would require a one-time calibration depending on the process corner, for proper

functionality.

In addition to the NAND and NOR operations, by NORing the outputs of the AND

(INV3) and the NOR (INV2) gates together, XOR operation can be easily achieved. In

summary, we have shown that the very bit-cell topology of the 8T cell can be exploited

to accomplish in-memory NOR, NAND and XOR computations. In the next sub-section,

we would discuss another proposal for embedding IMP as well as XOR gate within the 8T

SRAM array by utilizing the proposed voltage divider scheme.

2.2.3 8 Transistor SRAM: Voltage Divider Scheme for IMP and XOR gates

In this sub-section, we present a method of implementing IMP and XOR operation using

8T cell by exploiting the voltage divider principle. Let us consider, the circuit shown in Fig.

2.6 (a). Let us assume the first operand is stored in the upper bit-cell corresponding to the

36

RDBL

RWL1
Cell 1

RWL2
Cell 2

VDD
SL1

SL2 INV 1

INV 2
10

01

M1

M2

M3
M4

VDD

Q1

RWL1

RWL2

Q2

RDBL

M1

M2

M3

M4

(a) (b)

Case ‘00’

0 1n 2n 3n 4n

Time (s)

INV 3
1.5

1.0

0.5

0.0

V
o

lt
ag

e
(V

)

INV 2

Case ‘01’

0 1n 2n 3n 4n

Time (s)

INV 3
1.5

1.0

0.5

0.0

V
o

lt
ag

e
(V

)

INV 2

Case ‘10’

0 1n 2n 3n 4n

Time (s)

INV 3
1.5

1.0

0.5

0.0

V
o

lt
ag

e
(V

)

INV 2

Case ‘11’

0 1n 2n 3n 4n

Time (s)

INV 3
1.5

1.0

0.5

0.0

V
o

lt
ag

e
(V

)

INV 2

(c)

INV 3

Figure 2.6. a) Circuit schematic of the 8T-SRAM for implementing the
voltage-divider scheme. b) Equivalent circuit traced by transistors M1 − M4
while data is read from Cell 1 and Cell 2. c) Monte-Carlo simulations in
SPICE for all possible input cases, showing the output of the two asymmetric
inverters.

line RWL1, while the second operand is stored in the lower bit-cell corresponding to RWL2.

In the conventional 8T cell, the source of transistors M1 and M4 are connected to ground.

In the presented circuit, the source of the transistors M1 and M4 are connected to respective

source lines (SL1 and SL2 shared along respective rows). During the normal operations, the

SLs can be grounded, thereby accomplishing usual 8T SRAM read and write operations.

During the in-memory computation mode, the SL1 is pulled to VDD, while the SL2 is

grounded. RWL1 and RWL2 are initially grounded and RDBL is pre-charged to a voltage

Vpre (chosen to be 400mV). After the pre-charge phase, transistors M2 and M4 are switched

ON, thereby M1 − M2 − M3 − M4 form a voltage divider and RDBL forms the middle node

of the voltage divider structure (see Fig. 2.6 (b)). Note, in the voltage divider configuration,

M1 and M2 are strongly source degenerated. In order to make sure M1 and M2 are sufficiently

ON, we boosted the VDD of ‘Cell 1’ and RWL1 such that the gate of M1 and M2 have enough

overdrive when the ‘Cell 1’ is storing a digital ‘1’ (Q = ‘1’ and QB = ‘0’).

In the voltage divider configuration M1 − M2 − M3 − M4, RDBL retains its precharged

voltage Vpre if both the bit-cells are storing digital ‘0’ (i.e. M1 and M4 are OFF). Similarly,

37

Verror(V)

T=298K
T=353K

(a) VDD VDD

8TVdivider

(b) Nominal VDD (c) VDD VDD

Verror(V) Verror(V)

Figure 2.7. Monte-Carlo simulations with variations in supply voltage and
temperature across process corners for the voltage-divider scheme for the case
(1,1). Verror is defined as the difference between the RBL voltage (when both
the operands are ‘1’) and the initial pre-charge voltage Vpre. The distribution
of Verror is plotted under 30mV sigma threshold voltage variations for two
different temperatures and ±10% variation in nominal VDD. The variations in
Vpre are also accounted for.

if both the cells are storing a digital ‘1’ (i.e. M1 and M4 are ON), the voltage at RDBL

stays close to its precharged value (400mV) due to the voltage divider effect. Thus, when

the cells store (0,0) or (1,1) (where the first (second) number in the bracket indicates the

data stored in Cell 1 (2)), the voltage at RDBL stays close to the precharged voltage. On

the other hand, if the data stored is (1,0), then M1 is ON while M4 is OFF. As such, RDBL

will charge to VDD through transistors M1 and M2. In contrast, if the data stored is (0,1),

M4 is ON while M1 is OFF. Therefore, RDBL will discharge to 0V through transistors M3

and M4. In summary, the voltage on RDBL stays close to Vpre when both the cells store

same data. RDBL charges to VDD for data (1,0) and discharges to 0V for data (0,1).

The state of the data stored in the two cells can be sensed through two skewed inverters.

INV2 is skewed such that it goes high only when RDBL is much lower than Vpre and is close

to 0V, while INV1 is skewed so that it goes low only when RDBL is higher than Vpre and is

close to VDD. In other words, high output at INV2 indicates data (0,1) while high output at

INV3 indicates data (1,0). Interestingly, INV1 implements ‘A IMP B’. By ORing the output

of INV2 and INV3 we can obtain the XOR of inputs A and B.

Fig. 2.7 shows the distribution of Verror (defined below) under VT variations in addition

to variations in temperature and supply-voltage. Monte-Carlo simulations across process

corners, similar to the ones performed for NAND in the previous sub-section were performed

in this case. Note, when either of the two operands Q1 or Q1 is low, the circuit in Fig.

38

2.6 (b) reduces to an RC charging or discharging circuit, respectively. As such, if any of Q1

or Q2 is low, the RDBL would either charge up to VDD or discharge to ground even under

variations. The critical case arises when both Q1 and Q2 are low or high, simultaneously.

For robust operation, ideally we want the RDBL voltage to stay at Vpre for both the cases

(Q1 = Q2 = low or Q1 = Q2 = high). Therefore, we analyze the difference in voltages

on the RDBL in the two cases ‘Q1 = Q2 = low’ versus ‘Q1 = Q2 = high’. We define

Verror as the difference between the RDBL voltage for case (1,1) and case (0,0). In other

words, Verror denotes the variation of RDBL voltage when the voltage divider is active with

respect to Vpre. The variations in Vpre are also considered in the Monte-Carlo simulations.

We observe that Verror is close to zero, making this configuration robust to variations, as

shown in Fig. 7. Intuitively, the robustness of the proposed scheme stems from the fact that

changes in voltage and temperature affects all the four transistors of Fig. 2.6 (b) in similar

manner thereby reducing any variations in the voltage at node RDBL. Moreover, since we

use the static voltage developed at RDBL, unlike the time-sensitive discharge in the earlier

scheme, the voltage-divider scheme is robust to process corners as well. The voltage at RDBL

depends on the relative strengths of the four transistors. Since process corners induce global

VT shifts, all NMOS transistors are equally affected, making the voltage-divider ratio largely

unaffected. This is evident form the two representative process corner simulations shown in

Fig. 7.

Some key features of the voltage divider logic scheme are, 1) IMP is a universal gate and

hence any arbitrary Boolean function can be implemented using the proposed scheme 2) if

any one of the inverter outputs (INV2 or INV3) are high, it indicates the data stored is (0,1)

or (1,0), thereby allowing a two bit-read operation in addition to the desired in-memory

computation. However, if none of the inverters are high then a subsequent read operation

would be required to ascertain if the stored data is (0,0) or (1,1). As such, in 50% cases

when the data stored is (0,1) or (1,0), we can accomplish a two bit read operation, along

with the in-memory compute operation.

39

Write
Driver

Compute

Write Data

RWL1

RWL2

RBL

WWL3

WBLBWBL

Sel

(a)

RCS RCS

A

B

A.B

RWL1

RWL2

WWL3

(b) (c)

RCS to Cell 3 (Case ‘11’)

1.5

1.0

0.5

0.0

0 1n 2n 3n 4n

V
o

lt
ag

e
(V

)

Time (s)

Cell 3

RBL

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

Q3

QB3

NAND

A.B

Figure 2.8. a) Proposed ‘read-compute-store’ (RCS) scheme. RWL1 and
RWL2 are enabled, corresponding to the data to be computed. The compu-
tation output is selectively passed to the write-driver of that column, while
simultaneously enabling the WWL3, where data is to be stored. b) Block dia-
gram showing the RCS blocks in the memory array. The NAND of row 1 and
row 2 is to be stored in row 3. c) Monte-Carlo simulations in SPICE, showing
the final state of Cell 3 stores the desired output.

2.2.4 Proposed ‘read-compute-store’ (RCS) scheme

We have seen that basic Boolean operations like NAND, NOR, IMP and XOR can be

computed using 8T cells. We would now show that the decoupled read and write ports of the

8T bit-cell can be used for enabling ‘read-compute-store’ (RCS) scheme. The RCS scheme

implies that while the data is being read from the two activated RWLs (corresponding to

the two input operands), simultaneously the WWL of a third row can be activated such that

the computed data gets stored in the third row at the same time while the actual Boolean

computation is in progress. As such, the computed data is not required to be latched first,

then written subsequently, in a multi-cycle fashion. Note, writing into 8T bit-cells is much

easier due to the fact that the write port of the 8T cell is specifically optimized for the write

operation.

Let us understand how the RCS scheme can be implemented with reference to Fig. 2.8 .

Assume that the input operands correspond to the rows 1 and 2, while the resulting Boolean

computation has to be stored in row 3. Note, this Boolean computation can be either of

NAND/NOR/IMP/XOR. Let us take the example for the NAND operation. As shown

40

WWL WWL

RBL RBLB

RWL

WBL WBLB

VX

RWL2

RBL/RBLB

RBL/RBLB

Case 00

Case 11

RWL1

RBL/RBLB Case 01/10

b)a)

BL

SAE

SAE

BLB

MBL MBLB

SAOUTBSAOUT

c)

Figure 2.9. a) Circuit schematic of an 8+T Differential SRAM bit-cell [45].
b) Timing diagram used for in-memory computations on the 8+T Differential
SRAM. c) Circuit schematic of the proposed asymmetric differential sense
amplifier.

in Fig. 2.8 (a), two read lines RWL1 and RWL2 would be activated, the compute block,

which basically is the abstracted view of the skewed inverters of Fig. 2.3 (b), would perform

the logic computation. Now, since the read and write port for 8T cell are decoupled we

can simultaneously activate a third WL, in this case the write word-line (WWL3). The

computed output can be selected through a multiplexer and fed to the write drivers for

directly storing the Boolean result in the bit-cells corresponding to WWL3. Thus, the fact

that 8T cells have decoupled read-write ports can be leveraged to accomplish the proposed

‘read-compute-store’ scheme. Fig. 2.8 (b) shows schematically the array level block diagram

where the three word-lines RWL1, RWL2 and WWL3 are activated simultaneously. In Fig.

2.8 (c) we show the Monte-Carlo results for storing the computed NAND output into Cell3.

Note that a ‘copy’ operation can also be performed using the RCS scheme, by activating the

RWL of the source row and WWL of the destination row. In this case, the input to the RCS

block will simply be the SA output, which corresponds to the data stored in the bit-cells of

the source row.

41

Figure 2.10. Monte-Carlo simulations in SPICE for SA outputs for all pos-
sible input cases − ‘00,01,10,11’, in presence of 30mV sigma variations in
threshold voltage.

2.3 8+ Transistor Differential Read SRAM

Recently, an 8+T Differential SRAM design was proposed in [45] to overcome the single

ended sensing of the conventional 8T-SRAM cell. 8+T Differential SRAM has decoupled

read-write paths with an added advantage of a differential read mechanism through the read

bit-lines RBL/RBLB (see Fig. 2.9 (a)), as opposed to the single-ended read mechanism of

8T-SRAM. The ninth transistor, whose gate is connected to RWL in Fig. 2.9 (a) is shared by

all the bit cells in the same row. The differential read operation is very similar to the read

operation of a standard 6T-SRAM. The usual memory read operation is performed by pre-

charging the bit-lines (RBL and RBLB) to VDD, and subsequently enabling the word-line

corresponding to the row to be read out. Depending on whether the bit-cell stores ‘1’ or ‘0’,

RBL or RBLB discharges. The difference in voltages on RBL and RBLB is sensed using a

differential sense amplifier.

Let us consider words ‘A’ and ‘B’ stored in two rows of the memory array. Note that

we can simultaneously enable the two corresponding RWLs without worrying about read-

disturbs, since the bit-cell has decoupled read-write paths. The RBL/RBLB are pre-charged

to VDD. For the case ‘AB’=‘00’ (‘11’), RBL (RBLB) discharges to 0V, but RBLB (RBL)

remains in the precharged state. However, for cases ‘10’ and ‘01’, both RBL and RBLB

discharge simultaneously. The four cases are summarized in Fig. 2.9 (b).

42

Vdiff(V) Vdiff(V)

Case 01/10 Case 11/00

T=298K
T=353K

(c) VDD VDD

(b) Nominal VDD

(a) VDD VDD

Figure 2.11. Monte-Carlo simulations across process corners under VT and
temperature and supply-voltage variations for the 8+T SRAM configuration
for the cases ‘01/10’ and ‘11/00’. Vdiff is defined as the absolute difference be-
tween the RBL and RBLB voltages at the instant when the sense amplifier is
enabled. The distribution of Vdiff is plotted under 30mV sigma threshold volt-
age variations for two different temperatures and ±10% variation in nominal
VDD.

Now, in order to sense bit-wise NAND and NOR operation of ‘A’ and ‘B’, we propose an

asymmetric SA (see Fig. 2.9 (c)), by skewing one of the transistors. Skewing the transistors

can be done in multiple ways, for example, transistor sizing, threshold voltage, body bias

etc. In Fig. 2.9 (c), if the transistor MBL is deliberately sized bigger compared to MBLB, its

current carrying capability increases. For cases ‘01’ and ‘10’, both RBL and RBLB discharge

simultaneously. However, since the current carrying capability of MBL is more than MBLB,

SAout node discharges faster, and the cross-coupled inverter pair of the SA stabilizes with

43

Table 2.1. Summary of proposals described in the manuscript. The table
shows average energy consumption per-bit and latency for the in-memory op-
erations on various bit-cells. Pros and cons of each proposal are also listed.

Bit-Cell Operations Latency
(ns)

Avg. Energy/Bit
(fJ)

Pros Cons

8T-SRAM

• NAND
• NOR
• XOR
• RCS

3 17.25

• NOR operation is very robust and can be
seamlessly extended to more than two
operands.

• Uses simple skewed inverter based sensing.

• Requires timing
control for NAND
operation.

• Low sense margin
for NAND operation.

8T-SRAM
(Voltage
Divider)

• IMP
• XOR
• RCS

1 11.22

• Better robustness towards global variations
including voltage and temperature since
global variation affects both branches of the
voltage divider in similar fashion.

• Static design since the critical functionality is
based on a stable voltage dictated by the
voltage-divider effect.

• Possible 2 bit read operation.

• Requires voltage
boosting for proper
functionality.

• Vpre for logic
functionality is
different form VDD.

8+T-SRAM
(Differential

Cell)

• NAND
• NOR
• XOR
• RCS

1 29.67

• Differential operation and hence improved
robustness with respect to global variations
including temperature and voltage.

• The two sense amplifiers can also be used as
a sanity check for read operation.

• Requires two
skewed sense
amplifiers.

SAout=‘0’. For the case ‘11’, RBL starts to discharge, while RBLB is at VDD. The SA

amplifies the voltage difference between RBL and RBLB, resulting in SAout=‘1’. Whereas

for the case ‘00’, RBLB starts to discharge, while RBL is at VDD, giving SAout=‘0’.

Thus it can be observed that SAout generates an AND gate (thus, SAoutb outputs NAND

gate). Similarly, by sizing the MBLB bigger than MBL, OR/NOR gates can be obtained at

the SA outputs. Finally, two SAs in parallel (one with MBL up-sized, SANAND, and one with

MBLB up-sized, SANOR) enable bit-wise AND/NAND and OR/NOR logic gates. Moreover,

an XOR gate can be obtained by combining the AND/NAND and OR/NOR outputs using

an additional NOR gate. Thus, in a single memory read cycle, we obtain a class of Boolean

bitwise operations, read directly from the asymmetrically sized SA outputs. SPICE transient

simulations with 30mV sigma variations in the threshold voltage for all input data cases are

summarized in Fig. 2.10 . Monte-carlo analysis across process corners with VT variations and

variations in supply voltage and temperature for the 8+T Differential SRAM are shown in

Fig. 2.11 . Vdiff is defined as the absolute difference between the RBL and RBLB voltages at

44

the instant when the sense amplifier is enabled. For the case ‘01/10’, Vdiff should be close

to 0V to allow the asymmetry in the SA to determine the output. Whereas, for the case

‘11/00’, Vdiff should be large enough, so that the output is driven by the differential voltage

difference between RBL and RBLB, and not due to the asymmetry in SA. The difference

in RBL and RBLB voltages for various cases is shown in Fig. 2.11 . Due to global VT

variations across process corners, the discharge on both RBL/RBLB is affected in the same

manner. Moreover, since we use a differential voltage sense-amplifier, these global variations

cancel, thereby making this scheme robust to process corners. Note, even in worst case the

voltage difference between the ‘01/10’ and ‘11/00’ case is sufficient for proper differential SA

operation. Interestingly, this difference also increases with increase in VDD, hence voltage

boosting can be easily employed to increase the design margin.

It is worthwhile to note that the two SAs can be used for regular memory read operations

as well. The two cases of a typical memory read operation are similar to the cases ‘11’ and

‘00’ in Fig. 2.9 (b). Both SAs will generate the same output corresponding to the bit stored

in the cell. Moreover, the output of the XOR gate inherently acts as an in-memory check

for possible read failures. The RCS scheme described in Section 2.2 can also be applied to

8+T Differential SRAMs due to decoupled read-write paths. Along with the two RWLs from

where the input operands are read, a WWL can also be enabled which would eventually

store the Boolean output within the memory array in the same cycle.

Using 8+T cells is advantageous over the conventional 8T cells for in-memory bit-wise

logic operations because of better robustness due to the differential read operation, in con-

trast to the single ended read in 8T-SRAM cells.

2.4 Discussions

In sections II and III, we have seen various ways of implementing basic Boolean operations

using the 8T and the 8+T bit-cells. Table 2.1 presents the average energy per-bit and latency

for each of the proposed in-memory compute techniques. The 8T cell allows separate read

write ports, thereby alleviating any possible read-disturb failure concerns. In addition, it

45

N-well

VDD

VDD GND

GND

BL

BLB

WWL

WWL

GND

RBL

RWL

a)

N-well

VDD

VDD GND

GND

BL

BLB

WWL

WWL

RBL

RBLB

VXVX

Left
Cell

Right
Cell

b)

Figure 2.12. a) Thin cell layout for the standard 8T-SRAM bit-cell shown
in Fig. 2.3 (a). b) Thin cell layout for the 8+T Differential SRAM bit-cell [45]
illustrated in Fig. 2.9 (a). Left- and right-most diffusion tracks are shared with
adjacent bit-cells. The ninth transistor in Fig. 2.9 (a) is common for the row
and is connected at the periphery to the node ‘VX’.

also supports the proposed RCS scheme. However, 8T cell suffers from robustness concerns

due to its single ended sensing.

Using the 8+T cell, on the other hand, allows differential sensing like the conventional 6T

cell, while also allowing separate read and write ports. It thus combines the benefits of both

the standard 6T and the 8T cells. The thin cell layout of standard 8T bit-cells and the 8+T

bit-cells are shown in Fig. 2.12 . Standard 8T cell requires five diffusion tracks, while the

8+T cell requires six. However, left- and right-most diffusion tracks are shared with adjacent

bit-cells, thereby achieving similar area per-bit as compared to the standard 8T cell [45].

Note, since the differential read scheme for the 8+T cell is functionally similar to the

conventional 6T cell, NOR and NAND gates (along with the XOR gate) can also be im-

plemented in the 6T based memory array. However, due to the shared read-write paths

of the 6T cell, the word-lines cannot be simultaneously activated and require a sequential

activation. In addition, 6T cells are read disturb prone and hence would exhibit much lesser

robustness than the proposed 8T and 8+T cells. Nevertheless, in the Appendix we have

included a description of how the 6T cells can be used to accomplish NOR, NAND and XOR

operations. We also show that an in-memory ‘copy’ operation can also be easily achieved in

the 6T cell due to its shared read/write paths.

Finally, it is worth noting that although we have proposed multiple in-memory techniques

in this manuscript, the choice of the bit-cell and the associated Boolean function would heav-

46

Avalon Memory Mapped Bus

NIOS-II processor
(with In-memory

custom instructions)

X-SRAM In-
memory

compute block

Instruction
Memory

Load REG1 [op1]
Load REG2 [op2]
XOR REG1 REG2 REG3
Store REG3 [dest]

RCS-XOR [op1] [op2] [dest]

Load REG1 [source]
Store REG1 [dest]

Conventional instructions Custom In-memory instructions

RCS-Copy [source] [dest]

(a) (b)

Figure 2.13. (a) System-level implementation of a typical von-Neumann ar-
chitecture with X-SRAM as the memory block. The processor, data-memory
and the instruction-memory blocks are connected via a shared system bus. (b)
Illustration of custom in-memory instructions added to the instruction set of
the Nios-II processor. Substituting in-memory instructions reduces unneces-
sary read-writes into the memory.

ily depend on the target application. Thus, Table 2.1 summarizes the pros and cons of each

proposal. The aim of the present manuscript is to demonstrate various possible techniques

that can be utilized in conventional CMOS based memories for accomplishing in-memory

Boolean computations. Since the present proposal augments the functionality of the memory

arrays without changing the basic circuitry, it has wide applications in diverse computing

systems, few of them are − 1. A standard von-Neumann general-purpose processor with

SRAM replaced by X-SRAM. 2. A modified GPU, wherein the SRAM based register files

are replaces by X-SRAM arrays. 3. A machine learning or artificial intelligence processor,

for example, a binary neural network accelerator. As an example, in the next section we

would present an encryption accelerator using the proposed X-SRAM.

2.5 X-SRAM based non-standard von-Neumann Computing for AES Encryp-
tion

In this section, we evaluate the system-level implications of using X-SRAMs instead of

conventional SRAMs as the memory blocks in a typical von-Neumann based architecture

taking advanced encryption algorithm (AES) as a case study. X-SRAMs enable extra func-

tionalities within the memory block, as described in previous sections, through massively

parallel vector Boolean operations. By utilizing such in-memory computations, we expect

47

Read Write In-Mem SRAM X-SRAM

0

0.2

0.4

0.6

0.8

1

CBCen CBCde CTRen CTRde ECBen ECBde

N
o

rm
al

iz
ed

 M
em

o
ry

 A
cc

es
se

s
(1

2
8

b
 K

ey
)

AES Mode

0

0.2

0.4

0.6

0.8

1

CBCen CBCde CTRen CTRde ECBen ECBde

N
o

rm
al

iz
ed

 M
em

o
ry

 A
cc

es
se

s
(2

5
6

b
 K

ey
)

AES Mode

Figure 2.14. Normalized number of memory accesses for various AES en-
cryption and decryption modes and two different key-sizes, with and without
using X-SRAM custom in-memory instructions. The total memory transac-
tions are split into memory read instructions, memory write instructions and
custom in-memory instructions.

reduction in energy expensive data movements over the bus between the processor and the

memory blocks.

2.5.1 Simulation Methodology

A typical von-Neumann system implementation is shown in Fig 2.13 (a). It consists of

a processor, data-memory and an instruction-memory, connected by a system bus. For our

simulations, we use Intel’s programmable Nios-II processor [48], and extend the associated

instruction set (ISA) to incorporate new custom-instructions enabled by our proposed X-

SRAM (see Fig. 2.13 (b)). The system bus follows the Avalon memory-mapped protocol,

with enhanced architecture to enable passing three addresses at a time. Note that this is not

a huge overhead since in-memory instructions do not pass the data operands, and thus the

data-channel along with the address-channel can be used to pass three memory addresses

over the bus. This methodology is similar to the work presented in [33]. A complete RTL

model of the proposed X-SRAM was developed using the circuit parameters summarized in

Table 1, incorporating the in-memory computation capabilities. We perform cycle-accurate

RTL simulations to run the benchmark AES application [49] on the architecture described

above. AES encryption algorithm heavily relies on substitution-and-permutation operations

that utilize several bit-wise Boolean operations such as XORs, which makes X-SRAM custom

48

M1 M2 M3

Data1

Data4

Data7 Data9Data8

Data3Data2

Data5 Data6

Processor Mem

(a) (b)

Figure 2.15. (a) Realistic scenario for a typical system with multiple mas-
ters over a shared bus. An arbiter keeps track of the memory traffic and
controls which master has access to the bus at a given point in time. (b)
Data-parallelism in memory arrays. X-SRAM performs bit-wise operations
throughout the row, where each row may store multiple data words. Thus
multiple computations occur in parallel.

instructions suitable for this application. We identified pieces of code constituting 92% of the

entire runtime which can be mapped using the custom instructions RCS-XOR and RCS-Copy

(shown in Fig. 2.13 (b)), along with usual memory read-write instructions. The software was

modified by replacing repetitive Boolean operations with our custom instruction macros.

2.5.2 Results and Discussion

We evaluate three modes of AES encryption and decryption namely CBC, CTR and ECB

[50] for two different key sizes − 128bits and 256bits. We plot the total number of mem-

ory accesses (memory read instructions, memory write instructions and custom in-memory

instructions) required for each mode in Fig. 2.14 . The results are normalized to the corre-

sponding memory accesses required in a conventional SRAM memory block (no in-memory

custom instructions). The plots show that the memory accesses can be reduced by up-to

74.7% and 74.6% in ECB mode for 128b and 256b key respectively, by using X-SRAM in-

memory instructions. The implications of these are threefold. 1) Since memory transactions

are expensive, we directly save ∼75% memory access energy consumption by reducing the

number of accesses to the memory. The total energy consumption in the peripheral circuitry

49

is also thereby reduced. 2) In a realistic scenario, shown in Fig. 2.15 (a), multiple masters

access the shared system bus, thereby causing large arbitration delays. Reducing the total

number of memory accesses allows the system bus to cater to other masters, thereby reducing

arbitration wait times over the shared bus and hence improving overall system performance.

3) The decrease in the data transfer volume between the processor and memory alleviates

the problems associated with limited bus bandwidth while providing enough memory band-

width for parallelism. Fig. 2.15 (b) shows how data can be mapped to the X-SRAM to

exploit data-parallelism. Since X-SRAM has capability to compute two physical rows at a

time, Data1-4, Data2-5 and Data3-6 can be computed in parallel with a single in-memory

instruction, thereby improving throughput.

2.6 Conclusion

Von-Neumann machines have fueled the computing era for the past few decades. How-

ever, the recent emphasis on data intensive applications like artificial intelligence, image

recognition, cryptography etc. requires novel computing paradigm in order to fulfill the en-

ergy and throughput requirements. ‘In-memory’ computing has been proposed as a promising

approach that could sustain the throughput and energy requirements for future computing

platforms. We have proposed multiple techniques to enable in memory computing in stan-

dard CMOS bit-cells − the 8T cell and the 8+T cell. We have shown that Boolean functions

like NAND, NOR, IMP and XOR can be obtained by minimal changes in the peripherals

circuits and the associated read-operation. Further, we have also proposed a ‘read-compute-

store’ scheme by leveraging the decoupled read and write ports of the 8T and 8+T cells,

wherein the computed logic data can be directly stored in the desired row of the memory

array. Our results are supported by rigorous Monte-Carlo simulations performed using pre-

dictive transistor models. Moreover, taking an example of AES encryption algorithm, we

demonstrate that up-to 75% memory transactions can be avoided, thereby allowing energy

and performance improvements.

50

3. ACCELERATING BINARY CONVOLUTIONAL NEURAL

NETWORKS IN 10T SRAM ARRAYS

3.1 Introduction

Deep convolutional neural networks (CNNs) have been established as the state-of-the-

art for recognition and classification tasks [1], [2], often surpassing human capabilities [51]–

[53]. Most popular networks that won the ImageNet [54] challenge, such as AlexNet [55],

GoogLeNet [56], ResNet [52], etc., are based on deep CNNs. However, hardware running

these networks consume large amounts of energy, in fact, orders of magnitude more than the

human brain [57]. This immense energy-gap stems from the underlying architecture of the

current state-of-the-art hardware implementations, that are variants of the von-Neumann

machines [5]. They contain physically separate computation and memory blocks, connected

via a system bus. Although this architecture has worked wonders for general-purpose com-

puting tasks, when it comes to deep CNNs and data intensive applications in general, frequent

data transfers between the memory and the computation unit becomes a bottleneck, given

the limited bandwidth of the bus. Moreover, since each transaction is expensive, a large

power penalty is incurred per memory access.

Recent developments in the neural network community have identified these problems

and have come up with simpler memory-friendly algorithms. Binary neural networks [6],

[58], [59] and XNOR-nets [60] have been recently developed and shown large potential. The

idea is to reduce the precision of input activations and the network weights to single-bit. This

immensely simplifies the computations to Boolean bit-wise operations, with only minimal

degradation in the state-of-the-art accuracies. Since convolution is the most power-hungry

operation in neural networks, it is reduced to a bit-wise XNOR followed by a population

count (popcount) of the XNORed output. This opens pathways for adopting new simplified

binary in-memory computing paradigms for accelerating neural networks. As shown in [17],

[61], [62], bit-wise Boolean operations including XORs or XNORs as well as non-Boolean

vector-matrix dot-products can easily be incorporated within standard SRAM arrays. Such

SRAM based in-memory computations open up new possibilities of augmenting the exist-

ing memory arrays with compute capabilities. Thereby, one can imagine a modified von-

51

Neumann machine, which can cater well to general purpose computing tasks as well as act

as on-demand compute accelerator.

To that effect, we propose novel techniques to compute in-memory binary convolutions,

as an added functionality to the standard 10-transistor (T) SRAM bitcells. In the first

approach (Proposal-A), we use charge-sharing between the parasitic capacitances present

inherently in the SRAM array to perform the XNOR and popcount operations involved in

the binary convolution. Although this approach is digital, with binary weights and binary

inputs stored in the memory array, the popcount is generated as an analog voltage on the

source-lines. In order to sense this analog voltage, we propose a low-overhead and low-

precision ADC (owing to area and energy constraints in the memory array). Another key

highlight of this approach is that we employ a sectioned-SRAM by dividing memory sub-

banks into smaller sections. With n-sections in a particular sub-bank we can accomplish n-

binary convolutions in parallel. This is important because obtaining the popcount output for

large kernels is non-trivial. For large networks, the kernel sizes in deeper layers are typically

too large to be stored in a single row of a given memory sub-array. As such, popcount for

larger binary networks inevitably requires a scheme to estimate the partial popcount from

each row, which can then be summed up from different sub-arrays to get the final popcount.

However, the low-overhead and low-precision ADC induces approximations in the popcount

output, which results in overall system accuracy degradation. Thus, we propose another

approach (Proposal-B), where we alter the peripheral circuitry of the SRAM array and

enable two word-lines simultaneously. This approach, although not as energy/throughput

efficient as Proposal-A, generates accurate XNOR and popcount operations, thereby, not

affecting the overall system accuracy. The proposed circuit techniques in Proposal-A and

Proposal-B allows us to process multiple kernels at once, thereby improving the overall

system throughput and making the proposal suitable for a range of deep binary networks.

There have been several previous works to develop hardware platforms that can accelerate

CNN algorithms. Hardware architectures that use highly sub-banked memory units feeding

an array of multiply-accumulate processing elements have been presented in many works

including [63]–[65]. A key drawback of such distributed processing array based customized

design is the fact that it makes the underlying computing hardware application specific and

52

in many cases specific to neural network accelerators. Other works as in [66]–[68] have tar-

geted in-memory charge-based computations in SRAM arrays. These computations can be

applied to the case of accelerating binary neural networks by adding appropriate peripheral

circuits for enabling binary convolutions. As compared to above works, we focus on the case

of binary convolutions that allows us to achieve improved parallelism, geared specifically to-

wards accelerating binary networks. Further, emerging technologies like memristive crossbars

have been employed in many proposals as convolution accelerators for neural networks [32],

[69]. The very use of memristors as convolution engine renders such platforms unsuitable

for general purpose computing due to various challenges faced by memristive state-of-the-art

technologies. These include, the limited endurance of memristive devices, the multi-cycle

write-verify programming scheme [70] and the drift in programmed resistance state with

aging [71]. More recently, [72] demonstrated an analog approach to binary convolution using

charge-sharing in SRAM cells. However, the work presented in [72] was limited to smaller

networks. This is because with larger and more complex networks, the inaccuracies in inter-

facing conventional low precision DACs/ADCs unacceptably degrades the network accuracy.

Additionally, the work in [73], need a 12 transistor bit-cell with current-mode computations

for binary convolutions and use of flash ADC with non-linear quantization.

In contrast to previous works, we show that using 10T SRAM cells in conjunction with

few additional circuit techniques, fairly accurate binary convolutions can be performed with

low-precision, low-overhead ADCs [74]. The main highlights are as follows:

1. We present two novel techniques to compute binary convolutions. Proposal-A uses

charge-sharing between the parasitic capacitances inherently present within the stan-

dard 10T-SRAM array, to accomplish a fairly accurate popcount operation. Proposal-B

alters the SRAM peripheral circuitry to perform accurate in-memory XNOR and pop-

count operations.

2. Further, we propose sectioned-SRAM to increase parallelism within the SRAM arrays,

thereby improving the computation throughput and energy-efficiency of the binary

convolution operation.

53

WWL WWL

BL BLB
Q QB

M1
M2

RWL

RBLM1’
M2’

RWL

RBLB

SL

6T Cell

Figure 3.1. The 10 transistor SRAM cell featuring a differential decoupled
read-port comprising of transistors M1-M2 and M1’-M2’. The write port is
constituted by write access transistors connected to WWL.

3.2 In-memory Binary Convolution − Proposal-A

As discussed in the introduction, a convolution operation is simplified to a bitwise XNOR,

followed by a popcount of the XNORed output in binary neural networks (BNNs). Although

bitwise XNOR operation is simple to incorporate within the memory, the popcount operation

is not very straightforward. We exploit the inherent SRAM structure, utilizing the internal

parasitic capacitances to perform the XNOR and popcount of two vectors stored within the

memory array. Although our approach to binary convolution is digital, we sense an analog

voltage within the memory array to evaluate the popcount output. Sensing analog voltages

in general, is difficult without precise ADCs. Most common precise ADCs, such as Flash

ADCs and SAR type ADCs require excessively large power and area [75], making them

unsuitable for memory applications. Thus, we propose a dual read-wordline (Dual-RWL)

along with a dual-stage ADC to minimize the errors in the popcount output. Further, we

describe the sectioned-SRAM technique to improve the throughput and the energy-efficiency

of the binary convolution.

54

3.2.1 Circuit Description

We use a standard 10T-SRAM cell as the basic memory unit. Fig. 3.1 shows a schematic

of the 10T-SRAM cell, containing the basic 6T-cell as the storage unit, along with transistors

M1-M2 and M1’-M2’ forming the differential read ports, respectively. Writing into the cell

is functionally similar to the 6T write operation through the write-ports (WWL, BL, BLB).

For reading, RBL and RBLB are pre-charged to VDD, SL is connected to ground, and RWL

is enabled. If the bit-cell stores a ‘1’ (Q = VDD, QB = 0V), RBL discharges to 0V and

RBLB holds its charge. Similarly, if the bit-cell stores a ‘0’ (Q = 0V, QB = VDD), RBLB

discharges to 0V and RBL holds its charge. A differential sense amplifier senses the voltage

difference between RBL and RBLB to generate the output. As will be apparent in the

following sub-sections, the choice of 10T-cell as opposed to 6T- or 8T- cell was based on

two factors 1) the 10T-cells allow us to implement in-situ XNOR operation through the

transistors M1-M2 and M1’-M2’ 2) it also helps to accumulate a resultant voltage on the SL

line which is proportional to the overall pop-count. Thus, the availability of the differential

decoupled read-port in the 10T-cell can be used to achieve both the XNOR computation

and estimation of the pop-count operation.

We use the inherent parasitic capacitances on RBLs, RBLBs and SLs (CRBL, CRBLB and

CSL, respectively) in the 10T-SRAM structure to compute the binary convolution within

the memory array itself. The operation can be described in three steps as follows:

Pseudo-read: A read operation is performed on a row storing the binary vector inputs,

say A1 (refer Fig. 3.2 (a)). First, all RBLs/RBLBs are precharged to VDD, as in the usual

read operation. Next, when the RWL corresponding to the row storing A1 is enabled, the

precharged RBLs and RBLBs discharge conditionally, depending on the data values, thereby

stabilizing at VDD or 0V. For the example shown in the figure, the data stored is ‘1’ in both

cells corresponding to the input vector A1, thus, both RBLs discharge to 0V and RBLBs

stay at VDD. Note that the differential sense-amplifiers are not enabled in this pseudo-read

step.

XNOR on SL After the pseudo-read operation, the RBLs/RBLBs store the information

of A1 as their respective voltages. Now, the RWL of the row storing a weight kernel, say

55

RBL Q SL

0 0 ↑

0 1 ↓

1 0 ↓

1 1 ↑

XNOR on SL

RBLRBLBRBLRBLB

RWL

VDD

SL

M1
M1’

‘0’ ‘1’

VDD

‘0’ ‘1’

M1
M1’

RBLRBLBRBLRBLB

RWL

VDD

SL

M1
M1’

‘1’ ‘0’

VDD

‘0’ ‘1’

M1
M1’

. . .

. . .

a) STEP1: Pseudo Read b) Step2: XNOR on SL

Storing A1

Storing K1

A1 K1 Out

0 0 1

0 1 0

1 0 0

1 1 1

c) XNOR Truth-table

Figure 3.2. Illustration of the binary convolution operation within the 10T-
SRAM array. a) Step 1: Pseudo-read. RBLs/RBLBs are pre-charged and
RWL for a row storing the input activation (A1) is enabled. Depending on
the data A1, RBLs/RBLBs either discharge or stay pre-charged. The SAs
are not enabled, in contrast to a usual memory read. Thus, the charge on
RBLs/RBLBs represent the data A1. b) Step 2: XNOR on SL. Once the
charges on RBLs/RBLBs have settled, RWL for the row storing the kernel
(K1) is enabled. Charge sharing occurs between the RBLs/RBLBs and the
SL, depending on the data K1. The RBLs either deposit charge on the SL, or
take away charge from SL. c) The truth table for Step 2 is shown. The pull-up
and pull-down of the SL follow the XNOR truth table. Moreover, since the SL
is common along the row, the pull-ups and pull-downs are cumulative. Thus,
the final voltage on SL represents the XNOR + popcount of A1 and K1.

K1, is enabled (refer Fig. 3.2 (b)). Interestingly, this causes charge-sharing between CRBL,

CRBLB and CSL as shown in the figure by the charge current paths. In the example, the two

cells corresponding to K1 store a ‘0’ and ‘1’ respectively. Thus, when the RWL is enabled,

charge flows into the SL from M1’ in the left cell, while charge flows out of SL through M1

in the right cell. This ‘pull-up’(↑) and ‘pull-down’(↓) of the SL follows the XNOR operation

of the data stored in the cell (K1) and the RBL/RBLB charge (A1). With respect to the

example chosen above, one can observe that the first two rows of the XNOR truth table of

Fig. 3.2 (c) are taken care-of. If the bits corresponding to the activation (A1) was ‘0’ and ‘0’,

i.e., RBLB is at 0V while RBL is at VDD, then the charge flows out of SL through M1’ in

left cell, while it flows into SL through M1 in right cell. This represents the bottom two rows

of the XNOR truth table. Thus, we perform a bitwise XNOR operation between vectors A1

and K1, represented by the charge stored on the line SL.

56

‘0’ ‘1’

Dummy Cell

W
L A

D
C

P
C

H
1

PCH0

Digital
Output

ADC
Control Block

and
Counter

SAE

VREFN
SA_N

+

-
-
+

VREFP

SA_P

-

+
+
-

SL

PCH1

P
C

H
0

VREFN VREFP

Memory Array

WLADC

SL

 RWL1b

RWL1a

32 bitcells 32 bitcells

a) b)

Figure 3.3. a) Dual RWL technique. b) Dual-stage ADC scheme.

Popcount Since the SL is shared by all the cells along the row, these ‘pull-ups’ and

‘pull-downs’ are cumulative. As can be seen from Fig. 3.2 (c), an SL ‘pull-up’ corresponds

to a ‘1’ in the output XNORed vector, while an SL ‘pull-down’ corresponds to a ‘0’ in the

output XNORed vector. In order to evaluate the popcount of the output vector, we need

to count the number of 1’s. More 1’s in the output vector implies more ‘pull-ups’ on SL,

which in turn implies a higher voltage on SL. Thus, the final SL voltage represents the

popcount of the output vector: (A1 XNOR K1). We boost the RWL voltage such that the

SL swing is from 0V to VDD. To sense this analog voltage we use a charge-sharing based

sequentially integrating ADC, adopted from [72]. Note however, that this is an approximate,

low-precision ADC. Thus, in order to achieve a fairly accurate estimate of the popcount of

the entire row, we use two techniques described in the next sub-section.

3.2.2 Dual Read-Wordline based Dual-stage ADC

In order to evaluate the popcount of the entire memory row at once, we should be able to

distinguish N- number of distinct states in the analog SL voltage, where N is the number of

columns in a memory array (we choose N=64, for a reasonably sized array). In the output

XNORed vector, there can zero 1’s, one 1’s, two 1’s, ... , up to N 1’s. Correspondingly, there

are N- different voltage levels on the SL, which need to be sensed by the ADCs. However, due

to area and power constraints within the memory array, it is infeasible to use high-precision

ADCs, such as the area-expensive SAR or power-hungry Flash ADCs. We adopt a simple

charge-sharing based serially integrating type ADC for our purposes. However, instead of

57

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

w/o Dual RWL

w/ Dual RWL

Popcount

V
SL

(V
)

Final SL Voltage

Figure 3.4. The plot shows the final SL voltage with and without the Dual
RWL approach. A larger sense margin is obtained with our Dual RWL ap-
proach, thus relaxing the constraints on the low-overhead ADC. Note that
with Dual RWL technique we restrict the distinct voltage levels on SL to 32
at a time, instead of 64. However, the voltage swing on SL remains the same,
thereby increasing the sense margin between the states.

having to sense N- distinct analog levels, the ADC only needs to sense N/8 levels. This is

enabled by using a Dual RWL memory structure, along with a dual-stage ADC.

The Dual RWL technique is shown in Fig. 3.3 (a). Note that we use two sets of read

word-lines (RWL1a, RWL1b) for every memory row. First half of the cells along the row are

connected to RWL1a, while the rest are connected to RWL1b. The step 2 of the binary con-

volution (XNOR on SL) described above is split in two parts. First, only RWL1a is enabled.

Thus, only N/2 cells are enabled to share charge with SL, either pulling-up or pulling-down

the SL voltage. The rest half of the cells are cut off from the SLs, and cannot participate in

the charge sharing. Once the SL voltage has been sensed by the ADC, RWL1a is disabled,

and RWL1b is enabled. Now, the other half of the cells share charge to generate a voltage

on SL. Note that this does not change the swing on the SL, since the SL voltage depends on

the capacitive ratio CRBL/CSL. Thus, the N/2 voltage levels are equally separated out from

0V to VDD. This can be confirmed from Fig. 3.4 , which shows the SL voltages for N=64,

with and without Dual RWL technique, as a function of the popcount. Since the separation

58

5.0n 10.0n 15.0n 20.0n

0.0

0.2

0.4

0.6

0.8

1.0
V

S
L
(V

)

Time (s)

Popcount

 0

 8

 24

 320.75V

0.5V

0.25V

SC4

SC1

SC2

SC3

Counts

Figure 3.5. The figure shows the timing diagrams for the dual-stage ADC
scheme. The figure plots the SL voltage for various popcount cases. In the first-
stage, the sub-class SC1-4 is determined using multiple references (0.25V, 0.5V
and 0.75V). In the second-stage, charge is pumped-in/out of SL successively,
depending on the SC. The number of cycles it takes for SL to reach VREF are
counted. VREF for SC1-4 is 0.25V,0.5V, 0.5V and 0.75V, respectively.

between the states has increased, it becomes easier to sense the levels with a low-overhead

ADC.

The ADC used is shown schematically in Fig. 3.3 (b). It consists of two dummy bitcells

per row (only 1 shown in figure), two SAs, a counter and an ADC logic block. We employ a

dual-stage ADC to sense the analog voltage on SL. In the first-stage for ADC sensing, we use

multiple voltage references (VDD/4, VDD/2 and 3VDD/4), to classify the analog voltage levels

into four sub-classes SC1, SC2, SC3, SC4 − [0-VDD/4], [VDD/4-VDD/2], [VDD/2-3VDD/4] and

[3VDD/4-VDD], respectively. This is done using two voltage SAs, since the voltage swing on

SL spans 0V to VDD. On SA_N, a VREF of 3VDD/4 is applied, while for SA_P, a VREF of

59

VDD/4 is applied. If both SA outputs are LOW, the SL voltage is classified in SC1. Similarly,

when both SA outputs are HIGH, the SL voltage is classified in SC4. Otherwise, VREF is

changed to VDD/2, and the SA outputs are observed again. If both outputs are HIGH, the

SL voltage is classified in SC3, otherwise SC2. Thus, the first-stage of the ADC generates

the MSB 2bits of the ADC output.

Once the sub-classes of the analog voltage have been defined, the second-stage of the

ADC is initiated. The ADC logic block generates a set of control signals − PCH0, PCH1

and WLADC , which operate on the dummy bitcells. For SC1 and SC2, SA_P is enabled

with a VREF of VDD/4 and VDD/2, respectively. PCH1 is pulsed alternately with WLADC ,

to pump-in a small amount of charge into SL every cycle through the dummy cells. In each

cycle, when WLADC is LOW and PCH1 is HIGH, the RBL of the dummy cell is precharged

to VDD. When WLADC is HIGH and PCH1 is LOW, the precharged RBL pumps-in charge

to the SL. In successive cycles, the voltage on SL increases. As soon as the SL voltage

exceeds VREF , SA_P output flips from LOW to HIGH. The number of cycles in the process

are counted using a digital counter. On the other hand, for sub-classes SC3 and SC4, SA_N

is enabled with a VREF of VDD/2 and 3VDD/4, respectively. PCH0 is enabled instead of

PCH1, thereby pumping-out charge from SL every cycle. Again, the number of cycles are

counted when SA_N flips from HIGH to LOW. This is illustrated in Fig. 3.5 , which shows

the operation of ADC taking an example of popcount cases 0, 8, 24 and 32, for N=64. For

the popcount case 32 and 24, the sub-classes SC4 and SC3 are determined respectively, thus,

charge is pumped out of SL every cycle. Similarly for the popcount cases 8 and 0, SC2 and

SC1 are determined respectively, and charge is pumped into SL every cycle. The two dummy

bitcells are used to mimic the capacitances of the RBLs/RBLBs, such that the charge being

pumped in/out from SL every cycle by the dummy bitcells mimics the charge sharing of

RBLs/RBLBs and SL in Step 2 (XNOR on SL) operation. Note that the amount of charge

being pumped-in/pumped-out exponentially decreases with time. This is a fundamental

limit to charge-sharing type ADCs and thus, they work only if the number of counts are

small. In our case, for N=64, we count only N/8 = 8 states using this ADC, which gives

us fairly accurate results, as shown later. Thus, the output from the first-stage (sub-class

SC1-4) along with the output from the second-stage (ADC counts) estimates the number of

60

Memory

Column Peripherals

Memory

Section-1

Section-2

Switches

(a) (b)

K2

Switches

(c)

Activations

ActivationsR
o

w
 P

e
ri

p
h

e
ra

ls

Kernels

RWLs

RBLs En
h

an
ce

d
 R

o
w

 P
e

ri
p

h
e

ra
ls

A1
A2

Am

…

K1
K2

Kn

…

K1

K2

Column Peripherals

R
o

w
 M

U
X

Sen
sin

g
C

ircu
it

Address

Figure 3.6. a) Typical SRAMmemory array with row and column peripherals
storing the activations A1-Am, and kernels K1-Kn. b) Proposed sectioned-
SRAM array. By introducing switches along the RBLs, the array is divided into
sections. The kernels are mapped into the sectioned-SRAM with each section
storing different kernel. Once the activations are read onto the RBLs, the
switches are opened, and the memory array is divided into sections. c) Since
the RBLs for each section have been decoupled, one RWL in each section can be
simultaneously enabled such that each section performs the binary convolution
concurrently. The Row-MUX connects the corresponding SL to the sensing
circuit. For example, if A1 was read onto the RBLs before sectioning, enabling
the rows K1 and K2 in Section 1 and 2 respectively, we obtain A1*K1 and
A1*K2 in parallel on the SLs, which are sensed by the ADC.

1’s (popcount) for the XNORed output vector. Note that two sets of popcounts, one from

RWL1a and other from RWL1b, are sequentially read, and then added together to get the

final popcount of the vector.

3.2.3 Sectioned Memory Array for Parallel Computing

We have seen that XNOR and popcount operations can be computed within the SRAM

array. The manner in which these computations are done, opens possibilities for improving

the throughput and energy-efficiency in performing binary convolutions. A typical operation

in a CNN layer involves convolution of input activations with multiple kernels. This gives

us an opportunity for data re-use, since the same set of activations need to be convolved

with different kernels. Our proposed scheme described above is well suited to exploit this

property of CNNs. Given a set of activations A1, A2,..., Am and kernels K1, K2,..., Kn, stored

within the memory array (see Fig. 3.6 (a)), we need to compute A1*K1, A1*K2,..., A1*Kn,

61

A2*K1, A2*K2,..., A2*Kn and so on. In our computations described above, specifically in

the psedo-read step, the data corresponding to A1 is read onto the RBL/RBLB voltages.

We propose sectioning the memory array into subsections by introducing switches along

the RBLs, as shown in Fig. 3.6 (b), such that kernels are grouped into different sections.

Each section consists of a separate row-multiplexer and ADC control block, as shown in Fig.

3.6 (c). The row multiplexer connects the selected SL to the ADC. After A1 has been read

onto the RBLs/RBLBs, the switches are opened. The RBLs/RBLBs in individual sections

store the information of data A1, but have been decoupled. This allows us to enable one

memory row in all the sections corresponding to kernel K1 in section 1, K2 in section 2,

and so on, thereby evaluating the XNOR-popcount operations concurrently, in all n sections.

We thus obtain the output A1*K1, A1*K2,...., A1*Kn in a single cycle. This step can be

repeated for all activations A1, A2,..., Am. Thus, sectioning the memory array improves the

throughput of our computations n-fold. Moreover, with a single pseudo-read step, we are

able to perform n convolutions, thereby saving multiple pseudo-read cycles which consume

bitline precharge energy. Specifically, without sectioning, one RBL and RBLB pre-charge

is required for every convolution operation in addition to ADC energy consumption. With

n-sections per sub-bank we obtain n-convolutions per pre-charging of the RBL and RBLB

thereby not only increasing parallelism but also energy-efficiency. Note that the number

of sections (n) is carefully chosen based on the SRAM array design. When the sectioning

switches are opened, the effective capacitance of the RBLs/RBLBs in each section is reduced,

thereby reducing their charge sharing capability. Subsequently, the maximum voltage swing

obtained on the SL is affected. This limits the maximum size of each section that can be

introduced into the array. One also has to take into consideration that the SL capacitance

is charged or discharged by multiple BLs (or BLBs) that effectively come in parallel and

increase the overall charging/discharging swing of the SL line. Taking into consideration the

aforementioned factors, we sectioned a 128×64b array into 4 sections, each of size 32×64b.

Let us now discuss how binary convolutions can be obtained for large kernels using the

distributive property of popcount. Note that our memory array size is not related to the

kernel size for a particular network. If the kernel size is larger than the memory word length,

which is often the case in deeper state-of-the art CNN layers, a single kernel occupies multiple

62

rows in the same or different sub-banks. In-memory binary convolution is performed for each

of these kernel rows separately, and the partial popcounts obtained from each operation are

added to generate the final popcount.

popcount(N + M + ...) = popcount(N) + popcount(M) +

Once the final popcount is obtained, the output of the binary convolution operation is ‘1’

if the final popcount (number of 1’s) is greater than half the kernel size, and ‘0’ otherwise.

This allows our design to be generic, and scalable to deeper networks.

3.2.4 Results

The sectioned-SRAM array assuming a section size of 32 rows and 64 columns was sim-

ulated in HSPICE using the 45-nm predictive transistor models (PTM) [46]. As described

in the previous section, the final voltage at SL denotes the popcount output of the binary

convolution. The SL voltage is sensed using the ADC described in the previous section.

Again, the 45-nm PTM models were used simulate the SA and the ADC logic block. Using

the Dual RWL along with a dual-stage ADC, the ADC output is relaxed to only 5bits. The

most-significant bits (2bits) are generated in the first-stage of the ADC (sub-classes SC1-4)

using multiple references, while the lower bits (3bits) are generated in the second-stage by

the integrating ADC. We observe the effects of CMOS process variation on the ADC output

using Monte Carlo simulations, in presence of 30mV sigma threshold voltage variation. Fig.

3.7 plots the distribution of the second-stage ADC output for various popcount cases. Note

that a similar trend repeats for higher popcount cases with modulo-8, since only the lower

3bits of the output are generated in the second-stage. The ADC output is fairly accurate

with a small overlap with the neighboring counts. The small inaccuracy is attributed to

the transistor threshold voltage variations in the memory array and in the SAs used in the

ADC. Moreover, the charge being pumped in/out of SL decreases with each cycle, due to

charge-sharing, thereby inducing errors for higher counts. The inset shows a best-fitting

normal distribution for the variations in the ADC output. The average standard deviation

of the counts was found to be ∼0.4359 counts. Total energy consumed per operation was

63

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9

Fr
eq

u
en

cy
 o

f
o

cc
u

rr
en

ce

ADC Second-stage output (#counts)

7

4

1

Popcount

Figure 3.7. Monte-Carlo simulations. The figure plots the histogram of the
second-stage output of the ADC, for various popcount cases, in presence of
process variations. Inset: Each histogram is fitted with a Gaussian distribu-
tion. The average standard deviation of the counts is ∼0.4359. The trend
repeats for higher popcount cases with modulo-8, since only the lower 3bits of
the output are generated in the second-stage.

estimated to be ∼0.767pJ and ∼1.914pJ, with and without sectioned-SRAM (4 sections per

bank), respectively. The energy was averaged over various popcount cases. Here, by one

operation, we mean XNOR + popcount of a 64bit input activation and a 64bit kernel, both

of which are stored in the SRAM. The energy consumption includes the pre-charge energy

in the pseudo-read step and the ADC energy. The latency of one operation was ∼45ns.

This is due to the low-overhead integrating ADC used, which serially counts to estimate the

popcount.

3.3 In-memory Binary Convolution − Proposal-B

In the previous section, we described an energy-efficient implementation of performing

binary convolutions within the SRAM array. However, the low-overhead ADC used to deter-

mine the popcount induces errors in the convolution output, which may impact the system

accuracy, as we will show later. The primary cause of the inaccuracy is the generation and

detection of an analog voltage, which is susceptible to noise, offset etc. Thus, in this sec-

tion, we propose yet another implementation of enabling binary convolutions in standard

SRAM arrays, by modifying the peripheral circuitry. This approach is robust since the pop-

64

WWL WWL

BL BLB
Q QB

M1
M2

RWL

RBLM1’
M2’

RWL

RBLB

SL

6T Cell

RBL/RBLB

RBL/RBLB

Data=00

Data=11

RWL1
RWL2

RBL/RBLB Data=01/10

b)a)

RBL

SAE

SAE

RBLB

MBL MBLB

SAOUTBSAOUT

c)

Figure 3.8. (a) A 10T-SRAM bitcell schematic is repeated here for conve-
nience. (b) Timing diagram used for in-memory computing with 10T-SRAM
bitcells. (c) Circuit schematic of the asymmetric differential sense amplifier.
[61]

count is computed using digital logic gates (full-adders), unlike Proposal-A which uses analog

voltages. Although this robustness comes at a cost of energy-efficiency and throughput as

compared to the previous proposal based on charge-sharing, our simulations show that this

implementation is still better than the typical von-Neumann based approach as it leverages

in-memory computing for XNORs and pop-count operations.

3.3.1 Bitwise XNORs

Bitwise Boolean operations within SRAM arrays have recently been demonstrated in [11],

[17], [61]. The idea is to enable two RWLs together during a read operation. Let us consider

words ‘A’ and ‘B’ stored in two rows of the memory array. Note that we can simultaneously

enable the two corresponding RWLs without worrying about read disturbs, since the bit-cell

has decoupled read-write paths (shown in Fig. 3.8 (a)). The RBL/RBLB are pre-charged

to VDD. For the case ‘AB’ = ‘00’ (‘11’), RBL (RBLB) discharges to 0V, but RBLB (RBL)

remains in the precharged state. However, for cases ‘10’ and ‘01’, both RBL and RBLB

discharge simultaneously. The four cases are summarized in Fig. 3.8 (b). Now, in order to

sense bit-wise XNOR from the RBL/RBLB voltages, we use two asymmetric SAs (see Fig.

3.8 (c)[61]) which compute the bitwise NAND/NOR in parallel. Asymmetric SAs work by

65

sizing either one of the transistors MBL/MBLB bigger than the other. In Fig. 3.8 (c), if the

transistor MBL is sized bigger compared to MBLB, its current carrying capability increases.

Thus, for cases ‘01’ and ‘10’ where both RBL and RBLB discharge simultaneously, SAout

node discharges faster, and the cross-coupled inverter pair of the SA stabilizes with SAout=‘0’.

While for the case ‘11’(‘00’), RBL(RBLB) starts to discharge, and RBLB(RBL) is at VDD,

making SAout=‘1’(‘0’). Thus it can be observed that SAout generates an AND gate (thus,

SAoutb outputs NAND gate). Thus, we call this sense-amp SANAND. Similarly, by sizing the

MBLB bigger than MBL, OR/NOR gates can be obtained and we call it SANOR. Next, by

ORing the NOR and AND outputs obtained from SANOR and SANAND respectively, bitwise

XNOR operation is realized. A detailed description of the bit-wise Boolean XNOR can be

found in [61].

3.3.2 Popcount

In order to utilize the above mentioned approach for enabling binary convolutions, we

propose to add a bit-tree adder after the asymmetric-SA stage to generate the popcount, as

shown in Fig. 3.9 . The bit-tree adder consists of multiple full-adder (FA) blocks connected

in a tree manner. The bit-tree adder sums up all the bits of the output XNORed vector to

generate the popcount. The first layer of the bit-tree adder consists of single FA blocks, each of

which is capable of adding three consecutive bits to generate a 2-bit output. In the next layer,

2-bit adders are used, which are constructed using two stacked FA blocks. The second layer

generates 3-bit output. In subsequent layers, multiple FA blocks are stacked to construct

multi-bit adders. Finally in the log(N) layer, where N is the number of columns in the

sub-array, the popcount output is generated, and is read out from the memory. By enabling

RWLs corresponding to rows storing activation (A1) and kernel (K1), the asymmetric-SAs

generate the XNORed vector. The output XNORed vector is passed to the bit-tree adder,

to generate the popcount.

To incorporate convolutions with large kernel sizes, the partial popcount generated from

the bit-tree adders can be summed up over multiple cycles, to generate the final popcount.

Note that the generated popcount is exact, as it is computed using conventional digital logic

66

XNOR

XNORed vector (from SAs)

+ ++

+

+

Popcount

Bit-Tree Adder

SANOR

SANAND

XNOR

SANOR

SANAND

A1

K1

Layer-1

Layer-2

Layer-log(N)

.

.

Figure 3.9. Modified peripheral circuitry of the SRAM array to enable bi-
nary convolution operations. It consists of two asymmetric SAs - SANOR and
SANAND which pass the XNORed data vector to a bit-tree adder. The adder
has log(N) layers, where N is the number of inputs to the adder. It sums the
input bits to generate the popcount.

gates. Also note that the sectioned-SRAM concept described in the previous section is not

applicable for this proposal.

3.3.3 Results

A 128 × 64-bit SRAM array along with the asymmetric SAs − SANOR and SANAND

were simulated in HSPICE using the 45-nm predictive transistor models (PTM) [46]. As

described above, two RWLs are enabled simultaneously, and depending on the data stored

in each of the bits, SANOR and SANAND generate bitwise NOR/OR and NAND/AND,

respectively. Readers are referred to [61] for more circuit details and simulations. The energy

67

X-SRAM In-
memory

compute block

X-SRAM In-
memory

compute block

Avalon Memory Mapped Bus

NIOS-II processor
(with updated ISA)

Instruction
Memory

Load REG1 [adr1]
Load REG2 [adr2]
XNOR REG3 REG1 REG2
JMP .L2
L1:
AND REG4 REG3 $1
ADD REG5 REG4
SAR REG3 $1
L2:
CMP REG3 $0
JNE .L1

Xcel-Conv REG5 [adr1] [adr2]

Conventional instructions Custom instruction

(b)(a)

X-SRAM In-
memory

compute block

Xcel-RAM
memory banks

Figure 3.10. (a) Modified von-Neumann architecture based on Xcel-RAM
memory banks and enhanced instruction set architecture (ISA) of the pro-
cessor. (b) Snippet of assembly code for performing a binary convolution
operation using conventional instructions and custom instructions.

consumption and latency of the bitwise XNOR operation was estimated to be 29.67fJ/bit and

1ns, respectively. The energy consumption includes the pre-charge energy and the energy

consumed in asymmetric-SAs. The bit-tree adder was modeled in Verilog, and synthesized

using Synopsys Design Compiler to the 45-nm tech node. The bit-tree adder is constructed

using multiple FA (Full-Adder) blocks stacked in a tree fashion. The inputs to the bit-tree

adder block are 64 wires, which represent the bitwise XNORed data generated from the SA

stage. The output is a 6-bit popcount. The total area and power of the bit-tree adder in

performing a 64-bit popcount, was estimated to be 523.5µm2 and 0.26mW, respectively.

3.4 System-level Evaluation Framework for BNN

In this section, we describe the framework developed to evaluate the benefits of our

proposals at a system-level, taking an example of a deep binary neural network. We use a

modified von-Neumann based system architecture, where the SRAM banks are replaced with

our proposed Xcel-RAM banks (Proposal-A/Proposal-B) with embedded convolution com-

pute capabilities. By utilizing these in-memory convolutions, we demonstrate the benefits

in the overall system energy consumption and latency per inference.

68

3.4.1 Simulation Methodology

The modified von-Neumann processing architecture is shown in Fig. 3.10 (a). It consists

of a processor, an Xcel-RAM memory-block and an instruction-memory, connected by a

system bus. The Xcel-RAM block consists of multiple subarrays that are arranged in a

typical banked structure. We use the CACTI tool [76] to model a 64KB Xcel-RAM bank. The

circuit specific energy and delay numbers obtained from HSPICE with the 45nm PTMmodels

[46] were put in CACTI to obtain the per-access energy and latency of memory read/write

operations as well as binary convolution operation. These include the energy consumed

in H-trees, WL decoders, BL drivers, SAs, muxes etc. Next, a cycle-accurate RTL model

was developed for Xcel-RAM banks, which was integrated with Intel’s programmable Nios-

II processor [48], with instruction set (ISA) extensions to leverage the Xcel-RAM compute

capabilities (see Fig. 3.10 (b)). The system bus follows the Avalon memory-mapped protocol,

with enhanced bus architecture to support passing multiple addresses at a time. Note that

this is not a large overhead since in-memory instructions do not pass the data operands, and

thus the data-channel is used to pass extra memory addresses over the bus [77]. Note that

although we show a typical von-Neumann based system, Xcel-RAM banks can be interfaced

with general purpose graphics processing units (GP-GPUs) based systems as well, to leverage

data parallelism along with in-memory computing. Our aim here was to show the benefits

of replacing conventional SRAM banks with compute capable Xcel-RAM banks.

The binary neural network (BNN) proposed in [6] uses binary bipolar activations (±1)

for both weights and activations. Note that in our memory, +1 is stored as logic HIGH bit,

while −1 is stored as logic LOW bit. We used Pytorch platform [78] to train a BNN using the

algorithm proposed in [6], taking help from their github repository [79]. The neural network

architecture is given in Table 3.1 . The network was evaluated on CIFAR-10 [80] and SVHN

[81] datasets. All layers were binarized, except Conv1 and FC3 layers. It was observed

that ∼ 99.4% of total computations occur in the binarized layers - Conv2-6 and FC1-2, all

of which can utilize the Xcel-RAM convolution capabilities (see Table 3.1). Or in other

words, ∼ 99.4% of total computations per-inference can be mapped using custom Xcel-

RAM instructions, thereby giving us significant improvements in energy and throughput.

69

Input Map

.

.

.

Output Map

H

C

RC

Memory

K1

K2

E
M kernels

M

Section-1

Section-2

Activations

Figure 3.11. Mapping of weights and activations of a convolutional neural
network to Xcel-RAM. The kernels and the input feature maps are flattened
and stored into multiple rows in the memory array. Xcel-RAM banks have
dedicated rows for storing kernels and activations.

Each of these layers were run on the modified von-Neumann architecture described above.

We assume that the binarized kernels are stored in an off-chip memory, and the kernels for

a particular layer are loaded into the SRAM before processing that layer. Typical values of

DRAM access energy and latency were taken from literature [82]. The software was modified

by replacing repetitive convolution operations with our custom instruction macros. In every

layer, the convolutions are split into multiple 64-bit XNOR+popcount operations, which are

then accumulated to compute the final output. The final output is stored back into the

SRAM, which would be the input activations for the succeeding layer.

As a baseline, we use a similar system architecture, but with standard SRAM banks

with only read/write capability, instead of Xcel-RAM banks. The convolution operation is

performed in software through conventional instructions. A snippet of the assembly code for

convolution in the baseline and Xcel-RAM based designs is shown in Fig. 3.10 (b).

3.4.2 Mapping Weights and Activations to Xcel-RAM

Let us now discuss how the weights and activations of the BNN are mapped to Xcel-

RAM banks, in order to fully utilize the in-memory compute capabilities. Fig. 3.11 shows

one of the layers of binary convolutional neural network, having an input feature map of

size HxHxC and N kernels, each of size RxRxC. This results in, say, an output feature

70

Table 3.1. Benchmark Binary Neural Network [6] used for classifying CI-
FAR10 and SVHN datasets.

CIFAR10 SVHN

Layer Description % Computations Layer Description % Computations

128 3x3 Conv1 0.51 64 3x3 Conv1 0.88

128 3x3 Conv2 21.78 64 3x3 Conv2 18.84

[2 2] MaxPool1 0.04 [2 2] MaxPool1 0.07

256 3×3 Conv3 10.89 128 3×3 Conv3 9.42

256 3×3 Conv4 21.78 128 3×3 Conv4 18.84

[2 2] MaxPool2 0.02 [2 2] MaxPool2 0.036

512 3×3 Conv5 10.89 256 3×3 Conv5 9.42

512 3×3 Conv6 21.78 256 3×3 Conv6 18.84

[2 2] MaxPool3 0.01 [2 2] MaxPool3 0.01

8192×1024 FC1 10.89 4096×1024 FC1 18.84

1024×1024 FC2 1.36 1024×1024 FC2 4.71

1024×10 FC3 0.01 1024×10 FC3 0.04

map of size ExExN. The kernels are flattened to single dimensional vector, and stored in

the memory array into multiple rows, depending on the size of the flattened vector. For

example, if the kernel size is, say, 3x3x64, and the SRAM array has 64 columns, the kernel

is stored in 9 rows. For Proposal-A, kernels can be mapped to different sections of the

memory array, and can be computed in parallel, unlike in Proposal-B. Next, since these

kernels stride over the input feature map E2 times, the input feature map is split into these

E2 chunks of size RxRxC. Each of these chunks is flattened and stored in the array, similar

to the flattening of the kernels. One of the chunks of the input feature map is shown in the

figure as an example (in blue). Each Xcel-RAM array has some dedicated rows for storing

these flattened activations (input feature map) and some for storing the flattened weights

(kernels). We assume that this flattening and shifting is done offline, which we have not

considered in our simulations. We assume that all data is stored in an off-chip DRAM, and

we do consider the data movement required from the off-chip memory to Xcel-RAM banks,

before the computations for a particular layer are performed.

71

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Conv2 Conv3 Conv4 Conv5 Conv6 FC1 FC2

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (m
J)

Layer-wise energy consumption: CIFAR10

Baseline

Proposal-A

Proposal-B

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

Conv2 Conv3 Conv4 Conv5 Conv6 FC1 FC2

cy

cl
es

Layer-wise latency: CIFAR10

Baseline

Proposal-A

Proposal-B

(a) (b)

(c) (d)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Conv2 Conv3 Conv4 Conv5 Conv6 FC1 FC2

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (
m

J)

Layer-wise energy consumption: SVHN

Baseline

Proposal-A

Proposal-B

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

Conv2 Conv3 Conv4 Conv5 Conv6 FC1 FC2

cy

cl
es

Layer-wise latency: SVHN

Baseline

Proposal-A

Proposal-B

Figure 3.12. Layer-wise energy consumption and latency, for running the
CIFAR-10 (a-b), and SVHN (c-d) image classification benchmarks on the pro-
posed designs, and the baseline.

3.4.3 Results and Discussion

The accuracy of the binary neural network was observed to be 89.294% and 95.703% for

CIFAR-10 and SVHN datasets, respectively. We then evaluate the impact of inaccuracies

in the ADC for Proposal-A (due to process variations) on the classification accuracy using

our simulation framework. At every binarized layer, each element of the output map is a

sum of N binary XNORs, where N = k2 × I, k is the filter height, and I is the number of

input channels. Our proposed methodology can perform 64 binary operations at once, in

two steps of 32 bits each. Hence, the number of popcounts done per element of an output

map is M = ceil(N/32). We add the popcount error to the output during inference, obtained

from circuit simulations, and obtained an accuracy of 88.710% and 94.129% for CIFAR-10

and SVHN, a decrease by 0.584% and 1.574% from the ideal BNN accuracy, respectively.

72

80

82

84

86

88

90

92

94

96

98

100

0

5

10

15

20

25

Baseline Proposal-A Proposal-B

A
cc

u
ra

cy
 (

%
)

R
el

at
iv

e
im

p
ro

ve
m

e
n

t
fa

ct
o

r

Energy vs Latency vs Accuracy Trade-off

Energy AccuracyLatency

SVHN CIFAR10

Figure 3.13. Energy, latency and accuracy tradeoff for classifying CIFAR-10
and SVHN dataset with BNN, using the proposed techniques.

On the other hand, Proposal-B obtains ideal BNN accuracy because the computations are

done using a digital adder-tree.

Fig. 3.12 shows the layer-wise energy consumption and latency for Proposal-A, Proposal-

B, and the baseline. Note that we focus only on layers Conv2-6 and FC1-2, as they con-

stitute majority of the total computations. It can be observed that layers Conv2,4,6 are

the most compute intensive layers, due to larger kernels. Overall, per-inference, 6.1× and

2.3× improvements were obtained in energy consumption, for Proposal-A and Proposal-B,

respectively, compared to the baseline for CIFAR-10 dataset. In terms of latency, 15.8× and

8.1× improvements were obtained per-inference, for Proposal-A and Proposal-B, respectively.

These improvements can be attributed to the fact that the most compute intensive opera-

tions involved in the BNN inference − bitwise-XNOR followed by popcount, are performed

efficiently within the memory, thereby saving majority of unnecessary memory accesses and

computations. Moreover, the energy and latency benefits of Proposal-A arise from the low-

overhead ADC and the sectioned SRAM arrays, which enable multiple operations in a single

memory access. In Proposal-B, although the sectioning is not applicable, the energy and

latency benefits arise from the bit-wise XNOR computations on the bitline using asymmetric

73

SAs and the digital bit-tree adder to generate the result in the memory array itself. For the

SVHN dataset, the energy improvements are 5.32× and 2.20×, while the latency improve-

ments are 8.92× and 4.52×, for Proposal-A and Proposal-B, respectively, compared to the

baseline. The improvements are lower compared to the CIFAR-10 implementation since the

kernel sizes in the network used for SVHN are smaller compared to CIFAR-10. This shows

that larger kernels translate to more effective utilization of the hardware primitives, leading

to higher energy and latency improvements.

Figure 3.13 summarizes the tradeoff between energy, latency and classification accuracy

for both the proposals. Proposal-A achieves large improvement factors for both energy and

latency compared to the baseline. However, it has a reduced accuracy. On the other hand,

Proposal-B has lower improvement factors, but achieves baseline accuracy.

3.5 Conclusion

Enhanced memory blocks having built-in compute functionality can operate as on-demand

accelerators for machine learning computations, while simultaneously operating as usual

memory read-write units for general-purpose workloads. We demonstrated two novel tech-

niques to enable binary convolutions within a standard SRAM memory arrays. In the first

proposal, we use charge-sharing on the inherent parasitic capacitances present in the 10T-

SRAM structure to embed vector XNOR operations. Further, we use a dual-read wordline

along with a dual-stage ADC, to handle the inaccuracies in the low precision, low-overhead

ADC. A key highlight of this proposal is the sectioned-SRAM, which enables multi-row con-

volutions in parallel, thereby improving the overall system performance and energy-efficiency.

The second proposal uses asymmetric SAs and a bit-tree adder in the memory peripherals to

perform bit-wise XNOR computations and popcount in-memory. A complete framework was

developed to evaluate benchmark applications (CIFAR-10 and SVHN) using our proposed

memory arrays. For a system with our proposed Xcel-RAM banks, upto 6.1× and 2.3× im-

provements were obtained in energy consumption, and 15.8× and 8.1× improvements were

obtained in the latency for the respective proposals, compared to conventional SRAM based

system.

74

4. ENABLING DOT-PRODUCT COMPUTATIONS IN

STANDARD 8T-SRAM ARRAYS USING CHARGE

ACCUMULATION AND SHARING

4.1 Introduction

In the past decade, we have seen a tremendous growth in Machine Learning (ML) algo-

rithms, especially Deep Neural Networks (DNNs). DNNs have been shown to be extremely

effective for various cognitive applications, such as classification, recognition, detection and

autonomous systems, which are being adopted into various disciplines [1], [2]. The primary

reason for their exponential growth and widespread adoption in the past decade can be

attributed to the advancements in computational power and resources [3]. Availability of

powerful large-scale CPU and GPU servers and clusters enabled execution of computation-

ally expensive DNN models, leading to superior performance [3]. Even today, the size of

the state-of-the-art DNNs grows exponentially [4]. Although large-scale data-centers having

multiple CPU clusters and GPUs, enable large parallelism and faster execution of DNNs,

they are extremely power hungry. This is because DNN compute models are inherently dif-

ferent from general-purpose workloads and are immensely memory- and compute-intensive.

Standard von-Neumann systems executing DNNs face the von-Neumann bottleneck [5], con-

suming more energy in frequent data movements than the computation itself [83]. This has

largely restricted the execution of DNNs to large-scale data-centers, due to such high power

demands.

Nowadays, most real-time data is generated at the edge-devices, such as sensor nodes,

drones, and IoT devices. Most of these devices are battery-operated, and thus have limited

battery life. Transferring large amounts of data from the edge devices to the cloud is not

only energy expensive, but sometimes undesirable due to security reasons, such as in defense

or automotive applications. Thus, there is a need for processing data at the edge, to enable

energy-efficient DNN inference. There have been innovations in both algorithmic as well

as hardware fronts, to mitigate the energy problem of exploding DNNs. Recently, there

have been emergence of memory-friendly quantized networks, such as binary networks [6],

75

XNOR-Net [7], and ternary networks [8], [9]. The basic idea is to reduce the bit-precision of

the network parameters (weights, or activations, or both), from full-precision (32-bit or 64-

bit floating point) to low-precision fixed-point notation (1-bit, 2-bit, etc.). This drastically

reduces the computational complexity of the network, while also reducing the amount of data

movement, without significant loss in state-of-the-art accuracies owing to the error-resiliency

of neural networks, and their ability to re-train. On the hardware side of things, there have

been significant interest in beyond von-Neumann computing, especially the paradigm of

in-memory computing [10]. This approach embeds some basic computations within the

memory arrays, where the data is stored. By using such enhanced memory structures,

frequent and unnecessary data-transfers between the memory and the compute units can

be eliminated, without significantly changing the memory hierarchy and the conventional

read/write functionality of memory arrays. Moreover, this opens up the internal bandwidth

of memory arrays, which is much larger than the external input/output bandwidth, and can

be exploited to enable parallelism.

Edge-devices have a very simplistic architecture with basic microcontroller units along

with some on-chip caches. Standard on-chip caches use CMOS 6-Transistor Static Random

Access Memories (6T-SRAMs) which are optimized for fast read and write operations. How-

ever, 6T-SRAMs have a shared read/write port, and are not suited for in-memory computing

applications due to read-stability concerns. In 8T-SRAMs, there is an additional read port,

thereby decoupling the read and write operations at the cost of two extra transistors. This

provides additional SRAM stability, thereby enabling the possibility of in-memory computa-

tions [24]. Going to 9T- and 10T-SRAM cells improves the SRAM stability further, but at

the cost of reduced storage density. Thus, we use standard 8T-SRAM cells as they provide

a good balance between the in-memory computing functionality and storage density.

We propose an in-memory dot-product computation primitive using charge-sharing in 8T-

SRAMs [84]. We show that inherent parasitic capacitances can be utilized for performing

dot-product operations, where one operand is stored in the SRAM arrays while the other

operand is applied as analog voltages on the BLs. The accumulated charge on the SL

represents the desired dot-product output. However, the analog charge-domain nature of

computations introduce circuit non-idealities that degrades the output accuracy. To that

76

effect, we further propose a self-compensation approach, wherein, the effects of these circuit

non-idealities are reduced through a simple two-step procedure. In the first step, full VDD is

applied at the BLs and the SL voltage is sensed, while the dot-product operation is performed

in the second step. The voltage sensed during the first step can be used to compensate the

non-linearity in the second step. Using these compute primitives, we propose CASH-RAM, an

in-memory computing primitive which can be integrated into on-chip caches for accelerating

ternary weight neural networks. The key highlights are as follows:

1. We propose a compute primitive for performing dot-products based on charge-sharing

using the inherent parasitic capacitances in standard 8T-SRAM arrays. We study the

effects of non-idealities caused by analog computations, both analytically and through

circuit simulations.

2. We propose an efficient two-step self-compensation approach to minimize the non-

idealities while performing the dot-product computations. We demonstrate the effec-

tiveness of the compensation technique, both, analytically and through circuit simula-

tions.

3. We propose a system integration of the aforementioned in-memory computing primitive

to enhance on-chip caches and augment them with compute instructions in addition

to standard read/write instructions.

4. We develop a functional model of our proposed SRAM array and demonstrate an

image classification application using the MNIST and CIFAR10 dataset to evaluate the

accuracy degradation and to estimate the energy and throughput benefits of ternary

weight neural networks.

The remainder of this chapter organized as follows. A summary of related works is pro-

vided in Section II. Next, the charge-sharing approach for in-memory dot product operation

is described in Section III, followed by the self-compensation. In Section IV, we describe

the system integration of the proposed computing primitive for accelerating ternary weight

neural networks. Results on various networks for image classification tasks are reported in

77

Section V, including the functional accuracy, energy and throughput, before concluding in

Section VI.

4.2 Related Works

While several digital ASICs have been explored for accelerating DNNs [21], [22], [85], they

lack flexibility and cannot run general-purpose workloads. Thus, we will focus on in-cache

computing based approaches, which achieve high performance for DNNs, while allowing

flexibility of general purpose computing.

Digital In-memory Computing

In-cache computing has been explored in various types of SRAM bitcells, and for accel-

erating various operations. Bit-wise Boolean operations, such as NAND/NOR/XORs were

initially demonstrated in standard 6T and 8T SRAM cells [24], [86], [87]. The basic idea

is to enable multiple memory rows, and directly read out the resulting bitline (BL) volt-

age, which represents a Boolean logic operation of the data stored within the enabled rows.

Adding further digital logic at the peripheral circuitry allows for more advanced arithmetic

operations, such as for encryption [88] and DNN [68] processing.

Analog In-memory Computing

Analog-based computing provides possibilities for implementing more complex opera-

tions, with high degree of parallelism and energy-efficiency, compared to digital based ap-

proaches [10]. For example, applying a pulse-width modulated (PWM) signal at the word-

lines (WLs) and sensing the analog voltage developed at the BLs, yields the dot-product

operation between the input and the stored data, which has been explored in both 6T and

8T-SRAM cells [89]–[93]. However, PWM signal generation is very time sensitive, which can

significantly be affected by the process variations. Some other works rely on compute prim-

itives with efficient current-accumulation or charge-sharing approaches. In current-mode

computations [62], [73], [94], the array is operated in a crossbar configuration, where the

input voltages are applied at sourcelines (SLs) or WLs and the resulting current gets ac-

78

cumulated on the BLs proportional to the dot-product of the inputs and the data stored

in the memory array. However, this require expensive peripheral circuitry, that consumes

large static power consumption [73]. Moreover, current-mode computations are sensitive to

process variations, parasitic line resistances and electromigration.

Thus, a charge-domain compute seems to be a more viable option. In [72], [74], charge-

sharing approach was used in 10T-SRAM cells to demonstrate binary convolution operation.

In [72], the BLs were charged to the input voltages, and with a help of an additional switch-

ing circuitry, the charges were shared and accumulated. However, due to inaccuracies in

interfacing conventional low precision DACs/ADCs, the work is limited to smaller networks.

A more scalable approach was taken in [74], where the two-step WL activation yielded the

convolution output inherently on the parasitic SL capacitance. However, it is difficult to

generalize the computations to multi-bit dot-product operations. More recently, [95], [96]

proposed a charge-domain compute in 8T-SRAMs, where a separate capacitor is attached to

each bitcell to enable accurate charge-sharing. However, this requires fundamental modifica-

tions to the standard 8T-SRAM bitcell with an addition of an overlaying metal-oxide-metal

(MOM) capacitor on each bitcell. On the other hand, [97] proposed to accumulate charge

onto the computation and compensation capacitors that were attached to the peripheral

circuitry, to perform the dot-product operation.

In contrast to previous works, we propose charge-sharing based dot-product acceleration

in standard 8T-SRAM arrays, utilizing the inherent parasitic capacitances. Owing to the

analog computations and the weak charge-sharing between parasitic capacitances, we analyze

various errors that get introduced due to circuit non-idealities, both analytically and through

simulations. Moreover, we propose at least two self-compensation schemes, which can be

integrated seamlessly to improve the accuracy of the dot-product output.

4.3 Charge Sharing based In-Memory Dot-Product Operation

In this section, we describe the circuit details for the proposed charge-sharing based dot-

product operation. As described in the introduction, we use the internal parasitic capacitance

of the memory array to accumulate charge, which represents the desired output. We first

79

RBL

Q QB
WBL WBLB

WWL

RWL

SL

6T6T Cell 6T

RBL1 RBL2

SL1 CSL

CBLCBL

Q11 Q12

M1

M2

RWL1

(a) (b)

Figure 4.1. (a) Schematic of the standard 8T-SRAM bitcell (b) Parasitic
capacitance CBL and CSL for an array of 8T-SRAM cells. The dotted arrows
show the charge-sharing path used in our approach.

theoretically analyze the circuit operation through charge sharing equations, followed by

SPICE simulations to characterize the circuit for dot-product output.

4.3.1 8T-SRAM: Structure and Operation

Fig. 4.1 (a) illustrates the standard 8T-SRAM cell. In addition to the standard 6T cell,

an 8T cell consists of an additional read port formed by transistors M1 and M2, connected

to the read-wordline (RWL), read-bitline (RBL) and the souceline (SL), as shown in the

figure. Note that the SL is usually grounded for normal memory operations, however, with

negligible penalty in the bitcell area, the SL can be routed horizontally in parallel to the

RWL. The write operation of the 8T cell is exactly similar to the 6T cell. The write-wordline

(WWL) is enabled for the row to be written, and the write-bitlines (WBL/WBLB) are given

appropriate voltages (VDD/0) depending on the data to be written into the internal storage

nodes Q and QB. However, during the read operation, the additional read port is used, and

not the write port. This makes the read operation much faster compared to 6T cells because

the read-write ports are decoupled and the read port is optimized for the read operation.

During the read operation, RBLs are pre-charged to VDD, and the corresponding RWL is

80

enabled, while the SL is grounded. If the node Q of the cell stores a ‘1’, both transistor M1

and M2 are ON, thereby discharging the RBL through the SL. On the other hand, if the

node Q stores a ‘0’, transistor M2 is OFF, thereby cutting off the discharge path such that

RBL remains pre-charged. This dip in RBL voltage is sensed to read out the data from the

cell.

Fig. 4.1 (b) shows how the 8T cells are connected together to form a subarray. In a

reasonable sized array, there is considerable parasitic capacitance developed on each of the

BLs, SLs, and WLs running horizontally and vertically. These include the drain/gate ca-

pacitance of the transistors as well as the parasitic capacitance of the metal wire running

along the array. For our purposes, RBL capacitance (CBL) and SL capacitance (CSL) are of

particular importance, since they directly fall into the computation path, while other capac-

itances do not affect the dot-product functionality. For example, the write port capacitances

(CW BL/CW BLB and CW W L) are not utilized at all during the compute operation, while the

RWL capacitance (CRW L) is predominantly the gate capacitance of the access transistors,

which only determines the access delay of the cell. CBL and CSL are highlighted in the figure

in blue and red, respectively, and the dotted arrows show the charge-sharing path used in our

approach. We propose to perform the dot-product operation by pre-charging the RBLs with

analog voltage, and accumulating charge on the SL. This is described in the next subsection.

4.3.2 8T-SRAM: Charge sharing based Dot-Product Operation

A dot-product, also known as the inner dot product, is defined between two vectors say,

X and W :

A =
N∑

i=1
xi.wi (4.1)

where, N is the length of the vectors X and W . This is a very frequent operation in ML

workloads, especially neural networks. The vector X represents the input activations while

the vector W represents the learned weights of the network. Note that the elements of vectors

X and W can be full-precision (floating point), however, we will focus on hardware-friendly

quantized networks, with ternary weights (+1/0/-1) and fixed-point input activations. This

will be discussed in detail in Section IV. To perform this operation within the SRAM array,

81

we store W in the SRAM cells, while X is converted to analog voltages (V) and applied

to the RBLs. Please refer to Fig. 4.1 (b). The first step is to pre-charge the RBLs with

appropriate analog voltages, such that all CBL are charged. The total charge in the system

can be defined as:

Qini = CBL

N∑
i=1

vi (4.2)

In the next step, the desired RWL is enabled, allowing the charge stored in CBL to accumulate

over CSL. However, note that only those RBLs will interact which have the SRAM cell storing

‘1’, otherwise the discharge path is blocked by the read-port transistors. If we have say, K

number of 1’s in the W vector, then the initial charge (Qini) can be written as:

Qini = CBL

N∑
i=1

vi = CBL

N∑
i=1

vi.wi︸ ︷︷ ︸
K non-zero terms

+ CBL

N∑
i=1

vi.wi︸ ︷︷ ︸
N-K non-zero terms

(4.3)

Thus, only the K non-zero terms are involved in charge sharing. The final charge of the

system (Qf inal) can be expressed as:

Qf inal = VSL(CSL + KCBL) + CBL

N∑
i=1

vi.wi (4.4)

where VSL is the final voltage developed over the SL. The second term denotes the initial

un-shared charge remaining on the RBLs. Through conservation of charge, Qini=Qf inal, we

can calculate the final SL voltage, VSL as:

VSL =
(

CBL

CSL + KCBL

) N∑
i=1

vi.wi (4.5)

We can observe from Eq. 4.5 , that VSL is proportional to the dot-product of vector V and

W , and thus, by sensing the analog voltage on SL we can estimate the dot-product.

4.3.3 SPICE Characterization

Next, we perform SPICE simulations to verify and characterize the analog voltage VSL

with respect to the inputs, vi and wi. We use a 65-nm PDK to simulate a 256×64 8T-SRAM

82

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

V
S

L
 (
V

)

Vi (V)

 K=1

 K=16

 K=32

0 5 10 15 20 25 30 35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

V
S

L
(V

)

K (# 1's)

 Vi=0.2

 Vi=0.4

 Vi=0.6

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0

5

10

15

20

A
 i
d
e
a
l
(a

.u
.)

(a) (b) (c)

Figure 4.2. Data obtained from SPICE simulations. (a) Final SL voltage as
a function of input voltage vi. Three cases of K=1,16,32 are shown. (b) Final
SL voltage as a function of K. Three cases for vi=0.2,0.4,0.6V are shown.
(c) Representation of VSL as a function of ideal dot product A. The degree
of spread represents the non-idealities, as illustrated in the figure taking an
example of VSL=0.25V.

array which was illustrated in Fig. 4.1 (b). The array was simulated for the aforementioned

dot-product operation, with various combinations of vi and wi to see the effects on VSL.

There is a large number of possible combinations, thus, we perform simulations for some

special cases, which are plotted in Fig. 4.2 . We assume the same vi value being applied

to all RBLs. For example, the data point for vi=0.6V and K=16 implies a case where 16

cells store ‘1’ and participate in charge sharing, and all the RBLs are precharged to 0.6V.

The plots in Fig. 4.2 (a) show that VSL linearly increases with the value of vi. This follows

from Eq. 4.5 . However, in Fig. 4.2 (b), we observe that VSL increases linearly for small

values of K, but starts to saturate as K increases. This also follows from Eq. 4.5 , but is an

undesirable artifact of the charge-based analog computing. This limits the maximum value

of K. Our simulations showed that beyond K=32, the errors become too large. Thus, we

process vectors of length 32 at a time for our dot-product micro-operation. More details

regarding the architecture for our micro-operation will be discussed later in Section IV. In

Fig. 4.2 (c), we plot all of the data, with intermediate K and vi values also, on a different

axes, showing the estimated dot-product (Â) versus the ideal dot-product (A). This plot

clearly shows how the error in the dot-product originates. Let’s say we obtain a VSL=0.25V

after performing our dot-product operation. This voltage would be converted to Â. Now,

83

if we draw a vertical line through VSL=0.25V, the scatter plot shows that this value can

correspond to various A values. This is due to that fact that there are various possible

combinations of inputs that yield the output as 0.25V. Due to the non-linearity shown in the

previous plots, each combination incurs different error characteristics, leading to the spread

observed in the figure. Thus, there is a need to minimize this spread to reduce computation

errors, which is explored next through a self-compensation approach.

4.3.4 Self-Compensation

To reduce the spread described above, we propose a two-step operation to perform the

dot-product. The fundamental reason for this spread is the non-linearity introduced in Eq.

4.5 due to K, which is a data-dependent term and introduces data-dependent errors into the

output. In our proposed self-compensation approach, we first try estimating the value of K

in the first step, which is then used to compensate the dot-product output in the second

step.

To estimate K, we perform the same computation as the dot-product above, but during

the pre-charge phase, we first pre-charge all RBLs with VDD, instead of the corresponding

analog vi values. Following from Eq. 4.5 , the SL voltage in this step, VSL1 will be:

VSL1 =
(

CBLVDD

CSL + KCBL

) N∑
i=1

wi = CBLVDDK

CSL + KCBL

(4.6)

Thus, K can be estimated by sensing the analog voltage VSL1 :

K̂ = CSL

CBL

(
VDD

VSL1
− 1

) (4.7)

In the second step, we perform the dot-product operation as usual, by applying analog vi

values at the RBLs, to obtain VSL2 , similar to what was described in Eq. 4.5 . However,

substituting K̂ from Eq. 4.7 into Eq. 4.5 , and solving for Â yields:

Â =
N∑

i=0
vi.wi =

(
CSL

CBL

)
VDDVSL2

VDD − VSL1

(4.8)

84

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
0

2

4

6

8

10

12

14

Vi (V)

 K=1

 K=16

 K=32

0 5 10 15 20 25 30 35

0

2

4

6

8

10

12

14

K (# 1's)

 Vi=0.2

 Vi=0.4

 Vi=0.6

es

ti
m

at
ed

 (
a.

u
.)

es

ti
m

at
ed

 (
a.

u
.)

0 2 4 6 8 10 12 14

0

5

10

15

20

A
 i
d

e
a

l
(a

.u
.)

 estimated (a.u.)

(a) (b) (c)

Figure 4.3. Data obtained from SPICE simulations and Â estimated from
Eq. 4.8 . (a) Â as a function of input voltage vi. Three cases of K=1,16,32 are
shown. (b) Â as a function of K. Three cases for vi=0.2,0.4,0.6V are shown.
(c) Representation of Â as a function of ideal dot product A. The degree of
spread is significantly lower than in Fig. 4.2 (c).

Eq. 4.8 summarizes our self-compensated charge-sharing approach to estimate the dot-

product output based on sensing two analog voltages, VSL1 and VSL2 .

Next, we verify this approach through SPICE simulations. The two-step operation was

simulated for the same 256×64 array, and analog voltages VSL1 and VSL2 were extracted.

Moreover, other circuit constants such as CBL and CSL were also extracted from SPICE to

estimate Â from Eq. 4.8 . Fig. 4.3 (a-b) plots Â as a function of vi and K, respectively, similar

to the plots shown in the previous section. We can observe a significant improvement in the

linearity of Fig. 4.3 (b), compared to Fig. 4.2 (b), owing to the compensation mechanism in

play in estimating Â. Similarly, in Fig. 4.3 (c), we can observe a significant reduction in the

spread in A versus Â, leading to reduced errors in estimating dot-product outputs in the

self-compensated charge-sharing approach.

4.3.5 Compensating for Transistor Non-linearity

Until now, we have considered only ideal charge sharing among the parasitic capacitances

CSL and CBL, and our hardware compensation approach also assumed ideal charge sharing

equations. The source of non-idealities originates from transistors, which act as non-ideal

85

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
0

2

4

6

8

10

12

14

Vi (V)

 K=1

 K=16

 K=32

0 5 10 15 20 25 30 35

0

2

4

6

8

10

12

14

16

K (# 1's)

 Vi=0.2

 Vi=0.4

 Vi=0.6

0 2 4 6 8 10 12 14 16

0

5

10

15

20

A
 i
d
e
a
l
(a

.u
.)

es

ti
m

at
ed

 (
a.

u
.)

es

ti
m

at
ed

 (
a.

u
.)

 estimated (a.u.)

(a) (b) (c)

Figure 4.4. Data obtained from SPICE simulations and Â estimated from
Eq. 4.9 . (a) Â as a function of input voltage vi. Three cases of K=1,16,32 are
shown. (b) Â as a function of K. Three cases for vi=0.2,0.4,0.6V are shown.
(c) Representation of Â as a function of ideal dot product A. The degree of
spread has further reduced significantly than in Fig. 4.3 (c).

switches. A few experiments with Eq. 4.8 revealed that a best fit was obtained if we combine

VSL1 and VSL2 as follows:

Â =
N∑

i=0
vi.wi =

(
CSL

CBL

) (VDD − VT)VSL2√
VDD − VT − VSL1

(4.9)

where VT is the threshold voltage of the transistors. The two main differences between Eq.

4.8 and Eq. 4.9 is the VT term and the square root in the denominator. From transistor

physics, we understand that an NMOS connected to VDD at its drain and gate terminal can

only charge up its source node to VDD − VT , because it enters cut-off region. Thus, the

maximum charge that can be shared is VDD − VT . On the other hand, the square root term

acts as an additional non-linear compensation to improve the linearity of the circuit. This

can be seen from Fig. 4.4 (a-c), which illustrates the improvement in the linearity of the

estimated dot product, and the reduction in the spread using this compensation technique.

Note that these plots were obtained from the same data collected for VSL1 and VSL2 as before,

however, they were combined using Eq. 4.9 instead. Hence, we classify this approach as an

additional compensation to the previous approach. However, we would also like to mention

here that there might be more complex equations to combine VSL1 and VSL2 that yield even

better results, however, as the equation gets more complex, it would require more circuitry

86

Bitline SwitchesBitline Switches

W
L

D
ec

o
d

er

Pre-charge DACs

32 cells 32 cells

Pre-charge DACs

SA / Write Driver SA / Write Drivers
Cache Hierarchy

B
an

k
0

B
an

k
N

B
an

k
1

8T 8T 8T

8T 8T 8T

8T 8T 8T

8T 8T 8T

8T 8T 8T

8T 8T 8T

8T8T8T

8T8T8T

8T8T8T

8T8T8T

8T8T8T

8T8T8T

A
D

C

M
U

X

A
D

C

M
U

X

M
U

X

A
D

C

M
U

X

A
D

C

Figure 4.5. CASH-RAM system integration for accelerating TWNNs. A
typical multi-bank cache hierarchy is shown on the right, where each bank
consists of multiple sub-arrays. The subarray is shown on the left, with ad-
ditional peripheral circuitry to augment dot-product computations within the
cache.

or look-up tables to compute the result, eliminating the benefits of accelerating dot-product

operations in the first place. Thus, it is evident, that there is a trade-off between complexity

and accuracy of obtaining the dot-product through this approach, which is beyond the scope

of this work.

4.4 System Integration of CASH-RAM for Accelerating Ternary Weight Neural
Networks

In the previous section, we described how standard 8T-SRAM cells can be used for com-

puting approximate dot product operations. Dot product operations constitute majority of

the computations in DNNs. Moreover, among quantized DNNs, ternary weight neural net-

works (TWNNs) represent a promising tradeoff between benefits due to model compression

and accuracy [98], [99]. Thus, in this section, we take our compute primitive further, and

propose a cache integration for accelerating TWNNs.

87

4.4.1 Cache Integration

The caches in a modern processor are organized in a hierarchical structure with multiple

banks, as shown in Fig. 4.5 . Each bank consists of multiple sub-arrays. To perform in-situ

dot-product operations, the cache can be repurposed as an on-demand accelerator, where

each subarray can perform parallel computations [68]. Using the standard cache hierarchy, we

modify the sub-array with some peripheral circuitry to augment the dot-product operations,

in addition to the standard memory read/write instructions. Before the cache can begin

the neural network processing, the weights for different layers are loaded in from off-chip

memory. However, the positions of the weights do not change and remain stationary in the

cache. Thus, the weights are loaded only once per layer, thereby amortizing the overhead over

the duration of the neural network run. In this re-purposed cache, each subarray performs

the exact same operation in parallel and is capable of generating the outputs independently.

4.4.2 Subarray Details

An expanded version of the subarray is shown on the left in Fig. 4.5 . It consists of

standard 8T-SRAM cells arranged in two halves with 32 columns each. As discussed in

Section 4.3 , sharing charge among more than 32 cells resulted in unacceptable errors, thus,

we restricted the number of cells in a row to 32. This was done by splitting the SLs of the

256×64 array in two, such that the SLs are only shared among 32 cells in each half (shown in

red horizontal lines), while the WLs connect all 64 cells in a row (shown in black horizontal

lines). The sub-array consists of the necessary peripherals, including the pre-charge circuits,

WL decoder, write drivers, and sense amplifiers to support traditional memory read/write

operations. Additionally, pre-charge circuits are enhanced with digital-to-analog converters

(DACs) to charge up the RBLs, and analog-to-digital converters (ADCs) to sense the SL

voltages, during the dot-product operation. The write ports of the 8T SRAM have been

omitted in the figure for clarity. Furthermore, to increase parallelism of the dot-product

operations, we introduce bitline switches, thereby dividing the sub-array into sections. For

example, with 256 rows in the sub-array, we may have bitline switches (shown in blue vertical

lines) every 32 rows, thereby having 8 sections. This was also earlier proposed in [72], [74],

88

[100]. During the pre-charge phase of the dot-product operations, the switches are closed,

and hence the entire RBL gets pre-charged. Once the RBLs are pre-charged, the switches are

opened, separating the pre-charged RBL sections each of which can independently perform

the dot product operation by sharing the charge with its local SLs. Each section has its own

ADC, thus, with a single pre-charge, multiple operations can be performed simultaneously.

4.4.3 Data Mapping

The weights of a pre-trained TWNN can be mapped to the proposed cache arrays. The

network weights or kernels in TWNNs can be 0 or ±1. However, since SRAM bit stores a

0/1, we use a differential architecture proposed in many previous works [101] to map both

positive and negative weights to SRAM cells. In a differential form, a ternary weight w can

represented as w = w+ −w−. Thus, w+ and w− are either 0/1, and can be easily represented

in the SRAM bitcells. The input activations of the TWNN are applied as voltages to the

RBLs to compute the dot-products. We assume fixed point representation for the input

activations, which can be routed through the data lines into the sub-array. The pre-charge

DACs convert the fixed-point digital values to an analog voltage on the RBLs. In this case,

the dot-product computations become:

A =
N∑

i=1
vi.wi =

N∑
i=1

vi.w
+
i −

N∑
i=1

vi.w
−
i (4.10)

Since w+ and w− require the same set of activations to perform the dot-product, alternate

sections separated by the bitline switches (refer Fig. 4.5) can store w+ and w−, respectively.

The resulting digital output from the two sections can be subtracted to obtain the dot-

product output.

4.5 Results

In this section, we analyze the benefits of the proposed macro for image classification

workloads. Firstly, we analyze the effects of errors induced in performing the dot-product

operations due to analog computing, on the classification accuracy for various benchmarks.

89

Secondly, we estimate the energy and throughput benefits of running such workloads on the

proposed macro, compared to the von-Neumann baseline and other prior works.

4.5.1 Experimental methodology

All circuit simulations, which were presented in Section 4.3 were performed using the

65-nm PDK in H-SPICE. As described earlier, various combinations for vi and K were

simulated to analyze the error profile due to non-idealities. A Monte-Carlo analysis was

done with 1000 runs for each of the combination of (vi, K). The analog values for VSL1 and

VSL2 were recorded in each case. We observed that the 3σ deviation in VSL values due to

variations was well within 1-LSB error of the ADC, leading to negligible affect on the actual

output. The operating range of vi was chosen to lie in vi ∈ [0.2V, 0.6V], while K ∈ [0, 32] to

minimize the error range.

The collected simulation data was characterized and plotted on an error surface span-

ning the vi and K ranges. The error in the ideal output (A) and the estimated output

obtained from the simulations (Â), for each of the approaches described in Section 4.3 , was

mathematically formulated using a best curve-fit.

To estimate the impact of these errors on the overall system accuracy, the obtained

error functions were transferred to a software implementation in Pytorch. The errors were

added to each layers of the ternary networks during the forward pass, by breaking up the

computation into smaller dot-products of length 32, and introducing the error functions into

each of these smaller operations. Thus, for a deep network, these errors accumulate over

multiple operations, and we expect an accuracy degradation, which is explored next.

4.5.2 Impact of Non-idealities on Classification Accuracy

In order to comprehensively analyze the impact of the previously discussed error compen-

sation approaches, we perform experiments with networks and datasets of varying complex-

ity. Image classification datasets are most generic due to their widespread usage and easily

available benchmarks. Thus, we employ the MNIST handwritten digit dataset [102], and the

CIFAR-10 image dataset [103]. The MNIST dataset having images of handwritten digits (0-

90

Figure 4.6. Classification accuracy obtained on MNIST and CIFAR-10
datasets for different benchmarks, for with and without self-compensation.
Approach-1 corresponds to self-compensation while Approach-2 corresponds
to compensating for transistor non-linearity.

9) is comparatively easy to train even with a network having only linear fully-connected(FC)

layers. This helps in verifying that the effects of error addition are very minimal when the

task at hand is relatively simple. On the other hand, CIFAR-10 is a very popular real image

dataset having 10 different classes and is complex enough to require usage of convolutional

layers to obtain satisfactory level of accuracy. In terms of neural networks, we chose to have

a mix of different depths to observe the impact of errors as we go from shallow to deep

networks. Keeping these points in mind, we considered the following image classification

benchmarks for our analysis:

1. MNIST: 2-layer FC Network, LeNet5 [104]

2. CIFAR-10: LeNet5 [104], ResNet-20 [105]

The networks were trained without bias and with batch-norm at full-precision initially. This

was followed by training with ternary weights while still maintaining full-precision gradients.

This ternarized model served as the baseline for our analysis. The accuracy values for each

of the compensation approaches as well as the baseline were compared and are highlighted

in Fig. 4.6 .

91

We can observe that performing the dot-product naively without compensation degrades

the classification accuracy to unacceptably low values in all cases. This was expected, con-

sidering the large errors in the dot-product output as shown in Section 4.3 . For the simpler

MNIST dataset, we observed that self-compensation worked quite well, and the accuracy

drop is within 1% of the baseline. However, for a more complex dataset, CIFAR-10, the ac-

curacy drop from the baseline was higher (∼17% for LeNet5 and ∼24% for ResNet20). With

the additional transistor non-linearity compensation, the accuracy drop was significantly

improved to within ∼5% in both cases. This can also be directly attributed to the more

accurate dot-product estimation using the compensation approaches, described in Section

4.3 .

Note that this analysis only involves error addition and inference on the test-set without

any further training of the error added models. There is further room for improvement with

re-training approaches [27], [29], [106]–[108], where the neural network training includes the

error added models in the forward pass. However, our approach is complementary to the

re-training approach and can be used in tandem with such approaches to improve the overall

system performance further. An additional analysis revealed that re-training the error added

model of LeNet-5 network for CIFAR-10 dataset for just 1 epoch, reduced the accuracy drop

further to within ∼3%.

4.5.3 Energy, Delay and Area Estimates

We analyze the energy and performance benefits of the proposed primitive based on the

approach mentioned in [92], [93], followed by estimates on the area overhead. In order to

evenhandedly compare our approach with these works, we study the energy and delay of

our implementation on LeNet5 and ResNet20, when inferred with MNIST and CIFAR10

image, respectively, with memory and architectural specification similar to [92]. We have

Nbank number of banks, each having Narr arrays of size Nrow × Ncol; BIO represents the

number of bits fetched by CPU in single cycle; number of bits of weights is given by Bw; and

R represents the number of row-wise parallel operation enabled by the BL switches. The

values chosen for these parameters are summarized in Table 4.1 . Further, we adopt the von-

92

Neumann computing framework as the baseline. The energy and delay for the von-Neumann

system represented by EV N and TV N , respectively, are given by Eq. 4.11 and Eq. 4.12 [93]:

EV N ≈ MNK2Eread + MNK2N2
movEmult + MNN2

movEreg + PleakTV N (4.11)

where EV N is the energy of von-Neumann architecture, Eread is the read energy of a single

weight from SRAM array, Emult is the energy for multiplication energy in the processor, Ereg

is the energy required to store/load the weights in the CPU registers, Pleak is the average

leakage power of the SRAM and TV N is the time required for von-Neumann compute given

by equation 4.12 . The software parameters M , N , K, L and Nmov represent the number of

input channels, number of output channels, kernel size, size of input feature map and size of

output feature map, respectively, for the layer under consideration.

TV N ≈
[

MNK2

(BIO/BW)Nbank

]
Tread +

[
MNK2

Nmult

]
N2

movTmult (4.12)

here, Tread refers to the time required to read weight from the SRAM array and Tmult is the

delay for multiplication operation in the processor.

The energy and delay estimates for our primitive, represented by ECS and TCS, are given

by Eq. 4.13 and Eq. 4.14 respectively:

ECS ≈ MNK2N2
movBW

[
Ecomp

32 + 2Eadc

32

]
+ MNN2

movEreg + PleakTCS (4.13)

where ECS is the energy of our in-memory compute scheme, Ecomp is energy required to

compute 1 multiply and accumulate, Eadc is the energy required by ADC and TCS is the

time required for von-Neumann compute given by Eq. 4.14 .

TCS ≈
[

MNK2

(Ncol/BW)NarrNbankR

]
N2

mov[max{Tcomp, 2Tadc}] (4.14)

93

Table 4.1. Hardware Parameters Description

Parameter Description Value
Architectural Parameters

BIO Bits fetched from SRAM per bank 16
BW Bit-width of the weight stored in SRAM 2

Ncol/Nrows Number of columns/row in SRAM array 64/256
Narr Number of arrays in SRAM bank 8

Nbank Number of SRAM banks 4
Nmult Number of multipliers in processor 175

R Number of row-wise parallel operations 8
Delay Parameters

Tread Time to fetch data from SRAM 4.0 ns
Tmult Time to perform 1 MAC in processor 1.0 ns
Tcomp Time for 1 MAC in our proposed array 3.0 ns
Tadc Time for 1 ADC operation 4 ns

Energy Parameters
Eread Energy to fetch weight from SRAM 1.3 pJ
Emult Energy to perform 1 MAC in processor 225 fJ
Ecomp Energy for 1 MAC in our proposed array 360 fJ
Eadc Energy for 1 ADC operation 231.1 fJ
Pleak Standby power consumption of SRAM 2.4 nW

here, Ecomp is time required to compute 1 multiply and accumulate and Eadc represents the

time required by ADC for conversion.

We follow a pessimistic approach and compare our results for the input conditions leading

to maximum energy Ecomp. Moreover, we know Ecomp should directly depend on the charge

drawn from supply QV DD, hence maximizing QV DD should maximize the energy Ecomp. For

the case of self-compensation, QV DD should be dependent on K and vi as per Eq. 4.15 . This

equation is maximized for max K and min vi, hence we find the Ecomp and Tcomp for these

inputs using H-SPICE simulation. The architecture parameters were kept same as [93], the

94

Table 4.2. Network Parameters Description
Parameter Description

M Number of input feature maps
N Number of output feature maps
K Kernel size
L Size of input feature map

Nmov Size of output feature map (Nmov=L-K+1)

Table 4.3. Energy, Delay, and Area Comparison
Property Baseline [93] [92] This work
SRAM cell 8T 6T 6T 8T

Input/Weight
Precision 5b/2b 5b/5b 6b/8b 5b/2b

Area overhead 0% 56% 25.31% 68.25%
MNIST on LeNet5

Energy (nJ) 466.52 451.10 330.38 302.28
Delay (µs) 10.06 1.53 13.94 0.4
EDP (fJ-s) 4695.03 688.08 4606.75 122.58

CIFAR10 on ResNet20
Energy (µJ) 28.87 34.87 22.97 20.20
Delay (µs) 268.52 150.38 1374.73 40.12
EDP (pJ-s) 7751.43 5244.37 31579.04 810.09

energy and delay numbers for ADC are obtained from [93]. All the parameter values are

summarised in Table 4.1 and Table 4.2 .

QV DD

CBL

= K

[
VDD −

(
KCBL

KCBL + CSL

Vi

)]
+ (N − K)(VDD − Vi) + max

{
K

[
Vi −

(
KCBL

KCBL + CSL

Vi

)]
, 0
}

(4.15)

The energy, delay, and the Energy Delay Product (EDP) for inference of one MNIST

image is presented in Table 4.3 , along with a comparison with the baseline and the prior

works. We find that CASH-RAM is 38× better in EDP compared to the von-Neumann

baseline with similar architectural parameters. If we scale EDPs by the ratio of bit precision

95

Table 4.4. Area breakdown

Supporting Circuit Area per 256×64
Array (um2)

Array 13845
ADC 12800
DAC 50
MUX 250

Bitline switches 525
Decoder 600

Precharge, SA, and Driver 5500

of weight and activation linearly, we find that CASH-RAM is ∼ 7.8× and ∼ 2.25× better

than [92] and [93] respectively.

The results for CIFAR-10 on ResNet-20 are also shown in Table 4.3 . We can observe that

the energy benefits for ResNet-20 on CIFAR-10 is ∼ 9.5× which is a significant reduction as

compared to ∼ 38× on MNIST on LeNet-5. ResNet-20 has 19 convolution layers and 1 fully

connected layer, while LeNet-5 has 2 convolution and 3 fully connected layers. The reduction

in the improvements is observed due to the weight sharing in convolution layers. As a result,

in a von-Neumann architecture the processor can reuse the weights for several computations

which reduces the number of read operations dramatically, assuming a low-level cache or

register files. Such reuse of weights is not possible in in-memory functional read as the read

output is a function of both weights(W) and inputs(Vin). These results concur with the

results shown in [92] and [93].

Let us now discuss the area overhead to implement our proposed CASH-RAM in caches.

The area breakdown for a subarray of 256 × 64 is presented in Table 4.4 . The additional

peripheral circuitry required for our proposal is the ADC, DAC, MUX, and bitline switches,

which constitute about ∼ 40% of the total area. We can observe that after the array, the

most dominant component is the ADC. Thus, to minimize the area overhead of ADCs,

we adopted the ADC from [93], and scaled it down to 4-bit precision. To justify the 4-b

precision ADC for our 32-vector operation, we tested the impact of this quantization loss on

the classification accuracy, and made sure it was within ∼1% of the full-precision accuracy.

96

4.6 Conclusion

Implementation of DNN workloads have been restricted to large-scale data centers, due

to extremely high compute and energy requirements. To bring cognitive computing to the

edge, quantized DNNs, such as TWNNs have been proposed which drastically simplify com-

putations and reduce the model sizes. Moreover, domain-specific hardware primitives such as

in-memory computing have been shown to realize energy-efficient implementations for DNNs.

We proposed an in-memory computing primitive in standard 8T-SRAM arrays for computing

dot-product operations, which are extensively used in DNNs, using inherent charge sharing.

The estimated dot-product is approximate, owing to the analog nature of computing. Thus,

we study and analyze the sources of these errors and propose a self-compensation to mitigate

the effects of circuit non-idealities and non-linearities. Using this computing primitive, we

proposed an 8T-SRAM macro for accelerating TWNNs. We develop a functional simulation

framework to characterize the induced errors and estimate the degradation in classifica-

tion accuracy of TWNNs, and to estimate the energy and latency of inference tasks. We

demonstrate that using the proposed compensation approaches, the classification accuracy

degradation is within 1% and 5% of the baseline accuracy, for the MNIST and CIFAR-10

dataset, respectively, with an EDP improvement of 38× over the von-Neumann baseline.

The proposed techniques are complementary to existing mitigation techniques, such as re-

training, and can be used in conjunction with such approaches to further improve the overall

system performance.

97

5. LOOKUP TABLE BASED COMPUTING USING

ROM-EMBEDDED SRAM

5.1 Introduction

Rapid advancements in computing technology has enabled widespread development of

increasingly large and complex models throughout various fields of science and technology.

Such models heavily use large math tables, high-order polynomials, transcendental function

evaluations etc. One of the fast ways to efficiently compute such large function evaluations

is through the use of on-chip read-only memories (ROMs). However, large dedicated on-

chip ROMs incur large area overhead. This impairs the chip-floorplan, leading to increased

delays. Moreover, while evaluating workloads which do not require on-chip ROM accesses,

the part of the chip that is dedicated for ROMs lies waste. Thus, large ROM data such as

math tables, truth tables, transcendental functions, high-order polynomials etc. are stored

off-chip on cheap, but slow, memories, thereby leading to large access delays.

Another way to incorporate ROMs on-chip is by embedding them within on-chip mem-

ories, or caches, so that the chip-area is not wasted. There are a few earlier attempts found

in the literature which combine on-chip RAMs and ROMs. In [109], multiple bit-lines are

routed to the SRAM cells, and the ROM data is read by accessing each bit-line. However,

the read latency of SRAM doubles and write power increases by ∼30% due to increased bit-

line parasitic capacitance. In [110], multiple power-supply rails are selectively connected to

SRAM bit cells to embed ROM data. In [111], [112], additional transistors are added to the

bit cells for the same purpose. Thus, all the above works incur larger area and/or latency.

Recently, [113] demonstrated embedding ROMs within conventional SRAM caches on-chip,

without degrading the area/performance penalty on RAM accesses. The idea was to use two

WLs that run in parallel for each row in the memory array. Each bit-cell stores the RAM

data as usual, but depending on which WL it is connected to, the ROM data is embedded.

However, the ROM retrieval process destroys the RAM data stored in the bit-cell. Thus, for

every ROM access, a temporary copy of the RAM data is made and then stored back after

the ROM data is retrieved. This incurs high energy and performance overheads for reading

ROMs. Moreover, during the ROM retrieval mode, there is a 5T-write into the SRAM cell,

98

Figure 5.1. (a) Schematic of a standard 8T-SRAM bitcell. Transistors M1
and M2 form the decoupled read port of the SRAM cell. (b) Proposal-A for
RECache. The cell has an extra RWL, and the ROM data stored is ‘1’ if the
access transistor is connected to RWL1, and ‘0’ if it is connected to RWL2. The
node voltages for RAM and ROM modes of operation are listed. (c) Proposal-
B for RECache. This configuration has two SLs, instead of two RWLs. ROM
data stored is ‘1’ if the access transistor is connected to SL1, and ‘0’ if it is
connected to SL2.

thereby increasing the probability of write-errors. Some other works also propose embedding

ROMs in non-volatile memories, such as Magnetoresistive RAMs (MRAMs) [114], [115], by

adding an additional bit-line (BL) and sensing circuitry.

We propose ROM-embedded cache (RECache) [116], which embed ROMs within standard

8T-SRAM cells. Our approach addresses both the concerns raised above. First, 8T-SRAM

cells have a decoupled read/write path, which enables a read-disturb free operation. Thus,

we use the read-port of the 8T cell to embed ROMs, without affecting the stability of the

RAM data stored in the cell. This enables a non-destructive readout of the ROM data, while

preserving the RAM data in the bit-cell, unlike previous works. Moreover, the ROM retrieval

process is very similar to the conventional RAM read access and does not require writing

into the bit-cell, thereby improving the ROM access latency and energy consumption. We

also show how to embed ROMs in a differential configuration of the 8T-cell given by [45],

which further improves the storage density of the RECache. We also evaluate RECache on

realistic workloads, like neural networks, cryptography etc. and understand why RECache

performs extremely well for ‘ROM-intensive’ workloads.

The 8T-SRAM structures have recently been shown successful in performing Boolean

[61] as well as non-Boolean [44] computations. Thus, in order to expand the scope of RE-

99

Figure 5.2. Timing diagrams generated from HSPICE for Proposal-A,B.
The correct ROM Output data is generated, without disturbing the RAM
data stored in the cell. The circuit shown in Fig. 5.1 (b-c) are simulated.

Cache, we demonstrate its applicability for in-memory computations. Using the framework

for spiking neural network (SNN) acceleration with ROM-embedded RAMs, developed in

[117], we demonstrate the energy and performance benefits of RECache over conventional

SRAM caches. The rest of the chapter is organized as follows. Section II describes the

design and operation of RECache. In Section III, we evaluate RECache performance on

realistic workloads, emphasizing its benefits for ROM-intensive applications. In Section IV,

we describe the implementation of an SNN accelerator using RECache, before concluding in

Section V.

5.2 RECache: Design and Operation

5.2.1 8T-SRAM

Fig. 5.1 (a) shows the circuit schematic for a standard 8T-SRAM bit-cell. It consists of

two transistors M1 and M2 in addition to the 6T storage cell. The two extra transistors form

a decoupled read-port of the bit-cell. The write operation is similar to the 6T-cell, through

the write-port (WWL, WBL, WBLB). However, the read-port is utilized (RWL, RBL, SL)

for performing read operations. RWL and SL are connected to VDD and GND, respectively,

while RBL is initially pre-charged to VDD. If the bit-cell stores ‘1’ (i.e., Q = ‘1’), the charge

on RBL discharges. If the bit-cell stores a ‘0’ (i.e., Q = ‘1’), RBL holds its pre-charge

100

Figure 5.3. (a) Thin cell layout of a standard 8T-SRAM cell. The circled
contacts, RWL and SL, are common to adjacent bitcells in the horizontal and
vertical direction, respectively. (b) Thin cell layout of the 8+T-SRAM bit-cell.
The circled contacts (VX) on either side of the bitcell are shared by adjacent
bitcells.

voltage. The voltage at RBL is sensed using a sensing circuit. The decoupled read-write

port for the 8T cell allows a read-disturb free operation. Thus, large voltage swing (almost

rail-to-rail) on the RBL can be maintained for easier sensing.

In Fig. 5.1 (b) and Fig. 5.1 (c), we show two proposals (Proposal-A and Proposal-B) to

embed ROMs in 8T-cells, using an extra RWL and an extra SL, respectively. In Proposal-A,

the transistor M2 of the bitcell is connected to either RWL1 or RWL2, depending on whether

the ROM data to be embedded is ‘1’ or ‘0’, respectively. The write-port remains the same as

in the standard 8T cells. Note that if RWL1 and RWL2 are connected, the circuit is exactly

the same as the 8T-SRAM cell. Thus, for reading the RAM data, we follow the standard

read procedure, with RWL1 and RWL2 both turned ON. To access the ROM data, only

RWL1 is turned ON, while RWL2 and SL are pulled down to −VDD. The transistor M2 of

the bit-cells will be enabled only if it is connected to RWL1. Moreover, transistor M1 of all

the bit-cells in the row will be enabled, irrespective of whether Q = ‘1’ or ‘0’ since the SL

is at −VDD. As a result, the RBL starts to discharge towards −VDD if the ROM stores ‘1’,

and remains charged at VDD, if the ROM stores ‘0’. This ROM data can be read by sensing

the voltage on RBL using the same sensing circuitry. Note that although the internal RBL

swings from VDD to −VDD, the sensing amplifiers are still driven by VDD, thus the output

swing is limited from 0 to VDD. Also note that retrieving the ROM data does not destroy

the RAM data stored in the bit-cells.

101

Figure 5.4. (a) Schematic of the differential 8+T-SRAM bitcell. Transistors
M1 and M2 form a differential read port decoupled from the 6T write port.
The ninth transistor connected to RWL is common for the entire row. (b)
RECache using the differential 8+T-SRAM. The connection of M1 to either
VX1 or VX2 determines the ROM bit stored in the cell. The ROM retrieval
process is exactly same as the 8T-RECache. The node voltages for ROM and
RAM mode of operation are listed.

In Proposal-B, instead of having two WLs, we have two SLs − SL1 and SL2, as shown

in Fig 5.1 (c). During the RAM mode of operation, both SLs are connected to the ground,

thereby following the usual read operation of the 8T-SRAM cell. Now, the bit-cell connected

to SL1 stores ROM data ‘1’, while the bit-cell connected to SL2 stores ROM data ‘0’. In

the ROM mode of operation, SL1 is pulled down to −VDD, while SL2 and RWL are pulled

up to VDD. Thus, RBL discharges only if the bit-cell is connected to SL1. Sensing the RBL

voltage through the same sensing circuitry as before gives out the ROM data. Note that

this proposal is also non-destructive since the RAM data stored by the bit-cells remains

undisturbed during the ROM mode of operation, similar to Proposal-A.

Fig. 5.2 shows the transient simulations for Proposal-A and Proposal-B, obtained from

SPICE, verifying the RAM and ROM mode of operation. The circuit shown in Fig. 5.1 (b-c)

was simulated in two scenarios − RAM data stored in the bit-cells is ‘1’ and ‘0’. The timing

diagrams verify that ROM Output is correctly generated, irrespective of the RAM data

102

Figure 5.5. Timing diagrams obtained from HSPICE. The correct ROM
Output data is generated, without disturbing the RAM data stored in the
cell. The circuit shown in Fig. 5.4 (b) was simulated.

stored in the bit-cells. Moreover, the RAM data is undisturbed during the ROM retrieval

process.

5.2.2 8+T Differential Read SRAM

In the previous section, we described two proposals to embed ROMs within 8T-SRAM

arrays, thereby enhancing the memory density. However, there is one disadvantage of the

proposal. The ROM storage is only half of the total RAM storage of the array. This is due

to the layout restrictions of the 8T-SRAM bit-cell. For Proposal-A, there are two RWLs that

run parallel, and the bit-cell is connected to either based on the ROM data to be embedded.

However, two consecutive bit-cells share a common contact to the RWL, as shown in Fig.

5.3 (a), and hence cannot store separate ROM data. Assuming an 8T-SRAM array of size

64×64, we only have 64×32 bits of ROM. Similarly, for Proposal-B, we will have 32×64

ROM bits, since two consecutive bit-cells in the vertical direction share a common contact

for the SLs (encircled in Fig. 5.3 (a)).

103

Figure 5.6. Normalized cache miss-rate for various benchmarks − artificial
neural network (ANN), spiking neural network (SNN) and advanced encryp-
tion standard (AES), with RECache and standard SRAM caches.

Recently, an 8+T Differential SRAM design was proposed in [45] to overcome the single

ended sensing of the conventional 8T-SRAM cell. 8+T Differential SRAM has decoupled

read-write paths with an added advantage of a differential read mechanism through the read

bit-lines RBL/RBLB (see Fig. 5.4 (a)), as opposed to the single-ended read mechanism of

8T-SRAM. The ninth transistor, whose gate is connected to RWL is shared by all the bit

cells in the same row. The differential read operation is very similar to the read operation of

a standard 6T-SRAM. The usual memory read operation is performed by pre-charging the

bit-lines (RBL and RBLB) to VDD, and subsequently enabling the word-line corresponding

to the row to be read out. Depending on whether the bit-cell stores ‘1’ or ‘0’, RBL or RBLB

discharges. The difference in voltages on RBL and RBLB is sensed using a differential sense

amplifier.

We show how ROMs can be embedded within differential 8+T cells while maintaining

1:1 ratio between RAM and ROM density. The bit-cells are connected to either of the two

nodes VX1 and VX2 which are connected to the ninth common transistor gated by RWL1

and RWL2, respectively. Again, two consecutive bit-cells share a common contact for the

VX node (see Fig. 5.3 (b)), however, due to a differential read port, the consecutive bit-cells

can store different ROM bits. Consider an example shown in Fig. 5.4 (b). The ROM data

stored is ‘1,0’, which is decided by whether transistor M1 is connected to VX1 (ROM = ‘1’)

104

Table 5.1. Benchmarks used to evaluate RECache [49], [118]

or VX2 (ROM = ‘0’). During the ROM mode of operation, node VX1 is pulled down to

−VDD, while VX2 is kept floating. Thus, all RBLs corresponding to the bit-cells storing a

ROM bit ‘1’ discharge. We use the single-ended sensing similar to the one used in 8T-cells,

to sense the RBL voltage. The RBLB voltage is not considered for ROM operation. During

the RAM mode of operation, both VX1 and VX2 are pulled down to 0V, and the differential

SA is enabled. Thus, the differential SAs are used in the RAM mode to generate RAM

Output, while the single-ended sensing of RBL is used in the ROM mode, to generate ROM

Output. Fig. 5.5 shows the transient simulations obtained from SPICE, verifying the RAM

and ROM mode of operation.

5.3 Evaluating RECache on realistic workloads

To understand the scope and the benefits of using RECaches as a substitute to the usual

SRAM caches, we evaluate the cache performance for various workloads. The details of var-

ious benchmarks used are detailed in Table 5.1 . Since our aim is only to show the benefits

of extra ROM storage provided by RECache, we use a simplistic cache configuration: 32KB

direct-mapped cache, with a block size of 64B. For each of the standard benchmarks in Table

5.1 , an address trace was generated, and fed to a simple in-house cache simulator, to estimate

the number of cache miss/hits. Since RECache has extra ROM storage, all ROM accesses

are modeled as hits. Note that the cache configurations were chosen such that all the ROM

data required by the program fits in the cache. Fig. 5.6 plots the cache miss rates of various

105

Table 5.2. ROM and RAM energy per-access for various array sizes obtained
from CACTI.

workloads for RECache as well as standard SRAM cache. The plots can be explained as

follows. We notice that for an ANN, the RECache hardly makes a difference to the miss

rate (1.06× improvement). This is because in each ANN layer, computations follow a se-

quential RAM-ROM address trace, ie, all ROM accesses (neuron activation) occur after all

RAM accesses (synapse computations). Moreover, in all typical ANN applications, number

of synapses are orders of magnitude more than the number of neurons. Thus, there is mini-

mal contention between ROM and RAM data in the cache, thereby nullifying the benefits of

RECache. However, RECache performs much better with ‘ROM-intensive’ workloads such

as SNNs (19.4× improvement) and AES encrypt and decrypt (4.6× and 11× improvement,

respectively). This is because 1) these workloads use more frequent ROM accesses and 2)

the address traces for ROM and RAM accesses are interleaved, thereby causing contention

between RAM and ROM data in cache. SNNs involve multiple transcendental function eval-

uations and bio-realistic differential equations with high order polynomials, heavily relying

on ROMs for fast computations. Similarly, in AES encryption/decryption, there are nu-

merous substitution tables and multiplication math tables which are stored in ROMs and

frequently accessed. Thus, RECache improves cache performance for workloads with high

ROM vs RAM utilization and high ROM/RAM access interleaving. Note that for all other

applications, RECache performs at least as well as standard SRAM caches.

106

5.4 Conclusions

With an ever-increasing demand for ROM-based computing, there is an imminent need for

area-efficient ROMs on-chip. To that effect, we proposed ‘RECache’ − ROM-Embedded 8T-

SRAM cache. RECache maintains the area and performance of standard SRAMs. Moreover,

ROM retrieval process is non-destructive, ie., RAM data remains undisturbed during ROM

accesses. We presented at least three different variants of RECache, giving designers options

to choose from, as the application demands. Moreover, we demonstrated that RECache

improves the cache miss rate by up to 19.4×, for ‘ROM-intensive’ workloads, which have

frequent ROM accesses interleaved with RAM accesses.

107

6. SPIKING NEURAL NETWORK ACCELERATION USING

LOOKUP TABLE BASED IN-MEMORY-COMPUTING

6.1 Introduction

Deep Neural Networks (DNNs) are inspired from the hierarchical learning behavior in

the human brain and have tremendously enhanced the learning capabilities in machines [1],

[2]. They have been credited to achieve high performance across a variety of recognition

applications, even surpassing human abilities in certain tasks [51]. In doing so, however,

DNNs tend to consume orders of magnitude higher energy than the human brain. To bridge

this energy gap, there have been proposals from the algorithm as well as hardware perspec-

tives. Spiking neural networks (SNNs), or third generation neural networks, have evolved

and have been shown to achieve comparable classification accuracies with respect to the

non-spiking counterparts [118]. SNNs rely on transfer of neuron spikes from one layer to the

next, resembling the information transfer in the human brain. These spikes are encoded as

binary data, thereby drastically simplifying the computations, and thus reducing the energy

consumption.

On the other hand, hardware systems running DNN algorithms are inefficient, since DNN

executions are memory- as well as compute-intensive. For instance, AlexNet which won

the ImageNet 2011 challenge consists of 61 million parameters and involves 2-4 GOPS per

classification [55], [119]. Consequently, their execution on von-Neumann machines consumes

more energy for data movement than computation [119]. This can be attributed to the fact

that DNN computation is inherently different from the conventional von-Neumann based

computing model. Frequent data movement between a physically separate memory storage

unit and a compute core forms the well known von-Neumann bottleneck. To overcome this

bottleneck, there has been intense research for reducing data movements [64]. Moreover,

there have been proposals for in-memory computing [13], [15], where the underlying principle

is to perform the computations as close to the memory as possible, or better, within the

memory array itself [69], [120], [121].

Typical DNNs (with artificial neurons) involve multiple transcendental function eval-

uations (for instance, sigmoid, tanh, logarithms etc.). In addition, SNNs involve several

108

BL

AXL
Cell 0 Cell 1

AXL AXR AXL

BLB BL BLB BL

WL 1

WL 2

AXR

Figure 6.1. R-SRAM Schematic: Standard 6T-SRAM embedded with ROM.
The only difference is the addition of extra word-line (WL1 and WL2) to
embed ROM functionality.

bio-realistic neuron and synaptic differential equations, each having multiple transcenden-

tal function and high order polynomial evaluations. The most efficient way to implement

such functions is by storing look-up tables (LUTs) and math tables in read-only memories

(ROMs). However, large dedicated ROMs incur significant area and power overheads. To

that effect, [113] proposed embedding ROMs in standard CMOS SRAM caches (R-SRAM).

R-SRAM allows placing a ROM within the conventional SRAM array (with correspond-

ing architectural modifications), without degrading the area and performance benefits of

the SRAM [113]. Such compute primitives provide significantly higher storage densities

(bits/area) which can be leveraged for DNN and SNN computations in storing useful data

(LUTs) without affecting the RAM storage, thereby avoiding longer latencies and higher

access energy associated with larger (or external) memory structures.

We take R-SRAMs and R-MRAMs a step further and propose “SPARE” [117], a general-

ized architecture for SNN acceleration using ROM-embedded RAMs as in-memory-compute

primitives. SPARE consists of a 2-D array of Processing Elements (PEs) that spatially map

a deep SNN, where each PE performs part of the SNN computations. Each PE contains

its own R-SRAM/R-MRAM which locally stores only the relevant synaptic data and the

LUTs required for solving the neuron and synaptic differential equations. This localized

processing leads to energy benefits, since only the neuron data (spikes) need to be transfered

109

between PEs. Furthermore, since the PE operates only on an occurance of an input spiking

event, unnecessary computations and memory accesses are avoided. It is also worth noting

that R-SRAM/R-MRAM primitive can store several different neuron and synapse models,

thereby providing necessary flexibility. A PE thus, synergistically combines the hardware

benefits from R-SRAMs/R-MRAMs and algorithmic benefits from SNNs. In summary, we

make three key contributions.

1. We design an energy-efficient PE that leverages the “in-memory processing” abil-

ities of ROM-Embedded RAM structures and “event-driven computing” in SNNs. We

evaluate the pros and cons of using both, CMOS based R-SRAMs and STT-MRAM

based R-MRAMs, as memory units in the PE.

2. We design an efficient architecture (SPARE) using a 2-D mesh of PEs, to provide

a platform for cognitive application deployment. We show the implementation of

spiking neural networks (fully connected and convolutional) on SPARE.

3. We investigate the energy, performance and area benefits for typical image

classification benchmarks to underscore the system scalability and utility, both for

training and inference phases.

6.2 Background

6.2.1 ROM-Embedded RAMs

Previous studies on ROM-embedded RAMs were limited to logic testing and fast math-

ematical function evaluations [113], [115]. We explore the utility of R-SRAM and R-MRAM

based memory structures towards designing efficient compute primitives for neuromorphic

computing (SNN acceleration). Further, as discussed before, such memory units enable

in-memory data processing that can be of immense utility in DNN execution, which are

typically limited by the cost of data movements.

R-SRAM

R-SRAM is a memory structure that consists of a ROM in hardware embedded into

a conventional CMOS SRAM array, with corresponding modifications at the architectural

110

Memory Controller

R-SRAM

Buffer

WL1

WL2

1) RAM R/W
Request

3) Write 1’s (WL1=ON,
WL2=ON)

5) ROM Data

2) RAM copy

4) Write 0’s (WL1=OFF,
WL2=ON)

6) RAM copy

b) ROM Mode

Memory Controller

R-SRAM

Buffer

WL1

WL2

1) RAM R/W
Request

2) WL1=ON,
WL2=ON

3) Read Data/
Write Done

a) Normal RAM Mode

Figure 6.2. Operation of R-SRAM in a) Normal RAM Mode and b) ROM Mode.

level to support ROM accesses [113]. Fig. 6.1 shows the structure of R-SRAM cell array

[113]. Unlike conventional 6T-SRAMs, R-SRAMs bit cells have an extra word-line (WL).

The gate of the access transistors connect to WL1 or WL2, depending on the data to be

embedded as ROM. Thus, if the bit-cell stores ‘0’ (‘1’) as ROM data, the left access transistor

(AXL) is connected to WL2 (WL1). The right access transistor (AXR) of the bit-cell follows

the connectivity of the AXL of the neighboring bit-cell to the right. For completeness, we

describe the R-SRAM operation, both for the RAM mode and the ROM mode of operation.

1. RAM mode: During the normal RAM mode, both word-lines, WL1 and WL2, are

connected together. They are turned ON/OFF at the same time, so as to operate as

conventional 6T-SRAM for memory read/write. Note that there is no performance

penalty on RAM operations compared to the standard 6T-SRAM bit-cells.

111

+ -
Reference

Generator

Read Bias

Generator

SL

BL0

BL1

V+ V-

Data

DataB

EnRAM

Write

Driver

WriteEn

DataIn

ReadEn

RMTJRMTJ RMTJ RMTJ RMTJRMTJ RMTJ

Separate bit-lines to enable ROM functionality

Merge bit-lines electrically

for RAM functionality

For RAM functionality

For ROM Sensing

SA

ROMOut
RAMOut

Figure 6.3. R-MRAM Schematic: Standard STT-MRAM array with two bit-
lines (BL1 and BL0) to embed ROM functionality. The peripheral circuitry
for RAM and ROM mode of operation is highlighted.

2. ROM mode: To retrieve the ROM data in the ROM mode of operation, a sequence

of steps are performed, summarized in Fig. 6.2 . First, ‘1’ is written to all bit-cells by

turning both WL1 and WL2 ON. Thus, the whole row stores “1111...”. Next, WL1

is turned OFF and ‘0’ is written to all the cells, while WL2 remains ON. Now only

the bit-cells connected to WL2 store ‘0’, others store ‘1’. However, if two consecutive

bit-cells have different ROM data, this step performs a 5T write operation on the

SRAM cell, since only one access transistor is ON. This may lead to a “write stability”

problem in the bit-cells, which can be resolved using write-boost techniques [113]. The

ROM data can now be read using conventional RAM read operation. Note that the

ROM data retrieval process destroys the initial RAM content. Hence, before ROM

data retrieval, RAM data of the corresponding block is written into a buffer, as shown

in Fig. 6.2 . After the ROM data has been retrieved, the RAM data of the block is

restored.

It has been shown that R-SRAM incurs insignificant area (∼ 2%) and power (∼ 1%)

overheads [113] to incorporate an additional word-line requirement. Moreover, we will show

later in our simulations that despite the penalty of buffering RAM data for each ROM access,

112

W1

W2

W3

V1

V2

V3

t

Vmem

t

Vmem

Vspike

t

Vspike

Vth

Synapse Neuron

I

Figure 6.4. Typical SNN dynamics. The input spikes are modulated by the
synaptic weights, and the accumulated synaptic current in fed to the neu-
ron. The neuron integrates the current and outputs a spike (fires) once its
membrane potential exceeds a threshold.

.

.

.

et

tanh(x)

 LUT index

 LUT index

 -1 memory rows

R-SRAM/R-MRAM Array

Figure 6.5. Storage of LUTs for various functions within the same ROM-
Embedded RAM array. The starting address for each type of LUT is prede-
fined. An offset address (calculated from the input) is added to the starting
address to perform the table lookup from the R-SRAM/R-MRAM. The num-
ber of memory rows required by each LUT type is predefined based on the
desired precision of the transcendental function to be stored.

we obtain improvements in energy consumption at the system level.

R-MRAM An R-MRAM is a memory structure made with conventional STT-MRAM

array by embedding a hardware ROM. This allows it to operate in both ROM and RAM

mode [115]. As shown in Fig. 6.3 , R-MRAM bit cells consist of an additional Bit Line (BL)

113

Global

Memory

Interface

to host

Control

Unit

Layer 2

PE

Layer 3Layer 1

ROM
(math tables,

neuron,

synaptic

behaviors etc.)

Spike Input

Buffer

Event

Controller

Spike

vector IN

Spike

output

computation

RAM
(weights,

Vmem, Leak,

time constants

etc.)

Spike vector OUT

State

Update

ROM Embedded RAM

S
p
ik

e
 O

u
tp

u
t

B
u
ffe

r

SNN Inputs

SNN Output

(a) (b)

Figure 6.6. Block level diagram of SPARE. (a) Figure shows how a deep
neural network is mapped to a 2-D array of PEs connected together. The global
memory stores the spiking events at every layer output, and broadcasts them
to the input of next layer. (b) Figure zooms into the logical diagram of the PE.
It consists of a ROM-embedded RAM to store the state variables along with
LUTs of synapse, neuron and synaptic plasticity models, computation core to
generate output spikes, input buffers to store incoming spike broadcast, event
controller to schedule memory transactions, state updater to update the entries
in the memory, and an output buffer to store the output spikes generated.

compared to STT-MRAM. The physical connection of the bit cell (fixed during design time),

stores ROM data. Bit cells connected to BL0 store ROM data ‘0’, whereas those connected

to BL1 store ROM data ‘1’. Every bit cell can be written/read for RAM operation by

electrically connecting BL0 and BL1. However, ROM access and RAM access cannot occur

simultaneously. Next we describe the R-MRAM operation for RAM mode and ROM mode

of operations.

1. RAM mode: During a RAM mode read operation, current from the read-bias generator

flows through the pass transistors and the selected bit cell to Select Line (SL) (shown in

Fig. 6.3). Consequently, a voltage appears on the positive input of the sense amplifier.

The sense amplifier compares the voltage (dependent on the resistance of the selected

bit cell) to a reference voltage to output a ‘1’ or ‘0’. For a write operation, EnRAM is

asserted to turn ON the pass transistors and the write driver drives both BLs and SL.

114

2. ROM mode: For a ROM read operation, EnRAM is deassserted to turn OFF the

pass transistors and the latch is turned ON. If the selected bit cell is connected to

BL1 (BL0), BL1 (BL0) gets discharged and ROMOut outputs a ‘1’ (‘0’). Contrary

to R-SRAM, the non-volatility of STT-MRAM prevents the RAM data to be lost in

R-MRAM during a ROM read operation.

It has been shown in prior studies that the R-MRAM design with an extra BL has no

area overhead at array-level. Additionally, this doesn’t impact the and performance of the

memory as a ROM [115]. Note that during ROM Mode, RAM data is not disturbed due to

non-volatility of R-MRAM, thereby simplifying the ROM retrieval process. This results in

higher energy benefits of using R-MRAM in SPARE, as we will show later in our simulations.

6.2.2 SNN: Spiking Neural Networks

SNN has emerged as a power-efficient choice for cognitive applications. SNNs are built

using bio-plausible neurons and synapses. All information flow is converted into a train of

spikes, similar to the information flow in the human brain. Refer to Fig. 6.4 . The input

spikes Vi are modulated by the synapse weight Wi. At every time-step, Vi is either ‘1’ (spiking

event) or ‘0’ (no spike), whereas Wi is a number between -1 and 1, signifying the strength

of the connection. The output from all synapses is summed up and fed to the next neuron.

The neuron keeps track of its membrane potential (Vmem), which gets updated based on the

synaptic current. Subsequently, Vmem accumulates/decays over several time-steps until it

reaches a certain threshold Vth, when the neuron emits an output spike (‘1’). This spike is

then transmitted to the neurons in the next layer. Depending on the neuron model, Vmem

dynamics differ in behavior and complexity. During the training phase, the synaptic weights

Wi undergo changes to learn the input patterns. Many spike-based learning rules have

been proposed, for example, Spike Timing Dependent Plasticity (STDP) [122], Long-Term

Potentiation [123] etc. The basic idea is to determine the correlation between the input and

output neuron spiking activities, to determine the corresponding synapse weight updates.

However, once the weights are all trained, the synaptic strengths remain unchanged during

the inference phase. These plasticity rules are the basis for unsupervised learning in SNNs.

115

6.2.3 LUT based storage in R-SRAMs and R-MRAMs

The computations required in the SNN described above rely heavily on transcendental

functions and polynomial evaluations. The dynamics of Vmem, synaptic current flow, STDP

learning, etc., all require solving differential equations with mostly exponential and higher

order polynomial evaluations. The only efficient way to compute these functions in hardware

is by the use of math tables or LUTs [124]. Taking an example of a typical STDP evaluation

in SNNs, we show how the LUTs are structured in R-SRAM/R-MRAM.

1. STDP involves a synaptic weight update, based on the time difference of post- and pre-

neurons (t = tpost − tpre). According to this empirical rule, the change in the synaptic

weight is proportional to et.

2. Range reduction: t can have an arbitrary value. Thus, t is broken into N log2
2K +r, where

K is designer’s choice that determines the size of LUT, and N is bt/ log2
2K c. Thus the

remainder r has a confined range of |r| ≤ log2
2K+1 . Thus, the exponential et is reduced to

2N/2Ker.

3. Approximation: Due to limited range of r, er can be approximated with lower order

polynomials (since er = 1 + r + r2

2! + ...).

4. Reconstruction: To evaluate 2N/2K , let N = M2K + d, where M = bN/2Kc and

d = 0, 1, 2...2K − 1. Thus 2N/2K = 2M2d/2K . Using d as a memory address to the R-

SRAM/R-MRAM, the corresponding ROM data (LUT) is fetched, which stores 2d/2K .

The exponential reduces to et = 2M × LUT (d) × er. The multiplication by 2M is a

simple shift operation in hardware.

5. The exponential et is thus used to evaluate the weight update, completing one STDP

evaluation.

Other transcendental functions and polynomials can be similarly mapped to LUTs, as

described in detail in [124]. Various LUTs are stored within the same array, as shown Fig.

6.5 . The starting address of each LUT is pre-defined and is used to perform table lookups.

116

In the example taken above, when a ‘Fetch LUT’ command is issued, two inputs are provided

− the type of LUT (exponential) and the offset (‘d’). The memory address from which the

lookup needs to be made is calculated by adding the offset to the LUT index corresponding

to the exponential LUT.

6.3 SPARE: SNN Accelerator using ROM-embedded RAMs

6.3.1 SPARE Organization

We propose SPARE, a many-core architecture designed for efficient acceleration of SNNs.

As shown in Fig. 7.3 (a), it consists of a 2 dimensional PE-array coupled with a global memory

and central control unit. A PE can perform all synapse and neuron functionalities required by

different types of SNNs. This flexibility is essential as SNN computations typically differ at

various levels - neurons, synapses and synaptic weight updates, depending on the application.

Layers of an SNN are spatially partitioned across different PEs depending on the network

size. The number of neuron state variables and synaptic weights each PE can store is limited

by the memory contained within each PE. Based on the network size, number of PEs mapped

to each layer are specified.

The SNN computation occurs in time-steps. At each time-step, the neuron firing data

is transfered from one layer to the next. Input data spikes (for a given time-step) stored in

the global memory are broadcast over the shared bus. Subsequently, the PEs mapping the

first layer of the SNN start buffering the data and execute their SNN partition. Once spikes

for the first layer have been transmitted, the spikes for the next layer are broadcast, and

PEs mapped to second layer start their computations, and so on. All synaptic data is stored

locally within each PE. Once the layer-1 PEs finish their execution, their output data (spikes)

are written back to the global memory. Subsequently, data from all PEs is written back

into the global memory, layer by layer. Consequently, this successive data transfer (neuron

data) between global memory and PEs realize a time-step of SNN computation. It’s worth

noting that only neuron data movements occur between PEs and global memory, whereas

the synapse data is locally read from the PE’s RAM. This reduces the data movements

in SPARE compared to a von-Neumann machine which would involve moving both neuron

117

Window
split

PE1

PE2

PE3 Output
merge

. .
 .

PEn

. . .

. .
 .

. .
 .

Input Map Output Map

. . .

. .
 .

. .
 .

. . .

. .
 .

. . .

PE1
PE2

PEn

Figure 6.7. Mapping of CNNs in SPARE: The input map is window-split
based on the kernel size of the particular layer. These are then broadcast to
all PEs mapped to that layer. Each PE stores different kernels, and process the
data in parallel as they receive the inputs in a window split-manner. Each PE
computes part of the output feature map, highlighted through color coding of
PEs in figure. The output is rearranged and stored back to the global memory
unit.

and synapse data between the global memory and the computation core. Additionally, this

reduction is extremely significant as typical SNNs have 1000× more synapses than neurons

[125].

We extend this approach to map convolutional neural networks (CNNs) using SPARE.

CNNs have been shown effective for image classification tasks, achieving state-of-the-art

accuracies, occasionally surpassing human performance [52], [53]. The standard architecture

consists of alternate convolutional (c-) and spatial-pooling (s-) layers, followed by a final fully-

connected (fc-) layer. Each convolutional layer hierarchically extracts complex features from

the input image. This is done by using shared weight kernels that perform a convolution

operation on the input image. The output of one convolutional layer becomes the input

of the next. Thus, the kernels in the first convolutional layer learn low-level features, for

example, edges and corners, while in deeper layers, they learn high-level features, using these

low-level features as inputs. A spatial-pooling layer is added in between two convolutional

layers to reduce the dimensions of the convolutional feature maps. This layer maintains the

depth of the input map, however reduces the spatial dimensions. Finally, a fully-connected

layer is used to determine the output class of the input image. Fig. 6.7 shows how the

118

Fetch Vmem

Reset Vmem

Write to Output Buffer

Fetch Input

Buffer

IDLE

Update Weights

Fetch Weights

PLASTICITY MODEL
(If Training)

Fetch Vmem

Evaluate
𝑑𝑉𝑚𝑒𝑚

𝑑𝑡

Update Vmem

NEURON MODEL

Fetch Weights

Fetch LUT value (ROM)

Evaluate Synaptic

Output Current

SYNAPSE MODEL

A
ll o

u
tp

u
t n

e
u

ro
n

s

> Vthresh

Next time-step

S
im

u
la

tio
n

c
o

m
p

le
te

== ‘1’

== ‘0’

A
ll
 o

u
tp

u
t

n
e
u

ro
n

s

< Vthresh

A
ll
 i

n
p

u
t

n
e
u

ro
n

s

Fetch LUT value (ROM)

Fetch LUT value (ROM)

Figure 6.8. Logical flow diagram of the event controller, describing SNN
computations performed in the PE. The subsequent computation is subdivided
into three main blocks. 1) Synapse model block: computes output synaptic
current. 2) Neuron model block: keeps track of the membrane potential of
output neurons. 3) Plasticity model block: updates synaptic weights during
the training phase. This block is skipped during the inference phase.

convolutional layer can be mapped to SPARE. The input map is split using a small window

that strides throughout the image. The window size is governed by the kernel size of that

layer. Input spikes are broadcast to the PEs in this window-split manner (instead of pixel-by-

pixel manner), where each PE stores a different kernel of that layer. Thus, each PE computes

part of the output feature map, which is then merged and stored in the global memory unit,

as shown in the figure. Layer parameters (for example, stride, kernel size and number of

output maps) are programmed into the global control unit to implement this ‘window-split

119

Layer1 processing image 3

Layer2 processing image 2

Layer3 processing image 1

Layer1 processing image 4

Layer2 processing image 3

Layer3 processing image 2

Time →

Data Receive Compute Data Send

Figure 6.9. Timing diagram illustrating the inter-layer pipelining in SPARE.
As soon as the PEs receive and buffer the input data, they start processing.
Meanwhile, data for PEs mapped to subsequent layers is transmitted. Since
the data transfer time is small compared to the computation time within the
PE, all PEs process data in parallel.

input broadcast’ and ‘output merge’ in the global memory. Note that the s- and fc- layers

can be configured as c- layers, with appropriate parameters. For s- layer, the parameters are:

stride = 2, kernel size = 2x2, number of output maps = number of input maps. Whereas for

an fc- layer, stride = 0, kernel size = input feature size, number of output maps = number of

output neurons. Thus, the proposed architecture is a generalized programmable architecture

that maps convolutional, spatial pooling as well as fully-connected layers.

6.3.2 Inter-layer pipelining

SPARE enables a pipelined execution of layers in an SNN to exploit the available inter-

layer data parallelism. Layers of SNN are mapped across the 2-dimensional PE array. Hence,

while layer-2 PEs are computing the nth input image, layer-1 PEs compute the (n+1)th input

image and so on. Data communication between layers of SNN are achieved by scatter and

gather operations initiated by the SPARE control unit (see Fig. 7.3 (a)) to move data between

global memory and PE-array. SPARE control unit stores the mapping information between

120

SNN layers and PEs. A gather operation for a layer collects the output data computed by

the PEs mapped to the specific layer and stores it in the global memory. Scatter operation

for a layer sends the input data to the required PEs. It is important to note that data

communication in SNNs is of feed-forward nature where PEs mapped to layer-n will only

send data to PEs mapped to the subsequent layer-n+1 and so on. Hence, we do not support

a dedicated on-chip network for all PE-to-PE communication due to the associated area and

power overheads. Our “in-memory” nature of computing results into PEs spending more

time in computation (within PE) rather than sending and reeving data from global memory.

Hence, our inter-layer communication based on a shared resource (global memory) doesn’t

lead to performance issues due to the natural pipelining obtained as shown in Fig 6.9 .

6.3.3 Processing Element (PE)

As shown in Fig. 7.3 (b), PE contains a computing core to perform SNN computations

and a memory unit to store the neuron-synapse models, state variables and LUTs. The

memory unit (RAM and ROM) and the computation core within the PE localize most of the

data movements required for computing the output neurons (mapped to the PE), thereby

enabling “in-memory processing”. While RAM houses all the synaptic weights and state

variables required for the output neuron computations, the ROM stores the LUTs required

for modeling synapse, neuron and synaptic weight update computations. Consequently,

the higher storage density enabled by ROM-embedded RAMs (smaller memory size) and

the resulting reduction in data movements increases the computation efficiency and reduces

overall energy consumption. The computational flow in a PE and a step-by-step procedure

for typical SNN computation is illustrated in Fig. 6.8 . It consists of three main blocks: 1)

Synapse model, 2) Neuron model and 3) Plasticity model. The event controller checks the

head of the input spike buffer, and both the Synapse and Neuron blocks are skipped if the

input is ‘0’, thereby leveraging the benefits of event-driven computing in SNNs to achieve

energy-efficiency. Similarly, the Plasticity block is skipped if the Vmem is less than the

threshold (no synaptic weight update). PEs are modeled as extended finite-state machines.

As soon as the PE receives the broadcast of spikes corresponding to its layer tag, it starts

121

Fetch Vmem

Fetch LUT value

Evaluate

Update Vmem

a) Leaky Integrate Fire

Synaptic Output Current

b) Izhikevich

Fetch U,Vmem

Fetch LUT value

Evaluate

Update U,Vmem

(x2, each for U,Vmem)

Synaptic Output Current

Fetch Vmem

c) Hodgkin-Huxley

Fetch LUT value

(x6, each for)

Where are functions of Vmem

Fetch m,n,h

Evaluate

Fetch LUT value

(x3, each for iNa, iK, il)

Evaluate

Update m,n,h,Vmem

Synaptic Output Current

Figure 6.10. Differential equations describing the dynamics of neurons and
an LUT based approach to implement them in SPARE. (a) Leaky-integrate-fire
neuron (b) Izhikevich neuron (c) Hodgkin-Huxley neuron

computing. Thus, effectively all PEs run in parallel, exploiting data-parallelism and inter-

layer pipelining. Since the input spikes are broadcast to all PEs, each PE performs the

SNN computation corresponding to the neuron and synapses it is mapped to. Since SPARE

localizes data-movement through in-memory computing, the same memory storage unit also

contains the LUTs used in SNN computations allowing a simple and compact PE design.

122

Design Energy (pJ) Latency (ns) Leakage

(mW)RAM Read RAM Write ROM Read RAM Read RAM Write ROM Read

SRAM 38.42 33.39 38.42 0.53 0.53 0.53 74.89

R-SRAM 16.99 14.48 62.94* 0.418 0.418 1.254* 40.92

STT-MRAM 35.48 146.31 35.48 1.18 10.34 1.18 0.72

R-MRAM 17.93 73.37 17.93 1.16 10.32 1.16 0.48

Figure 6.11. Energy and latency for read-write accesses from all designs
considered − SRAM, R-SRAM, STT-MRAM, and R-MRAM. (* ROM Read
for R-SRAM includes additional overhead of buffering RAM, retrieving ROM
data and storing back the buffered RAM data, as described in Section 6.2.1).

Parameter Value

Frequency 1 GHz

Technology node 45 nm

Memory unit 32KB ROM-embedded RAM

Buffer depth 32

Synapse weight precision 8-bit

Neuron Vmem precision 8-bit

Data width 32-bit

ALU registers 32-bit fixed point

PE core static power 1.311 mW

Figure 6.12. uArchitecture design parameters used for simulations.

6.3.4 Modeling complex neuro-synaptic functionality

Most neuron-synapse models have complicated differential equations, and heavily use

higher order polynomials and transcendental functions. This makes them highly suitable for

an LUT based storage in ROM-embedded RAMs. Thus, our PE incorporates any model

needed by the SNN application without much area overhead. To illustrate this, dynamics

of three different neuron models - LIF [126], Izhikevich [127], and Hodgkin-Huxley (HH)

[128] are shown in Fig. 6.10 . Each model can be implemented in SPARE, by modifying the

‘neuron model’ block in the state diagram (see Fig. 6.8), with corresponding alterations. As

shown in Fig. 6.10 (c), the HH model is described by 7 differential equations, with 4 state

123

Benchmark Network Configuration # PEs Memory (MB) RAM content ROM content

MNIST-1 784 x 400 16 0.5

Synaptic weights
State variables ()

Spiketimes

Synapse model: as a function of weights

Neuron model (LIF):

as a function of

Neuron model (HH): as a function of
 as a function of (x=m,n,h)

Plasticity block: exponential LUT for STDP learning

MNIST-2 784 x 1600 50 1.56

MNIST-3 784 x 6400 200 6.25

MNIST-4 784 x 1200 x 1200 x 10 100 3.125

CIFAR10 32x32x3-24c5-2s-

80c5-2s-10o

220 6.875 Kernel weights
State variables ()

Figure 6.13. SNN benchmarks used in SPARE evaluation [118], [129]. The
figure tabulates the number of PEs required, memory requirement, and the
RAM/ROM content for each benchmark and neuron model.

variables - Vmem, m, n and h. Firstly, we need 4 RAM fetches to read the state variables. To

update m, n, and h, we need a total of 6 ROM fetches, each for αm,n,h, βm,n,h. Next, we need

to evaluate higher order polynomials (also stored in LUTs) in order to calculate iNa,K,l. Thus,

a total of 9 ROM fetches, 4 RAM fetches and 4 RAM updates per spike per time-step are

required for HH model, in contrast to 1 ROM fetch, 1 RAM fetch and 1 RAM update in case

of a simple LIF model. However, the overall data flow diagram remains unchanged. A similar

approach can be used to implement various synapse and plasticity models, by modifying the

synapse and plasticity blocks, respectively. As the models become more complex, more LUTs

are required to store multiple polynomial functions and math tables. Moreover, the number

of ROM and RAM fetches also increase. SPARE addresses both these issues since the ROM-

embedded RAM primitive allows extra ROM for LUT storage, thereby allowing a compact

memory unit. Data-localization in SPARE along with the compact memory storage unit

enables a lower energy/latency per ROM/RAM access.

6.4 Experimental Methodology

PE was modeled at the Register Transfer Level (RTL) in Verilog and synthesized to IBM

45nm technology library using Synopsys Design Compiler to estimate the power and area

consumptions. R-SRAM and R-MRAM (memory units) were modeled using Cacti [76] and

NVSim [130], respectively, for the corresponding RAM sizes at 45nm technology node. Sub-

sequently, we account for the modified ROM access cycles and peripheral circuits described

in Sec. 6.2.1 . Fig. 6.11 summarizes the RAM/ROM read-write energy and latency obtained

124

from simulations for SRAM, R-SRAM, STT-MRAM and R-MRAMs. Cycle-accurate RTL

simulations were performed to get estimates of memory (RAM, ROM) access traces and sub-

sequently, the overall energy consumption per classification. Fig. 6.12 summarizes various

µ-architecture parameters used for the simulations.

We analyze the energy, performance and area benefits of SPARE on MNIST dataset

[102] and CIFAR-10 dataset [103]. For an apples-to-apples comparison, we use a similar

architecture built with PEs comprised of typical RAM and STT-MRAM as our baselines

(without ROM-Embedded RAM capability). Additionally, to demonstrate system scalability,

we benchmark SPARE with various network sizes of different scales, varying from 1184 to

36602 neurons. Fig. 6.13 tabulates the benchmarks chosen [118], [129], [131], and the

number of PEs required in each case. Note that benchmarks ‘MNIST-1,2,3’ are typical two-

layer SNNs, that can be trained using STDP learning [129]. The input layer has 784 neurons,

each corresponding to an input pixel in the image. The output layer has 400, 1600 and 6400

neurons for benchmark ‘MNIST-1,2 and 3’ respectively. For deep spiking networks beyond

two-layers, there hasn’t been any successful attempt to generalize a training algorithm in the

spiking domain. However, [118], [131] show that off-line training of the network using DNN

techniques (standard back-propagation algorithm) and converting the trained network to an

SNN does not incur significant performance degradation. Thus, to evaluate SPARE on deep

networks, we use benchmarks ‘MNIST-4’ and ‘CIFAR10’, in the inference phase. ‘MNIST-4’

is a deep multi-layered, fully connected SNN converted from a trained DNN [118]. It consists

of an input layer of 784 neurons, followed by two hidden layers with 1200 neurons each, and

finally an output layer of 10 neurons. Benchmark ‘CIFAR10’, on the other hand, is a deep

convolutional neural network converted from a trained CNN (32x32x3-24c5-2s-80c5-2s-10o).

The CNN has two convolution (c-) and two spatial-pool (s-) layers arranged alternately,

followed by a fully-connected (fc-) output layer. The dimension of input image is 32x32x3.

The first c- layer consists of 24 kernels of size 5x5x3. The following s- layer has kernels with

size 2x2. The second c- layer has 80 kernels of size 5x5x24, followed by another s- layer with

kernel size 2x2. The final layer has 10 neurons, fully connected to the previous layer. In

all our simulations, we use the LIF neuron model along with the exponential STDP based

plasticity for the training phase.

125

0

0.5

1

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Inference

RAM ROM Rest

SRAM
R-SRAM
STT-MRAM

R-MRAM

MNIST1 MNIST3MNIST2
fp=0.4 1 0.4 1 0.4 10

1

2

3

4

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n
Training

RAM ROM Rest
SRAM
R-SRAM
STT-MRAM

R-MRAM

MNIST1 MNIST3MNIST2
fp=0.4 1 0.4 1 0.4 1

100

200

200

400

600

800

Figure 6.14. Normalized energy consumption for a) Training phase and b)
Inference phase, for benchmarks ‘MNIST1-3’. The simulations are performed
for max firing rate fp = 0.4 and 1. The energy bars are further split into RAM
(read/write energy + leakage), ROM (read energy + leakage) and Rest (core
energy). The energy values are normalized to the common base reference.

Input spike trains were generated from the input image pixels based on the rate-coding

approach used in [132]. Each image is split-up into several time-steps, each conveying the in-

put firing activity. We analyze the benefits of SPARE towards leveraging SNN data sparsity

(event-drivenness) by analyzing each SNN on different input maximum firing rates, fp = 0.4

and fp = 1 [131]. Kindly note that we use the SNN size and dataset statistics only for

exploring system scalability and benefits of in-memory computing for training and testing

SNNs. Mapping of these networks to the proposed architecture doesn’t lead to any degra-

dation in the classification accuracy. Readers are referred to [118], [129], [131] to explore the

classification accuracy achieved in the benchmarks used.

6.5 Results

6.5.1 Energy

A common base reference was used to normalize all energy numbers obtained through

simulations such that the minimum energy consumption bar (Inference of MNIST-1 for R-

MRAM with fp=0.4) represents 1. All other energy bars in Fig. 6.14 , Fig. 6.15 , and Fig.

6.17 are normalized to this value. Fig. 6.14 shows the energy consumption for benchmarks

‘MNIST-1,2,3’, both for training and inference phases. Each bar shows the total energy,

126

0

2

4

6

8

10

12

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Deep networks - Inference

RAM ROM Rest

SRAM
R-SRAM
STT-MRAM

R-MRAM

MNIST4 CIFAR10

fp=0.4 1 0.4 1

400

800

1200

1600

2000

2400

Figure 6.15. Normalized energy consumption for benchmarks ‘MNIST4’ and
‘CIFAR10’. The simulations are performed for max firing rate fp = 0.4 and
1. The energy bars are further split into RAM (read/write energy + leakage),
ROM (read energy + leakage) and Rest (core energy). The energy values are
normalized to the common base reference.

which is further split into three sub-components 1. RAM (access + leakage) 2. ROM (access

+ leakage) and 3. Rest (Core - buffer, control, compute). The following observations can

be drawn from Fig. 6.14 . 1) It can be seen that an increase in the maximum firing rate (fp)

results in increased overall energy consumption across all datasets. This is because a higher

firing rate results in increased number of spikes. Consequently, this increases the number

of RAM/ROM accesses, thereby decreasing the benefits from event-driven computing in

SPARE. This also increases the overall computations as more synapses will be accumulated

over the output neurons. This underscores the effectiveness of SPARE in drawing benefits

from the data sparsity in SNNs. 2) The total energy consumption in the inference phase

is lower compared to the training phase because the Plasticity block (refer Fig. 6.8) is

skipped during the inference phase, as described in Sec 6.3.3 . 3) The energy consumption

with STT-MRAM technology is more than ∼ 2× less, compared to CMOS based memory

technology.

This was expected since STT-MRAM is a NVM, thus, leakage due to memory is close

to 0. Although writing into STT-MRAM is expensive compared to CMOS, the near-zero

127

leakage is a dominant factor in reducing the energy consumption. 4) Using R-SRAM and

R-MRAM as the memory units in the PE, we obtain, 1.71×, and 1.76× reduction in energy

consumption on an average, compared to CMOS SRAM and STT-MRAM, respectively. This

is a direct consequence of increased storage density (or, smaller area for iso-bytes) provided

by ROM-embedded RAMs. A smaller memory reduces the access energy and the leakage,

thereby leading to energy benefits. However, note that for iso-area, higher storage density

(through ROM-embedded RAMs) allows bigger on-PE storage, eliminating data movements

required from external memory (in case of typical RAM). This leads to energy benefits.

Note that we have used iso-storage PEs in our simulations to evaluate the energy benefits.

5) The energy improvement in STT-MRAM technology is greater compared to CMOS due

to a simpler ROM retrieval process in R-MRAMs compared to R-SRAM (refer Sec. 6.2.1).

R-SRAMs require additional steps in buffering the RAM data, for each ROM access, which

is not required in R-MRAMs.

Moving to deeper networks, Fig. 6.15 shows the energy consumption for deep networks,

illustrating the scalability of SPARE towards executing SNN workloads. A few additional

observations can be inferred: 1) Benchmark ‘MNIST4’ being a deeper extension of ‘MNIST1-

3’, obtains similar improvements of 1.65×, and 1.77× reduction in energy consumption for

CMOS and STT-MRAM technologies, respectively. 2) For a deep convolutional network

(‘CIFAR10’), the improvements are 1.70× and 1.31×, for CMOS and STT-MRAM, respec-

tively. CNNs are more compute-intensive compared to memory-intensive fully connected

networks [133]. Thus, more energy is spent in computations, compared to the memory

transactions. Thus, the energy consumed by the core and the memory leakage energy are

significant. For the CMOS case in benchmark ‘CIFAR10’, the memory leakage overwhelms

the core energy consumption (see Fig. 6.15), whereas in STT-MRAM, the core energy

consumption overwhelms the memory energy (no leakage!). Due to this reason, the im-

provement of using R-MRAMs is suppressed in CNNs. Comparing only the memory energy

consumption (RAM+ROM), we still obtain ∼ 2× improvement for R-MRAMs, however,

the core energy being dominant reduces overall benefits. Note that using the STT-MRAM

technology itself decreases the energy consumption by an order of magnitude compared to

CMOS. Thus, we conclude that using R-SRAMs over typical SRAMs as compute units lead

128

0

0.1

0.2

0.3

p
e

r-
P

E
A

re
a

(m
m

2
)

PE Area

Mem Core

SRAM R-SRAM STT-MRAM R-MRAM

Figure 6.16. per-PE area with SRAM, R-SRAM, STT-MRAM and R-
MRAM as memory units (for iso-storage).

0

0.5

1

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Inference with HH Neurons

RAM ROM Rest

0

2

4

6

8

10

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Inference with HH Neurons

RAM ROM Rest
SRAM
R-SRAM
STT-MRAM

R-MRAM

MNIST1 CIFAR10MNIST2 MNIST3 MNIST4

SRAM
R-SRAM
STT-MRAM

R-MRAM

100

200

400

800

1200

1600

2000

Figure 6.17. Normalized energy consumption for using Hodgkin-Huxley neu-
ron models on SNN benchmarks. The simulations are performed for max firing
rate fp = 0.4. The energy bars are further split into RAM (read/write energy
+ leakage), ROM (read energy + leakage) and Rest (core energy). The energy
values are normalized to the common base reference.

to ∼ 1.7× improvement in energy for both fully-connected networks and convolutional net-

works. Whereas, using R-MRAMs over typical STT-MRAMs lead to ∼ 1.75× improvement

for fully-connected networks, and ∼ 1.3× for CNNs.

129

6.5.2 Area

By using R-SRAMs and R-MRAMs in PEs, 1.95× and 1.91× area benefits are achieved

on a per-PE basis, for R-SRAM and R-MRAM, respectively, shown in Fig. 6.16 . This

is because ROM-embedded RAM effectively provides extra ROM with no area overhead.

Moreover, the PE area is dominated by the memory unit, since the core (buffers, controller

and computation core) consumes a small portion of the total area. The area consumption

of the shared bus and global memory are insignificant with respect to the total PE area

(hundreds of PEs used in benchmarks - see Fig. 6.13). This translates to SPARE being

more area-efficient compared to a normal-RAM based system.

6.5.3 Performance

In the previous section, we observed a reduction in PE area by a factor of 1.91 − 1.95×

by using R-SRAMs/R-MRAMs, due to higher storage density provided by ROM-embedded

RAMs. For a given chip area (iso-area), we can fit about twice as many PEs that use R-

SRAM and R-MRAM compared to typical SRAMs and STT-MRAMs, respectively, by using

smaller memory sizes. Computations (neurons in a layer) can be split between more PEs,

translating to 1.91 − 1.95× performance benefits. Note that we assume a ROM:RAM ratio

of 1:1. This is reasonable for SNN computations due to extensive LUT demands arising from

various math function requirements. However, if the designer wishes to decrease the ratio

(at the cost of lower precision of LUTs and lower flexibility with respect to neuro-synaptic

functionalities), the performance improvement would be smaller, as the ratio decreases.

6.5.4 Complex neuro-synaptic models

We expect to achieve higher benefits in mapping more complicated neuro-synaptic mod-

els, due to increased LUT storage demands and ROM accesses per classification. In litera-

ture, usage of complicated models, such as the Hodgkin-Huxley (HH) and Izhikevich neuron

models, is limited to biological experiments, and no references report a decent classification

accuracy in using such models in SNN classification tasks. However, in order to evaluate

130

SPARE for more complex models, we estimate the energy benefits of using HH neuron model

for the same benchmarks used before. Note that the level of complexity of the differential

equations increases from LIF to Izhikevich to HH, as described earlier in Section 6.3.4 . For

LIF, 1 ROM fetch, 1 RAM write, and 1 RAM read is required per computation. For Izhike-

vich, 2 ROM fetches, 2 RAM writes, and 2 RAM reads are required. While for HH, 9 ROM

fetches, 4 RAM writes, and 4 RAM reads are needed. Thus, it is trivial that the energy

consumption would increase as we go from LIF to Izhikevich to HH. To avoid clutter, we

only compare the two extreme cases (LIF and HH), to evaluate SPARE with complex neu-

ron models. Fig. 6.17 shows the normalized energy consumption for the inference phase for

MNIST and CIFAR10 datasets, using the HH neuron model at max firing rate fp = 0.4.

Note that these are only projected values showing the energy profiles in using HH neurons for

SNN workloads. The following observations can be inferred: 1) The energy consumption is

higher, as compared to the LIF neuron implementation, throughout all datasets. Moreover,

energy spent in ROM accesses is higher than RAM accesses. This is a direct consequence

of additional RAM and ROM fetches (9 ROM fetches, 4 RAM fetches, 4 RAM updates per

spike per timestep) involved in solving complex differential equations for HH neurons. 2)

For fully connected networks, we obtain 1.45× and 1.84× reduction in energy consumption

on an average, for R-SRAMs and R-MRAMs compared to CMOS SRAM and STT-MRAM,

respectively. While for convolutional networks, we obtain 1.67× and 1.4× reduction. Note

that the corresponding improvements in energy are higher for R-MRAM technology, but

lower for the R-SRAM technology, compared to the LIF neuron case (Sec. 6.5.1). This

is due to the fact that R-SRAMs have additional overhead in ROM retrieval process, as

described earlier. Since HH neurons involve lots of ROM accesses, this overhead leads to

a reduction in energy improvements. While for R-MRAMs, since the overhead is minimal,

increased ROM accesses leads to higher energy benefits.

6.6 Conclusion

We presented SPARE, an architecture utilizing the ‘in-memory processing’ abilities of

ROM-embedded RAM to enable efficient acceleration of SNNs. Each processing unit in

131

SPARE does event-driven processing in order to leverage the benefits from input data sparsity

in SNNs. We analyzed trade-offs of using CMOS based R-SRAMs and STT-MRAM based

R-MRAMs as memory units in SPARE for different types of networks. Our experiments

on various SNN benchmarks for image classification applications reveal that R-MRAMs are

suitable for mapping fully-connected networks compared to typical STT-MRAM arrays with

∼ 1.75× lower energy, while R-SRAMs are suitable for mapping CNNs compared to typical

SRAM arrays with ∼ 1.7× lower energy. R-SRAM and R-MRAM achieve ∼ 1.9× reduction

in area for iso-storage. Moreover, for iso-area, R-SRAMs and R-MRAMs can achieve ∼ 1.9×

improvement in performance, given required data parallelism (neurons in a layer) is available.

SPARE also provides the necessary programmability to execute a variety of synapse, neuron

and plasticity models thereby, enabling designers to deploy SNNs based on the application

requirements. SPARE thus underscores the applicability of ROM-embedded RAM based

in-memory hardware primitives in efficient cognitive computing.

132

7. A 65-NM DIGITAL COMPUTE-IN-MEMORY MACRO

ENABLING SPIKE-BASED SEQUENTIAL LEARNING IN 10T

SRAM ARRAY

7.1 Introduction

Spiking Neural Networks (SNNs) aim to harness the inherent energy-efficiency arising

from highly sparse and event-driven spike-based information processing [134]. SNN algo-

rithms continue to develop rapidly, achieving image classification accuracies close to state-

of-the-art [135]. The SNN approach uses binary inputs and outputs (1−spike, 0−no spike)

over several timesteps, unlike traditional ANNs. More importantly, the neuron membrane

potential plays a key role which defines each neuron’s current state, thereby allowing SNNs

to process dynamical (temporal) aspects in the data. This makes them suited for sequential

learning tasks, avoiding the complexity of recurrent neural networks, such as Long Short-

Term Memory (LSTM). Fig. 7.1 illustrates the processing of sequential inputs in both LSTM

and SNN. In LSTM, the hidden state (h, C) stores information about all past inputs the net-

work has seen before [136]. To enable this, the previous hidden state is fed back as input

through a recurrent connection along with the current input. Whereas, in SNNs the inherent

recurrence in membrane potential acts as a memory to store information about past inputs.

Each LSTM layer has 4(mn + n2) parameters, compared to mn parameters in an SNN layer,

where m and n are input and output dimensions, respectively.

However, processing of membrane potential over several timesteps incurs additional

memory-access bottlenecks, specific to SNNs [137]. The main challenges in current SNN

hardware accelerators are: (1) Significant energy consumption due to data movements from

weight and membrane potential SRAMs to compute units. (2) They support limited SNN

functionality due to the adoption of custom neuron circuitry, which are power and area

expensive, making them restricted to simpler tasks. These are illustrated in Fig. 7.2 .

To overcome these challenges, we propose IMPULSE [138]: (1) an SRAM-based CIM

macro which integrates all instructions required for SNN inference such as accumulate,

thresholding, spike-check and reset, within the fused WMEM and VMEM memory, thereby

133

Figure 7.1. (a) LSTM having hidden state (ht, Ct) for processing sequen-
tial tasks. (b) Intrinsic temporal dynamics of neuron membrane potentials
(Vt

MEM) in SNNs for processing sequential tasks.

Figure 7.2. Limitations of current digital SNN hardware accelerators and
our proposed approach of fused weight and membrane potential CIM SRAM.

reducing on-chip SRAM accesses. (2) Support for multiple types of neurons through the

same in-memory instructions integrate-fire (IF), leaky-IF (LIF), and residual membrane

potential (RMP) [139] neurons. (3) A staggered data mapping and reconfigurable column

peripherals for maintaining different bit-precision requirements of WMEM and VMEM, while

allowing full utilization of the array and column peripherals.

7.2 IMPULSE: Structure and Operation

We use a differential 10T-SRAM cell with decoupled read-write port. The triple-row

decoder can take three addresses and enables two RWLs and one WWL simultaneously.

During the CIM operations, the RBL gives NOR/OR, while RBLB gives NAND/AND, of

134

Figure 7.3. (a) Organization of the fused WMEM/VMEM 10T-SRAM macro.
(b) Mapping of FC and Conv layers on the proposed macro.

the data from the two enabled RWL rows. Fig. 7.3 (a) shows the overall organization of

the macro. Each of the 128 rows in the WMEM subarray corresponds to an input neuron,

storing twelve 6-bit signed weights. Each row has two read wordlines (RWLo/RWLe) and

the weights are interleaved, such that the first six bits are on RWLo, next six on RWLe, and

so on. In each cycle, either of RWLo or RWLe are enabled. The VMEM subarray contains

32 rows with single RWL, each row storing six signed values. The VMEM corresponding

to odd and even weight columns are stored in different rows with a staggered alignment.

This mapping technique compactly handles the different precision requirements for weights

(6-bit) and VMEM (11-bit), with full utilization of all column peripherals in each odd/even

135

Figure 7.4. Detailed description of the reconfigurable column peripherals.

cycle. The two subarrays are fused through common bitlines. Fig. 7.3 (b) illustrates how

fully-connected (FC) and convolutional (Conv) layers can be mapped to the macro.

7.2.1 Reconfigurable Column Peripherals

Fig. 7.4 describes the column peripherals in detail. Each set of bitlines (RBL,RBLB,WBL,WBLB)

connects to a column peripheral circuitry. The data on RBL/RBLB is sensed and latched

using the sensing inverters (SINV). The bitwise logic full adder (BLFA) is designed to gener-

ate SUM and COUT using these bitwise signals. SUM is fed to the conditional write-driver

(CWD), to be written into the enabled WWL destination row, while COUT is forwarded to

the adjacent column peripheral for the accumulate operation, forming a ripple-carry adder.

The modular design of the adder using BLFAs from each column peripheral allows re-

configurability during odd/even cycles. To account for the staggered data mapping, each

column peripheral can be reconfigured in carry forward (CF), carry skip (CS), LSB and

MSB modes, with the help of Carry-MUXes (CMUX), as shown in Fig. 7.4 . For example,

during odd cycle, Col[0-11] form one adder, Col[12-23] forms another, and so on. Whereas

136

Figure 7.5. Illustration of supported in-memory SNN instructions.

during even cycle, Col[6-17] form one adder, Col[18-29] form another, and so on. It’s worth-

while to note that the sixth bit of VMEM aligns with MSB of the weight (Wsign), and needs

to be kept ‘0’ to correctly read Wsign (hence, 11-bit VMEM). CS block forwards this Wsign

to the next six column peripherals for performing the full 11-bit accumulate operation.

7.2.2 In-Memory SNN Instructions

Fig. 7.5 shows the supported in-memory SNN instructions. In Accumulate-W-to-V

(AccW2V) instruction, depending on which input neuron spikes, the corresponding RWL

from the WMEM block (RWLo in odd cycle, RWLe in even cycle), and one RWL and one

WWL from the VMEM block are enabled simultaneously. Thus, 6-bit weights and 11-bit

membrane potentials are accumulated and updated simultaneously, along the whole row.

Similarly, AccV2V (not shown) accumulates two VMEM rows. During the SpikeCheck in-

struction, two RWLs from the VMEM blocks are enabled, one corresponding to the membrane

potential to be checked, and other storing the threshold. The adders formed by the column

137

Figure 7.6. Multiple neurons can be implemented using in-memory instructions.

peripherals act as comparators in this case, by checking if the sum is greater or less than

0. This can be achieved by checking the COUT from MSB column peripheral, which is

then utilized in setting the corresponding spike buffer if the membrane potential exceeds the

threshold. Subsequently, the ResetV instruction follows the SpikeCheck instruction. During

ResetV, one RWL and one WWL are enabled in the VMEM block corresponding to the reset

value and the destination membrane potential, respectively. The BLFA is bypassed in this

instruction, and the reset value read in the SINV block gets directly transferred to the CWD

block. The spike buffers determine whether the CWD drives the WBLs/WBLBs or leaves

them precharged, thereby conditionally writing into only those membrane potentials in a row

which have spiked. Thus, during the SNN inference, each input spike translates to AccW2V

(odd and even) instruction for accumulating weights to membrane potentials. At the end of

each timestep, the neuron output is computed using SpikeCheck and ResetV instructions,

thereby generating output spikes. This process is repeated for all timesteps.

138

Figure 7.7. Die micrograph, area breakdown, and Shmoo plot for CIM operations.

7.2.3 Multiple Neuron Functionalities

Fig. 7.6 illustrates the characteristics of various neuron models, and how they can be

implemented on IMPULSE through a combination of SpikeCheck, AccV2V, and ResetV

instructions. The IF neuron can be implemented simply by using SpikeCheck and ResetV

instructions as described in the previous section. The LIF neuron characteristics adds a ‘leak

factor’, which can be incorporated by using AccV2V instruction to subtract the ‘leak’ value

from the membrane potential, before using SpikeCheck and ResetV instructions. The RMP

neuron [139], on the other hand, uses a soft reset, where the threshold value is subtracted from

the membrane potential if it spikes, instead to resetting it. Thus, it can be implemented by

using the AccV2V instruction after SpikeCheck, instead of ResetV. The figure also tabulates

the measured energy per neuron-update at 200MHz clock and 0.85V supply.

7.3 Implementation Results

The prototype test chip was fabricated in 65nm CMOS technology (Fig. 7.7). It achieves a

54.2% memory area efficiency. Fig. 7.7 also shows the Shmoo plot for the CIM instructions.

Fig. 7.8 (a) plots the measured average power consumption and the energy-efficiency for

AccW2V instruction (which is the main synaptic operation), for various possible operating

points of interest identified on the CIM Shmoo (A-G). It can be observed that point D

139

Figure 7.8. (a) Measured average power and energy-efficiency for AccW2V in-
struction. (b) SNN architecture and accuracy on IMDB and MNIST datasets.

(200MHz clock and 0.85V supply) achieves optimal energy-efficiency with 0.99 TOPS/W for

AccW2V (1 op = 11-bit operation). Other instructions − AccV2V, ResetV, and SpikeCheck

achieve 1.18, 1.02, and 1.22 TOPS/W, respectively, at point D.

We train an SNN with an input layer (100 neurons), two FC layers (128 neurons), and

an output layer (1 neuron) to classify movie reviews from IMDB dataset [140]. SNN has

6-bit signed weights, and 11-bit VMEM with RMP neurons. Each word in the sentence is

converted to a 100-d vector, and presented to the SNN for 10 timesteps. SNN is trained

with surrogate-gradient based backpropagation with threshold and leak optimization [135].

The input layer acts as spike-encoder and the two FC layers are mapped successively on

IMPULSE. The macro runs one layer at a time: the output spikes of the nth layer obtained

from the chip are stored in the external memory and streamed back to compute the n+1th

layer using FPGA. The SNN achieves an accuracy of 88.15%, close to a corresponding 2-

layer LSTM network (Fig. 7.8 (b)). Fig. 7.9 shows the dynamics of output layer neuron’s

membrane potential capturing the sentiment as the words are presented. VMEM value above

zero represents positive sentiment and vice-versa. We also trained an SNN with modified

LeNet5 architecture to demonstrate image classification from MNIST dataset and achieved

98.96% accuracy with 10 timesteps. The first Conv layer acts as a spike-encoder, while

Conv2,3 and FC1,2 are successively mapped on IMPULSE. Note that input channels for

140

Figure 7.9. Progression of the final output neuron’s membrane potential with
timesteps, where each word is presented to the SNN for 10 timesteps.

Conv layers were kept 14 with 3×3 kernel size to restrict the fan-in to 128 (3×3×14=126),

to fit our macro. Similarly, the number of neurons in FC layers was kept ≤128.

Fig. 7.10 (a) plots the average sparsity in the spikes observed at each layer for each of the

10 timesteps. Note that these are averaged over each word and each image of the IMDB and

MNIST test dataset, respectively. The overall sparsity of ∼85% is achieved in both cases,

which leads to significant energy improvements. The proposed macro exploits the input-

spike sparsity in SNNs since the number of spikes determine the number and sequence of

instructions executed. The measured EDP per-neuron per-timestep is plotted with varying

sparsity (0%: all 128 input neurons spike, 100%: no input neuron spikes) showing a 97.4%

reduction in EDP at 85% sparsity, as shown in Fig. 7.10 (b).

We compare the energy-efficiency of our approach of CIM SNN with an LSTM imple-

mented on an LSTM accelerator [136] in Table 7.1 . The SNN has 8.5× lower trainable

parameters, and 5.6× higher energy-efficiency per inference, when considering timesteps

and the sparsity of input spikes. We also compare with other state-of-the-art SNN macros

[141]–[143] and digital CIM macros [144]–[146] (Table 7.2). Among the SNN macros, [141]

has a poor energy efficiency due to time-based digital oscillator circuits for implementing

141

Figure 7.10. (a) Average sparsity obtained at each layer of SNN for each
timestep. (b) Measured EDP per-neuron per-timestep with varying sparsity.

Table 7.1. Energy Efficiency of SNN over LSTM.

neuron functionality, while [143] has 2.7× lower energy-efficiency (assuming linear scaling

with bit-precision) compared to our design due to very low-frequency operation. Ref. [142]

implemented an area-efficient weight memory, however, this design would still suffer from

membrane potential bottlenecks. On the other hand, among digital CIM macros, 6T-SRAM

based macro [144] achieves high memory area efficiency, however, it suffers from read dis-

turb failures. Ref. [145] and [146] proposed 8T-SRAM based CIM macros developed for

ANNs, having 1.5× and 2.2× lower energy-efficiency compared to our design, respectively.

Thus, IMPULSE is the only digital CIM based SNN macro, with support for all instructions

required for SNN inference, and multiple neuron functionalities. It also supports both FC

and Conv layers and is scalable to larger networks by employing a distributed multi-macro

architecture.

142

Table 7.2. Comparison with prior works.

7.4 Multi-macro Architecture

7.4.1 Introduction

A single macro alone has a limited fan-in. For example, considering the dimensions of

IMPULSE shown in Fig. 7.11 (left), it has 128 weight rows which correspond to an input

neuron fan-in of 128. Similarly it has 16 odd and even rows for VMEM which correspond to

16 pixels in the output feature map. Each row has 72 columns of bits storing the weight

values (6-bit each) which correspond to 12 different kernels or output channels in the output

feature map. To process larger layers with higher fan-in, there is a need to think about how

this macro can be scaled up.

We propose to have multiple such macros connected together, where the weights of a

large layer are partitioned across these different macros, illustrated in Fig. 7.11 (right).

143

Figure 7.11. Limited fan-in of single macro (left). Multi-macro architecture
is shown on the right consisting of compute and neuron macros and moving
partial VMEM among them to compute the final spikes (right). The block
diagram showing each processing element (bottom).

Each macro performs a part of the computation, and then moves its partial VMEM to the

next macro to accumulate its partial VMEM, and so on. Once the partial VMEM have been

moved among all macros, they are transferred to the neuron macros, which keeps track of

the final VMEM across timesteps and generates the output spikes.

Fig. 7.11 (bottom) shows the block diagram for each processing element. The input spike

buffer stores the spikes for one layer at a time for all the timesteps. The first block reads the

input spikes from this buffer and flattens them to arrange the spikes in the scratchpad (IF

spad). There is a finite-state-machine (FSM) which implements the zero-skipping, reading

the data from the IF spad and pushes the spiking events into the CIM queue, which are

eventually processed in the macro.

144

Figure 7.12. Zero-skipping using leading-one detector.

7.4.2 Zero-skipping

One of the key aspects of SNNs, which has a great potential for energy-efficiency, is the

high-level of sparsity observed in the input spikes. This means, that our IF spad will have

significant amount of zeros, whose compute steps can be skipped, leading to reduced overall

energy and latency.

Looking at the IF spad (see Fig. 7.12), it has 128 rows and 16 columns. To implement

the zero-skip, we need to extract out the row and column index for each entry which is ‘1’.

The row index gives the WMEM address while the column index gives the VMEM address to

be enabled for that spike in the macro. One straightforward way is to check all entries one

by one, however, this is very slow and the macro will remain idle most of the time waiting

for data. Thus, we propose to use the leading-one-detector (LOD) circuit to implement zero-

skipping. One implementation of the LOD is illustrated in Fig. 7.12 . We read entries from

the IF spad row-by-row. The 16-bit vector is checked if all elements are zeros, and if not, it

145

is stored in a temporary register A. Following a series of bitwise operations such as NOT,

ADD, AND etc., the leading-one can be separated out from the vector. Passing this through

an encoder generates the required indexes which can be pushed into the CIM queue. Go get

the next leading one, we perform a couple more bitwise operations to remove the processed

spike from the current vector. The new generated vector is checked for zero condition and

fed back to the LOD circuit in the next cycle. This ensures that in every cycle data gets

written into the CIM queue, so that the macro does not remain idle. Finally, this process

repeats until all spikes are processed in the current row, and eventually in every row of the

IF spad.

7.4.3 Macro Pipeline

As the CIM queue starts to fill up, the macro can start processing the events. We

introduce pipeline stages (flip-flops) between the column peripheral blocks − SINV, BLFA,

and CWD as shown in Fig. 7.13 (right). These blocks correspond to the read, compute and

store pipeline stages, respectively. The corresponding timing diagram is shown on the left in

the figure. The first entry from the queue is read and the corresponding WMEM and VMEM

rows are enabled. Thus, in the first cycle, the data has been latched into the SINV (shown

in yellow). In the next cycle, the data from SINV gets computed in the BLFA. While this

happens, the memory array and the SINV block operates on the next data from the queue

(shown in blue). Further, in the third cycle, the computed data moves to the CWD block,

and the VMEM address is enabled (write word line) to overwrite the updated data. While

the second data moves from SINV to BLFA, and the memory array is operating on the third

data (shown in green), and so on. The macro pipeline gets filled and continues to process the

spikes as long as the queue is not empty. Note that once the pipeline is full, three addresses

in the memory array are being activated simultaneously (two RWLs and one WWL). There

can be corner cases (data-dependent) causing RWL and WWL conflict on the same row,

thus, appropriate bubbles need to be inserted in the pipeline for correct functionality.

As discussed in previous sections, these operations need to be performed for both odd

and even weight columns. However, re-configuring the macro for each odd and even cycle

146

Figure 7.13. Macro Pipeline. Pipeline stages Read, Compute and Store
corresponding to the column peripheral blocks SINV, BLFA and CWD, re-
spectively (right). Timing diagram of the macro processing is shown on the
left.

increases the switching activity, which hurts the overall energy efficiency. Fig. 7.14 (right)

plots the normalized energy per operation, as a function of how many consecutive odd or

even cycles we do. For example, if we interleave odd and even for each cycle (as shown in

Fig. 7.14 (top left)), this would correspond to ‘1’ on the x-axis. Since this scenario has the

maximum switching activity, its energy is also high. We can observe from the plot that as

we increase the number of consecutive even/odd cycles, the energy per operation reduces.

This is because the overhead due to the switching activity is now amortized over multiple

consecutive operations. This can be implemented on our processing element as shown in

Fig. 7.14 (bottom left). We have two CIM queues, one for even and one for odd, and having

a MUX select from which queue to perform the operation in the macro. The depth of these

queues will determine the number of consecutive odd/even operations being performed, and

can be chosen by looking at the energy plot.

147

Figure 7.14. Amortizing the reconfigurability overhead for processing odd
and even columns, by maintaining two queues having appropriate depth. The
graph on the right plots the energy per operation as a function of number of
consecutive odd/even operations.

Figure 7.15. Variable bit-precisions can be supported by introducing RBL
switches to decouple the RBL between the WMEM and VMEM subarrays.

7.4.4 Support for Multiple Bit-precision

The macro described above had fixed weight precision of 6-bit and VMEM precision of

11-bit. This was hard-coded in design by having dual odd/even RWLs in each row. In order

to extend the capability of the macro to support multiple precision, we propose to add read-

bitline switches to decouple the RBLs between WMEM and VMEM subarrays of the memory,

as illustrated in Fig. 7.15 . The RBL switches can be re-configured based on the precision.

148

Figure 7.16. Two supported configurations to efficiently run low fan-in and
high fan-in CNN layers with high throughput.

For example, to have 4-bit weights and 7-bit VMEM, the RBL switches connect the RBLs

in the first four columns, and disconnect the RBLs in next four and so on, during the odd

cycle, and vice-versa during the even cycle. Similarly, for running 8-bit weights and 15-bit

VMEM, first eight columns are connected during odd, and next eight during even, and so

on. The column peripherals are also reconfigured based on the precision using the CMUXes

described earlier. Thus, now with 72 columns in our memory array, we can store and process

18, 12 and 9 output channels at once for 4-bit, 6-bit and 8-bit weight precision, respectively.

This also eliminates the need for having dual RWLs and relaxes the memory layout design.

7.4.5 Configurations for Low and High Fan-in CNN Layers

To efficiently implement both low fan-in and high fan-in CNN layers, we support two

configurations of data-movement in our proposed architecture, which are summarized in

149

Figure 7.17. Timing diagram showing the top-level timestep pipelining
among the macros (top). Once all timesteps are performed for one group
of neurons, we can start processing the next group and so on, thereby lever-
aging weight re-use across neurons and across timesteps. The plot (bottom
right) shows the dependency of compute cycles on the data-sparsity, showing
the benefits of zero-skipping.

Fig. 7.16 . In Config-A, low fan-in CNN layers (upto 384 input fan-in) can be run. The

weights and inputs are partitioned among 3 macros (C1-C3) and the partial VMEM are

transferred from C1→C2→C3→N1. To increase the throughput, we do input replication to

process more output channels in parallel. Thus, C4-C6 and C7-C9 receive the same inputs

as C1-C3, but they store different kernels. On the other hand, Config-B can support fan-in

upto 1152. In this case, the weights are partitioned among all nine compute macros, and the

partial VMEM moves from C1 all the way to C9, before getting computed in N3. Thus, in

this configuration, we can process higher fan-in layers, but lesser number of output channels

at once, giving us equivalent throughput as Config-A. Note that these configurations extend

to low and high fan-in FC layers as well.

150

Figure 7.18. Energy-efficiency of the proposed multi-macro architecture, as
a function of data-sparsity and the bit-precision, for the two proposed config-
urations.

7.4.6 Timestep Pipelining: Leveraging Additional Weight Re-use

At the top-level, we pipeline the macros across timesteps to leverage the additional weight

re-use in SNNs. Fig. 7.17 (top) illustrates the timing diagram, taking the example for Config-

A. We start with C1 computing timestep one (t1) shown in orange. Once all the spikes are

computed, the partial VMEM is transferred from C1 to C2, and C2 starts its compute for

t1. Meanwhile, C1 becomes free to start computing t2. As the pipeline fills, different

macros compute different timesteps for the same neuron group. Once all the timesteps have

been computed for one neuron group, the process can repeat for the next group of neurons

(see Fig. 7.17 (bottom left)). Note that the weights stored in the IMPULSE memory are

not changed and are held stationary, thereby leveraging weight re-use across neurons and

across timesteps. Fig. 7.17 (bottom right) shows the dependency of compute cycles on the

input spike sparsity, showing the benefits of zero-skipping. Since the compute cycles are

highly data-dependent, we use asynchronous handshaking protocol using a global controller

to manage the instructions running on each macro in parallel.

151

Figure 7.19. Throughput of the proposed multi-macro architecture, as a
function of data-sparsity and the bit-precision, for the two proposed configu-
rations.

Figure 7.20. Energy breakdown for two levels of sparsity (75% and 99%).

7.4.7 Preliminary Results

Fig. 7.18 and Fig. 7.19 plots the simulation results using the 65nm process technology for

the energy-efficiency (TOps/s/W) and throughput (GOps/s), respectively, of the proposed

multi-macro architecture. For Config-A, a CNN layer of 3x3 kernels with input feature map

of 16x16x42 was chosen, which has a fan-in of 378 (=3x3x42). For Config-B, a CNN layer

of 3x3 kernels with input feature map of 16x16x128 was chosen, which has a fan-in of 1152

(=3x3x128). The following observations can be made from the results:

152

1. Both configurations have similar metrics when normalized to energy and performance

per operation, since both configurations have the same effective number of operations

(low fan-in high fan-out in Config-A and vice-versa in Config-B).

2. We achieve a better throughput and energy-efficiency as the sparsity in input spikes

increases. This is a direct consequence of zero-skipping, which leads to lesser number

of operations being run on the IMPULSE macro. Hence, it also lowers the overall

compute cycles.

3. As the weight/VMEM bit-precision is reduced, the peripherals are reconfigured to more

number of adders working in parallel, which leads to more parallelism, thereby better

energy-efficiency and throughput.

Fig. 7.20 shows the energy breakdown. For a low sparsity case, it can be observed

that majority of the energy is dominated by the CIM operations, while about a fourth of

the energy is consumed in accessing the input spikes, neuron operations, and partial VMEM

movements. Even at very high sparsity (∼99%), at least a third of the total energy is still

dominated by the CIM operations. Since the number of CIM operations are less at such a

high sparsity, the component of data-movements compared to the CIM operations is higher

in the energy distribution.

7.5 Conclusion

We present a digital CIM macro with fused weights and membrane potential, designed for

efficient processing of SNN inference. The proposed macro inherently leverages the sparsity

and supports multiple neuron functionalities. An optimal energy-efficiency of 0.99 TOPS/W

was achieved for 11-bit signed operations. We demonstrate our approach by training an SNN

for a sentiment analysis task utilizing the intrinsic dynamics of VMEM, and also for an image

classification task, achieving competitive accuracy to their corresponding LSTM and ANN

counterpart, respectively.

Further, we extend the macro for processing larger layers and propose a multi-macro ar-

chitecture. It supports two configurations to efficiently process both low fan-in and high fan-

153

in layers with high throughput. Moreover, we leverage the additional weight re-use in SNNs

by incorporating timestep pipelining. Each processing element incorporates zero-skipping

to leverage the high-sparsity of input spikes in SNN workloads for reducing the energy and

latency. The macro can be reconfigured to support various bit-precisions for weights/VMEM.

We also proposed micro-architecture extensions to amortize the reconfigurability overheads

on IMPULSE macro.

154

8. SUMMARY AND FUTURE DIRECTIONS

In memory computing is an emerging paradigm which tries to address the memory access

bottleneck which is becoming prominent in recent workloads such as machine learning and

artificial intelligence. By enabling computations within the memory arrays where the data is

stored, one can perform massively-parallel operations by exploiting the high internal memory

bandwidth. Moreover, since less data transfers occur from memory to the processing units,

this approach leads to energy-efficiency.

In this dissertation, we proposed various circuit techniques to enable computations in

standard SRAMs. Given the read-stability issue arising from 6T-SRAM cells, we looked at

two-port register file such as 8T, 9T and 10T SRAM bitcell configurations in our toolbox.

We proposed how bitwise Boolean operations, binary convolution operations, dot-product

operations, lookup table based computing, spiking neural networks, etc., can be performed

in the SRAM arrays. These circuit explorations show that on-chip SRAMs can do much

more than just store data and can be re-purposed as on-demand accelerators for a variety

of applications.

Looking ahead, there is really a need to understand the CIM implications across the

stack − devices, circuits, systems and algorithms. With promising results obtained from the

circuit primitives which were extensively explored in this dissertation, it is worth exploring

the systems aspects where optimal mapping, scheduling, data-flow etc., can be considered

for implementing various workloads on CIM primitives. In addition, a hardware-software co-

design needs to be developed, where the algorithm can be modified such that when running

on CIM hardware, it achieves peak efficiency and compensates for errors introduced due to

approximate computing on CIM primitives. On the other hand, there is extensive device

research especially on “computational devices”, where the device characteristics itself mimics

certain functionalities, or store data in its conductive states, which can be used for computing

in the analog domain. With many such devices being developed, especially the embedded

non-volatile memories such as RRAM, PCM, FeFET, MRAM etc., there is a need to explore

the heterogeneous integration of such devices in the CMOS process. Most circuit techniques

described in this dissertation also apply to these emerging memory technologies.

155

A. CHALLENGES WITH 6T SRAM FOR ENABLING

COMPUTE-IN-MEMORY

A.1 Operation of 6T SRAM

The most popular and widely used SRAM consists of six transistor bitcell. Fig. A.1

shows the schematic of the 6T-SRAM bitcell. It consists of two cross-coupled inverters and

two access transistors AXL and AXR, which connect the inverters to the bitlines BL and

BLB, respectively. During the write operation, BL and BLB are set to VDD and GND,

respectively, for writing ‘1’ to the cell, and vice-versa for writing a ‘0’. Once the bitlines are

set to the corresponding voltages, the wordline is enabled, which turns the access transistors

ON and the data gets written into the cross-coupled inverter pair. All cells in the same

row can be written at once, by setting the corresponding bitlines. For the read operation,

both bitlines BL and BLB are precharged to VDD and left floating, followed by enabling the

wordline for the corresponding row that needs to be read out. The BL or BLB discharges

through AXL or AXR, if the data stored in the cell is ‘0’ or ‘1’, respectively. Thus, a voltage

difference is achieved between the BL and BLB which can be sensed using the sensing

amplifiers connected to the peripheral circuitry.

A.2 Read Stability Challenges due to CIM

For enabling in-memory computing, multiple wordlines are enabled during the read op-

eration, such that the data from multiple bitcells can interact on the bitlines to give us a

logical operation. However, doing this raises some read stability issues.

A.2.1 Short-circuit paths

Consider a case shown in Fig. A.1 , where the cell A0 stores ‘1’ and cell B0 stores ‘0’.

Enabling both WL1 and WL2 to sense the logical output of A0 and B0 on the bitlines in this

case would cause a short circuit path shown by the red dotted arrows. This causes a high

current flowing through the storage nodes which can lead to unknown voltages depending

156

Figure A.1. Schematic showing a 6T-SRAM array. The red and blue arrows
show the current path and the charge discharge path, respectively, causing
read-stability issues for performing in-memory computing.

on the process variations. Thus, it not only has reliability concerns, but reduces the read

stability of the cell, which might cause unintended data flips.

There are certain solutions which have been tried to avoid this problem. First, wordlines

can be driven at a lower voltage to reduce the magnitude of high currents [11]. However,

this requires generating multiple voltages, and modifications to the peripheral circuitry to

work with multiple supply voltages. Moreover, this would also increase the latency of the

read operation.

Another approach is to stagger the wordline activations [90]. For example, as shown in

Fig. A.2 , the wordlines for different rows are activated one after the other. Although this

technique avoids the high current paths, it also increases the read latency, and suffers from

timing challenges. The discharge on the bitlines is leakage dependent which can vary quite

a bit with process variations.

157

Figure A.2. Staggered activation of wordlines to avoid short circuit paths,
leading to bitline discharge [90]

A.2.2 Pseudo-write

Another challenge which arises is the pseudo-write. For a typical read operation, only

one of the bitlines discharge, while the other always is help at VDD. This helps with read

stability, and the 6T-SRAM bitcell is sized appropriately to handle one of the bitlines getting

discharged. Now, consider the case where A0 stores ‘1’ and cell B0 stores ‘0’ (see Fig. A.1). If

we activate the wordlines (either together or staggered), both BL and BLB will discharge, as

shown by blue dotted arrows. This appears like a write-operation and in case the discharge

becomes more (due to process variations), it would lead to data flips.

158

REFERENCES

[1] Y. Bengio et al., “Learning deep architectures for AI,” Foundations and trends® in
Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[2] N. Jones, “The learning machines,” Nature, vol. 505, no. 7482, p. 146, 2014.

[3] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–
2329, 2017.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[5] J. Backus, “Can programming be liberated from the von neumann style?: A functional
style and its algebra of programs,” Commun. ACM, vol. 21, no. 8, pp. 613–641, Aug.
1978, issn: 0001-0782. doi: 10.1145/359576.359579 .

[6] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural
networks: Training deep neural networks with weights and activations constrained to+
1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

[7] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet clas-
sification using binary convolutional neural networks,” in European Conference on
Computer Vision, Springer, 2016, pp. 525–542.

[8] F. Li and B. Liu, “Ternary weight networks,” ArXiv, vol. abs/1605.04711, 2016.

[9] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” arXiv
preprint arXiv:1612.01064, 2016.

[10] N. Verma, H. Jia, H. Valavi, Y. Tang, M. Ozatay, L. Chen, B. Zhang, and P. Deaville,
“In-memory computing: Advances and prospects,” IEEE Solid-State Circuits Maga-
zine, vol. 11, no. 3, pp. 43–55, 2019.

[11] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm configurable memory
(tcam/bcam/sram) using push-rule 6t bit cell enabling logic-in-memory,” IEEE Jour-
nal of Solid-State Circuits, vol. 51, no. 4, pp. 1009–1021, Apr. 2016, issn: 0018-9200.
doi: 10.1109/JSSC.2016.2515510 .

[12] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das, “Com-
pute caches,” in 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), IEEE, Feb. 2017. doi: 10.1109/hpca.2017.21 .

159

https://doi.org/10.1145/359576.359579
https://doi.org/10.1109/JSSC.2016.2515510
https://doi.org/10.1109/hpca.2017.21

[13] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz, “An energy-efficient
VLSI architecture for pattern recognition via deep embedding of computation in
SRAM,” in 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, May 2014. doi: 10.1109/icassp.2014.6855225 .

[14] M. Kang, E. P. Kim, M.-s. Keel, and N. R. Shanbhag, “Energy-efficient and high
throughput sparse distributed memory architecture,” in 2015 IEEE International
Symposium on Circuits and Systems (ISCAS), IEEE, May 2015. doi: 10.1109/iscas.
2015.7169194 .

[15] W. M. Snelgrove, M. Stumm, D. Elliott, R. McKenzie, and C. Cojocaru, “Computa-
tional ram: Implementing processors in memory,” IEEE Design & Test of Computers,
vol. 16, pp. 32–41, 1999.

[16] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of a machine-learning
classifier in a standard 6t SRAM array,” IEEE Journal of Solid-State Circuits, vol. 52,
no. 4, pp. 915–924, Apr. 2017. doi: 10.1109/jssc.2016.2642198 .

[17] Q. Dong, S. Jeloka, M. Saligane, Y. Kim, M. Kawaminami, A. Harada, S. Miyoshi,
D. Blaauw, and D. Sylvester, “A 0.3v VDDmin 4+2t SRAM for searching and in-
memory computing using 55nm DDC technology,” in 2017 Symposium on VLSI Cir-
cuits, IEEE, Jun. 2017. doi: 10.23919/vlsic.2017.8008465 .

[18] M. Huang, M. Mehalel, R. Arvapalli, and S. He, “An energy efficient 32-nm 20-mb
shared on-die l3 cache for intel® xeon® processor e5 family,” IEEE Journal of Solid-
State Circuits, vol. 48, no. 8, pp. 1954–1962, 2013.

[19] J. Burgess, “Rtx on – the nvidia turing gpu,” in 2019 IEEE Hot Chips 31 Symposium
(HCS), 2019, pp. 1–27. doi: 10.1109/HOTCHIPS.2019.8875651 .

[20] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter performance analysis of a
tensor processing unit,” in Proceedings of the 44th annual international symposium
on computer architecture, 2017, pp. 1–12.

[21] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient reconfig-
urable accelerator for deep convolutional neural networks,” IEEE Journal of Solid-
State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

160

https://doi.org/10.1109/icassp.2014.6855225
https://doi.org/10.1109/iscas.2015.7169194
https://doi.org/10.1109/iscas.2015.7169194
https://doi.org/10.1109/jssc.2016.2642198
https://doi.org/10.23919/vlsic.2017.8008465
https://doi.org/10.1109/HOTCHIPS.2019.8875651

[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J.
Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz,
A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S.
Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,
A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E.
Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W.
Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance analysis of a tensor
processing unit,” SIGARCH Comput. Archit. News, vol. 45, no. 2, pp. 1–12, Jun.
2017, issn: 0163-5964. doi: 10 . 1145/3140659 .3080246 . [Online]. Available: https :
//doi.org/10.1145/3140659.3080246 .

[23] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne, “Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Net-
works,” in IEEE International Solid-State Circuits Conference, ISSCC 2016, Digest
of Technical Papers, 2016, 262–263.

[24] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy, “X-sram: Enabling in-memory boolean
computations in cmos static random access memories,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 65, no. 12, pp. 4219–4232, 2018.

[25] H.-S. P. Wong and S. Salahuddin, “Memory leads the way to better computing,”
Nature Nanotechnology, vol. 10, no. 3, pp. 191–194, Mar. 2015. doi: 10.1038/nnano.
2015.29 .

[26] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, “Fast logic synthesis for
RRAM-based in-memory computing using majority-inverter graphs,” in Proceedings
of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Research Publishing Services, 2016. doi: 10.3850/9783981537079_0771 .

[27] A. Agrawal, C. Lee, and K. Roy, “X-changr: Changing memristive crossbar mapping
for mitigating line-resistance induced accuracy degradation in deep neural networks,”
arXiv preprint arXiv:1907.00285, 2019.

[28] I. Chakraborty, M. Ali, A. Ankit, S. Jain, S. Roy, S. Sridharan, A. Agrawal, A.
Raghunathan, and K. Roy, “Resistive crossbars as approximate hardware building
blocks for machine learning: Opportunities and challenges,” Proceedings of the IEEE,
vol. 108, no. 12, pp. 2276–2310, 2020.

161

https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1038/nnano.2015.29
https://doi.org/10.1038/nnano.2015.29
https://doi.org/10.3850/9783981537079_0771

[29] S. Jain and A. Raghunathan, “Cxdnn: Hardware-software compensation methods for
deep neural networks on resistive crossbar systems,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 18, no. 6, pp. 1–23, 2019.

[30] S. Jain, A. Sengupta, K. Roy, and A. Raghunathan, “Rx-caffe: Framework for eval-
uating and training deep neural networks on resistive crossbars,” arXiv preprint
arXiv:1809.00072, 2018.

[31] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S. Williams, P. Fara-
boschi, J. P. Strachan, K. Roy, and D. S. Milojicic, “Puma: A programmable ultra-
efficient memristor-based accelerator for machine learning inference,” arXiv preprint
arXiv:1901.10351, 2019.

[32] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, “ISAAC: A convolutional neural network acceler-
ator with in-situ analog arithmetic in crossbars,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), IEEE, Jun. 2016. doi:
10.1109/isca.2016.12 .

[33] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory with spin-
transfer torque magnetic ram,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 3, pp. 470–483, Mar. 2018, issn: 1063-8210. doi: 10.
1109/TVLSI.2017.2776954 .

[34] W. Kang, H. Wang, Z. Wang, Y. Zhang, and W. Zhao, “In-memory processing
paradigm for bitwise logic operations in stt-mram,” IEEE Transactions on Magnetics,
2017.

[35] D. Lee, X. Fong, and K. Roy, “R-MRAM: A ROM-embedded STT MRAM cache,”
IEEE Electron Device Letters, vol. 34, no. 10, pp. 1256–1258, Oct. 2013. doi: 10.
1109/led.2013.2279137 .

[36] A. Jaiswal, A. Agrawal, and K. Roy, “In-situ, in-memory stateful vector logic op-
erations based on voltage controlled magnetic anisotropy,” Scientific reports, vol. 8,
no. 1, pp. 1–12, 2018.

[37] I. Chakraborty, A. Agrawal, A. Jaiswal, G. Srinivasan, and K. Roy, “In situ un-
supervised learning using stochastic switching in magneto-electric magnetic tunnel
junctions,” Philosophical Transactions of the Royal Society A, vol. 378, no. 2164,
p. 20 190 157, 2020.

162

https://doi.org/10.1109/isca.2016.12
https://doi.org/10.1109/TVLSI.2017.2776954
https://doi.org/10.1109/TVLSI.2017.2776954
https://doi.org/10.1109/led.2013.2279137
https://doi.org/10.1109/led.2013.2279137

[38] A. Agrawal, I. Chakraborty, D. Roy, U. Saxena, S. Sharmin, M. Koo, Y. Shim, G.
Srinivasan, C. Liyanagedera, A. Sengupta, et al., “Revisiting stochastic computing
in the era of nanoscale nonvolatile technologies,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 28, no. 12, pp. 2481–2494, 2020.

[39] A. Agrawal, C. Wang, T. Sharma, and K. Roy, “Magnetoresistive circuits and systems:
Embedded non-volatile memory to crossbar arrays,” IEEE Transactions on Circuits
and Systems I: Regular Papers, 2021.

[40] A. Sebastian, T. Tuma, N. Papandreou, M. L. Gallo, L. Kull, T. Parnell, and E. Eleft-
heriou, “Temporal correlation detection using computational phase-change memory,”
Nature Communications, vol. 8, no. 1, Oct. 2017. doi: 10.1038/s41467-017-01481-9 .

[41] C. Wang, A. Agrawal, E. Yu, and K. Roy, “Multi-level neuromorphic devices built on
emerging ferroic materials: A review,” Frontiers in Neuroscience, vol. 15, 2021.

[42] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo,” in Proceedings of the
53rd Annual Design Automation Conference on - DAC16, ACM Press, 2016. doi:
10.1145/2897937.2898064 .

[43] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Physical
Review, vol. 74, no. 2, p. 230, 1948.

[44] A. Jaiswal, I. Chakraborty, A. Agrawal, and K. Roy, “8t sram cell as a multi-bit dot
product engine for beyond von-neumann computing,” arXiv preprint arXiv:1802.08601,
2018.

[45] J. P. Kulkarni, A. Goel, P. Ndai, and K. Roy, “A read-disturb-free, differential sensing
1r/1w port, 8t bitcell array,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 19, no. 9, pp. 1727–1730, Sep. 2011. doi: 10.1109/tvlsi.2010.
2055169 .

[46] Predictive Technology Models.[Online] http://ptm.asu.edu/, 2016.

[47] M. Maymandi-Nejad and M. Sachdev, “A monotonic digitally controlled delay ele-
ment,” IEEE Journal of Solid-State Circuits, vol. 40, no. 11, pp. 2212–2219, 2005.

[48] “Nios II processor overview,” in Embedded SoPC Design with Nios II Processor and
VHDL Examples, John Wiley & Sons, Inc., Sep. 2011, pp. 179–188. doi: 10.1002/
9781118146538.ch8 .

[49] Advanced Encryption Standard.[Online] https://github.com/kokke/tiny-AES-c/, 2016.

163

https://doi.org/10.1038/s41467-017-01481-9
https://doi.org/10.1145/2897937.2898064
https://doi.org/10.1109/tvlsi.2010.2055169
https://doi.org/10.1109/tvlsi.2010.2055169
https://doi.org/10.1002/9781118146538.ch8
https://doi.org/10.1002/9781118146538.ch8

[50] M. Dworkin, “Recommendation for block cipher modes of operation. methods and
techniques,” National Inst of Standards and Technology Gaithersburg MD Computer
Security Div, Tech. Rep., 2001.

[51] D. Silver et al., “Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
IEEE, Jun. 2016. doi: 10.1109/cvpr.2016.90 .

[53] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T.
Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016. doi: 10.1038/
nature16961 .

[54] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale
Hierarchical Image Database,” in CVPR09, 2009.

[55] A. Krizhevsky et al., “Imagenet classification with deep convolutional neural net-
works,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[56] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), IEEE, Jun. 2015. doi:
10.1109/cvpr.2015.7298594 .

[57] M. L. Schneider, C. A. Donnelly, S. E. Russek, B. Baek, M. R. Pufall, P. F. Hopkins,
P. D. Dresselhaus, S. P. Benz, and W. H. Rippard, “Ultralow power artificial synapses
using nanotextured magnetic josephson junctions,” Science advances, vol. 4, no. 1,
e1701329, 2018.

[58] G. Srinivasan, A. Sengupta, and K. Roy, “Magnetic tunnel junction enabled all-spin
stochastic spiking neural network,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2017, Mar. 2017, pp. 530–535.

[59] G. Srinivasan, A. Sengupta, and K. Roy, “Magnetic tunnel junction based long-term
short-term stochastic synapse for a spiking neural network with on-chip STDP learn-
ing,” Scientific Reports, vol. 6, no. 1, Jul. 2016. doi: 10.1038/srep29545 .

164

https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/cvpr.2015.7298594
https://doi.org/10.1038/srep29545

[60] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet clas-
sification using binary convolutional neural networks,” in European Conference on
Computer Vision, Springer, 2016, pp. 525–542.

[61] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy, “X-SRAM: Enabling in-memory boolean
computations in CMOS static random access memories,” IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, pp. 1–14, 2018, issn: 1549-8328. doi: 10.1109/
TCSI.2018.2848999 .

[62] A. Jaiswal, I. Chakraborty, A. Agrawal, and K. Roy, “8t SRAM cell as a multi-bit dot
product engine for beyond von-neumann computing,” arXiv preprint arXiv:1802.08601,
2018.

[63] Y. Chen et al., “Dadiannao: A machine-learning supercomputer,” in Proceedings of
the 47th Annual IEEE/ACM International Symposium on Microarchitecture, IEEE
Computer Society, 2014, pp. 609–622.

[64] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelerator for deep
convolutional neural networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1,
pp. 127–138, 2017.

[65] A. Agrawal, A. Ankit, and K. Roy, “SPARE: Spiking neural network acceleration us-
ing rom-embedded rams as in-memory-computation primitives,” IEEE Transactions
on Computers, pp. 1–1, 2018, issn: 0018-9340. doi: 10.1109/TC.2018.2867048 .

[66] Q. Dong, S. Jeloka, M. Saligane, Y. Kim, M. Kawaminami, A. Harada, S. Miyoshi, D.
Blaauw, and D. Sylvester, “A 0.3 v vddmin 4+ 2t sram for searching and in-memory
computing using 55nm ddc technology,” in 2017 Symposium on VLSI Circuits, IEEE,
2017, pp. C160–C161.

[67] S. K. Gonugondla, M. Kang, and N. R. Shanbhag, “A variation-tolerant in-memory
machine learning classifier via on-chip training,” IEEE Journal of Solid-State Circuits,
no. 99, pp. 1–11, 2018.

[68] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaauw,
and R. Das, “Neural cache: Bit-serial in-cache acceleration of deep neural networks,”
arXiv preprint arXiv:1805.03718, 2018.

[69] A. Ankit et al., “RESPARC: A reconfigurable and energy-efficient architecture with
memristive crossbars for deep spiking neural networks,” in Proceedings of the 54th
Annual Design Automation Conference 2017 on - DAC 17, ACM Press, 2017. doi:
10.1145/3061639.3062311 .

165

https://doi.org/10.1109/TCSI.2018.2848999
https://doi.org/10.1109/TCSI.2018.2848999
https://doi.org/10.1109/TC.2018.2867048
https://doi.org/10.1145/3061639.3062311

[70] F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, “High precision tuning of state
for memristive devices by adaptable variation-tolerant algorithm,” Nanotechnology,
vol. 23, no. 7, p. 075 201, Jan. 2012. doi: 10.1088/0957-4484/23/7/075201 .

[71] A. Chen and M.-R. Lin, “Variability of resistive switching memories and its impact on
crossbar array performance,” in Reliability Physics Symposium (IRPS), 2011 IEEE
International, IEEE, 2011, MY–7.

[72] A. Biswas and A. P. Chandrakasan, “Conv-ram: An energy-efficient SRAM with em-
bedded convolution computation for low-power cnn-based machine learning applica-
tions,” in Solid-State Circuits Conference-(ISSCC), 2018 IEEE International, IEEE,
2018, pp. 488–490.

[73] Z. Jiang, S. Yin, M. Seok, and J.-s. Seo, “Xnor-sram: In-memory computing sram
macro for binary/ternary deep neural networks,” in 2018 IEEE Symposium on VLSI
Technology, IEEE, 2018, pp. 173–174.

[74] A. Agrawal, A. Jaiswal, D. Roy, B. Han, G. Srinivasan, A. Ankit, and K. Roy, “Xcel-
ram: Accelerating binary neural networks in high-throughput sram compute arrays,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 8, pp. 3064–
3076, 2019.

[75] B. Razavi, “Analogtodigital converter architectures,” in Principles of Data Conver-
sion System Design. Wiley-IEEE Press, 1995, pp. 272–, isbn: 9780470545638. doi:
10.1109/9780470545638.ch6 .

[76] “Cacti 6.0: A tool to understand large caches,” [Online],

[77] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory with spin-
transfer torque magnetic ram,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 3, pp. 470–483, Mar. 2018, issn: 1063-8210. doi: 10.
1109/TVLSI.2017.2776954 .

[78] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-W,
2017.

[79] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, Binarynet.py-
torch, https://github.com/itayhubara/BinaryNet.pytorch , 2017.

[80] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,”
Citeseer, Tech. Rep., 2009.

166

https://doi.org/10.1088/0957-4484/23/7/075201
https://doi.org/10.1109/9780470545638.ch6
https://doi.org/10.1109/TVLSI.2017.2776954
https://doi.org/10.1109/TVLSI.2017.2776954
https://github.com/itayhubara/BinaryNet.pytorch

[81] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits
in natural images with unsupervised feature learning,” in NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011, 2011.

[82] N. Chatterjee, M. OConnor, D. Lee, D. R. Johnson, S. W. Keckler, M. Rhu, and W. J.
Dally, “Architecting an energy-efficient DRAM system for GPUs,” in 2017 IEEE In-
ternational Symposium on High Performance Computer Architecture (HPCA), IEEE,
Feb. 2017. doi: 10.1109/hpca.2017.58 .

[83] M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),” in
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2014, pp. 10–14.

[84] A. Agrawal, A. Kosta, S. Kodge, D. E. Kim, and K. Roy, “Cash-ram: Enabling in-
memory computations for edge inference using charge accumulation and sharing in
standard 8t-sram arrays,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 10, no. 3, pp. 295–305, 2020.

[85] P. N. Whatmough, S. K. Lee, D. Brooks, and G. Wei, “Dnn engine: A 28-nm timing-
error tolerant sparse deep neural network processor for iot applications,” IEEE Jour-
nal of Solid-State Circuits, vol. 53, no. 9, pp. 2722–2731, 2018.

[86] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm configurable mem-
ory (tcam/bcam/sram) using push-rule 6t bit cell enabling logic-in-memory,” IEEE
Journal of Solid-State Circuits, vol. 51, no. 4, pp. 1009–1021, 2016.

[87] Q. Dong, S. Jeloka, M. Saligane, Y. Kim, M. Kawaminami, A. Harada, S. Miyoshi, D.
Blaauw, and D. Sylvester, “A 0.3 v vddmin 4+ 2t sram for searching and in-memory
computing using 55nm ddc technology,” in 2017 Symposium on VLSI Circuits, IEEE,
2017, pp. C160–C161.

[88] Y. Zhang, L. Xu, K. Yang, Q. Dong, S. Jeloka, D. Blaauw, and D. Sylvester, “Re-
cryptor: A reconfigurable in-memory cryptographic cortex-m0 processor for iot,” in
2017 Symposium on VLSI Circuits, 2017, pp. C264–C265.

[89] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz, “An energy-efficient
vlsi architecture for pattern recognition via deep embedding of computation in sram,”
in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2014, pp. 8326–8330.

[90] M. Kang, S. K. Gonugondla, A. Patil, and N. R. Shanbhag, “A multi-functional
in-memory inference processor using a standard 6t sram array,” IEEE Journal of
Solid-State Circuits, vol. 53, no. 2, pp. 642–655, 2018.

167

https://doi.org/10.1109/hpca.2017.58

[91] J. Yang, Y. Kong, Z. Wang, Y. Liu, B. Wang, S. Yin, and L. Shi, “24.4 sandwich-
ram: An energy-efficient in-memory bwn architecture with pulse-width modulation,”
in 2019 IEEE International Solid-State Circuits Conference-(ISSCC), IEEE, 2019,
pp. 394–396.

[92] M. Kang, S. Lim, S. Gonugondla, and N. R. Shanbhag, “An in-memory vlsi archi-
tecture for convolutional neural networks,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 8, no. 3, pp. 494–505, 2018.

[93] M. Ali, A. Jaiswal, S. Kodge, A. Agrawal, I. Chakraborty, and K. Roy, “Imac: In-
memory multi-bit multiplication and accumulation in 6t sram array,” IEEE Transac-
tions on Circuits and Systems I: Regular Papers, pp. 1–11, 2020.

[94] X. Si, J.-J. Chen, Y.-N. Tu, W.-H. Huang, J.-H. Wang, Y.-C. Chiu, W.-C. Wei, S.-Y.
Wu, X. Sun, R. Liu, et al., “A twin-8t sram computation-in-memory unit-macro for
multibit cnn-based ai edge processors,” IEEE Journal of Solid-State Circuits, vol. 55,
no. 1, pp. 189–202, 2019.

[95] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile 2.4-mb in-memory-
computing cnn accelerator employing charge-domain compute,” IEEE Journal of
Solid-State Circuits, vol. 54, no. 6, pp. 1789–1799, 2019.

[96] H. Jia, H. Valavi, Y. Tang, J. Zhang, and N. Verma, “A programmable heterogeneous
microprocessor based on bit-scalable in-memory computing,” IEEE Journal of Solid-
State Circuits, pp. 1–1, 2020.

[97] Q. Dong, M. E. Sinangil, B. Erbagci, D. Sun, W. Khwa, H. Liao, Y. Wang, and J.
Chang, “15.3 a 351tops/w and 372.4gops compute-in-memory sram macro in 7nm
finfet cmos for machine-learning applications,” in 2020 IEEE International Solid-
State Circuits Conference - (ISSCC), 2020, pp. 242–244.

[98] S. Jain, S. K. Gupta, and A. Raghunathan, “Tim-dnn: Ternary in memory accelerator
for deep neural networks,” arXiv preprint arXiv:1909.06892, 2019.

[99] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “Wrpn: Wide reduced-precision
networks,” arXiv preprint arXiv:1709.01134, 2017.

[100] J. Lee, D. Shin, Y. Kim, and H. J. Yoo, “A 17.5-fj/bit energy-efficient analog sram
for mixed-signal processing,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 25, no. 10, pp. 2714–2723, Oct. 2017, issn: 1063-8210. doi:
10.1109/TVLSI.2017.2664069 .

168

https://doi.org/10.1109/TVLSI.2017.2664069

[101] M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman, “Memristor
crossbar-based neuromorphic computing system: A case study,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 25, no. 10, pp. 1864–1878, Oct. 2014,
issn: 2162-237X. doi: 10.1109/TNNLS.2013.2296777 .

[102] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
doi: 10.1109/5.726791 .

[103] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Tech. Rep.,
2009.

[104] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[105] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[106] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang, “Accelerator-
friendly neural-network training: Learning variations and defects in RRAM crossbar,”
in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017,
IEEE, Mar. 2017. doi: 10.23919/date.2017.7926952 .

[107] M. E. Fouda, J. Lee, A. M. Eltawil, and F. Kurdahi, “Overcoming crossbar non-
idealities in binary neural networks through learning,” in Proceedings of the 14th
IEEE/ACM International Symposium on Nanoscale Architectures, ser. NANOARCH
’18, Athens, Greece: ACM, 2018, pp. 31–33, isbn: 978-1-4503-5815-6. doi: 10.1145/
3232195.3232226 . [Online]. Available: http://doi.acm.org/10.1145/3232195.3232226 .

[108] I. Chakraborty, D. Roy, and K. Roy, “Technology aware training in memristive neu-
romorphic systems for nonideal synaptic crossbars,” IEEE Transactions on Emerging
Topics in Computational Intelligence, vol. 2, no. 5, pp. 335–344, Oct. 2018. doi:
10.1109/tetci.2018.2829919 .

[109] T. L. Brandon, D. G. Elliott, and B. F. Cockburn, “Using stacked bitlines and hybrid
rom cells to form rom and sram-rom with increased storage density,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 53, no. 12, pp. 2595–2605,
2006.

[110] T. Matsumura, S. Uramoto, and M. Yoshimoto, Semiconductor memory device usable
as static type memory and read-only memory and operating method therefor, US
Patent 5,365,475, Nov. 1994.

169

https://doi.org/10.1109/TNNLS.2013.2296777
https://doi.org/10.1109/5.726791
https://doi.org/10.23919/date.2017.7926952
https://doi.org/10.1145/3232195.3232226
https://doi.org/10.1145/3232195.3232226
http://doi.acm.org/10.1145/3232195.3232226
https://doi.org/10.1109/tetci.2018.2829919

[111] G. M. Ansel, J. S. Hunt, S. Saripella, S. R. Anumula, and A. Srikrishna, Read
only/random access memory architecture and methods for operating same, US Patent
5,880,999, Mar. 1999.

[112] S. M. Gold and M. Lamere, Combining ram and rom into a single memory array, US
Patent 6,438,024, Aug. 2002.

[113] D. Lee et al., “Area efficient ROM-embedded SRAM cache,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 21, no. 9, pp. 1583–1595, 2013,
issn: 10638210. doi: 10.1109/TVLSI.2012.2217514 .

[114] D. Lee, X. Fong, and K. Roy, “R-MRAM: A ROM-embedded STT mram cache,”
IEEE Electron Device Letters, vol. 34, no. 10, pp. 1256–1258, Oct. 2013, issn: 0741-
3106. doi: 10.1109/LED.2013.2279137 .

[115] X. Fong et al., “Embedding read-only memory in spin-transfer torque mram-based
on-chip caches,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 24, no. 3, pp. 992–1002, 2016.

[116] A. Agrawal and K. Roy, “Recache: Rom-embedded 8-transistor sram caches for effi-
cient neural computing,” in 2018 IEEE International Workshop on Signal Processing
Systems (SiPS), IEEE, 2018, pp. 19–24.

[117] A. Agrawal, A. Ankit, and K. Roy, “Spare: Spiking networks acceleration using
cmos rom-embedded ram as an in-memory-computation primitive,” arXiv preprint
arXiv:1711.07546, 2017.

[118] P. U. Diehl et al., “Fast-classifying, high-accuracy spiking deep networks through
weight and threshold balancing,” in Neural Networks (IJCNN), 2015 International
Joint Conference on, IEEE, 2015, pp. 1–8.

[119] S. Han et al., “Learning both weights and connections for efficient neural network,”
in Advances in Neural Information Processing Systems, 2015, pp. 1135–1143.

[120] J. Borghetti et al., “Memristive switches enable stateful logic operations via material
implication,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[121] A. Ankit, A. Sengupta, and K. Roy, “TraNNsformer: Neural network transformation
for memristive crossbar based neuromorphic system design,” in 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), IEEE, Nov. 2017.
doi: 10.1109/iccad.2017.8203823 .

[122] C. Clopath et al., “Voltage and spike timing interact in STDP–a unified model,”
Spike-timing dependent plasticity, p. 294, Jul. 2010.

170

https://doi.org/10.1109/TVLSI.2012.2217514
https://doi.org/10.1109/LED.2013.2279137
https://doi.org/10.1109/iccad.2017.8203823

[123] T. V. Bliss et al., “A synaptic model of memory: Long-term potentiation in the
hippocampus.,” Nature, vol. 361, no. 6407, p. 31, 1993.

[124] J. Harrison, T. Kubaska, S. Story, M. S. Labs, and I. Corporation, “The computation
of transcendental functions on the ia-64 architecture,” Intel Technology Journal, vol. 4,
pp. 234–251, 1999.

[125] F. Akopyan et al., “TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron
Programmable Neurosynaptic Chip,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 34, no. 10, pp. 1537–1557, 2015, issn:
02780070. doi: 10.1109/TCAD.2015.2474396 .

[126] P. Dayan et al., Theoretical neuroscience. Cambridge, MA: MIT Press, 2001, vol. 806.

[127] E. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on Neural Net-
works, vol. 14, no. 6, pp. 1569–1572, Nov. 2003. doi: 10.1109/tnn.2003.820440 .

[128] A. L. Hodgkin et al., “A quantitative description of membrane current and its appli-
cation to conduction and excitation in nerve,” The Journal of Physiology, vol. 117,
no. 4, pp. 500–544, Aug. 1952. doi: 10.1113/jphysiol.1952.sp004764 .

[129] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using spike-
timing-dependent plasticity,” Frontiers in Computational Neuroscience, vol. 9, Aug.
2015. doi: 10.3389/fncom.2015.00099 .

[130] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level performance,
energy, and area model for emerging nonvolatile memory,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 7, pp. 994–
1007, Jul. 2012, issn: 0278-0070. doi: 10.1109/TCAD.2012.2185930 .

[131] B. Han, A. Ankit, A. Sengupta, and K. Roy, “Cross-layer design exploration for
energy-quality tradeoffs in spiking and non-spiking deep artificial neural networks,”
IEEE Transactions on Multi-Scale Computing Systems, vol. PP, no. 99, pp. 1–1, 2017.
doi: 10.1109/TMSCS.2017.2737625 .

[132] D. Goodman, “Brian: A simulator for spiking neural networks in python,” Frontiers
in Neuroinformatics, vol. 2, 2008. doi: 10.3389/neuro.11.005.2008 .

[133] F. Sun, C. Wang, L. Gong, C. Xu, Y. Zhang, Y. Lu, X. Li, and X. Zhou, “A power-
efficient accelerator for convolutional neural networks,” in 2017 IEEE International
Conference on Cluster Computing (CLUSTER), Sep. 2017, pp. 631–632. doi: 10 .
1109/CLUSTER.2017.47 .

171

https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/tnn.2003.820440
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/TCAD.2012.2185930
https://doi.org/10.1109/TMSCS.2017.2737625
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.1109/CLUSTER.2017.47
https://doi.org/10.1109/CLUSTER.2017.47

[134] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-chip learning,”
IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[135] N. Rathi et al., “Diet-snn: Direct input encoding with leakage and threshold opti-
mization in deep spiking neural networks,” arXiv preprint arXiv:2008.03658, 2020.

[136] J. S. P. Giraldo et al., “Laika: A 5uw programmable lstm accelerator for always-on
keyword spotting in 65nm cmos,” in 2018-IEEE 44th European Solid State Circuits
Conference (ESSCIRC), pp. 166–169.

[137] S. Narayanan et al., “Spinalflow: An architecture and dataflow tailored for spiking
neural networks,” in 2020 ACM/IEEE 47th Annual International Symposium on Com-
puter Architecture (ISCA), pp. 349–362.

[138] A. Agrawal, M. Ali, M. Koo, N. Rathi, A. Jaiswal, and K. Roy, “Impulse: A 65nm
digital compute-in-memory macro with fused weights and membrane potential for
spike-based sequential learning tasks,” IEEE Solid-State Circuits Letters, pp. 1–1,
2021. doi: 10.1109/LSSC.2021.3092727 .

[139] B. Han et al., “Rmp-snn: Residual membrane potential neuron for enabling deeper
high-accuracy and low-latency spiking neural network,” in Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, pp. 13 558–
13 567.

[140] A. Maas et al., “Learning word vectors for sentiment analysis,” in Proceedings of the
2011 annual meeting of the association for computational linguistics: Human language
technologies, pp. 142–150.

[141] M. Liu et al., “A scalable time-based integrate-and-fire neuromorphic core with brain-
inspired leak and local lateral inhibition capabilities,” in 2017 IEEE Custom Integrated
Circuits Conference (CICC), pp. 1–4.

[142] J. Koo et al., “Area-efficient transposable 6t sram for fast online learning in neuro-
morphic processors,” in 2019 IEEE Custom Integrated Circuits Conference (CICC),
pp. 1–4.

[143] D. Wang et al., “Always-on, sub-300-nw, event-driven spiking neural network based
on spike-driven clock-generation and clock- and power-gating for an ultra-low-power
intelligent device,” in 2020 IEEE Asian Solid-State Circuits Conference (A-SSCC),
pp. 1–4.

[144] S. Jeloka et al., “A configurable tcam/bcam/sram using 28nm push-rule 6t bit cell,”
in 2015 IEEE Symposium on VLSI Circuits, pp. C272–C273.

172

https://doi.org/10.1109/LSSC.2021.3092727

[145] J. Wang et al., “14.2 a compute sram with bit-serial integer/floating-point operations
for programmable in-memory vector acceleration,” in 2019 IEEE International Solid-
State Circuits Conference-(ISSCC), pp. 224–226.

[146] J.-H. Kim et al., “Z-pim: An energy-efficient sparsity aware processing-in-memory
architecture with fully-variable weight precision,” in 2020 IEEE Symposium on VLSI
Circuits, pp. 1–2.

173

VITA

Amogh Agrawal received the B.Tech. degree in Electrical Engineering from the Indian

Institute of Technology, Ropar, India, in 2016. He joined the Nanoelectronics Research Lab-

oratory in 2016 for pursuing his Ph.D. degree with the School of Electrical and Computer

Engineering, Purdue University, under the guidance of Prof. Kaushik Roy. He was a Re-

search Intern with the University of Ulm, Germany, in 2015, under the DAAD (German

Academic Exchange Service) Fellowship. He was a Technology Development Intern with

GlobalFoundries, Malta, NY, USA, in 2018, and an Engineering Intern with Rambus Inc.,

Sunnyvale, CA, USA, in 2019. His research interests include enabling in-memory compu-

tations for neuromorphic systems using CMOS and beyond-CMOS memories. He was a

recipient of the Director’s Gold Medal for his all-round performance, and the Institute Silver

Medal for his academic achievements at IIT Ropar. Since 2016, he has been a recipient of

the Andrews Fellowship from Purdue University.

174

PUBLICATIONS

1. T. Sharma, C. Wang, A. Agrawal, and K. Roy, ”Enabling Robust SOT-MTJ Crossbars

for Machine Learning using Sparsity-Aware Device-Circuit Co-design.” In Proceedings

of the ACM/IEEE International Symposium on Low Power Electronics and Design

(ISLPED ’21).

2. A. Agrawal, M. Ali, M. Koo, N. Rathi, A. Jaiswal and K. Roy, ”IMPULSE: A 65nm

Digital Compute-in-Memory Macro with Fused Weights and Membrane Potential for

Spike-based Sequential Learning Tasks,” in IEEE Solid-State Circuits Letters, doi:

10.1109/LSSC.2021.3092727.

3. M. Ali, I. Chakraborty, U. Saxena, A. Agrawal, A. Ankit and K. Roy, ”A 35.5-127.2

TOPS/WDynamic Sparsity-Aware Reconfigurable-Precision Compute-in-Memory SRAM

Macro for Machine Learning,” in IEEE Solid-State Circuits Letters, vol. 4, pp. 129-

132, 2021, doi: 10.1109/LSSC.2021.3093354.

4. A. Agrawal, A. P. Jacob, ”Apparatus and method for in-memory binary convolution for

accelerating deep binary neural networks based on a non-volatile memory structure.”

U.S. Patent No. 10,997,498. 4 May 2021.

5. A. Agrawal, C. Wang, T. Sharma and K. Roy, ”Magnetoresistive Circuits and Sys-

tems: Embedded Non-Volatile Memory to Crossbar Arrays,” in IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 68, no. 6, pp. 2281-2294, June 2021, doi:

10.1109/TCSI.2021.3069682.

6. A. Agrawal, D. Roy, U. Saxena and K. Roy, ”Embracing Stochasticity to Enable Neu-

romorphic Computing at the Edge,” in IEEE Design & Test,

doi: 10.1109/MDAT.2021.3051399.

7. C. Wang, A. Agrawal, E. Yu, K. Roy, ”Multi-Level Neuromorphic Devices Built on

Emerging Ferroic Materials: A Review.” in Front Neurosci. 2021;15:661667. Published

2021 Apr 28. doi:10.3389/fnins.2021.661667

175

8. A. Jaiswal, A. Agrawal, K. Roy, I. Chakraborty, ”Multi-bit dot product engine.” U.S.

Patent No. 10,825,510. 3 Nov. 2020.

9. A. Jaiswal, A. Agrawal, K. Roy, ”Memory device having in-situ in-memory stateful

vector logic operation.” U.S. Patent No. 10,802,827. 13 Oct. 2020.

10. A. Ankit, I. Chakraborty, A. Agrawal, M. Ali and K. Roy, ”Circuits and Architectures

for In-Memory Computing-Based Machine Learning Accelerators,” in IEEE Micro, vol.

40, no. 6, pp. 8-22, 1 Nov.-Dec. 2020, doi: 10.1109/MM.2020.3025863.

11. M. Ali, A. Agrawal, and K. Roy, ”RAMANN: in-SRAM differentiable memory com-

putations for memory-augmented neural networks.” In Proceedings of the ACM/IEEE

International Symposium on Low Power Electronics and Design (ISLPED ’20). Asso-

ciation for Computing Machinery, New York, NY, USA, 61–66. DOI:

https://doi.org/10.1145/3370748.3406574

12. A. Agrawal, A. Kosta, S. Kodge, D. E. Kim and K. Roy, ”CASH-RAM: Enabling In-

Memory Computations for Edge Inference Using Charge Accumulation and Sharing

in Standard 8T-SRAM Arrays,” in IEEE Journal on Emerging and Selected Topics in

Circuits and Systems, vol. 10, no. 3, pp. 295-305, Sept. 2020, doi: 10.1109/JET-

CAS.2020.3014250.

13. A. P. Jacob, and A. Agrawal, ”Resistive nonvolatile memory structure employing a

statistical sensing scheme and method.” U.S. Patent No. 10,726,896. 28 Jul. 2020.

14. A. Jaiswal, A. Agrawal, M. F. Ali, S. Sharmin and K. Roy, ”i-SRAM: Interleaved

Wordlines for Vector Boolean Operations Using SRAMs,” in IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4651-4659, Dec. 2020,

doi: 10.1109/TCSI.2020.3005783.

15. A. Jaiswal, A. Agrawal, P. Panda and K. Roy, ”Neural Computing With Magnetoelec-

tric Domain-Wall-Based Neurosynaptic Devices,” in IEEE Transactions on Magnetics,

vol. 57, no. 2, pp. 1-9, Feb. 2021, Art no. 4300209, doi: 10.1109/TMAG.2020.3010712.

176

16. K. Roy, I. Chakraborty, M. Ali, A. Ankit and A. Agrawal, ”In-Memory Computing

in Emerging Memory Technologies for Machine Learning: An Overview,” 2020 57th

ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1-6,

doi: 10.1109/DAC18072.2020.9218505.

17. I. Chakraborty et al., ”Resistive Crossbars as Approximate Hardware Building Blocks

for Machine Learning: Opportunities and Challenges,” in Proceedings of the IEEE,

vol. 108, no. 12, pp. 2276-2310, Dec. 2020, doi: 10.1109/JPROC.2020.3003007.

18. A. Agrawal, A. P. Jacob, ”Neuromorphic memory device.” U.S. Patent No. 10,672,465.

2 Jun. 2020.

19. A. P. Jacob, A. Agrawal, and B. C. Paul, ”Resistive nonvolatile memory cells with

shared access transistors.” U.S. Patent No. 10,665,281. 26 May 2020.

20. A. Agrawal et al., ”Revisiting Stochastic Computing in the Era of Nanoscale Non-

volatile Technologies,” in IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 28, no. 12, pp. 2481-2494, Dec. 2020, doi: 10.1109/TVLSI.2020.2991679.

21. M. Ali, A. Jaiswal, S. Kodge, A. Agrawal, I. Chakraborty and K. Roy, ”IMAC: In-

Memory Multi-Bit Multiplication and ACcumulation in 6T SRAM Array,” in IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 8, pp. 2521-2531,

Aug. 2020, doi: 10.1109/TCSI.2020.2981901.

22. A. Jaiswal, R. Andrawis, A. Agrawal and K. Roy, ”Functional Read Enabling In-

Memory Computations in 1Transistor—1Resistor Memory Arrays,” in IEEE Transac-

tions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3347-3351, Dec.

2020, doi: 10.1109/TCSII.2020.2975658.

23. I. Chakraborty, A. Agrawal, A. Jaiswal, G. Srinivasan and K. Roy, ”In situ unsuper-

vised learning using stochastic switching in magneto-electric magnetic tunnel junc-

tions”, in Phil. Trans. R. Soc. A. 378: 20190157.20190157

24. A. Jaiswal, I. Chakraborty, A. Agrawal and K. Roy, ”8T SRAM Cell as a Multibit

Dot-Product Engine for Beyond Von Neumann Computing,” in IEEE Transactions on

177

Very Large Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2556-2567, Nov.

2019, doi: 10.1109/TVLSI.2019.2929245.

25. A. Jaiswal, A. Agrawal, I. Chakraborty, D. Roy and K. Roy, ”On Robustness of

Spin-Orbit-Torque Based Stochastic Sigmoid Neurons for Spiking Neural Networks,”

2019 International Joint Conference on Neural Networks (IJCNN), 2019, pp. 1-6, doi:

10.1109/IJCNN.2019.8851780.

26. A. Agrawal, C. Lee, and K. Roy, ”X-CHANGR: Changing memristive crossbar mapping

for mitigating line-resistance induced accuracy degradation in deep neural networks.”

arXiv preprint arXiv:1907.00285 (2019).

27. A. Jaiswal, A. Agrawal, I. Chakraborty, M. Ali, and K. Roy, ”Digital and Analog-

Mixed-Signal In-Memory Processing in CMOS SRAM.” In Proceedings of the 2019 on

Great Lakes Symposium on VLSI, pp. 371-371. 2019.

28. A. Agrawal et al., ”Xcel-RAM: Accelerating Binary Neural Networks in High-Throughput

SRAM Compute Arrays,” in IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 66, no. 8, pp. 3064-3076, Aug. 2019, doi: 10.1109/TCSI.2019.2907488.

29. A. Agrawal and K. Roy, ”Mimicking Leaky-Integrate-Fire Spiking Neuron Using Au-

tomotion of Domain Walls for Energy-Efficient Brain-Inspired Computing,” in IEEE

Transactions on Magnetics, vol. 55, no. 1, pp. 1-7, Jan. 2019, Art no. 1400107, doi:

10.1109/TMAG.2018.2882164.

30. A. Agrawal and K. Roy, ”RECache: ROM-Embedded 8-Transistor SRAM Caches for

Efficient Neural Computing,” 2018 IEEE International Workshop on Signal Processing

Systems (SiPS), 2018, pp. 19-24, doi: 10.1109/SiPS.2018.8598290.

31. A. Agrawal, A. Ankit and K. Roy, ”SPARE: Spiking Neural Network Acceleration Us-

ing ROM-Embedded RAMs as In-Memory-Computation Primitives,” in IEEE Trans-

actions on Computers, vol. 68, no. 8, pp. 1190-1200, 1 Aug. 2019,

doi: 10.1109/TC.2018.2867048.

178

32. A. Agrawal, A. Jaiswal, C. Lee and K. Roy, ”X-SRAM: Enabling In-Memory Boolean

Computations in CMOS Static Random Access Memories,” in IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 65, no. 12, pp. 4219-4232, Dec. 2018,

doi: 10.1109/TCSI.2018.2848999.

33. I. Chakraborty, A. Agrawal and K. Roy, ”Design of a Low-Voltage Analog-to-Digital

Converter Using Voltage-Controlled Stochastic Switching of Low Barrier Nanomag-

nets,” in IEEE Magnetics Letters, vol. 9, pp. 1-5, 2018, Art no. 3103905, doi:

10.1109/LMAG.2018.2839097.

34. A. Jaiswal, A. Agrawal, and K. Roy, ”In-situ, In-Memory Stateful Vector Logic Op-

erations based on Voltage Controlled Magnetic Anisotropy.” Sci Rep 8, 5738 (2018).

https://doi.org/10.1038/s41598-018-23886-2.

35. A. Jaiswal, A. Agrawal and K. Roy, ”Robust and Cascadable Nonvolatile Magneto-

electric Majority Logic,” in IEEE Transactions on Electron Devices, vol. 64, no. 12,

pp. 5209-5216, Dec. 2017, doi: 10.1109/TED.2017.2766570.

179

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	ENABLING IN-MEMORY BOOLEAN COMPUTATIONS IN STANDARD 8T SRAM ARRAYS
	Introduction
	In-Memory Computations in 8-Transistor SRAM Bit-Cells
	8-Transistor SRAM: NOR operation
	8-Transistor SRAM: NAND operation
	8 Transistor SRAM: Voltage Divider Scheme for IMP and XOR gates
	Proposed `read-compute-store' (RCS) scheme

	8+ Transistor Differential Read SRAM
	Discussions
	 X-SRAM based non-standard von-Neumann Computing for AES Encryption
	Simulation Methodology
	Results and Discussion

	Conclusion

	ACCELERATING BINARY CONVOLUTIONAL NEURAL NETWORKS IN 10T SRAM ARRAYS
	Introduction
	In-memory Binary Convolution - Proposal-A
	Circuit Description
	Dual Read-Wordline based Dual-stage ADC
	Sectioned Memory Array for Parallel Computing
	Results

	In-memory Binary Convolution - Proposal-B
	Bitwise XNORs
	Popcount
	Results

	System-level Evaluation Framework for BNN
	Simulation Methodology
	Mapping Weights and Activations to Xcel-RAM
	Results and Discussion

	Conclusion

	ENABLING DOT-PRODUCT COMPUTATIONS IN STANDARD 8T-SRAM ARRAYS USING CHARGE ACCUMULATION AND SHARING
	Introduction
	Related Works
	Charge Sharing based In-Memory Dot-Product Operation
	8T-SRAM: Structure and Operation
	8T-SRAM: Charge sharing based Dot-Product Operation
	SPICE Characterization
	Self-Compensation
	Compensating for Transistor Non-linearity

	System Integration of CASH-RAM for Accelerating Ternary Weight Neural Networks
	Cache Integration
	Subarray Details
	Data Mapping

	Results
	Experimental methodology
	Impact of Non-idealities on Classification Accuracy
	Energy, Delay and Area Estimates

	Conclusion

	LOOKUP TABLE BASED COMPUTING USING ROM-EMBEDDED SRAM
	Introduction
	RECache: Design and Operation
	8T-SRAM
	8+T Differential Read SRAM

	Evaluating RECache on realistic workloads
	Conclusions

	SPIKING NEURAL NETWORK ACCELERATION USING LOOKUP TABLE BASED IN-MEMORY-COMPUTING
	Introduction
	Background
	ROM-Embedded RAMs
	SNN: Spiking Neural Networks
	LUT based storage in R-SRAMs and R-MRAMs

	SPARE: SNN Accelerator using ROM-embedded RAMs
	SPARE Organization
	Inter-layer pipelining
	Processing Element (PE)
	Modeling complex neuro-synaptic functionality

	Experimental Methodology
	Results
	Energy
	Area
	Performance
	Complex neuro-synaptic models

	Conclusion

	A 65-NM DIGITAL COMPUTE-IN-MEMORY MACRO ENABLING SPIKE-BASED SEQUENTIAL LEARNING IN 10T SRAM ARRAY
	Introduction
	IMPULSE: Structure and Operation
	Reconfigurable Column Peripherals
	In-Memory SNN Instructions
	Multiple Neuron Functionalities

	Implementation Results
	Multi-macro Architecture
	Introduction
	Zero-skipping
	Macro Pipeline
	Support for Multiple Bit-precision
	Configurations for Low and High Fan-in CNN Layers
	Timestep Pipelining: Leveraging Additional Weight Re-use
	Preliminary Results

	Conclusion

	SUMMARY AND FUTURE DIRECTIONS
	CHALLENGES WITH 6T SRAM FOR ENABLING COMPUTE-IN-MEMORY
	Operation of 6T SRAM
	Read Stability Challenges due to CIM
	Short-circuit paths
	Pseudo-write

	REFERENCES
	VITA
	PUBLICATIONS

