
EXPLORING METHODS FOR EFFICIENT LEARNING IN
NEURAL NETWORKS

by

Deboleena Roy

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

August 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Kaushik Roy, Chair

School of Electrical and Computer Engineering

Dr. Anand Raghunathan

School of Electrical and Computer Engineering

Dr. Vijay Raghunathan

School of Electrical and Computer Engineering

Dr. Shreyas Sen

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2

Dedicated to Didun for being my first teacher

3

ACKNOWLEDGMENTS

First and foremost, I would like to thank Prof. Kaushik Roy for taking me under his

guidance in 2016, when I joined Purdue University. Over the years, I have learned several

invaluable lessons from him which forged me into a much better researcher. I am forever

grateful for the warm welcome I received from his lab, Nanoelectronics Research Laboratory

(NRL), and the opportunity to work with a very talented group of people. I would also like

to thank my committee members, Prof. Anand Raghunathan, Prof. Vijay Raghunathan,

and Prof. Shreyas Sen. I am grateful for the many insightful discussions I had with them

which helped steer my Ph.D. research in the right direction. I was also extremely fortunate

to have forged lifelong friendships with people I met through this Ph.D. program. I want to

thank Abhronil for being my mentor and my friend since my first day. Also, I would like to

thank Chamika, Parami, Akhilesh, and Aayush for being the best seniors one could hope for.

I deeply cherish all the time we got to spend together. I would also like to thank Indranil,

my partner, who I met during my Ph.D. program. He has been my rock, and supported me

through all the lows, and celebrated with me all the highs. Finally, I would like to express

utmost gratitude towards my parents. They have been my pillars of strength throughout

my life, pushing me to chase my dreams.

4

TABLE OF CONTENTS

Page

LIST OF TABLES . 9

LIST OF FIGURES . 10

ABSTRACT . 15

1 INTRODUCTION . 17

2 TRANSFER LEARNING WITH SPIKING AUTOENCODERS 20

2.1 Introduction . 20

2.2 Learning Spatio-Temporal Representations using Spiking Autoencoders . . . 22

2.2.1 Input Encoding and Neuron Model 22

2.2.2 Network Model . 24

2.2.3 Backpropagation using Membrane Potential 25

2.3 Experiments . 27

2.3.1 Regenerative Learning with Spiking Autoencoders 27

2.3.2 Audio to Image Synthesis using Spiking Auto-Encoders 32

Dataset . 32

Network Model . 33

Results . 34

2.4 Conclusion . 37

3 TREE-CNN: A HIERARCHICAL DEEP CONVOLUTIONAL NEURAL NET-
WORK FOR INCREMENTAL LEARNING . 40

3.1 Introduction . 40

3.2 Related Work . 41

3.3 Incremental Learning Model . 42

3.3.1 Network Architecture . 42

3.3.2 The Learning Algorithm . 43

Handling input labels inside the Tree-CNN 49

3.4 The Experimental Setup . 50

3.4.1 Adding Multiple New Classes (CIFAR-10) 50

Dataset . 50

5

Page

The Network Initialization . 50

Incremental Learning . 51

3.4.2 Sequentially Adding Multiple Classes (CIFAR-100) 52

Dataset . 53

The Network Initialization . 53

Incremental Learning . 53

3.4.3 Benchmarking . 54

Baseline Network . 54

Fine-tuning the baseline network using old + new data 54

Evaluation Metrics . 55

3.4.4 The Training Framework . 55

3.5 Results . 56

3.5.1 Adding multiple new classes (CIFAR-10) 56

3.5.2 Sequentially adding new classes (CIFAR-100) 57

3.6 Discussion . 61

4 DEEP STOCHASTIC NEURAL NETWORKS 62

4.1 Training Deep Spiking Neural Networks with Binary Stochastic Activation . 64

4.1.1 Binary Stochastic Activations . 65

4.1.2 Weight Quantization . 67

4.2 Experiments . 68

4.2.1 Simulation Framework . 68

4.2.2 Experiments with CIFAR-10 . 69

4.2.3 Experiments with CIFAR-100 . 69

4.3 Results . 70

4.3.1 CIFAR-10 . 70

4.3.2 CIFAR-100 . 72

4.4 Hardware Implications . 75

4.5 Conclusion . 76

6

Page

5 INTRINSIC ADVERSARIAL ROBUSTNESS OF ANALOG COMPUTING . . . 77

5.1 Introduction . 77

5.2 Background and Related Work . 78

5.2.1 In-memory Analog Computing Hardware 78

Modeling of Non-Idealities using GENIEx 80

Functional Simulator for Crossbar Architectures: PUMA 81

5.2.2 Adversarial Attacks . 82

5.3 Adversarial Robustness of NVM Crossbar based Analog Computing 82

5.3.1 Crossbar Models . 83

5.3.2 Datasets and Network Models . 84

5.3.3 Generating Adversarial attacks . 84

Non-Adaptive Attacks . 85

Hardware in Loop Adaptive Attacks 86

Comparison with Related Work . 87

5.4 Results . 87

5.4.1 Non-Adaptive Attacks . 88

5.4.2 Hardware-in-Loop Adaptive Attacks 92

5.5 Conclusion . 93

6 NOISE STABILITY AND ROBUSTNESS OF ADVERSARIALLY TRAINED NET-
WORKS ON NVM CROSSBARS . 95

6.1 Introduction . 95

6.2 Related Work . 96

6.3 Evaluating Adversarially Trained Networks on NVM Crossbars 97

6.3.1 Datasets and Network Models . 98

6.3.2 Adversarial Attacks . 98

6.3.3 Adversarial Training . 99

6.3.4 Emulation of the Analog Hardware 99

6.4 Results . 101

6.4.1 Noise Stability of Adversarially Trained Networks 102

7

Page

6.4.2 Adversarial Robustness of Analog NVM crossbars 105

6.5 Conclusion . 109

7 SUMMARY . 111

REFERENCES . 113

A TREE-CNN . 124

A.1 Incremental CIFAR-100 Dataset . 124

A.2 Final Tree-CNN for max children 5, 10, 20 (CIFAR-100) 125

A.3 Full Simulation Results . 128

B STOCHASTIC NEURAL NETWORKS: ENERGY ESTIMATIONS 129

B.1 Energy Estimate . 129

VITA . 130

PUBLICATIONS . 131

8

LIST OF TABLES

2.1 Summary of results obtained for the 3 tasks - Autoencoder on MNIST, Autoen-
coder on Fashion-MNIST, and Audio to Image conversion (T = input duration
for SNN) . 38

3.1 Root Node Tree-CNN (CIFAR-10) . 51

3.2 Branch Node Tree-CNN (CIFAR-10) . 51

3.3 Network B . 51

3.4 Root Node Tree-CNN (CIFAR-100) . 52

3.5 Branch Node Tree-CNN (CIFAR-100) . 52

3.6 Training Effort and Test Accuracy comparison of Tree-CNN against Network B
for CIFAR-10 . 56

3.7 Test Accuracy over all 100 classes of CIFAR-100 59

4.1 Neuron Models . 67

4.2 Network Architecture . 68

4.3 Test Accuracy CIFAR-10 VGG-9 . 71

4.4 Test Accuracy CIFAR-100 VGG-16 . 74

4.5 Energy Consumption chart . 75

4.6 Energy estimates for different networks . 75

5.1 Crossbar Model Description . 83

5.2 Attacker’s Knowledge for the Threat Scenarios 84

5.3 Summary of Non-Adaptive Attacks on NVM Crossbar Models 91

5.4 Hardware-in-Loop Adaptive Attacks . 93

6.1 ResNet Architectures used for CIFAR-10/100 97

6.2 NVM Crossbar Model Description [90] . 99

6.3 Functional Simulator precision parameters . 99

A.1 Normalized Training Effort as classes are added incrementally in batches of 10
(CIFAR-100) . 128

A.2 Test Accuracy as classes are added incrementally in batches of 10 (CIFAR-100) 128

B.1 Operations in neural networks . 129

9

LIST OF FIGURES

2.1 The input image is converted into a spike map over time. At each time step
neurons spike with a probability proportional to the corresponding pixel value
at their location. These spike maps, when summed over several time steps,
reconstruct the original input . 23

2.2 The dynamics of a spiking neural network (SNN): (A) A two layer feed-
forward SNN at any given arbitrary time instant. The input vector is mapped
one-to-one to the input neurons (layer(0)). The input value governs the fir-
ing rate of the neuron, i.e. number of times the neuron output is 1 in a
given duration. (B) A leaky integrate and fire (LIF) neuron model with 3
synapses/weights at its input. The membrane potential of the neuron inte-
grates over time (with leak). As soon as it crosses Vth, the neuron output
changes to 1, and Vmem is reset to 0. For taking derivative during backprop-
agation, a sigmoid approximation is used for the neuron activation 24

2.3 The AE-SNN (784-196-784) is trained over MNIST (60,000 training samples,
batch size = 100) for different leak coefficients (α). (A) spike-based MSE
(Mean Square Error) Reconstruction Loss per batch during training. (B)
Average MSE over entire dataset after training 27

2.4 The AE-SNN (784-196-784) is trained over MNIST (60,000 training samples,
batch size = 100) and we study the impact of (A) mask, and (B) input spike
train duration on the Mean Square Error (MSE) Reconstruction Loss 28

2.5 AE-SNN trained on MNIST (training examples = 60,000, batch size = 100).
(A) Spiking autoencoder (AE-SNN) versus AE-ANNs (trained with/without
Adam). (B) Regenerated images from test set for AE-SNN (input spike
duration = 15, leak = 0.1) . 29

2.6 AE-SNN trained on Fashion-MNIST (training examples = 60,000, batch size
= 100) (A) AE-SNN (784×(512/1024)×784) versus AE-ANNs (trained with/with-
out Adam, lr = 5e-3) (B) Regenerated images from test set for AE-SNN-1024 29

2.7 (A) AE-SNN (784×H×784) trained on MNIST (training examples = 60,000,
batch size = 100) for different hidden layer sizes = 64, 196, 400 (B) AE-ANN
(784×1024×784) trained on Fashion-MNIST (training examples = 60,000,
batch size = 100) with Adam optimization for various learning rates (lr).
Baseline: AE-SNN trained with input spike train duration of 60 time steps.
(C) AE-SNN (784×1024×784) trained on Fashion-MNIST (training examples
= 60,000, batch size = 100) for varying input time steps, T = 15, 30, 60.
Baseline: AE-ANN trained using Adam with lr = 5e-3 30

2.8 Audio to Image synthesis model using an Autoencoder trained on MNIST
images, and an Audiocoder trained to convert TI-46 digits audio samples into
corresponding hidden state of the MNIST images. 34

10

2.9 The performance of the Audio to Image synthesis model on the two datasets
- A and B (Th = 10)) (A) Mean square error loss (test set) (B) Images
synthesized from different test audio samples (5 per class) for the two datasets
A, and B . 36

2.10 The audiocoder (AC-SNN/AC-ANN) is trained over Dataset A, while the au-
toencoder (AE-SNN/AE-ANN) is fixed. MSE is reported on the overall audio-
to-image synthesis model composed of AC-SNN/ANN and AE-SNN/ANN.
(A) Reconstruction loss of the audio-to-image synthesis model for varying
Th (B) Audiocoder performance AC-SNN (Th = 15) vs AC-ANN (16 bit full
precision) (C) Effect of training with reduced hidden state representation on
AC-SNN and AC-ANN models . 37

3.1 A generic model of 2-level Tree-CNN: The output of the root node is used to
select the branch node at the next level. 43

3.2 An example illustrating multiple incremental learning stages of the Tree-CNN.
The network starts as a single root node, and expands as new classes are added. 45

3.3 Graphical representation of Tree-CNN for CIFAR-10 a) before incremental
learning, b) after incremental learning . 50

3.4 Incrementally learning CIFAR-10: 4 New classes are added to Network B and
Tree-CNN. Networks B:I to B:V represent 5 increasing depths of retraining
for Network B. (a) The softmax likelihood output at the root node for the two
branches. (b) Testing Accuracy vs Normalized Training Effort for Tree-CNN
and networks B:I to B:V . 56

3.5 Tree-CNN : Effect of varying the maximum number of children per branch
node (maxChildren) as new classes are added to the models (CIFAR-100)
(a) Network size (b) Test Accuracy . 57

3.6 CIFAR-100: New classes are added to Network B and Tree-CNNs in batches
of 10. Networks B:I to B:V represent 5 increasing depths of retraining for
Network B (a) Training effort for every learning stage (Table A.1) (b) Testing
Accuracy at the end of each learning stage (Table A.2) 57

3.7 The performance of Tree-CNN compared with a) Fine-tuning Network B b)
Other incremental learning methods [48], [51] 59

3.8 Examples of groups of classes formed when new classes were added incremen-
tally to Tree-CNN-10 in batches of 10 for CIFAR-100 60

4.1 Training Error over epochs for 5 different activations and 3 different weight
quantizations for CIFAR-10 on VGG-9 . 70

4.2 Test Error over epochs for 5 different activations and 3 different weight quan-
tizations for CIFAR-10 on VGG-9 . 70

11

4.3 Test Loss vs Train Loss Trajectory of the VGG-9 for CIFAR-10. The lines
are fourth degree polynomial fit of the data (the plotted points) 71

4.4 Training Error over epochs for 5 different activations and 3 different weight
quantizations for CIFAR-100 on VGG-16 . 72

4.5 Test Error over epochs for 5 different activations and 3 different weight quan-
tizations for CIFAR-100 on VGG-16 . 73

4.6 Test Loss vs Train Loss Trajectory of the VGG-16 for CIFAR-100. The lines
are fourth degree polynomial fit of the data (the plotted points) 73

5.1 (Left) Illustration of NVM crossbar which produces output current Ij, as a
dot-product of voltage vector, Vi and NVM device conductance, Gij. (Right)
Various peripheral and parasitic resistances modify the dot-product compu-
tations into an interdependent function of the analog variables (voltage, con-
ductance and resistances) in a non-ideal NVM crossbar. 79

5.2 Non-Adaptive Transfer Attacks (PGD, iter=30) on CIFAR-10/100 and Ima-
geNet on 3 NVM models and 3 defenses, Input BW Reduction (4-bit input)
[111], SAP [94], Random Pad [103] . 88

5.3 Non-Adaptive Ensemble (Black Box) PGD (iter=30) on CIFAR-10, CIFAR-
100 on 3 NVM crossbar models and the 2 defenses, Input BW Reduction
(4-bit input) [111] and SAP [94] . 89

5.4 Non-Adaptive Square Attacks (Black Box) on CIFAR-10/100 and ImageNet
on 3 NVM models and 3 defenses, Input BW Reduction (4-bit input) [111],
SAP [94], Random Pad [103] . 89

5.5 Non-Adaptive White Box Attacks (PGD, iter=30) on CIFAR-10, CIFAR-100
on 3 NVM models and 2 defenses, Input BW Reduction (4-bit input) [111]
and SAP [94] . 90

5.6 Hardware-in-Loop Adaptive Black Box Attacks (PGD, iter=30) on CIFAR-
10/100. Target NVM model is 64x64_100k, and the attacks are generated
using 3 different NVM models. . 91

5.7 Hardware-in-Loop Adaptive Black Box Attacks (PGD, iter=30) on CIFAR-
10/100. Target NVM model is 64x64_100k, and the attacks are generated
using 3 different NVM models. . 92

6.1 Digital vs Analog Natural Test Accuracy for vanilla and adversarially trained
DNNs. clean: vanilla training with unperturbed images. pgd-epsN : PGD
adversarial training with εtrain = N = [2, 4, 6, 8] and iter = 50 101

6.2 Signal to Noise (SNR) at the output of every layer. for vanilla and ad-
versarially trained DNNs. clean: vanilla training with unperturbed images.
pgd-epsN : PGD adversarial training with εtrain = N = [2, 4, 6, 8] and iter
= 50. NVM crossbar model: 64x64_100k (NF = 0.26). 102

12

6.3 Noise Sensitivity at the output of every layer. for vanilla and adversarially
trained DNNs. clean: vanilla training with unperturbed images. pgd-epsN :
PGD adversarial training with εtrain = N = [2, 4, 6, 8] and iter = 50. NVM
crossbar model: 64x64_100k (NF = 0.26). 103

6.4 Adversarial Accuracy under PGD White Box Attack (iter = 50) for ResNet10w1
architecture and CIFAR-10 implemented on 3 different hardware (a) Accu-
rate Digital, (b) NVM crossbar model: 32x32_100k (NF = 0.14), and (c)
NVM crossbar model: 64x64_100k (NF = 0.26). clean: vanilla training with
unperturbed images. pgd-epsN : PGD adversarial training with εtrain = N =
[2, 4, 6, 8] and iter = 50. 105

6.5 Adversarial Accuracy under PGD White Box Attack (iter = 50) for ResNet10w4
architecture and CIFAR-10 implemented on 3 different hardware (a) Accu-
rate Digital, (b) NVM crossbar model: 32x32_100k (NF = 0.14), and (c)
NVM crossbar model: 64x64_100k (NF = 0.26). clean: vanilla training with
unperturbed images. pgd-epsN : PGD adversarial training with εtrain = N =
[2, 4, 6, 8] and iter = 50. 106

6.6 Adversarial Accuracy under PGD White Box Attack (iter = 50) for ResNet20w1
architecture and CIFAR-100 implemented on 3 different hardware (a) Accu-
rate Digital, (b) NVM crossbar model: 32x32_100k (NF = 0.14), and (c)
NVM crossbar model: 64x64_100k (NF = 0.26). clean: vanilla training with
unperturbed images. pgd-epsN : PGD adversarial training with εtrain = N =
[2, 4, 6, 8] and iter = 50. 107

6.7 Adversarial Accuracy under PGD White Box Attack (iter = 50) for ResNet20w4
architecture and CIFAR-100 implemented on 3 different hardware (a) Accu-
rate Digital, (b) NVM crossbar model: 32x32_100k (NF = 0.14), and (c)
NVM crossbar model: 64x64_100k (NF = 0.26). clean: vanilla training with
unperturbed images. pgd-epsN : PGD adversarial training with εtrain = N =
[2, 4, 6, 8] and iter = 50. 108

6.8 Difference in Adversarial Accuracy (Robustness Gain = Analog - Digital)
for varying PGD Attack (εattack). NVM crossbar model: 32x32_100k (NF =
0.14). 4 network architectures (ResNet10w1, ResNet10w4, ResNet20w1, ResNet20w4)
on 2 datasets (CIFAR-10, CIFAR-100) are adversarially trained with (a)
PGD, εtrain = 2 and iter= 50 (b) PGD, εtrain = 4 and iter= 50 (c) PGD,
εtrain = 6 and iter= 50 (d) PGD, εtrain = 8 and iter= 50 109

6.9 Difference in Adversarial Accuracy (Robustness Gain = Digital - Analog)
for varying PGD Attack (εattack). NVM crossbar model: 64x64_100k (NF =
0.26). 4 network architectures (ResNet10w1, ResNet10w4, ResNet20w1, ResNet20w4)
on 2 datasets (CIFAR-10, CIFAR-100) are adversarially trained with (a)
PGD, εtrain = 2 and iter= 50 (b) PGD, εtrain = 4 and iter= 50 (c) PGD,
εtrain = 6 and iter= 50 (d) PGD, εtrain = 8 and iter= 50 110

A.1 Tree-CNN-5: After 9 incremental learning stages 125

13

A.2 Tree-CNN-10: After 9 incremental learning stages 126

A.3 Tree-CNN-20: After 9 incremental learning stages 127

14

ABSTRACT

In the past fifty years, Deep Neural Networks (DNNs) have evolved greatly from a single

perceptron to complex multi-layered networks with non-linear activation functions. Today,

they form the backbone of Artificial Intelligence, with a diverse application landscape, such

as smart assistants, wearables, targeted marketing, autonomous vehicles, etc. The design of

DNNs continues to change, as we push its abilities to perform more human-like tasks at an

industrial scale.

Multi-task learning and knowledge sharing are essential to human-like learning. Humans

progressively acquire knowledge throughout their life, and they do so by remembering, and

modifying prior skills for new tasks. In our first work, we investigate the representations

learned by Spiking Neural Networks (SNNs), and how to share this knowledge across tasks.

Our prior task was MNIST image generation using a spiking autoencoder. We combined the

generative half of the autoencoder with a spiking audio-decoder for our new task, i.e audio-to-

image conversion of utterances of digits to their corresponding images. We show that objects

of different modalities carrying the same meaning can be mapped into a shared latent space

comprised of spatio-temporal spike maps, and one can transfer prior skills, in this case, image

generation, from one task to another, in a purely Spiking domain. Next, we propose Tree-

CNN, an adaptive hierarchical network structure composed of Deep Convolutional Neural

Networks(DCNNs) that can grow and learn as new data becomes available. The network

organizes the incrementally available data into feature-driven super-classes and improves

upon existing hierarchical CNN models by adding the capability of self-growth.

While the above works focused solely on algorithmic design, the underlying hardware

determines the efficiency of model implementation. Currently, neural networks are imple-

mented in CMOS based digital hardware such as GPUs and CPUs. However, the saturating

scaling trend of CMOS has garnered great interest in Non-Volatile Memory (NVM) tech-

nologies such as Spintronics and RRAM. However, most emerging technologies have inherent

reliability issues, such as stochasticity and non-linear device characteristics. Inspired by the

recent works in spin-based stochastic neurons, we studied the algorithmic impact of designing

a neural network using stochastic activations. We trained VGG-like networks on CIFAR-

15

10/100 with 4 different binary activations and analyzed the trade-off between deterministic

and stochastic activations.

NVM-based crossbars further promise fast and energy-efficient in-situ matrix-vector mul-

tiplications (MVM). However, the analog nature of computing in these NVM crossbars in-

troduces approximations in the MVM operations, resulting in deviations from ideal output

values. We first studied the impact of these non-idealities on the performance of vanilla DNNs

under adversarial circumstances, and we observed that the non-ideal behavior interferes with

the computation of the exact gradient of the model, which is required for adversarial image

generation. In a non-adaptive attack, where the attacker is unaware of the analog hardware,

analog computing offered varying degree of intrinsic robustness under all attack scenarios -

Transfer, Black Box, and White Box attacks. We also demonstrated “Hardware-in-Loop”

adaptive attacks that circumvent this robustness by utilizing the knowledge of the NVM

model.

Next, we explored the design of robust DNNs through the amalgamation of adversarial

training and the intrinsic robustness offered by NVM crossbar based analog hardware. We

studied the noise stability of such networks on unperturbed inputs and observed that internal

activations of adversarially trained networks have lower Signal-to-Noise Ratio (SNR), and

are sensitive to noise than vanilla networks. As a result, they suffer significantly higher

performance degradation due to the non-ideal computations, on an average 2× accuracy

drop. On the other hand, for adversarial images, the same networks displayed a 5 − 10%

gain in robust accuracy due to the underlying NVM crossbar when the attack epsilon (εattack,

the degree of input perturbations) was greater than the epsilon of the adversarial training

(εtrain). Our results indicate that implementing adversarially trained networks on analog

hardware requires careful calibration between hardware non-idealities and εtrain to achieve

optimum robustness and performance.

16

1. INTRODUCTION

Automation has been the universal the metric of human progress, our progression of tools

and machines has been used to define the various periods of human civilization. Today, we

are at the precipice of the Fourth Industrial Revolution and Artificial Intelligence (AI) is

one of the keys to it [1]. Today AI-driven technology influences many aspects of our life,

both personal and communal. Our personal lives are enhanced with smart assistants, wear-

ables, personalized media, self-driving cars, etc, as well as large-scale collective services like

AI-powered facial recognition systems for security, predictive trading for markets, targeted

advertising, etc. The ubiquity of AI is a recent phenomenon due to major breakthroughs in

the sub-field of Neural Networks (NNs) in the past decade[2], [3].

Neural Networks are a sub-class of Machine Learning (ML) algorithms that are inspired

from the physiology of neuronal systems in animals. The human brain is the cynosure of AI

researchers, as many attempt to understand and replicate its functioning. Starting from the

early models, such as Perceptrons, Neural Networks has diverged into two sub-groups, the

more popular Deep Learning (DL) or Artificial Neural Networks (ANNs) [4], and the more

niche, bio-plausible Spiking Neural Networks (SNNs) [5].

While DNNs have proved themselves as powerful computational tools for many tasks,

there is still a significant gap between their capabilities and human-like intelligence. One

key distinguishing factor is multi-task learning. Humans learn a wide variety of tasks over

time, often utilizing knowledge of the past to adapt to new scenarios. They are capable of

remembering the past skills, and simultaneously learning new skills. Neural Networks, on

the other hand, are trained on highly specific unique tasks. Adapting to a new task often

requires deisgining a new model and training from scratch [6]. In the first half of the thesis,

we investigate both ANNs and SNNs with respect to multi-task learning.

Bio-plausibility is the driving force when designing Spiking Neural Networks. The acti-

vation function of an SNN is often an Integrate and Fire (IF) neuron, that closely mimics

the functionality of a biological neuron. The data within the network is temporal in nature,

and represented as a series of spikes, just like the human brain. SNNs offer a promising

alternative to current artificial neural networks to enable low-power event-driven neuromor-

17

phic hardware. Spike-based neuromorphic applications require processing and extracting

meaningful information from spatio-temporal data, represented as series of spike trains over

time. As our first work, we explore the nature of these hidden representations, and synaptic

weights, and if they are transferable across tasks. We stack two networks trained separately

on different sub-tasks, and create an audio-to-image synthesis pipeline [7].

Next, We expand this idea of network-sharing to Convolutional Neural Networks (CNNs).

We propose Tree-CNN, a hierarchical neural network system composed of multiple CNNs.

The CNNs at higher nodes are shared by CNNs of lower nodes, creating a multi-level classi-

fication system. This system is useful in incremental learning of new data. The Tree-CNN

algorithm identifies a subset of nodes that require retraining to accommodate new informa-

tion. It limits the changes to a part of the network, and thereby reduces the retraining effort.

Thus, in the first half, we proposed techniques that address certain algorithmic limitations

in Neural Networks in terms of multi-task and incremental learning. In the second half, we

focus on the implementation challenges of current Deep Neural Networks from a hardware

perspective. Nowadays many consumer applications rely on deep neural networks (DNNs) to

enhance their user experience, such as smart wearables, smart assistants, etc. As our reliance

on deep learning increases, so does the need to build secure, reliable, efficient frameworks

for executing the intensive computational requirements of DNNs.

This has encouraged researchers to venture beyond traditional von-Neuman computing,

and exploit emerging technologies to design specialized hardware for neural networks. In

the existing CMOS hardware, computations are digital and accurate in nature. However,

the saturating trend of CMOS scaling limits our efforts for more energy efficient CMOS

hardware. On the other hand, hardware based on emerging technologies, such as Non-

Volatile Memory (NVM) based crossbars [8]–[10], and neuro-mimetic devices [11] suffer from

reliability issues. While these physical properties may seem undesirable on the surface,

careful algorithm-hardware co-design can help us leverage their stochastic and non-linear

behaviour for efficient ad robust implementations of neural networks. To that effect, we

investigate deep stochastic neural networks, as they are ideal candidates for implementation

on an inherently stochastic hardware [12], [13]. We also analyze the impact of non-idealities

18

of crossbar based hardware on Neural Network performance, particularly under adversarial

attack [14].

The next 5 chapters are organized as follows. In Ch. 2 we present multi-task learning

in a spike-based environment using spiking autoencoders. Next, we showcase Tree-CNN,

our proposed method of incremental learning using a hierarchical ensemble of Convolutional

Neural Networks (CNNs), in Ch. 3 . In Ch. 4 , we analyze the performance of deep neural

networks with stochastic activations. And in Ch. 5 and 6 , we look at the relationship

between adversarial robustness of DNNs and the non-idealities of analog computing. In the

final chapter, Ch. 7 , we summarize our key findings and outline the future direction of our

research work.

19

2. TRANSFER LEARNING WITH SPIKING

AUTOENCODERS

2.1 Introduction

For any neural network, the first step of learning is the ability to encode the input into

meaningful representations. Autoencoders are a class of neural networks that can learn

efficient data encodings in an unsupervised manner [15]. Their two-layer structure makes

them easy to train as well. Also, multiple autoencoders can be trained separately and then

stacked to enhance functionality [16]. In the domain of SNNs as well, autoencoders provide

an exciting opportunity for implementing unsupervised feature learning [17]. Hence, we

use autoencoders to investigate how input spike trains can be processed and encoded into

meaningful hidden representations in a spatio-temporal format of output spike trains which

can be used to recognize and regenerate the original input.

Generally, autoencoders are used to learn the hidden representations of data belonging

to one modality only. However, the information surrounding us presents itself in multiple

modalities - vision, audio, and touch. We learn to associate sounds, visuals and other sensory

stimuli to one another. For example, an “apple” when shown as an image, or as text, or heard

as an audio, holds the same meaning for us. A better learning system is one that is capable

of learning shared representation of multimodal data [18]. [19] proposed a bimodal SNN

model that performs person authentication using speech and visual (face) signals. STDP-

trained networks on bimodal data have exhibited better performance [20]. In this work, we

explore the possibility of two sensory inputs - audio and visual, of the same object, learning

a shared representation using multiple autoencoders, and then use this shared representation

to synthesize images from audio samples.

To enable the above discussed functionalities, we must look at a way to train these

spiking autoencoders. While several prior works exist in training these networks, each comes

with its own advantages and drawbacks. One way to train spiking autoencoders is by using

Spike Timing Dependent Plasticity (STDP) [21], an unsupervised local learning rule based

on spike timings, such as [22] and [23]. However, STDP, being unsupervised and localized,

still fails to train SNNs to perform at par with ANNs. Another approach is derived from

20

ANN backpropagation; the average firing rate of the output neurons is used to compute

the global loss [24], [25]. Rate-coded loss fails to include spatio-temporal information of the

network, as the network response is accumulated over time to compute the loss. [26] applied

backpropagation through time (BPTT) [27], while [28] proposed a hybrid backpropagation

technique to incorporate the temporal effects. Very recently [29] demonstrated direct training

of deep SNNs in a Pytorch based implementation framework. However, it continues to be

a challenge to accurately map the time-dependent neuronal behavior with a time-averaged

rate coded loss function.

In a network trained for classification, an output layer neuron competes with its neighbors

for the highest firing rate, which translates into the class label, thus making rate-coded

loss a requirement. However, the target for an autoencoder is very different. The output

neurons are trained to regenerate the input neuron patterns. Hence, they provide us with

an interesting opportunity where one can choose not to use rate-coded loss. Spiking neurons

have an internal state, referred to as the membrane potential (Vmem), that regulates the

firing rate of the neuron. The Vmem changes over time depending on the input to the neuron,

and whenever it exceeds a threshold, the neuron generates a spike. [17] first presented a

backpropagation algorithm for spiking autoencoders that uses Vmem of the output neurons

to compute the loss of the network. They proposed an approximate gradient descent based

algorithm to learn hierarchical representations in stacked convolutional autoencoders. For

training the autoencoders in this work, we compute the loss of the network using Vmem of

the output neurons, and we incorporate BPTT [27] by unrolling the network over time to

compute the gradients.

In this work [7], we demonstrate that in a spike-based environment, inputs can be trans-

formed into compressed spatio-temporal spike maps, which can be then be utilized to recon-

struct the input later, or can be transferred across network models, and data modalities. We

train and test spiking autoencoders on MNIST and Fashion-MNIST dataset. We also present

an audio-to-image synthesis framework, composed of multi-layered fully-connected spiking

neural networks. A spiking autoencoder is used to generate compressed spatio-temporal

spike maps of images (MNIST). A spiking audiocoder then learns to map audio samples to

these compressed spike map representations, which are then converted back to images with

21

high fidelity using the spiking autoencoder. To the best of our knowledge, this is the first

work to perform audio to image synthesis in a spike-based environment.

The chapter is organized in the following manner: In Sec. 2.2 , the neuron model, the net-

work structure and notations are introduced. The backpropagation algorithm is explained

in detail. This is followed by Sec. 2.3 where the performance of these spiking autoencoders

is evaluated on MNIST [30] and Fashion-MNIST [31] datasets. We then setup our Au-

dio to Image synthesis model and evaluate it for converting TI-46 digits audio samples to

MNIST images. Finally, in Sec. 2.4 , we conclude with discussion on this work and its future

prospects.

2.2 Learning Spatio-Temporal Representations using Spiking Autoencoders

In this section, we understand the spiking dynamics of the autoencoder network and

mathematically derive the proposed training algorithm, a membrane-potential based back-

propagation.

2.2.1 Input Encoding and Neuron Model

A spiking neural network differs from a conventional ANN in two main aspects - inputs

and activation functions. For an image classification task, for example, an ANN would

typically take the raw pixel values as input. However, in SNNs, inputs are binary spike events

that happen over time. There are several methods for input encoding in SNNs currently in

use, such as rate encoding, rank order coding and temporal coding [32]. One of the most

common methods is rate encoding, where each pixel is mapped to a neuron that produces

a Poisson spike train, and its firing rate is proportional to the pixel value. In this work,

every pixel value of 0 − 255 is scaled to a value between [0, 1] and a corresponding Poisson

spike train of fixed duration, with a pre-set maximum firing rate, is generated (Fig.2.1). The

neuron model is that of a leaky integrate-and-fire (LIF) neuron. The membrane potential

(Vmem) is the internal state of the neuron that gets updated at each time step based on

the input of the neuron, Z [t] (eq. 2.1).The output activation (A[t]) of the neuron depends

on whether Vmem reaches a threshold (Vth) or not. At any time instant, the output of the

22

Figure 2.1. : The input image is converted into a spike map over time. At each time
step neurons spike with a probability proportional to the corresponding pixel value at their
location. These spike maps, when summed over several time steps, reconstruct the original
input

neuron is 0 unless the following condition is fulfilled, Vmem ≥ Vth (eq. 2.2). The leak factor

is determined by a constant α. After a neuron spikes, it’s membrane potential is reset to 0.

Fig. 2.2 B illustrates a typical neuron’s behavior over time.

V [t]
mem = (1 − α)V [t−1]

mem + Z [t] (2.1)

A[t] =

0, V [t]

mem < Vth

1, V [t]
mem ≥ Vth

(2.2)

The activation function (eq. 2.2), which is a clip function, is non-differentiable with respect

to Vmem, and hence we cannot take its derivative during backpropagation. Several works

use various approximate pseudo-derivatives, such as piece-wise linear [33], and exponential

derivative [34]. As mentioned in [34], the probability density function of the switching activity

of the neuron with respect to its membrane potential can be used to approximate the clip

function. It has been observed that biological neurons are noisy and exhibit a probabilistic

switching behaviour [35], [36], which can be modeled as having a sigmoid-like characterstic

[13]. Thus, for backpropagation, we approximate the clip function (eq. 2.2) with a sigmoid

23

which is centered around Vth, and thereby, the derivative of A[t] is approximated as the

derivative of the sigmoid, (A[t]
apx) (eq. 2.3 , 2.4).

A[t]
apx = 1

1 + exp(−(V [t]
mem − Vth))

(2.3)

∂A[t]

∂V
[t]

mem

≈
∂A[t]

apx

∂V
[t]

mem

= exp(−(V [t]
mem − Vth))

(1 + exp(−(V [t]
mem − Vth)))2

(2.4)

2.2.2 Network Model

Figure 2.2. : The dynamics of a spiking neural network (SNN): (A) A two layer feed-
forward SNN at any given arbitrary time instant. The input vector is mapped one-to-one
to the input neurons (layer(0)). The input value governs the firing rate of the neuron, i.e.
number of times the neuron output is 1 in a given duration. (B) A leaky integrate and
fire (LIF) neuron model with 3 synapses/weights at its input. The membrane potential of
the neuron integrates over time (with leak). As soon as it crosses Vth, the neuron output
changes to 1, and Vmem is reset to 0. For taking derivative during backpropagation, a sigmoid
approximation is used for the neuron activation

We define the autoencoder as a two layer fully connected feed-forward network. To

evaluate our proposed training algorithm, we have used two datasets - MNIST [30] and

Fashion MNIST [31]. The two datasets have the same input size, a 28 × 28 gray-scale

24

image. Hence, the input and the output layers of their networks have 784 neurons each. The

number of layer(1) neurons is different for the two datasets. The input neurons (layer(0)) are

mapped to the image pixels in a one-to-one manner and generate the Poisson spike trains.

The autoencoder trained on MNIST later used as one of the building blocks of the audio-to-

image synthesis network. The description of the network and the notation used throughout

this chapter is given in Fig. 2.2 A.

2.2.3 Backpropagation using Membrane Potential

In this work, loss is computed using the membrane potential of output neurons at every

time step and then it’s gradient with respect to weights is backpropagated for weight update.

The input image is provided to the network as 784×1 binary vector over T time steps,

represented as X
(t)
spike. At each time step the desired membrane potential of the output layer

is calculated (eq. 2.5). The loss is the difference between the desired membrane potential

and the actual membrane potential of the output neurons. Additionally a masking function

is used that helps us focus on specific neurons at a time. The mask used here is bitwise

XOR between expected spikes (X [t]
spike) and output spikes (A(2)[t]) at a given time instant.

The mask only preserves the error of those neurons that either were supposed to spike but

did not spike, or were not supposed to spike, but spiked. It sets the loss to be zero for all

other neurons. We observed that masking is essential for training in spiking autoencoder as

shown in Fig. 2.4 A

O[t] = Vth.∗X
[t]
spike (2.5)

mask = bitXOR(X [t]
spike, A(2)[t]) (2.6)

Error = E = mask.∗(O[t] − V (2)[t]
mem) (2.7)

Loss = L = 1
2 |E|2 (2.8)

25

The weight gradients, ∂L
∂W

, are computed by back-propagating loss in the two layer network

as depicted in Fig. 2.2 A. We derive the weight gradients below.

∂L

∂V
(2)[t]

mem

= −E (2.9)

From eq. 2.1 ,
∂V (2)[t]

mem

∂W (2) = (1 − α)∂V (2)[t−1]
mem

∂W (2) +
[
A(1)[t]

]T
. (2.10)

The derivative is dependent not only on the current input (A(1)[t]), but also on the state from

previous time step (V (2)[t−1]
mem).

Next we apply chain rule on eq. 2.9 - 2.10 ,

∂L

∂W (2) = ∂L

∂V
(2)[t]

mem

∂V (2)[t]
mem

∂W (2) = −E

[
(1 − α)∂V (2)[t−1]

mem

∂W (2) +
[
A(1)[t]

]T
]
, (2.11)

from eq. 2.1 ,
∂V (2)[t]

mem

∂Z(2)[t] = I, (2.12)

from 2.9 and 2.12 , we obtain the local error of layer(2) with respect to the overall loss which

is backpropagated to layer(1),

δ2 = ∂L

∂Z(2)[t] = I(−E) = −E, (2.13)

next, the gradients for layer(1) are calculated,

∂Z(2)[t]

∂A(1)[t] = W (2), (2.14)

from eq. 2.3 - 2.4 ,

∂A(1)[t]

∂V
(1)[t]

mem

≈
∂A(1)[t]

apx

∂V
(1)[t]

mem

= exp(−(V (1)[t]
mem − Vth))

(1 + exp(−(V (1)[t]
mem − Vth)))2

, (2.15)

from eq. 2.1 ,
∂V (1)[t]

mem

∂W (1) = (1 − α)∂V (1)[t−1]
mem

∂W (1) +
[
X

[t]
spike

]T
, (2.16)

26

from 2.13 - 2.16 ,

∂L

∂W (1) = ∂L

∂V
(1)[t]

mem

∂V (1)[t]
mem

∂W (1) =
[[

W (2)
]T

δ2 ◦ ∂A(1)[t]

∂V
(1)[t]

mem

][
(1 − α)∂V (1)[t−1]

mem

∂W (1) +
[
X

[t]
spike

]T
]
. (2.17)

Thus, equations 2.11 and 2.17 show how gradients of the loss function with respect to weights

are calculated. For weight update, we use mini-batch gradient descent and a weight decay

value of 1e-5. We implement Adam optimization [37], but the first and second moments of

the weight gradients are averaged over time steps per batch (and not averaged over batches).

We store ∂V
(l)[t]

mem

∂W (l) of the current time step for use in next time step. The initial condition

is, ∂V
(l)[0]

mem

∂W (l) = 0. If a neuron spikes, it’s membrane potential is reset and therefore we reset
∂V

(l,m)[t]
mem

∂W (l) to 0 as well, where l is the layer number and m is the neuron number.

2.3 Experiments

2.3.1 Regenerative Learning with Spiking Autoencoders

(A) (B)

Figure 2.3. : The AE-SNN (784-196-784) is trained over MNIST (60,000 training samples,
batch size = 100) for different leak coefficients (α). (A) spike-based MSE (Mean Square
Error) Reconstruction Loss per batch during training. (B) Average MSE over entire dataset
after training

27

(A) (B)

Figure 2.4. : The AE-SNN (784-196-784) is trained over MNIST (60,000 training samples,
batch size = 100) and we study the impact of (A) mask, and (B) input spike train duration
on the Mean Square Error (MSE) Reconstruction Loss

For MNIST, a 784-196-784 fully connected network is used. The spiking autoencoder

(AE-SNN) is trained for 1 epoch with a batch size of 100, learning rate 5e-4, and a weight

decay of 1e-4. The threshold (Vth) is set to 1. We define two metrics for network performance,

Spike-MSE and MSE. Spike-MSE is the mean square error between the input spike map and

the output spike map, both summed over the entire duration. MSE is the mean square error

between the input image and output spike map summed over the entire duration. Both,

input image and output map, are normalized, zero mean and unit variance, and then the

mean square error is computed. The duration of inference is kept the same as the training

duration of the network.

It is observed in Fig. 2.3 that the leak coefficient plays an important role in the per-

formance of the network. While a small leak coefficient improves performance, too high of

a leak degrades it greatly. We use Spike-MSE as the comparison metric during training in

Fig. 2.3 A, to observe how well the autoencoder can recreate the input spike train. In Fig.

2.3 B, we report two different MSEs, one computed against input spike map (spikes) and the

other compared firing rate to pixel values (pixels), after normalizing both. For ’IF’ neuron

(α = 0), the train data performs worse than test data, implying underfitting. At α set to

28

Figure 2.5. : AE-SNN trained on MNIST (training examples = 60,000, batch size = 100).
(A) Spiking autoencoder (AE-SNN) versus AE-ANNs (trained with/without Adam). (B)
Regenerated images from test set for AE-SNN (input spike duration = 15, leak = 0.1)

Figure 2.6. : AE-SNN trained on Fashion-MNIST (training examples = 60,000, batch
size = 100) (A) AE-SNN (784×(512/1024)×784) versus AE-ANNs (trained with/without
Adam, lr = 5e-3) (B) Regenerated images from test set for AE-SNN-1024

0.01 we find the network having comparable performance between test and train datasets,

indicating a good fit. At α = 0.1, the Spike-MSE is lowest for both test and train data,

however the MSE is higher. While the network is able to faithfully reconstruct the input

spike pattern, the difference between Spike-MSE and regular MSE is because of the difference

in actual pixel intensity and the converted spike maps generated by the poisson generator

at the input. On further increasing the leak, there is an overall performance degradation

29

Figure 2.7. : (A) AE-SNN (784×H×784) trained on MNIST (training examples =
60,000, batch size = 100) for different hidden layer sizes = 64, 196, 400 (B) AE-ANN
(784×1024×784) trained on Fashion-MNIST (training examples = 60,000, batch size = 100)
with Adam optimization for various learning rates (lr). Baseline: AE-SNN trained with input
spike train duration of 60 time steps. (C) AE-SNN (784×1024×784) trained on Fashion-
MNIST (training examples = 60,000, batch size = 100) for varying input time steps, T =
15, 30, 60. Baseline: AE-ANN trained using Adam with lr = 5e-3

on both test and train data. Thus, we observe that leak coefficient needs to be fine-tuned

for optimal performance. Going forth, we set the leak coefficient at 0.1 for all subsequent

simulations, as it gave the lowest train and test data MSE on direct comparison with input

spike maps.

Fig. 2.4 A shows that using a mask function is essential for training this type of network.

Without a masking function the training loss does not converge. This is because all of

the 784 output neurons are being forced to have membrane potential of 0 or Vth, resulting

in a highly constrained optimization space, and the network eventually fails to learn any

meaningful representations. In the absence of any masking function, the sparsity of the

error vector E was less than 5%, whereas, with the mask, the average sparsity was close to

85%. This allows the optimizer to train the critical neurons and synapses of the network.

The weight update mechanism learns to focus on correcting the neurons that do not fire

correctly, which effectively reduces the number of learning variables, and results in better

optimization.

Another interesting observation was that increasing the duration of the input spike train

improves the performance as shown in Fig.2.4 B. However, it comes at the cost of increased

30

training time as backpropagation is done at each time step, as well as increased inference

time. We settle for an input time duration of 15 as a trade-off between MSE and time taken

to train and infer for the next set of simulations.

We also study the impact of hidden layer size for the reconstruction properties of the

autoencoder. As shown in Fig. 2.7 A, as we increase the size of the network, the performance

improves. However, this comes at the cost of increased network size, longer training time

and slower inference. While one gets a good improvement when increasing hidden layer size

from 64 to 196, the benefit diminishes as we increase the hidden layer size to 400 neurons.

Thus for our comparison with ANNs, we use the 784×196×784 network.

For comparison with ANNs, a network (AE-ANN) of same size (784×196×784) is trained

with SGD, both with and without Adam optimizer [37] on MNIST for 1 epoch with a learning

rate of 0.1, batch size of 100, and weight decay of 1e-4. When training the AE-SNN, the

first and second moments of the gradients are computed over sequential time steps within a

batch (and not across batches). Thus it is not analogous to the AE-ANN trained with Adam,

where the moments are computed over batches. Hence, we compare our network with both

variants of the AE-ANNs, trained with and without Adam. The AE-SNN achieves better

performance than the AE-ANN trained without Adam; however it lags behind the AE-ANN

optimized with Adam as shown in Fig. 2.5 A. Some of the reconstructed MNIST images are

depicted in Fig. 2.5 B. One important thing to note is that the AE-SNN is trained at every

time step, hence there are 15× more backpropagation steps as compared to an AE-ANN.

However at every backpropagation step, the AE-SNN only backpropagates the error vector

of a single spike map, which is very sparse, and carries less information than the error vector

of the AE-ANN.

Next, the spiking autoencoder is evaluated on the Fashion-MNIST dataset [31]. It is

similar to MNIST, and comprises of 28×28 gray-scale images (60,000 training, 10,000 testing)

of clothing items belonging to 10 distinct classes. We test our algorithm on two network

sizes: 784-512-784 (AE-SNN-512) and 784-1024-784 (AE-SNN-1024). The AE-SNNs are

compared against AE-ANNs of the same sizes (AE-ANN-512, AE-ANN-1024) in Fig. 2.6 A.

For the AE-SNNs, the duration of input spike train is 60, leak coefficient is 0.1, and learning

rate is set at 5e-4. The networks are trained for 1 epoch, with a batch size of 100. The

31

longer the spike duration, the better would be the spike image resolution. For a duration

of 60 time steps, a neuron can spike anywhere between zero to 60 times, thus allowing 61

gray-scale levels. Some of the generated images by AE-SNN-1024 are displayed in Fig. 2.6 B.

The AE-ANNs are trained for 1 epoch, batch size 100, learning rate 5e-3 and weight decay

1e-4.

For Fashion-MNIST, the AE-SNNs exhibited better performance than AE-ANNs as

shown in Fig. 2.6 A. We varied the learning rate for AE-ANN, and the AE-SNN still out-

performed it’s ANN counterpart (Fig. 2.7 B). This is an interesting observation, where the

better performance comes at the increased effort of per-batch training. Also it exhibits such

behavior on only this dataset, and not on MNIST (Fig.2.5 A). The spatio-temporal nature of

training over each time step could possibly train the network to learn the details in an image

better. Spiking Neural Networks have an inherent sparsity in them which could possibly acts

like a dropout regularizer [38]. Also, in case of AE-SNN, the update is made at every time

step (60 updates per batch), in contrast to ANN where there is one update for one batch.

We evaluated AE-SNN for shorter time steps, and observe that for smaller time steps (T

= 5, 10), AE-SNN performs worse than AE-ANN (Fig. 2.7 C). The impact of time steps is

greater for Fashion-MNIST, as compared to MNIST (Fig. 2.4 B), as Fashion-MNIST data

has more grayscale levels than the near-binary MNIST data. We also observed that, for

both datasets, MNIST and Fashion-MNIST, the AE-SNN converges faster than AE-ANNs

trained without Adam, and converges at almost the same time as an AE-ANN trained with

Adam. The proposed spike-based backpropagation algorithm is able to bring the AE-SNN

performance at par, and at times even better, than AE-ANNs.

2.3.2 Audio to Image Synthesis using Spiking Auto-Encoders

Dataset

For the audio to image conversion task, we use two standard datasets, the 0-9 digits

subset of TI-46 speech corpus [39] for audio samples, and MNIST dataset [30] for images.

The audio dataset has read utterances of 16 speakers for the 10 digits, with a total 4136

audio samples. We divide the audio samples into 3500 train samples and 636 test samples,

32

maintaining an 85%/15% train/test ratio. For training, we pair each audio sample with an

image. We chose two ways of preparing these pairs, as described below:

1. Dataset A: 10 unique images of the 10 digits is manually selected (1 image per class)

and audio samples are paired with the image belonging to their respective classes (one-

image-per-audio-class). All audio samples of a class are paired with the identical image

of a digit belonging to that class.

2. Dataset B: Each audio sample of the training set is paired with a randomly selected

image (of the same label) from the MNIST dataset (one-image-per-audio-sample).

Every audio sample is paired with a unique image of the same class.

The testing set is same for both Dataset A and B, comprising of 636 audio samples.

All the audio clips were preprocessed using Auditory Toolbox [40]. They were converted to

spectrograms having 39 frequency channels over 1500 time steps. The spectrogram is then

converted into a 58500×1 vector of length 58500. This vector is then mapped to the input

neurons (layer(0)) of the audiocoder, which then generate Poisson spike trains over the given

training interval.

Network Model

The principle of stacked autoencoders is used to perform audio-to-image synthesis. An

autoencoder is built of two sets of weights; the layer(1) weights (W (1)) encodes the informa-

tion into a “hidden state” of a different dimension, and the second layer (W (2)) decodes it

back to it’s original representation. We first train a spiking autoencoder on MNIST dataset.

We use the AE-SNN as trained in Fig. 2.5 A. Using layer(1) weights (W [1]) of this AE-SNN,

we generate “hidden-state” representations of the images belonging to the training set of the

multimodal dataset. These hidden-state representations are spike trains of a fixed duration.

Then we construct an audiocoder: a two layer spiking network that converts spectrograms to

this hidden state representation. The audiocoder is trained with membrane potential based

backpropagation as described in Sec. 2.2.3 . The generated representation, when fed to the

“decoder” part of the autoencoder, gives us the corresponding image. The network model is

illustrated in Fig. 2.8

33

Figure 2.8. : Audio to Image synthesis model using an Autoencoder trained on MNIST
images, and an Audiocoder trained to convert TI-46 digits audio samples into corresponding
hidden state of the MNIST images.

Results

The MNIST autoencoder (AE-SNN) used for audio-to-image synthesis task is trained

using the following parameters: batch size of 100, learning rate 5e-4, leak coefficient 0.1,

weight decay 1e-4, input spike train duration 15, and number of epochs 1, as used in Sec.

2.3.1 . We use Dataset A and Dataset B (as described in Sec. 2.3.2) to train and evaluate

our audio-to-image synthesis model. The images that were paired with the training audio

samples are converted to Poisson spike trains (duration 15 time steps) and fed to the AE-

SNN, which generates a 196×15 corresponding bitmap as the output of layer(1) (Fig. 2.2 A).

This spatio temporal representation is then stored. Instead of storing the entire duration of

34

15 time steps, one can choose to store a subset, such as first 5 or 10 time steps. We use Th

to denote the saved hidden state’s duration.

This stored spike map serves as the target spike map for training the audiocoder (AC-

SNN), which is a 58500×2048×196 fully connected network. The spectrogram (39×1500) of

each audio sample was converted to 58500×1 vector which is mapped one-to-one to the input

neurons(layer(0)). These input neurons then generate Poisson spike trains for 60 time steps.

The target map, of Th time steps, was shown repeatedly over this duration. The audiocoder

(AC-SNN) is trained over 20 epochs, with a learning rate of 5e-5 and a leak coefficient of

0.1. Weight decay is set at 1e-4 and the batch size is 50. Once trained, the audiocoder is

then merged with W (2) of AE-SNN to create the audio-to-image synthesis model (Fig. 2.8).

For Dataset A, we compare the images generated by audio samples of a class against the

MNIST image of that class to compute the MSE. In case of Dataset B, each audio sample of

the train set is paired with an unique image. For calculating training set MSE, we compare

the paired image and the generated image. For testing set, the generated image of an audio

sample is compared with all the training images having the same label in the dataset, and

the lowest MSE is recorded. The output spike map is normalized and compared with the

normalized MNIST images, as was done previously. Our model gives lower MSE for Dataset

A compared to Dataset B (Fig 2.9 A), as it is easier to learn just one representative image

for a class, than unique images for every audio sample. The network trained with Dataset A

generates very good identical images for audio samples belonging to a class. In comparison

the network trained on Dataset B generates a blurry image, thus indicating that it has

learned to associate the underlying shape and structure of the digits, but has not been able

to learn finer details better. This is because the network is trained over multiple different

images of the same class, and it learns what is common among them all. Fig. 2.9 B displays

the generated output spike map for the two models trained over Dataset A and B for 50

different test audio samples (5 of each class).

The duration (Th) of stored “hidden state” spike train was varied from 15 to 10, 5, 2,

and 1. A spike map at a single time step is a 1-bit representation. The AE-SNN compresses

an 784×8 bit representation into 196×Th-bit representation. For Th = 15, 10, 5, 2, and 1,

the compression is 2.1×, 3.2×, 6.4×, 16× and 32× respectively. In Fig. 2.10 A we observe

35

Figure 2.9. : The performance of the Audio to Image synthesis model on the two datasets
- A and B (Th = 10)) (A) Mean square error loss (test set) (B) Images synthesized from
different test audio samples (5 per class) for the two datasets A, and B

the reconstruction loss (test set) over epochs for training using different lengths of hidden

state. Even when the AC-SNN is trained with a much smaller “hidden state”, the AE-SNN

is able to reconstruct the images without much loss.

For comparison, we initialize an ANN audiocoder (AC-ANN) of size 58500×2048×196.

The AE-ANN trained over MNIST in Sec. 2.3.1 is used to convert the images of the mul-

timodal dataset (A/B) to 196×1 “hidden state” vectors. Each element of this vector is

16 bit full precision number. In case of AE-SNN, the “hidden state” is represented as a

196×Th bit map. For comparison, we quantize the equivalent hidden state vector into 2Th

levels. The AC-ANN is trained using these quantized hidden state representations with the

following learning parameters: learning rate 1e-4, weight decay 1e-4, batch size 50, epochs

20. Once trained, the ANN audio-to-image synthesis model is built by combining AC-ANN

and layer(2) weights (W (2)) of AE-ANN. The AC-ANN is trained with/without Adam opti-

mizer, and is paired with the AE-ANN trained with/without Adam optimizer respectively.

In Fig. 2.10 B, we see that our spiking model achieves a performance in between the two

ANN models, a trend we have observed earlier while training autoencoders on MNIST. In

36

Figure 2.10. : The audiocoder (AC-SNN/AC-ANN) is trained over Dataset A, while the
autoencoder (AE-SNN/AE-ANN) is fixed. MSE is reported on the overall audio-to-image
synthesis model composed of AC-SNN/ANN and AE-SNN/ANN. (A) Reconstruction loss
of the audio-to-image synthesis model for varying Th (B) Audiocoder performance AC-SNN
(Th = 15) vs AC-ANN (16 bit full precision) (C) Effect of training with reduced hidden
state representation on AC-SNN and AC-ANN models

this case, the AC-SNN is trained with Th as 15, while AC-ANNs are trained without any

output quantization; both are trained on Dataset A. In Fig. 2.10 C, we observe the impact

of quantization for the ANN model and the corresponding impact of lower Th for SNN. For

higher hidden state bit precision, the ANN model outperforms the SNN one. However for

extreme quantization case, number of bits = 2, and 1, the SNN performs better. This could

possibly be attributed to the temporal nature of SNN, where the computation is event-driven

and spread out over several time steps.

Note, all simulations were performed using MATLAB, which is a high level simulation

environment. The algorithm, however, is agnostic of implementation environment from a

functional point of view and can be easily ported to more traditional ML frameworks such

as PyTorch or TensorFlow.

2.4 Conclusion

In this work, we propose a method to synthesize images in spike-based environment.

In Table 2.1 , we have summarized the results of training autoencoders and audiocoders

37

Table 2.1. : Summary of results obtained for the 3 tasks - Autoencoder on MNIST,
Autoencoder on Fashion-MNIST, and Audio to Image conversion (T = input duration for
SNN)

Loss (MSE) (test)
Dataset Network Size Epochs Timesteps SNN ANN ANN (with Adam)
MNIST 784-196-784 1 15 0.357 0.226 0.122
Fashion-MNIST 784-512-784 1 60 0.178 0.416 0.300
Fashion-MNIST 784-1024-784 1 60 0.140 0.418 0.387
Audio-to-Image A 58500-2048-196/196-784 20 30 0.254 0.408 0.144
Audio-to-Image B 58500-2048-196/196-784 20 30 0.543 0.611 0.556

using our own Vmem-based backpropagation method1

2
 . The proposed algorithm brings SNN

performance at par with ANNs for the given tasks, thus depicting the effectiveness of the

training algorithm. We demonstrate that spiking autoencoders can be used to generate

reduced-duration spike maps (“hidden state”) of an input spike train, which are a highly

compressed version of the input, and they can be utilized across applications. This is also

the first work to demonstrate audio to image synthesis in spiking domain. While training

these autoencoders, we made a few important and interesting observations; the first one is

the importance of bit masking of the output layer. Trying to steer the membrane potentials

of all the neurons is extremely hard to optimize, and selectively correcting only incorrectly

spiked neurons makes training easier. This could be applicable to any spiking neural network

with a large output layer. Second, while the AE-SNN is trained with spike durations of 15

time steps, we can use hidden state representations of much lower duration to train our

audiocoder with negligible loss in reconstruction of images for the audio-to-image synthesis

task. In this task, the ANN model trained with Adam outperformed the SNN one when

trained with full precision “hidden state”. However, at ultra-low precision, the hidden state

loses it’s meaning in ANN domain, but in SNN domain, the network can still learn from it.

This observation raises important questions on the ability of SNNs to possibly compute with

less data. While sparsity during inference has always been an important aspect of SNNs,

this work suggests that sparsity during training can also be potentially exploited by SNNs.
1↑ Table 1: Audio-to-Image A: SNN: Th = 15, ANN : no quantization for hidden state
2↑ Table 1: Audio-to-Image B: SNN: Th = 10, ANN : no quantization for hidden state

38

We explored how SNNs can be used to compress information into compact spatio-temporal

representations and then reconstruct that information back from it. Another interesting

observation is that we can potentially train autoencoders and stack them to create deeper

spiking networks with greater functionalities. This could be an alternative approach to

training deep spiking networks. Thus, this work sheds light on the interesting behavior of

spiking neural networks, their ability to generate compact spatio-temporal representations of

data, and offers a new training paradigm for learning meaningful representations of complex

data.

39

3. TREE-CNN: A HIERARCHICAL DEEP CONVOLUTIONAL

NEURAL NETWORK FOR INCREMENTAL LEARNING

3.1 Introduction

Today, with increased access to large amounts of labeled data (eg. ImageNet [41] con-

tains 1.2 million images with 1000 categories), supervised learning has become the leading

paradigm in training DCNNs for image recognition. Traditionally, a DCNN is trained on a

dataset containing a large number of labeled images. The network learns to extract relevant

features and classify these images. This trained model is then used on real world unlabeled

images to classify them. In such training, all the training data is presented to the network

during the same training process. However, in real world, we hardly have all the information

at once, and data is, instead, gathered incrementally over time. This creates the need for

models that can learn new information as it becomes available. In this work, we try to ad-

dress the challenge of learning on such incrementally available data in the domain of image

recognition using deep networks.

A DCNN embeds feature extraction and classification in one coherent architecture within

the same model. Modifying one part of the parameter space immediately affects the model

globally [42]. Another problem of incrementally training a DCNN is the issue of “catastrophic

forgetting” [6]. When a trained DCNN is retrained exclusively over new data, it results in

the destruction of existing features learned from earlier data. This mandates using previous

data when retraining on new data.

To avoid catastrophic forgetting, and to leverage the features learned in previous task,

this work [43] proposes a network made of CNNs that grows hierarchically as new classes are

introduced. The network adds the new classes like new leaves to the hierarchical structure.

The branching is based on the similarity of features between new and old classes. The initial

nodes of the Tree-CNN assign the input into coarse super-classes, and as we approach the

leaves of the network, finer classification is done. Such a model allows us to leverage the

convolution layers learned previously to be used in the new bigger network.

The rest of the chapter is organized as follows. The related work on incremental learning

in deep neural networks is discussed in Sec. 3.2 . In Sec. 3.3 we present our proposed

40

network architecture and incremental learning method. In Sec. 3.4 , the two experiments

using CIFAR-10 and CIFAR-100 datasets are described. It is followed by a detailed analysis

of the performance of the network and its comparison with transfer learning and fine tuning

in Sec. 3.5 . Finally, Sec. 3.6 discusses the merits and limitations of our network, our findings,

and possible opportunities for future work.

3.2 Related Work

The modern world of digitized data produces new information every second [44], thus

fueling the need for systems that can learn as new data arrives. Traditional deep neural

networks are static in that respect, and several new approaches to incremental learning are

currently being explored. “One-shot learning” [45] is a Bayesian transfer learning technique,

that uses very few training samples to learn new classes. Fast R-CNN [46], a popular frame-

work for object detection, also suffers from “catastrophic forgetting”. One way to mitigate

this issue is to use a frozen copy of the original network compute and balance the loss when

new classes are introduced in the network [47]. “Learning without Forgetting” [48] is another

method that uses only new task data to train the network while preserving the original capa-

bilities. The original network is trained on an extensive dataset, such as ImageNet [41], and

the new task data is a much smaller dataset. “Expert Gate” [49] adds networks (or experts)

trained on new tasks sequentially to the system and uses a set of gating autoencoders to se-

lect the right network (“expert”) for the given input. Progressive Neural Networks [50] learn

to solve complex sequences of task by leveraging prior knowledge with lateral connections.

Another recent work on incremental learning in neural networks is “iCaRL” [51], where they

built an incremental classifier that can potentially learn incrementally over an indefinitely

long time period.

It has been observed that initial layers of a CNN learn very generic features [52] that has

been exploited for transfer learning [53], [54]. Common features, that are shared between

images, have been used previously to build hierarchical classifiers. These features can be

grouped semantically, such as in [55], or be feature-driven, such as “FALCON” [56]. Similar

to the progression of complexity of convolutional layers in a DCNN, the upper nodes of a hier-

41

archical CNN classify the images into coarse super-classes using basic features, like grouping

green-colored objects together, or humans faces together. Then deeper nodes perform finer

discrimination, such as “boy” v/s “girl” , “apples” v/s “oranges”, etc. Such hierarchical CNN

models have been shown to perform at par or even better than standard DCNNs [57]. “Dis-

criminative Transfer Learning” [58] is one of the earliest works where classes are categorized

hierarchically to improve network performance. Deep Neural Decision Forests [59] unified

decision trees and deep CNN’s to build a hierarchical classifier. “HD-CNN” [57], is a hierar-

chical CNN model that is built by exploiting the common feature sharing aspect of images.

However, in these works, the dataset is fixed from the beginning, and prior knowledge of all

the classes and their properties is used to build a hierarchical model.

In our work, Tree-CNN starts out as a single root node and generates new hierarchies

to accommodate the new classes. Images belonging to the older dataset are required during

retraining, but by localizing the change to a small section of the whole network, our method

tries to reduce the training effort and complexity. In [42], a similar approach is applied,

where the new classes are added to the old classes, and divided into two super-classes, by

using an error-based model. The initial network is cloned to form two new networks which

are fine tuned over the two new super-classes. While their motivation was a “divide-and-

conquer” approach for large datasets, our work tries to incrementally grow with new data

over multiple learning stages. In the next section, we lay out in detail our design principle,

network topology and the algorithm used to grow the network.

3.3 Incremental Learning Model

3.3.1 Network Architecture

Inspired from hierarchical classifiers, our proposed model, Tree-CNN is composed of

multiple nodes connected in a tree-like manner. Each node (except leaf nodes) has a DCNN

which is trained to classify the input to the node into one of it’s children. The root node is

the highest node of the tree, where the first classification happens. The image is then passed

on to its child node, as per the classification label. This node further classifies the image,

until we reach a leaf node, the last step of classification. Branch nodes are intermediary

42

IMAGE

Root Node
classifies

input image
into one of
the “super-

classes”

Branch Node
Fine classifier

Final Classification Label
(Leaf Node)

Path of Data Flow

Active sections of the
Tree-CNN

Output layer neuron
with highest value

Figure 3.1. : A generic model of 2-level Tree-CNN: The output of the root node is used to
select the branch node at the next level.

nodes, each having a parent and two or more children. The leaf node is the last level of the

tree. Each leaf node is uniquely associated to a class and no two leaf nodes have the same

class. Fig. 3.1 shows the root node and branch nodes for a two-stage classification network.

Each output of the second level branch node is a leaf node, which is the output node of the

branch CNN. The inference methodology of such a network is given by Algorithm 1 .

3.3.2 The Learning Algorithm

We start with the assumption that we have a model that is already trained to recognize

a certain number of objects. The model could be hierarchical with multiple CNNs or could

be just a single CNN acting as a root node with multiple leaf nodes. A new task is defined

as learning to identify images belonging to M new classes. We start at the root node of our

given model, and we provide a small sample of images (∼ 10%) from the new training set as

input to this node.

43

Algorithm 1 Tree-CNN: At Inference
1: I = Input Image, node = Root Node of the Tree
2: procedure ClassPredict(I, node)
3: count = # of children of node
4: if count = 0 then
5: label = class label of the node
6: return label
7: else
8: nextNode = EvaluateNode(I, node)
9: returns the address of the child node of highest output neuron

10: return ClassPredict(I, nextNode)
11: end if
12: end procedure

44

Figure 3.2. : An example illustrating multiple incremental learning stages of the Tree-CNN.
The network starts as a single root node, and expands as new classes are added.

We obtain a 3 dimensional matrix from the output layer, OK×M×I , where, K is the

number of children of the root node, M is the number of new classes, and I is the number

of sample images per class. O(k, m, i) denotes the output of the kth neuron for the ith image

belonging to the mth class where k ∈ [1, K], m ∈ [1, M], and i ∈ [1, I]. OK×M
avg is the average

of the outputs over I images. Softmax likelihood is computed over Oavg (eq. 3.1) to obtain

the likelihood matrix LK×M (eq. 3.2).

Oavg(k, m) =
I∑

i=1

O(k, m, i)
I

(3.1)

L(k, m) = eOavg(k,m)

K∑
k=1

eOavg(k,m)
(3.2)

(3.3)

We generate an ordered list S from LK×M , having the following properties

• The list S has M objects. Each object corresponds uniquely to one of the new M

classes.

• Each object S[i] has the following attributes:

– S[i].label = label of the new class

45

– S[i].value = [v1, v2, v3], top 3 average softmax (oavg) output values for that class

in descending order, v1 ≥ v2 ≥ v3

– S[i].nodes = [n1, n2, n3], output nodes corresponding to the softmax outputs v1,

v2, v3

• S is ordered in the decreasing value of S[i].value[1]

The ordering is done to ensure that new classes with high likelihood values are added

first to Tree-CNN. Softmax likelihood is used instead of number of images that get classified

as each of the child nodes because it translates the output layer’s response to the images

into an exponential scale and helps us better identify how similar an image is to one of the

already existing labels. After constructing S, we look at its first element, S[1], and take one

of the 3 actions.

i. Add the new class to an existing child node: If v1 is greater than the next

value (v2) by a threshold, α (a design specification), that class indicates a strong

resemblance/association with a particular child node. The new class is added to cor-

responding child node n1.

ii. Merge two child nodes to form a new child node and add the new class

to this node: If there are more than 1 child nodes that the new class has a strong

likelihood for, we can combine them to form a new child node. It happens when

v1 − v2 < α, and v2 − v3 > β (another threshold, defined by the user). For example, if

the top 3 likelihood values were v1 = 0.48, v2 = 0.45, and v3 = 0.05. Then, provided

n2 is a leaf node, we merge n2 into n1, and add the new class to n1.

iii. Add the new class as a new child node: If the new class doesn’t have a likelihood

value that is greater than other values by a good margin (v1 − v2 < α, v2 − v3 < β), or

all child nodes are full, the network expands horizontally by adding the new class as a

new child node. This node will be a leaf node.

As the root node keeps adding new branches and sub-branches, the branch nodes with

more children tend to get heavier. Incoming new classes tend to have a higher softmax

likelihood for branch nodes with greater number of children. To prevent the Tree-CNN from

becoming lop-sided, one can set the maximum number of children a branch node can have.

46

When calculating L(k, m), we substitute eOavg(k,m) with 0 for those k branches that are

‘full’, i.e have reached the limit for number of children per branch. We assign S[1].label

a location in the Tree-CNN depending on its value. After that, we remove the column

corresponding to that class from L(k, m), we check for “full” branch nodes, and modify

L(k, m) for those output nodes. Finally we generate the ordered list S, and again apply our

conditions on the new S[1] to determine where it is added to the root node. This is done

iteratively till all new classes are assigned a location under the root node.

The pseudo-code is outlined in Algorithm 2 . We also illustrate a toy example of incre-

mental learning in Tree-CNN with Fig. 3.2 . The network starts as a single CNN that can

classify 3 classes, C1, C2, C3. We want to increase the network capability by adding 3 new

classes. In the first incremental learning stage, the softmax likelihood table L is generated, as

shown in the figure. C4 and C5 are added to the leaf nodes containing C1 and C2 respectively,

converting them into branch nodes B1 and B2, as per condition (i). For C6, the 3 likelihood

values are v1 = 0.34, v2 = 0.33, v3 = 0.33. It satisfies neither condition (i) nor condition (ii),

thus it is added as a new node to the root, as per condition (iii). Again, as new information

is available, we want the Tree-CNN to be able to recognize 2 new image classes, C7, and C8.

Both the new classes satisfy v1 − v2 > α(= 0.1). Thus, both the classes are added to B1.

While this example is for a two level Tree-CNN, the algorithm can potentially be extended

to deeper Tree-CNN models.

To create deeper Tree-CNN models, once the “Grow-Tree” algorithm is completed for the

M classes at the root node, one can move to the next level of the tree. The same process is

applicable on the child nodes that now have new classes to be added to them. The decision

on how to grow the tree is semi-supervised: the algorithm itself decides how to grow the

tree, given the constraints by the user. We can limit parameters such as maximum children

for a node, maximum depth for the tree, etc. as per our system requirements.

Once the new classes are allotted locations in the tree, supervised gradient descent based

training is performed on the modified/new nodes. This saves us from modifying the whole

network, and only affected portions of the network require retraining/fine-tuning. At every

incremental learning stage, the root node is trained on all the available data as it needs to

learn to classify all the objects into the new branches. During inference, a branch node is

47

Algorithm 2 Grow Tree-CNN
1: L = Likelihood Matrix
2: maxChildren = max. number of children per branch node
3: RootNode = Root Node of the Tree-CNN
4: procedure GrowTree(L, Node)
5: S = GenenerateS(L, Node, maxChildren)
6: while S is not Empty do
7: Get attributes of the first object
8: [label, value, node] = GetAttributes(S[1])
9: if value[1] − value[2] > α then

10: The new class has a strong preference for n1
11: Adds label to node[1]
12: RootNode = AddClasstoNode(RootNode, label, node[1])
13: else
14: if value[2] − value[3] > β then
15: The new class has similar strong preference n1 and n2
16: Merge = CheckforMerge(Node, node[1], node[2])
17: Merge is True only if node[2] is a leaf node, and,
18: the # of children of node[1] less than maxChildren − 1
19: if Merge then
20: Merge node[2] into node[1]
21: RootNode = MergeNode(RootNode, node[1], node[2])
22: RootNode = AddClasstoNode(RootNode, label, node[1])
23: else
24: Add new class to the smaller output node
25: sNode = Node with lesser children (node[1], node[2])
26: RootNode = AddClasstoNode(RootNode, label, sNode)
27: end if
28: else
29: Add new class as a new Leaf node to Root Node
30: RootNode = AddNewNode(RootNode, label)
31: end if
32: end if
33: Remove the columns of the added class from L
34: Remove the rows of “full” nodes from L
35: Regenerate S
36: S = GenenerateS(L, Node, maxChildren)
37: end while
38: end procedure

48

activated only when the root node classifies the input to that branch node. If an incorrect

classification happens at Root Node, for example it classifies an image of a car into the

“Animal Node” (CIFAR-10 example, Sec 4.1), irrespective of what the branch node classifies

it as, it would still be an incorrect classification. Hence we only train the branch node with

the classes it has been assigned to. If there is no change in the branch node’s look up table

at an incremental learning stage, it is left as is.

Handling input labels inside the Tree-CNN

The dataset available to the user will have unique labels assigned to each of it’s object

classes. However, the root and branch nodes of the Tree-CNN tend to group/merge/split

these classes as required by the algorithm. To ensure label consistency, each node of the

Tree-CNN maintains it’s own “LabelsTransform” lookup table. For example, when a new

class is added to one of the pre-existing output nodes of a root node, the lookup table is

updated with new class being assigned to that output node. Similarly when a new class is

added as a new node, the class label and the new output node is added as a new entry to the

lookup table. Every class is finally associated with a unique leaf node, hence leaf nodes do

not require a look up table. Whenever two nodes are merged, the node with lower average

softmax value (say, node A) gets integrated with the node with the higher average softmax

value (say, node B) for the new class in consideration. If the two softmax values are equal,

it is chosen at random. At the root node level, the lookup table is modified as follows: The

class labels that were assigned to node A, will now be assigned to node B. The look up table

of merged node B will add these class labels from node A as new entries and assign them to

new leaf nodes.

49

ROOT

ANIMAL VEHICLE

DOG

CAT

HORSE

SHIP

TRUCK

AUTOMOBILE

BRANCH
NODES

LEAF
NODES

ROOT

ANIMAL VEHICLE

DOG

CAT

HORSE

SHIP

TRUCK

AUTOMOBILE

NEW
CLASSES

AEROPLANEDEER

BIRD

FROG

a) b)

Figure 3.3. : Graphical representation of Tree-CNN for CIFAR-10 a) before incremental
learning, b) after incremental learning

3.4 The Experimental Setup

3.4.1 Adding Multiple New Classes (CIFAR-10)

Dataset

CIFAR-10 dataset [60], having 10 mutually exclusive classes, was used for this experiment.

The network is first trained on 6 classes, and then learns the remaining 4 classes in the next

learning stage.

The Network Initialization

The Tree-CNN for CIFAR-10 starts out as a two level network with a root node with

two branch nodes as shown in Fig 3.3 . The six initial classes of CIFAR-10 are grouped

into “Vehicles” and “Animals” and the CNN (Table 3.1) at the root is trained to classify

input images into these two categories. Each of the two branch nodes has a CNN (Table

3.2) that does finer classification into leaf nodes. Fig. 3.3 a) represents the initial model of

Tree-CNN A. This experiment illustrates, that given provided a 2-level Tree-CNN, how the

learning model can add new classes. The root node achieves a testing accuracy of 98.73%,

50

Table 3.1. : Root Node
Tree-CNN (CIFAR-10)

Input 32×32×3
CONV-1

64 5×5 ReLU
[2 2] Max Pooling

CONV-2
128 3×3 ReLU

Dropout 0.5
128 3×3 ReLU

[2 2] Max Pooling
FC

8192×512 ReLU
Dropout 0.5

512×128 ReLU
Dropout 0.5
128×2 ReLU

Softmax Layer

Table 3.2. : Branch Node
Tree-CNN (CIFAR-10)

Input 32×32×3
CONV-1

32 5×5 ReLU
[2 2] Max Pooling

Dropout 0.25
CONV-2

64 5×5 ReLU
[2 2] Max Pooling

Dropout 0.25
CONV-3

64 3×3 ReLU
[2 2] Avg Pooling

Dropout 0.25
FC

1024×128 ReLU
Dropout 0.5

128×N ReLU
(N = # of Classes)

Softmax Layer

Table 3.3. : Network B

Input 32×32×3
CONV-1

64 3×3 ReLU
Dropout 0.5

64 3×3 ReLU
[2 2] Max Pooling

CONV-2
128 3×3 ReLU

Dropout 0.5
128 3×3 ReLU

[2 2] Max Pooling
CONV-3

256 3×3 ReLU
Dropout 0.5

256 3×3 ReLU
[2 2] Max pooling

CONV-4
512 3×3 ReLU

Dropout 0.5
512 3×3 ReLU

[2 2] Avg Pooling
FC

2048×1024 ReLU
Dropout 0.5

1024×1024 ReLU
Dropout 0.5

1024×N
(N= # of Classes)

while the branch nodes, “Animals” and “Vehicles”, achieve 86% and 94.43% testing accuracy

respectively. Overall, the network achieves a testing accuracy of 89.10%.

Incremental Learning

The remaining four classes are now introduced as the new learning task. 50 images per

class (10% of the training set) are selected at random , and shown to the root node. We

obtain the L matrix, which is a 2 × 4 matrix with each element lij ∈ (0, 1). The 1st row

of the matrix indicates the softmax likelihood of each of the 4 classes as being classified

51

as “Vehicles”, while the second row presents the same information for “Animals”. In this

experiment, α is set at 0 (Algorithm 2), and the network is bound to take only one action:

add the new class to one of the two child nodes. The branch node with higher likelihood

value adds the new class to itself. The Tree-CNN before and after addition of these 4 classes

is shown in Fig. 3.3 .

Once the new classes have been assigned locations in the Tree-CNN, we begin the re-

training of the network. The root node is re-trained using all 10 classes, divided into to

subclasses. The branch node ”animal” is retrained using training data from 6 classes, 3 old

and 3 new added to it. Similarly, branch node ”vehicles” is retrained with training data from

4 classes, 3 old, 1 new.

3.4.2 Sequentially Adding Multiple Classes (CIFAR-100)

Table 3.4. : Root Node Tree-CNN
(CIFAR-100)

Input 32×32×3
CONV-1

64 5×5 ReLU
[2 2] Max Pooling

CONV-2
128 3×3 ReLU

Dropout 0.5
128 3×3 ReLU

[2 2] Max Pooling
CONV-3

256 3×3 ReLU
Dropout 0.5

256 3×3 ReLU
[2 2] Avg Pooling

FC
4096×1024 ReLU

Dropout 0.5
1024×1024 ReLU

Dropout 0.5
1024×N

(N = # of Children)

Table 3.5. : Branch Node Tree-CNN
(CIFAR-100)

Input 32×32×3
CONV-1

32 5×5 ReLU
[2 2] Max Pooling

Dropout 0.25
CONV-2

64 5×5 ReLU
[2 2] Max Pooling

Dropout 0.25
CONV-3

64 3×3 ReLU
Dropout 0.5

64 3×3 ReLU
[2 2] Avg Pooling

FC
1024×512 ReLU

Dropout 0.5
512×128 ReLU

Dropout 0.5
128×N

(N = # of Children)

52

Dataset

The dataset, CIFAR-100 [60], has 100 classes, 500 training and 100 testing images per

class. The 100 classes are randomly divided into 10 groups of 10 classes each and organized

in a fixed order (A.1). These groups of classes are introduced to the network incrementally.

The Network Initialization

We initialize the Tree-CNN as a root node with 10 leaf nodes. The root node, thus

comprises of a CNN (Table 3.4), with 10 output nodes. Initially this CNN is trained to

classify the 10 classes belonging to group 0 of the incremental CIFAR-100 dataset (A.1). In

subsequent learning stages, as new classes get grouped together under same output nodes,

the network adds branch nodes. The DCNN model used in these branch nodes is given in

Table 3.5 . The branch node has a higher chance of over-fitting than the root node as the

dataset per node shrinks in size as we move deeper into the tree. Hence we introduce more

dropout layers to the CNNs at these nodes to enhance regularization.

Incremental Learning

The remaining 9 groups, each containing 10 classes is incrementally introduced to the

network in 9 learning stages. At each stage, 50 images belonging to each class are shown to

the root node and a likelihood matrix L is generated. The columns of the matrix are used

to form an ordered set S, as described in Sec. 3.3.2 . For this experiment, we applied the

following constraints to the Algorithm 2 :

• Maximum depth of the tree is 2.

• We set α = 0.1 and β = 0.1.

• Maximum number of child nodes for a branch node is set at 5, 10, 20 for the three test

cases: Tree-CNN-5, Tree-CNN-10, and Tree-CNN-20 respectively.

At every learning stage, once the new classes have been assigned the location in the

Tree-CNN, we update the corresponding branch and root CNNs by retraining them on the

53

combined dataset of old and new classes added to them. The branch nodes to which new

children have not been added are left untouched.

3.4.3 Benchmarking

There is an absence of standardized benchmark protocol for incremental learning, which

led us to use a benchmarking protocol similar to one used in iCaRL [51]. The classes of

the dataset are grouped and arranged in a fixed random order. At each learning stage, a

selected set of classes would be introduced to the network. Once training is completed for

a particular learning stage, the network would be evaluated on all the classes it has learned

so far and the accuracy is reported.

Baseline Network

To compare against the proposed Tree-CNN, we defined a baseline network (Network B)

with a complexity level similar to two stage Tree-CNN. The network is has a VGG-net [61]

like structure with 11 layers. It has 4 convolutional blocks, each block having 2 sets of 3 × 3

convolutional kernels (Table 3.3).

Fine-tuning the baseline network using old + new data

The baseline network is trained in incremental stages using fine-tuning. The new classes

are added as new output nodes of the final layer and 5 different fine tuning strategies have

been used. Each method retrains/fine-tunes certain layers of the network. While fine tuning,

all of the available dataset is used, both old data and new data. It is assumed that the system

has access to all the data that has been introduced so far. As listed below, we set 5 different

depths of back-propagation when retraining with the incremental data and the old data.

• B:I [FC]

• B:II [FC + CONV-1]

• B:III [FC + CONV-1 + CONV-2]

• B:IV [FC + CONV-1 + CONV-2 + CONV-3]

54

• B:V [FC + CONV-1 + CONV-2 + CONV-3 + CONV-4] (equivalent to training a new

network with all the classes)

Evaluation Metrics

We compare Tree-CNN against retraining Network B on two metrics: Testing Accuracy,

and Training Effort , which is defined as

Training Effort = ∑
nets

(total number of weights × total number of training samples)

Training Effort attempts to capture the number of weight updates that happen per

training epoch. As batch size and number of training epochs is kept the same, the product

of the number of weights and the number of training samples used can provide us with the

measure of the computation cost of a learning stage. For Tree-CNN the training effort of

each of the nodes (or nets) is summed together. Whereas, for network B, it is just one

node/neural network, and for each of the cases (B:I-B:V), we simply sum the number of

weights in the layers that are being retrained and multiply it with total number of training

samples available at a learning stage to calculate the Training Effort.

3.4.4 The Training Framework

We used MatConvNet [62], an open-source Deep Learning toolbox for MATLAB [63], for

training the networks. During training, data augmentation was done by flipping the training

images horizontally at random with a probability of 0.5 [64]. All images were whitened and

contrast normalized [64]. The activation used in all the networks is rectified linear activation

ReLU, σ(x) = max(x, 0). The networks are trained using mini-batch stochastic gradient

descent with fixed momentum of 0.9. Dropout [38] is used between the final fully connected

layers, and between pooling layers to regularize the network. We also employed batch-

normalization [65] at the output of every convolutional layer. Additionally, a weight decay

λ = 0.001 was set to regularize each model. The weight decay helps against overfitting of our

model. The final layer performs softmax operation on the output of the nodes to generate

class probabilities. All CNNs are trained for 300 epochs. The learning rate is kept at 0.1 for

first 200 epochs, then reduced by a factor of 10 every 50 epochs.

55

3.5 Results

3.5.1 Adding multiple new classes (CIFAR-10)

Table 3.6. : Training Effort and Test Accuracy comparison of Tree-CNN against Network
B for CIFAR-10

B:I B:II B:III B:IV B:V Tree-CNN
Testing Accuracy 78.37 85.02 88.15 90.00 90.51 86.24
Normalized Training Effort 0.40 0.85 0.96 0.99 1 0.60

(a) (b)

Figure 3.4. : Incrementally learning CIFAR-10: 4 New classes are added to Network B
and Tree-CNN. Networks B:I to B:V represent 5 increasing depths of retraining for Network
B. (a) The softmax likelihood output at the root node for the two branches. (b) Testing
Accuracy vs Normalized Training Effort for Tree-CNN and networks B:I to B:V

We initialized a Tree-CNN that can classify six classes (Fig. 3.3 a). It had a root node

and two branch nodes. The sample images from the 4 new classes generated the softmax

likelihood output at root node as shown in Fig. 3.4a . Accordingly, the new classes are added

to the two nodes, and the new Tree-CNN is shown in Fig. 3.3 b. In Table 3.6 , we report

the test accuracy and the training effort for the 5 cases of fine-tuning network B against

our Tree-CNN for CIFAR-10. We observe that retraining only the FC layers of baseline

network (B:I) requires the least training effort, however, it gives us the lowest accuracy of

78.37%. And as more classes are introduced, this method causes significant loss in accuracy,

as shown with CIFAR-100 (Fig. 3.6b). The Tree-CNN has the second lowest normalized

56

training effort, ∼ 40% less than B:V, and ∼ 30% less than B:II. At the same time, Tree-CNN

had comparable accuracy to B:II and B:III, while just being less than the ideal case B:V

by a margin of 3.76%. This accuracy vs training effort trade-off is presented in Fig. 3.4b ,

where it is clearly visible that Tree-CNN provided the most optimal solution for adding the

4 new classes.

3.5.2 Sequentially adding new classes (CIFAR-100)

(a) (b)

Figure 3.5. : Tree-CNN : Effect of varying the maximum number of children per branch
node (maxChildren) as new classes are added to the models (CIFAR-100) (a) Network size
(b) Test Accuracy

(a) (b)

Figure 3.6. : CIFAR-100: New classes are added to Network B and Tree-CNNs in batches
of 10. Networks B:I to B:V represent 5 increasing depths of retraining for Network B (a)
Training effort for every learning stage (Table A.1) (b) Testing Accuracy at the end of each
learning stage (Table A.2)

57

We initialized a root node that can classify 10 classes, i.e. has 10 leaf nodes. Then, we

incrementally grew the Tree-CNN for 3 different values of maximum children per branch

node (maxChildren), namely 5, 10, and 20. We label these 3 models as Tree-CNN-5, Tree-

CNN-10 and Tree-CNN-20 respectively. At the end of 9 incremental learning stages, the root

node of Tree-CNN-5 had 23 branch nodes and 3 leaf nodes. Whereas, the root node of Tree-

CNN-10 has 12 branch nodes and 5 leaf nodes. As expected, the root node of Tree-CNN-20

had least number of child nodes, 9 branch nodes and 3 leaf nodes. The final hierarchical

structure of the Tree-CNNs can be found in A.2 , Fig. A.1 -A.3 .

We observe that as new classes are added, the Tree-CNNs grow in size by adding more

branches (Fig. 3.5a). The size of Network B remains relatively unchanged, as only additional

output nodes are added, which translates to a small fraction of new weights in the final layer.

Tree-CNN-5 almost grows 3.4× the size of Network B, while Tree-CNN-10 and Tree-CNN-20

reach 2.2× and 1.8× the baseline size, respectively. The training effort for the 3 Tree-CNNs

was almost identical, within 1e-2 margin of each other (Fig. 3.6a), over the 9 incremental

learning stages. As maxChildren is reduced, the test accuracy improves, as observed in Fig.

3.5b . If maxChildren is set to 1, we obtain a situation similar to test case B:V, where every

new class is just a new output node.

We compare the training effort needed for the Tree-CNNs against the 5 different fine-

tuning cases of Network B over the 9 incremental learning stages in Fig. 3.6a . We normalized

the training effort by dividing all the values with the highest training effort. i.e. B:V. For all

the models, the training effort required at a particular learning stage was greater than the

effort required by the previous stage. This is because we had to show images belonging to

old classes to avoid “catastrophic forgetting”. The Tree-CNNs exhibit a lower training effort

than 4 fine-tuning test cases, B:II - B:V. the test case B:I has a significantly lower training

effort than all the other cases, as it only retrains the final fully connected layer. However,

it suffers the worst accuracy degradation over the 9 learning stages (Fig. 3.6b). This shows

that only retraining the final linear classifier, i.e. the fully connected layer, is not sufficient.

We need to train the feature extractors, i.e. convolutional blocks, as well on the new data.

While B:I is the worst performer in terms of accuracy, Fig. 3.6b shows that all the

networks suffer from some accuracy degradation with increasing number of classes. B:V

58

provides the baseline accuracy at each stage, as it represents a network fully trained on all

the available data at that stage. The three Tree-CNNs perform almost at par with B:IV, and

outperform all other variants of network B. From Fig. 3.6 , we can conclude that Tree-CNNs

offer the most optimal trade-off between training effort and testing accuracy. This is further

illustrated in Fig. 3.7a , where we plot the average test accuracy and average training effort

over all the learning stages.

Table 3.7. : Test Accuracy over all 100 classes of CIFAR-100

Model Final Test Accuracy (%) Average Test Accuracy(%)
B:V 63.05 72.23
Tree-CNN-5 61.57 69.85
Tree-CNN-10 60.46 69.53
Tree-CNN-20 59.99 68.49
iCarl (Rebuffi, et al. 2017) [51] 49.11 64.10
LwF (Li, et al. 2017) [48], [51] 25.00 44.49
HD-CNN (Yan, et al. 2015) [57] 67.38 N/A
Hertel, et al. 2015 [66] 67.68 N/A

(a) (b)

Figure 3.7. : The performance of Tree-CNN compared with a) Fine-tuning Network B b)
Other incremental learning methods [48], [51]

We compare our model against two works on incremental learning, ‘iCaRL’[51] and

‘Learning without Forgetting’ [48] as shown in Fig. 3.7b . We use the accuracy reported

in [51] for CIFAR-100, and compare it against our method. For ‘LwF’, a ResNet-32 [67] is

retrained exclusively on new data at every stage. Hence it suffers the most accuracy degra-

59

dation. In ‘iCarl’ [51], a ResNet-32 is retrained with new data and only 2000 samples of

old data (called ‘exemplars’) at every stage. It is able to recover a good amount perfor-

mance, compared to ‘LwF’ but still falls short of state-of-the-art by ≈18%. Tree-CNNs yield

10% higher accuracy than ‘iCaRL’ and over 50% higher accuracy than ‘Learning without

Forgetting’ (LwF). This shows that our learning method using the hierarchical structure is

more resistant to catastrophic forgetting as new classes are added. Tree-CNNs are able to

achieve near state-of-the-art accuracy for CIFAR-100 as illustrated in Table 3.7 . While the

second column reports the final accuracy, the third column reports the average accuracy of

the incremental learning methods where new classes are added in batches of 10.

An interesting thing to note was similar looking classes, that were also semantically

similar, were grouped under the same branches. At the end of the nine incremental learning

stages, certain similar objects grouped together is shown in Fig. 3.8 for Tree-CNN-10. While

there were some groups that had object sharing semantic similarity as well, there were odd

groups as well, such as Node 13 as shown in Fig. 3.8 . This opens up the possibility of using

such a hierarchical structure for finding hidden similarity in the incoming data.

Figure 3.8. : Examples of groups of classes formed when new classes were added incremen-
tally to Tree-CNN-10 in batches of 10 for CIFAR-100

60

3.6 Discussion

The motivation of this work stems from the idea that subsequent addition of new image

classes to a network should be easier than retraining the whole network again with all

the classes. We observed that each incremental learning stage required more effort than

the previous, because images belonging to old classes needed to be shown to the CNNs.

This is due to the inherent problem of “catastrophic forgetting” in deep neural networks.

Our proposed method offers the best trade-off between accuracy and training effort when

compared against fine-tuning layers of a deep network. It also achieves better accuracy, much

closer to state-of-the-art on CIFAR-100, as compared to other works, ‘iCarl’ [51] and ‘LwF’

[48]. The hierarchical node-based learning model of the Tree-CNN attempts to confine the

change in the model to a few nodes only. And, in this way, it limits the computation costs of

retraining, while using all the previous data. Thus, it can learn with lower training effort than

fine-tuning a deep network, while preserving much of the accuracy. However, the Tree-CNN

continues to grow in size over time, and the implications of that on memory requirements

needs to be investigated. During inference, a single node is evaluated at a time, thus the

memory requirement per node inference is much lower than the size of the entire model. Tree-

CNN grows in a manner such that images that share common features are grouped together.

The correlation of the semantic similarity of the class labels and the feature-similarity of the

class images under a branch is another interesting area to explore. The Tree-CNN generates

hierarchical grouping of initially unrelated classes, thereby generating a label relation graph

out of these classes[33]. The final leaf nodes, and the distance between them can also be used

as a measure of how similar any two images are. Such a method of training and classification

can be used to hierarchically classify large datasets. Our proposed method, Tree-CNN, thus

offers a better learning model that is based on hierarchical classifiers and transfer learning

and can organically adapt to new information over time.

61

4. DEEP STOCHASTIC NEURAL NETWORKS

With the increasing complexity of the tasks accomplished by Deep Learning, the compu-

tational cost of these models have also risen enormously. In the modern era of ubiquitous

Artificial intelligence (AI) and smart devices, there is a need to enable AI tasks in highly

constrained low power and low memory environments. The growing demand of Deep Learn-

ing in such everyday applications has thus accelerated the search for fast and power efficient

implementations of these networks.

Achieving speed up and power efficiency during inference can be approached by efficient

hardware-software co-design principles. To that effect, researchers are investigating several

methods to build smaller neural network models with simpler computations [68]. Novel

network architectures, such as SqueezeNet [69] and MobileNet [70] have been proposed that

employ alternate convolution techniques such as depthwise convolution using 1 × 1 filters

for repeated squeezing and expansion of feature maps. On the other hand, model pruning

techniques selectively remove redundant convolutional filters to achieve optimal filter bank

width [71].

While these methods focus on changing the model architecture such as the number of

layers and filters, another way of model compression is quantization of the weights and in-

puts. Traditionally weights of a neural network are stored as 32/64 bit floating point values.

Reducing bit precision of these weights can help minimize the model size. The inherent

redundancy and resiliency of neural networks towards approximate computations can po-

tentially help us quantize these networks without significant loss in performance [72]. Using

binary neuron activations, such as 0/1 or -1/1, one can simplify weight-input multiplica-

tions to just additions [73]. When both weights and activations are binary, multiply and

accumulate operations can be replaced by simple bitwise operations as shown in BinaryNets

[74] and XNOR-Nets [75]. Binary activations inside a deep learning model create a binary

communication channel between layers, which in a way mimics the spike based communi-

cation observed in biological neurons. Such networks fall under the umbrella of the third

generation of neural networks, called spiking neural networks that are uniquely characterized

by the spike-like nature of their inter layer communication.

62

The communication between biological neurons is often noisy with high frequency aberra-

tions. Neuroscientists have often pondered on the impact of such probabilistic interaction in

the brain, whether it enables greater functionality. Several works [35], [36] indicate that cor-

tical microcircuits of pyramidal neurons perform Bayesian computations, and their switching

behavior can be modelled by a sigmoid [11]. In this work we design deep SNNs with such

stochastic sigmoid neurons. We also explore binary neurons that follow a linear (hardtanh)

switching probability dependence with the input.

In the context of emulating the functionality of biological systems, designing custom

hardware to perform the operations specific to machine learning workloads more efficiently

than general-purpose systems has been heavily explored. This has led researchers to venture

beyond traditional Von-neumann computing. Such systems are not only massively parallel

but also capable of compact and efficient implementations of the fundamental units of the

neural networks, namely neurons and synapses. This new paradigm of computing is inspired

from the mammalian brain.

Various technologies based on both CMOS and non-volatile memory (NVM) devices

have been used to explore the aforementioned stochastic characteristics of binary neurons. In

CMOS technology, such stochasticity is introduced through biased random number generator

(RNG) circuits. Standard RNG circuits, however, require a number of transistors which make

CMOS often expensive in terms of area, despite being able to be conveniently implemented.

NVM devices, on the other hand, can emulate neuronal functionalities using single, isolated

devices which enable compact implementation. Moreover, the inherent stochasticity in these

devices make them quite amenable towards implementing stochastic binary neurons. To

that effect, recent work on Phase-Change Memory (PCM) technology has experimentally

demonstrated stochastic firing behavior in neuronal devices [76]. The variability in Resistive

Random Access Memory (RRAM) can also be leveraged to enable stochasticity. However, it

is to be noted, that for both RRAM and PCMs, the stochasticity is often not controllable. In

contrast, spintronic devices such as magnetic tunnel junctions (MTJ) offer current controlled

stochasticity which has been used to emulate stochastic behavior in neurons [11]. Moreover,

device proposals leveraging the high spin-injection efficiency of the spin-hall effect (SHE) by

stacking the MTJs on top of a heavy metal layer can lead to lower write currents and higher

63

energy-efficiency. MTJ-based proposals of stochastic neurons thus promise to be compact

and energy-efficient.

Although MTJ provides a useful solution toward energy-efficient implementations of

stochastic spiking neural networks, studies have been limited to simple pattern recognition

tasks on small datasets using shallow networks [12], [13]. However, for real world deployment

of such energy-efficient systems, it is necessary to investigate the scalability of such spiking

neural networks with stochastic binary activations. In this work [77] we design an 8 layer and

a 16 layer VGG network [61] with different kinds of binary activations, both deterministic

and stochastic and observe their performance on large datasets, CIFAR10 and CIFAR100

[60].

In Sec. 4.1 , we define the different kinds of binary activations and the two different

weight binarizing techniques. The simulation framework is described in Sec. 4.2 . Next, we

discuss our key findings while training these stochastic spiking neural networks in Sec. 4.3 .

We analyze the hardware implications of such neural networks in 4.4 . Finally we conclude

in Sec. 4.5 the pros and cons of implementing such networks on existing as well as emerging

hardware platforms.

4.1 Training Deep Spiking Neural Networks with Binary Stochastic Activation

A spiking neural network is characterized by its event driven binary communication.

Each neuron produces a spike only when certain conditions are met, otherwise remains idle.

The presence/absence of spikes can be encoded as a binary value. While advanced spiking

neural network models incorporate more bio-plausible features like Integrate and Fire (IF)

neurons, spike timing dependent plasticity (STDP) etc., an artificial neural network (ANN)

with binary activation has the most fundamental property of SNNs, i.e. binary commu-

nication [78]. One can potentially train these ANNs with backpropagation and stochastic

gradient descent [79]. However, in doing so, one has to use a smooth approximation for

the discontinuous gradient of the binary neuron. In the following subsection, we discuss the

various types of binary neurons and their gradients during training.

64

4.1.1 Binary Stochastic Activations

A binary neuron has an output that can be represented by two distinct states. While there

can be many ways to encode the binary states, in this work we use the two most common

ones, unipolar (0/1) and bipolar (+1/ − 1) representations. The input to the neuron is a

weighted sum of all the neurons connected to it from the previous layer, and this input is

non-binary in a neural network. The neuron can use a deterministic or a stochastic method

to convert its input to a binary output.

For unipolar neurons, we investigate the binary sigmoid neuron, as proposed in [13]. In

[13], the ANN was initially trained with a sigmoid neuron, and at inference, the sigmoid was

replaced with a stochastic sigmoid spiking neuron. Such a neuron outputs a 1, i.e. a spike

with a probability determined by the sigmoid of its input (Eq. 4.1). The network would

then be evaluated over multiple iterations.

a =

1 with p1 = sigmoid(z) = 1

1+e−z

0 with p0 = 1 − p1 = 1 − sigmoid(z)
(4.1)

We eliminate the conversion step by directly training the network with stochastic sigmoid

(stochSigmoid) neuron. By doing so, we remove the need to evaluate the network over

multiple iterations. The network only needs to be evaluated once to obtain the class label.

We also evaluate our network for a deterministic version of the binary sigmoid neuron, and

we refer to it as detSigmoid going forward.

a =

1, sigmoid(z) ≥ 0.5

0, sigmoid(z) < 0.5
(4.2)

In both cases, the derivative of the neuron, ∂a
∂z

is computed as the derivative of a sigmoid.

∂a

∂z
= ∂sigmoid(z)

∂z
= e−z

(1 + e−z)2 (4.3)

65

Next, we use the hardtanh function to model the bipolar binary neuron, as seen in BinaryNet

[74]. Here z is the input to the neuron, and a is the output. First we compute y =

hardtanh(z) which is given by,

y =

min(z, 1), z ≥ 0

max(z, −1), z < 0
(4.4)

Then, y can be binarized in a deterministic or stochastic manner. In case of deterministic

binarization,

a =

1, y ≥ 0

−1, y < 0
(4.5)

For stochastic binarization, a random number r is generated from the uniform distribution

U(0, 1), and y is compared against it to generate z. This implies that the probability (p)

that z is 1(−1) is p1 = (y+1)
2 (p−1 = 1 − (y+1)

2).

a =

1, (y+1)

2 ≥ r

−1, (y+1)
2 < r

(4.6)

During backpropagation, the derivative of the neuron ∂a
∂z

is computed as the derivative of

hardtanh. Going forward, we refer to deterministic binary hardtanh neuron as detHardtanh,

and its stochastic counterpart as stochHardtanh

∂a

∂z
=

0, z > 1

1, −1 ≤ z ≤ 1

0, z < −1

(4.7)

In Table 4.1 , we have listed all the neuron models used in this work, and their derivatives.

66

Table 4.1. : Neuron Models

Name Type Output a = f(z) ∂a/∂z

ReLU N/A [0, ∞) max(0, z) 1 if z > 0 else 0

detHardtanh deterministic 1, −1

1, z ≥ 0
−1, z < 0

0, z > 1
1, −1 ≤ z ≤ 1
0, z < −1

stochHardtanh stochastic 1, −1

1 with p1 = (y + 1)/2
−1 with p0 = 1 − p1

0, z > 1
1, −1 ≤ z ≤ 1
0, z < −1

detSigmoid deterministic 1, 0

1, sigmoid(z) ≥ 0.5
0, sigmoid(z) < 0.5

∂sigmoid(z)
∂z

= e−z

(1+e−z)2

stochSigmoid stochastic 1, 0

1 with p1 = sigmoid(z) = 1
1+e−z

0 with p0 = 1 − p1 = 1 − sigmoid(z)
∂sigmoid(z)

∂z
= e−z

(1+e−z)2

4.1.2 Weight Quantization

In the Sec 4.1.1 , we discussed the various kinds of binary activations. While binary ac-

tivations simplify Multiply-and-Accumulate (MAC) operations to simple additions, we can

further reduce computations by binarizing the weights, thereby reducing compute-intensive

floating point multiplications to bitwise operations. We use the following two weight quan-

tization techniques:

• BinaryNet [74] : Real valued weights are constrained to [1, −1] by clipping weights

outside of the range. Then they were binarized by wb = Sign(w). Except the first

layer, all weights were binarized.

• XNOR-Net [75] : These networks perform scaled binarization, where a convolution

filter is binarized as W b = ||W ||1Sign(W). The first and the last layer of weights are

kept as full precision. Also the first and the last activation layers are kept as ReLU

(i.e. full precision).

67

4.2 Experiments

4.2.1 Simulation Framework

For our simulations, we used Torch7 [80], a Lua based scientific computing framework

that supports a wide variety of machine learning algorithms with GPU compatible imple-

mentations. The simulations were run on a single GeForce Titan XP GPU. CIFAR-10 and

CIFAR-100 [60] were used to evaluate the performance of the deep stochastic SNNs. Both

the datasets are composed of 3 channel RGB images of size 32 × 32 with 50, 000 training

samples and 10, 000 test samples. CIFAR-10 has 10 classes, each class having 5000 training

and 1000 test images. CIFAR-100 has 100 classes, with each class having 500 training and

100 test images.

Table 4.2. : Network Architecture

(a) VGG-9

3 × 3 Conv 3, 128
3 × 3 Conv 128, 128

Max Pool (2,2)
3 × 3 Conv 128, 256
3 × 3 Conv 256, 256

Max Pool (2,2)
3 × 3 Conv 256, 512
3 × 3 Conv 512, 512

Max Pool (2,2)
4096 × 1024 Linear
1024 × 1024 Linear
1024 × 10 Linear

(b) VGG-16

3 × 3 Conv 3, 64
3 × 3 Conv 64, 64

Max Pool (2,2)
3 × 3 Conv 64, 128
3 × 3 Conv 128, 128

Max Pool (2,2)
3 × 3 Conv 128, 256
3 × 3 Conv 256, 256
3 × 3 Conv 256, 256

Max Pool (2,2)
3 × 3 Conv 256, 512
3 × 3 Conv 512, 512
3 × 3 Conv 512, 512

Max Pool (2,2)
3 × 3 Conv 512, 512
3 × 3 Conv 512, 512
3 × 3 Conv 512, 512

Max Pool (2,2)
512 × 4096 Linear
4096 × 4096 Linear
4096 × 4096 Linear

68

4.2.2 Experiments with CIFAR-10

For CIFAR-10 dataset, we selected a 9 layer VGG network [61], and the complete network

architecture is provided in Table 4.2 (a). We trained the network for 3 different weight

quantizations and 5 different neuron activation functions, as described in Sec. 4.1 . At every

layer, except the last layer, batch-normalization [65] is applied. For training deeper networks,

particularly with saturating functions like sigmoid and hardtanh, batch-normalization is

needed to ensure the neurons operate in the linear region, and avoid either of the saturation

regions. In the saturating regions, the derivative of the neuron becomes 0 or near zero, thus

aggravating the problem of vanishing gradients [81]. We used dropout (set to 0.4) [38] during

training for full precision networks with ReLU activation function. In case of networks with

binary activations, no dropout was applied, as the binary neurons themselves worked as a

regularizer similar to dropout. The output of the final layer was fed to a softmax layer and

the negative loss likelihood on the softmax function was defined as the network loss. We

trained the networks for 150 epochs while keeping the batch-size at 50, and we used Adam

optimizer[37] for weight update. The learning rate was set to 0.01 initially and was halved

every 25 epochs. The highest test accuracy observed during the training epochs is reported

at the end in Table 4.3 .

4.2.3 Experiments with CIFAR-100

For CIFAR-100, we used the 16 layer VGG-16 [61] architecture composed of 3 × 3 convo-

lutional filters. The network architecture is outlined in Table 4.2 (b). We trained the network

for 3 different weight quantization schemes and 5 different neuron activation functions, as

described in Sec. 4.1 . At every layer, except the last layer, batch-normalization [65] is

applied. We used dropout (set to 0.5) [38] during training for full precision networks with

ReLU activation function. For networks with binary activations no dropout was applied.

The output of the final layer was fed to a softmax layer and negative loss likelihood was used

as the loss function. For all the cases, we trained the network for 400 epochs, starting with a

learning rate of 5e-3 which was halved every 100 epochs, while keeping the batch-size at 50.

69

Figure 4.1. : Training Error over epochs for 5 different activations and 3 different weight
quantizations for CIFAR-10 on VGG-9

Adam [37] was the optimization function used. The highest test accuracy observed during

the training epochs is reported at the end in Table 4.4 .

4.3 Results

4.3.1 CIFAR-10

Figure 4.2. : Test Error over epochs for 5 different activations and 3 different weight
quantizations for CIFAR-10 on VGG-9

For CIFAR-10, we achieve training convergence for all 4 types of binary activations (Fig.

4.1). The final test accuracy of the SNNs was at par with the ANN with ReLU (89.07%),

recording the lowest degradation of 0.8% in accuracy for detSigmoid with XNOR-Net based

70

Figure 4.3. : Test Loss vs Train Loss Trajectory of the VGG-9 for CIFAR-10. The lines
are fourth degree polynomial fit of the data (the plotted points)

Table 4.3. : Test Accuracy CIFAR-10 VGG-9

Weights
Activation Full Precision BinaryNet XNOR-Net
ReLU 89.07% N/A N/A
stochHardtanh 86.13% 85.69% 87.64%
stochSigmoid 86.08% 85.95% 87.95%
detHardtanh 85.88% 86.30% 88.16%
detSigmoid 86.68% 87.37% 88.27%

quantized weights and a maximum degradation of 3.38% for stochHardtanh with BinaryNet

based quantized weights (Table 4.3 , Fig. 4.2). An interesting observation was that XNOR-

Net based quantized networks performed better than full precision networks with binary

activations. A possible reason is that in XNOR-Nets keep ReLU activation for the first and

last layers of the networks a design requirement. However, in the full precision networks, we

converted activations of all the layers to binary.

We also analyzed the negative log likelihood loss (NLL) of these networks for both test and

train data to better understand the generalization ability of these networks (Fig. 4.6). Ideally

we want the test loss to reduce as training loss reduces. However, if test loss starts to increase

with decreasing train loss, it is indicative of overfitting. In full precision networks, ReLU

activation gave us the best generalization. Among binary activations, both stochSigmoid

71

and detSigmoid performed much better than their binary hardtanh counterparts. We observe

similar trends even in BinaryNet and XNOR-Net version of VGG9, where the binary sigmoid

neurons exhibit better generalization than binary hardtanh neurons.

When we compare the loss of the neural networks (Fig. 4.6), we observe that stochSigmoid

and stochHardtanh have a more downward curve compared to their deterministic counter-

parts, thereby indicating better generalization. In term of test accuracy, from Table 4.3 ,

one may observe that deterministic binary neurons performed better than their stochastic

counterparts for quantized SNNs, barring one case of full precision SNN with stochSigmoid

neurons. However, the difference is less than 1% between the deterministic and stochastic

binary neurons. In the next section, we evaluate these activations for a more complex task

on an almost twice as deep neural network.

4.3.2 CIFAR-100

Figure 4.4. : Training Error over epochs for 5 different activations and 3 different weight
quantizations for CIFAR-100 on VGG-16

For VGG-16 neural network architecture, the baseline accuracy is 61.39% for full precision

ANN with ReLU neurons. When training SNNs, there was significant reduction in the test

accuracy due to binary activations (Table 4.4). Also, we observed that to train these full

precision SNNs it was necessary to clip and clamp the 32-bit weights within 1,-1 range.

72

Figure 4.5. : Test Error over epochs for 5 different activations and 3 different weight
quantizations for CIFAR-100 on VGG-16

Figure 4.6. : Test Loss vs Train Loss Trajectory of the VGG-16 for CIFAR-100. The lines
are fourth degree polynomial fit of the data (the plotted points)

In these SNNs binary sigmoid neurons performed significantly better than binary hardtanh

neurons, by almost a margin of 5%, as noted in Table 4.4 .

For BinaryNet based weight quantization, the SNN with stochSigmoid neurons failed to

train properly (Fig. 4.4 B, 4.5 B). The SNN with stochHardtanh neuron also suffered from

poor training convergence. Thus one can conclude that stochasticity is not ideal for such

binarized SNNs.

On the other hand, for SNNs with XNOR-Net based weight quantizations, the train and

test error trajectory was similar for all 4 kinds of binary activations. Following the trend ob-

served in Sec. 4.3.1 , quantized SNNs perform at par or even better than full precision SNNs.

73

Table 4.4. : Test Accuracy CIFAR-100 VGG-16

Weights
Activation Full Precision BinaryNet XNOR-Net
ReLU 61.39% N/A N/A
stochHardtanh 51.82% 52.36% 53.11
stochSigmoid 55.95% 19.81% 52.54
detHardtanh 51.2% 53.83% 52.71%
detSigmoid 56.78% 54.44% 52.64%

Thus it can be concluded that for deeper SNNs, networks with XNOR-Net based weight

quantization are preferred over full-precision and BinaryNet based quantized networks.

We also analyzed test loss versus train loss for VGG-16 as presented in Fig. 4.3 . For full

precision weights, binary sigmoid neurons performed as well as ReLU neurons in terms of loss

convergence and generalization. However, for quantized SNNs, the binary hardtanh neurons

offered better performance. In XNOR-Net based weight quantized SNN, stochHardtanh

neuron achieved the highest accuracy of 53.11%. And its test loss vs train loss curve is the

lowest of all 4 in Fig. 4.3 C.

For BinaryNet based weight quantization, the SNN with stochHardtanh activations has

the lowest test loss vs train loss curve (Fig. 4.3). However, it doesn’t translate to best

performance in this case. While the difference between train and test loss is usually a good

indicator of generalization, it is important to note that such comparisons can be done only

when train error is very low. However, in this case, train error of stochHardtanh is very high,

as seen in Fig. 4.4 B. Hence, the next candidate for best performance and generalization is

the orange curve of detSigmoid neurons, and it does achieve the highest test accuracy of

54.44%.

For XNOR-Net based weight quantization, stochHardtanh achieves the highest test ac-

curacy of 53.11%. From Table 4.4 , one should note that deterministic binary neurons per-

formed better than their stochastic counterparts for most cases, except for binary hardtanh

neurons in XNOR-Net based weight quantized SNN, where the stochastic hardtanh neuron

outperformed its deterministic counterpart by 0.4%.

74

4.4 Hardware Implications

We have discussed earlier how binary stochastic activations promise efficiency in terms

of energy consumption in hardware implementations. To assess the energy benefits, we

analyzed the energy consumption for neuronal activity of networks with binary stochastic

activations. For comparison, we consider networks with full-precision activations to show the

energy benefits obtained by using binary activations. Note, along with energy improvements

at a neuronal level, binary activations also eliminate the need for the costly multiply-and-

accumulate (MAC) operations, as the operations are simplified to additions and subtractions

of weights. We calculated the energy consumption using estimates for 45 nm CMOS tech-

nology [82], [83]. Considering 32-bit representation as full-precision, the energy consumption

for both 32-bit memory accesses and computations are shown in Table. 4.5 . Here, p is the

bit-precision of the access. The estimated energy consumption of different networks is listed

in Table. 4.6

Table 4.5. : Energy Consumption chart

Operation Term Energy (pJ)
p-b Memory Access EA−p 2.5p
32-b MULT FP EM−F 3.7
32-b ADD FP EAD−F 0.9

Table 4.6. : Energy estimates for different networks

Energy (mJ/inference)
Weights Activations

Full Precision Binary
Full Precision 4.287 3.02 (1.4x)
BinaryNet – 0.152 (28.1x)
XNOR-Net – 0.2 (21.3x)

We observe that in a network with full-precision weights, binary activations reduces the

energy consumption by ∼ 40%. Moreover, networks with binary weights achieve more than

21x improvement in energy consumption over full-precision networks.

75

4.5 Conclusion

In this work, we explored the scalability of deep probabilistic spiking neural networks.

We observe that binary neurons are able to preserve the performance in deep networks,

thus paving the way for larger applications of such SNNs. The spiking neural networks

(SNNs) with stochastic activations performed at par with deterministic SNNs, thus opening

avenues for stochastic neuro-mimetic hardware platforms. We also observed that unipolar

neurons performed at par with bipolar neurons (except for one case) which allows for further

optimization as unipolar neurons have the advantage of inherent sparsity. This sparsity can

be exploited in hardware design to improve the energy efficiency. Finally, we performed

an energy consumption analysis to show the benefits of using binary activations over full-

precision counterparts for networks with both full-precision and binarized weights.

76

5. INTRINSIC ADVERSARIAL ROBUSTNESS OF ANALOG

COMPUTING

5.1 Introduction

To accommodate the growing computational needs of DNNs special-purpose accelera-

tors such as GoogleTPU [84], Microsoft BrainWave [85], and NVIDIA V100 [86] have been

proposed. These systems operate on the principle of efficiently performing matrix-vector

multiplication (MVM) operations, the key computational kernel in DNNs, by co-locating

memory and processing elements. Despite their success, the saturating scaling trends of

digital CMOS [87] has garnered interest in non-volatile memory (NVM) technologies such

as RRAM [9], PCRAM [10] and Spintronics [88]. The memory element in these technologies

can be arranged in a crossbar fashion to enable efficient MVM computations in the analog

domain inside the memory array. Such an in-memory computing primitive can significantly

lower power and latency compared to digital CMOS [8]. Promises offered by the NVM cross-

bars have propelled significant research in designing analog computing based accelerators,

such as PUMA [89].

In an analog computing hardware the output of an MVM operation is sensed as a summa-

tion of currents through resistive NVM devices arranged in a crossbar, and hence are prone

to errors due to non-ideal behavior of the crossbar and its peripheral circuits. Such errors are

hard to model due to the interdependence of multiple analog variables (voltages, currents,

resistances) in the crossbar. These deviations result in overall performance degradation of

the DNN implementation [90]. Several works have explored various techniques to counteract

the impact of these non-idealities [91], [92].

On the flip side, even though the changes in DNN activations arising from non-idealities

is hard to model, it can potentially lead to adversarially robust DNN implementations.

Adversarial images are generated by estimating the gradients of the model with respect

to its input, and carefully perturbing the images in the direction of maximum change in

the classifier output [14], [93]. To counter such attacks, several techniques that rely on

gradient obfuscation have been previously proposed [94]–[96]. In this chapter, we explore

how non-ideal NVM crossbars have a similar intrinsic effect of gradient obfuscation. We

77

implement DNNs on the PUMA architecture, which is composed of thousands of MVM

units (MVMUs) made of NVM crossbars. The aformentioned errors occur at the output of

these internal MVMUs, which are practically inaccessible to a third party user, such as the

software designer or even an attacker. Moreover, the nature of the errors depends heavily

on the technology, which might not be fully disclosed by the manufacturer. Finally, any

scaled technology is prone to chip to chip variations [97] which can further deter an attacker

from exactly replicating the DNN activations. We study two distinct scenarios, one where

the attacker does not have access to custom NVM hardware and generates attacks based

on accurate digital hardware, and the other where the attacker generates attacks with the

NVM hardware in loop.

The main contributions of the work presented in this chapter are as follows:

• We demonstrate that adversarial attacks crafted without the knowledge of the hard-

ware implementation are less effective in both black box and white box scenarios.

• We tested multiple variants of NVM crossbars, and show that the degree of intrinsic

robustness offered by the analog hardware is in proportion to its degree of non-ideal

behavior.

• We show that “Hardware-in-Loop” adaptive adversarial attacks are more effective,

as the attacker can now account for the non-ideal computations when crafting the

adversarial examples. We show that the degree of success depends on what hardware

is available to the attacker and how similar it is to the target model’s hardware.

5.2 Background and Related Work

5.2.1 In-memory Analog Computing Hardware

In-memory analog computing with NVM technologies are being extensively studied for

machine learning (ML) workloads [98]–[100] because of their inherent ability to perform

efficient matrix-vector multiplications, the key computational kernel in DNNs. The basic

compute fabric in NVM technologies is a two-dimensional cross-point memory, known as

a crossbar, shown in Fig. 5.1 . The memory devices lie at the intersection of horizontally

(source-line) and vertically (bit-line) running metal lines. The conductance of each memory

78

Ideal NVM Crossbar Non-Ideal NVM Crossbar

IN

V0

V1

...

...

G11 G13 G1N

G21 G22 G23 G2N

GN1 GN2 GN3 GNN

I1 I2 I3

...

...

...

G12

VN

Rsource

Rsink

Rwire

Bit-Line (BL)

Source-Line (SL)

Word-Line (WL)

Peripheral

and Parasitic

Resistances

Gij = Conductance of NVM

device at position (i,j)

Vi = Voltage to the i
th
 row

Ij = Current at j
th
 column

Figure 5.1. : (Left) Illustration of NVM crossbar which produces output current Ij, as a
dot-product of voltage vector, Vi and NVM device conductance, Gij. (Right) Various periph-
eral and parasitic resistances modify the dot-product computations into an interdependent
function of the analog variables (voltage, conductance and resistances) in a non-ideal NVM
crossbar.

device can be programmed to a discrete number of levels [101]. By simultaneously applying

inputs, in the form of voltages, Vi, at the source-lines, the multiplications are performed

between the voltages, Vi and conductances, Gij, by each NVM device using the principle

of Ohm’s law. Finally, the product, which is the resulting current, Iij, from each NVM

device, is summed up using Kirchoff’s current law to produce a dot-product output, Ij at

each column:

Ij =
∑

i

Iij =
∑

i

ViGij (5.1)

Such parallel dot-products across all columns enable efficient multiplication of the input

voltage vector, V , and the crossbar conductance matrix, G, resulting in an output vector,

I = V G. A few key aspects of the design of NVM crossbars are the following parameters:

• Crossbar Size: The number of rows and columns in the crossbar matrix.

• ON Resistance (RON): The minimum resistance level of the NVM device.

Typically, in a convolutional neural network (CNN), the convolution operation between

the input and the weight tensor can be represented in the form of a series of MVM operations,

which can be subdivided into smaller MVM operations to conform to the technological

restrictions of the size of the NVM crossbar. Floating point inputs and weights in DNNs

79

are converted to fixed point precision to make them compatible with NVM crossbar based

computations.

The analog nature of computing in NVM crossbars introduces functional errors in the

MVM computations due to several non-idealities arising from the NVM devices and periph-

eral resistances. The aforementioned crossbar design parameters, such as Crossbar Size, and

ON Resistance have varying impact on the degree of functional errors introduced by the

non-idealities [90] by affecting the effective resistance of a crossbar column. Larger crossbar

size lowers the effective resistance, making the crossbar more prone to non-ideal effects, while

higher ON resistance increases it, resulting in a crossbar less affected by non-idealities.

Due to the non-idealities, the resulting output current, Ini is a function of volatge vector

V , conductance matrix G(V), which is now dependent on V , and several non-ideal factors:

Ini = f(V, G(V), Rsource, Rsink, Rwire)5.2 (5.2)

To study the impact of such non-ideal behavior of NVM crossbars on DNNs, researchers have

previously proposed techniques to model the non-ideal function in Equation 5.2 . One such

technique is GENIEx [90] where the authors use deep learning to model the aforementioned

non-ideal function.

Modeling of Non-Idealities using GENIEx

The understand the behavior of NVM crossbars in presence of non-idealities, it is neces-

sary to accurately model Equation 5.2 . Since Ini is a function of voltage, V and G, and G is

a function of voltage, Equation 5.2 needs to be solved in a self-consistent manner instead of

solving a set of linear equations. Thus, the NVM device non-linearity adds a new dimension

to crossbar modelling. We use GENIEx crossbar modeling technique [90], which uses a 2

layer perceptron network to model Equation 5.2 , that is, to predict a function of the output

current, f(Ini), from the crossbar for different input voltages, V and conductances, G of

the NVM crossbar. More specifically, the network predicts the ratio: δni = Ini/Iideal since

Iideal = V ∗ G is already known. In order to train the GENIEx perceptron network, we

obtain data in form of training pairs: [(V, G), f(Ini) = δ] by performing circuit simulations

80

on NVM crossbar for different V and G combinations. Since the training data is obtained

directly from circuit simulations on NVM crossbar, it depends on the property of the NVM

crossbar, specifically, its size, ON resistance as well as bit representation of the NVM device

and input voltages. Thus, each time one of these properties of a crossbar varies, it would

lead to a different GENIEx model.

After obtaining data from the circuit simulations, we normalize the data to create a

dataset, and train a 2 layer perceptron network to obtain the GENIEx crossbar model. The

crossbar model has been demonstrated to achieve outputs close to circuit simulations on test

V and G data [90].

Functional Simulator for Crossbar Architectures: PUMA

In order to evaluate deep learning models on NVM crossbars in presence of non-idealities,

we use a simulation framework [90] following the standard technique of mapping convolu-

tional and linear layers on a spatial NVM crossbar architecture such as PUMA [89]. This

mapping is composed of three parts: i) Iterative matrix-vector multiplications, ii) Tiling

and iii) Bit-slicing. First, the convolution or linear layer operation in a neural network, is

divided into iterative matrix vector computation. For example, a typical convolutional layer

with kernel-size k × k, I input channels and O output channels, is represented as a matrix

k2I × O and each stride of the input tensor is flattened into a vector of size k2I. This

matrix-vector multiplication operation is performed iteratively for each stride. Second, since

crossbar size is limited, the weight matrix is tiled into a number of crossbar sized segments.

Third, since NVM devices can only accommodate limited number of bits, to represent larger

bit precision inputs and weights, we perform bit-slicing. Here inputs and weights are divided

into smaller bit segments, and each segment is mapped on individual crossbars. Thus, each

crossbar is characterized by its size, device properties and bit width of each segment of in-

puts and weights. Based on these characteristics, the crossbar model is obtained using the

aforementioned GENIEx technique. The results of computations performed by each crossbar

is obtained by applying bit-sliced inputs and weights to the GENIEx crossbar model. This

simulation ecosystem accurately captures the effect of various non-idealities on classification

81

performance of neural networks when mapped on NVM crossbar hardware. DNNs typically

consist of thousands of MVM operations at every layer. The NVM crossbar non-idealities

cause the activations at every layer to deviate from their expected value, and this deviation

propagates through the network. This results in a degradation of DNN accuracy at inference

(without any adversary). Interestingly, the same deviation in activation imparts adversarial

robustness when under attack, which is further analyzed in this work.

5.2.2 Adversarial Attacks

In 2013, the authors of [14] demonstrated that a classifier can be forced to make an error

by adding small perturbations to the data which are almost imperceptible to the human eye.

They coined the term ”adversarial examples” to define such data designed specifically to fool

the classifier. Since then, several methods have been developed to generate such data, which

are known as ”adversarial attacks”. In principle, these attacks try to solve the following

optimization problem [102]:

x∗ = x + argmin{z : F (θ, x + z) 6= F (θ, x)} = x + δx (5.3)

where x is the original data, x∗ is the perturbed adversarial data, θ is the model pa-

rameter, F (θ, x) is the classifier function, mapping inputs to labels, and the objective of

the adversary is to misclassify, i.e. F (θ, x∗) 6= F (θ, x). Most attacks use gradient-based

optimization to solve for eq.5.3 , and the attack’s success relies on how accurately one can

estimate ∇xL(θ, x, y), the derivative of the cost function L(θ, x, y) with respect to x [93].

5.3 Adversarial Robustness of NVM Crossbar based Analog Computing

In recent years, several adversarial defenses have been proposed that disrupt the gradient

computation of the model by adding an extra computational element to the network, such

as a randomization layer at the beginning [103], or adaptive dropout after every layer [94].

When a DNN model is implemented on an NVM crossbar architecture, the non-idealities

have a similar effect of changing the layer-wise activations of the DNNs. There is no simple

82

differentiable function to model these deviations, and one cannot determine them without

probing the analog hardware. Thus, such an implementation, could potentially increase the

robustness of the neural network. In this section we describe the methodology to emulate

DNNs on the PUMA architecture, and set up different threat models based on the attacker’s

knowledge of both the software and the hardware.

5.3.1 Crossbar Models

Table 5.1. : Crossbar Model Description

Crossbar parameters
Crossbar Model Size RON (Ω) NF

64×64_300k 64×64 300k 0.07
32×32_100k 32×32 100k 0.14
64×64_100k 64×64 100k 0.26

To model the non-ideal crossbar, we use GENIEx, a deep learning based crossbar model

developed by the authors of [90]. They define a multi-layer perceptron (MLP) which receives

V and G as inputs and predicts the output Ini. This MLP is trained on training pairs

[(V ,G), Ini] obtained from circuit simulations. In this work, we have replicated the modeling

technique of GENIEx to generate 3 crossbar models (Table 5.1). For this work, we have used

the RRAM device model as the NVM device in the crossbar.

The degree of non-ideality has been described by the authors of GENIEx as Non-ideality

Factor (NF) = (Expected output-Actual Output)/Expected Output. NF is directly (in-

versely) proportional to crossbar size (ON Resistance). In our experiments, we have con-

sidered different crossbar models to study the impact of different degrees of non-idealities,

represented by different NF , on adversarial robustness, as shown in Table 5.1 . For example,

a high RON results in higher effective resistance in the column, resulting in relatively higher

voltage drop across the device compared to the voltage drop in the parasitic and peripheral

non-ideal resistances. Thus, a crossbar with higher RON has lower NF . On the other hand,

a higher crossbar size consists of more resistance in parallel in a column of a crossbar, re-

sulting in lower effective resistance, which causes higher NF . Thus different crossbar types

83

have significant impact on NF , and in this work, we study the adversarial robustness of

each of these crossbars. To implement this, we train different GENIEx crossbar models by

creating datasets from data obtained by performing circuit simulations on the crossbar types

listed in Table 5.1 . To integrate these NVM crossbar models with the PyTorch framework,

we have adopted the aforementioned PUMA functional simulator from [90] based on PUMA

hardware architecture [89].

5.3.2 Datasets and Network Models

For our evaluation we selected 3 image recognition tasks, and trained a ResNet [67] for

each task.

• CIFAR-10 [60]: A ResNet-20 was trained for 200 epochs, with the learning rate (lr)

schedule [0.1(1, 79), 0.01(80, 119), 0.001(120, 200)] and achieved test accuracy of 92.44%

• CIFAR-100 [60]: A ResNet-32 was trained for 200 epochs, with the lr schedule

[0.1(1, 79), 0.01(80, 119), 0.001(120, 200)], and achieved test accuracy of 71.42%

• ImageNet [104]: A ResNet-18 was trained for 90 epochs, with the lr schedule [0.1(1, 29), 0.01(30, 59), 0.001(60, 90)],

and achieved top-1 and top-5 test accuracy of 69.83% and 89.19% respectively. We

used a reduced test set of 1000 images for adversarial attacks.

5.3.3 Generating Adversarial attacks

Table 5.2. : Attacker’s Knowledge for the Threat Scenarios
Accurate Digital Computation Non-Ideal Analog Computation

Attack Type Model Weights Logits Activations Crossbar Model Logits Activations
Non-Adaptive Attacks

Transfer Attacks No No No No No No
Black Box Attacks No Yes No No No No
White Box Attacks Yes Yes Yes No No No
Adaptive Attacks
Black Box Attacks No N/A N/A Yes (may not match) Yes No
White Box Attacks Yes N/A N/A Yes (may not match) Yes Yes

We define 5 different threat scenarios with varying extent of the attacker’s knowledge

of the target model and the underlying hardware (Table 5.2) and created gradient based

84

attacks. For each scenario, we defined an attack model (a single DNN or an ensemble of

DNNs) to generate the adversarial images. We use Projected Gradient Descent (PGD) [105]

to generate iterative perturbations that are bound by the l∞ norm, as shown in Eq.5.4 :

xt+1 = Πx+S(xt + αsgn(∇xL(θ, xt, y)) (5.4)

xt+1 is the adversarial example generated at (t + 1)th iteration. The model’s cost function

is L(θ, x, y), which is a function of the model parameters θ, input x, and labels y. The set

of allowed perturbations is given by S. For the l∞ norm, the attack epsilon (ε) defines the

set of perturbations as S =
(

δ|
(
x + δ ≥ max(x + ε, 0)

)
∧

(
x + δ ≤ min(x + ε, 1)

))
, where

x ∈ [0, 1].

Additionally, for the two threat scenarios, non-adapative, and adaptive black box attacks

we also generated adversarial images using Square Attack [106], which is a query efficient

adversarial black box attack. While PGD attack success is dependent on estimating the

local gradients of the defending model, such a query based attack doesn’t rely on gradient

information at all. Instead, it generates adversarial images by conducting a randomized

search [107], [108]. Every time the attacker queries the model, the input image has random

perturbations, sampled from a given distribution. If the perturbation succeeds in increasing

the loss for that image, the image is updated, and this continues till either the image is

misclassified, or the query limit is reached.

Non-Adaptive Attacks

Our first category of threat scenario is ”Non-Adaptive Attacks”, i.e. the attacker has

no knowledge of the underlying analog hardware and the attacks are generated under the

assumption of accurate digital computation. Under this category, we have 3 varying degrees

of attack.

Transfer Attacks: This is the weakest threat model where the adversary has no knowl-

edge of the model. The attack model is another DNN trained on the same dataset and run

on an accurate digital hardware. The attack model architectures for CIFAR-10/100, and Im-

agenet are ResNet-10, ResNet-20, and AlexNet [2], respectively. ResNet-10 and ResNet-20

85

are trained on CIFAR-10/100, respectively, using the same training schedule as the target

models. For Imagenet, we used a pretrained AlexNet available in Pytorch [109].

Ensemble Black Box Attacks: The attacker queries the model on an accurate digital

hardware and reads the output of the final layer before softmax (logits) to generate a syn-

thetic dataset of training data and its corresponding logits. This synthetic dataset is used to

train 3 different surrogate ResNet models, ResNet-10,20,32. These 3 models are then used

to generate adversarial images using the stack parallel ensemble strategy [110].

Square Attack (Black Box) The attacker queries the model on accurate digital hard-

ware and has access to the last layer before softmax (logits) as in the case of the Ensemble

Black Box Attacks. We use l∞ Square Attack [106], and set the maximum query limit to

1000.

White Box AttacksThis is the highest threat level where the attacker has full knowl-

edge of the model weight, thus the attack model is the same as the target model. However,

while generating gradients, the attacker has no knowledge of the underlying analog hard-

ware implementation. The gradients for the attack are computed assuming accurate digital

hardware implementation.

Hardware in Loop Adaptive Attacks

In this category of attacks, the attacker is aware that the model is implemented on an

NVM crossbar hardware. However, the crossbar model available to the attacker may or may

not match with the target’s implementation.

Ensemble Black Box Attacks: For training the surrogate models, the attacker queries

the DNN model implemented on the NVM crossbar based hardware to create the synthetic

dataset. We use 3 different crossbar models as defined in Table 5.1 and we explore scenarios

where there is a mismatch in the crossbar model used by the attacker and the target imple-

mentation. We selected 64x64_100k as the NVM crossbar model available to the attacker.

Square Attack (Black Box): The attacker runs the iterative query based Square

attack on the DNN implemented on the NVM crossbar based hardware. As emulation of

the crossbar based architecture take much longer, we limit the total number of queries to 30.

86

We selected 32x32_100k as the NVM crossbar model available to the attacker, and used all

3 crossbar models for defense.

White Box Attacks: In the case of White Box attacks, the attacker generates ad-

versarial images using ”Hardware-in-Loop” gradient descent. Note that the NVM crossbar

based hardware is designed for inference tasks and does not support backpropagation of

gradients. Thus, for ”Hardware-in-Loop”, the forward pass is performed on NVM crossbar

hardware, and all activations are recorded. However, the derivatives are calculated assuming

ideal computations in place of non-ideal MVM operations of the crossbar. As described in

Section 5.3.1 , the NVM crossbar non-idealities vary with crossbar properties. We selected

64x64_100k as the NVM crossbar model available to the attacker, and used all 3 crossbar

models for defense.

Comparison with Related Work

We have selected 3 defenses that can be applied to a pretrained network as listed below.

For a fair comparison, we apply non-adaptive attacks for these defenses as well, i.e. the

defenses are not visible to the attacker when they query the model to generate their synthetic

dataset for Black Box attacks, and when they generate gradients for White Box attacks.

• Input Bit Width (BW) Reduction [111]: The input is quantized to 4-bits.

• Stochastic Activation Pruning (SAP) [94] (for CIFAR-10/100 only): At inference,

after every convolution layer, there is an adaptive dropout, that randomly sets the layer

outputs to 0 with a probability proportional to their absolute value.

• Random Padding [103] (for ImageNet only): Two randomization layers are intro-

duced before the pretrained model. The first layer scales the input image to a random

size NxN where N ∈ [299, 331] using nearest-neighbor extrapolation. The second layer

randomly pads the image to generate the final image of size 331x331.

5.4 Results

The first effect of implementing DNNs on a NVM crossbar hardware is the reduction in

clean accuracy due to the errors associated with non-ideal computations. Greater the Non-

87

Ideality Factor (NF), more severe is the accuracy degradation as noted in Table 5.3 . The

clean accuracy of CIFAR-10 drops from 92.44% (accurate digital hardware) to 88.34% on

64x64_100k, the most non-ideal crossbar model among the three chosen. Similarly, CIFAR-

100 accuracy drops from 71.42% to 55.48% and ImageNet accuracy falls from 69.56% to

62.50% on the 64x64_100k NVM crossbar hardware. If non-idealities of NVM hardware had

no impact on adversarial robustness, similar degradation would have been observed in model

accuracy under attack. However, our findings, as outlined below, indicate a different trend.

5.4.1 Non-Adaptive Attacks

(a) (b) (c)

Figure 5.2. : Non-Adaptive Transfer Attacks (PGD, iter=30) on CIFAR-10/100 and Ima-
geNet on 3 NVM models and 3 defenses, Input BW Reduction (4-bit input) [111], SAP [94],
Random Pad [103]

Transfer Attacks: In Fig. 5.2 , we observe the decline in adversarial accuracy with

increasing attack epsilon (ε) for CIFAR-10, CIFAR-100, and Imagenet. For CIFAR-10/100,

the 64x64_300k model did not exhibit any increase in robustness, instead it trailed behind

the baseline accuracy. In case of CIFAR-10, the other two crossbar models, 32x32_100k and

64x64_100k, displayed an absolute increase in robustness of 4.2% and 5.9% averaged over

ε = (2,4,6,8)/255, respectively. For CIFAR-100, the average increase in robustness for ε =

(4,6,8)/255 was 1.4% for 32x32_100k and 1.84% for 64x64_100k. The peak improvement in

robustness was observed for ε = 6/255 and has been summarized in Table 5.3 . For ImageNet,

we do not observe any improvement in robustness (Fig. 5.2c (c)). A possible reason could be

that the attack is much weaker, as it was generated on a different architecture (AlexNet),

88

instead of a ResNet. The more generic the attack, the less effect the NVM non-idealities

seem to have on robustness.

(a) (b)

Figure 5.3. : Non-Adaptive Ensemble (Black Box) PGD (iter=30) on CIFAR-10, CIFAR-
100 on 3 NVM crossbar models and the 2 defenses, Input BW Reduction (4-bit input) [111]
and SAP [94]

Ensemble Black Box Attacks: From Fig. 5.3 , we observe similar trends as transfer

attacks for CIFAR-10, and CIFAR-100. The 64x64_300k model didn’t exhibit any increase

in robustness, instead it trailed behind the baseline accuracy. The NVM crossbar models,

32x32_100k and 64x64_100k, recorded an absolute increase in robustness of 5.3% and 7.8%

averaged over ε = (2,4,6,8)/255, respectively for CIFAR-10. For CIFAR-100, it was 1.4%

and 1.84% respectively. The peak improvement in robustness was observed for ε = 4/255

and has been summarized in Table 5.3 .

(a) (b) (c)

Figure 5.4. : Non-Adaptive Square Attacks (Black Box) on CIFAR-10/100 and ImageNet
on 3 NVM models and 3 defenses, Input BW Reduction (4-bit input) [111], SAP [94], Random
Pad [103]

Square Attack (Black Box): The analog hardware shows the highest resilience against

such an attack. As the attack is gradient-free in nature, we conclude that analog hardware

offers robustness by modifying the inference itself. The perturbations that cause complete

89

model failure, i.e. 0% accuracy, have much lower impact on the model implemented on

NVM crossbar. The other 3 defense methods [94], [103], [111], also perform well over a

wide range of ε=(4,8,12,16)/255. The average robustness gain observed for CIFAR-10 was

23.93% , 49.80% and 46.63% with crossbar models as 64x64_300k, 32x32_100k, 64x64_100k

respectively. We see robustness gain increase from 64x64_300k to 32x32_100k, and then

drop slightly for 64x64_100k. The increase if due to higher deviations in 32x32_100k com-

pared to 64x64_300k. The slight decrease however, can be attributed to the counter effect

of inaccurate computations as non-idealities increase further. We observe similar trends in

CIFAR-100 and Imagenet as well, as shown in Fig. 5.4 and Table 5.3 .

(a) (b)

Figure 5.5. : Non-Adaptive White Box Attacks (PGD, iter=30) on CIFAR-10, CIFAR-100
on 3 NVM models and 2 defenses, Input BW Reduction (4-bit input) [111] and SAP [94]

White Box Attacks: Under this threat model we observe much improvement in ro-

bustness as depicted in Fig. 5.5 and Table 5.3 . The NVM model 64x64_300k still continues

to closely follow baseline accuracy. For all 3 datasets, the baseline accuracy drops sharply

to 0 beyond ε = 2/255. At this level, the NVM models are no longer able to recover any

performance. For ε = (1,2)/255, we observe that 64x64_100k, the most non-ideal of the 3

models, offers the highest improvement for all 3 datasets, with absolute increase of 35.34%

for CIFAR-10, 22.69% for CIFAR-100, and 9.90% for ImageNet at ε = 1/255.

We have summraized below the common trends observed across all 5 non-adaptive at-

tacks.

• For gradient based attacks (PGD), more the attacker relies on estimating the true

gradinets of the target model for attack generation, greater is absolute robustness

90

Table 5.3. : Summary of Non-Adaptive Attacks on NVM Crossbar Models
NVM Crossbar Models (Target)

Attack Type Baseline 64×64_300k 32×32_100k 64×64_100k 4-bit input [111] SAP [94]
CIFAR-10 (ResNet-20) (test samples = 10000)

Clean 92.44 90.35 (-2.09) 90.42 (+2.02) 88.34 (-4.10) 89.84 (-2.60) 79.76 (-12.68)
Transfer (ResNet-10) PGD ε = 6/255, iter = 30 12.94 12.24 (-0.70) 18.53 (+5.59) 21.54 (+8.6) 22.43 (+9.49) 30.48 (+17.54)
Ensemble (Black Box) PGD ε = 4/255, iter = 30 18.91 17.15 (-1.76) 26.6 (+7.69) 30.35 (+11.44) 31.89 (+12.98) 40.19 (+21.28)
Square Attack (Black Box) ε = 4/255, queries = 1000 9.29 36.47 (+27.18) 73.79 (+64.50) 71.18 (+61.89) 75.85 (+66.56) 68.84 (+59.55)
White Box PGD ε=1/255, iter = 30 19.64 17.56 (-2.08) 46.12 (+26.48) 54.98 (+35.34) 55.29 (+35.65) 64.26 (+44.62)
White Box PGD ε=2/255, iter = 30 0.51 0.45 (-0.06) 8.51 (+8.00) 17.22 (+16.71) 14.94 (+14.34) 44.85 (+44.34)

CIFAR-100 (ResNet-32) (test samples = 10000)
Clean 71.42 63.89 (-7.53) 62.44 (-8.98) 55.48 (-15.94) 64.20 (-7.22) 44.41 (-27.01)
Transfer (ResNet-20) PGD ε=6/255, iter = 30 9.61 8.45 (-1.16) 11.14 (+1.53) 11.83 (+2.22) 14.88 (+5.27) 15.76 (+6.15)
Ensemble (Black Box) PGD ε=4/255, iter = 30 9.88 8.03 (-1.85) 11.95 (+2.07) 12.59 (+2.71) 17.07 (+7.19) 17.60 (+7.72)
Square Attack (Black Box) ε = 4/255, queries = 1000 2.76 32.33 (+29.57) 43.59(+40.83) 38.12 (+35.36) 48.28 (+45.52) 35.25 (+32.49)
White Box PGD ε=1/255, iter 30 5.78 6.53 (+0.75) 24.22 (+18.44) 28.47 (+22.69) 30.45 (+24.67) 32.4 (+26.62)
White Box PGD ε=2/255, iter 30 0.24 0.39 (+0.15) 4.55 (+4.31) 8.27 (+8.03) 8.94 (+8.70) 20.14 (+19.9)

ImageNet (ResNet-18) (test samples = 1000)
Clean 69.56 65.2 (-4.36) 64.9 (-4.66) 62.5 (-7.06) 67.1 (-2.46) 65.1 (-4.46)
Square Attack (Black Box) ε = 4/255, queries = 500 35.70 49.20 (+13.50) 55.40 (+19.70) 53.10 (+17.40) 56.90 (21.20) 46.10 (+10.40)
White Box PGD ε=1/255 , iter = 30 0.40 0.60 (+0.20) 4.50 (+4.10) 10.30 (+9.90) 9.6 (+9.20) 44.3 (+43.90)
White Box PGD ε=2/255, iter = 30 0.10 0.10 (+0.00) 0.20 (+0.10) 0.50 (+0.40) 0.10 (+0.00) 33.50 (+33.40)

(a)

64x64_300k

32x32_100k

64x64_100k

(b)

64x64_300k

32x32_100k

64x64_100k

Figure 5.6. : Hardware-in-Loop Adaptive Black Box Attacks (PGD, iter=30) on CIFAR-
10/100. Target NVM model is 64x64_100k, and the attacks are generated using 3 different
NVM models.

gain. We observed an increase in the absolute improvement from baseline accuracy as

we move from Transfer attacks to Ensemble Black Box to White Box attacks.

• The resulting accuracy is a combination of two opposing forces. The errors caused

by the non-idealities try to lower the accuracy, while the intrinsic robustness arising

from the same non-idealities lower the effectiveness of the attack and pushes the accu-

racy higher than the baseline. For example, for 64x64_300k (NF = 0.07), the MVM

operations are close to ideal computation for the non-adaptive attacks to transfer suc-

cessfully. Whereas, the more non-ideal crossbar models, 32x32_100k and 64x64_100k,

have greater clean accuracy degradation due to functional errors, but have higher ad-

versarial accuracy, as the non-idealities hinder the transfer of the attacks. This see-saw

91

effect can also be seen in Fig. 5.6 , where we plot the robustness gain vs non-ideality

factor (NF) of crossbars for all the non-adaptive attacks. We see a significant difference

as NF increases from 64x64_300k to 32x32_100k. At 64x64_100k, we see the gain

taper slightly below 32x32_100k, as inaccurate computations start to have a greater

impact over intrinsic robustness.

• Overall, the intrinsic robustness of NVM crossbars is often within the ball park of

Input BW Reduction. However, stronger adversarial defenses such as SAP [94] and

Random Padding [103] have performed much better.

5.4.2 Hardware-in-Loop Adaptive Attacks

(a) (b)

Figure 5.7. : Hardware-in-Loop Adaptive Black Box Attacks (PGD, iter=30) on CIFAR-
10/100. Target NVM model is 64x64_100k, and the attacks are generated using 3 different
NVM models.

Ensemble Black Box Attacks: When the attacker builds their synthetic dataset by

querying the NVM crossbar hardware implementation of the DNN, the resulting Ensemble

Black Box attacks are much more effective. The adversarial accuracy of the hardware falls

significantly below the baseline, as shown in Fig. 5.7 and Table 5.4 . Even when the attack

is built using a crossbar model different from the target, accuracy degradation is significant.

We observe that attacks generated using 32x32_100k (NF = 0.14) are stronger than those

generated using 64x64_300k (NF = 0.07) when applied to 64x64_100k (NF= 0.26). This

implies that the lesser the difference in NF, the more effective are the attacks.

Square Attack (Black Box): By repeatedly querying the actual NVM crossbar based

hardware, the attacker could generate much stronger attacks, as shown in Fig. 5.4 and Table

5.4 . In fact, the generated attacks are as strong as the baseline, however, when there is a

92

Table 5.4. : Hardware-in-Loop Adaptive Attacks

NVM Crossbar Model (Target)
Dataset Test Samples Attack ε Baseline 64×64_300k 32×32_100k 64×64_100k

Ensemble BB Attack (iter=30) Attacker’s NVM Crossbar model: 64×64_100k
CIFAR-10 10000 4/255 18.91 1.95 (-16.96) 1.45 (-17.46) 1.27 (-17.64)
CIFAR-100 10000 4/255 9.88 8.54 (-1.34) 2.74 (-7.74) 2.17 (-7.71)

Square Attack (BB) (queries=30) Attacker’s NVM Crossbar model: 32×32_100k
CIFAR-10 1000 8/255 67.50 71.80 (+4.30) 66.60 (-0.90) 64.10 (-3.40)
CIFAR-100 1000 8/255 40.10 49.20 (+9.1) 32.50 (-7.60) 26.70 (-13.40)
Imagenet 1000 8/255 48.50 53.30 (+4.80) 46.00 (-2.50) 44.30 (-4.20)

White Box PGD (iter=30) Attacker’s NVM Crossbar model: 64×64_100k
CIFAR-10 10000 1/255 19.64 43.45 (+23.81) 31.78 (+12.14) 28.84 (+9.2)
CIFAR-10 10000 2/255 0.51 6.98 (+6.47) 2.13 (+1.62) 1.87 (+1.36)
CIFAR-100 10000 1/255 5.78 28.21 (+22.43) 10.86 (+5.08) 9.73 (+3.95)
ImageNet 1000 1/255 0.40 – – 0.80 (+0.40)

significant mismatch in hardware properties, the attack doesn’t transfer well, as in the case

of 64x64_300k as the defending crossbar model.

White Box Attacks: The results for hardware in loop White Box attacks are presented

in Table 5.4 . The values in bold indicate that attacker’s NVM crossbar model is an exact

match to the target model’s underlying hardware. Even when the attacker has full knowledge

of the hardware, the non-idealities help improve robustness. We observe that if the attacker’s

NVM model is different from the target, the attacks do not transfer well and are weaker

than non-adaptive attacks. For example, for CIFAR-10, under attack epsilon ε = 1/255, the

accuracy of 64x64_300k NVM model is 0.60% for a non-adaptive attack, but 43.45% for

an adaptive attack with incorrect NVM model. Thus having an incorrect crossbar model is

worse than having no model at all in this case.

5.5 Conclusion

Non-idealities in NVM crossbars have been a long-standing challenge [90] affecting the

feasibility of analog computing hardware, and several techniques have been proposed to

compensate for it [92]. In this work, we study these non-idealities from the new perspec-

tive of adversarial robustness. We observed that DNNs implemented on an NVM crossbar

93

hardware exhibit increased adversarial robustness under varied threat models. While this

robustness falls short of other defenses [94], [103], [111], an important point to note is that

such robustness is intrinsic to the NVM crossbar hardware, unlike other defenses which have

a computational overhead. Also, any algorithmic defense can be further implemented on

the analog hardware for additional robustness. The non-ideality factor (NF) of the crossbar

model determines the degree of robustness, therefore, one can potentially design NVM cross-

bars with optimal trade-off between accuracy degradation and increased robustness due to

non-idealilties. We have demonstrated ”Hardware-in-Loop” attacks where the knowledge of

underlying hardware helps generate stronger attacks. While we have considered NVM cross-

bar models based on RRAM technology [9], analog hardware based on other technologies [10],

[88] are also possible. This, along with chip to chip variations, may further hinder the trans-

ferability of attacks generated on one analog computing hardware to another. In summary,

this work is the first step toward understanding the role of non-idealities in NVM crossbar

hardware for adversarial robustness. It opens the possibilities of defenses that leverage the

non-ideal computations, and on the other hand, attacks that exploit these non-idealities.

94

6. NOISE STABILITY AND ROBUSTNESS OF

ADVERSARIALLY TRAINED NETWORKS ON NVM

CROSSBARS

6.1 Introduction

In the previous chapter, we focused on quantifying the intrinsic robustness of NVM cross-

bars for vanilla networks, that is DNNs trained on unperturbed inputs. However, adversar-

ial training of DNNs, i.e. training with adversarially perturbed images, is the benchmark

technique for robustness, and sole reliance on intrinsic robustness of the hardware is not

sufficient. In this chapter, we explore the design of robust DNNs through the amalgamation

of adversarial training and the intrinsic robustness offered by NVM crossbar based analog

hardware.

When an MVM operation is executed in an NVM crossbar, the output is sensed as a sum-

mation of currents through resistive NVM devices. The non-ideal behaviour of the crossbar

and its peripheral circuits results in error in the final calculation, and overall performance

degradation of the DNN [90], [92]. As these deviations depend on multiple analog variables

(voltages, currents, resistances), they are nearly impossible to estimate without a complete

model of the architecture and the device parameters, which are difficult for an attacker to

obtain. In Ch. 6 , we demonstrated that this non-ideal behaviour can be utilized to obscure

the true gradients of the DNN and provide robustness against various types of adversarial

attacks. Their analyses of the benefit of intrinsic robustness was limited to vanilla DNNs,

i.e. networks trained on the unperturbed, or “clean”, images. However, for a robust DNN

implementation, adversarial training is essential. Hence, in this chapter, we study the per-

formance and robustness of adversarially trained networks when implemented on such NVM

crossbars. We observe that adversarial training reduces the noise stability of DNNs, i.e.

its ability to withstand perturbations within the network during inference. We also note

that the robustness gain from the crossbar is applicable only for certain degrees of attack

perturbations. To summarize, our main contributions are:

95

• We explored the challenges of designing adversarially robust DNNs through the amal-

gamation of adversarial training and the intrinsic robustness offered by NVM crossbar

based analog computing hardware.

• We analyzed the performance of adversarially trained DNNs on NVM crossbars for un-

perturbed images. Compared against vanilla DNNs (networks trained on unperturbed

data), we observed that adversarially trained networks are less noise stable, and hence,

suffer greater performance degradation on NVM crossbar based analog hardware.

• For Non-Adaptive Projected-Gradient-Descent White-Box Attacks[112], we demon-

strated that the non-idealities provide a gain in robustness when the epsilon of the

adversarial attack (εattack, the degree of input perturbations) is greater than the epsilon

of the adversarial training (εtrain). In fact, with careful co-design, one can implement a

DNN trained with lower εtrain that will have the same or even higher robustness than

a DNN trained with a higher εtrain while maintaining a higher natural test accuracy.

The rest of the chapter is organized as follows. In Sec. 6.2 , we provide an overview of

the prior works on robustness using analog computing. In Sec. 6.3 , we describe in detail the

evaluation framework used in our experiments. This is followed by Sec. 6.4 , where we report

our findings and discuss the implications. Finally, in Sec. 6.5 , we provide the conclusions of

our findings.

6.2 Related Work

Prior works have shown that various facets of analog computing can be incorporated

for adversarial robustness. In [113], the authors use an Optical Processor Unit (OPU) as

an analog defense layer. It performs a fixed random transformation, and obfuscates the

gradients and the parameters, to achieve adversarial robustness. While [113] used analog

processing as an extra layer in their computation, [114] implemented neural networks on an

NVM crossbar based analog hardware, and analyzed the impact on accuracy and robustness.

They demonstrated two types of Adversarial attacks, one where the attacker is unaware of

the hardware (Non-Adaptive Attacks), and the second being Hardware-in-Loop attacks,

where the attacker has access to the NVM crossbar. They showed that during Non-Adaptive

96

Attacks on a vanilla DNN, i.e. a network trained on unperturbed images with no other

defenses, the gradient obfuscation by the analog hardware provides substantial robustness

against both Black Box and White Box Attacks. However, once the attacker gains complete

access to the hardware, it can generate Hardware-in-Loop attacks and this significantly

diminishes the robustness gain observed earlier. In this chapter, we further expand the

analysis of Non-Adaptive Attacks on adversarially trained DNNs implemented on NVM

crossbars.

6.3 Evaluating Adversarially Trained Networks on NVM Crossbars

Table 6.1. : ResNet Architectures used for CIFAR-10/100

CIFAR-10 CIFAR-100
Group Name Output Size ResNet10w1 ResNet10w4 ResNet20w1 ResNet20w4

conv0 32 × 32 3 × 3, 16 3 × 3, 16 3 × 3, 16 3 × 3, 16

conv1 32 × 32
[

3 × 3, 16
3 × 3, 16

]
× 1

[
3 × 3, 64
3 × 3, 64

]
× 1

[
3 × 3, 16
3 × 3, 16

]
× 3

[
3 × 3, 64
3 × 3, 64

]
× 3

conv2 16 × 16
[

3 × 3, 32
3 × 3, 32

]
× 1

[
3 × 3, 128
3 × 3, 128

]
× 1

[
3 × 3, 32
3 × 3, 32

]
× 3

[
3 × 3, 128
3 × 3, 128

]
× 3

conv3 8 × 8
[

3 × 3, 64
3 × 3, 64

]
× 2

[
3 × 3, 256
3 × 3, 256

]
× 2

[
3 × 3, 64
3 × 3, 64

]
× 3

[
3 × 3, 256
3 × 3, 256

]
× 3

Avg Pool Avg Pool Avg Pool Avg Pool
Linear 1 × 1 64 × 10 256 × 10 64 × 100 256 × 100

In this work, we implement adversarially trained DNNs on NVM crossbars based analog

hardware and analyze their performance. We first study the effect on natural accuracy,

i.e. their performance in the absence of any attack. Analog computations are non-ideal in

nature, and the degree of performance degradation depends on the resilience of the DNN to

internal perturbations at inference. The degree of performance degradation helps us estimate

the noise stability of adversarially trained networks, and understand how they differ from

regular networks. Next, we evaluate the performance of these DNNs under adversarial attack

and identify the benefit offered by NVM crossbars. Our experimental setup is described in

detail in this section.

97

6.3.1 Datasets and Network Models

We perform our training and evaluation on two image recognition tasks:

• CIFAR-10 [60]: It is a dataset containing 50, 000 training images, and 10, 000 test

images, each of dimension 32 × 32 across 3 RGB channels. There are total 10 classes.

We use two different network architectures for CIFAR-10, a 10-layer ResNet [67],

ResNet10w1 and a 4× inflated version of it, Resnet10w4 (Table 6.1).

• CIFAR-100 [60]: This dataset also contains 50, 000 training images, and 10, 000 test

images, each of dimension 32 × 32 across 3 RGB channels, and there are total 100

classes. We use two different network architectures for CIFAR-100, a 20-layer ResNet

[67], ResNet20w1 and a 4× inflated version of it, ResNet20w4 (Table 6.1).

6.3.2 Adversarial Attacks

We evaluate the DNNs against Non-Adaptive Attacks, where the attacker has no knowl-

edge of the analog hardware, and assumes the DNN is implemented on accurate digital

hardware. There exists a variety of attacks depending on how much information about the

DNN is available to the attacker. The strongest category of attacks is White-Box Attacks,

where the attacker has full knowledge of the DNN weights, inputs and outputs, and we chose

this scenario to test our adversarially trained DNNs. We use Projected Gradient Descent

(PGD) [112] to generate l∞ norm bound iterative perturbations, per the eq.:

xt+1 = Πx+S(xt + αsgn(∇xL(θ, xt, y)) (6.1)

The adversarial example generated at (t + 1)th iteration is represented as xt+1. L(θ, x, y)

is the DNN’s cost function. It depends on the DNN parameters θ, input x, and labels y.

S is the set of allowed perturbations, and is defined using the the attack epsilon (εattack) as

S =
(

δ|
(
x+δ ≥ max(x+εattack, 0)

)
∧

(
x+δ ≤ min(x+εattack, 255)

))
, where x ∈ [0, 255]. The

input is an 8-bit image, and every pixel is a value between 0 to 255. For all our experiments,

we set the number of iterations to 50. The εattack is set within the range [2, 16] and signifies

the maximum distortion that can be added to any pixel.

98

6.3.3 Adversarial Training

First, we train our DNNs on the unperturbed dataset, i.e. “clean” images. We train

two DNNs, ResNet10w1 and ResNet10w4 on CIFAR-10, and two DNNs, ResNet20w1 and

ResNet20w4 on CIFAR-100. These 4 DNNs are referred to as vanilla DNNs, and form the

baseline for our later experiments. Next, we generate adversarially trained DNNs, by using

iterative PGD training [112]. At every training step, the batch of clean images is iterated

over the network several times to generate a batch of adversarial images, which is then

used to update the weights of the network. For a single training procedure, the epsilon

of the adversarial image (εtrain) is fixed, and the iterations is set to 50. For each network

architecture in Table 6.1 , we generate 4 DNNs, each trained with a different εtrain (=[2,4,6,8])

for 200 epochs.

6.3.4 Emulation of the Analog Hardware

Table 6.2. : NVM Crossbar Model Description [90]

Crossbar parameters
NVM Crossbar Model Size RON (Ω) NF

32×32_100k 32×32 100k 0.14
64×64_100k 64×64 100k 0.26

Table 6.3. : Functional Simulator precision parameters

Simulation
Parameters CIFAR-10 CIFAR-100

Iw 4 4
Ww 4 4
Ibit 16 16
Wbit 16 16
Ii−bit 13 12
Wi−bit 13 12
Obit 32 32

99

In order to evaluate the performance of our adversarially trained DNNs on NVM crossbars

in the presence of non-idealities, we need to a) model Equation 5.2 to express the transfer

characteristics of NVM crossbars and b) map the convolutional and fully-connected layers of

the workload on a typical spatial NVM crossbar architecture such as PUMA [89]. The mod-

elling of Eq. 5.2 is performed by considering the GENIEx [90] crossbar modeling technique

which uses a 2-layer perceptron network where the inputs to the network are concatenated

V and G vectors and the outputs are the non-ideal current, Ini. The perceptron network

is trained using data obtained from HSPICE simulations of NVM crossbars considering the

aforementioned non-idealities with different combinations of V and G vectors and matrices,

respectively.

We generate two crossbar models, 32x32_100k and 64x64_100k, their parameters given

in Table 6.2 . The NVM device used in the crossbar was the the RRAM device model [115].

Each crossbar model has a Non-ideality Factor, defined as,

NF = Average
(

Outputideal − Outputnon−ideal

Outputideal

)
(6.2)

In our experiments, we consider two crossbar models of different sizes. Higher crossbar

size results in higher deviations in computations.

Next, we use a simulation framework, proposed in [90], to map DNN layers on NVM cross-

bars. Afterwards, we integrate these NVM crossbar models with our PyTorch framework,

using the PUMA functional simulator [89], [90], and map DNN layers on NVM crossbars.

Such a mapping consists of three segments: i) Lowering, ii) Tiling and iii) Bit Slicing. Low-

ering refers to dividing the convolutional or linear layer operation into individual MVM

operation; Tiling involves distributing bigger MVM operations into smaller crossbar-sized

MVM sub-operations. Finally, since each NVM device can only hold upto a limited num-

ber of discrete levels, bit-slicing is performed to accommodate MVM operations using large

bit-precision inputs and weights. This is done by dividing them into smaller chunks called

streams (for inputs) and slices (for weights). We set all precision parameters, given in Table

6.3 , for 16 bit fixed point operations, and ensure that for an ideal crossbar behaviour, there

is neglible accuracy loss due to reduction in precision. Thus, in our experiments with NVM

100

crossbars any change in performance is solely due to non-ideal behaviour. The bit slicing

and fixed-point precision parameters are defined as:

• Input Stream Width (Iw) - Bit width of input fragments after slicing.

• Weight Slice Width (Ww) - Bit width of weight fragments after slicing.

• Input precision (Ibit) - Fixed-point precision of the inputs. This is divided into integer

bits (Ii−bit) and fractional bits (If−bit).

• Weight precision (Wbit) - This refers to fixed-point precision of the weights. This is

divided into integer bits and fractional bits (Wf−bit).

• Output precision (Obit) - Fixed-point precision of the outputs of MVM computations.

6.4 Results

(a) (b)

(c) (d)

Figure 6.1. : Digital vs Analog Natural Test Accuracy for vanilla and adversarially trained
DNNs. clean: vanilla training with unperturbed images. pgd-epsN : PGD adversarial training
with εtrain = N = [2, 4, 6, 8] and iter = 50

101

6.4.1 Noise Stability of Adversarially Trained Networks

(a) (b)

(c) (d)

Figure 6.2. : Signal to Noise (SNR) at the output of every layer. for vanilla and adver-
sarially trained DNNs. clean: vanilla training with unperturbed images. pgd-epsN : PGD
adversarial training with εtrain = N = [2, 4, 6, 8] and iter = 50. NVM crossbar model:
64x64_100k (NF = 0.26).

At first, we analyze the performance of the vanilla and adversarially trained DNNs on

NVM crossbars in the absence of any adversarial attack. We define this accuracy as the

Natural Test Accuracy of the DNNs. In Fig. 6.1 , we present a floating column chart where

the top of a column represents the accuracy on accurate digital hardware, and where the

bottom of the column represents the accuracy on the NVM hardware. The length of the

column signifies the drop in accuracy due to non-idealities. Adversarial training, in itself,

reduces the natural test accuracy of a DNN, and higher the training epsilon (εtrain), lower is

the test accuracy. When implemented on 2 different NVM crossbar models, 32x32_100k and

64x64_100k, the adversarially trained DNNs for all 4 network architectures suffer far greater

accuracy degradation than their vanilla counterparts (i.e. DNNs trained on “clean” images).

102

(a) (b)

Figure 6.3. : Noise Sensitivity at the output of every layer. for vanilla and adversarially
trained DNNs. clean: vanilla training with unperturbed images. pgd-epsN : PGD adversarial
training with εtrain = N = [2, 4, 6, 8] and iter = 50. NVM crossbar model: 64x64_100k
(NF = 0.26).

Also, according to Table 6.2 , 32x32_100k has a lower non-ideality factor (NF) compared to

64x64_100k, i.e. the smaller crossbar has lesser deviations than the larger crossbar. This

translates into smaller accuracy drop for 32x32_100k compared to 64x64_100k.

On the NVM crossbar model, 32x32_100k, the average accuracy drop for vanilla DNNs

is 3.4% with the maximum of 5.38% for Resnet20w4 on CIFAR-100 dataset (Fig. 6.1d).

Whereas for adversarially trained DNNs, the average is 6.2%, and the maximum drop is

12.44% for ResNet20w1(εtrain = 4) on CIFAR-100 dataset (Fig. 6.1c).

Similarly, for NVM crossbar model, 64x64_100k, the average accuracy drop for vanilla

DNNs is 6.4% with the maximum of 9.83% for Resnet20w4 on CIFAR-100 dataset (Fig.

6.1d). Whereas for adversarially trained DNNs, the average is 10.3%, and the maximum

drop is 20.12% for ResNet20w1(εtrain = 4) on CIFAR-100 dataset (Fig. 6.1c).

Thus, on an average, adversarially trained DNNs suffer 2× as much performance degra-

dation on NVM crossbar, when compared to vanilla DNNs. To further investigate the cause

of this accuracy drop, we look at the output post convolution at every layer of the DNN. To

103

quantify the deviation from ideal, we define two new metrics. The first is Signal to Noise

Ratio (SNR), and it is defined as,

SNR = log10

(∑
N

|Zanalog|2

|Zdigital − Zanalog|2
)

(6.3)

Here, Z is the output of a layer before the activation function, i.e. the output right after the

MVM operation. The numerator signifies the total signal strength, while the denominator

accounts for the noise in the signal, which is the difference between the digital and NVM

crossbar implementation.

The second metric is called Noise Sensitivity, NS, and uses the same definition as in

[116],

NS =
∑
N

|Zdigital − Zanalog|2

|Zdigital|2
(6.4)

To computer SNR and NS we randomly sampled 1000 (N) images, i.e. 10% of the total

test set for both CIFAR-10 and CIFAR-100, and evaluated the DNNs on 64x64_100k NVM

crossbar model as it has the higher non-ideality factor. In Fig. 6.2 , we observe that for later

layers, SNR of adversarially trained DNNs is lower than that of vanilla networks. In case

of CIFAR-10, layers 8-10 of ResNet10w1, and layers 5-10 of ResNet10w4 had lower SNR

for the adversarially trained versions compared to the vanilla version. Similarly, in case of

CIFAR-100, layers 11-20 (except layer 18) of of both ResNet20w1 and ResNet20w4 have

lower SNR for the adversarially trained versions. Within a a DNN, the later layers have

greater impact on the classification scores, as they are the closest to the final linear classifier.

The lower SNR indicates that the noise introduced by the NVM non-idealities distorts the

MVM outputs for adversarially trained DNNs by a larger margin as compared to the vanilla

DNNs. Similarly, in Fig. 6.3 , we observe that the noise sensitivity, NS, of the corresponding

later layers is higher for adversarially trained networks, correlating with the trends of SNR

and accuracy.

Our observations are in line with theoretical and empirical studies of adversarially trained

DNNs. The process of adversarial training creates weight transformations that are less noise

stable, i.e. given some perturbations at the layer input, it generates greater deviations in

104

the layer output. The optimization landscape of adversarial loss has increased curvature and

scattered gradients [117], [118]. The solutions, i.e DNN weights, achieved by the adversarial

training often doesn’t lie within a stable minima. If one assumes the non-ideal deviations in

the NVM crossbar as changes in the weights, then for vanilla DNNs, with stable, flat minimas,

these changes have small effect on the loss, and the accuracy drop is low. However, for an

adversarially trained DNN, the same degree of changes results in a greater change in loss,

and hence greater performance degradation. Thus, this work provides a hardware-backed

validation of the complex loss landscape of adversarial training.

6.4.2 Adversarial Robustness of Analog NVM crossbars

(a) (b)

(c)

Figure 6.4. : Adversarial Accuracy under PGD White Box Attack (iter = 50) for
ResNet10w1 architecture and CIFAR-10 implemented on 3 different hardware (a) Accurate
Digital, (b) NVM crossbar model: 32x32_100k (NF = 0.14), and (c) NVM crossbar model:
64x64_100k (NF = 0.26). clean: vanilla training with unperturbed images. pgd-epsN : PGD
adversarial training with εtrain = N = [2, 4, 6, 8] and iter = 50.

Next, we evaluate the DNNs under Non-Adaptive White Box Attack, where the attacker

has complete information of the network weights, however they have no knowledge of the

NVM crossbar. The attacker assumes the underlying hardware is accurate, and generates

105

(a) (b)

(c)

Figure 6.5. : Adversarial Accuracy under PGD White Box Attack (iter = 50) for
ResNet10w4 architecture and CIFAR-10 implemented on 3 different hardware (a) Accurate
Digital, (b) NVM crossbar model: 32x32_100k (NF = 0.14), and (c) NVM crossbar model:
64x64_100k (NF = 0.26). clean: vanilla training with unperturbed images. pgd-epsN : PGD
adversarial training with εtrain = N = [2, 4, 6, 8] and iter = 50.

adversarial images using iterative PGD (iter =50). From Fig. 6.4 -6.6 , we see that adver-

sarially trained DNNs perform better than vanilla DNNs for all values of εattack, and in

every hardware. Thus, it is imperative to use adversarially trained DNNs to obtain robust

implementations.

In Fig. 6.8 and 6.9 , we plot the net gain in robustness, that is the difference in adversarial

accuracy when the same DNN is implemented on an accurate digital hardware and NVM

crossbar under the same adversarial attack condition. We observe that for a network trained

with εtrain = N , the intrinsic robustness of the network starts having a positive effect only

in attacks where εattack > N . At εattack = 0, i.e in the absence of any attack, the DNNs’

accuracy on the analog hardware is significantly lower than digital implementation. As εattack

is increased, the difference in accuracy slowly reduces, and reaches a tipping point when the

εattack is equal to εtrain. Beyond that, the analog implementation has a higher accuracy than

106

(a) (b)

(c)

Figure 6.6. : Adversarial Accuracy under PGD White Box Attack (iter = 50) for
ResNet20w1 architecture and CIFAR-100 implemented on 3 different hardware (a) Accu-
rate Digital, (b) NVM crossbar model: 32x32_100k (NF = 0.14), and (c) NVM crossbar
model: 64x64_100k (NF = 0.26). clean: vanilla training with unperturbed images. pgd-
epsN : PGD adversarial training with εtrain = N = [2, 4, 6, 8] and iter = 50.

the digital, i.e. we are in the zone of robustness gain due to the non-idealities. We can draw

the following conclusion:

• The Push-Pull Effect: As noted in [114], when under adversarial attack, the non-

idealities have a dual effect on the accuracy. The first is the loss in accuracy because of

inaccurate computations. And the second is the increase in accuracy due to gradient

obfuscation. Because the hardware is unknown to the attacker, the adversarial attacks

do not transfer fully to our implementation. At lower εattack, the loss due to inaccurate

computations is higher, while at higher εattack, the intrinsic robustness becomes more

significant.

• Out of Distribution Samples: In adversarial training, we train DNNs on images

with adversarial perturbations bound by the training εtrain. During inference, adver-

sarial images with εattack < εtrain would have a distribution similar to the training

images, and the DNN behaves similar to a vanilla DNN inferring unperturbed images.

107

(a) (b)

(c)

Figure 6.7. : Adversarial Accuracy under PGD White Box Attack (iter = 50) for
ResNet20w4 architecture and CIFAR-100 implemented on 3 different hardware (a) Accu-
rate Digital, (b) NVM crossbar model: 32x32_100k (NF = 0.14), and (c) NVM crossbar
model: 64x64_100k (NF = 0.26). clean: vanilla training with unperturbed images. pgd-
epsN : PGD adversarial training with εtrain = N = [2, 4, 6, 8] and iter = 50.

We only observe accuracy loss due to non-ideal computations. However, adversarial

images with εattack > εtrain are out of distribution with respect to the training data.

Now, the DNN is under adversarial attack, and the intrinsic robustness of the NVM

crossbar boosts the accuracy.

Design for Robust DNNs on NVM Crossbars: When designing robust DNNs on digital

hardware, the tradeoff between the adversarial and the natural accuracy of a DNN is fairly

straightforward. A higher εtrain during training leads to lowering of natural accuracy, and

increase in adversarial accuracy, as shown in Fig. 6.4 (a), 6.5 (a), 6.6 (a), and 6.7 (a). However,

the interplay of non-idealities and adversarial loss creates opportunities for design of DNNs

where a DNN trained on lower εtrain can achieve both higher natural accuracy and higher

adversarial accuracy, as shown in Fig. 6.6 (b) and (c), and 6.7 (b) and (c). For εattack = [2, 4]

on 32x32_100k and for εattack = [2, 4, 6] on 64x64_100k, the ResNet20w1 DNN trained with

εtrain = 2 performs better or at par than the DNNs trained with higher εtrain. Thus, the

108

(a) (b)

(c) (d)

Figure 6.8. : Difference in Adversarial Accuracy (Robustness Gain = Analog - Digital) for
varying PGD Attack (εattack). NVM crossbar model: 32x32_100k (NF = 0.14). 4 network
architectures (ResNet10w1, ResNet10w4, ResNet20w1, ResNet20w4) on 2 datasets (CIFAR-
10, CIFAR-100) are adversarially trained with (a) PGD, εtrain = 2 and iter= 50 (b) PGD,
εtrain = 4 and iter= 50 (c) PGD, εtrain = 6 and iter= 50 (d) PGD, εtrain = 8 and iter= 50

non-idealities play a significant role in determining the best DNN within a desired robustness

range.

6.5 Conclusion

NVM crossbars offer intrinsic robustness for defense against Adversarial attacks. While,

prior works have quantified these benefits for vanilla DNNs, in this work, we propose design

principles of robust DNNs for implementation on NVM crossbar based analog hardware

by combining algorithmic defenses such as adversarial training and the intrinsic robustness

of the analog hardware. First, we extensively analyze adversarially trained networks on

109

(a) (b)

(c) (d)

Figure 6.9. : Difference in Adversarial Accuracy (Robustness Gain = Digital - Analog) for
varying PGD Attack (εattack). NVM crossbar model: 64x64_100k (NF = 0.26). 4 network
architectures (ResNet10w1, ResNet10w4, ResNet20w1, ResNet20w4) on 2 datasets (CIFAR-
10, CIFAR-100) are adversarially trained with (a) PGD, εtrain = 2 and iter= 50 (b) PGD,
εtrain = 4 and iter= 50 (c) PGD, εtrain = 6 and iter= 50 (d) PGD, εtrain = 8 and iter= 50

NVM crossbars. We demonstrate that adversarially trained networks are less stable to

the non-idealities of analog computing compared to vanilla networks, which impacts their

classification accuracy on clean images. Next, we show that under adversarial attack, the

gain in accuracy from the non-idealities is conditional on the epsilon of the attack (εattack)

being greater than the epsilon used during adversarial training (εtrain). By implementing on

NVM crossbar based analog hardware, a DNN trained with lower εtrain will have the same or

even higher robustness than a DNN trained with a higher εtrain while maintaining a higher

natural test accuracy. This work paves the way for a new paradigm of hardware-algorithm

co-design which incorporates both energy-efficiency and adversarial robustness.

110

7. SUMMARY

In this thesis, we have analyzed the design and implementation of Neural Networks from both

the algorithmic and hardware perspective. In the first half, we utilized the transferability

of knowledge in Neural Networks and proposed new design techniques for multi-task and

incremental learning. We designed the first audio-to-image synthesis model in Spiking Neural

Networks (SNNs), and demonstrated that the spatio-temporal hidden representations of an

SNN carry information than can be used across multiple modalities. We then proposed Tree-

CNN, a hierarchical structure made of multiple CNNs that grows incrementally to learn new

tasks. In the second half of the thesis, we explored algorithm-hardware co-design for efficient

and robust implementations of Neural Networks. We trained deep binary stochastic neural

networks and analyzed their performance under different binarization schemes, both for

weights and activations. Such network design is very suitable for special purpose hardware

based on emerging technologies. Next, we studied the impact on the robustness of the

algorithms, when implemented on analog computing based hardware. We made the discovery

that non-ideal computations, while detrimental to normal accuracy, improves adversarial

performance by obfuscating the inference computations from the attacker. We analyzed

both regular and adversarially trained DNNs, and observed that By implementing on NVM

crossbar based analog hardware, a DNN trained with lower εtrain will have the same or even

higher robustness than a DNN trained with a higher εtrain while maintaining a higher natural

test accuracy. This work paves the way for a new paradigm of hardware-algorithm co-design

which incorporates both energy-efficiency and adversarial robustness.

Future Work

Noise Stability of Adversarial Networks

During our experiments with adversarially trained networks on analog hardware, we

observed that internal activations of adversarially trained networks have lower Signal-to-

Noise Ratio (SNR), and are more sensitive to noise than vanilla networks. As a result, they

suffer significantly higher performance degradation due to the non-ideal computations. This

111

begets further inquiry into the noise stability of adversarially trained networks, and what

it means for the loss landscape of such networks. Further studies could provide valuable

insight about adversarial training of deep neural networks.

Bio-Plausible Methods for Robustness and Efficiency

There have been recent advancements in crafting neural networks with activation distri-

bution following closely to that of mammalian brain, such as COR-Net [119] and Vone-Net

[120]. Such networks are promising in terms of both efficiency and adversarial robustness.

These bio-plausible networks have certain unique properties, such as, they are shallower and

wider, and use stochastic computation units and pre-defined convolutional filters. One could

exploit these properties for improved design of neural network that are both energy efficient

and robust.

112

REFERENCES

[1] K. Schwab, The fourth industrial revolution. Currency, 2017.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105.

[3] S. I. Serengil and A. Ozpinar, “Lightface: A hybrid deep face recognition framework,”
in 2020 Innovations in Intelligent Systems and Applications Conference (ASYU),
IEEE, 2020.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
p. 436, 2015.

[5] W. Maass, “Networks of spiking neurons: The third generation of neural network
models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[6] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An empirical
investigation of catastrophic forgetting in gradient-based neural networks,” arXiv
preprint arXiv:1312.6211, 2013.

[7] D. Roy, P. Panda, and K. Roy, “Synthesizing images from spatio-temporal representa-
tions using spike-based backpropagation,” Frontiers in Neuroscience, vol. 13, p. 621,
2019.

[8] A. Shafiee et al., “Isaac: A convolutional neural network accelerator with in-situ analog
arithmetic in crossbars,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 14–26, 2016.

[9] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T.
Chen, and M.-J. Tsai, “Metal–oxide rram,” Proceedings of the IEEE, vol. 100, no. 6,
pp. 1951–1970, 2012.

[10] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M.
Asheghi, and K. E. Goodson, “Phase change memory,” Proceedings of the IEEE,
vol. 98, no. 12, pp. 2201–2227, 2010.

[11] A. Sengupta, P. Panda, P. Wijesinghe, Y. Kim, and K. Roy, “Magnetic tunnel junction
mimics stochastic cortical spiking neurons,” Scientific reports, vol. 6, p. 30 039, 2016.

[12] A. Sengupta, G. Srinivasan, D. Roy, and K. Roy, “Stochastic inference and learning
enabled by magnetic tunnel junctions,” in 2018 IEEE International Electron Devices
Meeting (IEDM), IEEE, 2018, pp. 15–6.

113

[13] A. Sengupta, M. Parsa, B. Han, and K. Roy, “Probabilistic deep spiking neural sys-
tems enabled by magnetic tunnel junction,” IEEE Transactions on Electron Devices,
vol. 63, no. 7, pp. 2963–2970, 2016.

[14] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R.
Fergus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199,
2013.

[15] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing
robust features with denoising autoencoders,” in Proceedings of the 25th international
conference on Machine learning, ACM, 2008, pp. 1096–1103.

[16] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolutional auto-
encoders for hierarchical feature extraction,” in International Conference on Artificial
Neural Networks, Springer, 2011, pp. 52–59.

[17] P. Panda and K. Roy, “Unsupervised regenerative learning of hierarchical features
in spiking deep networks for object recognition,” in Neural Networks (IJCNN), 2016
International Joint Conference on, IEEE, 2016, pp. 299–306.

[18] N. Srivastava and R. Salakhutdinov, “Learning representations for multimodal data
with deep belief nets,” in International conference on machine learning workshop,
vol. 79, 2012.

[19] S. G. Wysoski, L. Benuskova, and N. Kasabov, “Evolving spiking neural networks
for audiovisual information processing,” Neural Networks, vol. 23, no. 7, pp. 819–835,
2010.

[20] N. Rathi and K. Roy, “Stdp-based unsupervised multimodal learning with cross-
modal processing in spiking neural network,” IEEE Transactions on Emerging Topics
in Computational Intelligence, 2018.

[21] H. Markram, W. Gerstner, and P. J. Sjöström, “Spike-timing-dependent plasticity: A
comprehensive overview,” Frontiers in synaptic neuroscience, vol. 4, p. 2, 2012.

[22] K. S. Burbank, “Mirrored stdp implements autoencoder learning in a network of
spiking neurons,” PLoS computational biology, vol. 11, no. 12, e1004566, 2015.

[23] A. Tavanaei, T. Masquelier, and A. Maida, “Representation learning using event-
based stdp,” Neural Networks, 2018.

[24] S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-backpropagation in temporally
encoded networks of spiking neurons,” Neurocomputing, vol. 48, no. 1-4, pp. 17–37,
2002.

114

[25] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks using
backpropagation,” Frontiers in neuroscience, vol. 10, p. 508, 2016.

[26] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropagation for
training high-performance spiking neural networks,” Frontiers in neuroscience, vol. 12,
2018.

[27] P. J. Werbos, “Backpropagation through time: What it does and how to do it,”
Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[28] Y. Jin, P. Li, and W. Zhang, “Hybrid macro/micro level backpropagation for training
deep spiking neural networks,” arXiv preprint arXiv:1805.07866, 2018.

[29] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Direct training for spiking neural networks:
Faster, larger, better,” arXiv preprint arXiv:1809.05793, 2018.

[30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[31] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image dataset for bench-
marking machine learning algorithms,” arXiv preprint arXiv:1708.07747, 2017.

[32] Q. Wu, M. McGinnity, L. Maguire, B. Glackin, and A. Belatreche, “Learning mech-
anisms in networks of spiking neurons,” in Trends in Neural Computation, Springer,
2007, pp. 171–197.

[33] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha, “Back-
propagation for energy-efficient neuromorphic computing,” in Advances in Neural
Information Processing Systems, 2015, pp. 1117–1125.

[34] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment in time,” in
Advances in Neural Information Processing Systems, 2018, pp. 1419–1428.

[35] B. Nessler, M. Pfeiffer, L. Buesing, and W. Maass, “Bayesian computation emerges in
generic cortical microcircuits through spike-timing-dependent plasticity,” PLoS com-
putational biology, vol. 9, no. 4, e1003037, 2013.

[36] M. Benayoun, J. D. Cowan, W. van Drongelen, and E. Wallace, “Avalanches in
a stochastic model of spiking neurons,” PLoS computational biology, vol. 6, no. 7,
e1000846, 2010.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

115

[38] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[39] M. Liberman, R. Amsler, K. Church, E. Fox, C. Hafner, J. Klavans, M. Marcus, B.
Mercer, J. Pedersen, P. Roossin, et al., “Ti 46-word,” Philadelphia (Pennsylvania):
Linguistic Data Consortium, 1993.

[40] M. Slaney, “Auditory toolbox,” Interval Research Corporation, Tech. Rep, vol. 10,
p. 1998, 1998.

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,”
International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[42] T. Xiao, J. Zhang, K. Yang, Y. Peng, and Z. Zhang, “Error-Driven Incremental Learn-
ing in Deep Convolutional Neural Network for Large-Scale Image Classification,” MM
’14 Proceedings of the ACM International Conference on Multime, vol. d, pp. 177–
186, 2014.

[43] D. Roy, P. Panda, and K. Roy, “Tree-cnn: A hierarchical deep convolutional neural
network for incremental learning,” Neural Networks, vol. 121, pp. 148–160, 2020.

[44] S. John Walker, Big data: A revolution that will transform how we live, work, and
think, 2014.

[45] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE
transactions on pattern analysis and machine intelligence, vol. 28, no. 4, pp. 594–611,
2006.

[46] R. Girshick, “Fast r-CNN,” in 2015 IEEE International Conference on Computer
Vision (ICCV), IEEE, 2015.

[47] K. Shmelkov, C. Schmid, and K. Alahari, “Incremental learning of object detectors
without catastrophic forgetting,” in 2017 IEEE International Conference on Com-
puter Vision (ICCV), IEEE, 2017.

[48] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017.

[49] R. Aljundi, P. Chakravarty, and T. Tuytelaars, “Expert gate: Lifelong learning with
a network of experts,” CoRR, abs/1611.06194, vol. 2, 2016.

116

[50] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu,
R. Pascanu, and R. Hadsell, “Progressive neural networks,” arXiv preprint arXiv:1606.04671,
2016.

[51] S.-A. Rebuffi, A. Kolesnikov, and C. H. Lampert, “Icarl: Incremental classifier and
representation learning,” in Proc. CVPR, 2017.

[52] S. S. Sarwar, P. Panda, and K. Roy, “Gabor filter assisted energy efficient fast learning
Convolutional Neural Networks,” in 2017 IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED), IEEE, 2017, pp. 1–6.

[53] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in
deep neural networks?” In Advances in neural information processing systems, 2014,
pp. 3320–3328.

[54] S. S. Sarwar, A. Ankit, and K. Roy, “Incremental learning in deep convolutional neural
networks using partial network sharing,” arXiv preprint arXiv:1712.02719, 2017.

[55] P. Panda and K. Roy, “Semantic driven hierarchical learning for energy-efficient image
classification,” in 2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE), IEEE, 2017, pp. 1582–1587.

[56] P. Panda, A. Ankit, P. Wijesinghe, and K. Roy, “Falcon: Feature driven selective clas-
sification for energy-efficient image recognition,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 12, 2017.

[57] Z. Yan, H. Zhang, R. Piramuthu, V. Jagadeesh, D. DeCoste, W. Di, and Y. Yu, “HD-
CNN: Hierarchical deep convolutional neural networks for large scale visual recogni-
tion,” in 2015 IEEE International Conference on Computer Vision (ICCV), IEEE,
2015.

[58] N. Srivastava and R. R. Salakhutdinov, “Discriminative transfer learning with tree-
based priors,” in Advances in Neural Information Processing Systems, 2013, pp. 2094–
2102.

[59] P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. Bulo, “Deep neural decision
forests,” in Computer Vision (ICCV), 2015 IEEE International Conference on, IEEE,
2015, pp. 1467–1475.

[60] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images,” 2009.

[61] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

117

[62] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks for matlab,”
in Proceedings of the 23rd ACM international conference on Multimedia, ACM, 2015,
pp. 689–692.

[63] MATLAB, version 9.2.0 (R2017a). Natick, Massachusetts: The MathWorks Inc.,
2017.

[64] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout
networks,” in International Conference on Machine Learning, 2013.

[65] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[66] L. Hertel, E. Barth, T. Kaster, and T. Martinetz, “Deep convolutional neural net-
works as generic feature extractors,” in 2015 International Joint Conference on Neural
Networks (IJCNN), IEEE, 2015.

[67] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[68] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model compression and
acceleration for deep neural networks,” arXiv preprint arXiv:1710.09282, 2017.

[69] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model
size,” arXiv preprint arXiv:1602.07360, 2016.

[70] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile
vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[71] I. Garg, P. Panda, and K. Roy, “A low effort approach to structured cnn design using
pca,” arXiv preprint arXiv:1812.06224, 2018.

[72] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients,” arXiv preprint
arXiv:1606.06160, 2016.

[73] W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi, and J. B. Aimone, “Training
deep neural networks for binary communication with the whetstone method,” Nature
Machine Intelligence, vol. 1, no. 2, p. 86, 2019.

118

[74] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural networks with
weights and activations constrained to+ 1 or- 1. arxiv 2016,” arXiv preprint arXiv:1602.02830,

[75] Rastegari et al., “Xnor-net: Imagenet classification using binary convolutional neural
networks,” in European Conference on Computer Vision, Springer, 2016, pp. 525–542.

[76] T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, and E. Eleftheriou, “Stochastic
phase-change neurons,” Nature nanotechnology, vol. 11, no. 8, p. 693, 2016.

[77] D. Roy, I. Chakraborty, and K. Roy, “Scaling deep spiking neural networks with
binary stochastic activations,” in 2019 IEEE International Conference on Cognitive
Computing (ICCC), IEEE, 2019, pp. 50–58.

[78] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: Opportunities and
challenges,” Frontiers in neuroscience, vol. 12, 2018.

[79] G. E. Hinton, D. Rumelhart, and R. J. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, no. 9, pp. 533–536, 1986.

[80] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like environment
for machine learning,” in BigLearn, NIPS Workshop, 2011.

[81] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al., Gradient flow in recur-
rent nets: The difficulty of learning long-term dependencies, 2001.

[82] Keckler et al., “Gpus and the future of parallel computing,” IEEE Micro, no. 5, pp. 7–
17, 2011.

[83] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for
efficient neural network,” in Advances in neural information processing systems, 2015,
pp. 1135–1143.

[84] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,”
in 2017 ACM/IEEE 44th Annual ISCA, IEEE, 2017, pp. 1–12.

[85] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield, T. Massengill, M.
Liu, D. Lo, S. Alkalay, M. Haselman, et al., “Serving dnns in real time at datacenter
scale with project brainwave,” iEEE Micro, vol. 38, no. 2, pp. 8–20, 2018.

[86] “Nvidia tesla v100 gpu architecture, the world’s most advanced data center gpu,”
NVIDIA Corporation, Tech. Rep., 2017.

[87] X. Xu et al., “Scaling for edge inference of deep neural networks,” Nature Electronics,
vol. 1, no. 4, pp. 216–222, 2018.

119

[88] X. Fong, Y. Kim, K. Yogendra, D. Fan, A. Sengupta, A. Raghunathan, and K. Roy,
“Spin-transfer torque devices for logic and memory: Prospects and perspectives,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 35, no. 1, pp. 1–22, 2015.

[89] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S. Williams, P.
Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy, et al., “Puma: A programmable
ultra-efficient memristor-based accelerator for machine learning inference,” in Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 715–731.

[90] I. Chakraborty, M. F. Ali, D. E. Kim, A. Ankit, and K. Roy, “Geniex: A generalized
approach to emulating non-ideality in memristive xbars using neural networks,” arXiv
preprint arXiv:2003.06902, 2020.

[91] C. Liu, M. Hu, J. P. Strachan, and H. Li, “Rescuing memristor-based neuromor-
phic design with high defects,” in 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC), IEEE, 2017, pp. 1–6.

[92] I. Chakraborty, D. Roy, and K. Roy, “Technology aware training in memristive neu-
romorphic systems for nonideal synaptic crossbars,” IEEE Transactions on Emerging
Topics in Computational Intelligence, vol. 2, no. 5, pp. 335–344, 2018.

[93] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv preprint arXiv:1412.6572, 2014.

[94] G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein, J. Kossaifi, A. Khanna,
and A. Anandkumar, “Stochastic activation pruning for robust adversarial defense,”
arXiv preprint arXiv:1803.01442, 2018.

[95] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer encoding: One
hot way to resist adversarial examples,” in International Conference on Learning
Representations, 2018. [Online]. Available: https://openreview.net/forum?id=S18Su--
CW .

[96] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense of se-
curity: Circumventing defenses to adversarial examples,” arXiv preprint arXiv:1802.00420,
2018.

[97] D. Niu, Y. Chen, C. Xu, and Y. Xie, “Impact of process variations on emerging
memristor,” in Proceedings of the 47th Design Automation Conference, 2010, pp. 877–
882.

120

https://openreview.net/forum?id=S18Su--CW
https://openreview.net/forum?id=S18Su--CW

[98] G. W. Burr, R. M. Shelby, S. Sidler, C. Di Nolfo, J. Jang, I. Boybat, R. S. Shenoy, P.
Narayanan, K. Virwani, E. U. Giacometti, et al., “Experimental demonstration and
tolerancing of a large-scale neural network (165 000 synapses) using phase-change
memory as the synaptic weight element,” IEEE Transactions on Electron Devices,
vol. 62, no. 11, pp. 3498–3507, 2015.

[99] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. Di Nolfo, S. Sidler, M.
Giordano, M. Bodini, N. C. Farinha, et al., “Equivalent-accuracy accelerated neural-
network training using analogue memory,” Nature, vol. 558, no. 7708, pp. 60–67,
2018.

[100] F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn, and
W. D. Lu, “A fully integrated reprogrammable memristor–cmos system for efficient
multiply–accumulate operations,” Nature Electronics, vol. 2, no. 7, pp. 290–299, 2019.

[101] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S. Lam, N. Ge,
J. J. Yang, and R. S. Williams, “Dot-product engine for neuromorphic computing:
Programming 1t1m crossbar to accelerate matrix-vector multiplication,” in Design
Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE, IEEE, 2016, pp. 1–6.

[102] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical
black-box attacks against machine learning,” in Proceedings of the 2017 ACM on Asia
conference on computer and communications security, 2017, pp. 506–519.

[103] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigating adversarial effects
through randomization,” arXiv preprint arXiv:1711.01991, 2017.

[104] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE conference on computer vision and
pattern recognition, Ieee, 2009, pp. 248–255.

[105] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning
models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

[106] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square attack: A query-
efficient black-box adversarial attack via random search,” 2020.

[107] M. Schumer and K. Steiglitz, “Adaptive step size random search,” IEEE Transactions
on Automatic Control, vol. 13, no. 3, pp. 270–276, 1968.

[108] S. Moon, G. An, and H. O. Song, “Parsimonious black-box adversarial attacks via effi-
cient combinatorial optimization,” in International Conference on Machine Learning
(ICML), 2019.

121

[109] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 8024–
8035.

[110] J. Hang, K. Han, H. Chen, and Y. Li, “Ensemble adversarial black-box attacks against
deep learning systems,” Pattern Recognition, vol. 101, p. 107 184, 2020.

[111] C. Guo, M. Rana, M. Cisse, and L. Van Der Maaten, “Countering adversarial images
using input transformations,” arXiv preprint arXiv:1711.00117, 2017.

[112] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning
models resistant to adversarial attacks,” in International Conference on Learning
Representations, 2018.

[113] A. Cappelli, R. Ohana, J. Launay, L. Meunier, I. Poli, and F. Krzakala, “Adversar-
ial robustness by design through analog computing and synthetic gradients,” arXiv
preprint arXiv:2101.02115, 2021.

[114] D. Roy, I. Chakraborty, T. Ibrayev, and K. Roy, “Robustness hidden in plain sight:
Can analog computing defend against adversarial attacks?” arXiv preprint arXiv:2008.12016,
2020.

[115] X. Guan, S. Yu, and H.-S. P. Wong, “A spice compact model of metal oxide resistive
switching memory with variations,” IEEE electron device letters, vol. 33, no. 10,
pp. 1405–1407, 2012.

[116] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang, “Stronger generalization bounds for
deep nets via a compression approach,” in International Conference on Machine
Learning, PMLR, 2018, pp. 254–263.

[117] E. Duesterwald, A. Murthi, G. Venkataraman, M. Sinn, and D. Vijaykeerthy, “Explor-
ing the hyperparameter landscape of adversarial robustness,” arXiv preprint arXiv:1905.03837,
2019.

[118] C. Liu, M. Salzmann, T. Lin, R. Tomioka, and S. Süsstrunk, “On the loss landscape
of adversarial training: Identifying challenges and how to overcome them,” Advances
in Neural Information Processing Systems, vol. 33, 2020.

122

[119] J. Kubilius, M. Schrimpf, H. Hong, N. J. Majaj, R. Rajalingham, E. B. Issa, K. Kar,
P. Bashivan, J. Prescott-Roy, K. Schmidt, A. Nayebi, D. Bear, D. L. K. Yamins,
and J. J. DiCarlo, “Brain-Like Object Recognition with High-Performing Shallow
Recurrent ANNs,” in Neural Information Processing Systems (NeurIPS), H. Wallach,
H. Larochelle, A. Beygelzimer, F. D’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran
Associates, Inc., 2019, pp. 12 785–12 796. [Online]. Available: http://papers.nips.cc/
paper/9441-brain-like-object-recognition-with-high-performing-shallow-recurrent-
anns .

[120] J. Dapello, T. Marques, M. Schrimpf, F. Geiger, D. D. Cox, and J. J. DiCarlo, “Sim-
ulating a primary visual cortex at the front of cnns improves robustness to image
perturbations,” BioRxiv, 2020.

123

http://papers.nips.cc/paper/9441-brain-like-object-recognition-with-high-performing-shallow-recurrent-anns
http://papers.nips.cc/paper/9441-brain-like-object-recognition-with-high-performing-shallow-recurrent-anns
http://papers.nips.cc/paper/9441-brain-like-object-recognition-with-high-performing-shallow-recurrent-anns

A. TREE-CNN

A.1 Incremental CIFAR-100 Dataset

The 100 classes of CIFAR-100 were randomly arranged and divided in 10 batches, each
containing 10 classes. We randomly shuffled numbers 1 to 100 in 10 groups and then used
that to group classes. We list the batches in the order they were added to the Tree-CNN for
the incremental learning task below.

0 chair, bridge, girl, kangaroo, lawn mower, possum, otter, poppy, sweet pepper, bicycle
1 lion, man, palm tree, tank, willow tree, bowl, mountain, hamster, chimpanzee, cloud
2 plain, leopard, castle, bee, raccoon, bus, rabbit, train, worm, ray
3 table, aquarium fish, couch, caterpillar, whale, sunflower, trout, butterfly, shrew, house
4 bottle, orange, dinosaur, beaver, bed, snail, flatfish, shark, tractor, apple
5 woman, fox, lobster, skunk, can, turtle, cockroach, dolphin, bear, pickup truck
6 lizard, road, porcupine, mouse, seal, sea, tiger, telephone, rocket, tulip
7 baby, motorcycle, elephant, clock, maple tree, mushroom, pear, orchid, spider, oak tree
8 wardrobe, squirrel, crocodile, wolf, plate, skyscraper, keyboard, beetle, streetcar, crab
9 snake, lamp, camel, pine tree, cattle, boy, rose, forest, television, cup

124

A.2 Final Tree-CNN for max children 5, 10, 20 (CIFAR-100)

We trained the Tree-CNN with the incremental CIFAR-100 dataset, and we set the
maximum number of children a branch node can have as 5, 10, and 20. The corresponding 3
Tree-CNN s were labeled - Tree-CNN-5, Tree-CNN-10, Tree-CNN-20. The 2-level hierarchical
structure of these Tree-CNNs after 9 incremental learning stages is shown in Fig. A.1 - A.3 .
The nodes marked ‘yellow’ indicate completely filled branch nodes (B), the ones marked
‘blue’ indicate branch nodes (B) that are partially filled, while those marked ‘green’ refer to
leaf nodes (L).

R
O

O
T

B APPLE BOWL SWEET PEPPER TABLE WORM

B AQ. FISH RAY SHREW TROUT WHALE

B BABY LIZARD MUSHROOM SPIDER WOLF

B BEAR BEAVER MOUSE PORCUPINE SKUNK

B BED BUS COUCH HOUSE TRACTOR

B BEE BUTTERFLY CATERPILLAR POPPY SUNFLOWER

B BOTTLE CAN CLOCK TELEPHONE WARDROBE

B BRIDGE CASTLE PALM TREE TANK TRAIN

B CHIMPANZEE CLOUD MOUNTAIN OTTER WILLOW TREE

B CUP KEYBOARD LAMP PLATE TELEVISION

B DINOSAUR ELEPHANT FOX KANGAROO TIGER

B DOLPHIN ROCKET SEAL SHARK TURTLE

B FLATFISH GIRL HAMSTER MAN WOMAN

B LEOPARD LION POSSUM RABBIT RACCOON

B MAPLE TREE OAK TREE PLAIN ROAD SEA

B BOY CAMEL CATTLE SQUIRREL

B LOBSTER ORCHID ROSE TULIP

B BEETLE COCKROACH SNAIL

B LAWN MOWER PICKUP TRUCK STREETCAR

B BICYCLE MOTORCYCLE

B CRAB SNAKE

B CROCODILE FOREST

B ORANGE PEAR

L CHAIR

L PINE TREE

L SKYSCRAPER

Figure A.1. : Tree-CNN-5: After 9 incremental learning stages

125

R
O

O
T

B
AQ. FISH BEETLE BUTTERFLY COCKROACH CRAB
ORCHID POPPY SPIDER SUNFLOWER TULIP

B
BEAR BOTTLE CAN CATERPILLAR FOX

PORCUPINE ROCKET SKUNK TELEPHONE TIGER

B
BEAVER DINOSAUR FLATFISH HAMSTER KANGAROO
POSSUM SHARK SHREW SNAIL WHALE

B
BED BICYCLE CHAIR COUCH HOUSE

MOTORCYCLE PICKUP TRUCK ROAD TABLE TRACTOR

B
BEE BOWL CHIMPANZEE LION OTTER

RABBIT RACCOON RAY VLOUD WORM

B
BRIDGE BUS CASTLE LEOPARD MOUNTAIN

PALM TREE PLAIN TANK TRAIN WILLOW TREE

B
DOLPHIN ELEPHANT LIZARD MAPLE TREE MOUSE

MUSHROOM SEA SEAL TROUT TURTLE

B
CLOCK CUP LAMP PLATE SNAKE

TELEVISION WARDROBE

B BABY BOY GIRL MAN WOMAN

B APPLE ORANGE PEAR ROSE
SWEET
PEPPER

B FOREST OAK TREE PINE TREE STREET CAR

B CAMEL CATTLE SQUIRREL

L CROCODILE

L LAWN MOWER

L LOBSTER

L SKYSCRAPER

L WOLF

Figure A.2. : Tree-CNN-10: After 9 incremental learning stages

126

R
O

O
T

B

APPLE BED BOTTLE BRIDGE BUS
CAN CASTLE COUCH DOLPHIN HOUSE

LOBSTER PICKUP TRUCK ROAD ROCKET SHARK
TABLE TANK TELEPHONE TRACTOR TRAIN

B

AQ. FISH BEE BOWL BUTTERFLY CATERPILLAR
CHIMPANZEE CLOUD LEOPARD MOUNTAIN OTTER
PALM TREE PLAIN RABBIT RAY SUNFLOWER

SWEET PEPPER TROUT WHALE WILLOW TREE WORM

B

BEAR BEAVER CLOCK COCKROACH DINOSAUR
ELEPHANT FLATFISH FOX LIZARD MOUSE

MUSHROOM OAK TREE PORCUPINE SEAL SHREW
SKUNK SNAIL SPIDER TIGER TURTLE

B
BABY BOY CHAIR CUP GIRL

HAMSTER MAN TELEVISION WARDROBE WOMAN

B
CAMEL CATTLE CRAB CROCODILE LION

POSSUM RACCOON SNAKE SQUIRREL WOLF

B
ORANGE ORCHID PEAR POPPY TULIP

KEYBOARD LAMP PLATE ROSE

B BICYCLE MOTORCYCLE STREETCAR

B FOREST MAPLE TREE PINE TREE

B SEA SKYSCRAPER

L BEETLE

L KANGAROO

L LAWNMOWER

Figure A.3. : Tree-CNN-20: After 9 incremental learning stages

127

A.3 Full Simulation Results

Table A.1. : Normalized Training Effort as classes are added incrementally in batches of
10 (CIFAR-100)

Number of Classes B:I B:II B:III B:IV B:V Tree-CNN-5 Tree-CNN-10 Tree-CNN-20
20 0.08 0.17 0.19 0.20 0.20 0.18 0.18 0.18
30 0.12 0.25 0.29 0.30 0.30 0.26 0.26 0.27
40 0.16 0.34 0.38 0.39 0.40 0.34 0.34 0.35
50 0.20 0.42 0.48 0.49 0.50 0.42 0.43 0.42
60 0.24 0.51 0.58 0.59 0.60 0.50 0.51 0.52
70 0.28 0.60 0.67 0.69 0.70 0.59 0.60 0.60
80 0.33 0.68 0.77 0.79 0.80 0.67 0.68 0.68
90 0.37 0.77 0.87 0.89 0.90 0.74 0.74 0.75
100 0.41 0.86 0.97 1.00 1.00 0.82 0.83 0.84

Table A.2. : Test Accuracy as classes are added incrementally in batches of 10 (CIFAR-100)

Number of Classes B:I B:II B:III B:IV B:V Tree-CNN-5 Tree-CNN-10 Tree-CNN-20
20 64.30 73.60 77.40 78.50 81.10 77.80 81.35 78.35
30 52.47 67.17 72.27 77.57 79.30 72.70 77.00 74.57
40 46.68 61.72 67.55 72.08 74.35 72.15 72.90 70.75
50 41.42 58.74 64.74 69.62 71.82 69.28 67.40 67.42
60 37.98 55.80 61.85 66.95 69.57 67.42 65.73 64.40
70 35.43 52.96 59.10 64.23 67.21 65.13 62.91 62.07
80 34.55 51.68 57.77 61.81 66.03 64.07 61.73 61.60
90 33.88 51.09 55.77 62.21 64.90 63.52 60.93 60.88
100 31.73 48.68 54.16 60.48 63.05 61.57 60.46 59.99

128

B. STOCHASTIC NEURAL NETWORKS: ENERGY
ESTIMATIONS

B.1 Energy Estimate

For any given convolutional layer, there are I input channels and O output channels. Let
the size of the input be N × N , size of the kernel be k × k and size of the output be M × M .
The number of memory access and computations in such a convolutional layer can then be
formulated as listed in Table B.1 .

Table B.1. : Operations in neural networks

Operation Number of Operations
Input Read N2 × I
Weight Read k2 × I × O
Computations (MAC) M2 × I × k2 × O
Memory Write M2 × O

The number of memory-accesses NM−F P and computations NC−F P in a network with
full-precision activations and weights are then given by:

NM−F P = N2 × I + k2 × I × O + M2 × O

NC−F P = M2 × I × k2 × O
(B.1)

The number of memory-accesses NM−B and computations NC−B in a network with binary
activations, are given as:

NM−B = N2 × I + k2 × I × O + M2 × O

NC−B = M2 × I × k2 × O
(B.2)

Note that NM−F P refers to full-precision memory access and NM−B are binary memory
accesses. In addition, NC−F P refers to the number of FP MAC operations whereas NC−B

are the number of FP additions.
Hence, the energy consumed by a layer with 32-bit weights and 1-bit activations (EB) is

given by,

EB = NM−BEA−1 + NC−BEAD−F (B.3)

Similarly, the energy consumed by a layer with 32-bit weights and 32-bit activations
(EF P) is computed as,

EF P = NM−F P EA−32 + NC−EM−F (B.4)

129

VITA
Deboleena Roy received her B.Tech and M.Tech (Dual Degree) from Indian Institute

of Technology (IIT), Kharagpur, India, in 2014. She joined Qualcomm Bangalore Design
Centre in July 2014 as a Front End Design Engineer. She was part of the Design for Power
team and worked on making Value Tier Snapdragon chipsets more power-efficient and market
competitive. She joined Purdue University in Fall 2016 and is currently pursuing PhD degree
under the guidance of Prof. Kaushik Roy. She was an intern at Samsung Research, Plano,
TX in Summer 2019 where she worked on re-lighting multi-frame images. In summer 2020,
she was an intern at Facebook, New York, NY, and she worked on designing machine learning
models to predict if a webpage is a news article. Her primary research area is development and
implementation of neuro‐inspired algorithms for cognitive applications such as perception,
reasoning and decision making.

130

PUBLICATIONS
1. Deboleena Roy, Priyadarshini Panda, and Kaushik Roy. “Tree-CNN: A Hierarchi-

cal Deep Convolutional Neural Network for Incremental Learning” Elseiver Neural
Networks, 2018

2. Deboleena Roy, Priyadarshini Panda, Kaushik Roy. “Synthesizing Images from
Spatio-Temporal Representations using Spike-based Backpropagation”, Frontiers in
Neuroscience, 2019

3. Abhronil Sengupta, Gopalakrishnan Srinivasan, Deboleena Roy, Kaushik Roy. “Stochas-
tic Inference and Learning Enabled by Magnetic Tunnel Junctions”, IEEE Interna-
tional Electron Device Meeting (IEDM), 2018 (All authors contributed equally)

4. Deboleena Roy, Indranil Chakraborty, and Kaushik Roy. “Scaling Deep Spiking
Neural Networks with Binary Stochastic Activations”, IEEE International Conference
on Cognitive Computing (ICCC), 2019.

5. Deboleena Roy, Indranil Chakraborty, Timur Ibrayev, and Kauhik Roy. “On the
Intrinsic Robustness of NVM Crossbars Against Adversarial Attacks”, To appear in
58th ACME/IEEE Design Automation Conference (DAC), 2021

6. Deboleena Roy, Chun Tao, Indranil Chakraborty, and Kaushik Roy. “On the Noise
Stability and Robustness of Adversarially Trained Networks on NVM Crossbars”, Un-
der review in 40th IEEE/ACM International Conference on Computer Aided Design,
2021

131

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	TRANSFER LEARNING WITH SPIKING AUTOENCODERS
	Introduction
	Learning Spatio-Temporal Representations using Spiking Autoencoders
	Input Encoding and Neuron Model
	Network Model
	Backpropagation using Membrane Potential

	Experiments
	Regenerative Learning with Spiking Autoencoders
	Audio to Image Synthesis using Spiking Auto-Encoders
	Dataset
	Network Model
	Results

	Conclusion

	TREE-CNN: A HIERARCHICAL DEEP CONVOLUTIONAL NEURAL NETWORK FOR INCREMENTAL LEARNING
	Introduction
	Related Work
	Incremental Learning Model
	Network Architecture
	The Learning Algorithm
	Handling input labels inside the Tree-CNN

	The Experimental Setup
	Adding Multiple New Classes (CIFAR-10)
	Dataset
	The Network Initialization
	Incremental Learning

	Sequentially Adding Multiple Classes (CIFAR-100)
	Dataset
	The Network Initialization
	Incremental Learning

	Benchmarking
	Baseline Network
	Fine-tuning the baseline network using old + new data
	Evaluation Metrics

	The Training Framework

	Results
	Adding multiple new classes (CIFAR-10)
	Sequentially adding new classes (CIFAR-100)

	Discussion

	DEEP STOCHASTIC NEURAL NETWORKS
	Training Deep Spiking Neural Networks with Binary Stochastic Activation
	Binary Stochastic Activations
	Weight Quantization

	Experiments
	Simulation Framework
	Experiments with CIFAR-10
	Experiments with CIFAR-100

	Results
	CIFAR-10
	CIFAR-100

	Hardware Implications
	Conclusion

	INTRINSIC ADVERSARIAL ROBUSTNESS OF ANALOG COMPUTING
	Introduction
	Background and Related Work
	In-memory Analog Computing Hardware
	Modeling of Non-Idealities using GENIEx
	Functional Simulator for Crossbar Architectures: PUMA

	Adversarial Attacks

	Adversarial Robustness of NVM Crossbar based Analog Computing
	Crossbar Models
	Datasets and Network Models
	Generating Adversarial attacks
	Non-Adaptive Attacks
	Hardware in Loop Adaptive Attacks
	Comparison with Related Work

	Results
	Non-Adaptive Attacks
	Hardware-in-Loop Adaptive Attacks

	Conclusion

	NOISE STABILITY AND ROBUSTNESS OF ADVERSARIALLY TRAINED NETWORKS ON NVM CROSSBARS
	Introduction
	Related Work
	Evaluating Adversarially Trained Networks on NVM Crossbars
	Datasets and Network Models
	Adversarial Attacks
	Adversarial Training
	Emulation of the Analog Hardware

	Results
	Noise Stability of Adversarially Trained Networks
	Adversarial Robustness of Analog NVM crossbars

	Conclusion

	SUMMARY
	REFERENCES
	TREE-CNN
	Incremental CIFAR-100 Dataset
	Final Tree-CNN for max children 5, 10, 20 (CIFAR-100)
	Full Simulation Results

	STOCHASTIC NEURAL NETWORKS: ENERGY ESTIMATIONS
	Energy Estimate

	VITA
	PUBLICATIONS

