
BINARY FEEDBACK IN COMMUNICATION SYSTEMS:
BEAM ALIGNMENT, ADVERSARIES AND ENCODING

by

Vinayak Suresh

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

August 2021



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. David J. Love, Chair

School of Electrical and Computer Engineering

Dr. Chih-Chun Wang

School of Electrical and Computer Engineering

Dr. James V. Krogmeier

School of Electrical and Computer Engineering

Dr. Michael D. Zoltowski

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2



In loving memory of Jeykar thatha, Chandra paati and Swaminathan thatha

To my parents Suresh and Bama, and my twin sister Vinodha, for their many sacrifices and

unconditional love

Knowledge is the only form of wealth that is indestructible. - Tirukkural, 3rd century BC

The supreme goal of life is to seek further knowledge.

3



ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Dr. David J. Love for his constant

support and encouragement throughout the time I have spent at Purdue. Anytime that I sit

in his class or have a technical discussion with him, I am awed by his deep understanding

and quick thinking. His ability to look through the noise and get to the heart of a problem

has greatly inspired me, which I have tried to emulate both in my thinking and in writing.

Graduate school also becomes a little less daunting when you know you have an advisor who

wants the best for you and your future.

I would also like to thank all of my esteemed committee members - Dr. Chih-Chun

Wang, Dr. James V. Krogmeier and Dr. Michael D. Zoltowski. Their candid feedback and

insightful suggestions have helped me improve this thesis greatly. I owe a special debt of

gratitude to Dr. Wang for his involvement in my work on adversarial channels. Answering

his subtle questions has greatly improved and further cemented my own understanding of

many mathematical intricacies.

In addition, I would like to thank the various funding agencies that have supported me in

my Ph.D. journey, specifically, the School of Electrical and Computer Engineering at Purdue,

NOKIA and the National Science Foundation 1
 .

I am immensely fortunate to have had two rewarding summer internships with great

mentors, where I learned how theory meets the real world. My thanks to Dr. Amitava

Ghosh and Dr. Jie Chen for hosting me as an intern at Nokia Bell Labs in summer 2018.

My thanks also to Dr. Jianzhong (Charlie) Zhang, Dr. Ahmed Ibrahim and Dr. Yeqing Hu

for their mentorship during my time as an intern at Samsung Research America in summer

2019. I am grateful also to Dr. Hemalatha Thiagarajan from NIT Trichy who inspired in

me love for mathematics.

Next, I would like to thank all my colleagues at TASC lab for their encouragement

and many intellectually stimulating conversations and debates. In particular, I would like to

thank my collaborator Eric Ruzomberka for his involvement and for giving me the confidence
1↑ The work in this thesis was supported in part by the National Science Foundation under grants
CNS1642982, CCF1816013, CCF2008527 and EEC1941529.

4



to tackle difficult roadblocks. Together, we have worked on a beautiful problem of which I

will always remain proud.

It is now time to thank my friends and family without whom life would be without

meaning. ‘Hum Homies’ - Saikiran, Pia and Zubin, thanks for loving me as your brother and

always standing by me. Thanks to my oldest friend Chirag, for always being there for me

and supporting me. Thanks to ‘Poker Buddies’ - Sidharth (Oola), Sudharshan, Shreeman,

Sarang, Kushagra, Smitan, Rick, Vivek and Rohit for the beautiful memories during my

undergrad at NIT Trichy. Thanks Henry, Jing, Tomohiro, Dennis, Rashika, Sriram (Mon-

goose), Monika, Varun, Rhea, Mohit, Yash, Akansha, Parag, Radhika, Chandnee, Sukshita,

Udit, Aastha, Reena, Priya, Advait, Sneha and Easwara for your wonderful friendship. Spe-

cial thanks to Pinky aunty, Peru uncle, Spencer, Pranita and Priyanka - for their generous

love and for treating me as their own family member.

Finally, thanks to my family back home, mummy (Bama Suresh), papa (P. J. Suresh)

and Munni (Vinodha Suresh), for always loving me unconditionally despite my faults and

supporting me in all my endeavours. Thanks also to my extended family, cousins, uncles

and aunts for their support and best wishes.

5



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Binary Feedback and Beam Alignment for Millimeter-Wave Channels . . . . 13

1.2 Binary Feedback and Adversaries . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Encoding with Binary Feedback and Reed-Muller Codes . . . . . . . . . . . 16

2 SINGLE-BIT MILLIMETER WAVE BEAM ALIGNMENT USING ERROR CON-
TROL SOUNDING STRATEGIES . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Open-Loop Channel Sounding . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Closed-Loop Channel Sounding . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Berlekamp’s Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3 Adaptive Selection Of Sounding Signals . . . . . . . . . . . . . . . . 32

2.5 Channel Sounding for Multipath . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.2 Perfect Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.3 Imperfect Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.4 Recovering Path Directions . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.5 Selection Of Beamformer . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.1 Single Path Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.2 Multi-Path Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6



Page

3 THE CAPACITY OF BINARY STOCHASTIC-ADVERSARIAL CHANNELS: ON-
LINE ADVERSARIES WITH FEEDBACK SNOOPING . . . . . . . . . . . . . . 52

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2 Simple Converse Bounds - The i.i.d. Attack . . . . . . . . . . . . . . 59

3.2.3 Effective number of erasures or flips . . . . . . . . . . . . . . . . . . 60

3.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Results for Erasures . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2 Results for Bit-flips . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Converse Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Converse for BEC(q)-ADV(p)-FS . . . . . . . . . . . . . . . . . . . . 68

3.4.2 Converse for BSC(q)-ADV(p)-FS . . . . . . . . . . . . . . . . . . . . 73

3.5 Achievability Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5.1 Achievability for BEC(q)-ADV(p)-FS . . . . . . . . . . . . . . . . . . 79

3.5.2 Achievability for BSC(q)-ADV(p)-FS . . . . . . . . . . . . . . . . . . 89

3.6 Capacity with Transmitter Feedback . . . . . . . . . . . . . . . . . . . . . . 100

3.6.1 BEC(q)-ADV(p)-FS with Transmitter Feedback . . . . . . . . . . . . 100

3.6.2 BSC(q)-ADV(p)-FS with Transmitter Feedback : A Conjecture  . . . 102

3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 LINEAR BLOCK FEEDBACK ENCODING AND A NOVEL SYSTEMATIC REP-
RESENTATION FOR REED-MULLER CODES . . . . . . . . . . . . . . . . . . 105

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 System Model and Problem Statement . . . . . . . . . . . . . . . . . . . . . 107

4.2.1 Input-Output Expressions and Assumptions . . . . . . . . . . . . . . 107

4.2.2 Review of Open-Loop Coding . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Linear Feedback Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4 Random Noise-Shaping is Capacity-Achieving . . . . . . . . . . . . . . . . . 111

4.5 Design of Encoding Function  . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7



Page

4.5.1 Strengthen a Weak Code . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5.2 Noise-Shaping vs Parity bits . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 Encoding under Feedback Limitations . . . . . . . . . . . . . . . . . . . . . 117

4.6.1 Compressed Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6.2 Delayed Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.7 A Novel Systematic Representation for Reed-Muller Codes . . . . . . . . . . 123

4.7.1 A formula for ∆(r,m) . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.7.2 Asymptotic scaling of ∆(r,m) . . . . . . . . . . . . . . . . . . . . . . 131

4.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8



LIST OF TABLES

2.1 Sounding time Comparison for adaptive vs non-adaptive Alignment  . . . . . . . 36

9



LIST OF FIGURES

1.1 System model for a millimeter-wave MISO system with 1-bit feedback con-
sidered in chapter  2 .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Channel models studied in chapter  3 - (a) BEC(q)-ADV(p)-FS and (b) BSC(q)-
ADV(p)-FS. Calvin is constrained such that he may only inject up to pn
erasures or flips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 System Model for a Millimeter wave MISO system with 1-bit feedback con-
sidered in this paper.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Down-link noise, beam imperfections and other factors can cause the ACK/NACK
feedback to be in error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Assume T = 23 = 8, L = 1, N=6. The generator matrix used for the (6,3,3)
code is G. The regions to be sounded are shown and correspond to the columns
of the generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 An example tracking the complete evolution of states for K = 2 and L = 2
assuming that the correct bin is the one labelled 4. The query regions are
shown within braces at each step. The answers that are erroneous lies are
colored red. The question at each step was selected by solving the integer
program in ( 2.23 ) exactly. At the end of N = 8 questions, only the correct
bin remains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 The coverage area is split into T = 8 regions and the beamset C = {a1, a2, · · · , a8}.
In this example, there are two paths that correspond to directions θ1 and θ2
respectively. We thus have B = {3, 7} assuming that each beam ai directs
energy only in the sector labelled i. . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Shapes of beams to be sounded for given design matrix Z. . . . . . . . . . . 39

2.7 An example of a 2-disjunct matrix Z. Clearly, no individual column contains
any other column. Further, the logical OR of any 2 columns does not contain
the third due to the violations that are marked in red. . . . . . . . . . . . . 40

2.8 Consider Mt = 32, θmin = −90◦, θmax = 90◦. Spatial pattern Gf(θ) of a
beamformer designed to sound the region S = {4, 5, 6, 7, 8} in (  2.4 ) with
DFT type beams vs the codebook in ( 2.32 ). Notice the maximum gain of an
ideal beam is 1

|S| = 0.2.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.9 Expected channel-normalized beamforming gain for single path millimeter
wave channel as a function of sounding SNR ρ. The parameters are fixed
at Mt = 32, N = 16, K = 5 and full 180◦ beamforming is considered. The
feedback link is assumed to be perfectly noiseless. . . . . . . . . . . . . . . . 46

2.10 Performance when the feedback link is a binary symmetric channel with error
probability 5%. Detection threshold was designed based on (  2.35 ). . . . . . . 47

10



2.11 Expected channel-normalized beamforming gain for single path millimeter
wave channel as a function of sounding time N . The parameters are fixed at
Mt = 32, K = 5 and full 180◦ beamforming is considered. Two sets of curves,
one at sounding SNR ρ1 = 0 dB and the other at ρ2 = 5 dB are shown. . . . 48

2.12 Expected channel-normalized beamforming gain for a 2-path millimeter wave
channel. The parameters are fixed at Mt = 512, N = 63 and full 180◦ beam-
forming is considered. Z1 is a Bernoulli i.i.d. design while Z2 is a deterministic
23-disjunct matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Channel models considered in this work - (a) BEC(q)-ADV(p)-FS and (b)
BSC(q)-ADV(p)-FS. Calvin is constrained such that he may only inject up to
pn erasures or flips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 The capacity C(p, q) of BSC(q)-ADV(p)-FS as a function of p. The cut-off
value of p beyond which C(p, q) = 0 is p = 1/4 independent of q. . . . . . . . 65

3.3 In the push phase, if xR and x′
R are sufficiently close (within distance pn),

Calvin can make Bob completely uncertain whether the transmitted codeword
was x or x′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 In the push phase, if xR and x′
R are sufficiently close, Calvin can make Bob

completely uncertain whether the transmitted codeword was x or x′ by in-
jecting Ber(1/2) noise at positions where xR differs from x′

R. . . . . . . . . . 74

3.5 In this example, Calvin causes an erasure at indices 1, 6 and 9 while the
BEC(q) causes an erasure at indices 3 6, 7 and 9. . . . . . . . . . . . . . . . 81

3.6 In (a), the set of indices in Bob’s observation ynt∗+1 where xnt∗+1 and wj differ
are all erased. Therefore, Bob cannot determine if Alice transmitted xnt∗+1 or
wj. In (b), successful reception of even one bit where xnt∗+1 and wj disagree
allows Bob to disambiguate between xnt∗+1 and wj. . . . . . . . . . . . . . . 90

3.7 Channel models with transmitter feedback . . . . . . . . . . . . . . . . . . . 101

3.8 Capacity of BSC(q)-ADV(p)-FS when q = 0.1. Here, the presence of trans-
mitter feedback provably increases the capacity for all values of p.  . . . . . 103

4.1 An example of feedback compression matrix W as defined in the proof of
Theorem  4.6.1 with N = 5 and b = 3. The result holds irrespective of the
choice of W or F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2 Sequence of operations in the proof of Lemma  20 . . . . . . . . . . . . . . . . 125

4.3 Proof of base case proposition P(1,m) of Theorem  4.7.1 . . . . . . . . . . . . 127

4.4 Steps in the proof of Theorem  4.7.1 . . . . . . . . . . . . . . . . . . . . . . . 128

4.5 A systematic form for RM codes where the parity component has a large
triangle of zeros. Also shown is the gap g(r,m) from ∆∗ ( 4.31 ) for code rates
(a) γ(r,m) < 0.5 and (b) γ(r,m) > 0.5. For long RM codes, g(r,m)

∆? ≈ 0. . . . 131

11



ABSTRACT

The availability of feedback from the receiver to the transmitter in a communication

system can play a significant role. In this dissertation, our focus is specifically on binary or

one-bit feedback. First, we study the problem of successive beam alignment for millimeter-

wave channels where the receiver sends back only one-bit of information per beam sounding.

The sparse nature of the channel allows us to interpret channel sounding as a form of ques-

tioning. By posing the alignment problem as a questioning strategy, we describe adaptive

(closed-loop) and non-adaptive (open-loop) channel sounding techniques which are robust

to erroneous feedback signals caused by noisy quantization. In the second part, we tightly

characterize the capacity for two binary stochastic-adversarial mixed noise channels. Specifi-

cally, the transmitter (Alice) intends to convey a message to the receiver (Bob) over a binary

symmetric channel (BSC) or a binary erasure channel (BEC) in the presence of an adversary

(Calvin) who injects additional noise at the channel’s input subject to a budget constraint.

Calvin is online or causal in that at any point during the transmission, he can infer the bits

being sent by Alice and those being received by Bob via a feedback link. Finally in the third

part, we study the applicability of binary feedback for encoding and propose the framework

of linearly adapting block feedback codes. We also prove a new result for Reed-Muller (RM)

codes to demonstrate how an uncoded system can mimic a RM code under this framework,

against remarkably large feedback delays.
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1. INTRODUCTION

In this dissertation, we study three distinct problems in communication systems where the

presence of binary feedback plays a significant role.

1.1 Binary Feedback and Beam Alignment for Millimeter-Wave Channels

We begin in Chapter 2 , where we study the problem of beam alignment for millimeter-

wave (mmWave) communication. With the advent of 5G and beyond, this is an important

and timely problem as mmWave technology is an essential component of most solutions that

address the coverage and throughput demands of next generations wireless networks. Fully

harnessing the benefits of mmWave requires high resolution channel state information (CSI)

feedback in FDD systems. This however creates the problem of excessive overhead due to a

large CSI payload. Motivated by this, we consider a model where the receiver sends back to

the transmitter only one bit of feedback information about the optimal beam per channel

sounding. The system model is illustrated in Fig 1.1 .

It turns out that mmWave channels are generally sparse with a few dominant paths.

We demonstrate that the highly directional nature of the millimeter wave channel and the

binary feedback setup allows us to interpret channel sounding as a questioning strategy. The

sounding beams correspond to questions (about the channel) while the 0/1 feedback bits

correspond to yes/no answers. By exploiting this connection, we develop novel adaptive

(closed-loop) and non-adaptive (open-loop) beam alignment algorithms for single dominant

path channels. Here, by adaptive we mean that the beams are designed ‘on-the-fly’ as a

function of bits received at the transmitter, while non-adaptive refers to the case where

all the beams to be sounded are designed ahead of time. We also develop algorithms for

multi-path channels and evaluate their performance via simulations.

1.2 Binary Feedback and Adversaries

In Chapter 3 , we study the fundamental problem of characterizing capacity when commu-

nicating against a certain jammer or adversary. Different from past work, the ‘main channel’

13



Figure 1.1. System model for a millimeter-wave MISO system with 1-bit
feedback considered in chapter 2 .

between the communicating parties if the adversary were removed is not perfect, instead,

it is modeled as being stochastic. This is motivated by the fact that naturally occurring

channels in the real world are rarely ever perfect, and often the noise process affecting the

transmission can be accurately modeled as a stochastic process. Specifically, we study two

binary channel models with both adversarial and random noise sources, depicted in Fig. 1.2 .

Alice wishes to communicate a message reliably to Bob over a binary erasure channel

(BEC(q)) or a binary symmetric channel (BSC(q)) in the presence of Calvin, who can intro-

duce additional noise at the channel’s input by erasing or flipping bits. Calvin assumes the

role of an online jammer or adversary who has the ability to spy on both terminals causally

in real time. His ability to access Bob’s reception is referred to as feedback snooping. If

x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) are the transmitted and the received codewords

respectively, Calvin at any instant k knows (x1, x2, · · · , xk) as well as (y1, y2, · · · , yk−1). He

may not exceed a given budget constraint of pn erasures or flips but can otherwise freely

14



corrupt parts of the transmission. We prove in closed-form the maximum rate achievable

against such a Calvin. Our converse proof involves showing an explicit attack strategy that

Calvin can employ. This (optimal) attack relies crucially on the presence of binary feedback

available to Calvin. To prove achievability, we resort to a random coding argument.

Interestingly, our results show that in the case of bit-flips, for any q ∈ [0, 1/2), there is

a threshold pq such that when p < pq, Calvin can do no better than inject bit-flips in an

i.i.d. manner. In other words, an adversary who is weak enough is no better than an i.i.d.

memoryless noise source.

Figure 1.2. Channel models studied in chapter 3 - (a) BEC(q)-ADV(p)-FS
and (b) BSC(q)-ADV(p)-FS. Calvin is constrained such that he may only inject
up to pn erasures or flips.

Next, we consider an extension to these models by introducing transmitter feedback where

Alice also has causal access to Bob’s reception. Thus, Alice can potentially employ better

closed-loop encoding strategies to overcome Calvin and achieve higher rates. Here, we give

a complete capacity characterization for the case of erasures. In this case, Calvin’s side

information proves to be completely useless for all values of p ∈ [0, 1] and q ∈ [0, 1], and

he can do no better than mimic an i.i.d. memoryless noise source. Finally for the case of

15



bit-flips with transmitter feedback, we provide partial results ending with a conjecture on

the true capacity expression.

1.3 Encoding with Binary Feedback and Reed-Muller Codes

In chapter 4 , we switch gears and investigate the applicability of binary feedback for

encoding. Specifically, we propose linearly adapting block feedback codes where the feedback

information is linearly processed and combined with an open loop codeword. This is partly

inspired by the successes of linear feedback schemes for channels with real inputs and out-

puts such as the AWGN channel and its variants. We show that linear processing of noise

realizations obtained causally at the transmitter (linear nose shaping) when XORed with an

open loop codeword effectively turns one code into another. A random coding type result

is proved showing that uncoded transmission combined with random linear noise shaping

is capacity achieving. We also show that linear noise shaping in a closed-loop setting is

intimately related to transmission of parity bits in an open-loop setting.

Finally, feedback encoding strategies are described for limited feedback - a) infrequent

compressed feedback and b) delayed feedback. We prove a previously unknown property

for the powerful class of Reed-Muller (RM) codes, specifically relating to their systematic

generator matrix forms. It is shown that on account of this property, an uncoded system

can be turned to mimic a Reed-Muller code even when the delay in the feedback link is

remarkably large. Many illustrative examples are provided throughout the chapter to explain

applications of our results.
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2. SINGLE-BIT MILLIMETER WAVE BEAM ALIGNMENT

USING ERROR CONTROL SOUNDING STRATEGIES

© 2019 IEEE. Reprinted, with permission, from: V. Suresh and D. J. Love, “Single-Bit Mil-
limeter Wave Beam Alignment Using Error Control Sounding Strategies,” in IEEE Journal
of Selected Topics in Signal Processing, vol. 13, no. 5, pp. 1032-1045, Sept. 2019.

V. Suresh and D. J. Love, “Error Control Sounding Strategies for Millimeter Wave Beam
Alignment,” 2018 Information Theory and Applications Workshop (ITA), 2018. © 2020
IEEE.

2.1 Introduction

It is estimated that by 2021, there will be up to 1.5 billion wireless devices with cellular

connections [1 ]. The current efforts for 5G standardization have thus proposed for use of

frequencies in the 20 to 100 GHz range commonly referred to as millimeter wave (mmWave)

frequencies [2 ]. The millimeter wave spectrum affords extremely wide channel bandwidths

(up to 1 GHz) which would provide the necessary capacity increase and enable high data

rates as envisioned in 5G.

Communication at mmWave frequencies suffers from higher isotropic path loss, attenu-

ation due to rain, reduced diffraction around obstacles, sparse scattering, and sensitivity to

blockages [3 ]–[5 ]. It is thus necessary to use a large number of antennas to synthesize highly

directional beams with high beamforming gain. Spatial localization of energy will require

selection of a high-dimensional beamformer at the transmitter.

Transparent beam sounding is an important feature in LTE, specifically enabling ad-

vanced beamforming and coordinated multipoint [6 ]. One way this is accomplished is by

precoding the pilot or the reference signal the same way as the accompanying data. The

beamforming operation at the transmitter is then open to implementation and remains obliv-

ious to the UE.

This work deals with the problem of feedback-assisted selection of beams for commu-

nication between two nodes operating in the mmWave band. The goal is to pick a good

beam to maximize the desired performance metric while minimizing the time and resources

to do so. It is well known from MIMO theory that the optimal beam achieving maximum
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data throughput is a function of the channel realization. Maximum spectral efficiency is

obtained when the beam picked is aligned to the channel subspace [7 ]. Unfortunately, the

current channel realization (CSI) is not available to the transmitter apriori. The receiver

must provide some auxiliary channel information in the feedback to help the transmitter

ascertain the optimal beam. In legacy cellular systems, a known pilot or reference signal

is sent out from each antenna element [8 ]. The receiver then estimates the individual per-

antenna gains and conveys it back to the transmitter. Due to a large number of antennas in

a millimeter wave MIMO system however, the multi-dimensional channel vectors impose a

large communication overhead rendering per-atenna sampling inefficient.

Several codebook-based techniques that allow CSI acquisition without explicit channel

vector estimation for mmWave use have been proposed in the literature [9 ]–[14 ]. The trans-

mitter is equipped with a finite codebook of beamformers. In exhaustive sampling, each

beam in the codebook is sounded once and the receiver feeds back the index of the best

beam after all beams have been sounded. In hierarchical sampling, the transmitter and

receiver jointly determine the best beam pair of a relatively coarse resolution which is fur-

ther refined in successive stages. This involves the receiver feeding a locally optimal index

back to the transmitter to ascertain the beams for subsequent channel sounding. This is

usually accomplished by designing hierarchical subcodebooks containing beams of varying

resolution.

Another popular approach is the so-called compressive beam alignment approach, where

the channel entries are compressed into a few linear measurements using random beam-

forming vectors and fed back to the transmitter. In [15 ], [16 ] for example, the sounding or

sensing beams are generated by applying quantized random i.i.d. phase shifts across antenna

elements. The path gains and angles of departure in the downlink are then estimated by

exploiting the spatial sparsity of the millimeter wave channel. Many other beam alignment

strategies leveraging tools from compressed sensing have been studied extensively (see for

eg. [17 ], [18 ]). These approaches typically require phase coherence between measurements

meaning that the receiver needs to report both the signal magnitude and phase information

in the feedback link. Alignment with magnitude only measurements is explored in [19 ].
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In this work, we consider a model where the receiver conveys only one bit of information

per channel sounding about the optimal beam. This ACK/NACK type of feedback can be

a function of the decoded channel sounding sequence or determined via simple thresholding.

This model enables transparent beam sounding - the UE does not see the actual number

of transmit antennas and is not required to be informed of the beamformers used at the

transmitter. Rough beam alignment using very low-resolution feedback (such as ARQ) may

prove to be important for standardization. The system setup is shown in Figure 2.1 .

Our contributions can be summarized as :

1. We demonstrate that the highly directional nature of the millimeter wave channel

allows us to interpret channel sounding as a questioning strategy. The sounding beams

correspond to questions (about the channel) while the feedback bits correspond to

answers.

2. We investigate both adaptive (or closed-loop) and non-adaptive (or open-loop) beam

alignment algorithms in this framework. In the non-adaptive algorithm, all beams to

be sounded are pre-selected and are designed corresponding to a chosen error control

code.

3. In the adaptive case, where the beams are selected ‘on the fly’, we show that the

beam alignment problem ties closely with Ulam’s problem well known in computer

science literature [20 ]–[22 ]. We formulate new sounding signals by exploiting this

connection. We then study the sounding time gap between adaptive and non-adaptive

beam alignment techniques via simulations.

4. The questioning interpretation of channel sounding is also useful when multiple paths

are present. Using tools developed in group testing [23 ]–[26 ], we design new sounding

signals that enable the transmitter to identify the dominant channel directions. The

beam for communication is then selected by training only on these directions.

5. The quantization of channel state information in a real system is noisy. This could

be due to beam imperfections, fading, channel noise or interference. The alignment

algorithms we propose are designed to be resilient to noisy quantization.
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A preliminary version of this work was presented in 2018 [27 ]. The authors in [28 ] built

upon our work to propose a non-adaptive resource-efficient design only for the case of one

path. An open-loop channel estimation technique inspired by linear block codes in a different

setting was described in [29 ]. In [30 ], the authors develop new techniques for quantitative

group testing, and note that this may be useful for simultaneous sensing of multiple users

when the number of users within a sounding beam is available as feedback to the transmitter.

The rest of the chapter is organized as follows. In Section 2.2 , we explain the system

model and state the problem we wish to solve. Section 2.3 and 2.4 discuss open-loop and

closed-loop beam alignment algorithms respectively when a single path dominates. Section

2.5 deals with the case of multipaths. Simulation studies are presented in Section 2.6 . Finally,

concluding remarks are presented in Section 2.7 .

Notation: All vectors unless stated are column vectors and their `2-norm is represented

by ‖.‖. CN (m,σ2) represents a circularly symmetric complex Gaussian random variable

with mean m and variance σ2. a∗ denotes the conjugate transpose of the vector a. The

hamming distance between two binary vectors x and y is denoted by H(x,y). 1(.) denotes

the indicator function. d e denotes the ceiling function while b c is the floor function. The

set of complex numbers is denoted by C and the set of natural numbers by N. GF (q) is the

finite field with q elements where q is some power of a prime.

2.2 System Model

Consider a multiple-input single-output (MISO) millimeter wave communication sys-

tem with Mt antennas at the transmitter. The receiver is assumed to have a single omni-

directional antenna. The methods discussed are applicable to a multi-antenna receiver, but

this is beyond the scope of the present article. The system setup is shown in Figure 2.1 .

A number of different beamforming architectures have been proposed in literature (see for

eg. [17 ], [31 ], [32 ]). Sounding schemes proposed in this work can be adapted to any given

architecture.
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Figure 2.1. System Model for a Millimeter wave MISO system with 1-bit
feedback considered in this paper.

To accomplish beam alignment, we assume that the transmitter sends a training sequence

or reference signal. The receiver (or user) then processes this known signal. After processing,

we model the symbol received by the receiver on the `th sounding interval as

y` =
√
Mth∗f` + n` (2.1)

where f` ∈ CMt is the beamforming vector picked by the transmitter in the `th sounding,

h ∈ CMt describes the channel and n` ∼ CN (0, 1/ρ) is the noise term. ρ is the post processed

SNR after the channel sounding sequence is match filtered. To restrict the total power at

the transmitter, f` is constrained to be unit norm.

The millimeter wave channel is characterized by large coherent bandwidths and a sparse

scattering environment. We thus adopt a ray-based narrow-band channel model [9 ]. The
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multi-path propagation delays are suppressed and the channel h ∈ CMt×1 with p paths is

modeled as

h =
p∑
i=1

αia(θi) (2.2)

where θi corresponds to the angle of departure (AoD) for the ith path, αi ∼ CN (0, 1) is its

complex channel gain, and a(θi) ∈ CMt×1 represents the beam steering vector for direction

θi in the transmitter’s array manifold. Due to its highly directional nature, the mmWave

channel has only a few dominant paths. The channel model in (2.2 ) with a single dominant

path reduces to h = αa(θ0). For pedagogical reasons, we will assume a uniform linear array

(ULA) at the transmitter. Extensions to planar arrays is possible. For a ULA, the unit

norm beam steering vector is

a(θ) = 1√
Mt

[
1 ej2πβ sin θ ej2π(2)β sin θ · · · ej2π(Mt−1)β sin θ

]T
(2.3)

where β is the ratio of inter-antenna spacing to wavelength.

Suppose that the desired coverage area is I = [θmin, θmax]. The transmitter chooses

an appropriate collection of T mutually disjoint intervals or bins that covers I, labeled 1

through to T . One possible choice is uniform partitioning where all intervals are picked to

have equal length. A non-uniform partitioning may be used if the base station has some

prior knowledge of where the user is located. For example, it may choose finer intervals

in regions where the user is more likely to be to achieve greater beam directionality. For

the purpose of beam alignment, the transmitter is equipped with a beam set denoted as

C = {a1, a2, · · · aT}, where each beam ai is designed to span the interval with label i. To

test if the user is in a region S ⊂ {1, 2, 3, · · ·T}, the transmitter chooses the beamformer f

as a normalized linear combination of beams in S according to

fS =
∑
i∈S ai

‖∑i∈S ai‖
. (2.4)
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As noted previously, we consider a model where the receiver provides only one bit of infor-

mation per channel sounding about the best beam. The received symbol y` is quantized to

a single bit r` and fed back to the transmitter according to some rule

r` = Γ`(y`). (2.5)

One possible choice is to set r` = 1(|y`|2 > γ`) where 1(.) is the standard indicator function

and γ` is the chosen threshold on the `th channel sounding.

The channel-normalized beamforming gain corresponding to a beamforming vector f is

defined to be

A(f) = |h
∗f |2

‖h‖2 . (2.6)

After receiving N bits of feedback over the N sounding intervals denoted {rj}Nj=1, the trans-

mitter wishes to select

fopt = arg maxA(f). (2.7)

In the case of one dominant path for example, if all bits r` were reliable and no prior

information was available, the optimal strategy for the transmitter is to use a simple binary

search like algorithm by successively refining the search beam width by half until the user is

located to the desired beam resolution. However due to noisy quantization, some of the bits

received in the feedback could be inconsistent with the receiver’s actual location. We then

say that these bits are in error or are erroneous. This is depicted in Fig. 2.2 .

Since the feedback link carries only a single bit per feedback interval, channel sounding

can be interpreted as a questioning strategy with yes/no answers (ACK or NACK). However,

quantization error can cause some of the yes/no answers to be incorrect, which equates to

lies in questioning. The general problem of searching over a finite set under different error

models is a well studied problem in theoretical computer science [20 ]–[22 ], [33 ]. The actual

number of erroneous bits in a real system is a random quantity. We thus follow a worst-case

design philosophy in that our algorithms have guaranteed resilience against a given maximum

number of errors.
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Figure 2.2. Down-link noise, beam imperfections and other factors can cause
the ACK/NACK feedback to be in error.

The beam f` ∈ CMt×1 picked in the `th sounding can be described mathematically as

f` = F(C, r1, · · · , r`−1) ` = 1, 2, · · · , N, (2.8)

a function of the beam set C and the previously received feedback bits {ri}`−1
i=1 . This type of

beam selection is referred to as closed-loop or adaptive channel sounding. The base station

keeps track of bits received in the feedback to select subsequent beams in an ‘online’ manner.

An alternative approach with far less complexity is to sound beams agnostic to the

received bits. Mathematically,

f` = F(C) ` = 1, 2, · · · , N. (2.9)

In other words, f` is not a function of {ri}`−1
i=1 . All beamforming codewords {f`}N`=1 are

designed ‘offline’ before the sounding process even begins. We refer to such a strategy as

open-loop or non-adaptive channel sounding. Sections 2.3 and 2.4 discuss open-loop and

closed-loop channel sounding techniques respectively for the case of one dominant path.

Channel sounding for multi-path is dealt with in Section 2.5 .

It is clear from Fig. 2.2 that an erroneous bit r` received in the feedback corresponds to a

‘lie’ in the questioning interpretation. In closed-loop channel sounding, since f` is selected as
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a function of {ri}`−1
i=1 , an erroneous bit will change the subsequent beams that are sounded.

On the other hand, in open-loop channel sounding, the effect of erroneous bits is felt only in

post processing. For beamforming vector f, its normalized spatial pattern as a function of

the physical angle θ ∈ [−90◦, 90◦] is characterized as

Gf(θ) = |a(θ)∗f|2. (2.10)

2.3 Open-Loop Channel Sounding

2.3.1 Algorithm Description

This section describes non-adaptive techniques for beam alignment when only one path

dominates. Without loss of generality, assume T = 2K . We label each of the 2K bins in the

coverage area with K bits according to a one-to-one mapping

ϕ : {1, 2, 3, · · · , T} 7−→ {0, 1}K , (2.11)

One choice of ϕ in (2.11 ) is simply to use the standard decimal to binary representation.

This is illustrated for the case of T = 8 in Fig. 2.3 . Let mj denote the vector label for bin

j and mdp be the label that corresponds to the dominant path. This is to say the optimal

beam from the codebook maximizing (2.6 ) is aϕ−1(mdp).

Notice in Fig. 2.3 that the first bit of the vector label for each of the bins in the second

half of the search region is 1. In other words, a beam sounded to search the second half of

the desired coverage area say f1 can be mapped to a question of the form : “Is the first bit

of mdp equal to 1?”. After f1 is sounded, the receiver has access to the symbol y1 according

to (2.1 ) which is quantized to a single bit r1 and fed back to the transmitter. Then, r1 = 0

corresponds to a no answer while r1 = 1 corresponds to a yes answer. Due to the fact that

quantization is noisy, some of the ri, i = 1, 2, · · · , N , could be inconsistent with the direction

of the dominant path. Hence, K questions, one for each bit, are not enough.

Suppose we assume that no more than L bits received at the transmitter are erroneous.

It is then clear that picking the optimal beam is equivalent to determining K information
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bits (of the label mdp) in the presence of up to L errors. This is the classical problem of

error control coding.

Let G = [g1g2 · · ·gN ] be the generator matrix of a linear (N,K, dmin) block code over

GF (2) where N is the code length, K is the code’s dimension and dmin is the minimum

distance between codewords. Denote by S` the bins to be sounded in the `th sounding.

Under the non-adaptive strategy, we select S` according to

S` = {j : mjg` = 1}, (2.12)

where the corresponding beam f` is given by (2.4 ). The transmitter thus picks the sounding

signals in accordance with the columns of the generator. Only those regions whose labels

when XORed corresponding to the generator’s `th column return 1 are picked on the `th

channel sounding. Fig. 2.3 illustrates the shapes of the beams to be sounded for a (6, 3, 3)

code. The first 3 columns of the generator form the identity matrix and translate to bit-

by-bit questions, one for each bit. Since the 4th column is [1 1 0]T , f4 is chosen as a linear

combination of beams corresponding to labels (010), (011), (100) and (101). The related

question is, “Is the XOR of the first two bits in mdp equal to 1?”

From (2.12 ), if all bits {ri}Ni=1 are consistent with the direction of the dominant path, we

would have

r` = I(ϕ−1(mdp) ∈ S`) = mdpg`. (2.13)

After N beams are sounded then, the received bit vector r = (r1, r2, · · · , rN) can be inter-

preted as a distorted version of the codeword mdpG, corrupted due to the noisy quantization.

At the end of channel sounding, standard decoding methods from coding theory literature

are applied to decode the received codeword r into the binary label m̂ for the dominant path.

The transmitter selects

fsel = aϕ−1(m̂)/‖aϕ−1(m̂)‖. (2.14)

Since a linear code with dmin ≥ 2L+1 is resilient against up to L errors [34 ], the code in Fig.

2.3 can determine the optimal beam even if one of the six bits received in the feedback is in
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error. It should be noted that one can also use non-linear codes for designing the sounding

scheme.

2.3.2 Analysis

The generator matrix G for any (N,K, dmin) linear block code can be converted into

what is called the systematic form by Gaussian elimination [34 ], meaning it has the form

G = [IK | P] (2.15)

where G is of size K ×N and IK is the K ×K identity matrix. This implies that the first

K beams sounded at the transmitter in open-loop channel sounding can always be made to

correspond to K individual bit level questions. We shall see that a parallel observation also

holds in the case of closed-loop channel sounding.

One natural goal for beam alignment is to minimize the total sounding time and corre-

spondingly the feedback overhead N . Any bounds known for open-loop codes are useful to

characterize the trade-offs between N , the desired beam resolution (relates to K) and the

desired degree of error correction L. Given K and L, we look for a (N,K, 2L + 1) code

with the smallest codeword length N possible. A lower bound on N is due to the celebrated

sphere-packing bound

2K
 L∑
j=0

(
N

j

) ≤ 2N . (2.16)

The minimum sounding time with an open-loop beam alignment algorithm is the smallest

N for which (2.16 ) holds.

The well-known Singleton bound [34 ] states that for any arbitrary block code, dmin ≤

N −K + 1. Thus, if N and K are fixed, the maximum number of erroneous feedback bits

L that are guaranteed to be corrected satisfies L ≤ N−K
2 . Codes meeting this bound are

called Maximum Distance Separable (MDS) codes. These have been used extensively in data

storage systems due to their excellent error correction capabilities. We can leverage them

for robust open-loop beam alignment.
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Figure 2.3. Assume T = 23 = 8, L = 1, N=6. The generator matrix used for
the (6,3,3) code is G. The regions to be sounded are shown and correspond to
the columns of the generator.
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2.4 Closed-Loop Channel Sounding

In this section, we describe selection of beams as a function of previously received feedback

bits as in (2.8 ).

2.4.1 Preliminaries

The famous mathematician S.M Ulam in his autobiography ‘Adventures of a Mathemati-

cian’ [35 ] posed the following question: What is the minimal number of yes/no questions

that one needs to determine an unknown number between one and a million if at most one

or two of the answers may be lies? The generalization of this problem to distinguish between

T numbers with at most L lies has since been extensively studied in the computer science

literature [20 ]–[22 ] and is popularly called Ulam’s problem.

Someone thinks of a number between one and one million (which is just less than

220). Another person is allowed to ask up to twenty questions, to each of which

the first person is supposed to answer only yes or no. Obviously the number

can be guessed by asking first: Is the number in the first half-million? and then

again reduce the reservoir of numbers in the next question by one-half, and so

on. Finally the number is obtained in less than log2(1000000). Now suppose one

were allowed to lie once or twice, then how many questions would one need to

get the right answer?

We can think of an adaptive channel sounding strategy for the case of one dominant path

as Ulam’s game between the communicating nodes. The unknown number corresponds to

the bin index containing the dominant path. The channel sounding relates to questioning

and the erroneously received bits relate to lies during questioning. As before, we have a total

of T bins covering the region of interest [θmin, θmax] and assume that no more than L bits

received at the transmitter are in error.

Berlekamp was the first to develop an analytical framework to analyze Ulam’s problem

[36 ] which we outline in 2.4.2 . The general idea is to assign a negative vote to bins that

disagree with the received bit in a given sounding iteration. As more beams are subsequently
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sounded, the ‘incorrect’ bins hopefully accumulate enough votes and are eventually discarded

until only the correct one remains.

Suppose that the transmitter sounds a region S ⊂ {1, 2, 3, · · ·T}. If it receives an ACK,

the bins in Sc are each assigned a negative vote and if a NACK is received, the bins in S

are each assigned a negative vote. Denote Ai to be the collection of bin numbers that have

received i negative votes so far. In other words, Ai contains bin numbers with a disagreement

tally of i. Since we assume a maximum of L erroneous bits, any bins receiving more than L

negative votes can be discarded.

The transmitter’s knowledge at any point in the sounding process can thus be summarized

by a collection of L + 1 disjoint sets {A0, A1, · · ·AL}. An example of how these sets evolve

as the channel sounding progresses is shown in Fig. 2.4 

2.4.2 Berlekamp’s Analysis

Since the sets change only by assignment of negative votes, it is enough to work with their

cardinalities. Let xj denote the cardinality of Aj and define the n-state to be the integer

sequence x = (x0, x1, · · ·xL) ∈ NL+1. The integer n refers to the number of times that the

transmitter is allowed to sound the channel from that point onward. With a total budget of

N sounding signals then, the initial state is the N -state and the final state is the 0-state.

On sounding beams with labels in the set S ⊂ {1, 2, 3, · · ·T}, we define Ui = S ∩ Ai
representing channel sounding as the vector u = (u0, u1, · · ·uL), where ui = |Ui|. This is

equivalent to partitioning each set Ai into disjoint subsets Ui and Vi of sizes ui and vi and

testing if the user is in the region ⋃Lj=0 Uj. The initial state (the N -state) is (T, 0, 0, · · · 0) ∈

NL+1.

In this formulation, the goal is to devise a strategy with minimal sounding time so that

at the end of channel sounding, only one of the sets Aj is non-empty. What one would like

is for the final 0-state to look like one of the following : (1, 0, 0, · · · , 0), (0, 1, 0, 0, · · · , 0),

(0, 0, 1, 0, · · · , 0), · · · , (0, 0, 0, 0, · · · , 1). Note also that not all sets can come up empty as

that would imply more than L lies have occurred, a violation of the rules.
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Figure 2.4. An example tracking the complete evolution of states for K = 2
and L = 2 assuming that the correct bin is the one labelled 4. The query
regions are shown within braces at each step. The answers that are erroneous
lies are colored red. The question at each step was selected by solving the
integer program in (2.23 ) exactly. At the end of N = 8 questions, only the
correct bin remains.

Berlekamp introduced the concept of “volume” for states. The volume of a n-state

x = (x0, x1, · · ·xL) is defined to be [36 ]

Vn(x) =
L∑
i=0

xi
L−i∑
j=0

(
n

j

)
.

This definition is intuitively the total number of ways in which lies could possibly be dis-

tributed; for each of the xi elements in the set Ai, there are
(
n
j

)
arrangements of j erroneous

feedback bits in the n remaining probes, where j takes any value from 0 to L− i. Berlekamp

proved the following theorems:

Theorem 2.4.1. [36 ] (Conservation of Volume) Let x be any non trivial n-state, and let y

and z be the (n− 1)-states that result from it following a probe that corresponds to ACK and

NACK respectively. We then have

Vn(x) = Vn−1(y) + Vn−1(z).
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The above theorem is a simple consequence of Pascal’s combinatorial identity and the

definition of volume. In words it states, no matter the question selected, volumes of the

resulting ACK-state and the NACK-state add up to the volume of the state at which the

question was asked.

Theorem 2.4.2. [36 ] (Volume Bound) If the current n-state x is such that n sounding

signals are sufficient to determine the dominant path, then Vn(x) ≤ 2n.

The initial state is (T, 0, 0, · · · 0) ∈ NL+1 with volume T
(∑L

j=0

(
N
j

))
by definition. If the

transmitter has a sounding strategy that determines the bin number corresponding to the

dominant path with no more than N sounding signals, the volume bound implies

 L∑
j=0

(
N

j

) ≤ 2N
T
. (2.17)

Thus, (2.17 ) gives the a lower bound on the minimum sounding time to adaptively determine

the optimal beam, no matter how the lies are distributed.

2.4.3 Adaptive Selection Of Sounding Signals

An examination of (2.17 ) reveals that this bound is identical to the sphere packing bound

for open-loop codes in (2.16 ). For certain values of N , L and T , perfect error correcting codes

exist that meet this bound exactly and adaptation provably offers no benefits. But such codes

are extremely limited since it is known that any non-trivial perfect code over a finite field

has the same code parameters as the Hamming code or the Golay code [34 ].

The Volume Bound together with the conservation of volume reveals the optimal regions

to sound at any stage of the beam alignment algorithm. Suppose that the transmitter in

the (N − `) state picks f` to sound beams with labels in a set S` ⊂ {1, 2, 3, · · ·T} according

to (2.4 ). Theorems 1 and 2 imply that S` must be selected so that the resulting states that

correspond to ACK and NACK have nearly the same volume. This idea of splitting into

equal halves is

If in a current n-state (x0, x1, · · ·xL), all xj’s are even, then the selection u =
(
x0
2 ,

x1
2 , · · ·

xL

2

)
results in the two (n− 1)-states corresponding to ACK and NACK having equal volume, for
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any n. Thus any sounding strategy that is optimal begins with the same sounding signals,

which is to pick half the number of elements in each of the Ai’s successively as long as all

terms in the state sequence are even. This observation is in parallel to (2.15 ). The first

batch of optimal sounding signals for both adaptive and non-adaptive algorithms are simply

individual bit-level questions. A simple induction argument with Pascal’s identity gives the

following Lemma.

Lemma 1. Suppose that the initial state is (T, 0, 0, · · · 0) ∈ NL+1. The resulting state after

q beams are optimally sounded is

(
T

2q

(
q

0

)
,
T

2q

(
q

1

)
, · · · , T2q

(
q

L

))
(2.18)

as long as 2q divides T . If T = 2K, the resulting state after K beams are optimally sounded

is ((
K

0

)
,

(
K

1

)
, · · · ,

(
K

L

))
. (2.19)

Proof. We use an induction argument. The proposition is clearly true for q = 1. Since

2 divides T , the optimal beam is that which sounds half of the desired coverage region.

The resulting state after the first beam is sounded is then
(
T
2 ,

T
2 , · · · , 0

)
. Suppose that

the proposition holds for q = k − 1 and that 2k divides T . The current state is then(
T

2k−1

(
k−1

0

)
, T

2k−1

(
k−1

1

)
, · · · , T

2k−1

(
k−1
L

))
. The optimal beam to sound at this stage is to pick

half the bins in each set. The resulting state by assigning votes and by Pascal’s identity is(
T
2k

(
k
0

)
, T2k

(
k
1

)
, · · · , T2k

(
k
L

))
.

The difficulty then in designing an optimal strategy is that eventually, some terms in the

resulting states will be odd. It is clear that the leading terms in a state contribute most

to the volume. Hence, even a unit difference between the respective leading terms of the

Yes-state and the No-state will cause a large difference in their volumes. To compensate for

this difference, the rest of the terms will have to be split unevenly.

A dumb strategy is to set uj =
⌊
xj

2

⌋
for each j = 0, 1, · · · , L until a stage where each set

Aj, j = 0, 1, · · · , L has at most one bin. Using a result from [33 ], we obtain an upper bound

on the sounding time under this strategy.
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Lemma 2. [33 ] Denote xi(q) as the number of bins at level i after q probes. If we use the

strategy described above, then ∀q ≥ 0 and j ≤ q

j∑
i=0

(
xi(q)−

T

2q

(
q

i

))
≤ j + 1 (2.20)

Theorem 2.4.3. Denote the minimum sounding time given by the volume bound to be Nvol.

The sounding time with the dumb strategy is no more than Nvol + L2 + L+ 1.

Proof. After q beams are sounded, Lemma 4 implies

L∑
i=0

xi(q) ≤
L∑
i=0

T

2q

(
q

i

)
+ L+ 1. (2.21)

Choose the smallest q = qmin such that

L∑
i=0

T

2q

(
q

i

)
< 1 (2.22)

An inspection with equation (2.17 ) reveals either qmin = Nvol or qmin = Nvol + 1. (the latter

holds when (2.17 ) is satisfied with equality) Thus after qmin probes, sets A0 through AL

collectively contain at most L + 1 bins. Since each probe will push at least one bin ahead,

the claim holds.

While this strategy is extremely simple, a penalty of L2 + L + 1 may not be tolerable

especially when L is large. We instead look for a direct attack. If x = u + v where u is the

probe that reduces the n-state x to either the (n− 1)-yes-state y or the (n− 1)-no-state z,

we see that ∣∣∣Vn−1(y)− Vn−1(z)
∣∣∣ =

∣∣∣∣∣∣
L∑
j=0

(
n− 1
L− j

)
(2uj − xj)

∣∣∣∣∣∣ . (2.23)

The optimal choice of u = (u0, u1, · · ·uL) is then to minimize (2.23 ). Fig. 2.4 demonstrates

the complete sequence of states for K = 2 and L = 2 where u is always selected optimally.

The optimization problem of minimizing (2.23 ) is an integer linear program and known

to be NP-hard. A commonly used technique to handle these type of problems is to first relax

the integer constraints and solve the corresponding linear program. The solutions obtained
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are then rounded to integers using methods like branch and bound or cutting planes. A

comprehensive discussion of different solution techniques can be found in [37 ]. Alternately,

the authors in[38 ] suggest a greedy-like approach to minimize (2.23 ) by accumulating one

term at a time. This is summarized as Algorithm 1. The function ChooseU (A0, A1, · · ·AL, n)

chooses the region [U0, U1, · · ·UL] to test, given the current n-state.

Algorithm 1 ChooseU (A0, A1, · · ·AL, n) [38 ]
1: p, q ← 0 . Initialise
2: for i← 0 to L do
3: ∆←

∣∣∣∣(p+
(
n−1
L−i

)
ui

)
−
(
q +

(
n−1
L−i

)
(xi − ui)

)∣∣∣∣
4: Choose Ui ⊆ Aito minimise ∆
5: p← p+

(
n−1
L−i

)
ui

6: q ← q +
(
n−1
L−i

)
(xi − ui)

7: end for
8: return S = ⋃L

j=0 Uj

We are now ready to describe the adaptive channel sounding strategy. The sounding time

budget N is fixed before. The transmitter maintains {A0, A1, · · ·AL, n} for an appropriately

chosen value of L. The role that parameter L plays is that any bin receiving more than L

negative votes is discarded during the sounding process. On testing a region and receiving an

ACK/NACK, the sets are updated by assignment of votes. Having received bits r1 through

rj in the feedback link, the transmitter picks Sj+1 = ChooseU (A0, A1, · · ·AL, N − j). Thus

in sounding interval j + 1, transmitter sounds the beam

fj+1 =
∑
i∈Sj+1 ai

‖∑i∈Sj+1 ai‖
. (2.24)

The most likely angular region corresponding to the path angle in the channel is the

one with the least number of negative votes. Thus at the end of channel sounding, the

transmitter picks Aj with the smallest index j such that it is non-empty. If Aj contains

only one bin number p ∈ {1, 2, 3, · · ·T}, we set fsel = ap. If not, we set fsel = aq where q is

randomly chosen from Aj.

In Table 1, we compare the (worst case) sounding times for adaptive and non-adaptive

beam alignment. Non-adaptive alignment is implemented with the shortest length code
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Table 2.1. Sounding time Comparison for adaptive vs non-adaptive Alignment
K\L 1 2 3 4 5 6

1 3 5 7 9 11 13
2 5 8 11 14 17 20
3 6 9(10) 12(13) 15(17) 18(20) 21(24)
4 7 10(11) 13(14) 16(19) 19(22) 22(26)
5 9 12(13) 15 18(20) 21(23) 24(27)
6 10 13(14) 16(17) 19(22) 22(25) 25(29)

known for the given parameters. A table of best known codes is in [39 ]. The adaptive

alignment is implemented via the greedy sub-optimal Algorithm 1. Table cells with a single

entry are cases where the total sounding time for both algorithms coincide meaning that

adaption does not provide any benefit. As a general trend, the gap between sounding time

for the two techniques gets larger as either K or L increase.

2.5 Channel Sounding for Multipath

We now consider the effect of multipaths between the transmitter receiver pair. The

channel model is

h =
p∑
i=1

αia(θi) (2.25)

with parameters as defined in (2.2 ). As before, the desired coverage area is covered by T

angular regions or bins. The beam alignment algorithm is split into two phases. In the

first phase, the channel is sounded N times and the N bits received in the feedback are

post-processed to identify the set B ⊂ {1, 2, · · · , T} of bin indices that correspond to path

directions that are active. See Fig. 2.5 for an example. In the second phase, the transmitter

sounds beams along directions specified in B to determine the optimal beam. For pedagogical

reasons, we assume in this section that all of the beams in the beamset C are idealized beams

whose gain patterns are constant in their intended support and zero elsewhere (see Fig. 2.8 ).
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Figure 2.5. The coverage area is split into T = 8 regions and the beamset
C = {a1, a2, · · · , a8}. In this example, there are two paths that correspond to
directions θ1 and θ2 respectively. We thus have B = {3, 7} assuming that each
beam ai directs energy only in the sector labelled i.

2.5.1 Preliminaries

The beam alignment algorithms described for the single path case can no longer be

applied to the multi-path scenario in a straightforward manner. In the case of open-loop

beam alignment, each bin was assigned a message label mj ∈ {0, 1}K , j = 1, 2, · · · , T . A

suitable code with the generator matrix G was then chosen for beam selection. Suppose

that there are two strong paths that correspond to bins with labels say m1 and m2. Even

with perfect feedback (which means no bits in the feedback are inconsistent), the transmitter

after channel sounding receives r = (r1, r2, · · · , rN)T given by

r = m1G ∨m2G, (2.26)

where ∨ is the component-wise logical OR operation. With access to only r at the end of

channel sounding, the identities of individual paths are completely lost and they cannot be

resolved without imposing some additional constraint on G.

In the adaptive algorithm, negative votes were assigned to individual regions with the

goal of picking out one dominant path. Suppose that there are two dominant paths and we

decompose {1, 2, · · · , T} = S1 ∪ S2 where S1 and S2 each contain one path. For example in

Fig. 2.5 , we could take S1 = {1, 2, 3} and S2 = {4, 5, 6, 7, 8}. If the transmitter now sounds

either fS1 or fS2 as in (2.4 ), all bins in one of these sets are assigned a negative vote. Thus,

the notion of a disagreement tally is obscured.
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We instead model channel sounding with one-bit of feedback as a noisy group testing

problem with d defectives [24 ]–[26 ]. Group testing was originally introduced during World

War II to detect the presence or absence of syphilitic antigen in a blood sample from a

large population of samples in as few tests as possible [23 ]. Blood samples containing the

antigen are called positives or defectives and are far fewer in number compared to the total

population size. The main idea is to test groups of samples (called pools) together rather

than test each one individually. A group testing algorithm is adaptive if the successive pools

to be tested depend on the the outcomes of previously tested pools. However, much of

research in this area is focused on non adaptive algorithms where all pools to be tested are

decided beforehand. This is primarily since adaptive algorithms are sequential by nature and

hence incur high latency, while the tests in a non-adaptive algorithm can be implemented in

parallel when used for applications like blood testing. We consider here a noisy variant of

the problem where the outcome of a test may be erroneous.

All vectors we deal with in this section have 0-1 entries. We say that a vector p =

[p1, p2, · · · , pN ]t contains vector q = [q1, q2, · · · , qN ]t denoted q � p, if qi ≤ pi for all

i = 1, 2, · · · , N . We associate channel sounding to a binary N × T test matrix Z =

{z1, z2, · · · , zT} with a 1 in position (i, j) if jth bin is sounded on the ith channel sound-

ing and 0 otherwise. In other words, the ith row of Z completely specifies the bins that are

sounded in the ith channel sounding interval. The corresponding beamformer fi is selected

as

fi =
∑T
j=1 aj1(zj(i) = 1)

‖∑T
j=1 aj1(zj(i) = 1)‖

. (2.27)

Here, zj(i) refers to the ith entry in the column vector zj. An example of the shapes of

beams to be sounded is illustrated in Fig. 2.6 . We can also think of the columns of Z as the

individual binary vector labels or codewords assigned to each bin.

2.5.2 Perfect Feedback

First, suppose that all of the bits {ri}Ni=1 are consistent with the actual path directions.

In other words, none of the bits received at the transmitter are incorrect. By definition, the

rows of Z indicate the regions where energy is directed in a particular sounding. Thus, if
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Figure 2.6. Shapes of beams to be sounded for given design matrix Z.

the bins that correspond to the p path directions have labels zi1 , zi2 , · · · , zip (columns of Z),

we would have

r =
p∨
j=1

zij (2.28)

where ∨ represents the component-wise logical OR operation of column vectors. In

practice, we may not know p exactly and instead assume p ≤ d. (2.28 ) reveals how Z should

be designed. In principle, all we need is the component-wise logical OR of every d or less

columns of Z to be a unique vector to determine which path directions are active. However,

even if we had such a Z, determining the set B would involve an exhaustive search over a total

of ∑d
i=1

(
T
i

)
possibilities. This would make the scheme impractical from an implementation

perspective. To overcome this, it is common in the group testing literature to enforce the

following additional structure on Z [24 ].

Def: A matrix Z is said to be d-disjunct if the component-wise logical OR of any d or

less columns does not contain any other column.

A 1-disjunct matrix is one where no column is contained in another. An example of

a 2-disjunct matrix is illustrated in Fig. 2.7 . If Z were d-disjunct, it suffices to iterate

over each of the T columns once and check the ones that are contained in the received bit
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Figure 2.7. An example of a 2-disjunct matrix Z. Clearly, no individual
column contains any other column. Further, the logical OR of any 2 columns
does not contain the third due to the violations that are marked in red.

vector r to decide which bins correspond to active path directions. This greatly reduces the

implementation complexity and involves only T vector comparisons. Mathematically,

B = {k | zk � r}. (2.29)

2.5.3 Imperfect Feedback

As noted before, the quantization of the received symbol at the receiver is noisy. As a

result, the transmitter only has access to a corrupted version of r in (2.28 ), say r. If n is a

0-1 noise sequence, 1 indicating an erroneously received bit, we have

r’ =
 p∨
j=1

zij

⊕ n = r⊕ n (2.30)

where ⊕ is the addition operation over GF (2). Even a single error in the received bit vector

r can cause a failure if we used only a d-disjunct matrix. To be resilient against up to e

errors, the logical OR of one set of d (or less) columns should be at least 2e + 1 away in
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hamming distance from that of another set of d (or less) columns. We thus need special kind

of d-disjunct matrices.

Def: A de-disjunct matrix Z is a d-disjunct matrix with the following property: given

any d + 1 columns with one designated, there are at least e + 1 rows with a 1-entry in the

designated column and a 0-entry in the others.

Theorem 2.5.1. A de-disjunct binary matrix Z can identify up to d multipaths correctly

against up to b e2c erroneous feedback bits.

Proof. Let P = {x1,x2, · · · ,x|P|} and Q = {y1,y2, · · · ,y|Q|} each be a set of d or less

columns from Z i.e. |P|, |Q| ≤ d. Denote component-wise OR of columns in P and Q as

p̃ =
|P|∨
i=1

xi and q̃ =
|Q|∨
j=1

yj (2.31)

Choose a column column c ∈ Q \P. Since Z is de-disjunct, c contains a 1-entry in e+ 1

rows where all columns x1,x2, · · · ,x|P| have 0-entries. Thus, H(p̃, q̃) ≥ e+ 1.

The property of de-disjunctness in addition to providing error tolerance also allows for

a very simple decoding strategy whose runtime is linear in the dimensions of the test ma-

trix (Section 2.5.4 ). However, deterministic construction of such matrices is a non-trivial

endeavor and a subject of intensive research. We refer the interested reader to [24 ], [25 ], [40 ]

for specific design methodologies and a general overview on group testing literature.

In a parallel line of thought, many authors have advocated for random constructions of

test matrices. One particularly simple construction is where each individual entry in the test

matrix is sampled i.i.d. from a Bernoulli distribution and has been shown to perform well

in practice [41 ]. In our simulations, we consider both kinds of designs and compare their

performances under different decoding algorithms. It was shown in [42 ] that optimal adaptive

measurements provide no gain over Bernoulli i.i.d designs in the asymptotic regime for either

perfect or noisy feedback, provided that the number of defectives d grows slowly with the

number of items T . We will thus only consider non-adaptive designs for the multi-path case.
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2.5.4 Recovering Path Directions

Suppose that Z is de-disjunct. The matrix Z with binary entries completely describes

the sounding signals at any stage of the algorithm. It is designed to identify up to certain

number of paths with the desired error tolerance. Specifically, it can provably identify up

to d paths and correct up to b e2c erroneously received bits. As before, the transmitter is

equipped with a beam set C. Sounding progresses according to design matrix Z and the one

bit ACK/NACK responses are collected in a vector r. The active path directions then need

to be inferred by decoding r described in algorithm 2. A straightforward proof of correctness

is in [43 ]. Note that its time complexity scales as O(NT ) and it returns a set B of bin indices

that correspond to path directions. Since one does not know the number of errors that can

occur apriori, we shall also consider other decoding methods in our simulations.

Algorithm 2 Decoding Multipath(Z, r)
1: B ← ∅ . Z is de-disjunct
2: for i← 1 to T do . size of Z is N × T
3: C(zi, r)← card

(
{j | zi(j) = 1 and rj = 0}

)
4: if C(zi, r) ≤ b e2c then
5: B ← B ∪ {i}
6: end if
7: end for
8: return B

2.5.5 Selection Of Beamformer

For the case of multipath, we allow the transmitter to choose its beam for communication

as a linear combination of a small subset of beams from the beamset. Suppose that the

beamset C = {a1, a2, · · · , aMt} consists of Mt orthogonal beams. Having recovered the

set B = {ii, i2, · · · , im} with a group testing approach, the beamformer f chosen at the

transmitter is a linear combination of beams ai1 through aim . The transmitter estimates the

complex weights to be applied to these beams before they are summed by training only on

these beams. Due to channel sparsity, |B| � |C|. As a concrete example, suppose B = {2, 5}.
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By sending out training beacons on a2 and a5, the transmitter obtains a good estimate of

γ2 = a∗
2h and γ5 = a∗

5h. The beamformer is then selected to be fsel = γ2a2+γ5a5
‖γ2a2+γ5a5‖ .

2.6 Simulation Results

We present simulation studies to validate our proposed algorithms. It is convenient to

define the spatial frequency variable ψ = 2πβ sin(θ) = π sin(θ), assuming β = 1
2 . We consider

full 180◦ beamforming (θmin = −90◦, θmax = 90◦) and the beam set at the transmitter

C = {a1, a2, · · · , aMt} has the form

ai = 1√
Mt

e−j (Mt−1)
2 ψi

[
1 ejψi · · · ej(Mt−1)ψi

]T
(2.32)

where ψi = −π + (2i− 1) π
Mt
, i = 1, · · · ,Mt. The centers ψi of the beams are spaced equally

in the ψ ∈ [−π, π] domain so that the resulting beams are orthonormal i.e. a∗
iaj = 0 when

i 6= j. While similar in form to the beam steering vector, the additional phase shift term

e−j (Mt−1)
2 ψi applied to the beams ensures that when the individual harmonics are summed

together in (2.4 ), the resulting beam patterns have nearly flat gains in the regions of interest

and low side-lobes in others. In comparison, beams from a simple DFT-type codebook work

poorly due to the nulls that occur on summing of harmonics. This is illustrated in Fig. 2.8 .

We also define idealized beams to simplify the detector design. Let C̃ = {ã1, · · · , ãMt} be

the set of ideal beams where beam ãi has a normalized spatial pattern given by

Gãi
(θ) =


1 θ ∈ Gi

0 otherwise
(2.33)

where Gi =
{
θ : π sin(θ) ∈

[
−π + 2π

Mt
(i− 1),−π + 2π

Mt
i
]}

.
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Figure 2.8. Consider Mt = 32, θmin = −90◦, θmax = 90◦. Spatial pattern
Gf(θ) of a beamformer designed to sound the region S = {4, 5, 6, 7, 8} in (2.4 )
with DFT type beams vs the codebook in (2.32 ). Notice the maximum gain
of an ideal beam is 1

|S| = 0.2.

2.6.1 Single Path Channel

Consider the channel with one dominant path h = αa(θ0), where θ0 ∼ U(−π
2 ,

π
2 ) and

α ∼ CN (0, 1). The optimal beam then achieves a normalized gain of maxi |a(θ0)∗ai|2. On

average, the best achievable beamforming gain for the codebook in (2.32 ) is equal to

Amax = Eθ0

[
max
i
|a(θ0)Hai|2

]
= Eθ0

max
i

sin2
(
Mt(ψi−π sin(θ))

2

)
sin2

(
(ψi−π sin(θ))

2

)
 . (2.34)

For Mt = 32 antennas for example, the performance limit is numerically evaluated to be

Amax ≈ 75.4%.

Since the detector outputs either an ACK or a NACK, we formulate the detector design

problem as a hypothesis test assuming idealized beams. For practicality of our schemes,

we consider a simple threshold detector of the form r` = I(|y`| > γ) where the decision

threshold γ is chosen independent of the beamformer f` selected and sounding iteration `.
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On receiving the complex symbol y`, the beam detection problem from (2.1 ) then reduces to

the hypothesis test


H0 : |y`| ∼ Rician

(
|α|
√

2, 1
2ρ

)
H1 : |y`| ∼ Rayleigh

(
1
2ρ

) (2.35)

where we have assumed that the transmitter always sounds half the number of bins. In other

words, in (2.4 ) we always have that |S| = T
2 . Threshold rule γ is then selected based on

the ROC curves. If an estimate of the fading gain |α| is not available at the receiver, the

hypothesis test is formulated as


H0 : |y`| ∼ Rayleigh

(
1 + 1

2ρ

)
H1 : |y`| ∼ Rayleigh

(
1
2ρ

) . (2.36)

In Fig. 2.9 , the transmitter is equipped with Mt = 32 antennas and the given sounding

time budget is N = 16. The feedback link is assumed to be perfectly noiseless and the errors

are only due to beam detection errors.

The scheme labelled ‘Bit-by-Bit’ is a simple non-adaptive scheme chosen as the baseline

where the first N = 16 columns of the matrix [I5|I5| · · · I5] are set as the generator. This

yields a (16, 5, 3) code and corresponds to asking questions per bit, and cycling through them

repeatedly. The coded non-adaptive scheme is based on the best known open-loop code for

given K and N which is the (16, 5, 8) code constructed using MAGMA. A minimum distance

of 8 ensures that up to 3 errors can always be corrected. The adaptive sounding scheme is

implemented based on Algorithm 1 and we set the maximum number of lies parameter

at L = 3. Thus any region receiving more than 3 negative votes is discarded during the

sounding process. The natural performance metric is the channel normalized beamforming

gain defined to be

ABF = |h
∗fsel|2

‖h‖2 (2.37)
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Figure 2.9. Expected channel-normalized beamforming gain for single path
millimeter wave channel as a function of sounding SNR ρ. The parameters
are fixed at Mt = 32, N = 16, K = 5 and full 180◦ beamforming is considered.
The feedback link is assumed to be perfectly noiseless.

where fsel is the beam selected by the transmitter at the end of the sounding process. Two

sets of curves are shown for comparison, ‘A’ is where the detection threshold is selected

according to (2.35 ) and ‘B’ where it is chosen according to (2.36 ).

We repeat the same set of simulations for the case where the feedback link is noisy,

specifically a binary symmetric channel with probability of error p = 0.05. The results are

indicated in Fig. 2.10 . We also compare our proposed techniques to two other schemes. One

is where the transmitter exhaustively sweeps over a codebook containing T = 16 orthonormal

beams that approximately span the horizon [−90◦, 90◦]. The other is uncoded beam sounding

wherein the transmitter sounds K = 5 beams, one for each bit, with their powers adjusted
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Figure 2.10. Performance when the feedback link is a binary symmetric
channel with error probability 5%. Detection threshold was designed based on
(2.35 ).

so that the total power budget across all schemes being compared is the same. We can draw

the following conclusions from these simulation studies:

1. For adaptive sounding, optimal beam selection by solving the integer program in (2.23 )

each time performs only slightly better than greedy selection outlined in Algorithm 1.

The corresponding performance curve is labelled as ‘Adaptive (Optimal)’ in Fig. 2.10 .

2. Adaptive sounding outperforms the best non-adaptive coded strategy by 3-4 dB and

the bit-by-bit scheme by up to 5 dB.

3. The proposed coded sounding schemes generally maintain good performance even when

the feedback link is noisy as seen in Fig. 2.10 .
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Figure 2.11. Expected channel-normalized beamforming gain for single path
millimeter wave channel as a function of sounding time N . The parameters
are fixed at Mt = 32, K = 5 and full 180◦ beamforming is considered. Two
sets of curves, one at sounding SNR ρ1 = 0 dB and the other at ρ2 = 5 dB are
shown.

Next, we study the performance of our algorithms as a function of the sounding time

budget N . Fig. 2.12 shows two sets of performance curves for sounding SNR’s fixed at ρ1 = 0

dB and ρ2 = 5 dB. For each N , the non-adaptive scheme was implemented by choosing the

known length N code with the largest minimum distance. The adaptive scheme is based on

Algorithm 1 with the threshold for all curves chosen based on (2.36 ). For the case of ρ1 = 0

dB for example, adaptive channel sounding can achieve the same expected beamforming gain

as non-adaptive schemes with just half the sounding time budget.
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2.6.2 Multi-Path Channel

In this section, we consider a channel model with two paths h = (α1a(θ1) + α2a(θ2)),

where θ1, θ2 ∼ U(−π
2 ,

π
2 ) and α1, α2 ∼ CN (0, 1). We assume that the transmitter is equipped

with Mt = 512 antennas and the sounding time is fixed at N = 63. The region [−90◦, 90◦]

is thus split into 512 bins, and the sounding signals for the multi-path scenario correspond

to a suitably chosen group testing matrix. Similar to the single-path scenario, the detec-

tion threshold at the receiver is held constant throughout the sounding process for a given

sounding SNR. At the end of channel sounding, the transmitter comes up with an estimate

B of bin indices corresponding to the dominant path directions. It then performs training

on beams specified by B to choose a beamformer as discussed in Section 2.5.5 .

We consider two different non-adaptive designs of the sounding matrix Z. The first

design Z1 is a randomly generated 0-1 matrix whose each entry is i.i.d. Ber(p), where

p = 1−(2− 1
2 ) is selected based on the analysis in [44 ]. The second test matrix Z2 is a carefully

constructed deterministic 23-disjunct design based on “matrix-containment” construction

techniques using the GAP software package [45 ]. In the notation of [46 ], the 63 × 512

submatrix of M2(6, 4, 1) is set as Z2.

Suppose that the received bit vector is r’ in (2.30 ). We consider the following practical

decoding strategies. The first two have a combinatorial flavour while the third is based on

assuming a noise model and probabilistic.

• Noisy Combinatorial Orthogonal Matching Pursuit (NCOMP) algorithm [47 ]: For each

column zi of Z, we define the metric mi ,
∣∣{j | zi(j)=1 and rj=1

}∣∣
H(zi,0) . The indices corre-

sponding to the two largest values of this metric are returned where ties are broken

arbitrarily.

• Direct Decoding (DD) : We use Algorithm 2 for decoding for increasing values of e

until the algorithm returns two indices. This is essentially picking out the two columns

with the lowest values of C(zi, r).

• (Modified) Separate Decoding of Items (SDI) algorithm: This type of decoder was

first described in the Russian literature [44 ] and recently studied extensively in [48 ].
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Figure 2.12. Expected channel-normalized beamforming gain for a 2-path
millimeter wave channel. The parameters are fixed at Mt = 512, N = 63 and
full 180◦ beamforming is considered. Z1 is a Bernoulli i.i.d. design while Z2 is
a deterministic 23-disjunct matrix.

We assume that a bit ri in (2.28 ) is flipped with some error probability q which we

estimate via Monte-Carlo simulations. This is the so-called symmetric additive noise

model. Following [48 ], the decoder involves computing for each column zi

φi =
n∑
i=1

ln f1(ri, zi(j))
f2(ri)

(2.38)

where f1(0, 0) = pq + (1 − p)(1 − q), f1(1, 0) = 1 − f1(0, 0), f1(0, 1) = q, f1(1, 1) =

1− f1(0, 1), f2(0) = (1− q)(2p− p2) + q(1− p)2 and f2(1) = 1− f2(0). The bin indices

corresponding to the two largest values of φi are then returned by the algorithm. We
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caution the reader that due to the final sorting step, the algorithm used here is not

strictly separate decoding as defined in [48 ].

Fig. 2.11 shows the performance of the proposed techniques as a function of transmit

SNR ρ. As one would expect, the carefully constructed deterministic design beats a random

i.i.d. design for any decoding algorithm. In case of a random Bernoulli design, decoding

with SDI beats NCOMP significantly which is in agreement with the simulations reported in

[48 ]. For the case of a deterministic design, SDI provides a slight improvement over DD as

it captures the probability of feedback bits being in error to make better decoding decisions.

A simple Bernoulli i.i.d design is only worse by about 1.5 dB than the hard to construct

deterministic design when SDI is used.

2.7 Conclusions

In this work, we studied the problem of one-bit feedback-assisted beam alignment in

millimeter wave networks. By interpreting the beamforming problem as one of searching in

a finite set, we investigated adaptive and non-adaptive channel sounding strategies that were

designed to be robust to noisy quantization. The open-loop technique is based on standard

block codes while the closed-loop technique corresponds to playing Ulam’s game against a

liar. We showed that it is also possible to identify multi-paths by leveraging tools from group

testing.

New beam adaption techniques can potentially be formulated by exploring other error

models studied in the literature such as one where the ACK/NACK is erroneous with a

certain error probability. Future work includes extending the proposed techniques to the

case where there are restrictions on the beams that can be sounded. Questioning strategies

studied traditionally in computer science may prove to be useful for other feedback based

problems in communications and signal processing.
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D. J. Love, “The Capacity of Binary Stochastic-Adversarial Channels: Online Adversaries
With Feedback Snooping,” submitted to IEEE for publication.

V. Suresh, E. Ruzomberka and D. J. Love, “Stochastic-Adversarial Channels: Online Ad-
versaries With Feedback Snooping,” 2021 IEEE International Symposium on Information
Theory (ISIT), 2021. © 2021 IEEE.

3.1 Introduction

Consider the following situation depicted in Fig. 3.1 - Alice wishes to communicate a

message reliably to Bob over a binary erasure channel (BEC(q)) or a binary symmetric chan-

nel (BSC(q)) in the presence of Calvin, who can introduce additional noise at the channel’s

input by erasing or flipping bits. Calvin assumes the role of an online jammer or adversary

who has the ability to spy on both terminals in real time. He may not exceed a given budget

constraint but can otherwise freely corrupt parts of the transmission. Here, his budget is

specified as a fraction of the codeword length (pn erasures or flips where n is the codeword

length). What is the largest rate at which reliable communication is possible (i.e. channel

capacity) in this setting? Answering this question is the central goal of this work.

Many of the channel models in information theory are broadly of two kinds. On one

side are stochastic models whose behavior is characterized by a probability law and errors

get injected independent of the communication scheme. Here, it is sufficient to deal with

average-case errors. On the other extreme are adversarial models where one must deal with

the worst-case errors. As expected, the latter often behave much differently from the former.

A growing need for reliable communication over untrusted networks has sparked a renewed

interest in the study of adversarial models.

In the case of adversarial channels, the capacity generally depends strongly on what

the adversary knows. An oblivious adversary [49 ]–[53 ] is one who possibly knows the coding

scheme agreed upon by Alice and Bob but has no knowledge of the transmitted codeword. In
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complete contrast is the omniscient adversary [54 ]–[56 ] who non-causally knows the entire

length-n codeword chosen by Alice for transmission. An intermediate model also consid-

ered in this paper is that of an online or causal adversary [57 ]–[60 ] wherein at any point

during the transmission, the adversary has access to part of the codeword that is trans-

mitted thus far, i.e., if x = (x1, x2, · · · , xn) is the codeword transmitted, Calvin at each

time k knows (x1, x2, · · · , xk). Another interesting set of models are the delayed adversary

model [61 ], [62 ] and the look-ahead adversary model [57 ] where Calvin at each time k knows

(x1, x2, · · · , xk+dn), where d is the delay (d > 0) or the look-ahead (d < 0) parameter. Dif-

ferent from these is also the myopic adversary model [63 ], [64 ] where Calvin knows only a

noisy version of the transmitted codeword.

Along with the adversary’s side information, another important criterion that affects

the capacity is whether Alice and Bob have any shared randomness between them that is

unknown to Calvin. In most cases, it turns out that the adversary in these settings is no

worse than an i.i.d. memory-less noise source [57 ], [65 ]–[67 ]. Therefore in this paper, we

do not allow any shared randomness between the terminals. However, we will allow Alice

to employ stochastic encoding or randomized encoding using private random coins that are

shared neither to Bob nor Calvin.

Without Calvin’s presence, i.e. when p = 0, our models reduce to the classical BEC(q)

or the BSC(q). When there is no random channel present, i.e., q = 0, the only source of

noise is adversarial for which a complete capacity characterization is known [57 ]–[59 ]. Our

models differ from the ones considered previously in two ways:

• Mixing of random and adversarial noise: We position this work as a study of

communication limits against an adversary. However, much of the previous work in this

area only considers the adversary’s effect. If the adversary were absent, the channel

between Alice and Bob is assumed to be perfect, which is impractical. A common

approach is to model channels in nature as being stochastic. One such example is that

of the additive white Gaussian noise (AWGN) channel which is known to accurately

characterize many wireless channels. Therefore, in our models, we consider the effect

of both i.i.d. stochastic noise and adversarial noise together.

53



Figure 3.1. Channel models considered in this work - (a) BEC(q)-ADV(p)-
FS and (b) BSC(q)-ADV(p)-FS. Calvin is constrained such that he may only
inject up to pn erasures or flips.

From Fig. 3.1 , the noise in the received word is affected by the random channel

BEC/BSC as well as the actions of Calvin who is erasing/flipping bits. For example

in the erasure case, a bit not erased by Calvin can be erased by the BEC. Similarly,

in the bit-flip case, a bit flipped by Calvin may be “unflipped” by the BSC. Concep-

tually, we think of the stochastic channel as the main channel through which Alice

and Bob communicate, and Calvin as a malicious entity who attempts to disrupt the

transmission. Since we only deal with binary channels, we refer to our models as bi-

nary stochastic-adversarial channels. Extensions to real channels such as the AWGN

channel are left for future investigation.

• Feedback to adversary - In our setting, we will allow Calvin access to Bob’s recep-

tion through feedback snooping. This becomes important due to the presence of the

stochastic channel that also influences the bits received at Bob. Note that feedback

snooping is unnecessary when q = 0.
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Finally, we note that our models are in fact special cases of the more general framework

of arbitrarily varying channels (AVCs) [49 ], [68 ]. However, known results for AVCs do not

directly imply the results of this paper and therefore we do not pursue this connection.

Our contributions can be summarized as under:

• We provide a complete characterization of capacity in the case of erasures for arbitrary

budget parameter p ∈ [0, 1] and erasure probability q ∈ [0, 1]. Our result implies that

the presence of the random channel BEC(q) in addition to adversarial erasures scales

the capacity expression of the q = 0 case by a multiplicative factor.

• We provide a complete capacity characterization in the case of bit-flips for arbitrary

budget parameter p ∈ [0, 1] and erasure probability q ∈ [0, 1/2]. Here, we show that

for every q ∈ [0, 1/2), there is a threshold pq > 0 s.t. when p < pq, Calvin can do no

better than making flip decisions in an i.i.d. manner. In other words, a weak enough

adversary is no worse than an i.i.d. memory-less noise source.

• We also consider an extension to our models where Alice has causal access to Bob’s

reception (transmitter feedback) allowing encoding to be closed-loop. In this scenario,

we tightly characterize the capacity for erasures and provide partial results for bit-flips.

A preliminary version of this work was presented at the 2021 IEEE International Sym-

posium on Information Theory [69 ]. An extended version of the ISIT conference paper with

proofs is available at [70 ]. In [69 ], [70 ], while the capacity for the erasure model was com-

pletely characterized, only upper and lower bounds were given for the harder bit-flip model.

In this work, we close this gap and show that our converse sketched in [69 ], [70 ] is in fact

tight.

The rest of the paper is organized as follows. Section 3.2 formally defines the channel

models and the capacity characterization problem. In Section 3.3 , we state our main ca-

pacity results. Converse proofs are provided in Section 3.4 and the proofs for achievability

are provided in Section 3.5 . Transmitted feedback is considered in Section 3.6 . Finally,

conclusions and future research directions are given in Section 3.7 .
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3.2 Preliminaries

3.2.1 Channel Models

The channel models are depicted in Fig. 3.1 . We first describe the model for the case

of erasures. Alice (the transmitter) attempts to convey a message to Bob (the receiver)

over a BEC(q), in the presence of a p-limited causal adversary (Calvin) where the terms

will be clarified shortly. The input and output alphabets are X = {0, 1} and Y = {0, 1,Λ},

respectively, where Λ denotes an erasure symbol. Encoding is done over n channel uses,

and the size of the message set at the transmitter is 2nR. We allow stochastic encoding and

assume the presence of private or local randomness available only to Alice for this purpose.

Denote xk ∈ X to be the bit selected by the transmitter at channel use k. At time k,

the adversary makes a decision on whether to erase xk based on his side-information to be

specified shortly. If Calvin erases xk, the received symbol at time k at the receiver is an

erasure, i.e., yk = Λ. If Calvin decides not to erase xk, then

yk =


Λ with prob. q

xk with prob. 1− q
,

i.e., xk is erased with probability q. We now specify the side-information available to Calvin:

• Knowledge of transmission Scheme: Calvin has knowledge of the transmission

scheme agreed upon by Alice and Bob. In the case of deterministic encoding, Calvin

knows the mapping between the set of messages and the codewords while in the case

of stochastic encoding, he knows the codeword distribution selected for each message.

• Transmitter Snooping: Calvin has causal access to symbols being transmitted by

Alice, i.e., at each channel use k, 1 ≤ k ≤ n, Calvin knows (x1, x2, · · · , xk) ∈ X k.

• Feedback Snooping: Calvin has the capability to spy into Bob’s reception through

a noise-free strictly causal feedback link as shown in Fig. 3.1 . At each channel use k,

1 ≤ k ≤ n, Calvin knows (y1, y2, · · · , yk−1) ∈ Yk−1.
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Thus, Calvin’s decision on whether or not to erase xk is a function of the encoding rule,

(x1, x2, · · · , xk) ∈ X k and (y1, y2, · · · , yk−1) ∈ Yk−1. A power constraint is further imposed

by enforcing Calvin to be p-limited, meaning that he can erase at most a constant fraction

p of the bits, i.e., if a ∈ {0,Λ}n denotes the positions where Calvin decides to erase symbols

from (x1, x2, · · · , xn), we must have weight(a) ≤ pn. We refer to this model as the BEC

causal adversarial channel with feedback snooping (or BEC(q)-ADV(p)-FS). Note that the

BEC block in Fig. 3.1 (a) is slightly different from the classical BEC. If Calvin erases xk to

an erasure symbol Λ, we have yk = Λ, where Λ does not carry any information.

We also consider a related and more interesting model (Fig. 3.1 (b)) where Calvin can

attempt to flip up to pn bits and the stochastic channel is a BSC(q) instead of a BEC(q).

The input and output alphabets are revised to X = {0, 1} and Y = {0, 1}. At time k, Calvin

produces ak ∈ A = {0, 1} based on his side information which is the same as was for erasures,

i.e., at time k, he knows (x1, x2, · · · , xk), the codebook or the codeword distribution, and

(y1, y2, · · · , yk−1). The received symbol at time k at the receiver is

yk =


xk ⊕ ak ⊕ 1 with prob. q

xk ⊕ ak with prob. 1− q
,

where ⊕ denotes mod-2 addition and q ∈ [0, 1/2]. Hence, a ∈ {0, 1}n denotes the posi-

tions where Calvin injects bit-flips and the constraint on the adversary can be expressed as

weight(a) ≤ pn. Note that a flip-attempt of Calvin can now be undone by the BSC. This

happens exactly at positions where both Calvin and the BSC inject errors. This is in contrast

to the case of erasures where a bit erased by Calvin remains erased. This model is referred

to as the BSC causal adversarial channel with feedback snooping (or BSC(q)-ADV(p)-FS).

Our aim is to characterize the capacity of these channels, i.e., the largest value of R such

that Alice can reliably convey one out of 2nR possible messages to Bob. The capacities of the

BEC(q)-ADV(p)-FS channel and the BSC(q)-ADV(p)-FS channel are denoted by CE(p, q)

and C(p, q) respectively. Precise definitions to follow.

Notation and Definitions: In this work, we only consider fixed length encoding. The

blocklength is denoted by n. The transmitted message is denoted by the random variable
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(r.v.) U chosen uniformly from the message set U = {1, 2, 3, · · · , 2nR}. We denote by C(n,R)

a code of rate R and block-length n. A deterministic code consists of a fixed encoder map

Φd : U → X n and a decoder map Γd : Yn → U , where each message is associated to a unique

codeword. In case of stochastic encoding, a codeword x is selected for a message u according

to a chosen conditional distribution Φ̃(.|u) defined on X n. A stochastic code is fully specified

by defining all conditional distributions
{
Φ̃(.|u)

}
u∈U

and a decoder Γ : Yn → U . Without

loss of generality, we assume in proving converse results that no two distinct messages map

to the same codeword. The (maximum) probability of error is then

Pe = max
u∈U

max
ADV(p)

∑
y

∑
x
P(y|x)Φ̃(x|u)1(Γ(y) 6= u) (3.1)

where 1(.) denotes the indicator function and ADV(p) denotes a feasible strategy chosen by

Calvin. Note that P (y|x) in (3.1 ) is a function of both the stochastic channel and the chosen

adversarial strategy.

When proving achievability results, we consider for simplicity the following alternate

form of a stochastic code: Alice is endowed with a set S of private secrets or keys and the

stochastic code is defined by a deterministic map Φ : U × S → X n. For a given message

u ∈ U , the codeword Φ(u, s) is selected by uniformly picking a secret s ∈ S. As discussed in

[58 ], this definition does not change the capacity. In this case, the (maximum) probability

of error from (3.1 ) is revised to

Pe = max
u∈U

max
ADV(p)

1
|S|

∑
s∈S

∑
y
P(y|Φ(u, s))1(Γ(y) 6= u). (3.2)

Note in (3.2 ) that the probability of decoding error is averaged over all possible secrets

available to Alice for encoding. We say that R > 0 is achievable if for every ε > 0, there is a

sequence of rate R − ε codes of increasing block-lengths {C(n,R− ε)}n≥1 such that for any

δ > 0, there is an N so that Pe(C(n,R − ε)) < δ for any n > N . The capacity is defined to

be the supremum of all achievable rates.

For x = (x1, x2, · · · , xn), we let xji = (xi, xi+1, · · · , xj). Denote by dH(x,y) the Hamming

distance between x and y. Let Ber(q) denote a Bernoulli r.v. with success probability q.
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For x, y ∈ [0, 1/2], we define x ? y = x(1 − y) + y(1 − x). The following lemma will prove

useful for the bit-flip model.

Lemma 3. Let x, y ∈ [0, 1/2]. Then, x ? y = 1/2 iff either x = 1/2 or y = 1/2 (or both).

Proof. If either x = 1/2 or y = 1/2 (or both) it is easy to see that x? y = 1/2. Suppose that

x, y ∈ [0, 1/2). Note then that

x ? y = x(1− y) + y(1− x) = x(1− 2y) + y <
1
2(1− 2y) + y = 1

2 .

Remark. The cascade of channels BSC(x) and BSC(y) is equivalent to the BSC with bit-flip

probability x ? y. This implies the well-known result that it is possible to communicate at a

non-zero rate through a cascade of two BSC’s unless at least one is completely noisy.

3.2.2 Simple Converse Bounds - The i.i.d. Attack

In this section, we describe a simple adversarial attack for Calvin wherein no side infor-

mation is required. Calvin simply simulates an i.i.d. noise source as follows:

• For the BEC(q)-ADV(p)-FS channel, Calvin erases each bit xi independently with

probability (approximately) p. Since the combination of this attack with the BEC(q)

is the BEC(s) with error probability s = p+ q − pq, the capacity is bounded as

CE(p, q) ≤ (1− p)(1− q).

• For the BSC(q)-ADV(p)-FS channel, Calvin flips each bit xi independently with prob-

ability (approximately) p. Since the combination of this attack with the BSC(q) is

the BSC(p ? q), the capacity is bounded as

C(p, q) ≤ 1− h2(p ? q). (3.3)
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The proofs rely on the fact that under the above attacks, the power constraint is respected

with high probability.

As we show in this work, for the BEC(q)-ADV(p)-FS channel, the i.i.d. erasure attack

is always sub-optimal. In contrast however, for the BSC(q)-ADV(p)-FS channel, there are

regimes where the i.i.d. bit-flip attack is optimal. Here, the side information available to

Calvin as described in 3.2.1 proves to be of no benefit, and Calvin is no worse than an i.i.d.

Bernoulli noise source.

3.2.3 Effective number of erasures or flips

By the Chernoff bound, the BEC(q)/BSC(q) when acting alone induces about qn era-

sures/flips. Here, we also have Calvin who can introduce up to pn additional erasures/flips.

However, since Calvin is causal, his error pattern and the error pattern induced by the ran-

dom channel may have several overlapping error injections. The total number of errors will

thus be much less than pn+ qn.

Let δ > 0 be a small arbitrary constant. We present two lemmas showing that, under

any strategy employed by Calvin, we have the following:

• For the BEC(q)-ADV(p)-FS channel, the total effective number of erasures injected on

to the received codeword due to actions of both Calvin and the BEC(q) w.h.p. does

not exceed (p+ q − pq + δ)n.

• For the BSC(q)-ADV(p)-FS channel, the total effective number of flips injected on to

the received codeword due to actions of both Calvin and the BSC(q) w.h.p. does not

exceed (p ? q + δ)n.

The above is also true for a Calvin simulating a Ber(p) noise source injecting i.i.d. random

erasures/flips. However, while the number of flips is approximately the same in the two

cases, their positions may indeed be very different.

Lemma 4. Let X1, X2, · · · , Xn be i.i.d. Ber(q) indicator random variables representing the

erasure sequence injected by the BEC(q). Let Calvin’s erasure injections be represented by

the inidicator random variables Y1, Y2, · · · , Yn where for each j, Yj is Bernoulli distributed
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with success probability that is possibly a function of X1, X2, · · · , Xj−1, Y1, Y2, · · · , Yj−1, such

that the random variable ∑j Yj is almost surely less than or equal to pn (adversary power

constraint). For δ > 0, defining the event

E =


n∑
j=1
I(Xj = 1 or Yj = 1) ≤ (p+ q − pq)n+ δn

 ,
we have P (E) ≥ 1− 2−Ω(δ2n).

Proof. Let Zj = I(Xj = 1 or Yj = 1). Define

Pj = Zj − E(Zj | X1, X2, · · · , Xj−1, Y1, Y2, · · · , Yj−1)

and

Sk =
k∑
j=1

Pj, k = 1, 2, · · · , n.

Clearly, Sj is a martingale because

E(Sj+1 | X1, · · · , Xj, Y1, · · · , Yj) = Sj.

We now apply Azuma’s inequality. Note that |Sj − Sj−1| = |Pj| ≤ 1 holds almost surely.

Thus, by Azuma’s inequality,

Pr (|Sn| ≥ δn) ≤ 2 exp
(
−δ

2n

2

)
. (3.4)

Re-examining Sn, we have

Sn =
n∑
j=1

Zj −
n∑
j=1

E(Zj|X1, · · · , Xj−1, Y1, · · · , Yj−1),

where, it is easy to see that

n∑
j=1

E(Zj|X1, · · · , Xj−1, Y1, · · · , Yj−1) = E
(

n∑
k=1

Zk

)
.
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We have also

E
(

n∑
k=1

Zk

)
=

n∑
k=1

P (Xj = 1 or Yj = 1)

=
n∑
k=1

1− P (Xk = 0, Yk = 0)

(a)= n− (1− q)
n∑
k=1

P (Yk = 0)

= qn+ (1− q)E
(

n∑
k=1
I(Yk = 1)

)
(b)
≤ (p+ q − pq)n,

(3.5)

where (a) holds due to the independence of Xj and Yj, and (b) is a consequence of the power

constraint on Calvin. The required result then follows from (3.4 ) and (3.5 ).

Lemma 5. Let X1, X2, · · · , Xn be i.i.d. Ber(q) random variables representing the error

sequence injected by the BSC(q). Let Calvin’s error injections be represented by the random

variables Y1, Y2, · · · , Yn where for each j, Yj is Bernoulli distributed with success probability

that is possibly a function of X1, X2, · · · , Xj−1, Y1, Y2, · · · , Yj−1, such that the random variable∑
j Yj is almost surely less than or equal to pn (adversary power constraint). For δ > 0,

defining the event

E =


n∑
j=1

(Xj ⊕ Yj) ≤ (p ? q)n+ δn

 ,
we have P (E) ≥ 1− 2−Ω(δ2n).

Proof. Let Zj = Xj ⊕ Yj. Proceeding exactly as in the proof of Lemma 4 , define

Pj = Zj − E(Zj | X1, X2, · · · , Xj−1, Y1, Y2, · · · , Yj−1)

and

Sk =
k∑
j=1

Pj, k = 1, 2, · · · , n.

Again, Sj is a martingale because

E(Sj+1 | X1, · · · , Xj, Y1, · · · , Yj) = Sj.
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We have |Sj − Sj−1| = |Pj| ≤ 1 and thus, by Azuma’s inequality,

Pr (|Sn| ≥ δn) ≤ 2 exp
(
−δ

2n

2

)
, (3.6)

where

Sn =
n∑
j=1

Zj − E

 n∑
j=1

Zj

 .
Here,

E
(

n∑
k=1

Zk

)
= E

(
n∑
k=1

(Xk ⊕ Yk)
)

=
n∑
k=1

P (Xk ⊕ Yk = 1)

=
n∑
k=1

(qP (Yk = 0) + (1− q)P(Yk = 1))

= qn+ (1− 2q)E
(

n∑
k=1

Yk

)

≤ (p ? q)n,

and therefore the result follows from (3.6 ).

3.3 Main Results

3.3.1 Results for Erasures

The capacity characterization for the BEC(q)-ADV(p)-FS channel is given by the follow-

ing theorem.

Theorem 3.3.1. The capacity CE(p, q) of BEC(q)-ADV(p)-FS is given by

CE(p, q) =


(1− 2p)(1− q) for 0 ≤ p ≤ 1

2 , 0 ≤ q ≤ 1

0 otherwise
. (3.7)
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When there is no BEC, i.e., when q = 0, our model reduces to the one studied in [57 ], [58 ].

Our result implies that in the setting where both causal adversarial erasures and random

erasures are present, the capacity expression is scaled by a factor of 1− q.

3.3.2 Results for Bit-flips

The capacity characterization for the BSC(q)-ADV(p)-FS channel is given by the follow-

ing theorem.

Theorem 3.3.2. For p ∈ [0, 1/4] and q ∈ [0, 1/2], the capacity C(p, q) of BSC(q)-ADV(p)-

FS is

C(p, q) = min
p̄:p̄∈P

α(p, p̄)
(

1− h2

(
p̄

α(p, p̄) ? q
))

. (3.8)

α(p, p̄) = 1− 4(p− p̄) , P = {p̄ : 0 ≤ p̄ ≤ p}

If p ≥ 1/4, we have C(p, q) = 0.

When q = 0, i.e., there is no BSC, the channel model reduces to that considered in [58 ],

and the capacity expression (3.8 ) matches with the result proved in [58 ]. As we will show

shortly, the solution C(p, q) to the optimization problem in (3.8 ) has the following form:

• For a fixed q ∈ [0, 1/2), C(p, q) > 0 for all p ∈ [0, 1/4). Thus, the addition of the BSC

stochastic channel does not change the support over p for which the a positive rate is

achievable.

• For a fixed q ∈ [0, 1/2), there is a pq ∈ (0, 1/4) such that for 0 ≤ p ≤ pq, C(p, q)

is convex and equal to 1 − h2(p ? q). This implies that when 0 ≤ p ≤ pq, the i.i.d.

bit-flip attack strategy in Section 3.2.2 is optimal for the adversary. In this regime, the

knowledge of the encoding scheme or the ability to spy on Alice or Bob buys Calvin

no benefit.

• It can be shown that the value of pq is the unique solution (different from 1/2) of the

equation

4 + (1 + 2q) log2 (pq ? q) + (3− 2q) log2 (1− pq ? q) = 0. (3.9)
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Figure 3.2. The capacity C(p, q) of BSC(q)-ADV(p)-FS as a function of p.
The cut-off value of p beyond which C(p, q) = 0 is p = 1/4 independent of q.

• It can also be seen that as q ↘ 0,

pq ↗ p0 = 1
6

5− 4
3
√

19− 3
√

33
− 3
√

19− 3
√

33
 ,

and as q ↗ 1/2, pq ↘ 0. The regime over which a simple i.i.d. adversarial attack is

optimal (i.e. p ∈ [0, pq]) shrinks as the BSC gets noisier.

• For a fixed q ∈ [0, 1/2), C(p, q) for pq ≤ p ≤ 1/4 is a decreasing linear function in p

that intersects the p-axis at p = 1/4. Furthermore, C(p, q), pq ≤ p ≤ 1/4 is in fact

the tangent to the curve 1− h2(p ? q) at p = pq. The optimal attack for Calvin in this

regime relies on his snooping abilities, and is described in section 3.4.2 .
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In summary, for q ∈ [0, 1/2), we have

C(p, q) =



1− h2(p ? q) 0 ≤ p ≤ pq

1−4p
1−4pq

(1− h2 (pq ? q)) pq ≤ p ≤ 1/4

0 p ≥ 1/4

where pq is implicitly given by (3.9 ). In Fig. 3.2 , we plot C(p, q) as a function of p for various

values of q, specifically, q = 0.0, 0.1, 0.2.

Analytical form of C(p, q): Fix a q ∈ [0, 1/2). The optimization problem (3.8 ) in

Theorem 3.3.2 is

min
0≤x≤p

f(x) (3.10)

where

f(x) = (1− 4p+ 4x)
(

1− h2

(
x

1− 4p+ 4x ? q
))

.

When p = 1/4, f(x) = 0 at x = 0 and hence C(p, q) = 0 when p = 1/4. Differentiating the

objective function in (3.10 ),

d

dx

(
(1− 4p+ 4x)

(
1− h2

(
x

1− 4p+ 4x ? q
)))

= 0

we get,

4+(2q+1) log2

(
x(1 + 2q) + q(1− 4p)

1− 4p+ 4x

)
+(3−2q) log2

(
1− 4p+ 4x− x(1 + 2q)− q(1− 4p)

1− 4p+ 4x

)
= 0.

Solution x∗ has the form x∗ = 1−4p
α−3 where α satisfies

4 + (1 + 2q) log2

(
1− q(1− α)

1 + α

)
+ (3− 2q) log2

(
α + q(1− α)

1 + α

)
= 0.

Since 0 ≤ x ≤ p, we must have 1−4p
α−3 ≤ p =⇒ p ≥ 1

1+α = pq. Thus, for p ∈ [pq, 1/4], the

minimizer in (3.10 ) is x∗ = (1−4p)pq

1−4pq
where pq satisfies

4 + (1 + 2q) log2 (pq ? q) + (3− 2q) log2 (1− pq ? q) = 0, (3.11)
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and the capacity expression becomes

C(p, q) = 1− 4p
1− 4pq

1− h2

 pq

1−4pq

1 + pq

1−4pq

? q


= 1− 4p

1− 4pq
(1− h2(pq ? q))

.

Thus, C(p, q), pq ≤ p ≤ 1/4 is a straight line that intersects the p-axis at p = 1/4. For p ∈

[0, pq], the minimizer in (3.10 ) is x∗ = p and the capacity expression is C(p, q) = 1−h2(p?q).

Next we show that, C(p, q), pq ≤ p ≤ 1/4 is in fact the tangent to the curve 1− h2(p ? q)

at p = pq. Consider the line L(p) that is tangent to 1−h2(p? q) and passes through (1/4, 0).

Its equation can be written as L(p) = C(1− 4p) where C is a constant. Suppose that L(x)

intersects 1− h2(p ? q) at p = p̃q. To complete the proof, it suffices to show that p̃q = pq i.e.

p̃q satisfies (3.11 ). Since L(p) is the tangent to 1− h2(p, q) at p = p̃q, we have

d

dp
L(p)

∣∣∣∣
p=p̃q

= d

dp
(1− h2(p ? q))

∣∣∣∣
p=p̃q

which gives

−4C = (1− 2q) log2

(
p̃q ? q

1− p̃q ? q

)
. (3.12)

We also have

L(p̃q) = 1− h2(p̃q ? q) = C(1− 4p̃q). (3.13)

Eliminating the constant C from (3.12 ) and (3.13 ), p̃q satisfies the equation

(1− 2q) log2

(
p̃q ? q

1− p̃q ? q

)
= −4

(
1− h2(p̃q ? q)

1− 4p̃q

)
.

Rearranging the terms,

((1− 2q)(4p̃q − 1)− (p̃q ? q)) log2(p̃q?q)− ((1− 2q)(4p̃q − 1)− (1− (p̃q ? q))) log2(1−p̃q?q) = 4
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which simplifies to

4 + (1 + 2q) log2 (p̃q ? q) + (3− 2q) log2 (1− p̃q ? q) = 0

which is the same as (3.11 ). Hence, pq = p̃q and the claim holds.

3.4 Converse Proofs

To prove the converse, we demonstrate an attack strategy for Calvin in each of our models

under which no rate larger than the claimed capacity expression is achievable. These attacks

are inspired by, but different from, the attacks in [58 ], [59 ], [71 ] which only work when the

erasure or the bit-flip probability q = 0. Specifically, our modified attacks rely crucially on

Calvin’s ability to snoop.

We shall denote the transmitted and the received codewords as x and y respectively.

The (possibly stochastic) encoder and the decoder being used by Alice and Bob are denoted

as Φ(.|.) and Γ(.) Let xL = (x1, x2, · · · , x`) and xR = (x`+1, · · · , xn), where ` is selected

suitably for each model. Similarly, let yL = (y1, y2, · · · , y`) and yR = (y`+1, · · · , yn).

3.4.1 Converse for BEC(q)-ADV(p)-FS

Our proof is based on a wait and snoop, then push attack. Suppose Alice attempts to

communicate at a rate R = CE(p, q) + ε = (1 − 2p)(1 − q) + ε. We will show that for

sufficiently large block-length n, the probability of decoding error under the proposed attack

is lower bounded by a constant that is only a function of ε (and independent of n). The two

phases of the attack are:

• Wait and Snoop: Calvin waits and does not induce any erasures for the first ` =

n
R− ε

2
1−q channel uses. Instead, Calvin simply snoops into Bob’s reception to determine

the erased/unerased bits and their positions. At the end of this phase, Bob receives

yL = (y1, y2, · · · , y`) containing some erased and some unerased bits. Note that the

erasures in this phase occur purely due to the BEC(q) channel. Let {ij}mj=1 be the
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indices of symbols in yL that remain unerased. Here, m is a random quantity in

accordance to the distribution of erasures from the BEC(q).

• Push: Calvin forms the set ByL
of codewords consistent with yL as

ByL
= {v ∈ X n : ∃ũ ∈ U s.t. Φ(v|ũ) > 0 and vik = xik k = 1, 2, · · · ,m}, (3.14)

where Φ(.|u) is the distribution of codewords when message u is to be transmitted. In

other words, ByL
consists of all possible codewords that align with yL at the positions

that are unerased. Calvin then samples a codeword x′ from ByL
according to the

distribution x′ ∼ PX|YL=yL
(.|yL). In the push phase then, Calvin simply erases bit

xi, i = ` + 1, ` + 2, · · ·n whenever xi 6= xi, until his budget of pn erasures runs out.

If codewords x and x′ correspond to distinct messages u and u and we have that

d(xR,x′
R) < pn, there is no way for Bob to distinguish between messages u and u and

a decoding error occurs with probability at least 1/2. This is illustrated in Fig. 3.3 .

We shall argue that this indeed occurs with a positive probability independent of n.

Figure 3.3. In the push phase, if xR and x′
R are sufficiently close (within dis-

tance pn), Calvin can make Bob completely uncertain whether the transmitted
codeword was x or x′.
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Note that while the presence of the BEC(q) lowers the target rate, Calvin adds no erasures

for approximately n(1 − 2p) channel uses which from [57 ], [59 ] is optimal when there is no

BEC(q). The main difference in attack when q 6= 0 is that even though Calvin knows the

entire prefix of the transmitted codeword xL = (x1, x2, · · · , x`), he forms his set in (3.14 )

based only on the unerased bits. Thanks to feedback snooping, Calvin exploits the additional

equivocation induced by the BEC(q) in the wait and snoop phase to pick a codeword that is

sufficiently close to the transmitted codeword, and which corresponds to a message different

from one that Alice chose. While we give Calvin full causal access to Bob’s reception, an

alternate model where Calvin is allowed one-time block feedback is sufficient - he would add

no erasures for ` channel uses, retrieve through feedback the entire block yL and then ‘push’.

The proof steps are similar to section A from [59 ] except that we account for the presence

of the BEC(q) in our claims. Define the set A0 =
{
yL : H(U | YL = yL) > nε

4

}
and the event

E1 = {YL ∈ A0}. We have the following lemma.

Lemma 6. P (E1) ≥ ε
4 .

Proof. Since U→ XL → YL is a Markov chain, by the data processing inequality, we have

I(U; YL) ≤ I(XL,YL) = `(1− q) = n(R− ε/2).

The above holds since Calvin adds no erasures in the wait and snoop phase and the channel

between XL and YL is a BEC(q). Now, since H(U) = nR, we have

H(U|YL) = EYL
H(U|YL = yL) = H(U)− I(U; YL) ≥ nε/2.

By Markov’s inequality then,

P (nR−H(U|YL = yL) > nR− nε/4) ≤ 1− ε/4
R− ε/4

which gives as desired,

P (E1) = P
(
H(U | YL = yL) > nε

4

)
≥ ε

4 .
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Now let E2 be the event {U 6= U′} and E3 be the event {d(XR,X′
R) < pn}. First, we

show the following.

Lemma 7. For yL ∈ A0,

P (E2, E3 | YL = yL) ≥ εO(1/ε) (3.15)

Proof. Consider sampling t = 9
ε

codewords Ct =
{
X(1),X(2), · · · ,X(t)

}
from the set ByL

where each codeword is sampled independently according to the conditional distribution

PX|YL=yL
(.|yL). Let the messages corresponding to the codewords be U1,U2, · · · ,Ut and

let E4 be the event that {U1,U2, · · ·Ut are all distinct}. We have from [59 , A.2, Proposition

1] that for yL ∈ A0 and for sufficiently large block length n,

P (E4 | YL = yL) ≥
(
ε

5

)t−1
. (3.16)

Now, the average Hamming distance between the suffixes of codewords in Ct is defined as

davg(Ct) = 1
t(t− 1)

∑
i 6=j

dH
(
X(i)
R ,X

(j)
R

)
.

Conditioning on E4, Plotkin’s bound dictates that

davg(Ct) ≤
1
2

t

t− 1(n− `) = n
t

t− 1

(
p− ε

4(1− q)

)

≤ n
9
ε

9
ε
− 1

(
p− ε

4

)
≤ np− n ε8 .

Thus for yL ∈ A0, we have

E(davg(Ct) | E4,YL = yL) ≤ np− nε/8.
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Now, since all of the X(i)’s are picked independently, all pairs (X(i),X(j)) have identical

distribution. Thus,

E(davg(Ct) | E4,YL = yL) = E(dH(X(1)
R ,X(2)

R ) | E4,YL = yL)

and also

E(dH(X(1)
R ,X(2)

R ) | E4,YL = yL) = E(dH(XR,X′
R) | E4,YL = yL).

Thus, we have

E(dH(X(1)
R ,X(2)

R ) | E4,YL = yL) ≤ np− nε/8

and by Markov’s inequality

P (dH(X(1)
R ,X(2)

R ) > np | E4,YL = yL) ≤ 1− ε

8p. (3.17)

We have also,

P (E2, E3 | YL = yL) = P (d(X(1)
R ,X(2)

R ) ≤ pn,U1 6= U2 | YL = yL) ≥

P (d(X(1)
R ,X(2)

R ) ≤ pn,E4 | YL = yL).

where the last inequality holds because event E4 is a subset of the event {U1 6= U2}. We

have also,

P (d(X(1)
R ,X(2)

R ) ≤ pn,E4 | YL = yL) = P (d(X(1)
R ,X(2)

R ) ≤ pn | E4,YL = yL)P (E4 | YL = yL).

From (3.16 ) and (3.17 ), finally we get,

P (E2, E3 | YL = yL) ≥ ε

8p

(
ε

5

) 9
ε

−1
= εO(1/ε)

as we set out to prove.

Recall that E2 is the event that the message U′ picked by the adversary is different from

the one transmitted and E3 is the event that the corresponding codewords XR and X′
R are
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close enough so that Calvin’s push phase succeeds and Bob is completely uncertain whether

the message transmitted was U or U′. Hence when E2 and E3 occur, the probability of

decoding error is at least 1/2. To finish the proof, we need only show a lower bound on

P (E2, E3). We have,

P (E2, E3) ≥ P (E2, E3, E1)

=
∑

yL∈A0

P (E2, E3 | YL = yL)P (YL = yL)

≥ ε

8p

(
ε

5

) 9
ε

−1 ∑
yL∈A0

P (YL = yL)

= ε

8p

(
ε

5

) 9
ε

−1
P (E1)

≥ ε

4
ε

8p

(
ε

5

) 9
ε

−1
,

a lower bound that is independent of n, hence completing the proof.

3.4.2 Converse for BSC(q)-ADV(p)-FS

Fix a p̄ ∈ [0, p]. Suppose that for some ε > 0, the transmitter attempts to communicate

at a rate of R = α(p, p̄)
(
1− h2

(
p̄

α(p,p̄) ? q
))

+ ε. We show that for sufficiently large n, under

the proposed attack strategy for Calvin, the probability of decoding error in (3.1 ) is lower

bounded by εO(1/ε), a quantity independent of n. Since the same argument works for any p̄,

the result in theorem 3.3.2 holds.

Our proof is based on a babble and snoop, then push attack that consists of the following

two phases:

• Babble and Snoop: For the first ` = (α(p, p̄) + ε/2)n channel uses, Calvin injects

random bit-flips and monitors Bob’s reception - at channel use i, 1 ≤ i ≤ `, he flips

bit xi with probability p̄n/`. At the end of this phase, Calvin knows xL and yL.

• Push: Calvin samples a codeword x′ (corresponding to message u) according to the

conditional distribution PX|YL=yL
(.|yL). His goal is to confuse the receiver between x

and x′. At positions where xR and x′
R agree, he does nothing. Positions j where xR
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and x′
R disagree, he flips xj with probability 1/2. This is illustrated in Fig. This way,

the Bob cannot distinguish between x and x′ (even with the BSC(q)) due to the fact

that p(yR|xR) = p(yR|x′
R). The proof relies on showing that with a small probability

independent of n, u, u are distinct and xR, x′
R are sufficiently close.

Note that Calvin requires knowledge of YL, i.e., the symbols received by Bob during

the first phase of the attack. Intuitively, the presence of the BSC(q) introduces additional

equivocation at the receiver which Calvin is able to exploit to cause a reduction in rate. Here

also, one-time block feedback (of entire block yL) after the first ` channel uses is sufficient

for the attack to succeed.

Figure 3.4. In the push phase, if xR and x′
R are sufficiently close, Calvin can

make Bob completely uncertain whether the transmitted codeword was x or
x′ by injecting Ber(1/2) noise at positions where xR differs from x′

R.

In the babble and snoop phase, by the Chernoff bound, Calvin uses at most p̄n+ εn/64

flips with probability at least 1− e−Ω(ε2n). Let this be denoted as event E1. Conditioned on

E1, Calvin’s remaining budget in the push phase is atleast (p− p̄)n− εn/64. Define the set

A0 =
{

yL : H(U | YL = yL) > nε

4

}
.

Defining the event E2 = {YL ∈ A0}, we have the following lemma.
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Lemma 8. P (E2) ≥ ε/4.

Proof. The proof closely follows claim 4 in [58 ]. Note that U→ XL → YL is a markov chain

and hence, by the data processing inequality and Calvin’s actions in the babble phase,

I(U; YL) ≤ I(XL; YL) = `
(

1− h2

(
p̄n

`
? q
))

.

This is because the channel between XL and YL is now a cascade of BSC(p̄n/`) and BSC(q).

Noting that ` = (α + ε/2)n,

I(U; YL) ≤ n(α + ε/2)
(

1− h2

(
p̄

α + ε/2 ? q
))

.

Since I(U,YL) = H(U)−H(U|YL) and H(U) = nR = nα
(
1− h2

(
p̄
α
? q
))

+ nε, we get,

H(U|YL) ≥ nε

2 + n

(
(α + ε/2)h2

(
p̄

α + ε/2 ? q
)
− αh2

(
p̄

α
? q
))

.

Now, the function f(x) = xh2
(
p̄
x
? q
)

is increasing in x, for any fixed q ∈ (0, 1/2). To see

this, note that
df

dx
= h2

(
p̄

x
? q
)

+ (2q − 1) p̄
x

log2

(
1− p̄

x
? q

p̄
x
? q

)
> 0

since p̄
x
? q < 1/2 and log2

(
1−y
y

)
= d

dy
h2(y) > 0 for y ∈ (0, 1/2). Hence, we have H(U|YL) =

EYL
H(U|YL = yL) ≥ nε/2. Finally, by Markov’s inequality,

P (nR−H(U|YL = yL) > nR− nε/4) ≤ 1− ε/4
R− ε/4

which gives as desired,

P
(
H(U | YL = yL) > nε

4

)
≥ ε

4 .

Next, define the events E3 = {U 6= U′} and E4 = {dH(XR,X′
R) ≤ 2(p− p̄)n− εn/8}. E3

is the event that the message picked by the adversary to confuse Bob in the push phase is

different from the one transmitted. Similarly, event E4 ensures that Calvin’s remaining flips
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are enough to carry his push attack. Using techniques from section A.2 of [59 ] and claim 6

in [58 ], we can now show the following.

Lemma 9. For yL ∈ A0,

P (E3, E4 | YL = yL) ≥ ε

48

(
ε

5

) 12
ε

−1
= εO(1/ε). (3.18)

Proof. Consider sampling t = 12
ε

codewords Ct =
{
X(1),X(2), · · · ,X(t)

}
, each codeword sam-

pled according to the conditional distribution PX|YL=yL
(.|yL). Let the messages correspond-

ing to the codewords be U1,U2, · · · ,Ut and let E5 be the event that {U1,U2, · · ·Ut are all distinct}

i.e. all of the codewords are distinct. We have from proposition 1, section A.2 from [59 ] that

for yL ∈ A0, for sufficiently large block length n,

P (E5 | YL = yL) ≥
(
ε

5

)t−1
.

The average Hamming distance between the suffixes of codewords in Ct is defined as

davg(Ct) = 1
t(t− 1)

∑
i 6=j

dH
(
X(i)
R ,X

(j)
R

)
.

Recall that ` = (1− 4(p− p̄) + ε/2)n. Conditioning on E5, by Plotkin’s bound we have

davg(Ct) ≤
1
2

t

t− 1(n− `) ≤ 2(p− p̄)n− εn/6.

Thus for yL ∈ A0, we have

E(davg(Ct) | E5,YL = yL) ≤ 2(p− p̄)n− εn/6.

Now, since all of the X(i)’s are picked independently, all pairs (X(i),X(j)) have identical

distribution. Thus,

E(davg(Ct) | E5,YL = yL) = E(dH(X(1)
R ,X(2)

R ) | E5,YL = yL)
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and also

E(dH(X(1)
R ,X(2)

R ) | E5,YL = yL) = E(dH(XR,X′
R) | E5,YL = yL).

Thus, we have

E(dH(X(1)
R ,X(2)

R ) | E5,YL = yL) ≤ 2(p− p̄)n− εn/6.

and by Markov’s inequality

P (dH(X(1)
R ,X(2)

R ) > 2(p− p̄)n− εn/8 | E5,YL = yL) ≤
2(p− p̄)n− εn/6
2(p− p̄)n− εn/8 = 1− ε

48(p− p̄)− 3ε ≤ 1− ε

48 . (3.19)

Thus,

P (E3, E4 | YL = yL) = P (d(X(1)
R ,X(2)

R ) ≤ 2(p− p̄)n− εn/8,U1 6= U2 | YL = yL)

≥ P (d(X(1)
R ,X(2)

R ) ≤ 2(p− p̄)n− εn/8, E5 | YL = yL),

where the last inequality holds because event E5 is a subset of the event {U1 6= U2}. We

then have,

P (d(X(1)
R ,X(2)

R ) ≤ 2(p− p̄)n− εn/8, E5 | YL = yL) =

P (d(X(1)
R ,X(2)

R ) ≤ 2(p− p̄)n− εn/8 | E5,YL = yL)P (E5 | YL = yL).

From (3.19 ), when E1 occurs i.e. yL ∈ A0, we get,

P (E3, E4 | YL = yL) ≥ ε

48

(
ε

5

) 12
ε

−1
= εO(1/ε)

as we set out to prove.

Now, in the push phase, Calvin injects Ber(1/2) noise at dH(XR,XR) positions. Condi-

tioned on E1, Calvin has at least a budget of (p − p̄)n − εn/64 bit-flips that remain. If aR
is the error vector chosen by Calvin in the push phase, conditioned on E3 and E4 we have

E(dH(aR,0)) = (p− p̄)n− εn/16. Further by the Chernoff bound, with probability at least
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1 − 2−Ω(ε2n), the distance dH(aR,0) is within 3εn/64 of its expected value. Let this event

be E5. Since E(dH(aR,0)) + 3εn/64 = (p − p̄)n − εn/64, the power constraint is respected

w.h.p..

When events E1, E3, E4, E5 occur, the probability of decoding error is clearly at least

1/2 since the receiver cannot distinguish between x and x′. Since P (E1) ≥ 1− e−Ω(ε2n) and

P (E5) ≥ 1− e−Ω(ε2n), the bound in (3.18 ) together with the bound P (E2) ≥ ε/4 implies for

sufficiently large n, the maximum probability of error in (3.1 ) is at least of the order εO(1/ε),

a quantity independent of n and the proof is complete.

3.5 Achievability Proofs

To prove achievability, we resort to a random coding argument. We consider a distribu-

tion over an ensemble of stochastic codes, and show that with positive probability, a code

drawn randomly from the ensemble enables reliable communication between Alice and Bob.

This then implies the existence of a specific (stochastic) code achieving capacity.

For both channel models BEC(p)-ADV(p)-FS and BSC(p)-ADV(p)-FS, we shall use the

random code ensemble from [57 ] with a reduced rate as given in theorems 3.3.1 and 3.3.2 

respectively. However, note that compared to the q = 0 case, the decoding procedure will

need to be modified greatly to deal with compounded adversarial and random errors.

Random Code Distribution: Alice is endowed with a set of private keys or secrets for

encoding, S = {1, 2, · · · , 2nS}. The encoding procedure is carried out in chunks, each of size

nθ where θ < 1 is a quantization parameter. The values for S and θ are set specific to the

channel model later. Let Γ be the uniform distribution over stochastic codes C : U×S → X nθ.

Then each chunk i, 1 ≤ i ≤ 1
θ
, is associated to a stochastic code Ci drawn independently

from the distribution Γ.

Encoding Procedure: For message u ∈ U and keys s1, s2, · · · , s 1
θ
, the codeword x

selected for transmission is

x = C1(u, s1) ◦ C2(u, s2) ◦ · · · C 1
θ
(u, s 1

θ
),
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where ◦ represents the concatenation operator. We refer to codeword Ci(u, si) as the ith

sub-codeword or the ith chunk and the code Ci as the ith sub-code. Each secret or key si for

encoding with Ci is chosen uniformly randomly from S.

Decoding Procedure: The decoding procedure is specific to each of the channel models

and is described later.

Define the set T = {nθ, 2nθ, · · · , n−nθ} containing indices of the chunk ends. For some

t ∈ T where t = knθ, we refer to C1 ◦ C2 ◦ · · · Ck as the left mega sub-code w.r.t. t and

Ck+1 ◦ C2 ◦ · · · C 1
θ

as the right mega sub-code w.r.t. t. Accordingly, the concatenation of the

first k sub-codewords is be referred to as the left mega sub-codeword w.r.t. t, and that of

the last 1
θ
− k sub-codewords is referred to as right mega sub-codeword w.r.t. t. We shall

also denote the key sequences used to encode the left and the right mega-subcodewords as

sleft = (s1, s2, · · · , sk) and sright = (sk+1, sk+2, · · · , s 1
θ
).

3.5.1 Achievability for BEC(q)-ADV(p)-FS

Fix ε > 0 and let the rate be R = (1 − 2p)(1 − q) − ε = (1 − 2p − ε)(1 − q), where

ε = ε/(1 − q). We show that R is achievable for the BEC(q)-ADV(p)-FS model, i.e., there

exists a stochastic code from the ensemble for which our decoder (to be described shortly)

succeeds w.h.p. in finding the transmitted message u∗. We set initially θ = ε
4 and S = θ3

8 .

Our decoder construction is a modification of the one described in [57 ] which we first

review. While reviewing, we provide key insights into how the decoding might fail once a

BEC is added. Following the review, we use our insights to modify the decoder in order to

account for the additional random noise when q > 0.

Decoding when q = 0 [57 ]: Let y denote the entire n-symbol channel output received

by Bob. For some t∗ = k∗nθ to be defined shortly, Bob partitions y into 2 strings: yt∗1 =

(y1, . . . , yt∗) and ynt∗+1 = (yt∗+1, . . . , n). Decoding occurs in two sequential phases.

• List Decoding: In the first phase, Bob performs list decoding on yt∗1 to create a

list of messages L that are consistent with Bob’s reception yt∗1 . Here, a message u
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is consistent with yt∗1 iff some codeword corresponding to u agrees with yt∗1 (on the

unerased positions). Thus,

L = {u ∈ U : ∃ (s1, · · · , sk∗) ∈ Sk∗
s.t.C1(u, s1) ◦ · · · Ck(u, sk) and yt∗1 agree}.

• Unique Decoding (List Refinement): In the second phase, he refines the list by

removing all messages in L that are not consistent with ynt∗+1.

If exactly one message, say û, remains in L after refinement, the decoder outputs û. If the

refined list does not contain exactly one message, a decoding error is declared. Decoding is

successful if û = u∗, the true message transmitted by Alice.

Here, t∗ is chosen as a function of the number of (purely adversarial since q = 0) erasures

λat∗ observed in y up until time t∗. Specifically, Bob chooses t∗ as the smallest integer that

satisfies the so-called list-decoding condition

λat∗ ≤ t∗(1− θ)− ((1− 2p)− ε)n (3.20)

and the energy bounding condition

np− λat∗ ≤
(n− t∗)(1− θ)

2 . (3.21)

Condition (3.20 ) ensures the size of L is small (at most a constant) while condition (3.21 )

ensures the fraction of erasures that occur in ynt∗+1 is small enough to perform list refinement.

Problems in this construction arise when q > 0. If the decoder assumes that all erasures

that he sees are adversarial and performs decoding by selecting t∗ according to (3.20 ) and

(3.21 ), the maximum rate that can be achieved is CE(p + q − pq, 0) = CE(p, q) − q which

is strictly less than capacity. Therefore, simply counting erasures without knowing (or esti-

mating) their source is no longer a viable strategy when q > 0. To circumvent this issue, we

modify conditions (3.20 ) and (3.21 ) appropriately.
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Modified choice of t∗: Let λt denote the number of erasures observed by Bob up

until time t, which includes contributions both from Calvin and the BEC(q). An example

clarifying the definitions of λt and λat is illustrated in Fig. 3.5 .

Figure 3.5. In this example, Calvin causes an erasure at indices 1, 6 and 9
while the BEC(q) causes an erasure at indices 3 6, 7 and 9.

Then, Bob chooses t∗ as the smallest integer that satisfies the modified list-decoding

condition

λt∗ − qt∗ ≤ t∗(1− q)(1− θ)−Rn (3.22)

and the modified list refinement condition

np(1− q)− (λt∗ − qt∗) ≤
(n− t∗)(1− q)(1− θ)

2 . (3.23)

Note that by the Chernoff bound, if Calvin adds λat∗ erasures up until t∗, the total number

of erasures λt∗ that Bob observes is approximately λt∗ ≈ λat∗ + q(t∗ − λat∗). On making this

substitution we see that t∗ satisfying (3.22 ) and (3.23 ) is nearly the same as that satisfying

(3.20 ) and (3.21 ) i.e. it is sufficient to choose t∗ only as a function of pure adversarial erasures.

However, since Bob has no way of knowing this, he works with the quantity λt∗ − qt∗. Note

that since qt∗ is an estimate of the number of erasures added by the BEC(q), we can interpret

λt∗ − qt∗ to be an estimate of the number of adversarial erasures that do not coincide with

random erasures.
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Having selected t∗, Bob can then finish decoding using the two-phase decoding process

described previously to successfully recover w.h.p. the transmitted message. We now prove

this.

Analysis: We begin by reviewing some simple results that are useful in showing that

decoding succeeds w.h.p.. Recall that λat denotes the number of erasures added by Calvin

up until time t. By the Chernoff bound we have then, for δ > 0 to be set later, the total

number of erasures that Bob observes at time t = knθ satisfies

λt ∈ [λat + (t− λat )(q − δ), λat + (t− λat )(q + δ)]

with probability at least Pδ = 1−2−Ω(δ2n). Thus, λ̂t = λt− qt, Bob’s estimate of the number

of adversarial erasures that do not coincide with BEC(q) erasures satisfies w.h.p.

λ̂t ∈ [λat (1− q + δ)− δt, λat (1− q − δ) + δt] .

Recall that with the modified list-decoding and list refinement conditions, Bob selects the

smallest value of t∗ ∈ T satisfying

λt∗ − qt∗ ≤ t∗(1− q)(1− θ)−Rn (3.24)

and

np(1− q)− (λt∗ − qt∗) ≤
(n− t∗)(1− q)(1− θ)

2 . (3.25)

From the preceding discussion, w.h.p. we have that

λt∗ − qt∗ = λ̂t∗ ∈ [λat∗(1− q + δ)− δt∗, λat∗(1− q − δ) + δt∗]. (3.26)

Let Z = [λat∗(1− q + δ)− δt∗, λat∗(1− q − δ) + δt∗]. By a similar analysis as in [57 , Claim

B.3], we show that when δ > 0 is small enough, a t∗ ∈ T exists that satisfies both (3.24 ) and

(3.25 ), for any realization of λ̂t∗ ∈ Z.
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Lemma 10. Let

δ <
1
4

(1− q)θ2(1− θ)
1 + 2θ − θ2 .

Then, for any erasure pattern selected by Calvin, there exists a t∗ ∈ T such that both of the

following conditions hold with probability at least 1− 2−Ω(δ2n):

λt∗ − qt∗ ≤ t∗(1− q)(1− θ)−Rn, and

np(1− q)− (λt∗ − qt∗) ≤
(n− t∗)(1− q)(1− θ)

2 .

Proof. As previously noted, we have that with probability at least Pδ, λt∗ − qt∗ = λ̂t∗ ∈

[λat∗(1− q)− δ(t∗ − λat∗), λat∗(1− q) + δ(t∗ − λat∗)].

To prove this claim, it suffices to show that a small enough δ > 0 can be set so that a

t∗ satisfying both conditions exists at both the extremes λ̂t∗ = λat∗(1 − q) − δ(t∗ − λat∗) and

λ̂t∗ = λat∗(1− q) + δ(t∗ − λat∗).

In the first case, we need to prove existence of t∗ such that

n(1− 2p− ε) + λat∗

(
1 + δ

1− q

)
+ θt∗ ≤ t∗

(
1 + δ

1− q

)
(3.27)

and

np− λat∗ ≤
(n− t∗)(1− θ)

2 − δ

1− q (t∗ − λat∗). (3.28)

First, choose a t∗ ≤ n− nθ in T such that

t∗ ≥ n(1− 2p− ε) + λat∗

(
1 + δ

1− q

)
+
(
θ − δ

1− q

)
(n− nθ).

This ensures that (3.27 ) holds. Rearranging (3.28 ), we also require

t∗ ≤
n
(
1− 2p

1−θ

)
+ 2λa

t∗
1−θ

(
1 + δ

1−q

)
1 + 2δ

(1−q)(1−θ)
.
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Hence, to prove existence of t∗ simultaneously satisfying both required conditions, it is

sufficient to show that

n
(
1− 2p

1−θ

)
+ 2λa

t∗
1−θ

(
1 + δ

1−q

)
1 + 2δ

(1−q)(1−θ)

−
n(1−2p−ε)+λat∗

(
1 + δ

1− q

)
+
(
θ − δ

1− q

)
(n−nθ)

 ≥ nθ.

Multiplying by 1 + 2δ
(1−q)(1−θ) , and simplifying, the coefficient of λat∗ in the above inequality

becomes (
1 + δ

1− q

)(
2

1− θ − 1− 2δ
(1− q)(1− θ)

)

which is positive when δ < 1
2(1 + θ)(1− q). For such a choice of δ, it is sufficient to show

(
1− 2p

1−θ

)
1 + 2δ

(1−q)(1−θ)
− (1− 2p− ε)−

(
θ − δ

1− q

)
(1− θ) ≥ θ.

Simplifying further, it is enough to show that

p ≤ 1
2

(
1− θ
θ

)(
ε− 2θ + θ2 + δ

1− q

[
1− θ − 2

1− θ

])
. (3.29)

Since ε = 4θ, choosing

δ < min
{

(θ2 − θ3)(1− q)
1 + 2θ − θ2 ,

1
2(1 + θ)(1− q)

}
,

we will have
(

1−θ
θ

) (
ε− 2θ + θ2 + δ

1−q

[
1− θ − 2

1−θ

])
> 1 so that (3.29 ) always holds for any

p ∈ [0, 1/2) and we are done.

In the second case, we need to prove existence of t∗ such that

n(1− 2p− ε) + λat∗

(
1− δ

1− q

)
+ θt∗ ≤ t∗

(
1− δ

1− q

)
(3.30)

and

np− λat∗ ≤
(n− t∗)(1− θ)

2 + δ

1− q (t∗ − λat∗). (3.31)
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Proceeding like earlier, choose a t∗ ≤ n− nθ in T such that

t∗ ≥ n(1− 2p− ε) + λat∗

(
1− δ

1− q

)
+
(
θ + δ

1− q

)
(n− nθ),

ensuring (3.30 ) holds. For (3.31 ) to hold, we need

t∗ ≤
n
(
1− 2p

1−θ

)
+ 2λa

t∗
1−θ

(
1− δ

1−q

)
1− 2δ

(1−q)(1−θ)
.

Since the denominator 1− 2δ
(1−q)(1−θ) > 0 for δ < 1

2(1− θ)(1− q), we will require that

n
(

1− 2p
1− θ

)
+ 2λat∗

1− θ

(
1− δ

1− q

)
−

n(1−2p−ε)+λat∗
(

1− δ

1− q

)
+
(
θ + δ

1− q

)
(n−nθ)

 > nθ.

Now, the coefficient of λat∗ in the above expression is 1+θ
1−θ

(
1− δ

1−q

)
, which is always positive.

Thus, we only need

p ≤ 1
2

(
1− θ
θ

)(
ε− 2θ + θ2 − δ

1− q (1− θ)
)
. (3.32)

Proceeding exactly like before, choosing δ < (1− q) θ2

1−θ , inequality (3.32 ) always holds.

Backtracking the proof steps, if we choose

δ = 1
4

(1− q)θ2(1− θ)
1 + 2θ − θ2 ,

all of the required conditions are satisfied and the proof of this lemma is complete.

Calvin’s Unused Budget: We now prove an upper bound on the number of adversarial

erasures that Calvin is left with to add on to the right mega sub-codeword. Since the total

budget is pn, the remaining number erasures is pn − λat∗ . From (3.25 ) and (3.26 ), for any

λ̂t∗ ∈ Z, we have

pn− λat∗ ≤
(n− t∗)(1− θ)

2 + δ(t− λat∗)
1− q .
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Since we are proving an achievability result and θ is representative of the back-off from the

capacity expression, we can choose θ as small as we would like. Choosing θ suffciently small

so that for instance δ = 1
4

(1−q)θ2(1−θ)
1+2θ−θ2 ≤ 1

16(1− q)θ2, we have

pn− λat∗ ≤ (n− t∗)
(

1
2 −

7θ
16

)
. (3.33)

List Decoding: We show that with probability at least
(
1− 1

n

)
over the code design,

the size of the list of messages L obtained by Bob in the list-decoding phase is at most a

constant, specifically, |L| < C/ε for some constant C.

Lemma 11. (Modified from [57 , Claims B.5-B.7]) Suppose t∗ ∈ T where t∗ = k∗nθ satisfies

(3.24 ), i.e.,

λt∗ − qt∗ ≤ t∗(1− q)(1− θ)−Rn.

Then, for sufficiently large n, with probability at least
(
1− 1

n

)
over the code design, the

left mega sub-code C1 ◦ C2 ◦ · · · Ck∗ is list decodable with list size L for λt∗ erasures where

L = O
(

1
ε

)
.

Proof. Rearranging (3.24 ), we have

t∗ − λt∗ − nR ≥ θ(1− q)t∗. (3.34)

The proof follows exactly the analysis in [57 , Claims B.5-B.7]. The only additional step is

to verify if the bound

1− λt∗

t∗
− nR

t∗
− S

θ
≥ θ

2

holds. This is indeed the case as we have

1− λt∗

t∗
− nR

t∗
− S

θ
− θ

2
(a)= 1

t∗
(1− λt∗ − nR)− θ2

8 −
θ

2
(b)
≥ θ(1− q)− θ2

8 −
θ

2
(c)
≥ 0,
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where (a) follows from the substitution S = θ3

8 , (b) follows from (3.34 ) and (c) holds by

choosing θ sufficiently small.

List Refinement: For some chunk end t ∈ T where t = knθ, yt1 = (y1, y2, · · · , yt) and

ynt+1 = (yt+1, · · · , yn) are the left mega received word and the right mega received word w.r.t.

t respectively. Consider the list of messages L obtained by Bob by list-decoding the left mega

received word yt1. Let u∗ be the true message chosen by Alice for transmission and let L(u∗)

be the set of all possible right mega sub-codewords w.r.t t for each message in L \ {u∗} i.e.

L(u∗) = {Ck+1(u, sk+1)◦Ck+2(u, sk+2)◦· · · C 1
θ
(u, s 1

θ
) : u ∈ L, u 6= u∗, (sk+1, · · · , s1/θ) ∈ S

1
θ

−k}.

For notational convenience, also enumerate L(u∗) containing codewords of length (n− t) as

L(u∗) = {w1,w2, · · · ,w|L(u∗)|}. The right mega-subcodeword for the true message is

xnt+1(u∗, sright) = Ck+1(u∗, sk+1) ◦ Ck+2(u∗, sk+2) ◦ · · · C 1
θ
(u∗, s 1

θ
)

which we emphasize is a function of the specific realization of sright=(sk+1, · · · , s 1
θ
) during

encoding.

We would like our code design to satisfy the following distance condition

dH
(
xnt+1(u∗, sright),wj

)
≥ (n− t)

(
1
2 −

3θ
8

)
∀wj ∈ L(u∗). (3.35)

Equation (3.35 ) is a key property that guarantees successful decoding. It ensures that the

right mega sub-codeword for the transmitted message is sufficiently far in Hamming distance

from the right mega sub words for any of the other messages in list L. We show that (3.35 )

indeed occurs w.h.p., for almost all possible sequence of secrets sright.

Lemma 12. (Modified from [57 , Claims B.11-B.14]) For sufficiently large n, with probability

at least 1 − 2−n, a code drawn from the random ensemble satisfies the following property :

for every chunk end t ∈ T , for every message u∗, and every list L of size at most O(1/ε),

we have that (3.35 ) holds for at least a (1 − 2−nS/4) portion of all possible secret sequences

sright.
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Proof. Given a sequence of secrets sright = (sk+1, · · · , s 1
θ
), message u∗ and list L, we first

show that (3.35 ) holds w.h.p.. Let radius r =
(

1
2 −

3θ
8

)
. We surround each word wj ∈ L(u∗)

with a Hamming ball of radius r and the union of all the balls is the so called forbidden

region.

For (3.35 ) to hold, we must have that xnt+1(u∗, sright) is outside all these balls, i.e. outside

the forbidden region. Due to the code construction, xnt+1(u∗, sright) is uniformly distributed

over all possible binary vectors of length (n − t) and thus it is enough to bound the size of

the forbidden region. If the size of the list L is L, the size of L(u∗) is at most L.2nS
(

1
θ

− t
nθ

)
.

Hence the number of codewords in the forbidden region is at most

L.2nS
(

1
θ

− t
nθ

) r∑
j=0

(
n− t
j

)
< 2(n−t)

( log2 L

n−t
+ S

θ
+h2
(

1
2 − 3θ

8

))
.

From the Taylor expansion of function h2(x) in a neighborhood of 1/2, we have

h2

(
1
2 −

3θ
8

)
< 1− 1

2 ln(2)

(
1− 2

(
1
2 −

3θ
8

))2

= 1− 9θ2

32 ln(2)

Let η = θ2

4 . For sufficiently large n, we have

(
log2 L

n− t
+ S

θ
+ h2

(
1
2 −

3θ
8

))
<

(
log2 L

n− t
+ S

θ
+
(

1− 9θ2

32 ln(2)

))
< 1− η.

Hence, the total number of codewords in the forbidden region is at most 2(n−t)(1−η) and we

have

P
(

xnt+1(u∗, sright) is outside the forbidden region
)
>

2(n−t) − 2−(n−t)(1−η)

2n−t = 1− 2−(n−t)η.

From here on, the rest of the steps in the proof follow claims B.12-B.14 in [57 ].

Success of Unique Decoding: From the preceding discussion, there exists a code in

our random ensemble that satisfies the following simultaneously:
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• For t∗ satisfying (3.24 ) and (3.25 ), the size of the list L obtained by Bob during list

decoding is at most C/ε for some constant C. Further, the transmitted message u∗ is

inside list L.

• For almost all possible realizations of secret sequences sright (at least a fraction 1 −

2−nS/4 of them), the right mega codeword corresponding to message u∗ denoted xnt∗+1(u∗, sright),

is at least (n− t∗)
(

1
2 −

3θ
8

)
away from any codeword in the set L(u∗).

Recall from (3.33 ) that with probability at least 1−2−Ω(δ2n), Calvin has at most pn−λat∗ ≤

(n− t∗)
(

1
2 −

7θ
16

)
erasures that remain.

Consider any arbitrary codeword wj ∈ L(u∗) that is associated with message u 6= u∗.

Let Ic be the set of indices where wj and xnt∗+1(u∗, sright) disagree. The only way that Bob

is unable to distinguish between wj and xnt∗+1(u∗, sright) and hence makes a decoding error

of at least 1/2 is when indices Ic in ynt∗+1 are all erased due to Calvin and the BEC(q). In

other words, if J is the set of indices of erasures in ynt∗+1, we must have J ⊃ Ic. An example

is illustrated in Fig. 3.6 .

Now clearly, if Calvin wishes to confuse Bob between wj and xnt∗+1(u∗, sright), his best

strategy is to add all erasures at positions Ic. However, this still leaves at least (n −

t∗)
(

1
2 −

3θ
8

)
−(n−t∗)

(
1
2 −

7θ
16

)
= (n−t∗) θ

16 positions where wj and xnt+1(u∗, sright) disagree but

no adversarial erasures are added. For Bob to be confused between wj and xnt+1(u∗, sright),

the BEC(q) must erase all of the (n− t∗) θ
16 bits that Calvin could not erase. However, this

event occurs with probability q(n−t∗) θ
16 ≤ 2−nΩ(θ2). Thus, the probability of the error event

that Bob cannot distinguish between ynt∗+1 and wj is exponentially small.

Repeating the same argument for any wj ∈ L(u∗), we have that a decoding error occurs

with exponentially small probability. Thus, Bob succeeds in determining the transmitted

message u∗ and the proof is complete.

3.5.2 Achievability for BSC(q)-ADV(p)-FS

Let ε > 0 such that p = p + ε2

16 <
1
4 . We also set θ = ε2(1−4p)

4 , S = θ3

8 . To show that

C(p, q) in Theorem (3.3.2 ) is the capacity, we let the rate be R = C(p, q)− ε and prove that
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Figure 3.6. In (a), the set of indices in Bob’s observation ynt∗+1 where xnt∗+1
and wj differ are all erased. Therefore, Bob cannot determine if Alice trans-
mitted xnt∗+1 or wj. In (b), successful reception of even one bit where xnt∗+1
and wj disagree allows Bob to disambiguate between xnt∗+1 and wj.

for any δ > 0 and every sufficiently large block length n, a randomly sampled stochastic

code C with rate R satisfies Pe(C) < δ with a positive probability.

As before, let x denote the transmitted codeword. The received codeword can be written

as y = x ⊕ e ⊕ z where e = (e1, e2, · · · , en) is the adversarial error vector added by Calvin

and z = (z1, z2, · · · , zn) is the error vector produced by the BSC(q). In accordance to the

power constraint, we have dH(e,0) ≤ pn. Note that positions i where ei = zi = 1, symbols

xi remain unflipped.
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Before we describe the decoding process, we define certain useful quantities. For a chunk

end t ∈ T , let pt be the normalized number of bit-flip attempts used up by Calvin up until

time t i.e.

pt = weight{(e1, e2, · · · , et)}
t

.

Note that since pt only captures adversarial error injections, the word received up until time t

may have more or less effective bit-flips than tpt. For the purposes of decoding, Bob maintains

a reference p̂t which is approximately defined as follows: p̂t = n
t

(
p− 1

4

)
+ 1

4 for t ≥ n(1−4p)

and p̂t = 0 for t < n(1−4p). It can be seen that p̂t in increasing in t ∈ [n(1−4p), n] reaching

p̂n = p as is expected. For a rigorous analysis, certain twiddle terms need to be added to

this definition as is explained later in the analysis. We shall refer to pt as the true trajectory

and p̂t as the reference trajectory for adversarial bit-flip attempts.

Decoding: The overall decoding process is iterative potentially involving several de-

coding attempts. For some chunk end t ∈ T where t = knθ, yt1 = (y1, y2, · · · , yt) and

ynt+1 = (yt+1, · · · , yn) are the left mega received word and the right mega received word

w.r.t. t. Similarly, xt1 = (x1, x2, · · · , xt) and xnt+1 = (xt+1, · · · , xn) are the left mega trans-

mitted codeword and the right mega transmitted codeword w.r.t. t. A decoding attempt

w.r.t t consists of two phases - a list-decoding phase followed by a unique decoding phase.

List decoding: In the list decoding phase, Bob identifies the set of messages for whom

there is at least one associated codeword whose left mega sub-codeword w.r.t. t is within

Hamming distance t(p̂t ? q+ δ1) from yt1, where δ1 = ε2

256 is a small constant. In other words,

Bob performs list-decoding on the left mega sub-code w.r.t. t, i.e. C1 ◦ C2 ◦ · · · Ck, with a

list-decoding radius equal to rlist = t(p̂t ? q + δ1). Let the list of messages obtained in this

phase be denoted by L. We have,

L = {u ∈ U : ∃ sleft = (s1, · · · , sk) ∈ Sk s.t.dH (C1(u, s1) ◦ · · · Ck(u, sk),y2) ≤ t(p̂t ? q + δ1)}.
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Unique decoding: In the unique decoding phase, Bob forms the set A of all possible

right mega sub-codewords w.r.t. t (one for each possible sequence of secrets sk+1, sk+2, · · · , s1/θ)

for each message u in the list L, i.e.,

A = {Ck+1(u, sk+1) ◦ Ck+2(u, s2) ◦ · · · C 1
θ
(u, s 1

θ
) : u ∈ L, (sk+1, · · · , s1/θ) ∈ S

1
θ

−k}.

He then considers Hamming balls of radius

runique = (n− t∗)
(

1
4 ? q + θ(q − 1/2)

10

)
,

each centered at a right mega sub-codeword from A.

• If ynt+1 lies within exactly one of the balls, the decoder outputs the message u corre-

sponding to its center, i.e., Γ(y) = u.

• If ynt+1 lies in more than one ball, a decoding error is declared.

• If ynt+1 lies outside all the balls, Bob picks the next chunk end in T and re-attempts

decoding.

As we will show, depending on the adversary’s attack strategy and the noise due to the BSC,

there is a value of t = t∗ for which the decoding-attempt successfully recovers the transmitted

message. However, Bob does know this value apriori. Bob begins by first identifying the

smallest value of t ≥ n(1−4p) that coincides with a chunk end in T , say t0 ∈ T , and performs

a decoding attempt w.r.t t0. Clearly, t0 = min {t : t ≥ n(1− 4p), t ∈ T } =
⌈

1−4p
θ

⌉
nθ. If no

message is returned, he re-attempts decoding with the next chunk end, t = t0 + nθ, and so

on, each time picking a chunk end from the set T = {t0, t0 +nθ, · · · , n−nθ} until a message

is returned. At any point in the decoding process, if ynt+1 during unique decoding lies in

more than one ball, a decoding error is declared and decoding terminates. If all decoding

attempts fail to return a message having reached the end of the codeword, again a decoding

error is declared.

Analysis: We begin our analysis with the following useful lemma.
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Lemma 13. Let p, q ∈ [0, 1/2) and γ be a small positive constant such that γ(1−2q) < 1/16

and p+ γ < 1/2. Then, we have the inequality

h2 ((p+ γ) ? q) < h2(p ? q) + 2√γ, (3.36)

where h2(x ? y) = x(1− y) + y(1− x).

Proof. We have

h2 ((p+ γ) ? q) = h2 ((p+ γ)(1− q) + q(1− p− γ))

= h2 ((p ? q) + γ(1− 2q))
(a)
< h2(p ? q) + 2γ(1− 2q) log2

(
1

2γ − 4γq

)
(b)
< h2(p ? q) + 2

√
γ(1− 2q)

(c)
≤ h2(p ? q) + 2√γ,

where (a) follows from the inequality h2(a + b) < h2(a) + 2b log2

(
1
b

)
(see for example [57 ,

Lemma A.5] for a proof), (b) follows from the fact that x log2

(
1
x

)
<
√
x when x < 1

16 and

(c) is true because (1− 2q) ∈ (0, 1].

Reference trajectory p̂t: We now give an exact definition of p̂t, the reference trajectory

for adversarial bit-flip attempts. It suffices to use the same p̂t as defined in [57 ] where no

BSC was present (q = 0) i.e. the decoder sets p̂t independent of q.

Definition 3.5.1. (Definition of p̂t) Let t ∈ T be some chunk-end and recall p = p + ε2

16 .

Define,

p̄t = p− (n− t)
4n .

For t < n(1− 4p), p̂t = 0. For t ≥ n(1− 4p), p̂t is defined to be

p̂t = p̄t
α(p, p̄t)

+ ε2

16α2(p, p̄t)
,
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where

α(p, p̄t) = 1− 4(p− p̄t) = t

n
.

In the following lemma, we prove that p̂t satisfies two key technical conditions, the so-

called list decoding condition given by (3.37 ), and the energy bounding condition given by

(3.38 ).

Lemma 14. (Modified from [57 , Claim A.6]) For any t ∈ T such that t ≥ n(1 − 4p), the

reference trajectory p̂t satisfies

t (1− h2 (p̂t ? q))−
nε

2 ≥ nR (3.37)

and

pn− tp̂t ≤ (n− t)
(

1
4 −

ε2

16

)
. (3.38)

Proof. Note that (3.38 ) follows directly from [57 , Claim A.6] as it does not involve q. We

only need to verify that (3.37 ) holds. Diving (3.37 ) by n and noting that α(p, p̄t) = t/n, we

need to show that

α(p, p̄t) (1− h2 (p̂t ? q))−
ε

2 ≥ R.

Substituting in the value of p̂t, we have

α(p, p̄t)
(

1− h2

((
p̄t

α(p, p̄t)
+ ε2

16α2(p, p̄t)

)
? q

))
− ε

2
(a)
≥ α(p, p̄t)

1− h2

(
p̄t

α(p, p̄t)
? q

)
− 2

√√√√ ε2

16α2(p, p̄t)

− ε

2

= α(p, p̄t)
(

1− h2

(
p̄t

α(p, p̄t)
? q

))
− ε

≥ min
p̄t∈[0,p]

α(p, p̄t)
(

1− h2

(
p̄t

α(p, p̄t)
? q

))
− ε

= C(p, q)− ε

= R,

proving the result, where inequality (a) follows from (3.36 ) proven in Lemma 13 .
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Correct Decoding Point t∗: From [57 , Section A.3], for any trajectory pt chosen by

Calvin, Bob’s reference trajectory p̂t intersects pt at some point before the second to last

chunk end. Further, there is a t∗ ∈ T = {t0, t0 + nθ, · · · , n− nθ} such that

∀t ∈ {t0, t0 + nθ, · · · , t∗ − nθ}, pt > p̂t, (3.39)

pt∗ ≤ p̂t∗ , (3.40)

and

∀t ∈ {t0, t0 + nθ, · · · , t∗}, pn− tpt ≤ (n− t)
(

1
4 −

ε2

16

)
. (3.41)

As we will argue later, t∗ defined above turns out to be the correct decoding point, where

the two phase decoding attempt succeeds in finding the true message.

Code Properties: We now show that a code drawn at random from our ensemble

satisfies with a positive probability two key properties.

a) Property I - List Decoding Property: This property will be used to prove that

the size of the list obtained by Bob in a decoding attempt is at most a constant O(1/ε). We

state it as the following lemma.

Lemma 15. (Modified from [57 , Claims A.15-A.16]) Suppose t ∈ T = {t0, t0 + nθ, · · · , n−

nθ} where t = knθ satisfies (3.37 ), i.e.

t (1− h2 (p̂t ? q))−
nε

2 ≥ nR.

Then, for sufficiently large n, with probability at least
(
1− 1

np

)
over the code design, the left

mega sub-code C1 ◦ C2 ◦ · · · Ck is list decodable with radius r = t
(
p̂t ? q + ε2

256

)
and list size

L = O
(

1
ε

)
.

Proof. The proof follows exactly the analysis in [57 , Claims A.15-A.16]. The only additional

step is to verify the bound

1− h2

(
p̂t ? q + ε2

256

)
− nR

t
− nS

tθ
≥ ε

4 .
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Since θ = ε2(1−4p)
4 , S = θ3

8 , from Lemma 13 and given that (3.37 ) is true, we have

1− h2

(
p̂t ? q + ε2

256

)
− nR

t
− nS

tθ
≥ nε

2t −
nθ2

8t − 2
√
ε2

256

≥ n

2

(
3ε
8 −

θ2

8

)

≥ ε

4

as desired.

a) Property II - Minimum Distance Property: Now, for a decoding attempt at

t ∈ T , consider the list of messages L obtained by Bob in the list-decoding phase. Let u∗

be the true message chosen by Alice for transmission and let L(u∗) be the set of all possible

right mega sub-codewords w.r.t t for each message in L \ {u∗} i.e.

L(u∗) = {Ck+1(u, sk+1)◦Ck+2(u, sk+2)◦· · · C 1
θ
(u, s 1

θ
) : u ∈ L, u 6= u∗, (sk+1, · · · , s1/θ) ∈ S

1
θ

−k}.

For notational convenience, also enumerate L(u∗) containing codewords of length (n− t) as

L(u∗) = {w1,w2, · · · ,w|L(u∗)|}. The right mega-subcodeword for the true message is

xnt+1(u∗, sright) = Ck+1(u∗, sk+1) ◦ Ck+2(u∗, sk+2) ◦ · · · C 1
θ
(u∗, s 1

θ
)

which we emphasize is a function of the specific realization of sright=(sk+1, · · · , s 1
θ
) during

encoding.

We would like our code to satisfy the following distance condition

dH
(
xnt+1(u∗, sright),wj

)
≥ (n− t)

(
1
2 −

θ

2

)
∀wj ∈ L(u∗). (3.42)

Equation (3.42 ) is a key property that guarantees successful decoding. It ensures that the

right mega sub-codeword for the transmitted message is sufficiently far in Hamming distance

from the right mega sub words for any of the other messages in list L. From [57 , Claims

A.20-A.23], (3.35 ) indeed occurs w.h.p., for almost all possible sequence of secrets sright. We

state this as the following lemma.
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Lemma 16. ([57 , Claims A.20-A.23]) For sufficiently large n, with probability at least

1− 2−n, a code drawn from the random ensemble satisfies the following property : for every

chunk end t ∈ T , for every message u∗, and every list L of size at most O(1/ε), we have

that (3.42 ) holds for at least a (1− 2−nS/4) portion of all possible secret sequences sright.

Success of Decoding Procedure: We are now ready to argue that the iterative de-

coding process succeeds in finding the true message with high probability. Suppose we fix

a stochastic code C = C1 ◦ C2 ◦ · · · C1/θ for which both the list decoding property and the

minimum distance property are satisfied, which we can do thanks to Lemmas 15 and 16 . We

will show that t = t∗ as defined by (3.39 ), (3.40 ) and (3.41 ) is in fact the correct decoding

point i.e. at t∗, the list L obtained in the list decoding phase contains the true message

which is then returned in the unique decoding phase.

Success of list decoding: When t = t∗, we have p̂t∗ ≥ pt∗ . Thus, the number of

adversarial bit-flip attempts injected onto yt∗1 , the left mega received word w.r.t. t∗ is at most

t∗p̂t∗ . From Lemma 5 then, we have that dH(xt∗1 ,yt
∗

1 ) ≤ t∗
(
p̂t∗ ? q + ε2

256

)
with probability

at least 1− 2−Ω(ε4n). Since the list-decoding radius is selected to be rlist = t∗
(
p̂t∗ ? q + ε2

256

)
,

the transmitted message is indeed in the list L with high probability as required.

Also note that when t < t∗, i.e., for t ∈ {t0, t0 +nθ, · · · , t∗−nθ}, we have by the definition

of t∗ that pt > p̂t. By a similar argument as in Lemma 5 then, yt1, the left mega received

word w.r.t. t, lies w.h.p. outside the Hammming ball B(xt1, rlist). In other words, when

t < t∗, the transmitted message u∗ is w.h.p. not in the list L obtained by Bob.

Success of unique decoding: For t0 ≤ t ≤ t∗, our code for almost all key sequences

sright satisfies

dH
(
xnt+1(u∗, sright),wj

)
≥ (n− t)

(
1
2 −

θ

2

)
∀wj ∈ L(u∗), (3.43)

where recall that wj’s are the right-mega subcodewords corresponding to messages in L

excluding u∗. Further, we also have that Calvin has at most (n−t)
(

1
4 −

ε2

16

)
bit-flip attempts

left to inject onto xnt+1.

Recall that Bob considers Hamming balls of radius runique = (n − t)
(

1
4 ? q + θ(q−1/2)

10

)
that are each centered at right-mega subcodewords in L.
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When t0 ≤ t < t∗, the true message u∗ /∈ L while at t = t∗ we have that u∗ ∈ L.

Fortunately at t = t∗, thanks to Lemma 5 , we have that for any error pattern induced by

Calvin,

d(xnt∗+1,ynt∗+1) ≤ (n− t∗)
(

1
4 ? q + θ(q − 1/2)

10

)
= runique

with probability at least 1 − 2−Ω(θ2n), i.e. ynt∗+1 is indeed w.h.p.inside the Hamming ball

B(xnt∗+1, runique).

Next, consider any t0 ≤ t ≤ t∗ and wj from the set L(u∗). We argue that as required,

no matter what Calvin does, ynt+1 is outside B(wj, r). Let I be the set of indices where wj

and xnt+1(u∗, sright) agree and Ic be the set of indices where they disagree. For a vector v,

let (v)I denote v restricted to indices from I. We have that

dH(xnt+1,ynt+1) = dH
(
(xnt+1)I , (ynt+1)I

)
+ dH

(
(xnt+1)Ic , (ynt+1)Ic

)

and

dH(wj,ynt+1) = dH
(
(wj)I , (ynt+1)I

)
+ dH

(
(wj)Ic , (ynt+1)Ic

)
(3.44)

Bob decodes ynt+1 incorrectly to wj when dH(xnt+1,ynt+1) > r and dH(wj,ynt+1) ≤ r. Calvin’s

desire is to inject his remaining bit-flip attempts in such a way that ynt+1 is as far away

as possible from xnt+1, and at the same time, as close as possible to wj. Clearly, the best

strategy is then to only inject bit-flip attempts onto (xnt+1)Ic .

Then, since (xnt+1)I only suffers corruption due to the BSC(q), by the Chernoff bound we

have

dH
(
(xnt+1)I , (ynt+1)I

)
≥ |I| (q − η1) (3.45)

with probability at least (1− 2−Ω(η2
1n)). By Lemma 5 for Ic, we also have

dH
(
(xnt+1)Ic , (ynt+1)Ic

)
≤ |Ic|

(n− t∗)
(

1
4 −

ε2

16

)
|Ic|

 ? q + η2

 (3.46)
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with probability at least (1 − 2−Ω(η2
2n)). By definition of I and Ic, (3.45 ) and (3.46 ) then

imply that

dH
(
(wj)I , (ynt+1)I

)
≥ |I| (q − η1) (3.47)

and

dH
(
(wj)Ic , (ynt+1)Ic

)
≥ |Ic|

1−
(n− t)

(
1
4 −

ε2

16

)
|Ic|

 ? q − η2

 . (3.48)

Now, from lemma 3 , since

 (n−t)
(

1
4 − ε2

16

)
|Ic|

 < 1
2 , there exists a constant δ1 > 0 that is only of

ε, q and p such that (n− t)
(

1
4 −

ε2

16

)
|Ic|

 ? q =
(1

2 − δ1

)

We have then from (3.44 )

dH(wj,ynt+1) ≥ |I| (q − η1) + |Ic|
(

1−
(1

2 − δ1

)
− η2

)
.

We wish to show a lower bound on dH(wj,ynt+1). The worst case occurs when (3.43 ) holds

with equality, i.e. |Ic| = (n− t)
(

1
2 −

θ
2

)
. Making the choice η2 = δ1, we have

dH(wj,ynt+1) ≥ |I| (q − η1) + |I
c|

2

= (n− t)
((

1 + θ

2

)
(q − η1) +

(
1− θ

4

))
(a)
≥ (n− t)

(1
4 ? q + η1

)

where (a) follows by choosing η1 ≤ 2θ(q−1/2)
3+θ . Choosing, η2 = θ(q−1/2)

3+θ , we have that w.h.p.

dH(wj,ynt+1) ≥ (n− t)
(

1
4 ? q + θ(q − 1/2)

3 + θ

)
(a)
> runique,

where (a) follows by choosing ε (hence θ) small enough so that θ
θ+3 >

θ
5 . The same argument

can be repeated considering any wj ∈ L(u∗).

Summarising, we have shown that w.h.p.
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• when t0 ≤ t < t∗, the transmitted message u∗ is not in the list obtained by Bob, and

we have that d(ynt+1,wj) > runique for all wj ∈ L(u∗).

• when t = t∗, the transmitted message u∗ is indeed in the list obtained by Bob. Further

we have d(ynt+1,xnt+1) ≤ runique and d(ynt+1,wj) > runique for all wj ∈ L(u∗).

Thus, the iterative decoding procedure used by Bob succeeds in finding the true message u∗.

3.6 Capacity with Transmitter Feedback

Suppose now that Alice in addition to Calvin has access to Bob’s reception perfectly

through a separate causal feedback link (see Fig. 3.7 ). This allows Alice to employ closed-

loop encoding strategies where the input xk at time k is possibly a function of both the

message and Bob’s reception thus far (y1, y2, · · · , yk−1), i.e.,

Xk ∼ fk(U,Y1,Y2, · · · ,Yk−1) k = 1, 2, · · · , n (3.49)

where for each k, fk is either deterministic or, more generally, a probabilistic map defining a

conditional distribution PX|U,Y1,Y2,··· ,Yk−1 over X . Calvin is assumed to be causal as before.

He does not know the message but knows the closed-loop encoding (possibly stochastic)

maps {fk}nk=1 used by Alice. Let the capacities in this case be denoted as CE
f (p, q) and

Cf (p, q) respectively.

3.6.1 BEC(q)-ADV(p)-FS with Transmitter Feedback

Theorem 3.6.1. The capacity CE
f (p, q) of BEC(q)-ADV(p)-FS with causal feedback to the

transmitter is

CE
f (p, q) = (1− p)(1− q) ∀ 0 ≤ p ≤ 1, 0 ≤ q ≤ 1. (3.50)

Remark. If Calvin were to simply erase each symbol with probability p, the rate is limited

to1
 (1− p)(1− q) which matches with the expression in (3.50 ). This implies that the optimal

1↑ For a vanilla DMC such as the BEC, the capacity is the same under deterministic and stochastic encoding
[49 ].
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Figure 3.7. Channel models with transmitter feedback

attack for the adversary is to simply cause i.i.d. erasures. The knowledge of the (closed-loop)

encoding scheme or the ability to snoop into Bob’s reception does not buy Calvin any benefit.

Proof. First, we show the converse. Fix ε > 0. Calvin simply erases each symbol with

probability p− ε
1−q . By the Chernoff bound, the probability that Calvin will run out of his

budget of pn erasures is at most 1− 2−Ω(ε2n). The combined effect of the adversary and the

BEC(q) then is a BEC with erasure probability s = p + q − pq − ε. Since causal feedback

does not increase capacity for a BEC, CE
f (p, q) ≤ 1− s = (1− p)(1− q) + ε.

The achievability scheme is essentially an ARQ scheme - transmit each of the k bits in the

message repeatedly until it is successfully received. If eΛ is the total number of erasures (a

random quantity) that occur due to both the actions of Calvin and the BEC(q), Alice needs

n = k + eΛ channel uses for this scheme to succeed. From Lemma 4 however, we have that

P (eΛ > ((p+ q − pq) + ε)n) is at most 1−2−Ω(ε2n) and hence, CE
f (p, q) ≥ (1−p)(1−q)−ε.
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3.6.2 BSC(q)-ADV(p)-FS with Transmitter Feedback : A Conjecture

For the BSC(q)-ADV(p)-FS channel with causal transmitter feedback, we prove a simple

achievable rate and conjecture on the true capacity expression. Proving stronger converse

and achievability results is left for future work.

First, consider the simpler case where there is no BSC, i.e. q = 0, and Calvin knows

the message Alice wants to transmit. Then, a tight capacity characterization C̃f (p) for this

scenario is implied by the work of Berlekamp [36 ] and Zigangirov [72 ]:

C̃f (p) =



1− h2(p) 0 ≤ p ≤ pf

R0(1− 3p) pf ≤ p ≤ 1
3

0 1
3 ≤ p ≤ 1

2

, (3.51)

where pf = 1
3+

√
5 and R0 = log2

(
1+

√
5

2

)
. Interestingly, analogous to our result in theorem

(3.3.2 ), the capacity curve in (3.51 ) has two parts. The first is a convex part that is equal to

the random i.i.d. noise capacity 1 − h2(p) when p < pf . For p ≥ pf , the curve is a tangent

to the function 1− h2(p) with abscissa at p = 1
3 . It can be shown that (3.51 ) admits a form

that is very similar to our result in Theorem 3.3.2 where q = 0, and 4 is instead replaced

with a 3, i.e.,

C̃f (p) = min
x∈[0,p]

(1− 3(p− x))
(

1− h2

(
x

1− 3(p− x)

))
. (3.52)

Now, since an adversary who knows Alice’s message is stronger than one who does not,

using (3.51 ) and the result in theorem 5 , we obtain the following simple lower bound to

Cf (p, q).

Lemma 17. The capacity Cf (p, q) of BSC(q)-ADV(p)-FS channel with causal transmitter

feedback is lower bounded as Cf (p, q) ≥ C̃f (p ? q).

Remark. Lemma 17 implies that when p = 1
4 and q is small enough, it is possible to achieve

a non-zero rate when Alice has feedback, i.e. Cf
(

1
4 , q

)
> 0. Contrast this to the fact that

without transmitter feedback, C
(

1
4 , q

)
= 0 for all values of q.
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Figure 3.8. Capacity of BSC(q)-ADV(p)-FS when q = 0.1. Here, the presence
of transmitter feedback provably increases the capacity for all values of p.

Conjecture: We conjecture that the true capacity of BSC(q)-ADV(p)-FS with feedback

to the transmitter is given by

Cf (p, q) = min
p̄:p̄∈P

αf (p, p̄)
(

1− h2

(
p̄

αf (p, p̄)
? q

))
, (3.53)

where

αf (p, p̄) = 1− 3(p− p̄) , P = {p̄ : 0 ≤ p̄ ≤ p} .

An example for q = 0.1 is plotted in Fig. 3.8 .
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3.7 Concluding Remarks

In this work, we studied the problem of communicating over a stochastic channel (BEC/BSC)

in the presence of a powerful adversary who can spy on both communicating terminals and

inject further erasures/bit-flips at the input of the channel. We then gave a complete capac-

ity characterization for both models. Our work implies that in certain cases, an adversary

that is weak enough is no better than an i.i.d. memory-less noise source. We also considered

extensions to our models by introducing transmitter feedback. Future work includes proving

our conjecture in (3.53 ). Another interesting direction is to characterize capacity in the case

where the adversary has no feedback snooping.
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4. LINEAR BLOCK FEEDBACK ENCODING AND A NOVEL

SYSTEMATIC REPRESENTATION FOR REED-MULLER

CODES

V. Suresh and D. J. Love, “A Novel Systematic Representation of Reed-Muller Codes with
an Application to Linear Block Feedback Encoding,” 2020 54th Asilomar Conference on
Signals, Systems, and Computers, 2020, pp. 677-682. © 2020 IEEE.

4.1 Introduction

The problem of coding with feedback dates back to Shannon who showed that even perfect

causal feedback does not increase the capacity of discrete memoryless channels (DMCs).

However, a myriad of works since then have shown that feedback can indeed be useful in

simplifying the communication strategy or improving the error exponent i.e. the rate at

which the probability of error decays with block-length. The most famous example of this is

for the point to point AWGN channel described in a beautiful seminal work by Schalkwijk

and Kailath (the S-K scheme) [73 ], [74 ], later extended to other scenarios [75 ], [76 ]. The

general idea is to send an uncoded signal in the first channel use and then perform linear

processing of the feedback signal (mainly through linear encoding of the error realizations or

current estimate error at the receiver) in subsequent channel uses. Remarkably, not only does

the S-K scheme achieve any rate up to capacity but does so with a probability of error that

decaying doubly exponentially with block length. Thus, linear feedback processing enables

a dramatic reduction in complexity while simultaneously improving reliability. Since then,

linear schemes have found applicability for a host of other problems (see for eg. [77 ]–[79 ]).

The situation in the case of discrete channels is less dramatic. It is known that for

symmetric DMC’s with perfect causal feedback, fixed-length block codes do not improve

either the capacity or the error exponent [80 ]. Hence, beginning with the seminal work of

Burnashev [81 ], variable-length block coding with feedback which he showed indeed improves

the error exponent, has received much attention both from a theoretical and practical interest

[82 ]–[85 ].
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In this work, we deal with binary codes and revisit the problem of fixed-length block

coding with feedback over a binary symmetric channel (BSC) and provide new original

perspectives.

1. Recall that the capacity of BSC(p) where p is the probability of bit-flip is C(p) =

1− h(p). In the spirit of the S-K scheme, we ask the following question -

Q 1. Can uncoded transmission followed by linear feedback processing achieve capacity

over a BSC(p)?

Consider the following simple strategy - the transmitter begins with an uncoded

transmission of the message bits m = (m0,m1, · · · ,mK−1). The received bits y =

(y0, y1, · · · , yK−1) are relayed to the transmitter by means of a feedback channel. Know-

ing m, the transmitter ascertains the error bits e = (e0, e1, · · · , eK−1) that occured in

the initial transmission. At this point, the initial error bits e = (e0, e1, · · · , eK−1) can

be thought of as the “new message” to be communicated to the receiver for successful

decoding. This can be achieved by linear processing of feedback signals e0, e1, · · · , eK−1

in accordance to some capacity achieving open-loop code. While this strategy is natu-

ral, it suffers from a rate-loss. In particular, the best rate achievable by this strategy

over a BSC(p) is C(p)
1+C(p) which is strictly less than C(p). Can we do better? In this

work, we will show this is indeed the case and answer Q1 in the affirmative.

2. Suppose that a given system is equipped with a relatively weak open-loop code oper-

ating at some rate. We show that we can enhance the error resilience of this system by

augmenting it with a simple feedback and linear processing setup. In fact, it is shown

that a weak code can effectively be strengthened to be as good as any desired code by

introducing a linear noise-shaping component during encoding. A random coding type

result shows that a random i.i.d. noise-shaping matrix is capacity-achieving. Finally,

we also show that the transmission of parity bits in an open loop code and noise-shaped

bits in a closed loop setting are quite intimately related.

3. We next consider feedback encoding under feedback limitations namely, (i) infrequent

compressed feedback and (ii) delayed feedback. In the first case, the receiver sends
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linearly compressed versions of the bits received thus far, in only a few channel uses.

In the case of delayed feedback, there is a delay between the time that the receiver

sends a feedback symbol and when it is received at the transmitter. We characterize a

class of codes that can be emulated by noise-shaping for both cases and provide many

illustrative examples.

4. Reed-Muller codes are a powerful class of codes with excellent performance that are

conjectured to be capacity-achieving. We prove a new result that shows that Reed-

Muller codes admit a special systematic representation. While this result is of inde-

pendent interest, we use it to demonstrate that uncoded transmission combined with

feedback processing can be made to mimic a Reed-Muller code against remarkably

large feedback delays.

4.2 System Model and Problem Statement

4.2.1 Input-Output Expressions and Assumptions

Consider a memoryless binary symmetric channel (BSC) with an input-output for each

channel use i of

yi = ci ⊕ ei (4.1)

where yi ∈ {0, 1} is the received bit, ci ∈ {0, 1} is the transmitted bit, ei ∈ {0, 1} is

memoryless additive noise with P (ei = 1) = 1 − P (ei = 0) = p, ⊕ is mod-2 addition.

Traditional error control coding analysis is open-loop, meaning that each ci is generated

independently of ej for all j (i.e., the transmitted signal is independent of all past, current,

and future noise realizations). In practice, this means that the transmitter does not have

any side information about the received signal during encoding.

We consider the problem of closed-loop error control coding and assume that the trans-

mitter has causal access to the received signal. This means that prior to channel use i

the transmitter has perfect knowledge of {yj}i−1
j=0. Because the transmitter perfectly knows

{cj}i−1
j=0, this side information is equivalent to the transmitter having knowledge of the past
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noise realizations {ej}i−1
j=0 prior to channel use i. This assumption is later suitably modified

in Section 4.6 where compressed and delayed feedback are considered.

The transmitter must encode a message m ∈ {1, . . . , 2K} to convey to the receiver. The

transmitter encodes using a function

ci = φclosed,i
(
m, {ej}i−1

j=0

)
. (4.2)

We focus on block coding. where m is encoded only over N channel uses to generate the

codeword c = [c0 c1 · · · cN−1]. In this paper, we investigate the design of encoding functions.

4.2.2 Review of Open-Loop Coding

In open-loop error control coding, the transmitter sends the message m over N chan-

nel uses by constructing a vector c according to c = φopen(m) where φopen is an encod-

ing function and N is the blocklength. This can be thought of as using a codebook C =

{φopen(1), φopen(2), . . . , φopen(2K)}, which is known to both the transmitter and receiver. The

receiver then decodes using the vector input-output expression

y = c⊕ e (4.3)

where y = [y0 y1 · · · yN−1], e = [e0 e1 · · · eN−1]. Because the noise is independent and

identically distributed (i.i.d.) Bernoulli, the minimum probability of error receiver decodes

to the vector from codebook C that is nearest to y in Hamming distance.

Most of the popular error control codes are linear block codes. These use the fact that

the message m can be alternatively written as a K-bit vector m ∈ {0, 1}K . A linear block

code utilizes an encoding function

c = φopen(m) = mG (4.4)

where G ∈ {0, 1}K×N is the generator matrix of the code. The codewords together form a

linear vector space, the row space of the generator.
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The subspace structure of a linear block code means that the receiver in can be efficiently

implemented using syndrome decoding. The syndrome decoder uses the parity check matrix

H ∈ {0, 1}(N−K)×N satisfying cHT = 0 for all c ∈ C. Given the received bit vector y, the

receiver computes a syndrome s = yHT . The receiver then decodes an error pattern

erec = arg min
e:eHT =s

d(e, 0),

and concludes m̂ = φ−1
open(y⊕ erec), where d(·, ·) denotes Hamming distance.

4.3 Linear Feedback Encoding

Inspired by the successes of linear schemes, we investigate the use of linear block feedback

codes. The encoding function has the form

ci = φclosed,i
(
m, {ej}i−1

j=0

)
=

K−1∑
j=0

mjgj,i ⊕
i−1∑
`=0

e`f`,i, (4.5)

where m = [m0,m1, · · · ,mK−1] is the message string and {gj,i}j,i, {f`,i}`,i ∈ {0, 1}. In

particular, expressing (4.5 ) in vector form

c = mG︸ ︷︷ ︸
open-loop component

⊕ eF︸︷︷︸
noise-shaping

, (4.6)

G is the K×N open-loop generator matrix and F is a N ×N binary matrix that represents

feedback encoding in the form of linear noise-shaping. Since ci cannot possibly depend on

future errors {ej}N−1
j=i , we must have fi,j = 0 ∀i ≤ j. In other words, causality enforces F to

be strictly upper-triangular. Using (4.6 ), the receiver observes

y = c⊕ e = mG⊕ e (I⊕ F) . (4.7)

Eq.(4.7 ) indicates transmission of an open-loop codeword over a channel with a special

kind of correlated Bernoulli noise. Since F is strictly upper-triangular, (I ⊕ F) has linearly
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independent columns and is full rank over GF (2). The maximum-likelihood (ML) decoder

is seen to be

m∗ = arg max
m

Pr(y|m)

= arg max
m

Pr(e(I⊕ F) = y−mG)

= arg max
m

Pr(e = y(I⊕ F)−1 −mG(I⊕ F)−1)

= arg min
m

d(y(I⊕ F)−1,mG(I⊕ F)−1).

where the last equality follows since the elements of e are i.i.d. Ber(p). Thus, the optimal

detector constitutes “noise-whitening” followed by a minimum-distance decoder.

What is the effect of noise-shaping on the error detection and correction capabilities of

the system? Let H denote a parity-check corresponding to G, and suppose that the receiver

calculates the syndrome [86 ] to be

s = yHT (a)= eH̃T (4.8)

where (a) follows from setting H̃ = H (I⊕ F)T and noting that GHT = 0. From (4.8 ), it is

clear that the use of feedback allows us to detect and correct error patterns as robustly as

an open-loop code with the parity check matrix H̃.

This is also evident from the noise-whitening interpretation. The receiver whitens the

noise sequence by multiplying the received symbols y by (I⊕ F)−1 and we have

ỹ = y(I⊕ F)−1 = mG(I⊕ F)−1 ⊕ e. (4.9)

The syndrome can be calculated using H̃ to be ỹH̃T = eH̃T as in (4.8 ). Since G(I ⊕

F)−1H̃T = GHT = 0, G̃ = G(I ⊕ F)−1 and H̃ = H (I⊕ F)T can be thought of as the

effective open-loop generator and open-loop parity-check matrices respectively that we hope

is an improvement when G or H is relatively weak.

Our development so far suggests that possibly, a weak open-loop code can effectively be

enhanced by a judicious choice of feedback encoding F. But, how far can we go? What is the
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class of linear codes (through G̃ or H̃) that can be emulated in this way? This is resolved

in section 4.5 . But first, we consider random feedback encoding in Section 4.4 .

4.4 Random Noise-Shaping is Capacity-Achieving

In reference to Q1 , consider an uncoded system i.e. with G = [IK 0K×(N−K)]. Our task

is to design a noise-shaping rule F in (4.6 ) that hopefully yields good performance. We show

that a randomly chosen feedback-encoding matrix is capacity achieving.

Theorem 4.4.1. Let G =
[
IK 0K×(N−K)

]
be an uncoded system and consider the ensemble

of random linear block feedback codes generated from by a noise-shaping matrix of the form

FN×N =



0 f0,1 · · · f0,N−2 f0,N−1

0 0 f1,2 · · · f1,N−1
... ... . . . . . . ...
... ... . . . . . . fN−2,N−1

0 0 . . . 0 0


(4.10)

where each mutable entry fi,j, i = 0, 1, · · · , N − 1, j = 1, 2, · · · , N − 1, i < j in F is i.i.d.

Ber
(

1
2

)
, and K = bNRc for some fixed rate R. At all rates below capacity for a BSC(p),

i.e., for R < C(p) = 1 − h(p), the average probability of error for this ensemble decays

exponentially with block-length N .

As shown earlier, the resulting block feedback code mimics in performance an open-loop

code with the generator

G̃ = G(I⊕ F)−1. (4.11)

Hence, partition

(I⊕ F) =

 J(1)
K×K J(2)

K×(N−K)

0(N−K)×K J(3)
(N−K)×(N−K)

 . (4.12)
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Here, J(1) and J(3) are square invertible upper triangular matrices of dimensions K and

(N−K), with off-diagonal entries distributed as i.i.d. Ber
(

1
2

)
. J(2) is a K×(N−K) binary

matrix with each entry i.i.d. Ber
(

1
2

)
. It is straightforward to compute

(I⊕ F)−1 =

J(1)−1 J(1)−1J(2)J(3)−1

0 J(3)−1

 ,

which gives G̃ = J(1)−1 [I J(2)J(3)−1 ]. Since pre-multiplication of a generator matrix by an

invertible transformation leaves the row-space and hence the set of codewords unaltered,

J(1)−1 can be ignored. The following lemma gives the distribution of J(3)−1 .

Lemma 18. [87 ] Let R be a square invertible upper-triangular matrix over GF (2) with the

off-diagonal entries i.i.d. Ber(1
2). Then, R−1 is square invertible upper-triangular with its

off-diagonal entries distributed as i.i.d. Ber(1
2).

Proof. We have

R =



1 r1 · · · rm−2 rm−1

0 1 rm · · · r2m−3
... ... . . . . . . ...
... ... . . . . . . rm(m−1)

2

0 0 . . . 0 1


where ri are distributed i.i.d. Ber(1

2). Its inverse over GF (2) has the form

R−1 =



1 s1 · · · sm−2 sm−1

0 1 sm · · · s2m−3
... ... . . . . . . ...
... ... . . . . . . sm(m−1)

2

0 0 . . . 0 1


.

We are interested in characterizing the distribution of {sj}. Since a necessary and sufficient

condition for an upper triangular matrix over GF (2) to be invertible is for the diagonal to

have all ones, the (non-linear) map that takes {rj} to {sj} is one-to-one and onto. Thus,
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each realization of R being equally likely implies that each realization of R−1 or that of the

q-tuple (s1, s2, · · · , sq) is equally likely with probability 1
2q , where q = m(m−1)

2 . The marginal

distribution of sk for some 1 ≤ k ≤ q can now be easily calculated by summing out the rest

q − 1 random variables as

Pr(sk = i) =
∑

s1,s2,··· ,sk−1,sk+1,··· ,sq

1
2q = 2q−1

2q = 1
2 (4.13)

for i = 0, 1.

Similar to (4.13 ), calculation of the joint distribution of an arbitrary sub-collection of the

random variables say (si1 , si2 , · · · , sib) involves summing 2q−b terms each equal to 1
2q , yielding

a uniform distribution which is equal to the product of the marginals involved. Hence, {si}

are indeed distributed i.i.d. Ber(1
2).

Lemma 19. The random matrix Q = J(2)J(3)−1 is a K × N matrix over GF (2) with each

entry distributed i.i.d. Ber(1
2).

Proof. From Lemma 18 , J(3)−1 is a random-matrix

J(3)−1 =



1 s1 · · · sm−2 sm−1

0 1 sm · · · s2m−3
... ... . . . . . . ...
... ... . . . . . . sm(m−1)

2

0 0 . . . 0 1



with {si} distributed i.i.d. Ber(1
2) and

J(2) =



f0,K f0,K+1 · · · f0,N−1

f1,K f1,K+1 · · · f1,N−1
... ... ... ...

fK−1,K fK−1,K+1 · · · fK−1,N−1
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where {fi,j}, 0 ≤ i ≤ K − 1, K ≤ j ≤ N − 1 are distributed i.i.d. Ber(1
2). Since each

fi,j ∼ Ber(1
2), the marginal distribution of each element of Q is Ber(1

2). To see independence,

consider calculating the joint distribution of an arbitrary sub-collection of elements from Q.

For a fixed realization J(3)−1 , it can be verified that the conditional joint distribution is

uniform and since every realization of J(3)−1 is equally likely, the overall joint distribution is

indeed uniform and the claim holds.

From the above discussion, it suffices to prove the theorem for the ensemble of random

systematic linear codes generated by G̃ = [I Q] where entries of Q are distributed i.i.d.

Ber(1
2). This is essentially a known result [88 ] hence proving theorem 4.4.1 .

4.5 Design of Encoding Function

4.5.1 Strengthen a Weak Code

We briefly recall some well-known facts about binary linear codes. Consider a code with

generator matrix G. First, the generator matrix representation is not unique - G and KG

both generate the same code for any invertible matrix K. This is because pre-multiplication

by K can be decomposed into a sequence of elementary row operations none of which alter

the row space, and hence the set of codewords. Second, applying a permutation on the

coordinate positions of the codewords yields a different linear code but with the same error-

correction capabilities. Such codes are referred to as being equivalent in literature [86 ].

Suppose now that a system is equipped with a relatively weak (N,K) code with the gen-

erator G. Without loss of generality, we assume that the K×K submatrix of G comprising

of its first K columns is full rank. From the above discussion then, we can let G be of the

form G = [IK PK×(N−K)]. To improve performance, we employ linear feedback encoding as

in (4.6 ) by means of a noise-shaping matrix F. The main result is now stated as follows:

Theorem 4.5.1. By means of noise-shaping, G = [I P] can be strengthened to have perfor-

mance of that of any desired linear code.
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Proof. As developed in Section 4.3 , the resulting linear block feedback code has performance

equivalent to the open-loop linear code with generator G̃ = G(I⊕F)−1. We have the general

structure

(I⊕ F) =

 J(1)
K×K J(2)

K×(N−K)

0(N−K)×K J(3)
(N−K)×(N−K)

 (4.14)

where J(1), J(3) are both invertible and upper-triangular. We then have,

G̃ = G(I⊕ F)−1 =
[
J(1)−1 (

P⊕ J(1)−1J(2)
)

J(3)−1]

Pre-multiplying by the invertible transform J(1), we have

G̃ =
[
I
(
J(1)P⊕ J(2)

)
J(3)−1]

. (4.15)

Choosing J(1) = IK , J(3) = I(N−K) gives G̃ = [I (P ⊕ J(2))]. We can strengthen G to any

desired linear code by choosing a suitable J(2). Suppose that the desired linear code has

generator G0 = [I Q]. For example, one could choose G0 to be the systematic generator of

a capacity-achieving code. Then, set J(2) = P⊕Q, i.e.

F =

 0K×K Q⊕P

0(N−K)×K 0(N−K)×(N−K)

 . (4.16)

For this specific choice, F2 = 0N×N and (I⊕F)−1 = (I⊕F). Hence we have G̃ = G(I⊕F)−1 =

G(I⊕ F) = [I Q] = G0 and we are done.

Remark. Note from the choice of F in (4.16 ), the codewords of the linear block feedback

code in (4.6 ) have a rather special structure

c = m[I P]⊕ e

 0 P⊕Q

0 0


= m[I P]⊕ [0 es(P⊕Q)]
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where es = [e0, e1, · · · , eK−1] is noise vector that corrupts the systematic message bits. The

resulting code involves linear encoding of only the initial error bits. We lose nothing in

performance by ignoring error bits eK through eN−1 and hence, feedback can be shut off for

non-systematic bits.

4.5.2 Noise-Shaping vs Parity bits

Consider an uncoded system, i.e. G = [I 0]. Suppose we wish to enhance it to a code

with generator G̃ = [I Q]. As discussed in theorem 4.5.1 , we set

F =

 0 Q

0 0

 . (4.17)

From Eq. 4.6 then, the codewords are given by

c = m[IK 0]⊕ e

 0 Q

0 0


= [ m0 m1 · · · mK−1︸ ︷︷ ︸

Systematic Tx

| [e0 e1 · · · eK−1]Q︸ ︷︷ ︸
Noise-Shaping

]
(4.18)

where ei is the noise bit that corrupts message bit mi, for i = 0, 1, · · · , K − 1. Systematic

message bit transmission followed by noise-shaping of only the initial error bits is thus

sufficient to mimic any arbitrary open-loop code. Choosing G̃ to be capacity-achieving

settles Q1 with a positive answer.

It is interesting to compare the codewords c in (4.18 ) to the codewords c in the case

where the system was directly using the open-loop code G̃ -

c = mG̃

= [ m0 m1 · · · mK−1︸ ︷︷ ︸
Systematic Tx

| [m0 m1 · · · mK−1]Q︸ ︷︷ ︸
Tx of Parity Bits

].

116



Analogous to transmission of parity bits in an open-loop code, linear feedback encoding can

be thought of as noise-shaping of errors that occur in the systematic transmission, according

to the same rule as encapsulated in Q.

4.6 Encoding under Feedback Limitations

4.6.1 Compressed Feedback

Feedback resources in a real system are generally limited making full causal feedback

unrealistic. Motivated by this, we consider the scenario where the feedback symbols are

linearly compressed before transmission. The receiver sends causal linear combinations of

bits received thus far, in a few channel uses. An example is illustrated in Fig. 4.1 where

symbols y0, (y0 ⊕ y1) and (y1 ⊕ y3) are fed back after channel uses 1, 3 and 4 respectively.

First, consider upgrading an uncoded system. Recall from Section 4.5.2 , an uncoded

transmission of K message bits followed by (N−K) bits esQ where es = [e0, e1, · · · , eK−1] is

the vector of initial errors and Q is some K×(N−K) binary matrix, emulates the code with

generator G̃ = [IK Q]. We have already seen that K bits of uncompressed feedback (i.e.

y0, y1, y2, · · · , yK−1) can turn the uncoded system to any code. When K > (N −K), i.e. the

target code rate is larger than 0.5, we can do better. It is indeed sufficient for the receiver

to send the (N −K) bits ysQ instead of the K bits ys, where ys = [y0, y1, · · · , yK−1] is the

vector of bits received during uncoded transmission. We thus conclude, b = min(K,N −K)

bits of feedback (possibly after compression) per code-block suffice to enhance an uncoded

system by shaping feedback signals to any desired code.

Example 4.6.1. To transform an uncoded system to a (4, 3) code with

G̃ =


1 0 0 1

0 1 0 1

0 0 1 1

 ,

it is sufficient for the receiver to send b = 1 bit (y0 ⊕ y1 ⊕ y2) after the third channel use.
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The next situation to consider is when b < min(K,N − K). Which are the codes that

we can emulate?

Theorem 4.6.1. With b-bits of (possibly compressed) feedback, any choice of feedback en-

coding effectively turns an uncoded system to a code with G̃ = [I P] where rank(P) ≤ b.

Conversely, for any given P with rank(P) ≤ b, compression of ys to b bits of feedback is

sufficient to emulate G̃ = [I P].

Proof. First, the converse is easy to see. If p1,p2, · · · ,pb are column vectors that form a basis

for the column span of P, it is sufficient for the receiver to send bits yspj, j = 1, 2, · · · , b.

For the forward direction, we introduce some notation. Let W be a binary compression

matrix of dimension N × N with only b non-zero columns. W describes how the received

bits y are compressed. The indices of the non-zero columns corresponds to the channel uses

where feedback is sent. Due to causality, note that W is upper triangular. An example of

W is illustrated in Fig. 4.1 . Hence, the encoding rule at the transmitter becomes

c = mG⊕ eWF

where m is the 1×K message vector, G is the open-loop K ×N generator matrix and the

N ×N matrix F describes how the transmitter shapes the bits received in the feedback for

encoding. The effective generator matrix is then G̃ = G (I⊕WF)−1. Since G is uncoded,

denoting

(I⊕WF) =

 J(1)
K×K J(2)

K×(N−K)

0(N−K)×K J(3)
(N−K)×(N−K)

 , (4.19)

the effective generator matrix is G̃ = [I J(2)J(3)−1 ]. We have rank(W) ≤ b since it has at

most b columns that are non-zero. This implies that J(2) and hence the matrix J(2)J(3)−1 has

rank at most b completing the proof. Note that the result holds for any choice of W or F

i.e. for any sort of feedback encoding.

The next theorem gives the best minimum distance distance achievable and some neces-

sary conditions that need to be met in order to achieve it.
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Figure 4.1. An example of feedback compression matrix W as defined in the
proof of Theorem 4.6.1 with N = 5 and b = 3. The result holds irrespective
of the choice of W or F.

Theorem 4.6.2. For a (N,K) linear code G = [I P] with rank(P) ≤ b where b <

min(K,N −K) , we have the bound

dmin ≤ b+ 1. (4.20)

Furthermore, when dmin = b+ 1 for b > 1, then

(i) rank(P) = b

(ii) K = b+ 1 = dmin

(iii) N ≥ 2b+ 2 i.e. rate K
N
≤ 1

2 .

Proof. The parity check matrix is H = [PT I]. Recall the following property [86 ] of linear

codes

Property 1. dmin = d iff every d− 1 columns from H are linearly independent and some d

columns are linearly dependent.

Since rank(P) ≤ b, any b + 1 columns from PT are linearly dependent and we can

conclude

dmin ≤ b+ 1.
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For the second part, since dmin = b + 1, every b columns from PT (or b rows from P) are

linearly independent giving rank(P) ≥ b. Since it is also given that rank(P) ≤ b, we have

rank(P) = b = rank(PT ). Let v1,v2, · · · ,vb be a set of b linearly independent columns from

PT . Every other column in PT is some linear combination of these. Note b < min(K,N−K)

implies K ≥ b + 1. We now show that K > b + 1 is impossible. This can be seen in two

steps:

1. First, suppose K = b+ 1 and the (b+ 1)th column is vb+1 = ∑
i∈I vi for some index set

I ⊆ {1, 2, 3, · · · , b}. Then, we must have I = {1, 2, 3, · · · , b}. This is because if k /∈ I,

then v1,v2, · · · ,vk−1,vk+1, · · · ,vb,vb+1 are b columns that are linearly dependent,

violating property 1 .

2. Suppose K = b + 2, then from above we must have vb+1 = vb+2 = ∑
i vi. However

then, vb+1,vb+2 are linearly dependent. The same argument extends for K ≥ b+ 2.

Thus, when dmin = b + 1 for some b > 1, we have rank(P) = b = K − 1. We also have

(N −K) > b implying N ≥ 2b+ 2 or K
N
≤ 1

2 .

Finally, suppose that the original system is not uncoded but equipped with some weak

code G = [I P]. Recall from (4.19 ) and (4.15 ) that with feedback encoding using b bits of

feedback, we can emulate a generator

G̃ =
[
I
(
J(1)P⊕ J(2)

)
J(3)−1]

. (4.21)

We can choose W and F such that J(1) = IK , J(3) = IN−K and J(2) is any desired K×(N−K)

binary matrix with rank
(
J(2)

)
= b. Then, (4.21 ) becomes

G̃ =
[
I P⊕ J(2)

]
.

In sum, with b of compressed feedback, the parity component of a given code can be perturbed

by a matrix of rank b.

We end this section with an example of how a simple repeat-transmission scheme is

enhanced with one bit of compressed feedback.
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Example 4.6.2. Consider the (12, 4) repetition code that has generator

G =



1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1


and dmin = 3. We show that b = 1 bit of compressed feedback can enhance the mini-

mum distance to dmin = 5, hence granting guaranteed resilience against 2 errors as op-

posed to 1. Having received ys = [y0, y1, y2, y3], the receiver sends the compressed version

d = (y0 ⊕ y1 ⊕ y2 ⊕ y3). The transmitter ascertains d = (e0 ⊕ e1 ⊕ e2 ⊕ e3) and the closed-

loop codeword is

c = (m0,m1,m2,m3,m0,m1,m2,m3,m0 ⊕ d,m1 ⊕ d,m2 ⊕ d,m3 ⊕ d).

The new effective generator G̃ with dmin = 5 is

G̃ =



1 0 0 0 1 0 0 0 0 1 1 1

0 1 0 0 0 1 0 0 1 0 1 1

0 0 1 0 0 0 1 0 1 1 0 1

0 0 0 1 0 0 0 1 1 1 1 0


obtained by a rank b = 1 perturbation of G.

4.6.2 Delayed Feedback

Now suppose that there is a delay of ∆ channel uses between the time that feedback is

sent and when it can be used for encoding at the transmitter. The encoding function changes

to

ci = φclosed,i
(
m, {ej}i−1−∆

j=0

)
=

K−1∑
j=0

mjgj,i ⊕
i−1−∆∑
`=0

e`f`,i.
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In vector form, this is expressed as

c = mG︸ ︷︷ ︸
open-loop component

⊕ eF︸︷︷︸
noise-shaping

where the noise-shaping matrix F is strictly upper triangular additionally with ∆ all-zero

diagonals above the main diagonal, i.e., fi,j = 0 ∀i ≤ j + k for k = 0, 1, · · · ,∆.

Let S(∆) be the set of all (N,K) open-loop systematic linear codes induced by a generator

matrix of the form

G = [IK P(∆)] (4.22)

where P(∆) is a K × (N − K) binary matrix with the property that it has ∆ consecutive

all-zero sub-diagonals beginning at the lower left end. For instance,

P(3) =



× × × × · · · ×
... ... ... ... ... ...

× × × × · · · ×

0 × × × · · · ×

0 0 × × · · · ×

0 0 0 × · · · ×


.

In other words, the parity component P(∆) consists of an ‘all-zero triangle’ of size ∆

embedded from the lower left. Note that the largest such triangle that can be fit into the

K × (N − K) matrix P(∆) has size ∆? = min(K,N − K) where K and N are the code

dimension and code length respectively. The class of linear codes that can be emulated from

an uncoded system, when there is feedback delay is characterized by the following theorem.

Theorem 4.6.3. Suppose that we start with an uncoded system with G =
[
IK 0K×(N−K)

]
.

For any choice of linear block feedback encoding with complete causal feedback and ∆ units

of feedback delay, the new code obtained is effectively equivalent to some code in S(∆).

Conversely, every code in the set S(∆) can be emulated with suitable encoding.
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Proof. Let F be the noise-shaping matrix chosen for encoding. Denoting

(I⊕ F) =

 J(1)
K×K J(2)

K×(N−K)

0(N−K)×K J(3)
(N−K)×(N−K)

 , (4.23)

the effective generator matrix is G̃ = [I J(2)J(3)−1 ]. Since F has ∆ all-zero diagonals above

its main diagonal and J(3)−1 is upper-triangular, the matrix Q = J(2)J(3)−1 has ∆ all-zero

sub-diagonals beginning at the lower left corner. In other words, G̃ essentially is of the form

G̃ = [I P(∆)] and the first part of the theorem is proved. To see the converse, consider

emulating an arbitrary code from S(∆) with generator G̃ = [I P(∆)
1 ], and note that a valid

choice of feedback encoding is to simply set

F =

 0 P(∆)
1

0 0

 .

From Theorem 4.6.3 , an uncoded system can be transformed to a code of the form (4.22 )

(and no better) when there is a delay of ∆ units in the feedback link. A central question is

thus whether there exists a good code or a good class of codes that has a generator of the

form (4.22 ) with a possibly large ∆. The larger the value of ∆, the larger is the feedback

delay that can be tolerated.

We demonstrate in the next section that Reed-Muller (RM) codes prove to be a good

candidate in that they have excellent performance and admit very large values of ∆. To

the best of authors’ knowledge, this type of result for RM codes is new and has never been

shown before. Thus, a RM code can be emulated from an uncoded system by means of linear

noise-shaping against a feedback delay that is nearly as large as ∆? = min(K,N −K).

4.7 A Novel Systematic Representation for Reed-Muller Codes

Reed-Muller (RM) codes are some of the oldest and well-studied code families that remain

relevant even today. They have found application in many research areas such as cryptogra-
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phy, distributed computing, theory of randomness (e.g., see [89 ] and the references therein).

The invention of polar codes [90 ] has rekindled intensive research into RM codes due to their

close relationship. Polar codes are known to be provably capacity achieving for binary-input

symmetric discrete memoryless channels (DMCs). Recent developments have shown that

RM codes achieve capacity on the Binary Erasure Channel [91 ] and are also long believed

to achieve capacity over the Binary Symmetric Channel, which is strongly supported by

simulations [92 ], [93 ]. Table 1 in [94 ] provides the best known capacity results for RM codes

to date. Systematic RM codes have been considered from an encoding perspective in [95 ]

and decoding perspective in [96 ]. A comprehensive survey on RM codes, their applications

and connections to other research problems can be found in [97 ].

We wish prove that RM codes admit a systematic generator matrix of the form given in

(4.22 ),

G = [IK P(∆)]. (4.24)

Denote the vector space of all binary m-tuples as Vm. A boolean function in m variables

f(v1, v2, · · · , vm) is a mapping from Vm to {0, 1}. By fixing an ordering on {(v1, v2, · · · , vm) ∈ Vm},

we can uniquely associate to function f a binary vector f of length 2m whose components

are the result of evaluating f at all possible ordered input combinations.

Definition. The r-th order Reed-Muller (RM) code of length N = 2m denoted R(r,m) is a

linear code that consists of vectors associated to all boolean polynomials f of degree less than

equal to r in m variables. The dimension of R(r,m) is K(r,m) = ∑r
j=0

(
m
j

)
and minimum

distance is dmin(r,m) = 2m−r [86 ].

4.7.1 A formula for ∆(r,m)

In this section, we prove that the code R(r,m) admits a generator of the form (4.24 )

with ∆ = ∆(r,m) given by

∆(r,m) =


∑r
j=0

(
m
j

)
−∑r

j=0

(
2j
j

)
0 ≤ r ≤ bm2 c

∆(m− r − 1,m) bm2 c < r < m

. (4.25)
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Figure 4.2. Sequence of operations in the proof of Lemma 20 .

We being by showing that if a RM code admits a certain value of ∆, then so does its dual.

Lemma 20. Suppose that for (r,m) with r ≤ bm2 c, the Reed-Muller code R(r,m) admits a

systematic form [I P(∆)
1 ]. Then, its dual R(m − r − 1,m) admits a form [I P(∆)

2 ], with the

same ∆.

Proof. Since R(m − r − 1,m) is the dual code to R(r,m), a valid generator matrix is[(
P(∆)

1

)T
I
]
. The rest of the steps are pictorially represented in Fig. 4.2 where the triangle

of zeros is shown in grey. The steps are

(a) Permute columns as shown.

(b) Apply a row permutation matrix M on the left to rearrange rows to obtain the form

shown.

(c) Apply column permutation matrix MT on the right to only the first block of columns

to obtain the identity matrix for this block.

We are now ready to state the main theorem.

Theorem 4.7.1. For 0 ≤ r < m, R(r,m), the r-th order Reed-Muller code of length 2m

admits a systematic generator matrix of the form

G(r,m) = [I P(∆(r,m))] (4.26)

where ∆(r,m) is given by (4.25 ).
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Remark. Note that R(m,m) consists of all binary 2m-tuples and its only systematic repre-

sentation is simply I2m , i.e., ∆(m,m) = 0.

Remark. When bm2 c < r < m, we have ∆(r,m) = ∆(m−r−1,m) which agrees with Lemma

20 since codes R(r,m) and R(m− r − 1,m) are dual of one another.

Proof. We use an induction argument. Let P(r,m) be the proposition that R(r,m) admits

a generator of the form given in (4.26 ). For the base case we prove P(0,m) and P(1,m). In

the induction step, assuming P(r + 1,m) and P(r,m) to be true, we prove P (r + 1,m+ 1)

to conclude the proof.

Base Case: For r = 0, the generator matrix for R(0,m) is simply

G(0,m) = [1 1 1 · · · 1]

meaning that ∆(0,m) = 0 ∀m. This agrees with (4.25 ), where
(

0
0

)
is understood to be 1.

For r = 1, we need to show that ∆(1,m) = (m + 1)− (1 + 2) = m− 2. This is most easily

seen by induction. For the base case, R(1, 3) has the generator matrix

G(1,3) =



1 1 1 1 1 1 1 1

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1


.

The row operation to transform the above to a systematic form is to add rows 2, 3, · · · ,m+1

to row 1 which gives

G(1,3) =



1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1


.

Hence, ∆(1, 3) = 1 = 3 − 2. Now, suppose that the hypothesis is true for R(1,m). It is

known that [86 ]

R(1,m+ 1) = {(u,1 + u),u ∈ R(1,m)}
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Figure 4.3. Proof of base case proposition P(1,m) of Theorem 4.7.1 .

where 1 is the all-one codeword. Hence, the generator for R(1,m+ 1) after row operations

and column permutations can be put in a form shown in Fig. 4.3 . The ‘triangle’ of zeros

for R(1,m) is of size m − 2 and shown shaded. Finally, the column vector [0, 0, · · · , 1]T is

adjoined to Im to obtain a systematic form for R(1,m + 1). When 2m − (m + 1) > m − 2

which indeed holds for ∀ m ≥ 3, we see that the size of the triangle is guaranteed to increase

by 1, i.e., ∆(1,m+ 1) = ∆(1,m) + 1 = m− 1 = (m+ 1)− 2 proving that P(1,m) is true.

Induction Step: Assume that P(r + 1,m) and P(r,m) are true. By the well-known

Plotkin (u,u + v) construction, a valid generator for R(r + 1,m+ 1) is

G(r+1,m+1) =

G(r+1,m) G(r+1,m)

0 G(r,m)

 .

It is clear that G(r+1,m+1) can be put into a form shown in Fig. 4.4 .(a) by row operations

on the top and bottom block, followed by suitable column permutations. The next steps to

obtain a systematic form are illustrated in Fig. 4.4 :

I: Suitable row operations are done to zero out the matrix marked with a crosshatch

pattern shown in 4.4 .(a).

II: The newly obtained block

0

I

 is then moved as shown in 4.4 .(b) resulting in a sys-

tematic form shown in 4.4 .(c).
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Figure 4.4. Steps in the proof of Theorem 4.7.1 .

The systematic form obtained admits a ‘triangle’ of zeros in its parity matrix component

as illustrated in Fig. 4.4 .(d). The guaranteed number of consecutive all-zero sub-diagonals,

beginning at the lower left end can be seen to be

∆(r + 1,m+ 1) = min{∆1 + q,∆2 + p}, (4.27)

where ∆1 = ∆(r + 1,m), ∆2 = ∆(r,m) and

p =
m∑

j=r+2

(
m

j

)
, q =

r∑
j=0

(
m

j

)
.

Our goal is to show that the expression in (4.27 ) matches with the hypothesis (4.25 ) for all

0 ≤ r < m. The proof will extensively use the well-known Pascal’s identity

(
n

k

)
=
(
n− 1
k

)
+
(
n− 1
k − 1

)
, (4.28)

and the symmetry property of the binomial coefficients
(
n
k

)
=
(

n
n−k

)
which are recalled here

for ease of exposition.
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Case 1: r + 1 ≤ bm2 c

The above assumption implies that r ≤ bm2 c and r + 1 ≤ bm+1
2 c. From (4.25 ) then, we

have

∆1 =
r+1∑
j=0

(
m

j

)
−

r+1∑
j=0

(
2j
j

)
, ∆2 =

r∑
j=0

(
m

j

)
−

r∑
j=0

(
2j
j

)
.

Note that

(p+ ∆2)− (q + ∆1) =
m∑

j=r+2

(
m

j

)
−

r+1∑
j=0

(
m

j

)
+
(

2r + 2
r + 1

)
(i)
≥ 0,

where (i) is proved in the following Lemma.

Lemma 21. For ` ≤ bm2 c, we have that

m∑
j=`+1

(
m

j

)
≥
∑̀
j=0

(
m

j

)
−
(

2`
`

)
. (4.29)

Proof. We have,
m∑

j=`+1

(
m

j

)
−
∑̀
j=0

(
m

j

)
=

m−`−1∑
j=0

(
m

j

)
−
∑̀
j=0

(
m

j

)
.

For ` ≤ bm−1
2 c, m − ` − 1 ≥ ` meaning that (4.29 ) holds. For odd m, bm−1

2 c = bm2 c and

there is nothing left to prove. When m is even, say m = 2q, the only case left to prove is

for ` = bm2 c = q. This holds trivially since both the LHS and RHS in (4.29 ) simplify to∑2q
j=q+1

(
2q
j

)
.

From (4.27 ) and (4.28 ) then,

∆(r + 1,m+ 1) = q + ∆1 =
r+1∑
j=0

(
m+ 1
j

)
−

r+1∑
j=0

(
2j
j

)
,

settling case 1.

Case 2: r > bm2 c
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In this case, we have r + 1 > bm2 c and r + 1 > bm+1
2 c. From (4.25 ),

∆1 =
m−r−2∑
j=0

(
m

j

)
−

m−r−2∑
j=0

(
2j
j

)

∆2 =
m−r−1∑
j=0

(
m

j

)
−

m−r−1∑
j=0

(
2j
j

).

Here, we have (p+ ∆2)− (q + ∆1) = −∑r
j=m−r

(
m
j

)
−
(

2(m−r−1)
m−r−1

)
< 0. From (4.27 ) then,

∆(r + 1,m+ 1) = p+ ∆2

=
m−r−1∑
j=0

(
m+ 1
j

)
−

m−r−1∑
j=0

(
2j
j

)
,

which is indeed the form in (4.25 ) and case 2 is settled.

Case 3: r ≤ bm2 c, r + 1 > bm2 c and m = 2s even.

The above assumptions simplify to r = s. We also have r+1 = s+1 > s = bm+1
2 c. From

(4.25 ),

∆1 =
s−2∑
j=0

(
2s
j

)
−

s−2∑
j=0

(
2j
j

)
, ∆2 =

s∑
j=0

(
2s
j

)
−

s∑
j=0

(
2j
j

)
.

We have (p+ ∆2)− (q + ∆1) = −
(

2s
s

)
−
(

2(s−1)
s−1

)
< 0. Thus, from (4.27 ),

∆(r + 1,m+ 1) = p+ ∆2 =
s−1∑
j=0

(
2s+ 1
j

)
−

s−1∑
j=0

(
2j
j

)

which agrees with the hypothesis.

Case 4: r ≤ bm2 c, r + 1 > bm2 c and m = 2t+ 1 odd.

The assumptions imply r = t, r + 1 = bm+1
2 c and

∆1 =
t−1∑
j=0

(
2t+ 1
j

)
−

t−1∑
j=0

(
2j
j

)

∆2 =
t∑

j=0

(
2t+ 1
j

)
−

t∑
j=0

(
2j
j

).
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Figure 4.5. A systematic form for RM codes where the parity component has
a large triangle of zeros. Also shown is the gap g(r,m) from ∆∗ (4.31 ) for code
rates (a) γ(r,m) < 0.5 and (b) γ(r,m) > 0.5. For long RM codes, g(r,m)

∆? ≈ 0.

We have (p+ ∆2)− (q + ∆1) = −
(

2t
t

)
< 0. Hence,

∆(r + 1,m+ 1) = p+ ∆2 =
t+1∑
j=0

(
2t+ 2
j

)
−

t+1∑
j=0

(
2j
j

)
,

which is the desired form, hence settling all cases and completing the induction.

4.7.2 Asymptotic scaling of ∆(r,m)

In this section, we study how ∆(r,m) behaves asymptotically. Denote the coding rate

by

γ(r,m) = K(r,m)
2m =

∑r
i=0

(
m
i

)
2m . (4.30)

The implication of Theorem 4.7.1 is illustrated in Fig. 4.5 . RM codes admit a systematic

generator matrix where one can almost fit an all-zero triangle of size

∆? = min (K(r,m), 2m −K(r,m))

in the parity component except that there is a gap g(r,m) from ∆? given by

g(r,m) =


∑r
j=0

(
2j
j

)
γ(r,m) ≤ 0.5∑m−r−1

j=0

(
2j
j

)
γ(r,m) > 0.5

. (4.31)
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We show that for long RM codes of constant rate, g(r,m)
∆? ≈ 0. Note that γ(r,m) in (4.30 )

can be interpreted to be the probability that a random binary m-tuple has Hamming weight

at most r, i.e.,

γ(r,m) = Pr(X1 +X2 + · · ·Xm ≤ r) (4.32)

where {Xj} are i.i.d. Ber
(

1
2

)
. Then, by the central limit theorem, long Reed-muller codes

(i.e., m→∞) of constant rate 0 < α < 1 can be obtained by letting r to scale with m as

r = m

2 +
√
m

2 Φ−1(α) (4.33)

where

Φ(x) = 1√
2π

∫ x

−∞
e− t2

2 dt (4.34)

is the standard Gaussian CDF.

Theorem 4.7.2. 1. For long RM codes R(r,m) of constant-rate α < 0.5 with r scaling

as (4.33 ), we have

lim
m→∞

∆(r,m)
K(r,m) = lim

m→∞

∆(r,m)
∆?

= 1. (4.35)

2. For long RM codes R(r,m) of constant-rate α > 0.5 with r scaling as (4.33 ), we have

lim
m→∞

∆(r,m)
2m −K(r,m) = lim

m→∞

∆(r,m)
∆?

= 1. (4.36)

Proof. For 0 < α < 0.5, (4.33 ) becomes r = m
2 − β

√
m
2 where β = −Φ−1(α) > 0 and (4.35 ) is

lim
m→∞

∆(r,m)
K(r,m) = 1− lim

m→∞

∑r
j=0

(
2j
j

)
K(r,m) .

Since K(r,m)
2m → α, all that remains to be shown is that

∑r

j=0 (2j
j
)

2m → 0. To see this, simply

note ∑r
j=0

(
2j
j

)
2m <

∑r
j=0 4j

2m <
4
322r−m→0

where the first inequality follows from the identity 4n = (1 + 1)2n = ∑
k

(
2n
k

)
.
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When α > 0.5, we have r = m
2 + β

√
m
2 where β = Φ−1(α) > 0 and we get

lim
m→∞

∆(r,m)
2m −K(r,m) = lim

m→∞
1−

∑m−r−1
j=0

(
2j
j

)
K(m− r − 1,m) = 1,

for the same reasons as above, hence proving (4.36 ).

Theorem 4.7.2 thus implies that asymptotically for constant-rate RM codes, the gap

g(r,m) relative to ∆? vanishes and ∆(r,m) ≈ ∆?.

4.8 Concluding Remarks

In this work, we investigated how the presence of binary feedback can sometimes be useful

in designing good encoding schemes. We introduced the framework of linearly adapting block

feedback codes and showed that weak codes can be transformed into strong ones, even when

feedback limitations exist. We then proved a novel result for RM codes, showing that they

admit a systematic generator matrix whose parity component has a rather large number

of contiguous all-zero sub-diagonals. Our result implies that RM codes can be emulated

from an uncoded system against very large feedback delays. An interesting open question is

whether for finite r and m, R(r,m) admits a systematic form (4.24 ) with a ∆ larger than

what is proved in Theorem 4.7.1 .
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5. SUMMARY

In this dissertation, we looked at the the role of binary feedback in communication systems

through the lens of three different problems. In chapter 2 , binary feedback was cleverly

leveraged to propose novel solutions for the beam alignment problem in millimeter wave

systems. In chapter 3 , we characterized the capacity for certain types of channel models

where both stochastic and adversarial sources of noise were present simultaneously. Here,

binary feedback appeared in the form of an adversary with receiver snooping abilities, and

as causal receiver observation feedback to the transmitter. Finally, in chapter 4 , we studied

the applicability of binary feedback for encoding, and proved a new result for the important

family of Reed-Muller (RM) codes.
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