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ABSTRACT 

With the advance of the technologies of Internet of things, smart devices or virtual personal 

assistants at home, such as Google Assistant, Apple Siri, and Amazon Alexa, have been widely 

used to control and access different objects like door lock, blobs, air conditioner, and even bank 

accounts, which makes our life convenient. Because of its ease for operations, voice control 

becomes a main interface between users and these smart devices. To make voice control more 

secure, speaker verification systems have been researched to apply human voice as biometrics to 

accurately identify a legitimate user and avoid the illegal access. In recent studies, however, it has 

been shown that speaker verification systems are vulnerable to different security attacks such as 

replay, voice cloning, and adversarial attacks. Among all attacks, adversarial attacks are the most 

dangerous and very challenging to defend. Currently, there is no known method that can 

effectively defend against such an attack in speaker verification systems. 

The goal of this project is to design and implement a defense system that is simple, light-weight, 

and effectively against adversarial attacks for speaker verification. To achieve this goal, we study 

the audio samples from adversarial attacks in both the time domain and the Mel spectrogram, and 

find that the generated adversarial audio is simply a clean illegal audio with small perturbations 

that are similar to white noises, but well-designed to fool speaker verification. Our intuition is that 

if these perturbations can be removed or modified, adversarial attacks can potentially loss the 

attacking ability. Therefore, we propose to add a plugin-function module to preprocess the input 

audio before it is fed into the verification system. As a first attempt, we study two opposite plugin 

functions: denoising that attempts to remove or reduce perturbations and noise-adding that adds 

small Gaussian noises to an input audio. We show through experiments that both methods can 

significantly degrade the performance of a state-of-the-art adversarial attack. Specifically, it is 

shown that denoising and noise-adding can reduce the targeted attack success rate of the attack 

from 100% to only 56% and 5.2%, respectively. Moreover, noise-adding can slow down the attack 

25 times in speed and has a minor effect on the normal operations of a speaker verification system. 

Therefore, we believe that noise-adding can be applied to any speaker verification system against 

adversarial attacks. To the best of our knowledge, this is the first attempt in applying the noise-

adding method to defend against adversarial attacks in speaker verification systems. 
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 INTRODUCTION 

In recent years, the number of smart devices has been growing exponentially. Different 

Internet of things (IoT) devices at home, such as smart blobs, smart air conditioner, and smart door 

lock, can be easily controlled via a smart phone. Moreover, a person can access their bank account 

through smart devices or virtual personal assistants like Google Assistant [1], Apple Siri [2], 

Amazon Alexa [3], and Microsoft Cortana [4]. These smart home devices can be accessed and 

controlled through different methods, such as position detection, habit record, and most 

importantly, voice control [5]. Because of its convenience and ease for operations, voice control 

is becoming the main interface at home for controlling smart devices.  

To make voice control more secure, speaker verification systems have been widely studied 

and attempt to apply human voice as biometrics to distinguish people, in a similar way as 

fingerprint and iris recognition. Comparing with other verification methods, speaker verification 

has the advantages of being hand free and distance flexible. That is, speaker verification does not 

require to have the contact with smart devices and is able to operate within a certain distance.   

However, speaker verification systems have been facing many different attacks that attempt 

to compromise the integrity of the systems to allow the illegal access from attackers [6]. The main 

attacks include replay attacks [7], voice cloning attacks [8], and adversarial attacks [9]. Among all 

attacks, adversarial attacks are the most dangerous and very difficult to detect and defend. In such 

an attack, small well-designed perturbations are added to a clean audio from an illegal speaker to 

form the adversarial audio, which is barely perceptible by humans. That is, a person can hardly 

distinguish between the original clean audio and the adversarial audio when hearing them. 

However, the adversarial audio can be falsely accepted by the speaker verification system. As 

shown in [10], FakeBob adversarial attacks can achieve at least 99% targeted attack success rate 

on both open source and commercial speaker verification systems. That is, more than 99% of 

generated adversarial audios can be falsely accepted by the speaker verification systems. On the 

other hand, many defense systems that perform well against adversarial attacks for the images in 

the area of the image classification problem, such as local smoothing [11], quantization [11], and 

temporal dependency detection [11], cannot defeat the FakeBob attacks.  

As a result, this is an important research question: How can we effectively and efficiently 

defend against adversarial attacks such as FakeBob? The goal of this project is to design and 
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implement a defense system that is simple, light-weight, and effectively against adversarial attacks. 

Specifically, the defense system should be compatible with an existing speaker verification system 

and should not require any change to the internal structure of the currently used speaker 

verification system. Moreover, the proposed system should only slightly increase the computation 

load of the speaker verification system. Most importantly, the defense system should be able to 

significantly slow down an attacker to generate a successful adversarial audio or greatly reduce 

the attack success rate. On the other hand, the defense method should only slightly affect the 

normal operations of a speaker verification system. 

To achieve the goal of the project, we start with studying the adversarial audio in both the 

time domain and the Mel spectrogram [12]. We find that the perturbations are similar to white 

noises, but they are not random and are intentionally designed to fool the speaker verification 

systems. Based on these observations, our intuition is that if the perturbations in an adversarial 

audio can be removed or modified, adversarial attacks would loss the efficiency against the speaker 

verification system. That is, before an input audio is provided to a verification system, a plugin 

function is applied to this input audio to preprocess it, in order to reduce the effect of perturbations 

from attacks. In this work, we consider two different plugin functions: denoising and noise-adding. 

The basic idea of the denoising function is to remove or reduce the perturbations or noises in input 

audios; and the implementation of denoising is based the work from [13]. The goal of the noise-

adding is to append some small Gaussian noises to the input audio to perturb adversarial audios, 

so that adversarial attacks would loss or reduce the ability to mislead a speaker verification system. 

We find that denoising and noise-adding are indeed opposite operations. Through experiments 

using the state-of-the-art speaker verification system such as Gaussian Mixture Model, we find 

that both methods can significantly reduce the attack success rate of FakeBob, especially the noise-

adding method. 

The most relevant work to our approach was recently presented in [14], when we are working 

on this thesis. This work also studied how to use small noises to counteract query-based black-box 

adversarial attacks. However, there are some key differences between their work and our work: 

(1) The work in [14] focuses on the image classification problem, whereas we study the speaker 

verification area. Images and audios are different signals and have distinct characteristics. As 

shown in [10], many defense systems that perform well for images cannot be applied to audios. 

(2)  Due to different fields, image classification and speaker verification apply different machine 
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learning or deep learning methods. For example, an image classifier uses the classic convolutional 

neural network (CNN) model, whereas a speaker verification system applies the Gaussian Mixture 

Model. The same defense mechanism may have different effects on distinct machine learning 

models. (3) The work in [14] aims at untargeted adversarial attacks, whereas our work focuses on 

targeted attacks. 

We summarize our main discoveries or contributions in the following: 

 We find and show that the perturbations in an adversarial audio are very small and are 

similar to white noises. On the other hand, these perturbations are not random, but are 

intentionally designed to fool the speaker verification systems. 

 We propose a defense framework that is simple, light-weight, and effectively against 

adversarial attacks in speaker verification systems. 

 We find that the denoising function is able to reduce or remove the perturbations, but at 

the same time introduce the echo effect to the input audio. As shown in our experiments 

based on FakeBob [10], denoising can reduce the targeted attack success rate from 100% 

to 56%. A downside of denoising is that in some speaker verification system, it may affect 

the processing time nonnegligibly. 

 We discover that the noise-adding method performs much better than the denoising 

function. For example, we show that noise-adding can further reduce the targeted attack 

success rate of FakeBob to 5.2%. Moreover, the speed for FakeBob to generate an 

adversarial audio is slowed down for 25 times under the impact of this defense. On the 

other hand, the processing time of the noise-adding function is very small and can be 

negligible. Furthermore, noise-adding slightly affects the normal operations of a speaker 

verification system. Therefore, we believe that such a simple solution can be applied to 

any speaker verification system against adversarial attacks. 

 

The remainder of this thesis is structured as follows. Section 2 surveys the literatures related 

to speaker verification and attacks against speaker verification systems. Section 3 provides the 

background of this project, including voice characteristics, the working process of a state-of-the-

art speaker verification system, and the detailed information of adversarial attacks (i.e., FakeBob) 

against speaker verification systems. Section 4 presents our proposed defense framework and 

discusses two plugin functions, i.e., denoising and noise-adding, and their impacts on a clean audio. 
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Section 5 evaluates the performance of our proposed defense system on normal operations of 

speaker verification systems and against FakeBob adversarial attacks. Finally, Section 6 provides 

the conclusions and discusses the future work. 
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 LITERATURE SURVEY 

Speaker verification is an active research area. Many implementations in this field are based 

on machine learning, especially deep learning [6]. In this section, we first review speech models 

and speaker verification systems, and then survey security attacks against speaker verification 

systems.  

2.1 Speech Models and Speaker Verification Systems 

The speech applications can be divided into three main types: text-to-speech, voice cloning, 

and speaker verification. 

2.1.1 Text-to-Speech Models 

Text-to-speech applications attempt to translate a text into a speaker voice. In general, the 

multiple speaker text-to-speech models have higher versatility than single speaker models [15] [16] 

[17] [18] [19] [20]. Jia et al. introduced the transfer learning from speaker verification to multiple 

speaker text-to-speech synthesis [19]. Specifically, the authors combined three main technologies 

or components: the speaker encoder that transfers the input speaker reference waveform to a low 

dimensional vector called speaker embedding [21], the synthesizer that uses the input text and the 

speaker embedding to generate a Mel spectrogram [22], and the vocoder that recovers the Mel 

spectrogram into the waveform in the time domain [23]. One of the main contributions of this 

paper [19] is that each of three components is trained independently. 

2.1.2 Voice Cloning Models 

Voice cloning attempts to synthesize a voice with the features of the targeted speaker’s voice. 

Wang et al. built Tacotron, a deep learning model, to clone the voice of a specific speaker [20]. 

For Tacotron, it usually requires many hours of the audio of the targeted speaker as the training 

data. Deep voice series [15] [18] and their variants [16] [17] have extended the voice cloning to 

multiple speakers. For example, Deep Voice 3 in [18] uses the attention [24] to build a sequence-

to-sequence model, extracts the key-value pairs from the text embedding input by a convolution 
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neural network, applies the queries from the Mel spectrogram of the input audio by another 

convolution neural network, and finally converts the resulting Mel spectrogram back to the 

waveform in the time domain by using converters such as Griffin-Lim [25], WORLD synthesis 

[26], or WaveNet [23]. However, Deep Voice 3 can only generate the cloned voices of speakers 

whose samples are in the dataset. It cannot do the “0-shot” cloning and cannot generate cloned 

voices for speakers whose samples are not seen yet. Arik et al. presented the neural voice cloning 

with a few samples based on Deep Voice 3 in [16]. This model decreases the length of required 

enrollment audios to several seconds and builds a few-shot voice cloning model. Furthermore, 

Jung and Kim designed the neural voice cloning with a few low-quality samples in [17]. The 

authors used a generative adversarial network (GAN) to purify the low-quality samples.  

Table 2.1 shows the comparisons of different state-of-the-art voice cloning models. 

 

Table 2.1 Voice Cloning Models 
Model Feature MOS Enroll Size 
Voice Cloning with Few Low-Quality Samples [17] GAN N/A 11 sec 
Voice Cloning with a Few Samples [16] 0-shot voice 

cloning 
2.5 3.5 sec 

Deep Voice 3 [18] Only speakers 
in Dataset 

3.6 2 hours 

Tacotron [20] Single Speaker 3.8 24.6 hours 
 

In the table, the mean opinion score (MOS) is a subjective measure of an audio clip and has been 

widely used to evaluate the performance of a voice cloning model. A higher value of MOS reflects 

a better voice cloning model. 

2.1.3 Speaker Verification Systems 

Speaker verification systems attempt to determine if a given audio clip is from a registered 

legitimate speaker or from an illegal user [27] [28] [21]. For a speaker verification system, the 

main performance metric is the equal error rate (EER), which will be discussed in details in Section 

3.2. A smaller value of EER reflects a better speaker verification system. The state-of-the-art 

speaker verification systems include Gaussian Mixture Model (GMM) [29], i-vector [30], d-vector 

[31], and x-vector [32]. The GMM model trains a Gaussian mixture model as a universal 

background model [29], whereas the i-vector model combines joint factor analysis and support 
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vector machines for speaker verification [30] . Both d-vector and x-vector models are based on 

deep neural networks [31] [32].  

Speaker verification systems can be divided into two types of models: text-dependent and 

text-independent models. Text-dependent models are based on audios that a speaker says pre-

defined sentences, whereas text-independent models do not require the speaker to follow specific 

sentences. Usually a text-dependent model has a smaller EER than a text-independent model [33]. 

Recently, different technologies have been applied to build a speaker verification system. For 

example, Torfi et al. introduced a text-independent speaker verification system by using a series 

of 3D convolutional neural network layers in [27]. The authors calculated the similarity between 

enrolled audios and an input audio to verify a speaker. Wan et al. from Google proposed a new 

loss function, called generalized end-to-end (GE2E) loss in [21]. The authors believe that the loss 

function is more important than a model. They tested their GE2E in [34] with text-dependent and 

text-independent speaker verification models and showed that GE2E leads to a better EER. Yan et 

al. applied the idea of field print to identify if a sound is from a real speaker or from an audio 

played by a device in [28]. 

2.2 Attacks against Speaker Verification Systems 

Speaker verification systems are vulnerable to different security attacks. Attackers attempt to 

compromise the integrity of a speaker verification system and make it false accept an illegal access 

or an illegal audio. Basically, there are two types of attacks: white-box and black-box. In white-

box attacks, the attacker has the detailed information of the targeted speaker verification system. 

On the other hand, the attacker who uses the block-box attacks does not have any information 

about the internal structure of the system. From the perspective of the attackers, the black-box 

attacks are much more difficult to implement. As shown in FakeBob attacks [10], the black-box 

attacks are possible and even very effective against the state-of-the-art speaker verification systems. 

The main security attacks against speaker verification systems can be categorized into three 

types: replay, cloning, and adversarial attacks. 
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2.2.1 Reply Attacks against Speaker Verification Systems 

The replay attack is a simple method that attackers record the voice of a targeted speaker 

and then reply the sound to fool a text-independent speaker verification system, which is a sniffing 

and spoofing attack [35]. The success of such an attack depends on that the voice of the targeted 

speaker can be recorded. Moreover, Yan et al. showed that the field print can be applied to 

counteract this attack [28]. 

2.2.2 Cloning Attacks against Speaker Verification Systems 

Voice cloning attacks attempt to synthesize the targeted speaker’s voice to bypass a text-

dependent speaker verification system [15] [16] [17] [18] [19] [20]. The success of such an attack 

requires that the attacker is able to collect a large amount of the targeted speaker’s voice data, 

which is usually very difficult to implement. As shown in the Table 2.1, if MOS needs to be high, 

hours of a speaker’s voices are required.  As a result, voice cloning attacks are not widely applied 

in reality. 

2.2.3 Adversarial Attacks against Speaker Verification Systems 

Different from other attacks, adversarial attacks do not require to obtain or record the targeted 

speaker’s voice. Such an attack can fiddle an illegal voice to break into a speaker verification 

system by adding small well-designed noise-like perturbations.  

The study of adversarial attacks started from the research of applying deep learning to the 

image classification problem. In their senior work, Szegedy and Goodfellow et al. showed that 

deep learning is particularly vulnerable to adversarial examples attacks [9] [36]. For example, after 

adding very small perturbations, the image of panda can be recognized as gibbon with 99.3% 

confidence by a popular deep-learning based classifier. Later, researcher realized that adversarial 

attacks can be applied to not only deep learning, but also other machine learning methods. Please 

refer to the paper [37] for a comprehensive survey on adversarial attacks.  

Recently, adversarial examples have been applied to attack speaker verification systems. 

Specifically, the FakeBob attacks are shown to be very effective against the state-of-the-art speaker 

verification systems such as GMM, i-vector, and x-vector, and can achieve more than 99% targeted 

attack success rate in [10]. This paper also shows that defense systems that perform well against 
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adversarial attacks for the images in the area of the image classification problem, such as local 

smoothing [11], quantization [11], and temporal dependency detection [11], cannot defeat the 

FakeBob attacks, which motivated our work in this thesis. One interesting attack is that it attempts 

to find universal adversarial perturbations, so that these same perturbations can be added to any 

input audio to fool a speaker verification system [38] [39].  

There have been some works on the detection and defense methods against adversarial attacks 

in speaker verification systems. For example, a separate neural network has been proposed to 

detect the appearance of adversarial samples [40] [41]. Moreover, Wu et al. proposed to use voting 

to against adversarial examples [42]. However, the implementations of these detection or defense 

methods are not simple nor light-weight, and require sufficient computations. Moreover, it is not 

clear how these defense methods can perform against the state-of-the-art adversarial attacks such 

as FakeBob.  

The idea of using noises to against adversarial attacks in the field of image classification has 

been exploited. For example, He et al. proposed to use parametric noise injection in each layer of 

deep neural network to enhance the robustness of an image classifier [43]. Moreover, Byun et al. 

appended small noise to an image before sending it to the image classifier [14]. In the introduction, 

we have discussed the main differences between the work in [14]  and our work.   
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 BACKBROUND 

In this section, we provide the background of this thesis work. Specifically, we first describe 

the representation of the voice of a speaker in both the time domain and the Mel spectrogram. We 

then introduce the architecture of speaker verification (SV) systems. Finally, we present an 

adversarial example attack against SV systems. That is, using FakeBob [10] as an example, we 

introduce how the adversarial example is built and used to attack state-of-the-art SV systems. 

3.1 Voice 

As well known, different speakers have different voice, so that the voice can be used as 

biometrics to identify a person. In a computer, the voice or the audio of a speaker is represented 

and stored as a one-dimension array signal. Specifically, the length of the array, n, depends on the 

sampling rate (i.e., numbers of samples per second) and the time duration of the voice (or audio), 

as shown in the following equation: 

 

𝑛 = 𝑎𝑢𝑑𝑖𝑜 𝑡𝑖𝑚𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒.   (3.1) 

 

Then, the audio vector can be written as follows: 

 

𝐴𝑢𝑑𝑖𝑜 𝑉𝑒𝑐𝑡𝑜𝑟 = [𝑥 , 𝑥 , … , 𝑥 ]     (3.2) 

 

where 𝑥  is the amplitude of the signal at the sample i (1 ≤ 𝑖 ≤ 𝑛) and reflects the strength of the 

signal. The value of 𝑥  is usually in the range between -1 and 1. Figure 3.1 shows an example of 

an audio clip on how the amplitude of the voice changes with time. In this example, the audio time 

duration is 8.94 seconds, and the sampling rate is 16 kHz or 16,000 samples per second. Thus, 𝑛 =

 143,040. Moreover, in this example, a female speaker said in English, “I will endeavor in my 

statement to avoid such terms as would serve to limit the events to any particular place or give a 

clue as to the people concerned.”   

To abstract the features of a speaker’s voice, the audio clip array in Equation (3.2) is usually 

translated into a Mel spectrogram through the transformation method called the Mel-frequency 
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cepstrum (MFC) [12]. In a Mel spectrogram, three dimensions are used and include the time, the 

frequency, and the magnitude. Figure 3.2 shows the Mel spectrogram of the audio clip shown in 

Figure 3.1. In the figure, the x-axis is the time, the y-axis is the frequency, and the color represents 

the magnitude or the strength. It can be seen that the Mel spectrogram can provide the detailed 

information on when and which frequency the voice has the high or low magnitude. Moreover, it 

is noted that the y-axis (i.e., frequency) uses log-scale, instead of the linear-scale, and that the 

magnitude is converted to decibels (dBs), because of the characteristics of human hearing, i.e., that 

only a very small and concentrated range of frequencies and amplitudes can be perceived. Many 

state-of-the-art SV systems have included a module that converts the input audio data into the Mel 

spectrogram as input data preprocessing. 

 

 

Figure 3.1 An Audio Clip in the Time Domain 
 

 

Figure 3.2 An Audio Clip in a Mel Spectrogram 
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3.2 Speaker Verification Systems 

Speaker verification (SV) systems have been widely used to identify a person through their 

voice. In our work, we focus the score-based SV systems that most state-of-the-art SV systems 

belong to. In a score-based SV system, as show in Figure 3.3, it contains two phases: speaker 

enrollment and speaker recognition. 

 

 

Figure 3.3 A Score-Based Speaker Verification System 

 

For the phase of speaker enrollment, a speaker needs to provide the identifier and their audio 

clips. The SV system transfers the speaker’s voice into a fixed length low dimensional vector 

called speaker embedding. Basically, the speaker embedding represents the features of a speaker’s 

voice and is used to calculate the similarity between two audio clips. Different SV systems use 

different approaches to obtain speaker embedding. The popular SV systems include i-vector [30], 

GMM (Gaussian Mixture Model) [29], d-vector [31], and x-vector [32]. In this work, we focus on 

GMM and i-vector, since they have been widely used in real life and been applied as the baseline 

for comparisons. Here, we use the notation SER to refer to the vector of speaker embedding of the 

enrolled or registered speaker. 

Besides obtaining the speaker embedding, the enrollment phase attempts to find a proper 

threshold for this speaker. Such a threshold is a key consideration for a score-based SV system. 

To understand the importance of the threshold, we first look at the recognition phrase. As shown 

in Figure 3.3, when a test audio clip is provided to the SV system, it abstracts the speaker 

embedding of this audio, which is referred by SET. Then, the SV system calculates the similarity 

between vector SER and vector SET and obtains a similarity score. A higher score reflects more 

similar between two vectors of speaker embedding. Finally, the similarity score is compared with 
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the threshold. If the score is higher than or equal to the threshold, the system will accept the test 

audio clip and treat the speaker as the enrolled user. Otherwise, the system will reject the access 

of the speaker. The basic process of the recognition is summarized in Algorithm 3.1. 

 

Algorithm 3.1 Recognition Phase in Score-Based Speaker Verification Systems 
Input: an audio clip, SER, threshold 
Output: decision 
1: 𝑏𝑒𝑔𝑖𝑛 
2:  𝑆𝐸 ← 𝑆𝑉 𝑎𝑠𝑡𝑟𝑎𝑐𝑡𝑠 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑎𝑢𝑑𝑖𝑜 
3:  𝑠𝑐𝑜𝑟𝑒 ← 𝑆𝑉 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝐸  𝑎𝑛𝑑 𝑆𝐸  
4: 𝑖𝑓 𝑠𝑐𝑜𝑟𝑒 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑡ℎ𝑒𝑛     
5:   𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝑇𝑟𝑢𝑒 
6:  𝑒𝑙𝑠𝑒 
7:   𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ← 𝐹𝑎𝑙𝑠𝑒 
8:  𝑒𝑛𝑑 𝑖𝑓 
9: 𝑒𝑛𝑑 

 

 

There are two basic false cases for a SV system: (1) accepting a speaker that is not the enrolled 

user, and (2) rejecting the enrolled speaker. Usually, we call the speaker that is not enrolled as the 

illegal speaker or illegal user. For these two cases, we use the false acceptance rate (FAR) and the 

false rejection rate (FRR) to measure. Specifically, FAR and FRR are defined as follows: 

 

𝐹𝐴𝑅 =
       

       
   (3.3) 

 

𝐹𝑅𝑅 =
       

       
   (3.4) 

 

For an ideal SV system, both FAR and FRR are 0. However, in a real SV system, it is difficult 

to make them both 0, and they are tradeoff. That is, when one of FAR and FRR decreases, the 

other will increase. Intuitively, when the threshold increases, it becomes more difficult for an audio 

clip to be accepted. As a result, FAR will decrease while FRR will increase. A proper threshold, 

which is used in our work, is to use the value when FAR and FRR are equal. Conventionally, when 

FAR is equal to FRR, the rate is called equal error rate (EER) [33].   
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To find the EER and the corresponding threshold, both enrolled speaker audio clips and illegal 

speaker audio clips need to be provided to the enrollment phase. A SV system will calculate the 

similarity scores for all provided audio clips and then find the threshold that can lead to the EER. 

The basic process of the enrollment is summarized in Algorithm 3.2, where 𝑠𝑐𝑜𝑟𝑒  and 𝑠𝑐𝑜𝑟𝑒  

are two sets of scores for enrolled and illegal audio clips, respectively. 

 

Algorithm 3.2 Enrollment Phase in Score-Based Speaker Verification Systems 
Input: enrolled speaker audio clips, illegal speaker audio clips 
Output: threshold, SER 

1: 𝑏𝑒𝑔𝑖𝑛 
2:  𝑆𝐸 ← 𝑆𝑉 𝑎𝑠𝑡𝑟𝑎𝑐𝑡𝑠 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑒𝑛𝑟𝑜𝑙𝑙𝑒𝑑 𝑎𝑢𝑑𝑖𝑜 𝑐𝑙𝑖𝑝 
3: 𝑓𝑜𝑟𝑒𝑎𝑐ℎ 𝑎𝑢𝑑𝑖𝑜 𝑖𝑛 𝑒𝑛𝑟𝑜𝑙𝑙𝑒𝑑 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 𝑎𝑢𝑑𝑖𝑜 𝑐𝑙𝑖𝑝𝑠 
4: 𝑠𝑐𝑜𝑟𝑒  ← 𝑆𝑉 𝑎𝑠𝑡𝑟𝑎𝑐𝑡𝑠 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑎𝑛𝑑 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠 𝑠𝑐𝑜𝑟𝑒 
5: 𝑒𝑛𝑑 𝑓𝑜𝑟 
6: 𝑓𝑜𝑟𝑒𝑎𝑐ℎ 𝑎𝑢𝑑𝑖𝑜 𝑖𝑛 𝑖𝑙𝑙𝑒𝑔𝑎𝑙 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 𝑎𝑢𝑑𝑖𝑜 𝑐𝑙𝑖𝑝𝑠 
7: 𝑠𝑐𝑜𝑟𝑒  ← 𝑆𝑉 𝑎𝑠𝑡𝑟𝑎𝑐𝑡𝑠 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑎𝑛𝑑 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠 𝑠𝑐𝑜𝑟𝑒 
8: 𝑒𝑛𝑑 𝑓𝑜𝑟 
9: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑆𝑉 𝑓𝑖𝑛𝑑𝑠 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑓𝑟𝑜𝑚 𝑠𝑐𝑜𝑟𝑒  𝑎𝑛𝑑 𝑠𝑐𝑜𝑟𝑒  𝑓𝑜𝑟 𝐸𝐸𝑅 

10: 𝑒𝑛𝑑 
 

 

3.3 Adversarial Attacks on Speaker Verification Systems 

As shown in previous work [37] [38] [39] [44], machine learning (including deep learning) 

models are particularly vulnerable to adversarial attacks. Such attacks have been widely researched 

in the images for the image classification problem. However, adversarial attacks and defenses have 

not been systematically studied in the field of SV systems yet. 

In the context of a SV system, adversarial attacks attempt to let the SV system falsely accept 

a well-designed illegal audio, which is called an adversarial audio. Specifically, adversarial audios 

are original illegal clean audio with small perturbations, often barely perceptible by humans. 

However, such perturbations lead the SV system to falsely accept the audio. Let x be an original 

audio from an illegal user, p denotes the perturbation vector with the same length as x, and x’ be 

the adversarial audio. Then,  

 

𝑥′ = 𝑥 + 𝑝.       (3.5) 
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From the view of humans, there is no or little difference between x and x’, when hearing these two 

audios. However, from the perspective of the SV system, it will reject x, but falsely accept x’.  

To make sure that the adversarial audio is not noticed or detected by humans, the perturbations 

are usually very small and constrained by a perturbation threshold, i.e., . That is, 

 

𝑝 = [𝑝 , 𝑝 , … , 𝑝 ],      𝑤ℎ𝑒𝑟𝑒 −  < 𝑝 <  and 1 ≤ 𝑖 ≤ 𝑛.  (3.6) 

 

Choosing the value of  is an important consideration for adversarial attacks. A larger value of  

makes the attack easier to succeed, but meanwhile causes it more perceptible by humans.  

In our work, we study the FakeBob attack [10] and how to defend against it, since it is the 

state-of-the-art adversarial attack against SV systems including GMM, i-vector, and x-vector. 

3.3.1 FakeBob Attack System 

FakeBob attacks are a block-box attack and do not need to know the internal structure of a 

SV system. Moreover, as shown in [10], FakeBob achieves at least 99% targeted attack success 

rate (ASR) on both open source and commercial SV systems. Note that ASR can be defined as the 

following: 

 

𝐴𝑆𝑅 =
     

     
    (3.7) 

 

Figure 3.4 shows the basic process of FakeBob adversarial attacks.  

 

 

Figure 3.4 The Process of FakeBob Adversarial Attacks 
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Basically, FakeBob applies the basic iterative method (BIM) [45] and the natural evolution 

strategy (NES) [46] to generate the adversarial audio. That is, the attack takes multiple iterations 

to get the final adversarial audio (e.g., x) that minimizes the following loss function or objective 

function 

 

𝐿(𝑥) = 𝑚𝑎𝑥{𝜃 − 𝑆(𝑥), 0},     (3.8) 

 

where 𝜃 is the threshold of the SV system and 𝑆(𝑥) is the score function that calculates the score 

of an input audio for SV. FakeBob attempts to resolve the optimization problem by estimating the 

threshold 𝜃  and finding iteratively the input audio that reduces 𝐿(𝑥) , through the method of 

gradient decent over the input audio. That is, it applies the following gradient decent function 

 

𝑓 (𝑥) = ∇ 𝐿(𝑥).      (3.9) 

 

Note that here the gradient decent is different from the back-propagation widely used in deep 

learning, and the differentiation is based on input audios, instead of the weights of the machine 

learning model. 

Define a sign function 𝑓 (𝑦) in the following way: For each element (i.e., yi) in the vector 

y, a sign function gets the sign of the value of each element in the vector, e.g., 

 

𝑓 (𝑦 ) =

1,     𝑖𝑓 𝑦 > 0
0,     𝑖𝑓 𝑦 = 0
−1, 𝑖𝑓 𝑦 < 0

     (3.10) 

 

Moreover, assume 𝑥  (1 ≤ 𝑖 ≤ 𝑛) is a signal in the original clean audio (i.e., x) from an illegal 

speaker, 𝑥  (1 ≤ 𝑖 ≤ 𝑛) is the corresponding signal in the adversarial audio at mth iteration (i.e., 

𝑥 ), and  is the perturbation threshold shown in Equation (3.6). Based on the assumption in 

Equation (3.6), a clip function is defined as follows 

 



 
 

26 

𝑓 (𝑥 ) =

𝑥 ,     𝑖𝑓 |𝑥 − 𝑥 | < 
𝑥 + , 𝑖𝑓 𝑥 ≥ 𝑥 + 
𝑥 − ,   𝑖𝑓 𝑥 ≤ 𝑥 − 

     (3.11) 

 

Using the above functions, FakeBob updates the input audio through the following iteration  

 

𝑥 = 𝑓 (𝑥 − 𝑙𝑟 × 𝑓 (𝑓 (𝑥 )))   (3.12) 

 

where lr is the learning rate. The FakeBob attack is summarized in Algorithm 3.3. 

 

Algorithm 3.3 FakeBob Attacks 
Input: an audio signal array, threshold of target SV system 
Output: an adversarial audio 
Require:  
  Threshold of target SV system 𝜽 
  Audio signal array 𝑨 
  Maximum iteration 𝒎 
                        Score function S 
  Gradient decent function 𝒇𝑮 
  Clip function 𝒇𝒄 
  Learning rate 𝒍𝒓 
  Sign function 𝒇𝒔𝒊𝒈𝒏 

1: 𝑏𝑒𝑔𝑖𝑛 
2:  𝑎𝑑𝑣𝑒𝑟 ← 𝐴 
3:  𝑓𝑜𝑟 𝑖 = 0;   𝑖 < 𝑚;   𝑖 + +:  
4:   𝑠𝑐𝑜𝑟𝑒 ← 𝑆(𝑎𝑑𝑣𝑒𝑟) 
5:   𝑖𝑓 𝑠𝑐𝑜𝑟𝑒 ≥ 𝜃: 
6:    𝑟𝑒𝑡𝑢𝑟𝑛 𝑎𝑑𝑣𝑒𝑟 
7:   𝑒𝑛𝑑 𝑖𝑓 
8:   𝑎𝑑𝑣𝑒𝑟 ← 𝑓 (𝑎𝑑𝑣𝑒𝑟 − 𝑙𝑟 × 𝑓 (𝑓 (𝑎𝑑𝑣𝑒𝑟))) 
9:  𝑒𝑛𝑑 𝑓𝑜𝑟 

10: 𝑒𝑛𝑑 
 

 

3.3.2 Inspection of an Adversarial Audio 

To better understand the FakeBob attack, we look into one example of an adversarial audio 

in both the time domain and the Mel spectrogram. Specifically, we registered the voice of the 

speaker that is used in Section 3.1 in a GMM SV system. Then we chose another speaker as an 
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illegal user and used a clean audio from this speaker. This audio is that a female speaker said “there 

chap you've got it lapped Percy while the others screamed at the sight of Jasper space…” It was 

verified that the audio is rejected by the GMM SV system. The time waveform of the audio is 

shown in Figure 3.5(a). Note that the audio is 6.21 seconds long and contains 99,360 signals under 

the sample rate of 16 KHz. 

 

(a) Original Audio (b) Adversarial Audio 

Figure 3.5 Original and Adversarial Audios in the Time Domain 

 

Applying the FakeBob with the perturbation threshold of 0.002, we obtained the adversarial 

audio that is based on the illegal audio from Figure 3.5(a) and is falsely accepted the GMM SV 

system. The time waveform of the adversarial audio is shown in Figure 3.5(b). It can be seen that 

the adversarial audio is very similar to the original audio. We further plotted the perturbation vector 

(i.e., p in Equation (3.5)) in Figure 3.6 and found that the values of perturbations are very small 

and are between -0.002 and 0.002. Moreover, the mean and the standard deviation of perturbations 

are 1.15 × 10  and 0.00176, respectively. Note that the standard deviation is close to the 

perturbation threshold.  
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Figure 3.6 Differences between Original and Adversarial Audios in the Time Domain 

 

We plot the Mel spectrograms of the original audio and the adversarial audio in Figure 3.7. It 

can be seen that for the blue parts in the figures, the color in the adversarial audio is whiter than 

that in the original audio. This indicates that there are higher magnitudes or energies in the 

background of the adversarial audio. We further plot the Mel spectrogram of the perturbation 

vector (i.e., p in Equation (3.5)) in Figure 3.8. It can be seen that the perturbations are more like 

small white noises. Moreover, from both Figures 3.6 and 3.8, it can be seen that there is no specific 

pattern in both the time domain and the Mel spectrogram.   

In summary, the perturbations used in FackBob attacks are very small and are similar to white 

noises. On the other hand, these perturbations are not random, but are intentionally designed to 

fool the SV systems. These observations can be applied to the defenses against FakeBob, as we 

will discuss in the next section.  
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Figure 3.7 Original and Adversarial Audios in a Mel Spectrogram 

 

 

Figure 3.8 Differences between Original and Adversarial Audios in a Mel Spectrogram 
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 PROPOSED DEFENSE SYSTEM 

In this section, we propose a defense system against adversarial attacks for SV systems. 

Specifically, we first introduce the design goals of a defense system. Next, we describe our 

proposed defense system based on the observations from adversarial audios. Finally, we provide 

the details of the implementations of the defense system in two different approaches: denoising 

that attempts to remove the perturbations in adversarial audios and noise-adding that attempts to 

perturb adversarial audios. 

4.1 Design Goals of a Defense System 

To counteract the adversarial attacks in a SV system, we attempt to design and implement a 

defense system that achieves the following goals: 

 Simplicity. The defense system is easy to implement and can be compatible with an 

existing SV system. That is, it does not require any change to the internal structure of the 

currently used SV system. 

 Light weight. It does not significantly increase the computation load of the SV system. 

The defense method only slightly increases the processing time for an input audio. 

 Effectiveness. The defense algorithm should be able to greatly increase the time for an 

attacker to generate a successful adversarial audio or significantly reduce the attack 

success rate of adversarial attacks such as FakeBob. On the other hand, the defense method 

should only slightly affect the normal operations of a SV system, such as FAR and FRR. 

4.2 A Defense System 

To achieve these goals, we design a defense system based on the observations from an 

adversarial audio. Specifically, as shown in Section 3.3, the adversarial audio is simply the clean 

illegal audio with well-designed perturbations that are similar to white noises. If such perturbations 

can be removed or modified, adversarial attacks would loss the efficiency against the SV system. 

Based on this intuition, we propose a defense system as shown in Figure 4.1. Comparing Figure 

4.1 with Figure 3.3, it can be seen that we add an additional module, i.e., plugin function, before 

the recognition module to a SV system. Such a plugin function is used to preprocess an input audio 
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to either forcefully remove the perturbations or intentionally modify the perturbations. As a result, 

in the following sections we will discuss two options for the plugin function: denoising and noise-

adding. 

 

 

Figure 4.1 The Proposed Defense System 

 

It can be seen that the proposed defense system is compatible with an existing SV system and 

can be applied to any SV system. It does not require to change the internal structure of a SV system. 

Moreover, the overhead of the defense method is only on the plugin function. If such a plugin is 

light weight, it will not introduce much additional computation to the SV system. Furthermore, the 

main goal of the plugin function is to modify the input audio so that it would have a major impact 

on adversarial audios, but have a minor impact on normal audios. As our first attempt, we study 

denosing and noise-adding functions in this work. But other functions can be applied as well, 

which is our future work. 

4.3 Denoising 

The basic idea of the denoising function is to remove or reduce the perturbations or noises in 

input audios. In our work, we applied the method of noise reducing proposed in [13] as our 

denoising function. 

4.3.1 Denoising Algorithm 

As indicated in [13], the denoising method uses the spectral gating to reduce noises in an 

audio. Specifically, given both signal and noise audio clips, it transforms time-domain waveforms 

into the frequency domain, then removes the noise from the signal in the frequency domain, and 

finally transforms the modified signal from the frequency domain back to the time domain. 
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To get a noise audio clip, we assume that the noise or the perturbation is white and follows 

the normal probability distribution, based on the observations of adversarial audios from Section 

3.3. That is, we consider that the perturbations are Gaussian noise, and 𝑝  in Equation (3.6) is 

assumed to have the following normal distribution with the mean of 0 and the standard deviation 

of 𝜎: 

 

𝑝  ~ 𝑁(0, 𝜎 ).      (4.1) 

 

The larger value of 𝜎 corresponds to the larger value of the perturbation threshold (i.e., ε).  

The transformation of a signal from the time domain to the frequency domain is based on the 

short-time Fourier transform (STFT), which is widely applied in digital signal processing (DSP). 

Similarly, inverse STFT (iSTFT) is used to transform the signal from the frequency domain back 

into the time domain. The algorithm of the denoising function is summarized in Algorithm 4.1. 

 

Algorithm 4.1 Denoise Function 
Input: an audio clip A1, noise variance 𝝈𝟐 
Output: a denoised audio clip A2 

Require Functions: 
 Normal distribution generator 𝑵 
 Short-time Fourier Transform STFT 
 Inverse Short-time Fourier Transform iSTFT 
1: 𝑏𝑒𝑔𝑖𝑛 
2:  𝑛𝑜𝑖𝑠𝑒 𝑐𝑙𝑖𝑝 ←  [0,0, … ,0] 
3:  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑖𝑔𝑛𝑎𝑙 𝑛𝑜𝑖𝑠𝑒[𝑖] 𝑖𝑛 𝑛𝑜𝑖𝑠𝑒 𝑐𝑙𝑖𝑝: 
4:   𝑛𝑜𝑖𝑠𝑒[𝑖] ← 𝑁(0, 𝜎 ) 
5:      𝑒𝑛𝑑 𝑓𝑜𝑟 
6:  𝑛_𝑠𝑡𝑓𝑡 ← 𝑆𝑇𝐹𝑇(𝑛𝑜𝑖𝑠𝑒 𝑐𝑙𝑖𝑝) 
7:  𝐴 _𝑠𝑡𝑓𝑡 ← 𝑆𝑇𝐹𝑇(𝐴 ) 
8:  𝐴 _𝑠𝑡𝑓𝑡 ← Remove noise from 𝐴  based on  𝑛_𝑠𝑡𝑓𝑡 and 𝐴 _𝑠𝑡𝑓𝑡 
9:  𝐴 ← 𝑖𝑆𝑇𝐹𝑇(𝐴 _𝑠𝑡𝑓𝑡) 
10: 𝑒𝑛𝑑 

 

 

4.3.2 Inspection of the Denoising Function on a Clean Audio 

Intuitively, the denoising function can reduce white-like perturbations in an audio. However, 

it is not clear how it can affect a clean audio. In this section, we study the effect of the denoising 
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function on a clean audio through inspecting denoised audios in both the time domain and the Mel 

spectrogram. 

Here we choose the audio used in Section 3.1 as the clean input audio. Then, we let this audio 

go through the denoising function with three different standard deviations of noises, i.e.,  𝜎 =

0.001, 0.002, 𝑎𝑛𝑑 0.005. We plot the time-domain waveforms of three denoised audios in Figure 

4.2. It can be seen that in these three cases, all waveforms look similar. We further plot the Mel 

spectrograms of three denoised audios in Figure 4.3. It can be seen that when 𝜎 increases, the 

background blue color becomes darker, indicating that the background noises are removed more.  

While reducing the noise, the denoising function can also negatively affect the original sound. 

To see this, we plot the differences between the original audio and the denoised audio in both the 

time domain and the Mel spectrogram in Figures 4.4 and 4.5, respectively. As shown in time-

domain waveforms in Figure 4.4, it can be seen that the differences are in the similar waveforms 

as the original audio. Moreover, when 𝜎 increases, the amplitude of the differences increases as 

well. In Figures 4.3 and 4.5, it shows that the voice part (i.e., orange color) becomes darker as 𝜎 

increases. This indicates that the denoised function intentionally enhances the original sound, 

which can cause the “echo” effect on an input audio. When we heard these denoised audios, we 

did notice such echo. As 𝜎 increases, the echo is stronger. In the next chapter, we will further show 

how the denoising function affects the normal operations of a SV system, such as FAR, FRR, and 

EER. 

 

   
(a) 𝜎 = 0.001 (b) 𝜎 = 0.002 (c) 𝜎 = 0.005 

Figure 4.2 Denoised Audios in the Time Domain 
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(a) 𝜎 = 0.001 (b) 𝜎 = 0.002 (c) 𝜎 = 0.005 

Figure 4.3 Denoised Audios in a Mel Spectrogram 

 
 

   
(a) 𝜎 = 0.001 (b) 𝜎 = 0.002 (c) 𝜎 = 0.005 

Figure 4.4 Differences between Original and Denoised Audios in the Time Domain 

 
 

   
(a) 𝜎 = 0.001 (b) 𝜎 = 0.002 (c) 𝜎 = 0.005 

Figure 4.5 Differences between Original and Denoised Audios in a Mel Spectrogram 

 

4.4 Noise-Adding 

Different from the denoising function, the noise-adding function attempt to perturb 

adversarial audios so that adversarial attacks would loss or reduce the ability to mislead a SV 

system. 
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4.4.1 Noise-Adding Algorithm 

The noise-adding function appends some small noises to the input audio. Noises can be many 

different options. As a first attempt, we apply Gaussian noises with the mean of 0 and the standard 

deviation of 𝜎. That is,  

 

𝐴 = 𝐴 + 𝑁𝑜𝑖𝑠𝑒      (4.2) 

 

where A1 is the input audio, A2 is the noise-added audio, and  

 

𝑒𝑎𝑐ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑁𝑜𝑖𝑠𝑒 ~ 𝑁(0, 𝜎 ).    (4.1) 

 

The algorithm of the noise-adding function is shown in Algorithm 4.2. 

 

Algorithm 4.2 Noise-Adding Function 
Input: an audio clip A1, noise variance 𝝈𝟐 
Output: a noise-added audio clip A2 

Require Function: Normal distribution generator 𝑵 
1: 𝑏𝑒𝑔𝑖𝑛 
2:  𝑛𝑜𝑖𝑠𝑒 𝑐𝑙𝑖𝑝 ← (0,0, … ,0), 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑦 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴 ) 
3:  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑖𝑔𝑛𝑎𝑙 𝑛𝑜𝑖𝑠𝑒[𝑖] 𝑖𝑛 𝑛𝑜𝑖𝑠𝑒 𝑐𝑙𝑖𝑝: 
4:   𝑛𝑜𝑖𝑠𝑒[𝑖] ← 𝑁(0, 𝜎 ) 
5:      𝑒𝑛𝑑 𝑓𝑜𝑟 
6:  𝐴 ← 𝐴 + 𝑛𝑜𝑖𝑠𝑒 𝑐𝑙𝑖𝑝 
7: 𝑒𝑛𝑑 

 

 

4.4.2 Inspection of the Noise-Adding Function on a Clean Audio 

The noise-adding function is a very simple method and intends to make well-design 

perturbations into more random perturbations so that the adversarial attacks have less chance to 

succeed. In this section, we provide our intuitions and reasoning why noise-adding can work 

against adversarial attacks. Moreover, similar to Section 4.3.2, we study the effect of the noise-

adding function on a clean audio through inspecting noise-added audios in both the time domain 

and the Mel spectrogram. 
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Intuitively, noise-adding can provide the certain protection against adversarial attacks for the 

following reasons: (1) Many adversarial attacks, such as FakeBob, apply gradient decent to 

generate adversarial examples, as shown in Section 3.3. Adding small noises to input audios, 

however, can modify or distort the mapping between input audios and the corresponding output 

scores. That is, under the noise-adding plugin, the output score is no longer accurately reflect the 

original input audio, so that it becomes more difficult for the gradient decent method to change the 

input audio to increase the output score in a SV system. As shown in our experiments in Section 

5, the FakeBob takes much longer time to generate adversarial audios in a SV system with noise-

adding than in a SV system without it. (2) Although perturbations are similar to white noises, they 

are not random and are well designed to fool a SV system. Noise-adding can potentially introduce 

randomness into perturbation to destroy or modify such well-designed perturbations.   

We use the same audio as that applied in Sections 3.1 and 4.3.2 as the clean input audio, and 

employ the noise-adding function to it. Specifically, three cases are considered with using different 

standard deviations for the noise, i.e.,  𝜎 = 0.001, 0.002, 𝑎𝑛𝑑 0.005. We plot the time-domain 

waveforms of three noise-added audios in Figure 4.6. It can be seen that in these three cases, all 

waveforms look similar. We further plot the Mel spectrograms of three noise-added audios in 

Figure 4.7. It can be seen that when 𝜎  increases, the background blue color becomes lighter, 

indicating that the background noises are added more. Comparing Figures 4.3 and 4.7, it is 

interesting to see that denoising and noise-adding are two opposite operations. While denoising 

attempts to reduce noises, noise-adding introduces more noises. 

Figures 4.8 and 4.9 show the differences between the original audio and the noise-added audio 

in the time domain and the Mel spectrogram, respectively. As expected, when 𝜎 increases, the 

amplitude of the differences becomes larger in the time domain, and the color of the differences 

becomes lighter (i.e., more energy for the background noises) in the Mel spectrogram. In the next 

chapter, we will further show how the noise-adding function affects the normal operations of a SV 

system, such as FAR, FRR, and EER. 
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(a) 𝜎 = 0.001 (b) 𝜎 = 0.002 (c) 𝜎 = 0.005 

  Figure 4.6 Noise-Added Audios in the Time Domain 
 
 

   
(a) 𝜎 = 0.001 (b) 𝜎 = 0.002 (c) 𝜎 = 0.005 

 Figure 4.7 Noise-Added Audios in a Mel Spectrogram 
 
 

   
(a) 𝜎 = 0.001 (b) 𝜎 = 0.002 (c) 𝜎 = 0.005 

  Figure 4.8 Differences between Original and Noise-Added Audios in the Time Domain 
 
 

   
(a) 𝜎 = 0.001 (b) 𝜎 = 0.002 (c) 𝜎 = 0.005 

  Figure 4.9 Differences between Original and Noise-Added Audios in a Mel Spectrogram 
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 PERFORMANCE EVALUATIONS 

In this section, we evaluate the effectiveness and the efficiency of the proposed defense system 

against adversarial attacks in SV systems. Specifically, we first describe the experimental setup. 

We then measure the impact of the defense methods on the normal operations of SV systems. 

Finally, we evaluate the performance of our proposed defense system against the state-of-the-art 

adversarial attacks, i.e., FakeBob attacks. 

5.1 Experimental Setup 

The experiments were run parallelly in two virtual machines (VMs) provided by Google 

Cloud Platform [47] and a local GPU server. Two VMs are with 8-core Intel Xeon CPU 3.1 GHz 

and 32 GB memory, whereas the GPU server is with 24-core Intel I9 CPU 2.9 GHz, 128 GB 

memory and GeForce RTX 2080 Ti graphic card. All machines are installed with Ubuntu 20.04. 

Our experiments focus on GMM and i-vector SV systems. These SV systems are implemented 

by Kaldi speech recognition toolkit [48] and use the pre-trained models from VoxCelab 1 [49]. 

Moreover, the adversarial attacks against these SV systems are implemented through FakeBob 

attacks [10] with the perturbation threshold of 0.002 (i.e.,  = 0.002) and 1,000 maximum iterations 

(i.e., m = 1, 000). 

The audio dataset used is from LibriSpeech [50] and contains 8 different speakers, which were 

also applied in FakeBob [10]. For each speaker, there are 100 audio clips, each of which lasts 

between 4 seconds to 10 seconds. 

It is noted that a SV system, either GMM or i-vector, without the proposed defense system, is 

deterministic. That is, when an input audio is accepted (or rejected) by the SV system, it will be 

always accepted (or rejected) for future testing in the same SV system. However, a SV system that 

is installed with our proposed defense system becomes stochastic, because of the effect of the 

Gaussian noise generation. That is, if an input audio is accepted (or rejected) in the current testing 

for the SV system, it may be rejected (or accepted) next time when it is fed into the same SV 

system. To count for such a stochastic effect, during the testing we let an input audio repeat going 

through a SV system for 100 times to get the average of the performance metrics such as EER and 

ASR, which we have introduced in Section 3.  
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5.2 Performance Evaluations of the Proposed Defense System for Normal Operations of 
Speaker Verification Systems 

In our experiments, we first study the impact of the proposed defense methods, i.e., denoising 

and noise-adding, on the normal operations of a SV system. Specifically, we use EER as the 

performance metric here. Recall that EER is the rate of FAR or FRR when they are equal, and 

FAR and FRR are defined in Equations (3.3) and (3.4), respectively. A smaller EER reflects a 

better SV system. Moreover, the added plugin function to a SV system would slow down the 

processing of an input audio. As a result, we also record the processing time in our experiments. 

Among 8 speakers provided, we select two speakers with the identifier of 61 and 2830 as 

registered users in two separate experiments. As shown in Section 5.3, the FakeBob attacks against 

these two users can achieve 100% ASR in a SV system without our proposed defense system. To 

obtain the EER, 100 audio clips from a registered speaker were tested, whereas another 100 audio 

clips were randomly chosen from all illegal speakers to be fed into the SV system.     

Table 5.1 shows the performance of a GMM SV system with or without the denoising or 

noise-adding function for speakers 2830 and 61, as well as with different values of the standard 

deviation of noises (i.e., 𝜎 = 0.001, 0.002, 𝑎𝑛𝑑 0.005). Note that the original GMM SV system, 

which is without the defense plugin, can be regarded as the special case when 𝜎 = 0 for either 

denoising or noise-adding. It can be seen that for most cases, when 𝜎 increases, EER increases for 

both denoising and noise-adding. However, the value of EER only increase slightly, especially 

when 𝜎 is not large; for example, 𝜎 ≤ 0.002. As a reference, in Table 5.1 we also record the 

threshold of the SV system (i.e., 𝜃). Such a threshold will be applied for studying adversarial 

attacks in Section 5.3. It can be seen that when 𝜎 increases, the threshold decreases in general.   

It can also be seen from Table 5.1 that in a GMM SV system, the denoising function takes 

much longer time than the noise-adding function to process all 200 testing audios. The overhead 

of the noise-adding is very light, because the plugin of adding random Guassian noises does not 

require too much computation. On the other hand, the denoising function needs to apply both STFT 

and iSTFT operations, which demand a lot of computation.  

We further summarize the performance of the proposed defense system for normal operations 

of an i-vector SV system in Table 5.2. Similar to results in Table 5.1, it can be seen that EER does 

not increase too much when 𝜎 increases, especially when 𝜎 = 0.001 𝑜𝑟 0.002. Different from 

results in Table 5.1, the processing time of an i-vector SV system with the defense is more similar 
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to that without the defense. The reason is that the i-vector SV system requires longer time to test 

all 200 audios than the GMM SV system, but the overhead of a plugin is fixed.   

 

Table 5.1 Performance Evaluations of the Proposed Defense System on Normal Operations 

of GMM SV systems 

Speaker Plugin 𝜎 EER (%) Threshold Processing Time 
2830 original 0 1.12 0.0610 17.58 
2830 denoising 0.001 2.25 0.0722 30.91 
2830 denoising 0.002 3.37 0.0708 30.53 
2830 denoising 0.005 2.92 0.0501 31.47 
2830 noise-adding 0.001 1.35 0.0770 18.77 
2830 noise-adding 0.002 2.58 0.0454 19.16 
2830 noise-adding 0.005 5.84 -0.0304 19.50 

61 original 0 0.97 0.1285 19.29 
61 denoising 0.001 0.97 0.1215 30.43 
61 denoising 0.002 2.52 0.1369 30.29 
61 denoising 0.005 3.79 0.0911 30.10 
61 noise-adding 0.001 1.07 0.1098 19.91 
61 noise-adding 0.002 1.26 0.0810 20.39 
61 noise-adding 0.005 2.04 0.0270 21.11 

 

Table 5.2 Performance Evaluations of the Proposed Defense System on Normal Operations of i-
Vector SV systems 

Speaker Plugin 𝜎 EER (%) Threshold Processing Time 
2830 original 0 0.0 2.1406 390.42 
2830 denoising 0.001 0.0 1.7603 406.68 
2830 denoising 0.002 0.0 1.4734 404.92 
2830 denoising 0.005 0.0 1.5418 404.92 
2830 noise-adding 0.001 0.0 2.1523 393.14 
2830 noise-adding 0.002 0.0 1.9582 394.13 
2830 noise-adding 0.005 0.34 1.5960 394.12 

61 original 0 0.0 2.1077 476.48 
61 denoising 0.001 0.29 1.9156 488.05 
61 denoising 0.002 0.1 1.8095 490.72 
61 denoising 0.005 0.97 1.9277 487.47 
61 noise-adding 0.001 0.87 2.0787 477.55 
61 noise-adding 0.002 0.78 1.8908 477.64 
61 noise-adding 0.005 1.94 1.7152 476.89 
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From both Tables 5.1 and 5.2, we can conclude that the proposed defense system only slightly 

degrades the performance of a SV system, especially when 𝜎 is small. Moreover, in a GMM SV 

system, the noise-adding function is preferred to the denoising function, because of the much better 

processing time. The additional processing time of noise-adding is minor in both GMM and i-

vector SV systems. 

5.3 Performance Evaluations of the Proposed Defense System against FakeBob Attacks 

Next, we study the performance of our proposed defense methods against FackBob attacks in 

a SV system. Specifically, we use ASR as the performance metric, which definition can be found 

from Equation (3.7). A smaller value of ASR indicates a better defense performance. Moreover, 

FakeBob uses multiple iterations to create an adversarial audio, as shown in Algorithm 3.3. 

Therefore, we also measure the average of the numbers of iterations and the average running time 

for FakeBob attacks to find an adversarial audio in our experiments. A larger number of the 

average iterations and a longer average running time reflect a better defense system against 

adversarial attacks. 

For adversarial attacks, we randomly selected 5 audio clips from each of four illegal speakers. 

Thus, 20 cases of adversarial attacks were studied to obtain the average ASR, the average number 

of iterations, and the average running time. 

Table 5.3 shows the experimental results of our proposed defense functions, i.e., denoising 

and noise-adding, against FakeBob attacks in a GMM SV system for speakers 2830 and 61, when 

𝜎 = 0, 0.001, 0.002, 𝑎𝑛𝑑 0.005, and a i-vector SV system for speaker 2830 and 61, when 𝜎 =

0 𝑎𝑛𝑑 0.002. It can be seen that while FakeBob achieves 100% ASR for the original GMM SV 

system (i.e., 𝜎 = 0), the ASR of the SV system with the defense is less than 100%. Moreover, 

when 𝜎 increases, ASR decreases in general. For example, when 𝜎 = 0.002, ASR is averagely 

(64.6% + 47.5%)/2 =  56.05%  for the denoising function, whereas it is only (6.8% +

3.6%)/2 =  5.2% for the noise-adding method. Moreover, FakeBob achieves (90% + 100%)/

2 = 95% ASR for the original i-vector SV system, but the ASRs of the SV system with the 

proposed defense is less than 95%. When 𝜎 = 0.002, ASR is averagely (36.8% + 40.5%)/2 =

 38.65% for the denoising function, whereas it is only (0% + 1%)/2 =  0.5%  for the noise-

adding method. It can be clearly seen that noise-adding performs much better than denoising based 

on the ASR. Moreover, noise-adding leads to much larger value of the average number of iterations  
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Table 5.3 Performance Evaluations of the Proposed Defense System against FakeBob Attacks 

Speaker Plugin 𝜎 EER (%) Avg iter Avg time Avg ASR 
Model GMM 
2830 original 0 1.12 13.5 113.54 100% 
2830 denoising 0.001 2.25 13.4 131.55 79.0% 
2830 denoising 0.002 3.37 12.1 128.85 64.6% 
2830 denoising 0.005 2.92 18.1 186.46 50.7% 
2830 noise-adding 0.001 1.35 67.0 388.53 23.2% 
2830 noise-adding 0.002 2.58 634.9 4423.60 6.8% 
2830 noise-adding 0.005 5.84 701.8 3925.76 6.8% 

61 original 0 0.97 32.5 203.82 100% 
61 denoising 0.001 0.97 24.4 252.48 75.4% 
61 denoising 0.002 2.52 33.6 343.07 47.5% 
61 denoising 0.005 3.79 26.5 285.09 51.3% 
61 noise-adding 0.001 1.07 118.2 841.30 25.5% 
61 noise-adding 0.002 1.26 575.0 3562.15 3.6% 
61 noise-adding 0.005 2.04 688.1 4774.93 1.4% 

Model I-Vector 
2830 original 0 0.00 261.4 9384.32 90.0% 
2830 denoising 0.002 0.00 143.7 5421.76 36.8% 
2830 noise-adding 0.002 0.00 958.7 34460.64 0.0% 

61 original 0 0.00 76.4 2776.62 100% 
61 denoising 0.002 0.10 57.5 2228.28 40.5% 
61 noise-adding 0.002 0.78 877.8 31573.95 1.0% 

 

and much longer average running time than denoising and the original SV system. The average 

number of iterations and the average running time for denoising are similar to those in the original 

SV system. However, with the noise-adding plugin, the values of these two metrics are much larger. 

For example, in the original GMM SV system, the average of the average number of iterations is 

(13.5 + 32.5)/2 =  23, and the average of the average running time is (113.54 + 203.82)/2 =

158.68. But in the defense system with noise-adding and 𝜎 = 0.002, the averages of the average 

number of iterations and the average running time are (634.9 + 575.0)/2 =  604.95  and 

(4423.60 + 3562.15)/2 = 3992.875, respectively. It indicates that noise-adding slows down the 

processing more than 25 times and makes FakeBob significantly harder to find the adversarial 

audios in GMM SV systems. Moreover, it shows a similar result for the i-vector SV system from 

Table 5.3. In the original i-vector SV system, the average of the average number of iterations is 

(261.4 + 76.4)/2 =  168.9 , and the average of the average running time is (9384.32 +
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2776.62)/2 = 6080.47 . But in the defense system with noise-adding and 𝜎 = 0.002 , the 

averages of the average number of iterations and the average running time are (958.7 +

877.8)/2 =  918.25 and (34460.64 + 31573.95)/2 = 33017.295, respectively. In the case of 

an i-vector SV system with the noise-adding plugin, there are only 4 cases getting successful 

adversarial audios among overall 40 cases. Other attacking cases reach the preset maximal iteration 

of 1000. Therefore, noise-adding slows down the processing more than 5 times and makes 

FakeBob harder to find adversarial audios in the i-vector SV system. 

In summary, we can see from the experimental results that the noise-adding defense with a 

reasonable value of the standard deviation of noises (e.g., 𝜎 = 0.002 ) can effectively and 

efficiently counteract FakeBob attacks. Moreover, such a defense method is simple to implement, 

is very light-weight, and only degrades the performance of normal operations of a SV system 

slightly. 
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 CONCLUSIONS AND FUTURE WORK 

In this work, we have attempted to design and implement a defense system that is simple, 

light-weight, and effectively against adversarial attacks in SV systems. Our designed system is 

based on the observations that the perturbations in an adversarial audio are very small and similar 

to white noises but are not random and intentionally designed to fool SV. We have proposed to 

add the plugin function to preprocess an input audio so that perturbations can be removed or 

modified to loss the effect. We have studied two opposite plugin functions, i.e., denoising and 

noise-adding, and found that noise-adding has a much better performance against FakeBob 

adversarial attacks than denoising. Specifically, noise-adding with 𝜎 = 0.002  in a GMM SV 

systems is able to slow down the speed of FakeBob to generate adversarial audios 25 times and 

reduce the targeted ASR from 100% to 5.2%. Moreover, noise-adding with 𝜎 = 0.002 has a minor 

effect on normal operations of a SV system and has a slightly higher EER than that in the SV 

system without the defense. Therefore, we believe that this simple solution, i.e., noise-adding 

plugin, should be applied to any SV system to counteract adversarial attacks such as FakeBob. 

  As our on-going work, we will extend our study to other SV systems such as d-vector [31] 

and x-vector [32]. Moreover, we plan to research the effect of adding other different types of noises, 

such as Rustle noises [51], on the normal operations of a SV system and against adversarial attacks. 
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