
DISTRIBUTED NETWORK PROCESSING AND
OPTIMIZATION UNDER COMMUNICATION CONSTRAINT

by

Chang-Shen Lee

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

August 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Nicolò Michelusi, Co-chair

School of Electrical, Computer and Energy Engineering, Arizona State University

Dr. Gesualdo Scutari, Co-chair

School of Industrial Engineering, Purdue University

Dr. Shreyas Sundaram

School of Electrical and Computer Engineering, Purdue University

Dr. Xiaojun Lin

School of Electrical and Computer Engineering, Purdue University

Approved by:

Dr. Dimitrios Peroulis

2

To my parents, Chia-Hua & Chi-Wei,

and my better half, Wei-Yun.

3

ACKNOWLEDGMENTS

I am very grateful to my advisors, Professor Nicolò Michelusi and Professor Gesualdo

Scutari, for their guidance and comments on my research work. In particular, they have

provided me invaluable comments in the following aspects: 1) writing reader-friendly while

rigorous mathematical proofs; 2) generalizing mathematical results; and 3) writing concise

research articles.

I am also very grateful to the other two professors in my academic and doctoral advi-

sory committee, Professor Shreyas Sundaram and Professor Xiaojun Lin, for their inspiring

comments on my research and attending my preliminary and final examinations.

4

TABLE OF CONTENTS

 LIST OF TABLES . 10

 LIST OF FIGURES . 11

 ABSTRACT . 12

 1 INTRODUCTION . 13

 1.1 Motivation . 13

 1.2 Research contributions . 15

 1.3 Outline of the dissertation . 15

 2 FINITE RATE DISTRIBUTED WEIGHT-BALANCING AND AVERAGE CON-

SENSUS OVER DIGRAPHS . 17

 2.1 Introduction . 17

 2.1.1 Related works . 18

 2.1.2 Summary of the main contributions 20

 2.2 Background . 22

 2.2.1 Basic graph-related definitions . 22

 2.3 Summary of The Proposed Algorithms . 24

 2.3.1 System model and problem formulation 25

 2.3.2 Distributed quantized weight-balancing 25

 2.3.3 Distributed quantized average consensus algorithm 26

 2.4 Distributed Quantized Weight-Balancing . 27

5

 2.4.1 Proof of Theorem 2.4.1 . 30

 Proof of statement (a) . 30

 Proof of statement (b) . 37

 Proof of statement (c) . 37

 2.5 Distributed Quantized Average Consensus 38

 2.6 Numerical Results . 43

 2.6.1 Quantized weight-balancing . 44

 2.6.2 Quantized average consensus . 45

 2.7 Conclusions . 47

 2.8 Appendix: Proofs of Theorems . 49

 2.8.1 Intermediate Results in the Proof of Theorem 2.4.1 49

 Preliminary definitions and results 49

 Proof of Lemma 3 . 51

 Proof of Lemma 2 . 52

 Proof of Proposition 2.4.1 . 54

 2.8.2 Auxiliary Results for Theorem 2.5.1 56

 3 FINITE-BIT QUANTIZATION FOR DISTRIBUTED ALGORITHM WITH LIN-

EAR CONVERGENCE . 61

 3.1 Introduction . 61

 3.1.1 Summary of main contributions . 63

6

 3.1.2 Related works . 65

 3.1.3 Organization and notation . 67

 3.2 A General Distributed Algorithmic Framework: Exact Communications . . . 67

 3.2.1 Warm-up: A class of distributed algorithms 68

 3.2.2 Proposed general model (using historical information) 69

 3.3 A General Distributed Algorithmic Framework: Quantized Communications 71

 3.3.1 Convergence Analysis . 73

 3.4 Non-Uniform Quantizer with Adaptive Encoding/Decoding 77

 3.4.1 Quantizer design . 77

 3.4.2 Adaptive encoding scheme . 79

 3.5 Communication Complexity of (Q-M) using the ANQ Rule 81

 3.5.1 Special cases of (Q-M) using the ANQ rule 83

 3.6 Numerical Results . 84

 3.6.1 Least square problem . 85

 3.6.2 Logistic regression . 88

 3.6.3 Communication cost . 89

 3.7 Conclusions . 93

 3.8 Appendix . 93

 3.8.1 Proof of Theorem 3.3.1 . 93

 Preliminaries . 94

7

 Proof of Theorem 3.3.1 . 96

 Proof of Lemma 14 . 98

 Proof of Lemma 16 . 99

 3.8.2 Proof of Lemmata 11 , 12 , and Corollary 2 101

 Proof of Lemma 11 . 101

 Proof of Lemma 12 . 103

 Proof of Corollary 2 . 104

 3.8.3 Proof of Theorems 3.5.1 and 3.5.2 . 105

 Proof of Theorem 3.5.1 . 105

 Proof of Lemma 18 . 106

 Proof of Lemma 19 . 108

 Proof of Theorem 3.5.2 . 108

 Proof of Lemma 13 . 109

 3.8.4 Examples of (M) . 110

 (Prox-)EXTRA [80] . 111

 (Prox-)NEXT [80] . 113

 (Prox-)DIGing [80] . 115

 (Prox-)NIDS [80] . 117

 GD over star networks [89] . 119

 Primal-dual algorithm [59], [75] . 120

8

 4 SUMMARY . 123

 REFERENCES . 124

 VITA . 132

9

LIST OF TABLES

 2.1 Related works on graph weight-balancing. 19

 2.2 Related works on quantized consensus. problem-dependent: depends on the prob-
lem setting, e.g., initial values, weight matrix; trajectory-dependent: depends on
trajectory of the algorithm during execution; informative: cf. A. 4 19

 2.3 Notation used in the chapter . 23

 3.1 Comparison with the state-of-the-art distributed algorithms using some form of
quantization; λ is the convergence rate of the input (unquantized) algorithm, and
d is the dimension of x. The scheme proposed in this chapter is applicable to
the distributed algorithms listed in the table and, in addition, to the following:
general primal-dual-based methods [80], EXTRA [76], NEXT [8], [62], AugDGM
[81], DIGing [78], the scheme in [79], NIDS [82], Exact Diffusion [83], and some
of their proximal counterpart as those in [84] and [80]. 66

10

LIST OF FIGURES

 2.1 Some basic graph definitions. 24

 2.2 Key properties of ∥bk∥1 in Algorithm 1 . . 31

 2.3 Illustration of the random graph model for m = 4, where dashed arrows
represent potential directed links depending on the realizations. 46

 2.4 Quantized weight-balancing problem: Total imbalance ∥bk∥1 the propsoed
algorithm with 1-bit , 7-bit, and 50-bit, as well as the integer and real weight-
balancing schemes [14]. 47

 2.5 Quantized average consensus problem: MSE of average consensus algorithms
average over 10000 realizations. 48

 2.6 Quantized average consensus problem: MSE of average consensus algorithms
for a particular realization. 49

 2.7 Quantized consensus problem: Communication cost (left y-axis, solid lines)
and number of timeslots (right y-axis, dashed lines) needed to reach the target
MSE, versus the total number of bits per channel use. 50

 3.1 Examples of star network (a) versus mesh topology (b). 67

 3.2 Least square problem (3.27): MSE versus iterations for the smooth (a) and
non-smooth (b) cases. Solid curves and markers refer to algorithms with exact
and quantized communications, respectively. 87

 3.3 Logistic regression (3.28): MSE versus iterations for the smooth (a) and non-
smooth (b) cases. Solid curves and markers refer to algorithms with exact
and quantized communications, respectively. 90

 3.4 Communication cost evaluation on nonsmooth least square problem with α =
10−4 versus d. 91

 3.5 Communication cost evaluation of ANQ-NIDS on smooth least square prob-
lem: (a) effect of σ with ω = ω̄/2; and (b) ω with σ = 0.99 × λ + 0.01.

 . 92

11

ABSTRACT

In recent years, the amount of data in the information processing systems has signif-

icantly increased, which is also referred to as big-data. The design of systems handling

big-data calls for a scalable approach, which brings distributed systems into the picture.

In contrast to centralized systems, data are spread across the network of agents in the dis-

tributed system, and agents cooperatively complete tasks through local communications and

local computations. However, the design and analysis of distributed systems, in which no

central coordinators with complete information are present, are challenging tasks. In order

to support communication among agents to enable multi-agent coordination among others,

practical communication constraints should be taken into consideration in the design and

analysis of such systems. The focus of this dissertation is to provide design and analysis

of distributed network processing using finite-rate communications among agents. In par-

ticular, we address the following open questions: 1) can one design algorithms balancing a

graph weight matrix using finite-rate and simplex communications among agents? 2) can

one design algorithms computing the average of agents’ states using finite-rate and simplex

communications? and 3) going beyond of ad-hoc algorithmic designs, can one design a black-

box mechanism transforming a general class of algorithms with unquantized communication

to their finite-bit quantized counterparts?

This dissertation addresses the above questions. First, we propose novel distributed al-

gorithms solving the weight-balancing and average consensus problems using only finite-rate

simplex communications among agents, compliant to the directed nature of the network

topology. A novel convergence analysis is put forth, based on a new metric inspired by the

positional system representations. In the second half of this dissertation, distributed opti-

mization subject to quantized communications is studied. Specifically, we consider a general

class of linearly convergent distributed algorithms cast as fixed-point iterate, and propose

a novel black-box quantization mechanism. In the proposed mechanism, a novel quantizer

preserving linear convergence is proposed, which is proved to be more communication ef-

ficient than state-of-the-art quantization mechanisms. Extensive numerical results validate

our theoretical findings.

12

1. INTRODUCTION

1.1 Motivation

In recent years, distributed processing for large-scale networks have gained increasing at-

tentions. In particular, consensus-based distributed optimization problems, where agents in

a network seek to cooperatively solve a partially shared problem, have found applications in

a variety of areas including network information processing and decision making [1], resource

allocation in communication networks [2], distributed spectrum sensing [3], distributed ma-

chine learning [4], and so on. For the above and other applications, centralized approaches

are less preferable or even infeasible due to the following reasons.

First, centralized approaches are inefficient or unfeasible when it comes to deal with big-

data applications: 1) the central coordinator may not have the capability to process the

overwhelming data, or it may take too much time to perform such tasks; 2) in many applica-

tions, data are sensitive and should not be shared across agents, which makes collecting data

at the central node less preferable and even prohibited; 3) collecting huge amount of data

from the sources to the central coordinator may be time and energy consuming and impose

huge burden on the communication networks. This problem is particularly important when

some agents have limited energy (e.g., battery powered sensors in sensor networks) and/or

wireless communication is adopted among agents (e.g., wireless sensor networks); 4) in some

applications, where agents are homogeneous e.g., formation control for unmanned aerial

vehicles, the selection of central coordinator will result in the imbalance workload among

agents; and 5) centralized approaches are less robust to failure of central coordinator and

external attacks. This problem is particularly important in some cyber-physical systems.

Therefore, a promising approach is to distribute the data and workload across the network

of agents, by cooperatively solving the optimization problem through local processing and

local communications, which results in distributed in-network processing.

However, the design of distributed solution should take the following challenges into

account:

1. Information incompleteness: each agent only has partial information on the prob-

lem for making decisions. To tackle this issue, agents need to exchange information

13

through local communications to get the information of the global problem. Hence,

local communications among neighboring agents is an important part in the design of

distributed algorithms.

2. Communications constraints: in the design of local communication protocols, com-

munication constraints, such as the data rate constraint, need to be accounted in the

design and analysis, as elaborated next.

Finite Rate Communications

From information theory, the maximum achievable communication rate of a link is the

Shannon capacity of the channel, which depends on the signal/noise power and the channel

bandwidth, and more importantly, is finite [5]. In other words, agents can only exchange

encoded information using finite-bit representation instead of the exact information. To this

end, quantization, which maps the input from an uncountable (continuous) set to the out-

put in a countable (discrete) set, is a common approach for encoding the information. For

instance, deterministic quantization [6] and probabilistic quantization [7] both map infor-

mation from real numbers to countable sets. To represent the quantized information using

finite bits, the cardinality (i.e., size) of its image set (i.e., the set of all possible outputs)

must be finite. As a concrete example, the output of uniform quantizer [6], which maps the

input to its nearest integers, cannot be represented by finite bits, since the set of all integers

is of infinite size. Therefore, among all quantizations, finite-bit quantizations, where the

output can be represented by finite bits, are required in the design of local communication

in distributed algorithms.

To date, the majority of distributed algorithms do not address the finite rate constraint,

i.e, they require exchange of exact (i.e., real-valued) information. Among those adopt some

form of quantization in the design of local communication, some of them adopt aforemen-

tioned quantizations requiring infinite bits to implement. Hence, the implementation and

analysis of the above algorithms becomes questionable when taking the finite-rate constraint

into account. To the best of our knowledge, the design and analysis for distributed approaches

14

addressing the finite-rate communication constraint has not been explored for problems in

many areas, which motivates this work.

1.2 Research contributions

The contribution of this dissertation is to provide the first design/analysis of distributed

algorithms using finite-rate communication for the following problems:

1) Weight balancing problem for directed graphs (digraphs);

2) Average consensus problem over digraphs;

3) The strongly convex optimization problems.

In the weight balancing problem, the goal is to balance the graph weight matrix, in the sense

that the sum of incoming weights and that of outgoing weights are equal, for every agent

in the network modelled as a digraph. This problem finds applications in many consensus-

based algorithms over digraphs. In the average consensus problem, the goal is to compute

the average of agents’ initial state, which is important per se and is an essential building

block for many consensus-based algorithms. In the strongly convex optimization problem,

the goal is to find the solution of a general class of (possibly nonsmooth and/or constrained)

strongly convex problems using first-order information, and such an algorithm is expect to

converge linearly.

In the analyses of these proposed algorithms, this dissertation provides convergence guar-

antee as well as convergence rate for each algorithm. In addition, the communication costs are

also analyzed. In a nutshell, this dissertation opens up the research of distributed approaches

for some important problems while addressing the finite-rate communication constraint.

1.3 Outline of the dissertation

In Chapter 2 , we propose the first distributed graph weight balancing algorithm using

only finite rate and simplex communications among agents, and provide a novel convergence

analysis. Building on this result, we propose the first distributed average consensus algorithm

15

over digraphs, using finite rate communications. In Chapter 3 , we study a general class of

linearly convergent algorithms which can be cast as fixed point iterates, and propose a black-

box finite-bit quantization scheme, which preserves linear convergence of the unquantized

modelled algorithm. Our analysis shows that the proposed scheme is more communication

efficient than the state-of-the-art quantization schemes, and achieves the lower complexity

bounds for the convex quadratic optimization problem over a two-agent network. To the

best of our knowledge, this is the first time that such limit is achieved. Finally, Chapter 4

summarize this dissertation.

Notation: Throughout the dissertation, we will use the following notation and conven-

tions. The sets of real, integer, nonnegative integer, and positive integer numbers are denoted

by R, Z, Z+, and Z++, respectively. For any positive integer a, we define [a] ≜ {1, · · · , a}.

Vectors are denoted as x (lowercase, boldface), matrices as X (uppercase, boldface). We de-

note by 0,1,O, and I denote the vector of all zeros, the vector of all ones, the matrix of all

zeros, and the identity matrix, respectively. For vectors c1, · · · , cm and a set S ⊆ [m], define

cS ≜ {ci : i ∈ S}. We define the floor and ceiling functions ⌊x⌋ ≜ max{y ∈ Z : y ≤ x},

⌈x⌉ ≜ min{y ∈ Z : y ≥ x}. We denote by 1{•} the indicator function, returning 1 if the

input argument is true and 0 otherwise; and define the sign of x by sgn(x) = x/|x|,∀x ̸= 0,

sgn(0) = 0. We use ∥ · ∥ to denote a norm in the Euclidean space (whose dimension will

be clear from the context); when a specific norm is used, such as ℓ2-norm or ℓ∞, we will

append the associate subscript to ∥ · ∥. The ith eigenvalue of matrix G is denoted by

ρi(G); and we order the eigenvalues of any real, symmetric matrix in nonincreasing or-

der such that ρ1(G) ≥ . . . ρi(G) ≥ ρi+1(G). Finally, asymptotic behaviors of functions

is captured by the standard big-O,Θ, and Ω notations, namely: 1) g(x) = O(h(x)) as

x → x0 iff. lim supx→x0 |g(x)/h(x)| ∈ [0,∞); 2) g(x) = Ω(h(x)) iff. h(x) = O(g(x)); and

3) g(x) = Θ(h(x)) iff. g(x) = O(h(x)) and g(x) = Ω(h(x)). We will use superscript to

denote iteration counters of sequences generated algorithms, for instance, xk will denote the

value of the x-sequence at iteration k. We will instead use (x)k for the k-power. We use

L.x, C.x, D.x, T.x, P.x, A.x and App.x for Lemma x, Corollary x, Definition x, Theorem x,

Proposition x, Assumption x and Appendix x, respectively.

16

2. FINITE RATE DISTRIBUTED WEIGHT-BALANCING

AND AVERAGE CONSENSUS OVER DIGRAPHS

In this chapter, we first study the distributed weight balancing problem, and proposes the

first distributed algorithm using only finite rate and simplex communications among agents,

compliant with the directed nature of the graph edges. It is proved that the algorithm

converges to a weight-balanced solution at sublinear rate. The analysis builds upon a new

metric inspired by positional system representations, which characterizes the dynamics of

information exchange over the network, and on a novel step-size rule. Building on this

result, a novel distributed algorithm is proposed that solves the average consensus problem

over digraphs, using, at each timeslot, finite rate simplex communications between adjacent

agents – some bits for the weight-balancing problem and others for the average consensus.

Convergence of the proposed quantized consensus algorithm to the average of the agent’s

unquantized initial values is established, both almost surely and in the moment generating

function of the error; and a sublinear convergence rate is proved for sufficiently large step-

sizes. Numerical results validate our theoretical findings.

The novel results of this chapter have been published in

• C.-S. Lee, N. Michelusi, and G. Scutari, “Topology-agnostic average consensus in sensor

networks with limited data rate,” in Proc. 51st ACSSC, Oct. 2017.

• C.-S. Lee, N. Michelusi, and G. Scutari, “Distributed quantized weight-balancing and

average consensus over digraphs,” in Proc. 57th IEEE CDC, Dec. 2018, pp. 5857–5862.

• C.-S. Lee, N. Michelusi and G. Scutari, ”Finite Rate Distributed Weight-Balancing

and Average Consensus Over Digraphs,” IEEE Trans. Autom. Control (Early Access),

pp. 1-1, 2020.

2.1 Introduction

Digraphs play a key role in a number of network applications, such as distributed op-

timization [8], distributed flow-balancing [9], distributed averaging and cooperative control

17

[10], to name a few. In particular, distributed average consensus, whereby agents aim at

agreeing on the sample average of their local values, has received considerable attention over

the years; some applications include load-balancing [11], vehicle formation [12], and sensor

networks [13]. Several of the these distributed algorithms, when run on digraphs, require

some form of graph regularity, such as the weight-balanced property [14]: at each agent, the

sum of the outgoing edge weights equals that of the incoming edge weights.

Several centralized algorithms have been proposed to balance a digraph; see, e.g., [15] and

references therein. In this chapter, we are interested in the design of distributed algorithms

that solve the weight-balancing and average consensus problems over digraphs, using only

quantized information, simplex communications,

1
 and without knowledge of the graph topol-

ogy other than the direct neighbor. This problem is motivated by realistic scenarios, such

as wireless sensor networks, where channels may be asymmetric due to different transmit

powers of agents and interference, and where communications are subject to finite rate con-

straints. To date, the design of such algorithms in distributed settings remains a challenging

and open problem, as documented next.

2.1.1 Related works

Distributed weight-balancing algorithms were proposed in [9], [14], [16]–[18] (see Table

 2.1). With the exception of [14 , Sec. IV], [17], [18], all these algorithms require infinite

bits in each communication round, since agents need to exchange either real valued, or

integer but unbounded quantities. Although [14 , Sec. IV] and [18] use a finite number

of bits at each iteration, this number cannot be arbitrarily chosen (e.g. to satisfy some

transmission constraints), it is instead the result of the algorithmic trajectory and thus it

is not known a-priori. In addition, these works adopt unicast communications, whereby

agents transmit different signals to different out-neighbors. To reduce signaling overhead,

broadcast communications are preferable in dense networks. Finally, while compliant with

prescribed finite rate constraints, the distributed integer weight-balancing algorithm [17]

requires full-duplex edge communications–each agent must exchange information with both
1

 ↑ One way, as opposed to duplex, two ways communications.

18

Table 2.1. Related works on graph weight-balancing.
Reference Broadcast Digraph # Bits/Timeslot

[9] ✓ Infinite
[16] ✓ Infinite

[14 , Sec. III] ✓ ✓ Infinite
[17] ✓ Any

[14 , Sec. IV], [18] ✓ Problem-Dependent
Proposed ✓ ✓ Any

Table 2.2. Related works on quantized consensus. problem-dependent: de-
pends on the problem setting, e.g., initial values, weight matrix; trajectory-
dependent: depends on trajectory of the algorithm during execution; informa-
tive: cf. A. 4 .

Ref. Quantization Digraph Convergence Limit Point # Bits/Timeslot Initial Value
[6] Deterministic Neighborhood Problem-Dependent Integer
[19] Deterministic ✓ Neighborhood Problem-Dependent Integer
[20] Deterministic Neighborhood Problem-Dependent Box
[21] Deterministic Neighborhood Infinite Any
[22] Deterministic Neighborhood Any Any
[7] Probabilistic ✓ Neighborhood Any Any
[23] Probabilistic ✓ Neighborhood Any Box

[24], [25] Deterministic ✓ Average Any Box
[26] Probabilistic ✓ Average Any Box
[27] Deterministic ✓(Balanced) ✓ Average Any Box
[28] Probabilistic ✓(Balanced) ✓ Average Any Informative

[29], [30] Deterministic ✓ ✓ Weighted Average Any Box
[31], [32] Deterministic ✓ ✓ Average Trajectory-Dependent Integer

[33] Deterministic ✓ Neighborhood Infinite Box
[34] Probabilistic ✓ ✓ Average Infinite Any

Proposed Probabilistic ✓ ✓ Average Any Informative

its out- and in-neighbors–which does not comply with simplex constraints. To the best of

our knowledge, the design of distributed algorithms that solve the weight-balancing problem

using a prescribed finite rate and simplex communications is an open problem.

Distributed average consensus algorithms have a long history, tracing back to the sem-

inal works [1], [10], [35]. These early works assumed that agents can reliably exchange

unquantized information over undirected networks. To cope with limited data rates, quan-

tization was later introduced, and its effect analyzed for both undirected [6], [7], [19]–[26]

or directed graphs [27]–[34], as documented in Table 2.2 . The quantized average consensus

problem based on deterministic uniform quantization and dithered (probabilistic) quantiza-

tion has been considered in [6], [19]–[22] and [7], [23], respectively. However, these schemes

do not achieve exact consensus but converge to a neighborhood of the average. Exact average

19

consensus is proved in [24], [25] for deterministic quantization and in [26] for probabilistic

quantization. However, all these algorithms consider undirected graphs, which can be eas-

ily weight-balanced (e.g. using the Metropolis weights [36]). While the extensions of the

above deterministic and probabilistic schemes to digraphs were studied in [27], [29], [30]

and [28], respectively, all these works only achieve exact average convergence over balanced

digraph. However, the weight matrices of digraphs are inherently unbalanced, thus requiring

specific weight-balancing algorithms, as documented earlier; they thus suffer from the same

limitations of distributed weight balancing schemes.

To address unbalanced digraphs, the idea adopted in the seminal work [37] is to estimate

and compensate the bias caused by the unbalanced weights, via the so-called push-sum al-

gorithm [37]. This algorithm requires unquantized communication. Unfortunately, applying

naively a finite-bit quantization to the push-sum scheme does not lead to convergence, as

we will demonstrate numerically in Sec. 2.6 (cf. Q-Push-Sum). Extensions of push-sum

employing quantization have been developed in [31]–[34]. However, [33], [34] consider un-

bounded quantization intervals, which necessitates infinite bits to encode the signal whereas

[31], [32] impose integer constraints on the initial values of the consensus signals and ne-

cessitate a trajectory-dependent number of bits. Besides quantization, other instances of

imperfect communications in average consensus problems over digraphs were investigated in

[38], [39] (asynchrony) and [40], [41] (link failure).

2.1.2 Summary of the main contributions

The above literature review shows that there are no distributed algorithms solving the

weight-balancing and the exact average consensus problems for real initial values over di-

graphs, using finite-bit quantized information with a prescribed number of bits and simplex

communications. This chapter provides an answer to these open questions.

1) Distributed quantized weight-balancing: The first contribution is a novel distributed

quantized weight-balancing algorithm whereby agents transfer part of their balance–the dif-

ference between the out-going and the incoming sum-weights, which should be zero for a

weight-balanced graph–to their out-neighbors via quantized simplex communications; by

20

doing so, the balance is transferred from high imbalance to low imbalance agents, prov-

ably converging to a weight-balanced solution at sublinear rate. Differently from existing

quantized weight-balancing schemes [14], [16], [18], the proposed algorithm can use at each

iteration a prescribed number of bits (possibly, time-varying). The convergence analysis is

also a novel technical contribution of this chapter:

i) First, we identify necessary and sufficient conditions under which the total imbalance

decreases, denoted by the decreasing event (see D. 2.4.1). Roughly speaking, this event

occurs when an agent transfers its balance to a neighbor with balance of opposite sign.

Hence, agents closer to agents with balance of opposite sign more directly contribute

to trigger the decreasing event and thus reduce the total imbalance, and are therefore

more important than those farther away.

ii) The next step is to prove that the decreasing events occur often enough that the total

imbalance asymptotically vanishes at sublinear rate. To this end, we show that the

time interval between two consecutive occurrences of a decreasing event is uniformly

bounded. This is proved by introducing a sophisticated metric, a non-negative integer-

valued function of the imbalances of agents and of their importance, which strictly

increases every time there is a transfer of balance from less important agents to more

important ones, up until the next decreasing event occurs. By proving that this function

is uniformly bounded, we conclude that the decreasing events occur infinitely often.

To build such a function, we use the idea of positional system representation: the value

of the function at each timeslot is expressed by a number whose hth digit represents

the sum-imbalance of the hth most important agents. By doing so, every transfer of

balance from agents of lower importance towards those of higher importance causes

this function to increase, as it induces a “carry” operation from a digit to the next

more significant one in its positional representation.

iii) We introduce a novel diminishing step-size rule, which guarantees that the balance at

each agent is expressed as an integer multiple of the current step-size. This choice

21

greatly facilitates the convergence analysis, since it allows one to tightly control the

amount of decrement of the total imbalance at each timeslot.

2) Distributed average quantized consensus: Building on the proposed weight-balancing

scheme, we introduce a novel distributed algorithm that performs average consensus and

weight-balancing on the same time scale with finite-bit simplex communications–some bits

for consensus and some to balance the digraph. For instance, one may perform one-bit

(simplex) communication per channel use, by exchanging weight-balancing and consensus

information alternately. The key idea behind the algorithm is to preserve the average of the

variables over time, while gradually weight-balancing the graph. We prove convergence of

the agents’ local variables to the exact average of the initial values, both almost surely and

in the moment generating function of the error. A sublinear convergence rate is proved for

sufficiently large step-sizes.

The rest of this chapter is organized as follows. In Sec. 2.2 , we introduce some preliminary

definitions. Sec. 2.3 introduces the ideas of the proposed distributed quantized weight-

balancing and average consensus algorithms, whose details are discussed in Sec. 2.4 and Sec.

 2.5 , respectively. Some numerical results are discussed in Sec. 2.6 , while Sec. 2.7 draws

some conclusions. The proof of auxiliary lemmas is provided in the Sec. 2.8 .

Notation: In addition to the notation defined in Chapter 1 . In this chapter, we will use

the following notations. We define the clip function by clip[l,u](x) = min {max {x, l} , u}. All

equalities and inequalities involving random variables are tacitly assumed to hold almost

surely (i.e., with probability 1), unless otherwise stated. The rest of the symbols used in this

chapter are summarized in Table 2.3 .

2.2 Background

2.2.1 Basic graph-related definitions

Consider a network with m agents, modeled as a static, directed graph G = {V , E}, where

V = [m] is the set of vertices (the agents), and E ⊆ V×V is the set of edges (the communi-

cation links). A directed edge from i to j is denoted by (i, j) ∈ E , so that information flows

from i to j. We assume (i, i) /∈ E ,∀i ∈ V , and denote the set of in- and out-neighbors of

22

Table 2.3. Notation used in the chapter
Symbol Description

N+,i, N−,i Out- (+) & in-neighbors (−) of agent i

D+,i, D−,i Out- (+) & in-degrees (−) of agent i

k Timeslot Index
γk Step-size (for weight-balancing)
αk Step-size (for consensus)

Wk = (wk
ij)m

i,j=1 Weight matrix
Sk

+,i, Sk
−,i Sum of outgoing (+) & incoming (−) weights at agent i

bk = (bk
i)m

i=1 (Weight) balance
Lk

+, Lk
− Graph Laplacian matrices

[qmin, qmax] Quantization range for consensus
yk = (yk

i)m
i=1 Local estimate (cf. (2.9))

ỹk = (ỹk
i)m

i=1 Clipped local estimate (cf. (2.8))
y0 = (y0

i)m
i=1 Initial measurements

Bk
w,i Number of bits to quantize bk

i

Bk
c,i Number of bits to quantize yk

i

∆(B) Distance between consecutive quantization points
nk

i Weight-balancing signal sent by agent i

Dk, Uk Decreasing & Update events

23

Figure 2.1. Some basic graph definitions.

agent i as N−,i = {j : (j, i) ∈ E} and N+,i = {j : (i, j) ∈ E}, with cardinality D−,i (in-degree)

and D+,i (out-degree), respectively. We will consider strongly connected digraphs.

Definition 2.2.1. A digraph G is strongly connected if, ∀i, j ∈ V with i ̸= j, there exists a

directed path from i to j.

Associated with the digraph G, we define a weight matrix W ≜ (wij)m
i,j=1 ∈ Rm×m such

that 
wij > 0, if (j, i) ∈ E ;

wij = 0, otherwise;
∀i, j ∈ V , (2.1)

along with the following quantities (cf. Fig. 2.1) instrumental to formulate the weight-

balancing problem.

Definition 2.2.2 (In-flow, out-flow and weight-balance). Given a digraph G with weight

matrix W, the in-flow of agent i is defined as S−,i ≜
∑

j∈N−,i
wij while the out-flow is

S+,i ≜
∑

j∈N+,i
wji. The weight-balance of agent i is defined as bi ≜ S−,i − S+,i; and the

overall weight-balance vector is b ≜ (bi)m
i=1 = (W − W⊤)1.

Definition 2.2.3 (Weight-balanced digraph). A weight matrix W ≥ 0,W ̸= O, associated

to the digraph G, is said to be weight-balanced if it induces zero balance, i.e., b = (W −

W⊤)1 = 0.

2.3 Summary of The Proposed Algorithms

In this section, we introduce the proposed distributed quantized weight-balancing and

consensus algorithms; their detailed analysis will be carried out in Sec. 2.4 and Sec. 2.5 .

24

2.3.1 System model and problem formulation

Average consensus problem

Each agent i controls and iteratively updates a local variable yi, whose initial value is

set to y0
i . The average consensus problem consists in the following iterative algorithm (or

variations of it): given yk = (yk
i)i∈V at time k, let

yk+1 = Wyk, (2.2)

where W is a suitably chosen weight matrix compliant with the graph [cf.(2.1)]. The goal is

to locally estimate the average of the initial values

ȳ0 ≜
1
m

m∑
i=1

y0
i , (2.3)

i.e., ∥yk − ȳ01∥ → 0 as k → ∞.

We consider a setting where: i) communications among the agents are quantized using

a finite number of bits; and ii) information exchanges flows according to the edge directions

of the graph G (simplex communications). This puts in jeopardy the convergence of the

vanilla consensus algorithm (2.2), as communications therein subsume an infinite number of

bits and W needs to be balanced [28], a condition that cannot be enforced a priori without

using a centralized controller with knowledge of G. To cope with these two issues, we first

introduce a distributed quantized weight-balancing algorithm solving the weight-balancing

problem (cf. Sec, 2.3.2); and then we integrate this algorithm with a distributed consensus

algorithm using quantized simplex communications solving the average consensus problem

(cf. Sec. 2.3.3).

2.3.2 Distributed quantized weight-balancing

We propose a distributed, iterative algorithm to solve the weight-balancing problem over a

strongly connected digraph G using only quantized information and simplex communications.

Note that strong connectivity guarantees the existence of a matrix, compliant to the digraph

25

G (cf. D. 2.2.1) that is weight-balanced (cf. D. 2.2.3) [15]. The proposed algorithm is formally

stated in Algorithm 1 and discussed next.

Each agent i controls the in-neighbors weights (wk
ij)j∈N−,i

. In WB.1, each agent i quantizes

the local balance bk
i via (2.4), using Bk

w,i bits (a B-bit quantizer has (2)B + 1 quantization

levels), and broadcasts the quantized signal nk
i to its out-neighbors. In WB.2, each agent i

collects the signals from its in-neighbors, and updates the corresponding weights according

to (2.5). The balance of each agent is then updated according to (2.6). Roughly speaking,

by (2.5)-(2.6) there is a transfer of the balance among agents in the network: the quantity

γk D+,i n
k
i (with γk denoting the step-size) is subtracted from the balance bk

i of agent i

[cf. (2.6)], and equally divided among its out-neighbors j ∈ N+,i, which will increase their

incoming weight wk
ji by γk nk

i [cf. (2.5)]. Note that 1) although nk
i may be negative, Wk

remains compliant to G, which will be shown in T. 2.4.1 ; 2) Algorithm 1 is fully distributed:

each agent i only needs to know its in- and out-degrees D+,i and D−,i, and to agree on

a common step-size rule {γk}k∈Z+ . This assumption, along with knowledge of D+,i or its

equivalent information, is commonly used in distributed algorithms over directed graphs;

see, e.g., [14], [18], [33], [37], [42]. Convergence of Algorithm 1 is studied in Sec. 2.4 .

2.3.3 Distributed quantized average consensus algorithm

We now introduce the proposed distributed quantized average consensus algorithm over

non-balanced digraphs, as described in Algorithm 2 . The algorithm combines Algorithm 1

with a variation of the quantized average consensus protocol based on probabilistic quan-

tization, which we recently proposed in [28]. The algorithm is designed so that these two

building blocks run on the same time-scale.

More specifically, each agent i controls two set of variables, namely: i) the in-neighbors

weights (wk
ij)j∈N−,i

; and ii) the local estimate yk
i . The goal is to update these variables so

that asymptotically the average consensus problem is solved while the weights converge to

a balanced matrix. At each iteration k, agent i quantizes its local estimate yk
i , by first

clipping it within the quantization range [qmin, qmax] [cf. (2.8)], followed by the probabilistic

quantization (2.7) with Bk
c,i bits; it then transmits the resulting quantized signal xk

i (along

26

Algorithm 1 Distributed Quantized Weight-Balancing
Require: (WB.0) W0; {γk, (Bk

w,i)i∈V}k∈Z+ .
Set k = 0. Repeat (WB.1)-(WB.2) for k = 1, 2, . . . until a termination criterion is satisfied;
(WB.1) Each agent i broadcasts the nk

i to N+,i, where

nk
i = sgn(bk

i) min
 2

(2)Bk
w,i

(2)Bk
w,i|bk

i |
2D+,iγk

− 1
 , 1

 . (2.4)

(WB.2) Each agent i collects nk
j from its in-neighbors j ∈ N−,i, and updates

wk+1
ij = wk

ij + γk nk
j , ∀j ∈ N−,i, (2.5)

bk+1
i = bk

i − γk D+,i n
k
i + γk

∑
j∈N−,i

nk
j . (2.6)

with nk
i for the weight-balancing) to its out-neighbors (AC.1). Upon receiving the signals

(nk
j , x

k
j)j∈N−,i

from its in-neighbors, agent i updates its weights (wk
ij)j∈N−,i

using (2.5), and

the local variable yk
i according to (2.9). The update in (2.9) aims at forcing a consensus on

the average ȳ0 among the local variables yk
i . In fact, the third term in (2.9) is instrumental to

align the local copies yk
i , while the second term +αkbk

i x
k
i is a correction needed to preserve the

average of the iterates, i.e., (1/m)∑i y
k+1
i = (1/m)∑i y

k
i , for all k ∈ Z+ [cf. (2.53)]. Hence, if

all yk
i are asymptotically consensual, it must be

∣∣∣yk
i −(1/m)∑i y

k
i

∣∣∣ =
∣∣∣yk

i −(1/m)∑i y
0
i

∣∣∣ −→
k→∞

0.

Convergence of Algorithm 2 is studied in Sec. 2.5 .

2.4 Distributed Quantized Weight-Balancing

We study convergence of Algorithm 1 under the following mild assumptions.

2

2
 ↑ The analysis can be extended to the case in which each agent uses its own step-size {γk

i }, provided that:
1) every agent knows the step-size of its in-neighbors, and 2) every {γk

i } satisfies A. 2 .

27

Algorithm 2 Distributed Quantized Average Consensus
Require: (AC.0) Init. Algorithm 1 as in (WB.0); qmin, qmax; {αk, (Bk

c,i)i∈V}k∈Z+ ; and y0.
Set k = 0. Repeat (AC.1)-(AC.3) for k = 1, 2, . . . until a termination criterion is satisfied;
(AC.1) Each agent i broadcasts nk

i (cf. (2.4)) and xk
i to N+,i, where xk

i = 0 if Bk
c,i = 0

and, if Bk
c,i > 0,

xk
i =


qmin +

⌈
ỹk

i − qmin

∆(Bk
c,i)

⌉
∆(Bk

c,i), w.p. pk
i ;

qmin +
⌊
ỹk

i − qmin

∆(Bk
c,i)

⌋
∆(Bk

c,i), w.p. 1 − pk
i ,

(2.7)

where ỹk
i = clip(yk

i ; qmin, qmax),

∆(B) = qmax − qmin

(2)B − 1 ,∀B ∈ Z++, (2.8)

pk
i = ỹk

i − qmin

∆(Bk
c,i)

−
⌊
ỹk

i − qmin

∆(Bk
c,i)

⌋
.

(AC.2) Each agent i collects (nk
j , x

k
j) from its in-neighbors j ∈ N−,i, updates (wk+1

ij)j∈N−,i

(cf. (2.5)) and

yk+1
i = yk

i + αkbk
i x

k
i + αk

∑
j∈N−,i

wk
ij (xk

j − xk
i). (2.9)

Assumption 1. Let {Bk
w}k∈Z+ be a sequence satisfying Bk

w ∈ {0, 1} and ∑(n+1)W −1
t=nW Bt

w ≥ 1,

for all k, n ∈ Z+ and some W ∈ Z++. Then, there exists Bmax ∈ Z+ such that the number

of bits {Bk
w,i}k∈Z+ satisfies: for all i ∈ V,


Bmax ≥ Bk

w,i ≥ Bk
w, if Bk

w = 1;

Bk
w,i = 0, else.

Assumption 2. The step-size {γk}k∈Z+ and initial weight matrix W0 ≜ (w0
ij)m

i,j=1 satisfy:

γk = (c1)−n, with n ∈ Z+ : ((c1)n − 1)c2 ≤ k ≤ ((c1)n+1 − 1)c2 − 1;

and w0
ij = 1{(j, i) ∈ E}, (2.10)

28

respectively, where c1 ∈ Z, c1 ≥ 2, and c2 ∈ R++.

Define γ̄k ≜ γk(2)1−Bmax, k ∈ Z+.

Note that the step-size satisfying A. 2 is vanishing and non-summable, as shown below.

Lemma 1. If {γk}k∈Z+ satisfies A. 2 , then

c2

k + c2
≤ γk ≤ c1 c2

k + c2
, ∀k ∈ Z+. (2.11)

Proof. Let n ∈ Z+. Note that γk = (c1)−n,∀k : [(c1)n − 1]c2 ≤ k ≤ [(c1)n+1 − 1]c2 − 1.

Then, the upper and lower bounds on γk are obtained by bounding (c1)n with respect to

this interval.

A. 2 is consistent with similar choices adopted in stochastic optimization [43], such as

γk = 1/(k + 1). However the diminishing and non-summability properties alone are not

sufficient to prove convergence of Algorithm 1 ; A. 2 further guarantees that the balance at

each agent is always an integer multiple of the current step-size (L. 7 , cf. App. 2.8.1), which

will be shown to be a key property to prove that ∥bk∥1 is asymptotically vanishing. An

instance of {γk}k∈Z+ satisfying A. 2 is [44]

{γk}k∈Z+ =
{

1, 1
2 ,

1
2 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
8 , · · ·

}
. (2.12)

Note that a fixed step-size γk = γ, for all k, may fail to achieve convergence. In fact, it is

possible that each 0 < |bk
i | ≤ D+,iγ, so that nk

i = 0 ∀i and there is no further transfer of

balance, resulting still in an unbalanced digraph.

A. 1 states that at least once over a time window of duration W , all agents are simulta-

neously communicating at least one bit to their out-neighbors. This offers some flexibility

in the design of the communication protocol. For instance, agents can transmit one bit at

each time slot [44], yielding one bit per channel use, or transmit one bit every W > 1 time

slots, resulting in a lower effective rate of 1/W bits per channel use.

We are now ready to state our main convergence result.

29

Theorem 2.4.1. Let {Wk}k∈Z+ be the sequence generated by Algorithm 1 under A. 1 and

A. 2 . Then, there hold:

(a)∥bk∥1 = O
(1
k

)
, (b) lim

k→∞
Wk = W∗, (c)0 < wmin ≤ wk

ij ≤ wmax,∀(j, i) ∈ E ,∀k ∈ Z+,

where W∗ is weight-balanced and wmin, wmax are defined in (2.28).

2.4.1 Proof of Theorem 2.4.1

Proof of statement (a)

We begin by highlighting the main steps of the proof, with the help of Fig. 2.2 . Step

1: We show that {∥bk∥1}k∈Z+ is non-increasing. Furthermore, we identify two key events

affecting the dynamics of {∥bk∥1}k∈Z+ , namely: the so-called “decreasing event” Dk and

“update event” Uk. Dk, formally defined in (2.13), occurs if at timeslot k either one of the

following two facts happen: 1) an agent transfers its nonzero balance to an out-neighbor with

balance of opposite sign; 2) two agents, with balance of opposite sign, transfer their balances

to a common out-neighbor. On the other hand, Uk, formally defined in D. 2.4.2 , occurs if at

timeslot k an agent transfers its balance to its out-neighbors (i.e., nk
i ̸= 0, for some i ∈ V)

but Dk does not occur. Note that it can happen that neither Dk nor Uk occur at some k; this

is the case when |bk
i | is “too small” or all agents are inactive (Bk

w = 0). We show that ∥bk∥1

decreases by at least 2γ̄k, with γ̄k ≜ γk(2)1−Bmax , iff. Dk occurs, and remains unchanged

otherwise (cf. L. 2). Step 2: To guarantee that {∥bk∥1}k∈Z+ vanishes, the decreasing

event must occur sufficiently often. Towards this end, we prove two key properties of the

decreasing and update events, namely:

P1) there are at most Ū ≜ (m)2m−2 update events between two consecutive decreasing

events;

P2) if ∥bk∥1 ≥ (m)2γk (roughly speaking, if {∥bk∥1}k∈Z+ does not decrease sufficiently fast),

there are at most 2W − 2 timeslots between two consecutive update events.

30

Figure 2.2. Key properties of ∥bk∥1 in Algorithm 1 .

The decreasing step-size together with P2 guarantee that update events occur within bounded

time; this property combined with P1 guarantees that decreasing events occur at uniformly

bounded time intervals. Finally, Step 3 builds on the above results to prove statement (a)

of the theorem. Roughly speaking, one can infer that: either 1) {∥bk∥1}k∈Z+ is below the

diminishing threshold (Step 1), causing it to vanish (since the step-size vanishes); or 2) it

exceeds the threshold at some timeslots, causing it to be suppressed by the decreasing event

(Step 2) until it falls again below the vanishing threshold.

We proceed next with the formal proof.

Step 1: We begin by introducing the definition of Dk and Uk.

Definition 2.4.1 (Decreasing event Dk and its occurrence time tl). Let Dk, k ∈ Z+, be

defined as

∃i, (j, j′) ∈ [N−,i]2 : bk
i n

k
j < 0 ∨ nk

j′nk
j < 0. (2.13)

Furthermore, let tl, l ∈ Z+, be the timeslot of occurrence of the lth decreasing event; recur-

sively, t0 ≜ −1 and l ∈ Z++,

tl ≜ min{k > tl−1 : 1{Dk} = 1}, (possibly, tl = ∞). (2.14)

Definition 2.4.2 (Update event Uk). Let Uk, k ∈ Z+, be defined as ∃i ∈ V : nk
i ̸= 0 ∧

1(Dk) = 0.

31

We show next that {∥bk∥1}k∈Z+ decreases by at least 2γ̄k iff. Dk occurs, and remains

unchanged otherwise.

Lemma 2. There holds


∥bk+1∥1 ≤ ∥bk∥1 − 2 γ̄k, if 1(Dk) = 1;

∥bk+1∥1 = ∥bk∥1, otherwise.
(2.15)

Proof. See App.A-II.

Step 2: This step characterizes “how often” Dk and Uk occur (properties P1 and P2), and

the implication on ∥bk∥1. We first provide some intuition motivating our approach.

• Intuition: Let us look at the balance transfer within two consecutive decreasing events

at (finite) times tl and tl+1. Let

Vk
+ ≜ {i : bk

i > 0}, Vk
− ≜ {i : bk

i < 0} (2.16)

be the set of agents with positive and negative balance. Note that Vk
+,Vk

− ̸= ∅ iff. ∥bk∥1 > 0,

since ∑m
i=1 b

k
i = 0. For the next decreasing event Dtl+1 to occur at time tl+1: either 1) an agent

i ∈ V tl+1
+ (resp. i ∈ V tl+1

−) has enough balance (i.e., ni(tl+1) ̸= 0) to trigger the update to an

out-neighbor in V tl+1
− (resp. V tl+1

+); or 2) two agents j ∈ V tl+1
+ and j′ ∈ V tl+1

− trigger an update

to an out-neighbor in N+,j
⋂N+,j′ (̸= ∅). This balance is built-up throughout the update

events within (tl, tl+1), during which agents in Vk
+ (resp. Vk

−), k ∈ (tl, tl+1), keep transferring

part of their balance towards the out-neighbors in Vk
+ (resp. Vk

−) that are closer to agents

outside Vk
+ (resp. Vk

−). Hence, one can expect that the decreasing event Dtl+1 will occur after

a certain number of update events, specifically when a sufficient amount of balance has been

transferred to some agents having out-neighbors in V \ Vk
+ (resp. V \ Vk

−). To characterize

this number and show that it is bounded over each interval (tl, tl+1), the proposed idea is to

construct a nonnegative, integer-valued function of bk, k ∈ (tl, tl+1), denoted by Uk, which

(a) strictly increases whenever Uk occurs; and (b) is uniformly upper bounded on (tl, tl+1).

These properties guarantee that the number of update events within (tl, tl+1) is bounded,

32

which proves P1. The same function U will be also used to prove P2 (cf. P. 2.4.1 & C. 1).

Next, we build Uk and prove P1 and P2.

• Building the function Uk: Let l ∈ Z+, tl < ∞,

Uh ≜ (m)2(m−1−h), h ∈ {1, 2, . . . ,m− 1}. (2.17)

We define the set (possibly empty) of agents that are h directed hops away from an agent

with opposite sign of balance as

Vk
h ≜

{
i ∈ Vk

+ : min
j∈Vk

−

d(i, j) = h

}
∪
{
i ∈ Vk

− : min
j∈Vk

+

d(i, j) = h

}
, (2.18)

where d(i, j) is the directed distance between i and j ∈ V . Then, we define the function

Uk ≜
m−1∑
h=1

Uh

∑
i∈Vk

h

min
{

|bk
i |
γ̄k

,m

}
, k ∈ (tl, tl+1]. (2.19)

Based on the above discussion, agents in Vk
1 are “more important” than agents in Vk

2 , in

the sense that they will more immediately trigger the next decreasing event; agents in Vk
2

are more important than those in Vk
3 , and so on. The function Uk aims at capturing this

hierarchical transfer of balance along the chain Vk
m−1 → · · · Vk

h · · · → Vk
1 during each update

event, up until Dtl+1 occurs. In particular, we want Uk to increase its value by (at least) one

(integer) unit every time one of such transfers happens (i.e., Uk occurs).

To motivate the choice of (2.19), let us look at the balance transfer during an update

event Uk at time k ∈ (tl, tl+1); for the sake of simplicity, say Uk is triggered by agent i ∈ Vk
h+1.

As a result, agent i transfers part of its balance to its out-neighbors N+,i ∩ Vk
h ,

3
 according

to (2.6). In (2.6), γ̄k can be regarded as the unit of balance and |bk
i |/γ̄k is the normalized

imbalance, an integer number (cf. L. 7 , App. 2.8.1). Such an agent i ∈ Vk
h+1 experiences a

decrease of its normalized imbalance by D+,i units while the normalized imbalance of j ∈ Vk
h

increases by at least one unit. To encode this balance transfer as an increase of Uk by at

least one integer, we can associate it with the “carry on” operation from a digit to the next
3

 ↑ Note that N+,i ∩ Vk
h ̸= ∅ as, by definition of Vk

h , at least one agent in N+,i is one step closer to agents with
balance of opposite sign.

33

more significant one in a positional notational representation of the Uk value. Specifically,

Uk is expressed in radix-(m)2 notation wherein the sum normalized imbalance of agents in

V1 contributes to the most significant digit, the one of agents in V2 contributes to the second

most significant digit, and so on. By doing so, when Uk occurs as above, the aforementioned

exchange of balance Vk
h+1 → Vk

h triggers the transfer of one unit from the (h + 1)th most

representative digit to the hth one, so that Uk increases by at least one unit.

• Proof of P1 and P2: P. 2.4.1 below states the desired properties of Uk and proves P2 as

a by-product; P1 follows from C. 1 .

Proposition 2.4.1 (Properties of Uk). Let k ∈ (tl, tl+1). Then:

(i) 0 ≤ Uk ≤ (m)2m−1 is nondecreasing;

(ii) Uk+1 ≥ Uk +m1(Uk);

(iii) If ∥bk∥1 ≥ (m)2γk, then an update or decreasing event occurs within the next 2W − 1

slots; hence,

Uk+2W −1 ≥ Uk +m,∀k ≤ tl+1 − 2W + 1.

4

Proof. See Appendix A-III.

Corollary 1. The following hold.

(i) There are at most Ū = (m)2m−2 update events between two consecutive decreasing

events.

(ii) If ∥bk∥1 ≥ (m)2γk,∀k ∈ Z+, then ∥bk+(2W −1)Ū∥1 ≤ ∥bk∥1 − 2γ̄k+(2W −1)Ū .

Proof. (i) is a direct result of P. 2.4.1 (i)-(ii) and the fact that Uk ≥ 2 iff. bk ̸= 0. (ii): let

k such that ∥bk∥1 ≥ (m)2γk, and let tl+1 = {τ ≥ k : I{Dτ } = 1} be the next decreasing

event at or after k (possibly, tl = −1 and/or tl+1 = ∞). Invoking P. 2.4.1 , we infer that

i) there are at most Ū update events in (tl, tl+1); ii) ∥bτ ∥1 ≥ (m)2γτ ,∀τ ∈ (tl, tl+1] (γτ is

non-increasing and ∥bτ ∥1 only decreases after decreasing events), so that the first update or

decreasing event after tl occurs within 2W − 1 timeslots and subsequent ones are separated
4

 ↑ Since we are interested in the variations of Uk within (tl, tl+1], the case k > tl+1 − 2W + 1 is irrelevant.

34

by at most 2W −2 timeslots until the next decreasing event at tl+1. These two facts together

imply tl+1 ≤ k + (2W − 1)Ū − 1; therefore,

∥∥∥bk+(2W −1)Ū
∥∥∥

1

(2.15)
≤

∥∥∥btl+1+1
∥∥∥

1

(2.15)
≤

∥∥∥btl+1
∥∥∥

1
− 2γ̄tl+1 (A. 2)

≤
∥∥∥bk

∥∥∥
1

− 2γ̄k+(2W −1)Ū .

Step 3: We now prove that ∥bk∥1 = O(1/k). Equivalently,

∃ 0 < M < ∞ and k̄ ∈ Z++ : k · ∥bk∥1 ≤ M,∀k ≥ k̄. (2.20)

To this end, note that it suffices to show that

∥bk∥1 ≤ (m)2c1γ
k, ∀k ≥ k̄. (2.21)

In fact, using L. 1 , (2.21) implies

k∥bk∥1 ≤ (m)2c2
1c2k

k + c2
= O((m)2c2

1c2),

so that (2.20) readily follows with M ≜ (m)2c2
1c2. To prove (2.21), let k̃n ≜ ((c1)n −1)c2, n ∈

Z+; we define k̄ as

k̄ = min
{
τ ≥ k̃n : ∥bτ ∥1 < (m)2γτ

}
, (2.22)

for some sufficiently large n ∈ Z+ to be determined. The existence of such k̄ is guaranteed

by L. 6 in App. 2.8.1 . Let

p = min{n′ > n : k̃n′ > k̄}.

Then, it readily follows that, for all k ∈ [k̄, k̃p − 1],

∥bk∥1
(2.15)
≤ ∥bk̄∥1

(2.22)
< (m)2γk̄(A. 2)= (m)2γk,

35

so that (2.21) holds for k ∈ [k̄, k̃p − 1]. It remains to prove that it holds for k ≥ k̃p. We do

so by induction. Assume that it holds at k ∈ [k̄, k̃n′ − 1], for some n′ ≥ p, and that

∥bk̃n′ −1∥1 ≤ (m)2γk̃n′ −1. (2.23)

Clearly, this is true for n′ = p. We show next that this condition implies that (2.21) holds

for k ∈ [k̄, k̃n′+1 − 1], and

∥bk̃n′+1−1∥1 ≤ (m)2γ(k̃n′+1 − 1). (2.24)

Therefore, (2.21) holds ∀k ≥ k̄. To show the induction step, note that (2.23) implies (2.21),

∀k ∈ [k̃n′ , k̃n′+1 − 1], since

∥bk∥1
(L.2)
≤ ∥bk̃n′ −1∥1

(2.23)
≤ (m)2γk̃n′ −1 (A.1)= (m)2c1γ

k, ∀k ∈ [k̃n′ , k̃n′+1 − 1]. (2.25)

It remains to prove (2.24); we do it by contradiction. Assume (2.23) and (2.25) hold but

(2.24) does not. Then,

(m)2c1γ
k

(2.25)
≥ ∥bk∥1

(L.2)
≥ ∥bk̃n′+1−1∥1 > (m)2γk̃n′+1−1 (A.1)= (m)2γk, ∀k ∈ [k̃n′ , k̃n′+1 − 1].

Choosing n large enough so that, for T ≜ (2)Bmax−2(m)2(c1 − 1),

k̃n′ + T (2W − 1)Ū ≤ k̃n′+1 − 1, ∀n′ ≥ p > n, (2.26)

(this is possible since k̃n′+1 − k̃n′ ≥ k̃n+1 − k̃n = c2(c1 − 1)(c1)n) we can then apply C. 1 (ii)

recursively T times, yielding

∥bk̃n′+1−1∥1
(2.26),(L.2)

≤ ∥bk̃n′ +T (2W −1)Ū∥1 ≤ ∥bk̃n′ ∥1 −
T −1∑
j=0

2γ̄k̃n′ +j(2W −1)Ū
(a)
≤ (m)2γk̃n′+1−1,

where (a) follows from A. 2 and (2.25). This proves the contradiction, hence ∥bk∥1 = O(1/k).

36

Proof of statement (b)

Convergence of {Wk}k∈Z+ to W∗ is a consequence of the following Lemma.

Lemma 3. The sequence {Wk}k∈Z+ is a Cauchy sequence.

Proof. See Appendix 2.8.1 .

Proof of statement (c)

First, using the fact that for any x ∈ R+, there exists β ∈ [0, 1) such that ⌈x⌉ − 1 = βx,

it follows that

nk
i = βk

i

bk
i

D+,iγk
, for some βk

i ∈ [0, 1). (2.27)

Note that (2.10) and (2.5) imply wk
ji,∀j ∈ N +

i have the same value. Let S0
+ = diag{Sk

+, i ∈

V},βββk = diag{βk
i , i ∈ V},wk = (wk

i)m
i=1, where wk

i = wk
ji, j ∈ N +

i . Applying (2.27) to the

update of wk
ij, it follows that

wk+1 = wk + βββk(S0
+)−1(W0 − S0

+)wk,

where we use the fact bk = Sk
− − Sk

+ = W0wk − S0
+wk, which implies that

wk+1 =
[
I − βββk + βββk(S0

+)−1W0
]

wk.

Let Pk ≜ I − βββk + βββk(S0
+)−1W0,L0

+ ≜ S0
+ − W0, and w ≜ (wi)m

i=1 ̸= 0 be a non-trivial

weight-balancing solution, i.e., w ∈ {ωωω : L0
+ωωω = 0}. It follows that Pk and a satisfy the

following properties

1. Pk ≥ 0 since βk
i ∈ [0, 1),∀i ∈ V , ∀k ∈ Z+;

2. w > 0. Since L0
+ is an irreducible singular M-matrix [45], it follows from [45 , T.4.31]

that 1) L0
+ has rank m− 1, and 2) ∃ ω̃ωω > 0 : L0

+ω̃ωω = 0, and thus w > 0;

3. Pkw = w, ∀k ∈ Z+ since S0
+w = W0w.

37

Let wmin ≜ (wmin,i)m
i=1,wmax ≜ (wmax,i)m

i=1 ∈ {ωωω : L0
+ωωω = 0} with maxi∈V wmin,i = mini∈V wmax,i =

1, emin ≜ 1 − wmin = w0 − wmin ≥ 0 and emax ≜ 1 − wmax ≤ 0. It follows that

wk+1 = Pkwk =
(k∏

t=0
Pt
)

w0 =
(k∏

t=0
Pt
)

(wmin + emin) (a)= wmin +
(k∏

t=0
Pt
)

emin
(b)
≥ wmin,

where (a) follows from Pkwmin = wmin,∀k ∈ Z+ and (b) follows from Pk ≥ 0,∀k ∈

Z+, emin ≥ 0. Similarly,

wk+1 = wmax +
(k∏

t=0
Pt
)

emax ≤ wmax,

which proves the desired results with

wmin = min
i∈V

wmin,i, and wmax = max
i∈V

wmax,i. (2.28)

2.5 Distributed Quantized Average Consensus

In this section, we study convergence of Algorithm 2 . We introduce the following mild

assumptions.

The first condition is on the number of bits used to quantize the consensus variables at

each iteration.

Assumption 3. Let {Bk
c }k∈Z+ be an activation sequence satisfying Bk

c ∈ {0, 1} and ∑(n+1)W −1
t=nW Bt

c ≥

1, for all k, n ∈ Z+ and some given W ∈ Z++. The number of bits {Bk
c,i}k∈Z+ used by each

agent i satisfies


Bk

c,i ≥ Bk
c , if Bk

c = 1;

Bk
c,i = 0, else.

The above condition is almost the same as the one used in the weight-balancing algorithm

(cf. A. 1) except for the global upper bound, and can be coupled with it. For example, agents

can communicate for weight-balancing using one bit at odd time slots, and for average

38

consensus using one bit at even time slots, yielding one bit per channel use. Lower effective

data rates can be achieved using intermittent communications.

We next introduce the assumption on ȳ0 and the step-size used in the consensus updates.

Assumption 4 (Informative ȳ0). The average ȳ0 [cf. (2.3)] satisfies ȳ0 ∈ [qmin, qmax].

Assumption 5. The step-sizes {αk}k∈Z+ satisfy 0 < αk+1 ≤ αk,∀k ∈ Z+,
∑∞

k=1 α
k =

∞,
∑∞

k=1 (αk)2 < ∞.

It is important to remark that A. 4 neither requires y0
i to be confined within the quan-

tization range nor its to be known. This is a major departure from the literature, which

calls for y0
i to be within the quantization range – see, e.g. [24]–[26], [29]. We require instead

the average ȳ0 to fall within the quantization interval [qmin, qmax], which is a less restrictive

condition. For example, if agents are estimating a common unknown parameter θ via noisy

measurements y0
i = θ + ωi corrupted by zero mean Gaussian noise ωi, i.i.d. across agents,

then ȳ0 is the sample mean estimate across the agents. In this case, a bound on y0
i is hard

to obtain (theoretically it is unbounded), but the bound of the parameter, θ ∈ [θm, θmax],

is known in many cases. Even worse, maxi∈V |y0
i |→∞ for m→∞, whereas the sample av-

erage ȳ0 → θ, so that it becomes more and more informative for large m, whereas the

initial local measurements become larger and larger. In this example, agents can simply

set (qmin, qmax) = (θm, θmax), so that ȳ0 is informative with high probability. Herein, we are

not interested in non-informative ȳ0, which, as the name suggests, does not provide any

information to estimate θ.

We are now ready to state the convergence of Algorithm 2 .

Theorem 2.5.1. Let
{
yk = (yk

i)m
i=1

}
k∈Z+

be the sequence generated by Algorithm 2 under

A. 2 - 5 . Then:

(a) Almost sure convergence:

P
(

lim
k→∞

yk = ȳ0 · 1
)

= 1. (2.29)

39

(b) Convergence in the moment generating function:

lim
k→∞

E
[
er∥yk−ȳ0·1∥

]
= 1, ∀r ∈ R. (2.30)

Furthermore, if αk = O(1/k) and ∃m > 0 : αk ≥ m/(k + 1),∀k, then:

(c) Convergence rate:

V k ≜ E[V (yk)] ≤



O(1/k) ρ > 1,

O(ln(k)/k) ρ = 1,

O(1/kρ) ρ < 1,

(2.31)

where ρ ≜ 2ξ1m > 0 with ξ1 > 0 defined in L. 10 .

Proof. Let (yk,xk, ỹk) ≜ (yk
i , x

k
i , ỹ

k
i)m

i=1 with ỹi = clip(yi; qmin, qmax). Using (2.9), the y-

updates become

yk+1 = yk − αkLk
+xk. (2.32)

To study the dynamics of the consensus error, we define

V (y) ≜ ∥y − ȳ01∥2, (2.33)

and prove that the sequence {V (yk)}k∈Z+ satisfies the conditions of [46 , T.1], sufficient to

prove our theorem.

Intermediate results: We begin by introducing some properties of V (y), instrumental for

the sequel of the proof.

Lemma 4. In the setting of T. 2.5.1 , ∀y ∈ Rm there holds

E
[
V (yk+1)|yk = y

]
=


V (y) − 2αky⊤Lk

+ỹ + (αk)2E
[
∥Lk

+xk∥2|yk = y
]
, if Bk

c = 1,

V (y), otherwise.

40

The case Bk
c = 0 holds trivially since yk+1 = y. Otherwise (Bk

c = 1) L. 4 follows from

the dynamics (2.32) and the fact that E[xk|yk] = ỹk with probabilistic quantization. To

bound these dynamics when Bk
c > 0, we use the fact that yk is uniformly bounded within a

bounded set S with probability 1 (cf. L. 9) and L. 10 to obtain

E
[
V (yk+1)|yk = y

]
≤ V (y) − 2αkξ1V (y) + 2αkξ2∥bk∥1 + (αk)2∥Lk

+∥2
2E
[
∥xk∥2|yk = y

]
(a)
≤ V (y) − 2ξ1α

k
[
V (y) − ck

]
,∀y ∈ S, (2.34)

where ξ1, ξ2 are constants defined in L. 10 and in (a) we defined

ck ≜
ξ2

ξ1
∥bk∥1 + αk ξ3

2ξ1
, (2.35)

for some constant ξ3 ≥ ∥Lk
+∥2

2E
[
∥xk∥2|yk = y

]
> 0. Note that the boundedness of Wk (cf.

L. 3), and thus of Lk
+, and that of xk (being the output of a finite rate quantizer), guarantee

that ξ3 < ∞.

We are now ready to prove T. 2.5.1 .

Proof of statement (a): Define K̃ ≜ {k : Bk
c = 1}, {yk

K̃} ≜ {yk̃}k̃∈K̃, {ck
K̃} ≜ {ck̃}k̃∈K̃ and

{αk
K̃} ≜ {α(k̃)}k̃∈K̃. It is sufficient to show that V in (2.33) satisfies the conditions of [46 ,

T.1], namely:

1) inf
∥y−ȳ01∥≥ϵ

V (y) > 0,∀ϵ > 0, V (ȳ0 · 1) = 0, and lim sup
y→ȳ0·1

V (y) = 0;

2) E
[
V (yk+1

K̃
)|yk

K̃ = y
]

− V (y) ≤ gk [1 + V (y)] − αk
K̃ϕ(y),

where ϕ(y) ≥ 0 such that inf∥y−ȳ01∥≥ϵ ϕ(y) > 0,∀ϵ > 0; and αk
K̃ and gk satisfy

αk
K̃ > 0,

∞∑
k=1

αk
K̃ = ∞, gk > 0,

∞∑
k=1

gk < ∞.

41

Conditions in 1) are trivially satisfied by definition [cf. (2.33)]. To prove the condition

in 2), we use 1⊤yk+1
K̃

= 1⊤yk
K̃

, L. 9 in App. 2.8.2 , and (2.34), yielding,

E
[
V (yk+1

K̃
)|yk

K̃ = y
]

− V (y) ≤ gk − 2ξ1α
k
K̃V (y),

with gk = 2ξ1α
k
K̃
ck

K̃
and ϕ(y) = 2ξ1V (y). Moreover,

∑
k≥0

gk ≤ 2ξ1

√√√√√
∑

k∈K̃

(αk)2

∑
k∈K̃

(ck)2

 (a)
< ∞,

where (a) we used ∑k∈K̃ (αk)2 < ∞ (cf. A. 5); and ∑k∈K̃ (ck)2 < ∞, due to (2.35), A. 5 , and

T. 2.4.1 . Therefore, the condition in 2) holds.

Overall, we have shown that all the conditions of [46 , T.1] are satisfied, implying that

P(lim
k→∞,k∈K̃

yk = ȳ0 · 1) = 1. Since |K̃| = ∞ and yk+1 = yk, for all k /∈ K̃, statement (a) of

the theorem follows.

Proof of statement (b): Since ∥yk − ȳ01∥r < ∞ and P(lim
k→∞

∥yk − ȳ01∥r = 0) = 1, for all

r ∈ Z++ (recall that |yk
i −ȳ0| is bounded for all i ∈ V , cf. L. 9 in App. 2.8.2), it follows from the

dominated convergence theorem (cf. [47 , T.1.6.7]) that limk→∞ E[∥yk − ȳ01∥r] = 0,∀r > 0,

which implies statement (b).

Proof of statement (c): For simplicity, we assume that Bk
c = 1,∀k ∈ Z+, and the

proof can be easily generalized to the case that Bk
c satisfying A. 3 . Since αk = O(1/k) and

∥bk∥1 = O(1/k), it follows that ck = O(1/k), and there exist M > 0, C > 0 such that

αk ≤ M/(k + 1), ck ≤ C/(k + 1), ∀k.

Under the conditions of the theorem, (2.34) holds, which implies

V k+1 ≤
(

1 − ρ

k + 1

)
V k + γ

1
(k + 1)2 , ∀k,

42

where γ ≜ 2ξ1MC. Let k̄ ≜ ⌈ρ⌉−1. By induction, we can show V k ≤ [(k̄+1)V k̄ +γ]β(k̄, k)+

γ
∑k−1

t=k̄+1 β(t, k), ∀k > k̄, where β(t, k) ≜ 1
(t+1)2

∏k−1
i=t+1(1 − ρ

i+1). Note that

ln β(t, k) ≤
∫ k+1

t+2
ln
(

1 − ρ

x

)
dx− 2 ln(t+ 1)

= (k + 1 − ρ) ln(1 − ρ/(k + 1)) − (t+ 2 − ρ) ln(1 − ρ/(t+ 2))

+ 2 ln((t+ 2)/(t+ 1)) + (ρ− 2) ln(t+ 2) − ρ ln(k + 1).

The first three terms are bounded, since ln((n+ 2)/(n+ 1))→0 and (n−ρ) ln(1 −ρ/n)→ −ρ

for n→∞. It follows that β(t, k) ≤ (e)Q(t + 2)ρ−2(k + 1)−ρ, for some Q < ∞. Letting

Sk ≜ (k + 1)−ρ∑k+1
t=k̄+3(t)

ρ−2, it follows that

V k ≤ A(k + 1)−ρ + γ(e)QSk, ∀k > k̄, (2.36)

for some A < ∞. To conclude, note that A(k + 1)−ρ = O((k)−ρ),

Sk ≤ (k + 1)−ρ
∫ k+2

1
(x)ρ−2dx =



O(1/k), ρ > 1,

O(ln(k)/k), ρ = 1,

O(1/(k)ρ), 0 < ρ < 1,

which proves the desired result.

2.6 Numerical Results

In this section, we present some numerical results to validate our theoretical findings on

strongly connected digraphs with m = 50 agents constructed by the following procedure: a

directed ring links all the agents, to ensure strong connectivity (cf. Fig. 2.3). Then directed

edges are randomly added, with probability 0.2 on each pair of agents.

43

2.6.1 Quantized weight-balancing

We adopt (2.12) for {γk}k∈Z+ . We compare the total imbalance ∥bk∥1 of our proposed

scheme with the integer weight-balancing and real weight-balancing schemes in [14]. The

real weight-balancing scheme uses real valued communications; the integer weight-balancing

scheme uses unicast transmissions to each of its out-neighbors to communicate the associ-

ated edge weight, and cannot use a prescribed number of bits. As we will see numerically,

these features allow the scheme to converge to a weight-balanced solution within finite time.

In contrast, our scheme uses broadcast communications with a prescribed number of bits

per channel use, which in general does not guarantee convergence within finite time. The

simulation results are averaged over 100 graph realizations.

Fig. 2.4 shows the total imbalance of Algorithm 1 with 1-bit and 5-bit of information

exchange, as well as of the other two benchmark schemes. Note that in the integer weight-

balancing scheme, the maximum weights in the 100 realizations are between 88 to 250,

implying that 7 to 8 bits are required per edge per timeslot, which implies 7 or 8 × (1 +

0.2 × 49) = 75.6 or 86.4 bits per agent per timeslot. It is shown that the metric ∥bk∥1

is non-increasing for the proposed schemes, which is consistent with our analytical results

(cf. L. 2). In addition, one can see that the curve of ∥bk∥1 can be partitioned into nearly

flat and steep line segments, for both schemes. The rationale behind this behavior is that

the total imbalance decreases only when decreasing events occur (steep line segments); in

between, the imbalance may be transferred within the network, but without causing the

total imbalance to decrease. Compared with the two benchmark schemes, it shows that

the proposed scheme with 50 bits outperforms the real weight-balancing scheme [14], which

requires infinite rate communications. On the other hand, The comparison between the

proposed 7-bit scheme and the integer weight-balancing scheme shows that, initially, the

proposed scheme has better performance. However, as noted earlier, the integer weight-

balancing scheme later outperforms the proposed 7-bit scheme since it is guaranteed to

converge to a weight-balanced solution in finite timeslots.

44

2.6.2 Quantized average consensus

We compare our proposed algorithm with the following state-of-the-art schemes: 1) Q-

Push-Sum, where we straightforwardly apply the finite-bit probabilistic quantization to the

original push-sum algorithm in [37], i.e., z0
i = si, ψ

0
i = 1, ∀i ∈ V ,

ψk+1
i = ψk

i + αk
∑

j∈N−,i

wk
ij

[
Q(ψk

j) − Q(ψk
i)
]
;

zk+1
i = zk

i + αk
∑

j∈N−,i

wk
ij

[
Q(zk

j) − Q(zk
i)
]
;

and yk
i = zk

i /ψ
k
i is the estimate of the initial average, where Q (•) is the quantization defined

in (2.7); note that Q-Push-Sum can be regarded as the generalization of [31] to real valued

initialization and finite rate communications; 2) Q-Run-Avg, where we apply the finite-bit

probabilistic quantization to the algorithm in [34];

5
 3) Q-Monte-Carlo, where we apply the

B-bit quantization rβ(x;B) = (1 + β)max{⌊log1+β x⌋,(2)B} to the Monte-Carlo based algorithm

in [33 , Sec. 4]. In this algorithm agents exchange quantized random values sampled from

the exponential distribution with parameter related to their current states. Note that exact

convergence can be achieved by [33], [34] using infinite-bit quantized communications, [37]

using real value communications, and [31] using integer value communications. However,

there is no theoretical guarantee for all these benchmark schemes with finite bit quantization:

our proposed scheme is the first algorithm solving the distributed average consensus over

unbalanced digraphs with a prescribed finite rate communications.

We adopt the mean square error (MSE) MSEk = V (yk)/m as defined in (2.33) as per-

formance metric. The simulation results are averaged over 100 graph realizations and 100

initial value realizations, i.e., totally 10000 realizations.

For the proposed algorithm, we adopt: qmin = 0, qmax = 1, Bk
w,i = Bk

c,i = 50,∀i,∀k; (2.12)

is adopted for {γk}k∈Z+ , and αk = 1/(k + 1),∀k ∈ Z+, which satisfies A. 5 ; for Q-Push-Sum

we use 50 bits and qmin = 0, qmax = m to quantize ψ, and 50 bits and qmin = 0, qmax = 1

to quantize z; for Q-Run-Avg we quantize each element of z ∈ Rm (the estimate of the left
5

 ↑ Note: this algorithm requires O(m) memory space to store the estimate of the eigenvector of graph
Laplacian at each agent.

45

Figure 2.3. Illustration of the random graph model for m = 4, where dashed
arrows represent potential directed links depending on the realizations.

eigenvector at 0 of graph Laplacian constructed by a row stochastic weight matrix) using 4

bits (i.e., totally 4 × m = 80 bits required for quantizing z) and qmin = 0, qmax = (m)κ with

κ = 1.15, and y is quantized using 20 bits and qmin = 0, qmax = 1; for Q-Monte-Carlo, we use

50 bits to quantize both X and Y , and other parameters are: a = 0, b = 1, ε = 10−3. Note

that the communication resource budget per agent per timeslot is 100 bits in all schemes.

Fig. 2.5 shows the MSE performance of Algorithm 2 as well as other benchmark schemes.

It is shown that only the proposed scheme and the Q-Monte-Carlo are reaching the average

consensus, among all finite rate schemes. Note that Q-Run-Avg and Q-Push-Sum seem

also converge for some realizations, cf. Fig. 2.6 . However, only the proposed scheme has

theoretical convergence guarantees.

Fig. 2.7 shows the communication cost (left y-axis) and delay (right y-axis) needed by

Algorithm 2 to reach a target MSE of 1 × 10−3 and 5 × 10−3, versus the total number of bits

per channel use. The communication cost is defined as the product of the total number of

bits per agent per timeslot and the number of timeslots. For each parameter setting, we run

50 graph realizations and 10 initial value realizations. To avoid the average results affected

by the outliers, we select the best 95% of results to perform averaging. We observe that

46

increasing the total number of bits reduces the number of timeslots required. On the other

hand, there exists an optimal number of bits that minimizes the communication cost. Using

more bits does not appear to be beneficial, since the communication cost becomes larger,

and it is only marginally compensated by the reduction of the number of timeslots required.

0 50 100 150 200

Timeslots

10
-10

10
-5

10
0

T
o

ta
l
Im

b
a

la
n

c
e

1-Bit Scheme

Integer Balancing [14]

7-Bit Scheme

Real Balancing [14]

50-Bit Scheme

Figure 2.4. Quantized weight-balancing problem: Total imbalance ∥bk∥1 the
propsoed algorithm with 1-bit , 7-bit, and 50-bit, as well as the integer and
real weight-balancing schemes [14].

2.7 Conclusions

In this chapter, we introduced a novel distributed algorithm that solves the weight-

balancing problem using only quantized information and simplex communications. Building

on this scheme, a second contribution of this chapter was a novel distributed average con-

47

0 100 200 300 400 500

Timeslots

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
S

E

Q-Run-Avg [34]

Q-Monte-Carlo [33]

Q-Push-Sum [31], [37]

Proposed

Figure 2.5. Quantized average consensus problem: MSE of average consensus
algorithms average over 10000 realizations.

sensus algorithm over non-balanced digraphs that uses quantized simplex communications.

Convergence of the algorithm was proved using a novel line of analysis, based on a novel

metric inspired by the positional system representation and a new step-size rule. Finally,

numerical results validated our theoretical findings.

48

0 100 200 300 400 500

Timeslots

10
-15

10
-10

10
-5

10
0

M
S

E

Q-Run-Avg [34]

Q-Monte-Carlo [33]

Q-Push-Sum [31], [37]

Proposed

Figure 2.6. Quantized average consensus problem: MSE of average consensus
algorithms for a particular realization.

2.8 Appendix: Proofs of Theorems

2.8.1 Intermediate Results in the Proof of Theorem 2.4.1

Preliminary definitions and results

Throughout the proof, we write the updates of Sk
+,i, S

k
−,i, bk

i of Algorithm 1 as

Sk+1
+,i ≜

m∑
j=1

wk+1
ji

(2.5)=
∑

j∈N+,i

(wk
ji + γknk

i) = Sk
+,i +D+,iγ

knk
i , (2.37)

Sk+1
−,i ≜

m∑
j=1

wk+1
ij

(2.5)=
∑

j∈N−,i

(wk
ij + γknk

j) = Sk
−,i +

∑
j∈N−,i

γknk
j , (2.38)

bk+1
i ≜ Sk+1

−,i − Sk+1
+,i = bk

i −D+,iγ
knk

i +
∑

j∈N−,i

γknk
j . (2.39)

49

5 10 15 20

Total Number of Bits Per Channel Use

200

300

400

500

600

700

800

900

1000

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

0

20

40

60

80

100

120

140

N
u

m
b

e
r

o
f

T
im

e
s
lo

ts

Target MSE = 0.005

Target MSE = 0.001

Target MSE = 0.005

Target MSE = 0.001

Figure 2.7. Quantized consensus problem: Communication cost (left y-axis,
solid lines) and number of timeslots (right y-axis, dashed lines) needed to reach
the target MSE, versus the total number of bits per channel use.

Lemma 5. Given Vk
+ and Vk

−, defined in (2.16), it holds:

1(Dk) = 0 ⇒ Vk+1
+ ⊇ Vk

+ and Vk+1
− ⊇ Vk

−.

Proof. Let 1{Dk} = 0 and consider i ∈ Vk
−. Then, (2.4) and bk

i < 0 imply γknk
i > bk

i /D+,i;

1{Dk} = 0 (see (2.13)) implies nk
j ≤ 0,∀j ∈ N−,i. bk+1

i < 0 then follows from (2.39), so that

i ∈ Vk+1
− ; hence Vk+1

− ⊇ Vk
−. Vk+1

+ ⊇ Vk
+ follows from a similar argument on i ∈ Vk

+.

Lemma 6. ∀k ∈ Z+, ∃τ ≥ k : ∥bτ ∥1 < (m)2γτ .

Proof. We prove it by contradiction. Let T̄0 ≜ (2W − 1)Ū . Suppose ∃k ∈ Z+ : ∥bτ ∥1 ≥

(m)2γτ , for all τ ≥ k. Invoking C. 1 .(ii) recursively m times and taking m → ∞ yields

50

0 ≤ ∥bk+m T̄0∥1 ≤ ∥bk∥1 − 2∑m
n=1 γ

k+nT̄0 , a contradiction since ∑m
n=1 γ

k+nT̄0 → ∞ due to

(2.11).

Proof of Lemma 3

By the definition of Cauchy sequence applied to each entry of Wk, we need to prove that,

∀ϵ > 0,∃kϵ ∈ Z+ such that maxi,j |wk′
ij − wk

ij| < ϵ,∀k′, k ≥ kϵ. To this end, let ϵ > 0 and

define kϵ as

6

kϵ = min{k : ∥bk∥1 < ϵ/(2Ū), γk < ϵ/(4Ū)}. (2.40)

Since wk
ji is updated only at update or decreasing events, using (2.5) recursively, we infer

|wk
ji − wkϵ

ji | ≤ ∑∞
ℓ=kϵ

1{U ℓ ∨ Dℓ}γℓ, ∀k ≥ kϵ. With tl defined as in (2.14) and letting Lϵ ≜

min{l ∈ Z+ : tl ≥ kϵ}, we can further upper bound |wk
ji − wkϵ

ji | ≤ γkϵ
∑tLϵ −1

ℓ=kϵ
1{U ℓ ∨ Dℓ} +∑∞

l=Lϵ
γtl ∑tl+1−1

ℓ=tl 1{Dℓ ∨ U ℓ}. Since there are at most Ū update events between the two

consecutive decreasing events at times tl and tl+1 (cf. C. 1), it follows that ∑tl+1−1
ℓ=tl 1{Dℓ ∨

U ℓ} ≤ Ū , hence

|wk
ji − wkϵ

ji | ≤
(
γkϵ +

∞∑
l=Lϵ

γtl
)
Ū . (2.41)

To bound ∑∞
l=Lϵ

γtl , we apply recursively L. 2 ,

−∥bkϵ∥1 =
∞∑

ℓ=kϵ

(∥bℓ+1 − ∥bℓ∥1) ≤ −2
∞∑

ℓ=kϵ

γℓ
1{Dℓ} = −2

∞∑
l=Lϵ

γtl

, (2.42)

hence ∑∞
l=Lϵ

γtl ≤ ∥bkϵ∥1/2 ≤ ϵ/(2Ū). By combining (2.41) with (2.42) and (2.40), we finally

obtain, ∀k ≥ kϵ,

|wk
ji − wkϵ

ji | ≤
(
γkϵ + ∥bkϵ∥1

2

)
Ū < ϵ/2,

6
 ↑ Note that kϵ < ∞ since ∥bk∥1 → 0 and γk → 0, see (2.11).

51

and, ∀k, k′ ≥ kϵ,

|wk
ji − wk′

ji | ≤ |wn
ji − wkϵ

ji | + |wn′

ji − wkϵ
ji | < ϵ,

which proves that {Wk}k∈Z+ is a Cauchy sequence.

Proof of Lemma 2

We first introduce the following intermediate result.

Lemma 7. Let {bk}k∈Z+ be the sequence generated by Algorithm 2 . Then, bk
i /γ̄

k ∈ Z,∀i ∈ V

and k ∈ Z+.

Proof. We prove this lemma by induction using (2.39). The induction hypothesis holds at

k = 0, since w0
ij = 1,∀(j, i) ∈ E and γ̄0 = (2)1−Bmax (cf. A. 2). Suppose that it holds at k ≥ 0,

i.e., bk
i /γ̄

k ∈ Z,∀i. Then, since γ̄k+1 = γ̄k/mk, with mk ∈ {1, c1}⊂Z++ (A. 2), it follows that

bk
i /γ̄

k+1 = mkbk
i /γ̄

k ∈ Z and γknk
i /γ̄

k+1 = mknk
i (2)Bmax−1 ∈ Z. Therefore, by (2.39), one can

infer that bk+1
i /γ̄k+1 ∈ Z, proving the induction step and completing the proof.

Proof of Lemma 2 : Let i ∈ V and k ∈ Z+. Using (2.39), we find

|bk+1
i |
γk

=
∣∣∣∣ bk

i

γk
−D+,in

k
i +

∑
j∈N−,i

nk
j

∣∣∣∣. (2.43)

It will be useful to note that, as can be seen from (2.4), bk
i , nk

i (possibly, nk
i = 0) and

bk
i −D+,in

k
i have the same signs, yielding the following inequality for all i,

|bk+1
i |
γk

△
≤ |bk

i |
γk

−D+,i|nk
i | +

∑
j∈N−,i

|nk
j |, (2.44)

where △ stands for the triangle inequality. We now distinguish the two cases 1{Dk} = 0

and 1{Dk} = 1. If 1{Dk} = 0, from the negation of Dk in (2.13) and from (2.4), it follows

that bk
i , n

k
i , b

k
i − D+,in

k
i , and nk

j ,∀j ∈ N−,i have the same signs, so that (2.44) holds with

equality, ∀i.

52

Conversely, if 1{Dk} = 1, there exists ℓ and (j, j′) ∈ [N−,ℓ]2 such that either 1) bk
ℓ ̸= 0,

nk
ℓ ̸= 0 and sgn(nk

j) = −sgn(bk
ℓ); or 2) bk

ℓ = 0, nk
ℓ = 0 and sgn(nk

j) = −sgn(nk
j′). In the first

case (bk
ℓ ̸= 0, nk

ℓ ̸= 0 and sgn(nk
j) = −sgn(bk

ℓ)), we bound (2.43) as

|bk+1
ℓ |
γk

△
≤
∣∣∣∣∣ bk

ℓ

γk
− d+

ℓ n
k
ℓ + nk

j

∣∣∣∣∣+ ∑
i∈N−,ℓ,i ̸=j

|nk
i |

≤
∣∣∣∣∣ |bk

ℓ |
γk

− d+
ℓ |nk

ℓ | − |nk
j |
∣∣∣∣∣+ ∑

i∈N−,ℓ,i ̸=j

|nk
i |

= |bk
ℓ |
γk

− d+
ℓ |nk

ℓ | − 2 min
{

|nk
j |, |bk

ℓ |
γk

− d+
ℓ |nk

ℓ |
}

+
∑

i∈N−,ℓ

|nk
i |.

In the second case (bk
ℓ = 0, nk

ℓ = 0, sgn(nk
j) = −sgn(nk

j′) and, without loss of generality,

|nk
j | ≥ |nk

j′| ≥ (2)1−Bmax), we bound instead

|bk+1
ℓ |
γk

△
≤
∣∣∣∣∣ bk

ℓ

γk
− d+

ℓ n
k
ℓ

∣∣∣∣∣+
∣∣∣∣nk

j + nk
j′

∣∣∣∣+ ∑
i∈N−,ℓ,i ̸=j,j′

|nk
i | ≤ |bk

ℓ |
γk

− d+
ℓ |nk

ℓ | +
∑

i∈N−,ℓ

|nk
i | − 2|nk

j′|.

In both cases, since |nk
j′ | ≥ (2)1−Bmax , |nk

j | ≥ (2)1−Bmax and γk|nk
ℓ | ≤ |bk

ℓ |/d+
ℓ (see (2.4)), we

further bound

|bk+1
ℓ |
γk

≤ |bk
ℓ |
γk

− d+
ℓ |nk

ℓ | +
∑

i∈N−,ℓ

|nk
i | − (2)2−Bmax . (2.45)

By summing (2.44) (with strict equality if 1{Dk} = 0) and (2.45) over i ∈ V , it holds

∥bk+1∥1


= ∥bk∥1, if 1{Dk} = 0

≤ ∥bk∥1 − 2γ̄k, otherwise,

after noticing that j ∈ N−,i ⇔ i ∈ N+,j, hence ∑i,j∈N−,i
|nk

j | = ∑
j,i∈N+,j

|nk
j | = ∑m

j=1 |nk
j |d+

j .

This completes the proof.

53

Proof of Proposition 2.4.1

Property (i): Note that Uk ≥ 0 since |bk
i | ≥ 0, for all i ∈ V . To show that it is upper

bounded, we use Uh ≤ U1,∀h ≥ 1 and ∪hVk
h ⊆ V , and write

Uk ≤
m−1∑
h=1

Uh

∑
i∈Vk

h

m ≤ U1m
m−1∑
h=1

|Vk
h | ≤ (m)2(m−1).

We prove that Uk is nondecreasing as by product of the proof of Property (ii), as given

below.

Property (ii): Since γ̄k+1 ≤ γ̄k, it follows that Uk+1 ≥ ∑m−1
h=1 Uh

∑
j∈Vk+1

h
min{|bk+1

j |/γ̄k,m}.

Case 1: 1(Dk) = 1(Uk) = 0. We have bk+1
j = bk

j ,∀j and Vk+1
h ≜ Vk

h ,∀n, which implies

Uk+1 ≥ Uk. Case 2: 1(Uk) = 1. From the discussion following (2.44), (2.44) holds with

equality:

|bk+1
i |
γk

△= |bk
i |
γk

−D+,in
k
i +

∑
j∈N−,i

|nk
j |, ∀i. (2.46)

Moreover, ∃i ∈ V : nk
i ̸= 0; this implies that there exists a non-empty set of agents that

receive at least one update from their in-neighbors, defined as

Rk = {i ∈ V : nk
j ̸= 0, ∃j ∈ N−,i}.

It is straightforward to show that

Rk ⊆ Vk+1
+ ∪ Vk+1

− . (2.47)

In fact, if i /∈ Vk+1
+ ∪ Vk+1

− (i.e., bk+1
i = 0), it follows that i /∈ Vk

+ ∪ Vk
− (i.e., bk

i = 0 and

nk
i = 0, cf. L. 5); therefore, setting bk+1

i = bk
i = 0 and nk

i = 0 in (2.46), we find that

nk
j = 0, ∀j ∈ N−,i, so that i /∈ Rk and (2.47) follows. With this definition, let

h∗ = min{h ∈ {1, 2, . . . ,m− 1} : |Vk+1
h ∩ Rk| > 1}

54

be the distance of the agent closest to those of opposite sign of balance at k + 1 to receive

the update, and let ℓ ∈ Vk+1
h∗ ∩ Rk be one of such agents. Then, we have

nk
i = 0, ∀i ∈ Vk+1

h , ∀h ≤ h∗. (2.48)

In fact, if nk
i ̸= 0 for some of such i, then ∃j ∈ N +

i ∩ Vk+1
h−1 ∩ Rk receiving the update, which

contradicts the definition of h∗. Reading (2.46) at i ∈ Vk+1
h , h ≤ h∗, yields

|bk+1
i |
γ̄k

= |bk
i |
γ̄k

+
∑

j∈N−,i

|nk
j |

(2)1−Bmax
≥ |bk

i |
γ̄k

+ 1{i ∈ Rk}.

We can then further lower bound Uk+1 as

Uk+1 ≥
h∗∑

h=1
Uh

∑
j∈Vk+1

h

min
{

|bk
j |
γ̄k

,m

}
1{(h, j) ̸= (h∗, ℓ)} + Uh∗ min

{
|bk

i |
γ̄k

+ 1,m
}
, (2.49)

where we neglected the non-negative terms associated to Vk+1
h , h > h∗. To further bound

this quantity, note that nk
ℓ = 0 (cf. (2.48)), which, together with Bk

w,i > 0, ∀i for an update

event to occur, implies bk
ℓ/γ̄

k ≤ D+,i ≤ m − 1 (cf. (2.4)). Therefore min{|bk
ℓ |/γ̄k + 1,m} =

min{|bk
ℓ |/γ̄k,m} + 1. Finally, we use the fact that

0 ≥
m−1∑

h=h∗+1
Uh

∑
j∈Vk+1

h

(
min

{
|bk

j |
γ̄k

,m

}
−m

)
,

yielding

Uk+1 ≥
∑
j∈V

min
{

|bk
j |
γ̄k

,m

}
m−1∑
h=1

Uh1{j ∈ Vk+1
h } + Uh∗ −m

m−1∑
h=h∗+1

Uh|Vk+1
h |. (2.50)

Now, using Uh ≤ Uh∗+1,∀h > h∗ and ∪m−1
h=h∗+1Vk+1

h ⊆ V \ {ℓ}, we obtain

Uh∗ −m
m−1∑

h=h∗+1
Uh|Vk+1

h | ≥ Uh∗ −mUh∗+1

m−1∑
h=h∗+1

|Vk+1
h | ≥ (m)2(m−h∗)−3 ≥ m. (2.51)

55

In the last inequality, we used the fact that h∗ ≤ m− 2. In fact, if h∗ = m− 1, then (2.48)

implies that nk
i = 0,∀i, which contradicts the occurrence of the update event. Finally, note

that Vk
+ ⊆ Vk+1

+ and Vk
− ⊆ Vk+1

− (cf. L. 5), hence j ∈ Vk
h ⇒ j ∈ ∪h

n=1Vk+1
n , i.e., j gets closer

to agents of opposite sign. Together with Uh > Uh+1, it implies

m−1∑
h=1

Uh1{j ∈ Vk+1
h } ≥

m−1∑
h=1

Uh1{j ∈ Vk
h}. (2.52)

The desired result follows by using (2.51)-(2.52) in (2.50).

Property (iii): We prove it by contradiction. Assume that t1, t2 ∈ [k, tl+1) such that U t1

and U t2 are two consecutive update events with t2 − t1 > 2W − 1, and ∥bt∥1 ≥ (m)2γt,∀t ∈

[k, tl+1). It follows that ∃i ∈ V such that |bt1
i | ≥ mγt1

(A.2)
≥ mγt > D+,iγ

t,∀t ∈ [t1, t1+2W−1],

which implies that ∃t ∈ [t1, t1 + 2W − 1] : 1{U t} = 1 due to A. 1 , which contradicts the

assumption that U t1 and U t2 are two consecutive update events since t1 + 2W − 1 < t2.

Hence, it follows from property (ii) that Uk+2W −1 ≥ Uk +m, which proves property (iii). ■

2.8.2 Auxiliary Results for Theorem 2.5.1

Lemma 8. Let {yk}k∈Z+ be the sequence generated by Algorithm 2 , in the setting of T. 2.5.1 .

Then, 1⊤yk = 1⊤y0.

Proof. From (2.32) and Lk
+ = Sk

+ − Wk, it follows

1⊤yk+1 = 1⊤yk − αk1⊤(Sk
+ − Wk)xk, (2.53)

so that the statement of the lemma readily follows after noticing that 1⊤Wk = Sk
+.

Lemma 9. Let {yk}k∈Z+ be the sequence generated by Algorithm 2 , in the setting of T. 2.5.1 .

Then,

ymin,i ≤ yk
min,i ≤ yk

i ≤ yk
max,i ≤ ymax,i, ∀k ∈ Z+,

56

where ymax,i ≜ limt→∞ yt
max,i < ∞, ymin,i ≜ limt→∞ yt

min,i > −∞, q∗ ≜ max{|qmin|, |qmax|},

Smax ≜ supk∈Z+ S
k
−,i < ∞,

yk
max,i ≜ max{qmax, y

0
i } + α0∥b0∥1q

∗ + α0Smax (qmax − qmin) + q∗
k−1∑
t=0

αt|bt
i|,

yk
min,i ≜ min{qmin, y

0
i } − α0∥b0∥1q

∗ − α0Smax (qmax − qmin) − q∗
k−1∑
t=0

αt|bt
i|.

Proof. We first show that |ymax,i|, |ymin,i| < ∞. From T. 2.4.1 , we know that Wk is bounded

for all k ∈ Z+, which implies Sk
−,i ≤ Smax < ∞. On the other hand, since |bt

i| ≤ ∥bt∥1 =

O(1/t) and∑t∈Z+ (αt)2 < ∞, one can verify using Cauchy-Schwarz inequality that∑∞
t=0 α

t|bt
i| <

∞ and thus |ymax,i|, |ymin,i| < ∞. By inspection, it is also clear that yk
max,i ≤ ymax,i and

yk
min,i ≥ ymin,i,∀k. We now prove yk

i ∈ [yk
min,i, y

k
max,i] by induction. Clearly, it for k = 0. Now,

assume it holds for some k ≥ 0, we prove that this implies yk+1
i ∈ [yk+1

min,i, y
k+1
max,i] (induction

step). We have:

1) If yk
i ≤ qmax, then

yk+1
i = yk

i + αkbk
i x

k
i + αk

∑
j∈N−,i

wk
ij(xk

j − xk
i)

≤ qmax + αk|bk
i |q∗ + αkSk

−,i (qmax − qmin)

≤ max{qmax, y
0
i } + α0∥b0∥1q

∗ + α0Smax (qmax − qmin) = y0
max,i ≤ yk+1

max,i.

2) If yk
i > qmax, then xk

i = qmax, so (2.9) yields yk+1
i ≤ yk

i +αkbk
i qmax ≤ yk

max,i+α(k)|bi(k)|q∗ =

yk+1
max,i.

3) If yk
i ≥ qmin then yk+1

i ≥ min{qmin, y
0
i }−α0∥b0∥1q

∗−α0Smax (qmax − qmin) = y0
min,i ≥ yk+1

min,i.

4) If yk
i < qmin, then xk

i = qmin so (2.9) yields yk+1
i ≥ yk

i − αk|bk
i |q∗ ≥ yk

min,i − αk|bk
i |q∗ =

yk+1
min,i.

Lemma 10. Let {yk}k∈Z+ be the sequence generated by Algorithm 2 , in the setting of T. 2.5.1 .

Then, ∃ξ1, ξ2 > 0 such that

yk⊤Lk
+ỹk ≥ ξ1V (yk) − ξ2∥bk∥1. (2.54)

57

Proof. Let êk = yk − ỹk be the saturation error, Sk
± = diag{Sk

±,i,∀i}, Bk = diag{bk} =

Sk
− − Sk

+, Lk
± = Sk

± − Wk, Lk = (Sk
+ + Sk

−) − (Wk + Wk⊤). The proof contains three steps:

Step 1: We will lower bound yk⊤Lk
+ỹk as

yk⊤Lk
+ỹk ≥ −yk⊤Bkỹk + 1

2 ỹk⊤Bkỹk + 1
2 ỹk⊤Lkỹk. (2.55)

Step 2: we will show that the last term of the RHS in Step 1 satisfies, for some ξ4 > 0,

ỹk⊤Lkỹk ≥ ξ4V (yk). (2.56)

Step 3: by combining the above results, we will show that, for some constants ξ1, ξ2 > 0,

yk⊤Lk
+ỹk ≥ ξ1V (yk) − ξ2∥bk∥1.

In the following, we provide detailed derivations of each step. Step 1: It is easy to show

that

y(k)k⊤Lk
+ỹk = −yk⊤Bkỹk + yk⊤Lk

−ỹk.

The term yk⊤Lk
−ỹk can be lower bounded as

yk⊤Lk
−ỹk = êk⊤Lk

−ỹk + ỹk⊤Lk
−ỹk

(a)
≥ ỹk⊤Lk

−ỹk = 1
2 ỹk⊤(Lk

− + Lk⊤
−)ỹk

= 1
2 ỹk⊤Bkỹk + 1

2 ỹk⊤Lkỹk,

where (a) comes from the fact that

êk⊤Lk
−ỹk = êk⊤[Sk

− − Wk]ỹk =
m∑

i=1

[
êk

i

m∑
j=1

wk
ij(ỹk

i − ỹk
j)
]

≥ 0,

where the last inequality comes from the fact that (i) if yk
i ∈ [qmin, qmax], then êk

i = 0; (ii)

if yk
i > qmax, then êk

i > 0 and ỹk
i − ỹk

j = qmax − ỹk
j ≥ 0,∀j ∈ V ; and (iii) if yk

i < qmin, then

58

êk
i < 0 and ỹk

i − ỹk
j = qmin − ỹk

j ≤ 0,∀j ∈ V .

Step 2: First, one can verify that

ỹk⊤Lkỹk = 1
2

m∑
i,j=1

(wk
ij + wk

ji)(ỹk
i − ỹk

j)2.

Let i∗ ∈ arg maxi{yk
i }, j∗ ∈ arg mini{yk

i }, j∗ ̸= i∗. Note that yk
i∗ ≥ ȳ0 ≥ yk

j∗ to preserve

the average (L. 8). Since G is strongly connected, there exists a path from i∗ to j∗. Let

{i1, · · · , ip} be the set of agents in the shortest path from i∗ to j∗, with i1 = i∗, ip = j∗ and

in+1 ∈ N+,in ,∀n ∈ [p− 1]. We have

ỹk⊤Lkỹk = 1
2

m∑
i,j=1

(wk
ij + wk

ji)(ỹk
i − ỹk

j)2

≥ 1
2

p−1∑
l=1

(wk
ilil+1

+ wk
il+1il

)(ỹk
il

− ỹik
l+1

)2

(a)
≥ wmin

2

p−1∑
l=1

(ỹk
il

− ỹik
l+1

)2

(b)
≥ wmin

2(p− 1)

[p−1∑
l=1

(ỹk
il

− ỹk
il+1

)
]2

≥ wmin

2(m− 1)(ỹk
i∗ − ỹk

j∗)2, (2.57)

where (a) follows from wk
il+1il

≥ wmin,∀l ∈ [1, p), ∀k ∈ Z+ (T. 2.4.1 (iii)); (b) comes from

Cauchy-Schwarz inequality. To further bound this quantity, note that

1
m
V (y) = 1

m

∑
i

(yk
i − ȳ0)2 ≤ max

i∈{i∗,j∗}
(yk

i − ȳ0)2 ≤ (yk
i∗ − yk

j∗)2. (2.58)

On the other hand, since the consensus algorithm preserves the average, it follows

yk
i∗ − ȳ0 ≤ (m− 1)(ȳ0 − yk

j∗), ȳ0 − yk
j∗ ≤ (m− 1)(yk

i∗ − ȳ0), (2.59)

so that the first inequality in (2.58) is upper bounded as 1
m
V (y) ≤ (m− 1)2 mini∈{i∗,j∗}[yk

i −

ȳ0]2. Consider the following two cases:

(i) yk
i ∈ [qmin, qmax],∀i, so that ỹk

i = yk
i ,∀i and ỹk

i∗ − ỹk
j∗ = yk

i∗ − yk
j∗ ≥ 1√

m

√
V (y).

59

(ii) yk
i∗ > qmax (yk

j∗ < qmin can be solved similarly) so that ỹk
i∗ = qmax: since ỹk

j∗ ≤

max{yk
j∗ , qmin}, using (2.59) and ȳ0 ≤ qmax it follows

ỹk
i∗ − ỹk

j∗ ≥ min
{
yk

i∗ − ȳ0

m− 1 , qmax − qmin

}
≥ min

{ √
V (y)

√
m(m− 1)2 , qmax − qmin

}
.

From (i), (ii) and (2.57), there exists some ξ4 > 0 such that

ỹk⊤Lkỹk ≥ wmin

2(m− 1)(ỹk
i∗ − ỹk

j∗)2 ≥ wmin/2
(m− 1) min

{
V (yk)

m(m− 1)4 , (qmax − qmin)2
}

≥ ξ4V (yk),

since yk
i and thus V (yk) is bounded (L. 9).

Step 3: Let y∗ = maxi{max{|ymax,i|, |ymin,i|}}. By combining (2.55) and (2.56), we get

yk⊤Lk
+ỹk ≥ −yk⊤Bkỹk + 1

2 ỹk⊤Bkỹk + ξ1V (yk)

≥ −
m∑

i=1
|bk

i y
k
i ỹ

k
i | − 1

2

m∑
i=1

|bk
i (ỹk

i)2| + ξ1V (yk)
(a)
≥ −q∗

(
y∗ + 1

2q
∗
)
∥bk∥1 + ξ1V (yk),

with ξ1 = ξ4/2 > 0, where (a) comes from the facts |yk
i | ≤ y∗, |ỹk

i | ≤ q∗, and ∥bk∥1 =∑m
i=1 |bk

i |.

60

3. FINITE-BIT QUANTIZATION FOR DISTRIBUTED

ALGORITHM WITH LINEAR CONVERGENCE

This chapter studies distributed algorithms for (strongly convex) composite optimization

problems over mesh networks, subject to quantized communications. Instead of focusing on

a specific algorithmic design, we propose a black-box model casting distributed algorithms in

the form of fixed-point iterates, converging at linear rate. The algorithmic model is coupled

with a novel (random) Biased Compression (BC-)rule on the quantizer design, which pre-

serves linear convergence. A new quantizer coupled with a communication-efficient encoding

scheme is also proposed, which efficiently implements the BC-rule using a finite number of

bits. This contrasts with most of existing quantization rules, whose implementation calls for

an infinite number of bits. A unified communication complexity analysis is developed for

the black-box model, determining the average number of bit required to reach a solution of

the optimization problem within the required accuracy. Numerical results validate our theo-

retical findings and show that distributed algorithms equipped with the proposed quantizer

have more favorable communication complexity than algorithms using existing quantization

rules.

The novel results of this chapter have been published in

• C.-S. Lee, N. Michelusi and G. Scutari, ”Finite rate quantized distributed optimization

with geometric convergence”, in Proc. 52nd ACSSC, pp. 1876-1880, Oct. 2018.

• C.-S. Lee, N. Michelusi and G. Scutari, ”Finite-bit quantization for distributed algo-

rithms with linear convergence” submitted to IEEE Trans. Inf. Theory, Jul. 2021,

Available [online]: https://arxiv.org/abs/2107.11304.

3.1 Introduction

We study distributed optimization over a network of m agents modeled as an undirected

(connected) graph. We consider mesh networks, that is, arbitrary topologies with no central

hub connected to all the other agents, where each agent can communicate with its immediate

61

neighbors (master/worker architectures will be treated as a special case). The m agents aim

at solving cooperatively the optimization problem

min
x∈Rd

1
m

m∑
i=1

fi(x)︸ ︷︷ ︸
=F (x)

+r(x), (P)

where each fi is the local cost function of agent i, assumed to be smooth, convex, and known

only to the agent; r : Rd → [−∞,∞] is a nonsmooth, convex (extended-value) function

known to all agents, which can be used to force shared constraints or some structure on

the solution (e.g., sparsity); and the global loss F : Rd → R is assumed to be strongly

convex on the domain of r. This setting is fairly general and finds applications in several

areas, including network information processing, telecommunications, multi-agent control,

and machine learning (e.g., [48]–[50]).

Since the functions fi can be accessed only locally and routing local data to other agents

is infeasible or highly inefficient, solving (P) calls for the design of distributed algorithms

that alternate between a local computation procedure at each agent’s side and some rounds

of communication among neighboring nodes. While most existing works focus on ad-hoc so-

lution methods, here we consider a general distributed algorithmic framework, encompassing

algorithms whose dynamics are modeled by the fixed-point iteration

zk+1 = Ã
(
zk
)
, (3.1)

where zk is the updating variable at iteration k and Ã is a mapping that embeds the local

computation and communication steps, whose fixed point typically coincides with the solu-

tions of (P). This model encompasses several distributed algorithms over different network

architectures, each one corresponding to a specific expression of z and Ã–see Sec. 3.2 for

some examples.

By assuming that F is strongly convex, with (3.1) we explicitly target distributed schemes

converging to solutions of (P) at linear rate. Furthermore, since the cost of communications is

often the bottleneck for distributed computing when compared with local (possibly parallel)

62

computations (e.g., [51], [52]), we achieve communication efficiency by embedding the iterates

(3.1) with quantized communication protocols. Our goal is to design a black-box quantization

mechanism for the class of distributed algorithms (3.1) that preserves their linear convergence

while employing finite-bit quantized communications.

To our knowledge, this is an open problem, since there exists no linearly convergent

distributed algorithmic framework for the general class of the composite (constrained) op-

timization problems (P) employing finite-bit communications. While we defer to Sec. 3.1.2

for a detailed literature review, here we only point out that existing distributed schemes

employing some form of quantization of the communications are applicable only to smooth,

unconstrained instances of (P) (i.e., r = 0) [53]–[61]. Furthermore, the majority of such al-

gorithms require infinite-bit communications [53]–[58]. The exceptions are [59], [60] and our

work [61]; yet, the quantization schemes developed in these papers are tailored to a specific

distributed algorithm, namely, a primal-dual scheme in [59] and NEXT [8], [62], [63] in [60],

[61].

3.1.1 Summary of main contributions

Our major contributions are summarized next–see also Table 3.1 .

• A black-box quantization model for (3.1): We propose a novel black-box model that

introduces quantization in the communication steps of all distributed algorithms cast in the

form (3.1). Our approach paves the way to a unified design of quantization rules and analysis

of their impact on the convergence rate of a gamut of distributed algorithms. This constitutes

a major departure from the majority of existing studies focusing on ad-hoc algorithms and

quantization rules, which in fact are special instances of our framework. Furthermore, our

model brings for the first time quantization to distributed algorithms applicable to composite

optimization (P) (i.e., with r ̸= 0).

• Preserving linear convergence of (3.1) under quantization: We provide a novel

biased compression rule (the BC-rule) on the quantizer design equipping the proposed black-

box model, which preserves linear convergence of the distributed algorithms while using a

finite number of bits and without altering their original tuning. Our condition encompasses

63

several deterministic and random quantization rules, new and old [6], [7], [19]–[21], [23]–[28],

[34], [44], [59]–[61], [64]. Furthermore, our analysis reveals that, despite common wisdom,

several rules proposed in the literature for signal compression and used in particular for

quantization [53]–[58], [65]–[74] cannot be implemented using a finite number of bits.

• A novel finite-bit quantizer: To make the BC-rule practical, we also propose a

novel finite-bit quantizer fulfilling the BC-rule along with a communication-efficient bit-

encoding/decoding rule which enables transmissions on digital channels; it is termed Adaptive

encoding Nonuniform Quantization (ANQ). ANQ is a deterministic quantizer that adapts

the number of bits of the output (discrete representation) based upon the input signal. By

doing so, it achieves a more communication-efficient design than existing quantizers that

encode the signal by using a fixed number of bits based on the worst-case range of the input

signal (a predetermined fixed range in [6], [7], [19]–[21], [23], [26], [28], [34], [44], [64], or a

shrinking one in [24], [25], [27], [59]–[61]).

• Communication complexity: We derive the first communication complexity for quan-

tized distributed algorithms over mesh networks (see. Table 3.1), in terms of average number

of bits required to reach an ε-solution of (P) (using a proper optimality measure–see T. 3.5.2)

by any distributed algorithm belonging to our black-box model. This also sheds light on

the dependence of the convergence rate and communication cost on the quantization design

parameters.

Finally, we validate numerically our theoretical findings on regularized least square and

logistic regression problems. Among others, our evaluations show that 1) linear convergence

of all distributed algorithms is preserved under finite-bit quantization based upon the pro-

posed BC-rule; as predicted by our analysis, the rate approaches the one of their unquantized

counterpart scheme when a sufficient number of bits is used; 2) the proposed ANQ rule out-

performs existing finite-bit quantization rules; and 3) a benchmark of several distributed

schemes under quantization is provided, for which convergence guarantees are established

for the first time in this work.

64

3.1.2 Related works

The literature on distributed algorithms is vast; here, we review relevant works employing

some form of quantization with linear convergence guarantees [53]–[57], [59]–[61], categorized

into those requiring infinite or finite number of bits.

1) Infinite-bit quantization schemes [53]–[57]: Distributed algorithms employing quan-

tization in the agents’ communications are proposed in [53]–[57] for special instances of (P)

with r = 0 (i.e., smooth and unconstrained optimization). In these schemes, quantization

is implemented by compressing the signal x ∈ Rd through a (random or deterministic

1
)

compression operator x 7→ Q(x), that satisfies the compression rule

√
E[∥Q(x) − x∥2

2] ≤ ω∥x∥2, for some ω ∈ (0, 1). (3.2)

Despite common wisdom, we prove that all the quantization rules derived from (3.2)–hence

those in [53]–[57]–can only be implemented using an infinite number of bits (see C. 2). This

calls for the development of new compression rules using a finite number of bits. The

proposed BC-rule provides a positive answer to this question.

2) Finite-bit quantization schemes [59]–[61]: While finite-rate quantization has been

extensively studied for average consensus schemes (e.g., [7], [19], [24]–[28], [44], [64]), their

extension to optimization algorithms over mesh networks is less explored [59]–[61]. Specif-

ically, in our conference work [61], we equip the NEXT algorithm [8], [62] with a finite-bit

deterministic quantization to solve (P) with r = 0; to preserve linear convergence, the quan-

tizer shrinks its input range linearly. An expression of the convergence rate of the scheme

in [61] has been later determined in [60] along with its scaling properties with respect to

problem, network, and quantization parameters.

The closest paper to our work is [59], where the authors proposed a finite-bit quantization

mechanism preserving linear convergence of a sub-class of algorithms cast as (3.1). Yet, there

are several key differences between [59] and our work. First, the convergence analysis in [59]

is applicable only to algorithms solving smooth, unconstrained optimization problems, and
1

 ↑ We treat compression rules using deterministic mappings Qk as special cases of the random ones; in this
case, the expected value operator will just return the deterministic value argument.

65

Table 3.1. Comparison with the state-of-the-art distributed algorithms using
some form of quantization; λ is the convergence rate of the input (unquantized)
algorithm, and d is the dimension of x. The scheme proposed in this chapter
is applicable to the distributed algorithms listed in the table and, in addition,
to the following: general primal-dual-based methods [80], EXTRA [76], NEXT
[8], [62], AugDGM [81], DIGing [78], the scheme in [79], NIDS [82], Exact
Diffusion [83], and some of their proximal counterpart as those in [84] and [80].

Ref. Problem # of bits/agent to ε accuracy Algorithms
[61] (P) with r = 0 N/A ad-hoc (NEXT [8], [62])
[60] (P) with r = 0 N/A ad-hoc (NEXT [8], [62])

[59] (P) with r = 0 O
(

log2
(
1 + d

1−λ

)
d

1−λ log2(d/ε)
)

GD over star networks
N/A ad-hoc (primal-dual [75])

This
chapter (P) O

(
log2

(
1 + 1

1−λ

)
d

1−λ log2(d/ε)
) All the schemes listed in

the caption of the table

thus not to Problem (P) with r ̸= 0. Second, linear convergence under finite-bit quantization

is explicitly proved in [59] only for schemes whose updates utilize current iterate information,

namely: gradient descent (GD) over star networks and the primal-dual algorithm in [75]

over mesh networks. This leaves open the question whether distributed algorithms using

historical information–e.g., in the form of gradient tracking or dual variables–are linearly

convergent under finite-bit quantization, and under which conditions; renowned examples

include EXTRA [76], AugDGM [77], DIGing [78], Harnessing [79], and NEXT [8], [62]. Our

work provides a positive answer to these open questions. Third, communication complexity

of the scheme in [59] is not provided over mesh networks, which instead is a novel contribution

of this work for a wide class of distributed algorithms–see Table 3.1 and Sec. 3.5 . Fourth, [59]

proposed an ad-hoc deterministic quantization rule while the proposed BC-rule encompasses

several deterministic and random quantizations (including that in [59] as a special case),

possibly using a variable number of bits (adapted to the input signal). As a result, even

when customized to the setting/algorithms in [59], the BC-rule leads to more communication-

efficient schemes, both analytically (see Sec. 3.5) and numerically (see Sec. 3.6)–see also

Table 3.1 .

66

Figure 3.1. Examples of star network (a) versus mesh topology (b).

3.1.3 Organization and notation

The remainder of this chapter is organized as follows. Sec. 3.2 introduces the proposed

black-box model for casting distributed algorithms in the form (3.1). Sec. 3.3 embeds

quantized communications, introduces the proposed BC-rule, and analyzes the convergence

properties. Sec. 3.4 describes the proposed quantizer, the ANQ, and studies communication

complexity. Sec. 3.5 customizes the proposed framework and convergence guarantees to

several existing distributed algorithms, equipping them with the ANQ rule. Sec. 3.6 provides

some numerical results, while Sec. 3.7 draws some conclusions. All the proofs of our results

are presented in the appendix.

Notation: Throughout the chapter, we model a network ofm agents as a fixed, undirected,

connected graph G = (V , E), where V = [m] is the set of vertices (agents) and E ⊆ V × V is

the set of edges (communication links); (i, j) ∈ E if there is a link between agents i and j, so

that the two can send information to each other. We let Ni = {j : (i, j) ∈ E} be the set of

neighbors of agent i, and assume that (i, i) ∈ E , i.e., i ∈ Ni. Master/workers architectures

will be considered as special cases–see Fig. 3.1 .

3.2 A General Distributed Algorithmic Framework: Exact Communications

In this section, we show how to cast distributed algorithms for (P) in the form (3.1).

As a warm-up, we begin with schemes using only current information to produce the next

update (cf. Sec. 3.2.1). We then generalize the model to capture distributed algorithms

67

using historical information via multiple rounds of communications between computation

steps (cf. Sec. 3.2.2).

3.2.1 Warm-up: A class of distributed algorithms

We cast distributed algorithms in the form (3.1) by incorporating computations and

communications as two separate steps. We use state variable zi to capture local information

owned by agent i (including optimization variables) and ĉi to denote the signal transmitted

by agent i to its neighbors.

2
 Similarly to [59], the updates of the z, ĉ-variables read: for

agent i ∈ [m],

ĉk
i = Ci

(
zk

i

)
, (communication step)

zk+1
i = Ai

(
zk

i , ĉk
Ni

)
, (computation step)

(M0)

where the function zi 7→ Ci(zi) models the processing on the local information zk
i at the

current iterate, generating the signal ĉk
i to be transmitted to agent i’s neighbors; and the

function (zi, ĉNi
) 7→ Ai(zi, ĉNi

) is the function producing the update of the agent i’s state

variable zi, based upon the local information at iteration k (including the signals received

by its neighbors).

Some examples: The algorithmic model (M0) captures a variety of distributed algorithms

that build updates using single rounds of communications; examples include the renewed

DGD [85], NIDS [82], and the primal-dual scheme [75]. To show a concrete example, consider

DGD, which aims at solving a special instance of (P) with r = 0; agents’ updates read

xk+1
i =

(m∑
j=1

wijxk
j

)
− γ∇fi

(
xk

i

)
, i ∈ [m],

where xk
i is the local copy owned by agent i at iteration k of the optimization variables x,

γ is a step-size, and wij’s are nonnegative weights properly chosen and compliant with the
2

 ↑ Dimensions of these vectors are algorithm-dependent and omitted for simplicity, and will be clear from
the context.

68

graph G (i.e., wij > 0 if (i, j) ∈ E ; and wij = 0 otherwise). It is not difficult to check that

DGD can be rewritten in the form (M0) by letting

zk
i = ĉk

i = xk
i and Ai(zk

i , ĉk
Ni

) =
(m∑

j=1
wij ĉk

j

)
− γ∇fi(zk

i).

Despite its generality, model (M0) leaves out several important distributed algorithms,

specifically, the majority of schemes employing correction of the gradient direction based on

past state information–these are the best performing algorithms to date. Examples include

EXTRA [76], DIGing [78] and their proximal version, NEXT/SONATA [8], [62], [63], and

the ABC framework [80], just to name a few. Consider for instance NEXT/SONATA:

xk+1
i =

∑
j∈Ni

wij

(
xk

j − γyk
j

)
and yk+1

i =
∑

j∈Ni

wij

(
yk

j + ∇fj(xk+1
j) − ∇fj(xk

j)
)
. (3.3)

Clearly, this does not fit model (M0): the update of the y-variable uses information from

two iteration ages (k and k + 1). This calls for a more general model, introduced next.

3.2.2 Proposed general model (using historical information)

We generalize the algorithmic model (M0) as follows: for all i ∈ [m],

ĉk,1
i = C1

i

(
zk

i ,0Ni

)
,

...

ĉk,R
i = CR

i

(
zk

i , ĉ
k,R−1
Ni

)
,


(multiple communication rounds)

zk+1
i = Ai

(
zk

i , ĉ
k,1
Ni
, · · · , ĉk,R

Ni

)
, (computation step)

(M)

which embedsR ≥ 1 rounds of local communications, via the functions (zi, ĉs−1
Ni

) 7→ Cs
i (zi, ĉs−1

Ni
);

and the function (zi, ĉ1
Ni
, · · · , ĉR

Ni
) 7→ Ai(zi, ĉ1

Ni
, · · · , ĉR

Ni
) updates the local state by possibly

using the signals ĉNi
’s received from all neighbors during all R rounds of communications,

69

along with zi. Stacking agents’ state-variables zi, communication signals ĉi, and mappings

Cs
i and Ai into the respective vectors z, ĉ, Cs and A, we can rewrite (M) in compact form as

ĉk,0 = 0,

ĉk,s = Cs
(
zk, ĉk,s−1

)
, s ∈ [R],

 (multiple communication rounds)

zk+1 = A
(
zk, ĉk,1, · · · , ĉk,R

)
. (computation step)

Absorbing the communication signals ĉk,s in the mapping A, we can finally write the above

system as a fixed-point iterate on the z-variables only:

zk+1 = Ã(zk) ≜ A
(
zk, C1

(
zk,0

)
, · · · , CR

(
zk, CR−1

(
zk, · · · C1

(
zk,0

)
· · ·

)))
. (M’)

Under suitable conditions, the iterates (M’) convergence to fixed-points z∞ = Ã(z∞) of the

mapping Ã, possibly constrained to a set Z ∋ z∞. The convergence rate depends on the

properties of Ã; here we focus on linear convergence, which can be established under the

following standard condition.

Assumption 6. Let Ã : Z → Z; the following hold: (i) Ã admits a fixed-point z∞; and (ii)

Ã is λ-pseudo-contractive on Z w.r.t. some norm ∥ • ∥, that is, there exists λ ∈ (0, 1) such

that

∥Ã(z) − z∞∥ ≤ λ · ∥z − z∞∥, ∀z ∈ Z.

Without loss of generality, the norm ∥ • ∥ is scaled such that ∥ • ∥2 ≤ ∥ • ∥.

3

The following convergence result follows readily from 6 and [43 , Ch. 3, P.1.2].

Theorem 3.2.1. Let Ã : Z → Z satisfy A. 6 . Then: i) the fixed point z∞ is unique; and ii)

the sequence {zk} generated by the update (M’) converges Q-linearly to z∞ w.r.t. the norm

∥ • ∥ at rate λ, i.e.,
∥∥∥zk+1 − z∞

∥∥∥ ≤ λ ·
∥∥∥zk − z∞

∥∥∥.
Discussion: The algorithmic framework (M) encompasses a variety of distributed al-

gorithms, while T. 3.2.1 captures their convergence properties; in addition to the schemes
3

 ↑ This is always possible since ∥ • ∥ is a norm defined on a finite-dimensional field.

70

covered by (M0), (M) can also represent EXTRA [76] and its proximal version [80], NEXT

[8], [62], [63], DIGing [78], NIDS [82], and primal-dual schemes such as [75]. App. 3.8.4

provides specific expressions for the mappings A and Cs for each of the above algorithms,

along with their convergence properties under T. 3.2.1 ; here, we elaborate on the NEXT al-

gorithm (3.3) as an example. It can be rewritten in the form (M) by using R = 2 rounds of

communications and letting

zk
i =

 xk
i

yk
i

 , ĉk,1
i = xk

i − γyk
i , ĉk,2

i = yk
i + ∇fi

(∑
j∈Ni

wij ĉk,1
j

)
− ∇fi(xk

i), and

Ai(zk
i , ĉ

k,1
Ni
, ĉk,2

Ni
) =

 ∑j∈Ni
wij ĉk,1

j∑
j∈Ni

wij ĉk,2
j

 .

3.3 A General Distributed Algorithmic Framework: Quantized Communica-
tions

In this section, we equip the distributed algorithmic framework (M) with quantized com-

munications. The communication channel between any two agents is modeled as a noiseless

digital channel; only quantized signals are received with no errors. This means that, in each

of the communication rounds, the signals ĉk,1
j , . . . , ĉk,R

j , j ∈ Ni, received by agent i no longer

coincide with the intended, unquantized ones C1
j (zk

j ,0Nj
), . . . , CR

j (zk
j , ĉ

k,R−1
Nj

), generated at

the transmitter side of agents j ∈ Ni. This calls for a proper encoding/decoding mechanism

that transfers, via quantized communications, the aforementioned unquantized signals at

the receiver sides with limited distortion. Here, we leverage differential encoding/decoding

techniques [24] coupled with a novel finite-level quantization mechanism.

We begin recalling the idea of quantized differential encoding/decoding in the context of

a point-to-point communication–the same mechanism will be then embedded in the commu-

nication of the distributed multi-agent framework (M). Consider a transmitter-receiver pair;

let ck be the unquantized information generated at iteration k, intended to be transferred to

71

the receiver over the digital channel, and let ĉk be the estimate of ck, built using quantized

information. The differential encoding/decoding rule reads: ĉ0 = 0, and for k = 1, . . . ,


qk = Qk(ck − ĉk−1),

ĉk = ĉk−1 + qk,

(3.4)

where Qk is the quantization operator (a map from real numbers to the set of quantized

points), possibly dependent on iteration k. In words, the encoder quantizes at each iteration

the “prediction” error ck −ĉk−1 rather than the current estimate ck, generating the quantized

signal qk, which is then transmitted over the digital channel. The estimate ĉk of ck is built

from qk using a one-step prediction rule. The rationale of this decoding rule is that, for

negligible quantization errors qk = Qk(ck − ĉk−1) ≈ ck − ĉk−1, the estimate reads ĉk =

ĉk−1 + qk ≈ ĉk−1 + ck − ĉk−1 = ck. Note that, since qk is received unaltered, ĉk is identical

at the transmitter’s and receiver’s sides.

We can now introduce our distributed algorithmic framework using quantized commu-

nications, as described in Algorithm 3 ; it embeds the differential enconding/decoding rule

(3.4) in each communication round of model (M). The fixed-point based formulation of

Algorithm 3 then reads: for i ∈ [m],

ck,1
i = C1

i

(
zk

i ,0Ni

)
,

ĉk,1
i = ĉk−1,1

i + Qk
i

(
ck,1

i − ĉk−1,1
i

)
,

...

ck,R
i = CR

i

(
zk

i , ĉ
k,R−1
Ni

)
,

ĉk,R
i = ĉk−1,R

i + Qk
i

(
ck,R

i − ĉk−1,R
i

)
,


(multiple communication rounds)

zk+1
i = Ai

(
zk

i , ĉ
k,1
Ni
, · · · , ĉk,R

Ni

)
, (computation step).

(3.5)

72

Algorithm 3 Distributed Algorithmic Framework with Quantized Communications
Require: ĉ−1,s ≜ 0, for all s ∈ [R]; and z0 ∈ Z. Set k = 0;

Iteration k → k + 1
(S.1): Multiple communication rounds

for s = 1, . . . , R, each agent i:
• Computes ck,s

i = Cs
i (zk

i , ĉ
k,s−1
Ni

) [with ĉk,0
i ≜ 0];

• Generates qk,s
i = Qk

i (ck,s
i − ĉk−1,s

i) and broadcasts it to its neighbors j ∈ Ni;
• Upon receiving the signals qk,s

j from its neighbors j ∈ Ni, it reconstructs ĉk,s
j as

ĉk,s
j = ĉk−1,s

j + qk,s
j , j ∈ Ni;

end
(S.2): Computation Step

Each agent i updates its own zk+1
i according to

zk+1
i = Ai(zk

i , ĉ
k,1
Ni
, · · · , ĉk,R

Ni
).

Stacking agents’ state-variables zi, signals ci and ĉi, and mappings Cs
i , Ai, and Qk

i into

the respective vectors z, c, ĉ, Cs , A, and Qk, we can rewrite (3.5) in compact form as

ĉk,0 = 0,

ck,s = Cs
(
zk, ĉk,s−1

)
,

ĉk,s = ĉk−1,s + Qk
(
ck,s − ĉk−1,s

)
, s ∈ [R],


(multiple communication rounds)

zk+1 = A
(
zk, ĉk,1, · · · , ĉk,R

)
. (computation step).

(Q-M)

Model (Q-M) paves the way to a unified design and convergence analysis of several

distributed algorithms–all the schemes cast in the form (M)–employing quantization in the

communications, as elaborated next.

3.3.1 Convergence Analysis

We begin by establishing sufficient conditions on the quantized mapping Qk and algo-

rithmic functions A and C in (Q-M) to preserve linear convergence

73

• On the quantization mapping Qk. A first critical choice is the quantizer Q (we

omit the dependence on k for notation simplicity), including both random and deterministic

quantization rules (the latter as special cases of the former). For random quantization,

the function Qi(x), i ∈ [m], is a random variable for any given x ∈ Rd, defined on a

suitable probability space (generally dependent on x). We propose the following novel biased

compression rule (BC-rule), for each agent i.

Definition 3.3.1 (Biased compression rule). Given x ∈ Rd, Q(x) (possibly, a random

variable defined on a suitable probability space) satisfies the BC-rule with bias η ≥ 0 and

compression rate ω ∈ [0, 1) if

√
E
[∥∥∥Q(x) − x

∥∥∥2

2

]
≤

√
d η + ω∥x∥2, ∀x ∈ Rd. (3.6)

When Q(x) is a deterministic map, (3.6) reduces to

∥∥∥Q(x) − x
∥∥∥

2
≤

√
d η + ω∥x∥2, ∀x ∈ Rd. (3.7)

Roughly speaking, the bias η determines the basic spacing between quantization points,

uniform across the entire domain. On the other hand, the compression term ω adds a

nonuniform spacing between quantization points: quantization points farther away from 0

will have more separation.

The BC-rule encompasses and generalizes several existing compression and quantization

rules proposed in the literature for specific algorithms, deterministic [6], [19]–[21], [24], [25],

[27], [57], [59]–[61], [66]–[69], [71], [73] and random [7], [23], [26], [28], [34], [44], [53]–[57],

[64], [65], [68]–[70], [72]–[74] ones. Specifically, (i) the compression rules proposed in [53]–

[57], [65], [68]–[70], [72]–[74] (resp. [57], [66]–[69], [71], [73]) can be interpreted as unbiased

instances of (3.6) [resp. (3.7)], i.e., corresponding to η = 0. The proof of L. 11 in Sec. 3.4 will

show that such special instances can only be implemented using infinite quantization points

(hence number of bits). (ii) On the other hand, the quantization rules in [7], [23], [26], [28],

[34], [44], [64] (resp. [6], [19]–[21], [24], [25], [27], [59]–[61]) are special cases of the BC-rule

(3.6) [resp. (3.7)], with ω = 0. While they can be implemented using a finite number of bits,

74

they do not take advantage of the degree of freedom offered by the compression rate ω, a

fact that will be numerically shown to lead to more communication-efficient schemes.

• On the algorithmic mappings A and Cs. Our analysis will require some standard

conditions on the mappings A and Cs (in addition to A. 6) to preserve linear convergence

under quantization. Roughly speaking, the functions A and Cs should vary smoothly with

respect to perturbations in their arguments, so that small quantization errors result in small

deviations from the trajectory of the unquantized algorithm. Specifically, we postulate the

following.

4

Assumption 7. There exists a constant LA ≥ 0 such that, for every s ∈ [R], it holds

∥∥∥A(z, c1, · · · , cs−1, cs, cs+1, · · · , cR)−A(z, c1, · · · , cs−1, cs ′, cs+1, · · · , cR)
∥∥∥ ≤ LA∥cs − cs ′∥2,

(3.8)

for all cs, cs ′ ∈ Rmd, uniformly with respect to z ∈ Z, and c1, . . . , cs−1, cs+1, . . . cR ∈ Rmd.

Assumption 8. There exist constants LC , LZ ≥ 0 such that

∥Cs(z, c) − Cs(z, c′)∥2 ≤ LC∥c − c′∥2, ∀c, c′ ∈ Rmd, (3.9)

∥Cs(z, c) − Cs(z′, c)∥2 ≤ LZ∥z − z′∥2, ∀z, z′ ∈ Z, (3.10)

uniformly with respect to z ∈ Z and c ∈ Rmd, respectively.

These assumptions are quite mild, and satisfied by a variety of existing distributed algo-

rithms, as we will show in App. 3.8.4 . We are now ready to introduce our main convergence

result.

4
 ↑ For the sake of notation, the constants LA, LC and LZ defined in A. 7 and A. 8 are assumed to be indepen-

dent of the index s (communication round). Our convergence results can be readily extended to constants
dependent on s.

75

Theorem 3.3.1. Let {zk}k∈Z+ be the sequence generated by Algorithm 3 under A. 6 - 8 , with

Qk satisfying the BC-rule (3.6) with bias η = η0 · (σ)k and compression rate ω ∈ [0, ω̄(σ)),

for some σ ∈ (λ, 1) and η0 > 0 , where ω̄(σ) is defined as

ω̄(σ) ≜ σ

R
· σ − λ

σ − λ+ 2LALZ [Rmax{1, (2LC)R−1}]2 . (3.11)

Then, √
E[∥zk − z∞∥2

2] ≤ V0 · (σ)k, k ∈ Z+,

where V0 is a positive constant, whose expression is given in (3.35), App. 3.8.1 .

Proof. See App. 3.8.1 .

Note that, when the deterministic instance of the BC-rule is used [see (3.7)], the conver-

gence rate reads ∥zk − z∞∥2 ≤ V0 · (σ)k, for all k ∈ Z+ .

T. 3.3.1 shows that linear convergence is achievable when quantized communications are

performed in distributed optimization, provided that the bias η and compression rate ω of

the BC-rule are chosen suitably. Specifically, the bias η should shrink linearly (at rate σ) and

the compression rate ω should be sufficiently small, so that the quantization errors along the

iterates will not accumulate disruptively. The final linear convergence rate is determined by

σ, which is larger than rate λ achievable by the same scheme that does not use any quanti-

zation. As expected, there is a tension between the amount of quantization/compression of

the transmitted signals (measured by η and ω) and the resulting linear convergence rate σ:

the slower the decay of η (resulting in less stringent quantization requirements), the slower

the convergence rate of the algorithm (the larger σ). However, as we will see in T. 3.5.1 , the

price to pay to achieve faster convergence is communication cost.

T. 3.3.1 certifies linear convergence in terms of number of iterations; building on this

result, in the forthcoming sections we study the communication complexity of the schemes

(Q-M)–the total number of bits needed to reach an ε-solution of problem (P). This depends

on the specific quantizer used in the algorithms. The next section introduces a novel quan-

tizer that satisfies the BC-rule whi using the minimum number of quantization points, and a

communication-efficient bit-encoding/decoding scheme. When embedded in (Q-M), the pro-

76

posed quantization leads to linearly convergent distributed algorithms whose communication

complexity compares favorably with that of existing ad-hoc schemes (Sec. 3.5).

3.4 Non-Uniform Quantizer with Adaptive Encoding/Decoding

As discussed in Sec. 3.3 , the BC-rule encompasses a variety of quantizer designs. In

this section, we propose a scalar quantizer that fulfills the BC-rule with minimum number

of quantization points (Sec. 3.4.1). The quantizer is then coupled with a communication-

efficient bit-encoding/decoding rule which enables transmission on the digital channel (Sec.

 3.4.2). We refer to the proposed quantizer coupled with the encoding/decoding scheme as

Adaptive encoding Non-uniform Quantization (ANQ).

3.4.1 Quantizer design

Since no information is assumed on the distribution of the input signal, a natural approach

is to quantize each vector signal component-wise. We design such a scalar quantizer Q :

[−δ, δ] → Q under the BC-rule by minimizing the number of quantization points |Q| for

a fixed input dynamic δ. Equivalently, we seek Q that maximizes δ, for a given number

N = |Q| of quantization points while satisfying the BC-rule. The optimal scalar deterministic

and probabilistic quantizer designs satisfying the BC-rule are provided in L. 11 and L. 12 ,

respectively. For convenience, we focus on the case of N odd; the case of N even is provided

in App. 3.8.2 .

Lemma 11 (Deterministic Quantizer). Let Q : [−δ, δ] → Q. The maximum range δ that

can be quantized using |Q| = N points while fulfilling the BC-rule (3.7) with bias η ≥ 0 and

compression rate ω ∈ [0, 1) is

δ(η, ω,N) = q(N−1)/2 + q(N+1)/2

2 , (3.12)

with quantization points

qℓ = −q−ℓ = η

ω

[(1 + ω

1 − ω

)ℓ

− 1
]
, ℓ ≥ 0. (3.13)

77

The resulting optimal quantization rule reads: x 7→ Q(x) = qℓ(x), with

ℓ(x) = sgn(x) ·
⌈ ln(1 − ω) + ln(1 + ω

η
|x|)

ln(1 + ω) − ln(1 − ω)

⌉
. (3.14)

Proof. See App. 3.8.2 .

From L. 11 , one infers that the optimal quantizer has quantization points non-uniformly

spaced–hence the name ANQ–and maps inputs x to the nearest qℓ.

We next study the optimal probabilistic quantizer design under the BC-rule (3.6).

Lemma 12 (Probabilistic Quantizer). For any given x ∈ [−δ, δ], let Q(x) ∈ Q be a random

variable defined on a suitable probability space. The maximum range δ that can be quantized

using |Q| = N points while fulfilling the BC-rule (3.6) with E[Q(x)] = x with bias η ≥ 0 and

compression rate ω ∈ [0, 1) is

δ(η, ω,N) = q(N−1)/2, (3.15)

with quantization points

qℓ = −q−ℓ = η

ω

[(√
1 + (ω)2 + ω

)2ℓ

− 1
]
, ℓ ≥ 0. (3.16)

The resulting optimal quantization rule reads: x 7→ Q(x) = qℓ(x), with

ℓ(x) =


ℓ− 1, w.p. qℓ−x

qℓ−qℓ−1
;

ℓ, w.p. x−qℓ−1
qℓ−qℓ−1

,

and ℓ = sgn(x)
⌈ ln(1 + ω

η
|x|)

2 ln
(√

1 + (ω)2 + ω
)⌉. (3.17)

Proof. See App. 3.8.2 .

The probabilistic quantizer above has quantization points non-uniformly spaced, and

maps x to one of the two nearest quantization points, selected randomly such that E[Q(x)] =

x.

Note that for the proposed deterministic and probabilistic quantizers, the index ℓ(x)

is sufficient information to infer the quantization point qℓ(x). In Sec. 3.4.2 we present a

78

communication-efficient finite bit-encoding/decoding scheme to transmit ℓ(x) over the digital

channel.

From L. 11 and L. 12 , it is clear that the optimal quantizer uses a finite number of quanti-

zation points (and thus of bits) when η > 0. This contrasts with the compression rule (3.2),

which cannot be implemented using a finite number of quantization points (in fact, in this

case δ(0, ω,N) = 0 for any finite N). The next corollary formalizes this negative result.

Corollary 2 (Converse). No quantizer using a finite number of quantization points can

satisfy the compression rule (3.2). Therefore, the compression rules in [53]–[57], [65]–[71],

[74] cannot be implemented using a finite number of bits.

Proof. See App. 3.8.2 .

3.4.2 Adaptive encoding scheme

It remains to design an encoding/decoding scheme mapping the index ℓ(x) into a finite-bit

representation, to be transmitted over the digital channel. To do so, we adopt an adaptive

number of bits, based upon the value of ℓ(x), as detailed next. We assume that a constellation

S = [S] ∪ {0} of S + 1 symbols is used, with S ≥ 2 (this might be obtained as S ≡ [S̃]w, by

concatenating sequences of w symbols from a smaller constellation S̃). We use the symbol 0

to indicate the end of an information sequence, and the remaining S symbols [S] to encode

the value of ℓ(x). Defining L̃−1 ≡ ∅, let

L̃b ≡
{

−
⌈

(S)b+1 − 1
2(S − 1)

⌉
+ 1, . . . ,

⌊
(S)b+1 − 1
2(S − 1)

⌋}
, b ∈ Z+,

and

Lb = L̃b \ L̃b−1, b = 0, 1, (3.18)

It is not difficult to check that {Lb : b = 0, 1, . . .} creates a partition of Z and |Lb| = (S)b.

Therefore, a natural way to encode ℓ(x) is to use a unique sequence of b symbols from [S],

i.e., [s1, . . . , sb] ∈ [S]b, where b is the unique integer such that ℓ(x) ∈ Lb. The transmitted

79

sequence coding ℓ(x) reads then [s1, . . . , sb, 0], where 0 marks the end of the information

sequence.

Upon receiving this sequence, the receiver can detect the start and end of the information

symbols, and decode the associated ℓ(x) by inverting the symbol-mapping. The communica-

tion cost to transmit the index ℓ(x) ∈ Lb is thus b+1 (symbols), which leads to the following

upper bound on the overall communication cost incurred by each agent i to quantize and

encode a d-dimensional vector x. Again, we focus on the case when N is odd; the other case

is provided in the proof in App. 3.8.3 .

Lemma 13. The number of bits C(x) required by the ANQ with bias η ≥ 0 and compression

rate ω ≥ 0 and constellation of S+ 1 symbols to quantize and encode an input signal x ∈ Rd

is upper bounded by

(i) Deterministic quantizer:

C(x) ≤ log2(S + 1)
[
3d+ d logS

(
2 +

ln(1 − ω) + ln
(
1 + ω∥x∥2√

dη

)
ln(1 + ω) − ln(1 − ω)

)]
bits; (3.19)

(ii) Probabilistic quantizer with E[Q(x)] = x:

C(x) ≤ log2(S + 1)
[
3d+ d logS

(
2 +

ln
(

1 + ω∥x∥2√
dη

)
2 ln

(√
1 + (ω)2 + ω

))] bits, a.s.. (3.20)

Proof. See App. 3.8.3 .

Compared with existing deterministic quantizers [59], [60] that are special cases of the

BC-rule (with ω = 0), the proposed ANQ adapts the number of bits to the input signal–less

bits for smaller input signals (mapped to smaller ℓ) and more bits for larger ones (mapped to

larger ℓ)–rather than using a fixed number of bits determined by the worst-case input signal

[59], [60]. This leads to more communication-efficient schemes, as certified by T. 3.5.2 .

Comparing the communication cost for the probabilistic and deterministic quantizers, it

can be shown that the former incurs in a larger cost than the latter. This is due to the fact

that in the probabilistic ANQ, the need to enforce the constraint E[Q(x)] = x makes the

solution less optimal than the one for deterministic ANQ.

80

3.5 Communication Complexity of (Q-M) using the ANQ Rule

We now study communication complexity of the distributed schemes falling within the

framework (Q-M) and using the ANQ to quantize communications. Our results complement

T. 3.3.1 and are of two types: (i) first, we determine the number of bits/agent to be used by

the ANQ at each iteration to guarantee linear convergence rate (in terms of iterations) of any

algorithm within (Q-M) (T. 3.5.1); (ii) then, we provide the communication complexity in

the setting of (i), that is, the total number of bits/agent transmitted to achieve an ε-solution

of (P) (T. 3.5.2). Finally, we customize (ii) to some specific distributed algorithms within

(Q-M) (Sec. 3.5.1).

Throughout this section, all the results stated in terms of O-notation are meant asymp-

totically when m, d → ∞. Also, the following additional mild assumption is postulated,

which is satisfied by a variety of existing algorithms, see App. 3.8.4 .

Assumption 9. The constants LA, LC , LZ and the initial conditions ∥Cs(z0,0)∥2 and ∥z0 −

z∞∥ satisfy

LALZ = O(1), LC = O(1), ∥Cs(z0,0)∥2 = O(LZ

√
md), ∀s ∈ [R],

and ∥z0 − z∞∥ = O(
√
md).

Our first result on the number of bits transmitted at each iteration to sustain linear

convergence is summarized next.

Theorem 3.5.1. Instate the setting of T. 3.3.1 , under the additional A. 9 . Furthermore,

suppose that the deterministic ANQ (or probabilistic ANQ with E[Q(x)] = x) is used to

quantize all the communications in (Q-M), with η0 = Θ(LZ(σ − λ)) and ω such that 1 −

ω/ω̄(σ) = Ω(1). Then, linear convergence
√
E[∥zk − z∞∥2

2] = O(
√
md · (σ)k), k ∈ Z+, is

achieved with an average number of bits/agent at every iteration k given by

O
(
d log2

(
1 + 1

σ(σ − λ)

))
. (3.21)

Proof. See App. 3.8.3 .

81

The following comments are in order.

(i) As expected, the faster the quantized algorithm (smaller σ), the larger the communi-

cation cost incurred per iteration; in particular, when σ → λ, the number of bits required to

sustain linear convergence at rate σ grows indefinitely. In other words, an infinite number

of bits is required if a quantized distributed scheme (Q-M) wants to match the convergence

rate of its unquantized counterpart.

(ii) It is interesting to contrast the communication efficiency (bits transmitted per iter-

ation) of the proposed model (Q-M) equipped with the ANQ with that of existing schemes.

Specifically, the schemes in [59], [60] use O(d log2(1+
√

md
σ(σ−λ))) bits/agent/iteration over mesh

networks while O(d log2(1 +
√

d
σ(σ−λ))) bits/agent/iteration are required in the analysis of [59]

over star networks. Both are less favorable than (3.21). This can be attributed to the fact

that the ANQ adapts the number of bits to the input signal rather than adopting a constant

number of bits for any input signal as [59], [60].

(iii) T. 3.5.1 reveals a tension between convergence rate (the closer σ to λ, the faster the

algorithm) and number of transmitted bits per iteration (the larger σ, the smaller the cost).

We provide a favorable choice of σ to exploit this trade-off and determine consequently the

total number of transmitted bits/agent to achieve a target ε-accuracy.

Theorem 3.5.2. Instate the setting of T. 3.5.1 , with R = O(1) and σ chosen so that
(1−λ)2

(1−σ)(σ−λ) = O(1). Then, the following average number of (transmitted) bits/agent is suffi-

cient for {zk}k∈Z+ to achieve (1/m)E[∥zk − z∞∥2
2] ≤ ε:

O
(
d log2

(
1 + 1

1 − λ

) 1
1 − λ

log2(d/ε)
)

bits/agent. (3.22)

Proof. See App. 3.8.3 .

The following comments are in order.

(i) Intuitively, T. 3.5.2 provides a range of values of σ to balance the conflicting effect

on the convergence rate and communication cost per iteration resulting from too small or

too large values of σ. The condition of the theorem can be satisfied, e.g., by choosing

σ = (1 + λ)/2.

82

(ii) The term d · log2(1 + 1/(1 − λ)) in (3.22) represents the number of bits/iteration, as

postulated by T. 3.5.2 , under the additional restriction on σ: the faster the unquantized algo-

rithm (i.e., the smaller λ), the fewer bits are required. The second term (1 − λ)−1 log2(d/ε)

represents the total number of iterations required to achieve ε accuracy for the unquan-

tized algorithm, with log2(d) capturing the gap of the initial point from the fixed point; as

expected, the number of iterations increases as the unquantized algorithm slows down (λ

increases), the dimension d increases, and/or the target error ε decreases.

Nest, we customize T. 3.5.2 to some distributed algorithms within (Q-M).

3.5.1 Special cases of (Q-M) using the ANQ rule

1) GD over star-networks: Our first case study is the GD algorithm solving (P) (with

r = 0) over star networks. The unquantized scheme reads

xk+1 = xk − γ

m

m∑
i=1

∇fi(xk), (3.23)

with γ ∈ (0, 2/L). In [59], it is shown that, when employed with the quantization scheme

proposed therein, the resulting quantized GD achieves an ε-solution by transmitting on

average

O
(

log2

(
1 + d

1 − λ

)
d

1 − λ
log2

(
d/ε

))
bits/agent. (3.24)

The GD (3.23) is an instance of (M); therefore, we can employ quantization in the master-

workers’ communications and cast the resulting quantized algorithm in (Q-M). When the

ANQ is used, a direct application of T. 3.5.2 leads to the following communication complexity.

Corollary 3 (GD over star networks). The GD algorithm (3.23) employing quantization in

the master-workers’ communications using the ANQ with tuning as in T. 3.5.2 requires on

average of

O
(

log2

(
1 + 1

1 − λ

)
d

1 − λ
log2

(
d/ε

))
bits/agent, (3.25)

to reach an ε-solution of (P) (with r = 0).

83

A direct comparison of (3.24) and (3.25) shows that the proposed ANQ improves on the

state-of-the-art deterministic quantizer with shrinking range developed in [59].

2) Distributed algorithms employing gradient correction: Our second example

deals with distributed algorithms solving (P) (now possibly with r ̸= 0) over mesh networks.

We consider among the most popular ones, employing gradient correction in the optimization

direction. Their computational complexity when using the ANQ is summarized next–see

App. 3.8.4 for a description of such algorithms.

Corollary 4 (mesh networks). Consider any of the following algorithms using the ANQ in

agents’ communications, with parameters as specified in T. 3.5.2 : the primal-dual algorithm

(solving (P) with r = 0) [59]; the (Prox-)EXTRA, (Prox-)NEXT, (Prox-)DIGing, and (Prox-

)NIDS [80] (for general (P) with r ̸= 0). An ε-solution is achieved by transmitting on average

O
(

log2

(
1 + 1

1 − λ

)
d

1 − λ
log2

(
d/ε

))
bits/agent.

To our knowledge, C. 4 provides the first analytical result on the communication cost

to achieve an ε-solution of Problem (P) by distributed algorithms over mesh networks. In

particular, the schemes employing the proposed ANQ are the first algorithms using finite

rate communications when applied to such a general class of optimization problems (with

r ̸= 0) and networks (mesh topology).

3.6 Numerical Results

In this section, we validate numerically our theoretical findings and compare different

distributed algorithms using quantization. We simulate two instances of (P): a least square

and a logistic regression problem. The communication network is modelled by an undirected

graph ofm = 20 agents, generated by the Erdos-Renyi model with edge activating probability

of 0.6. We measure performance of the algorithms using the following two metrics:

MSEk ≜
∑m

i=1 ∥xk
i − x∗∥2

2
m∥x∗∥2

2
and Ccm(ε) ≜

kε∑
k=0

R∑
s=1

m∑
i=1

bk,s
i , (3.26)

84

where kε ≜ mink∈Z+ MSEk ≤ ε and bk,s
i is the number of bits used by the quantizer for

encoding the sth transmitted signal by agent i at iteration k.

3.6.1 Least square problem

Problem setting: Consider the following least square problem [instance of (P)] over net-

works:

fi(x) = 1
2∥Uix − vi∥2

2 + 0.01
2 ∥x∥2

2 and r(x) = α∥x∥1, (3.27)

where Ui ∈ R20×40 and vi ∈ R1×40 are the feature vector and observation measurements, re-

spectively, accessible only by agent i. These are generated as follows [86]: U1 ∼ N (0, 1√
1−β2

I)

and, for i > 1, Ui|Ui−1 ∼ N (βUi−1, I), where β = 0.3. In this way, each row of U =

[U1, · · · U40] is a Gaussian random vector with zero mean and covariance depending on β:

larger β generates more ill-conditioned covariance matrices. Then, letting x0 ∈ R40 be the

ground truth vector, generated as a sparse vector with 70% zero entries, and i.i.d. nonzero

entries drawn from N (0, 1), we generate v = [v1, · · · v40] as v|(U,x0) ∼ N (Ux0, 0.04I). We

let µ, L be the strong convexity and smoothness parameters of fi, respectively.

5

We test several distributed algorithms considering either smooth (α = 0) or nonsmoooth

instances of the least square problem (3.27). In fact, most of the existing schemes are

applicable only to smooth optimization problems. The free parameters of these algorithms

are tuned as recommended in the original papers, unless otherwise stated; the weight matrix

W̃ used to mix the received signals is constructed according to the Metropolis-Hastings rule

[35]; the number of bits transmitted by each scheme as reported below is per agent, per

dimension, per iteration. For each quantized algorithm, we choose σ = 0.99 ·λ+ 0.01, where

λ = (MSE100/MSE50)0.01 is the numerical estimate of the convergence rate of its unquantized

counterpart.

Smooth least square (Fig. 3.2a): We begin by considering the smooth least square

problem and the following quantized schemes:
5

 ↑ When fi is µi-strongly convex and Li-smooth, we let µ = mini µi and L = maxi Li.

85

1) Q-Dual [59]: parameters are chosen as in [59 , T.1]–the averaged number of transmitted

bits is 13.

2) ANQ-Dual: this is the primal-dual algorithm [75] equipped with the proposed deter-

ministic ANQ (see App. 12), with η0 = 0.01 and ω = ω̄/2 [recall that ω̄ is defined in

(3.11)]–the average transmitted number of bits is 6.63.

3) Q-NEXT [60], with quantization as in [60 , T.4]–the average transmitted number of bits

is 78.

4) ANQ-NEXT: this is the NEXT algorithm [8], [62], [79] quantized using the deterministic

ANQ with η0 = 0.029 and ω = ω̄/2. The average transmitted number of bits is 15.69.

5) ANQ-NIDS: this is an instance of the NIDS algorithm [80], [82] equipped with the deter-

ministic ANQ (see App. 12) with parameters η0 = 0.001 and ω = ω̄/2. The transmitted

average number of bits is 8.69.

As benchmark, we also simulated some of the unquantized instances of the algorithms

listed above, namely:

6) Primal-Dual [75] with step-size γ = 2Lµ/(µρm−1(L) + Lρ1(L)) ([59 , P.2]), where L is

the graph Laplacian matrix associated with the graph.

7) NEXT [8], [62], [79] with step-size γ = 0.0029, manually tuned for fastest practical

convergence.

8) NIDS [80], [82] with step-size γ = 2
L+µ

and mixing matrix W = [(1+ν)I+(1−ν)W̃]/2,

with ν = 0.001.

In Fig. 3.2a , we plot the MSE versus iteration index k. Remarkably, all algorithms, when

equipped with ANQ, incur in a negligible loss of convergence speed with respect to their

unquantized counterpart. Comparing ANQ with the state-of-the-art quantized algorithms,

we notice that ANQ is more communication-efficient than Q-NEXT and Q-Dual that instead

86

0 20 40 60 80 100

Iteration

10-6

10-5

10-4

10-3

10-2

10-1

100

M
S

E

Primal-Dual [75]: ∞ Bits

Q-Dual [59]: 13.00 Bits12

ANQ-Dual: 6.63 Bits

NEXT [8], [62], [79]: ∞ Bits

Q-NEXT [60]: 78.00 Bits

ANQ-NEXT: 18.00 Bits

NIDS [80], [82]: ∞ Bits

ANQ-NIDS: 14.09 Bits

(a)

0 20 40 60 80 100

Iteration

10-6

10-5

10-4

10-3

10-2

10-1

100

M
S

E

Prox-DIGing [80]: ∞ Bits

ANQ-Prox-DIGing: 29.00 Bits

Prox-EXTRA [80]: ∞ Bits

ANQ-Prox-EXTRA: 29.00 Bits

Prox-NEXT [80]: ∞ Bits

ANQ-Prox-NEXT: 29.00 Bits

Prox-NIDS [80]: ∞ Bits

ANQ-Prox-NIDS: 29.00 Bits

(b)

Figure 3.2. Least square problem (3.27): MSE versus iterations for the
smooth (a) and non-smooth (b) cases. Solid curves and markers refer to algo-
rithms with exact and quantized communications, respectively.

87

use deterministic uniform quantizers with shrinking range: ANQ-NEXT (18 bits) and ANQ-

Dual (6.63 bits) use fewer bits per iteration than Q-NEXT (13 bits) and Q-Dual (78 bits),

respectively, despite converging faster.

Nonsmooth least square (Fig. 3.2b): We now move to the nonsmooth instance of

(3.27), with α = 10−4. We tested the following quantized algorithms:

1) ANQ-Prox-EXTRA: this is an instance of the Prox-EXTRA algorithm [80] equipped with

the deterministic ANQ (see App. 12) with parameters η0 = 2.68 × 10−5 and ω = ω̄/2.

2) ANQ-Prox-NEXT: this is the Prox-NEXT algorithm [80] equipped with the deterministic

ANQ (see App. 12) with parameters η0 = 2.85 × 10−3 and ω = ω̄/2.

3) ANQ-Prox-DIGing: this is the Prox-DIGing algorithm [80] equipped with the deter-

ministic ANQ (see App. 12) with parameters η0 = 3.65 × 10−3 and ω = ω̄/2.

4) ANQ-Prox-NIDS: this is the Prox-NIDS algorithm in [80] equipped with the determin-

istic ANQ (see App. 12) with parameters η0 = 3.08 × 10−5 and ω = ω̄/2.

As benchmark, we also included the unquantized counterparts of the above algorithms; in

all these schemes we used the weight matrix W = [(1+ν)I+(1−ν)W̃]/2 with ν = 0.001; the

step-size is chosen according to [80], namely: γ = 2ρm(W)
L+µρm(W) for Prox-EXTRA, γ = 2ρm(W2)

L+µρm(W2)

for Prox-DIGing, and γ = 2
L+µ

for Prox-NEXT and Prox-NIDS.

Fig. 3.2b plots the MSE achieved by all the algorithms versus the iteration index. As pre-

dicted, all four quantized schemes converge linearly. Remarkably, all of the ANQ-equipped

algorithms incur in a negligible loss of convergence speed with respect to their unquantized

counterparts, while transmitting only 29 bits per agent/dimension/iteration.

3.6.2 Logistic regression

We now consider the distributed logistic regression problem using the MNIST dataset

[87]. This is an instance of (P) with

fi(x) = 0.01
2 ∥x∥2

2 + 1
3000

3000∑
p=1

ln
(

1 + exp
(

− vi,pu⊤
i,px

))
, and r(x) = α∥x∥1, (3.28)

88

where ui,p ∈ R784×1 and vi,p ∈ {−1, 1} are the feature vector and labels, respectively, only

accessible by agent i. Here we implement the one-vs.-all scheme, i.e., the goal is to distinguish

the data of label ’0’ from others. To generate ui,p, we first flatten each picture of size 28×28

in MNIST into a real feature vector of length 28 × 28 = 784, and then normalize it to unit

l2 norm. We then allocate equal number of feature vectors and labels to each agent.

Smooth logistic regression (Fig. 3.3a): We begin by considering the smooth logistic

regression problem (3.28), with α = 0. We tested the same algorithms (with the same

tuning) as described in Sec. 3.6.1 for the smooth least square problem. In Fig. 3.3a , we

plot the MSE versus iteration index k. Consistently with the results in Fig. 3.2a , we notice

the following facts. ANQ-NIDS achieves the fastest convergence, followed by ANQ-NEXT,

ANQ-Dual, Q-Dual and Q-NEXT. Comparing our quantization method with existing ones

on the same algorithm, we notice that the proposed ANQ is more communication-efficient

than Q-NEXT and Q-Dual: ANQ-NEXT (14 bits) and ANQ-Dual (6.7 bits) use fewer bits

per iteration than Q-NEXT (50 bits) and Q-Dual (12 bits), despite converging faster.

Nonsmooth logistic regression (Fig. 3.3b): We now consider the nonsmooth instance

of the logistic regression problem (3.28), with α = 10−4. We tested the same algorithms

(with the same tuning) as described in Sec. 3.6.1 for the nonsmooth least square problem.

Fig. 3.3b plots the MSE achieved by all the algorithms versus iterations k. The results

confirm the trends already commented in Fig. 3.2b .

3.6.3 Communication cost

We now study the effect of dimension d on the communication cost for different algorithms

solving the nonsmooth least square problem (3.27), with α = 10−4. Note that the rate of

an unquantized algorithm λ depends on both the weight matrix and the condition number

κ = L/µ, which depends itself on d. We chose the coefficient of the l2 regularizer so as

to make κ remain fixed across different d. The rest of the settings are the same as in Fig.

 3.2b . Fig. 3.4 plots the communication cost versus d, for a target MSE-accuracy ε = 10−8.

One can observe that the communication cost for all algorithms scales roughly linearly with

respect to the dimension, which is consistent with T. 3.5.2 .

89

0 20 40 60 80 100

Iteration

10-6

10-4

10-2

100

102

M
S

E

Primal-Dual [75]: ∞ Bits

Q-Dual [59]: 12.00 Bits

ANQ-Dual: 6.68 Bits

NEXT [8], [62], [79]: ∞ Bits

Q-NEXT [60]: 50.00 Bits

ANQ-NEXT: 14.05 Bits

NIDS [80], [82]: ∞ Bits

ANQ-NIDS: 14.15 Bits

(a)

0 20 40 60 80 100

Iteration

10-6

10-4

10-2

100

102

M
S

E

Prox-DIGing [80]: ∞ Bits

ANQ-Prox-DIGing: 28.00 Bits

Prox-EXTRA [80]: ∞ Bits

ANQ-Prox-EXTRA: 28.00 Bits

Prox-NEXT [80]: ∞ Bits

ANQ-Prox-NEXT: 28.00 Bits

Prox-NIDS [80]: ∞ Bits

ANQ-Prox-NIDS: 28.00 Bits

(b)

Figure 3.3. Logistic regression (3.28): MSE versus iterations for the smooth
(a) and non-smooth (b) cases. Solid curves and markers refer to algorithms
with exact and quantized communications, respectively.

90

20 40 60 80 100 120 140 160

d

0

1

2

3

4

5

6

7

8

C
c
m

×107

ANQ-Prox-EXTRA

ANQ-Prox-NEXT

ANQ-Prox-DIGing

ANQ-Prox-NIDS

Figure 3.4. Communication cost evaluation on nonsmooth least square prob-
lem with α = 10−4 versus d.

Finally, we investigate numerically the effect of σ and ω on the communication cost as

defined in (3.26), for a target MSE-accuracy ε = 10−8. We consider the ANQ-NIDS algorithm

solving the least square problem (3.27), with α = 0. Fig. 3.5a plots the communication cost

versus σ with ω = ω̄/2. Note that there is a sweet spot for σ, resulting in a saving of 64%

with respect to the largest communication cost, which justifies the discussion in Sec. 3.5

that σ should be chosen away from λ and 1 in order to save on communication cost. Fig.

 3.5a plots the communication cost (3.26) versus ω with σ = 0.99 × λ+ 0.01. It can be seen

that, by optimizing the compression rate ω, a saving of 30% in communication cost can be

obtained over a quantization scheme that employs no compression (ω = 0). This observation

numerically supports our BC-rule, which is more general than the deterministic/probabilistic

quantizers that have no compression term.

91

0.85 0.9 0.95 1

σ

0

2

4

6

8

10

12

14

16

18

C
c
m

×10
5

C
cm

λ = 0.84

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ω

2.2

2.4

2.6

2.8

3

3.2

3.4

C
c
m

×10
5

(b)

Figure 3.5. Communication cost evaluation of ANQ-NIDS on smooth least
square problem: (a) effect of σ with ω = ω̄/2; and (b) ω with σ = 0.99×λ+0.01.

92

3.7 Conclusions

This chapter proposes a black-box model and unified convergence analysis for a general

class of linearly convergent algorithms subject to quantized communications. This generalizes

existing algorithmic frameworks, which cannot deal with composite optimization problems

and model distributed algorithms using historical information (e.g., EXTRA [76] and NEXT

[8]). Quantizaton is addressed by proposing a novel biased compression (BC-)rule that pre-

serves linear convergence of distributed algorithms while using a finite number of bits in

each communication. In fact, we proved that most of existing quantization rules can be

implemented only using an infinite number of bits. As special instance of the BC-rule, we

also proposed a new (random) quantizer, the ANQ, coupled with a communication-efficient

encoding scheme. The communication cost of a variety of distributed algorithms equipped

with the ANQ was analyzed (in a unified fashion), showing favorable performance analyt-

ically and numerically with respect to existing quantization rules and ad-hoc distributed

algorithms.

3.8 Appendix

3.8.1 Proof of Theorem 3.3.1

In this appendix we prove T. 3.3.1 . We begin by introducing some preliminary results,

whose proofs are deferred to the end of this section. Throughout this section, we make the

blanket assumption that the conditions in T. 3.3.1 are satisfied. In particular, σ ∈ (λ, 1) and

ω ∈ [0, ω̄(σ)), with ω̄(σ) defined in (3.11). Due to the possibly random nature of the quan-

tizer, {zk, ck,s, ĉk,s}k∈Z+,s∈[R] is a stochastic process defined on a proper probability space; we

denote by Fk,s the σ-algebra generated by {zk, ck,s, ĉk,s}k<k,s∈[R] ∪ {zk, ck,s, ĉk,s−1}s≤s (ĉk,s

excluded).

93

Preliminaries

The idea of the proof is to show by induction that both the optimization error ∥zk − z∞∥

and the input to the quantizer, ∥ck,s − ĉk−1,s∥2, are linearly convergent (in expectation) at

rate σ, i.e.,

√
E[
∥∥∥zk − z∞

∥∥∥2
] ≤ V0 · (σ)k, (3.29)√

E[
∥∥∥ck,s − ĉk−1,s

∥∥∥2

2
] ≤ F s · (σ)k, ∀s ∈ [R] ∪ {0}, (3.30)

where F 0 = 0, and V0, F s, s ∈ [R] satisfy

V0 ≥ max
{

∥z0 − z∞∥,
√
mdRη0 + ωF⊤1

σ − λ
L̃A

}
, (3.31)

F s ≥ max
{
LZc

∗ + LC

√
mdη0 + LC(1 + ω)F s−1,

√
mdη0(1 + LCσ) + LCσ(1 + ω)F s−1 + LZ(1 + σ)V0

σ − ω

}
, ∀s ∈ [R], (3.32)

and we have defined F ≜ (F s)s∈[R],

c∗ ≜
1
LZ

max
s∈[R]

∥Cs(z0,0)∥2, (3.33)

L̃A ≜ LA

R−1∑
s=0

(LC)s. (3.34)

The existence of such V0 and F s, s ∈ [R], is proved in the following lemma.

Lemma 14. Let ω ∈ [0, ω̄(σ)). Then, (3.31) and (3.32) are satisfied by

V0 = max
{
c∗, ∥z0 − z∞∥

}
+ LAψ

√
mdR2η0

σ − λ

1 + Rω
σ

[(1 + LCσ)ψ − 1]
1 − ω/ω̄

, (3.35)

F s =
√
mdη0(1 + LCσ) + 2LZV0(σ, ω, η0)

σ − ω

s−1∑
s=0

(2LC

1 − ω/σ

)s

, s ∈ [R], (3.36)

where ψ ≜ max{1, (2LC)R−1}.

94

Since the effect of ∥ck,s − ĉk−1,s∥2 on ∥zk − z∞∥ is through quantization, we need the

following bound on the quantization error (its proof follows readily by the Cauchy–Schwarz

inequality).

Lemma 15. Let Qi, i ∈ [m], satisfy the BC-rule (3.6) with bias η ≥ 0 and compression rate

ω ∈ [0, ω̄(σ)). Then the following holds for the stack Q ≜ [Q1, . . . , Qm]⊤:

√
E[
∥∥∥Q(x)−x

∥∥∥2

2
] ≤

√
mdη + ω∥x∥2, ∀x = [x⊤

1 , . . . ,x⊤
m]⊤ ∈ Rmd. (3.37)

A direct application of L. 15 leads to the following bound on the quantizer’s input, which

we use recurrently in the proofs:

√
E
[∥∥∥ĉk,s − ck,s

∥∥∥2

2
|Fk,s

] (Q-M)=
√
E
[∥∥∥Qk(ck,s − ĉk−1,s) − (ck,s − ĉk−1,s)

∥∥∥2

2
|Fk,s

]
(3.37)
≤

√
mdη0 · (σ)k + ω

∥∥∥ck,s − ĉk−1,s
∥∥∥

2
, a.s., (3.38)

for all s ∈ [R] and k ∈ Z+, where we used ηk = η0 · (σ)k.

The following lemma bounds the distortion introduced by quantization in one iteration

of (Q-M).

Lemma 16. There holds: for all k ∈ Z+,

√
E[∥zk+1 − z∞∥2] ≤ λ

√
E[
∥∥∥zk − z∞

∥∥∥2
] + L̃A

√
mdRη0 · (σ)k + L̃Aω

R∑
s=1

√
E[∥ck,s − ĉk−1,s∥2

2],

a.s., where L̃A is defined in (3.34).

We conclude this section of preliminaries with the following useful result.

Lemma 17. Let {Xt : t ∈ [T]} ⊂ R be a collection of random variables. Then,

√√√√E
[(T∑

t=1
Xt

)2
]

≤
T∑

t=1

√
E[X2

t].

Proof. It can be proved by developing the square within the expectation on the left hand

side expression, and by using E[XtXu] ≤
√
E[X2

t]
√
E[X2

u].

95

Proof of Theorem 3.3.1

We prove (3.29) and (3.30) by induction. Let V0 and F s, s ∈ [R], satisfy (3.31) and

(3.32). Since ∥z0 − z∞∥ ≤ V0 (see (3.31)) and c0,0 = ĉ−1,0 = 0, (3.29) holds for k = 0 and

(3.30) holds trivially for k = 0 and s = 0. We now use induction to prove that (3.30) holds

for k = 0 and s ∈ [R]. Assume that (3.30) holds for k = 0 and s < R. Then, it follows that

∥∥∥c0,s+1 − ĉ−1,s+1
∥∥∥

2
=
∥∥∥c0,s+1

∥∥∥
2

(a)
≤
∥∥∥Cs+1

(
z0,0

)∥∥∥
2

+
∥∥∥Cs+1

(
z0, ĉ0,s

)
− Cs+1

(
z0, c0,s

)∥∥∥
2

+
∥∥∥Cs+1

(
z0, c0,s

)
− Cs+1

(
z0,0

)∥∥∥
2

(3.9),(3.33)
≤ LZc

∗ + LC

∥∥∥ĉ0,s − c0,s
∥∥∥

2
+ LC

∥∥∥c0,s − ĉ−1,s
∥∥∥

2
, a.s.,

where in (a) we used the triangle inequality and c0,s+1 = Cs+1
(
z0, ĉ0,s

)
. Taking the condi-

tional expectation on both sides and using L. 17 yield

√
E
[∥∥∥c0,s+1 − ĉ−1,s+1

∥∥∥2

2
|F0,s

]
≤ LZc

∗ + LC

√
E
[∥∥∥ĉ0,s − c0,s

∥∥∥2

2
|F0,s

]
+ LC

∥∥∥c0,s − ĉ−1,s
∥∥∥

2
(3.38)
≤ LZc

∗ + LC

√
mdη0 + LC(1 + ω)

∥∥∥c0,s − ĉ−1,s
∥∥∥

2
, a.s..

Taking the unconditional expectation on both sides and using again L. 17 yield

√
E
[∥∥∥c0,s+1 − ĉ−1,s+1

∥∥∥2

2

]
≤ LZc

∗ + LC

√
mdη0 + LC(1 + ω)

√
E[
∥∥∥c0,s − ĉ−1,s

∥∥∥2

2
]

(3.30)
≤ LZc

∗ + LC

√
mdη0 + LC(1 + ω)F s

(3.32)
≤ F s+1,

which completes the induction proof of (3.30) for k = 0 and s ∈ [R]. Now, let us assume

that (3.29) and (3.30) hold for a generic k ∈ Z+; we prove that they hold at k+ 1. We begin

with (3.29). Invoking L. 16 , L. 17 , and using the induction hypotheses (3.29) and (3.30) at k,

yield

√
E[∥zk+1 − z∞∥2] ≤ λV0 · (σ)k + L̃A

(√
mdRη0 + ωF⊤1

)
· (σ)k ≤ V0 · (σ)k+1,

96

where the last inequality follows from the definition of V0 in (3.31), which concludes the

induction argument for (3.29).

We now prove that (3.30) holds for k + 1, by induction over s ∈ [R]. First, note that

(3.30) holds trivially for k + 1 and s = 0, since ck+1,0 = ĉk,0 = 0. Now, assume that (3.30)

holds at iteration k + 1 for s < R. Then,

∥∥∥ck+1,s+1 − ĉk,s+1
∥∥∥

2

(Q-M)=
∥∥∥Cs+1

(
zk+1, ĉk+1,s

)
− Cs+1

(
zk+1, ck+1,s

)
+ Cs+1

(
zk+1, ck+1,s

)
− Cs+1

(
zk, ĉk,s

)
+ ck,s+1 − ĉk,s+1

∥∥∥
2

(a)
≤
∥∥∥Cs+1

(
zk+1, ĉk+1,s

)
− Cs+1

(
zk+1, ck+1,s

)∥∥∥
2

+
∥∥∥Cs+1

(
zk+1, ck+1,s

)
− Cs+1

(
zk, ĉk,s

)∥∥∥
2

+
∥∥∥ck,s+1 − ĉk,s+1

∥∥∥
2

(3.9),(3.10)
≤ LC

∥∥∥ĉk+1,s − ck+1,s
∥∥∥

2
+ LC

∥∥∥ck+1,s − ĉk,s
∥∥∥

2
+ LZ

∥∥∥zk+1 − z∞
∥∥∥

2

+ LZ

∥∥∥zk − z∞
∥∥∥

2
+
∥∥∥ĉk,s+1 − ck,s+1

∥∥∥
2
, a.s..

Then, taking the conditional expectation on Fk+1,s and invoking L. 17 and (3.38) to bound√
E
[∥∥∥ĉk+1,s − ck+1,s

∥∥∥2

2
|Fk+1,s

]
, yield

√
E[
∥∥∥ck+1,s+1 − ĉk,s+1

∥∥∥2

2
|Fk+1,s] ≤ LC

√
mdη0 · (σ)k+1 + LC(1 + ω)

∥∥∥ck+1,s − ĉk,s
∥∥∥

2

+ LZ

∥∥∥zk+1 − z∞
∥∥∥

2
+ LZ

∥∥∥zk − z∞
∥∥∥

2
+
∥∥∥ĉk,s+1 − ck,s+1

∥∥∥
2
, a.s..

Now, taking the conditional expectation on Fk,s+1 ⊆ Fk+1,s, invoking L. 17 , and (3.38) to

bound
√
E
[∥∥∥ĉk,s+1 − ck,s+1

∥∥∥2

2
|Fk,s+1

]
, yield

√
E[
∥∥∥ck+1,s+1 − ĉk,s+1

∥∥∥2

2
|Fk,s+1]

≤
√
mdη0(1 + LCσ) · (σ)k + LC(1 + ω)

√
E[∥ck+1,s − ĉk,s∥2

2|Fk,s+1]

+ LZ

√
E[
∥∥∥zk+1 − z∞

∥∥∥2

2
|Fk,s+1] + LZ

√
E[
∥∥∥zk − z∞

∥∥∥2

2
|Fk,s+1] + ω

∥∥∥ck,s+1 − ĉk−1,s+1
∥∥∥

2
, a.s..

Taking the unconditional expectation and invoking L. 17 again yield

√
E[
∥∥∥ck+1,s+1 − ĉk,s+1

∥∥∥2

2
]

97

≤
√
mdη0(1 + LCσ) · (σ)k + LC(1 + ω)

√
E[
∥∥∥ck+1,s − ĉk,s

∥∥∥2

2
]

+ LZ

√
E[
∥∥∥zk+1 − z∞

∥∥∥2

2
] + LZ

√
E[
∥∥∥zk − z∞

∥∥∥2

2
] + ω

√
E[
∥∥∥ck,s+1 − ĉk−1,s+1

∥∥∥2

2
]

(a)
≤

√
mdη0(1 + LCσ) · (σ)k + LC(1 + ω)F s · (σ)k+1 + ωF s+1 · (σ)k + LZ(1 + σ)V0 · (σ)k

(3.32)
≤ F s+1 · (σ)k+1,

where in (a) we used the induction hypotheses (3.30) (applied to the second and last terms)

and (3.29) (applied to the third and fourth terms). This proves the induction for (3.30), and

the theorem.

Proof of Lemma 14

It is not difficult to check that conditions (3.31) and (3.32) can be satisfied by choosing

V0 ≥ max
{
c∗, ∥z0 − z∞∥,

√
mdRη0 + ωF⊤1

σ − λ
L̃A

}
,

F s ≥
√
mdη0(1 + LCσ) + LCσ(1 + ω)F s−1 + LZ(1 + σ)V0

σ − ω
, ∀s ∈ [R],

where c∗, L̃A are defined in (3.33) and (3.34), respectively. Moreover, since ω < σ < 1, it is

sufficient to choose

F s = 1
σ

√
mdη0(1 + LCσ) + 2LCσF

s−1 + 2LZV0

1 − ω/σ
, ∀s ∈ [R].

Solving this expression recursively yields (3.36).

We now prove (3.35). We begin noting that F s is a non-decreasing function of s, hence

F s ≤ FR. Moreover, FR is an affine function of V0. Using the facts that (2LC

1−ω/σ
)s ≤

ψ(1 −ω/σ)−s, where ψ ≜ max{1, (2LC)R−1}, and (1 −ω/σ)−s ≤ (1 −ω/σ)(1 −Rω/σ)−1, for

all s ∈ [R − 1] ∪ {0} and ω < ω̄(σ) < σ/R, we can upper bound F s as

F s ≤ FR ≤ a1 + V0a2 ≜ F̄R, (3.39)

98

where

a1 ≜ ψ
√
mdη0(1 + LCσ) · R/σ

1 −Rω/σ
, (3.40)

a2 ≜ 2LZψ · R/σ

1 −Rω/σ
. (3.41)

Furthermore, since F⊤1 ≤ RFR ≤ R(a1 + V0a2) and L̃A = LA
∑R−1

s=0 (LC)s ≤ LAψR, to

satisfy (3.31), it is sufficient to choose V0 as

V0 ≥ max
{
c∗, ∥z0 − z∞∥, LAψR

2
√
mdη0 + ω(a1 + V0a2)

σ − λ

}
.

Using x ≥ max{c, a + bx} ⇔ x ≥ max{c, a/(1 − b)}, under b < 1, the above condition is

equivalent to

V0 ≥ max
{
c∗, ∥z0 − z∞∥, LAψR

2(
√
mdη0 + ωa1)

σ − λ− LAψR2ωa2

}
, (3.42)

as long as LAψR
2ωa2/(σ − λ) < 1. Solving with respect to ω (note that a2 is a function of

ω), this condition is equivalent to ω ∈ [0, ω̄(σ)) with ω̄(σ) given by (3.11), hence it holds

by assumption. Substituting the values of a1, a2 in (3.42) and using max{a, b} ≤ a + b (for

a, b ≥ 0), yields (3.35). □.

Proof of Lemma 16

At iteration k, let ζs be defined as

ζs = A
(
zk, ĉk,1, . . . , ĉk,s, c̃s+1

s , . . . , c̃R
s

)
,

where

c̃s
s = ĉk,s and c̃ℓ+1

s ≜ Cℓ+1
(
zk, c̃ℓ

s

)
,∀ℓ ≥ s.

99

In other words, c̃ℓ
s, ζ

s are the communication signals at round ℓ and the updated computation

state, respectively, obtained by applying the unquantized communication mapping after

round s and the quantized one before round s. Clearly, zk+1 = A(zk, ĉk,1, · · · , ĉk,R) = ζR

and Ã(zk) = ζ0 (unquantized update of the computation state). It then follows that

zk+1 = ζR = Ã(zk) +
R∑

s=1

(
ζs − ζs−1

)
, a.s..

Invoking the triangle inequality yields

∥∥∥zk+1 − z∞
∥∥∥ ≤

∥∥∥Ã(zk) − z∞
∥∥∥+

R∑
s=1

∥ζs − ζs−1∥, a.s.. (3.43)

We now study the second term. From the Lipschitz continuity of A (A. 7) and the definition

of ζs, it holds that

∥ζs − ζs−1∥ ≤ LA

R∑
ℓ=s

∥c̃ℓ
s − c̃ℓ

s−1∥2, a.s..

Furthermore, ∥c̃s
s − c̃s

s−1∥2 = ∥ĉk,s − Cs(zk, ĉk,s−1)∥2 = ∥ĉk,s − ck,s∥2 a.s., and, for ℓ > s,

∥c̃ℓ
s−c̃ℓ

s−1∥2 = ∥Cℓ(zk, c̃ℓ−1
s)−Cℓ(zk, c̃ℓ−1

s−1)∥2 ≤ LC∥c̃ℓ−1
s −c̃ℓ−1

s−1∥2 ≤ · · · ≤ (LC)ℓ−s∥ĉk,s−ck,s∥2,

a.s., where the last step follows from induction over ℓ. Replacing these bounds in (3.43), we

finally obtain

∥∥∥zk+1 − z∞
∥∥∥ ≤

∥∥∥Ã(zk) − z∞
∥∥∥+ LA

R∑
s=1

R−s∑
ℓ=0

(LC)ℓ∥ĉk,s − ck,s∥2

≤ λ
∥∥∥zk − z∞

∥∥∥+ L̃A

R∑
s=1

∥ĉk,s − ck,s∥2, a.s.,

where L̃A is defined in (3.34) and we used A. 6 . Taking the conditional expectation on the

filtration Fk,s while applying L. 17 and (3.38), starting from s = R,R − 1, . . . , 1, it follows

that

√
E
[∥∥∥zk+1 − z∞

∥∥∥2
|Fk,1

]

100

≤ λ
∥∥∥zk − z∞

∥∥∥+ L̃A

√
mdRη0 · (σ)k + L̃Aω

R∑
s=1

√
E
[
∥ck,s − ĉk−1,s∥2

2|Fk,1
]
, a.s..

Finally, taking unconditional expectation and using L. 17 concludes the proof.

3.8.2 Proof of Lemmata 11 , 12 , and Corollary 2

Proof of Lemma 11

Let Q(•) : [−δ, δ]d → Qd be a component-wise quantizer, with the nth quantizer Qn(•)

mapping points in the interval [−δ, δ] to quantization points in the set Q (we assume that

the same quantizer is applied across all n, since each component is optimized with the same

range and number of quantization points). The goal is to define a quantizer Q which satisfies

the BC-rule within x ∈ [−δ, δ]d with maximal range δ. To this end, note that a necessary

and sufficient condition is

|Qn(x) − x| ≤ η + ω|x|, ∀x ∈ [−δ, δ], ∀n ∈ [d]. (3.44)

The sufficiency can be proved using Cauchy–Schwarz inequality. To prove the necessity,

assume that (3.44) is violated for some x ∈ [−δ, δ], i.e., |Qn(x) − x| > η + ω|x|, and let

x = x1. It follows that

∥Q(x) − x∥2 =
√
d|Qn(x) − x| >

√
dη + ω

√
d|x| =

√
dη + ω∥x∥2,

implying the BC-rule is not satisfied at x.

Hence, we now focus on the design of a component-wise quantizer Qn satisfying (3.44)

with maximal range δ. In the following, we omit the dependence on n for convenience.

Assume that N = |Q| is odd (the case N even can be studied in a similar fashion, and

is provided at the end of this proof for completeness), and let Q ≜ ∪(N−1)/2
ℓ=0 {q̃ℓ,−q̃ℓ} be the

set of quantization points, with 0 = q̃0 < q̃1 < . . . , q̃ℓ < q̃ℓ+1 < Note that we restrict to

a symmetric quantizer since the error metric is symmetric around 0 (the detailed proof on

101

the optimality of symmetric quantizers is omitted due to space constraints). We then aim

to solve

max
δ≥0,Q

δ

s.t. |Q(x) − x| ≤ η + ωx, ∀x ∈ [0, δ],
(3.45)

where the constraint (3.44) is imposed only to x ∈ [0, δ] since the quantizer is symmetric

around 0. Since the quantization error in (3.45) is measured in Euclidean distance, it is

optimal to restrict the quantization points to Q ⊂ [−δ, δ] and to map the input to the nearest

quantization point (ties may be resolved arbitrarily). Then, letting Xℓ = ((q̃ℓ−1 + q̃ℓ)/2, (q̃ℓ +

q̃ℓ+1)/2], with q̃−1 = 0 and q̃(N+1)/2 = 2δ − q̃(N−1)/2, it follows that [0, δ] ≡ ∪(N−1)/2
ℓ=0 Xℓ

and Q(x) = q̃ℓ, ∀x ∈ Xℓ. Therefore, the optimization problem (3.45) can be expressed

equivalently as

max
δ≥0,q̃

δ

s.t. (q̃ℓ − x)2 ≤ (η + ωx)2, ∀x ∈ Xℓ, ∀ℓ = 0, 1, . . . , (N − 1)/2,

0 = q̃0 ≤ · · · ≤ q̃(N+1)/2 = 2δ − q̃(N−1)/2.

Equivalently,

max
δ≥0,q̃

δ

s.t. maxx∈Xℓ
(q̃ℓ − x)2 − (η + ωx)2 ≤ 0, ∀ℓ = 0, 1, . . . , (N − 1)/2,

0 = q̃0 ≤ · · · ≤ q̃(N+1)/2 = 2δ − q̃(N−1)/2,

and solving the maximization with respect to x ∈ Xℓ (note that the quadratic function is

convex in x, hence it is maximized at the margins of Xℓ), we obtain

max
δ≥0,q̃

q̃(N−1)/2+q̃(N+1)/2
2

s.t. q̃ℓ ≤ q̃ℓ−1
(

1+ω
1−ω

)
+ 2η

1−ω
, ∀ℓ ∈ [(N + 1)/2],

0 = q̃0 < q̃1 < · · · < q̃(N+1)/2.

102

Solving this problem with respect to q̃ yields q0 = 0 and

qℓ = qℓ−1

(1 + ω

1 − ω

)
+ 2η

1 − ω
, ∀ℓ ≥ 1.

Solving by induction, we obtain qℓ as in (3.13), δ(η, ω,N) as in (3.12), and

ℓ(x) = sgn(x) · min
{
ℓ ∈ Z+ : qℓ + qℓ+1

2 ≥ |x|
}
,

yielding (3.14) after solving with the expression of qℓ. A similar technique can be proved for

the case when N is even. In this case, the quantization points are given by

qℓ = −q−ℓ = η

ω

[(1 + ω)ℓ

(1 − ω)ℓ−1 − 1
]
, ∀ℓ ≥ 1,

and δ(η, ω,N) = (qN/2 + qN/2+1)/2, which concludes the proof.

Proof of Lemma 12

Using a similar technique as in App. 3.8.2 when N is odd, using the fact that [0, δ] =

∪ℓ∈[(N−1)/2][q̃ℓ−1, q̃ℓ] and δ = q̃N/2 it suffices to solve

max
δ≥0,q̃

q(N−1)/2

s.t. E[|Q(x) − x|2] ≤ (η + ωx)2, ∀x ∈ [q̃ℓ−1, q̃ℓ], ∀ℓ = [(N − 1)/2],

E[Q(x)] = x, 0 = q̃0 ≤ · · · ≤ q̃(N−1)/2 = δ.

Furthermore, since x ∈ [q̃ℓ−1, q̃ℓ] is mapped to q̃ℓ−1 w.p. (q̃ℓ − x)/(q̃ℓ − q̃ℓ−1) and to q̃ℓ w.p.

(x− q̃ℓ−1)/(q̃ℓ − q̃ℓ−1) to satisfy E[Q(x)] = x, the problem can be expressed equivalently as

max
δ≥0,q̃

q(N−1)/2

s.t. (x− q̃ℓ)(x− q̃ℓ−1) + (η + ωx)2 ≥ 0, ∀x ∈ [q̃ℓ−1, q̃ℓ], ∀ℓ = [(N − 1)/2],

0 = q̃0 ≤ · · · ≤ q̃(N−1)/2 = δ,

103

or equivalently

max
δ≥0,q̃

q(N−1)/2

s.t. min
x∈[q̃ℓ−1,q̃ℓ]

(x− q̃ℓ)(x− q̃ℓ−1) + (η + ωx)2 ≥ 0, ∀ℓ = [(N − 1)/2],

0 = q̃0 ≤ · · · ≤ q̃(N−1)/2 = δ.

Solving the minimization over x ∈ [q̃ℓ−1, q̃ℓ] and solving with respect to q̃ yields the following

optimal quantization points: q0 = 0 and

qℓ = qℓ−1(
√

1 + (ω)2 + ω)2 + 2η(
√

1 + (ω)2 + ω), ∀ℓ ≥ 1.

Solving by induction, we obtain qℓ as in (3.16), δ(η, ω,N) as in (3.15), and the probabilistic

qantization rule as in (3.17), with ℓ given by

ℓ = sgn(x) · min
{
ℓ ∈ Z+ : qℓ ≥ |x|

}
,

yielding (3.17) after solving with the expression of qℓ.

A similar technique can be proved for the case when N is even. In this case, the quanti-

zation points are given by

qℓ = η

ω

(
√

1 + (ω)2 + ω)2ℓ−1√
1 + (ω)2

− 1
 , ∀ℓ ≥ 1.

and δ(η, ω,N) = qN/2, which concludes the proof.

Proof of Corollary 2

Let Q(x) be a generic deterministic or probabilistic quantizer with domain [−δ, δ]d and

codomain Q ∈ Rd with |Q| < ∞, that satisfies the BC-rule with η = 0. It follows that

ω∥x∥2 ≥
√
E[∥Q(x) − x∥2

2] ≥ min
q∈Q

∥q − x∥2 = ∥Qdet(x) − x∥2,∀x ∈ [−δ, δ]d, (3.46)

104

where the lower bound is achievable by a deterministic quantizer that maps x to the nearest

quantization point, denoted as Qdet(x). Let Qn(x) = e⊤
n Qdet(xen) be the projection of

Qdet on its nth element, where en is the nth canonical vector. Since ∥Qdet(xen) − xen∥2 ≥

|Qn(x) − x|, from (3.46) it follows that

ω∥xen∥2 = ω|x| ≥ ∥Qdet(xen) − xen∥2 ≥ |Qn(x) − x|, ∀x ∈ [−δ, δ],

hence Qn satisfies the BC-rule with η = 0 as well. Note that Qn is a scalar quantizer with

Nn ≤ |Q| quantization points. However, L. 11 dictates that δ = 0 for this quantizer, hence

the contradiction, and we have proved the statement for both deterministic and probabilistic

compression rules.

3.8.3 Proof of Theorems 3.5.1 and 3.5.2

Proof of Theorem 3.5.1

We first present some preliminary results instrumental to prove T. 3.5.1 , whose proofs are

deferred to the end of this section.

The idea of the proof is to study the asymptotic behavior of an upper bound on the

number of bits required per iteration, provided in the following lemma.

Lemma 18. Under the same setting as T. 3.3.1 , and the proposed ANQ satisfying the BC

rule, the average number of bits required per agent at the kth iteration, Bk, is upper bounded

as

E[Bk] ≤ log2(S + 1)
[
3dR + dR logS

(
3 + F̄R(σ, ω, η0)√

mdη0

)]
bits, ∀k ∈ Z+, (3.47)

where F̄R(σ, ω, η0) is defined in (3.39).

In addition, we need the following lemma to connect the asymptotic results of the loga-

rithmic function and its argument.

Lemma 19. For positive functions f, g, it holds: ln f(x) = O(ln g(x)) as x → x0 if

lim infx→x0 g(x) > 1, and f(x) = O(g(x)) as x → x0.

105

We are now ready to prove the main theorem. From L. 18 , the average number of bits

per agent per iteration is upper bounded by

E[Bk] ≤ log2(S + 1)
[
3dR + dR logS

(
3 + F̄R(σ, ω, η0)√

mdη0

)]
, ∀k ∈ Z+,

where

F̄R(σ, ω, η0) = a1 + a2V0,

a1 and a2 are defined in (3.40) and (3.41), respectively; and V0 is given in (3.35). We

want to prove that this is E[Bk] = O(d ln(1 + 1
σ(σ−λ))) under A. 9 and conditions η0 =

Θ(LZ(σ− λ)), 1 −ω/ω̄(σ) = Ω(1). Using the fact that F̄R(σ, ω, η0)/η0 = a1/η
0 + a2V0/η

0, it

is sufficient to show that a1/(
√
mdη0) = O(1 + 1

σ
) and a2V0/(

√
mdη0) = O(1 + 1

σ(σ−λ)). In

fact, using R/σ ≤ 1/ω̄(σ), we can bound a1 and a2 as

a1/(
√
mdη0) ≤ 1

σ
(1 + LCσ) max{1, (2LC)R−1} R

1 − ω/ω̄(σ) ,

a2 ≤ 2LZ

σ
max{1, (2LC)R−1} R

1 − ω/ω̄(σ) .

Clearly, a1/(
√
mdη0) = O(1 + 1

σ
) and a2 = O(LZ

σ
) since LC , R = O(1) and 1 − ω/ω̄(σ) =

Ω(1). We next study V0. From its expression in (3.35), we notice that V0 = O(
√
md) since

ω/σ ≤ 1, max{c∗, ∥z0 − z∞∥2} = O(
√
md), η0 = Θ(LZ(σ − λ)), LALZ , LC , R = O(1), and

1 −ω/ω̄ = Ω(1). Therefore, it follows that a2V0/(
√
mdη0) = O(1

σ(σ−λ)) = O(1 + 1
σ(σ−λ)), and

the proof is completed by invoking L. 19 .

Proof of Lemma 18

Let ∆ck,s
i ≜ ck,s

i − ĉk−1,s
i be the input to the quantizer for agent i, at iteration k and

communication round s. We now study the average number of bits required for 1) the

deterministic quantizer, and 2) the probabilistic quantizer with E[Q(x)] = x.

106

i) Deterministic quantizer: The average number of bits required is bounded as (see

(3.19), one can also verify that the following also holds for even N)

bk,s
i ≤ log2(S + 1)

[
3d+ d logS

(
2 +

ln
(
1 + ω∥∆ck,s

i ∥2√
dη0·(σ)k

)
ln(1 + ω) − ln(1 − ω)

)]
bits.

We now upper bound the argument inside the second logarithm. Since it is a decreasing

function of ω, it is maximized in the limit ω → 0, yielding

ln
(
1 + ω∥∆ck,s

i ∥2√
dη0·(σ)k

)
ln(1 + ω) − ln(1 − ω) ≤ ∥∆ck,s

i ∥2

2
√
dη0 · (σ)k

.

With this upper bound, we can then upper bound the average number of bits per agent at

communication round s, iteration k, as

E[bk,s] ≜ 1
m

m∑
i=1

E[bk,s
i]

(a)
≤ log2(S + 1)

[
3d+ d logS

(
2 +

√
E[∥ck,s − ĉk−1,s∥2

2]
2
√
mdη0 · (σ)k

)]
(b)
≤ log2(S + 1)

[
3d+ d logS

(
2 + F s(σ, ω, η0)

2
√
mdη0

)]
(c)
≤ log2(S + 1)

[
3d+ d logS

(
2 + F̄R(σ, ω, η0)

2
√
mdη0

)]
,

where (a) follows from Cauchy–Schwarz inequality, Jensen’s inequality, and the definition of

∆ck,s; (b) follows from (3.30); and (c) follows from F s ≤ F̄R (see (3.39)).

ii) Probabilistic quantizer with E[Q(x)] = x: Using the same technique as in i), along

with the inequality 1 − 1/x ≤ ln(x) ≤ x − 1 for x > 1 to bound the argument inside the

second logarithm of (3.20),

E[bk,s] ≤ log2(S + 1)
[
3d+ d logS

(
3 + F̄R(σ, ω, η0)√

mdη0

)]
.

One can also verify that it also holds for even N .

Finally, for both the deterministic and probabilistic cases, the proof is completed by

summing over s ∈ [R] to get the average communication cost per agent at iteration k.

107

Proof of Lemma 19

If f(x) = O(g(x)) as x → x0 and lim infx→x0 g(x) > 1, then

lim sup
x→x0

∣∣∣∣ ln f(x)
ln g(x)

∣∣∣∣ ≤ 1 + lim sup
x→x0

∣∣∣∣ ln(f(x)/g(x))
ln g(x)

∣∣∣∣ (a)
≤ 1 + lim supx→x0 | ln(f(x)/g(x))|

| lim infx→x0 ln g(x)| < ∞,

where (a) follows from lim infx→x0 g(x) > 1. This completes the proof.

Proof of Theorem 3.5.2

Since
√
E[∥zk − z∞∥2] ≤ V0 · (σ)k (cf. T. 3.3.1), the ε-accuracy is achieved if k[− ln(σ)] ≥

ln(V0/
√
mε), which yields k(1 − σ) ≥ ln(V0/

√
mε) since − ln(σ) ≥ 1 − σ. Hence, ε-accuracy

is achieved if all conditions in T. 3.3.1 hold and k ≥ kε ≜
⌈

1
1−σ

ln V0√
mε

⌉
. Hence, to compute

the upper bound of the communication cost ∑kε−1
k=0 E[Bk], we need the upper bounds for

E[Bk], 1
1−σ

and V0. In the proof of T. 3.5.1 , we found that, under A. 9 and the conditions

1 − ω/ω̄(σ) = Ω(1), η0 = Θ(LZ(σ − λ)),

E[Bk] = O
(
d log2

(
1 + 1

σ(σ − λ)

))
, V0 = O(

√
md).

Moreover, it can be shown that 1/σ ≤ (1−λ)2

(1−σ)(σ−λ) for σ ∈ (λ, 1), and therefore

1
σ(σ − λ) ≤ 1

(1 − λ)

[(1 − λ)2

(1 − σ)(σ − λ)

]2 1 − σ

1 − λ
= O

(1
1 − λ

)
,

where we used (1−λ)2

(1−σ)(σ−λ) = O(1). It then follows from L. 19 that E[Bk] = O(d log2(1+ 1
1−λ

)).

On the other hand, we can bound kε as

kε ≤ 1
1 − λ

(
1 − λ+ 1 − λ

1 − σ
log2

V0√
mε

)
= O

(1
1 − λ

log2

(
d

ε

))
,

since 1−λ
1−σ

= O(1) and V0 = O(
√
md), Therefore, the communication cost satisfies

kε−1∑
k=0

E[Bk] = O
(
dkε log2

(
1 + 1

1 − λ

))
= O

(
d

1 − λ
log2

(
d

ε

)
log2

(
1 + 1

1 − λ

))
,

108

which completes the proof.

Proof of Lemma 13

Consider ℓ ≥ 0. Using (3.18), the number of information symbols required to encode ℓ is

b∗
ℓ = min

{
b ∈ Z+ : ℓ ≤

⌊
(S)b+1 − 1
2(S − 1)

⌋}
.

Similarly, for ℓ < 0,

b∗
ℓ = min

{
b ∈ Z+ : −ℓ ≤

⌈
(S)b+1 − 1
2(S − 1)

⌉
− 1

}
.

Since ⌊ (S)b+1−1
2(S−1) ⌋ ≥ ⌈ (S)b+1−1

2(S−1) ⌉ − 1 ≥ (S)b+1−1
2(S−1) − 1, we can then upper bound bℓ, ℓ ∈ Z, as

b∗
ℓ ≤ min{b ≥ 1 : 1 + 2(S − 1)(1 + |ℓ|) ≤ (S)b+1}

= min{b ≥ 1 : b ≥ logS(2 − 1/S + 2(1 − 1/S)|ℓ|)} = ⌈logS(2 − 1/S + 2(1 − 1/S)|ℓ|)⌉.

Using ⌈x⌉ ≤ x+ 1 We can then further upper bound

b∗
ℓ ≤ 1 + logS(2 − 1/S + 2(1 − 1/S)|ℓ|) ≤ logS(2S + 2S|ℓ|) ≤ 2 + logS(1 + |ℓ|),

resulting the upper bound to the communication cost (including the termination symbol)

C̄comm(ℓ) ≤ 3 + logS(1 + |ℓ|) symbols. (3.48)

Let x = (xn)d
n=1. We now study the result with 1) the deterministic quantizer, and 2) the

probabilistic quantizer with E[Q(x)] = x.

Note that for the deterministic and probabilistic quantizers, we can express ℓ(x) as

|ℓ(x)| ≤ ⌈c1 + c2 ln(1 + ω/η|x|)⌉,

109

for some c1 ≤ 0, c2 > 0 (see (3.14) and (3.17) for a closed-form expression of c1 and c2).

Invoking (3.48) and C̄comm(x) = ∑d
n=1 C̄comm(ℓn) yields

C(x) ≤ 3d+
d∑

n=1
logS

(
1 + ⌈c1 + c2 ln

(
1 + ω|xn|

η

)
⌉
)

(a)
≤ 3d+ d logS

(
2 + c1 + c2 ln

(
1 + ω∥x∥2√

dη

))
symbols

= log2(S + 1)
[
3d+ d logS

(
2 + c1 + c2 ln

(
1 + ω∥x∥2√

dη

))]
bits, (3.49)

where (a) follows from ⌈x⌉ ≤ x + 1, Jensen’s inequality and Cauchy–Schwarz inequality, in

order. Invoking the expressions of c1 and c2 from (3.14) and (3.17), respectively, yield the

result for the deterministic and probabilistic quantizers with odd N . Similar techniques can

be used to find ℓ(x) and thus the result for quantizers with even N .

3.8.4 Examples of (M)

In this section, we will show that (M) contains a gamut of distributed algorithms, cor-

responding to different choices of R, Cs
i , and Ai. Given (P), we will assume that each fi is

L-smooth and µ-strongly convex.

Every distributed algorithm on mesh networks we will describe below alternates one step

of optimization with possibly multiple rounds of communications. In each communication

round, every agent i combines linearly the signal received by its neighbors using weights

(wij)j∈Ni
; let W = (wij)m

i,j=1. Consistently with the undirected graph G, we will tacitly

assume that W is symmetric and doubly stochastic, i.e., W = W⊤ and W1 = 1, with

wij > 0 if (j, i) ∈ E , and wij = 0 otherwise. We assume that the eigenvalues of W are in

[ν, 1], with ν > 0.

6
 Note that this condition can be achieved by design: in fact, given a doubly

stochastic weight matrix W̃ = (w̃ij)i,j∈[m], each agent i can set wii = [(1 + ν) + (1 − ν)w̃ii]/2

and wij = (1 − ν)w̃ij/2,∀j ̸= i for a design parameter ν ∈ (0, 1]. Note that, for any given z0

and z∞ with bounded entries, it holds ∥z0 − z∞∥2 = O(
√
md).

6
 ↑ This assumption is also required in [80] for prox-EXTRA, prox-NEXT, prox-DIGing, and prox-NIDS for

achieving ∥zk − z∞∥ = O(
√

md(λ)k).

110

Finally, in the rest of this section, we will adopt the following notations: xk = (xk
i)m

i=1,yk =

(yk
i)m

i=1,wk = (wk
i)m

i=1,x = (xi)m
i=1,y = (yi)m

i=1 and w = (wi)m
i=1, Ŵ = W ⊗ Id, and G† is

the pseudo-inverse of matrix G. Given xk = (xk
i)m

i=1, we also define ∇f(xk) ≜ (∇fi(xk
i))m

i=1.

For any function g : Rd → R and positive semi-definite matrix G, define ∥x∥G ≜
√

x⊤Gx

and

proxG,g(x) ≜ arg min
z∈Rd

g(z) + 1
2 ∥z − x∥2

G−1 .

(Prox-)EXTRA [80]

The update of prox-EXTRA solving (P) reads

xk = proxγI,r(wk),

yk+1 = yk +
(
I − Ŵ

)
wk+1,

wk+1 = Ŵxk − γ∇f(xk) − yk,

with y0 = 0 and w0 ∈ Rmd.

Prox-EXTRA can be cast as (M) with R = 2 rounds of communications with

z⊤ = [y⊤,w⊤],

ĉk,1
i = C1

i

(
zk

i ,0
)

= proxγI,r(wk
i), (3.50)

ĉk,2
i = C2

i

(
zk

i , ĉ
k,1
Ni

)
=
∑

j∈Ni

wij ĉk,1
j − γ∇fi(ĉk,1

i) − yk
i , (3.51)

zk+1
i = Ai

(
zk

i , ĉ
k,1
Ni
, ĉk,2

Ni

)
=

 yk
i + ĉk,2

i −∑
j∈Ni

wij ĉk,2
j

ĉk,2
i

 . (3.52)

We show next that the above instance of (M) satisfies A. 6 - 9 .

• On A. 6 : Using [80] it is not difficult to check that, if γ = 2ρm(W)
L+µρm(W) , then prox-EXTRA

satisfies A. 6 , with some λ < 1 and the norm ∥ • ∥ defined as

∥z∥2 = w⊤Ŵ−1w + y⊤(I − Ŵ)†y.

111

Note that ∥z∥2 ≥ ∥z∥2
2, due to ρi(W) ∈ [ν, 1], i ∈ [m].

• On A. 7 - 9 : Based on (3.50), (3.51) and (3.52), the mappings A and C read

A(z, c1, c2) =

 y + (I − Ŵ)c2

c2

 ,
C1(z,0) = proxγI,r(w), and C2(z, c) = Ŵc − γ∇f(c) − y,

respectively; and Z = span(I−Ŵ)×Rmd, where we defined (with a slight abuse of notation)

proxγI,r(w) = (proxγI,r(wi))m
i=1.

We show that prox-EXTRA satisfies A. 9 . Note that

∥∥∥A (
z, c1, c

)
− A

(
z, c1, c

) ∥∥∥2
= ∥

√
Ŵ−1(c − c)∥2

2 +
∥∥∥∥√I − Ŵ(c − c)

∥∥∥∥2

2

≤ (1 + ν−1)∥c − c∥2
2,

and A (z, c1, c2) is constant with respect to c1, hence A. 7 holds with LA =
√

1 + ν−1.

We next derive LC and LZ . Since the proximal mapping is non-expansive [88], it follows

that

∥∥∥C1(z,0) − C1(z,0)
∥∥∥

2
= ∥proxγI,r(w) − proxγI,r(w)∥2 ≤ ∥w − w∥2 ≤ ∥z − z∥2,∥∥∥C2(z, c) − C2(z, c)

∥∥∥
2

=
∥∥∥Ŵ(c − c) − γ(∇f(c) − ∇f(c)) − (y − y)

∥∥∥
2

≤ ∥c − c∥2 + γL∥c − c∥2 + ∥z − z∥2,

A. 8 holds with LC = 1 + γL and LZ = 1. Since γ = O(1/L), it follows that LC = O(1). For

the initial conditions, we have

∥C1(z0,0)∥2 = ∥proxγI,r(w0)∥2
(a)
≤ ∥proxγI,r(w0) − proxγI,r(w∞)∥2 + ∥proxγI,r(w∞)∥2

(b)
≤ ∥w0 − w∞∥2 + ∥w∞∥2 = O(

√
md),

∥C2(z0,0)∥2 = ∥y0∥2 ≤ ∥y0 − y∞∥2 + ∥y∞∥2 = O(
√
md),

112

where (a) follows from the triangle inequality; and (b) follows from the non-expansive prop-

erty of the proximal mapping and w∞ is a fixed point of the proximal mapping [80].

Therefore, LALZ = O(1), LC = O(1), ∥C1(z0,0)∥2 = O(LZ

√
md) and ∥C2(z0,0)∥2 =

O(LZ

√
md); hence A. 9 holds.

(Prox-)NEXT [80]

The update of prox-NEXT solving (P) reads

xk = proxγI,r(wk),

yk+1 = yk + (I − Ŵ)2wk+1,

wk+1 = Ŵ2
(
xk − γ∇f(xk)

)
− yk,

with y0 = 0 and w0 ∈ Rmd.

Prox-NEXT can be cast as (M) with R = 4 rounds of communications, using the following

definitions:

z⊤ = [y⊤,w⊤],

ĉk,1
i = C1

i

(
zk

i ,0
)

= proxγI,r(wk
i) − γ∇fi(proxγI,r(wk

i)), (3.53)

ĉk,2
i = C2

i

(
zk

i , ĉ
k,1
Ni

)
=
∑

j∈Ni

wij ĉk,1
j , (3.54)

ĉk,3
i = C3

i

(
zk

i , ĉ
k,2
Ni

)
=
∑

j∈Ni

wij ĉk,2
j − yk

i , (3.55)

ĉk,4
i = C4

i

(
zk

i , ĉ
k,3
Ni

)
=
∑

j∈Ni

wij

(
ĉk,3

i − ĉk,3
j

)
, (3.56)

zk+1
i = Ai

(
zk

i , ĉ
k,1
Ni
, ĉk,2

Ni
, ĉk,3

Ni
, ĉk,4

Ni

)
=

 yk
i +∑

j∈Ni
wij

(
ĉk,4

i − ĉk,4
j

)
ĉk,3

i

 . (3.57)

We show next that the above instance of (M) satisfies A. 6 - 9 .

113

• On A. 6 : Using [80] it is not difficult to check that, if γ = 2/(µ+L), then prox-NEXT

satisfies A. 6 , with λ < 1 and the norm ∥ • ∥ defined as

∥z∥2 =
∥∥∥Ŵ−2w

∥∥∥2

I−(I−Ŵ)2
+ y

(
Ŵ−2

(
(I − Ŵ)2

)†
Ŵ−2

)
y.

Again, note that ∥z∥2 ≥ ∥z∥2
2.

• On A. 7 - 9 : Based on (3.53)-(3.57), the mappings A and C read

A(z, c1, c2, c3, c4) =

 y + (I − Ŵ)c4

c3

 ,
C1(z,0) = proxγI,r(w) − γ∇f(proxγI,r(w)), C2(z, c) = Ŵc,

C3(z, c) = Ŵc − y, and C4(z, c) = (I − Ŵ)c,

respectively; and Z = span(I − Ŵ) × Rmd.

We now show that prox-NEXT satisfies A. 9 . Note that

∥A(z, c1, c2, c, c4) − A(z, c1, c2, c, c4)∥2

= (c − c)⊤Ŵ−4[I − (I − Ŵ)2](c − c) ≤ ν−2(2ν−1 − 1)∥c − c∥2
2

and

∥∥∥A (z, c1, c2, c3, c) − A (z, c1, c2, c3, c)
∥∥∥2

= ∥Ŵ−2(c − c)∥2
2 ≤ ν−4∥c − c∥2

2.

Moreover, A(z, c1, c2, c3, c4) is constant with respect to c1, c2. Therefore, A. 7 holds with

LA =
√

2ν−2.

We next derive LC and LZ . Using the non-expansive property, it follows that

∥C1(z,0) − C1(z,0)∥2

= ∥(proxγI,r(w) − proxγI,r(w)) − γ(∇f(proxγI,r(w)) − ∇f(proxγI,r(w)))∥2

≤(1 + γL)∥proxγI,r(w) − proxγI,r(w)∥2 ≤ (1 + γL)∥w − w∥2 ≤ (1 + γL)∥z − z∥2,

114

∥C2(c, z) − C2(c, z)∥2 = ∥Ŵ(c − c)∥2 ≤ ∥c − c∥2,

∥C3(c, z) − C3(c, z)∥2 ≤ ∥Ŵ(c − c)∥2 + ∥y − y∥2 ≤ ∥c − c∥2 + ∥z − z∥2,

∥C4(c, z) − C4(c, z)∥2 = ∥(I − Ŵ)(c − c)∥2 ≤ ∥c − c∥2,

which implies that A. 8 holds with LC = 1 and LZ = 1 + γL. Since γ = O(1/L), it follows

that LZ = O(1). For the initial conditions, we have ∥C1(z0,0)∥2 ≤ (1 + γL)(∥w0 − w∞∥2 +

∥w∞∥2) = O(
√
md) and ∥C3(z0,0)∥2 ≤ ∥y0 − y∞∥2 + ∥y∞∥2 = O(

√
md).

Therefore, LALZ = O(1), LC = O(1), ∥C1(z0,0)∥2 = O(LZ

√
md), ∥C2(z0,0)∥2 = 0, ∥C3(z0,0)∥2 =

O(LZ

√
md), and ∥C4(z0,0)∥2 = 0; hence A. 9 holds.

(Prox-)DIGing [80]

The update of prox-DIGing solving (P), reads

xk = proxγI,r(wk),

yk+1 = yk + (I − Ŵ)2wk+1,

wk+1 = Ŵ2xk − γ∇f(xk) − yk,

with y0 = 0 and w0 ∈ Rmd.

Prox-DIGing can be cast as (M) with R = 4 rounds of communications, using the fol-

lowing definitions:

z⊤ = [y⊤,w⊤],

ĉk,1
i = C1

i

(
zk

i ,0
)

= proxγI,r(wk
i), (3.58)

ĉk,2
i = C2

i

(
zk

i , ĉ
k,1
Ni

)
=
∑

j∈Ni

wij ĉk,1
j , (3.59)

ĉk,3
i = C3

i

(
zk

i , ĉ
k,2
Ni

)
=
∑

j∈Ni

wij ĉk,2
j − γ∇fi(proxγI,r(wk

i)) − yk
i , (3.60)

ĉk,4
i = C4

i

(
zk

i , ĉ
k,3
Ni

)
=
∑

j∈Ni

wij

(
ĉk,3

j − ĉk,3
i

)
, (3.61)

115

zk+1
i = Ai

(
zk

i , ĉ
k,1
Ni
, ĉk,2

Ni
, ĉk,3

Ni
, ĉk,4

Ni

)
=

 yk
i +∑

j∈Ni
wij

(
ĉk,4

i − ĉk,4
j

)
ĉk,3

i

 . (3.62)

We show next that the above instance of (M) satisfies A. 6 - 9 .

• On A. 6 : Using [80] it is not difficult to check that, if γ = 2ρ1(W)
L+µρ1(W) , then prox-DIGing

satisfies A. 6 , with λ < 1 and the norm ∥ • ∥ defined as

∥z∥2 = 1
2ν − ν2

(
∥w∥2

I−(I−Ŵ)2 + y⊤
(
(I − Ŵ)2

)†
y
)
.

Note that ∥z∥2 ≥ ∥z∥2
2.

• On A. 7 - 9 : Based on (3.58)-(3.62), the mappings A and C read

A(z, c1, c2, c3, c4) =

 y + (I − Ŵ)c4

c3

 ,
C1(z,0) = proxγI,r(w), C2(z, c) = Ŵc,

C3(z, c) = Ŵc − γ∇f(proxγI,r(w)) − y, and C4(z, c) = (I − Ŵ)c,

respectively; and Z = span(I − Ŵ) × Rmd. We now show that prox-DIGing satisfies A. 9 .

Note that

∥∥∥A (
z, c1, c2, c, c4

)
− A

(
z, c1, c2, c, c4

) ∥∥∥2
= 1

2ν − ν2 (c − c)⊤[I − (I − Ŵ)2](c − c)

≤ 1
2ν − ν2 ∥c − c∥2

2,

and

∥∥∥A (z, c1, c2, c3, c) − A (z, c1, c2, c3, c)
∥∥∥2

= 1
2ν − ν2 ∥c − c∥2

2.

Moreover, A(z, c1, c2, c3, c4) is constant with respect to c1, c2. Therefore, A. 7 holds with

LA =
√

1/(2ν − ν2).

116

We next derive LC and LZ . We have

∥C1(z,0) − C1(z,0)∥2 ≤ (1 + γL)∥z − z∥2,

∥C2(z, c) − C2(z, c)∥2 = ∥Ŵ(c − c)∥2 ≤ ∥c − c∥2,

∥C3(z, c) − C3(z, c)∥2 ≤ ∥c − c∥2 + (1 + γL)∥z − z∥2,

∥C4(z, c) − C4(z, c)∥2 = ∥(I − Ŵ)c − c∥2 ≤ ∥c − c∥2,

which implies that A. 8 holds with LC = 1 and LZ = 1 + γL. Since γ = O(1/L), it follows

that LZ = O(1). For the initial conditions, we have ∥C1(z0,0)∥2 ≤ ∥w0 − w∞∥2 + ∥w∞∥2 =

O(
√
md) and ∥C3(z0,0)∥2 ≤ γL(∥w0 − w∞∥2 + ∥w∞∥2) + ∥y0 − y∞∥2 + ∥y∞∥2 = O(

√
md).

Therefore, LALZ = O(1), LC = O(1), ∥C1(z0,0)∥2 = O(LZ

√
md), ∥C2(z0,0)∥2 = 0, ∥C3(z0,0)∥2 =

O(LZ

√
md), and ∥C4(z0,0)∥2 = 0; hence A. 9 holds.

(Prox-)NIDS [80]

The update of prox-NIDS solving (P), reads

xk = proxγI,r(wk),

yk+1 = yk + (I − Ŵ)wk+1,

wk+1 = Ŵ
(
xk − γ∇f(xk)

)
− yk,

with y0 = 0 and w0 ∈ Rmd.

Prox-NIDS can be cast as (M) with R = 2 rounds of communications, using the following:

z⊤ = [y⊤,w⊤]

C1
i

(
zk

i ,0
)

= proxγI,r(wk
i) − γ∇fi(proxγI,r(wk

i)) (3.63)

C2
i

(
zk

i , ĉ
k,1
Ni

)
=
∑

j∈Ni

wij ĉk,1
j − yk

i , (3.64)

zk+1
i = Ai

(
zk

i , ĉ
k,1
Ni
, ĉk,2

Ni

)
=

 yk
i −∑

j∈Ni
wij

(
ĉk,2

j − ĉk,2
i

)
ĉk,2

i

 . (3.65)

117

We show next that the above instance of (M) satisfies A. 6 - 9 .

• On A. 6 : Using [80] it is not difficult to check that, if γ = 2/(µ+ L), then prox-NIDS

satisfies A. 6 , with λ < 1 and the norm ∥ • ∥ defined as

∥z∥2 = w⊤Ŵ−1w + y⊤Ŵ−1(I − Ŵ)†Ŵ−1y.

Note that ∥z∥2 ≥ ∥z∥2
2.

• On A. 7 - 9 : Based on (3.63), (3.64), and (3.65), the mappings A and C read

A(z, c1, c2) =

 y + (I − Ŵ)c2

c2

 ,
C1(z,0) = proxγI,r(w) − γ∇f(proxγI,r(w)), and C2(z, c) = Ŵc − y,

respectively; and Z = span(I−Ŵ)×Rmd. We now show that prox-NIDS satisfies A. 9 . Note

that

∥∥∥A (z, c1, c) − A (z, c1, c)
∥∥∥2

= ∥
√

I − ŴŴ−1(c − c)∥2
2 ≤ (ν−2 − ν−1)∥c − c∥2

2,

and A(z, c1, c2) is constant with respect to c1. It follows that A. 7 holds with LA =
√
ν−2 − ν−1.

We next derive LC and LZ . Using the non-expansive property of the proximal mapping,

it holds

∥C1(z,0) − C1(z,0)∥2

= ∥(proxγI,r(w) − proxγI,r(w)) − γ(∇f(proxγI,r(w)) − ∇f(proxγI,r(w)))∥2

≤ (1 + γL)∥proxγI,r(w) − proxγI,r(w)∥2 ≤ (1 + γL)∥w − w∥2 ≤ (1 + γL)∥z − z∥2,

∥C2(z, c) − C2(z, c)∥2 = ∥Ŵ(c − c)∥2 + ∥z − z∥2 ≤ ∥c − c∥2 + ∥z − z∥2,

118

which implies that A. 8 holds with LC = 1 and LZ = 1 + γL. Since γ = O(1/L), it follows

that LZ = O(1). For the initial conditions, we have ∥C1(z0,0)∥2 ≤ (1 + γL)(∥w0 − w∞∥2 +

∥w∞∥2) = O(
√
md) and ∥C2(z0,0)∥2 ≤ ∥y0 − y∞∥2 + ∥y∞∥2 = O(

√
md).

Therefore, LALZ = O(1), LC = O(1), ∥C1(z0,0)∥2 = O(LZ

√
md), and ∥C2(z0,0)∥2 =

O(LZ

√
md); hence A. 9 holds.

GD over star networks [89]

Consider Problem (P) with r = 0 over a master/workers system. The GD update

xk+1 = xk − γ

m

m∑
i=1

∇fi

(
xk
)
, (3.66)

with x0 ∈ Rd, is implemented at the master node as follows: at iteration k, the server

broadcasts xk to the m agents; each agent i then computes its own gradient ∇fi(xk) and

sends it back to the master; upon collecting all local gradients, the server updates the variable

xk+1 according to (3.66).

The GD (3.66) can be cast as (M) with R = 1 round of communications, using the

following:

z = 1m ⊗ x,

ĉk,1
i = C1

i

(
zk

i ,0
)

= ∇fi

(
xk

i

)
, (3.67)

zk+1 = A
(
zk, ĉk,1

[m]

)
= xk − γ

m

m∑
i=1

1m ⊗ ĉk,1
i . (3.68)

We show next that the above instance of (M) satisfies A. 6 - 9 .

• On A. 6 : Using [89] it is not difficult to check that, if γ = 2/(µ + L), then GD over

star networks satisfies A. 6 , with λ < 1 and the norm ∥ • ∥ defined as

∥z∥ = ∥x∥2.

Note that ∥z∥ ≥ ∥z∥2.

119

• On A. 7 - 9 : Based on (3.67) and (3.68), the mappings A and C read

A(z, c1) = z − γ

m

m∑
i=1

1m ⊗ ci, C1(z,0) = γ∇f(z),

respectively; and Z = {1m ⊗ x : x ∈ Rd}.

We now show that GD over star networks satisfies A. 9 . Since

A (z, c) − A (z, c) = − 1
m

m∑
i=1

1m ⊗ (ci − ci) ,

we have

∥∥∥A (z, c) − A (z, c)
∥∥∥2

= 1
m

∥∥∥∥∥
m∑

i=1
ci − ci

∥∥∥∥∥
2

2
≤ ∥c − c∥2

2 .

Hence, A. 7 holds with LA = 1.

We now derive LC and LZ . Note that

∥C1(z,0) − C1(z,0)∥2
2 ≤ γ2L2 ∥z − z∥2

2 ,

which implies that A. 8 holds with LC = 0 and LZ = γL. Since γ = O(1/L), it follows

that LALZ = O(1) and ∥C1(z0,0)∥2 ≤ γL∥x − x̃∗∥2 = O(
√
md), where x̃∗ = (x̃∗

i)m
i=1 with

x̃∗
i = arg minxi

fi(xi).

Therefore, LALZ = O(1), LC = O(1), ∥C1(z0,0)∥2 = O(LZ

√
md); hence A. 9 holds.

Primal-dual algorithm [59], [75]

Let L = (lij)m
i,j=1 be the Laplacian matrix associated with the 0-1 adjacency matrix of G,

i.e., lii = |Ni \ {i}|, i ∈ [m]; and lij = −1{(i, j) ∈ E}, i ̸= j ∈ [m]; and L̂ = L ⊗ Id.

The primal-dual algorithm solving (P), with r = 0, reads [59], [75]

yk+1
i = yk

i + γ
∑

j∈Ni

lijxk
j ,

xk+1
i = arg min

xi

fi(xi) + x⊤
i yk+1

i ,

120

with y0
i = 0 and x0

i = arg minxi
fi(xi).

The primal-dual algorithm can be cast in the form (M), with R = 1 round of communi-

cations, using the following:

z = y

C1
i

(
zk

i ,0
)

= arg min
ci

fi(ci) + c⊤
i yk

i , (3.69)

zk+1
i = Ai

(
zk

i , ĉ
k,1
Ni

)
= yk

i + γ
∑

j∈Ni

lij ĉk,1
j . (3.70)

We show next that the above instance of (M) satisfies A. 6 - 9 .

• On A. 6 : Define M =
√

ΣQ, where L̂ = Q⊤ΣQ is its eigenvalue decomposition, with Σ

being diagonal with elements sorted in descending order; and let M̄ be the matrix containing

the non-zero rows of M. Using [59] it is not difficult to check that, if γ = 2Lµ
µρ2(L)+Lρm(L) , the

primal-dual algorithm satisfies A. 6 , with λ < 1 and the norm ∥ • ∥ defined as

∥z∥ =
√
ρ2(L)

∥∥∥∥(M̄M̄⊤
)−1

M̄z
∥∥∥∥

2
.

Note that ∥z∥ ≥ ∥z∥2.

• On A. 7 - 9 : Based on (3.69) and (3.70), the mappings A and C read

A(z, c1) = z + γL̂c1 and C1(z,0) =


arg min

c
f1(c) + c⊤z1

...

arg min
c

fm(c) + c⊤zm

 ,

respectively; and Z = span(L). We now show that the primal-dual algorithm satisfies A. 9 .

Note that

A (z, c) − A (z, c) = γL̂ (c − c) .

121

It follows that

∥∥∥A (z, c) − A (z, c)
∥∥∥2

= γ2ρ2(L)
∥∥∥∥(M̄M̄⊤

)−1
M̄L̂ (c − c)

∥∥∥∥2

2

≤ γ2ρ2(L)ρm (L) ∥c − c∥2
2 ,

which implies that A. 7 holds with LA = γ
√
ρ2(L)ρm(L). Using the expression of γ, it follows

that LA = O(µ). Hence, for all the objective functions of (P) such that µ = O(1), we also

have LA = O(1). For instance, this is the typical case of several machine learning problems

where a regularization µ/2∥x∥2 is enforced on the objective function to make it strongly

convex, with µ = O(1).

We now derive LC and LZ . Since

∥C1(z,0) − C1(z,0)∥2 = ∥z − z∥2,

A. 8 holds with LC = 0 and LZ = 1. For the initial conditions, since z0 = 0 we have

∥C1(z0,0)∥2 = ∥x̃∗∥2 = O(
√
md), where x̃∗

i = (x̃∗
i)m

i=1 with x̃∗
i ≜ arg minxi

fi(xi).

Therefore, LALZ = O(1), LC = O(1), and ∥C1(z0,0)∥2 = O(LZ

√
md), when µ = O(1);

hence A. 9 holds.

122

4. SUMMARY

In this dissertation, we have studied the design and analysis of distributed algorithms em-

ploying finite-bit quantized communication among agents for several important problems.

First, we have proposed the first distributed algorithms solving the weight-balancing and

average consensus problems addressing the simplex and finite-rate communication among

agents. The proposed algorithms are compatible with any rate constraint, i.e., they have

convergence guarantee when using 1-bit communication. In the analysis, we have proposed

a novel metric, which together with the proposed step-size rule, greatly facilitates the conver-

gence analysis. We have also characterized the convergence rate of the proposed algorithms.

In the second half of the dissertation, we have proposed a black-box quantization mecha-

nism which can be employed to a general class of linearly convergent distributed algorithms

which can be cast as fixed-point iterates. In fact, the proposed mechanism generates the first

distributed algorithms employing finite-bit quantization solving the composite optimization

problem. In the analysis, 1) we have shown that linear rate can be preserved and charac-

terized the effect of quantization on the convergence rate; and 2) we have shown that the

compression rule, a special instance of the proposed condition, requires infinite bits to im-

plement; 3) we have characterized the communication cost for the proposed scheme, which

is the first results for distributed algorithms over mesh networks.

An interesting extension of this dissertation is the answer to the open question: can one

design a universal quantization mechanism which can transform any unquantized algorithm

into its finite-bit quantized counterpart, while maintaining the same order of convergence

rate?

123

REFERENCES

[1] J. N. Tsitsiklis, “Problems in decentralized decision making and computation,” Ph.D.
dissertation, Mass. Inst. Technol., Cambridge, 1984.

[2] G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J. S. Pang, “Decomposition
by partial linearization: Parallel optimization of multi-agent systems,” IEEE Trans.
Signal Process., vol. 62, no. 3, pp. 641–656, Feb. 2014.

[3] J. A. Bazerque and G. B. Giannakis, “Distributed spectrum sensing for cognitive radio
networks by exploiting sparsity,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1847–
1862, Mar. 2010.

[4] P. Forero, A. Cano, and G. B. Giannakis, “Consensus-based distributed support vector
machines,” Journal of Machine Learning Research, vol. 59, pp. 1663–1707, May 2010.

[5] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical
Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948.

[6] A. Kashyap, T. Basar, and R. Srikant, “Quantized consensus,” Automatica, vol. 43,
no. 7, pp. 1192–1203, May 2007.

[7] T. C. Aysal, M. J. Coates, and M. G. Rabbat, “Distributed average consensus with
dithered quantization,” IEEE Trans. Signal Process., vol. 53, no. 10, pp. 4905–4918,
Oct. 2008.

[8] P. D. Lorenzo and G. Scutari, “Next: In-network nonconvex optimization,” IEEE
Trans. Signal Inf. Process. Netw., vol. 2, no. 2, pp. 120–136, Jun. 2016.

[9] C. N. Hadjicostis and A. D. Domı́nguez-Garćıa, “Distributed balancing of commodity
networks under flow interval constraints,” IEEE Trans. Autom. Control, vol. 64, no. 1,
pp. 51–65, Jan. 2019.

[10] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with
switching topology and time-delays,” IEEE Trans. Autom. Control, vol. 49, no. 9,
pp. 1520–1533, Sep. 2004.

[11] G. Cybenko, “Dynamic load balancing for distributed memory multiprocessors,” J.
Parallel and Distrib. Comput., vol. 7, no. 2, pp. 279–301, Oct. 1989.

[12] J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle
formations,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1465–1476, Sep. 2004.

124

[13] G. Scutari, S. Barbarossa, and L. Pescosolido, “Distributed decision through self-
synchronizing sensor networks in the presence of propagation delays and asymmetric
channels,” IEEE Trans. Signal Process., vol. 56, no. 4, pp. 1667–1684, Apr. 2008.

[14] A. I. Rikos, T. Charalambous, and C. N. Hadjicostis, “Distributed weight balancing
over digraphs,” IEEE Trans. Control Netw. Syst., vol. 1, no. 2, pp. 190–201, Jun. 2014.

[15] L. Hooi-Tong, “On a class of directed graphs-with an application to traffic-flow prob-
lems,” Operations Res., vol. 18, no. 1, pp. 87–94, 1970.

[16] B. Gharesifard and J. Cortés, “Distributed strategies for generating weight-balanced
and doubly stochastic digraphs,” Eur. J. Contr., vol. 18, no. 6, pp. 539–557, 2012.

[17] A. I. Rikos and C. N. Hadjicostis, “Distributed balancing with constrained integer
weights,” IEEE Trans. Autom. Control, vol. 64, no. 6, pp. 2553–2558, Jun. 2019.

[18] A. I. Rikos and C. N. Hadjicostis, “Distributed integer weight balancing in the presence
of time delays in directed graphs,” IEEE Trans. Control Netw. Syst., vol. 5, no. 3,
pp. 1300–1309, Sep. 2018.

[19] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On distributed averaging
algorithms and quantization effects,” IEEE Trans. Autom. Control, vol. 54, no. 11,
pp. 2506–2517, Oct. 2009.

[20] J. Lavaei and R. M. Murray, “Quantized consensus by means of gossip algorithm,”
IEEE Trans. Autom. Control, vol. 57, no. 1, pp. 19–32, Jan. 2012.

[21] M. El Chamie, J. Liu, and T. Basar, “Design and analysis of distributed averaging with
quantized communication,” IEEE Trans. Autom. Control, vol. 61, no. 12, pp. 3870–
3884, Dec. 2016.

[22] S. Zhu and B. Chen, “Distributed average consensus with bounded quantization,” in
Proc. IEEE 17th SPAWC, Jul. 2016, pp. 1–6.

[23] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sensor networks:
Quantized data and random link failures,” IEEE Trans. Signal Process., vol. 58, no. 3,
pp. 1383–1400, Mar. 2010.

[24] T. Li, M. Fu, L. Xie, and J.-F. Zhang, “Distributed consensus with limited commu-
nication data rate,” IEEE Trans. Autom. Control, vol. 56, no. 2, pp. 279–292, Feb.
2011.

125

[25] D. Thanou, E. Kokiopoulou, Y. Pu, and P. Frossard, “Distributed average consensus
with quantization refinement,” IEEE Trans. Signal Process., vol. 61, no. 1, pp. 194–
205, Jan. 2013.

[26] R. Rajagopal and M. J. Wainwright, “Network-based consensus averaging with general
noisy channels,” IEEE Trans. Signal Process., vol. 59, no. 1, pp. 373–385, Jan. 2011.

[27] H. Li, G. Chen, T. Huang, and Z. Dong, “High-performance consensus control in
networked systems with limited bandwidth communication and time-varying directed
topologies,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 5, pp. 1043–1054, May
2017.

[28] C.-S. Lee, N. Michelusi, and G. Scutari, “Topology-agnostic average consensus in sensor
networks with limited data rate,” in Proc. 51st ACSSC, Oct. 2017.

[29] Y. Wang, Q. Wu, and Y. Wang, “Quantized consensus with finite data rate under
directed topologies,” in Proc. 50th IEEE CDC and ECC, Dec. 2011, pp. 6427–6432.

[30] Z. Chen, J. Ma, and X. Yu, “Consensus of general linear multi-agent systems under
directed communication graph with limited data rate,” in Proc. 3rd ISAS, May 2019,
pp. 394–399.

[31] A. I. Rikos and C. N. Hadjicostis, “Distributed average consensus under quantized
communication via event- triggered mass summation,” in Proc. 57th IEEE CDC, Dec.
2018, pp. 894–899.

[32] A. I. Rikos and C. N. Hadjicostis, “Distributed average consensus under quantized
communication via event-triggered mass splitting,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 2957–2962, 2020, 21th IFAC World Congress.

[33] B. Charron-Bost and P. Lambein-Monette, “Randomization and quantization for av-
erage consensus,” in Proc. 57th IEEE CDC, Dec. 2018, pp. 3716–3721.

[34] S. Zhu, Y. C. Soh, and L. Xie, “Distributed parameter estimation with quantized
communication via running average,” IEEE Trans. Signal Process., vol. 63, no. 17,
pp. 4634–4646, Sep. 2015.

[35] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Syst. Control
Lett., vol. 53, no. 1, pp. 65–78, Sep. 2004.

[36] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion based
on average consensus,” in Proc. 4th Int. Symp. on Information Processing in Sensor
Networks, Apr. 2005, pp. 63–70.

126

[37] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate infor-
mation,” in Proc. 44th IEEE FOCS, Oct. 2003, pp. 482–491.

[38] F. Blasa, S. Cafiero, G. Fortino, and G. Fatta, “Symmetric push-sum protocol for
decentralised aggregation,” in Proc. 3rd AP2PS, Jan. 2011, pp. 27–32.

[39] A. Olshevsky, I. C. Paschalidis, and A. Spiridonoff, “Fully asynchronous push-sum
with growing intercommunication intervals,” in Proc. ACC, Jun. 2018, pp. 591–596.

[40] F. Fagnani and S. Zampieri, “Average consensus with packet drop communication,”
SIAM J. on Control and Optim., vol. 48, no. 1, pp. 102–133, 2009.

[41] B. Gerencsér and J. M. Hendrickx, “Push-sum with transmission failures,” IEEE Trans.
Autom. Control, vol. 64, no. 3, pp. 1019–1033, Mar. 2019.

[42] J. M. Hendrickx and J. N. Tsitsiklis, “Fundamental limitations for anonymous dis-
tributed systems with broadcast communications,” in Proc. 53rd ALLERTON, Sep.
2015, pp. 9–16.

[43] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:Numerical
Methods. Belmont, MA, USA: Athena Scientific, 1989.

[44] C.-S. Lee, N. Michelusi, and G. Scutari, “Distributed quantized weight-balancing and
average consensus over digraphs,” in Proc. 57th IEEE CDC, Dec. 2018.

[45] Z. Qu, Cooperative Control of Dynamical Systems: Applications to Autonomous Vehi-
cles, 1st. Springer Publishing Company, Incorporated, 2009.

[46] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sensor networks with
imperfect communication: Link failures and channel noise,” IEEE Trans. Inf. Theory,
vol. 57, no. 1, pp. 355–369, Jan. 2009.

[47] R. Durrett, Probability: Theory and Examples, 4.1th. New York, NY, USA: Cambridge
University Press (4th ed.), 2013.

[48] D. K. Molzahn, F. Dörfler, H. Sandberg, et al., “A survey of distributed optimization
and control algorithms for electric power systems,” IEEE Trans. Smart Grid, vol. 8,
no. 6, pp. 2941–2962, Nov. 2017.

[49] A. Nedić, J.-S. Pang, G. Scutari, and Y. Sun, Multi-agent Optimization, 1st ed. Springer,
Cham, 2018.

[50] T. Yang, X. Yi, J. Wu, et al., “A survey of distributed optimization,” Annu Rev Control,
vol. 47, pp. 278–305, 2019.

127

[51] R. Bekkerman, M. Bilenko, and J. Langford, Scaling up Machine Learning: Parallel
and Distributed Approaches. Cambridge University Press, 2011.

[52] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu., “Can decentralized
algorithms outperform centralized algorithms? A case study for decentralized parallel
stochastic gradient descent,” in Proc. 31st NeurIPS, Dec. 2017.

[53] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication compression for
decentralized training,” in Proc. 32nd NeurIPS, Dec. 2018, pp. 7663–7673.

[54] H. Taheri, A. Mokhtari, H. Hassani, and R. Pedarsani, “Quantized push-sum for gossip
and decentralized optimization over directed graphs,” arXiv:2002.09964v5, Dec. 2020.

[55] A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan, “On biased compression for
distributed learning,” arXiv:2002.12410v1, Feb. 2020.

[56] D. Kovalev, A. Koloskova, M. Jaggi, P. Richtarik, and S. U. Stich, “A linearly conver-
gent algorithm for decentralized optimization: Sending less bits for free!” arXiv:2011.01697v1,
Nov. 2020.

[57] Y. Liao, Z. Li, K. Huang, and S. Pu, “Compressed gradient tracking methods for
decentralized optimization with linear convergence,” arXiv:2103.13748v3, Jun. 2021.

[58] X. Liu, Y. Li, R. Wang, J. Tang, and M. Yan, “Linear convergent decentralized opti-
mization with compression,” in Proc. 9th ICLR, May 2021.

[59] S. Magnússon, H. Shokri-Ghadikolaei, and N. Li, “On maintaining linear convergence
of distributed learning and optimization under limited communication,” IEEE Trans.
Signal Process., vol. 68, pp. 6101–6116, Oct. 2020.

[60] Y. Kajiyama, N. Hayashi, and S. Takai, “Linear convergence of consensus-based quan-
tized optimization for smooth and strongly convex cost functions,” IEEE Trans. Au-
tom. Control (Early Access), pp. 1–1, 2020.

[61] C.-S. Lee, N. Michelusi, and G. Scutari, “Finite rate quantized distributed optimization
with geometric convergence,” in Proc. 52nd ACSSC, Oct. 2018, pp. 1876–1880.

[62] Y. Sun, A. Daneshmand, and G. Scutari, “Convergence rate of distributed optimization
algorithms based on gradient tracking,” arXiv:1905.02637v1, May 2019.

[63] G. Scutari and Y. Sun, “Distributed nonconvex constrained optimization over time-
varying digraphs,” Math. Program., vol. 176, pp. 497–544, Feb. 2019.

128

[64] C.-S. Lee, N. Michelusi, and G. Scutari, “Finite rate distributed weight-balancing and
average consensus over digraphs,” IEEE Trans. Autom. Control (Early Access), pp. 1–
1, 2020.

[65] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd: Communication-
efficient sgd via gradient quantization and encoding,” in Proc. 31st NeurIPS, Dec.
2017.

[66] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and C. Renggli,
“The convergence of sparsified gradient methods,” in Proc. 32nd NeurIPS, Dec. 2018.

[67] P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, “Error feedback fixes signsgd and
other gradient compression schemes,” in Proc. 36th ICML, Jul. 2018.

[68] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with memory,” in Proc.
32nd NeurIPS, Dec. 2018.

[69] M. J. Anastasia Koloskova Sebastian U. Stich, “Decentralized stochastic optimiza-
tion and gossip algorithms with compressed communication,” arXiv:1902.00340v1, Feb.
2019.

[70] X. Zhang, J. Liu, Z. Zhu, and E. S. Bentley, “Compressed distributed gradient descent:
Communication-efficient consensus over networks,” in Proc. IEEE INFOCOM, Apr.
2019, pp. 2431–2439.

[71] S. Zheng, Z. Huang, and J. Kwok, “Communication-efficient distributed blockwise
momentum sgd with error-feedback,” in Proc. 33rd NeurIPS, Dec. 2019.

[72] E. Gorbunov, F. Hanzely, and P. Richtárik, “A unified theory of sgd: Variance reduc-
tion, sampling, quantization and coordinate descent,” in Proc. 23rd AISTATS, Apr.
2020.

[73] S. U. Stich, “On communication compression for distributed optimization on hetero-
geneous data,” arXiv:2009.02388v2, Dec. 2020.

[74] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi, “Federated learning
with compression: Unified analysis and sharp guarantees,” in Proc. 24th AISTATS,
Apr. 2021.

[75] C. A. Uribe, S. Lee, A. Gasnikov, and A. Nedić, “A dual approach for optimal al-
gorithms in distributed optimization over networks,” Optim. Methods Softw., vol. 36,
no. 1, pp. 171–210, 2021.

129

[76] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm for
decentralized consensus optimization,” SIAM J. Optim., vol. 25, pp. 944–966, May
2015.

[77] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Convergence of asynchronous distributed gra-
dient methods over stochastic networks,” IEEE Trans. Autom. Control, vol. 63, no. 2,
pp. 434–448, Feb. 2018.

[78] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence for distributed
optimization over time-varying graphs,” SIAM J. Optim., vol. 27, no. 4, pp. 2597–2633,
Dec. 2017.

[79] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed optimization,”
IEEE Trans. Control. Netw. Syst., vol. 5, no. 3, pp. 1245–1260, Sep. 2018.

[80] J. Xu, Y. Tian, Y. Sun, and G. Scutari, “Distributed algorithms for composite opti-
mization: Unified and tight convergence analysis,” arXiv:2002.11534v2, Mar. 2020.

[81] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient methods for
multi-agent optimization under uncoordinated constant stepsizes,” in Proc. 54th IEEE
CDC, 2015, pp. 2055–2060.

[82] Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method with network
independent step-sizes and separated convergence rates,” IEEE Trans. Signal Process.,
vol. 67, no. 17, pp. 4494–4506, Sep. 2019.

[83] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for distributed opti-
mization and learning—part i: Algorithm development,” IEEE Trans. Signal Process.,
vol. 67, no. 3, pp. 708–723, Feb. 2019.

[84] S. A. Alghunaim, E. Ryu, K. Yuan, and A. H. Sayed, “Decentralized proximal gradient
algorithms with linear convergence rates,” IEEE Trans. Autom. Control (Early Access),
pp. 1–1, 2020.

[85] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent opti-
mization,” IEEE Trans. Automat. Contr., vol. 54, no. 1, pp. 48–61, Jan. 2009.

[86] A. Agarwal, S. Negahban, and M. J. Wainwright, “Fast global convergence rates of
gradient methods for high-dimensional statistical recovery,” in Proc. 24th NeurIPS,
Dec. 2010, pp. 37–45.

[87] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998.

130

[88] J. J. Moreau, “Proximité et dualité dans un espace hilbertien,” Bulletin de la Société
Mathématique de France, vol. 93, pp. 273–299, 1965.

[89] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, 1st ed.
Springer Publishing Company, Incorporated, 2014, isbn: 1461346916.

[90] C.-S. Lee, N. Michelusi, and G. Scutari, “Finite-bit quantization for distributed al-
gorithms with linear convergence,” submitted to IEEE Trans. Inf. Theory, Jul. 2021,
Available [online]: https://arxiv.org/abs/2107.11304.

131

VITA

Chang-Shen Lee received the B.Sc. degree in the electrical engineering and computer

science honor program and the M.Sc. in communications engineering from National Chiao

Tung University, Hsinchu, Taiwan, in 2012 and 2014, respectively. He joined the Department

of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, in 2016, as

a Ph.D. student. From 2015 to 2016, he was a Research Assistant with the Research Center

for Information Technology Innovation, Academia Sinica, Taiwan. His research interests

include machine learning, distributed computing, and optimization.

132

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Motivation
	Research contributions
	Outline of the dissertation

	FINITE RATE DISTRIBUTED WEIGHT-BALANCING AND AVERAGE CONSENSUS OVER DIGRAPHS
	Introduction
	Related works
	Summary of the main contributions

	Background
	Basic graph-related definitions

	Summary of The Proposed Algorithms
	System model and problem formulation
	Distributed quantized weight-balancing
	Distributed quantized average consensus algorithm

	Distributed Quantized Weight-Balancing
	Proof of Theorem 2.4.1
	Proof of statement (a)
	Proof of statement (b)
	Proof of statement (c)

	Distributed Quantized Average Consensus
	Numerical Results
	Quantized weight-balancing
	Quantized average consensus

	Conclusions
	Appendix: Proofs of Theorems
	Intermediate Results in the Proof of Theorem 2.4.1
	Preliminary definitions and results
	Proof of Lemma 3
	Proof of Lemma 2
	Proof of Proposition 2.4.1

	Auxiliary Results for Theorem 2.5.1

	FINITE-BIT QUANTIZATION FOR DISTRIBUTED ALGORITHM WITH LINEAR CONVERGENCE
	Introduction
	Summary of main contributions
	Related works
	Organization and notation

	A General Distributed Algorithmic Framework: Exact Communications
	Warm-up: A class of distributed algorithms
	Proposed general model (using historical information)

	A General Distributed Algorithmic Framework: Quantized Communications
	Convergence Analysis

	Non-Uniform Quantizer with Adaptive Encoding/Decoding
	Quantizer design
	Adaptive encoding scheme

	Communication Complexity of (Q-M) using the ANQ Rule
	Special cases of (Q-M) using the ANQ rule

	Numerical Results
	Least square problem
	Logistic regression
	Communication cost

	Conclusions
	Appendix
	Proof of Theorem 3.3.1
	Preliminaries
	Proof of Theorem 3.3.1
	Proof of Lemma 14
	Proof of Lemma 16

	Proof of Lemmata 11, 12, and Corollary 2
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Corollary 2

	Proof of Theorems 3.5.1 and 3.5.2
	Proof of Theorem 3.5.1
	Proof of Lemma 18
	Proof of Lemma 19
	Proof of Theorem 3.5.2
	Proof of Lemma 13

	Examples of (M)
	(Prox-)EXTRA Xu2020
	(Prox-)NEXT Xu2020
	(Prox-)DIGing Xu2020
	(Prox-)NIDS Xu2020
	GD over star networks Nesterov2014
	Primal-dual algorithm Magnusson2020, Uribe2021

	SUMMARY
	REFERENCES
	VITA

