
LANGEVINIZED ENSEMBLE KALMAN FILTER FOR
LARGE-SCALE DYNAMIC SYSTEMS

by

Peiyi Zhang

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Statistics

West Lafayette, Indiana

August 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Faming Liang, Chair

Department of Statistics, Purdue University

Dr. Chuanhai Liu

Department of Statistics, Purdue University

Dr. Xiao Wang

Department of Statistics, Purdue University

Dr. Qifan Song

Department of Statistics, Purdue University

Approved by:

Dr. Jun Xie

2

To my parents, Fengmin Du and Weisong Zhang.

3

ACKNOWLEDGMENTS

There are many people and things coming to my mind when I am writing the acknowl-

edgements. Undoubtedly, the first person on the list is my advisor, Dr. Faming Liang.

This dissertation would not have been possible without his careful support. I would like to

express my deepest gratitude to him, for his knowledgeable mentorship, for his interesting

thoughts, for his persistent guidance, for his helpful advice, for his sincere care, and for his

inspirational encouragement. I am extremely fortunate to have him as my advisor. I really

enjoyed and will truly miss our discussion time, when I was led to an exciting world under

his supervision. More importantly, his spirit of perseverance and his courage in the face of

difficulties will always inspire me.

I would also like to thank Dr. Chuanhai Liu, Dr. Xiao Wang, Dr. Qifan Song, and Dr.

Faming Liang for serving on my dissertation committee. I thank Dr. Jun Xie for being a

really great advisor when I first came to Purdue. I want to thank all the professors who

have taught me at Purdue University. I also want to thank Mary Sigman, Patti Foster, and

all other Department of Statistics staff members for their kind assistance and support.

I am so fortunate and happy to discuss problems with my classmates and office-mates.

I learned a lot from them, and I am very grateful to them for their helps. I would like to

thank my friends, who always support and encourage me in their own ways.

Last but not least, my deepest gratitude goes to my parents for their endless love, support

and encouragement. Without them, I would not be able to move forward. To them, I dedicate

this thesis.

4

TABLE OF CONTENTS

LIST OF TABLES . 8

LIST OF FIGURES . 9

ABSTRACT . 13

1 INTRODUCTION . 15

1.1 Bayesian on-line learning with large-scale dynamic data 15

1.2 Bayesian on-line learning with large-scale dynamic data and unknown param-

eters . 17

1.3 Bayesian on-line learning with large-scale dynamic non-Gaussian data 19

1.4 Dissertation organization . 20

2 PRELIMINARIES . 22

2.1 Ensemble Kalman filter . 22

2.2 State-Augmented EnKF for simultaneous state and parameter estimation . . 24

2.3 Markov chain Monte Carlo Ensemble Kalman filter for non-Gaussian Data . 25

3 LANGEVINIZED ENSEMBLE KALMAN FILTER 27

3.1 Langevinized Ensemble Kalman filter for inverse problems 27

3.1.1 Linear inverse problem . 27

3.1.2 Nonlinear inverse problem . 31

3.2 Langevinized Ensemble Kalman filter for data assimilation problems 34

3.2.1 Data assimilation with linear measurement equation 34

3.2.2 Data assimilation with nonlinear measurement equation 38

3.3 Convergence analysis . 40

3.3.1 Convergence of Algorithm 4 . 40

3.3.2 Convergence of Algorithm 6 . 42

4 EMPIRICAL RESULTS OF THE LENKF ALGORITHM 54

4.1 Numerical studies for static learning problems 54

5

4.1.1 Bayesian variable selection for large-scale linear regression 54

4.1.2 Bayesian nonlinear variable selection with deep neural networks . . . 57

4.2 Numerical studies for dynamic learning problems 62

4.2.1 Uncertainty quantification for the Lorenz-96 model 62

4.2.2 Online learning with LSTM neural networks 66

5 EXTENSIONS OF THE LANGEVINIZED ENSEMBLE KALMAN FILTER . . . 72

5.1 Langevinized Ensemble Kalman filter with unknown parameters 72

5.1.1 The SA-LEnKF algorithm . 72

5.1.2 Convergence analysis . 76

5.1.3 Proofs for the convergence of the SA-LEnKF algorithm 78

5.2 Langevinized Ensemble Kalman filter with non-Gaussian data 86

5.2.1 The Extended LEnKF algorithm . 86

5.2.2 Convergence analysis . 89

6 EMPIRICAL RESULTS OF THE SA-LENKF AND THE EXTENDED LENKF . 91

6.1 Empirical results of the SA-LEnKF algorithm 91

6.1.1 Dynamic linear model with stochastic parameters 91

6.1.2 Dynamic nonlinear model with multiplicative parameters 95

6.1.3 Dynamic linear model with multiple unknown parameters 99

6.1.4 Sea surface temperature modeling . 103

6.2 Empirical results of the Extended LEnKF algorithm 107

6.2.1 Poisson regression . 107

6.2.2 Nonlinear classification . 109

6.2.3 Dynamic Poisson spatial model . 111

6.2.4 Dynamic network analysis . 114

7 SUMMARY AND DISCUSSION . 121

7.1 Summary . 121

7.2 Discussion . 121

REFERENCES . 122

6

VITA . 130

7

LIST OF TABLES

4.1 Comparison of LEnKF, parallel SGLD and parallel pSGLD for the nonlinear
regression example, where the numbers in the parentheses denote the standard
deviations of the averaged MeanMSFE and MeanMSPE values over 10 datasets. 62

4.2 Comparison of the EnKF and LEnKF, where the averages over 10 independent
datasets are reported with the standard deviation given in the parentheses. . . . 66

6.1 Comparison of SA-EnKF-Online, SA-LEnKF-Offline and state-augmented EnKF
in state and parameter estimation for the model (6.1), where the average values
over 10 independent datasets were reported with the standard deviation given
in the parentheses. The CPU time (in seconds) was recorded for a single run of
each algorithm. . 96

6.2 Comparison of SA-EnKF-Offline, SA-LEnKF-Online and state-augmented EnKF
in state and parameter estimation for the Lorenz-96 model, where the average
values over 10 independent datasets were reported with the standard deviation
given in the parentheses. The CPU time (in seconds) was recorded for a single
run of each algorithm. Refer to Section 6.1.1 for notations of the table. 99

6.3 Comparison of SA-LEnKF-Offline, SA-LEnKF-Online and state-augmented EnKF
in state and parameter estimation for the model (6.1) with multiple parameters,
where the average values over 10 independent datasets were reported with the
standard deviation given in the parentheses. The CPU time (in seconds) was
recorded for a single run of each algorithm. . 103

6.4 Comparison of the Extended LEnKF and the MCMC-EnKF in state estimation
for the dynamic spatial model, where the average values over 10 data sets were
reported with the standard deviation given in the parentheses, and the CPU time
(in seconds) was recorded for a single run of the algorithm. 114

6.5 Comparison of the Extended LEnKF and MCMC-EnKF algorithms for the col-
lege messaging dynamic network, where “Avg-AUC” denotes the averaged AUC
values over all 25 days and its standard deviation is given in the parentheses.
The CPU time (in seconds) was recorded for a single run of each algorithm. . . 119

8

LIST OF FIGURES

4.1 LEnKF for large-scale linear regression with 500 iterations: (a) Trajectories of
β1, . . . , β9, where β1, . . . , β5 have a true value of 1, β6, . . . , β8 have a true value
of −1, and β9 has a true value of 0. (b) marginal inclusion probabilities of all
covariates X1, . . . , Xp, where the covariates are shown in the rank of marginal
inclusion probabilities; (c) scatter plot of the response Y and the fitted value for
training samples; and (d) scatter plot of the response Y and the predicted value
for test samples. . 56

4.2 Convergence trajectories of SGLD, pSGLD, SGNHT and LEnKF for a large-
scale linear regression example: Trajectories of (β1, β2, . . . , β9) produced by SGLD
(upper), pSGLD (upper middle), SGNHT (lower middle), and LEnKF (lower) in
their whole runs, where the blue rectangle highlights the first 5% iterations of
the runs. 58

4.3 LEnKF for the nonlinear variable selection example: (a) marginal inclusion prob-
abilities of the variables, where the variables are shown in the rank of marginal
inclusion probabilities; (b) scatter plot of the response Y and the fitted value for
2,000 randomly selected training samples; and (c) scatter plot of the response Y
and the predicted value for 200 test samples. 60

4.4 Comparison of the best fitting and prediction MSEs by the time (plotted in
logarithm): (a) by each chain of SGLD, pSGLD and LEnKF; (b) by ensemble
averaging of SGLD, pSGLD and averaging LEnKF. 61

4.5 Chaotic path of the partial state variables (X1
t , X

2
t , X

3
t) for t = 1, 2, . . . , 100,

simulated from the Lorenz-96 Model. 63

4.6 State estimates produced by the EnKF and LEnKF for the Lorenz-96 model
with t = 1, 2, . . . , 100: plots (a)-(c) show, respectively, the estimates of X1

t , X2
t

and X3
t , where the true state values are represented by ‘+’, the estimates are

represented by solid lines, and their 95% confidence intervals are represented by
shaded bands; plot (d) shows log(RMSEt) along with stage t. 65

4.7 Coverage probabilities of the 95% confidence intervals produced by EnKF and
LEnKF for Lorenz-96 Model for stage t = 1, 2, . . . , 100: (a) coverage probabilities
with one dataset; (b) coverage probabilities averaged over 10 datasets. 66

4.8 Wind stress estimates at three spatial locations and their 95% credible interval
along with stages: the red line is for the LEnKF estimate; the pink shaded band
is for credible intervals of the LEnKF, the green line is for the SGD estimate;
and the blue cross ’+’ is for the true wind stress value. 70

4.9 Comparison of the mean squared fitting errors produced by SGD, and LEnKF. 70

9

4.10 Heat maps of the wind stress fitted by the LEnKF and SGD for six different
months, August 1965, October 1969, December 1973, February 1978, April 1982,
and June 1986: For both left and right panels, the left, middle and right columns
show the true heat map, the heat map fitted by LEnKF, and the heat map fitted
by SGD, respectively. . 71

6.1 Comparison of SA-LEnKF-Online, SA-LEnKF-Offline and state-augmented EnKF
in state estimation for the model (6.1): the plots in the upper, middle and lower
panels show, respectively, the estimates of x(10)

t , x(25)
t and x

(40)
t , where the true

state values are represented by ‘+’, the estimates are represented by solid lines,
and the 95% confidence bands are represented by the shaded area. 93

6.2 Comparison of SA-LEnKF-Online, SA-LEnKF-Offline and state-augmented EnKF
in parameter and state estimation for the model (6.1): plot (a) shows the esti-
mate of σ, where x-axis represents the sweep number for SA-LEnKF-Offline and
the stage number for SA-LEnKF-Online and state-augmented EnKF; and plot
(b) shows RMSEt(x) of the state estimates along with stage t. 94

6.3 Coverage probabilities of the 95% confidence intervals produced by the SA-
LEnKF-Online, SA-LEnKF-Offline and state-augmented EnKF algorithms for
the states x1, x2, . . . , xT of the model (6.1), where plots (a) and (b) show the re-
sults for one and ten datasets, respectively. In the estimation, we set k0 = K − 1
to reduce the effect of pre-converged parameter estimates. 95

6.4 Comparison of SA-LEnKF-Online, SA-LEnKF-Offline and state-augmented EnKF
in state estimation for the Lorenz-96 model: The upper, middle and lower panels
show, respectively, the estimates of x(1)

t , x(15)
t and x(20)

t along with stage t, where
the true state values are represented by ‘+’, the estimates are represented by
solid lines, and the 95% confidence bands are represented by shaded areas. . . . 97

6.5 Comparison of SA-LEnKF-Online, SA-LEnKF-Offline and state-augmented EnKF
in state and parameter estimation for the Lorenz-96 model: (a) estimates of θ;
(b) RMSEt(x) of the state estimates along with stage t; (c) state coverage proba-
bilities along with stage t, which were calculated based on one dataset; (d) state
coverage probabilities along with stage t, which were averaged over 10 datasets. 98

6.6 Comparison of SA-LEnKF-Online, SA-LEnKF-Offline (last sweep) and state-
augmented EnKF in state estimation for the model (6.1) with multiple param-
eters: Plots (a) and (b) show, respectively, the estimates of x(10)

t and x
(50)
t for

t = 1, 2, . . . , 100; and plots (c) and (d) show, respectively, the estimates of x(10)
t

and x
(50)
t for t = 51, 52, . . . , 100, where the the 95% confidence bands are repre-

sented by shaded areas. 100

6.7 Comparison of SA-LEnKF-Online, SA-LEnKF-Offline and state-augmented EnKF
in parameter estimation for the model (6.1) with multiple parameters, where x-
axis represents the sweep number for SA-LEnKF-Offline and the stage number
for SA-LEnKF-Online and state-augmented EnKF. 101

10

6.8 Comparison of SA-LEnKF-Online, SA-LEnKF-Offline and state-augmented EnKF
in parameter and state estimation for the model (6.1) with multiple parameters. 102

6.9 Results of SA-LEnKF-Online in state and parameter estimation for the LSTM
model: (a) MSEt(x) of the state estimates along with stage t; (b) the estimates
of σ along with stage t. 104

6.10 Confident bands generated by SA-LEnKF-Online for the LSTM model: The
upper, middle and lower panels show, respectively, the estimates of x(10)

t , x(180)
t

and x
(190)
t along with stages, where the true state values are represented by ‘+’,

the estimates are represented by solid lines, and the 95% confidence bands are
represented by shaded areas. 105

6.11 Heat maps of the true sea temperatures (left in each subfigure) and the fitted sea
temperatures (right in each subfigure) by the SA-LEnKF-Online algorithm at 12
selected months. . 106

6.12 Extended LEnKF for large-scale generalized linear regression: (a) Trajectories of
β1, . . . , β9 along with iterations; (b) marginal inclusion probabilities of all covari-
ates x1, . . . , xp, where the covariates are shown in the rank of marginal inclusion
probabilities. . 108

6.13 Extended LEnKF for a nonlinear classification example: (a) marginal inclu-
sion probabilities of the variables, where the variables are shown in the rank
of marginal inclusion probabilities; and (b) fitted value of Y (grey dot for true Y
= 1, red cross sign for true Y = 0, randomly selected 500 observations for each
class); (c) predicted value of Y (grey dot for true Y = 1, red cross sign for true
Y = 0, randomly selected 200 observations for each class). 110

6.14 State values for t = 1, 2, . . . , T . 112

6.15 State estimates produced by the Extended LEnKF and the MCMC-EnKF for
a simulated cloud-motion data set along with stages t = 1, 2, . . . , 80: each plot
corresponds to one randomly selected component of xt, where the true state
values are represented by ‘+’, the estimates by LEnKF are represented by red
lines, the estimates by MCMC-EnKF are represented by green lines, and and
their 95% confidence intervals are represented by shaded bands. 113

6.16 Coverage rates of the 95% confidence intervals produced by the Extended LEnKF
and MCMC-EnKF for the stages t = 1, 2, . . . , 80: (a) coverage rates with one
data set; (b) coverage rates averaged over 10 data sets; (c) log(RMSEt) along
with stage t. . 113

6.17 College Messaging networks on Days 1, 5, 10, 15, 20 and 25. 118

6.18 Box-plots of link probabilities produced with the DSNL model: fitted link prob-
abilities for 10 pairs of nodes with edges and 10 pairs of nodes without edges are
plotted for day 1, 5, 10, 15, 20 and 25. 120

11

6.19 Box-plots of link probabilities produced with the DLD model: fitted link proba-
bilities for 10 pairs of nodes with edges and 10 pairs of nodes without edges are
plotted for day 1, 5, 10, 15, 20 and 25. 120

12

ABSTRACT

The Ensemble Kalman filter (EnKF) has achieved great successes in data assimilation

in atmospheric and oceanic sciences, but its failure in convergence to the right filtering

distribution precludes its use for uncertainty quantification. Other existing methods, such

as particle filter or sequential importance sampler, do not scale well to the dimension of the

system and the sample size of the datasets. In this dissertation, we address these difficulties

in a coherent way.

In the first part of the dissertation, we reformulate the EnKF under the framework of

Langevin dynamics, which leads to a new particle filtering algorithm, the so-called Langevinized

EnKF (LEnKF). The LEnKF algorithm inherits the forecast-analysis procedure from the

EnKF and the use of mini-batch data from the stochastic gradient Langevin-type algo-

rithms, which make it scalable with respect to both the dimension and sample size. We

prove that the LEnKF converges to the right filtering distribution in Wasserstein distance

under the big data scenario that the dynamic system consists of a large number of stages and

has a large number of samples observed at each stage, and thus it can be used for uncertainty

quantification. We reformulate the Bayesian inverse problem as a dynamic state estimation

problem based on the techniques of subsampling and Langevin diffusion process. We illus-

trate the performance of the LEnKF using a variety of examples, including the Lorenz-96

model, high-dimensional variable selection, Bayesian deep learning, and Long Short-Term

Memory (LSTM) network learning with dynamic data.

In the second part of the dissertation, we focus on two extensions of the LEnKF algo-

rithm. Like the EnKF, the LEnKF algorithm was developed for Gaussian dynamic systems

containing no unknown parameters. We propose the so-called stochastic approximation-

LEnKF (SA-LEnKF) for simultaneously estimating the states and parameters of dynamic

systems, where the parameters are estimated on the fly based on the state variables simulated

by the LEnKF under the framework of stochastic approximation. Under mild conditions, we

prove the consistency of resulting parameter estimator and the ergodicity of the SA-LEnKF.

For non-Gaussian dynamic systems, we extend the LEnKF algorithm (Extended LEnKF)

by introducing a latent Gaussian measurement variable to dynamic systems. Those two

13

extensions inherit the scalability of the LEnKF algorithm with respect to the dimension and

sample size. The numerical results indicate that they outperform other existing methods in

both states/parameters estimation and uncertainty quantification.

14

1. INTRODUCTION

1.1 Bayesian on-line learning with large-scale dynamic data

Coming with the new century, the integration of computer technology into science and

daily life has enabled scientists to collect massive volumes of data, such as satellite data,

high-throughput biological assay data and website transaction logs. To address computa-

tional difficulty encountered in Bayesian analysis of big data, a variety of scalable MCMC

algorithms have been developed, including stochastic gradient MCMC algorithms (see, e.g.,

[1]–[8]), split-and-merge algorithms (see, e.g., [9]–[12]), mini-batch Metropolis-Hastings al-

gorithms (see, e.g., [13]–[17]), nonreversible Markov process-based algorithms (see, e.g.,[18],

[19]), and Bayesian bootstrapping (see, e.g.,[20], [21]).

Although the scalable MCMC algorithms have achieved great successes in Bayesian learn-

ing with static data, none of them could be directly applied to dynamic data. In the litera-

ture, learning with static data is often termed as static or off-line learning, and learning with

dynamic data is often termed as dynamic or on-line learning. Dynamic learning is important

and challenging, as dynamic data collection is general, heterogeneous and messy.

Consider a state space model (SSM) of the form

xt = g(xt−1) + ut, ut ∼ N(0, Ut),

yt = Htxt + ηt, ηt ∼ N(0,Γt),
(1.1)

for t = 1, 2, . . . , T , where xt ∈ Rp and yt ∈ RNt denote, respectively, the state and observa-

tions at stage t; and the dimension p, the number of stages T , and the sample sizes Nt’t are

all assumed to be very large; and we assume that the model error ut and observation error ηt

are zero-mean Gaussian random variables, and that the covariance matrices Ut and Γt and

the propagator g(·) and Ht are all fully specified, i.e. containing no unknown parameters.

For the dynamic system, the top equation is called the state evolution equation, where g(·)

is called state propagator and can be nonlinear; and the bottom equation is called the mea-

surement equation, where the propagator Ht relates the state variable to the measurement

variable and yields the expected value of the prediction given the model states and param-

15

eters. Throughout this dissertation, we let f(yt|xt) denote the likelihood function of yt, let

π(xt|y1:t) denote the filtering distribution at stage t given the data {y1, y2, . . . , yt}, and let

π(xt|y1:t−1) =
∫

π(xt|xt−1)π(xt−1|y1:t−1)dxt−1 denote the predictive distribution of xt given

{y1, y2, . . . , yt−1}.

Among the existing algorithms of state estimation for SSMs, the Kalman filter [22] is

perhaps the most famous one, which provides algebraic formulas for recursively updating

the mean and variance of the state distribution when the state evolution equation is linear.

For the problems with nonlinear state evolution equations, the extended Kalman filter [23]

and unscented Kalman filter [24] have been developed. When the state dimension is high,

say greater than a few thousands, the Kalman filter recursions becomes computationally

infeasible, which requires storage and calculation of matrices of the dimension of the state

variable. In this case, the ensemble Kalman filter (EnKF) [25] can be used, which represents

the state distribution using an ensemble of equally weighted random samples, and replaces

the covariance matrix by the sample covariance computed from the ensemble. The ensemble

is propagated forward according to the state evolution equation and re-adjusted according

to a linear regression when new data arrive. Unlike the Kalman filter, the EnKF also works

when the state evolution equation is nonlinear. Because of its conceptual simplicity and ease

of implementation, the EnKF has been widely used in atmospheric and oceanic sciences,

where the applications are usually termed as data assimilation. However, unfortunately, as

shown by Law, Tembine, and Tempone [26], the EnKF converges only to a mean-field filter,

which provides the optimal linear estimator of the conditional mean but not the filtering

distribution except in the large sample limit for linear systems. Similar results can be found

in Le Gland, Monbet, and Tran [27], Bergou, Gratton, and Mandel [28] and Kwiatkowski

and Mandel [29]. Other than the EnKF, classical sequential Monte Carlo or particle filter

algorithms (see, e.g., [30], [31]) have also been used to infer the state distribution for model

(1.1). However, we note that they lack the scalability necessary for dealing with large-scale

dynamic data, which strive to make use of all available data at each processing step and also

suffer from the sample degeneracy issue [32] when the state dimension is high and/or the

time series is long. How to make Bayesian on-line learning with large-scale dynamic data

has posed a great challenge on current statistical methods.

16

Our goal is to develop a scalable particle filtering algorithm under the big data scenario

that the dimension p, the numbers of stages T and the sample sizes Nt’s are all very large.

Toward this goal, we reformulate the EnKF under the framework of Langevin dynamics. The

resulting algorithm inherits the forecast-analysis procedure from the EnKF and the use of

mini-batch data from the stochastic gradient Langevin-type algorithms. The former makes

the new algorithm scalable with respect to the dimension, and the latter makes it scalable

with respect to the sample size. To credit to its two precursors, the new algorithm is coined

as Langevinized Ensemble Kalman filter (LEnKF). We prove that the LEnkF converges to

the right filtering distributions in Wasserstein distance under the scenario that the number of

stages T and the sample sizes Nt’s are all large. We illustrate the performance of the LEnKF

using a variety of examples, including the Lorenz-96 model [33], Bayesian deep learning, and

Long Short Term Memory (LSTM) network learning.

1.2 Bayesian on-line learning with large-scale dynamic data and unknown pa-
rameters

Recall that in the dynamic system (1.1), we assume that the covariance matrices Ut

and Γt and the propagator g(·) and Ht are all fully specified, i.e. containing no unknown

parameters. However, in practice, unknown parameters are very common. Consider a more

general SSM of the form

xt = g(xt−1, α) + ut, ut ∼ N(0, Ut(ζx)),

yt = Ht(β)xt + ηt, ηt ∼ N(0,Γt(ζy)),
(1.2)

where t indexes the stages of the system, xt ∈ Rp represents the system state at stage t,

yt ∈ RNt represents the system observations at stage t, and θ = (α, β, ζx, ζy) are unknown

parameters which are assumed to be invariant with respect to stage t. Both the model

error ut and the observation error ηt are zero-mean Gaussian random variables, and their

covariances are parameterized by ζx and ζy, respectively. The nonlinear propagator g(·)

contains the parameter vector α, and the linear propagator Ht(β) contains the parameter

vector β. The propagator Ht(β) relates the state variable to the measured variable and yields

17

the expected value of the prediction given the model state and parameters. The problem

that we are considering is to simultaneously estimate the state variables {x1, x2, . . . , xt, . . .}

and the parameters θ under the high-dimensional, big data and long series scenario; that is,

the dimension of the state variable xt can be very high, the number of observations contained

in yt can be very large, and the number of stages T can be very large. Under this scenario,

as briefly reviewed in Section 1.1 , many of the existing methods become impractical, which

might not scale well with respect to the state dimension, the sample size, or the length of

the time series. In addition, they might suffer from a memory issue when storage and/or

calculation of the covariance matrix of the state variable is involved.

Towards simultaneous estimation of the states and parameters for the model (1.2), the

maximum likelihood method (see, e.g., [34], [35]) and sequential Bayesian method (see,

e.g.,[36], [37]) have been developed. However, these methods are full likelihood-based. Since

evaluation of the full likelihood function requires a complete scan of all available data and

to integrate out all state variables, these methods do not scale well to high-dimensional

and big data problems. Quite recently, Aicher, Putcha, Nemeth, et al. [38] proposed a

particle buffered stochastic gradient MCMC method, where the states are estimated using the

particle filter and the parameters are estimated using a stochastic gradient MCMC algorithm.

Although the algorithm is scalable to big data problems by employing the subsampling

technique in the stochastic gradient MCMC step, it is not scalable to high-dimensional

and long series problems because the particle filter used therein suffers from the sample

degeneracy issue [32].

When the EnKF is used for state estimation, the state augmentation method (see,

e.g.,[39]–[41]) is often used for parameter estimation, which augments the state vector by

the model parameters and then constructs a new EnKF for the augmented model. Since

the EnKF itself suffers from a convergence issue, so does the state augmentation method.

Empirically, this method often works reasonably well for the model parameters that enter

additively in the state evolution equation, but it can be problematic for the stochastic and

multiplicative parameters. The former refers to the parameters controlling the variance of

the system, i.e., ζx and ζy in model (1.2), and the latter refers to the parameters that are

multiplied by the state variables. For stochastic parameters, the state augmentation method

18

often converges to arbitrary values that depend on the initial condition and noise realiza-

tion [42]. For multiplicative parameters, the state augmentation method often leads to one

realization of the model that is dynamically unstable [43].

We propose the so-called stochastic approximation-Langevinized EnKF (SA-LEnKF) for

simultaneously estimating the states and parameters of the dynamic system (1.2), where

the parameters are estimated on the fly based on state variables simulated by the LEnKF

algorithm under the framework of stochastic approximation [44]. The proposed algorithm

is general; it work well for all types of parameters: additive, multiplicative and stochastic.

Under mild conditions, we establish the consistency of the resulting parameter estimator

and the ergodicity of the SA-LEnKF. Consequently, the proposed method can be efficiently

used in uncertainty quantification for dynamic systems. As an advantage inherited from the

LEnKF, the proposed method can work well for long series, large scale and high-dimensional

dynamic systems.

1.3 Bayesian on-line learning with large-scale dynamic non-Gaussian data

Another extension of State space models is for non-Gaussian data. Consider a general

form of nonlinear and/or non-Gaussian SSM:

xt = g(xt−1) + ut, ut ∼ N(0, Ut),

zt ∼ f(·|xt),
(1.3)

where xt ∈ Rp and zt ∈ RNt are called, respectively, the state and observation/measurement

at stage t, p is the dimension of the state variable, and Nt is the sample size at stage t.

The distribution f(·) in the measurement equation deviates from Gaussian. Let z1:t =

(z1, z2, . . . , zt) denote the collection of observations up to stage t. A major goal of the study

of SSMs is to infer the filtering distribution π(xt|z1:t). Here, we assume that the model (1.3)

contains no unknown parameters. Otherwise, as discussed at Section 1.2 , SA-LEnKF or

the state-augmentation scheme can be employed to simultaneously estimate the states and

parameters.

19

The model (1.3) has been studied in the literature for over half a century. When both

the state propagator and the mean function of f(·) can be nonlinear, and f(·) deviates from

Gaussian, the particle filter has been used to infer the filtering distribution for model (1.3).

However, as discussed in Section 1.1 , the particle filter becomes impractical when the state

dimension is high and/or the total number of stages is large, as it suffers from the sample

degeneracy issue under these scenarios, and it’s not scalable with respect to the sample size

Nt’s due to its Metropolis sampling nature, where a likelihood function needs to evaluated

with all available data when a particle is generated at each stage. Other than the particle

filter, Katzfuss, Stroud, and Wikle [45] proposed to use Markov chain Monte Carlo (MCMC),

e.g., the Metropolis-Hasting algorithm [46], [47] and Gibbs sampler [48], and EnKF in a

combined manner, where the Gaussian measurement variables required by the EnKF were

imputed using a MCMC algorithm at each stage. However, since the EnKF doesn’t converge

to the right filtering distribution, so doesn’t their algorithm. Moreover, their algorithm is

not scalable with respect to the sample size as the algorithm always performs in the scale of

entire dataset.

We extend the LEnKF algorithm to nonlinear and/or non-Gaussian systems by introduc-

ing a latent Gaussian measurement variable to the model (1.3), called Extended Langevinized

EnKF (Extended LEnKF). The proposed algorithm can converge to the right filtering distri-

bution as the number of stages becomes large, while inheriting the scalability of the LEnKF

with respect to the dimension and the sample size.

1.4 Dissertation organization

We organize the rest of the dissertation as follows. Chapter 2 provides a brief review

of a few preliminary topics, including the EnKF algorithm [25], the state-augmented EnKF

algorithm, and the MCMC-EnKF algorithm proposed by Katzfuss, Stroud, and Wikle [45].

In chapter 3, we start with an introduction to the LEnKF algorithm, which is developed

under model (1.1). We then reformulate the Bayesian inverse problem as a dynamic state

estimation problem based on the techniques of subsampling and Langevin diffusion process,

and describe details of the algorithm for linear/nonlinear inverse and data assimilation prob-

20

lems, and study the algorithm’s convergence. Chapter 4 evaluates the performance of the

LEnKF algorithm for both inverse and data assimilation problems using a variety of ex-

amples, including the Lorenz-96 model, high-dimensional variable selection, Bayesian deep

learning, and Long Short-Term Memory (LSTM) network learning with dynamic data.

Starting from chapter 5, we switch to extensions the LEnKF algorithm, i.e., the SA-

LEnKF (developed under model (1.2)) and the Extended LEnKF (developed under model

(1.3)). We present algorithms’ details in Section 5.1.1 and Section 5.2.1 and study their

convergence in Section 5.1.2 and Section 5.2.2 . Chapter 6 includes a collection of empirical

results, including synthetic studies and real data analysis, to demonstrate the efficacy and

practicality of our algorithms.

Last, we conclude in chapter 7 with a summary and discussion of the dissertation.

21

2. PRELIMINARIES

2.1 Ensemble Kalman filter

Consider the dynamic system (1.1). To estimate the state variables x1, x2, . . . , xT , where

T denotes the total number of stages, Evensen [25] proposed the EnKF algorithm:

Algorithm 1: Ensemble Kalman filter
(i) Initialization: Initial an ensemble xa,1

0 , xa,2
0 , . . . , xa,m

0 , where m denotes the
ensemble size.
for t=1,2,…,T do

(ii) Forecast: For i = 1, 2, . . . ,m, draw ui
t ∼ N(0, Ut) and calculate

xf,i
t = g(xa,i

t−1) + ui
t.

Calculate the sample covariance matrix of xf,1
t , . . . , xf,m

t and denote it by Ct.
(ii) Analysis: For i = 1, 2, . . . ,m, draw ηi

t ∼ N(0,Γt) and calculate

xa,i
t = xf,i

t + K̂t(yt −Htx
f,i
t − ηi

t)
∆= xf,i

t + K̂t(yt − yf,i
t),

where K̂t = CtH
T
t (HtCtH

T
t + Γt)−1 forms an estimator for the Kalman gain

matrix Kt = StH
T
t (HtStH

T
t + Γt)−1 and St denotes the covariance matrix of xf

t .

The rationale underlying the EnKF can be explained as follows. Let xf
t and xa

t denote

a generic sample obtained at the forecast and analysis step, respectively. The forecast step

is to use the forecasted samples {xf,1
t , . . . , xf,m

t } to approximate the predictive distribution

π(xt|y1:t−1). Let µ′
t and St denote the mean and variance of π(xt|y1:t−1), respectively. Hence,

one can rewrite xf
t as

xf
t = µ′

t + wt,

where wt is a random error with mean 0 and variance St. If π(xt|y1:t−1) is Gaussian, by the

identity Kt = StH
T
t (HtStH

T
t + Γt)−1 = (I − KtHt)StH

T
t Γ−1

t = (HT
t Γ−1

t Ht + S−1
t)−1HT

t Γ−1
t ,

one can show

xa
t =

[
µ′

t +Kt(yt −Htµ
′
t)
]

+
[
(I −KtHt)wt −Ktηt

]
= µt + et,

22

where µt = µ′
t +Kt(yt −Htµ

′
t) is the mean of π(xt|y1:t) ∝ π(yt|xt)π(xt|y1:t−1), and et = (I −

KtHt)wt−Ktηt is a Gaussian random error with mean 0 and variance Var(et) = (I−KtHt)St;

that is, xa
t is a sample following the filtering distribution π(xt|y1:t).

The EnKF has two attractive features which make it extremely successful in dealing

with high-dimensional data assimilation problems such as those encountered in reservoir

modeling [49], oceanography [50], and weather forecasting [51]. First, it approximates each

filtering distribution π(xt|y1:t) using an ensemble of particles. Since the ensemble size m is

typically much smaller than p, it leads to dimension reduction and computational feasibility

compared to the Kalman filter (see e.g., [52]). In particular, it approximates St by Ct, and

the storage for the matrix Ct is replaced by particles and thus much reduced. Second, in

generating particles from each filtering distribution, it avoids covariance matrix decomposi-

tion compared to conventional particle filters. It is known that an LU-decomposition of the

covariance matrix has a computational complexity of O(p3). Instead, the EnKF employs a

forecast-analysis procedure to generate particles, which has a computational complexity of

O(max{p2Nt, N
3
t }+mpNt) for m particles at stage t. That is, the forecast-analysis procedure

reduces the computational complexity of the algorithm when m and Nt are smaller than p.

This explains why the EnKF is so efficient for high-dimensional problems.

Despite its great successes, the performance of the EnKF is sub-optimal. As shown by

Law, Tembine, and Tempone [26], it converges only to a mean-field filter, which provides the

optimal linear estimator of the conditional mean but not the filtering distribution except in

the large sample limit for linear systems. Similar results can be found in Le Gland, Monbet,

and Tran [27], Bergou, Gratton, and Mandel [28] and Kwiatkowski and Mandel [29].

As an extension, Iglesias, Law, and Stuart [53] applied the EnKF to solve the inverse

problem, which is to find the parameter z given observations of the form

y = G(z) + η, (2.1)

where G(·) is the forward response operator mapping the unknown parameter z to the space

of observations, η ∼ N(0,Γ) is Gaussian random noise, and y is observed data. With the

23

state augmentation approach, they defined the new state vector as xT = (zT ,G(z)T) and an

artificial dynamic system as

xt = xt−1,

yt = Hxt + ηt,
(2.2)

where H = (0, I) such that HX = G(z) holds, yt ≡ y for all t = 1, 2, . . ., and ηt ∼ N(0,Γ).

However, as mentioned previously, the EnKF does not converge to the filtering distribution,

so the posterior distribution π(z|y) cannot be well approximated by the ensemble, and thus

uncertainty of the estimate of z cannot be correctly quantified. Numerically, Ernst, Sprungk,

and Starkloff [54] demonstrated that for nonlinear inverse problems the large sample limit

does not lead to a good approximation to the posterior distribution.

2.2 State-Augmented EnKF for simultaneous state and parameter estimation

Consider the dynamic system (1.2), where α, β, ζx, ζy are unknown parameters which are

assumed to be invariant with respect to stage t. Let θt = (αt, βt, ζx,t, ζy,t) be a dθ-dimensional

vector containing all unknown parameters at stage t. Towards simultaneous estimation of

state xt and θ, state augmentation schema can be applied. Define the augmented state

vector zt with dimension dx + dθ as

zt =

 θt

xt

 .

Then the dynamic system (1.2) can be rewritten as

zt =

 θt

xt

 =

 θt−1

g(xt−1, αt−1)

+

 εt

ut

 ,
yt = H∗

t (βt−1)zt + vt,

(2.3)

24

where εt ∼ N(0, σ2) for some pre-specified constant σ, ut ∼ N(0, U(ηx,t−1)), vt ∼ N(0, V (ηy,t−1)),

H∗
t (βt−1) = (0t, Ht(βt−1)), and 0t is a dy × dθ-dimensional matrix of zero. The State-

Augmented EnKF is described as follow:

Algorithm 2: State-Augmented Ensemble Kalman Filter
(i) Initialization: Initialize an ensemble za,1

0 , za,2
0 , . . . , za,m

0 , where m denotes the
ensemble size.
for t=1,2,…, T do

(ii) Forecast: For i = 1, 2, . . . ,m, draw ui
t ∼ Ndx(0, U(ζa,i

x,t−1)) and
εi

t ∼ Ndθ
(0, σ2

θ), calculate

zf,i
t =

[
θf,i

t

xf,i
t

]
=
[
θa,i

t−1
g(xa,i

t−1, α
a,i
t−1)

]
+
[
εi

t

ui
t

]
,

and calculate the sample covariance matrix of zf,1
t , . . . , zf,m

t and denote it by Ct.
(iii) Analysis: For i = 1, 2, . . . ,m, draw vi

t ∼ Ndy(0, V (ζf,i
y,t−1)) and calculate

za,i
t = zf,i

t + K̂ i
t(yt −H∗

t (βf,i
t−1)zf,i

t − vi
t)

∆= zf,i
t + K̂ i

t(yt − yf,i
t),

where K̂ i
t = CtH

∗T
t (βf,i

t−1)(H∗
t (βf,i

t−1)CtH
∗T
t (βf,i

t−1) + V (ζf,i
y,t−1))−1 forms an

estimator for the Kalman gain matrix Kt = StH
T
t (HtStH

T
t + Vt)−1 and St

denotes the covariance matrix of zf
t .

As discussed in Section 1.2 , state-augmented EnKF suffers from a convergence issue, and

it can be problematic for estimation of stochastic and multiplicative parameters.

2.3 Markov chain Monte Carlo Ensemble Kalman filter for non-Gaussian Data

Consider the dynamic system (1.3), where the distribution f(·) deviates from Gaussian

and the model contains no unknown parameters. This section outlines the MCMC-EnKF

algorithm for non-Gaussian data proposed by Katzfuss, Stroud, and Wikle [45] as Algorithm

3 .

Algorithm 3 uses MCMC and EnKF in a combined manner, where the Gaussian mea-

surement variables required by the EnKF were imputed using a MCMC algorithm at the

imputation step at each stage. As discussed in Section 1.3 , MCMC-EnKF doesn’t converge

to the right filtering distribution and is not scalable with respect to the sample size.

25

Algorithm 3: MCMC-EnKF for Data Assimilation
(i) Initialization: Start with an initial ensemble xa,1

0 ,xa,2
0 , . . . ,xa,m

0 drawn from
the prior distribution π(x0), where m denotes the ensemble size.
for t=1,2,…,T do

(ii) Forecast: For i = 1, 2, · · · ,m, draw wi
t ∼ Np(0, Ut), calculate

xf,i
t = g(xa,i

t−1) + wi
t, (2.4)

and calculate the sample covariance matrix of xa,1
t ,xa,2

t , . . . ,xa,m
t and denote it

by Ct.
(iii) Imputation: Draw yi

t ∼ π(y|xf,i
t , zt) ∝ ρ(zt|y)f(y|xf,i

t), where
yi

t|x
f,i
t ∼ N(Htx

f,i
t , Vt).

(iv) Analysis: For i = 1, 2, · · · ,m, draw vi
t ∼ Nn(0, Vt) and set

xa,i
t = xf,i

t + K̂t(yi
t −Htx

f,i
t − vi

t)
∆= xf,i

t + K̂t(yi
t − yf,i

t), (2.5)

where K̂t = CtH
T
t

(
HtCtH

T
t + Vt

)−1
form an estimator for Kalman Gain Matrix

Kt = StH
T
t

(
HtStH

T
t + Vt

)−1
and St denotes the covariance matrix of xt

26

3. LANGEVINIZED ENSEMBLE KALMAN FILTER

In this chapter, we propose the LEnKF algorithm by reformulating the EnKF under the

framework of Langevin dynamics, which is a scalable particle filtering algorithm under the

big data scenario that the dimension p, the numbers of stages T and the sample sizes Nt’s

are all very large. The resulting algorithm inherits the forecast-analysis procedure from the

EnKF and the use of mini-batch data from the stochastic gradient Langevin-type algorithms.

The former makes the new algorithm scalable with respect to the dimension, and the latter

makes it scalable with respect to the sample size. We prove that the LEnkF converges to

the right filtering distributions in Wasserstein distance under the scenario that the number

of stages T and the sample sizes Nt’s are large.

The LEnKF algorithm is developed under the dynamic system (1.1), which is of cen-

tral importance in this chapter as it itself models data assimilation problems with linear

measurement equations (studied in Section 3.2.1) and data assimilation problems with non-

linear measurement equations (studied in Section 3.2.2), and the inverse problems (studied

in Section 3.1) can also be converted to it via appropriate transformations. Section 3.3 gives

detailed proofs about the LEnKF algorithm.

3.1 Langevinized Ensemble Kalman filter for inverse problems

To motivate the development of the LEnKF, we first consider a linear inverse problem

and then extend it to nonlinear inverse and data assimilation problems.

3.1.1 Linear inverse problem

Consider a Bayesian inverse problem for the linear regression

y = Hx+ η, (3.1)

where η ∼ N(0,Γ) for some covariance matrix Γ, y ∈ RN , and x ∈ Rp is an unknown

continuous parameter vector. To accommodate the case that N is extremely large, we

assume that y can be partitioned into B = N/n independent and identically distributed

27

blocks {y1, . . . , yB}, where each block is of size n and has the covariance matrix V such that

Γ = diag[V, · · · , V].

Let π(x) denote the prior density function of x, which is assumed to be differentiable with

respect to x. Let π(x|y) denote the posterior distribution. To develop an efficient algorithm

for simulating from π(x|y), which is scalable with respect to both the sample size N and the

dimension p, we reformulate the model (3.1) as a state-space model through subsampling

and Langevin diffusion:

xt = xt−1 + εt
n

2N∇ log π(xt−1) + wt,

yt = Htxt + vt,

(3.2)

where wt ∼ N(0, n
N
εtIp) = N(0, n

N
Qt), i.e., Qt = εtIp, yt denotes a block randomly drawn

from {y1, . . . , yB}, vt ∼ N(0, Vt) with Vt = V , and Ht is a submatrix of H extracted with the

corresponding yt. In the state-space model, at each stage t, the state (i.e., the parameters

of model (3.1)) evolves according to an Euler-discretized Langevin equation of the prior

distribution, and the measurement varies with subsampling. As shown in Theorem 3.3.1

of Section 3.3 , the filtering distribution of the state-space model converges to the target

posterior π(x|y) as t → ∞, provided that εt decays to zero in an appropriate rate and the

matrix V satisfies some regularity conditions. To simulate from dynamic system (3.2), we

propose Algorithm 4 , which makes use of both techniques, subsampling and the forecast-

analysis procedure and is thus scalable with respect to both the sample size N and the

dimension p.

Remark 3.1. The LEnKF is different from the existing formulation of EnKF for inverse

problems [53] in three aspects: (i) It reformulates the Bayesian inverse problem as a state-

space model, where the state (i.e., parameters) evolves according to a Langevin diffusion

process converging to the prior π(x) and the measurement varies with subsampling; the

subsampling technique enables the algorithm scalable with respect to the sample size N ; (ii)

the measurement noise is drawn from a variance inflated distribution N(0, 2Vt) in the analysis

step; and (iii) Qt = εtIp is a designed diagonal matrix with the learning rate εt = O(t−$) for

some 0 < $ < 1.

28

Algorithm 4: LEnKF for Linear Inverse Problems
(i) Initialization: Initialize an ensemble {xa,1

0 , xa,2
0 , . . . , xa,m

0 }, where m is the
ensemble size.
for t=1,2,…,T do

(ii) Subsampling: Draw without replacement a mini-batch data, denoted by
(yt, Ht), of size n from the full dataset of size N . Set Qt = εtIp, Rt = 2Vt, and
the Kalman gain matrix Kt = QtH

T
t (HtQtH

T
t +Rt)−1.

for i=1,2,…,m do
(iii) Forecast: Draw wi

t ∼ Np(0, n
N
Qt) and calculate

xf,i
t = xa,i

t−1 + εt
n

2N∇ log π(xa,i
t−1) + wi

t. (3.3)

(iv) Analysis: Draw vi
t ∼ Nn(0, n

N
Rt) and calculate

xa,i
t = xf,i

t +Kt(yt −Htx
f,i
t − vi

t)
∆= xf,i

t +Kt(yt − yf,i
t). (3.4)

The convergence of Algorithm 4 is established in Theorem 3.3.1 . An informal restatement

of the theorem is given in Proposition 3.1 , which facilitates discussions for the property of

the LEnKF algorithm.

Proposition 3.1. (Convergence of LEnKF) Let xa
t denote a generic member of the ensemble

produced by Algorithm 4 in the analysis step of stage t. If the eigenvalues of Σt = n
N

(I−KtHt)

are uniformly bounded with respect to t, log π(x) is differentiable with respect to x, and the

learning rate εt = O(t−$) for some 0 < $ < 1, then limt→∞ W2(π̃t, π∗) = 0, where π̃t denotes

the empirical distribution of xa
t , π∗ = π(x|y) denotes the target posterior distribution, and

W2(·, ·) denotes the second-order Wasserstein distance.

In the proof of Theorem 3.3.1 , it is shown that

xa
t = xa

t−1 + εt

2 Σt∇̂ log π(xa
t−1|yt) + et, (3.5)

where et is a zero mean Gaussian random error with covariance Var(et) = εtΣt, and ∇̂ log π(xa
t−1|yt) =

N
n
HT

t V
−1

t (yt −Htx
a
t−1)+∇ log π(xa

t−1) denotes an unbiased estimate of ∇ log π(xa
t−1|yt). That

is, the LEnKF forms a new type of stochastic gradient Riemannian Langevin dynamics

(SGRLD) algorithm (see, e.g., [3], [55], [56]), where the Fisher information matrix is adapted

29

with the mini-batch of data by noting that εtΣt = n
N

(I − KtHt)Qt is exactly the inverse of

the Fisher information matrix of the distribution π(xa
t |xa

t−1, yt). It is known that use of the

Fisher information, which rescales parameter updates according to the geometry of the tar-

get distribution, can generally improve the convergence of SGMCMC especially when the

target distribution exhibits pathological curvature and contains some saddle points (see, e.g.,

[6], [57]).

Since we set the learning rate εt = O(t−$) for some 0 < $ < 1 in Algorithm 4 , by

Theorem 2 of Song, Sun, Ye, et al. [58], {xa
t : t = t0 + 1, . . . , T} can be treated as equally

weighted samples, where t0 represents the burn-in period. That is, for any Lipschitz function

ρ(x), the posterior mean Eπρ(x) =
∫
ρ(x)π(x|y) can be estimated by

Êπρ(x) = 1
(T − t0)m

T∑
t=t0+1

m∑
i=1

ρ(xa,i
t), (3.6)

which converges to Eπρ(x) in probability as T → ∞. Alternatively, we can apply a weighted

averaging scheme as suggested by Chen, Ding, and Carin [59] and Teh, Thiery, and Vollmer

[60] for estimating Eπρ(x). As for a conventional SGLD algorithm, we can also set εt to a

small constant. In this case, the convergence of xa
t to the posterior distribution is up to an

approximation error even when t → ∞.

It is interesting to point out that when the dimension of x is high, LEnKF can be much

more efficient than directly implementing (3.5). The latter requires an LU-decomposition

of Σt, which has a computational complexity of O(p3), in generating the random error et.

While the LEnKF gets around this issue with the forecast-analysis procedure. As shown in

the proof of Theorem 3.3.1 , we have et = (I − KtHt)wt − Ktvt and Var(et) = εtΣt. The

computational complexity of the forecast-analysis procedure is O(max{n2p, n3} + mnp) for

generating m particles per iteration, where the first term represents the cost for calculating

Kt, the second term represents the total cost of m chains for forecasting and analysis, and

the cost for calculating Kt is counted as the overhead at each iteration. This procedure is

even faster than in the original EnKF algorithm as Qt is diagonal. For high-dimensional

problems, we typically set n � p, so the total computational complexity of the LEnKF is

O((n2p + mnp)T), which implies that the algorithm is scalable with respect to both the

30

sample size N and the dimension p. In contrast, if (3.5) is directly simulated as a SGRLD

algorithm, the total computational complexity will be O((p3 + np2)mT) for mT iterations,

where O(np2) represents the cost for computing Σt∇̂ log π(xa
t−1|yt). Here we note that the

particles in the same ensemble of the LEnKF are not independent, as they are generated

based on the same randomly selected mini-batch of data at each stage. However, they are

independent if the full data is used at each iteration.

Finally, we note that conventional SGRLD algorithms lack the scalability necessary for

high-dimensional problems as computation of the Fisher information matrix can be very

costly. For this reason, preconditioned SGLD [6] approximates the Fisher information matrix

using a diagonal matrix estimated based on the current gradient information only. The

LEnKF forms a new type of SGRLD algorithm, where the forecast-analysis procedure enables

the Fisher information efficiently used in the simulation.

3.1.2 Nonlinear inverse problem

Consider a Bayesian inverse problem for the nonlinear regression

y = G(z) + η, η ∈ N(0,Γ),

where y = (yT
1 , y

T
2 , . . . , y

T
B)T , Γ = diag[V, V, . . . , V] is a diagonal block matrix, each block V

is of size n × n, and N = Bn for some positive constant B. To reformulate the problem in

the dynamic system (1.1), we define an augmented state vector by an n-vector γt:

xt =

 z
γt

 , γt = Gt(z) + ut, ut ∼ N(0, αV), (3.7)

where Gt(·) is the mean response function for a mini-batch of data drawn at stage t, and

0 < α < 1 is a pre-specified constant. In this dissertation, α is called the variance splitting

proportion.

Let π(z) denote the prior density function of z, which is differentiable with respect to

z. The conditional distribution of γt is γt|z ∼ N(Gt(z), αV), and then the joint density

31

function of xt is π(xt) = π(z)π(γt|z). Based on Langevin dynamics, a system identical to

(3.2) in symbol can be constructed for the nonlinear inverse problem:

xt = xt−1 + εt
n

2N∇x log π(xt−1) + wt

yt = Htxt + vt,

(3.8)

where wt ∼ N(0, n
N
Qt), Qt = εtIp, p is the dimension of xt; Ht = (0, I) such that Htxt = γt;

vt ∼ N(0, (1 − α)V), which is independent of wt for all t; and yt is a mini-batch sample

randomly drawn from {y1, y2, . . . , yB}.

By the variance splitting state augmentation approach, we have successfully converted

the nonlinear inverse problem to the dynamic system (1.1). In this approach, z, γt and yt

form a hierarchical model, and it is easy to derive that

γt|z, yt ∼ N(αyt + (1 − α)Gt(z), α(1 − α)V), (3.9)

which will be used later in justifying efficiency of the LEnKF for nonlinear inverse problems.

In particular, if α is close to 1, the conditional variance of γt given yt and z can be much

smaller than V .

With the above formulation, the following variant of the LEnKF, i.e., Algorithm 5 , can

be applied to simulate samples from the posterior distribution π(x|y). The posterior samples

of π(z|y) can be obtained from those of π(x|y) via marginalization. Let xa,i
t,k denote the i-th

sample obtained at iteration k of stage t. In each stage of the algorithm, a mini-batch sample

yt is drawn at random and the augmented state xt is updated for K iterations.

Compared to Algorithm 4 , the Algorithm 5 includes a few more iterations at each stage.

The added iterations help to drive γt towards its conditional equilibrium (3.9). Regarding

the convergence of the algorithm, we have the following remark:

Remark 3.2. In equation (3.10), ∇x log π(xt,k−1) is calculated based on a mini-batch of data:

∇x log π(xt,k−1) =

∇z log π(zt,k−1) + 1
α

N
n

∇zGt(zt,k−1)V −1 (γt,k−1 − Gt(zt,k−1))

− 1
α
V −1 (γt,k−1 − Gt(zt,k−1))

 , (3.12)

32

Algorithm 5: LEnKF for Nonlinear Inverse Problems
(i) Initialization: Initial an ensemble xa,1

1,0, x
a,2
1,0, . . . , x

a,m
1,0 , where m denotes the

ensemble size.
for t=1,2,…,T do

(ii) Subsampling: Draw without replacement a mini-batch sample, denoted by
(yt, Ht), of size n from the full dataset of size N .
for k=1,2,…,K do

Set Qt,k = εt,kIp, Rt = 2(1 − α)V and the Kalman gain matrix
Kt,k = Qt,kH

T
t (HtQt,kH

T
t +Rt)−1.

for i=1,2,…,m do
(iii) Forecast: Draw wi

t,k ∼ Np(0, n
N
Qt,k) and calculate

xf,i
t,k = xa,i

t,k−1 + εt,k
n

2N∇ log π(xa,i
t,k−1) + wi

t,k, (3.10)

where, if k = 1, xa,i
t,0 = xa,i

t−1,K for its z-component and xa,i
t,0 = yt for its

γ-component.
(iv) Analysis: Draw vi

t,k ∼ Nn(0, n
N
Rt), and calculate

xa,i
t,k = xf,i

t,k +Kt,k(yt −Htx
f,i
t,k − vi

t,k) ∆= xf,i
t,k +Kt,k(yt − yf,i

t,k). (3.11)

33

where the component ∇z log π(zt,k−1) + 1
α

N
n

∇zGt(zt,k−1)V −1 (γt,k−1 − Gt(zt,k−1)) provides an

unbiased estimate of ∇z log π(z|y) as implied by (3.9). It follows from the standard conver-

gence theory of SGLD that the z-component of xt,k will converge to π(z|y), provided that εt,k

satisfies the condition: {εt,k} is a positive sequence, decreasing in t and non-increasing in k,

such that for any k ∈ {1, 2, . . . ,K}, εt,k = O(1/tς) for some 0 < ς < 1.

From the Kalman gain matrix Kt,k, it is easy to see that only the γ-component of

xt,k is updated at the analysis step. Intuitively, γt,k can converge very fast, as it is up-

dated with the second-order gradient information. Therefore, K is not necessarily very

large. In this dissertation, K = 5 is set as the default. Further, by (3.9), ∇z log π(zt,k−1) +
1
α

N
n

∇zGt(zt,k−1)V −1(γt,k−1 − Gt(zt,k−1)) represents an improved gradient estimator compared

to the estimator ∇z log π(zt)+ N
n

∇zGt(zt) V −1 (yt − Gt(zt)) used by SGLD in simulating from

π(z|y). It is easy to show that the two stochastic gradients have the same mean value, but

the former has a smaller variance than the latter. More precisely,

Var
(1
α

N

n
∇zGt(zt)V −1 (γt − Gt(zt))

∣∣∣zt

)
= 1 − α

α
Var

(
N

n
∇zGt(zt)V −1 (yt − Gt(zt))

∣∣∣zt

)
,

(3.13)

which implies that for nonlinear inverse problems, the LEnKF represents a variance reduction

version of SGLD, and it is potentially more efficient than SGLD if 0.5 < α < 1 is chosen. In

this dissertation, we set α = 0.9 as the default and initialized γt,0 by yt at each stage, which

enhances the convergence of the simulation.

3.2 Langevinized Ensemble Kalman filter for data assimilation problems

3.2.1 Data assimilation with linear measurement equation

Consider the dynamic system (1.1), for which we assume that at each stage t, yt can be

partitioned into Bt = Nt/nt blocks such that yt,k = Ht,kxt + vt,k, k = 1, 2, . . . Bt, where Nt is

the total number of observations at stage t, yt,k is a block of nt observations randomly drawn

from yt = {yt,1, . . . , yt,Bt}, vt,k ∼ N(0, Vt) for all k, and vt,k’s are mutually independent.

34

To motivate the development of the algorithm, we first consider the Bayesian formula

π(xt|y1:t) = f(yt|xt)π(xt|y1:t−1)∫
f(yt|xt)π(xt|y1:t−1)dxt

, (3.14)

which suggests that to get the filtering distribution π(xt|y1:t), the predictive distribution

π(xt|y1:t−1) should be used as the prior at stage t. To estimate the gradient ∇ log π(xt|y1:t−1),

we employ the following identity established by Song, Sun, Ye, et al. [58]:

∇β log π(β | D) =
∫

∇β log π(β | γ,D)π(γ | β,D)dγ, (3.15)

where D denotes data, and β and γ denote two parameters of a posterior distribution

π(β, γ|D). By the identity, we have

∇xt log π(xt|y1:t−1) =
∫

∇xt log π(xt|xt−1, y1:t−1)π(xt−1|xt, y1:t−1)dxt−1

=
∫

∇xt log π(xt|xt−1)
π(xt−1|xt, y1:t−1)

π(xt−1|y1:t−1)
π(xt−1|y1:t−1)dxt−1

=
∫

∇xt log π(xt|xt−1)ω(xt−1|xt)π(xt−1|y1:t−1)dxt−1,

(3.16)

where ω(xt−1|xt) = π(xt−1|xt, y1:t−1)/π(xt−1|y1:t−1) = π(xt|xt−1)/π(xt|y1:t−1) ∝ π(xt|xt−1), as

π(xt|y1:t−1) is a constant for a given particle xt and the data {y1, y2, . . . , yt−1}. Therefore,

given a set of samples Xt−1 = {xt−1,1, xt−1,2, . . . , xt−1,m} drawn from π(xt−1|y1:t−1), an impor-

tance resampling procedure can be employed to draw samples from π(xt−1|xt, y1:t−1). The

importance resampling procedure can be executed very fast, as calculation of the importance

weight ω(xt−1|xt) does not involve any data.

With the above formulas and Langevin dynamics, we can construct a dynamic system at

stage t as

xt,k = xt,k−1 − εt
nt

2Nt

U−1
t (xt,k−1 − g(x̃t−1,k−1)) + wt,k,

yt,k = Ht,kxt,k + vt,k,

(3.17)

35

for k = 1, 2, . . ., where xt,0 = g(xt−1)+ut; x̃t−1,k−1 denotes an approximate sample drawn from

π(xt−1|xt,k−1, y1:t−1) at iteration k of stage t through the importance resampling procedure;

wt,k ∼ N(0, nt

Nt
εt,kIp), Qt,k = εt,kIp, and p is the dimension of xt. Note that −U−1

t (xt,k−1 −

g(x̃t−1,k−1)) forms an unbiased estimator of ∇ log π(xt,k−1|y1:t−1) only in the ideal case that

the samples in Xt−1 follows from the distribution π(xt−1|y1:t−1) and the sample size |Xt−1|

is sufficiently large. Our theory for the convergence of the algorithm has taken care of the

deviations from the ideal case as discussed in Remark 3.3 . In practice, Xt−1 can be collected

at stage t − 1 from iterations k0 + 1, . . . ,K, where k0 denotes the burn-in period and K

denotes the total number of iterations performed at each stage. Applying the LEnKF at

stage t leads to the Algorithm 6 .

Since K is usually not allowed to go to ∞ for such a dynamic system, xa,1
t,K, . . . , x

a,m
t,K ∼

π(xt|y1:t) only approximately holds for each stage t. However, as shown in Theorem 3.3.2 , a

smaller approximation error at one stage helps to reduce the approximation error at the next

stage; and the approximation error becomes negligible as the number of stages increases,

if the number of observations at each stage is reasonably large. To facilitate discussion,

Theorem 3.3.2 is restated as a proposition in a less rigorous language in what follows.

Proposition 3.2. Assume that for each stage t, the matrices Ht, Ut and Vt and the state

propagator g(xt) satisfy mild regularity conditions (listed in the Section 3.3). Then there

exists a sufficiently large iteration number K such that lim supt→∞ W2(π̃(xt|y1:t), π(xt|y1:t)) =

O
(

1
lim inft Nt

)
.

Remark 3.3. In Step 2, the probability P (St,k,i = s) is calculated in a self-normalized

importance sampling estimator, which is known to be consistent but biased. The bias has

been taken into account in our proof of Theorem 3.3.2 as implied by equation (3.39) in Section

3.3 .

Remark 3.4. We argue that the convergence rate O(1/lim inft Nt) is a reasonable precision.

If the state xt is observed, then it is not difficult to derive that π(xt+1) ∼ N(g(xt),Γt) and

π(xt+1|y1:t+1) = π(xt+1|yt+1) ∼ N(µt+1, K) for some µt+1 and K−1 = HT
t Σ−1

t Ht + Γ−1
t .

When the eigenvalues of Σt are bounded by constant, and H is row-wisely independent,

then the eigenvalues of K have a lower bound of O(1/Nt). In other words, even when the

36

Algorithm 6: LEnKF for Data Assimilation
(i) Initialization: Start with an ensemble xa,1

1,0, x
a,2
1,0, . . . , x

a,m
1,0 drawn from the prior

distribution π(x1), where m denotes the ensemble size.
for t=1,2,…,T do

Set Xt = ∅ and k0 as the common burn-in period.
for k = 1, …, K do

(ii) Subsampling: Draw without replacement a mini-batch sample, denoted
by (yt,k, Ht,k), of size nt from the full dataset of size Nt. Set Qt,k = εt,kIp,
Rt = 2Vt, and the Kalman gain matrix Kt,k = Qt,kH

T
t,k(Ht,kQt,kH

T
t,k +Rt)−1.

for i= 1, …, m do
(iii) Importance resampling: If t > 1, calculate importance weights
ωi

t,k−1,j = π(xa,i
t,k−1|xt−1,j) = φ(xa,i

t,k−1 : g(xt−1,j), Ut) for j = 1, 2, . . . , |Xt−1|,
where φ(·) denotes a Gaussian density, and xt−1,j ∈ Xt−1 denotes the jth
sample in Xt−1; if k = 1, set xa,i

t,0 = g(xa,i
t−1,K) + ua,i

t and ua,i
t ∼ N(0, Ut).

Resample s ∈ {1, 2, . . . , |Xt−1|} with a probability ∝ ωi
t,k−1,s, i.e.,

P (St,k,i = s) = ωi
t,k−1,s/

∑|Xt−1|
j=1 ωi

t,k−1,j, and denote the sample drawn from
Xt−1 by x̃i

t−1,k−1.
(iv) Forecast: Draw wi

t,k ∼ Np(0, n
N
Qt,k). If t = 1, set

xf,i
t,k = xa,i

t,k−1 − εt,k
nt

2Nt

∇ log π(xa,i
t,k−1) + wi

t,k, (3.18)

where π(·) denotes the prior distribution of x1. If t > 1, set

xf,i
t,k = xa,i

t,k−1 − εt,k
nt

2Nt

U−1
t (xa,i

t,k−1 − g(x̃i
t−1,k−1)) + wi

t,k. (3.19)

(v) Analysis: Draw vi
t,k ∼ Nn(0, n

N
Rt) and set

xa,i
t,k = xf,i

t,k +Kt,k(yt,k −Ht,kx
f,i
t,k − vi

t,k) ∆= xf,i
t,k +Kt,k(yt,k − yf,i

t,k). (3.20)

(vi) Sample collection: If k > k0, add the sample xa,i
t,k into the set Xt.

37

state xt is known, the filtering distribution π(xt+1|y1:t+1) has a variation scale of at least

O(1/
√
Nt). Compared to this variation scale, the estimation inaccuracy of W2(π̃t+1, πt+1) is

really negligible.

It is known that weight degeneracy is an inherent default of sequential importance sam-

pling (SIS) (also known as sequential Monte Carlo), especially when the dimension of the

system is high. When it occurs, the importance weights concentrates on a few samples,

the effective sample size is low, and the resulting importance sampling estimate is heavily

biased. Fortunately, the LEnKF is essentially immune to this issue. In LEnKF, the impor-

tance resampling procedure is to draw from Xt−1 a particle which matches a given particle

xt in state propagation such that the gradient ∇xt log π(xt|y1:t−1) can be reasonably well

estimated, which is then combined with the gradient of the likelihood function of the new

data yt to have xt updated. By equation (3.14), π(xt|y1:t−1) works as the prior distribution of

xt for the filtering distribution π(xt|y1:t). Therefore, the effect of the importance resampling

procedure on the performance of the algorithm is limited if the sample size of yt is reasonably

large at each stage t. In contrast, the importance resampling procedure in SIS is to draw

a particle from Xt−1 and treat the particle as from the filtering distribution π(xt|y1:t). For

high-dimensional problems, the overlap between the high density regions of the neighboring

stage filtering distributions can be very small, which naturally causes the weight degeneracy

issue.

In summary, the importance resampling step of the LEnKF aims to draw a sample for

the prior π(xt|y1:t−1) used at each stage t, while that of SIS aims to draw a sample for the

posterior π(xt|y1:t). In consequence, the LEnKF is less bothered by the weight degeneracy

issue.

3.2.2 Data assimilation with nonlinear measurement equation

To apply the LEnKF to the case that the measurement equation is nonlinear, the variance

splitting state augmentation approach proposed in Section 3.1.2 can be used. For simplicity,

38

we describe the algorithm under the full data scenario. Extension of the algorithm to the

mini-batch scenario is straightforward. Consider the dynamic system

zt = g(zt−1) + ut, ut ∼ N(0, Ut),

yt = h(zt) + ηt, ηt ∼ N(0,Γt),
(3.21)

where both g(·) and h(·) are nonlinear. As for nonlinear inverse problems, we can augment

the state zt by γt at each stage t, where

γt = h(zt) + ξt, ξt ∼ N(0, αtΓt),

for some constant 0 < αt < 1. Let xT
t = (zT

t , γ
T
t) and thus π(xt|zt−1, y1:t−1) = π(zt|zt−1, y1:t−1)π(γt|zt).

Similar to system (3.17), at stage t, we have the following dynamic system

xt,k = xt,k−1 + εt

2 ∇z log π(xt,k−1|x̃t−1,k−1, y1:t−1) + wt,k

yt,k = Htxt,k + vt,k,

(3.22)

where x̃t−1,k−1 denotes a sample drawn from π(xt−1|xt,k−1, y1:t−1), xt,k denotes the estimate

of xt obtained at iteration k of stage t, yt,k = yt for all k = 1, 2, . . . ,K, Ht = (0, I) such

that Htxt = γt, wt,k ∼ N(0, εt,kIp), p is the dimension of xt, and vt,k ∼ N(0, (1 − αt)Γt).

Algorithm 6 can then be applied to simulate samples from π(xt|y1:t) and thus the samples

from π(zt|y1:t) can be obtained by marginalization. In mapping the ensemble from stage t−1

to stage t, zt can be set according to the state evolution equation given in system (3.21),

while γt can be set to yt. The convergence of the algorithm follows from Theorem 3.3.2 and

Remark 3.2 .

39

3.3 Convergence analysis

In this section, we prove the convergence of Algorithm 4 and Algorithm 6 . We are

interested in studying the convergence of the LEnKF in Wasserstein distance. The r-th

order Wasserstein distance between two probability measures µ and ν is defined by

Wr(µ, ν) =
(

inf
π∈Π(µ,ν)

∫
X×X

d(x, y)rdπ(x, y)
)1/r

= inf
π∈Π(µ,ν)

{Eπd(X,Y)r}1/r ,

where Π(µ, ν) denotes the collection of all probability measures on X × X with marginals µ

and ν respectively.

3.3.1 Convergence of Algorithm 4

Theorem 3.3.1. Let Σt = n
N

(I−KtHt). If λl ≤ inft λmin(Σt) ≤ supt λmax(Σt) ≤ λu holds for

some positive constants λl and λu, the log-prior density function log π(x) is differentiable with

respect to x, and the learning rate εt = O(t−$) for some 0 < $ < 1, then limt→∞ W2(π̃t, π∗) =

0, where π̃t denotes the empirical distribution of xa
t , π∗ = π(x|y) denotes the target posterior

distribution, and W2(·, ·) denotes the second-order Wasserstein distance.

Proof. First, we consider the Kalman gain matrix Kt = QtH
T
t (Rt +HtQH

T
t)−1, which, with

some algebra, can be shown

Kt = (I −KtHt)QtH
T
t R

−1
t = (HT

t R
−1
t Ht +Q−1

t)−1HT
t R

−1
t . (3.23)

Let µt = E(xf
t |xa

t−1) = xa
t−1 + δt, where δt = εt

n
2N

∇ log π(xa
t−1). Therefore, xf

t = µt + wt.

Taking conditional expectation on both sides of equation (3.4), we have

E(xa
t |xa

t−1) = µt +Kt(yt −Htµt) = xf
t +Kt(yt −Htx

f
t) − (I −KtHt)wt. (3.24)

40

With the identity (3.23), (3.24) can be further written as

E(xa
t |xa

t−1) = xa
t−1 + δt +Kt(yt −Htx

a
t−1 −Htδt) = xa

t−1 +Kt(yt −Htx
a
t−1) + (I −KtHt)δt

= xa
t−1 + (I −KtHt)QtH

T
t R

−1
t (yt −Htx

a
t−1) + (I −KtHt)δt

= xa
t−1 + (I −KtHt)Qt

[
HT

t R
−1
t (yt −Htx

a
t−1) +Q−1

t δt

]
= xa

t−1 + n

2N (I −KtHt)Qt

[
N

n
HT

t V
−1

t (yt −Htx
a
t−1) + ∇ log π(xa

t−1)
]
,

= xa
t−1 + εt

2 Σt

[
N

n
HT

t V
−1

t (yt −Htx
a
t−1) + ∇ log π(xa

t−1)
]
,

(3.25)

by defining Σt = n
N

(I −KtHt) and by noting Qt = εtIp and Rt = 2Vt.

For the LEnKF, the difference between equation (3.4) and equation (3.24) is

et = (I −KtHt)wt −Ktvt = wt −Kt(Htwt + vt),

for which the mean E(et) = 0 and the covariance

Var(et) = n

N
Qt +Kt(

n

N
HtQtH

T
t + n

N
Rt)KT

t − 2 n
N
KtHtQt = n

N
[Qt +KtHtQt − 2KtHtQt]

= n

N
(I −KtHt)Qt = εtΣt,

where the second equality holds due to the symmetry ofQt andRt and the identityKt(HtQtH
T
t +

Rt)KT
t = Kt(HtQtH

T
t +Rt)(HtQ

T
t H

T
t +RT

t)−1HtQ
T
t = KtHtQt. Then, by (3.25), we have

xa
t = xf

t +Kt

[
yn −Htx

f
t − vt

]
= xa

t−1 + εt

2 Σt

[
N

n
HT

t V
−1

t (yt −Htx
a
t−1) + ∇ log π(xa

t−1)
]

+ et,
(3.26)

where N
n
HT

t V
−1(yt − Htx

a
t−1) represents an unbiased estimator for the gradient of the log-

likelihood function, and ∇ log π(xa
t−1) represents the gradient of the log-prior density func-

tion. By Corollary 1 (with η = 0), we have limt→∞ W2(π̃t, π∗) = 0. For this algorithm, it is

easy to see that (3.30) is satisfied, for which the bias factor η = 0 as N
n
HT

t V
−1

t (yt −Htx
a
t−1)+

41

∇ log π(xa
t−1) forms an unbiased estimator of ∇ log π(x|y) at xa

t−1, and the variance of the

estimation error is upper bounded by a quadratic function of ‖xa
t−1‖.

3.3.2 Convergence of Algorithm 6

Let πt = π(xt|y1:t) denote the filtering distribution at stage t, and let π̃t denote the

marginal distribution of xa,i
t,K generated by Algorithm 6 at iteration K of stage t. The following

conditions are assumed for the dynamic system (1.1) at each stage t:

Assumption 3.1. πt is st-strongly log-concave:

f(xt) − f(x∗
t) − ∇f(x∗

t)T (xt − x∗
t) ≥ st

2 ‖xt − x∗
t ‖2

2, ∀xt, x
∗
t ∈ Rp

t , (3.27)

where f(xt) = − log π(xt|y1:t) = − log πt, and st is a positive number satisfying st ≥ cNt for

some constant c > 0.

Assumption 3.2. log(πt) is St-gradient Lipschitz continuous:

‖∇f(xt) − ∇f(x∗
t)‖2 ≤ St‖xt − xt‖2, ∀xt, x

∗
t ∈ Rp

t . (3.28)

where St is a positive number satisfying St ≤ CNt for some constant C > 0. Note that we

must have st ≤ St.

Assumption 3.3. Let Σt,k = n
N

(I − Kt,kHt,k), and assume that λt,l ≤ infk λmin(Σt,k) ≤

supk λmax(Σt,k) ≤ λt,u for some λt,l and λt,u, where λmax(·) and λmin(·) denote the largest and

smallest eigenvalues, respectively.

Assumption 3.4. The stochastic error induced by the sub-sampling procedure has a bounded

variance, i.e., ∀x ∈ Rp
t ,

E[‖(N/n)HT
t,kV

−1
t (yt,k −Ht,kx) −HT

t Γ−1
t (yt −Htx)‖2] ≤ σ2

t,s(p+ ‖x‖2),

for some constant σ2
t,s > 0, where the expectation is with respect to random sub-sampling.

42

Assumption 3.5. The state propagator g(xt) is l-Lipschitz and bounded by Mg (i.e., supx ‖g(x)‖ ≤

Mg), and λmin(Ut) ≥ λt,s > 0 for some positive constant λt,s.

Assumption 3.6. There exist some constant M such that W2(νt+1, πt+1) ≤ M for all

t ≥ 0, where νt+1(xt+1) =
∫

π(xt+1|xt)πt(xt)dxt is the ideal stage initial distribution of

xa,i
t+1,0 for t ≥ 1, and ν1 is the initial distribution used at stage 1. Similarly, we define

ν̃t+1(xt+1) =
∫

π(xt+1|xt)π̃t(xt)dxt to be the practical stage initial distribution of xa,i
t+1,0 for

t ≥ 1.

Remark 3.5. Log-concavity and strong log-concavity are preserved by products and marginal-

ization [61]. If the prior density π(x1) is log-concave, the state transition density π(xt|xt−1) is

log-concave with respect to both xt and xt−1 for each stage t, and the emission density π(yt|xt)

is λt-strongly-log-concave for each stage t where λt is the smallest eigenvalue of HT
t Γ−1

t Ht,

then Assumption 3.1 holds with st = λt. Furthermore, by Brascamp-Lieb inequality [62], we

must have that πt has finite variance, that is

pσ2
t,v := Eπt‖X − E(X)‖2 ≤ p/st. (3.29)

Strongly log-concave conditions are commonly used in the theoretical study of Langevin Monte

Carlo (see e.g., [63] and [64]). These conditions potentially can be relaxed following the work

of Durmus and Moulines [65].

Remark 3.6. Assumption 3.6 says the ideal initialization distribution in each stage is not

too bad, and essentially, it actually requires that the data are coherent to the state space

model (1.1) given in the main text, in the sense that the predictive distribution based on

y1:t (π(xt+1|y1:t)) and estimated parameter based on yt+1 (x̂t+1 = (HT
t+1Ht+1)−1HT

t+1yt+1) are

close.

Lemma 3.1. Let µ and ν be two distribution laws on Rp, and let f be an L-Lipschitz

continuous function, then

∥∥∥∥∥
∫
f(x)dµ(x) −

∫
f(x)dν(x)

∥∥∥∥∥ ≤ LW2(µ, ν).

43

Proof. By definition of Wasserstein distance, there exist random variables X1 and X2, whose

marginal distributions follow µ and ν respectively, such that ‖X1 − X2‖L2 = (E‖X1 −

X2‖2
2)1/2 = W2(µ, ν).

∥∥∥∥∥
∫
f(x)dµ(x) −

∫
f(x)dν(x)

∥∥∥∥∥ = ‖Ef(X1) − Ef(X2)‖ ≤ E‖f(X1) − f(X2)‖

≤EL‖X1 −X2‖2 = LE
√

‖X1 −X2‖2
2 ≤ L

√
E‖X1 −X2‖2

2 = LW2(µ, ν).

Lemma 3.2. Under the Assumption 3.5 , we have

W2(ν̃t+1, νt+1) ≤ lW2(πt, π̃t)

Proof. By definition of Wasserstein distance, there exist random variables X1 and X2, whose

marginal distributions are πt and π̃t respectively, and E(‖X1 − X2‖2
2) = W 2

2 (π̃t, πt). Define

Y1 = g(X1)+u, and Y2 = g(x2)+u, where u ∼ N(0, Ut+1) such that the marginal distributions

of Y1 and Y2 are νt+1 and ν̃t+1 respectively. Then,

W 2
2 (ν̃t+1, νt+1) ≤ E‖Y1 − Y2‖2

2 = E‖g(X1) − g(X2)‖2
2 ≤ El2‖X1 −X2‖2

2 = l2W 2
2 (πt, π̃t).

Lemma 3.3. If f is an L-Lipschitz continuous function, then E‖f(X) − E(f(X))‖2
2 ≤

L2E‖X − E(X)‖2
2.

Proof. Let X1 and X2 be two independent copies of X. Then

E‖f(X) − E(f(X))‖2
2 = (1/2)E‖f(X1) − f(X2)‖2

2 ≤ (1/2)E(L‖X1 −X2‖2)2

≤L2(1/2)E(‖X1 −X2‖2)2 = L2E‖X − E(X)‖2
2.

44

Lemma 3.4. Let X ∼ µ and Y ∼ ν, then

E‖Y − E(Y)‖2
2 ≤ E‖X − E(X)‖2

2 +W 2
2 (µ, ν) + 2W2(µ, ν)

√
E‖X − E(X)‖2

2.

Proof. By definition of Wasserstein metric, we can assume that X and Y satisfy ‖X−Y ‖L2 =

(E‖X − Y ‖2
2)1/2 = W2(µ, ν). Without loss of generality, we also assume that EX, the mean

of measure µ, is 0. Then

[E‖Y − E(Y)‖2
2 − E‖X‖2

2] −W 2
2 (µ, ν)

=EY TY − (EY)T (EY) − EXTX − EXTX − EY TY + 2EXTY

=2EXTY − 2EXTX − (EY)T (EY) ≤ 2EXT (Y −X) ≤ 2E‖X‖2‖Y −X‖2

≤2
√
E‖X‖2

2E‖Y −X‖2
2 = 2W2(µ, ν)

√
E‖X‖2

2.

Lemma 3.5. Let X ∼ µ and Y ∼ ν, then

E‖Y ‖2 ≤ E‖X‖2 +W 2
2 (µ, ν) + 2W2(µ, ν)

√
E‖X‖2,

where W2(·, ·) denotes the second order Wasserstein distance.

Proof. By definition of Wasserstein metric, W.O.L.G, we can assume that X and Y satisfy

E‖X − Y ‖2 = W 2
2 (µ, ν). Then

[E‖Y ‖2 − E‖X‖2] −W 2
2 (µ, ν)

=EY TY − EXTX − EXTX − EY TY + 2EXTY

=2EXTY − 2EXTX = 2EXT (Y −X) ≤ 2E‖X‖‖Y −X‖

≤2
√
E‖X‖2E‖Y −X‖2 = 2W2(µ, ν)

√
E‖X‖2.

Lemma 3.6 is a generalization of Theorem 4 of Dalalyan and Karagulyan [63], as well as

a generalization of Lemma S2 of Song, Sun, Ye, et al. [58].

45

Lemma 3.6. Let xk and xk+1 be two random vectors in Rp satisfying

xk+1 = xk − εΣ[∇f(xk) + ζk] +
√

2εek+1,

where ek+1 ∼ N(0,Σ), and ζk denotes the random error of the gradient estimate which

can depend on xk. Let πk be the distribution of xk, and let π∗ ∝ exp{−f} be the target

distribution. Suppose that ζk satisfies

‖E(ζk|xk)‖2 ≤ η2p, E[‖ζk − E(ζk|xk)‖2] ≤ σ2
1p+ σ2

2‖xk‖2, (3.30)

for some constants η and σ, and ζk’s are independent of ek+1’s. If the function f is s-

strongly convex and S-gradient-Lipschitz, λmin(Σ) = λl, λmax(Σ) = λu, and the learning rate

ε ≤ 2/(sλl + Sλu), then

W 2
2 (πk+1, π∗) ≤

[
(1 − λlsε+

√
2σ2λuε)W2(πk, π∗) + 1.65S(λ3

uε
3p)1/2 + εηλu

√
p
]2

+ ε2σ2
1λ

2
up+ 2ε2σ2

2λ
2
upV.

(3.31)

where V =
∫

‖x‖2π∗(x)dx.

Proof. First of all, the updating iteration can be rewritten as:

x̃k+1 = x̃k − ε[∇f̃(x̃k) + ζ̃k] +
√

2εẽk+1,

where f̃(x) = f(Σ1/2x), x̃k = Σ−1/2xk, ζ̃k = Σ1/2ζk and ẽk+1 ∼ N(0, I).

Let π̃∗ denote the distribution π̃∗ ∝ exp{−f̃}. It is easy to see that the distribution π̃∗

is sλl-strongly log-concave and Sλu-gradient-Lipschitz. In addition, ζ̃k satisfies

‖E(ζ̃k|x̃k)‖2 = ‖Σ1/2E(ζk|xk)‖2 ≤ λuη
2p

E[‖ζ̃k − E(ζ̃k|x̃k)‖2] = E[‖Σ1/2ζk − E(Σ1/2ζk|xk)‖2] ≤ λuσ
2
1p+ λuσ

2
2‖Σ1/2x̃k‖2,

(3.32)

Let Lt be the stochastic process defined by dLt = −(Σ1/2∇f(Σ1/2Lt))dt +
√

2dWt with

initialization L0 ∼ π̃∗ (hence Lt ∼ π̃∗). Define ∆2 = Lε − x̃t+1 and ∆1 = L0 − x̃t. Then, by

46

the same arguments used in the proof of Proposition 2 in Dalalyan and Karagulyan [63]. we

have

‖Σ1/2∆2‖2
L2

≤{‖Σ1/2∆1 − εΣ1/2U‖L2 + ‖Σ1/2W‖L2 + ε‖Σ1/2E(ζ̃k|x̃k)‖L2}2 + ε2‖Σ1/2(ζ̃k − E(ζ̃k|x̃k))‖2
L2 ,

(3.33)

where W =
∫ ε

0 (∇f̃(Lt) − ∇f̃(L0))dt and U = ∇f̃(x̃k + ∆1) − ∇f̃(x̃k).

By Lemma 4 of Dalalyan and Karagulyan [63], ‖W‖L2 ≤ 0.5
√
ε4S3λ3

up+(2/3)
√

2ε3pSλu ≤

1.65Sλu(ε3p)1/2. By similar argument of Lemma 2 of Dalalyan and Karagulyan [63], we can

show that ‖Σ1/2∆1 − εΣ1/2U‖2 ≤ ρ‖Σ1/2∆1‖2, where ρ = max(1 − sλlε, Sλuε− 1) = 1 − sλlε.

Combining with (3.32) and (3.33), we have that

‖Σ1/2∆2‖2
L2 ≤ {ρ‖Σ1/2∆1‖L2 + 1.65S(λ3

uε
3p)1/2 + ελuη

√
p}2 + ε2λ2

uσ
2
1p+ ε2λ2

uσ
2
2E‖xk‖2,

which further implies

W 2
2 (πk+1, π∗) ≤ {(1 − sλlε)W 2

2 (πk+1, π∗) + 1.65S(λ3
uε

3p)1/2 + ελuη
√
p}2 + ε2λ2

uσ
2
1p+ ε2λ2

uσ
2
2E‖xk‖2.

By Lemma 3.5 , E‖xk‖2 ≤ (W2(πk, π∗) +
√
V)2, we can derive that

W 2
2 (πk+1, π∗) ≤

[
(1 − sλlε)W2(πk, π∗) + 1.65S(λ3

uε
3p)1/2 + εηλu

√
p
]2

+ ε2σ2
1λ

2
up+ ε2σ2

2λ
2
u(W2(πk, π∗) +

√
V)2

≤
[
(1 − sλlε)W2(πk, π∗) + 1.65S(λ3

uε
3p)1/2 + εηλu

√
p
]2

+ ε2σ2
1λ

2
up+ 2ε2σ2

2λ
2
upV + 2ε2σ2

2λ
2
uW

2
2 (πk, π∗)

≤
[
(1 − sλlε+

√
2σ2ελu)W2(πk, π∗) + 1.65S(λ3

uε
3p)1/2 + εηλu

√
p
]2

+ ε2σ2
1λ

2
up+ 2ε2σ2

2λ
2
upV,

which concludes the proof.

47

Remark 3.7. Condition (3.30) in Lemma 3.6 can be further relaxed. For example if we

assume bias of gradient estimation is not uniformly bound, increasing with ‖xk‖ in the form

‖E(ζk|xk)‖2 ≤ η2(√p+ ‖xk‖)2, then by the same technique we can prove that

W 2
2 (πk+1, π∗) ≤

[
(1 − sλlε+ ηλuε+

√
2σ2ελu)W2(πk, π∗) + 1.65S(λ3

uε
3p)1/2 + εηλu(√p+

√
V)
]2

+ ε2σ2
1λ

2
up+ 2ε2σ2

2λ
2
upV.

In the proof of Lemma 3.6 , p is treated as a constant, so it is trivial to extend the proof to the

case that ‖E(ζk|xk)‖2 and E[‖ζk − E(ζk|xk)‖2] increase in a polynomial of p. In that case,

the statements in Remark 3.7 , Corollary 1 , and Theorem 3.3.2 can be updated accordingly.

Remark 3.8. Consider a Langevin Monte Carlo algorithm with inaccurate gradients, varying

conditioning matrices and a constant learning rate ε, i.e.,

xk+1 = xk − εΣk[∇f(xk) + ζk] +
√

2εξk+1; ξk+1 ∼ N(0,Σk).

If Σk is positive definite, λl ≤ infk λmin(Σk) ≤ supk λmax(Σk) ≤ λu and ε ≤ 2/(sλl + Sλu),

then (3.31) holds for all iterations. Combining it with Lemma 1 of Dalalyan et al.[63], it is

easy to obtain that

W2(πk, π∗) ≤(1 − sλlε+
√

2σ2ελu)kW2(π0, π∗)

+
ηλu

√
p

sλl −
√

2σ2λu

+ 1.65S(λ3
uεp)1/2

sλl −
√

2σ2λu

+
√
ελu(σ2

1p+ 2σ2
2V)

1.65S(λup)1/2 ,
(3.34)

where the first term in the RHS of (3.34) converges to 0 if sλl >
√

2σ2λu.

The next corollary provides a decaying-learning-rate version of the convergence result

(3.34).

Corollary 1. Consider a Langevin Monte Carlo algorithm

xk+1 = xk − εk+1Σk[∇f(xk) + ζk] +
√

2εk+1ξk; ξk ∼ N(0,Σk),

48

where ζk satisfies (3.30), Σk is positive definite, λl ≤ infk λmin(Σk) ≤ supk λmax(Σk) ≤ λu

and the learning rate εk = 2/[(sλl + Sλu)k$] for some $ ∈ (0, 1). If sλl >
√

2σ2λu, then we

have

lim sup
k→∞

W2(πk, π∗) ≤ ϕ

1 − ϕ

ηλu
√
p

sλl −
√

2σ2λu

, for some constant ϕ ∈ (0, 1). (3.35)

Proof. The proof of this corollary closely follows the proof of Theorem 2(i) in Song, Sun, Ye,

et al. [58]. Let K0 = 0, and Ki (i > 0) be the smallest integer such that K−$
i ≤ (1 + i)−χ,

where χ = $/(1 −$). Thus, asymptotically, we have Ki+1 −Ki ≈ (χ/$)K$
i+1.

In the spirit of (3.34), we have

W2(πKi+1 , π∗) ≤(1 − (sλl −
√

2σ2λu)εKi+1)Ki+1−KiW2(πKi , π∗)

+
ηλu

√
p

sλl −
√

2σ2λu

+
[

1.65S(λ3
up)1/2

sλl −
√

2σ2λu

+ λu(σ2
1p+ 2σ2

2V)
1.65S(λup)1/2

]
√
εKi .

Note that due to the fact that Ki+1 −Ki ≈ (χ/$)ε−1
Ki+1

, we have

lim
i→∞

[1 − (sλl −
√

2σ2λu)εKi+1]Ki+1−Ki = exp
{

−2(sλl −
√

2σ2λu)χ
(sλl + Sλu)$

}
< 1.

Therefore, there exists some positive constant ϕ ∈ (exp(−2(sλl−
√

2σ2λu)χ
(sλl+Sλu)$), 1), such that for all

i ≥ 1, (1 − (sλl −
√

2σ2λu)εKi+1)Ki+1−Ki ≤ ϕ, i.e.,

W2(πKi+1 , π∗) ≤ ϕW2(πKi , π∗) +
ηλu

√
p

sλl −
√

2σ2λu

+
[

1.65S(λ3
up)1/2

sλl −
√

2σ2λu

+ λu(σ2
1p+ 2σ2

2V)
1.65S(λup)1/2

]
√
εKi .

The above recursive inequality implies that

W2(πKT
, π∗) ≤ ϕTW2(πK0 = π0, π∗) + (

T∑
t=1

ϕt−1)
ηλu

√
p

sλl −
√

2σ2λu

+ (
T∑

t=1
ϕt−1K

−$/2
T −t)

√
2

sλl + Sλu

[
1.65S(λ3

up)1/2

sλl −
√

2σ2λu

+ λu(σ2
1p+ 2σ2

2V)
1.65S(λup)1/2

]
.

(3.36)

49

As T → ∞, ∑T
t=1 ϕ

t−1K
−$/2
T −t → 0, hence we have that W2(πKT +1 , π∗) → ϕ

1−ϕ

ηλu
√

p

sλl−
√

2σ2λu
.

Remark 3.9. For technical simplicity, we require $ < 1 for the decay of the learning rate

(εt ∝ t−$) in the above corollary. We conjecture that the corollary still holds under the

choice εt ∝ t−1, i.e., $ = 1. However, more subtle technical tools are necessary to rigorously

characterize the convergence rate under εt ∝ t−1 , see Teh, Thiery, and Vollmer [60].

Theorem 3.3.2. Given Assumption 3.1 -3.6 hold, the ensemble size is sufficiently large,

c1Nt ≤ st ≤ St ≤ c2Nt, c3(nt/Nt) ≤ λt,l ≤ λt,u ≤ c4(nt/Nt), and σ2
t,s ≤ c5(Nt/nt). Let

supt 1/(Ntnt) ≤ c6 for some sufficiently small constant c6 such that

ϕ0 = 2c1c3 − 2√
c5c6c4

c1c3 + c2c4
∈ (0, 1).

Denote Vt =
∫

‖x‖2dπt and it is assumed to satisfy the constraint Vt ≤ c7p for some constant

c7 > 0. We choose the learning rate εt,k = 2/[(stλt,l +Stλt,u)k$] (k = 1, . . . ,K, t = 1, . . . ,∞)

for some $ ∈ (0, 1). If all Nt’s are bounded away from 0, then lim supt→∞ W2(π̃t+1, πt+1) =

O(1/ lim inft Nt), as long as K is sufficiently large (refer to (3.44) for formal conditions).

Proof. Define Ki as in the proof of Corollary 1 , and we let K = Kκ(� κχ/$) for some κ to

be specified later, where χ = $/(1 −$).

At stage t = 1, Algorithm 6 performs exactly as Algorithm 4 ; that is, it is a Langevin

Monte Carlo algorithm with a varying conditioning matrix. By Corollary 1 with no bias

η = 0, we obtain that there exists some ϕ ∈ (exp{−ϕ0χ/$}, 1), such that

W2(π̃1, π1) ≤ϕκW2(ν1, π1) + (
κ∑

j=1
ϕj−1K

− $
2

κ−j)
√

2
s1λ1,l + S1λ1,u

×

 1.65S1λ1,u

√
pλ1,u

s1λ1,l −
√

2σ1,sλ1,u

+
σ2

1,sλ1,u(p+ 2V1)
1.65S1

√
λ1,up


≤ϕκM + C0(

κ∑
j=1

ϕj−1K
− $

2
κ−j)

√
p

N1
,

(3.37)

for some constant C0 (which only depends on the ci’s values in the statement of this theorem),

where ν1 denotes the prior distribution of x1.

50

Now, we study the relationship between W2(π̃t+1, πt+1) and W2(π̃t, πt) for t ≥ 2. At stage

t+ 1, the algorithm can be rewritten as

xa,i
t+1,k+1 = xa,i

t+1,k + εt+1,k+1Σt+1,k+1

[
N

n
HT

t+1,kV
−1

t+1(yt+1,k −Ht+1,kx
a,i
t+1,k) + ∇ log π(xa,i

t+1,k|x̃i
t,k)
]

+ et+1

∆= xa,i
t+1,k + εt+1,k+1Σt+1,k+1 [(I) + (II)] + et+1,

(3.38)

where et+1 ∼ N(0, 2εt+1,k+1Σt+1,k+1), and x̃i
t,k denotes a sample drawn from the set Xt ac-

cording to an importance weight proportional to π(xa,i
t+1,k|x̃i

t,k).

To apply (3.36), it is necessary to study the bias and variance of the gradient estimate used

in (3.38). Note that the term (I) is unbiased due to the property of simple random sampling.

To study the bias of term (II), we define π(z|xa,i
t+1,k, y1:t) ∝ π(xa,i

t+1,k|z)πt(z|y1:t); that is,

π(z|xa,i
t+1, y1:t) can be viewed as a posterior density obtained with the prior density πt(z|y1:t)

and the likelihood π(xa,i
t+1|z). Similarly, we define π̃(z|xa,i

t+1,k, y1:t) ∝ π(xa,i
t+1,k|z)π̃t(z|y1:t).

Then, by equation (3.15) of the main text, the bias of term (II) can be bounded by

∥∥∥∥∫ ∇ log π(xa,i
t+1,k|z)[dπ̃(z|xa,i

t+1,k, y1:t) − dπ(z|xa,i
t+1,k, y1:t)]

∥∥∥∥
=
∥∥∥∥∫ U−1

t [xa,i
t+1,k − g(z)][dπ̃(z|xa,i

t+1,k, y1:t) − dπ(z|xa,i
t+1,k, y1:t)]

∥∥∥∥
=
∥∥∥∥− ∫

U−1
t g(z)[dπ̃(z|xa,i

t+1,k, y1:t) − dπ(z|xa,i
t+1,k, y1:t)]

∥∥∥∥ ≤ 2Mg/λt,s,

(3.39)

which holds for any π̃(·|·).

By Assumption 3.4 , the variance of term (I) is bounded by σ2
t+1,s(p+‖x‖2). The variance

of term (II) is upper bounded by

E

∥∥∥∥∥∇ log π(xa,i
t+1,k|x̃i

t,k) − E
(
∇ log π(xa,i

t+1,k|x̃i
t,k)
) ∥∥∥∥∥

2

≤ (l/λt,s)2E‖x̃i
t,k − E(x̃i

t,k)‖2 (by Lemma 3.3)

≤(l/λt,s)2
[
W2(πt, π̃t)2 + pσ2

t,v + 2W2(πt, π̃t)
√
pσ2

t,v

]
(by Lemma 3.4 and (3.29)).

(3.40)

51

Combining the above results together, the variance of the estimated gradient is upper

bounded by

2σ2
t+1,sp+ 2(l/λt,s)2(W2(πt, π̃t) +

√
pσ2

t,v)2 + 2σ2
t+1,s‖x

a,i
t+1,k‖2 := σ2

p + 2σ2
t+1,s‖x

a,i
t+1,k‖2, (3.41)

which implies that a smaller value of W2(πt, π̃t) will help to reduce the variance of the

stochastic gradient at iteration t+ 1 as well as W2(π̃t+1, πt+1) as implied by (3.42).

Recall that ν̃t+1 denotes the practical state initial distribution of xa,i
t+1,0. Applying equa-

tion (3.36) with σ2
1 = σ2

p/p, σ2
2 = 2σ2

t+1,s and η = 2Mg/(
√
pλt,s), we obtain that there exists

some ϕ ∈ (exp{−ϕ0χ/$}, 1) such that

W2(π̃t+1, πt+1) ≤ϕκW2(ν̃t+1, πt+1) + ϕ

1 − ϕ

2Mgλt+1,u

λt,s(st+1λt+1,l − 2σt+1,sλt+1,u)

+(
κ∑

j=1
ϕj−1K

− $
2

κ−j)
√

2
st+1λt+1,l + St+1λt+1,u

×

 1.65St+1
√
pλ3

t+1,u

st+1λt+1,l − 2σt+1,sλt+1,u

+

√
λt+1,u(σ2

p + 4σ2
t+1,sVt)

1.65St+1
√
p

 .
(3.42)

Note that ϕ exists because ϕ0 ≤ mint 2 st+1λt+1,l−2σt+1,sλt+1,u

st+1λt+1,l+St+1λt+1,u
, and w.o.l.g., we let the ϕ’s

in (3.42) and (3.37) match. By Assumption 3.6 and Lemma 3.2 , W2(ν̃t+1, πt+1) ≤ M +

lW2(π̃t, πt). Further, combining with other conditions stated in the theorem, we have

W2(π̃t+1, πt+1) ≤ϕκ(M + lW2(π̃t, πt)) + C1
ϕ

1 − ϕ

2Mg

Nt+1

+ C2(
κ∑

j=1
ϕj−1K

− $
2

κ−j)
√

p

Nt+1
+ C3(

κ∑
j=1

ϕj−1K
− $

2
κ−j)

√
1

N3
t+1p

W 2
2 (πt, π̃t),

(3.43)

for some positive constants C1, C2 and C3 (which only depend on the ci’s values in the

statement of this theorem), where the last term follows from the definition of σ2
p given in

(3.41).

Based on the recursive inequalities (3.37) and (3.43), one can conclude that W2(π̃t+1, πt+1)

can converge to any arbitrarily small quantity, as long as that κ and Nt are sufficiently large.

52

Let ε̃ be some small positive quantity ε̃ ∈ (0, 1), and we assume that sample size Nt is non-

decreasing with respect to t, Nt and the iteration number K = Kκ(� κχ/$) satisfy

limNt = N∞;

ϕκ < min{ε̃/(3M), 1/(3l)} and
κ∑

j=1
ϕj−1K

− $
2

κ−j ≤ min


√
N3

1p

3C3W
, 1, ε̃

C2

√
p/N1

 ,
(3.44)

Let’s define W = max{1 + 2C1
ϕ

1−ϕ
2Mg

N1
+ 2C2

√
p

N1
, 1 + C0

√
p}, then it is not difficult to

verify that (i) W2(π̃t, πt) ≤ W for all t ≥ 1 and (ii) W2(π̃t+1, πt+1) ≤ ε̃/3 + W2(π̃t, πt)/3 +

W 2
2 (π̃t, πt)/(3W)+C1

ϕ
1−ϕ

2Mg

Nt+1
+ε̃. Combine them with the fact that limT

∑T
t=1(2/3)T −tN−1

t =

2 limt(1/Nt), this further implies

lim sup
t→∞

W2(π̃t+1, πt+1) ≤ 4ε̃+ 2C1
ϕ

1 − ϕ
MgN

−1
∞ .

Equivalently, we claim that given a sufficiently large number of iterations in each stage,

then

lim sup
t→∞

W2(π̃t+1, πt+1) = O
(1

lim inft Nt

)
.

53

4. EMPIRICAL RESULTS OF THE LENKF ALGORITHM

In this chapter, we present multiple examples, including Bayesian variable selection for linear

and nonlinear systems, the Lorenz-96 model, and Bayesian learning for deep neural networks

and LSTMs. The numerical results indicate that it is not only able to produce an accurate

point estimate as the existing methods do, but also able to quantify uncertainty of the

resulting estimate.

4.1 Numerical studies for static learning problems

This section illustrates the performance of the LEnKF as a general Monte Carlo algo-

rithm for complex inverse problems. Two big data examples are considered, one is Bayesian

variable selection for linear regression, and the other is Bayesian variable selection for general

nonlinear systems modeled by deep neural networks (DNNs).

4.1.1 Bayesian variable selection for large-scale linear regression

Consider the linear regression

Y = Zβ + ε, (4.1)

where Y ∈ RN , Z = (Z1, Z2, . . . , Zp) ∈ RN×p, β ∈ Rp, and ε ∼ N(0, IN). An intercept term

has been implicitly included in the model. We generate ten datasets from this model with

N = 50, 000, p = 2, 000, and β = (β1, β2, . . . , βp) = (1, 1, 1, 1, 1,−1,−1,−1, 0, . . . , 0). That

is, the first 8 variables are true and the others are false. Each variable in Z has a marginal

distribution of N(0, IN), but they are mutually correlated with a correlation coefficient of

0.5.

To conduct Bayesian analysis, we consider the following hierarchical mixture Gaussian

prior distribution which, with the latent variable ξi ∈ {0, 1}, can be expressed as

βi|ξi ∼ (1 − ξi)N(0, τ 2
1) + ξiN(0, τ 2

2),

P (ξi = 1) = 1 − P (ξi = 0) = p0,
(4.2)

54

for i = 1, 2, . . . , p. Such a prior distribution has been widely used in the literature of Bayesian

variable selection (see, e.g., [66]). To apply the LEnKF to this problem, we first integrate

out ξi from the prior distribution (4.2), which leads to the marginal distribution

βi ∼ (1 − p0)N(0, τ 2
1) + p0N(0, τ 2

2), i = 1, 2, . . . , p, (4.3)

for which the log-prior density is differentiable. Algorithm 4 can then be applied to simulate

from the posterior distribution π(β|Y ,Z). In the simulation, we set p0 = 1/p = 0.0005,

τ 2
1 = 0.01 and τ 2

2 = 1 for the prior distribution, and set the ensemble size m = 100, the

mini-batch size n = 100, and the learning rate εt = 0.2/max{t0, t}0.6, where t0 = 100.

The algorithm was run for 10,000 iterations, which cost 375 CPU seconds on a personal

computer with 2.9GHz Intel Core i7 CPU and 16GB RAM. All computation reported in this

dissertation were done on the same computer.

To accomplish the goal of variable selection, we consider the factorization of the posterior

distribution π(β, ξ|Y) ∝ π(Y |β)π(β|ξ)π(ξ), where ξ = (ξ1, ξ2, . . . , ξp). Under a priori

independent assumptions for βi’s and ξi’s, we are able to draw posterior samples of ξ from

the following distribution:

π(ξti = 1|βti,Y) = ati

ati + bti
, i = 1, 2, . . . , p, (4.4)

where ati = p0
τ2

exp(−β2
ti/2τ 2

2), bti = 1−p0
τ1

exp(−β2
ti/2τ 2

1), and βti denotes the posterior sample

of βi drawn by Algorithm 4 at stage t. Here we denote by βt = (βt,1, βt,2, . . . , βt,p) a posterior

sample of β drawn by Algorithm 4 at the analysis step of stage t.

Figure 4.1 summarizes the variable selection results for one data set. The results for other

data sets are similar. Figure 4.1 (a) shows the sample trajectories of β1, β2, . . . , β9, which are

averaged over the ensemble along with iterations. All the samples converge to their true

values within 100 iterations, taking about 3.7 CPU seconds. This is extremely fast! Figure

4.1 (b) shows the marginal inclusion probabilities of the variables Z1, Z2, . . . , Zp. From this

graph, we can see that each of the 8 true variables (indexed 1-8) has a marginal inclusion

probability close to 1, while each false variable has a marginal inclusion probability close

55

to 0. Figure 4.1 (c) shows the scatter plot of the response variable and its fitted value for

the training data, and Figure 4.1 (d) shows the scatter plot of the response variable and its

predicted value for 200 test samples generated from the model (4.1). In summary, Figure

4.1 shows that the LEnKF is able to identify true variables for large-scale linear regression

and, moreover, it is extremely efficient.

Figure 4.1. LEnKF for large-scale linear regression with 500 iterations: (a)
Trajectories of β1, . . . , β9, where β1, . . . , β5 have a true value of 1, β6, . . . , β8
have a true value of −1, and β9 has a true value of 0. (b) marginal inclusion
probabilities of all covariates X1, . . . , Xp, where the covariates are shown in
the rank of marginal inclusion probabilities; (c) scatter plot of the response Y
and the fitted value for training samples; and (d) scatter plot of the response
Y and the predicted value for test samples.

For comparison, SGLD [1], preconditioned SGLD [6], and stochastic gradient Nosé-

Hoover thermostat [2] were applied to this example. For these algorithms, the learning rates

have been tuned to their maximum values such that the simulation converges fast while not

exploding. For SGLD, we set εt = 4 × 10−6/max{t0, t}0.6 with t0 = 1000; for pSGLD, we set

56

εt = 5 × 10−6/max{t0, t}0.6 with t0 = 1000; and for SGNHT, we set ε = 0.0001. Other than

the learning rate, pSGLD contains two more tuning parameters, which control the extremes

of the curvatures and the balance of the weights of the historical and current gradients,

respectively. They both were set to the default values as suggested by Li, Chen, Carlson,

et al. [6]. SGNHT also contains an extra parameter, the so-called diffusion parameter, for

which different values, including 1, 5, 10, and 20, have been tried. The algorithm performed

very similarly with each of the choices. Figures 4.2 summarizes the results of the algorithm

with the diffusion parameter being set to 10.

For a fair comparison, we ran SGLD for 20,000 iterations, pSGLD for 10,000 iterations,

and SGNHT for 15,000 iterations, which took about 387 CPU seconds, 410 CPU seconds

and 380 CPU seconds, respectively. All these algorithms cost slightly longer CPU time than

the LEnKF. Figure 4.2 compares the trajectories of (β1, β2, . . . , β9) produced by the three

algorithms. It indicates the LEnKF can converge significantly faster than SGLD, pSGLD,

SGNHT for this example, which can be explained as the advantage of using the second-order

gradient information in the LEnKF.

4.1.2 Bayesian nonlinear variable selection with deep neural networks

The goal of this example is to show that the LEnKF can be used to train Bayesian DNNs

and as one of its important application, the Bayesian DNN can be used in variable selection

for nonlinear systems. We generated 10 data sets from the nonlinear regression model

y = 10x2
1

1 + x2
2

+ 5 sin(x3x4) + x5 + ε, (4.5)

where ε ∼ N(0, IN). The variables x1, · · · , x5 together with additional 94 variables were

generated as in Section 4.1.1 : all the variables are mutually correlated with a correlation

coefficient of 0.5, and each has a marginal distribution of N(0, IN). Each data set consists

of N = 2, 000, 000 samples for training and 200 samples for testing.

We modeled the data using a 3-hidden-layer neural network, with p = 100 input units

including a bias unit (for the intercept term), 5 units on each hidden layer and one unit on the

57

0 5000 10000 15000 20000

−1.0

−0.5

0.0

0.5

1.0

Va
lu
e

SGLD

0 2000 4000 6000 8000 10000

−1.0

−0.5

0.0

0.5

1.0

Va
lu
e

pSGLD

0 2000 4000 6000 8000 10000 12000 14000
Iteration

−2

−1

0

1

2

Va
lu
e

SGNHT

0 2000 4000 6000 8000 10000
Iteration

−1.0

−0.5

0.0

0.5

1.0

Va
lu
e

Langevinized EnKF

Figure 4.2. Convergence trajectories of SGLD, pSGLD, SGNHT and LEnKF
for a large-scale linear regression example: Trajectories of (β1, β2, . . . , β9) pro-
duced by SGLD (upper), pSGLD (upper middle), SGNHT (lower middle), and
LEnKF (lower) in their whole runs, where the blue rectangle highlights the
first 5% iterations of the runs.

output layer. The activation function is LeakyRelu given by LeakyRelu(x) = 1(x<0)(0.1x) +

1(x>=0)(x). That is, we modeled the data by the neural network function

y = LeakyRelu(LeakyRelu(LeakyRelu(X ·W1) ·W2 + b1) ·W3 + b2) ·W4 + b3 + ε,

where X = (x0, x1, x2, . . . , x99), W1 ∈ Rp×5, W2 ∈ R5×5, W3 ∈ R5×5 and W4 ∈ R5×1

represent the weight matrices at different layers of the neural network, and b1 ∈ R5×1,

b2 ∈ R5×1, b3 ∈ R5×1 represent bias vectors at different hidden layers. For each element of

58

Wi’s and bi’s, we assume a hierarchical mixture Gaussian prior as given in (4.2). For the

prior hyperparameters, we set p0 = 0.01, τ 2
1 = 0.05, τ 2

2 = 1. Conditioned on each posterior

sample of (W1,W2,W3,W4, b1, b2, b3), a sparse neural network can be drawn by simulating

an indicator variable for each potential connection of the neural network according to the

Bernoulli distribution given in (4.4).

To identify important input variables, for each sparse neural network drawn above, we

define four ξ-matrices G1, G2, G3 and G4, which correspond to W1, W2, W3 and W4, respec-

tively. Each element of the ξ-matrix indicates the status, existing or not, of the corresponding

connection. Define G = G1 · G2 · G3 · G4 as a p-vector and further truncates its each ele-

ment to 1 if greater than 1. That is, each element of G indicates the effectiveness of the

corresponding input variable. Averaging G over the sparse network samples produces the

marginal inclusion probabilities of the input variables.

Algorithm 5 was first applied to this example with the variance split proportion α = 0.9,

the ensemble size m = 20, the mini-batch size n = 100, the iteration number K = 5 for

each stage, and the total number of stages T = 20, 000. The learning rate was set to

εt,k = 4 × 10−4/max{k0, k}0.9 with k0 = 1 for k = 1, · · · ,K. Each run took about 4000

CPU seconds. For stochastic gradient MCMC algorithms, to avoid simulations to explode

and meanwhile to achieve fast convergence, we often need to start with a very small learning

rate and then decrease it very slowly or even keep it as a constant. This note also applies to

the remaining examples of this dissertation.

Figure 4.3 summarizes the results for one dataset. The results for the other datasets

are similar. Figure 4.3 (a) shows the marginal inclusion probabilities of all input variables

x1, x2, . . . , xp with a cutoff value of 0.5 (red dash line). The results are very encouraging:

Each of the true variables (indexed 1-5) has a marginal inclusion probability close to 1,

while each of the false variables has a marginal inclusion probability close to 0. Figure

4.3 (b) shows the scatter plot of the response variable and its fitted value for 2,000 randomly

chosen training samples. Figure 4.3 (c) shows the scatter plot of the response variable and its

predicted value for 200 test samples. In summary, Figure 4.3 shows that the LEnKF provides

a feasible algorithm for training Bayesian deep neural networks, through which important

variables can be identified for nonlinear systems.

59

0 1 2 3 4 5 36 22 34 75 72 37 38 27 26 23 53 39 79 80

Variables

0.0

0.2

0.4

0.6

0.8

1.0

m
ar
gi
na

l i
nc

lu
 io

n
pr

ob
ab

ilit
y
fo
r v

ar
ia
bl
e

(a)

−40 −20 0 20 40
Y

−40

−30

−20

−10

0

10

20

30

40

Fi
tte

d
Va

lu
e

(b)

−20 −10 0 10 20
Y

−20

−10

0

10

20

Pr
ed

ict
ed

 V
al
ue

(c)

Figure 4.3. LEnKF for the nonlinear variable selection example: (a) marginal
inclusion probabilities of the variables, where the variables are shown in the
rank of marginal inclusion probabilities; (b) scatter plot of the response Y and
the fitted value for 2,000 randomly selected training samples; and (c) scatter
plot of the response Y and the predicted value for 200 test samples.

For comparison, SGLD and pSGLD were applied to this example. Each algorithm was

run in parallel with 20 chains and each chain consisted of 100,000 iterations. For both

algorithms, we set the learning rate as εt = 1 × 10−4/max{t0, t} with t0 = 10, 000, which

has been tuned to its maximum value such that the simulations converge very fast but won’t

explode. Each run of SGLD cost about 4000 CPU seconds, and each run of pSGLD cost

about 5600 CPU seconds. For the LEnKF, we measured the fitting and prediction errors, in

mean squared errors (MSEs), at the last iteration of each stage. For SGLD and pSGLD, we

measured the fitting and prediction errors at every 5th iteration. Figure 4.4 (a) shows the

paths of the best fitting and prediction MSEs produced by the time by each chain of pSGLD,

SGLD, and LEnKF. Figure 4.4 (b) shows the path of the best fitting and prediction MSEs

by the time produced by respective algorithms. Both plots indicates the superiority of the

LEnKF over SGLD and pSGLD: the LEnKF tends to produce smaller fitting and prediction

errors than SGLD and pSGLD for this example.

Table 4.1 summarizes the results of LEnKF for 10 datasets under different settings of

K and α, along with comparisons with SGLD and pSGLD. For each dataset, we calculated

“MeanMSFE” by averaging the fitting MSEs over the stages t = 15, 001, . . . , 20, 000, and

“MeanMSPE” by averaging the prediction MSEs over the stages t = 15, 001, . . . , 20, 000.

Then their values were averaged over 10 datasets and denoted by “Ave-MeanMSFE” and

“Ave-MeanMSPE”, respectively. The comparisons indicate that for this example, the LEnKF

60

0 2500 5000 7500 10000 12500 15000 17500 20000
Time index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Be

st
 lo

g-
fit

tin
g/

pr
ed

ict
io

n
MS

E
fitting error of LEnKF
prediction error of LEnKF
fitting error of SGLD
prediction error of SGLD
fitting error of pSGLD
prediction error of pSGLD

0 2500 5000 7500 10000 12500 15000 17500 20000
Time index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Be
st

 lo
g-

fit
tin

g/
pr

ed
ict

io
n

MS
E

fitting error of LEnKF
prediction error of LEnKF
fitting error of SGLD
prediction error of SGLD
fitting error of pSGLD
prediction error of pSGLD

Figure 4.4. Comparison of the best fitting and prediction MSEs by the time
(plotted in logarithm): (a) by each chain of SGLD, pSGLD and LEnKF; (b)
by ensemble averaging of SGLD, pSGLD and averaging LEnKF.

outperforms SGLD and pSGLD when K and α are chosen appropriately, and it prefers to run

with slightly large values of K and α. For this example, the LEnKF performed similarly with

K = 5 and K = 10, while much better than with K = 1 and 2; and the choice of α affects

not much on its training error, but its prediction error: A larger value of α tends to lead

to a smaller prediction error. As implied by (3.13), running the LEnKF with a mini-batch

size of n is equivalent to running SGLD with a mini-batch size of nα/(1 − α). Indeed, as

shown in Table 4.1 , SGLD with n = 900 produced similar training and test errors as LEnKF

with n = 100, α = 0.9 and K = 5. How the batch size affects on the prediction error is an

interesting problem in machine learning, which can be partially explained by Theorem 1 of

Liang, Cheng, Song, et al. [67], which accounts for the effect of batch size on the convergence

of SGD, but deserves a further study.

In summary, this example shows that the LEnKF provides a more efficient algorithm

than SGLD and pSGLD for training a Bayesian DNN, and that Bayesian DNN can be used

in variable selection for nonlinear systems by imposing a mixture Gaussian prior on each

weight of the DNN. For simplicity, we consider only the case that the sample size is larger

than the DNN size, i.e., total number of connections of the fully connected DNN. As shown

in Sun, Song, and Liang [68], such a prior also works for the case that the sample size is

61

Table 4.1. Comparison of LEnKF, parallel SGLD and parallel pSGLD for
the nonlinear regression example, where the numbers in the parentheses denote
the standard deviations of the averaged MeanMSFE and MeanMSPE values
over 10 datasets.

n K α Ave-MeanMSFE Ave-MeanMSPE CPU(s)

100 5 0.1 2.4749(0.11) 3.4482(0.16) 4050.41
100 5 0.3 2.4171(0.09) 3.3056(0.13) 4171.32
100 5 0.5 2.4472(0.10) 3.1841(0.13) 4082.99
100 5 0.8 2.5852(0.09) 3.1449(0.12) 4040.84

LEnKF 100 5 0.9 2.4319(0.10) 3.1437(0.14) 4041.91
100 10 0.9 2.3422(0.07) 3.1469(0.17) 7766.84
100 2 0.9 2.8509(0.17) 4.4075(0.27) 1943.71
100 1 0.9 3.6848(0.25) 4.8561(0.22) 1093.09

100 2.4747(0.12) 3.3877(0.12) 4111.09
SGLD 900 2.4255(0.17) 3.1997(0.13) 5772.94

pSGLD 100 2.6317(0.11) 3.3988(0.10) 5624.10

much smaller than the DNN size. In this case, posterior consistency and variable selection

selection still hold.

4.2 Numerical studies for dynamic learning problems

This section illustrates the performance of the LEnKF as a particle filtering algorithm

for dynamic problems. Two examples are considered under the Bayesian framework. One

is uncertainty quantification for the Lorenz-96 model which has been considered as the

benchmark example for weather forecasting. The other is on-line learning with Long short-

term memory (LSTM) networks.

4.2.1 Uncertainty quantification for the Lorenz-96 model

The Lorenz-96 model was developed by Edward Lorenz in 1996 to study difficult questions

regarding predictability in weather forecasting [33]. The model is given by

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F, i = 1, 2, · · · , p,

62

where F = 8, p = 40, and it is assumed that x−1 = xp−1, x0 = xp, and xp+1 = x1. Here F is

known as a forcing constant, and F = 8 is a common value known to cause chaotic behavior.

In order to generate the true state X t = (X1
t , . . . , X

p
t) for t = 1, 2, . . . , T , we initialized

X0 by setting X i
0 to 20 for all i but adding to X20

0 a small perturbation of 0.1; we solved

the differential equation using the fourth-order Runge-Kutta numerical method with a time

interval of ∆t = 0.01; and for each i and t, we added to X i
t a random noise generated from

N(0, 1). At each stage t, data was observed for half of the state variables and masked with

a standard Gaussian random noise, i.e.,

yt = HtX t + εt, t = 1, 2, . . . , T,

where εt ∼ N(0, Ip/2), and Ht is a random selection matrix. Figure 4.5 shows the simulated

path of the partial state variables (X1
t , X

2
t , X

3
t) for t = 1, 2, . . . , T , whose chaotic behavior

indicates the challenge of the problem.

x1

−20 −10 0 10 20 30

x2

−30
−20

−10
0
10

20

x 3

−30

−20

−10

0

10

20

Figure 4.5. Chaotic path of the partial state variables (X1
t , X

2
t , X

3
t) for t =

1, 2, . . . , 100, simulated from the Lorenz-96 Model.

Algorithm 6 was applied to this example with the ensemble size m = 50, the iteration

number K = 20, k0 = K/2, and the learning rate εt,k = 0.5/k0.9 for k = 1, 2, . . . ,K and

t = 1, 2, . . . , T . At each stage t, the state was estimated by averaging over the ensembles

63

generated in iterations k0 + 1, k0 + 2, . . . ,K. The accuracy of the estimate was measured

using the root mean-squared error (RMSE) defined by

RMSEt = ||X̂ t −X t||2/
√
p,

where X̂ t denote the estimate of X t. For comparison, the EnKF algorithm was also applied

to this example with the same ensemble size m = 50. To be fair, it was run in a similar

way to LEnKF except that the Kalman gain matrix was estimated based on the ensemble,

without the resampling step being performed, and the random error was drawn from N(0, Vt)

in the analysis step.

Figure 4.6 compares the estimates of X1
t , X2

t and X3
t produced by LEnKF and EnKF

for one simulated dataset. The plots are similar for the other components X4
t , . . . , X

40
t . The

comparison shows that the EnKF and LEnKF produced comparable RMSEt’s (see Figure

4.6 (d)). This is interesting as the EnKF is known to provide the optimal linear estimator of

the conditional mean [26]. However, the LEnKF provided better uncertainty quantification

for the estimates. For example, in Figure 4.6 (c), many state values are covered by the

confidence band produced by the LEnKF, but not by the confidence band by the EnKF.

This is consistent with the existing result that the EnKF scheme is known to underestimate

the confidence intervals, see e.g. Saetrom and Omre [69].

Figure 4.7 (a) shows the coverage probabilities of the 95% confidence intervals produced

by the EnKF and LEnKF, where the coverage probability was calculated by averaging over

40 state components at each stage t ∈ {1, 2, . . . , 100}. Figure 4.7 (b) shows the averaged

coverage probabilities over 10 datasets. The comparison shows that the LEnKF produces the

coverage probabilities closing to their nominal level, while the EnKF does not. This implies

that the LEnKF is able to correctly quantify uncertainty of the estimates as t becomes large.

This is a remarkable result given the nonlinear and dynamic nature of the Lorenz-96 model!

Table 4.2 summarizes the results produced by the two methods on 10 datasets. In

LEnKF, two choices of k0 were tried. For each dataset, we calculated the MeanRMSE by

averaging RMSEt over the stages t = 21, 22, . . . , 100. Similarly, we calculated the MeanCP

by averaging CPt’s over the stages t = 21, 22, . . . , 100, where CPt denotes the coverage

64

(a) (b)

0 20 40 60 80 100
State estimates along the time

−20

−10

0

10

20

30

V
a
lu

e

Langevinized EnKF
EnKF
True States

0 20 40 60 80 100
State estimates along the time

−20

−10

0

10

20

30

V
a
lu

e

Langevinized EnKF
EnKF
True States

(c) (d)

0 20 40 60 80 100
State estimates along the time

−20

−10

0

10

20

30

V
a
lu

e

Langevinized EnKF
EnKF
True States

0 20 40 60 80 100

0.5

1.0

1.5

2.0

2.5

Lo
ga

rith
m

of
RM

SE

Langevinized EnKF
EnKF

Figure 4.6. State estimates produced by the EnKF and LEnKF for the
Lorenz-96 model with t = 1, 2, . . . , 100: plots (a)-(c) show, respectively, the
estimates of X1

t , X2
t and X3

t , where the true state values are represented by
‘+’, the estimates are represented by solid lines, and their 95% confidence
intervals are represented by shaded bands; plot (d) shows log(RMSEt) along
with stage t.

probability calculated for one dataset at stage t. Then their values were averaged over 10

datasets and denoted by “Ave-MeanRMSE” and “Ave-MeanCP”, respectively. Table 4.2 also

gives the CPU time cost by each method. Compared to EnKF, LEnKF produced slightly

lower RMSEt’s, but much more accurate uncertainty quantification for the estimates. We

note that LEnKF also produced very good results with k0 = K − 1, which cost much less

CPU time than with k0 = K/2.

In summary, the LEnKF can significantly outperform the EnKF for the Lorenz-96 model.

The LEnKF can produce the same accurate state estimates as EnKF, but outperforms EnKF

in uncertainty quantification.

65

(a) (b)

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 Pr
ob

ab
ilit

y

Langevinized EnKF
EnKF

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 Pr
ob

ab
ilit

y

Langevinized EnKF
EnKF

Figure 4.7. Coverage probabilities of the 95% confidence intervals produced
by EnKF and LEnKF for Lorenz-96 Model for stage t = 1, 2, . . . , 100: (a)
coverage probabilities with one dataset; (b) coverage probabilities averaged
over 10 datasets.

Table 4.2. Comparison of the EnKF and LEnKF, where the averages over
10 independent datasets are reported with the standard deviation given in the
parentheses.

k0 Ave-MeanRMSE Ave-MeanCP CPU(s)

K/2 1.702(0.0343) 0.948(0.0028) 6.377(0.3942)
LEnKF K − 1 1.714(0.0360) 0.947(0.0034) 3.350(0.0807)

EnKF 1.722(0.0230) 0.460(0.0029) 0.817(0.0426)

4.2.2 Online learning with LSTM neural networks

1) Reformulation of LSTM network

The LSTM network is a recurrent neural network architecture proposed by Hochreiter

and Schmidhuber [70], which has been widely used for machine learning tasks in dealing

with time series data. Compared to traditional recurrent neural networks, hidden Markov

models and other sequence learning methods, LSTM is less sensitive to gap length of the data

sequence. In addition, it is easy to train, less bothered by exploding and vanishing gradient

problems. The LSTM network has been successfully used in natural language processing and

handwriting recognition. It won the ICDAR handwriting competition 2009 [71] and achieved

66

a record 17.7% phoneme error rate on the classic TIMIT natural speech dataset [72]. In this

section we show that the LEnKF is not only able to train LSTM networks as well as the

stochastic gradient descent (SGD) method does, but also able to quantify uncertainty of the

resulting estimates.

Consider an autoregressive model of order q, denoted by AR(q). Let zt = (zt−q+1, · · · , zt−1, zt)

denote the regression vector at stage t, and let yt = zt+1 ∈ Rd denote the target output at

stage t. The LSTM network with s hidden neurons is defined by the following set of equa-

tions:
ηt = h

(
W (η)zt +R(η)ψt−1 + b(η)

)
,

it = σ
(
W (i)zt +R(i)ψt−1 + b(i)

)
,

f t = σ
(
W (f)zt +R(f)ψt−1 + b(f)

)
,

ct = Λ(i)
t ηt + Λ(f)

t ct−1,

ot = σ
(
W (o)zt +R(o)ψt−1 + b(o)

)
,

ψt = Λ(o)
t h (ct) ,

(4.6)

where Λ(f)
t = diag (f t) ,Λ

(i)
t = diag (it), and Λ(o)

t = diag (ot). The activation function h(·)

applies to vectors pointwisely and is commonly set to tanh(·). The sigmoid function σ(·) also

applies pointwisely to the vector elements. In terms of LSTM networks, zt ∈ Rqd is called

input vector, ct ∈ Rs is called the state vector, ψt ∈ Rs is called the output vector, and it, f t

and ot are called the input, forget and output gates, respectively. For the coefficient matrices

and weight vectors, we have W (η),W (i),W (f),W (o) ∈ Rs×qd, R(η),R(i),R(f),R(o) ∈ Rs×s,

and b(η), b(i), b(f), b(o) ∈ Rs. For initialization, we set ψ0 = 0, and c0 = 0. Given the output

vector ψt , we can model the target output yt as

yt = Wψt + b+ ut, (4.7)

where W ∈ Rd×s, b ∈ Rd, and ut ∼ N(0,Γt).

For convenience, we group the parameters of the LSTM model as θ = {W , b,W (η),R(η), b(η),W (i),

R(i), b(i),W (f),R(f), b(f),W (o),R(o), b(o)} ∈ Rnθ , where nθ = 4s2 + 4sqd+ 4s+ sd+ d. With

67

the state-augmentation approach, we can rewrite the LSTM model as a state-space model

with a linear measurement equation as follows:



θt

ct

ψt

γt


=



θt−1

Ω
(
ct−1, zt,ψt−1

)
τ
(
ct, zt,ψt−1

)
W tψt + bt


+



et

ζt

ξt

εt


,

yt = γt + vt,

(4.8)

where εt ∼ N(0, αΓt) for some constant 0 < αt < 1, vt ∼ N(0, (1 − α)Γt), and Γt is as

defined in (4.7). Let xT
t = (θT

t , c
T
t ,ψ

T
t ,γ

T
t). Then

π(xt|xt−1, zt) = π(θt|θt−1, zt)π(ct|θt, ct−1,ψt−1, zt)π(ψt|θt, ct,ψt−1, zt)π(γt|θt,ψt).

As in (3.22), we can rewrite the state-space model (4.8) as a dynamic system at each stage

t:

xt,k = xt,k−1 + εt

2 ∇x log π(xt,k−1|xs
t−1, zt) + ωt,k

yt,k = Htxt,k + vt,k,

(4.9)

where xt,k denote an estimate of xt obtained at iteration k for k = 1, 2, . . . ,K, yt,k = yt for

k = 1, 2, . . . ,K, Ht = (0, I) such that Htxt = γt, ωt,k ∼ N(0, εtIp), p is the dimension of xt,

and vt,k ∼ N(0, (1 − α)Γt). With this formulation, Algorithm 6 can be applied to train the

LSTM model and and quantify uncertainty of the resulting estimate.

2) Wind stress data

We considered a wind stress dataset, which consists of gridded (at a 2 × 2 degrees res-

olution and corresponding to d = 1470 spatial locations) monthly summaries of meridional

wind pseudo-stress collected from Jan 1961 to Feb 2002. For this dataset, we set q = 6 and

T = 300, i.e., modeling the data of the first 300 months using an AR(6) LSTM model. The

68

data was scaled into the range (−1, 1) in preprocessing and then scaled back to the original

range in results reporting.

The LEnKF was first applied to this example. For the model part, we set et ∼ N(0, 0.0001I),

ζt ∼ N(0, 0.0001I), ξt ∼ N(0, 0.0001I), ut ∼ N(0, 0.0001I). These model parameters are

assumed to be known, although this is not necessary as discussed at Section 1.2 . For this

example, we have tried different settings for the model parameters. In general, a smaller

variance setting will lead to a better fitting to the observations. For the algorithmic part,

we set the ensemble size m = 100, K = 10, k0 = 9, α = 0.9, the number of hidden neurons

s = 20, and the learning rate εt,k = 0.0001/max{κb, k}0.95 with κb = 8 for k = 1, · · · ,K and

t = 1, · · · , T . At each stage t, the wind stress was estimated by averaging over ŷt,k = Htxt,k

for last K/2 iterations. In addition, the credible interval for each component of xt was calcu-

lated based on the ensemble obtained at stage t. Each run cost about 5334.5 CPU seconds.

The results are summarized in Figure 4.8 , where the wind stress estimates at four selected

spatial locations and their 95% credible intervals are plotted along with stages.

For comparison, SGD was also applied to this example with the same setting as the

LEnKF, i.e., they share the same learning rate and the same iteration number K = 10 at

each stage. The results are also summarized in Figure 4.8 , where the wind stress estimates

at three selected spatial locations are plotted along with stages. Each run of SGD cost

about 15.9 CPU seconds. Since the LEnKF had an ensemble size m = 100, each chain cost

only 53.3 CPU seconds. The LEnKF cost more CPU time and as return, it produced more

samples for uncertainty quantification.

Further, we calculated the mean squared fitting error ||ŷt − yt||22 for stages t = 1, 2, . . . , T

and for both methods. The results are summarized in Figure 4.9 , which indicates that the

LEnKF produced slightly smaller fitting errors than SGD. Figure 4.10 shows the heat maps

of the wind stress fitted by the LEnKF and SGD for six different months, August 1965,

October 1969, December 1973, February 1978, April 1982, and June 1986. The comparison

with the true heat maps indicates that both SGD and LEnKF can train the LSTM very well

for this example.

In summary, this example shows that the LEnKF is not only able to train LSTM networks

as does SGD, but also able to quantify uncertainty of the resulting estimates.

69

0 50 100 150 200 250 300
Time index

−60

−40

−20

0

20

40

W
in
d
St
re
ss

Lange inized EnKF
SGD
confidence inter al
True States

0 50 100 150 200 250 300
Time index

−20

0

20

40

60

80

100

W
in
d
St
re
ss

Langevinized EnKF
SGD
confidence interval
Tr e States

0 50 100 150 200 250 300
Time index

−60

−40

−20

0

20

40

W
in
d
St
re
ss

Lange inized EnKF
SGD
confidence inter al
True States

Figure 4.8. Wind stress estimates at three spatial locations and their 95%
credible interval along with stages: the red line is for the LEnKF estimate; the
pink shaded band is for credible intervals of the LEnKF, the green line is for
the SGD estimate; and the blue cross ’+’ is for the true wind stress value.

0 50 100 150 200 250 300
0.00

0.02

0.04

0.06

0.08

0.10 fitting error of LEnKF
fitting error of SGD

Figure 4.9. Comparison of the mean squared fitting errors produced by SGD,
and LEnKF.

70

150E160E170E180E10W20W30W40W50W60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit
ud

e

Ground Truth (Aug 1965)

150E160E170E180E10W20W30W40W50W60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit
ud

e

LSTM using L-EnKF (Aug 1965)

150E160E170E180E10W20W30W40W50W60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit
ud

e

LSTM using SGD (Aug 1965)

−25

0

25

50

75

150E160E170E180E10W 20W 30W 40W 50W 60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit

ud
e

Ground Truth (Oct 1969)

150E160E170E180E10W 20W 30W 40W 50W 60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit

ud
e

LSTM using L-EnKF (Oct 1969)

150E160E170E180E10W 20W 30W 40W 50W 60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit

ud
e

LSTM using SGD (Oct 1969)

−20

0

20

40

150E160E170E180E10W20W30W40W50W60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit
ud

e

Ground Truth (Dec 1973)

150E160E170E180E10W20W30W40W50W60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit
ud

e

LSTM using L-EnKF (Dec 1973)

150E160E170E180E10W20W30W40W50W60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit
ud

e

LSTM using SGD (Dec 1973)

−75

−50

−25

0

25

150E160E170E180E10W20W30W40W50W60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit
ud

e
Ground Truth (Feb 1978)

150E160E170E180E10W20W30W40W50W60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit
ud

e

LSTM using L-EnKF (Feb 1978)

150E160E170E180E10W20W30W40W50W60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit
ud

e

LSTM using SGD (Feb 1978)

−60

−40

−20

0

20

40

150E160E170E180E10W20W30W40W50W60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit
ud

e

Ground Truth (Apr 1982)

150E160E170E180E10W20W30W40W50W60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit
ud

e

LSTM using L-EnKF (Apr 1982)

150E160E170E180E10W20W30W40W50W60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit
ud

e

LSTM using SGD (Apr 1982)

−40

−20

0

20

40

60

150E160E170E180E10W20W30W40W50W60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit
ud

e

Ground Truth (Jun 1986)

150E160E170E180E10W20W30W40W50W60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit
ud

e
LSTM using L-EnKF (Jun 1986)

150E160E170E180E10W20W30W40W50W60W
Longitude

29
S

19
S

9S
1N

11
N

21
N

La
tit
ud

e

LSTM using SGD (Jun 1986)

−40

−20

0

20

40

Figure 4.10. Heat maps of the wind stress fitted by the LEnKF and SGD for
six different months, August 1965, October 1969, December 1973, February
1978, April 1982, and June 1986: For both left and right panels, the left,
middle and right columns show the true heat map, the heat map fitted by
LEnKF, and the heat map fitted by SGD, respectively.

71

5. EXTENSIONS OF THE LANGEVINIZED ENSEMBLE

KALMAN FILTER

In the previous two chapters, we discussed the LEnKF algorithm for dynamic system (1.1),

where the model error ut and observation error ηt are zero-mean Gaussian random variables,

and that the covariance matrices Ut and Γt and the propagator g(·) and Ht are all fully

specified, i.e. containing no unknown parameters.

In the following two chapters, we focus on extensions of the LEnKF algorithm. In Section

5.1 , we consider the second SSM (1.2), in which, unknown parameters exist. Simultaneously

estimating the state variables {x1, x2, . . . , xt, . . .} and the parameters θ = (α, β, ζx, ζy) under

the high-dimensional, big data and long series scenario is important to us. We propose

the so-called stochastic approximation-Langevinized EnKF (SA-LEnKF) for simultaneously

estimating the states and parameters of the dynamic system (1.2), where the parameters are

estimated on the fly based on state variables simulated by the LEnKF algorithm under the

framework of stochastic approximation [44]. The proposed algorithm is general; it work well

for all types of parameters: additive, multiplicative and stochastic. Under mild conditions,

we establish the consistency of the resulting parameter estimator and the ergodicity of the

SA-LEnKF. In Section 5.2 , we consider the third SSM (1.3), where f(·) deviate from Gaussian

but no unknown parameters exist. We provide details of the Extended LEnKF algorithm

for this non-Gaussian dynamic system as well as convergence analysis.

These two proposed extended methods can be efficiently used in uncertainty quantifica-

tion for dynamic systems. As an advantage inherited from the LEnKF, they can work well

for long series, large scale and high-dimensional dynamic systems.

5.1 Langevinized Ensemble Kalman filter with unknown parameters

5.1.1 The SA-LEnKF algorithm

The SA-LEnKF is a combination of the stochastic approximation algorithm [44] and the

LEnKF, where the parameters in (1.2) are estimated on the fly based on state variables

simulated by the LEnKF under the framework of stochastic approximation. As in Section

72

3.2.1 , we assume that at each stage t, yt has been partitioned into Bt = Nt/nt blocks such that

yt,k = Ht,kxt + vt,k, k = 1, 2, . . . Bt, where yt,k is a block of nt observations randomly drawn

from yt = {yt,1, . . . , yt,Bt}, vt,k ∼ N(0, Vt(ζy)) for all k, and vt,k’s are mutually independent.

It is easy to derive that for any given estimate of θ, conditioned on the state xt−1, yt,k follows

a multivariate normal distribution Nnt(Ht,k(β)g(xt−1, α), Ht,k(β)U(ζx)HT
t,k(β) +Vt(ζy)) with

the density function denoted by p(yt,k|xt−1,θ). Let ψ(yt,k, xt−1,θ) = ∂ log p(yt,k|xt−1,θ)/∂θ.

Let {γt} be a positive and non-increasing sequence satisfying Assumption 5.1 (given in

Section 5.1.3). The SA-LEnKF algorithm can be summarized as Algorithm 7 , where, for

notational simplicity, we have depressed the parameters of Ht,k(β), g(xt−1, α), U(ζx) and

Vt(ζy).

Remark 5.1. In the scenario that π(yt|xt−1,θ) is not analytically available, ∇θ log π(yt,k|x̃i
t−1,k−1,θt,k−1)

can be estimated based on Fisher’s identity (see, e.g., [73]):

∇θ log π(yt|xt−1,θ) =
∫

∇θ log π(yt, xt|xt−1,θ)π(xt|yt, xt−1,θ)dxt,

which implies the following procedure (in the notation of Algorithm 7):

• For each i = 1, 2, . . . ,m, simulate m samples from the distribution

π(xt,k|yt,k, x̃
i
t−1,k−1,θt,k−1) ∝ π(xt,k|x̃i

t−1,k−1,θt,k−1)π(yt,k|xt,k,θt,k−1),

and denote the samples by {x̃j
t,k : j = 1, 2, . . . ,m}. The simulation can be done by a

short run of the Metropolis-Hastings algorithm or SGLD.

• Calculate Ψ(yt,k, x̃t−1,k−1,θt,k−1) by

Ψ(yt,k, x̃t−1,k−1,θt,k−1) = Nt

ntmm

m∑
i=1

m∑
j=1

∇θ log π(yt, x̃
j
t,k|x̃i

t−1,k−1,θt,k−1)

= Nt

ntmm

m∑
i=1

m∑
j=1

[∇θ log π(yt|x̃j
t,k,θt,k−1) + ∇θ log π(x̃j

t,k|x̃i
t−1,k−1,θt,k−1)].

Alternative to on-line estimation, one can estimate the parameters θ in an off-line manner

as described in Algorithm 8 .

73

Algorithm 7: SA-LEnKF-Online for simultaneous state and parameter estimation
(i) Initialization: Start with an initial ensemble xa,1

1,0, x
a,2
1,0, . . . , x

a,m
1,0 drawn from the

prior distribution π(x1), where m denotes the ensemble size.
for t=1,2,…, T do

Set Xt = ∅ and k0 as the common burn-in period.
for k=1,2,…, K do

(ii) Subsampling: Draw without replacement a mini-batch data (i.e., a
block), denoted by (yt,k, Ht,k), of size nt from the full dataset of size Nt. Set
Qt,k = εt,kIp, Rt = 2Vt, and the Kalman gain matrix
Kt,k = Qt,kH

T
t,k(Ht,kQt,kH

T
t,k +Rt)−1.

for i=1,2,…, m do
(iii) Importance resampling: If t > 1, calculate importance weights
ωi

t,k−1,j = π(xa,i
t,k−1|xt−1,j) = φ(xa,i

t,k−1 : g(xt−1,j), Ut) for j = 1, 2, . . . , |Xt−1|,
where φ(·) denotes a Gaussian density, and xt−1,j ∈ Xt−1 denotes the jth
sample in Xt−1; if k = 1, set xa,i

t,0 = g(xa,i
t−1,K) + ua,i

t and ua,i
t ∼ N(0, Ut).

Resample s ∈ {1, 2, . . . , |Xt−1|} with a probability ∝ ωi
t,k−1,s, i.e.,

P (St,k,i = s) = ωi
t,k−1,s/

∑|Xt−1|
j=1 ωi

t,k−1,j, and denote the sample drawn from
Xt−1 by x̃i

t−1,k−1.
(iv) Forecast: Draw wi

t,k ∼ Np(0, nt

Nt
Qt,k). If t = 1, set

xf,i
t,k = xa,i

t,k−1 − εt,k
nt

2Nt

∇ log π(xa,i
t,k−1) + wi

t,k, (5.1)

where π(·) denotes the prior distribution of x1. If t > 1, set

xf,i
t,k = xa,i

t,k−1 − εt,k
nt

2Nt

U−1
t (xa,i

t,k−1 − g(x̃i
t−1,k−1)) + wi

t,k. (5.2)

(v) Analysis: Draw vi
t,k ∼ Nn(0, nt

Nt
Rt) and set

xa,i
t,k = xf,i

t,k +Kt,k(yt,k −Ht,kx
f,i
t,k − vi

t,k) ∆= xf,i
t,k +Kt,k(yt,k − yf,i

t,k). (5.3)

(vi) Sample collection: If k > k0, add the sample xa,i
t,k into the set Xt.

(vii) Parameter update: If t > 1, calculate

θt,k = θt,k−1 + γt,kΨ(yt,k, x̃t−1,k−1,θt,k−1), (5.4)

where θt,k denotes the estimate of θ obtained at iteration k of stage t,
x̃t−1,k−1 = (x̃1

t−1,k−1, x̃2
t−1,k−1, . . . , x̃m

t−1,k−1), and

Ψ(yt,k, x̃t−1,k−1,θt,k−1) = Nt

mnt

m∑
i=1

∇θ log π(yt,k|x̃i
t−1,k−1,θt,k−1), (5.5)

74

Algorithm 8: SA-LEnKF-offline for simultaneous state and parameter estimation
for l=0,1,2,…,L do

Initialize the estimate θ0 and set k0 as the common burn-in period.
(i) Initialization: If l = 0, draw an ensemble {xa,1

l,1,0, x
a,2
l,1,0, . . . , x

a,m
l,1,0} from the

prior distribution π(x1); otherwise, set xa,i
l,1,0 = xa,i

l−1,1,0 for i = 1, 2, . . . ,m.
for t = 1, 2, …, T do

Set Xl,t = ∅.
for k = 1, 2, …, K do

(ii) Subsampling: Draw without replacement a mini-batch data,
denoted by (yl,t,k, Hl,t,k), of size nt from the full dataset of size Nt. Set
Ql,t,k = εl,t,kIp, Rl,t = 2Vl,t, and the Kalman gain matrix
Kl,t,k = Ql,t,kH

T
l,t,k(Hl,t,kQl,t,kH

T
l,t,k +Rl,t)−1.

for i = 1, 2, …, m do
(iii) Importance resampling: If t > 1, calculate importance
weights ωi

l,t,k−1,j = π(xa,i
l,t,k−1|xl,t−1,j) = φ(xa,i

l,t,k−1 : g(xl,t−1,j), Ul,t) for
j = 1, 2, . . . , |Xl,t−1|, where φ(·) denotes a Gaussian density, and
xl,t−1,j ∈ Xl,t−1 denotes the jth sample in Xl,t−1; if k = 1, set
xa,i

l,t,0 = g(xa,i
l,t−1,K) + ua,i

l,t and ua,i
l,t ∼ N(0, Ul,t). Resample

s ∈ {1, 2, . . . , |Xl,t−1|} with a probability ∝ ωi
l,t,k−1,s, i.e.,

P (Sl,t,k,i = s) = ωi
l,t,k−1,s/

∑|Xl,t−1|
j=1 ωi

l,t,k−1,j, and denote the sample
drawn from Xl,t−1 by x̃i

l,t−1,k−1.
(iv) Forecast: Draw wi

l,t,k ∼ Np(0, nt

Nt
Ql,t,k). If t = 1, set

xf,i
l,t,k = xa,i

l,t,k−1 − εl,t,k
nt

2Nt

∇ log π(xa,i
l,t,k−1) + wi

l,t,k, (5.6)

where π(·) denotes the prior distribution of x1. If t > 1, set

xf,i
l,t,k = xa,i

l,t,k−1 − εl,t,k
nt

2Nt

U−1
l,t (xa,i

l,t,k−1 − g(x̃i
l,t−1,k−1)) + wi

l,t,k. (5.7)

(v) Analysis: Draw vi
l,t,k ∼ Nn(0, nt

Nt
Rl,t) and set

xa,i
l,t,k = xf,i

l,t,k +Kl,t,k(yl,t,k −Hl,t,kx
f,i
l,t,k −vi

l,t,k) ∆= xf,i
l,t,k +Kl,t,k(yl,t,k −yf,i

l,t,k).
(5.8)

(vi) Sample collection: If k > k0, add the sample xa,i
l,t,k into Xl,t.

(vii) Parameter update: Calculate

θl+1 = θl + γl+1

(T − 1)(K − k0)

T∑
t=2

K∑
k=k0+1

Ψ(yl,t,k, x̃l,t−1,k−1,θl), (5.9)

where x̃l,t−1,k−1 = (x̃1
l,t−1,k−1, x̃2

l,t−1,k−1, . . . , x̃m
l,t−1,k−1), and

Ψ(yl,t,k, x̃l,t−1,k−1,θl) = Nt

mnt

m∑
i=1

∇θ log p(yl,t,k|x̃i
l,t−1,k−1,θl).

75

As shown in Algorithm 8 , in each sweep l of the algorithm, all state variables are first

estimated based on the current estimate of θ, and then the estimate of θ is updated based

on all state estimates and all data y1:T . By contrast, in Algorithm 7 , each update of θ is

based on only the state estimates and the data obtained at the current stage. Compared to

the on-line algorithm, the offline algorithm can be much slower. Due to its similarity with

the particle buffered stochastic gradient MCMC method [38], the offline algorithm is treated

as a baseline in this dissertation.

5.1.2 Convergence analysis

In this section, we analyze the consistency of the resulting parameter estimator and

ergodicity of the SA-LEnKF algorithm. Detailed proofs are outlined in Section 5.1.3 .

The SA-LEnKF is essentially an adaptive SGRLD algorithm if we view the LEnKF at

each stage as a SGRLD sampler by the explanation given in Section 3.1.1 . The algorithm is

said “adaptive” because the parameter vector θ changes from iteration to iteration. The link

between the SA-LEnKF and stochastic approximation can be explained as follows. Since

the joint distribution of y1:T = {y1, y2, . . . , yT } can be generally factorized as π(y1:T |θ) =

π(y1)π(y2|y1,θ)π(y3|y1:2,θ) · · · π(yT |y1:T −1,θ), we have

∇θ log π(y1:T |θ) =
T∑

t=2
∇θ log π(yt|y1:t−1,θ).

Therefore, by assuming that the dynamic system (1.2) is stationary, θ can be estimated in

an on-line manner by solving the following equation at each stage t:

∇θ log π(yt|y1:t−1,θ) = 0, (5.10)

where the estimate obtained at stage t−1 is passed on to stage t as the initial value. Note that

solving (5.10) is to estimate θ using only the information contained in the data transition

76

from y1:t−1 to yt. By recalling that the state variable xt is a latent variable in the model

(1.2), we have

∇θ log π(yt|y1:t−1,θ) =
∫

∇θ log π(yt, xt−1|y1:t−1,θ)π(xt−1|y1:t,θ)dxt−1

=
∫ ∫

∇θ log
{

π(yt|xt−1,θ)π(xt−1|y1:t−1)
}

π(xt|y1:t,θ)π(xt−1|xt,y1:t,θ)dxt−1dxt

=
∫ ∫

∇θ log π(yt|xt−1,θ)π(xt|y1:t,θ)π(xt−1|xt,y1:t,θ)dxt−1dxt

=
∫ ∫

∇θ log π(yt|xt−1,θ)π(xt|y1:t,θ)π(xt−1|xt,y1:t−1,θ)dxt−1dxt,

(5.11)

where the first equality follows from the Fisher identity, and π(xt−1|xt,y1:t,θ) = π(xt−1|xt,y1:t−1,θ)

used in obtaining the last equality follows from the Markov property of the model (1.2). This

justifies the the parameter updating step of Algorithm 7 , which is to solve (5.10) under the

framework of stochastic approximation.

Theorem 5.1.1 concerns the convergence of the parameter estimates, whose proof follows

that of Theorem 5.1.3 (given in Section 5.1.3) directly.

Theorem 5.1.1 (Convergence of θt,k). Suppose that the dynamic system (1.1) is stationary;

the covariance matrix Vt satisfies the condition λl ≤ inft λmin(Vt) ≤ supt λmax(Vt) ≤ λu for

some positive constants λl and λu, where λmax(·) and λmin(·) denote, respectively, the largest

and smallest eigenvalues of a matrix; the learning rate sequence {εt,k : k = 1, 2, . . . ,K, t =

1, 2, . . .} is sufficiently small such that εt,k ≤ 2m/(3M2) for all t and k; and Assumptions

5.1 -5.6 (given in Section 5.1.3) hold for each stage t. Then there exists a constant ζ and a

root θ∗ ∈ {θ : ∑T
t=2 ∇θ log π(yt|y1:t−1,θ) = 0} such that

E‖θt,k − θ∗‖2 ≤ ζγt,k.

Theorem 5.1.1 provides a finite iteration analysis for the convergence of θt,k, which holds

for each stage t. By Assumption 5.1 (given in Section 5.1.3), {γt,k : k = 1, 2, . . . ,K, t =

1, 2, . . .} decreases in both t and k, we have

lim
t→∞

E‖θt,k − θ∗‖2 → 0, ∀ k = 1, 2, . . . ,K.

77

A practical choice of {γt,k} is γt,k = c1/(tk)ζ for some constants c1 > 0 and ζ ∈ (0.5, 1].

Another possible choice is γt,k = c2/max{c2, (t − 1)K + k}ζ for some constants c2 > 0,

K > 0, and ζ ∈ (0.5, 1].

Theorem 5.1.2 concerns the convergence of the state samples, whose proof follows that

of Theorem 5.1.4 (given in Section 5.1.3) directly.

Theorem 5.1.2 (Ergodicity of SA-LEnKF-Online). Suppose the conditions of Theorem 5.1.1

and Assumption 5.7 (given in Section 5.1.3) hold. Assume that εt,k → 0 as k → ∞, and∑K
k=1 εt,k → ∞ and [∑K

k=1 ε
2
t,k]/[∑K

k=1 εt,k] → 0 as K → ∞. For a smooth function φ, define

φ̂t = 1
K
∑K

k=1 φ(xt,k) and φ̄t =
∫
φ(xt)π(xt|θ∗,y1:t)dxt. Then,

E|φ̂t − φ̄t|2 → 0, as K → ∞. (5.12)

Theorems 5.1.1 and 5.1.2 imply that the SA-LEnKF-Online can be used for uncertainty

quantification for dynamic systems.

5.1.3 Proofs for the convergence of the SA-LEnKF algorithm

In this section, we provide the detailed proofs of the SA-LEnKF algorithm.

1) Stochastic approximation

The stochastic approximation algorithm [44] is the prototype of many adaptive algo-

rithms, which aims to solve an expectation equation given by

h(θ) =
∫

X
H(θ,x)πθ(dx) = 0,

where x ∈ X ⊂ Rd, θ ∈ Θ ⊂ Rm, πθ(x) denotes a distribution parameterized by θ, and

H(θ,x) and h(θ) are called the random-field and mean-filed functions, respectively. The

algorithm works by iterating between the following two steps:

(i) Simulate xk+1 from the transition kernel Πθk
(xk, ·), which admits πθk

(x) as the invari-

ant distribution.

78

(ii) Update θk by setting θk+1 = θk + ωk+1H(θk,xk+1) + ω2
k+1ρ(θk,xk+1), where ρ(·, ·)

denotes a bias term.

In particular, the algorithm samples x from a transition kernel Πθk
(·, ·) instead of the

distribution πθk
(·) exactly, which leads to a Markov state-dependent noise H(θk,xk+1) −

h(θk). In addition, it allows for a higher-order bias term ρ(·, ·) in parameter updating. The

limiting value of θk will not be affected by the bias term, provided that the bias term satisfies

certain conditions, e.g., ρ(θ,x) is bounded. See Benveniste, Métivier, and Priouret [74] for

more discussions on this issue.

2) An Adaptive LEnKF algorithm

By the proof of Theorem 3.3.1 , the LEnKF algorithm with parameter estimation forms

a type of adaptive stochastic gradient Riemannian Langevin dynamics (SGRLD) algorithm:

xk = xk−1 + εk

2 Σk∇xl̃(θk−1, xk−1) + √
εkek,

θk = θk−1 + wkH(θk−1, xk),
(5.13)

where ek is a zero mean Gaussian random error with covariance Var(ek) = Σk and ∇xl̃(θk−1, xk−1)

denotes an unbiased estimate of ∇xl(θk−1, xk) = ∇x log π(xk−1|yk,θk−1). Convergence of

adaptive stochastic gradient MCMC algorithms has been studied in a number of papers (see

e.g. [75], [76] and [77]).

For the LEnKF algorithm, as shown in Section 3.3 , Σk can be expressed as

Σk = I −KkHk = I − εkH
T
k (εkHkH

T
k +Rk)−1Hk,

which implies that Σk has bounded eigenvalues for all t ≥ 1 as long as Rk is positive definite

and has bounded eigenvalues for all t ≥ 1. Moreover, 0 < λmin(Σk) ≤ λmax(Σk) < 1 for all

t ≥ 1, where λmin(·) and λmax(·) denote the smallest and largest eigenvalues, respectively.

Since Σk can be a function of θk−1, we define L(θk−1, xk−1) = Σkl(θk−1, xk−1), and

L̃(θk−1, xk−1) = Σk l̃(θk−1, xk) in what follows. Obviously, ∇xL̃(θk−1, xk−1) = Σk∇xl̃(θk−1, xk).

79

3) Convergence of θk

The following conditions are assumed for the dynamic system (1.2).

Assumption 5.1. There exist a constant δ and a vector θ∗ such that 〈θ − θ∗, h(θ)〉 ≤

−δ‖θ − θ∗‖2 for any θ ∈ Θ. The step sizes {γt,k}t,k∈N is a positive sequence decreasing in

both t and k such that

lim
t→∞

γt,k = 0, lim
k→∞

γt,k → 0, (5.14)

and for any t ∈ N, the following conditions hold:

∞∑
k=1

γt,k = ∞, lim inf
k→∞

2δ γt,k

γt,k+1
+ γt,k+1 − γt,k

γ2
t,k+1

> 0. (5.15)

Assumption 5.2. L(θ, x) is M-smooth on θ and x with M > 0, and (m, b) dissipative on x.

In other words, for any x, x1, x2 ∈ X and θ1,θ2 ∈ Θ, the following inequalities are satisfied:

‖∇xL(θ1, x1) − ∇xL(θ2, x2)‖ ≤ M‖x1 − x2‖ +M‖θ1 − θ2‖, (5.16)

〈∇xL(θ, x), x〉 ≤ b−m‖x‖2. (5.17)

The smoothness and dissipativity assumptions are standard to the study of the conver-

gence of stochastic gradient MCMC algorithms, and they have been used in many works

such as Deng, Zhang, Liang, et al. [75] and Raginsky, Rakhlin, and Telgarsky [78].

Assumption 5.3. Let ξk = ∇xL̃(θk, xk) − ∇xL(θk, xk) denote the white noise contained in

the stochastic gradient. The white noises ξ1, ξ2, . . . are mutually independent and satisfy the

conditions:

E(ξk|Fk) = 0,

E‖ξk‖2 ≤ M2E‖x‖2 +M2E‖θ‖2 +B2,
(5.18)

where Fk = σ{θ1, x1,θ2, x2, . . . ,θk, xk} denotes a σ-filter.

Assumption (A.3) is a regularity condition for the gradient noise. Similar conditions have

been used in the literature, see e.g. Raginsky, Rakhlin, and Telgarsky [78].

80

Assumption 5.4. Assume that the trajectory of θ always belongs to a compact set Θ, i.e.

{θk}∞
k=1 ⊂ Θ and ‖θk‖ ≤ M for some constant M .

This assumption is made for the simplicity of proof. Otherwise, a varying truncation

technique (see e.g. [79] and [80]), can be used in the algorithm for ensuring that {θk : k =

1, 2, . . .} is contained in a compact space.

Assumption 5.5. For any θ ∈ Θ, there exists a function µθ on x which solves the Poisson

equation µθ(x) − Tθµθ(x) = H(θ, x) − h(θ) such that

H(θk, xk+1) = h(θk) + µθk
(xk+1) − Tθk

µθk
(xk+1), k = 1, 2, (5.19)

In addition, there exists a constant C such that ‖Tθµθ‖ ≤ C.

This assumption has often been used in the study for the convergence of stochastic

gradient Langevin dynamics, see e.g. Teh, Thiery, and Vollmer [81] and Deng, Zhang,

Liang, et al. [75].

Assumption 5.6. H(θ, x) is continuous and there exists a constant M such that

‖H(θ, x1) − H(θ, x2)‖ ≤ M‖x1 − x2‖.

Theorem 5.1.3 (Convergence of θk). Suppose Assumptions 5.1 -5.6 hold; λl ≤ infk λmin(Vk) ≤

supk λmax(Vk) ≤ λu for some positive constants λl and λu, where λmax(·) and λmin(·) denote

the largest and smallest eigenvalues, respectively; and the learning rate sequence {εk : k =

1, 2, . . .} is sufficiently small such that εk ≤ 2m/(3M2) for all k ≥ 1, then there exists a

constant ζ and a root θ∗ ∈ {θ : h(θ) = 0} such that

E‖θk − θ∗‖2 ≤ ζwk,

where t indexes iterations, and wk is the step size satisfying Assumption 5.1 .

Proof. This theorem can be proved as Theorem 1 of Deng, Zhang, Liang, et al. [75], but the

proofs of Lemma 1, Proposition 2 and Proposition 4 of Deng, Zhang, Liang, et al. [75] no

81

longer hold for the LEnKF algorithm. In what follows we re-establish them under the above

assumptions.

Lemma 5.1 is a replacement of Proposition 2 of Deng, Zhang, Liang, et al. [75].

Lemma 5.1. ‖∇xL(θ, x)‖2 ≤ 3M2‖x‖2 + 3M2‖θ‖2 + 3B̄2 for some constant B̄.

Proof. Let (θ∗, x∗) be the minimizer such that ∇xL(θ∗, x∗) = 0 and θ∗ be the stationary

point. By the dissipative assumption in Assumption 5.2 , ‖x∗‖2 ≤ b
m

.

‖∇xL(θ, x)‖ ≤ ‖∇xL(θ∗, x∗)‖ +M‖x∗ − x‖ +M‖θ − θ∗‖

≤ M‖θ‖ +M‖x‖ + B̄,

where B̄ = M(
√

b
m

+‖θ∗‖). Therefore, ‖∇xL(θ, x)‖2 ≤ 3M2‖x‖2+3M2‖θ‖2+3B̄2 holds.

Lemma 5.2 is a replacement of Lemma 1 of Deng, Zhang, Liang, et al. [75].

Lemma 5.2. (Uniform L2 bounds) Suppose Assumptions 5.1 -5.6 hold. If the learning rate

sequence {εk : t = 1, 2, . . .} is sufficiently small such that εk ≤ 2m/(3M2) for all t ≥ 1, then

there exists a constant G > 0 such that

sup
k

E‖xk‖2 ≤ G. (5.20)

Proof. By the evolution equation (5.13), we have

E‖xk+1‖2 = E‖xk + εk+1∇xL̃(θk, xk)‖2 + E‖ek+1‖2

= E‖xk + εk+1∇xL̃(θk, xk)‖2 + εk+1‖Σk+1‖.
(5.21)

By the gradient noise assumption, the first item of (5.21) can be further expanded as

E‖xk + εk+1∇xL̃(θk, xk)‖2

=E‖xk + εk+1∇xL(θk, xk)‖2 + ε2
k+1E‖ξk‖2 + 2εk+1E[E[〈xk + εk+1∇xL(θk, xk), ξk〉|Fk]]

=E‖xk + εk+1∇xL(θk, xk‖2 + ε2
k+1E‖ξk‖2.

(5.22)

82

By the dissipivatity and boundedness lemmas, the first item of (5.22) can be further expanded

as

E‖xk + εk+1∇xL(θk, xk)‖2

=E‖xk‖2 + 2εk+1E〈xk,∇xL(θk, xk)〉 + ε2
k+1E‖∇xL(θk, xk)‖2

≤E‖xk‖2 + 2εk+1(b−mE‖xk‖2) + ε2
k+1(3M2E‖xk‖2 + 3M2‖θk‖2 + 3B̄2)

≤(1 − 2εk+1m+ 3ε2
k+1M

2)E‖xk‖2 + 2εk+1b+ 3ε2
k+1B̃

2,

(5.23)

where B̃2 = M4 + max{B̄2, B2}.

By the gradient noise assumption, the second item of (5.22) is bounded by

E‖ξk‖2 ≤ M2E‖xk‖2 +M2E‖θk‖2 +B2 < M2E‖xk‖2 + B̃2, (5.24)

which leads to

E‖xk+1‖2 ≤ (1 − 2εk+1m+ 3ε2
k+1M

2)E‖xk‖2 + 2εk+1b+ 3ε2
k+1B̃

2 + εk+1C0, (5.25)

where C0 = supk≥0 ‖Σk+1‖.

Suppose that εk+1 is sufficiently small such that εk+1 < 2m/(3M2) holds for all t ≥ 0.

Then the lemma can be established using an induction method.

The case with t = 0 is trivial. Assuming E‖xk‖2 ≤ G, then E‖xk+1‖2 can be bounded by

E‖xk+1‖2 ≤ (1 − 2εk+1m+ 3ε2
k+1M

2)G+ 2εk+1b+ 3ε2
k+1B̃

2 + εk+1C0.

Therefore, if G ≥ supt≥0
2εk+1b+3ε2

k+1B̃2+εk+1C0

2εk+1m−3ε2
k+1M2 , then E‖xk+1‖2 ≤ G holds.

Lemma 5.3 is a replacement of Proposition 4 of Deng, Zhang, Liang, et al. [75].

Lemma 5.3. There exists a constant C1 such that Eθk
‖H(θk, xk+1)‖2 ≤ C1.

Proof. By Assumption 5.6 ,

‖H(θk, xk+1)‖2 ≤ 2M‖xk+1‖2 + 2‖H(θk, 0)‖2.

83

Because θk belongs to a compact set, H(θ, 0) is continuous function and E‖xk+1‖ is uniformly

bounded, Eθk
‖H(θk, xk+1)‖2 is uniformly bounded.

4) Ergodicity of the Parameter-Adaptive LEnKF

To establish the ergodicity of the parameter-adaptive LEnKF, we need more assumptions.

Let the fluctuation between φ and φ̄:

Lf(θ) = φ(θ) − φ̄, (5.26)

where f(θ) is the solution to the Poisson equation, and L is the infinitesimal generator of

the Langevin diffusion. Following Chen, Ding, and Carin [59] and Li, Chen, Carlson, et al.

[82], we made the following assumption:

Assumption 5.7. Given a sufficiently smooth function f(θ) as defined in (5.26) and a

function V(θ) such that the derivatives satisfy the inequality ‖Djf‖ . Vpj(θ) for some

constant pj > 0, where j ∈ {0, 1, 2, 3}. In addition, Vp has a bounded expectation, i.e.,

supk E[Vp(θk)] < ∞; and Vp is smooth, i.e. sups∈(0,1) Vp(sθ +(1 − s)ϑ) . Vp(θ) + Vp(ϑ)

for all θ,ϑ ∈ Θ and p ≤ 2 maxj{pj}.

Theorem 5.1.4 (Ergodicity of the Parameter-Adaptive LEnKF). Suppose that the condi-

tions of Theorem 5.1.3 and Assumptions 5.7 hold. For a smooth test function φ, define

φ̂ = 1
T

T∑
k=1

φ(xk), (5.27)

where T is the total number of iterations. Let φ̄ =
∫
φ(x)π(x|θ∗,D)dx. Then

E|φ̂− φ̄|2 → 0, as T → ∞, (5.28)

provided that εk → 0 as k → ∞, and ∑T
k=1 εk → ∞ and [∑T

k=1 ε
2
k]/[∑T

k=1 εk] → 0 as T → ∞.

Proof. The update of the state variable x can be rewritten as

xk+1 = xk + εk+1Σk+1(∇xL(θ∗, xk) + ∆Vk) +
√

2εk+1τN(0,Σk+1), (5.29)

84

where ∆Vk = ∇xL̃(θk, xk) − ∇xL(θ∗
k, xk) + ξk can be viewed as the estimation error for the

“true” gradient ∇xL(θ∗, xk).

Since Σk has bounded eigenvalues as analyzed in Section 5.1.3 , by Theorem 1 of Li, Chen,

Carlson, et al. [82], it is sufficient to show that ∑T
k=1(ε2

kE‖∆Vk‖2)/(∑T
k=1 εk)2 → 0. Note that

E‖∆Vk‖2 ≤ 2(E‖∇xL(θk, xk) − ∇xL(θ∗, xk)‖2 + E‖ξk‖2)

≤ 2(M2E‖θk − θ∗‖2 + E‖ξk‖2).

By Theorem 5.1.3 , E‖θk − θ∗‖2 → 0; By Assumption 5.3 and Lemma 5.2 , E‖ξk‖2 ≤

M2E‖x‖2 + M2E‖θ‖2 + B2 is bounded. Hence E‖∆Vk‖2 is bounded. Further, by the

conditions that ∑T
k=1 εk → ∞ and [∑T

k=1 ε
2
k]/[∑T

k=1 εk] → 0, we can easily conclude that∑T
k=1(ε2

kE‖∆Vk‖2)/(∑T
k=1 εk)2 → 0.

Remark 5.2. It is easy to extend Theorem 5.1.3 and Theorem 5.1.4 to the case that

∇xL̃(θk, xk) is biased. In this case, we can assume that ∇xL̃(θk, xk)−∇xL(θk, xk) = ςk +ξk,

where ςk = E(∇xL̃(θk, xk)−∇xL(θk, xk)|Fk) 6= 0 is the bias term and ξk is the random noise

term with mean E(ξk|Fk) = 0, and

E‖ςk‖2 ≤ ME‖xk‖2 +M2E‖θk‖2 +B2.

This extension accommodates the bias introduced in the importance resampling step of the

LEnKF algorithm for data assimilation problems.

Remark 5.3. When the LEnKF algorithm is applied to the data assimilation problems, we

always assume that the parameters θ are invariant with respect to stage t. In this case,

Theorem 5.1.3 holds trivially, while Theorem 5.1.4 holds for each stage t as the number of

iterations becomes large.

85

5.2 Langevinized Ensemble Kalman filter with non-Gaussian data

5.2.1 The Extended LEnKF algorithm

In practice, we often encounter dynamic systems where the measurement variable follows

a non-Gaussian distribution, e.g., multinomial or Poisson. The LEnKF can be extended to

these systems by introducing some Gaussian latent variables. The extension is described,

separately, for the inverse problem and data assimilation in what follows.

1) Inverse problems

Consider an inverse problem for which a latent variable model can be formulated as

z ∼ ψ(·|y), y = Hx+ η, η ∼ N(0,Γ), (5.30)

where z is observed data following a non-Gaussian distribution ψ(·), y is the latent Gaussian

variable, and x is the parameter. For this model, we have π(y|x, z) ∝ ψ(z|y)φ(y|x), where

φ(·) denotes a Gaussian density function.

Same as in Section 3.1.1 , we assume that z can be partitioned into B = N/n indepen-

dent and identically distributed blocks {z1, . . . , zB}, where each block is of size n and the

corresponding latent variables have the covariance matrix V such that Γ = diag[V, · · · , V].

To adapt the LEnKF to simulating from the posterior distribution π(x|z), we only need to

add an imputation step in Algorithm 4 . The extended algorithm is described in Algorithm

9 .

2) Data assimilation problems

For non-Gaussian data assimilation problems, the corresponding state space model (1.3)

can be reformulated as follows:

xt = g(xt−1) + ut, ut ∼ N(0, Ut),

yt = Htxt + ηt, ηt ∼ N(0,Γt),

zt ∼ ψ(·|yt),

(5.33)

86

Algorithm 9: Extended LEnKF for non-Gaussian Inverse Problems
(i) Initialization: Initialize an ensemble {xa,1

0 , xa,2
0 , . . . , xa,m

0 }, where m is the
ensemble size.
for t=1,2,…, T do

(ii) Subsampling: Draw a mini-batch sample, denoted by (zt, Ht), of size n
from the full data set of size N . Set Qt = εtIp, Rt = 2Vt, and the Kalman gain
matrix Kt = QtH

T
t (HtQtH

T
t +Rt)−1.

for i=1,2,…,m do
(iii) Forecast: Draw wi

t ∼ Np(0, n
N
Qt) and calculate

xf,i
t = xa,i

t−1 + εt
n

2N∇ log π(xa,i
t−1) + wi

t. (5.31)

(iv) Imputation: Draw yi
t ∼ π(y|xf,i

t , zt) ∝ ψ(zt|y)φ(y|xf,i
t), where

yi
t|x

f,i
t ∼ N(Htx

f,i
t , Vt).

(v) Analysis: Draw vi
t ∼ Nn(0, n

N
Rt) and calculate

xa,i
t = xf,i

t +Kt(yi
t −Htx

f,i
t − vi

t)
∆= xf,i

t +Kt(yi
t − yf,i

t). (5.32)

where Ht is an appropriately chosen matrix, and yt ∈ RNt represents the latent Gaussian

random variable following the conditional distribution π(yt|xt, zt) ∝ ψ(zt|yt)φ(yt|xt), and

φ(·) denotes a Gaussian density function. Then the data assimilation LEnKF algorithm can

be extended to the model (5.33) by including an imputation step for the latent variable yt at

each stage t. As in Section 3.2.1 , to accommodate the case that Nt is extremely large at each

stage t, we assume that zt can be partitioned into B = N/n independent and identically

distributed blocks {zt,1, . . . , zt,B}, where each block is of size n and the corresponding latent

variable has the covariance matrix Vt such that Γt = diag[Vt, · · · , Vt]. The resulting algorithm

is described in Algorithm 10 .

87

Algorithm 10: Extended LEnKF for non-Gaussian Data Assimilation Problems
(i) Initialization: Start with an initial ensemble xa,1

1,0, x
a,2
1,0, . . . , x

a,m
1,0 drawn from the

prior distribution π(x1), where m denotes the ensemble size.
for t=1,2,…,T do

Set Xt = ∅ and k0 as common burn-in period.
for k=1,2,…,K do

(ii) Subsampling: Draw without replacement a mini-batch sample, denoted
by zt,k, of size nt from the full data set zt of size Nt. Set Qt,k = εt,kIp,
Rt = 2Vt, and the Kalman gain matrix Kt,k = Qt,kH

T
t,k(Ht,kQt,kH

T
t,k +Rt)−1.

for i=1,2,…, m do
(iii) Importance resampling: If t > 1, calculate importance weights
ωi

t,k−1,j = π(xa,i
t,k−1|xt−1,j) = φ(xa,i

t,k−1 : g(xt−1,j), Ut) for j = 1, 2, . . . , |Xt−1|,
where φ(·) denotes a Gaussian density, and xt−1,j ∈ Xt−1 denotes the jth
sample in Xt−1; if k = 1, set xa,i

t,0 = g(xa,i
t−1,K) + ua,i

t and ua,i
t ∼ N(0, Ut).

Resample s ∈ {1, 2, . . . , |Xt−1|} with a probability ∝ ωi
t,k−1,s, i.e.,

P (St,k,i = s) = ωi
t,k−1,s/

∑|Xt−1|
j=1 ωi

t,k−1,j, and denote the sample drawn from
Xt−1 by x̃i

t−1,k−1.
(iv) Forecast: Draw wi

t,k ∼ Np(0, nt

Nt
Qt,k). If t = 1, set

xf,i
t,k = xa,i

t,k−1 − εt,k
nt

2Nt

∇ log π(xa,i
t,k−1) + wi

t,k, (5.34)

where π(·) denotes the prior distribution of x1. If t > 1, set

xf,i
t,k = xa,i

t,k−1 − εt,k
nt

2Nt

U−1
t (xa,i

t,k−1 − g(x̃i
t−1,k−1)) + wi

t,k. (5.35)

(v) Imputation: Draw yi
t,k ∼ π(y|xf,i

t,k, zt,k) ∝ φ(y|xf,i
t,k)ψ(y|zt,k), where

zt,k is an n-vector representing a mini-batch of data and φ(·) is a
Gaussian density function.
(vi) Analysis: Draw vi

t,k ∼ Nn(0, nt

Nt
Rt) and set

xa,i
t,k = xf,i

t,k +Kt,k(yi
t,k −Ht,kx

f,i
t,k − vi

t,k) ∆= xf,i
t,k +Kt,k(yi

t,k − yf,i
t,k). (5.36)

(vii) Sample collection: If k > k0, add the sample xa,i
t,k into the set Xt.

88

5.2.2 Convergence analysis

To justify the convergence of the extended LEnKF algorithms, we consider the identity

(3.15) again, which is introduced in Section 3.2.1 . With this identity, it is easy to show that

∇x log π(x|zt) =
∫

∇x log π(x|y, zt)π(y|x, zt)dy =
∫

∇x log π(x|y)π(y|x, zt)dy, (5.37)

where the last equality holds as π(x|y, z) = π(x|y) given the hierarchical structure (5.30).

That is, ∇x log π(x|y) forms an unbiased estimator of ∇x log π(x|zt), provided that y ∼

π(y|x, zt). Further, by (3.5), we can show that Algorithm 9 leads to a SGRLD algorithm for

simulating from the posterior distribution π(x|z) even when z is not Gaussian. In summary,

we have the following theorem concerning the convergence of Algorithm 9 .

Theorem 5.2.1. (Convergence of extended LEnKF for non-Gaussian inverse problems) Let

xa
t denote a generic member of the ensemble produced by Algorithm 9 in the analysis step

of stage t. If the eigenvalues of Vt are uniformly bounded with respect to t, log π(x) is

differentiable with respect to x, and the learning rate εt = O(t−$) for some 0 < $ < 1,

then limt→∞ W2(π̃t, π∗) = 0, where π̃t denotes the empirical distribution of xa
t , π∗ = π(x|y)

denotes the target posterior distribution, and W2(·, ·) denotes the second-order Wasserstein

distance.

The proof of Theorem 5.2.1 directly follows from (5.37) and the proof of Theorem 3.3.1 ,

and thus is omitted. When an exact sampler for π(y|x, zt) is not available, the imputation

step can be done by a short run of the Metropolis-Hastings algorithm. In this case, (5.32)

can be replaced by

xa,i
t = xf,i

t +Kt

(
ȳi

t −Htx
f,i
t − vi

t

)
, (5.38)

where ȳi
t = 1

r

∑r
j=1 y

i,j
t and yi,1

t , . . . , y
i,r
t are the samples simulated in a short Metropolis-

Hastings run. The validity of the resulting algorithm can be justified by noting that π(y|x)

is Gaussian, which implies that ∇x log π(x|y) is a linear function of y. As a result, (5.38)

leads to an asymptotically unbiased estimator of ∇x log π(x|z) given by N/nHT
t V

−1
t (ȳt −

89

Htx
a
t−1) + ∇x log π(xa

t−1), which is similar to the one given in (3.5). When r is small, this

estimator can be biased as the Metropolis-Hastings run might have not yet reached its

equilibrium. By the standard theory of MCMC, it is easy to figure out that the bias is of

the order O(1/r). Further, by Corollary 1 in Section 3.3 , this bias will not affect much on

the validity of the algorithm as long as r is reasonably large. To be more precise, we have

lim supt→∞ W2(π̃t, π∗) = O(1/r) in this case. Similar results can be found in Song, Sun, Ye,

et al. [58], Dalalyan and Karagulyan [63] and Bhatia, Ma, Dragan, et al. [83], where the

convergence of the stochastic gradient Langevin dynamic (SGLD) algorithm was established

with an inaccurate gradient. In general, the averaging estimator reduces the variation of the

stochastic gradient and improves the convergence of the SGMCMC algorithm, see Nemeth

and Fearnhead [8] for more discussions on this issue. Alternative to the averaging estimator,

the last sample generated by the short short of the Metropolis-Hastings algorithm can also

be used for simplicity. The validity of the resulting algorithm can be justified similarly.

Concerning the convergence of Algorithm 10 , we have the following theorem, whose proof

directly follows from (5.37) and the proof of Theorem 3.3.2 , and is thus omitted.

Theorem 5.2.2. (Convergence of extended LEnKF for non-Gaussian State Space Models)

Assume that for each stage t, the matrices Ht, Ut and Vt, the state propagator g(xt), and

the iteration number K satisfy the regularity conditions given in Theorem 3.3.2 . If all Nt’s

are bounded away from 0, then lim supt→∞ W2(π̃t, πt) = O(1/ lim inft Nt), where πt denotes

the filtering distribution at stage t, and π̃t denotes an empirical estimate of the filtering

distribution πt.

90

6. EMPIRICAL RESULTS OF THE SA-LENKF AND THE

EXTENDED LENKF

In this chapter, we present multiple examples for both SA-LEnKF algorithm and the Ex-

tended LEnKF algorithm. The numerical results indicate that it is not only able to produce

a better accurate point estimate as the existing methods do, but also able to quantify un-

certainty of the resulting estimate.

6.1 Empirical results of the SA-LEnKF algorithm

This section includes three simulation studies, which are for stochastic parameters, multi-

plicative parameters and multi-parameters, and one real data analysis using LSTM networks.

6.1.1 Dynamic linear model with stochastic parameters

Consider a dynamic linear model given by

xt|xt−1 ∼ Np(M(α)xt−1, σ
2Ip),

yt|xt ∼ Ndt(Htxt, 0.12Idt),
(6.1)

where α = (α1, α2, α3) = (0.3, 0.3, 0.3), p = 60, dt = 54 for all t = 1, 2, . . . , T , Ht is a random

selection matrix of size dt × p, M(α) is a tri-diagonal matrix with α1 on the main diagonal,

and α2 and α3 on the first upper and lower sub-diagonals, respectively. In the simulation,

we set T = 100 and σ = 0.2, and drew x0 ∼ Nn(µ0,Σ0), where µ0 = −21p, Σ0 = Ip, and

1p denotes a constant vector of ones. Our goal in this example is to simultaneously estimate

the states x1, x2, . . . , xT and the stochastic parameter θ = {σ}.

The SA-LEnKF-Online (Algorithm 7), SA-LEnKF-Offline (Algorithm 8), and state-

augmented EnKF (Algorithm 2) were applied to this example. For SA-LEnKF-Online,

we set the ensemble size m = 20, stage iteration number K = 20, the state learning rate

εt,k = 0.01/k0.6 for k = 1, 2, . . . ,K and t = 1, 2, . . . , 100, and the parameter learning rate

γt,k = 0.0002/(tk)0.6 for k = 1, 2, . . . ,K and t = 1, 2, . . . , T . At each stage t, the state

was estimated by averaging over the ensembles generated during the last K − k0 iterations,

91

and the resulting estimate was denoted by x̂t. The accuracy of x̂t is measured by the root

mean-squared error RMSEt(x) = ‖x̂t − xt‖2/
√
p. Similarly, the parameter θ was estimated

by averaging over those obtained during the last K − k0 iterations and denoted by θ̂t, whose

accuracy was measured by RMSEt(θ) = ‖θ̂t −θ‖2/
√
dθ, where dθ denotes the dimension of

θ. The final estimate of θ was given by θ̂ = 2/T ∑T
t=T/2+1 θ̂t.

For the SA-LEnKF-Offline algorithm, we set the ensemble size m = 20, the sweep num-

ber L = 100, the stage iteration number K = 20, the state learning rate εl,t,k = 0.01/k0.6

for k = 1, 2, . . . ,K and l, t = 1, 2, . . . , 100, and the parameter learning rate γl = 0.001/l0.6

for l = 1, 2, . . . , L. At each sweep l and each stage t, the state was estimated by averaging

over the ensembles generated during the last K − k0 iterations, and the resulting estimate

was denoted by x̂l,t. In default, the last sweep estimate x̂L,t was used as the final esti-

mate of xt. The accuracy of x̂L,t is measured by RMSEt(x) = ‖x̂L,t − xt‖2/
√
p. At each

sweep, the resulting parameter estimate is denoted by θ̂l, whose accuracy was measured by

RMSEl(θ) = ‖θ̂l − θ‖2/
√
dθ. The final estimate of θ is given by θ̃ = 2/L∑L

l=L/2+1 θ̂l.

Since for each sweep, the offline algorithm had the same settings of m and K as the online

algorithm, the offline algorithm is expected to be about L times slower than the online algo-

rithm. This setting is certainly not optimal. For many problems, SA-LEnKF-Offline can be

significantly accelerated by reducing the stage iteration number or the number of sweeps.

For the state-augmented EnKF, we set the ensemble size m = 20 and σθ = 0.01, which

makes the parameter estimate converge fast and most accurate for this example. At each

stage, the state and parameter were estimated by averaging over the ensemble. The final

estimate of θ was obtained by averaging over the estimates produced in the stages T/2 +

1, T/2 + 2, . . . , T . The above state and parameter estimation procedures prescribed for the

three algorithms have been used in all examples of this dissertation.

Figure 6.1 compares the above three algorithms in state estimation for one dataset sim-

ulated from (6.1). It shows the estimates of x(k)
t and their 95% confidence bands along with

stage t for k = 10, 25 and 40, where x(k)
t denotes the kth component of xt, and the confidence

bands were calculated based on the asymptotic normality of the state estimates. Both SA-

LEnKF-Online and SA-LEnKF-Offline worked very well for this example, providing good

point estimates as well as uncertainty quantification for the estimates. Unfortunately, the

92

Figure 6.1. Comparison of SA-LEnKF-Online, SA-LEnKF-Offline and state-
augmented EnKF in state estimation for the model (6.1): the plots in the
upper, middle and lower panels show, respectively, the estimates of x(10)

t , x(25)
t

and x(40)
t , where the true state values are represented by ‘+’, the estimates are

represented by solid lines, and the 95% confidence bands are represented by
the shaded area.

state-augmented EnKF performed less satisfactorily for this example, which failed to follow

the underlying true pattern of the observation in the early stages.

Figure 6.2 summarizes the performance of the three algorithms in parameter and state es-

timation, which indicate that both the SA-LEnKF-Online and SA-LEnKF-Offline algorithms

93

0 20 40 60 80 100
Stage/Sweep

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
Pa

ra
m

et
er

 E
st

im
at

e

SA-LEnKF-offline
SA-LEnKF-online
Augmented EnKF
True Value

(a) Estimates of σ

0 20 40 60 80 100
Stage

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

St
at

e
Er

ro
r

SA-LEnKF-offline
SA-LEnKF-online
Augmented EnKF

(b) RMSEt(x)

Figure 6.2. Comparison of SA-LEnKF-Online, SA-LEnKF-Offline and state-
augmented EnKF in parameter and state estimation for the model (6.1): plot
(a) shows the estimate of σ, where x-axis represents the sweep number for
SA-LEnKF-Offline and the stage number for SA-LEnKF-Online and state-
augmented EnKF; and plot (b) shows RMSEt(x) of the state estimates along
with stage t.

significantly outperform the state-augmented EnKF algorithm. The SA-LEnKF-Online and

SA-LEnKF-Offline performed similarly for this example; they converged to the same pa-

rameter value and have almost identical RMSEt(x) at all stages. As mentioned previously,

the stochastic parameter is usually hard to be estimated. It is encouraging that both the

SA-LEnKF-Online and SA-LEnKF-Offline algorithms produced estimates very close to the

true parameter value.

Figure 6.3 compares the coverage probabilities of the confidence intervals produced by the

three algorithms for the states x1, x2, . . . , xT . Figure 6.3 (a) shows the results for one dataset,

where, for each stage t, the coverage probability was calculated by averaging over the coverage

status of each component of xt. Figure 6.3 (b) shows the coverage probabilities averaged over

10 datasets. The coverage probabilities produced by the two SA-EnKF algorithms are very

close to the nominal level 95%, while those by state-augmented EnKF are only about 40%.

Table 6.1 summarizes the numerical results of the three algorithms, where k0 = K−1 was

set for the two SA-LEnKF algorithms, MRMSE(x), MCP and MRMSE(θ) denote the results

for one dataset; and Ave-MRMSE(x), Ave-MCP and Ave-MRMSE(θ) denote the results

94

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0
Co

ve
ra
ge

 P
ro

ba
bi

lit
y

SA-LEnKF-offline
SA-LEnKF-online
Augmented-EnKF

(a) Coverage probabilities with one dataset

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve
ra
ge
 P
ro
ba
bi
lit
y

SA-LEnKF-Offline
SA-LEnKF-Online
Augmented EnKF

(b) Coverage probabilities with ten datasets

Figure 6.3. Coverage probabilities of the 95% confidence intervals produced
by the SA-LEnKF-Online, SA-LEnKF-Offline and state-augmented EnKF al-
gorithms for the states x1, x2, . . . , xT of the model (6.1), where plots (a) and
(b) show the results for one and ten datasets, respectively. In the estimation,
we set k0 = K − 1 to reduce the effect of pre-converged parameter estimates.

averaged over 10 datasets. For the online method, MRMSE(x) denotes the averaged root-

mean-squared-error of the state estimate, MCP denotes the averaged coverage probability

of the state, and MRMSE(θ) denotes the averaged root-mean-squared-error of the estimate

of θ, where the average was taken over the stages t = 51, 52, . . . , T . For the offline method,

they are defined in the same way, but only the estimates obtained in the last sweep was

used. The comparison shows that for this example, SA-LEnKF-Online and SA-LEnKF-

Offline produced almost the same state and parameter estimates, while the latter is much

more costly in CPU time. The state-augmented EnKF is poor in both state and parameter

estimation, although it is very fast.

6.1.2 Dynamic nonlinear model with multiplicative parameters

Consider the Lorenz-96 model [33] introduced in Section 4.2.1 again. Let L(·) denote the

state evolution equation obtained by the Runge-Kutta numerical method. At each stage t

and for each component i, we added to x
(i)
t a white noise, i.e., standard Gaussian random

95

Table 6.1. Comparison of SA-EnKF-Online, SA-LEnKF-Offline and state-
augmented EnKF in state and parameter estimation for the model (6.1), where
the average values over 10 independent datasets were reported with the stan-
dard deviation given in the parentheses. The CPU time (in seconds) was
recorded for a single run of each algorithm.

Ave-MRMSE(x) Ave-MCP Ave-MRMSE(θ) CPU Time

SA-LEnKF-Offline 0.1112(0.0006) 0.9499(0.0016) 0.0166(0.0008) 101.200(3.909)
SA-LEnKF-Online 0.1108(0.0007) 0.9496(0.0024) 0.0131(0.0006) 1.151(0.099)
Augmented EnKF 0.2312(0.0013) 0.4027(0.0048) 0.2953(0.0140) 0.176(0.009)

error. At each stage t, there are only Nt = p/2 randomly chosen state values observable,

which are masked with a white noise. We re-write the model as

yt|X t ∼ N(HtX t, In)

X t|X t−1,θ ∼ N(g(X t−1;θ), σ2In),
(6.2)

where g(X t−1;θ) = θL(X t−1) is the nonlinear state evolution operator, Ht is a random

selection matrix, T = 100, σ = 1 is known, and θ is an unknown parameter. Our goal for

this example is to simultaneously estimate the states and the parameter θ.

The SA-LEnKF-Online (Algorithm 7), SA-LEnKF-Offline (Algorithm 8), and state-

augmented EnKF (Algorithm 2) were applied to this example. In SA-LEnKF-Online, we

set the ensemble size m = 50, the stage iteration number K = 20, the state learning rate

εt,k = 0.5/k0.8 for k = 1, 2, . . . ,K and t = 1, 2, . . . , 100, and the parameter learning rate

γt,k = 0.0002/(tk)0.9 for t = 1, 2, . . . , L and k = 1, 2, . . . ,K. In SA-LEnKF-Offline, we set

the ensemble size m = 50, the number of seeps L = 100, the stage iteration number K = 20,

the state learning rate εl,t,k = 0.5/k0.8 for k = 1, 2, . . . ,K and l, t = 1, 2, . . . , 100, and the

parameter learning rate γl = 0.001/l0.9 for l = 1, 2, . . . , L. In state-augmented EnKF, we set

the ensemble size m = 50 and σθ = 0.01.

Figure 6.4 compares the three algorithms in state estimation for one dataset simulated

above. It indicates that the two SA-LEnKF algorithms worked very well in both state

estimation and uncertainty quantification for the estimates. In contrast, the state-augmented

96

Figure 6.4. Comparison of SA-LEnKF-Online, SA-LEnKF-Offline and state-
augmented EnKF in state estimation for the Lorenz-96 model: The upper,
middle and lower panels show, respectively, the estimates of x(1)

t , x(15)
t and

x
(20)
t along with stage t, where the true state values are represented by ‘+’,

the estimates are represented by solid lines, and the 95% confidence bands are
represented by shaded areas.

97

0 20 40 60 80 100
Stage/Sweep

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Pa

ra
m

et
er

 E
st

im
at

e

SA-LEnKF-offline
SA-LEnKF-online
Augmented EnKF
True Value

(a) Estimates of θ

0 20 40 60 80 100
Stage

2.5

5.0

7.5

10.0

12.5

15.0

17.5

St
at

e
Er

ro
r

SA-LEnKF-offline
SA-LEnKF-online
Augmented EnKF

(b) RMSEt(x)

0 20 40 60 80 100
Stage

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 P
ro
ba

bi
lit
y

SA-LEnKF-offline
SA-LEnKF-online
Augmented-EnKF

(c) Coverage Probabilities with one dataset

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve
ra
ge
 P
ro
ba
bi
lit
y

SA-LEnKF-Offline
SA-LEnKF-Online
Augmented EnKF

(d) Coverage probabilities with ten datasets

Figure 6.5. Comparison of SA-LEnKF-Online, SA-LEnKF-Offline and state-
augmented EnKF in state and parameter estimation for the Lorenz-96 model:
(a) estimates of θ; (b) RMSEt(x) of the state estimates along with stage t; (c)
state coverage probabilities along with stage t, which were calculated based
on one dataset; (d) state coverage probabilities along with stage t, which were
averaged over 10 datasets.

EnKF performed less satisfactorily, which needs more stages to capture the pattern of the

observations than the SA-LEnKF algorithms.

Figure 6.5 (a) shows that the two SA-LEnKF algorithms produced very accurate estimates

of θ, while the estimates by the state-augmented EnKF have relatively large variations. Fig-

ure 6.5 (b) shows that the three algorithms produced about the same accurate state estimates,

but the state-augmented EnKF converged slightly slowly. Figure 6.5 (c) shows the state cov-

erage probabilities calculated based on one dataset, where the coverage probability at each

98

stage was calculated by averaging the coverage status of all components of the state variable.

Figure 6.5 (d) shows the state coverage probabilities calculated based on 10 datasets, which

were obtained by further averaging the coverage probabilities obtained in plot (c) over 10

datasets. The state estimation results by the two SA-LEnKF algorithms are very impres-

sive, for which the coverage probabilities are almost identical to the nominal level 95%. In

contrast, the coverage probabilities produced by the state-augmented EnKF algorithm are

much lower, which are about 80% over all stages.

Table 6.2. Comparison of SA-EnKF-Offline, SA-LEnKF-Online and state-
augmented EnKF in state and parameter estimation for the Lorenz-96 model,
where the average values over 10 independent datasets were reported with the
standard deviation given in the parentheses. The CPU time (in seconds) was
recorded for a single run of each algorithm. Refer to Section 6.1.1 for notations
of the table.

Ave-MRMSE(x) Ave-MCP Ave-MRMSE (θ) CPU Time

SA-LEnKF-Offline 1.605(0.0183) 0.9569(0.0027) 0.0046(0.0003) 110.93(0.7726)
SA-LEnKF-Online 1.612(0.0256) 0.9500(0.0032) 0.0038(0.0005) 1.235(0.1578)
Augmented EnKF 1.757(0.0231) 0.7974(0.0042) 0.0142(0.0006) 0.143(0.004)

Table 6.2 summarizes the numerical results of the three algorithms, where k0 = K − 1

was set for the two SA-LEnKF algorithms. In summary, the two SA-LEnKF algorithms

worked extremely well for the Lorenz-96 model, while the state-augmented EnKF worked

less satisfactorily. In terms of CPU time, the SA-LEnKF-Offline is much more costly than

the other two algorithms.

6.1.3 Dynamic linear model with multiple unknown parameters

Consider the dynamic linear model (6.1) again, which has the same settings as in Section

6.1.1 except that α = (α1, α2, α3) is treated as unknown parameters. For this example,

our goal is to simultaneously estimate the states x1, x2, . . . , xT and the parameters θ =

(α1, α2, α3, σ).

The SA-LEnKF-Online (Algorithm 7), SA-LEnKF-Offline (Algorithm 8), and state-

augmented EnKF (Algorithm 2) were applied to this example. For the SA-LEnKF-Online

99

algorithm, we set the ensemble size m = 20, the stage iteration number K = 20, k0 = K − 1,

the state learning rate εt,k = 0.01/k0.6 for k = 1, 2, . . . ,K and t = 1, 2, . . . , 100, and the

parameter learning rate γt,k = 0.0002/(tk)0.6 for k = 1, 2, . . . ,K and t = 1, 2, . . . , T . For the

SA-LEnKF-Offline algorithm, we set the ensemble size m = 20, the stage iteration number

K = 20, k0 = K − 1, the sweep number L = 100, the state learning rate εl,t,k = 0.01/k0.6 for

k = 1, 2, . . . ,K and l, t = 1, 2, . . . , 100, and the parameter learning rate γl = 0.002/l0.6 for

l = 1, 2, . . . , L. For the state-augmented EnKF algorithm, we set the ensemble size m = 20

and σθ = 0.01.

(a) (b)

(c) (d)

Figure 6.6. Comparison of SA-LEnKF-Online, SA-LEnKF-Offline (last
sweep) and state-augmented EnKF in state estimation for the model (6.1)
with multiple parameters: Plots (a) and (b) show, respectively, the estimates
of x(10)

t and x(50)
t for t = 1, 2, . . . , 100; and plots (c) and (d) show, respectively,

the estimates of x(10)
t and x

(50)
t for t = 51, 52, . . . , 100, where the the 95%

confidence bands are represented by shaded areas.

Figure 6.6 compares the three algorithms in state estimation for one dataset simulated

from (6.1). Both SA-LEnKF-Offline and SA-LEnKF-Online worked very well for this exam-

ple, providing good point estimates as well as uncertainty quantification for the estimates.

100

0 20 40 60 80 100
Stage/Sweep

0.1

0.2

0.3

0.4

0.5
Pa
ra
m
et
er

 E
st

im
at

e:
 α

1

SA-LEnKF-offline
SA-LEnKF-online
Augmented EnKF
True Value

(a) α1

0 20 40 60 80 100
Stage/Sweep

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pa
ra
m
et
er

 E
st

im
at

e:
 α

2

SA-LEnKF-offline
SA-LEnKF-online
Augmented EnKF
True Value

(b) α2

0 20 40 60 80 100
Stage/Sweep

0.25

0.30

0.35

0.40

0.45

0.50

Pa
ra
m
et
er

 E
st

im
at

e:
 α

3

SA-LEnKF-offline
SA-LEnKF-online
Augmented EnKF
True Value

(c) α3

0 20 40 60 80 100
Stage/Sweep

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

Pa
ra
m
et
er

 E
st

im
at

e:
 σ

SA-LEnKF-offline
SA-LEnKF-online
Augmented EnKF
True Value

(d) σ

Figure 6.7. Comparison of SA-LEnKF-Online, SA-LEnKF-Offline and state-
augmented EnKF in parameter estimation for the model (6.1) with multiple
parameters, where x-axis represents the sweep number for SA-LEnKF-Offline
and the stage number for SA-LEnKF-Online and state-augmented EnKF.

Unfortunately, the state-augmented EnKF performed less satisfactorily for this example,

which failed to follow the pattern of the observations in the early stages. Compared to

Figure 6.1 , we might conclude that including more parameters significantly affects the per-

formance of the state-augmented EnKF in an inverse manner, while it does not for the two

SA-EnKF algorithms.

Figure 6.7 compares the three algorithms in parameter estimation, where the plots (a),

(b), (c), and (d) show the estimates of α1, α2, α3, and σ, respectively. Both SA-LEnKF

algorithms worked reasonably well for this example, while the state-augmented EnKF did

101

not. The parameter estimates produced by the state-augmented EnKF can be far from the

true values even with a large number of stages.

0 20 40 60 80 100
Stage/Sweep

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

Pa
ra

m
et

er
 E

rro
r

SA-LEnKF-offline
SA-LEnKF-online
Augmented EnKF

(a) log(RMSEt/l(θ))

0 20 40 60 80 100
Stage

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

St
at

e
Er

ro
r

SA-LEnKF-offline
SA-LEnKF-online
Augmented EnKF

(b) log(RMSEt(x))

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 P
ro
ba

bi
lit
y

LEnKF-off
LEnKF-on
Augmented-EnKF

(c) Coverage Probabilities with one dataset

0 20 40 60 80 100
Time

0.0

0.2

0.4

0.6

0.8

1.0
Co

ve
ra
ge
 P
ro
ba
bi
lit
y

SA-LEnKF-Offline
SA-LEnKF-Online
Augmented EnKF

(d) Coverage probabilities with ten datasets

Figure 6.8. Comparison of SA-LEnKF-Online, SA-LEnKF-Offline and state-
augmented EnKF in parameter and state estimation for the model (6.1) with
multiple parameters.

Figure 6.8 (a) shows that in parameter estimation, the two SA-LEnKF algorithms per-

formed similarly and they both significantly outperformed the state-augmented EnKF. Fig-

ure 6.8 (b) shows that in state estimation, SA-LEnKF-Offline and SA-LEnKF-Online per-

formed almost the same, both significantly outperforming the state-augmented EnKF. Figure

6.8 (c) shows coverage probabilities of the 95% confidence intervals of the state estimates,

where, for each stage t, the coverage probability was calculated by averaging over the cov-

erage status of each component of xt. Figure 6.8 (d) shows coverage probabilities averaged

102

over 10 datasets. The coverage probabilities produced by the two SA-LEnKF algorithms are

very close to the nominal level 95%, while those by state-augmented EnKF are only about

30%.

Table 6.3. Comparison of SA-LEnKF-Offline, SA-LEnKF-Online and state-
augmented EnKF in state and parameter estimation for the model (6.1) with
multiple parameters, where the average values over 10 independent datasets
were reported with the standard deviation given in the parentheses. The CPU
time (in seconds) was recorded for a single run of each algorithm.

Ave-MRMSE Ave-MCP Ave-MRMSE (θ) CPU Time

SA-LEnKF-Offline 0.1106(0.0007) 0.9467(0.0014) 0.0104(0.0007) 145.796(1.421)
SA-LEnKF-Online 0.1109(0.0004) 0.9465(0.0010) 0.0095(0.0009) 1.757(0.068)
Augmented EnKF 0.2226(0.0026) 0.2916(0.0211) 0.1558(0.0187) 0.163(0.002)

Table 6.3 summarizes the numerical results of the three algorithms. In summary, the

two SA-LEnKF algorithms worked very well for this example, and they both significantly

outperformed the state-augmented EnKF in state and parameter estimation. Again, in terms

of CPU time, the SA-LEnKF-Offline is much more costly than the other two algorithms.

6.1.4 Sea surface temperature modeling

Consider the reformulated LSTM network in Section 4.2.2 again. Previously we set et ∼

N(0, σ2
1I), ζt ∼ N(0, σ2

2I), ξt ∼ N(0, σ2
3I), ut ∼ N(0, σ2I), where σ1 = σ2 = σ3 = σ = 0.01

are known. In this example, since σ1, σ2 and σ3 are all artificial parameters introduced for

the purpose of state-space modeling, we fix them to small constants in simulations, while

we treat σ as the unknown parameter, which measures variation of the observed data. To

make the notation consistent with other parts of the dissertation, we denote by θ = {σ} the

collection of the unknown parameters.

The SA-LEnKF-Online algorithm was applied to train the LSTM model and quantify

uncertainty for the resulting state estimates. In the parameter updating step, Remark 5.1

is followed in evaluating the gradient ∇θ log p(yt|xt−1,θ). The SA-LEnKF-Offline algorithm

103

can also be applied to the model, but it is too CPU time costly for such a large-scale model.

In principle, the state-augmented EnKF algorithm can also be applied to train the model.

The dataset was downloaded from http://iridl.ldeo.columbia.edu, which records the sea

temperatures of 200 months since January 1960 with the latitude from 14.5S to 5.5S and the

longitude from 150.5E to 159.5E. The sea surface has been gridded by every single latitude

and longitude, and thus the dimension of ht is d = 100.

For this data set, we set q = 6 and T = 200, i.e., modeling the data of the first 200 months

using an AR(6) LSTM model. The data was scaled into the range (−1, 1) in preprocessing

and then scaled back to the original range in results reporting. The SA-LEnKF-Online

algorithm was applied to the dataset with the ensemble size m = 10, the stage iteration

number K = 20, α = 0.9, the number of hidden neurons s = 400, the state learning rate is

εt,k = 0.00004/max{8, k}0.6 for k = 1, · · · ,K and t = 1, · · · , T , and the parameter learning

rate is γt,k = 0.000006/(tk)0.9 for k = 1, 2, . . . ,K and t = 1, 2, . . . , T . In the simulation, we fix

log σ1, log σ2 and log σ3 to −10.01, and initialized log σ by −10.01. The Metropolis-Hastings

algorithm [46], [47] was used in the imputation step as prescribed in Remark 5.1 , where

a Gaussian random walk proposal with a variance of 0.01 was employed, the sampler was

run for 20 iterations, and the last sample was output as the imputed value. The proposed

method took 9,091 CPU seconds. The results were summarized in Figures 6.9 -6.11 .

0 25 50 75 100 125 150 175 200
Time index

0.000

0.005

0.010

0.015

0.020

0.025

Fit
tin

g
er

ro
r

0 25 50 75 100 125 150 175 200
Time index

0.008

0.010

0.012

0.014

0.016

0.018

Va
lu

e

Figure 6.9. Results of SA-LEnKF-Online in state and parameter estimation
for the LSTM model: (a) MSEt(x) of the state estimates along with stage t;
(b) the estimates of σ along with stage t.

Figure 6.9 (a) shows the fitting error along with stages, which shows that the algorithm

can converge very fast. The occasional small bumps in the fitting error curve reflect the

104

Figure 6.10. Confident bands generated by SA-LEnKF-Online for the LSTM
model: The upper, middle and lower panels show, respectively, the estimates
of x(10)

t , x(180)
t and x

(190)
t along with stages, where the true state values are

represented by ‘+’, the estimates are represented by solid lines, and the 95%
confidence bands are represented by shaded areas.

dependence of the fitting error on observations instead of pre-convergence. Figure 6.9 (b)

shows the estimates of the parameter σ along with stages. Figure 6.10 shows the 95%

confidence bands produced by the SA-LEnKF-Online algorithm at three selected spatial

locations along with stages, which indicate the excellence of the SA-LEnKF-Online algorithm

in data fitting and uncertainty quantification. Figure 6.11 compares the heat maps of the

true sea temperatures and the fitted sea temperatures by the SA-LEnKF-Online algorithm

at 12 selected months. It indicates again the excellence of the SA-LEnKF-Online algorithm

in data fitting.

For comparison, we have applied the state-augmented EnKF (Algorithm 2) to the ex-

ample. However, in this algorithm, the covariance matrix Ct of augmented state needs to

105

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

Ground Truth (Jan1965)

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

SA-LEnKF (Jan1965)

27.5

28.0

28.5

29.0

29.5

(a) January 1965

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

Ground Truth (Feb1965)

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

SA-LEnKF (Feb1965)

26.5

27.0

27.5

28.0

28.5

29.0

29.5

(b) February 1965

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

Ground Truth (Mar1962)

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

SA-LEnKF (Mar1962)

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5

29.0

(c) March 1962

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

Ground Truth (Apr1962)

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

SA-LEnKF (Apr1962)

25.5

26.0

26.5

27.0

27.5

28.0

28.5

(d) April 1962

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

Ground Truth (May1971)

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

SA-LEnKF (May1971)

25.5

26.0

26.5

27.0

27.5

28.0

28.5

(e) May 1971

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

Ground Truth (Jun1974)

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

SA-LEnKF (Jun1974)

27.0

27.5

28.0

28.5

29.0

29.5

(f) June 1974

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.
5E

15
1.
5E

15
2.
5E

15
3.
5E

15
4.
5E

Lo
ng

itu
de

Ground Truth (Jul1965)

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.
5E

15
1.
5E

15
2.
5E

15
3.
5E

15
4.
5E

Lo
ng

itu
de

SA-LEnKF (Jul1965)

27.75

28.00

28.25

28.50

28.75

29.00

29.25

29.50

(g) July 1965

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.
5E

15
1.
5E

15
2.
5E

15
3.
5E

15
4.
5E

Lo
ng

itu
de

Ground Truth (Aug1962)

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.
5E

15
1.
5E

15
2.
5E

15
3.
5E

15
4.
5E

Lo
ng

itu
de

SA-LEnKF (Aug1962)

28.4

28.6

28.8

29.0

29.2

29.4

29.6

29.8

(h) August 1962

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

Ground Truth (Sep1971)

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

SA-LEnKF (Sep1971)

28.4

28.6

28.8

29.0

29.2

29.4

(i) September 1971

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

Ground Truth (Oct1965)

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

SA-LEnKF (Oct1965)

28.6

28.8

29.0

29.2

29.4

29.6

29.8

(j) October 1965

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

Ground Truth (Nov1971)

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

SA-LEnKF (Nov1971)

28.6

28.8

29.0

29.2

29.4

29.6

29.8

(k) November 1971

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

Ground Truth (Dec1974)

14.5S 13.5S 12.5S 11.5S 10.5S
Latitude

15
0.

5E
15

1.
5E

15
2.

5E
15

3.
5E

15
4.

5E
Lo

ng
itu

de

SA-LEnKF (Dec1974)

27.0

27.5

28.0

28.5

29.0

29.5

(l) December 1974

Figure 6.11. Heat maps of the true sea temperatures (left in each subfigure)
and the fitted sea temperatures (right in each subfigure) by the SA-LEnKF-
Online algorithm at 12 selected months.

106

be calculated at each stage. Since the augmented state has a dimension even higher than

dx(> 1M), calculation of such a huge covariance matrix directly caused a collapse of our

computers. By contrast, in the SA-LEnKF-Online algorithm, the corresponding matrix Qt

is diagonal, which avoids the memory issue suffered by the state-augmented EnKF. This

example demonstrates that the SA-LEnKF-Online can work well for ultrahigh-dimensional

problems.

6.2 Empirical results of the Extended LEnKF algorithm

This section contains three simulation examples, which are for Poisson regression, non-

linear classification example, and dynamic Poisson spatial model, respectively. The first

example illustrates the application of Algorithm 9 for inverse problems, the third example

illustrates the application of Algorithm 10 for data assimilation problems. For the second

one, the nonlinear latent variable equation is converted to a linear one via a variance-splitting

state augmentation method. At the last, we illustrate that the Extended LEnKF algorithm

can be applied easily into dynamic network analysis and it possesses the scalability that is

necessary for large-scale dynamic network analysis.

6.2.1 Poisson regression

Consider a Poisson regression reformulated in the following equations:

yi = xiβ + σ0εi,

zi ∼ Pois(exp(yi)),
(6.3)

for i = 1, 2, . . . , N , where xi = (xi,1, xi,2, . . . , xi,p) is a p-dimensional vector of explanatory

variables, β is a p-dimensional vector of regression coefficients, σ0 is the standard deviation,

and εi’s are iid standard Gaussian random variables.

We generated 10 data sets from (6.3) withN = 50, 000, p = 2000, σ0 = 0.5, (β1, · · · , β4) =

(1.0, 1.0, 1.0, 1.0), (β5, β6, · · · , β8) = (−1.0,−1.0,−1.0,−1.0), and βj = 0 for j = 9, · · · , p. All

the variables are generated as in Section 4.1.1 .

107

We let each component of β be subject to the mixture Gaussian prior distribution (4.2),

where α1 = 1/p = 0.0005, τ 2
1 = 1 and τ 2

0 = 0.001, and assume that all the components

are a priori independent. Algorithm 9 was applied to this example with the ensemble size

m = 50, the mini-batch size n = 100, and the learning rate εt = 0.1/max{t0, t}0.6 and

t0 = 200. The Metroplis-Hastings sampler [46], [47] was used in the imputation step, where

a Gaussian random walk proposal with a variance of 4 was employed, the sampler was run

for 10 iterations, and the last sample was output as the imputed value. The algorithm was

run for 2,000 iterations, which cost 61.2 CPU seconds.

0 250 500 750 1000 1250 1500 1750 2000
Iteration

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Va
lue

(a)
β1
β2
β3
β4
β5
β6
β7
β8
β9

1 2 3 4 5 6 7 8

19
94

10
75

11
82 84
0

23
0

90
6

76
4

Variable

0.0

0.2

0.4

0.6

0.8

1.0

m
ar
gin
al

inc
lus

ion
 pr

ob
ab

ilit
y

(b)

Figure 6.12. Extended LEnKF for large-scale generalized linear regression:
(a) Trajectories of β1, . . . , β9 along with iterations; (b) marginal inclusion prob-
abilities of all covariates x1, . . . , xp, where the covariates are shown in the rank
of marginal inclusion probabilities.

Figure 6.12 summarizes the variable selection results for one data set. The results for

other data sets are similar. Figure 6.12 (a) shows the sample trajectories of β1, β2, . . . , β9

along with iterations, which indicate that they all have converged to the true values within

500 iterations. Figure 6.12 (b) shows the marginal inclusion probability of the variables

β1, β2, . . . , βp. From this graph, we can see that each of the 8 true variables (indexed 1-8)

has a marginal inclusion probability close to 1, while all false variables have a marginal

inclusion probability close to 0. By the median probability rule [84], the true model can

be correctly identified. In summary, this example shows that the Extended LEnKF can be

applied to non-Gaussian inverse problems.

108

6.2.2 Nonlinear classification

Consider a nonlinear logistic regression reformulated in the following equations:

yi = 0xi,0 + 10x2
i,1

1+x2
i,2

+ 5 sin(xi,3xi,4) + xi,5 + 0xi,6 + · · · + 0xi,99 + εi,

zi ∼ ψ (·|yi) = Bernoulli(1/1 + exp(−yi)),
(6.4)

where i ∈ {1, 2, · · · , N} indexes the observations, εi ∼ N(0, σ2), and xi,1, xi,2, . . ., xi,99 are

standard Gaussian random variables and have a mutual correlation coefficient of 0.5. The

dataset was simulated with the sample size N = 200, 000, where about half of zi’s are 1 and

the other half are 0.

Suppose that the state propagator in (6.4) is unknown, and we modeled it by a 3-hidden-

layer neural network, which consists of 100 input units including a bias unit, 5 units on

each hidden layer, and one unit on the output layer. The LeakyRelu σ(x) = 1(x<0)(0.1x) +

1(x>=0)(x) is used as the activation function. Let β denote the parameter vector, including

weights and bias, of the neural network. Let g(x,β) denote the neural network function.

With the variance-splitting state augmentation method , we can rewrite the nonlinear logistic

regression model as

y
(1)
t = g(xt,β) + ε(1)

t , θT
t = (βT , (y(1)

t)T), ε
(1)
t ∼ N(0, ασ2In), (6.5)

yt = Htθt + ε(2)
t = y

(1)
t + ε(2)

t , ε
(2)
t ∼ N(0, (1 − α)σ2In), (6.6)

zt ∼ ψ(·|yt), (6.7)

where (xt, zt) denotes a mini-batch of the dataset drawn at stage t, n is the mini-batch size,

α is called the variance splitting proportion, Ht = (0, I) is chosen such that Htθt = y
(1)
t , the

density of θt is given by π(θt) = π(β)π(y(1)
t |β), and π(β) denotes the prior density function

of β. We also assume that the components of β are a priori independent and each follows

a mixture Gaussian distribution (4.2) with α1 = 0.01, τ 2
1 = 1 and τ 2

0 = 0.05.

Algorithm 9 was applied to solve the linear inverse problem formed by (6.6)-(6.7), where

we set the variance split proportion α = 0.9, the ensemble size m = 20, the mini-batch size

n = 100, iteration time K = 5, and the total number of stages T = 20, 000. In addition, The

109

learning rate was set to εt,k = 5 × 10−4/k0.9 with for k = 1, · · · ,K. Each run took about

4577 CPU seconds on a personal computer of 2.9GHz.

In the forecast step, if t > 0 and k = 1, we let

θa,i
t,0 =

 βa,i
t−1,K

y
(1),i
t,0

 , y(1),i
t,0 ∼ π(y|βa,i

t−1,K, zt) ∝ ψ(zt|y)π(y|βa,i
t−1,K),

where ψ(·) is a Bernoulli distribution, and y|βa,i
t−1,K ∼ N(g(xt,β

a,i
t−1,K), ασ2In). while in

the imputation step of iteration t, we drew yi
t,k ∼ π(y|θf,i

t,k, zt) ∝ ψ(zt|y)π(y|θf,i
t,k), where

yi
t,k|θf,i

t,k ∼ N(Htθ
f,i
t,k, (1 − α)σ2In), and zt,l|y ∼ Bernulli(exp(yl)) for l = 1, · · · , n.

0 1 2 3 4 5 31 70 17 8 40 20 61 56 75 19 7 38 98 6

Variables

0.0

0.2

0.4

0.6

0.8

1.0

m
ar
gi
na

l i
nc

lu
sio

n
pr

ob
ab

ilit
y
fo
r v

ar
ia
bl
e

(a)

0 100 200 300 400 500
Y

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tte

d
Va

lu
e

(b)

0 50 100 150 200
Y

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 V
al
ue

(c)

Figure 6.13. Extended LEnKF for a nonlinear classification example: (a)
marginal inclusion probabilities of the variables, where the variables are shown
in the rank of marginal inclusion probabilities; and (b) fitted value of Y (grey
dot for true Y = 1, red cross sign for true Y = 0, randomly selected 500
observations for each class); (c) predicted value of Y (grey dot for true Y =
1, red cross sign for true Y = 0, randomly selected 200 observations for each
class).

Figure 6.13 summarizes the results for one dataset. The results for other datasets are

similar. Figure 6.13 (a) shows the marginal inclusion probabilities of all input variables

x1, x2, . . . , xp with a cutoff value of 0.5 (red dash line). The results are very encouraging:

Each of the true variables (indexed 1-5) has a marginal inclusion probability close to 1, while

each of the false variables has a marginal inclusion probability close to 0. Figure 6.13 (b)

shows the scatter plot of the response Y and its fitted value for 1,000 randomly selected

training samples, 500 for true Y = 1 and 500 for true Y = 0. Figure 6.13 (c) shows the

110

scatter plot of the response Y and its predicted value for 400 test samples, 200 for true

Y = 1 and 200 for true Y = 0.

In summary, this example shows that the Extended LEnKF provides an effective and fea-

sible algorithm for training Bayesian neural networks for nonlinear non-Gaussian problems.

6.2.3 Dynamic Poisson spatial model

We illustrate the performance of Algorithm 10 using a synthetic cloud-motion data set,

which represents cloud intensities (i.e., counts) at p = 300 locations along with a spatial

transect at T = 80 time points. The data approximately follows an over-dispersed Poisson

distribution, and can be modeled as follows:

xt|xt−1 ∼ Np(M(γ)xt−1,Q(τ 2, λ)),

yt|xt ∼ Nnt(Htxt, σ
2Int),

zt,l|yt ∼ Pois(exp(yt,l)), l = 1, . . . , nt,

(6.8)

where γ = (γ1, γ2, γ3), M(γ) and Q are defined as in Section 6.1.1 . Ten data sets were

simulated from (6.8). In the simulation, we set nt = 270 and Ht as an nt ×p-selection matrix;

that is, the observation locations were different for different stages. For the parameters, we

set γ = (0.3, 0.3, 0.3), τ = 1, σ = 0.1, and λ = 1. For the initial state values, we set

x0 ∼ Nn(µ0,Σ0), where µ0 is a constant vector of −2, and (Σ0)i,j = 0.2 Mat(|i − j|/5).

Figure 6.14 shows the state values at 300 locations for t = 1, 2, . . . , 80, whose chaotic behavior

implies the challenge of the problem.

Algorithm 10 was applied to the data sets to re-estimate the states x1,x2, . . . ,xT . The

algorithm was run with the ensemble size m = 20, the stage iteration number K = 20, k0 =

K/2, and the learning rate εt,k = 0.1/max(10, k)0.6 for k = 1, 2, . . . ,K and t = 1, 2, . . . , T .

The imputation step was accomplished using the Metropolis-Hastings sampler, where each

component of yt was imputed independently and a Gaussian random walk proposal with a

variance of 0.01 was employed. For each component of yt, the Metropolis-Hastings sampler

was run for 20 iterations and the last sample was imputed as the imputed value. At each

stage t, the state was estimated by averaging over the ensembles generated in the last K/2

111

0 11 22 33 44 55 66 77 88 99 11
0

12
1

13
2

14
3

15
4

16
5

17
6

18
7

19
8

20
9

22
0

23
1

24
2

25
3

26
4

27
5

28
6

29
7

Space

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

64
68

72
76

Ti
m
e

−5.0

−2.5

0.0

2.5

5.0

Figure 6.14. State values for t = 1, 2, . . . , T

iterations, and the accuracy of the estimate was measured by RMSE. For comparison, the

MCMC-EnKF algorithm [45] (see Algorithm S2 in the supplementary material for the detail)

was applied to this example, where the imputation was done as for the Extended LEnKF,

but the states were estimated using the EnKF. The ensemble size was set to m = 20 as well.

Figure 6.15 compares the estimates of four randomly selected components of xt produced

by the Extended LEnKF and the MCMC-EnKF for one simulated data set. The comparison

indicates that LEnKF provides better state estimates as well as better quantification for the

uncertainty of the estimates. For example, in Figure 6.15 (b), the state values around stages

30 − 40 are covered by the confidence band of LEnKF, but not by that of MCMC-EnKF.

More importantly, as t becomes large, LEnKF can capture pattern of each component of xt,

while MCMC-EnKF failed to do so.

Figure 6.16 (a) compares the coverage rates of the 95% confidence intervals produced

by LEnKF and MCMC-EnKF, where the coverage rate was calculated by averaging over

300 state components at each stage t ∈ {1, 2, . . . , 80}. Figure 6.16 (b) shows the averaged

coverage rates over 10 data sets. The comparison shows that LEnKF produced the coverage

rates closing to their nominal level, while MCMC-EnKF did not. This implies that LEnKF

is able to correctly quantify uncertainty of the estimates as t becomes large. Figure 6.16 (c)

shows that the LEnKF produced smaller values of RMSEt’s than MCMC-EnKF.

112

(a) (b)

(c) (d)

Figure 6.15. State estimates produced by the Extended LEnKF and the
MCMC-EnKF for a simulated cloud-motion data set along with stages t =
1, 2, . . . , 80: each plot corresponds to one randomly selected component of xt,
where the true state values are represented by ‘+’, the estimates by LEnKF are
represented by red lines, the estimates by MCMC-EnKF are represented by
green lines, and and their 95% confidence intervals are represented by shaded
bands.

(a) (b) (c)

0 10 20 30 40 50 60 70 80
Time

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
ov

er
ag

e
Pr

ob
ab

ili
ty

extended LEnKF
MCMC-EnKF

0 10 20 30 40 50 60 70 80
Time

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e
Pr

ob
ab

ili
ty

extended LEnKF
MCMC-EnKF

0 10 20 30 40 50 60 70 80
0.0

0.5

1.0

1.5

2.0

Lo
ga

ri
th
m
 o
f R

M
SE

extended LEnKF
MCMC-EnKF

Figure 6.16. Coverage rates of the 95% confidence intervals produced by
the Extended LEnKF and MCMC-EnKF for the stages t = 1, 2, . . . , 80: (a)
coverage rates with one data set; (b) coverage rates averaged over 10 data sets;
(c) log(RMSEt) along with stage t.

Table 6.4 summarizes the numerical results of Extended LEnKF and MCMC-EnKF al-

gorithms for example, where both choices k0 = K/2 and k0 = K − 1 have been tried for

113

Table 6.4. Comparison of the Extended LEnKF and the MCMC-EnKF in
state estimation for the dynamic spatial model, where the average values over
10 data sets were reported with the standard deviation given in the paren-
theses, and the CPU time (in seconds) was recorded for a single run of the
algorithm.

k0 Ave-MRMSE(x) Ave-MCP CPU Time

Extended LEnKF K/2 1.1699(0.0126) 0.9561(0.0015) 31.686(0.195)
Extended LEnKF K − 1 1.1725(0.0133) 0.9525(0.0017) 26.622(0.215)

MCMC-EnKF - 1.6327(0.0132) 0.9229(0.0023) 2.704(0.033)

Extended LEnKF. In the table, we used MRMSE(x) to denote the mean of the root-mean-

squared-error of the estimates for the states x30,x31, . . . ,xT calculated on one data set, and

used ave-MRMSE(x) to denote the average of MRMSE(x) over 10 data sets. Similarly, we

used MCP to denote the coverage probability averaged over states x30,x31, . . . ,xT calcu-

lated on one data set, and used Ave-MCP to denote the average MCP over 10 data sets. The

comparison shows that for this example, Extended LEnKF works well with both k0 = K/2

and k0 = K−1, and it significantly outperforms MCMC-EnKF. MCMC-EnKF is faster than

Extended LEnKF as it performs only one iteration at each stage, while Extended LEnKF

performs K iterations.

6.2.4 Dynamic network analysis

Dynamic networks have been studied in a variety of fields, such as social network analysis,

recommendation systems and epidemiology. Latent representation learning (or embedding)

has been recognized as one of the most promising approaches for dynamic network analysis.

The basic idea is to learn a low-dimensional vector for each node, which encodes the structural

properties of a node and its neighborhood. Such low-dimensional representations can benefit

a variety of network analytical tasks such as node clustering, link prediction, and graph

visualization. The existing methods of latent representation learning for dynamic networks

can be roughly grouped into two categories, namely, latent space model-based methods and

114

dynamic graph neural network-based methods. Refer to Kim, Lee, Xue, et al. [85], Kazemi,

Goel, Jain, et al. [86] and Skarding, Gabrys, and Musial [87] for recent surveys on this topic.

Although the existing methods work well for many dynamic networks, they are usually

optimization based and fail to capture uncertainty of the latent representation by noting

that the asymptotic distribution of the latent representation is still unclear. An exception

is [88], where the latent representation is learned using a Metropolis-within-Gibbs sampler.

However, the sampler is not scalable and thus only applicable to small networks. In what

follows, we illustrate that the Extended LEnKF algorithm can be used to learn the latent

representation for dynamic networks. More precisely, we employ the Extended LEnKF algo-

rithm to sample from the filtering distributions of the latent representation, which facilitates

downstream statistical inference for dynamic networks. It is important to note that the Ex-

tended LEnKF algorithm possesses the scalability that is necessary for large-scale dynamic

network analysis.

1) Two latent space models

Let Gt be the network of observed pairwise links at time t with Nt nodes. Each node

can be represented by a d-dimensional latent space, where d is pre-specified. Let xt be an

dNt-vector, where the subvector xit = (xd(i−1)+1,t, . . . , xdi,t) represents the latent/embedding

vector of node i at stage t. We assume that the nodes can move in the latent space along

with time/stages, and the latent vector at time t + 1 only depends on the latent vector at

time t, which is the standard Markov assumption.

115

(i) Dynamic Social Network Latent (DSNL) model

The first latent space model we considered in this dissertation is the DSNL model de-

veloped in Sarkar and Moore [89]. In the form of state space models with the subsampling

scheme, the DSNL model is given by

xt|xt−1 ∼ N(xt−1, σ
2
1IdNt),

yt|xt ∼ N(Htxt, σ
2
2Idnt),

P (zt|yt) =
∏

i∼j,i,j∈St

pijt
∏

i 6∼j,i,j∈St

(1 − pijt),

(6.9)

where St denotes a set of nt randomly selected nodes from the network at stage t; zt denotes

the adjacency matrix formed by the nodes in St; Ht is the selection matrix corresponding

to St; i ∼ j and i 6∼ j denote existence and absence of a link, respectively; and pijt is the

probability of a link at stage t. Specifically, pijt is defined by

pijt = 1
1 + e(dijt−rijt)K(dijt) + ρ(1 −K(dijt)),

where dijt = ‖yit − yjt‖ is the Euclidean distance between node i and node j in the latent

space at stage t, yit is the latent vector of node i in St, rijt = max(δi,t, δj,t)+1, δi,t is the degree

of freedom of node i in the network Gt, K(·) is a biquadratic kernel K(dijt) = (1−(dijt/rijt)2)2

if dijt < rijt and 0 otherwise, and ρ is a constant noise.

The intuition behind this model is that for any two nodes i and j, we can compare their

distance with their social reach represented by rijt. When the distance is smaller than the

social reach, the probability of connecting node i and node j is high. When the distance is

greater than the social reach, the probability of connection is ρ, which can be considered as

a noise probability.

116

(ii) Dynamic Latent Distance (DLD) model

Another latent space model we considered in the dissertation is the DLD model developed

in Sewell and Chen [88]. In the form of state space models with the subsampling scheme,

the DLD model is given by

xt|xt−1 ∼ N(xt−1, σ
2
1IdNt),

yt|xt ∼ Nmt(Htxt, σ
2
2Idnt),

P (zt|yt) =
∏

i6=j,i,j∈St

exp (zijtηijt)
1 + exp (ηijt)

,

ηijt : = log
(
P (zijt = 1|yt)
P (zijt = 0|yt)

)
= βin

(
1 − dijt

rjt

)
+ βout

(
1 − dijt

rit

)
,

(6.10)

where St, Ht, dijt and rit are as defined in (6.9), and the parameters βin and βout are pre-

specified constants which measure the global popularity and activity effects of the network,

respectively. Note that this model deals with directed networks as well as undirected ones,

while the DSNL model allows undirected edges only. In this dissertation, we consider undi-

rected networks only.

2) A dynamic social network analysis

This section studies a college messaging dynamic network downloaded at https://snap.stan-

ford.edu/data/. It’s comprised of private messages sent on an online social network at the

University of California, Irvine, where each node represents a user. Users could search the

network for others and then initiate conversation based on profile information. An edge

(u, v, t) means that user u sent a private message to user v at time t. To construct an undi-

rected user-user interaction network, we set an edge between user u and user v for day t, if u

has messaged v or v has messaged u on day t. The resulting dynamic network contains 672

users with a time span of 25 days. Figure 6.17 shows the dynamic network on six selected

days, which indicates that the network changes along with time.

117

(a) Day 1 (b) Day 5 (c) Day 10

(d) Day 15 (e) Day 20 (f) Day 25

Figure 6.17. College Messaging networks on Days 1, 5, 10, 15, 20 and 25.

We modeled the college messaging network by the DSNL and DLD models and trained

the models using Algorithm 10 . For the DSNL model, we set ρ = 0.001, the ensemble size

m = 20, σ1 = σ2 = 0.1, d = 5, nt = 250, the iteration number K = 20, and the learning

rate εt,k = 0.4/max(10, k)0.6 for k = 1, 2, . . . ,K and t = 1, 2, . . . , T . We applied Metropolis-

Hastings algorithm for imputation, where a Gaussian random walk proposal with variance

0.01 was used. To impute the latent vector for a selected node, the Metropolis-Hastings

algorithm was run for 50 iterations and the sample simulated at the last iteration was output

as the imputed value. At each stage t, the state vector was estimated by averaging over the

ensemble and over the last K/2 iterations. For the DLD model, we set βin = βout = 1.5, and

set other parameters to the same values as those used for the DSNL model.

For comparison, the MCMC-EnKF algorithm was applied to the two models, where

the latent vector of each node was imputed in the same procedure as used for the DSNL

and DLD models. Table 6.5 compares the AUC values, i.e., the areas under the ROC

curves, produced by the two algorithms with the DSNL and DLD models. The comparison

shows that the Extended LEnKF algorithm produced almost the same AUC values as the

118

MCMC-EnKF algorithm, but cost much less CPU time. The MCMC-EnKF algorithm is

more costly as it consists of a single iteration at each stage and does not allow the use of

mini-batch data. As a result, it needs to invert an (dNt) × (dNt)-matrix for calculating the

Kalman gain matrix at each stage t, which makes the algorithm unscalable for large-scale

networks. In contrast, the Extended LEnKF algorithm is essentially a sequential stochastic

gradient MCMC algorithm, which is scalable with respect to large-scale networks due to the

subsampling scheme it employed in simulations.

Table 6.5. Comparison of the Extended LEnKF and MCMC-EnKF algo-
rithms for the college messaging dynamic network, where “Avg-AUC” denotes
the averaged AUC values over all 25 days and its standard deviation is given
in the parentheses. The CPU time (in seconds) was recorded for a single run
of each algorithm.

Algorithm Model Avg-AUC CPU Time

Extended LEnKF DSNL 0.8702(0.0177) 2014
DLD 0.9388(0.0128) 1700

MCMC-EnKF DSNL 0.8670(0.0186) 17201
DLD 0.9385(0.0128) 13008

To show that the Extended LEnKF algorithm can be used for uncertainty quantification

for dynamic networks, we plotted in Figure 6.18 and Figure 6.19 the box-plots of the link

probabilities produced with the DSNL and DLD models, respectively. For comparison, the

link probabilities produced by the MCMC-EnKF algorithm are also plotted. As implied by

the plots, uncertainty of the link probability can be easily measured based on the samples

produced by the Extended LEnKF algorithm. The MCMC-EnKF produced similar box plots

to the Extended LEnKF for this example. However, as implied by Figure 6.16 , they might

be biased in terms of inference.

119

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=1
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=5
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=10
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=15
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=20
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=25
extended LEnKF
MCMC EnKF
Link Label

Figure 6.18. Box-plots of link probabilities produced with the DSNL model:
fitted link probabilities for 10 pairs of nodes with edges and 10 pairs of nodes
without edges are plotted for day 1, 5, 10, 15, 20 and 25.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=1
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=5
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=10
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=15
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=20
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=25
extended LEnKF
MCMC EnKF
Link Label

Figure 6.19. Box-plots of link probabilities produced with the DLD model:
fitted link probabilities for 10 pairs of nodes with edges and 10 pairs of nodes
without edges are plotted for day 1, 5, 10, 15, 20 and 25.

120

7. SUMMARY AND DISCUSSION

7.1 Summary

In the first part of the dissertation, we propose a new particle filtering algorithm, called

LEnKF, by reformulating the EnKF under the framework of Langevin dynamics. The

LEnKF converges to the right filtering distribution in Wasserstein distance and thus can

be used for uncertainty quantification. Extensions of the LEnKF algorithm are explored

in the second part of the dissertation. First, we develop the SA-LEnKF-Online algorithm

as an effective and efficient method for simultaneously estimating the state and parameters

for long series, large scale and high-dimensional dynamic systems. Second, we extend the

LEnKF algorithm to non-Gaussian systems by introducing a latent Gaussian measurement

variable to the state space model. Both two extensions inherit the scalability of the LEnKF

with respect to the dimension and sample size.

7.2 Discussion

There are a number of open avenues for future investigation. First, we plan to use

the proposed algorithms to enhance the safety of motion planning. As automated vehicles

has increasingly influenced our mobility behavior, the topic of safe motion planning plays

a pivotal role. Our algorithms can be conveniently used for uncertainty quantification in

motion planning, which can significantly improve the reliability of decision making during

movement, since the environment cannot be modelled perfectly. Second, our algorithms

can also be applied to natural language processing (NLP) tasks. Uncertainty quantification

is very useful at enhancing model performances in various NLP tasks, such as sentiment

analysis, named entity recognition, language modeling using convolutional and recurrent

neural network models, or other NLP-based subjects such as image captioning. Our empirical

experiments have already proved that we could reformulate RNN models into a state-space

models, and then our algorithms could be applied conveniently. Hence, we believe that

our algorithms with uncertainty quantification can yield better decisions and potentially

advances the development of trustworthy AI.

121

REFERENCES

[1] M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient langevin dy-
namics,” in ICML, 2011.

[2] N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel, and H. Neven, “Bayesian sampling
using stochastic gradient thermostats,” in NIPS, 2014.

[3] S. Ahn, A. K. Balan, and M. Welling, “Bayesian posterior sampling via stochastic
gradient fisher scoring,” in ICML, 2012.

[4] T. Chen, E. B. Fox, and C. Guestrin, “Stochastic gradient hamiltonian monte carlo,”
in ICML, 2014.

[5] M. Betancourt, “The fundamental incompatibility of scalable Hamiltonian Monte Carlo
and naive data subsampling,” in ICML, 2015.

[6] C. Li, C. Chen, D. Carlson, and L. Carin, “Preconditioned stochastic gradient langevin
dynamics for deep neural networks,” in Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, ser. AAAI’16, Phoenix, Arizona: AAAI Press, 2016, pp. 1788–
1794. [Online]. Available: http://dl.acm.org/citation.cfm?id=3016100.3016149 .

[7] Y.-A. Ma, T. Chen, and E. B. Fox, “A complete recipe for stochastic gradient mcmc,”
in NIPS, 2015.

[8] C. Nemeth and P. Fearnhead, “Stochastic gradient Markov chain Monte Carlo,” arXiv:1907.06986,
2019.

[9] S. L. Scott, A. W. Blocker, F. V. Bonassi, H. A. Chipman, E. I. George, and R. E.
McCulloch, “Bayes and big data: The consensus monte carlo algorithm,” International
Journal of Management Science and Engineering Management, vol. 11, no. 2, pp. 78–
88, 2016.

[10] C. Li, S. Srivastava, and D. Dunson, “Simple, scalable and accurate posterior interval
estimation,” Biometrika, vol. 104, no. 3, pp. 665–680, 2017.

[11] S. Srivastava, C. Li, and D. B. Dunson, “Scalable bayes via barycenter in wasserstein
space,” Journal of Machine Learning Research, vol. 19, pp. 1–35, 2018.

[12] J. Xue and F. Liang, “Double-parallel monte carlo for bayesian analysis of big data,”
Statistics and Computing, vol. 29, pp. 23–32, 2019.

[13] H. Chen, D. Seita, X. Pan, and J. Canny, “An efficient minibatch acceptance test for
metropolis-hastings,” arXiv preprint arXiv:1610.06848, 2016.

122

http://dl.acm.org/citation.cfm?id=3016100.3016149

[14] A. Korattikara, Y. Chen, and M. Welling, “Austerity in mcmc land: Cutting the
metropolis-hastings budget,” in International Conference on Machine Learning, 2014,
pp. 181–189.

[15] R. Bardenet, A. Doucet, and C. Holmes, “Towards scaling up markov chain monte
carlo: An adaptive subsampling approach,” in International Conference on Machine
Learning, 2014, pp. 405–413.

[16] D. Maclaurin and R. P. Adams, “Firefly monte carlo: Exact mcmc with subsets of
data,” in IJCAI, 2014.

[17] R. Bardenet, A. Doucet, and C. C. Holmes, “On markov chain monte carlo methods
for tall data,” Journal of Machine Learning Research, vol. 18, 47:1–47:43, 2017.

[18] J. Bierkens, P. Fearnhead, and G. Roberts, “The zig-zag process and super-efficient
Monte Carlo for Bayesian analysis of big data,” Annals of Statistics, vol. 47, no. 3,
pp. 1288–1320, 2019.

[19] A. Bouchard Coté, S. Vollmer, and A. Doucet, “The bouncy particle sampler: A non-
reversible rejection-free Markov chain Monte Carlo method,” Journal of the American
Statistical Association, vol. 113, pp. 855–867, 2018.

[20] F. Liang, J. Kim, and Q. Song, “A bootstrap metropolis-hastings algorithm for bayesian
analysis of big data,” Technometrics, vol. 58, no. 3, pp. 304–318, 2016.

[21] E. Fong, S. Lyddon, and C. Holmes, “Scalable nonparametric sampling from multi-
modal posteriors with the posterior bootstrap,” in ICML, 2019.

[22] R. Kalman, “A new approach to linear filtering and prediction problems,” Journal of
Basic Engineering, vol. 82, pp. 35–45, 1960.

[23] J. K. Uhlmann, “Algorithms for multiple-target tracking,” American Scientist, vol. 80,
no. 2, pp. 128–141, 1992. [Online]. Available: http://www.jstor.org/stable/29774599 .

[24] S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to nonlinear
systems,” in Signal Processing, Sensor Fusion, and Target Recognition VI, I. Kadar,
Ed., vol. 3068, SPIE, 1997, pp. 182–193.

[25] G. Evensen, “Sequential data assimilation with a nonlinear quasi-geostrophic model
using monte carlo methods to forecast error statistics,” J. Geophys. Res., vol. 99,
pp. 10 143–10 162, 1994.

[26] K. Law, H. Tembine, and R. Tempone, “Deterministic mean-field ensemble kalman
filtering,” SIAM J. Sci. Comput., vol. 38, no. 3, A1251–A1279, 2016.

123

http://www.jstor.org/stable/29774599

[27] F. Le Gland, V. Monbet, and V.-D. Tran, “Large sample asymptotics for the ensemble
kalman filter,” Research report RR-7014, INRIA, 2009.

[28] E. Bergou, S. Gratton, and J. Mandel, “On the convergence of a non-linear ensemble
kalman smoother,” Applied Numerical Mathematics, vol. 137, pp. 151–168, 2019.

[29] E. Kwiatkowski and J. Mandel, “Convergence of the square root ensemble kalman
filter in the large ensemble limit,” SIAM/ASA J. Uncertainty Quantification, vol. 3,
pp. 1–17, 2015.

[30] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo Methods in Practice.
New York: Springer, 2001.

[31] N. Gordon, D. Salmond, and A. Smith, “Novel approach to nonlinear/non-gaussian
bayesian state estimation,” IEE Proceedings F - Radar and Signal Processing, vol. 140,
no. 2, pp. 107–113, 1993.

[32] O. Cappé, A. Guillin, J. Martin, and C. Robert, “Population monte carlo,” Journal of
Computational and Graphical Statistics, vol. 13, no. 4, pp. 907–929, 2004.

[33] E. Lorenz, “Predictability—a problem partly solved,” in Seminar on Predictability, T.
Palmer and R. Hagedorn, Eds., Cambridge University Press, 1996, ch. 3, pp. 40–58.

[34] D. P. Dee and A. M. da Silva, “Maximum-Likelihood Estimation of Forecast and
Observation Error Covariance Parameters. Part I: Methodology,” Monthly Weather
Review, vol. 127, no. 8, pp. 1822–1834, Aug. 1999.

[35] S. Gibson and B. Ninness, “Robust maximum-likelihood estimation of multivariable
dynamic systems,” Automatica, vol. 41, no. 10, pp. 1667–1682, 2005, issn: 0005-1098.
doi: https://doi.org/10.1016/j.automatica.2005.05.008 . [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0005109805001810 .

[36] D. P. Dee, “On-line Estimation of Error Covariance Parameters for Atmospheric Data
Assimilation,” Monthly Weather Review, vol. 123, no. 4, pp. 1128–1145, Apr. 1995.

[37] J. R. Stroud and T. Bengtsson, “Sequential State and Variance Estimation within the
Ensemble Kalman Filter,” Monthly Weather Review, vol. 135, no. 9, pp. 3194–3208,
Sep. 2007.

[38] C. Aicher, S. Putcha, C. Nemeth, P. Fearnhead, and E. Fox, “Stochastic gradient mcmc
for nonlinear state space models,” ArXiv, vol. abs/1901.10568, 2019.

[39] J. Anderson, “An ensemble adjustment filter for data assimilation,” Monthly Weather
Review, vol. 129, pp. 2884–2903, 2001.

124

https://doi.org/https://doi.org/10.1016/j.automatica.2005.05.008
http://www.sciencedirect.com/science/article/pii/S0005109805001810
http://www.sciencedirect.com/science/article/pii/S0005109805001810

[40] S.-J. Baek, B. Hunt, E. Kalney, E. Ott, and I. Szunyogh, “Local ensemble kalman
filtering in the presence of model bias,” Tellus, vol. 58A, pp. 293–306, 2006.

[41] S. Gillijns and B. De Moor, “Model error estimation in ensemble data assimilation,”
Nonlinear Processes in Geophysics, vol. 14, pp. 59–71, 2007.

[42] T. DelSole and X. Yang, “State and parameter estimation in stochastic dynamical
models,” Physica D, vol. 239, pp. 1781–1788, 2010.

[43] X. Yang and T. DelSole, “Using the ensemble kalman filter to estimate multiplicative
model parameters,” Tellus, vol. 61, pp. 601–609, 2009.

[44] H. Robbins and S. Monro, “A stochastic approximation method,” Annals of Mathe-
matical Statistics, vol. 22, pp. 400–407, 1951.

[45] M. Katzfuss, J. R. Stroud, and C. K. Wikle, “Ensemble kalman methods for high-
dimensional hierarchical dynamic space-time models,” Journal of the American Statis-
tical Association, vol. 115, no. 530, pp. 866–885, 2020.

[46] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equation of
state calculations by fast computing machines,” Journal of Chemical Physics, vol. 21,
pp. 1087–1091, 1953.

[47] W. Hastings, “Monte carlo sampling methods using markov chain and their applica-
tions,” Biometrika, vol. 57, pp. 97–109, 1970.

[48] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions and the bayesian
restoration of images,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 6, pp. 721–741, 1984.

[49] S. Aanonsen, G. Naevdal, D. Oliver, A. Reynolds, and B. Valles, “The ensemble kalman
filter in reservoir engineering—a review,” SPE Journal, vol. 14, no. 3, pp. 393–412,
2009.

[50] G. Evensen and P. Van Leeuween, “Assimilation of geosat altimeter data for the agulhas
current using the ensemble kalman filter with a quasi-geostrophic model,” Monthly
Weather Review, vol. 124, pp. 85–96, 1996.

[51] P. Houtekamer and H. Mitchell, “A sequential ensemble kalman filter for atmospheric
data assimilation,” Monthly Weather Review, vol. 129, pp. 123–137, 2011.

[52] R. Shumway and D. Stoffer, Time Series Analysis and Its Applications with R Exam-
ples. New York: Springer, 2006.

125

[53] M. Iglesias, K. Law, and A. Stuart, “Ensemble kalman methods for inverse problems,”
Inverse Problems, vol. 29, no. 4, p. 045 001, 2013.

[54] O. Ernst, B. Sprungk, and H.-J. Starkloff, “Analysis of the ensemble and polynomial
chaos kalman filters in bayesian inverse problems,” SIAM/ASA J. Uncertainty Quan-
tification, vol. 3, pp. 823–851, 2015.

[55] S. Patterson and Y. W. Teh, “Stochastic gradient riemannian langevin dynamics on
the probability simplex,” in Advances in Neural Information Processing Systems 26,
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds.,
Curran Associates, Inc., 2013, pp. 3102–3110. [Online]. Available: http://papers.nips.
cc/paper/4883-stochastic-gradient-riemannian-langevin-dynamics-on-the-probability-
simplex.pdf .

[56] M. Girolami and B. Calderhead, “Riemann manifold langevin and hamiltonian monte
carlo methods (with discussion),” Journal of the Royal Statistical Society, Series B,
vol. 73, no. 2, pp. 123–214, 2011.

[57] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio, “Identify-
ing and attacking the saddle point problem in high-dimensional non-convex optimiza-
tion,” in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M.
Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds., Curran Associates,
Inc., 2014, pp. 2933–2941. [Online]. Available: http://papers .nips .cc/paper/5486-
identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-non-convex-
optimization.pdf .

[58] Q. Song, Y. Sun, M. Ye, and F. Liang, “Extended stochastic gradient Markov chain
Monte Carlo for large-scale Bayesian variable selection,” Biometrika, vol. 107, no. 4,
pp. 997–1004, 2020.

[59] C. Chen, N. Ding, and L. Carin, “On the convergence of stochastic gradient mcmc
algorithms with high-order integrators,” in Advances in Neural Information Processing
Systems, 2015, pp. 2278–2286.

[60] W. Teh, A. Thiery, and S. Vollmer, “Consistency and fluctuations for stochastic gra-
dient langevin dynamics,” Journal of Machine Learning Research, vol. 17, pp. 1–33,
2016.

[61] A. Saumard and J. Wellner, “Log-concavity and strong log-concavity: A review,” Statis-
tics Surveys, vol. 8, p. 45, 2014.

[62] H. J. Brascamp and E. H. Lieb, “On extensions of the brunn-minkowski and prékopa-
leindler theorems, including inequalities for log concave functions, and with an appli-
cation to the diffusion equation,” in Inequalities, Springer, 2002, pp. 441–464.

126

http://papers.nips.cc/paper/4883-stochastic-gradient-riemannian-langevin-dynamics-on-the-probability-simplex.pdf
http://papers.nips.cc/paper/4883-stochastic-gradient-riemannian-langevin-dynamics-on-the-probability-simplex.pdf
http://papers.nips.cc/paper/4883-stochastic-gradient-riemannian-langevin-dynamics-on-the-probability-simplex.pdf
http://papers.nips.cc/paper/5486-identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-non-convex-optimization.pdf
http://papers.nips.cc/paper/5486-identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-non-convex-optimization.pdf
http://papers.nips.cc/paper/5486-identifying-and-attacking-the-saddle-point-problem-in-high-dimensional-non-convex-optimization.pdf

[63] A. S. Dalalyan and A. G. Karagulyan, “User-friendly guarantees for the langevin monte
carlo with inaccurate gradient,” Stochastic Processes and Their Applications, vol. 129,
no. 12, pp. 5278–5311, 2019.

[64] X. Cheng and P. L. Bartlett, “Convergence of langevin mcmc in kl-divergence,” PMLR
83, no. 83, pp. 186–211, 2018.

[65] A. Durmus and E. Moulines, “Nonasymptotic convergence analysis for the unadjusted
langevin algorithm,” The Annals of Applied Probability, vol. 27, no. 3, pp. 1551–1587,
2017.

[66] E. George and R. McCullloch, “Variable selection via gibbs sampling,” Journal of the
American Statistical Association, vol. 88, pp. 881–889, 1993.

[67] F. Liang, Y. Cheng, Q. Song, J. Park, and P. Yang, “A resampling-based stochastic ap-
proximation method for analysis of large geostatistical data,” Journal of the American
Statistical Association, vol. 108, pp. 325–339, 2013.

[68] Y. Sun, Q. Song, and F. Liang, “Consistent sparse deep learning: Theory and compu-
tation,” Manuscript, submitted, 2019.

[69] J. Saetrom and H. Omre, “Uncertainty quantification in the ensemble kalman filter,”
Scandinavian Journal of Statistics, vol. 40, no. 4, pp. 868–885, 2013. doi: 10.1111/
sjos.12039 .

[70] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, pp. 1735–80, Dec. 1997. doi: 10.1162/neco.1997.9.8.1735 .

[71] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber, “A
novel connectionist system for unconstrained handwriting recognition,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 31, no. 5, pp. 855–868, May
2009, issn: 0162-8828. doi: 10.1109/TPAMI.2008.137 .

[72] A. Graves, A.-r. Mohamed, and G. E. Hinton, “Speech recognition with deep recurrent
neural networks,” 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 6645–6649, 2013.

[73] O. Cappé, E. Moulines, and T. Ryden, Inference in Hidden Markov Models. New York:
Springer, 2005.

[74] A. Benveniste, M. Métivier, and P. Priouret, Adaptive Algorithms and Stochastic Ap-
proximations. Berlin: Springer, 1990.

127

https://doi.org/10.1111/sjos.12039
https://doi.org/10.1111/sjos.12039
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TPAMI.2008.137

[75] W. Deng, X. Zhang, F. Liang, and G. Lin, “An adaptive empirical bayesian method for
sparse deep learning,” in Advances in Neural Information Processing Systems, 2019.

[76] W. Deng, G. Lin, and F. Liang, “A contour stochastic gradient langevin dynamics
algorithm for simulations of multi-modal distributions,” in NeurIPS, 2020.

[77] S. Kim, Q. Song, and F. Liang, “Stochastic gradient langevin dynamics algorithms
with adaptive drifts,” arXiv:2009.09535, 2020.

[78] M. Raginsky, A. Rakhlin, and M. Telgarsky, “Non-convex learning via stochastic gra-
dient Langevin dynamics: A nonasymptotic analysis,” in Proceedings of the 2017 Con-
ference on Learning Theory, S. Kale and O. Shamir, Eds., ser. Proceedings of Machine
Learning Research, vol. 65, Amsterdam, Netherlands: PMLR, 2017, pp. 1674–1703.

[79] H. Chen and Y. Zhu, “Stochastic approximation procedures with randomly varying
truncations,” Science in China Series A-Mathematics, Physics, Astronomy & Techno-
logical Science, vol. 29, no. 9, pp. 914–926, 1986.

[80] C. Andrieu, E. Moulines, and P. Priouret, “Stability of stochastic approximation under
verifiable conditions,” SIAM Journal on Control and Optimization, vol. 44, no. 1,
pp. 283–312, 2005.

[81] Y. W. Teh, A. H. Thiery, and S. J. Vollmer, “Consistency and fluctuations for stochastic
gradient langevin dynamics,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 193–225, 2016,
issn: 1532-4435.

[82] C. Li, C. Chen, D. Carlson, and L. Carin, “Preconditioned stochastic gradient langevin
dynamics for deep neural networks,” in AAAI, 2016.

[83] K. Bhatia, Y.-A. Ma, A. D. Dragan, P. L. Bartlett, and M. I. Jordan, “Bayesian
robustness: A nonasymptotic viewpoint,” arXiv preprint arXiv:1907.11826, 2019.

[84] M. Barbieri and J. Berger, “Optimal predictive model selection,” Annals of Statistics,
vol. 32, no. 3, pp. 870–897, 2004.

[85] B. Kim, K. Lee, L. Xue, and X. Niu, “A review of dynamic network models with latent
variables,” Statistics Surveys, vol. 12, pp. 105–135, 2018.

[86] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and P. Poupart,
“Representation learning for dynamic graphs: A survey,” Journal of Machine Learning
Research, vol. 21, no. 70, pp. 1–73, 2020. [Online]. Available: http://jmlr.org/papers/
v21/19-447.html .

128

http://jmlr.org/papers/v21/19-447.html
http://jmlr.org/papers/v21/19-447.html

[87] J. Skarding, B. Gabrys, and K. Musial, “Foundations and modeling of dynamic net-
works using dynamic graph neural networks: A survey,” IEEE Access, vol. 9, pp. 79 143–
79 168, 2021. doi: 10.1109/ACCESS.2021.3082932 .

[88] D. K. Sewell and Y. Chen, “Latent space models for dynamic networks,” Journal of
the American Statistical Association, vol. 110, no. 512, pp. 1646–1657, 2015.

[89] P. Sarkar and A. Moore, “Dynamic social network analysis using latent space models,”
ACM SIGKDD Explorations Newletter, vol. 7, no. 2, pp. 31–40, 2005.

129

https://doi.org/10.1109/ACCESS.2021.3082932

VITA

Peiy Zhang was born in August 1993 in China. In 2015, she obtained a B.S. degree in

Statistics from the School of Mathematical Sciences at Zhejiang University. Having received

an Master degree in Statistics from Cornell University in May 2016, she joined Purdue

University’s department of Statistics in January 2017. At Purdue University, she earned

a Joint Statistics and Computer Science M.S. Degree in May 2021, and Ph.D. degree in

Statistics in August 2021. Peiyi’s research interests include machine learning, online learning,

advanced MCMC algorithms, and uncertainty quantification. After graduation, she would

join Facebook, Inc. as a Research Data Scientist.

130

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Bayesian on-line learning with large-scale dynamic data
	Bayesian on-line learning with large-scale dynamic data and unknown parameters
	Bayesian on-line learning with large-scale dynamic non-Gaussian data
	Dissertation organization

	PRELIMINARIES
	Ensemble Kalman filter
	State-Augmented EnKF for simultaneous state and parameter estimation
	Markov chain Monte Carlo Ensemble Kalman filter for non-Gaussian Data

	LANGEVINIZED ENSEMBLE KALMAN FILTER
	Langevinized Ensemble Kalman filter for inverse problems
	Linear inverse problem
	Nonlinear inverse problem

	Langevinized Ensemble Kalman filter for data assimilation problems
	Data assimilation with linear measurement equation
	Data assimilation with nonlinear measurement equation

	Convergence analysis
	Convergence of Algorithm 4
	Convergence of Algorithm 6

	EMPIRICAL RESULTS OF THE LENKF ALGORITHM
	Numerical studies for static learning problems
	Bayesian variable selection for large-scale linear regression
	Bayesian nonlinear variable selection with deep neural networks

	Numerical studies for dynamic learning problems
	Uncertainty quantification for the Lorenz-96 model
	Online learning with LSTM neural networks

	EXTENSIONS OF THE LANGEVINIZED ENSEMBLE KALMAN FILTER
	Langevinized Ensemble Kalman filter with unknown parameters
	The SA-LEnKF algorithm
	Convergence analysis
	Proofs for the convergence of the SA-LEnKF algorithm

	Langevinized Ensemble Kalman filter with non-Gaussian data
	The Extended LEnKF algorithm
	Convergence analysis

	EMPIRICAL RESULTS OF THE SA-LENKF AND THE EXTENDED LENKF
	Empirical results of the SA-LEnKF algorithm
	Dynamic linear model with stochastic parameters
	Dynamic nonlinear model with multiplicative parameters
	Dynamic linear model with multiple unknown parameters
	Sea surface temperature modeling

	Empirical results of the Extended LEnKF algorithm
	Poisson regression
	Nonlinear classification
	Dynamic Poisson spatial model
	Dynamic network analysis

	SUMMARY AND DISCUSSION
	Summary
	Discussion

	REFERENCES
	VITA

