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ABSTRACT

In the field of cybersecurity, it is often not possible to construct systems that are resistant

to all attacks. For example, even a well-designed password authentication system will be

vulnerable to password cracking attacks because users tend to select low-entropy passwords.

In the field of cryptography, we often model attackers as powerful and malicious and say that

a system is broken if any such attacker can violate the desired security properties. While

this approach is useful in some settings, such a high bar is unachievable in many security

applications e.g., password authentication. However, even when the system is imperfectly

secure, it may be possible to deter a rational attacker who seeks to maximize their utility.

In particular, if a rational adversary finds that the cost of running an attack is higher than

their expected rewards, they will not run that particular attack. In this dissertation we

argue in support of the following statement: Modeling adversaries as rational actors can be

used to better model the security of imperfect systems and develop stronger defenses. We

present several results in support of this thesis. First, we develop models for the behavior of

rational adversaries in the context of password cracking and quantum key-recovery attacks.

These models allow us to quantify the damage caused by password breaches, quantify the

damage caused by (widespread) password length leakage, and identify imperfectly secure

settings where a rational adversary is unlikely to run any attacks i.e. quantum key-recovery

attacks. Second, we develop several tools to deter rational attackers by ensuring the utility-

optimizing attack is either less severe or nonexistent. Specifically, we develop tools that

increase the cost of offline password cracking attacks by strengthening password hashing

algorithms, strategically signaling user password strength, and using dedicated Application-

Specific Integrated Circuits (ASICs) to store passwords.

9



1. INTRODUCTION

In cryptography, we often consider powerful and malicious adversaries and say that a system

is broken if such an adversary can violate any desired security property. Indeed, organiza-

tions like the National Institute of Standards and Technology (NIST) publish documents

with recommendations on key lengths and procedures designed specifically to resist powerful

attackers with nation-state level resources, e.g. [ 1 ,  2 ]. Unfortunately, in many practical sce-

narios resisting such a powerful adversary is unachievable. For example, even a well-designed

password authentications system is vulnerable to password guessing attacks because users

tend to select low-entropy passwords. If we were to examine a password authentication

system from the perspective of a nation-state-level adversary, we would conclude that it is

broken and that the adversary will compromise most accounts. In this dissertation, we focus

on “imperfectly secure" systems which could be broken by powerful, malicious adversaries.

Even in an imperfectly secure system, there may still be methods of deterring an attacker

whose behavior is not fully adversarial. While a malicious adversary will always try to run

a maximally damaging attack, a rational adversary instead runs the attack that maximizes

its utility. This utility consists of two primary components: the rewards for completing an

attack and the expected costs to run it. Even when a system is imperfectly secure, it may be

possible to influence the adversary’s behavior by altering the system in a way that increases

the attacker’s expected costs or decreases the attacker’s expected reward. For example, if we

can increase the adversary’s costs to be higher than the rewards for an attack, the adversary

will not run that particular attack. Instead, they may run a different, less severe, attack or

choose not to attack at all. In the context of password cracking, we cannot defend against a

powerful malicious adversary but we may be able to meaningfully deter a rational attacker

and reduce the damage they cause.

In this dissertation we argue in support of the following thesis:

Modeling adversaries as rational actors can be used to better model the security

of imperfect systems and develop stronger defenses.

We present two sets of results in support of this thesis. The first set of results focuses on

modeling rational attacker behavior. We use our rational attacker models to quantitatively
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predict how many users will have their password cracked in offline password cracking at-

tacks [ 3 ], estimate the damage caused by (currently widespread) password length leakage [ 4 ],

determine that rational adversaries are unlikely to run quantum key-recovery attacks [ 5 ], and

describe the structure of quantum brute force attacks against non-uniform distributions. The

second set of results focuses on developing defenses targeted towards rational adversaries. We

will show how signaling password strength to a rational adversary can (counter-intuitively!)

decrease the expected number of cracked passwords [ 6 ], how to develop stronger hashing

functions to increase attacker costs [ 7 ,  8 ], and describe a new password storage system that

takes advantage of the high parallelism and computation speeds of Application Specific In-

tegrated Circuits (ASICs). We show that these defenses can influence a rational attacker

to select less harmful actions by increasing attacker costs and/or by strategically revealing

information.

1.1 Organization

This document is divided into three chapters covering general background knowledge,

rational attacker behavior predictions, and defenses against rational attackers, respectively.

In chapters  3 and  4 multiple relevant results surrounding rational adversary models are dis-

cussed. Chapter  3 will delve into models of rational adversary behavior and its consequences,

and includes summaries of the following works:

1.1.1 Predicting Rational Adversary Behavior

• The Economics of Offline Password Cracking [  3 ]: The past decade has seen

more than its fair share of password breaches ([ 9 ,  10 ,  11 ,  12 ,  13 ,  14 ] to name just a

few examples). We develop an economic model of a rational offline password cracker

which allows us to make quantitative predictions about the fraction of accounts that

a rational password attacker would crack in the event of an authentication server

breach. Unfortunately, our models predict that with key-stretching parameters seen

in practice users are not sufficiently protected against rational offline password crack-

ing adversaries. This prediction holds even if we incorporate an aggressive model of

11



diminishing returns for the attacker (e.g., the total value of 500 million cracked pass-

words is less than 100 times the total value of 5 million passwords). On a positive note

our analysis demonstrates that memory hard functions (MHFs) such as SCRYPT or

Argon2i can significantly reduce the damage of an offline attack.

• Quantifying the Damage of Password Length Leakage [ 4 ]: All encryption

must necessarily leak some information about the length of the encrypted message.

Some common methods, such as AES-GCM, leak the exact length of a message. While

this does not always pose a significant risk it can cause issues when the message is

short and sensitive, e.g. passwords. We find that password length is widely leaked

by many (> 80%) of the Alexa top 100 sites, giving attackers a potential advantage

when trying to guess a user’s password. To quantify this advantage we extend our

economic models to compare an attacker’s performance with and without knowledge

of a password’s length. We find that anywhere from 50− 100% additional passwords

might be cracked if the length is leaked. We describe situations where an attacker

can make more in additional profit than it might cost to run such an attack, meaning

defenses (e.g. padding) should be put in place to prevent these attacks.

• An Economic Analysis of Quantum Key-Recovery Attacks [ 5 ]: Quantum

computers are an emerging technology with the theoretical ability to break several

vital cryptographic primitives. One such example is Grover’s algorithm, which can

run an attack that breaks a symmetric cipher key in square root of the time a classical

computer requires. We seek to understand how far quantum computers would need to

advance to make such an attack profitable. We consider a case where an adversary has

some set valuation function for the stored information (which may decay over time)

and a time limit for their attack. Under incredibly optimistic projections for advances

in quantum computing we find that no profit-motivated attacker will want to run a

Grover’s algorithm attack in almost any scenario, even for 128 bit keys. This suggests

that an appropriate action to defend against profit motivated quantum adversaries is

to do nothing, i.e. keep key lengths as they currently are. This contradicts common
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advice to double key lengths to counter the square root advantage from Grover’s

algorithm.

• Grover’s Algorithm on Non-Uniform Distributions: Grovers algorithm allows

us to find some input x to any black-box function f : X → Y giving a desired output

x∗ s.t. f(x∗) = y in time O
(√
|X|

)
. Note that a classical computer requires O (|X|)

to accomplish the same task. Often we can think of the standard inputs to f as being

uniformly distributed, e.g. when we are dealing with symmetric key cipher keys.

However, in other settings this may not be the case, e.g. user-selected passwords. We

seek to better understand what happens when the correct input x∗ is selected from

these nonuniform distributions. First, we present an example showing that there exist

certain distributions and strategies that lower an attacker’s expected costs. We hope

to characterize the distributions where such strategies exist and provide an algorithm

for optimally partitioning distributions to minimize attack costs.

1.1.2 Deterring Rational Adversaries

Chapter  4 covers several defenses designed to deter rational adversary attacks. The

following works are summarized in this chapter:

• Information Signaling in Password Storage [  6 ] Here we consider an interesting

question. Can we protect users from password cracking attacks by giving the attacker

more information? Specifically, we are interested in providing some sort of signal

about the strength of a user’s password. We provide a proof-of-concept signaling

scheme where, for a specific distribution and signaling strategy, we can reduce the

expected number of cracked passwords. Essentially we are able to take advantage

of the fact that password cracking is not a zero sum game - allowing us to increase

the utility of both attacker and defender at once. We are also able to note that

these systems accomplish their goal without causing too much collateral damage (i.e.

people who have their password cracked under this system when they would have

been secure otherwise). We believe that our results demonstrate that there are likely
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applications of information signaling in the field of security, and believe that the

subject merits further examination.

• Just In Time Hashing [  8 ]: In an offline password cracking attack the strength of

the hash function serves as a last line of defense against attackers. However, increasing

guessing costs often comes as the cost of increasing authentication time, and the longer

we spend authenticating the more annoyed users will be. We introduce Just in Time

Hashing (JIT), a client side key-stretching algorithm to protect user passwords against

offline brute-force cracking attempts without increasing delay for the user. The basic

idea is to exploit idle time while the user is typing in their password to perform extra

key-stretching. As soon as the user types in the first character(s) of their password

our algorithm immediately begins filling memory with hash values derived from the

character(s) that the user has typed thus far. We conduct a user study to guide

the development of JIT e.g. by determining how much extra key-stretching could

be performed during idle cycles or how many consecutive deletions JIT may need

to handle. Our security analysis demonstrates that JIT can substantially increase

guessing costs over traditional key-stretching algorithms with equivalent (or less)

authentication delay.

• Data Independent Memory Hard Functions: New Attacks and Stronger

Constructions [  7 ]: In [ 7 ] we look at the details of Memory Hard Function construc-

tions and show multiple results concerning their strength in the face of state-of-the-art

attacks. In this thesis we will focus on two specific results that were shown in this

paper. First, we will investigate the effectiveness of an attack called the Greedy Peb-

ble attack on proposed constructions, including our previously proposed construction

in [  15 ]. We find that while our previously proposed construction resists many attacks,

it is particularly vulnerable to one called the Greedy Pebble attack. We propose a new

hybrid graph construction and empirically show that it is more resistant to state-of-

the-art attacks. Finally, we show a method to modify a specific part of Argon2 [  16 ] to

improve its resistance to parallelization on an Application Specific Integrated Circuit.
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• Defending against Password Cracking by Using ASICs: In [  3 ] we showed

that MHFs are a viable defense against password cracking attacks without requiring

very high security parameters (as would be needed for hash iteration). The reason

for using MHFs is to even the playing field between servers and password crackers, re-

moving any advantage the password cracker was exploiting to run profitable attacker.

Here we consider a different method of accomplishing the same goal - adding an ASIC

to a server so they can run hash iteration just as fast as an adversary could. We wish

to run some cost-benefit analyses on both of these strategies to help provide compa-

nies with guidance as to which solution may be more appropriate for their specific

defense needs.
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2. BACKGROUND

Many of the works discussed in this thesis focus on several common elements that merit some

initial discussion. For example, many of the works involve password cracking in some form.

These attacks are not only prevalent but are also a situation where attacks are essentially

always feasible, leading to rational adversary analysis being a useful tool to understand

them. This section is dedicated to providing background relevant to several works, including

summaries of relevant work in game theory and decision-theoretic models, password cracking,

and quantum computing. This section also contains a section covering notation that will be

used throughout the thesis.

2.1 Game-theoretic and Decision-theoretic models

The game or decision theoretic modeling of adversaries attempts to capture the expected

behavior of an adversary in some game describing a relevant situation. For a profit-motivated

adversary, a game is described where some attack is going to be run. The adversary is given

some information about this attack and is asked to make a decision about attack parameters

e.g. how many guesses they might make against a particular password during an offline

password cracking attack. Usually, these games are described as a Stackelberg game where

one player (the defender/server owner) moves first by selecting their security setup and

parameters. After these have been selected the adversary is allowed to make their decision

about an attack.

Blocki and Datta described a decision-theoretic model for an adversary for Cost-Asymmetric

Hashing in 2016 [ 17 ]. Here the authors describe how to calculate the optimal pepper (AKA

private salt) distribution for password hashing. They model an offline password cracking

attack through the description of utility functions, which themselves are based on the reward

and cost of an attack. The authors apply this model to several empirical password datasets

and find that it is capable of reducing the number of cracked passwords by about 50%.

This model is derived by determining the cost to the server owner, costs of an attacker, and

expected rewards based on some value v. Using these building blocks utility functions for

the server owner and adversary are constructed in a way that allows for optimization of the
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distribution of pepper values. Many of the works described in this paper will take the same

core step of analyzing the cost and reward functions for various entities, combining them to

gain some insight into adversary behavior.

2.2 Rational Actor Models

The concept of a rational adversary or actor is common in several fields, including eco-

nomics and game theory. Indeed, examples of rational adversary analysis in the field of

game theory can be found from Von Neumann and Morgenstern [ 18 ]. Recently, rational ac-

tors have seen applications in airport security design [ 19 ], Environmental Conservation [ 20 ],

and even Law [ 21 ]. In each of these applications, we model at least one (not necessarily

adversarial) actor who makes their decisions to increase utility. Often actors are portrayed

as being interested in profit, especially in economics, though in works like [ 21 ,  22 ] actors may

be interested in some less quantifiable reward like their own freedom from incarceration or

a lawyer winning a case.

Rational actors are often found in the subfield of cryptography, especially in the analysis

of protocols. Rational adversaries have seen fruitful applications in secret sharing [  23 ,  24 ]

and multiparty computation [ 25 ,  26 ] as well as in more generic analysis frameworks [  27 ].

Some interesting parallels to this exist such as Cleve’s work showing fairness in 2PC is

unachievable [ 28 ], with follow-up work showing that it can be achieved in some cases in

a rational model [  29 ]. Password hashing research has seen several interesting applications,

especially in the analysis of proposed password storage systems [ 17 ,  30 ].

2.3 Password Cracking

Password cracking is the subject of a large proportion (though not all!) of the profit-

motivated adversary analysis that is contained in this proposal. Given its strong influence,

the background and some relevant papers are discussed in this subsection.

Password hashing: Password hashing is the process of taking a password pwd, adding

some randomized n-bit “salt" value sn, and using the result as the input to some crypto-

graphic hash function H. The resulting value H (pwd||sn) is stored in a table alongside the
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username and sn values. This allows for a user to authenticate by providing a password pwd.

If the result H (pwd||sn) = H(pwd||sn) then the user has authenticated successfully.

Obtaining these records sn,H (pwd||sn) allows an adversary to run an offline password crack-

ing attack, where they can make as many guesses as they like without tripping any online

password cracking attack defenses (limited by equipment and time, of course). To defend

against these offline attacks a method known as key-stretching is used. Key stretching is

any method that artificially makes a hash function arbitrarily difficult to compute. Several

methods of key stretching exist, with the current most common method being hash iteration.

In this method rather than storing the result of the hash function H (pwd||sn) the result is

fed back into the hash function k times. The resulting Hk (pwd||sn) is stored in its stead.

While this is a common method and is seen in many leaked databases its security has been

called into question [ 3 ], as it provides little resistance to ASIC-based attacks.

Memory-hard functions: Memory hard functions (MHFs) are a second type of key stretch-

ing. With hash iteration, the goal was to artificially increase the computation time of the

function. With MHFs the goal is to not only increase computation time but to increase

the memory usage of the function at the same time. Motivating this goal is the advantage

that Application-Specific Integrated Circuit (ASIC) users have over those using traditional

CPUs. As can be seen in bitcoin mining computation power is overwhelmingly dominated

by ASICs as they can run the same function faster for a much lower cost. An adversary

using an ASIC for password hashing would enjoy a similar advantage, capable of more than

ten trillion calls to a base hash function per second [ 31 ].

While ASICs enjoy a vast advantage in computing speed they do not enjoy a large advantage

for memory usage. That is, while they can calculate functions requiring small amounts of

memory incredibly quickly they are not capable of reading or writing to memory any faster

than a typical desktop. Behind this is the bottleneck that standard chips e.g. DDRM RAM

chips impose. Essentially, they are already very optimized for memory storage and ASICs

do not have any additional way to squeeze more performance out of them. So, if a function

can be designed to require a large amount of memory the computation speed will be limited

by the read/write speed of RAM, leveling the playing field in a way for hash computation.

Early candidates for MHFs were proposed by Percival [ 32 ] (SCRYPT) and Boyen [ 33 ] (as
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Halting Password Puzzles). Since then it has been shown that Percival’s SCRYPT construc-

tion is maximally memory hard [ 34 ]. Of note is that these are a specific type of memory-hard

function called a Data-Dependent MHF, or dMHF. In these dMHFs the memory access pat-

tern of the MHF is dependent on the input, opening the possibility of side-channel attacks

where an adversary can monitor which areas of memory are being accessed during compu-

tation.

Contrasted with dMHF are Data-Independent MHFs, or iMHFs. In these MHFs the data

access pattern is selected independently from the input, preventing side-channel leakage from

the memory access patterns. Hybrid constructions also exist that run as an iMHF for the

first portion of computation before switching to a dMHF mode - ideally offering the best of

both worlds by at least requiring an adversary to complete the iMHF portion before they

can begin to use any access pattern data

2.4 Online Password Cracking Attacks

While adversaries have plenty of leaks to choose from if they want to run an offline

password cracking attack there is still the concern of online password cracking attacks. In

many ways, especially when looking at the economics of these attacks, it closely resembles

an offline attack. The primary difference is that the adversary does not have the list of

password hashes and is checking password correctness by submitting login attempts to an

external server. This can be modeled as the adversary having limited access to some oracle

AH and being able to submit queries limited by some absolute number or some time limit

between queries (or batches of queries). In this case, the adversary does not have access

to the salt value and relies on guesses of the value of pwd alone. The primary differences

in terms of for-profit adversaries when running offline vs online attacks are the cost of an

attack and maximum guessing limits. While an attacker can make unlimited guesses during

an offline attack due to knowledge of the salt, correct hash value, and hash function they

cannot do the same in an online attack. Here they are instead limited by the server they

are querying, which is likely not running on any specialized equipment. Rate limiting by

these servers is the primary defense against these attacks, where accounts may be locked
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out until additional conditions are met if too many attempts (k) are made within a short

time (currently recommended as 100 consecutive failed logins by NIST [ 35 ]). When enforced

correctly this limit reduces the success probability of a password guessing attack to at most

the sum of the probabilities of the k most common passwords.

Another method of rate limiting in an online attack makes use of CAPTCHAS [ 36 ]. In some

senses, this method more closely resembles an offline cracking attack in that the adversary

is not technically restricted to a maximum number of guesses but rather is required to solve

a CAPTCHA every so often. The idea behind this is that some human activity is required

to run the attack, preventing much faster attacks. From an economic perspective, this does

increase the cost of an attack greatly, but in some cases, they are still feasible. CAPTCHA

farms exist and as early as 2010 have been selling CAPTCHA solutions for around $0.80-$1.20

per 1000 solutions. While this seems inexpensive it still dominates the cost of ASIC-based

offline attacks, providing some economic protections for users.

2.5 Memory Hard Functions

Memory Hard Functions (MHFs) are a key cryptographic primitive in the design of

password hashing, algorithms, and egalitarian proof of work puzzles [ 37 ]. In the context

of password hashing, we want to ensure that the function can be computed reasonably

quickly on standard hardware, but that it is prohibitively expensive to evaluate the function

millions or billions of times. The first property ensures that legitimate users can authenticate

reasonably quickly, while the purpose of the latter goal is to protect low-entropy secrets

(e.g., passwords, PINs, biometrics) against brute-force offline guessing attacks. One of the

challenges is that the attacker might attempt to reduce computation costs by employing

customized hardware such as a Field Programmable Gate Array (FPGA) or an Application

Specific Integrated Circuit (ASIC). Memory-hard functions, intuitively, require both a large

amount of computation time and require allocating large amounts of memory during the

entire computation. Because FPGAs and ASICs would need to interface with standard

DRAM chips to have sufficient memory to quickly compute MHFs they do not have as

significant an advantage as they would with non-memory-hard hash functions. MHFs were
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of particular interest in the 2015 Password Hashing Competition [ 38 ], where the winner,

Argon2 [  16 ] was a MHF. MHFs can be broadly split into two categories: Data-dependent

MHFs (dMHFs) and data-independent MHFs (iMHFs). iMHFs offer a natural immunity to

side-channel attacks making them attractive for password hashing applications.

An iMHF fG,H can be viewed as a mode of operation over a directed acyclic graph (DAG)

G = (V = [N ], E) that encodes data-dependencies (because the DAG is static the memory

access pattern will be identical for all inputs) and a compression function H(·). Alwen and

Serbinenko [ 39 ] defined fG,H(x) = labG,H,x(N) to be the label of the last node in the graph

G on input x. Here, the label of the first node labG,H,x(1) = H(1, x) is computed using the

input x and for each internal node v with parents(v) = v1, . . . , vδ we have

labG,H,x(v) = H (v, labG,H,x(v1), . . . , labG,H,x(vδ)) .

2.6 Graph pebbling

The graph pebbling game is a game played over a directed acyclic graph where the player

sets “pebbles" on nodes of the graph according to a set of rules. First introduced by Hewitt

and Paterson [ 40 ] and Cook [ 41 ] the (sequential) black pebbling game (and its relatives) have

been used to great effect in theoretical computer science. Some early applications include

space/time trade-offs for various computational tasks such as matrix multiplication [ 42 ],

the FFT [  43 ,  42 ], integer multiplication [ 44 ] and solving linear recursions [ 45 ,  46 ]. More

recently, pebbling games have been used for various cryptographic applications including

proofs of space [ 47 ,  48 ], proofs of work [ 49 ,  50 ], leakage-resilient cryptography [  51 ], gar-

bled circuits [ 52 ], one-time computable functions [ 53 ], adaptive security proofs [  52 ,  54 ] and

memory-hard functions [ 55 ,  39 ,  56 ,  57 ].

The black pebbling game is played on a fixed DAG G in rounds. Typically, the edges

in G represent data dependencies of the function we are trying to compute. At each round,

denoted Pi ⊆ V , certain vertices are considered to be pebbled if they are contained in Pi.

The goal of the game is to pebble a predesignated set of “sink" nodes of G (not necessarily

simultaneously). In this document placing a pebble on a node models computing some
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function and storing the result in memory for later use. In the first round we set P0 = ∅. Pi
is derived from the previous configuration Pi−1 according to two simple rules.

1. A node v may be pebbled (added to Pi) if, in the previous configuration all of its

parents were pebbled, i.e., parents(v) ⊆ Pi−1. In this parallel pebbling game, we

allow for any number of pebbles to be placed in a single round, while in the sequential

version only one pebble may be placed at each round.

2. A pebble can always be removed from Pi.

A sequence of configurations P = (P0, P1, . . .) is a pebbling of G if it adheres to these rules

and each sink node of G is contained in at least one configuration. We define the set P(G)

to be the set of all valid sequential pebblings of the graph G and P ||(G) to be the set of all

valid parallel pebblings of G.

There are several related metrics for describing the “cost" for a specific pebbling P of

the graph G. Cumulative complexity [  39 ] measures the sum of pebbles in each round.

Specifically, CC(P ) = ∑
Pi∈P |Pi|. We also define the cumulative complexity of a graph G

to be CC ||(G) = min
P∈P||(G)

CC(P ). The sequential equivalent CC(G) is defined over the set

of pebblings P(G) rather than P ||(G). The problem of finding CC(G) for a DAG G has

been proven to be NP-Hard [ 58 ]. A related metric known as Amortized Area-Time (aAT)

complexity [ 56 ] is a modification that charges R times more for adding a pebble than keeping

one on a node. Specifically,

aAT (P ) =
∑
Pi∈P
|PI |+R

∑
Pi∈P
|Pi \ Pi−1|

We define aAT ||(G) = min
P∈P||(G)

aAT (P ) This specific metric is meant to model computation

and storage costs, especially in the context of memory hard functions e.g. in [ 7 ,  39 ,  15 ]. Alwen

and Serbinenko [ 39 ] and Alwen and Tackmanm [ 59 ] proved that in the parallel random oracle

model (PROM) the aAT of a graph G representing data dependencies in a memory-hard

function is completely captured by the parallel black pebbling game.
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2.7 Quantum Computing

In one work under review and several proposed projects, we investigate some of the

economic aspects of quantum computing. This section is intended to provide a high level

overview of quantum computing, focusing only on those aspects necessary for the under-

standing of our results. A much more thorough review of quantum computing is offered by

Ronald de Wolf [ 60 ] (or any of several other well-written online introductions to quantum

computing).

Quantum computing allows for computation over qubits, a quantum analog of classical bits.

Each qubit has two state analogous to the classical 0 and 1 states denoted as the |0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
states respectively. Rather than each qubit remaining in one classical state

they are able to exist as a superposition of states |ψ〉 = α0 |0〉+α1 |1〉 , αi ∈ C. Multiple qubits

are combined via tensor products and are denoted in this paper as (e.g.) |01〉 = |0〉 ⊗ |1〉.

When a quantum computer is in a state |ψ〉 it can be advanced to a new state |ψ〉 by mul-

tiplication with a unitary matrix U (a matrix whose inverse is its conjugate transpose) i.e.

|ψ〉 = U |ψ〉. Quantum algorithms are described as sequences of unitary transformations on

these qubits. For a far more detailed description of the basics of quantum computing, we

direct the reader to [ 60 ] or another online resource of their choosing.

The ability to operate while in a superposition gives quantum computers an advantage

over classical computers - with quantum computers having a significant advantage when

solving certain types of problems. In several cases, this improvement is very significant e.g.

the ability to solve the integer factorization and discrete log problems in polynomial time

- a feat that has not been accomplished with classical computers [ 61 ]. The ability to solve

these problems efficiently has clear security implications, allowing for quick attacks on several

asymmetric or public-key cryptosystems. In other cases, quantum algorithms may provide

a significant advantage over classical attacks, but not so significant as a polynomial time

attack. Grover’s algorithm [ 62 ], which we will examine most closely, is an example of this

type of attack. Here a quantum computer is capable of providing quadratic speed up which,

while not as strong as a polynomial time attack, is still of interest.
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2.8 Grover’s algorithm

Grover’s algorithm [ 62 ] is (in Grover’s words) “A fast quantum mechanical algorithm for

database search". Given black box access to some function f : X → Y and some value y ∈ Y

we wish to find a value for x∗ ∈ X such that f(x∗) = y. Using a classical computer requires

O(N), where N = |X|. However, if we exploit Grover’s algorithm this can be improved from

O(N) to O
(√

N
)
. While here we are focusing on the case where x∗ is unique we note that

Grover’s algorithm can be modified for the case where multiple solutions are possible, even if

the number of solutions is unknown [ 63 ]. By setting the function f correctly we can present

the problem of finding an AES key for a plaintext/ciphertext pair in terms of a database

search solvable using Grover’s algorithm. From an asymptotic standpoint this significantly

decreases the amount of time it would take to brute force a key e.g. it would only take

≈ 2128 steps to find a key for AES with a 256 bit key. This is especially significant for AES

using shorter key lengths where the number of steps required to find a key becomes more

and more feasible.

Grover’s algorithm works in rounds, each of which serves to increase the amplitude of

the value x∗ for which f(x∗) = 1 (to a point). It consists of a quantum circuit implementing

the function f being inverted and makes use of the following two quantum operations:

• Hadamard gate: H = 1√
N

1 1

1 −1

 Maps the |0〉 and |1〉 states to 1√
2 |0〉 + 1√

2 |1〉

and 1√
2 |0〉 −

1√
2 |1〉 respectively. Importantly - the Hadamard gate is its own inverse.

• Phase query: Oi,± : |i〉 → (−1)f(i) |i〉. Negates the amplitude if the value of f at i

is 1.

• Inversion around mean amplitude Us: The unitary transform

Us = H⊗n (2 |0n〉 〈0n| − In)H⊗n inverts the superposition |ψ〉 around the mean am-

plitude i.e. αi+1 =
(

2
2n
∑
j
αj

)
− αi

The algorithm is as follows:

1. Begin in the |ψ〉 = |0〉⊗N state
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2. Apply H⊗N to get |ψ〉 = 1√
N

N−1∑
i=0
|i〉

3. Repeat O
(√

N
)
times:

(a) Apply the phase query |ψ〉 ← O± |ψ〉

(b) Apply Us to invert about the mean amplitude

4. Observe the result

Note that because the phase query O± negates the amplitude of |x∗〉 while the mean

amplitude stays positive we will end up increasing the amplitude of |x∗〉 while decreasing the

amplitude of all other states. After repeating O(
√
N) times the amplitude αx∗ will be likely

to be observed. Here the constants are important, as after a time the amplitude αx∗ will

start decreasing if the inner loop is iterated too much. When N is large (which it will be, for

our purposes) the loop should be run about π
4

√
N times for a high probability

(
≈ 1− 1

N

)
of

success [  63 ].

Grover’s algorithm can be slightly modified to run with k “buckets" in parallel (An

indeed this is the optimal method of parallelizing this algorithm, as shown by Zalka [ 64 ]).

Here rather than having a single oracle that we query during each iteration we have k oracles

operating on k buckets. Each bucket runs through the sequential Grover’s algorithm steps

over a total of N
k

elements. At the end we will make k observations rather than one, and

some slight work is required to determine if any of these is the correct answer. When running

in this mode each of the buckets must run for
√

N
k
iterations, with k−1 of these unknowingly

running on the empty oracle and one running with an oracle returning 1 as expected. Note

that when we run in this mode we require k oracles yet only see a speedup of
√
k. So, while

we get our answer faster we must do
√
k more work to get there. This means that if time is

no issue then it would always be better to run the sequential version of Grover’s algorithm.

However, we will later discuss situations where it may be worth taking the cost increase to

obtain information earlier.

Grover’s algorithm has clear security implications because of its ability to run a quantum

key-recovery attack i.e. it would be able to break symmetric key ciphers like AES. While
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a classical attack would need to try roughly 2n−1 keys before breaking a cipher Grover’s

algorithm can recover the key in O(2n/2) operations - a significant improvement. There is

a clear and quick solution to this problem - doubling key lengths. It would be possible to

provide security equivalent to a 128-bit key by moving to a 256-bit key, and so on. The

downside to this approach is that AES-128 is more efficient than AES-256. Furthermore, it

can be challenging to upgrade systems that have already been deployed e.g. when there is

some embedded system employing the cipher.

2.9 Post-quantum cryptography

Shor’s algorithm can be used to break any public key encryption scheme whose secu-

rity relies on the hardness of the integer factorization or discrete logarithm problem in

polynomial time. This includes the most widely deployed public key encryption/signature

schemes including RSA, EC-DSA, Schnorr Signatures, ECDH, etc. Thus, there is a need

to migrate towards “Post-Quantum” schemes that resist known quantum attacks like Shor’s

algorithm [  65 ,  66 ]. The U.S. National Institute of Standards and Technology (NIST) has

been working on developing a set of standards for post-quantum cryptography. NIST first

published a report on quantum cryptography in 2016 [ 66 ] which outlined their understanding

and future plans, and released a call for proposals in 2017 [ 65 ] and an update in 2019 [ 67 ].

In this document, NIST proposes that an attacker running an attack over one or ten years

be limited to a quantum circuit of 240 or 264 layers, respectively. This allows us to implicitly

derive speeds for quantum computers running these attacks. The current front-runners as

of NIST’s update [ 67 ] fall into a few common construction categories. Some of these include

lattice-based questions like the learning with errors problem (e.g. [  68 ]) which are conjectured

to be hard for quantum computers [ 69 ] or results from coding theory (e.g. [  70 ]).

2.10 Basic Rational Adversary Model

How we model a rational adversary often involves details specific to one type of attack.

However, there are still some characteristics that are common to all rational adversaries

discussed in this thesis. To begin, we define a rational adversary as an adversary who
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is attempting to maximize some function U representing their “utility" from running the

attack. The adversary’s utility is defined in terms of an action they take ~x from some set

of possibilities X. For example, a password guessing adversary might select the number

of guesses they will make on a particular password as their action. This utility function

U(~x) = R(~x)− C(~x) represents the difference between the attacker’s rewards R(~x) and the

attacker’s costs C(~x). A rational adversary selects an action ~x∗ such that

U(~x∗) = max
~x∈X

U(~x)

While we will often think of utility as a dollar amount in this thesis, this should not be

considered the only possible metric. So long as you are willing to accept some quantitative

evaluation for some motivation, be that profit, malice, or fun, that is consistent across the R

and C you can calculate some measurable utility for the adversary. The specifics of how an

adversary selects R, and to a much greater extent how we model their costs C, is dependent

on specific properties of the attack. We instantiate these functions with appropriate values

to form a rational adversary for a specific attack.

Armed with a specific rational adversary model we can also begin considering the question

of defenses. In this thesis, this is primarily done by finding methods of increasing the cost

function C(~x). Ideally, we would like to raise the cost function enough that a rational

adversary will always select the “do not attack" action to maximize their utility. If that

remains infeasible, we may instead try to find some defense that convinces an adversary to

choose an action that results in fewer damages to the defender.
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3. MODELING RATIONAL ATTACKER BEHAVIOR

This chapter contains sections taken verbatim from [ 3 ,  5 ,  4 ]

The first category of results we will discuss relates to modeling the behavior of rational

adversaries. By examining existing systems with potentially useful results for an adversary

using rational adversaries we can begin to develop a picture of how systems may be vulner-

able. Using our common example of a password-cracking adversary, we can use a rational

adversary model to predict the damage rational adversaries will cause (measured in terms

of the proportion of user accounts compromised). By noting that a rational adversary will

cause, in our opinion, unacceptable amounts of damage in a password cracking attack we

hope to convince the security community that this is an area of research that deserves atten-

tion. It is through rational adversary modeling that we can cast a spotlight on potentially

problematic situations to help advocate for improving existing systems.

3.1 On the Economics of Offline Password Cracking

In the last few years breaches at organizations like Yahoo!, Dropbox, Lastpass, Ash-

leyMadison, LinkedIn, and eBay have exposed over one billion user passwords to offline

password cracking attacks. Password hashing algorithms are a critical last line of defense

against an offline attacker who has stolen password hash values from an authentication server.

An attacker who has stolen a user’s password hash value can attempt to crack each user’s

password offline by comparing the hashes of likely password guesses with the stolen hash

value. Because the attacker can check each guess offline it is no longer possible to lockout

the adversary after several incorrect guesses.

An offline attacker is limited only by the cost of computing the hash function. Ideally,

the password hashing algorithm should be moderately expensive to compute so that it is

prohibitively expensive for an offline attacker to crack most user passwords e.g., by checking

millions, billions, or even trillions of password guesses for each user. It is perhaps encour-

aging that AshleyMadison, Dropbox, LastPass, and Yahoo! had adopted slow password

hashing algorithms like BCRYPT and PBKDF2-SHA256 to discourage an offline attacker
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from cracking passwords. In the aftermath of these breaches, the claim that slow password

hashing algorithms like BCRYPT [  71 ] or PBKDF2 [ 72 ] are sufficient to protect most user

passwords from offline attackers has been repeated frequently. For example, LastPass [ 73 ]

claimed that “Cracking our algorithms [PBKDF2-SHA256] is extremely difficult, even for

the strongest of computers.” Security experts have made similar claims about BCRYPT e.g.,

after the Dropbox breach [ 74 ] a prominent security expert confidently stated that “all but

the worst possible password choices are going to remain secure” because Dropbox had used

the BCRYPT hashing algorithm.

Are these strong claims about the security of BCRYPT and PBKDF2 true? Despite all

of their problems passwords remain prevalent and are likely to remain entrenched as the

dominant form of authentication on the internet for years to come because they are easy to

use and deploy, and users are already familiar with them [ 75 ,  76 ,  77 ]. It is therefore imperative

to develop tools to quantify the damages of password breaches and provide guidance to

organizations on how to store passwords. In this work we seek to address the following

question:

Can we quantitatively predict how many user passwords a rational attacker will

crack after a breach?

3.1.1 Contributions

We first develop a new decision-theoretic framework to quantify the damage of an offline

attack. Our model generalizes the Stackelberg game-theoretic model of Blocki and Datta [ 17 ].

A rational password attacker is economically motivated and will quit guessing once his

marginal guessing costs exceed his marginal reward. The attacker’s marginal reward is

given by the probability pi that the next (ith) password guess is correct times the value of

an additional cracked password to the adversary e.g., the additional revenue of selling that

password on the black market or the expected amount of additional money that could be

extorted from this user. Given the average value v of each cracked password for the adversary,

the cost k of computing the password hash function, and the probability distribution p1 >

p2 > . . . over user-selected passwords, our model allows us to predict exactly how many
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passwords a rational adversary will crack. Unlike the model of Blocki and Datta [ 17 ] we can

use our framework to model a setting in which the attacker encounters diminishing returns as

we would expect in most (black)markets i.e., the total value of 500 million cracked passwords

may be significantly less than 100 times the total value of 5 million passwords.

Second, we present the strongest evidence to date that Zipf’s law models the distribution

of user-selected passwords (with the possible exception of the tail of the distribution). These

findings strongly support previous conclusions of Wang and Wang [ 78 ]. In particular, we

show that Zipf’s law closely fits the Yahoo! password frequency corpus. This dataset was

collected by Bonneau [ 79 ] and later published by Blocki et al. [  80 ]. In contrast to datasets

from password breaches the Yahoo! dataset was collected by trusted parties and is represen-

tative of active Yahoo! users (researchers have observed that hacked datasets contain many

passwords that appear to be fake [ 81 ]). Our sample size, 70 million users, is also more than

twice as large as the datasets Wang and Wang[ 78 ] used to support their argument that Zipf’s

law closely models password datasets.

Third, we show that there is a finite threshold T (.) which characterizes the behavior of

a rational value v-adversary whenever the distribution over passwords follows Zipf’s law. In

particular, if the first cracked password has value v ≥ T (.)× k then the adversary’s optimal

strategy is always to continue guessing until he cracks the user’s password. The threshold

T (y, r, a) is parameterized by Zipf’s law parameters y and r and a parameter a representing

the rate of password value decay. We remark that, even if Zipf’s law fails to model the tail

of the password distribution, the threshold T (y, r, a) still provides a useful characterization

of the attacker’s behavior. In particular, if (1 − x)% of passwords in a distribution follow

Zip’s law and the other x% follow some unknown (possibly uncrackable) distribution then

our bounds imply that an attacker will compromise at least (1 − x)% of user passwords

whenever v ≥ T (y, r, a)× k.

Fourth, we also derive model-independent upper and lower bounds on the fraction of

passwords that a rational adversary would crack. While these bounds are slightly weaker

than the bounds we can derive using Zipf’s law these bounds do not require any modeling

assumptions e.g., it is impossible to determine for sure whether or not Zipf’s law fits the
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tail of the password distribution. Interestingly, the lower bounds we derive suggest that

state-of-the-art password crackers [ 82 ] could still be improved substantially.

Fifth, we apply our framework to analyze recent large-scale password breaches includ-

ing LastPass, AshleyMadison, Dropbox, and Yahoo! Our analysis strongly challenges the

claim that BCRYPT and PBKDF2-SHA256 provide adequate protection for user passwords.

If the password distribution follows Zipf’s law then our analysis indicates that a rational

attacker will almost certainly crack 100% of user passwords e.g., unless the value of Drop-

box/LastPass/AshleyMadison/Yahoo! passwords is significantly less valuable than black

market projections [ 83 ].

Finally, we derive model independent upper and lower bounds on the % of passwords

cracked by a rational adversary. These bounds do not rely on the assumption that Zipf’s law

models the tail of the password distribution 

1
 . Nevertheless, our predictions are still quite

dire e.g., a rational adversary will crack 51% of Yahoo! passwords at minimum. Our analysis

indicates that to achieve sufficient levels of protection with BCRYPT or PBKDF2, it would

be necessary to run these algorithms for well over a second on modern CPU which would

constitute an unacceptable authentication delay in many contexts [ 84 ]. On a more positive

note, our analysis suggests that the use of more modern password hashing techniques like

memory-hard functions can provide strong protection against a rational password attacker

without introducing inordinate delays for users during authentication. In particular, our

analysis suggests that it could be possible to reduce the % of cracked passwords below 22.2%

without increasing authentication delays to a full second.

3.1.2 Adversary Model

The Economics of offline password cracking focuses on a profit-motivated adversary play-

ing the following Stackelberg game:

1. The defender (server) selects some key stretching parameter k and hash function H

whose difficulty scales with F (k).
1Wang and Wang [ 78 ] observed that the tails of empirical password datasets are not inconsistent with a Zipf’s
law distribution. However, we cannot be entirely confident that Zipf’s law models the tail of the distribution
since, by definition, we do not have many samples for passwords in the tail of the distribution.
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2. The adversary selects some threshold B for the number of guesses they will make

against each password

3. The adversary is given one user-generated password record from the server and wins

if they correctly guess the password within B guesses.

We consider an adversary who is playing this game and seeks to maximize some utility

function based on this guessing threshold B. To model this we set up a reward function

R(B), a cost function C(B), and a utility function U(B) = R(B) − C(B). The reward

function is given according to some value of the password v as estimated by the adversary

(and in the paper is based on estimates from [  83 ]). We also assume that the adversary

has access to the distribution of user-chosen passwords Π = {π1, π2, . . . , πw}. Given these

parameters an adversary making B guesses would have the reward function:

R(B) = v
B∑
i=1

πi

Cost is then defined as

C(B) = c
B∑
i=1

iπi

where c is the cost to make a single guess. Combining these gives the adversaries expected

profit function

U(B) = R(B)− C(B) = v
B∑
i=1

πi − c
B∑
i=1

iπi

An adversary wanting to maximize their profit will select some optimal guessing number B∗

that maximizes P . Intuitively this happens at the point where the cost to make one extra

guess exceeds the expected reward of making that guess, at which point the adversary stops.

This base profit function may be modified to more accurately represent market conditions.

During a breach a large number of cracked accounts may be available for sale, flooding the

market which reduces the price. To model this supply/demand interaction we introduce a

discounting factor α ∈ [0, 1] that reduces the value of passwords are more are sold. This

causes the reward function to slowly taper off, modeling the way prices decrease when a
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market is flooded with products. The reward and profit functions are respectively modified

as:

R(B) = v

 t∑
j=1

pj

α

U(B) = v

 t∑
j=1

pj

α − c B∑
i=1

iπi

3.1.3 Yahoo! Passwords follow Zipf’s Law

Zipf’s law states that the frequency of an element in a distribution is related to its rank

in the distribution. There are two variants of Zipf’s law for passwords: PDF-Zipf and CDF-

Zipf. In the CDF-Zipf model we have λt = ∑t
j=1 pi = y · tr, where the constants y and r are

the CDF-Zipf parameters. In the PDF-Zipf model we have fi = C
is
, where s and C are the

PDF-Zipf parameters. Normalizing by N the number of users we have pi = z
is
, where z = C

N
.

Wang et al. [ 85 ] previously found that password frequencies tend to follow PDF-Zipf’s

law if the tail of the password distribution (e.g., passwords with frequency fi < 5) is dropped.

Wang and Wang [ 78 ] subsequently found that CDF-Zipf’s model is superior in that the CDF-

Zipf fits were more stable than PDF-Zipf fits and that the CDF-Zipf fit performed better

under Kolmogorov-Smirnov (KS) tests. Furthermore, the CDF-Zipf model can fit the entire

password distribution (e.g., without excluding passwords with frequency fi < 5). These

claims were based on analysis of several smaller password datasets (N ≤ 32.6 million users)

which were released by hackers.

In 2016 Yahoo! allowed the release of a differentially private list of password frequencies

for users of their services [ 80 ]. We refer an interested reader to [ 79 ,  80 ] for additional details

about how the Yahoo! data was collected and how it was perturbed to preserve differential

privacy. The Yahoo! dataset is superior to other datasets in that it offers the largest sample

size N = 70 million and the dataset was collected and released by trusted parties. We show

that the Yahoo! dataset is also well modeled by CDF-Zipf’s law. Our analysis comprises

the strongest evidence to date of Wang and Wang’s premise [ 78 ] that password distributions

follow CDF-Zipf’s law due to the advantages of the Yahoo! dataset. We focus on the CDF-

Zipf’s law model in this section since it can fit the entire password distribution [  78 ]. We also
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verified that the Yahoo! dataset is also well modeled by PDF-Zipf’s law if we drop passwords

with frequency fi < 5 like Wang et al. [ 85 ], but we omit this analysis from the submission

due to lack of space.

On Ecological Validity

The Yahoo! frequency corpus offers many advantages over breached password datasets

such as RockYou or Tianya.

• The Yahoo! password frequency corpus is based on 70 million Yahoo! passwords

— more than twice as large as any of the breached datasets analyzed by Wang and

Wang [ 78 ].

• The records were collected in a trusted fashion. No infiltration, hacking, tricks, or

general foul play was used to obtain any of this data. There was no ulterior motive

behind collecting these passwords other than to provide valuable data in a way that

can be used for scientific research. By contrast, it is possible that hackers strategically

omit (or inject) password data before they release a breached dataset like RockYou or

Tianya! Why should we trust rogue hackers to provide researchers with representative

password data?

• Breached password datasets often contain many passwords/ accounts that look sus-

piciously fake. In 2016 Yang et al [ 81 ] suggested that such passwords can be removed

with DBSCAN [ 86 ]. Cleansing operations ended up removing a reasonable portion

of the dataset (e.g., 5 million passwords were removed from RockYou’s data). With

the Yahoo! data such cleansing is not needed, as it was collected in a manner that

ensured collected passwords were in use. Previous work that has been done on Zipf

distributions in breached password datasets [ 78 ] did not perform any sort of sanitizing

step on the data. It is unclear how such operations would affect the Zipf law fit.

• The information is released in a responsible way that preserves users’ privacy. The

differential privacy mechanism means that even with the released data it is not pos-
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Table 3.1. Impact of Differential Privacy on CDF Fit
List Version y σy
RockYou Standard 0.0288
RockYou Diff. Private 0.0302 1.348 ∗ 10−6

r σr
RockYou Standard 0.2108
RockYou Diff. Private 0.2077 2.94 ∗ 10−6

R2 σR2

RockYou Standard 0.9687
RockYou Diff. Private 0.9681 6.50 ∗ 10−7

sible to determine any new information about Yahoo’s users that an adversary would

not be able to obtain anyways.

• Data from the Yahoo! password frequency corpus ultimately is derived from the

passwords of active Yahoo! users who were logging in during the course of the study

as opposed to passwords from throwaway accounts that have been long forgotten.

On the Impact of Differential Privacy on CDF-Zipf Fits

The published Yahoo! password frequency lists were perturbed to ensure differential

privacy. Before attempting to fit this dataset using Zipf’s law we seek to answer the following

question: Does this noise, however small, affect our CDF-Zipf fitting process in any significant

way? We claim that the answer is no, and we offer strong empirical evidence in support of this

claim. In particular, we took the RockYou dataset (N ≈ 32.6 million users) and generated

30 different perturbed versions of the frequency list by running the (ε, δ)-differentially private

algorithm of Blocki et al. [ 80 ]. We set ε = 0.25, the same value that was used to collect the

Yahoo! dataset that we analyze. For each of these perturbed frequency lists, we compute

a CDF-Zipf law fit using linear least squares regression. To apply Linear Least Squares

regression we apply logarithms to the CDF-Zipf equation λt = y · tr to obtain a linear

equation log λt = log y + r log t.

Our results, shown in Table  3.1 , strongly suggest that the differential privacy mechanism

does not impact the parameters y and r in a CDF-Zipf fitting in any significant way. In
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Table 3.2. Yahoo! CDF-Zipf with Sub-sampling
Sample
Size (Mil-
lions)

y r R2

15 0.00949 0.2843 0.9542
30 0.01321 0.2544 0.9531
45 0.01592 0.2384 0.9529
60 0.01810 0.2277 0.9530
Full 0.02112 0.2166 0.9544

particular, the parameters y and r we obtain from fitting the original data with a CDF-Zipf

model are virtually indistinguishable from the parameters we obtain by fitting on one of

the perturbed datasets. Similarly, differential privacy does not affect the R2 value of the

CDF-Zipf fit. Here, R2 measures how well the linear regression models the data (R2 values

closer to 1 indicate better fittings). Thus, one can compute CDF-Zipf’s law parameters for

the Yahoo! data collected by [ 80 ] and [ 79 ] without worrying about the impact of the (ε, δ)-

differentially private algorithm used to perturb this dataset. We also verified that the noise

added to the Yahoo! dataset will also have a negligible effect on the parameters s and z in

a PDF-Zipf fitting.

Testing Stability of CDF-Zipf Fit via Subsampling

There are two primary ways to find a CDF-Zipf fit: Golden Section Search (GSS) and

Linear Least Squares (LLS). Wang et al. [  78 ] previously found that CDF-Zipf fits stabilize

more quickly with GSS than with LLS. This was particularly important because the largest

dataset they tested had size ≈ 3 × 107. In this section, we test the stability of LLS by

subsampling from the much larger Yahoo! dataset. In particular, we subsample (without

replacement) datasets of size 15 million, 30 million, 45 million, and 60 million and use LLS

to compute the CDF-Zipf parameters y and r for each subsampled dataset. Our results

are shown in table  3.2 graphically in Figure  3.1 . While the CDF-Zipf fit returned by LLS

does take longer to stabilize our results indicate that it does eventually stabilize at larger

(sub)sample sizes (e.g., the Yahoo! dataset).
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Figure 3.1. Yahoo! CDF-Zipf Subsampling
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We also found that the PDF-Zipf parameters s and z stabilize before N = 7×107 samples.

Fitting the Yahoo! data set with CDF-Zipf

We used both LLS regression and GSS to obtain separate CDF-Zipf fittings for the

Yahoo! dataset. The results, shown in table  3.3 show that both methods produce high-

quality fittings. In addition to the parameters y and r we report R2 values and Kolmogorov-

Smirnov (KS) distance. The KS test can be thought of as the largest distance between

the observed discrete distribution Fn (x) and the proposed theoretical distribution F (x).

Formally,

DKS = sup |Fn(x)− F (x)|

Intuitively, smaller DKS values (resp. larger R2 values) indicates better fits.

Discussion

Both LLS and GSS produce high-quality CDF-Zipf fittings (e.g., R2 = 0.9544) for the

Yahoo! dataset. LLS regression outperforms the golden section search under both R2 and

Kolmogorov-Smirnov (KS) tests. Wang and Wang [ 78 ] had previously adopted golden section

search because the results stabilized quickly. While this was most likely the right choice for

smaller password datasets like RockYou, our analysis in the previous section suggests that

LLS eventually produces stable solutions when the sample size is large (e.g., N ≥ 60 million

samples) as it is in the Yahoo! dataset. Thus, in the remainder of the paper, we use the

CDF-Zipf parameters y = 0.0211 and = 0.2166 from LLS regression. We stress that the

decision to use the CDF-Zipf parameters from LLS instead of the parameters returned by

GSS does not affect our findings in any significant way.

We remark that LLS is also more efficient computationally. While we were able to run

GSS to find a CDF-Zipf fit for the Yahoo! dataset (N ≈ 7× 107), running GSS on a dataset

of N = 1 billion passwords (e.g., the size of the most recent Yahoo! breach [ 87 ]) would be

difficult if not intractable. By contrast, LLS could still be used to find a CDF-Zipf fitting

and our analysis suggests that the fit would be superior.
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Table 3.3. Yahoo! CDF-Zipf Test Results
Method y r R2 KS
LLS 0.0211 0.2166 0.9544 0.0094328
GSS 0.03315 0.1811 0.9498 0.022282
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Table 3.4. CDF-Zipf threshold T (y, r, a) < v/k at which adversary cracks
100% of passwords for a ∈ {1, 0.8}.

Dataset y r T (y, r, 1) T (y, r, 0.8)
RockYou 0.0374 0.1872 1.70× 107 2.04× 107

000webhost 0.0059 0.2816 3.67× 107 4.27× 107

Battlefield 0.0103 0.2949 2.37× 106 2.77× 106

Tianya 0.0622 0.1555 2.28× 107 2.76× 107

Dodonew 0.0194 0.2119 4.92× 107 5.87× 107

CSDN 0.0588 0.1486 7.63× 107 9.24× 107

Mail.ru 0.0252 0.2182 8.75× 106 1.04× 107

Gmail 0.0210 0.2257 1.14× 107 1.36× 107

Flirtlife.de 0.0346 0.2916 4.44× 104 5.19× 104

Yahoo! 0.0211 0.2166 2.25× 107 2.69× 107

3.1.4 Analysis of Rational Adversary Model for Zipf’s Law

In this section, we show that there is a finite threshold T (y, r, a) which characterizes the

behavior of a rational offline adversary when user passwords follow CDF-Zipf’s law with

parameters y and r i.e., λi = yir. In particular, Theorem  3.1.1 gives a precise formula for

computing this threshold T (y, r, a) 

2
 . If v/k ≥ T (y, r, a) then a rational value v adversary will

proceed to crack all user passwords as marginal guessing rewards will always exceed marginal

guessing costs for a rational attacker. In Table  3.4 we use this formula to explicitly compute

T (y, r, a) for the Yahoo! dataset as well as for nine other password datasets analyzed by

Wang and Wang [ 78 ].

We note that we choose to focus on CDF-Zipf’s law in this section as it is believed to be

better than PDF-Zipf models. However, we stress that similar bounds can be derived using

PDF-Zipf’s law.

Theorem 3.1.1. Let k denote the cost of attempting a password guess. If

v

k
≥ T (y, r, a) = max

t≤Z

(
1− y(t− 1)r
ya(ra)tra−1

)
2We remark that when a = 1 it is possible to derive a closed-form expressing for the threshold T (y, r, a).
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where

Z =

(

1
y

)1/r
+ 1

then a value v rational attacker will crack 100% of passwords chosen from a Zipf’s law

distribution with parameters y and s.

Proof. Suppose a password frequency distribution follows Zipf’s Law, for some parameters

0 < r < 1 and y, so that λn = ynr. Since the marginal revenue is MR(t) = v(λat − λat−1)

and the marginal cost is MC(t) = k
(
1−∑t

n=1 pn
)
, a rational adversary can be assumed to

continue attacking as long as MR(t) ≥MC(t). Therefore, the attacker will not quit as long

as

v(λat − λat−1) ≥ k

(
1−

t∑
n=1

pn

)

v(yatra − ya(t− 1)ra) ≥ k(1− y(t− 1)r)

In particular, the attacker will not quit as long as

v

k
≥ 1− y(t− 1)r
yatra − ya(t− 1)ra .

Notably, if v
k
≥ maxt

(
1−y(t−1)r

yatra−ya(t−1)ra
)
for all t, then a rational adversary will eventually crack

all passwords. For g(t) := ya(ra)tra−1, we have yatra − ya(t − 1)ra =
∫ t
t−1 g(x) dx. Since

ra ≤ 1, then g(t) ≤ g(x) ≤ g(t − 1) for all x ∈ [t − 1, t]. Thus we have ya(ra)tra−1 ≤

yatra − ya(t− 1)ra ≤ ya(ra)(t− 1)ra−1 and

max
t

(
1− y(t− 1)r

yatra − ya(t− 1)ra

)
≤ max

t

(
1− y(t− 1)r
ya(ra)tra−1

)
.

Thus, it suffices to prove that v
k
≥ maxt f(t) where f(t) :=

(
1−y(t−1)r
ya(ra)tra−1

)
. From the theorem

statement we have v
k
≥ f(t) holds for any t ≤ Z; it remains to argue that the same is true

when t > Z. Since we already know that f(Z) ≤ v/k, it suffices to show that the function

f(·) is decreasing over [Z,∞) i.e., f(t) ≤ 0 for all t ≥ Z.
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We calculate the derivative f(t) as follows

f(t) = −(t− 1)r−1t1−ray1−a

a

+ (1− ra)t−ray−a(1− (t− 1)ry)
ra

,

so that f(t) ≤ 0 if and only

(1− ra)y−a(1− (t− 1)ry)
ratra

≤ y1−at(t− 1)r−1

atra

(1− ra)(1− (t− 1)ry) ≤ yt(t− 1)r−1r

(1− ra) ≤ y(t− 1)r−1((t− 1)(1− ra) + tr).

Since (t − 1)(1 − ra) ≤ (t − 1)(1 − ra) + tr, then the last expression certainly holds true if

(1− ra) ≤ y(t− 1)r−1(t− 1)(1− ra) or equivalently, 1
y
≤ (t− 1)r. Since Z :=

⌈
1 +

(
1
y

)1/r
⌉
,

it follows that f(t) ≤ 0 for all t ≥ Z.

3.1.5 Analysis of Previous Password Breaches

In this section, we apply our economic model to analyze the consequences of recent

password breaches and the impact of defenses that could have been adopted. While there

have been hundreds of breaches [ 88 ] we select the 2014 Yahoo! breach [  89 ], the 2016 Dropbox

breach [ 74 ], the 2015 LastPass breach [ 13 ], and the 2015 AshleyMadison leak [ 90 ].

Estimating v

The value v represents the value per password when all passwords are released on the

market. Thus, although the actual black market prices may vary with supply, the parameter

v is fixed. Our estimate of this value parameter will depend on the current black market price,

and model parameter a (diminishing returns). In Table  3.5 we show various estimates of v

obtained from multiple estimates of black market password prices. These estimates include

measurements from Fossi [ 83 ] and more recent estimates from [ 91 ], which finds that Yahoo!

passwords go for 0.70-1.20 USD on the black market. To obtain the estimates in Table  3.5 ,
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we assume that the black market prices were observed when just 1% of the passwords were

on the market. This allows us to estimate the value v if all passwords were to be released.

We remark that the difference between the two estimates [  91 ] and [ 83 ] may be explained

due to additional black market supply. We view a = 0.8 as substantial diminishing returns

e.g., the marginal revenue decreases by a factor of 1/3 when the attacker compromises all

accounts. An interesting direction for future work may be to estimate the parameter a from

a longitudinal study of black markets.

Translating between v and v$

Bonneau and Schechter [  92 ] observed that in 2013, Bitcoin miners were able to perform

approximately 275 SHA-256 hashes in exchange for bitcoin rewards worth about $257M .

Correspondingly, one can estimate the cost of evaluating a SHA-256 hash to be approximately

CH = $7 × 10−15. Alternatively, the cost can be viewed as the economic opportunity cost

of evaluating each hash function (for instance, renting a botnet or computing on a cloud

platform.) Because Bitcoin mining is almost exclusively performed on application-specific

integrated circuits (ASICs) the above cost analysis implicitly assumes that the attacker is

willing to fabricate an ASIC to evaluate PBKDF2-SHA256 or BCYRPT. We contend that

this is a plausible scenario for a rational attacker since fabrication costs would amortize over

the number of user accounts being attacked (e.g., 500+ million). Furthermore, we note that

an attacker who is not willing to pay to fabricate an ASIC could obtain similar performance

gains using a field-programmable gate array (FPGA).

3.1.6 Empirical Results

In section  3.1.4 we showed that, if passwords follow CDF-Zipf’s law with parameters y

and r, and v/k ≥ T (y, r, a) then a rational adversary will crack 100% of user passwords.

Figure  3.3 plots v = k × T (y, r, 0.8) for various thresholds from Table  3.4 including Yahoo!

and RockYou. Thus, for a point (v, τ) lying on the blue line, a value v rational adversary

will crack 100% of Yahoo! passwords when he can compute the hash function at cost k = τ .

Note that τ = k for hash functions like BCRYPT and PBKDF2 — the ones used by Yahoo!,
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Table 3.5. v conversion chart
R(t1%) (USD) a = 0.8 a = 0.9 a = 1.0

0.70 0.28 0.44 0.70
1.20 0.48 0.76 1.20
4.00 1.59 2.52 4.00
30.00 11.94 18.93 30.00
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Dropbox τ
AshleyMadison τ
NIST τ (min)
LastPass τ

τ = 107 (1sec)

Figure 3.2. v/k = T (y, r, 0.8) for RockYou, CSDN and Yahoo!

Dropbox, AshleyMadison, and LastPass. For reference, Figure  3.3 includes the actual values

of τ selected by AshleyMadison, Dropbox and LastPass as well as the value τ = 107. Bonneau

and Schechter estimated that SHA256 can be evaluated 107 times in 1 second on a modern

CPU [ 92 ]. Thus, 107 upper bounds the value of τ that one could select without delaying

authentication for more than 1 second when using PBKDF2-SHA256.

The plots predict that, unless we set τ � 107, the adversary will crack 100% of passwords

in almost every instance. In particular, the levels of key-stretching performed by Dropbox,

AshleyMadison and even Lastpass are all well below the thresholds necessary to protect

Yahoo!, RockYou, or CSDN passwords.

While we do not have CDF-Zipf parameters for other breaches such as AshleyMadison,

Dropbox, or LastPass, we do have the value τ = k for each of these breaches. Figure  3.5 

plots v = k × T (y, r, 0.8) only this time we hold k constant and allow T (y, r, 0.8) to vary.
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Figure 3.3. v$ vs. τ for v = k × T (y, r, 0.8)
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Figure 3.4. Minimum V at which all passwords are cracked by an economic adversary
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Figure 3.5. v$ versus T (y, r, 0.8) when v = k × T (y, r, 0.8), at fixed values of k
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For example, in the black line we fix k = τ = 105 since LastPass used PBKDF2-SHA256

with τ = 105 hash iterations and allow T (y, r, 0.8) to vary. The vertical lines represent

the thresholds T (y, r, 0.8) we derive from CDF-Zipf’s law fits for RockYou, Tianya, and

Yahoo! Table  3.4 shows the value of T (y, r, 0.8) obtained from 10 different password datasets.

Observe that in all of cases we had T (y, r, 0.8) ≤ 7.64 × 107. As in Figure  3.4 the y-axis

in Figure  3.5 is scaled to show the value v$ in USD (estimated). Thus, if Dropbox (resp.

AshleyMadison/LastPass) passwords have comparable strength to Yahoo! passwords (resp.

Tianya, RockYou) then a rational adversary would crack 100% of these passwords. Indeed,

Figure  3.5 shows that unless the thresholds T (y, r, a) for Dropbox/LastPass/AshleyMadison

are significantly larger than the previously observed thresholds, a rational adversary would

be compelled to crack all passwords, given the range of password values. For example, even

if the threshold T (y, r, a) for Dropbox exceeds the threshold for Yahoo! by four orders of

magnitude then the adversary will still crack 100% of these passwords.

3.1.7 Discussion

Figures  3.3 ,  3.4 and  3.5 paint a grim picture. PBKDF2 and BCRYPT most likely provide

dramatically insufficient protection for most AshleyMadison, Dropbox, Yahoo! and LastPass

users — even if we used the lowest estimation of the value parameter v from Table  3.5 

(v$ = 0.28 USD) and we assume that the attacker faces substantial diminishing returns

(a = 0.8) for additional cracked passwords. Furthermore, it would not have been possible

to provide sufficient protection for users using PBKDF2 or BCRYPT without introducing

intolerable authentication delays (≥ 1 second).

Our analysis assumes that the password distribution truly follows CDF-Zipf’s law. While

previous research (e.g., [  85 ,  78 ] and our results in Section  3.1.3 ) strongly supports the hypoth-

esis that most of the password distribution follows Zipf’s law, it is not possible to definitively

state that the tail of the password distribution does not follow Zipf’s law since each of the

passwords in the tail were (by definition) observed with low frequency. We stress that even if

CDF-Zipf’s law does not fit the tail of the password distribution that T (y, r, a) still charac-

terizes adversary behavior. For example, suppose that the (100− x)% of passwords follow a
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Zipf’s law distribution with parameters y, r while x% of passwords in the tail of the password

distribution do not. In this case, whenever v/k ≥ T (y, r, a) we a rational adversary will crack

at least (100− x)% of the user’s passwords which follow Zipf’s Law.

3.1.8 Memory Hard Functions

Given the bleak picture painted by this analysis, the natural question is how to remedy the

problem. One of the strongest factors leading to this result is the absurdly cheap evaluation

of a base hash function and the way costs scale linearly with the key stretching parameter

when using hash iteration. To solve this issue we show that Memory-Hard Functions are

capable of raising the v/k ratio enough to offer users substantially stronger protections in

the same amount of time. Because Memory-Hard Functions introduce a memory read/write

bottleneck into the computation an adversary loses much of the advantage they could have

gained by using an ASIC, drastically increasing the cost per guess. Second, MHFs introduce

a τ 2 factor into computation (in an honest evaluation). This further increases costs as τ

increases. We find that when identical password distributions are present alongside identical

values of τ MHFs offer much more significant protection against offline attacks. As shown in

Figure  3.6 when a value is set at v = $4 and about 1 second of computation we can protect

≈ 85% of users who would have been cracked using the same parameters with hash iteration.

This provides very strong evidence that MHFs should be required for password hashing, and

is one of the official recommendations made in this paper [  3 ].

3.1.9 Discussion

Our economic analysis decisively shows that traditional key-stretching tools like PBKDF2

and BCRYPT fail to provide adequate protection for user passwords, while memory-hard

functions do provide meaningful protection against offline attackers. It is time for organiza-

tions to upgrade their password hashing algorithms and adopt modern key-stretching such

as memory-hard functions [ 32 ,  38 ]. Alternatively, could a creative organization adapt cus-

tomized Bitcoin mining rigs for use in password authentication? For example, the Antminer

S9 [ 31 ], currently available on Amazon for approximately $3, 000, is capable of computing
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SHA256 14 trillion times per second. If the organization stored salted and peppered [ 93 ,  17 ]

password hash values u, su, SHA256(pwdu|su|pu) then it could potentially use the Antminer

S9, or a similar Bitcoin mining rig, to validate a password by quickly enumerating over a

(very) large space of secret pepper values p (briefly, a secret salt value that is not stored

which even an honest party must brute force).

While our analysis demonstrates that the use of memory-hard functions can signifi-

cantly reduce the fraction of cracked passwords, the damage of an offline attack may still

be significant. Thus, we recommend that organizations adopt distributed password hash-

ing [  94 ,  95 ,  96 ,  97 ] whenever feasible so that an attacker who only breaches one authentication

server will not be able to mount an offline attack. Furthermore, we recommend that orga-

nizations take additional measures to mitigate the effect of an authentication server breach.

Solutions might include mechanisms detect password breaches through the use of honey ac-

counts or honey passwords[  98 ], multi-factor authentication, and fraud detection/correction

algorithms to prevent suspicious/harmful behavior [ 99 ].

While solid options for password hashing and key-derivation exist [  32 ,  38 ,  16 ,  15 ] the

reality is that many organizations and developers select suboptimal password hashing func-

tions [ 100 ,  101 ]. Thus, there is a clear need to provide developers with clear guidance about

selecting secure password hash functions. On a positive note, recent 2017 NIST guidelines

do suggest the use of memory-hard functions. However, NIST guidelines still allow for the

user of PBKDF2 with just 10, 000 hash iterations. Based on our analysis we advocate that

password hashing standards should be updated to require the use of memory-hard functions

for password hashing and disallow the use of non-memory hard functions such as BCRYPT

or PBKDF2. It may be expedient for policy makers to audit and/or penalize organizations

that fail to follow appropriate standards for password hashing.

We recommend that users primarily focus on selecting passwords that are strong enough

to resist targeted online attacks [ 102 ] as there is often a vast gap between the required entropy

to resist online and offline attacks [  77 ]. Extra user effort to memorize a high entropy password

might be completely wasted if an organization adopts poor password hashing algorithms like

SHA1, MD5 [ 90 ] or the identity function [ 100 ]. This effort would likely be more productively

spent on trying to reduce password reuse [ 103 ].
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3.2 Quantifying the Damage of Password Length Leakage

In any efficient encryption scheme there is necessarily some relationship between plaintext

length and ciphertext length e.g., consider encrypting a 2MB jpeg image vs encrypting a 2GB

mp4 movie. Vincent Guido [ 104 ] observed that (unpadded) SSL traffic can leak information

about password lengths, and introduced the name “bicycle attack” in reference to the fact

that a gift-wrapped bicycle still looks like a bicycle. Thus, whenever plaintext-length might

be viewed as a sensitive attribute it is recommended that an application developer should pad

the plaintext message before encryption [ 105 ]. For example, the RFC for TLS 1.2 includes

the following caveat:

Note in particular that the type and length of a record are not protected by encryption.
If this information is itself sensitive, application designers may wish to take steps
(padding, cover traffic) to minimize information leakage.

Authenticated Encryption with Associated Data (AEAD) ciphers simultaneously guaran-

tees both message integrity and confidentiality. A recent longitudinal study of TLS Deploy-

ment found a dramatic rise in the percentage of TLS connections using AEAD cipher such

as AES128-GCM, AES256-GCM, and ChaCha20-Poly1305 since 2013 [ 106 ] i.e., roughly 80%

of TLS connections used either AES128-GCM or AES256-GCM in April, 2018. In all three

AEAD schemes there is a one to one relationship between the length of some ciphertext and

the length of the original plain text message. This 1-1 relationship can be viewed as a feature

of the cipher as it allows for significantly shorter ciphertexts i.e., a 2 byte message would not

need to be padded to a 16-byte (AES128-GCM) or 32-byte message (AES256-GCM) before

encryption. However, the 1-1 relationship means that an eavesdropping attacker to infer the

exact length of each transmitted message from the intercepted ciphertext. The responsibil-

ity of identifying cases where the length of a plaintext message is potentially sensitive and

ensuring that such messages are appropriately padded is left to the application developer.  

3
 

3For example, the RFC for TLS 1.3 [ 107 ] explicitly says “Selecting a padding policy that suggests when and
how much to pad is a complex topic and is beyond the scope of this specification.”
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3.2.1 Attacker Model

We consider three types of attackers, their capabilities, and motivations to compromise

an account. This will help us create a threat model before gaining information leaked from

GCM. We then can compare any increases in capability or willingness to understand the

severity of the information leakage.

• Hacker The first attacker is a hacker and is capable of controlling local networks,

either on the Sender or Recipient side of the connection. The hackers are motivated

by the challenge of compromising an account and does not look to directly profit from

the hack. The hacker’s willingness to compromise an account waivers in the face of

systems with multiple security controls or a monetary cost of more than 0-100 (USD),

because the account’s perceived value to the hacker’s ego does not exceed its cost of

100.

• Criminal The second attacker is a criminal with the capability to control local net-

works and several organization-wide networks. The criminal is financially motivated

to only compromise accounts whereby the payoff is at least ten times the cost [  108 ].

In most cases, the criminal will spend between 100-1,000 (USD) to compromise an

individual account, because its perceived value to financial profit does not exceed its

cost of 1,000 (USD).

• Nation-State The third attacker is a nation-state. The nation-state can compro-

mise local and organizational networks and also control large segments of the Internet

such as Internet Service Providers. The nation-state is primarily motivated by under-

standing threats to its citizens or interests and is only willing to conduct multi-year

campaigns against accounts threatening its security or sovereignty. In most cases,

we assume the nation-state is willing to spend between 1000-10,000 (USD) to com-

promise an individual account because the perceived value in the information gained

from the compromised account does not exceed its cost of 10,000. While we do not

know the targeted account’s subjective worth, we assume a rational adversary is not

willing to pay more than its perceived value.

52



A nation-state (and perhaps a sophisticated criminal) might have the capability to eaves-

drop on network traffic on a broader scale to obtain (username, password length) pairs at

scale e.g., using a DNS Hijacking attack. Similarly, a nation-state (and perhaps a sophisti-

cated criminal) might have the ability to coerce an internet service provider to reveal logs

associating specific users with the different IP addresses they were assigned over time.

Password spray campaigns typically target single sign-on (SSO) and cloud-based appli-

cations using federated authentication. For example - in February 2018, the United States

Department of Justice indicted nine Iranian nationals a part of the Mabna Institute for com-

puter intrusions using password spraying [ 109 ]. While nation-states might be intrinsically

motivated to conduct persistent and long-term campaigns, would an extrinsically motivated

attacker being as willing to use a password-spraying technique? To help answer this question,

we conduct an economic analysis. If the information leaked doubles an attacker’s capability

or willingness to conduct the attack, then we consider the information leak to be severe,

because our data suggests doubling the adversarial advantage begins to show a clear change

in the related monetary, decision-making, and temporal characteristics. We want to create

a threat model whereby the attackers have a spectrum of capabilities and willingness to

compromise targets of interest. Examples of severe information leakage might include the

compromise of the session key, allowing an attacker to understand the underlying plain text

without decryption, or increasing the capability beyond their stated initial set of capabilities

to bypass a security control.

3.2.2 Security and Privacy Impact of Password Length Leakage

In this section, we aim to quantify the damages of password length leakage. In our

analysis, we suppose that an online password attacker attempts to crack the user’s password

by repeatedly attempting the most popular passwords from a dictionary. We assume that

the authentication server uses secure CAPTCHAs to rate limit the attacker (e.g., Gmail

authentication). Thus, an attacker must pay human workers to solve a CAPTCHA after

each incorrect guess. If the attacker knows the length of the password in advance then the

attacker can eliminate passwords from the dictionary.
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We aim to answer the following questions: (1) How many additional passwords will an

online attacker crack when given the length of each password? (2) How much does password

length leakage monetarily benefit the attacker? We stress that questions (1) and (2) ask

very different questions. The answer to the first question tells us how many additional user

accounts will be compromised if password lengths are revealed to a rational attacker. The

answer to the second question allows us to predict whether or not the cost of eavesdropping

(equipment, manpower) on network traffic outweighs the benefit of learning password lengths.

To address these questions, we adapt a game-theoretic model introduced by Blocki and

Datta [  110 ] to model an offline password attacker.

Constrained Attacker

Before introducing our decision-theoretic model, we first consider a constrained online

password attacker who either gives up or gets locked out after B incorrect guesses. This will

give us the chance to introduce key notation.

Notation Let D denote the distribution over user selected passwords P and we let pi =

Prpwd←D [pwd = pwdi] denote the probability that a user selects the i’th most popular

password pwdi ∈ P e.g. ,pi ≥ pi+1. We also P` = {x ∈ P : |x| = `} ⊆ P denote the set of

all passwords with length ` and

p`i = Pr
pwd←D

[
pwd = pwdi` pwd ∈ P`

]

where i` is the index of the i’th most popular password in the set P`. Observe that we

have p`1 ≥ p`2 ≥ . . . for each ` ≥ 1. For notational convenience we also write Pr
[
P`
]

=

Prpwd←D
[
pwd ∈ P`

]
.

Experiment 1: Unknown Lengths with B Guesses.

A user selects a random password pwd ← D and an attacker attempts to guess the

password online. We assume an attacker who knows the distribution D, but not the specific

password and that the attacker either gives up or gets locked out after B guesses. The
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attacker best strategy is to try the B most likely guesses in the distribution pwd1, . . . , pwdB.

The attacker will succeed with probability λB = ∑B
i=1 pi. Conditioning on the event that

the user’s password has length ` (i.e., pwd ∈ P`) and that the length ` is unknown to the

attacker, the attacker will succeed with probability

λB,` = Pr
pwd←D

[
pwd ∈

B⋃
i=1
{pwdi} pwd ∈ P`

]
.

Experiment 2: Known Lengths with B Guesses

This experiment is exactly like experiment one except that after we sample pwd← D the

length |pwd| of the password is revealed to the attacker. If the attacker knows the password

length is ` (i.e., pwd ∈ P`), then the attacker succeeds with probability

λ∗B,` =
B∑
i=1

p`i .

If the attacker attempts the B most likely guesses before giving up then he will succeed with

probability

λ∗B =
∑
`

Pr
[
P`
]
λ∗B,` .

Analysis

Table  3.6 compares the success rate of the attacker with (λ∗B) and without (λB) knowledge

of the passwords length for various guessing limits B. The results show that the attacker’s

success rate increases significantly when the password length is known, e.g., a criminal at-

tempting B = 105 guesses per user using the LinkedIn distribution would crack nearly 35%

of passwords with knowledge of password length compared to 24% without this knowledge,

or about 50%. Table  3.7 compares the attacker’s conditional success rate with (λ∗B,`) and

without (λB,`) knowledge of the passwords length conditioning on the event that the user’s

password has length  ̀

4
 . Surprisingly, even for longer lengths such as ` = 30 an attacker

4Table  3.7 only shows information from the Rockyou leak. This is because the calculation of λB,` requires
a list showing the exact order of passwords as well as their frequencies. It is not enough to know something
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still may have a reasonably high success rate with a smaller guessing limit B. For example,

λ∗B,` ≈ 4.5% at just B = 10 guesses against the Rockyou list when password length is a

large as ` = 30. 

5
 By contrast, when the attacker does not know the length we have λB,` = 0

when ` = 30 even if the attacker tries up to B = 288, 046 guesses! This is because there

are 288, 046 passwords with length ` 6= 30 that are more popular than the most popular

password of length 30.

Limitations of the LinkedIn and Rockyou Datasets.

A general limitation of empirically defined password distributions is that they almost

certainly overestimate the probability of passwords at the tail of the distributions, e.g., for

any password pwdi that was observed once in the Linkedin dataset we estimate that pi is at

most pi = 1/N ≥ 5.73 × 10−9. The Linkedin dataset contains 1.7 × 108 unique passwords

and about 2.1× 107 of these passwords are observed exactly one time. Unfortunately, there

is no way to be confident about the true probability of an event that has only been observed

once. Thus, for B > 1.5 × 107 our estimate of λB may be too high, and for B > 3.1 × 106

our estimate for λ∗B,6 may be too high (there are about 3.1× 106 length six passwords that

were observed more than once so our estimate of p6
i may be too high for i > 3.1 × 106).

When B ≤ 106 we believe the estimate for λ∗B is reasonable 

6
 . This means that there is some

uncertainty about our estimates of λ∗B for a nation-state attacker (B ∈ [106, 107]). In our

analysis, we use the symbol !4to indicate that it is affected by uncertainty about the tail

of the password distribution.

As part of our analysis, we used empirical data from the RockYou dataset [ 12 ], released in

2009, to define our password distribution. The dataset was released in 2009 by hackers and

like “there are 5 passwords picked with frequency 100". While you could identify which lengths made up
those 5, we do not have the specific order. It is possible to construct an estimated list by arbitrarily ordering
those 5 passwords, but this would produce a noisy estimate. Thus we do not have accurate values of λB,`

for the LinkedIn data
5Of the 1, 052 users in the RockYou dataset with length ` = 30 passwords eight users selected “bebeli-
couz_05_mistme@yahoo.com” and seven users selected “111111111111111111111111111111.” Another pop-
ular password of length ` = 30 was the URL  http://www.rockyou.com/tos.php — selected by five users.
6For each ` ∈ [6, 10] we have more than 1.6 × 106 (2 × 105) passwords of that length that were observed
multiple times. These lengths account for

∑10
`=6 Pr

[
P`
]
≈ 81.4%(86.5)% of all passwords in the Linkedin

(Rockyou) dataset. If we include ` = 5, 11 then we have
∑11

`=5 Pr
[
P`
]
≥ 85.9%(94.1%) and for both lengths

` = 5, 11 we have over 7.8× 106 (8.75× 104) passwords of that length that were observed multiple times.
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Table 3.6. Attacker Success Rate at Various Guessing Limits with and with-
out knowledge of the password length (LinkedIn)

LinkedIn
Adversary type Hacker Criminal Nation-state
Guess limit B 102 103 104 105 106 107 !4
λ∗B 0.058 0.119 0.214 0.352 0.571 0.973
λ∗B − λB 0.030 0.048 0.072 0.112 0.195 0.394
λ∗B/λB 2.074 1.672 1.505 1.466 1.517 1.682

Rockyou
Adversary type Hacker Criminal Nation-state !4
Guess limit B 102 103 104 105 106 107

λ∗B 0.089 0.192 0.330 0.519 0.796 1.000
λ∗B − λB 0.043 0.080 0.107 0.153 0.255 0.133
λ∗B/λB 1.938 1.712 1.479 1.418 1.471 1.154

Table 3.7. Attacker Conditional Success Rate at Various Guessing Limits
with and without knowledge of the password length

Lengths λ∗B,` λ∗B,` − λB,` λ∗B,`/λB,`

limit 102 104 106 !4 102 104 106 !4 102 104 106 !4
5 0.228 0.670 1.000 0.183 0.447 0.458 5.067 3.004 1.845
6 0.116 0.430 0.888 0.071 0.207 0.346 2.578 1.928 1.638
7 0.077 0.353 0.760 0.032 0.130 0.218 1.711 1.583 1.402
8 0.080 0.281 0.698 0.035 0.058 0.156 1.778 1.260 1.288
9 0.083 0.262 0.698 0.038 0.039 0.156 1.844 1.175 1.288
λB 0.045 0.223 0.542

remains one of the largest available plaintext password datasets. One potential downside is

that many RockYou users may have viewed their account as low-value. While Bonneau [ 79 ]

found that account value did not appear to be correlated with password strength in his

analysis of Yahoo! passwords, we cannot rule out the possibility that RockYou users were

less motivated to pick strong passwords because the account had low-value. However, we

remark that it is possible that a stronger password distribution would result in an even bigger

advantage λ∗B − λB for an attacker who learns the password length since both λ∗B and λB

would decrease.
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3.2.3 Decision Theoretic Model

Experiments 1 and 2 consider an attacker that gives up after a fixed number B of in-

correct guesses. While this model may be appropriate in some scenarios where the attacker

is eventually locked out, it does not model scenarios in which guessing is throttled using

CAPTCHA puzzles (e.g., Gmail). This approach has the advantage in that legitimate users

will never be locked out (at worst they will be bothered to solve a CAPTCHA puzzle). In

this section, we model a rational online attacker who will select a threshold Bopt which max-

imizes his expected gain (expected reward minus expected guessing costs). In other words,

the attacker will continue attacking as long as marginal reward exceeds marginal guessing

costs.

Marginal Guessing Reward

Suppose that a rational attacker has value v for a cracked password. The attacker’s

expected reward is v times the probability he successfully cracks the password. If, as in

experiment 1 (resp. experiment 2), the attacker doesn’t (resp. does) know the password

length ` then the expected reward after B guesses is R(v,B) .= vλB (resp. R`(v,B) .= vλ∗B,`).

The marginal reward of one more guess when the attacker doesn’t (resp. does) know the

password length isMR(v,B) = R(v,B+1)−R(v,B) = vpB+1 (resp. MR`(v, b) = R`(v,B+

1)−R`(v,B) = vp`B+1).

Marginal Guessing Costs

Assume that the cost of each additional password guess is k (e.g., the amortized cost of

paying a human to solve one more CAPTCHA puzzle). If, as in experiment 1 (resp. exper-

iment 2), the attacker doesn’t (resp. does) know the password length ` then the expected

guessing cost is

C(k,B) = (1− λB)Bk + k
B∑
i=1

i× pi ,

58



or if password length is known

C`(k,B) = (1− λ∗B,`)Bk + k
B∑
i=1

i× p`i .

To understand this formula, we first observe that the attacker incurs maximum guessing

cost Bk when he fails to crack the password, which happens with probability 1− λB (resp.

1− λ∗B,`) when the attacker is not told (resp. is told) the password length `. If the attacker

is successful on guess i < B then the attacker only incurs cost ik and this happens with

probability pi (resp. p`i) when the attacker is not told (resp. is told) the password length `.

Attacker Gain

We G(v, k, B) .= R(v,B) − C(k,B) (resp. G`(v, k, B) .= R`(v,B) − C`(k,B)) to denote

the attackers expected gain (guessing reward minus guessing cost) when the attacker is not

told (resp. is told) the password length `. If the attacker is rational the attacker will select

a guessing threshold B which maximizes his gain. We use Bopt
v,k

.= arg maxB G(v, k, B) resp.

Bopt
v,k,`

.= arg maxB G`(v, k, B) to denote the attackers optimal guessing threshold when not

told (resp. is told) the password length `. We use G(v, k) .= G(v, k, Bopt
v,k) denotes the

expected gain of a rational attacker in experiment 1. Finally, we use

G∗(v, k) .=
∑
`

Pr
[
P`
]
G`(v, k, Bopt

v,k,`)

the expected gain of a rational attacker in experiment 2.

Attacker’s Monetary Benefit when Learning Password Lengths: We remark

that G∗(v, k)−G(v, k) denotes the expected (per user) benefit to the online attacker when

learning the password length `. If this benefit #(AttackedUsers×(G∗(v, k)−G(v, k)) exceeds

the cost of eavesdropping on network traffic then it will be worthwhile for the attacker to

exploit the password length-leakage attacks described earlier. Table  3.8 plots the value

G∗(v, k) − G(v, k) for different v/k ratios. Tables showing the optimal thresholds BOPT
...

which maximize gains at various v/k ratios can be found in Table  3.9 . From Table  3.8 we

can see that the monetary benefit of learning password length can be quite substantial. The
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Table 3.8. Attacker gains for various account value to marginal guessing cost ratios
LinkedIn

Adversary type Hacker Criminal Nation-state
v/k ratio 102 103 104 105 106 107 !4
G∗/k 0.511 17.89 605.63 14652 296826 8024681
G/k 0.000 5.803 187.67 7448.19 165335 3085617
(G∗ −G) /k 0.511 12.097 417.96 7203.81 131491 4939064
G∗/G ∞ 3.083 3.227 1.967 1.795 2.600

Rockyou
Adversary type Hacker Criminal Nation-state !4
v/k ratio 102 103 104 105 106 107

G∗/k 0.959 30.168 1225.5 27053 552447 9.5E6
G/k 0.000 12.141 428.182 14576 297611 6.7E6
(G∗ −G) /k 0.959 18.026 797.31 23577 254836 2.8E6
G∗/G ∞ 2.485 2.862 1.856 1.856 1.422

Table 3.9. Optimal Attacker Guessing Limit for various account value to
marginal guessing cost ratios

LinkedIn
Adversary type Hacker Criminal Nation-state
v/k ratio 102 103 104 105 106 107 !4
BOPT
v,k,6 1 10 736 10327 271903 5418647

BOPT
v,k,7 0 4 570 8818 134534 6672366

BOPT
v,k,8 0 4 199 4771 107888 14886616

BOPT
v,k,9 1 2 168 4164 81901 8750881

BOPT
v,k 0 3 164 3537 58638 1063939

Rockyou
Adversary type Hacker Criminal Nation-state !4
v/k ratio 102 103 104 105 106 107

BOPT
v,k,5 1 121 1928 259169 259169 259169

BOPT
v,k,6 1 30 981 20963 1947797 1947797

BOPT
v,k,7 0 18 759 11077 227299 2506271

BOPT
v,k,8 0 15 417 7919 168816 2966037

BOPT
v,k,9 1 20 366 6708 2191039 2191039

BOPT
v,k 0 7 320 6327 114760 14344391
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Table 3.10. Advantages for several guessing limits
LinkedIn

Adversary type Hacker Criminal Nation-state
Guess limit 102 103 104 105 106 107 !4
λ
∗
v,k 0.007 0.028 0.090 0.191 0.378 1.000
λ
∗
v,k − λv,k 0.000 0.019 0.055 0.084 0.164 0.619
λ
∗
v,k/λv,k ∞ 3.182 2.586 1.785 1.766 2.625

Rockyou
Adversary type Hacker Criminal Nation-state !4
Guess limit 102 103 104 105 106 107

λ
∗
v,k 0.014 0.052 0.177 0.363 0.823 1.000
λ
∗
v,k − λv,k 0.014 0.034 0.104 0.163 0.446 0.000
λ
∗
v,k/λv,k ∞ 2.874 2.417 1.817 2.183 1.000

Table 3.11. Cracking estimates for attacks over time (LinkedIn)
LinkedIn

Days 1 guess/day 10 guesses/day 100 guesses/day (LinkedIn)
30 0.04(0.02) 0.08(0.05) 0.16(0.10)
90 0.06(0.03) 0.11(0.07) 0.21(0.14)
180 0.7(0.04) 0.14(0.09) 0.24(0.16)
360 0.9(0.5) 0.17(0.11) 0.28(0.19)

Rockyou
Days 1 guess/day 10 guesses/day 100 guesses/day (Rockyou)
30 0.06(0.03) 0.13(0.07) 0.26(0.16)
90 0.09(0.04) 0.19(0.11) 0.32(0.22)
180 0.11(0.06) 0.23(0.14) 0.37(0.26)
360 0.14(0.08) 0.27(0.17) 0.43(0.30)

increased monetary benefit might entice additional criminals to entire the password cracking

game provided that increased monetary benefit outweighs the cost of eavesdropping and

linking IP addresses to user ids.

Number of Compromised User Accounts: We now seek to quantify the damages

of leaking password lengths to a rational attacker. In particular, we use λv,k = λBopt
v,k

(resp.

λ
∗
v,k,` = λ∗

Bopt
v,k,`

,`
) to denote the probability a rational value v attacker succeeds without

(resp. with) knowledge of the password length ` and given guessing costs k. We use λ∗v,k =∑
` Pr

[
P`
]
λ
∗
v,k,` to denote the probability that a password is cracked in experiment 2 (We will
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also use λv,k,` = λBopt
v,k

,` to denote the probability that an attacker cracks the user’s password

without knowledge of password length conditioning on the event that the user’s password

has length `.). Finally, we note that λ∗v,k−λv,k denotes the increase in the attacker’s success

rate when the attacker learns the password length.

Table  3.7 compares the attackers success rate with
(
λ
∗
v,k

)
and without

(
λv,k,`

)
knowledge

of the password length for various v/k ratios, and Table  3.8 compares the attacker’s success

rate conditioning on the event that the the password has length ` (Table  3.9 shows the

optimal thresholds BOPT
v,k as well as BOPT

v,k,` for various lengths `). These tables show that

a rational attacker will crack many more passwords when given the password length. For

example, a criminal attacker with v/k = 105 who knows the password length will crack over

19% of targets from the Linkedin data compared to just 10.7% of targets without knowledge

of password length. As another example consider a hacker using the Rockyou data with

v/k = 102. If the attacker does not know the password length then his optimal strategy is to

give up immediately without attempting any password guesses. However, if the attacker does

know the length then he will crack about 1.4% of passwords. We once again wish to stress

the !4 symbol towards higher v/k ratios, which denotes situations where overestimates are

likely - especially where values show the adversary would guess 100% of passwords. We

remark that if the price k of a CAPTCHA solving services increase (resp. decrease) by

an order of magnitude then the value to cost ratio v/k will also increase (resp. decrease)

correspondingly and we can still refer to Table  3.9 to infer how many passwords a rational

attacker will crack with and without knowledge of the password length. .

Online time-delayed attacks The models we have introduced are based on the notion

that an attacker can continuously try passwords. However, in many situations, there is some

sort of lockout that limits the number of attempts that can be made. In this case, the

adversary can run an attack over time to bypass lockout mechanisms. Rather than being

rate limited by a service like CAPTCHA, a set number of guesses may be run per day. The

models introduced also provide insight into these types of attacks. To provide an idea of

what sort of advantage an adversary may have in this case, we take Brostoff and Sasse’s

recommendations that 10 attempts should be allowed [ 111 ], however, we note that Bonneau

and Preibusch found that the vast majority of sites they surveyed allowed over 100 guesses
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with no restrictions [ 100 ]. In addition, the National Institute of Standards and Technology

recommendations allow for no more than 100 consecutive failed login attempts before a

lockout [ 35 ]. Table  3.11 shows the estimated proportion of passwords that would be cracked

over set periods given 1, 10, and 100 daily guesses.

3.2.4 Solutions

Since QUIC’s adoption is widespread, there are many stakeholders and systems with

different interests to balance usability, performance, and security. As such, we believe this

defies an easy fix in the short term and probably is not suitable for an immediate patch. We

have provided some short-term recommendations for both users and system administrators

as well as longer-term solutions to help avoid similar problems in the future.

Short-term Recommendations

Until an industry solution occurs, the team suggests to not use security transport pro-

tocols like QUIC that have chosen to use AES-GCM to pass sensitive information like cre-

dentials over the Internet. Unfortunately, users do not have control over this option in some

situations until alternatives or patches are developed. We recommend the following user

steps 1) users should disable QUIC in Chrome; 2) users should enable two-step verification

with their Gmail account for additional protection; 3) system administrators should block

QUIC to their servers with their firewall.

Long-term Recommendations

The team suggests that industry should look into padding sensitive, short communication.

In the ideal case, padding should begin before the password is transmitted. We realize

this could introduce a host of other issues such as making browsers and servers unable to

communicate. The padding may be more appropriate to implement into future versions

of HTTP/2, because this would ensure future client and server communication does not

break. As we know, many users and administrators do not keep servers patches up-to-

date, and therefore, any short-term patch would need to be installed on both clients and
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servers. We also do not recommend necessarily reverting to AES-CBC + HMAC, because

past implementations have introduced a host of vulnerabilities. We believe this defies an easy

fix in the short term and probably is not suitable for an immediate patch. We suggest future

design choices for transport security protocols carefully weigh whether or not to use cipher

suites that expose plaintext length. To further help industry make better design choices, we

recommend NIST note of the potential danger in choosing counter mode or similar ciphers

that expose plaintext length. NIST should explicitly highlight how counter mode and similar

ciphers may not be appropriate for implementation into transport security protocols.

3.2.5 Conclusions

In TLS 1.3 and TLS 1.2 (some ciphers) there is a 1-1 relationship between the length of

a ciphertext and the length of the corresponding plaintext. The responsibility of identifying

and padding length-sensitive data is pushed to the application developer. We conducted an

observational study of AES-GCM traffic (the most commonly used cipher in TLS) which

uncovered a widespread failure to pad passwords. In particular, we found multiple high-

profile instances where password lengths can be directly inferred from encrypted web traffic.

If an eavesdropping attacker can link the source IP address with a particular user name

(e.g., via unencrypted traffic) then the attacker can directly infer the length of that user’s

password. We used a decision-theoretic model to analyze the advantage a password attacker

obtains by learning the length of a user’s password. Our analysis shows that the advantage

is substantial.

While there are good metrics about how much a particular cipher reduces latency, there

are fewer reliable models to help security professionals quantify how many users might be

susceptible to intrusions and from which class of intruders (i.e. nation-states, criminals, or

hackers). Without this information, it will be difficult for security professionals to make

informed decisions about the trade-offs between speed and security. As a necessary first

step, this research begins to quantify the cost an intruder would incur to perform an online

attack. This helps better understand which intruders might be willing to endure the cost to

intrude on when conducting a campaign against a set of targeted accounts. As the push for
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faster security transport security protocols continues to grow, researchers will be challenged

to balance the need for speed and security. Ultimately, this research adds value by helping

security researchers better quantify and compare the specific trade-offs between speed and

security for a particular cipher suite used for a security transport protocol.

Future work: We have begun to quantify the risks of leaking password lengths. There

is a need to quantify the risks of leaking plain text lengths in other contexts (e.g., short

chat communications). In general, it would be helpful to formulate clear guidelines to help

developers evaluate when plain text length should be viewed as a sensitive attribute. When

plain text length is sensitive there is a need to provide developers with an easy method to

obfuscate sensitive data lengths, and there is a need to develop automated tools which could

audit code and identify instances where length-sensitive data might not be hidden.

Recommendations for Users: We offer the following suggestions to users to protect

themselves against password length leakage attacks 

7
 . First, enable two-factor authentication

whenever possible. Strong two-factor authentication will prevent an attacker from mounting

an online attack whether or not the attacker knows the length ` of your password. Second,

we recommend that users select strong passwords which don’t occur in a password cracking

dictionary. We recognize that this advice, while easy to give, can be challenging to follow

since users typically have many password-protected accounts [ 103 ]. However, the additional

risks from password length leakage may justify the extra effort for many users. Mnemonic

techniques [  112 ,  113 ] and spaced repetition [ 92 ,  114 ] may help to reduce the extra user burden.

Finally, users could also begin to use a password manager to generate unique passwords from

one master password. This solution potentially reduces user burden since the user will now

only need to remember a few master passwords. Second, the length of the derived password

for each domain is not necessarily correlated with the length of the user’s master password.

For example, PwdHash [ 115 ] derives a unique fixed-length password for each domain based

on the cryptographic hash of the user’s master password along with the domain itself.
7Even in the absence of password length leakage attacks the following advice can help a user to secure his
accounts. However, the advice takes on a greater urgency due to the stronger threat of online attackers.
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3.3 An Economic Model for Quantum Key-Recovery Attacks

As the field of quantum computing progresses it is crucial for security practitioners to

understand the potential risks posed to deployed cryptosystems. In this work, we focus on

quantum key-recovery attacks for symmetric-key primitives e.g., AES. Classically a symmet-

ric key-recovery attack requires ≈ 2n queries in the ideal cipher model where n is the size

of the secret key (bits). By contrast, Grover’s algorithm only requires ≈ 2n/2 queries in the

(quantum) ideal cipher model. While the attack requires exponential work 

8
 , it constitutes a

dramatic reduction compared to classical attacks. For example, it would be infeasible for a

powerful nation-state attacker to make 2128 AES queries, but 264 might be feasible even for

much less sophisticated attackers!

Traditional wisdom says that one can ensure n bits of security for an ideal cipher by simply

selecting 2n bit keys instead of n. However, this conservative advice might dramatically

overestimate the capability of the attacker. In particular, Grover’s search requires 2n/2

sequential queries meaning that the attack might not finish in our lifetime. We remark that,

in the ideal cipher model, any quantum key-recovery attack making at most O
(
2n/2/

√
k
)

sequential queries requires at least Ω
(
2n/2
√
k
)
total queries. Thus, while one can parallelize

Grover’s search to reduce the running time by a factor of
√
k, but this approach necessarily

increases the total amount of work by a factor of
√
k.

In this paper, we advocate for an economic approach to evaluate the security of symmetric-

key primitives (e.g., AES-128) in a post-quantum world instead of focusing only on the

running time of the fastest attack. Wiener argued that the “full cost” of a cryptanalytic at-

tack [ 116 ] should account for all of the required resources e.g., the cost of the circuit running

the attack amortized over the number of instances that can be solved over the lifetime of the

circuit. This view has guided the design and analysis of secure memory-hard functions for

protecting low entropy secrets like passwords against brute-force attacks [ 32 ,  16 ,  39 ,  56 ,  3 ].

Taking this view we aim to model (and lower bound) the cost of running a quantum key-
8By contrast, Shor’s algorithm can be used to break any public key encryption scheme whose security relies
on the hardness of the integer factorization or discrete logarithm problem in polynomial time. This includes
most widely deployed public key encryption/signature schemes including RSA, EC-DSA, Schnorr Signatures,
ECDH, etc. Thus, there is a need to migrate towards “Post-Quantum” schemes that resist known quantum
attacks like Shor’s algorithm [ 65 ,  66 ].
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recover attack. We take the view that an attacker will only run a brute-force attack if the

“full cost” of the attack is less than the value of the information that can be decrypted at the

time when the quantum brute-force attack completes i.e., information decrypted 10 years in

the future may be worth less than if the documents had been decrypted today.

We now introduce an economic model that estimates the gain (or loss) of a quantum

key-recovery attack. Our model includes the following components: (1) The initial value v0

of the encrypted information and a function R(T, v0) which describes how this value decays

over time T . (2) A time limit Ty (years) for the attack e.g., 1–100 years. (3) The width and

depth of a quantum circuit implementing the cipher we are analyzing e.g., see [  117 ,  118 ] for

estimates of AES. (4) The (predicted) speed of a universal quantum computer (gates/sec),

(5) The (predicted) cost of renting a single quantum circuit capable of evaluating this cipher

(dollars/year). Given these parameters our model allows us to determine whether or not

a profitable attack exists. Fixing all of the parameters except for the initial value of the

encrypted information we can determine how valuable the information would need to be for

a quantum key-recovery attack to be profitable. Alternatively, fixing the initial value of the

information (and a decay function) we can ask how fast/cheap a quantum computer must

be to make a quantum key-recovery attack profitable.

We remark that components three and four of our model (speed/cost of future quantum

computers) are arguably the most difficult to predict. We advocate for a conservative ap-

proach where we attempt to upper bound (resp. lower bound) the speed (resp. cost) of a

future quantum computer. We remark that NIST considers 264 to be a safe upper bound on

the depth of any quantum circuit which can be evaluated in 10 years which would correspond

to a speed of 5.8× 1010 gates per second. Thus, we might take 60 GHz as our conservative

upper bound on the speed of a quantum computer.

The attacker will select a desired time T (years) for the key-recovery attack to com-

plete. We can infer the level of parallelism necessary to complete the attack in time T

given additional information about the depth of our quantum circuit implementing our ci-

pher (e.g., AES) as well as the gate propagation speed of our quantum computer. We

use C(T ) to denote the minimum possible cost of a quantum key-recovery attack with a

time bound T . Intuitively, as T decreases the level of parallelism increases as well as the
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cost C(T ). We use the reward function R(T, v0) to describe the attacker’s benefit when

the encrypted information is recovered at time T . Here, v0 = R(0, v0) denotes the initial

value of the encrypted information which may decrease over time. Thus, the profit of the

attacker is P (T, v0) = R(T, v0) − C(T ) and the attacker will select the time parameter

T ∗ = arg maxT P (T, v0) to optimize profit. If P (T ∗, v0) < 0 a rational attacker will choose

not to attack. For notational convenience we use P (0, v0) = 0 to denote the profit of an

adversary who does not run the attack i.e., T = 0.

3.3.1 Cipher Circuit Year

To estimate the costs of running an attack we first define the concept of a Cipher Cir-

cuit Year (CCY). Intuitively, a CCY represents the annual rental cost (which factors in

equipment, labor, electricity, and any other expenses) of a quantum computer capable of

evaluating our cipher (e.g., AES) 

9
 . We can use CCY as a way to examine the monetary cost

of a key recovery attack. For example, if we can complete a key recovery attack (e.g using

Grover’s algorithm) with no parallelism (i.e. using only one circuit) in 10 years then this

attack would cost 10 CCY. However, if the same attack was completed in 1 year (which will

require the use of 100 circuits running Grover’s algorithm in parallel) we would have a cost

of 100 CCY. Similar notions such as full cost [ 116 ] or aAT complexity [ 39 ] have been very

fruitfully applied in the area of password hashing as a method of estimating costs of com-

putation. Throughout this work we are considering attacks in the (quantum) ideal cipher

model i.e. we do not concern ourselves with (quantum) structural attacks against a cipher

like AES e.g. [ 119 ].

3.3.2 Required Level of Parallelism and Attack Costs

Suppose that we have a time bound Ty (unit: years) for our key-recovery attack. Given

the gate propagation speed s (Hz) of a quantum circuit we can use Ty to upper bound the
9Alternatively, we could think of CCY as representing the opportunity cost when this quantum computer
used to running our key-recovery attack instead of performing other computation. Finally, we could think
of CCY as representing this cost of building the quantum computer divided by the (expected) number of
years before the quantum computer breaks.
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total depth t = Ty × s of our computation (quantum gates) e.g., if s = 1GHz and Ty = 1

year then t = 3.15×1016. Supposing that our cipher can be implemented as a depth d circuit

our key-recovery attack can make at most t/d sequential oracle queries to the cipher. If we

partition our search space {0, 1}n into k buckets of size N/k and run Grover’s attack on

each bucket in parallel then we require at least π
4

√
N
k
sequential oracle calls in each bucket

(π4
√
Nk total oracle calls). Thus, t/d ≥ π

4

√
N
k

which means that we require parallelism

k ≥ π2N

16( td)
2 . The total cost will be minimized when equality holds. The total cost will be

C(Ty) = Ty × k × CCCY , where CCCY is the cost of a CCY e.g., in USD. We remark that

the value of k will depend on the time bound Ty, the depth d of our cipher and the speed s

(Hz) of our quantum computer. Substituting into the above formula we get

C(Ty) = CCCY π
2Nd2

16Tys2

Intuitively, the cost decreases as we relax the time bound Ty. If Ty ≥ π
4

√
N ∗ d

s
is

sufficiently large to set k = 1 we have C(Ty) = C
(
π
4

√
N ∗ d

s

)
.

We note that attack costs are directly linked to an attacker’s strategy. If an attacker

considers the value of information to be less than the cost to run the attack we say that a

rational attacker will choose to not run the attack, leaving the information secure.

3.3.3 Time-Value of Information and Reward Functions

We first discuss several different instantiations of the reward function R(T, v0) which

defines the time-value of the encrypted information. We will always assume that the function

is monotonic i.e., R(T, v0) ≤ R(T−ε, v0). Intuitively, obtaining the secret information earlier

(e.g., at time T − ε) is preferable to obtaining the secret information later 

10
 . In our analysis

we consider three types of reward functions: (1) Constant functions R(T, v0) = v0 i.e., the

time-value of the information does not diminish over time. (2) Threshold Functions where the

information has value v0 before time T and value 0 afterwards i.e., RT (T, v0) = v0 whenever

T < T and RT (T, v0) = 0 for T > T . (3) Delta Discounting where the time-value of the
10If the attacker prefers to wait to time t to recover the secret information he could always run the attack
and then wait ε seconds to measure the quibits
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information smoothly decays with some fixed rate 0 < δ < 1 i.e., Rδ,T (T, v0) = v0δ
T . While

this is not an exhaustive list of all possible reward functions we believe our list constitutes

a reasonable range of behaviors.

We remark that a threshold function is appropriate in settings where the encrypted

information will become public at some time t in the future e.g., scripts for soon-to-be-

released blockbuster movies or plans for an upcoming military campaign. The constant

reward function can be seen as a special case of delta-discounting with δ = 1 and threshold

T = ∞. Below we analyze the attacker’s optimal strategies with respect to each reward

function.

3.3.4 Rational Attacker Strategies

A symmetric key-recovery attacker can pick a desired parallelism parameter k. Larger

values of k reduce the running time T . Thus, by picking large k we can potentially earn a

larger reward R(T, v0), but at the expense of total cost C(T ). However, as long as the total

profit P (T, v0) = R(T, v0) − C(T ) increases it is in the adversary’s best interest to pick a

larger value of k.

Constant valuation: For constant reward functions profit is maximized whenever

C(T, k) is minimized. As our total time and work only increase with the addition of more

oracles, C is minimized by setting k = 1 i.e. running a sequential attack. We argue that

constant valuation is rarely an appropriate model e.g., we expect that the value of informa-

tion will not be useful after 100 years since most people who are currently alive won’t be

around to benefit.

Threshold function: We next consider the threshold reward functions where infor-

mation has value v0 before time T and value 0 afterwards e.g., plot points for an upcoming

movie.

RT (T, v0) =


v0 T ≤ T

0 T > T
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, where v0 is the value of the information if it is recovered in time. In such a case there is no

need to decrypt the information after time T so the attacker effectively faces a time limit of

T . Since the reward is constant before time T the attacker will maximize profit by selecting

the minimum possible level of parallelism necessary to finish in time exactly T i.e., k = π2N

16 t
d

2

where t = T · s.

Delta discounting with Threshold We now analyze the behavior of the attacker with

smooth δ-discounting reward functions i.e., Rδ,T (T, v0) = v0δ
T for T ≤ T and Rδ,T (T, v0) = 0

if T ≥ T . Here, 0 < δ ≤ 1 is our decay parameter and T is our threshold. The attacker

wants to pick a time T which maximizes profit P (T, v0) = Rδ,T (T, v0)−C(T ). We show that

there are three possible ways to maximize the profit function P (T, v0). (1) If the attacker

does not run the attack T = 0 then P (0, v0) = 0. (2) The attacker sets T = min{Tseq, T}

where Tseq = πd
4s

√
N is the time to run the sequential version of Grover’s algorithm (k = 1)

when the speed is s and the depth of the underlying cipher circuit is d. (3) The attacker

sets T = T ∗ for a special value

T ∗ =
2W

(
1
2
√
c log δ

)
log δ .

Here we let c = Λ
v ln δ−1 andW (·) denotes the analytic continuation of the product log function

i.e., the Lambert W function. We note that this function can be efficiently evaluated. The

derivation is as follows: Here we seek to maximize:

P (T, v0) = Rδ,T (T, v0)− C(T )

= vδT − CCCY π
2Nd2

16Ts2
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We compress via Λ = CCCY π
2Nd2

16s2 . Profit can be maximized as:

P (T, v0) = d

dTy

(
vδT − Λ

Ty

)

= vδTy ln δ + Λ
T 2 .

0 = vδT ln δ + Λ
T 2

Λ
T 2 = vδT ln δ−1

δTT 2 = Λ
v ln δ−1

3.3.5 On the Future Cost and Speed of Quantum Computers

Our economic model utilizes predictions of the future speed/cost of quantum computers.

However, it is difficult (or impossible) to predict what these values may be. Instead, we

consider a range of possible future worlds: quantum mania, optimistic improvements, and

steady improvements. Arguably, all of these worlds represent optimistic predictions of the

future power of quantum computers. We could add a fourth pessimistic world where the

field of quantum computing is stuck for decades due to insurmountable technical barriers e.g.,

decoherence, temperature maintenance. However, in such a world it would not be interesting

to analyze quantum attacks. We advocate for a conservative approach where we attempt to

upper bound (resp. lower bound) the speed (resp. cost) of a future quantum computer. In

particular, if an attack is not profitable in our quantum mania scenario then it is reasonable

to assume that no attack will be profitable.

• Quantum Mania: Here we assume that quantum computers have enjoyed in-

credible advances, both in gate speed, number of qubits, and cost. In particular,

we assume that quantum circuits can be evaluated at a gate propagation speed

of 60GHz which we derive from NIST’s proposed upper bound on the maximum

depth (264) of a quantum circuit which could be evaluated in 10 years [  65 ] i.e.,

60GHz ≈ 264/(10 × 3.154x107) where 3.154x107 is the number of seconds a year.
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We also assume that dramatic advancements in QC technology e.g. temperature

maintenance and construction costs making it possible to rent a quantum AES cir-

cuit for $50 per year i.e., CCCY = $50.

• Optimistic improvements: We assume a slightly slower gate propagation speed

of 1GHz for quantum computers comparable to the clock speed of current desktop

computers. We also assume that CCCY = 500USD. This price is meant to be in line

with a budget desktop one can currently purchase.

• Steady improvements: We assume that future quantum circuits can be evalu-

ated at a gate propagation speed of 100MHz. We set CCCY = 50000USD here. In

this scenario, the future speed/cost of quantum computers is not comparable to cur-

rent classical machines. However, this future world would still constitute a dramatic

increase in QC technology.

3.3.6 Case study: AES128

In this section, we use our economic model to analyze the cost of breaking a 128 bit

AES key. To apply our model we first require a concrete implementation of AES-128 as a

quantum circuit. Multiple groups have considered the problem of implementing AES-128 as

a quantum circuit resulting in a series of increasingly efficient constructions [ 117 ,  120 ,  118 ].

Specifically, Langenberg et al. [ 118 ] provide the implementation with the smallest depth

d ≈ 5.8 × 104. This corresponds to 3.27 × 1013 sequential AES oracle calls per year in our

quantum mania scenario.

In our analysis we consider an attacker with a threshold reward function RT (T, v0) for

thresholds T ∈ {1, 10, 100} years. Here we aim to determine how valuable the encrypted

information v0 must be for a profitable attack to exist. We repeat this analysis for each

of our quantum scenarios: quantum mania, optimistic improvements, and steady improve-

ments. Similarly, we can analyze the behavior of a profit-motivated attacker when faced

with δ-discounting rewards RT,δ(T, v0) for thresholds T ∈ {1, 10, 100} years. Here, we plot
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the minimum reward v0 for a profitable attack vs. δ. Intuitively, as δ increases (slower

diminishing rewards) the minimum value v0 will increase. Finally, if we fix v0 we can ask

how fast/cheap would a quantum computer need to be for a profitable attack to exist.

Threshold Functions

We first begin by examining what the costs would look like if the value follows a threshold

function. When considering our 100, 10, and 1-year attacks we first convert this to some

value d, which in this case is representing the number of circuit layers we have available

given the quantum power estimates and the time available. For example, in the incredible

improvements scenario, we have t = 1.892 × 1020, which is derived from the 60GHz figure

combined with the 100-year time span. This t, combined with the AES-128 circuit depths

from [ 117 ], allows us to derive the number of oracle calls that can be made in the set time.

With some set number of oracle calls possible in the time we derive k such that the attack

would finish in the allotted time. k times the attack length in years gives us our CCY cost. A

final substitution for the cost ratios described earlier puts a cost in USD to run each attack.

These threshold results are described in Tables  3.12 ,  3.13 , and  3.14 .

• 100-year attack: A 100-year attack represents the most persistent of adversaries.

This is an attack that spans generations and would represent an enormous effort to

recover some piece of information. In many ways, this is an impractical attack, as

there are not many cases where it is worth protecting information for 100 years. Still,

we include this type of attack to make a point about the costs of a quantum key-

recovery attack. The estimated costs for this attack with a threshold function are in

Table  3.12 ,  3.13 , and  3.14 .

• Ten-year attack: A ten-year attack still represents a fairly long-term attack.

Essentially, this is an attack against information that is not time-sensitive, which

might include something like bank account access credentials. The estimated cost

with a threshold function can be found in Table  3.13 .
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Table 3.12. 100 Year Attack, Threshold value function
Advancement t k
Mania 1.892× 1020 1.962× 107

Optimistic 3.154× 1018 7.064× 1010

Steady 3.154× 1017 7.064× 1012

Cost(CCY) Cost(USD)
Mania 1.962× 109 9.810× 1010

Optimistic 7.064× 1012 3.532× 1015

Steady 7.064× 1014 3.532× 1019

Table 3.13. 10 Year Attack, Threshold value function
Advancement t k
Mania 1.89× 1019 1.962× 109

Optimistic 3.154× 1017 7.064× 1012

Steady 3.154× 1016 7.064× 1014

Cost(CCY) Cost(USD)
Mania 1.962× 1010 9.810× 1011

Optimistic 7.064× 1013 3.532× 1016

Steady 7.064× 1015 3.532× 1020

Table 3.14. 1 Year Attack, Threshold value function
Advancement t k
Mania 1.89× 1018 1.962× 1011

Optimistic 3.154× 1016 7.064× 1014

Steady 3.154× 1015 7.064× 1016

Cost(CCY) Cost(USD)
Mania 1.962× 1011 9.810× 1012

Optimistic 7.064× 1014 3.532× 1017

Steady 7.064× 1016 3.532× 1021
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• One year attack Here we consider attacks that may be of interest to an adversary

wanting information that is valuable in the near future. This might include things like

business strategies, financial plans, etc. The estimated cost with a threshold function

can be found in Table  3.14 .

δ discounting method

For the δ discounting method we present the information in a slightly different way.

We look for the minimum value such that an attack would be profitable to run. As we

have P (TY , v0) = RT,δ(Ty, v0) − C(Ty) = vδTy − cCCY π2NTy
16(t/d)2 , where t = Ty · s. We have a

viable attack if v ≥ π2Nd2

16Tys2δTy
. Here we can set Ty appropriately, as we did in the threshold

experiments. When this is set we have the option to let δ range from 0 to 1, or equivalently

to allow δTy to range from 0 to 1. For the sake of demonstration we will be examining

this kind of attack in the “incredible improvements" scenario. To find this point v we first

require the conversion factor between Ty and t. We have d = 57894 as our circuit depth for

AES [  118 ] (taking their round-depth estimates for a full Grover’s attack). Supposing that

s = 6×1010Hz (quantum mania) we are able to evaluate a circuit of depth t = Ty×6×1010Hz

where Ty is given in years e.g., 1 year, 10 year, or 100 years (here we take 100). Substitution

gives t
d

= Ty×1 year×6×1010Hz
57894 = Ty× 3.271× 1013. We know that an attack is profitable only if

v ≥ CCCY π
2N

16(3.271× 1013)2TyδTy

Fixing Ty ∈ {1, 10, 100} and letting β = CCCY π
2N

16(3.271×1013)2Ty
we have v ≥ β

δt
. We plot the

minimum value required for this to be true for the given Ty, and the results for the quantum

mania world are shown in Figure  3.7 . We note that the case δt = 1 is identical to the

case where δ = 1, and that these values will match those from the threshold function. For

other values in this chart, δTy can be understood as the remaining value at the end of the

attack e.g. δTy of 0.2 in the 100 year case means that 20% of the value remains after 100

years, while in the 1 year case δTy of 0.2 means only 20% of the value remains after a single

year. In the case δTy = 0.2 the specific value of δ = (0.2)
1
Ty . Thus, our model predicts that
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Figure 3.7. Minimum value required for positive profit. δTy represents the
value left after Ty years

AES128 provides sufficient protection provided that the initial value of the information is

under ≈ 1011.5 USD.

Improvements in circuit width and depth

We now consider the following question. What happens if we can develop smaller quan-

tum circuits to compute a cipher (e.g. the quantum AES circuit)? Improvements might be

made either by reducing the width or the depth of the circuit e.g., by exploiting feasible

time-space tradeoffs for the function. We first note that if the width is reduced by some

factor c then the cost of running the attack also drops by the same factor c. More interesting

is the case where we can reduce the depth of our cipher circuit. As we reduce depth d of

the quantum circuit (holding width constant) an attacker running at the same gate speed

can make more cipher queries in the same amount of time. Thus the attacker saves cost on

multiple fronts — the circuit itself is smaller by some factor c and the attacker can reduce

parallelism because s/he can make more sequential queries in the same amount of time.

Improvements in circuit depth offer quadratic improvements in attack cost, meaning that it

is worth reducing the depth of a quantum circuit even if it comes at the cost of increasing

the width by a sub-quadratic amount. Specifically, if we reduce d by some factor 0 < β < 1

we now have a more relaxed requirement for our time t. Previously for some set real-time

limit Ty we had time to make xt oracle calls. We now have time for 1t
dβ

> t
d
calls. Thus
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our previous k = π2N

16 t
d

2 becomes k = π2N
16( t

d
/β)2 = β2k. Thus a reduction by β offers quadratic

returns. Note that increases in QC speed identically affect how many calls per year we can

make and offers the same tradeoff. Suppose that we reduce depth by a factor of 10 (as is

claimed from [  117 ] to [ 118 ]), holding width constant. This allows for a 100 fold reduction in

the level of parallelism and a 100 fold reduction in costs. In our 100 year quantum mania

example from Table  3.12 this could lower attack cost to ≈ 9.8× 108 USD. Far smaller than

the previous estimates, but still infeasible in practice.

3.3.7 Computers capable of running profitable attacks

Under the assumptions from our three worlds of quantum development, we found that

any quantum key recovery attack for a 128-bit key is not economically feasible. Here we

seek to answer a related question: If we want an economically feasible attack, what kind

of quantum computer would be required? We follow a similar strategy of proposing three

attacks but note that this analysis works for any relevant parameters. We begin here not

by assuming any level of advancement in quantum computing but by assuming an attacked

values some piece of information at a particular level. Here we select some USD amount e.g.

100,000, 1,000,000, or 10,000,000 as the value of information. We also allow the attacker to

select 1, 10, and 100-year attacks in the same manner as in Section  3.3.6 . When we set the

cost and time limit for these attacks we arrive not at a single quantum computer that would

suffice to run the attack but a family of quantum computers with varying speeds and costs.

This fact arises from the theoretical ability to bring the cost per cubit down if we allow for a

computer to have a higher clock speed. So, when we set the total budget and time limit for an

attack we arrive at some family of computers described in terms of the cost/speed tradeoffs.

These tradeoffs are subject to the quadratic increase in cost seen when increasing the level

of parallelism. We denote a family of quantum computers Qb,Ty ,n based on a budget b, time

limit in years Ty, and key length n. This describes the set of quantum computers capable of

running a quantum key-recovery attack with the relevant restrictions. The family contains

all quantum computers satisfying the property: Qb,Ty ,n =
{
q : CCCY ≤

16b( sd)
2

π22nTy

}
where d is

the depth of the oracle circuit and s is the number of circuit layers that can be processed in
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Figure 3.8. Possible values of CCCY based on estimated QC speed (b =
1.0× 108, Ty = 100, n = 128

the given time limit. We can now begin to look at some families of quantum computers based

on some reasonable attack budgets. Consider an attack that is of vital importance - where

an attacker is willing to spend USD 100 million on an attack on AES-128, and needs it within

100 years. A quantum computer capable of doing so is in Q1.0×108,100,128, which contains all

quantum computers such that CCCY ≤
1.6×109( s

57854)2

π22128100 = 1.423 × 10−42s2. Consider a case

where we would like CCCY ≤ USD1000. This would require the computer to run at a speed

of s = 2.65×1022 in 100 years, corresponding to a gate propagation speed of 8.403×1012Hz,

well beyond NIST’s estimates of around 60GHz [ 65 ]. Any required parameters might be

inserted here to see what would be required to make the existing parameters work - a plot

of the family that can solve this problem is shown in Fig  3.9 . We note that no matter which

parameters you pick for this attack you end up with a computer that is either impossibly

fast or impossibly cheap, meaning that no quantum computer that can run an attack with

this requested budget and time limit is feasible.

Under the assumptions from our three worlds of quantum development, we found that

any quantum key recovery attack for a 128-bit key is not economically feasible. Here we

seek to answer a related question: If we want an economically feasible attack, what kind
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of quantum computer would be required? We follow a similar strategy of proposing three

attacks but note that this analysis works for any relevant parameters. We begin here not

by assuming any level of advancement in quantum computing but by assuming an attacked

values some piece of information at a particular level. Here we select USD 100,000, 1,000,000,

and 10,000,000 as the value of information. We also allow the attacker to select 1, 10, and

100-year attacks in the same manner as in Section  3.3.6 . When we set the cost and time limit

for these attacks we arrive not at a single quantum computer that would suffice to run the

attack but a family of quantum computers with varying speeds and costs. This fact arises

from the theoretical ability to bring the cost per cubit down if we allow for a computer to

have a higher clock speed. So, when we set the total budget and time limit for an attack

we arrive at some family of computers described in terms of the cost/speed tradeoffs. These

tradeoffs are subject to the quadratic increase in cost seen when increasing the level of

parallelism. We denote a family of quantum computers Qb,Ty ,n based on a budget b, time

limit in years Ty, and key length n. This describes the set of quantum computers capable of

running a quantum key-recovery attack with the relevant restrictions. The family contains

all quantum computers satisfying the property: Qb,Ty ,n =
{
q : CCCY ≤

16b(σd )2

π22nTy

}
where d is

the depth of the oracle circuit and σ is the number of circuit layers that can be processed

in the given time limit. We can now begin to look at some families of quantum computers

based on some reasonable attack budgets. Consider an attack that is of vital importance -

where an attacker is willing to spend USD 100 million on an attack on AES-128, and needs

it within 100 years. A quantum computer capable of doing so is in Q1.0×108,100,128, which

contains all quantum computers such that CCCY ≤
1.6×109( σ

15040)2

π22128100 = 2.11×10−41σ2. Consider

a case where we would like CCCY ≤ USD1000. This would require the computer to run

at a speed that computes σ = 6.89 × 1021 layers over 100 years, corresponding to a clock

speed of 2.185× 1012Hz. This greatly exceeds even NIST’s most optimistic predictions [ 65 ].

Any required parameters might be inserted here to see what would be required to make the

existing parameters work - a plot of the family that can solve this problem is shown in Fig

 3.9 . We note that no matter which parameters you pick for this attack you end up with

a computer that is either impossibly fast or impossibly cheap, meaning that no quantum

computer that can run an attack with this requested budget and time limit is feasible.
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81



3.3.8 m to 1 Key Recovery Attacks

With a chosen plaintext attack where multiple keys have been used and a single chosen

plaintext can be used with multiple keys it is possible to “batch" key-recovery attacks for a

more effective attack. This might be considered where any one of m keys would be sufficient

for an adversary to accomplish their goals e.g. to access some specific set of data that had

been sent to multiple people using multiple different keys with the same nonce. We consider

a chosen-plaintext attack where an attacker has managed to obtain M ciphertexts c1, . . . cM

all encrypting the same known plaintext m i.e., ci = Encki(m; r) where m = m1||m2 consists

of two blocks and the randomness r (i.e., nonce) is the same. Such a scenario might arise if

we have multiple embedded devices using a stateful mode of operation like AES-CTR with

a fixed initialization vector. Modes like AES-GCM would not be susceptible to this attack

as long as the nonces are selected appropriately i.e., with strong PRGs.

Our attacker will be content to crack any of the keys k1, . . . , km. To run Grover’s algo-

rithm the attacker would need to implement the function

fk1,...,kM (x) =


1 x ∈ {k1, . . . , kM}

0 otherwise
.

This function could be implemented as follows

Fc1,...,cM (x) =


1 Encx(m) ∈ {c1, . . . , cM}

0 otherwise
.

We first note that (except with negligible probability) we will have Fc1,...,cM (x) = fk1,...,kM (x)

for all inputs x i.e., because m is two blocks long we expect that for each ci there is only

one key k (namely k = ki) s.t. Enck(m) = ci. Note that each call to Fc1,...,cM generates just

2 calls to the underlying cipher-circuit to obtain c = Encx(m) — both of these calls can be

evaluated in parallel. We then need to check whether or not c ∈ {c1, . . . , cm}. Since we want

to compute Fc1,...,cM on the same quantum hardware used to evaluate the cipher we require

that the width of our circuit is not larger that the width of our AES circuit. When we add
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this restriction Fc1,...,cM can be evaluated on a Quantum Circuit of depth O
(
dAES + Mn

wAES

)
where dAES ≈ 1.5× 104 and wAES ≈ 103 are the depth and width of the quantum AES cir-

cuit. Since n = 128 in our analysis, whenever M < 105 the depth of the circuit is dominated

by the depth of the AES circuit.

Theorems  3.3.1 and  3.3.2 below upper and lower bound the total number of ideal cipher

queries necessary to recover one out of M keys.

Theorem 3.3.1. There exists a k-parallel quantum algorithm AFc1,...,cM (·) such that

Pr
[
AFc1,...,cM (·)(x)(1n) ∈ S

]
> 1

2 in sequential time O
(√

N
kM

)
and makes O

(√
kN
M

)
oracle

queries, where probability is taken over selection of a random subset S ⊆ {0, 1}n of size M

as well as the randomness of AfS(·).

Proof. WLOG we assume that M = 2m is a power of two to simplify exposition. Let

AfS(·)(1n) do the following:

1. Partition the search space intom blocks B0m , . . . , B1m where we have Bx = {xy : y ∈

{0, 1}n−m} for each x ∈ {0, 1}m.

2. Select a block uniformly random Bx for x ∈ {0, 1}m.

3. Run a modified k-Parallel Grover’s algorithm on the block Bx.

Straightforward balls and bins analysis tells us that Pr [|Bx ∩ S| ≥ 1] ≥ 1 − 1
e
. Boyer et

al [ 63 ] adapted Grover’s algorithm to handle the case where there are an unknown number

of solutions t. Their algorithm runs in sequential time O
(√

|Bx|
t

)
. Since,

√
|Bx|
t

= O
(√
|Bx|

)
and

√
|Bx| =

√
N/M the running time would be at most O

(√
N
M

)
. If the attacker is k-parallel

we can use the standard trick of further dividing Bx into k blocks Bx,1, . . . , Bx,k of equal size

and running an independent search on each of these blocks. Each of these searches requires

sequential time O
(√
|Bx,i|

)
= O

(√
N
Mk

)
with O

(√
N
Mk

)
queries to fS(·) total number of

oracle queries would be O
(√

N
Mk

)
.

We remark that if |Bx ∩ S| ≥ 1 then the search will succeed with high probability. Thus,

we have Pr
[
AfS(·)(x)(1n) ∈ S

]
≥ 1

2 as required.
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Theorem 3.3.2. Given any constant c ∈ (0, 1] there is no k-parallel quantum algorithm

AEnc running in sequential time o
(√

N
Mk

)
and making at most o

(√
Nk
M

)
queries to the ideal

cipher that can find an element x ∈ S with probability Pr
[
AfS(1n) ∈ S

]
> c, where probability

is taken over selection of a random subset S ⊆ {0, 1}n of size m as well as the randomness

of AfS(·).

Proof. (sketch) We assume that M = 2m is a power of two to simplify presentation. We

first note that the problem of selecting a susbset S of size M is equivalent to randomly

partitioning the search space {0, 1}N into M blocks B0m , . . . , B1m of size 2n−m = N/M and

then constructing S by randomly selecting one element from each block Bx. If we offer to

reveal the partition B0m , . . . , B1m this can only help the attacker. Thus, without loss of

generality we can assume that S is constructed by selecting one random element from each

of the sets Bx = {yx : y ∈ {0, 1}n−m} for each x ∈ {0, 1}m.

We will argue by contradiction. In particular, we show that if such a k-parallel quantum

algorithm AfS exists such that (1) Pr
[
AfS(1n) ∈ S

]
> c, (2) AfS runs in sequential time

o
(√

N
Mk

)
and (3) AfS makes at most o

(√
Nk
M

)
oracle queries then we can devise a new k-

parallel quantum algorithm A to solve the regular quantum search problem over the search

space {0, 1}n−m such that A runs in sequential time o
(√

N
k

)
and makes at most o

(√
kN

)
queries contradicting a result of Zalka [ 64 ].

Given an indicator function fx : {0, 1}n−m → {0, 1} such that fx(x) = 1 and fx(y) = 0 for

all y 6= x the quantum search problem is to find the secret value x given oracle access to fx(·).

Our algorithm Afx will select random values yz ∈ {0, 1}n for each z ∈ {0, 1}m subject to the

constraint that for any z 6= z the last m bits of yz and yz are distinct. We can implicitly

define the set S = {(xz) ⊕ yz : z ∈ {0, 1}m}. The set S cannot be constructed explicitly,

but A can simulate the oracle fS(·) using two queries to the oracle fx(·). In particular,

given an input w ∈ {0, 1}n for fS(·) there are at most two values z ∈ {0, 1}m such that

wz = w⊕yz = xwz for some string xw ∈ {0, 1}n−m and then let xz denote the first n−m bits

of wz. We remark that w ∈ S if and only if we can find z, w such that wz = w ⊕ yz = xwz

and fx(xw) = 1. A will now simulate AfS to recover w ∈ S with probability at least c > 0.

The sequential running time of A will still be o
(√

N
Mk

)
= o

(√
Nk

)
and the total number
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of queries will be qA = 2 ∗ qA = o
(√

Nk
)
. Given w ∈ S we can find the unique value

z ∈ {0, 1}m such that wz = w⊕ yz = xwz for some string xw ∈ {0, 1}n−m and recover x from

the first n−m bits of wz.

These theorems show that when considering an M key batch attack running on multiple

quantum computers in parallel Grover’s algorithm is an asymptotically optimal solution.

This also shows that as you obtain M keys to batch together you can speed up attacks

by a factor of
√
M . This can cause some significant reductions in attack costs, bringing

some attacks closer to economically feasible ranges. For example, consider a setting where

the attacker has access to M = 106 encryptions of the same message under different AES

keys. In this case, the cost of cracking one of these keys within 100 years would be around

100 million (USD) under our quantum mania assumption. This is still quite expensive, but

significantly cheaper than the 100 billion (USD) it would take to crack each key individually.

3.3.9 Discussion

We introduced an economic model to analyze the efficacy of quantum key-recover attacks.

Our results (for threshold scenarios) are summarized in table  3.12 ,  3.13 and  3.14 . Within

these tables consider the attacker’s most optimistic scenario. Suppose that we are in the

“quantum mania” world in which the cost/speed of quantum computers improves at a rapid

pace. Further suppose that the only time restriction that the attacker faces is that the

key-recovery attack must be completed within 100 years. Even in the attacker’s best-case

scenario the cost of a key-recovery attack is estimated at $9.81 × 1010, a very significant

amount. While this is certainly less than the expected classical cost of $9.24 × 1029 we

still see a significant financial barrier to these attacks. Under less optimistic scenarios the

attacker’s costs only increase e.g., if the attacker needs to recover the key in 10 years under

our “optimistic” assumption on advances in quantum computing the attacker’s costs will be

at least 3.352 × 1016, well beyond the capabilities of any adversary. Given that the cost of

a quantum key-recovery attack is so high we argue that for almost all use cases AES-128

should remain safe in a post-quantum world. We additionally stress that the values we
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provide should be considered lower bounds. We have ignored many significant issues that

arise for quantum computers like error correction, decoherence, and electricity costs.

We advocate for rethinking the common strategy of defending against a quantum key-

recovery attack by doubling the key length. In fact, not only do we find that doubling key

length is usually unnecessary, we also find that adding a constant number of bits to the key

is not needed as suggested in [ 121 ]. In settings where computational overhead is paramount

(e.g., embedded devices) and the secret is under our lowest attack cost estimate ($6.63×109)

it may be better to opt for smaller key lengths.

3.4 Grover’s Algorithms Attacks Against Nonuniform Distributions

Grover’s algorithm [ 62 ] for database search is a well-known quantum algorithm capable

of outperforming classical computers for the database search problem. Specifically, it is

capable of finding some input x∗ ∈ X to a function f : X → Y that produces a specified

output y∗ ∈ Y in time O
(√
|X|

)
(More details in Section  2 ). By appropriately selecting

this function, domain, and codomain Grover’s algorithm can accomplish goals like finding

a symmetric cipher key (e.g., for AES) much faster than a classical computer could brute

force the same problem. Grover’s algorithm was proven to be asymptotically optimal [ 64 ],

however, some methods have been shown to slightly reduce the expected cost of Grover’s

algorithm, e.g., [ 63 ]. Here we consider another method of reducing the expected cost of

Grover’s algorithm in specific scenarios - those where the distribution of elements in X are

not uniformly distributed.

For use cases of Grover’s algorithm like a key-recovery attack against AES we generally

do not require any information about the distribution over elements in X. Indeed, Grover’s

algorithm itself is blind to any information about this distribution and performs at the

same speed over a uniform distribution as it would over a distribution with all weight on

a single element. What we show in this work is that there are ways to take advantage of

non-uniform distributions in some cases to reduce the expected cost of a Grover’s algorithm

attack. Essentially, we note that while Grover’s algorithm is blind to the distribution of

elements in X while it is being run, we can take advantage of a distribution’s structure to
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run multiple smaller instances of Grover’s algorithm in a way that reduces the expected cost

of an attack.

When a distribution is sufficiently far from uniform it becomes possible to partition the

domain X based on the distribution DX that elements from X are selected. The general idea

is to find a partition that takes advantage of grouping high-probability sections of the distri-

bution DX and runs a smaller instance of Grover’s algorithm that has a higher probability

of finding the correct solution than it would under a uniform distribution. While normally

running a parallel version of Grover’s algorithm imposes a significant cost overhead [ 64 ,  5 ]

it is possible to reduce the expected total cost of an attack if we have a distribution that

sufficiently increases success probability within a subdomain of DX .

We show in Theorem  3.4.1 that any partition ofDX that reduces the total cost of Grover’s

algorithm is structured with blocks in the partition forming consecutive contiguous blocks,

a property that makes it possible to efficiently determine what the optimal cost-reducing

partition would be. Using these properties, we show that there is a dynamic programming

algorithm that produces a cost-minimizing partition P of DX efficiently. Finally, we apply

this dynamic programming algorithm to an example of a non-uniform distribution - password

cracking. Because users do not select passwords at random, and indeed generally select

passwords only from a small subdomain of all possible passwords Σ∗ and rather select from a

skewed distribution with a small number of possible passwords making up a large proportion

of selected passwords. Using the dynamic programming algorithm on distributions obtained

from existing password datasets we find that the partitioned version of Grover’s algorithm

is capable of decreasing costs enough to make previously unprofitable attacks profitable.

For many practical uses of Grover’s algorithm, like key-recovery attacks against symmetric-

key ciphers, the distribution DX can be considered to be uniform, or at least close enough

to uniform that we believe it unlikely that any partitioning strategy would be able to reduce

the cost of a key-recovery attack. Even in certain situations where a distribution over keys

is non-uniform, e.g. if a programmer accidentally selected a 256-bit key using only a 64-bit

seed to a pseudorandom number generator, we would still have a uniform subdomain of DX

on which the standard version of Grover’s algorithm could be run. However, in cases where

we do have a skewed domain, such as in password cracking, this new method of structuring
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a Grover’s algorithm attack offers a new, more efficient, method of increasing attack speed

and reducing attack cost.

3.4.1 Partitioned Grover’s Algorithm

The partitioned version of Grover’s algorithm is not a modification of Grover’s algorithm

itself. Rather, it is a sequence of smaller instances of Grover’s algorithm that has been de-

signed to reduce the expected cost of running the algorithm over some distribution DX over

domain X using a circuit for some function f . We first note that, in the case of a uniform

distribution over the domain X, there is a higher total cost to run Grover’s algorithm over

sections of the domain compared to running it over the entire domain at once [ 121 ,  5 ]. How-

ever, in the parallel versions of Grover’s algorithm discussed in these works, it is assumed

that each instance of Grover’s algorithm is being run concurrently. In this case, all instances

are run regardless of the outcome of other instances. When a parallel attack is structured

in this way with k individual instances of Grover’s algorithm the algorithm suffers an over-

head of O
(√

k
)
compared to running the attack at the entire domain at once. However, it

does complete its work O
(√

k
)
times faster. Even though there is overhead there may be

circumstances where time limitations make this tradeoff worthwhile, as shown in [ 5 ].

Here we note that there is another situation where a tradeoff may be worthwhile. Whereas

in [ 5 ] this tradeoff involved time limits and reducing rewards over time as a motivation

for parallelizing Grover’s algorithm we instead consider a case where we want to minimize

the expected time for an attack without any time limit or reducing rewards over time.

In doing this, we do not parallelize Grover’s algorithm but rather try to find a partition

P = {B1, B2, . . . , B|P |} that reduces the expected number of total oracle calls to Grover’s

algorithm when we run Grover’s sequentially on each block in the partition. Specifically,

the adversary runs Grover’s search to check the first bucket. If they find the correct result

the search terminates, otherwise the attacker can continue the attack on the next block. In

the traditional version of Grover’s algorithm, we make a total of π
4

√
|X| calls to the oracle

for f . However, if the adversary partitions the domain and checks the partition blocks in
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descending order of probability mass (and assuming they check the entire partition) we pay

cost

Cost(DX , P ) =
|P |∑
i=1

Pr[Bi]
i∑

j=1

π

4
√
|Bj|,

where Pr[Bi] represents the total probability mass in Bi according to the distribution DX .

Intuitively, with probability Pr[Bi] an attacker would halt the attack after block Bi has been

checked because they found the correct answer, and had to pay ∑i
j=1

π
4

√
|Bj| to reach that

point. An attacker running this attack can select any partition they want when running an

attack, with a rational attacker selecting the partition that minimizes the expected attack

costs.

As a practical example, consider the domain X = Y = [1, 80] and a random function f :

X → Y . Suppose we want to find some input that generates 1 and know that it was generated

with the input to f being drawn from the distribution DX where DX = 0.04 on elements

[1, 10] and 0.6
70 on [11, 80]. Consider the partition P = {B1, B2}, B1 = [1, 10], B2 = [11, 80].

Note that if we ran Grover’s algorithm over the entire domain X we would require π
4

√
80 ≈ 7

iterations 

11
 . However, if we were to run two separate instances of Grover’s algorithm in

sequence on B1 and B2 the expected number of oracle calls would be π
4

√
10 + 0.60π4

√
70 ≈ 6.

Although this is admittedly a contrived case, it does show that it is possible to strategize a

Grover’s algorithm instance by first attempting a smaller subdomain with higher probability

before moving on to other blocks.

While the above example demonstrates that there exist some possible partitions that can

reduce the cost of Grover’s algorithm in expectation it does not yet provide a method of

determining a good partitioning strategy. In section  3.4.3 we will demonstrate a dynamic

programming algorithm that finds an optimal partition for the partitioned version of Grover’s

algorithm. However, before the dynamic programming algorithm is demonstrated we require

a few facts about the structure of an optimal partition. Thankfully, any optimal partition

has a structure that makes finding an optimal partition efficient.
11Grover’s algorithm requires the number of rounds to be a natural number. In reality the closest natural
number to π/4

√
n would be selected, though for convenience we use the exact value in our calculations.
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3.4.2 Bucketizing Contiguous Sections is optimal

To construct our algorithms that finds the optimal cost-reducing partition P ∗ we first

require some structural theorems to characterize the optimal distribution. First, we denote

the domain that we are searching over as X, with size |X| = n. We denote a probability

distribution over the elements of X as DX where we will search over the support supp(DX).

Elements in the support of DX are labelled in descending order as d1, d2, . . .. A partition P =

{B1, B − 2, . . . , B|P |} of supp(DX) has blocks Bi labelled in descending order of probability

mass. For convenience, we denote |Bi| = si and Si = ∑i
j=1 sj. This fact follows from a series

of swapping arguments of the following form:

Lemma 1. Let DX be a distribution over X. Given a partition P = {B1, B2, . . . , Bk} of

Supp(DX) and two blocks Bx, By ∈ P , x < y, containing a pair of elements dx ∈ By and

dy ∈ By such that dy > dx, there exists a partition P ′ such that Cost(DX , P
′) < Cost(DX , P ).

Proof. Let P ′ = {B′1, B′2, . . . , B′|P ′|} where Bi = B′i for all i 6= x, y and B′x = (Bx \ dx)∪{dy}

and B′y = (By \ dy)∪{dx}. The difference between the expected running costs using P vs P ′ is

E [Cost(DX , P )− Cost(DX , P
′)] = ∑k

i=1 Pr[Bi]
∑i
j=1

π
4

√
|Bj|−

∑k
i=1 Pr[B′i]

∑i
j=1

π
4

√
|B′j|. note

that block sizes remain unchanged.

E [Cost(DX , P )− Cost(DX , P
′)] =

(Pr[Bx]− Pr[B′x])
X∑
j=1

π

4
√
|Bj|

−

(Pr[By]− Pr
[
B′y
]) y∑

j=1

π

4
√
|Bj|


Let p = dx − dy, note p < 0.

= p

 x∑
j=1

π

4
√
|Bj|

− p
 y∑
j=1

π

4
√
|Bj|



= −p
y∑

j=x+1

π

4
√
|Bj|
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Thus P ′ has a lower expected cost.

Theorem 3.4.1. For all distributions DX over X all minimal-cost partitions

P ∗ ∈ argmax
P∈P

C(DX , P ) of Supp(DX) have of the form P ∗ = {B1, B2, . . .} where Bi =

[Si−1 + 1, Si] for each i ≥ 1 with S0 = 0 and Si = Si−1 + |Bi|.

Proof. Assume for contradiction that we have an optimal partition P that is not of the form

Bi = [Si−1 + 1, Si] for each i ≥ 1 where S0 = 0 and Si = Si−1 + |Bi| (i.e., not contiguous).

Then we have at least one pair of elements dx, dy, dx < dy, x > y with dx ∈ By, dy ∈ Bx. By

Lemma  1 we can construct a partition P ′ such that C(DX , P
′) < C(DX , P ). Thus, P is not

optimal. By contradiction, the optimal partition must be contiguous.

3.4.3 A Dynamic Programming Algorithm for Optimal Partitioned Grover’s
Algorithm

In this section we demonstrate a dynamic programming algorithm that finds an optimal

cost-reducing partition P ∗ for the partitioned version of Grover’s algorithm. For the purposes

of this section we will fix a distribution DX . We use the following notation in our definition

of the optimal cost partition and in the derivation of a recurrence relation that finds P ∗.

First, we denote Bi as the event where the target element t was not in blocks B1 through

Bi. We let B0 = 0. Similarly let di denote the event that the target element is known to not

be drawn from any distribution element ≤ i. Additionally, let d≤i = {d1, . . . , di} and fixing

B1, . . . , Bk we have B≤j = ⋃j
i=1Bj and B≤0 = {}.

Let D≥i be the conditional distribution over elements {di, . . . , dn} conditioning on the

event that we do not sample d≤i−1 and let OPT (i) denote the cost of an optimal partition

of D≥i i.e.,

OPT (i) = min
P∈P(D≥i)

|P |∑
j=1

Pr
[
Bj|d≤i−1

] j∑
x=1

π

4
√
|Bx|.

We present the following recurrence relation that allows for a dynamic programming algo-

rithm to find OPT (i):
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Theorem 3.4.2.

OPT (i) = min
s≤n−i+1

π4√s+
1−

i+s−1∑
j=i

Pr
[
dj|d≤i−1

]OPT (i+ s)
 .

Proof. We begin with the base cases OPT (|X|) = π
4 Pr

[
d|X||d≤|X|−1

]
= π

4 and, for conve-

nience, OPT (|X|+ 1) = 0. Supposing that B1, . . . , Bk is the optimal partition for OPT (i).

By Theorem  3.4.1 we can assume that Bi = {di, . . . , di−1+s1} for some s1 = |B1|. We can

rewrite OPT (i) =

∑|P |
j=1 Pr

[
Bj|d≤i−1

]∑i
x=1

π
4

√
|Bx|

= π
4
√
B1 +∑|P |

j=2 Pr
[
Bj|d≤i−1

]∑j
x=2

π
4

√
|Bx|

= π
4
√
B1 + (1− Pr

[
B1|d≤i−1

]
)×∑|P |

j=2 Pr
[
Bj|d≤i−1 ∪B1

]∑j
x=2

π
4

√
|Bx|

= π
4
√
B1 + (1− Pr

[
B1|d≤i−1

]
)×∑|P |

j=2 Pr
[
Bj|d≤i−1+|B1|

]∑j
x=2

π
4

√
|Bx|

= π
4
√
B1 + (1− Pr

[
B1|d≤i−1

]
)OPT (i+ |B1|) .

In the final step, we note that ifB2, . . . , Bk were not an optimal partition forOPT (i+|B1|)

then we would have been able to find a better partition for OPT (i) (contradiction).

Thus, OPT (n) = π/4 and for i < n we obtain the recurrence relationship

OPT (i) = min
s≤n−i+1

π4√s+
1−

i+s−1∑
j=i

Pr
[
dj|d≤i−1

]OPT (i+ s)


. Note that when picking s = n − i + 1 in the recurrence above we have cost π
4
√
s =

π
4
√
n− i+ 1 since OPT (i+ s) = OPT (n+ 1) = 0.

We remark that calculating OPT (1) requires calculating OPT (i) for each i. For each i we

remark that calculating OPT (i) can be calculated in linear time by storing previous results

from each partial sum. The total cost to calculate OPT (1) is O(n2). Interestingly, we find
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that this dynamic programming algorithm produces solutions for the uniform distribution

that exceed the performance of the typical single-threaded solution for Grover’s algorithm.

Specifically we note the following:

Theorem 3.4.3. The cost of the partitioned version of Grover’s algorithm running on the

uniform distribution UX over X, Cost (UX , P ∗) is πx
4
√
n where 0.978 < x < 0.9787 for

domains of size n ≥ 83.

Proof sketch: For the lower bound, let C(n) be the cost of the optimal partition of Un.

Note C(n) = OPT (1) and C(i = OPT (n − i) under the uniform distribution. Plugging in

s = 7n/8 into the recurrence gives C(n) = OPT (1) ≤ π
4

√
7n
8 + 1

8OPT
(

7n
8

)
= π

4

√
7n
8 + 1

8C
(
n
8

)
.

We can recursively argue that C
(
n
8i
)
≤ π

4

√
7n

8i+1 + 1
8C( n

8i+1 ) and that we always have C
(
n
8i
)
≤

π
4

√
n
8i . Three levels of recursion produces the upper bound in the theorem statement.

The lower bound is generated through differential calculus optimization argument. We

first consider whether x > 0.978. Consider the case |X| = 8. Note that 2.7662 = 0.978
√

8 <
√

7 + 0.125 = 2.7707 , so the claim holds for |X| = 8.

Assume C(t) > 0.978
√
t ∀t < n.

Let c1 = 0.978. Now,

C(n) = min
t≤n

{√
t+ t− n

n
C(n− t)

}
> min

t≤n

{√
t+ c1(n− t)3/2

n

}

Let

f(t) =
√
t+ c1(n− t)3/2

n

.

f(t) = 1
2
√
t
− 3c1

√
n− t

2n

Thus we can minimize at

t =
9c2

1n±
√

81c4
1n

2 + 36c2
1n

2

18c2
1

Note that the second root is negative, so we focus only on the first. Here we find that

t∗ = 1647+
√

1152089n
2934 ≈ 0.8658n.
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3.4.4 Utility-maximizing Partitions

In Section  3.4.3 we noted the dynamic programming algorithm that minimizes the work

(measured in iterations within Grover’s algorithm) to run a Grover’s algorithm attack for

some element sampled from a distribution. Here we ask a related question: what if, rather

than minimizing work, we wished to maximize the profit gained from running an attack?

First, we note that when maximizing profit instead of minimizing work we introduce the

possibility of not checking all possible inputs with Grover’s algorithm. We define P̂ as the

set of all possible subsets of partitions in P . We now modify our earlier model by having an

attacker A determine a value v representing the reward they obtain if the attack is successful.

Second, we note that the attacker must fund the attack, which includes factors like labor,

equipment costs, electricity costs, etc. . . Let R(DX , P̂ , v) be the expected reward the attacker

receives for running the attack with some partial partition P̂ ∈ P̂ . If we consider a case

where the attacker is running a typical Grover’s algorithm attack on an entire distribution we

have R(DX , P̂ , v) = v, as the attacker recovers the correct information with high probability.

For some partial partition P̂ we have

R(DX , v) = v
∑
Bi∈P̂

Pr[Bi].

The adversary also considers the cost function C(DX , P̂ , k), where k is defined as the

cost to run one iteration of Grover’s algorithm. If we again consider an attacker running the

traditional version of Grover’s algorithm we would find that C(DX , k) = kπ
4

√
|X|. For an

adversary operating over P̂ = {B1, B2, . . . , B|P̂ |} ⊆ P we have

C(DX , P̂ , k) = kπ

4

|P̂ |∑
i=1

Pr[Bi]
i∑

j=1

√
|Bj|.

Finally, we define the AttackerA’s profit Profit(DX , P̂ , v, k) = R(DX , P̂ , v)−C(DX , P̂ , k).

With this new function, we can turn our attention from minimizing work to the maximization

of profit. We note that this change in the model allows for slightly more flexibility on the

side of the attacker. For example, in Section  3.4.3 we assume that the attacker is optimizing
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an attack with the intent of trying every possible input. However, when optimizing profit we

allow the attacker to choose to stop the attack partway through, a move they would want to

take if their expected marginal profit for continuing the attack at some block drops below

zero.

A Dynamic Programming Algorithm for Optimizing Profit

As in Section  3.4.3 we find that there is a dynamic programming algorithm that finds

the optimal subset of a partition (which we refer to as a partial partition) that maximizes

an attacker’s profit. Fixing DX , v > 0, k > 0 we define

OPT (i) = max
P̂∈P̂(D≥i)

Profit(D≥i, P̂ , v, k).

where OPT (1) is the maximum profit over all partial partitions of D≥i as D≥1 = DX . We

first require a slight modification of Lemma  1 and Theorem  3.4.1 before we can derive a

recurrence.

Lemma 2. Let P̂ = {B1, B2, . . . , Bk} be a subset of a partition P ∈ P of DX . Given the

work per Grover’s iteration k > 0, reward valuation v > 0, and two blocks Bx, By ∈ P ,

x < y, containing a pair of elements dx ∈ Bx and dy ∈ By such that dy > dx, let the

subset P̂ ′ be defined as a partial partition containing the same elements as P̂ where the

blocks Bx and By are replaced with B′x = (Bx \ dx) ∪ {dy} and B′y = (By \ dy) ∪ {dx}.

E
[
Profit(DX , P̂ ′, v, k)

]
> E

[
Profit(DX , P̂ , v, k)

]
.

Proof. The difference between the expected profits using P vs P ′ is

E
[
Profit(DX , P̂ ′, v, k)− Profit(DX , P̂ , v, k)

]
= E

[
C(DX , P̂ , k)− C(DX , P̂ ′, k)

]
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due to the equal expected reward between the two partial partitions.

|P |∑
i=1

Pr[Bi]
i∑

j=1

πk

4
√
|Bj|

−
|P ′|∑
i=1

Pr[B′i]
i∑

j=1

πk

4
√
|B′j|.

Note that block sizes remain unchanged.

(Pr[Bx]− Pr[B′x])
x∑
j=1

πk

4
√
|Bj|

−

(Pr[By]− Pr
[
B′y
]) y∑

j=1

πk

4
√
|Bj|


Let p = dX − dY , note p < 0.

= p

 x∑
j=1

πk

4
√
|Bj|

− p
 y∑
j=1

πk

4
√
|Bj|



= −p
y∑

j=x+1

πk

4
√
|Bj| > 0

Thus P ′ has a lower expected cost.

We also note that in the case where some element in supp(DX) \⋃ P̂ is greater than the

smallest element in ⋃ P̂ a similar swapping lemma exists.

Lemma 3. Let the partial partition P̂ = {B1, B2, . . . , Bk} over DX with v > 0, k > 0 have

some block Bx ∈ P̂ and element dy ∈ supp(DX)\⋃ P̂ that is larger than an element dx ∈ Bx.

Let the partition P̂ ′ be the same as P̂ with the block Bx replaced with B′x = (Bx \ dx)∪{dy}.

E
[
Profit(Dx, P̂ ′, v, k)

]
> E

[
Profit(DX , P̂ , v, k)

]
.

Proof. Consider

E
[
Profit

(
DX , P̂ ′, v, k

)
−Profit

(
DX , P̂ , v, k

)]

96



=

|P̂ ′|∑
i=1

v Pr[B′i]−
kπ

4

|P̂ |∑
i=1

Pr[B′i]
i∑

j=1

√
|B′j|


−

 |P̂ |∑
i=1

v Pr[Bi]−
kπ

4

|P̂ |∑
i=1

Pr[Bi]
i∑

j=1

√
|Bj|


= v

|P̂ ′|∑
i=1

Pr[B′i]−
|P̂ |∑
i=1

Pr[Bi]

−kπ4 (dx − dy)
x∑
j=1

√
|Bj|

= (dy − dx)
v − kπ

4

x∑
j=1

√
|Bj|

> 0

where the last line follows as dy > dx.

Theorem 3.4.4. Any profit maximizing partition P̂ ∗ ∈ argmax
P̂∈P̂(DX)

Profit(DX , P̂ , v, k) has

the form P̂ ∗ = {B1, B2, . . .} where Bi = [Si−1 + 1, Si] for each i ≥ 1 with S0 = 0 and

Si = Si−1 + |Bi|.

Proof. First note that a direct consequence of Lemma  3 have have

DX\
⋃
P̂ ∗ = {dS

|P̂∗|
+1, dS

|P̂∗|
+2, . . . , d|DX |}. If not, we would have some element dx inDX\

⋃
P̂ ∗

greater than some element in ⋃ P̂ ∗. By Lemma  3 this was not the optimal partition.

Next, assume that the remaining elements in ⋃ P̂ ∗ are not contiguous, i.e., there is some

pair of elements dX , dY such that dx ∈ BX and dy ∈ BY , X > Y and dy > min
d′∈BX

. By Lemma

 2 we can contruct a partial partition with higher profit. Thus P̂ ∗ was not the optimal partial

partition.

From these two facts we can see that P̂ ∗ is composed of blocks of the form Bi =

{dSi−1+1, dSi−1+2, . . . , dSi}.

Theorem 3.4.5. If P̂ ∗ ∈ argmax
P̂∈P̂(D≥i)

Profit(DX , P̂ , v, k) and P̂ ∗ = {B1, B2, . . . , B|P̂ ∗|} has

|B1| = j then P̂ ∗′ = {B2, B3, . . . , B|P̂ ∗|} ∈ argmax
P̂∈P̂(D≥i+j)

Profit(DX , P̂ , v, k).
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Proof. Assume P̂ ∗ ∈ PD≥i is the optimal partial partition for D≥i and P̂ ∗ has |B1| = j but

P̂ ∗
′ = {B2, B3, . . . , BP̂ ∗

} is not optimal for D≥i+j. Then let P̂ ′′ = {B′1, B′2, . . . , B|P̂ ′|} be the

optimal partition for D≥i+j. Define P̂ ∗′′ = {B1} ∪ P̂ ′′.

E
[
Profit(DX , P̂ ∗

′
, v, k)− Profit(DX , P̂ ∗, v, k)

]
= Profit(DX , {B1}, v, k) + (1− Pr[B1]) Profit(DX , P̂ ∗

′′
, v, k)

− Profit(DX{B1}, v, k)− (1− Pr[B1]) Profit(DX , P̂ ∗
′
, v, k)

= (1− Pr[B1])
(
Profit(DX , P̂ ∗

′′
, v, k)− Profit(DX , P̂ ∗

′
, v, k)

)
> 0

Meaning P ∗ was not the optimal partition for D≥i. By contradiction, if |B1| = j P̂ ∗
′ is

optimal and P ∗ = {B1} ∪ P̂ ∗
′.

The process for deriving a recurrence relation here is very similar to the one used in

Section  3.4.3 . We begin with the base case OPT (|X|) = max(0, v − πk
4 ). We set OPT (ξ) =

0 where ξ > |X| for convenience. Note that we have three possibilities for the optimal

solution: (1) Check nothing i.e., the first bucket B1 is empty, (2) The first bucket B1 contains

everything, or (3) |B1| = j for some j. In the third case the optimal partition will combine

B1 with the optimal partition for the remaining partition. By Theorem  3.4.5 , the profit will

be

max
j>i

v j∑
x=i

Pr
[
dx|d≤i−1

]
− kπ

4
√
n− i



+
1−

j∑
x=i

Pr
[
dx|d≤i−1

]OPT (j)

The largest of these options is the maximum profit, thus

OPT (i) = max



v − kπ
4
√
n− i,

max
j>i

(
v

j∑
x=i

Pr
[
dx|d≤i−1

]
− kπ

4
√
n− i

)

+
(

1−
j∑
x=i

Pr
[
dx|d≤i−1

])
OPT (j),

0

.
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3.4.5 Empirical Analysis

We empirically evaluated password breaches using our dynamic programming algorithm

to see what an optimal bucketized Grover’s algorithm attack would look like in practice. Here

we examine the results from the Phpbb leak [  122 ] in the context of a partitioned Grover’s

algorithm attack. In our analysis we examine two different costs an adversary might consider

when running this attack. The first, cq, represents the cost, in USD, to compute a single

round of Grover’s algorithm. Similarly, cc represents the cost to make one guess on a classical

machine. We fix v = 1 for the purposes of this analysis. In our previous recurrence OPT (i)

we note you can update the recurrence to include an option where we check one password

classically before continuing. The new recurrence with the new case is:

OPT (i) = max



1− cqπ
4
√
n− i,

max
j>i

(
j∑
x=i

Pr
[
dx|d≤i−1

]
− cqπ

4
√
n− i

)

+
(

1−
j∑
x=i

Pr
[
dx|d≤i−1

])
OPT (j),

cc + (1− Pr
[
di|d≤i−11

]
)OPT (i+ 1),

0

.

In our analysis we allow the attacker to run a hybrid attack where they are permitted

to run certain partition blocks on a classical machine before switching to a quantum attack,

or vice versa. Results for the Phpbb leak are shown in Figure  3.10 . hatched areas represent

classical guesses, while solid represents quantum attacks.

To highlight a significant example, consider the case in Figure  3.10 with cq = 3 × 10−3

and cc = 3 × 10−5. Here we find that the optimal partition will crack almost all passwords

in the dataset in a perfect knowledge attack. However, running Grover’s algorithm on the

entire set (i.e., non-partitioned) is unprofitable since 1− cqπ
4

√
|X| ≈ −0.01!
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cq = 10−3, cc = 10−4

cq = 3× 10−3, cc = 3× 10−5

cq = 5× 10−3, cc = 5× 10−5

Figure 3.10. Partitions for phpbb leak
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3.4.6 Password-cracking circuits

Grover’s algorithm is often demonstrated as a search over some domain D = {0, 1}n

for an element d ∈ D, as might be appropriate when searching for a randomly generated

symmetric encryption key. However, in this paper, we are generally considering attacks in

the context of password cracking. While it may be theoretically possible to search over the

entire space of passwords over some alphabet Σ, the sheer size of this domain would make

such a task unwise. Instead, we would like to describe some method of only checking a

predetermined subset of all possible passwords e.g., some set of passwords an attacker has

obtained from a password breach.

To search over the support of some distribution supp(DP ) over P ⊆ Σ∗ representing a

password breach for some known salted hash value v we must compose several functions

before it is in a form suitable for Grover’s algorithm. Whatever function f we use must be

in the final form f : {0, 1}k → {0, 1}. To find a specific element p ∈ P that generates we

construct the following functions which we then compose:

• m : {0, 1}dlog2(|supp(P )|)e → P is an arbitrary mapping function that takes some index

and maps it on to an element in P in a one-to-one fashion.

• h : Σ∗ × {0, 1}s → {0, 1}µ is the password hashing function that was used in the

leaked password database. {0, 1}s represents the salt value for the password we are

trying to crack.

• 1v : {0, 1}µ → {0, 1} is an indicator function that outputs 1 if h ◦ m(x) = v and 0

otherwise.

With these functions we can use the function 1v◦h◦m(x) : {0, 1}dlog2(|supp(P )|)e → {0, 1} as

our search function for Grover’s algorithm. Though this function satisfies the requirements

to use Grover’s algorithm, the functions m and h merit further description and discussion,

as they constitute the bulk of the circuit size for this attack.

m serves to translate from a superposition of {0, 1}dlog2(|supp(P )|)e logical qubits to some

element in our database of passwords P that we are checking. The straightforward solution

to constructing m is to build it as a linear-size dictionary we can reference. To build this, we
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rely on a gadget Lp(i) that copies a string pi ∈ P into a set of target qubits T if the input

index i matches the input corresponding with p. Intuitively all this circuit does is read the

input x and use it to index into a table, writing its output to some set of target qubits T .

The gadget Lp serves to check if the input index i matches an index associated with the

password p, ip. If p = ip then the encoded text of p is placed into a block of designated scratch

qubits. It takes as input λ = dlog2 |P |e qubits representing an index and 2λ+2` dlog2 |Σ|e+`

〈0|〉 qubits, where ` is the maximum length of a password in the set P . At the end of this

gadget the password p has been placed into a designated set of ` qubits iff i = ip.

The Lp gadget contains two main stages of computation - the index comparison and a

conditional XOR into a set of target qubits.

A diagram of Lp(i) is found in Figure  3.11 .

The circuit that selects the appropriate password p based on an input index i requires

a total of |P | copies of Lp, one for each password p ∈ P . There is some flexibility in how

these individual gadgets are combined. One extreme is to run all Lp gadgets in parallel as a

single layer, while another is to run a single gadget at a time sequentially. Mixtures of these

two strategies are also possible, running a subset of the Lp gadgets in one layer and stacking

enough layers to check all elements. Diagrams of these strategies can be seen in Figures  3.11 

and  3.12 .

While this linear-size dictionary strategy for constructing a superposition of passwords

accomplishes its goal it may also be possible to consider more advanced methods of generating

this superposition of input passwords. More state-of-the-art password cracking methods take

advantage of neural networks [ 82 ] or PCFGs [ 123 ], to generate large numbers of candidate

passwords for use in a brute force attack.

In the context of the full Grover iteration circuit, we would like to know how these

password-checking circuits affect the total circuit size. We have a total circuit width of

|0〉|P |width(Lpi (i) + λ, as noted in Figure  3.12 . Memory hard functions like Argon2 can require

up to billions of qubits under the naive algorithm for computation. However, password lists

like LinkedIn [ 10 ] can contain tens of millions of passwords with long passwords (e.g., > 20

characters) mixed in. In terms of width, this circuit may be comparable with the width of

MHF computation when large password lists are used. However, the depth of these circuits
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Figure 3.11. A lookup gadget to copy a single password into a set of target qubits

Figure 3.12. A circuit to place a superposition of passwords into an output target

103



is proportional to the log of password length from the comparison stages. This is significantly

less than the depth required to compute a function like Argon2. In terms of the full cost

to compute a Grover’s algorithm iteration, the function is still dominated by the cost of

computing the password hashing function, especially when MHFs are used.

3.4.7 Discussion

In this section, we have noted that Grover’s algorithm attacks need not remain blind

to the distribution over possible input elements. We have shown that there is a dynamic

programming algorithm that can generate an optimal partition for a Grover’s algorithm

attack. This dynamic algorithm was able to find cases where attacks with negative attacker

utility can be made positive by applying the partitioned version of the attack. These cases

can be considered even more significant because they not only make an attack possible, they

increase utility enough that the attacker is predicted to crack almost all passwords in the

distribution. If these cost estimates were applied only in the context of a standard Grover’s

algorithm attack there would be a woeful underestimate of the dangers posed by a rational

adversary. Thankfully, with this new model, we can predict how rational attackers behave

when they are taking advantage of the partitioned version of Grover’s algorithm. These new

predictions may help us properly apply several of the results in Chapter  4 , where methods

to deter these attackers may depend on the specific costs related to an attack.
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4. DETERRING RATIONAL ATTACKERS

This chapter contains sections taken verbatim from [  6 ,  8 ,  7 ]

In Chapter  3 several papers describing methods of modelling rational attackers were

discussed. In several of these cases, such as in [ 3 ], we find from our models that there exist

attacks that rational attackers will perform. The natural next question is whether or not we

can do anything to deter these attackers. In this chapter we will investigate several rational

attacker deterrents, especially in cases like password hashing where our previous results

have identified problem areas. Recall from our rational adversary model in Section  2 that

we have two components of a rational adversary’s utility that we can focus on to influence

their behavior. The first is their reward function R(a). While it is possible to influence the

adversaries perceived reward (e.g., by trying to make the products of an attack harder to

use and thus less desirable to someone who might buy it), it tends to be a more difficult

approach than trying to affect their attack costs C(a). Raising costs has a similar effect

to reducing reward, by affecting the difference between these two factors we can influence

rational adversaries to select actions that we consider less harmful. In each of these four

papers we specifically focus on the context of password cracking, one of the most common

attacks against imperfectly secure systems. By using rational adversary analysis, we are

able to demonstrate how work to increase adversary costs influences them to select actions

that we consider more desirable (in this case, reducing the number of compromised user

accounts).

4.1 Information Signaling in Password Storage

Password hashing serves as a last line of defense against an offline password attacker.

A good password hash function H should be moderately expensive to compute so that it

becomes prohibitively expensive to check millions or billions of password guesses. However,

we cannot make H too expensive to compute as the honest authentication server needs

to evaluate H every time a user authenticates. In this paper, we explore a highly counter-

intuitive defense against rational attackers which does not impact hashing costs: information
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signaling! In particular, we propose to have the authentication server store a (noisy) signal

sigu which is correlated with the strength of the user’s password.

Traditionally, an authentication server stores the tuple (u, saltu, hu) for each user u where

saltu is a random salt value and hu = H(saltu, pwu) is the salted hash. We propose to have

the authentication server instead store the tuple (u, saltu, sigu, hu), where the (noisy) signal

sigu is sampled based on the strength of the user’s password pwu. The signal sigu is simply

recorded for an offline attacker to find if the authentication server is breached. In fact, the

authentication server never even uses sigu when the user u authenticates 

1
 . At first glance, it

seems highly counter-intuitive that the signal sigu could help to protect user’s against offline

attackers. The attacker will only use the signal sigu if it is beneficial — at minimum the

attacker could always choose to ignore the signal.

To provide some intuition for why information signaling might be beneficial we observe

that password cracking is not a zero-sum game between the defender and the password

cracker. The defender’s utility is inversely proportional to the fraction of user passwords

that are cracked. By contrast, the attacker’s utility is given by his reward, i.e., the value

of all of the cracked passwords, minus his guessing costs. Thus, it is possible that password

strength signaling would result in the attacker cracking fewer passwords.

Example 1

Suppose that we add a signal sigu = 1 to indicate that user u’s password pwu is un-

crackable (e.g., the entropy of the password is over 60-bits) and we add the signal sigu = 0

otherwise. In this case, the attacker will simply choose to ignore accounts with sigu = 1

to reduce his total guessing cost. However, the number of cracked user passwords stays

unchanged.
1If a user u attempts to login with password pw the authentication server will lookup saltu and hu and
accept pw if and only if hu = H(saltu, pw).
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Example 2

Suppose that we modify the signaling scheme above so that even when the user’s password

pwu is not deemed to be uncrackable we still signal sigu = 1 with probability ε and sigu = 0

otherwise. If the user’s password is uncrackable we always signal sigu = 1. Assuming that

ε is not too large a rational attacker might still choose to ignore any account with sigu = 1

i.e., the attacker’s expected reward will decrease slightly, but the attacker’s guessing costs

will also be reduced. In this example, the fraction of cracked user passwords is reduced by

up to ε i.e., any lucky user u with sigu = 1 will not have their password cracked.

In this work, we explore the following questions: Can information signaling be used

to protect passwords against rational attackers? If so, how can we compute the optimal

signaling strategy?

Contributions

We introduce information signaling as a novel, counter-intuitive, defense against rational

password attackers. We adapt a Stackelberg game-theoretic model of Blocki and Datta [ 17 ]

to characterize the behavior of a rational password adversary and to characterize the optimal

signaling strategy for an authentication server (defender). We analyze the performance of

information signaling using several large password datasets: Bfield, Brazzers, Clixsense,

CSDN, Neopets, 000webhost, RockYou, Yahoo! [ 79 ,  80 ], and LinkedIn [ 10 ]. We analyze

our mechanism both in the idealistic setting, where the defender has perfect knowledge of

the user password distribution P and value v of each cracked password, as well as in a

more realistic setting where the defender only is given approximations of P and v. In our

experiments, we analyze the fraction xsig(v) (resp. xno−sig(v)) of passwords that a rational

attacker would crack if the authentication server uses (resp. does not use) information

signaling. We find that the reduction in the number of cracked passwords can be substantial

e.g., xno−sig(v) − xsig(v) ≈ 8% under empirical distribution and 13% under Monte Carlo

distribution. We also show that information signaling can be used to help deter online

attacks when CAPTCHAs are used for throttling.
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An additional advantage of our information signaling method is that it is independent

of the password hashing method and requires no additional hashing work. Implementation

involves some determination of which signal to attach to a certain account, but beyond that,

any future authentication attempts are handled exactly as they were before i.e. the signal

information is ignored.

Password Representation

We use P to denote the set of all passwords that a user might select and we use P to denote

a distribution over user-selected passwords i.e., a new user will select the password pw ∈ P

with probability Prx∼P [x = pw] — we typically write Pr[pw] for notational simplicity.

Password Datasets

Given a set of N users U = {u1, . . . , uN} the corresponding password dataset Du is given

by the multiset Du = {pwu1 , . . . , pwuN} where pwui denotes the password selected by user

ui. Fixing a password dataset D we let fi denote the number of users who selected the ith

most popular password in the dataset. We note that that f1 ≥ f2 ≥ . . . and that ∑i fi = N

gives the total number N of users in the original dataset.

Empirical Password Distribution

Viewing our dataset D as N independent samples from the (unknown) distribution P ,

we use fi/N as an empirical estimate of the probability of the ith most common password

pwi and Df = (f1, f2, . . .) as the corresponding frequency list. In addition, De is used to

denoted the corresponding empirical distribution i.e., Prx∼De [x = pwi] = fi/N . Because the

real distribution P is unknown we will typically work with the empirical distribution De.

We remark that when fi � 1 the empirical estimate will be close to the actual distribution

i.e., Pr[pwi] ≈ fi/N , but when fi is small the empirical estimate will likely diverge from

the true probability value. Thus, while the empirical distribution is useful to analyze the

performance of information signaling, when the password value v is small this analysis will
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be less accurate for larger values of v i.e., once the rational attacker has the incentive to

start cracking passwords with lower frequency.

Monte Carlo Password Distribution

Following [  30 ] we also use the Monte Carlo Password Distribution Dm to evaluate the

performance of our password signaling mechanism when v is large. The Monte Carlo distribu-

tion is derived by subsampling passwords from our dataset D, generating guessing numbers

from state-of-the-art password cracking models, and fitting a distribution to the resulting

guessing curve. See more details in section  4.1 .

Password Equivalence Set

It is often convenient to group passwords having (approximately) equal probability into

an equivalence set es both for empirical distribution and Monte Carlo distribution. Suppose

there are n′ equivalence set, we typically have n � N in password datasets e.g., for the

LinkedIn empirical dataset we have N ≥ 1.7 × 108 while n = 3639. Thus, an algorithm

whose running time scales with n is much faster than an algorithm whose running time

scales with N .

Differential Privacy and Count Sketches

As part of our information signaling, we need a way for the authentication server to

estimate the strength of each user’s passwords. We propose to do this with a (differentially

private) Count-Sketch data structure, which allows us to approximately determine how many

users have selected each particular password. As a side-benefit, the authentication server

could also use the Count-Sketch data structure to identify/ban overly popular passwords [  124 ]

and to defend against online guessing attacks [  125 ,  126 ]. We first introduce the notion of

differential privacy.
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ε-Differential Privacy

ε-Differential Privacy [ 127 ] is a mechanism that provides strong information-theoretic

privacy guarantees for all individuals in a dataset. Formally, an algorithm A preserves ε-

differential privacy iff for all datasets D and D that differ by only one element and all subsets

S of Range(A):

Pr [A(D) ∈ S] ≤ eε Pr [A(D) ∈ S] .

In our context, we can think of D (resp. D) as a password dataset which does (resp. does

not) include our user u’s password pwu and we can think of A as a randomized algorithm

that outputs a noisy count-sketch algorithm. Intuitively, differential privacy guarantees

that an attacker cannot even tell if pwu was included when the count-sketch was generated.

In particular, (up to a small multiplicative factor eε) the attacker cannot tell the difference

betweenA(D) andA(D) the count-sketch we sample when pwu was (resp. was not) included.

Thus, whatever the attacker hopes to know about u’s from A(D) the attacker could have

learned from A(D).

Count-sketch

A count sketch over some domain E is a probabilistic data structure that stores some

information about the frequency of items seen in a stream of data — in our password context

we will use the domain E = P. A count-sketch functions as a table T with width ws columns

and depth ds rows. Initially, T [i, j] = 0 for all i ≤ ws and j ≤ ds. Each row is associated

with a hash function Hi : P→ [ws], with each of the hash functions used in the sketch being

pairwise independent.

To insert an element pw ∈ P into the count sketch we update T [i,Hi(pw)]← T [i,Hi(pw)]+

1 for each i ≤ ds  

2
 . To estimate the frequency of pw we would output

f (T [1, H1(pw)], . . . , T [ds, Hds(pw)]) for some function f : Nds → N. In our experiments we

instantiate a Count-Mean-Min Sketch where

f = median
{
T [i,Hi(pw)]− #total−T [i,Hi(pw)]

dw−1 : i = 1, . . . , ds
}
(#total is the total number of

2In some instantiations of count sketch we would instead set T [i,Hi(pw)] ← T [i,Hi(pw)] + Gi(pw) where
the hash function Gi : P→ {−1, 1}
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elements being inserted) so that bias is subtracted from overall estimate. Other options are

available too, e.g., f = min (Count-Min), f = mean (Count-Mean-Sketch) and f = median

(Count-Median)  

3
 .

Oserve that adding a password only alters the value of T [i, j] at ds locations. Thus, to

preserve ε-differential privacy we can initialize each cell T [i, j] by adding Laplace noise with

scaling parameter ds/ε [ 128 ].

Other Notation

Given a permutation π over all allowable passwords P we let λ(π,B) := ∑B
i=1 Pr [pwπi ]

denote the probability that a randomly sampled password pw ∈ P would be cracked by an

attacker who checks the first B guesses according to the order π — here pwπi is the ith

password in the sequence π. Given an randomized algorithm A and a random string r we

use y ← A(x; r) to denote the output when we run A with input x fixing the outcome

of the random coins to be r. We use y $← A(x) to denote a random sample drawn by

sampling the random coins r uniformly at random. Given a randomized (signaling) algorithm

A : P→ [0, b−1] (where b is the total number of signals) we define the conditional probability

Pr[pw | y] := Prx∼P,r [x = pw | y = A(pw)] and

λ(π,B; y) :=
B∑
i=1

Pr[pwπi | y] .

We remark that Pr[pw | y] can be evaluated using Bayes Law given knowledge of the signaling

algorithm A(x).

In this section, we overview our basic signaling mechanism deferring until later how

to optimally tune the parameters of the mechanism to minimize the number of cracked

passwords.
3Count-Median Sketch uses a different insersion method
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Account Creation and Signaling

When users create their accounts they provide a user name u and password pwu. First,

the server runs the canonical password storage procedure—randomly selecting a salt value

saltu and calculating the hash value hu = H(saltu, pwu). Next, the server calculates the

(estimated) strength stru ← getStrength(pwu) of password pwu and samples the signal sigu $←

getSignal(stu). Finally, the server stores the tuple (u, saltu, sigu, hu) — later if the user u

attempts to login with a password pw the authentication server will accept pw if and only if

hu = H(saltu, pw). The account creation process is formally presented in Algorithm  1 .

Algorithm 1 Signaling during Account Creation
Input: u, pwu, L, d
1: saltu

$← {0, 1}L
2: hu ← H(saltu, pwu)
3: stru ← getStrength(pwu)
4: sigu

$← getSignal(stru)
5: StoreRecord(u, saltu, sigu, hu)

A traditional password hashing solution would simply store the tuple (u, saltu, hu) i.e.,

excluding the signal sigu. Our mechanism requires two additionally subroutines getStrength()

and getSignal() to generate this signal. The first algorithm is deterministic. It takes the user’s

password pwu as input and outputs stru — (an estimate of) the password strength. The

second randomized algorithm takes the (estimated) strength parameter stru and outputs

a signal sigu. The whole signaling algorithm is the composition of these two subroutines

i.e., A = getSignal(getStrength(pw)). We use si,j to denote the probability of observing the

signal sigu = j given that the estimated strength level was stru = i. Thus, getSignal() can

be encoded using a signaling matrix S of dimension a× b, i.e.,



s0,0 s0,1 · · · s0,b−1

s1,0 s1,1 · · · s1,b−1
... ... . . . ...

sa−1,0 sa−1,1 · · · sa−1,b−1


,
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where a is the number of strength levels that passwords can be labeled, b is the number of

signals the server can generate and S[i, j] = si,j.

We remark that for some signaling matrices (e.g., if S[i, 0] = 1 for all i  

4
 ) then the actual

signal sigu is uncorrelated with the password pwu. In this case our mechanism is equiva-

lent to the traditional (salted) password storage mechanism where getSignal() is replaced

with a constant/null function. getStrength() is password strength oracle that outputs the

actual/estimated strength of a password. We discuss ways that getStrength() could be im-

plemented in Section  4.1 . For now, we omit the implementation details of strength oracle

getStrength() for sake of readability.

Generating Signals

We use [a] = 0, 1, . . . , a−1 (resp. [b] = 0, 1, . . . , b−1) to denote the range of getStrength()

(resp. getSignal()). For example, if [a] = {0, 1, 2} then 0 would correspond to weak pass-

words, 2 would correspond to strong passwords and 1 would correspond to medium strength

passwords. To generate signal for pwu, the server first invokes subroutine getStrength(pwu)

to get strength level stru = i ∈ [a] of pwu, then signals sigu = j ∈ [b] with probability

Pr[getSignal(pwu) = j | getStrength(pwu) = i] = S[i, j] = si,j.

Bayesian Update

An attacker who breaks into the authentication server will be able to observe the signal

sigu and S. After observing the signal sigu = y and S the attacker can perform a Bayesian

update. In particular, given any password pw ∈ P with strength i = getStrength(pw) we

have

Pr [pw | y] = Pr[pw]S[i, y]∑
pw∈P Pr [getSignal (getStrength(pw))] · Pr [pw]

= Pr[pw]S[i, y]∑
i∈[a] Prpw∼P [getStrength(pw) = i] · S[i, y]

(4.1)

4The index of matrix elements start from 0

113



If the attacker knew the original password distribution P then s/he can update posterior

distribution Py with Prx∼Py [x = pw] := Pr [pw | y]. We extend our notation, let λ(π,B; y) =∑B
i=1 Pr [pwπi | y] where pwπi is the ith password in the ordering π. Intuitively, λ(π,B; y) is

the conditional probability of cracking the user’s password by checking the first B guesses

in permutation π.

Delayed Signaling

In some instances, the authentication server might implement the password strength

oracle getStrength() by training a (differentially private) Count-Sketch based on the user-

selected passwords pwu ∼ P . In this case, the strength estimation will not be accurate until

a larger number N of users have registered. In this case, the authentication server may

want to delay signaling until after the Count-Sketch has been initialized. In this case the

authentication server will store the tuple (u, saltu, sigu = ⊥, hu). During the next (successful)

login with the password pwu we can update sigu = getSignal (getStrength(pwu)).

4.1.1 Adversary Model

We adapt the economic model of [ 17 ] to capture the behavior of a rational attacker. We

also make several assumptions: (1) there is a value vu for each password pwu that the attacker

cracks; (2) the attacker is untargeted and that the value vu = v for each user u ∈ U ; (3) by

Kerckhoffs’s principle, the password distribution P and the signaling matrix are known to

the attacker.

Value/Cost Estimates

One can derive a range of estimates for v based on black market studies e.g., Symantec

reported that passwords generally sell for $4—$30 [ 83 ] and [ 91 ] reported that Yahoo! e-mail

passwords sold for ≈ $1. Similarly, we assume that the attacker pays a cost k each time he
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evaluates the hash function H to check a password guess. We remark that one can estimate

k ≈ $1× 10−7 if we use a memory-hard function  

5
 .

Adversary Utility: No Signaling

We first discuss how a rational adversary would behave when is no signal is available

(traditional hashing). We defer the discussion of how the adversary would update his strategy

after observing a signal y to the next section. In the no-signaling case, the attacker’s strategy

(π,B) is given by an ordering π over passwords P and a threshold B. Intuitively, this means

that the attacker will check the first B guesses in π and then give up. The expected reward

for the attacker is given by the simple formula v × λ(π,B), i.e., the probability that the

password is cracked times the value v. Similarly, the expected guessing cost of the attacker

is

C(k, π,B) = k
B∑
i=1

(1− λ(π, i− 1)), (4.2)

Intuitively, (1−λ(π, i− 1)) denotes the probability that the adversary actually has to check

the ith password guess at cost k. With probability λ(π, i − 1) the attacker will find the

password in the first i − 1 guesses and will not have to check the ith password guess pwπi .

Specially, we define λ(π, 0) = 0. The adversary’s expected utility is the difference of expected

gain and expected cost, namely,

Uadv (v, k, π,B) = v · λ(π,B)− C(k, π,B). (4.3)

Sometimes we omit parameters in the parenthesis and just write Uadv for short when the v, k

and B are clear from context.
5The energy cost of transferring 1GB of memory between RAM and cache is approximately 0.3J on an [ 129 ],
which translates to an energy cost of ≈ $3× 10−8 per evaluation. Similarly, if we assume that our MHF can
be evaluated in 1 second [ 16 ,  7 ] then evaluating the hash function 6.3 × 107 times will tie up a 1GB RAM
chip for 2 years. If it costs $5 to rent a 1GB RAM chip for 2 years (equivalently purchase the RAM chip
which lasts for 2 years for $5) then the capital cost is ≈ $8 × 10−8. Thus, our total cost would be around
$10−7 per password guess.
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Optimal Attacker Strategy: Without Signaling

A rational adversary would choose (π∗, B∗) ∈ arg maxUadv (v, k, π,B). It is easy to verify

that the optimal ordering π∗ is always to check passwords in descending order of probability.

The probability that a random user’s account is cracked is

Padv = λ(π∗, B∗). (4.4)

We remark that in practice arg maxUadv (v, k, π,B) usually returns a singleton set (π∗, B∗).

If instead the set contains multiple strategies then we break ties adversarially i.e.,

Padv = max
(π∗,B∗)∈arg maxUadv(v,k,π,B)

λ(π∗, B∗).

4.1.2 Information Signaling as a Stackelberg Game

We model the interaction between the authentication server (leader) and the adversary

(follower) as a two-stage Stackelberg game. In a Stackelberg game, the leader moves first

and then the follower may select its action after observing the action of the leader.

In our setting the action of the defender is to commit to a signaling matrix S as well as

the implementation of getStrength() which maps passwords to strength levels. The attacker

responds by selecting a cracking strategy (~π, ~B) = {(π0, B0), . . . , (πb−1, Bb−1)}. Intuitively,

this strategy means that whenever the attacker observes a signal y he will check the top By

guesses according to the ordering πy.

Attacker Utility

If the attacker checks the top By guesses according to the order πy then the attacker

will crack the password with probability λ(πy, By; y). Recall that λ(πy, By; y) denotes the

probability of the first By passwords in πy according to the posterior distribution Py obtained

by applying Bayes Law after observing a signal y. Extrapolating from no signal case, the

expected utility of adversary conditioned on observing the signal y is
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Uadv(v, k, πy, By; S, y) = v · λ(πy, By; y)−
By∑
i=1

k · (1− λ(πy, i− 1; y)) , (4.5)

where By and πy are now both functions of the signal y. Intuitively, (1− λ(πy, i− 1; y))

denotes the probability that the attacker has to pay cost k to make the ith guess. We

use U s
adv

(
v, k, {S, (~π, ~B)}

)
to denote the expected utility of the adversary with information

signaling,

U s
adv

(
v, k, {S, (~π, ~B)}

)
=
∑
y∈[b]

Pr[Sig = y]Uadv(v, k, πy, By; S, y) , (4.6)

where

Pr[Sig = y] =
∑
i∈[b]

Pr
pw∼P

[getStrength(pw) = i] · S[i, y] .

Optimal Attacker Strategy

Now we discuss how to find the optimal strategy (~π∗, ~B∗). Since the attacker’s strategies

in reponse to different signals are independent. It suffices to find

(π∗y, B∗y) ∈ arg maxBy ,πy Uadv(v, k, πy, By; y) for each signal y. We first remark that the ad-

versary can obtain the optimal checking sequence π∗y for pwu associated with signal y by

sorting all pw ∈ P in descending order of posterior probability according to the posterior

distribution Py.

After the optimal checking sequence π∗y being specified, the adversary can determine

the optimal budget B∗y for signal y such that B∗y = arg maxBy Uadv(v, k, π∗y, By; y). It is

proved in [  30 ] that the optimal budget can be found more efficiently when given a compact

representation of password dataset.

We observe that an adversary who sets πy = π and By = B for all y ∈ [b] is effectively

ignoring the signal and is equivalent to an adversary in the no signal case. Thus we have

max
~π, ~B

U s
adv

(
v, k, {S, (~π, ~B)}

)
≥ max

π,B
Uadv(v, k, π,B), ∀S, (4.7)
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implying that adversary’s expected utility will never decrease by adapting its strategy

according to the signal.

Optimal Signaling Strategy

Once the function getStrength() is fixed we want to find the optimal signaling matrix S.

We begin by introducing the defender’s utility function. Intuitively, the defender wants to

minimize the total number of cracked passwords.

Let P s
adv (v, k,S) denote the expected adversary success rate with information signaling

when playing with his/her optimal strategy, then

P s
adv (v, k,S) =

∑
y∈SL

Pr[Sig = y]λ(π∗y, B∗y ; S, y), (4.8)

where (π∗y, B∗y) is the optimal strategy of the adversary when receiving signal y, namely,

(π∗y , B∗y) = arg max
πy ,By

Uadv(v, k, πy, By; S, y).

If arg maxπy ,By Uadv(v, k, πy, By; y) returns a set, we break ties adversarially.

The objective of the server is to minimize P s
adv (v, k,S), therefore we define

U s
ser

(
v, k, {S, (~π∗, ~B∗)}

)
= −P s

adv (v, k,S) . (4.9)

Our focus of this paper is to find the optimal signaling strategy, namely, the signaling

matrix S∗ such that S∗ = arg minS P
s
adv (v, k,S). Finding the optimal signaling matrix

S∗ is equivalent to solving the mixed strategy Subgame Perfect Equilibrium (SPE) of the

Stackelberg game. At SPE no player has the incentive to derivate from his/her strategy.

Therefore,


U s
ser

(
v, k, {S∗, (~π∗, ~B∗)}

)
≥ U s

ser

(
v, k, {S, (~π∗, ~B∗)}

)
, ∀S ∈ Sa×b,

U s
adv

(
v, k, {S∗, (~π∗, ~B∗)}

)
≥ U s

adv

(
v, k, {S∗, (~π, ~B)}

)
, ∀(~π, ~B).

(4.10)
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Notice that a signaling matrix of dimension a×b can be fully specified by a(b−1) variables

since the elements in each row sum up to 1. Fixing v and k, we define f : Ra(b−1) → R to be

the map from S to P s
adv (v, k,S). Then we can formulate the optimization problem as

min
S

f(s0,0, . . . s0,(b−2), . . . , s(a−1),0, s(a−1),(b−2))

s.t. 0 ≤ si,j ≤ 1, ∀0 ≤ i ≤ a− 1, 0 ≤ j ≤ b− 2,
b−2∑
j=0

si,j ≤ 1, ∀0 ≤ i ≤ a− 1.

(4.11)

The feasible region is a a(b − 1)-dimensional probability simplex. Notice that in 2-D (a =

b = 2), the second constraint would be equivalent to the first constraint. In our experiments,

we will treat f as a black box and use derivative-free optimization methods to find good

signaling matrices S.

4.1.3 Theoretical Example

Having presented our Stackelberg Game model for information signaling we now give an

(admittedly contrived) example of a password distribution where information signaling can

dramatically reduce the percentage of cracked passwords. We assume that the attacker has

value v = 2k + ε for each cracked password where the cost of each password guess is k and

ε > 0 is a small constant.

Password Distribution

Suppose that P = {pwi}i≥1 and that each password pwi has probability 2−i i.e., Pr
pw∼P

[pw = i] =

2−i. The weakest password pw1 would be selected with probability 1/2.
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Optimal Attacker Strategy without Signaling

By checking passwords in descending order of probability (the checking sequence is π)

the adversary has an expected cost of:

C(k, π,B) = k
B∑
i=1

i× 2−i + 2−B ×B × k = k(2− 21−B),

and an expected reward of

R(v, k, π,B) = v
B∑
i=1

i2−i,

which leads to expected profits of

Uadv(v, k, π,B) = R(v, k,B)− C(k, π,B) = (v − 2k) + (2k − v)2−B.

A profit-motivated adversary is interested in calculating B∗ = argmax
B

Uadv(v, k, π,B). With

our sample distribution we have

B∗ =


0, v <= 2k,

∞, v > 2k.

Since we assume that v = 2k+ ε > 2k the attackers optimal strategy is B∗ =∞ meaning

that 100% of passwords will be cracked.

Signaling Strategy

Suppose that getStrength is define such that getStrength(pw1) = 0 and getStrength(pwi) =

1 for each i > 1. Intuively, a the strength level is 0 if and only if we sampled the weakest

password from the distribution. Now suppose that we select our signaling matrix

S =

1/2 1/2

0 1

 ,
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such that Pr[Sig = 0 | pw = pw1] = 1
2 = Pr[Sig = 1 | pw = pw1] and Pr[Sig = 1 | pw 6= pw1] =

1.

Optimal Attacker Strategy with Information Signaling

We now analyze the behavior of a rational attacker under signaling when given this signal

matrix and password distribution. Consider the strategy of an attacker who has v = 2k+ ε.

As noted above their optimal guessing number B∗ with no signal is B∗ =∞.

We now consider the case that the attacker facing Sig = 1. Note that Pr[Sig = 1] =

Pr[pw = pw1] Pr[Sig = 1 | pw = pw1] + Pr[pw 6= pw1] Pr[Sig = 1 | pw 6= pw1] = 3
4 .

We have the following posterior probabilities for each of the passwords in the distribution:

Pr[pw = pw1 | Sig = 1] = 0.5 ∗ 0.5
0.75 = 1

3 ,

Pr[pw = pwi, i > 1 | Sig = 1] = 1 ∗ 2−i

0.75 = 4 ∗ 2−i

3 .

Now we compute the attacker’s expected costs conditioned on Sig = 1.

C(k, π,B; S, 1) = k

(
1
3 + 4

3

B∑
i=2

i ∗ 2−i
)

+ kB

(
1− 1

3 −
4
3

(
B∑
i=2

2−i
))

= k

(
7
3 −

23−B

3

)
,

when B > 0, with C(k, π, 0; S, 1) = 0. For expected reward we have:

R(v, k, π,B; S, 1) = v

(
1
3 + 4

3

B∑
i=2

2−i
)

= v

(
1− 22−B

3

)
,

where R(v, k, 0; S, 1) = 0 in the case where no guesses are made. Thus, the attacker’s profit

is given by:

Uadv(v, k, π,B; S, 1) = R(v, k, π,B; S, 1)− C(k, π,B; S, 1) = v

(
1− 22−B

3

)
− k

(
7
3 −

23−B

3

)
.
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Plugging in v = 2k + ε we have

Uadv(2k + ε, k, π, B; S, 1) = (2k + ε)
(

1− 22−B

3

)
− k

(
7
3 −

23−B

3

)

= (2k + ε)
(

1− 22−B

3

)
− k

(
7
3 −

23−B

3

)
= −1

3k + ε

(
1− 22−B

3

)
,

if ε < 1
3k then this value will always be negative and the optimal strategy is to select B∗ = 0

i.e. to not run the attack 

6
 

If the attacker observes the signal Sig = 0 we know for sure that the user selected the

most common password as Pr[pw = pw1 | Sig = 0] = 1 so as long as v ≥ k the attacker will

crack the password.

Discussion

In our example an attacker with value v = 2k + ε cracks 100% of passwords when we

don’t use information signaling. However, if our information signaling mechanism (above)

were deployed, the attacker will only crack 25% of passwords — a reduction of 75%! Given

this (contrived) example it is natural to ask whether or not information signaling produces

similar results for more realistic password distributions. We explore this question in the next

sections.

4.1.4 Empirical Results

We now describe our empirical experiments to evaluate the performance of information

signaling. Fixing the parameters v, k, a, b, a password distribution D and the strength oracle

getStrength(·) we define a procedure S∗ ← genSigMat(v, k, a, b,D) which uses derivate-free

optimization to find a good generate a signaling matrix S∗ of dimension a × b using the

optimization problem defined in equation ( 4.11 ). Similarly, given a signaling matrix S∗ we

define a procedure evaluate(v, k, a, b,S∗,D) which returns the percentage of passwords that

6If we set v = 4k instead we would have Uadv(4k, k, π,B; S, 1) = k
(

5
3 −

23−B

3

)
which is maximized at

B∗ =∞.
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a rational adversary will crack given that the value of a cracked password is v, the cost to

check each password is k. To simulate settings where the defender has imperfect knowledge

of the password distribution we use different distributions D1 (training) and D2 (evaluation)

to generate the signaling matrix S∗ ← genSigMat(v, k, a, b,D1) and evaluate the success

rate of a rational attacker evaluate(v, k, a, b,S∗,D2). We can also set D1 = D2 to evaluate

our mechanism under the idealized setting in which defender has perfect knowledge of the

distribution.

In the remainder of this section, we describe how the oracle getStrength() is imple-

mented in different experiments, the password distribution(s) derived from empirical pass-

word datasets, and how we implement genSigMat().

Password Distribution

We evaluate the performance of our information signaling mechanism using 9 password

datasets: Bfield (0.54 million), Brazzers (N = 0.93 million), Clixsense (2.2 million), CSDN

(6.4 million), LinkedIn (174 million), Neopets (68.3 million), RockYou (32.6 million), 000web-

host (153 million) and Yahoo! (69.3 million). The Yahoo! frequency corpus (N ≈ 7 × 107)

was collected and released with permission from Yahoo! using differential privacy [  80 ] and

other privacy-preserving measures [ 79 ]. All the other datasets come from server breaches.

Empirical Distribution

For all 9 datasets we can derive an empirical password distribution De where

Prpw∼De [pwi] = fi/N . Here, N is the number of users in the dataset and fi is the number

of occurrences of pwi in the dataset. We remark that for datasets like Yahoo! and LinkedIn

where the datasets only include frequencies fi without the original plaintext password we can

derive a distribution simply by generating unique strings for each password. The empirical

distribution is useful to analyze the performance of information signaling when the password

value v is small this analysis will be less accurate for larger values of v i.e., once the rational

attacker has the incentive to start cracking passwords with lower frequency. Following an

approach taken in [ 30 ], we use Good-Turing frequency estimation [ 130 ] to identify and high-
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light regions of uncertainty where the CDF for the empirical distribution might significantly

diverge from the real password distribution. To simulate an attacker with imperfect knowl-

edge of the distribution we train a differentially private Count-Mean-Min-Sketch. In turn,

the Count-Sketch is used to derive a distribution Dtrain, to implement getStrength() and to

generate the signaling matrix S∗ ← genSigMat(v, k, a, b,Dtrain) (see details below).

Monte Carlo Distribution

To derive the Monte Carlo password distribution from a dataset we follow a process from

[ 30 ]. In particular, we subsample passwords Ds ⊆ D from the dataset and derive guessing

numbers #guessingm(pw) for each pw ∈ Ds. Here, #guessingm(pw) denotes the number of

guesses needed to crack pw with a state of the art password cracking model m e.g., Probabilis-

tic Context-Free Grammars [ 131 ,  132 ,  133 ], Markov models [ 134 ,  135 ,  136 ,  137 ], and neural

networks [ 82 ]. We used the password guessing service [ 137 ] to generate the guessing numbers

for each dataset. We then fit our distribution to the guessing curve i.e., fixing thresholds

t0 = 0 < t1 < t2 . . . we assign any password pw with ti−1 < minm{#guessingm(pw)} ≤ ti

to have probability gi
|Ds|(ti−ti−1) where gi counts the number of sampled passwords in Ds with

guessing number between ti−1 and ti. Intuitively, the Monte Carlo distribution Dm models

password distribution from the attacker’s perspective. One drawback is that the distribution

would change if the attacker were to develop an improved password cracking model.

We extract Monte Carlo distribution from 6 datasets (Bfield, Brazzers, Clixsense, CSDN,

Neopets, 000webhost) for which we have plain text passwords so that we can query Password

Guessing Service [ 137 ] about password guessing numbers. In the imperfect knowledge setting,

we repeated the process above twice for each dataset with different sub-samples to derive

two distributions Dtrain and Deval.

Differentially Private Count-Sketch

When using the empirical distribution De for evaluation we evaluate the performance of

an imperfect knowledge defender who trains a differentially private Count-Mean-Min-Sketch.
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As users register their accounts, the server can feed passwords into a Count-Mean-Min-Sketch

initialized with Laplace noise to ensure differential privacy.

When working with empirical distributions in an imperfect knowledge setting we split

the original dataset D in half to obtain D1 and D2. Our noise-initialized Count-Mean-Min-

Sketch is trained with D1. We fix the width dw (resp. depth ds) of our count sketch to

be dw = 108 (resp. ds = 10) and add Laplace Noise with scaling factor b = ds/εpri = 5

to preserve εpri = 2-differential privacy. Since we were not optimizing for space we set the

number of columns dw to be large to minimize the probability of hash collisions and increase

the accuracy of frequency estimation. Each cell is encoded by a 4-byte int type so the total

size of the sketch is 4 GB.

We then use this count sketch along with D2 to extract a noisy distribution Dtrain. In

particular, for every pw ∈ D2 we query the the count sketch to get f̃pw, a noisy estimate of

the frequency of pw inD2 and set PrDtrain [pw]
.= f̃pw∑

w∈D2
f̃w
. We also use the Count-Mean-Min

Sketch as a frequency oracle in our implementation of getStrength() (see details below). We

then use Dtrain to derive frequency thresholds for getStrength() and to generate the signaling

matrix S∗ = genSigMat(v, k, a, b,Dtrain). Finally we evaluate results on the original empirical

distribution De for the original dataset D i.e., P s
adv = evaluate(v, k, a, b,S∗,De).

Implementing getStrength()

Given a distribution D and a frequency oracle O which outputs f(pw) in the perfect

knowledge setting and an estimate of frequency f̂(pw) in the imperfect knowledge setting,

we can specify getStrength() by selecting thresholds x1 > . . . > xa−1 > xa = 1. In particular,

if xi+1 ≤ O(pw) < xi then getStrength(pw) = i and if O(pw) ≥ x1 then getStrength(pw) = 0.

Let Yi .= Prpw∼D [xi ≤ getStrength(pw) < xi−1] for i > 1 and Y1 = Prpw∼D [getStrength(pw) >

x1]. We fix the thresholds x1 ≥ . . . ≥ xa−1 to (approximately) balance the probability mass

of each strength level i.e., to ensure that Yi ≈ Yj. In imperfect (resp. perfect) knowledge

settings we use D = Dtrain (resp. D = Deval) to select the thresholds.
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Derivative-Free Optimization

Given a value v and hash cost k we want to find a signaling matrix which optimizes

the defenders utility. Recall that this is equivalent to minimizing the function f(S) =

evaluate(v, k, a, b,S,D) subject to the constraints that S is a valid signaling matrix. In our

experiments we will treat f as a black box and use derivative-free optimization methods to

find good signaling matrices S∗.

Derivative-free optimization is active research area with many mature solvers with simple

interface, e.g., CMA-ES [ 138 ], NOMAD [  139 ,  140 ], DAKOTA [ 141 ]. In our experiment,

we choose BITmask Evolution OPTimization (BITEOPT) algorithm [ 142 ] to compute the

quasi-optimal signaling matrix S∗  

7
 . BITEOPT is a free open-source stochastic non-linear

bound-constrained derivative-free optimization method (heuristic or strategy). BiteOpt took

2nd place (1st by sum of ranks) in BBComp2018-1OBJ-expensive competition track [ 143 ].

In each experiment we use BITEOPT with 104 iterations to generate signaling matrix

S∗ for each different v/Cmax ratio, where Cmax is server’s maximum authentication cost

satisfying k ≤ Cmax. We refer to the procedure as S∗ ← genSigMat(v, k, a, b,D1) .

We describe the results of our experiments. In the first batch of experiments, we evaluate

the performance of information signaling against an offline and an online attacker where the

ratio v/Cmax is typically much smaller.

4.1.5 Password Signaling against Offline Attacks

We consider four scenarios using the empirical/Monte Carlo distribution in a setting

where the defender has perfect/imperfect knowledge of the distribution.
7BITEOPT maintains a population list of previously evaluated solutions that are ordered in cost (objective
function value). The whole population evolves towards a lower cost. On every iteration, the solution with
the highest cost in the list can be replaced with a new solution, and the list is reordered. The solution
vectors are spanned apart from each other to cover a larger parameter search space collectively. Besides
that, a range of parameter randomization and the "step in the right direction" (Differential Evolution "mu-
tation") operations are used that probabilistically make the population evolve to be “fittest” ones (lower
cost solutions). BITEOPT’s hyper-parameters (probabilities) were pre-selected and are not supposed to be
changed.
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Empirical Distribution

From each password dataset we derived an empirical distribution De and set Deval = De.

In the perfect knowledge setting we also set Dtrain = De while in the imperfect knowledge

setting we used a Count-Min-Mean Sketch to derive Dtrain (see details in the previous sec-

tion).

We fix dimension of signaling matrix to be 11 by 3 (the server issues 3 signals for 11

password strength levels) and compute attacker’s success rate for different value-to-cost

ratios v/Cmax ∈ {i ∗ 10j : 1 ≤ i ≤ 9, 3 ≤ j ≤ 7} ∪ {(i + 0.5) ∗ 10j : 1 ≤ i ≤ 9, 6 ≤ j ≤ 7}

. In particular, for each value-to-cost ratio v/Cmax we run S∗ ← genSigMat(v, k, a, b,De)

to generate a signaling matrix and then run evaluate(v, k, a, b,S∗,De) to get the attacker’s

success rate. We plot the attacker’s success rate vs. v/Cmax . Results for the BField data

set are shown in Fig.  4.1 . The same experiment is repeated for all 9 password datasets,

which can be found in the main paper at [  6 ]. We follow the approach of [ 30 ], highlighting

the uncertain regions of the plot where the cumulative density function of the empirical

distribution might diverge from the real distribution. In particular, the red (resp. yellow)

region indicates E > 0.1 (resp. E > 0.01) where E can be interpreted as an upper bound

on the difference between the two CDFs.

Fig.  4.1 demonstrates that information signaling reduces the fraction of cracked pass-

words. The mechanism performs best when the defender has perfect knowledge of the distri-

bution (blue curve), but even with imperfect knowledge, there is still a large advantage. For

example, for the Neopets dataset when v/Cmax = 5 × 106 the percentage of cracked pass-

words is reduced from 44.6% to 36.9% (resp. 39.1%) when the defender has perfect (resp.

imperfect) knowledge of the password distribution. Similar results hold for other datasets.

The green curve (signaling with imperfect knowledge) curve generally lies in between the

black curve (no signaling) and the blue curve (signaling with perfect knowledge), but some-

times has an adverse effect when v/Cmax is large. This is because the noisy distribution will

be less accurate for stronger passwords that were sampled only once.
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Figure 4.1. Adversary Success Rate vs v/k for the BField empirical distribution
the red (resp. yellow) shaded areas denote low confidence regions where the the empirical

distribution might diverges from the real distribution E ≥ 0.1 (resp. E ≥ 0.01).
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Which accounts are cracked?

As Fig  4.1 demonstrates information signaling can substantially reduce the overall frac-

tion of cracked passwords i.e., many previously cracked passwords are now protected. It

is natural to ask whether there are any unlucky users u whose password is cracked after

information signaling even though their account was safe before signaling. Let Xu (resp. Lu)

denote the event that user u is unlucky (resp. lucky) i.e., a rational attacker would originally

not crack pwu, but after information signaling the account is cracked. We measure E[Xu] and

E[Lu] for various v/Cmax values under each dataset. Generally, we find that the fraction of

unlucky users E[Xu] is small in most cases e.g. ≤ 0.04. For example, when v/k = 2 ∗ 107 we

have that E[Xu] ≈ 0.03% and E[Lu] ≈ 6% for LinkedIn. In all instances the net advantage

E[Lu]− E[Xu] remains positive.

Robustness

We also evaluated the robustness of the signaling matrix when the defender’s estimate

of the ratio v/Cmax is inaccurate. In particular, for each dataset we generated the signaling

matrix S(105) (resp. S(106)) which was optimized with respect to the ratio v/Cmax = 105

(resp. v/Cmax = 106) and evaluated the performance of both signaling matrices against an

attacker with different v/Cmax ratios. We find that password signaling is tolerant even if

our estimate of v/k is off by a small multiplicative constant factor e.g., 2. In the “downhill”

direction, even if the estimation of v/k deviates from its true value up to 5× 105 at anchor

point 106 it is still advantageous for the server to deploy password signaling.

Monte Carlo Distribution

We use the Monte Carlo distribution to evaluate information signaling when v/Cmax

is large. In particular, we subsample 25k passwords from each dataset for which we have

plain text passwords (excluding Yahoo! and LinkedIn) and obtain guessing numbers from

the Password Guessing Service. Then we split our 25k subsamples in half to obtain two

guessing curves and we extract two Monte Carlo distributions Dtrain and Deval from these
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curves (see details in the last section). In the perfect knowledge setting the signaling ma-

trix is both optimized and tested on Deval i.e., S∗ = genSigMat(v, k, a, b,Deval), P s
adv =

evaluate(v, k, a, b,S∗,Deval). In the imperfect knowledge setting the signaling matrix is tuned

on Dtrain while the attacker’s success rate is evaluated on Deval. One advantage of simulat-

ing Monte Carlo distribution is that it allows us to evaluate the performance of information

signaling against state of the art password cracking models when the v/Cmax is large. We

consider v/Cmax ∈ {i ∗ 10j : 1 ≤ i ≤ 9, 5 ≤ j ≤ 10} in performance evaluation for Monte

Carlo distribution. As before we set a = 11 and b = 3 so that the signaling matrix is in

dimension of 11× 3.

In the full paper [ 6 ] we show that information signaling can significantly reduce the

number of cracked passwords. In particular, for the Neopets dataset when v/Cmax = 6 ×

107 the number of cracked passwords is reduced from 52.2% to 40% (resp. 43.8%) when

the defender has perfect (resp. imperfect) knowledge of the distribution. The green curve

(signaling with imperfect knowledge) generally lies between the black curve (no signaling)

and the blue curve (signaling with perfect information) though we occasionally find points

where the green curve lies slightly above the black curve.

4.1.6 Password Signaling against Online Attacks

We can extend the experiment from password signaling with perfect knowledge to an

online attack scenario. One common way to throttle online attackers is to require the attacker

to solve a CAPTCHA challenge [ 36 ], or provide some other proof of work (PoW), after each

incorrect login attempt [ 144 ]. One advantage of this approach is that a malicious attacker

cannot lockout an honest user by repeatedly submitting incorrect passwords [ 145 ]. However,

the solution also allows an attacker to continue trying to crack the password as long as

s/he is willing to continue paying the cost to solve the CAPTCHA/PoW challenges. Thus,

information signaling could be a useful tool to mitigate the risk of online attacks.

When modeling a rational online password we will assume that v/Cmax ≤ 105 since the

cost to pay a human to solve a CAPTCHA challenge (e.g., $10−3 to 102 [ 146 ]) is typically

much larger than the cost to evaluate a memory-hard cryptographic hash function (e.g.,
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$10−7). Since v/Cmax ≤ 105 we use the empirical distribution to evaluate the performance of

information signaling against an online attacker. In the previous subsection, we found that

the uncertain regions of the curve started when v/Cmax � 105 so the empirical distribution

is guaranteed to closely match the real one.

Since an online attacker will be primarily focused on the most common passwords (e.g.,

top 103 to 104) we modify getStrength() accordingly. We consider two modifications of

getStrength() which split passwords in the top 103 (resp. 104) passwords into 11 strength

levels. By contrast, our prior implementation of getStrength() would have placed most of the

top 103 passwords in the bottom two strength levels. As before we fix the signaling matrix

dimension to be 11× 3.

Our results demonstrate that information signaling can be an effective defense against

online attackers as well. For example, when v/Cmax = 9 × 104 in the Brazzers dataset our

mechanism reduces the fraction of cracked passwords from 20.4% to just 15.3%. Similar

observations hold true for other datasets.

Implementing Password Signaling

One naive way to implement password signaling in an online attack would simply be to

explicitly send back the signal noisy signal sigu in response to any incorrect login attempt.

As an alternative, we propose a solution where users with a weaker signal sigu are throttled

more aggressively. For example, if sigu indicates that the password is strong then it might be

reasonable to allow for 10 consecutive incorrect login attempts before throttling the account

by requiring the user to solve a CAPTCHA challenge before every login attempt. On the

other hand if the signal sigu indicates that the password is weak the server might begin

throttling after just 3 incorrect login attempts. The attacker can indirectly infer the signal

sigu by measuring how many login attempts s/he gets before throttling begins. This solution

might also motivate users to pick stronger passwords.
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4.1.7 Discussion

While our experimental results are positive, we stress that several questions would need

to be addressed before we recommend deploying information signaling to protect against

offline attacks.

• Can we accurately predict the value to cost ratio v/Cmax? Our results suggest that

information signaling is useful even when our estimates deviate by a factor of 2.

However, if our estimates are wildly off then information signaling could be harmful.

• While information signaling reduced the total number of cracked passwords a few un-

lucky users might be harmed i.e., instead of being deterred the unlucky signal helps

the rational attacker to crack a password that they would not otherwise have cracked.

Knowing this is a possibility how would users react to such a solution? One possi-

bility would be to allow users to opt-in/out of information signaling. However, each

user u would need to make this decision without observing their signal — otherwise,

the signal might be strongly correlated with the decision to opt-in/out allowing the

attacker to perform another Bayesian update.

• Can we analyze the behavior of rational targeted attackers? We only consider an

untargeted adversary who has a constant password value expectation for all accounts.

In some settings, an attacker might place a higher value on some passwords e.g.,

celebrity accounts. Can we predict how a targeted attacker would behave if the value

vu varied from user to user? Similarly, a targeted adversary could exploit demographic

and/or biographical knowledge to improve password guessing attacks e.g., see [ 102 ].

4.2 Just In Time Hashing

In the past few years, billions of user passwords have been exposed to the threat of

offline cracking attempts. Recent high-profile examples include Yahoo!, Dropbox, Lastpass,

AshleyMadison, LinkedIn, AdultFriendFinder, and eBay. Once such a breach occurs the

attacker can check as many password guesses as s/he wants offline. The attacker is only
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limited by the resources s/he invests to crack user passwords and by the underlying cost of

computing the hash function.

Offline brute-force cracking attacks are increasingly dangerous as password cracking hard-

ware continues to improve and as many users continue to select low-entropy passwords finding

it too difficult to memorize multiple strong passwords for each of their accounts. Key stretch-

ing serves as a last line of defense for users after a password breach. The basic idea is to

increase guessing costs for the attacker by performing hash iteration (e.g., BCRYPT[ 71 ] or

PBKDF2 [ 72 ]) or by intentionally using a password hash function that is memory-hard (e.g.,

SCRYPT [ 147 ], Argon2 [ 16 ]).

Unfortunately, these key-stretching algorithms are fundamentally constrained by user

patience. Specifically, authentication latency is a usability constraint that upper bounds the

maximum number of calls that can be made to an underlying hash function (e.g., SHA256,

Blake2b) as well as the amount of RAM that can be filled. For example, LastPass had been

using PBKDF2-SHA256 with 105 SHA256 iterations when they were breached. While Last-

Pass [ 73 ] claimed that “Cracking our algorithms is extremely difficult, even for the strongest

computers" 

8
 , it has been estimated that the cost to evaluate the SHA256 hash function

on customized hardware [ 31 ] is as low as $10−15 (USD) [ 92 ], which means that it could

potentially cost an attacker as little as $1 (USD) to validate 1010 password guesses under

PBKDF2-SHA256 with 105 iterations. Even with more advanced key-stretching mechanisms

such as memory-hard functions, it is not clear whether or not it is possible to perform suf-

ficient key-stretching to protect most (lower entropy) user passwords without substantially

increasing authentication delay.

Contributions

We introduce a novel client-side key stretching technique that we call Just In Time hash-

ing (JIT) which can substantially increase key-stretching without increasing authentication

delay for the user. JIT is suitable for applications such as password managers, disk encryp-

tion, and mobile encryption. The basic idea is to exploit idle time while the user is typing
8Similar claims were made after the Dropbox breach [ 74 ].
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in their password to perform extra key-stretching. As soon as the user types in the first

character(s) of their password our algorithm immediately begins filling memory with hash

values derived from the character(s) that the user has typed thus far. The key challenge in

designing such a function is that the final output must be a deterministic function of the

input password, while users do not always enter their password at the same speed.

We conduct a user study to investigate password typing habits and inform the design of

JIT. In particular, we aimed to answer the following questions: How fast do users type when

entering passwords? Is this password typing speed equivalent to regular typing speed? How

often do users press backspace when entering a password? Unlike previous user studies, we

asked users to type in their actual passwords. To minimize risk to users the actual passwords

were never transmitted to us. Instead, we only measured typing speeds while the user typed

their password and a sample paragraph. We find that for over 95% of pc users (resp. mobile

users) the delay between consecutive key-strokes during password entry is over 180 ms (resp.

319 ms). While users do occasionally press backspace during password entry we find that

the pattern is highly predictable (e.g., a user either erases ≤ 3 characters or erases the entire

password). Both of these observations are encouraging trends for JIT since we have lots of

time to perform key-stretching between consecutive key-presses, and at any time we only

need to be able to restore the JIT state for the last three characters of the password that

the user typed.

Several of our findings from the user study may be of independent interest. For example,

we find that password typing speed is only weakly correlated with regular typing speed, which

may have implications for the design and evaluation of implicit authentication mechanisms

based on keystroke dynamics during password entry. We conjecture that the differences in

typing times are due to muscle memory as well as the use of less common characters and/or

character sequences in passwords.

We analyze the security of a JIT password hashing algorithm using graph pebbling ar-

guments. On the negative side our analysis demonstrates that JIT password hashing with

hash iteration as the underlying key-stretching mechanism provides minimal benefits over

traditional key-stretching algorithms based on hash iteration (e.g., BCRYPT, PBKDF2).

On the positive side, we find that JIT hashing can be combined with memory-hard functions
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to dramatically increase guessing costs for an offline attacker. In particular, we find that if

users select passwords similarly to those found in the Rockyou data set [ 148 ] JIT hashing

requires more than 6 times as much work to evaluate than non-JIT hashing functions in

the worst case. For XKCD-Style Passwords [ 149 ] this advantage is, 11.7. We remark that

these advantages are pessimistic and are based on the assumption that the adversary has an

unbounded amount of parallelism available. If the adversary is restricted to a model without

parallelism these advantages increase to 13.3 and 25.4 respectively.

Finally, we provide a proof-of-concept implementation of JIT highlighting key design

decisions made along the way. Our implementation is based on a modification of Argon2 [ 16 ],

winner of the password hashing competition [ 38 ]. The execution of JIT can remain hidden

from the user to provide the benefit of increased key-stretching without affecting the user’s

authentication experience.

4.2.1 Related Work

Password Cracking

The issue of offline password cracking is far from new, and has been studied for many

years [ 150 ]. Password cracking tools have been created and improved through the exploration

of new strategies and techniques such as probabilistic password models [ 151 ], probabilistic

context-free grammars [ 131 ,  132 ,  133 ], Markov chain models [ 135 ,  136 ,  137 ], and neural

networks [  82 ]. For sentence-based passwords, attackers may turn to public or online resources

as a source of password possibilities, or they may use training data from previous large

breaches like Rockyou [ 152 ]. Public and open-source password cracking tools like John the

Ripper are easily available online and can be modified or provided with specific strategies to

attempt to crack lists of passwords offline [ 153 ].

Improving Password Strength

It has proven difficult to convince or force users to choose stronger passwords [ 154 ,  155 ,

 156 ,  157 ,  158 ,  159 ], and methods that do work have usability issues [ 160 ]. Strategies to

convince users to select stronger passwords have included providing continuous feedback
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(e.g. password strength meters [  161 ,  162 ,  163 ]) and providing instructions or enforcing

composition policies [ 152 ,  114 ,  154 ,  155 ,  156 ,  157 ,  159 ,  164 ]. However it has been shown

that these methods also suffer from usability issues [ 158 ,  165 ,  166 ,  160 ] and in some cases

can even lead to users selecting weaker passwords [ 167 ,  155 ]. Password strength meters have

also been shown to provide inconsistent feedback to users, often failing to persuade them to

select a stronger password [ 162 ,  163 ].

Key Stretching

Key stretching, the process of artificially increasing the difficulty of computation of a

hash function, is designed to protect low entropy passwords and secrets from offline cracking

attempts. By making each guess more expensive, it becomes more difficult for an adversary

to crack each password as each attempt costs them more. The method was proposed by

Morris in 1979 [  150 ] who used it in the context of password security. Key stretching was

originally performed by repeated calculations of the hashing function, i.e. rather than storing

the hash of the password and salt the result is first run through the hash function many more

times. This method is still used by the functions BCRYPT [ 71 ] and PBKDF2 [ 72 ]. However

these functions require small amounts of memory, and the base hash functions that these

are based on can now be computed very quickly for a reasonable cost using hardware such

as the Antminer [ 31 ], which can computer trillions of base functions per second. Current

levels of key stretching being used have raised concern - Bonneau estimated that a human

would need to memorize a 56-bit secret to provide themselves with adequate security [  92 ].

Additional key stretching methods have been proposed to introduce asymmetric costs by

keeping part of the salt secret and requiring that it be guessed iteratively [ 17 ].

Memory Hard Functions

Memory Hard Functions (MHFs) were introduced in 2009 by Percival [  32 ]. The key

insight behind MHFs is that, while computation power is asymmetric between users and

adversaries, the cost of using memory is more equitable. Ideally, a MHF should have τ 2

area-time complexity, where τ is a parameter setting the amount of time and memory the

136



function should use. Functions like BCRYPT or PBKDF2 would instead have an area-time

complexity of τ as they use a constant amount of space. Data-independent MHFs are a

particular class of MHF that are designed to help prevent side-channel attacks. MHFs such

as Argon2d [ 16 ] or SCRYPT [ 32 ].Data-dependent MHFs have a data access pattern that

depends on the input, meaning they are potentially vulnerable to side-channel attacks that

determine memory access patterns [ 168 ,  55 ]. It has recently been shown that SCRYPT is

optimally memory-hard [ 34 ].

Other defenses against offline attacks

It is possible to distribute the storage and computation of password hashes across multi-

ple servers [ 94 ,  95 ,  96 ]. Juels and Rivest [ 98 ] proposed storing the hashes of fake passwords

(honeywords) and using a second auxiliary server to detect authentication attempts that

come from cracking the fake passwords. These methods require the purchase of additional

equipment, which may prevent those with more limited financial resources from employing

them. A second area of research has investigated the use of hard artificial intelligence prob-

lems that require a human to solve [ 169 ,  170 ,  171 ]. This would require an offline attacker

to employ human oversight throughout the process by having them solve a puzzle (e.g. a

CAPTCHA [ 169 ,  171 ]). In comparison, data-independent MHFs have a set memory access

pattern that does not involve the input. These data-independent MHFs are typically the rec-

ommended type to use for password hashing [ 38 ,  16 ]. Several of the most prominent iMHFs

from the literature are (1) Argon2i [ 16 ], the winner of the password hashing competition [ 38 ],

(2) Catena [  55 ], a PHC contestant which received special recognition from the PHC judges,

and (3) Balloon Hashing [ 172 ]. Several attacks have been found for Catena [ 173 ,  39 ,  56 ] and

for Argon2i and Balloon Hashing [ 56 ,  174 ]. Constructions for iMHFs with cumulative com-

plexity Ω
(
n2/ log n

)
have been shown [ 175 ] using a concept called depth-robust graphs [ 176 ].

This is asymptotically the best possible result given the attack shown by Alwen and Blocki

[ 56 ] showing that any “natural" iMHF has cumulative complexity O(n2 log log n/ log n), but

the construction remains theoretical at this time.
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4.2.2 Just in Time Hashing

The proposed solution to this problem is Just in Time Hashing, a method that allows

for extended key stretching without a user being aware that it is being done. That is, where

a user may have noticed that a large amount of key stretching was taking several seconds

before, using just in time hashing they could perform the same amount of key stretching and

barely notice any delay once they have finished entering their password.

Formally we define a k-limited Just In Time hashing function as a streaming algorithm A,

with a random oracle H, and an initial state q0 that makes at most k sequential calls to the

random oracle for each state update. As each character ci of the input enters the algorithms

the state is updated, up until a special terminating character $. The input must be of the

form C ∈ (Σ \ $)∗ |$, where once the terminating character is read the output τ based on

the final state is returned. On each update, a just-in-time hashing algorithm returns one of

two types of outputs. If the character was not the terminating character $ then the function

returns a new state qi from the set of possible states Q. If it is then it returns an output

t from the set of possible outputs T . The just in time algorithm transitions between states

according to the following function:

AH(qi=1, ci) =


qi ∈ Q ci 6= $

τ ∈ T ci = $

We use AH(C) to denote the final output given a sequence of the form C ∈ (Σ \ $)∗ |$.

The Backspace Challenge: We allow the character set Σ to include a special character

b (backspace). We require that a AH is consistent meaning that we should get the same

output when the user types 1, 2, f, g, b, b, 3 that we would if the user had typed the sequence

1, 2, 3, $ the output τ . Formally, for all input sequence C ∈ (Σ \ $)∗ |$ we require that

AH(C) = AH (Prune(C)), where Prune(C) ∈ (Σ \ {$, b})∗ |$ is the character sequence we

obtain after applying each backspace operation b.

A naive way to handle backspaces would be to revert to state q0 and repeat the entire

computation, but this approach would result in noticeably large authentication delays for
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the user. A second way to handle backspaces would be to store all previous states so that

we can quickly revert to a prior state. The key challenge is that states can quickly become

very large (e.g., 1GB) because our instantiation of AH is memory-hard.

We can relax the requirement that AH always updates after at most k sequential calls to

the random oracle to say that AH always updates after at most k sequential calls for β-good

input sequences. Intuitively, a sequence is β good if it does not contain too many backspaces

b within a short interval so that once we are in state qi+β we will never be asked to revert to

a state qj for j < i. We allow for one exception: if the user wipes out the entire password

then the sequence is not β-bad because it is easy to revert to state q0.

Definition 4.2.1. We say that a sequence C = c1, . . . , ct, $ ∈ (Σ \ $)∗ |$ is β-bad if we can

find indices i ≤ j ≤ t such that

β <
j∑
i=1

(
1ci=b − 1cj 6=b

)
,

and Prune(c1, . . . , cj) 6= ∅. If no such indices exist then we say that the sequence is β-good.

We say that a sequence is β-bad if AH is a β-tolerant k-limited Just In Time hashing function

if for all β-good sequences C ∈ (Σ \ $)∗ |$ the algorithm AH(C) never requires more than

k-sequential calls to the random oracle between updates.

Discussion: In this paper we focus on the context of password hashing and key stretch-

ing, specifically using the time users spend typing in their passwords. However, in the

broadest sense, JIT is a method to hide computation within idle cycles by streaming input

instead of working in batches, and thus potential applications are not necessarily limited

to password hash computation. For example, the JIT technique could be used to generate

proofs of work for email. As the user types his e-mail the JIT algorithm could continually

update the proof of work for the current email message. Using this approach could help deter

spammers by making it prohibitively expensive to generate the proof of work for each mes-

sage. One intriguing challenge would be to develop a JIT proof of work with a more efficient

verification algorithm in case the receiver does not have time to regenerate the entire JIT
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proof. Another possible application domain for authentication would be to take advantage

of the longer delays induced by two-factor authentication.

Usability Analysis

In the last section, we introduced the notion of a β-tolerant k-limited JIT scheme which

updates the state at most k times given any β-good input sequence. Before instantiating any

JIT scheme it is crucial to understand how people type passwords in practice. In particular,

to avoid delays during authentication we need to tune k so that the time to update the state

is less than the expected delay between consecutive keystrokes. Thus, the parameter k will

depend on the user’s password typing speed. Furthermore, we also need to ensure that JIT

is β-tolerant for a sufficiently large value of β to ensure that the input sequence we receive

when a user types their password is β-good.

In this section, we aim to answer the following questions. How quickly do users type

their passwords? To what extent is password typing speed correlated with regular typing

speed? What fraction of login attempts are β-good for β = 1, 2, 3? And to what extent does

password typing speed Change over time?

To answer these questions we first analyze two publicly available datasets [ 177 ,  178 ].

While we can extract useful insights from both datasets, there are significant methodological

limitations when we attempt to use these datasets to answer each of our questions e.g., users

in the passwords typo dataset [ 177 ] were not typing their own passwords. To address these

limitations we also conduct our own user study in which we asked users to type in their real

passwords so that we could measure password typing speed.

Study Design

To address the previous limitations we designed a user study to investigate user’s typing

speed and correction habits on their real passwords. Briefly, in the study users were asked to

type their password, type a paragraph and then type their password again. The instructions

emphasized that we wanted users to type in their actual password and reassured users that

we only collected statistics on typing speeds and would never receive their actual password.
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Previous work has found that conducting password studies poses many challenges and that

care must be taken when analyzing the results [  179 ]. Thus we strived to ensure that we were

learning valuable information while taking care to design the study properly.

To give an idea of how much key stretching could be performed with JIT hashing the

specific data that is needed is how quickly people type their passwords in practice. While

previous work did have people type in passwords, they were either typing a pre-defined

password list [ 178 ] or randomly generated passwords [ 177 ]. To give an idea of how much

time we have for key stretching in practice we need to know how long users spend typing

per character on their own passwords. To obtain this information we performed an IRB-

approved user study on MTurk in which we collected the time it took for people to type in

their real passwords. We recruited 400 participants, each of whom were paid $0.50 for an

estimated 5-minute survey. For more details on the construction of this study please see [ 8 ].

The main data that were collected were per character password and standard typing

speeds. To record this, an action was triggered when the first character was entered into

the provided field that recorded the starting time. If at any point, a user cleared out the

field, the timer was reset. Once the user hit enter or clicked the continue button the timer

stopped, calculated the total time over the number of characters, and transmitted the per

character speed over the encrypted connection. In addition to timing data, we also collected

data on how many consecutive backspaces occurred in the worst case, as well as how many

times users cleared the entire field. The results were stored in a database at our institution

for analysis.

Ethical Considerations As this study involved the use of human subjects and sensitive

information great care was taken to ensure this study was designed and run in a way that

would offer the most benefit with the least risk to users. A large number of security pre-

cautions to prevent password theft were put in place, described in the following paragraph.

Another potential concern is that an attacker might conduct a copycat “study" to phish

for user passwords. To minimize the risk of such copycat studies we provided full contact

information for the PI and the IRB board at Purdue. The study site was also hosted on an

HTTPS server using a domain name affiliated with Purdue University. Finally, we note that

in user studies in which users are asked to create a new password that many users simply
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type in one of their passwords [ 155 ]. Thus the risk of phishing ‘studies’ is present whether

or not the user is explicitly asked to type in their password. The study was submitted to

and approved by the IRB board at Purdue before the study was conducted.

Security precautions

We took several precautions to ensure that at no point would a user’s password be

revealed, either to us or even to someone monitoring the user’s network traffic. The first

step for ensuring security is to make sure that all data involving the user’s password was

computed locally on the user’s machine. To accomplish this we wrote Javascript code to

monitor the time between key presses and watched for the enter key to be pressed when

the user was done typing. Once they finished our code transmitted only the time typed per

character, the number of field clears, and the maximum number of consecutive backspaces

to the server. At no point was the password or its length transmitted, only the time it takes

to type each character, which is the relevant information for tuning JIT parameters.

As a second layer of protection, we required that all connections to our server be en-

crypted. Thus, even if secure data was sent it would not be retrievable by observing network

traffic.

As a final precaution, all of the code for the survey was subjected to independent third-

party analysis. The third-party used the automated tool Checkmarx to test for security

vulnerabilities. The analysis found no vulnerabilities that would expose any sensitive user

data.

Results

Of the 400 MTurk participants recruited 335 self-reported that they had completed the

study and used one of their own passwords. In our analysis, we dropped data from the 65

users who self-reported not using their own password in the study. Additionally, we discarded

data from the 7 PC users who left the password field blank (all mobile users filled in the

password field). Of the remaining 335 users, 313 reported using a desktop or a laptop while

22 reported using some mobile device (phone, tablet, etc...).
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Several users had exceptionally long typing times (2000ms+ per character typed). In each

of these cases either the password per-character speed or the typing per-character speed were

unusually large, never both. These values are excluded from the charts and tables in this

section as they make it difficult to visualize the more common results. Statistical analysis

was performed using the statistical package R [ 180 ], where one of the first things we looked

at is whether or not the time taken to type each user’s password had anything to do with

their typing speed.

We split the analysis into mobile and non-mobile users. One of the first things to notice,

especially in Figure  4.2 , is that there isn’t a very strong correlation (R2
adj = 0.1289, p < 0.001)

between observed typing time and password typing time. The non-mobile data showed the

same weak correlation, meaning that typing time is not a particularly good measure of how

quickly someone might type their passwords.

We noted that we found similar deletion habits to those from Chatterjee et al’s data

[ 177 ]. In particular, we observe that people rarely have more than 3 consecutive deletions

without deleting the entire password, with only about 1% of participants doing so 

9
 . In

total, we saw that, of the 612 entries from 306 users (two entries per user) who self-reported

using their real password and were on a non-mobile device, only 4 showed more than 3

consecutive deletions. Thus, we maintain that a large majority of users will not run into

more than a small number of deletions. In particular, it should be sufficient to set β = 3

when implementing a β-tolerant JIT scheme.

Of particular interest to JIT hashing are some of the typing time percentiles, marked on

Figure  4.2 . For just in time hashing it is valuable to know how long we can safely run the

key stretching per character so that users will not notice any odd delays or slowdowns from

the system. From the provided data we can see that it should suffice to stop after 183 or

213 milliseconds of computation for a non-mobile user so that 95% and 90%, respectively,

of users will notice no delay from the key stretching. With mobile data it does seem like

we may have a bit more time to run key stretching due to overall slower password typing

speeds, however, due to the small mobile sample size, this will likely require further study to
9The four users that did have larger numbers of consecutive deletions without wiping out the entire password
had very large numbers (26,19,22 and 27) for the maximum number of consecutive deletions.
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come up with statistically significant claims. If it does turn out that we have more time on

mobile devices this may be a benefit, as we can make up for some of the slower processing

speeds with additional computation time.

Using Regular Typing Speeds to Select Cutoffs We further investigated the pos-

sibility of predicting typing speeds by categorizing users into broader categories. We began

with the non-mobile users and then split this group into those with speeds under 250ms/ch,

those between 250 and 500, and those taking more than 500ms per character typed. Each

of these groups was further split into a training set and a testing set. Each training set

contained 70% of the time group’s results, with the remainder reserved for testing. Using

the training data split by typing speed, we determined each group’s 5th and 10th password

typing speed percentiles. We then looked at the cutoff line for the percentiles and determined

what proportion of the training data fell below the cutoff line, giving an idea of how accurate

the predictions came out. The results are shown in Table  4.1 , which shows the percentile

cutoffs from the training data and the percentage of the testing data that fell below each

cutoff. We observe that we obtain reasonable predictions of the testing percentiles, with

the exception of the final timing category. This category turned out to be more difficult to

predict due to the outliers contained in the set.

The practical benefit of being able to make some predictions based on larger standard

typing time categories is the potential optimization of JIT hashing times per character by

giving a user a typing speed test. If their typing speed is known, and if they turn out to

be in one of the slower groups, our data suggests that it is possible to run just in time

hashing for more time per character for that individual. While possible, usability may be an

issue with this optimization. Users may become impatient with a required typing test before

registering, and those with faster typing times can argue that they are being cheated out

of additional key-stretching due to their typing speed. That is, they may prefer the extra

security they would have gained by increasing the per-character running time. The benefit

of this method over a universal set time would be that those who would have experienced

some annoying delay when typing would no longer see this delay.
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Figure 4.2. Results for non-mobile users

Table 4.1. Summarized results from subsampling tests
Typing speed range Train 5’th (ms) % ≤ Pred Train 10th(ms) % ≤ Pred

0 ≤ x < 250 170.01 0.078 180.025 0.100
250 ≤ x < 500 264.11 0.059 299.18 0.118

500 ≤ x 310.12 0.083 356.400 0.167
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4.2.3 Security analysis

In this section, we investigate the performance of JIT hashing with and without memory

hardness. On the negative side, our analysis demonstrates that the benefits of JIT hashing

without memory hardness are marginal. In particular, if an iterated hash function is run in

JIT mode we will show that the adversary has a fairly efficient method to guess passwords

i.e., the cost of checking every guess in a dictionary with JIT is only marginally higher than

the costs the attacker would incur if a comparable iterated hash function (inducing the same

authentication delay) were used. Given this attack, we warn that JIT hashing does not

offer its full benefits without memory hardness. In the second section, we will examine JIT

hashing when implemented with memory hardness. In this case, we use a pebbling argument

to demonstrate that JIT hashing substantially increases guessing costs for an attacker.

Adversarial model

For analysis we assume the adversary is:

1. Offline: The adversary has obtained a hash and salt of a password and can verify

password guesses offline.

2. Informed: The adversary is familiar with the specific implementation of JIT hashing

being used, and knows exactly how the hash value they have was obtained. The

adversary is also assumed to possess a reasonably large password dictionary containing

all of the most likely user password choices. The adversary is interested in cracking the

password using the minimum possible number of guesses and will use their knowledge

to optimize their strategy to crack the password with the minimal possible amount

of work.

3. Rational: An attacker is willing to continue cracking as long as marginal guessing

benefits (i.e., the value of a cracked password times the probability that the next

guess is correct) exceed marginal guessing costs. If expected guessing costs exceed

the expected reward then the attacker will quit his attack. In particular, it is possible

to discourage the attacker by increasing the cost to validate each password guess.
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(a) Infinitely Parallel, Memory Unbounded: The adversary has no time

limit to their computation, although there is an opportunity cost to allocating

additional resources (memory/processing cores) to password cracking. Since

the adversary is rational the attacker may stop attacking if the opportunity

costs exceed the expected reward. This model may be overly pessimistic since

a real-world attacker does not have infinite memory.

(b) Sequential, Memory Unbounded: The attacker has limited memory and

each memory chip is associated with a single processor. While this model may

be overly optimistic we note that in practice it is difficult to route messages

from a single shared memory chip to many different cores.

Password Model

We consider three types of password distributions:

1. Empirical: The user selects a password from the RockYou dictionary. Probabili-

ties are weighted by their empirical frequency (e.g., in the RockYou dictionary con-

tains passwords from N = 32.6 million user accounts and 291 × 103 users in the

dataset selected ‘123456’ so the probability our user selects the password ‘123456’ is

Pr[‘123456] ≈ 0.009).

2. XKCD (Random Words): The user selects several words uniformly at random

from a dictionary of English words. In particular, we use Google’s list of the 10,000

most common English words in our analysis.

3. Cracking Dictionary: Passwords are taken from a cracking dictionary created by

Openwall and intended for use with John the Ripper [  153 ]. This is designed to mimic

how a criminal may perform an online attack against a standard password.

An additional analysis of uniform passwords is available in the full version of this paper.

Briefly, our analysis shows that when we are protecting uniformly random passwords JIT

offers no advantage against a parallel memory bounded attacker. However, JIT can increase
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costs for a sequential attacker by an order of magnitude. We defer the analysis to the full

version of the paper because real users tend not to pick uniformly random passwords.

JIT without memory hardness

In this section, we analyze the performance of JIT without memory hardness. We will

present an executive summary of our results and refer an interested reader to the full version

of this paper for more details. To begin, assume that we have an unbounded adversary

attempting to run through their list of possible passwords as quickly as they can and that

JIT hashing is being run using a hash function H and key stretching is performed through

hash iteration. Note that under the JIT model the adversary can think of the list of possible

passwords as forming a trie of possibilities. To explore all passwords the adversary simply

needs to calculate the entire trie, ensuring that they visit every node at least once.

If we define the cost to traverse each edge to be W = C(H) = 1 and define our alphabet

as Σ and assume that no password is of length 1 ≤ length ≤ ` then the adversaries total work

to check all password guesses is given by the number of nodes in the trie. By comparison,

if we had not used JIT and instead simply hashed the final password with H then the total

work is given by the total number of passwords in the dataset that the attacker wants to

check (e.g., the number of leaf nodes in the trie). The advantage of JIT is given by the ratio:

#nodes/#leaves.

Empirical Distribution: For each value of T we computed a trie from the T most

popular passwords in the RockYou list. Figure  4.3 plots the ratio #nodes/#leaves for each

point T . A typical value of the ratio is about 1.5. Thus, JIT slightly increases the work that

an attacker must do to check the T most popular passwords.

XKCD (Random Words): We computed the ratio #nodes/#leaves for the trie for

the dictionary containing all i-tuples of the 10, 000 English words for each i ≤ 5. The typical

value for the ratio (i.e. at 4 words) is 2.417 meaning that JIT yields a modest increase in
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Figure 4.3. Average number of nodes added to pwd trie over time

the work that an attacker must do to crack an XKCD style password.

Cracking Dictionary: The cracking dictionary was analyzed in the same manner as

Rockyou, with the results shown in Figure  4.3 . We note that the ratio is slightly higher,

closer to 2.4, for this dictionary.

Just in Time Memory Hard Hashing

Memory hard functions are functions that require the user to dedicate a set amount of

memory to compute a function in addition to performing the computation cost, or at the

very least to suffer an extreme runtime penalty if they do not want to store the function in

memory. Several of these memory-hard functions, such as SCRYPT, have a tunable memory

use parameter that allows the user to specify how much memory they would like the hashing

function to take up. We note that if a user were to simply select a value that a reasonable

computer would have, such as using 1GB of memory, we already require more memory to

calculate a single hash than it took to store the entire trie under the iterated hashing scheme.

The question arises as to just how much would it cost to run an offline attack against a JIT
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password hash that used a memory-hard function. To accomplish this we first require the

notion of graph representations of MHFs, graph pebbling, and cumulative complexity (See

Chapter  2.6 for these base definitions).

JIT Cumulative Complexity When running a pebbling game on a DAG we have the

concept of cumulative complexity (Defined by Alwen and Serbinenko in [ 39 ]). In this model,

we are thinking of each pebble as some unit of memory, and each round as a unit of time.

Cumulative complexity of a DAG G, CC(G), and a pebbling sequence P = P0, P1, . . . , Pk

is a measure of the space-time complexity of the pebbling. To model cumulative memory

usage in a JIT MHF, we slightly modify the standard pebbling cost definition to capture the

properties of just-in-time hashing. In a JIT MHF placing a new pebble involves filling an

array of size m over m steps. During the placement, the cumulative memory usage of this

process is 1+2+ . . . = m2

2 units of memory over the entire placement process. When keeping

a pebble on the graph, we keep m units of memory filled for the m steps it will take to

fill up a new pebble, meaning each pebble costs m2 to keep around for an additional round.

Note that in the original definition of cumulative complexity the graph being used represents

nodes as blocks of memory in a memory-hard function and the edges as the dependencies

required to fill that block. For JIT hashing the graph represents a different point of view.

Each node does not represent a single memory block but rather represents the state that

the JIT hashing function is in once a sequence of characters has been entered. For each

character entry, the JIT function represents the filling of m blocks of memory rather than a

single block in the original definition. It is this distinction that leads to these modifications

in the definition of cumulative complexity. Essentially, rather than a single node representing

a single operation, it represents the sequence of operations required to update the JIT state

from the previous state to a new state.

With these definitions in place we can now redefine the cumulative complexity of a

sequence of pebbling moves P :

CC(P ) =
k∑
i=0

((
m2

2 |Pi \ Pi−1|
)

+
(
m2 |Pi−1 ∩ Pi)

∣∣∣)
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Next, we define the cumulative complexity of an entire graph. Denote the set of all

possible pebbling sequences PG (resp. P ||G for parallel pebbling).

CC(G) =min
P∈PG CC(P ) , and CC ||(G) =min

P∈P ||G
CC(P ) .

With parallel pebbling cumulative complexity (CC ||(G)) being defined in the same way

when parallel pebbling has been used.

Cumulative Cost for JIT Hashing

In JIT hashing we have a window of size w that only allows us to select dependencies

from the previous w − 1 memory blocks. Recall that there is a trie representing the list of

passwords that an adversary wants to try, with each node representing the addition of a new

character. To create our JIT pebbling graph we start with this base trie. For each node,

any node at distance at most w − 1 may depend on it. To represent this for each node in

the graph we add an edge to each of its descendants up to distance w− 1. We set our list of

sink nodes to be each node that corresponds to a password that is being guessed (e.g. in the

path 1-2-3-4-5-6 we may set the nodes for 5 and 6 to be sink nodes, as they correspond to

common passwords). We denote TD,w as the directed acyclic graph created in this manner

using a dictionary D to form the base trie and windows size w. From this graph we derive

two bounds on the cumulative complexity of running a brute force attack on a JIT hashed

password. The upper bound on time is derived using a parallel pebbling argument while the

similar lower bound is derived using a sequential pebbling game.

Notation: Given a node v ∈ TD,w we use height(v) (resp. depth(v)) to denote the height

(resp. depth) of a node in the tree TW,v e.g., a leaf node is defined to have height 1 and the

root node is defined to have depth 0.

Theorem 4.2.1. For a parallel attacker with unbounded memory we have

CC ||(TD,w) = |TD,w|
m2

2
+
∑
h>1

∑
v: height(v)=h

(
m2 min{h− 2, w − 2}

)
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For a sequential (memory bounded) adversary, we have

CC(TD,w) ≥
∑

d

∑
v:depth(v)=d

m2 min{d− 1, w − 1}


− |TD,w|
m2

2

Proof. (sketch) Consider the graph TD,w under the parallel black pebbling game. Let t be

the height of the root node. We first observe that the there is a simple legal parallel pebbling

strategy P ∈ PTD,w with

CC ||(P ) ≤ |TD,w|
m2

2
+
∑
h>1

∑
v: height(v)=h

(
m2 min{h− 2, w − 2}

)
.

In particular, we set P0 = ∅ and we set Pi = {v : t + w − i ≥ height(v) ≥ t + 1 − i}. To

see that the pebbling is legal we observe that Pt contains all leaf nodes in TD,w and that

Pi+1 \ Pi = {v : height(v) = t− i} and that therefore parents(Pi+1 \ Pi) ⊆ {v : height(v) =

t−i} ⊆ parents(Pi). Furthermore, since Pi+1∩Pi = {v : t+w−i−1 ≥ height(v) ≥ t+1−i},

we have CC ||(TD,w) ≤ CC(P ) =

t∑
i=1

((
m2

2 |Pi \ Pi−1|
)

+
(
m2 (Pi−1 ∩ Pi)

))

=
∑
h

∑
v: height(v)=h

(
m2

2 +m2 min{max{h− 2, 0}, w − 2}
)

= |TD,w|
m2

2

+
∑
h>1

∑
v: height(v)=h

(
m2

2 +m2 min{h− 2, w − 2}
)

Note that if a node v is at height 1 (e.g., a leaf) or 2 then we keep a pebble on that node for

exactly one round (total cost m2/2). If a node v is at height > 2 then we keep a pebble on
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that node for exactly min{h− 2, w− 2} additional rounds after we initially place the pebble

(total cost m2/2 +m2 min{h− 2, w − 2}).

To see that CC ||(TD,w) ≥ CC(P ) we note that in any legal pebbling of TD,w we must

place a pebble on each node in TD,w at some point and that the total cost of placing these

pebbles on each node for the first time is at least |TD,w|m2/2. After we first place a pebble

on node v we must keep a pebble on node v for an additional min{w − 2,max{h − 2, 0}}

steps to pebble the min{w − 1, h − 1} children of node v. The total additional cost is

m2 min{w − 2,max{h− 2, 0}}for each node v. Therefore, CC ||(TD,w) ≥

∑
h

∑
v: height(v)=h

(
m2

2 +m2 min{max{h− 2, 0}, w − 2}
)
.

Now consider an arbitrary sequential pebbling strategy and in particular consider the

unique round iv during which we first place a pebble on node v. We note that during

round iv − 1 we must have pebbles on all of v’s parents, thus |Piv−1| ≥ |parents(v)| ≥

min{w − 1, depth(v)− 1}. It follows that

CC(P ) ≥
(∑

v

m2 min{w − 1, depth(v)− 1}
)

− |TD,w|
m2

2

=
∑

d

∑
v:depth(v)=d

m2 min{d− 1, w − 1}


− |TD,w|m2/2 .

Under the sequential black pebbling game a similar approach works. In this case, rather

than the height of each node consider the depth of each node, which is the distance to the

root of the trie. For each node realize that you must pay the initial pebbling cost and also

pay min{w − 1, d− 1} to keep its parents in the trie. Thus we gain a similar bound for the

sequential pebbling game:
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Table 4.2. Advantages of JIT hashing with selected dictionaries
List adv||(D,w) adv(D,w)

Rockyou 6.028 13.260
Cracking(1k) 10.100 15.542
Cracking (10k) 7.057 10.654
Cracking (100k) 3.048 6.068

Cracking (∼ 5 mill) 9.154 12.468
XKCD (4 word) 11.674 25.399

To give some perspective we calculate the pebbling complexities for several password

lists, including rockyou, xkcd-style passwords, and a cracking password list from Openwall,

designed for use with John the Ripper[ 153 ]. We look at the advantage in terms of the CC of

the JIT pebbling graph and the work required to calculate all passwords using memory hard

hashing but not a JIT model i.e. each password requires only m2/2 work to compute. We

specifically define our advantages as adv||(D,w) and adv(D,w) under parallel and sequential

models for a dictionary of passwords D with a JIT hashing algorithm using a window of size

w as

adv||(D,w) = CC ||(TD,w)
m2|D|/2

adv(D,w) = CC(TD,w)
m2|D|/2 .

This can be thought of intuitively as the amount of work necessary for the attacker to

check all passwords in the dictionary when passwords are protected with JIT divided by the

work the attacker must perform when passwords are protected by a standard memory-hard

function with equivalent authentication delay. We calculate these advantages over several

password dictionaries in Table  4.2 . Note that some of these require theoretical analysis

rather than empirical. For full details please see [ 8 ].
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4.2.4 Discussion

Usability advantages

A great benefit of JIT hashing is that, from a user’s perspective, there is nothing new to

learn. So long as the system has been implemented correctly most users should expect to be

able to authenticate with no detectable delay. In a case when a user does notice a delay this

would be because they are either typing much faster than expected, such as faster than 95%

of users, or because they have deleted a significant amount, but not all, of the characters

that they entered. In these cases, while there is a delay it is not a very significant delay,

and should only last for a few seconds while the algorithm restarts computation from the

beginning to catch up with the user.

From a developer’s perspective, JIT hashing will require some modification to their exist-

ing authentication systems. Current password hashing functions are set up to take the entire

password at once, while JIT is a streaming algorithm. Developers would need to modify their

existing systems to accept passwords one character at a time, which may vary from simple

to complex depending on the current systems they are working with. Beyond modification

to be a streaming algorithm, the replacement of the function itself would be quick, only

requiring the developer to import the function and set a few additional parameters.

Client vs Server-Side

In earlier sections, we described JIT Hashing as a client-side hashing algorithm. The

reason for this is that a naive implementation for a server-side version could include several

serious security or usability risks. For example, a naive implementation may send (encrypted)

characters to the server one at a time. An adversary could eavesdrop in this scenario to learn

the exact length of a user’s password. One way to address this issue would be to have the

client send an encrypted packet every few milliseconds whether or not a character was typed.

A second consideration is that of server resources. Since JIT hashing involves extra work

any server-side implementation must also consider the potentially increased risk of denial-

of-service attacks.
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4.3 Data-independent Memory Hard Functions: New Attacks and Stronger
Constructions

As discussed in the Economics of Offline Password Cracking [ 3 ], one of the primary

concerns for offline password cracking is an attacker’s ability to guess for very low costs.

One solution to raising attacker costs is to employ MHFs, which impose a higher space-

time cost and are designed to be resistant to cheap ASIC computation. These properties are

dependent on MHFs ability to require such large amounts of memory for efficient computation

(i.e., there should not be some way to cheat and compute the function for a much lower cost).

As of this writing, the only MHF proven to be maximally memory-hard was shown by Alwen

et al in 2017 [  34 ].

This work on iMHFs [ 7 ] improves the state of the art on independent MHF construction

through proposed changes to existing iMHFs like Argon2 [ 16 ]. Due to the length of the main

work the portions summarized in this thesis document focus on the portions I was most

involved in. We will discuss our new MHF candidate, a new look at old attacks against MHFs

and their effectiveness, and a minor change that we note can increase Argon2’s resistance to

parallelization. This work contains many additional relevant results and constructions, all

of which can be found in the full version of the paper.

4.3.1 Existing constructions and attacks

In general, iMHFs can be described using a DAG where edges encode data dependencies

required as an array of memory is filled. These DAGs can be analyzed using pebbling games

(See Section  2.6 where the pebbles intuitively represent storing data in memory for later

use. Several iMHF construction candidates have been proposed, with many appearing in the

2015 Password Hashing Competition [ 38 ]. Of the candidates proposed in this competition

Argon2 [ 16 ] was selected as the winning construction. Subsequent work found flaws in the

construction that reduced the cost of computation to O (n1.768) [ 174 ,  181 ], well below the

theoretical maximum cost of O (N2 log log n/ log n) [ 56 ]. Alwen, Blocki, and Harsha proposed

a new construction called DRSample (Definition  4.3.3 ) which resisted all tested attacks and

provably has aAT cost Ω
(

N2

log logn

)
[ 15 ].
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A variety of possible attacks against iMHF constructions exists going back to Valiant’s

results from 1977 [ 182 ]. Additional attacks that have been tested in the past include the

Layered attack [  56 ] and greedy pebbling attack [ 172 ]. Importantly, this work finds that the

greedy pebble can significantly reduce the cost of computing DRsample.

4.3.2 Greedy Pebbling Attack

In this section we present an empirical analysis of the greedy pebbling attack [ 172 ] that

reverses previous conclusions about the practical security of Argon2i vs DRSample [ 15 ].

Additional theoretical results are presented as additional support of these conclusions in the

full paper. The greedy pebble attack is an attack on MHFs that attempts to reduce the full

cost of computation by strategically selecting certain blocks of memory to keep filled. Rather

than storing all labels on a node (as would be done in the naive version of the algorithm)

we identify nodes that are used more often than others and keep these blocks loaded while

not storing the rest and computing them on the fly each time they are required. The formal

definition is:

gc(v): For each node v < N we let gc(v) = max{w| (v, w) ∈ E} denote the maximum child

of node v — if v < N then the set {w| (v, w) ∈ E} is non-empty as it contains the

node v + 1. If node v has no children then set gc(v) := v.

χ(i): This represents what we call the crossing set of the ith node. It is defined as χ(i) =

{v|v ≤ i ∧ gc(v) > i}. Intuitively this represents the set of nodes v ≤ i incident to a

directed edge (v, u) that “crosses over” node i i.e. u > i.

4.3.3 Empirical Analysis of the GP Attack

We ran the greedy pebbling attack against several iMHF DAGs including Argon2i, DR-

Sample and our new construction DRSample+BRG (introduced in Section  4.3.4 ) and com-

pared the attack quality of the greedy pebbling attack with prior depth-reducing attacks.

Here we define attack quality for an adversary A running pebbling P as AT − quality(P ) =
n(n+1)/2+nR

aAT (P ) where n(n+ 1)/2 + nR is the cost of the naive pebbling strategy i.e. on round i
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place a pebble on node i so nodes [1, i] are pebbled. The results, seen in  Figure 4.4 , show that

the GP attack was especially effective against the DRSample DAG, improving attack quality

by a factor of up to 7 (at n = 24) when compared to previous state-of-the-art depth-reducing

attacks (Valiant, Layered, and various hybrid approaches) [ 182 ,  56 ,  15 ].

The most important observation about  Figure 4.4  is simply how effective the greedy

pebbling attack is against DRSample. While DRSample may have the strongest asymp-

totic guarantees (i.e. aAT (G) = Ω(N2/ logN) for DRSample vs. aAT (G) = O(N1.767) for

Argon2i) Argon2i seems to provide better resistance to known pebbling attacks for prac-

tical parameter ranges. In our full paper, we show that the greedy pebble attack against

DRSample has cost approximately O
(

n2

logn

)
.

Our tests found that while the Greedy Pebbling attack does sometimes outperform depth-

reducing attacks at smaller values of n, the depth-reducing attacks appear to be superior once

we reach graph sizes that would likely be used in practice. As an example, when n = 20

we find that the attack quality of the greedy pebbling attack is just 2.99, while the best

depth-reducing attack achieved attack quality 6.25 [ 15 ]. However, we note that when we

overlay BRG over DRS, we can capture the greedy pebbling resistant features of the BRG,

and can effectively reduce the threat of this attack.

4.3.4 New MHF Candidate

In this paper, we are interested in understanding the cost of MHF computation from the

perspective of Full Cost.Wiener [ 116 ] defined the full cost of an algorithm’s execution to be

the number of hardware components multiplied by the duration of their usage e.g., if the

algorithm needs to allocate Ω(N) blocks of memory for Ω(N) time steps then full evaluation

costs would scale quadratically. Several candidate constructions attempting to raise Full

Cost for computation have been proposed, several of which are relevant to our analysis here.

First, we have the current Argon2 construction [  16 ]. Second is an earlier work introducing

a new method of selecting predecessor blocks DRSample [  15 ]. We will soon see that there

exists an attack against both Argon2 and DRSample that causes concern, prompting our

development of a new MHF candidate that is resistant to all tested attacks.
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The new construction is obtained by overlaying a bit-reversal graph BRGn [ 183 ] on top

of a random DRSample DAG. If G denotes a random DRSample DAG with N/2 nodes then

we will use BRG(G) to denote the bit-reversal overlay with N nodes. Intuitively, the result is

a graph that resists both the greedy pebble attack (described in the next section, and which

is effective against DRSample alone) and depth-reducing attacks (which DRSample was

designed to resist). An even more exciting result is that we can show that DRSample+BRG

is the first practical construction to provide strong sustained space complexity guarantees.

Interestingly, neither graph (DRSample or BRG) is individually known to provide strong

sustained space guarantees. Instead, several of our proofs exploit the synergistic properties

of both graphs. The formal definition is given in two stages. First, we define the BRG and

the related overlay version. Second, we define DRSample. Finally, we define the combination

of the two “DRS +BRG".

Given a sequence of bits X = x1 ◦ x2 ◦ · · ·xn, let ReverseBits(X) = xn ◦ xn−1 ◦ · · · ◦

x1. Let integer(X) be the integer representation of bit-string X starting at 1 so that

integer ({0, 1}n) = [2n] i.e., integer(0n) = 1 and integer(1n) = 2n. Similarly, let bits(v, n)

be the length n binary encoding of (v− 1) mod 2n e.g., bits(1, n) = 0n and bits (2n, n) = 1n

so that for all v ∈ [2n] we have integer(bits(v, n)) = v.

Definition 4.3.1. We use the notation BRGn to denote the bit reversal graph with 2n+1 nodes.

In particular, BRGn = (V = [2n+1] , E = E1 ∪ E2) where E1 := {(i, i + 1) : 1 ≤ i < 2n+1}

and E2 := {(x, 2n + y) : x = integer(ReverseBits(bits(y, n)))}. That is, E2 contains an edge

from node x ≤ 2n to node 2n + y in BRGn if and only if x = integer(ReverseBits(bits(y, n))).

We now define the bit-reversal overlay of the bit reversal graph on a graph G1. If the

graph G1 has N nodes then BRG(G1) has 2N nodes, and the subgraph induced by the first

N nodes of BRG(G1) is simply G1.

Definition 4.3.2. Let G1 = (V1 = [N ], E1) be a fixed DAG with N = 2n nodes and BRGn =

(V = [2N ], E) denote the bit-reversal graph. Then we use BRG(G1) = (V,E ∪E1) to denote

the bit-reversal overlay of G1.

Definition 4.3.3. DRSample(N) = (V,E) is defined as a set of N vertices V = {1, 2, . . . , N}

with edges (v − 1, v) ∈ E for all v > 1 and additional edges leading to each vertex v ∈ V
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selected by first picking some g ←
$

[1, blog2(v)c]. Next, set g = min(v, 2g). Finally select

r ←
$
[max(g/2, 2), g] and add (v − r, v) to E.

Definition 4.3.4. DRS +BRG = BRG(DRSample(N)).

The full paper contains several theoretical results about the strength of DRS+BRG.

Specifically, we show that any parallel pebbling P against DRS+BRG must have either

aAT (P ) ∈ ω(N2) or the pebbling has high sustained space complexity i.e., requires Ω
(

N2

logN

)
pebbles for Ω(N) steps. This means any parallel pebbling has aAT (P ) σ Ω

(
N2

logN

)
. In

addition, any sequential pebbling (or even any nearly sequential pebbling) P of DRS+BRG

has aAT (P ) ∈ Ω(N2). Since the greedy pebbling attack is sequential, this shows that the

GP attack (or simple variants) will not be effective against DRS+BRG.

4.3.5 Antiparallelism in the Argon2 Compression Function

In this section, we show how a parallel attacker could reduce aAT costs by nearly an

order of magnitude by computing the Argon2i round function in parallel. We then present

a tweaked round function to ensure that the function must be computed sequentially. Em-

pirical analysis indicates that our modifications have negligible impact on the running time

performance of Argon2 for the honest party (sequential), while the modifications will increase

the attackers aAT costs by nearly an order of magnitude.

Review of the Argon2 Compression Function. We begin by briefly reviewing the

Argon2 round function G : {0, 1}8092 → {0, 1}8092 which takes two 1KB blocks X and

Y as input and outputs the next block G(X, Y ). G builds upon a second function BP :

{0, 1}128 → {0, 1}128, which is the Blake2b round function [  184 ]. In our analysis we treat

BP as a blackbox. For a more detailed explanation including the specific definition of BP ,

we refer the readers to the Argon2 specification [  16 ].

To begin, G takes the intermediate block R = X ⊕ Y (which is being treated as an 8x8

array of 16 byte values R0, . . . , R63), and runs BP on each row to create a second intermediate
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stage Q. We then apply BP to Q column-wise to obtain one more intermediate value Z:

Specifically:

(Q0, Q1, . . . , Q7)←BP(R0, R1, . . . , R7) (Z0, Z8, . . . , Z56)←BP(Q0, Q8, . . . , Q56)

(Q8, Q9, . . . , Q15)←BP(R8, R9, . . . , R15) (Z1, Z9, . . . , Z57)←BP(Q1, Q9, . . . , Q57)

. . .

(Q56, Q57, . . . , Q63)←BP(R56, R57, . . . , R63) (Z7, Z15, . . . , Z63)←BP(Q7, Q15, . . . , Q63)

To finish, we have one last XOR, giving the result G(X, Y ) = R⊕ Z.

ASIC vs CPU AT cost. From the above description, it is clear that computation of

the round function can be parallelized. In particular, the first (resp. last) eight calls

to the permutation BP are all independent and could easily be evaluated in parallel i.e.,

compute BP(R0, R1, . . . , R7), . . . ,BP(R56, R57, . . . , R64) then compute BP(Q0, Q8, . . . , Q56),

. . . ,BP(Q7, Q15, . . . , Q63) in parallel. Similarly, XORing the 1KB blocks in the first (R =

X⊕Y ) and last (G(X, Y ) = R⊕Z) steps can be done in parallel. This if we let tASICBP (resp.

tCPUBP ) denote the time to compute BP on an ASIC (resp. CPU) we have tASICG ≈ 2tASICBP

whereas tCPUG ≈ 16 × tCPUBP since the honest party (CPU) must evaluate each call to BP

sequentially. Suppose that the MHF uses the round function G to fill N blocks of size 1KB

e.g., N = 220 is 1GB. Then the total area-time product on an ASIC (resp. CPU) would

approximately be
(
AASICmem N

)
×
(
tASICG N

)
≈ 2N2×AASICmem tASICBP (resp.

(
ACPUmemN

)
×
(
16tCPBPN

)
where AASICmem (resp. AASICmem ) is the area required to store a 1KB block in memory on an ASIC

(resp. CPU). Since memory is egalitarian we have AASICmem ≈ ACPUmem whereas we may have

tASICBP � tCPUBP . If we can make G inherently sequential then we have tASICG ≈ 16tASICBP , which

means that the new AT cost on an ASIC is 16N2 ×AASICmem tASICBP which is eight times higher

than before. We remark that the change would not necessarily increase the running time

N × tCPUG on a CPU since evaluation is already sequential. We stress that the improvement

(resp. attack) applies to all modes of Argon2 both data-dependent (Argon2d,Argon2id) and

162



data-independent (Argon2i), and that the attack could potentially be combined with other

pebbling attacks [ 56 ,  172 ].

We remark that the implementation of BP in Argon2 is heavily optimized using SIMD

instructions so that the function BP would be computed in parallel on most computer

architectures. Thus, we avoid trying to make BP sequential as this would slow down both

the attacker and the honest party i.e., both tCPUBP and tASICBP would increase.

Inherently Sequential Round Function. We present a small modification to the Argon2

compression function which prevents the above attack. The idea is simply to inject extra

data-dependencies between calls to BP to ensure that an attacker must evaluate each call to

BP sequentially just like the honest party would. In short, we require the first output byte

from the i− 1th call to BP to be XORed with the ith input byte for the current (ith) call.
In particular, we now compute G(X, Y ) as:

(Q0, Q1, . . . , Q7)←BP(R0, R1, . . . , R7) (Z0, Z8, . . . , Z56)←BP(Q0, Q8, . . . , Q56)

(Q8, Q9, . . . , Q15)←BP(R8, R9 ⊕Q0, . . . , R15) (Z1, Z9, . . . , Z57)←BP(Q1, Q9 ⊕ Z0, . . . , Q57)

. . . . . .

(Q56, Q57, . . . , Q63)←BP(R56, R57, . . . , R64 ⊕Q48) (Z7, Z15, . . . , Z63)←BP(Q7, Q15, . . . , Q63 ⊕ Z6)

where, as before, R = X ⊕ Y and the output is G(X, Y ) = Z ⊕R.

We welcome cryptanalysis of both this round function and the original Argon2 round

function. We stress that the primary threat to passwords is brute-force attacks (not hash

inversions/collisions etc...) so increasing evaluation costs is arguably the primary goal.

4.3.6 Conclusions

We have seen about these new MHF constructions we can investigate their impact on a

rational attacker’s decisions. As we saw in [ 3 ], setting hashing costs too low can put users

at significant risk of losing an account to an offline password cracking attack. Attacks such

as the greedy pebble attack we saw here have the capability of letting a rational adversary

cheat and reduce their costs. With these reduced costs they may change their optimal attack

decisions in a manner we would prefer to avoid i.e., they may decide to attack more users
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or spend more effort per user, resulting in more damage from an attack. Thankfully, we

can reduce the effect of state-of-the-art cost-reduction attacks using the new constructions

we have just seen. By preventing cost reduction we can require an adversary to pay more

egalitarian computation costs, allowing us to continue to reap the attack damage reductions

from MHFs that we first demonstrated in [ 3 ].

4.4 Timely and Effective Key-Stretching with ASICs

When a password database is breached and an attacker obtains a service’s password

records, the final line of defense for the users is the strength of the storage method used. The

standard method of storing passwords involves keeping a record for each user containing their

username, a salt value, and a cryptographic hash of their password and salt. An attacker

running a typical brute force guessing attack is mainly limited by how quickly they can

compute this cryptographic hash function to check if a password guess matches the user’s

record in the database.

Because this hash function serves as a bottleneck for an adversary, various strategies have

been employed to reduce the number of guesses per second an attacker can make. Typically,

these strategies are based on increasing the computation time and space for the hash function

used to store each password, a method called key-stretching. As of this writing, there are two

commonly used approaches to increase the cost of computation. The first, hash iteration,

works by iteratively feeding the output of some base hash function H (e.g., a version of

SHA) back into itself some set number of times k. In this construction both the total cost

to compute this function and authentication time scale linearly with k. A second method,

Memory Hard Functions (MHFs) increases guessing costs by requiring some set amount of

memory time and memory m, t that is filled during computation in t steps. While these

two variables can be set separately they The total space-time cost for the naive algorithm

to compute these functions is O (m2) 

10
 .

One area of concern regarding password cracking involves a possible asymmetry be-

tween service providers and offline password crackers. While service providers typically use
10Several additional parameters may slightly change the space-time cost for these functions such as requiring
multiple passes over the memory blocks. The details here depend on the MHF in question.
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standard commercially available hardware to perform password hashing, an adversary can

construct an ASIC to assist their cracking efforts. While to our knowledge no such ASIC

is currently commercially available, similar products such as the Antminer line [ 185 ] have

shown that base hash functions can be called at a very high rate using an ASIC. This would

allow an attacker who constructed such a device to compute password hashes much faster

than a service provider using their standard hardware.

Blocki et al. [ 3 ] suggest that this asymmetry combined with linear cost scaling would ren-

der typical levels of hash iteration insufficient to defend against an ASIC-powered attacker.

They argue that MHFs offer a reasonable solution to this asymmetry. By requiring large

amounts of memory, even an ASIC would be bottlenecked by slow memory access rather

than by computation speed. This results in a password hashing function where an ASIC

would not have as strong an advantage as with hash iteration and that has quadratic cost

scaling. In this thesis, we will explore an additional method of countering this asymmetry:

using an ASIC to authenticate users.

We compare a proposed ASIC-based authentication system with existing MHFs used

for the same purpose. MHFs have the advantage of requiring a much lower investment in

equipment compared to ASIC-based hashing. However, they require more time than an

ASIC to provide hashing at a similar cost. In the following sections, we will explore the

tradeoffs between these two factors along with possible usability constraints, as users are not

infinitely patient. To compare these two solutions, we consider a defender who is interested

in the following three factors:

1. How much does it cost for the adversary to make a single password guess (Cguess) in

an offline password cracking attack?

2. What is the authentication delay imposed by the password hashing algorithm?

3. How much does it cost the defender per authentication (Cauth)?

Intuitively, we want to increase Cguess as much as possible to deter attackers, but may

be constrained by server resources from Cauth or user patience during authentication. We

develop a model that allows us to answer the question of costs given certain authentication
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times, allowing us to decide which of these two systems is more appropriate in a given

context.

Contributions: In this paper we introduce a per-guess and per-authentication model for

both MHF and ASIC-based authentication. By examining the differences in cost-per-guess

(which models attacker cost) and cost-per-authentication (which models defender costs),

our models can advise a server owner on which authentication method maximizes attacker

cost subject to system requirements (Cauth and authentication delay). We find that for

smaller authentication times (e.g., less than one second) ASIC-based systems can provide

significantly higher attacker costs in the context of an offline password cracking attack.

We also note that MHF based systems remain a reasonable budget option for smaller-scale

applications. This is because amortized Cauth is much higher for ASIC-based systems. In

this situation, MHF-bases systems are still capable of offering reasonable user protection.

Finally, we provide some example scenarios demonstrating when each authentication method

would be most appropriate.

4.4.1 ASIC-Based Password Hashing

A typical server hardware-based hashing system achieves key-stretching either through

hash iteration or through memory-hard functions. A third proposed system is to keep some

secret nonce called a pepper value (sometimes called a secret salt) which is not stored on any

machine and which must be guessed on every authentication [ 17 ,  186 ,  93 ]. These solutions

increase the guessing cost per password guess by forcing at least a small brute force attack for

every authentication attempt or offline password guess. Kedem and Ishihara [ 186 ] specifically

argue that using pepper in a password storage system may be a good defense against highly

parallel attacks, as one would see in a modern ASIC-based attack.

We propose using a pepper system for key stretching in an ASIC-based authentication

system. This method of key stretching allows us to take advantage of the high level of

parallelism within an ASIC while also providing a straightforward method of partitioning

the work to send to individual cores within an ASIC. Given c cores and a λ-bit pepper value
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we can easily assign 2λ
c
values to each core to be checked in parallel. If any one of the cores

finds that a given pepper value is valid then the authentication succeeds.

User Registration

User registration in an ASIC-based authentication system is very similar to the typi-

cal (user, salt,H(salt||pwduser)) entry stored per person, where H is some cryptographic

hashing function. The primary change is an addition of some secret pepper value in-

cluded in the hash input but not stored outright. The new record stored per person is

(user, salt,H(salt||pepper||pwduser)). User registration itself does not require the use of an

ASIC, as we only need to select our pepper value pepper ∈ {0, 1}λ from a distribution, e.g.,

from uniform (which we use here) or an optimized distribution as described in [ 17 ].

User Authentication and Password Guessing

When a user submits an authentication request r = (username, pwd) we must begin a

search over the elements in {0, 1}λ. At this point, the server can make a query to a connected

ASIC designed to brute force a pepper value. The values (H(salt||pepper||pwd), salt, pwd)

are forwarded to the ASIC which distributes some subspace of {0, 1}λ to each core. Each core

iterates through its subspace until it either reaches the end or it has found a matching value

that authenticates the user. If a matching value is found the authentication is successful. We

note that password cracking follows an almost identical process, with many possible values

pwd forwarded to the ASIC to check if they match the record in a database. As noted by

Blocki and Datta [ 17 ], the costs of doing this exceed the costs of typical authentications due

to most guesses being incorrect. The adversary therefore must check the entire pepper range

most times whereas the server will typically stop early due to a correct input.

4.4.2 Modeling Authentication Costs

Before we can develop a model that meets the three requirements our defender specifies

we require quite a few parameters representing various aspects of the authentication system.

In many cases, these parameters are easily fixed by searching for commercially available
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equipment and utilities such as existing hashing ASICs or RAM chips. Additionally, several

parameters are independent of the authentication system used, and primarily represent the

defender’s speed and cost requirements. These parameters common to both systems are:

• Ce: The cost of electricity (USD per kW/hr).

• Amax: The maximum number of authentications per second the server must handle

during peak load.

• Aavg: The average number of authentications per second the server is expected to

handle.

The first of these, Ce, can be quickly estimated based upon a service provider’s current

rate. We use a value of Ce = 0.12USD as a general estimate for the cost of electricity

for commercial purposes [ 187 ]. This value will of course vary depending on the electricity

consumer’s exact location.

ASIC-based Hashing Parameters

Many of the parameters required to model an ASIC-based password hashing system rep-

resent the capabilities and costs of the specific ASIC used. We assume that these parameters

are instantiated with values representing a single ASIC, not as general representations of the

tools as a whole. Because our proposed ASIC-based hashing system is based upon a pepper

system, we also require parameters specifying pepper length.

• CASIC : The cost of purchasing an ASIC designed to authenticate using the pepper-

based method described in Section  4.4 .

• LASIC : The lifespan of the ASIC measured in seconds.

• SASIC : The speed (measured in H/s) of the password hashing ASIC.

• `p: The length, in bits, of the pepper value.

• EASIC : The energy usage (measured in Watts) of the ASIC.
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MHF-based Hashing Parameters

Unlike ASIC-based hashing, MHF based hashing is not significantly impacted by the

choice of a specific hardware device. Compared to commercially available ASICS, commer-

cially available RAM cards do not vary as much in cost or performance. We consider the

following factors in an MHF-based authentication system.

• CGB: The cost for one GB of RAM .

• LRAM : The lifespan of a RAM card, in seconds.

• EB: The power required (in joules) to transfer/access one byte in RAM.

• m: The memory/time parameter specifying the number of GBs the MHF should use.

• tGB: The time it takes to fill one GB of memory.

4.4.3 Modeling ASIC-Based Password Hashing Costs

To construct our ASIC cost model we consider two primary factors in the cost of both

guessing and authentication: Capital costs and energy costs (with energy costs similar to

[ 129 ,  116 ]). Capital costs represent some amortized component per attacker guess or defender

authentication representing the initial investment in equipment required for an ASIC-based

system. We begin with the costs per guess for an attacker Cguess,ASIC . If we have an ASIC

that costs CASIC USD and has a lifetime of LASIC we have an equipment cost per second

of life of CASIC
LASIC

. The product of this value and the time it takes per guess 2`p
SASIC

gives our

equipment cost per guess. The second factor measures the electricity cost per guess and is

equal to the time per guess times the cost per second 2`pCeEASIC
SASIC

. Combining these gives the

cost per attacker guess

CGuess,ASIC = CASIC2`p
LASICSASIC

+ 2`pEASICCE
SASIC

The costs to authenticate a user are slightly different due to a) the lower expected authen-

tication time for legitimate authentication attempts and b) the need to purchase equipment
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for peak traffic instead of average traffic. The former decreases our time per authentication

to 2`p−1

SASIC
. To handle a defender amortizing the purchase of additional equipment we note

that they require at least
⌈

2`p−1Amax
SASIC

⌉
ASICs to handle peak loads. On average, we assign a

(capital) cost of
⌈

2`P−1Amax
SASIC

⌉
CASIC

LASICAavg
per authentication to the defender. The electrical costs

per authentication remain the same for a defender, giving the authentication cost model

CAuth,ASIC =
⌈

2`P−1Amax
SASIC

⌉
CASIC

LASICAavg
+ 2`p−1EASICCe

SASIC

4.4.4 Modeling MHF-based Password Hashing Costs

As with our ASIC model, we break the cost of computing a MHF into two components:

hardware costs and software costs. For an attacker, as we increase our memory parameter m

we require m2tGB gigabyte-seconds to compute the function at a cost of CGB
LGB

per gigabyte-

second.

We use existing estimates of the amount of energy required to transfer/access memory

per byte Ct with an estimate of two transfers per byte (as is required to computer MHFs

like Argon2i [ 16 ] and SCRYPT [ 147 ]). The electrical cost estimates for 2m transfers for Ct
joules per transfer comes out to 2mCtCe. Combining gives our attacker guessing cost of

CGuess,MHF = m2tGB
CGB
LGB

+ 2mCtCe

Similar to how we assigned higher hardware costs per authentication to a defender in an

ASIC-based system we assign a higher cost per authentication in the MHF model as well.

However, due to the ability to buy memory in much more specific quantities, we allow the

defender to purchase the exact amount they require. This is in contract with ASIC-based

systems where a very large investment is required to even slightly increase capacity above

current capabilities.

CAuth,MHF = Amax
Aavg

m2tGB
CGB
LGB

+ 2mCtCe
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4.4.5 Selection of Parameters

We begin our comparison of ASIC and MHF-based authentication by modeling a few ex-

ample authentication systems. This requires us to instantiate several cost parameters which

can vary based on the specific model. ASIC prices for cryptocurrency miners, for example,

can vary by thousands of USD for similar products, which can lead to large differences in

authentication costs. Even with these large costs, however, the base cost per hash computa-

tion, CH, remains within an order of magnitude between devices (see Figure  4.3 for sample

values). To account for variability in prices and computational power we examine multiple

existing commercially available ASIC (See Table  4.3 ). We select these values out of a desire

to not underestimate attacker guessing costs, which themselves are strongly influenced by

hardware costs.

For MHF-based authentication, we have ready access to commercially available equip-

ment. While prices vary slighting, as of this writing in June 2021 8GB DDR4 SDRAM cards

were available for around 40 USD from sites like Newegg [ 188 ] or Amazon [ 189 ]. Taking this

as a typical price we set CGB = 5.00USD. Setting tGB is not as straightforward as calculat-

ing the value from manufacturer specifications. Here we estimate tGB by running an instance

of Argon2i [ 16 ] set to 1GB of RAM usage in single-pass, single-threaded mode on a machine

with 16GB DDR4 RAM and an Intel i5-6600k 3.50GHz processor. Observed running time

values varied from 1.05 to 1.07 seconds, which is consistent with previous estimates [ 16 ].

Given these observations, we estimate the running time for a 1GB MHF evaluation to be

tGB = 1s. For electrical usage, we take the same approach as Ren and Devadas [ 129 ] using

the Intel Power Gadget [  190 ]. Using the same Argon2i settings used for time estimates and

assuming 2 transfers per byte we saw energy consumption consistent with Ren and Devada’s

estimate of 0.3nJ/Byte for RAM transfer energy costs. For 2 billion transfers over 1 second

this comes out to EGB = 0.6J/GB. For lifespan estimates we let LASIC = LGB = 2 years, as

has been estimated in previous work involving MHFs [ 7 ]. We note that this may not represent

the time to hardware failure, and may include system upgrades or equipment deprecation as

reasons for hardware replacement. These estimates are summarized in Table  4.3 .
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Table 4.3. Example cost parameters
MHF Parameters
CGB 5 USD / GB
LRAM 2 years
ERAM 0.6J/GB
tGB 1 second

Antminer S19
CASIC 12000 USD
LASIC 2 years
EASIC 3250W
SASIC 110e12H/s
CH 1.73e− 18

Antminer S9
CASIC 750 USD
LASIC 2 years
EASIC 1323W
SASIC 13.5e12H/s
CH 8.84e− 19

ASIC estimates can vary much more than those we use for MHFs. While many RAM cards

are standard equipment with consistent speeds and market prices, ASICs have prices and

hash calculations speeds that can vary by orders of magnitude. As mentioned in Section  4.4 

we primarily consider miners designed to find a nonce while calculating instances of SHA-256

as would be done for cryptocurrencies like Bitcoin.

Because bitcoin mining ASICs are so varied in price and capabilities we will consider two

example miners as a source for cost estimates. The first miner we consider is the Antminer

S19 Pro manufactured by Bitmain [ 191 ]. Table  4.3 contains the manufacturer specifications

and prices based on June 2021 Amazon prices [ 192 ]. Similarly, Table  4.3 shows specifications

and prices for an older, less costly model.

Using the estimates from Section  4.4.5 we plot both the authentication and guessing

costs for the example parameters in Table  4.3 . Attacker guessing costs can be found in

Figure  4.5 and related defender authentication costs are shown in Figure  4.6 . We compare

MHF authentication and S19 ASIC cost estimates along with their cost ratios (The ratio of
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the attacker’s cost to the defender’s cost) in Figure  4.6 . In this figure, we also include a cost

estimate for a hash iteration strategy to offer some perspective on both MHF and ASIC-

based methods. To calculate hash iteration costs we use Bonneau’s estimate of 8.5 × 10−16

USD per iteration running on a typical CPU accomplishing a hash rate of 10MHz [ 92 ].

4.4.6 Discussion

From our experiments we note a few significant findings:

• ASIC-based authentication can provide higher attacker costs than MHFs when hold-

ing authentication time constant. These systems also provide higher attacker costs

than defender costs for the same parameters. This is significant as it may provide

a reasonable method for service providers to provide high attacker guessing costs

without the need to spend unreasonable amounts themselves.

• MHF-based systems provide a lower level of cost scaling compared to ASIC-based

systems. However, they have a lower operating cost overall compared to ASIC-based

systems. Even with these lower costs, existing work [ 3 ] still notes that they are

well-suited to deterring rational offline password cracking attacks.

• The ratio of attacker to defender costs is higher for ASIC-based systems (about 1.5 in

the example shown in Figure  4.6 compared to 0.5 for MHFs). The primary cause of

this disparity is the properties of pepper-based systems, which provide lower expected

costs for service providers when compared to adversaries [ 17 ].

• Both MHF and ASIC-based systems have enormous cost advantages compared to

hash iteration. The costs of hash iteration are many orders of magnitude smaller than

both MHF and ASIC-based authentication systems even if we restrict the adversary

to using the same equipment as the defender. For example, if we use even a low-cost

ASIC to set guessing costs at 10e − 6 USD and assume accounts are worth 1 USD,

then we can protect at least 60% of users from a rational offline cracking attacker

with perfect distribution knowledge. In comparison, a rational attacker with perfect
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knowledge would be expected to crack 100% of passwords if less than 2 seconds of

hash iteration time is used.

We include iteration costs and point 3 to emphasize that, although it seems MHF-based

systems have much lower costs than ASIC-based systems, they still offer a higher authentica-

tion cost for reasonable authentication times compared to hash iteration. As demonstrated

in [  3 ] MHFs remain a reasonable choice for authentication.

Example use cases: We can now use these estimates to recommend different solutions

for different companies. Let us consider two companies: One a financial institution and the

other a small hobby-based forum.

• Suppose a financial company requires a guessing cost of at least 1.0 × 10−5 USD

with authentication times under 1 second. Additionally, suppose this company has a

usage profile of Amax = 1000 and Aavg = 500. From figure  4.5 we see that both ASIC

options presented would offer reasonable authentication options for this company.

Next, let us consider the much different case of a hobby forum. Due to the company’s

given restrictions, memory-hard functions would not be able to provide sufficiently

high guessing costs in the allotted time. The smaller-scale forum sees many fewer

people per day, with Amax = 2 and Aavg = 0.01 (corresponding to about 1000 active

daily users). They would like to keep authentication times under 1 second, similar

to the financial institution, but due to the nature of their much smaller scale have

a maximum authentication budget of 2.7× 10−4 (which comes out to about 10 USD

per year). Due to the higher amortized cost per authentication, even an Antminer S9

would have an authentication cost of 0.001 USD, nearly an order of magnitude out

of budget. In this case, the hobbyist website would be best served by choosing to use

MHF-based authentication.

The two example illustrations demonstrate that ASIC-based systems are desirable when

we desire 1) high attacker guessing costs with limited authentication times and 2) the or-

ganization sees a sufficiently large number of authentications per second. Smaller-scale sit-

uations can maximize security within budget constraints by using a MHF-based solution

where ASIC-based solutions may be prohibitively expensive. Because previous work has
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shown that MHF-based systems are likely to protect a majority of users [ 3 ] and given that

our models predict even higher guessing costs for ASIC-based systems, we believe that both

MHF and ASIC based systems are reasonable methods of protecting users from rational

offline password cracking attackers.
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5. FINAL REMARKS

In this thesis, I have demonstrated two key points regarding rational adversaries. In Chap-

ter  3 we saw how we can model rational attackers in the context of password cracking and

Grover’s algorithm attacks against ideal ciphers, both of which are imperfectly secure systems

due to the feasibility of brute-force attacks. By examining these systems from the lens of a

rational adversary we have identified problem areas (such as insufficient key-stretching and

length leakage) and also provided reassurance that existing systems like AES-128 would be

sufficiently secure against rational attackers. Due to the astounding scale and frequency [ 88 ]

of attacks like password cracking attacks, the security community must ensure systems are

designed to resist these attacks.

In Chapter  4 we focused on methods of deterring rational attackers by increasing attack-

ers’ costs. Through increased attacker costs we can lower an attacker’s utility so long as the

reward remains fixed - ideally causing them to select an action that we would prefer. We pre-

sented modifications to password storage systems, stronger hashing function constructions,

and methods to increase key-stretching computation time without causing undue burdens

on end-users. Through these cost increases, we have shown that the severity of attacks like

offline password cracking attacks by rational adversaries can protect many users from the

consequences of an attack.

The results from this document demonstrate the value of rational adversary models. The

security problems we have examined in this thesis seem dire when examined in the context of

powerful, malicious adversaries. Even though these are imperfectly secure systems, persistent

problems like password breaches make improving security as much as possible an important

goal. Through the works in this thesis, we have used rational adversaries to show how

these improvements can be accomplished. Though these improvements may not offer total

security, they help ensure we can at least secure as many users as possible.
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