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ABSTRACT

The recent decades have witnessed increased efforts to push the efficiency of energy systems

beyond existing limits in order to keep pace with the rising global energy demands. Such

efforts involve finding bulk materials and nanostructures with desired thermal properties such

as thermal conductivity (κ). For example, identifying high κ materials is crucial in thermal

management of vertically integrated circuits (ICs) and flexible nanoelectronics, which will

power the next generation personal computing devices. On the opposite end of the spectrum,

designing ultra-low κ materials is essential for improving thermal barrier coatings in turbines

and creating high performance thermoelectric (TE) devices for waste heat harvesting. In this

dissertation, we identify nanostructures with such extreme thermal transport properties and

explore the underlying phonon and photon transport mechanisms. Our approach follows

two main avenues for evaluating potential candidates: (a) high fidelity atomistic simulations

and (b) rapid machine learning-based property prediction and design optimization. The

insight gained into the governing physics enables us to theoretically predict new materials

for specific applications requiring high or low κ, propose accelerated design optimization

pathways which can significantly reduce design time, and advance the general understanding

of energy transport in semiconductors and dielectric materials.

Bi2Te3, Sb2Te3 and nanostructures have long been the best TE materials due to their

low � at room temperatures. Despite this, computational studies such as molecular dynamics

(MD) simulations on these important systems have been few, due to the lack of a suitable in-

teratomic potential for Sb2Te3. We first develop interatomic potential parameters to predict

thermal transport properties of bulk Sb2Te3. The parameters are fitted to a potential energy

surface comprised of density functional theory (DFT) calculated lattice energies, and vali-

dated by comparing against experimental and DFT calculated lattice constants and phonon

properties. We use the developed parameters in equilibrium MD simulations to calculate

the thermal conductivity of bulk Sb2Te3 at different temperatures. A spectral analysis of

the phonon transport is also performed, which reveals that 80% of the total cross-plane κ is

contributed by phonons with mean free paths (MFPs) between 3-100 nm.
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We then use MD simulations to calculate phonon transport properties such as thermal

conductance across Bi2Te3 and Sb2Te3 interface, which may account for the major part

of the total thermal resistance in nanostructures. By comparing our MD results to an

elastic scattering model, we find that inelastic phonon-phonon scattering processes at higher

temperatures increases interfacial conductance by providing additional channels for energy

transport. Finally, we calculate the thermal conductivities of Bi2Te3/Sb2Te3 superlattices

(SLs) of varying period. The results show the characteristic minimum thermal conductivity,

which is attributed to the competition between incoherent and coherent phonon transport

regimes. Our MD simulations are the first fully predictive studies on this important TE

system and pave the way for further exploration of nanostructures such as SLs with interface

diffusion and random multilayers (RMLs).

The MD simulations described in the previous section provide high-fidelity data at a high

computational cost. As such, manual intuition-based search methods using these simulations

are not feasible for searching for low-probability-of-occurrence systems with extreme thermal

conductivity. In view of this, we use machine learning (ML) techniques to accelerate and

efficiently perform nanostructure design optimization within such large design spaces. First,

we use a Genetic Algorithm (GA) based optimization method to efficiently search the design

space of fixed length Si/Ge random multilayers (RMLs) for the structure with lowest κ, which

is found to be lower than the SL κ by 33%. By comparing thermal conductivity and interface

resistances between optimal and sub-optimal structures, we identify non-intuitive trends in

design parameters such as average period and degree of randomness of layer thicknesses.

While machine learning (ML) has shown increasing effectiveness in optimizing mate-

rials properties under known physics, its application in discovering new physics remains

challenging due to its interpolative nature. We demonstrate a general-purpose adaptive

ML-accelerated search process that can discover unexpected lattice thermal conductivity

enhancement in aperiodic superlattices (SLs) as compared to periodic superlattices, with

implications for thermal management of multilayer-based electronic devices. We use molec-

ular dynamics simulations for high-fidelity calculations of κ, along with a convolutional

neural network (CNN) which can rapidly predict κ for a large number of structures. To

ensure accurate prediction for the target unknown SLs, we iteratively identify aperiodic SLs
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with structural features leading to locally enhanced thermal transport and include them as

additional training data for the CNN. The identified structures exhibit increased coherent

phonon transport owing to the presence of closely spaced interfaces.

We also demonstrate the application of ML in optimization of photonic multilayered

structures with enhanced reflectivity to radiation heat flux, which is required for applications

such as high temperature thermal barrier coatings (TBCs). We first perform a systematic

variation of design parameters such as total thickness and average layer thickness of CeO2-

MgO multilayers, and quantify their influence on the spectral and total reflectivity. The

effect of randomization of layer thicknesses is also studied, which is found to increase the

reflectivity due to localization of photons in certain spatial regions of the multilayer structure.

Next, we employ a GA search method which can efficiently identify RML structures with

reflectivity enhancements of ∼ 22%, 20%, 20% and 10% over that obtained in randomly

generated RML structures for total thicknesses of 5, 10, 20 and 30µm respectively. We also

calculate the spectral reflectivity and the field intensity distribution within the optimal and

sub-optimal RML structures. We find that the electric field intensity can be significantly

enhanced within certain spatial regions within the GA-optimized RMLs in comparison to

non-optimized and periodic structures, which implies the high degree of randomness-induced

photon localization leading to enhanced reflectivity in the GA-optimized structures.

In summary, our work advances the design or search for materials and nanostructures

with targeted thermal transport properties such as low and high thermal conductivity and

high reflectivity. The new insights provided into the underlying physics will guide the design

of promising nanostructures for high efficiency energy systems.
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1. INTRODUCTION

It is not an exaggeration to say that energy is the true currency of modern society. The

last few decades have witnessed an unprecedented rise in the ubiquitousness of different

energy systems in all facets of life, from transportation to manufacturing, and from electronic

appliances to household conveniences. With the constant improvement of these technologies

everyday, the world is moving towards an ever-growing demand for energy production. Yet,

the fact that most of our energy generation systems still depend on non-renewable fossil fuel

sources poses a major crisis to meeting this demand in a sustainable and efficient manner.

Figure 1.1 shows the contribution of various renewable and non-renewable energy sources

to the total global energy consumption at the extremes of a ten year period[1 ], where the

majority ( 87% and 85% for 2009 and 2018 respectively) is contributed by fossil fuel based

sources. Naturally, the need for a constant and renewable source of energy has driven

large scale research efforts for developing alternative sustainable energy sources for several

decades. Although the results of such efforts have lead to a visible increase in the utilization

of renewable energy sources as seen in the inset of Fig. 1.1 , the majority of these systems are

still limited by their high cost and low performance relative to conventional coal-, oil- and

natural gas-based systems. This has led to concentrated efforts in improving the efficiencies

of renewable energy systems in order to transition to a sustainable energy economy.

One of the major challenges encountered in development of highly efficient energy sys-

tems is managing thermal transport. Heat transfer through solids has a wide and rich range

of characteristics which can be efficiently harnessed in various applications such as thermal

energy storage systems[2 ], thermal barrier coatings[3 ], thermoelectric energy generators[4 ]–

[6 ], photovoltaic energy generators[7 ], thermal switches[8 ], [9 ], thermal management in elec-

tronics[10 ], thermal interface materials[11 ] and phase change materials[12 ]. The different

thermal profiles arising in these systems creates the need to understand and manipulate

thermal transport in materials with thermal properties spanning a wide range. This is

most commonly translated to finding systems with various ranges of thermal conductivites

(κ), which is a measure of how easily heat is transported from one region of the material

to another. For example, while thermoelectric devices require materials with low thermal
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Figure 1.1. Contribution of various renewable and non-renewable energy
sources to net global energy consumption for the years 2009 and 2018, plotted
using the data obtained from Ref. [1 ]

conductivity, the opposite is needed for efficient heat dissipation in electronic packages.

Moreover, the reduction of dimensions of the point-of-application of these energy systems

to micro- and nano-scales can lead to significantly different thermal transport physics from

those at the macro-scale. A notable instance of this is the commonly known breakdown of

Fourier’s law in systems with small length scales, which leads to length-dependent thermal

transport in systems such as superlattices and nanowires. The focus of thermal transport

research has, therefore, been on studying bulk materials as well as understanding and de-

signing nanomaterial systems with targetted thermal transport properties. In the following

section, we describe the motivation and previous efforts on study of thermal transport in ma-

terials with low and high thermal conductivities, namely, thermoelectric devices and thermal

management in electronic packages.
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Figure 1.2. Energy flow chart showing the estimated energy consumption in
the United States in 2019. Reproduced from Ref. [13 ]

1.1 Motivation for thermal transport research

1.1.1 Thermoelectric energy systems

In the past few decades, an increasing number of efforts have been devoted towards the

development of high-performance thermoelectric (TE) materials for various applications such

as thermoelectric energy harvesting and thermoelectric refrigeration. Thermoelectric energy

generators (TEGs) provide a very attractive solution for converting thermal energy into elec-

trical energy without any moving parts. It has been found that more than half of the total

energy produced in the United States is dissipated as waste heat due to various inefficien-

cies[13 ], as shown in Fig. 1.2 . Such large amounts of waste heat can be effectively utilized by

TEGs to increase the overall efficiency of the combined system. On the other hand, thermo-

electric cooling technologies can offer promising alternatives to traditional vapor compression

systems in applications such as small scale refrigerators and systems deployed in remote and

rural areas. Moreover, thermoelectric systems are only theoretically limited by the Carnot

efficiency due to the absence of moving parts.
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The performance of a thermoelectric material can be characterized by its figure of merit

(ZT ), given by the expression

ZT = S2σT

κe + κl

(1.1)

where S is the Seebeck coefficient, σ is the electrical conductivity and κe and κl are the

electronic and lattice contributions to the thermal conductivity respectively. As is evident

from the above expression, thermoelectric power generation devices benefit from materials

with low thermal conductivity to maintain a temperature gradient across the device, as

well as a high electrical power factor (S2σ) to promote greater current flow. However, the

coupled nature of electrical and thermal energy carriers, namely, electrons and phonons, in

the crystalline or amorphous solids used in this systems makes this a non-trivial task.

For a long time, tellurides such as Bi2Te3, PbTe and various alloys were found to be the

best bulk thermoelectric materials at room temperature, displaying ZT s near 1. The break-

through in achieving ZT values above 1 was achieved by the ability to create nanostructured

materials or composite systems with ultra-low lattice thermal conductivities (κl), while be-

ing able to retain high electrical transport properties. This has led to an exponential rise

in laboratory demonstrations of high ZT proof-of-concept systems involving nanostructures

and alloys of conventional TE materials such as Bi2Te3 [14 ], as well as new materials such as

perovskites and chalcogenides. However, the commercialization of such laboratory demon-

strations into practical power generation systems has still remained in its infancy, largely

due to the low efficiency of these proof-of-concept systems (the demonstrated ZT s are still

far from the target ZT value of around 3 − 4 which would allow them to compete with tra-

ditional energy generation cycles). As a result, most commercial realizations of TE systems

have been limited to specific applications only. For example, radioisotope thermoelectric

generators (RTGs) have long been used for energy generation in space missions, involving

SiGe and PbTe based materials. TE devices have also found significant use for power gener-

ation and cooling/refrigeration in remote areas, where access to conventional electric sources

is limited, and small and portable modules can be efficiently deployed. Despite the success
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of commercial TE devices in these niche domains, the widespread adoption of TE technology

for mainstream power generation through waste heat recovery in industries and automobiles

has not seen much success. Consequently, there is a pressing need to identify low-cost, eas-

ily available thermoelectric materials with ultra-low thermal conductivity and uncover the

underlying heat transport physics leading to their attractive transport properties.

1.1.2 Thermal management of electronics

Thermal management of consumer electronic devices, power electronics components, fuel

cells and batteries is a major issue that can severely limit the performance or even lead

to failure of such systems. In particular, the requirement of high-performance computers,

laptops, cellular phones and data centers to perform an increasing number of operations in

even shorter time scales has led to requirements for electronic packages with higher clock

speeds and smaller dimensions. The evolution of integrated circuit research has closely

followed the famous Moore’s law over a long time, with the number of transistors packed

into an IC doubling roughly every two years. In recent years, however, the semiconductor

industry has faced several hurdles in contuining along this path, including the problem of

dissipating extremely large heat fluxes generated due to high levels of Joule heating within

very small areas. The development of electronic components with even higher computing

power, therefore, requires novel chip-cooling solutions enabled by high thermal conductivity

materials.

Traditionally, single-phase and phase-change fluid cooling systems have been used as

the most effective solutions for thermal management. These are usually employed in the

form of heat pipes and microchannels with internal flow of water, or heat sinks with an

external air flow driven by fans. However, with the rapid shrinkage of feature sizes of

integrated circuits, it has become increasingly difficult to accomodate a cooling system with

multiple components into a single electronic package. Moreover, the effectiveness of heat

removal by these systems also depends on the thermal transport at the interface between

the heat source and heat sink. As electronic devices go down to the nanoscale and thermal

transport shifts from diffusive to ballistic regimes, this interfacial resistance may become the
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bottleneck in the heat dissipation mechanism. This has led to extensive research on thermal

interface materials (TIMs) which can reduce the thermal contact resistance between two

surfaces and transport heat effectively to the heat sink. High thermal conductivity materials

such as carbon nanotubes and graphene have been employed in TIMs to provide superior

performance with respect to thermal greases. Despite their success, the roadmap towards

even greater transistor densities in novel electronic packaging technologies, such as vertically

stacked ICs, with higher heat generation rates, creates the requirement for better TIMs and

heat sinking capabilities.

1.1.3 Thermal barrier coatings

Another important challenge which drives thermal transport research is the efficient

thermal isolation of energy system components subject to extreme operating conditions.

For example, the efficiency of traditional gas turbines can be improved by increasing the

turbine gas inlet temperature; however, in practice, this is severely limited by the thermal

degradation of the turbine blades and rotors that can occur when temperatures reach close to

the melting point. Thermal protection is also required in space applications, such as the need

to protect the body of a spacecraft during re-entry through the earth’s atmosphere, where air

resistance can cause temperatures higher than 1500°C. In such cases, thermal barrier coatings

(TBCs) are employed to insulate such components from extreme heat loads and prevent

thermal degradation. An efficient TBC system sustains a significant temperature difference

across itself, thus allowing for higher operating temperatures and increasing system lifetime.

Traditionally, TBCs are designed to limit heat transport by conduction, which is generally

the dominant thermal transport mechanism in the abovementioned applications. As a result,

TBC materials are required to have low lattice thermal conductivity, high melting point and

thermal stability, and matched coefficient of thermal expansion with the underlying substrate

material to prevent cracking under thermal stresses. However, it has been found that at

higher temperatures which are being targetted in modern energy systems, heat transport by

radiation can play a large role in increasing substrate temperatures significantly[15 ] due to

radiation heat transfer being proportional to the fourth power of temperature. Consquently,
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TBCs designed for high temperature applications need to be able to prevent radiation heat

transfer by having high reflectivity and low transmittance to the incoming radiation heat

flux.

Due to the considerations for low lattice thermal conductivity and high melting point,

ceramic materials have long been used for TBC applications. Yittria-stabilized zirconia

(YSZ) is the most widely used material at standard temperatures of TBC application, and

significant research has been conducted on its thermal properties, phase stability, mechanical

properties and coating technology. However, the requirement of more efficient TBC systems

and the push towards higher temperatures at which YSZ loses its phase stability has created

the need to identify and employ other materials with lower phonon thermal conductivity.

The influence of microstructures, defects and interfaces in such systems also needs to be

systematically investigated from the atomic scale in order to effectively engineer TBC systems

and nanostructures with heirarchical strategies of mitigating conductive thermal transport.

As mentioned above, photon scattering mechanisms are also required for high temperature

operations. A small number of studies have shown the benefit of using multilayered and

functionally graded TBC systems, where transmission of incident photons is reduced due to

photonic bandgaps and randomness-induced spatial photon localization. Given the benefits

demonstrated by these systems, such strategies need to be systematically explored to identify

optimal materials and composite systems that can provide excellent insulation against both

conduction and radiation heat transfer.

1.2 Overview of thermal transport in nanostructures

Thermal transport is the transfer of heat energy, either from one medium to another or

between different parts of the same medium, due to differences in temperature. The three

main mechanisms by which thermal energy is transported are conduction, convection and

radiation. Among these, conduction is the main mode of heat transfer by direct material con-

tact in solid objects, whereas convection is mainly responsible for transporting heat through

bulk fluid motion. Radiation occurs for all bodies with a finite temperature, and takes place

through propagation of electromagnetic waves without the need for a material medium. The
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study of thermal transport invokes the definition of some fundamental energy carriers as-

sociated with these mechanism, namely photons, phonons, electrons and fluid molecules.

The nature of propagation of energy via each of these fundamental carriers, along with the

interactions among them, leads to varying thermal transport characteristics in different bulk

materials and nanostructures. Study of these heat carriers is crucial to the identification

of materials with extreme transport properties and designing nanosctructures of different

length scales.

1.2.1 The concept of phonons

Many of the applications mentioned above, such as thermoelectrics and thermal man-

agement systems, benefit greatly from being converted to entirely solid state devices. Con-

sequently, a background on thermal transport in solids through conduction is provided to

discuss the research advances and open challenges in this field. Thermal transport in crys-

talline solids with a defined lattice structure occurs through electrons as well as vibrational

motions of the atoms. Although electrons can have the most significant contribution to ther-

mal transport in metals, the transport in dielectrics such as semiconductors is governed by

lattice vibrations. In this respect, the concept of phonons is extremely important to uncover

the underlying transport physics. Phonons are the quantization of collective excitations of

atoms in a lattice, also known as a normal mode. Thus, a phonon is a quantum mechanical

description of the lattice waves occuring in a solid by which heat is transported across the

medium. Each phonon mode in a material is defined by its wavevector k, polarization j and

frequency ω(k, j).

Phonons are quasiparticles which can have both particle- and wave-like characteristics.

As particles, phonons can scatter through collisions with other phonons, electrons, as well as

other lattice perturbations such as defects, isotopes, boundaries and interfaces. The collisions

preserve the total energy of the phonons, but the total crystal momentum can be conserved

only upto a difference in the reciprocal lattice vector G or its multiples:
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The phonon scattering processes are defined as Normal process or Umklapp processes

accordingly as n = 0 and n 6= 0 respectively. Normal (N) processes do not alter the direc-

tion of propagation of phonons and do not provide resistance to thermal transport directly.

On the other hand, Umklapp (U) processes are responsible for providing resistance to the

propagation of heat carrying phonons, which leads to a finite value of lattice thermal conduc-

tivity (kl). The thermal transport characteristics can, therefore, be tuned by controlling the

rates of occurence of these different scattering processes, or, equivalently, the time between

scattering events which is the phonon relaxation time (τ).

The wave nature of a phonon is also important to explain phenomenon such as phonon

confinement and phonon tunelling in thin films and superlattice structures[16 ], [17 ]. This is

specially important in structures such as superlattices, where phonons can undergo phase-

preserved repeated reflections at multiple closely-spaced interfaces. The superposition of

the incident phonon and its reflections can lead to destructive interference, which causes

phonon confinement and inhibits phonon transport. Such effects have been acknowledged

to be important in designing ultra-low thermal conductivity structures for thermoelectric

devices and quantum cascade lasers.

1.2.2 Phonon transport in nanostructures

The thermal conductivity of a solid is contributed by different phonon modes with a

range of wavelengths, frequencies, group velocities and scattering rates. Although the first

three properties are generally governed by the lattice structure and the atomic basis, the

final property, i.e. scattering rate, can be controlled by nanostructuring to tune the thermal

27



conductivity. For example, if scattering events between phonons and interfaces, defects,

isotopes or grain boundaries is increased, the overall scattering rate can may be governed by

these processes instead of the usual anharmonic phonon-phonon scattering. Since these leads

to more changes in phonon momentum (Eq. 1.3 ) by U processes, the thermal conductivity

can be appropriately modulated in these engineered structures.

Naturally, several approaches are commonly used to reduce thermal conductivity of mate-

rials for use in thermoelectric devices. For example, alloying has been a traditioanal approach

to reducing the thermal conductivity of bulk materials. Alloys of bismuth telluride, antimony

telluride and lead telluride had been found to be the best bulk materials at room temperature

for a long period of time before the advent of nanostructuring. The discontinuity in lattice

structure due to difference in masses of atoms creates scattering centers for phonons which

can increase scattering rates. Such approaches have been demonstrated by studies on sys-

tems such as SixGe1−x[18 ], [19 ], BixSb2−xTe3[20 ], [21 ], PbTexSe1−x[22 ], [23 ] and half-Heusler

compounds[24 ]. More recently, the ability to create nanostrcutured bulk materials has led

to even lower thermal conductivity in systems such as nanostructured bismuth antimony

telluride bulk alloys [25 ]–[27 ].

Controlling phonon-boundary scattering in low dimensional nanostructures is another

paradigm shift in the search for low thermal conductivity materials. Since most heat carrying

long wavelength phonons are the effects of long range atomic periodicity, such phonon modes

can be suppressed or scattered by reducing the lattice periodicity in a specific dimension. As

a result, 2-D nanostructures such as thin films[28 ]–[30 ], van der Waal’s heterostructures[31 ]–

[33 ] and superlattices have been extensively investigated for their unique thermal transport

properties. In particular, the discovery graphene and other nanostructures of carbon such as

nanotubes have been one of the most exciting phases for thermal transport research, due the

the ultra-high thermal conductivity of these materials which make them excellent candidates

for thermal management applications[34 ]–[38 ]. However, the initially high measurement of

graphene thermal conductivity has been the result of much scrutiny, with recent measure-

ments citing a reduced value. Alongside this, a significant discrepancy has been found to

exist between the experimentally measured value and that obtained from standard atomistic

simulation techniques such as first principle calculations[39 ]–[41 ], which has been attempted
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to be explained newly discovered yet fundamentally critical concepts such as four phonon

scattering[42 ].

Finally, we discuss phonon-interface scattering as an equally important method of mod-

ulating lattice thermal conductivity in composite materials. The importance of interfacial

phonon modes to the contribution of thermal conductivity and thermal contact resistance

has been extensively investigated[43 ], [44 ] and the existence of significant non-equilibrium

between the phonon modes at the interface has been uncovered by atomistic simulation

methods[45 ]. An important aspect of phonon transport across interfaces in nanostructured

solids such as one-dimensional superlattices is the coupling of interfaces which gives rise to

coherent phonon modes. The mechanism of formation and contribution to thermal con-

ductivity of these coherent phonon modes has been explored in significant detail[16 ], [46 ]–

[54 ]. The characteristics of thermal transport in these nanostructures are governed by the

competing regimes of incoherent and coherent phonon dominated transport regimes.Wave

interference effects become increasingly important at small periods, and the phase breaking

of phonons does not take place before the phonons scatter at the interfaces. The repeated

reflections at periodic interfaces give rise to a modified phonon spectra including coherent

phonon modes. Although these phonon modes are not scattered at the periodically spaced

interfaces, several methods have been investigated for supressing coherent phonon contribu-

tion including introduction of interface roughness[55 ]–[57 ] and randomizing layer thicknesses

leading to Anderson localization[55 ], [58 ]–[62 ].

1.3 Theoretical methods for predicting phonon transport properties

1.3.1 Lattice dynamics calculations

Lattice dynamics is the calculation of atomic vibrations generally within an ordered cry-

talline lattice structure. Since phonons are quantized collective lattice vibrations, lattice

dynamics calculations may be treated as the starting point when insight into phonon trans-

port is required about a material or nanostructure. In these calculations, atoms in a lattice

are treated as point masses coupled through harmonic or anharmonic springs. The force

constants of the springs may be obtained by fitting to experimentally determined crystal
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properties or by using appropriate interatomic potential parameters, which are explained in

a subsequent section. The equations of motion of each atom in 3 coordinate directions are

then written to form a system of 3N equations, which can be further reduced to 3nb equa-

tions, where nb is the number of atoms in a primitive cell, using translational symmetries.

This system can be compactly represented by the form

[D(k) − ω2(k, ν)I]e(k, ν) = 0. (1.4)

Equation 1.4 represents an eigenvalue problem where the eigenvectore(k, ν) represents

the wave-like solution of a phonon mode with wavevector k and polarization nu and the

eigenvalue ω(k, ν) is the phonon frequency. D(k) is the dynamical matrix evaluated for the

wavevector k and I is the identify matrix.

Each element in the dynamical matrix can be evaluated using the relation

Dβj
αi = 1√

MαMβ

Φnβj
mαiexp(ik · (rm − rn). (1.5)

Here, the calculation is performed between atoms in the α basis position in the mth unit

cell and the β basis position in the nth unit cell, and i, j denote the cartesian directions. The

dynamical matrix entry consists of the corresponding force constant matrix element

Φnβj
mαi = ∂2ϕ

∂rmαi∂rnβj
(1.6)

By calculating the force constant matrix in Eq. 1.6 and solving Eq. 1.4 for the set of

eigenvalues and eigenvectors, we can obtain the phonon frequency dispersion over the Bril-

luoin zone and the phonon density of states for a given material. Finally, the velocity

of propagation of the phonon modes can be obtained by computing the group velocity as

vg = ∂ω/∂k.
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1.3.2 First principles calculations

First principles calculations or ab initio methods is one of the most accurate methods

used to calculate thermal transport properties of new materials using quantum mechanical

calculations. The advantage of first principles methods is that the calculations do not de-

pend on any experimentally fitted parameter, and so can be used for novel materials for

which experimental data is not available. The most commonly used first principle methods

are density functional theory (DFT) and tight binding (TB) calculations. In DFT calcu-

lations, the ground state electron density of a many-body system can be solved for using

the variational principle and the Hohenberg-Kohn theorems, which states that the energy

functional of the system is minimized by the ground state electron density. Moreover, this

ground state density uniquely determines the properties of the system. In addition to elec-

tronic properties, phonon properties of the system such as phonon dispersion spectrum and

density of phonon states can also be determined using the method of finite-differences, or

in the framework of the density functional perturbation theory (DFPT). By calculating the

differential change in the forces on atoms when one or more of them are given displacements

from their equilibrium positions, the force constant matrix of the system can be determined.

One of the major drawbacks associated with first principles calculations is the high com-

putational expense associated with performing quantum mechanical calculations. As a re-

sult, first principles cannot handle systems with more than a few hundred atoms, or over

significantly longer time scales. Moreover, additional components such as spin polarized

calculations or spin-orbital coupling, which is required to decribe heavier elements, can add

to the computational load. This problem becomes specially significant when nanostructures

with a high surface-to-volume ratio needs to be simulated and the crystal symmetry is lost

due to surface reconstruction. Additionally, ground state first principles calculations can

predict properties at 0 K temperature only, where atoms are located at their equilibrium

positions. This is not suitable for thermal transport calculations, where the anharmonicity

of the lattice far from the equilibrium position plays a pivotal role. A commonly adopted

solution to this problem is the use of a temperature dependent effective potential (TDEP),

the details of which can be found elsewhere[63 ].
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1.3.3 Molecular dynamics simulations

Molecular dynamics (MD) simulations are a classical approach to solving the trajectories

of motion of the atoms or molecules in a system. Since phonon transport is an outcome

of atomic vibrations in a lattice, MD simualtions are able to reproduce phononic transport

within lattices. In an MD simulation, the simulation domain which can consist of various

types of atoms is run under different ensemble settings such as constant temperature, pres-

sure, volume or total energy. For example, the velocities of the atoms are generally scaled

after a fixed number of timesteps of the simulation to ensure that the kinetic energy re-

mains constant in a constant temperature setting. In addition, one or more constraints can

be added to the system to restrict certain degrees of freedom and allow phonon modes to

propagate in a particular direction only. By appropriate use of periodic and fixed bound-

ary conditions, MD simulations can simulate uniform bulk materials, nanocomposites as

well as nanosctructures with heterogeneos features such as an array of nanowires or differ-

ent configurations of nanotubes. This makes MD simulations a suitable tool for predicting

the transport properties of bulk materials and subsequently evaluate their performance as

nanoscale systems used in different devices.

The advantage of MD simulations over first principles methods is the significantly smaller

computational cost of MD simulations, which make them able to handle both large systems

(containing millions of atoms) and much longer time scales (upto several nanoseconds). This

gain in computational cost is because the classical MD simulation algorithm does not calcu-

late the interaction forces between atoms at each timestep by solving complicated quantum

mechanical equations like DFT or TB calculations. Instead, forces in MD are calculated

quickly using a parameterized form for the potential energy of atoms in different environ-

ments, called the classical interatomic potential. The total energy of an atom may depend on

contributions from one-body (V1), two-body (V2), three-body (V3) and further many-body

terms as shown below:

V =
∑

i
V1(ri) +

∑
i,j

V2(ri, rj) +
∑
i,j,k

V3(ri, rj, rk) + ... (1.7)
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Several forms of parameterization are possible for each of the above terms for a partic-

ular material, and the choice of an appropriate potential form is necessary to accurately

reproduce the thermal transport properties of a material. For example, simple potential

parametrizations considering two-body terms only are easily implemented in the MD simu-

lation framework and are less expensive than higher order potentials, but are not suitable

for accurately capturing optical phonon modes in charge polarized compounds. On the other

hand, potentials involving three-body terms can reproduce optical phonon properties with

greater accuracy, but are difficult to parametrize and use in MD simulations.

Another advantage of phonon transport calculations using MD simulations is that it can

inherently capture all order of scattering mechanisms such as anharmonic phonon scatter-

ing, phonon-boundary scattering, interface scattering, and isotope or defect scattering. As

a result, no emperically determined correlation or fitting parameter is required to include

these terms, other than using an appropriate classical potential form. However, there are

some limitations and caveats to using MD simulations as well. First of all, MD simula-

tions are classical in their calculations, and as such cannot perform a quantum treatment of

phonons which are Bosons following the Bose-Einstein distribution. Although certain quan-

tum corrections to classical MD results have been proposed, they are not generally accepted

to be accurate for all systems[64 ]. Consequently, MD simulations can provide reasonably

accurate results in agreement with experiment for materials with low Debye temperatures

such as Bi2Te3 (θD = 155K), but show deviation from experimental results for materials

with higher Debye temperatures such as graphene (θD ∼ 1800K). Another limitation of

MD simulations is the availability and accuracy of classical interatomic potentials for many

complex materials. Parametrization of potential forms is a complex and high-risk process

involving generation of a fitting dataset which must be tailored to suit the application of the

potential. For example, if the potential is intended to be used to predict thermal transport

properties, the potential parameters need to be fitted to lattice energies, atom forces and

other experimental properties far from the equilibrium point to accurately sample the lattice

anharmonicity. Moreover, potential parameters once fitted to a particular environment may

not be transferable, i.e. suitable for application for the same type of atom in a different

environment. This makes it difficult to predict properties such as phase change tempera-
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tures, breaking and creation of bonds and surface reconstruction in nanostructures, by using

a single potential form. More complicated bond-order potentials are used in such situations,

but are more difficult to implement and can significantly slow down the computation time.

The calculation of phonon thermal transport properties using MD simulations can be

done using two main ways: equilibrium molecular dynamics (EMD) and non-equilibrium

moelcular dynamics (NEMD). The following sections briefly describe the calculation of ther-

mal conductivity using each of these methods.

Equilibrium molecular dynamics simulations

We first discuss the calculation of thermal conductivity under the EMD framework. In

this method, calculation of the thermal conductivity is done using the Green-Kubo linear-

response formulation, which relates the statistical fluctuations in the heat current to the

thermal conductivity tensor using the fluctuation-dissipation theorem. The heat current can

be obtained from the MD velocities and forces as:

S = d

dt

∑
i

riEi, (1.8)

where ri is the position vector of atom i and Ei is its energy. By calculating instantaneous

heat current, the lattice thermal conductivity along any direction α can be calculated using

the Green-Kubo formula

κl,α = 1
kBV T 2

∫ ∞

0
< Sα(0) · Sα(t) > dt, α = x, y, z (1.9)

Here, V is the volume of the simulation cell, T is the absolute temperature in Kelvin,

and < Sα(0).Sα(t) > represents the heat current autocorrelation function. (HCACF).

The advantage of using the EMD method is that the effect of the MD domain size

on the thermal conductivity is small due to use of periodic boundary conditions, although a

convergence study needs to be performed separately for each unique system. In addition, the

calculation can be performed at a single temperature for the entire system without imposing
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any temperature gradients which may change the transport properties locally. However,

results of thermal conductivity from EMD simulations can display significant statistical

fluctuations. In this case, ensemble averaging over a sufficient number of runs needs to be

performed in order to arrive at converged value of thermal conductivity.

Non-equilibrium molecular dynamics simulations

Under the framework of NEMD, the thermal conductivity of the system is calculated

using the Fourier’s law. In this method, the atoms in two regions at either end of the system

are chosen to serve as the heat source and heat sink. By thermostatting the atoms to a

higher and lower temperature for the heat source and heat sink respectively, one can then

establish a constant temperature gradient and a corresponding heat current with the system

under investigation. Conversely, the kinetic energies of the atoms in each region can be

controlled by adding a constant energy rate to the atoms in the heat source and removing

the same energy rate from the cold region, which sets up a constant heat flux through the

system. This, in turn, leads to a temperature gradient at steady state. In either of these

two ways, the thermal conductivity of the system can then be calculated fromm the steady

state heat flux q and temperature gradient dT/dr as

κl,α = q

dT/drα

(1.10)

NEMD simulations are not affected by statistical fluctuations, and less number of runs

are needed to get stable values for thermal conductivity. Since a temperature gradient

of several Kelvins is usually imposed across nanometer length scales, this usually leads to

an unphysically high heat fluxes as compared to experimental values. Nevertheless, a linear

portion of the temperature gradient curve is generally obtained for most systems, from which

thermal conductivity values can be extracted with good agreement with experiments. The

main disadvantage of NEMD simulations is the significant effect of system size used in the

simulations. This is primarily due to the use of non-periodic boundary conditions, which

limits the wavelengths and mean free paths of phonons which can exist within the simulation

domain. A common way to deal with this is to perform a linear fit to a plot of the inverse of
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thermal conductivity with the inverse of the system length. By extrapolating the fitted line

to infinite length, the bulk thermal conductivity can be obtained.

1.3.4 Spectral phonon properties

The ab-initio and MD methods described above are suitable for providing estimates of

the overall thermal transport properties such as thermal conductivity and interfacial con-

ductance. However, phonon transport in solids occur a broad spectrum of phonon length

scales ranging from the interatomic separation distances to even a few hundred nanometers.

It is therefore crucial to understand the characteristics of propagation and the contribution

to the overall thermal transport of each of these phonon modes. This is important to guide

design of nanoscale devices, where, for example, low frequency acoustic phonon modes with

long mean free paths can be preferentially scattered by defects and interfaces to achieve

ultra-low thermal conductivity structures. Although classical MD simulations cannot pro-

vide insight into the frequency-dependent phonon transport properties by themselves, some

post processing methods may be applied using the MD predicted trajectories, velocities and

forces to calculate the spectral phonon properties.

Phonon normal mode analysis

The contribution of different phonon modes to the total lattice thermal conductivity can

be calculated as the sum of the mode-wise thermal conductivities kj of all phonon modes

κl =
∑

j
κj =

∑
j

(vλ · n̂)2cλτλ (1.11)

Here n̂ is the chosen direction of thermal transport, λ represents the phonon mode (k, ν)

with k being the wave vector and ν the polarization branch, cλ is the phonon mode specific

heat, τλ is the relaxation time, vλ is the group velocity. The specific heat per phonon

mode is given by cλ = h̄ωλ∂n0
λ/∂T = kBx2ex/(ex − 1)2, where x = h̄ω/kBT , and the phonon

occupation number n0
λ = 1/(ex − 1) according to the Bose-Einstein distribution. The phonon

group velocity is given by the gradient of the phonon dispersion, v = dω/dk, where ω is the

phonon angular frequency.
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In Equation 1.11 , the phonon properties such as ω, cλ and vλ can be readily obtained

from lattice dynamics calculations as described above. The more challenging task is the

determination of the spectral phonon relaxation time τλ and, consequently, the mean free

path Λ which is the average distance travelled by a phonon particles between two successive

collisions. This can be obtained using the framework of frequency domain normal mode

analysis (FD-NMA), which was initially developed by Wang et al.[65 ] and later extended by

Shiomi and Maruyama,[66 ] De Koker,[67 ] Thomas et al.[68 ] and Feng et al.[69 ] According to

lattice dynamics, the vibrations of atoms in real space can be mapped to the time-dependent

normal mode coordinates,

qλ(t) =
3∑
α

n∑
b

Nc∑
l

√
mb

Nc

ul,b
α (t)eλ∗

b,α exp [ik · rl
0]. (1.12)

Here, ul,b
α (t) is the α component of displacement of the bth basis atom with mass mb in

the lth unit cell from equilibrium position, eλ∗
b,α is the complex conjugate of the eigenvector

component of the phonon mode λ, n is the total number of basis atoms in a unit cell, and Nc

is the total number of unit cells. The total spectral energy density (SED) can be calculated

for each k-point from the sum of the SEDs of all phonon branches,

Φ(k, ω) =
3n∑
ν

Φν(k, ω) =
3n∑
ν

|q̇k,ν(ω)|2 (1.13)

where

Φν(k, ω) = |q̇k,ν(ω)|2 = |
∫ ∞

0
q̇k,ν(t)e−iωtdt |

2

= Ck,ν

(ω − ωA
k,ν)2 + Γ2

k,ν

.
(1.14)

Here, Φν(k, ω) is the Fourier transform of the time derivative of qk,ν(t) and Ck,ν is a

constant of fitting related to the normal mode vibrational amplitude qk,ν,0. By fitting each
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of the above SED functions Φν(k, ω) to a Lorentzian form, the mode dependent phonon

relaxation time can be obtained from the full width at half maximum τλ = 1/2Γk,ν .

1.4 Machine learning methods in thermal transport

1.4.1 Importance of machine learning in thermal transport research

The atomistic simulations described in the previous sections provide high-fidelity calcula-

tions of thermal transport properties in bulk materials and nanostructures. These methods

have proven to be extremely valuable, compared to experimental trial-and-error approaches,

for guiding advanced nanomaterials development for target applications. The reasons for this

are: (i) Experimental studies over the entire set of candidates can be expensive and time

consuming when the design space is large. In comparison, atomistic simulations can sweep

over the candidates in an inexpensive fashion and can further be validated by experimental

results for the best candidates. (ii) Experiments are often not possible for certain environ-

ments, such as when the solution needs to be designed for extreme working conditions or a

wide range of operating conditions, which would require a variety of sophisticated testing

equipment. In such cases, simulation methods such as MD simulations can be adopted to

easily handle conditions such as extremely low or high temperatures. (iii) It is challenging to

obtain spectral phonon properties from experimental results, whereas the same can be easily

obtained from atomistic simulations and post processing techniques. As a result, there has

been a prolific use of these simulations methods in the past few decades for bypassing the

experimental cost and complexity associated with screening several materials for targetted

transport properties and for designing structures with extreme thermal conductivity (high

or low).

With the rapid advancement of technology pushing the efficiencies of energy systems

higher and higher, the design space for material science research has expanded to cover a

vast array of complex materials and compounds. This has also created the requirement for

predicting thermal transport properties for these materials covering a wide range of thermal

conductivities (0.1−1000 W/mK). Figure 1.3 shows the thermal conductivities calculated for

a large number of materials, using atomistic simulation techniques such as DFT and Pierls-
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Figure 1.3. Thermal conductivity of various materials calculated using atom-
istic simulation techniques (DFT and Pierls-Boltzmann Transport equation).
Reproduced from Ref. [70 ] with data sources compiled in the same Ref.

Boltzmann Transport equation (PBTE). However, with the need to identify newer materials

and nanostructures for applications such as organic semiconductors, wearable flexible elec-

tronics and wearable thermoelectric power systems, it is becoming increasingly difficult for

the thermal transport research community to keep pace with the characterization of these

systems in the usual intuition-guided method. Although the challenge of experimental ex-

pense and uncertainty is avoided by using accurate simulation methods, we incur a high

computational cost instead. This makes it impractical to use such methods by themselves in

tasks such as high-throughput screening of a large dataset or optimization of nanostructures

with several design variables.

Another failure of the traditional method of design and discovery of materials with tar-

get thermal transport properties is the inherent human bias present in the search process.

Generally, exploration of the search space is guided by the previously understood knowledge

of research experts in the domain. This can preclude the discovery of novel materials or

structures which may display counter-intuitive thermal transport characteristics, since no
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intuition is available to guide the search for these candidates. Moreover, the fact that these

novel solutions are often extremely few in number within large design spaces implies that

exhaustive or random searches cannot be used to efficiently identify them. As the currently

known solutions are exhaustively searched, it is necessary to find these non-intuitive solutions

and uncover new phonon physics governing their thermal transport.

These above considerations, along with the availability of large amounts of data of previ-

ously computed materials and structures, have led to the emergence of materials informatics

and machine learning methods as a powerful method for advanced materials science research.

Materials informatics involve applying the principles of information science to solve design

problems using data, in particular by computing response surfaces, property correlations,

principal component analysis etc. Machine learning methods use algorithms such as neu-

ral networks and Bayesian optimization that can learn feature maps between input and

output data points, by learning from a training data set. In the recent decade, the avail-

ability of multi-core computer architectures capable of massively parallel computations and

the commercialization of once-abstract machine learning tools have greatly accelerated the

use of these methods in applications ranging from image processing and speech recognition,

autonomous vehicles (or self-driving cars) and healthcare diagonostics. In addition, their

large-scale success in these areas have led to the rise of a “machine learning” and “data-

driven” paradigm in other science and engineering fields including materials research[71 ],

[72 ], quantum chemistry[73 ], biomolecules and drug design[74 ], and, more recently, thermal

transport research[75 ], [76 ]. In the following sections, the general framework of calculations

for a few of these methods is described, along with a discussion of their application to thermal

transport problems.

1.4.2 Machine learning based interatomic potentials

The development of classical interatomic potentials for use in MD simulations to predict

material properties including thermal transport is a complicated and time consuming task.

The process usually involves respresenting a complex multi-dimensional potential energy

surface (PES) by a simple, easy to implement analytical or tabular form. This approach,
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in itself, is a major setback towards a high accuracy of the developed potential. As a

result, classical interatomic potentials for materials that are often used in MD calculations

of thermal transport can fail to accurately reproduce all aspects of phonon properties, even

after many years of development and refinement. For example, silicon is one of the most

studied materials using MD simulations, and several interatomic potential forms have been

fitted to represent it, including many body potentials such as the Tersoff potential and the

Stillinger-Weber potential. However, none of the developed potentials are able to accurately

describe the phonon dispersion for both acoustic and optical phonon branches in the different

high symmetry directions, as shown in Fig. 1.4 .

Figure 1.4. Phonon dispersion along high symmetry directions predicted
using different interatomic potentials as well as a machine learning method
(Gaussian approximation potential). Reproduced from Ref. [77 ]

Even if representation of the PES by an analytical form is possible with a relatively

high degree of accuracy, the process is usually extremely time consuming with the most

expensive part being the formation of a representative PES. This implies that in order for

the potential parameters to be able to predict thermal transport properties, the PES must

sample the lattice anharmonicity comprehensively by capturing configurations far from the

equilibrium structure. This is not a trivial task and only by a lengthy iterative approach
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can one arrive at a set of parameters which are able to represent the phonon properties with

acceptable accuracy.

The above challenges can be mitigated with the use of machine learning interatomic

potentials (MLIPs). The advantage of MLIPs is that a high-dimensional PES can be repre-

sented without employing simple parametric functional forms. Instead, a matrix of weights

is used to form a map from input configurations to their output energies, and these weights

are trained using the data points in the PES. A variety of approaches can be employed to

form this map, with the Gaussian approximation potential (GAP) approach being the most

commonly used[78 ], [79 ]. Another benefit of using these non-parameteric models is that

atomic environments can now be represented by a vector of descriptors rather than a list

of all pairwise distances, angles and dihedrals. This allows a set of 3N dimensional coordi-

nates, where N is the number of atoms in the system, to be represented by a smaller set

of description vectors using the translational and rotational symmetries available. Since the

description of physics is not limited by the choice of analytical form, these potentials can

often provide better description of derived properties such as phonon dispersion, as shown

in Fig. 1.4 for a GAP potential fitted to Si [77 ]. Such types of machine learning potentials

have been investigated for representing specific properties of materials in a single phase[77 ],

[80 ], as well as building a general purpose potential for simulating multiple properties over

different phases of the material[81 ], [82 ]. Moreover, fitting of interatomic potentials has

been performed using neural networks[80 ], [81 ] with the benefit of being able to describe

the high-dimensional PES using the inherent non-linearity in the neural network architec-

ture. Although the improvement in predicting properties such as phonon dispersion and

phase changes has been shown over conventional analytical potential forms, these are still

difficult to implement in current atomistic simulation frameworks such as MD. A review of

the progress in machine learning based interatomic potential development and the degree

of success achieved by applying these potentials in complex environments can be found in

Ref. [79 ].
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1.4.3 Neural network prediction of thermal transport properties

Neural networks (NNs) are one of the most popular class of machine learning methods

used today, even surpassing human performance in a range of tasks such as image classifica-

tion, healthcare diagonostics and more famously, strategy board games such as chess and Go

[83 ]. One of the advantages of neural network based learning approaches is the freedom of

NNs to generate their own feature mappings, without the need for encoding rules or enforc-

ing restrictions on variables. Rather, the accuracy of a neural network to predict the output

for a given input depends on the quality of the dataset provided to it for learning and the

subsequent fitting accuracy achieved. This allows NNs to learn and reproduce non-linear

complex relationships from the input data, which can be expected to be immensely helpful

in the case of predicting transport phenomena. Neural networks are also able to generalize

after learning, which means that they can infer unknown relationships between input and

output data, which are often invisible to human observation. As a result, the feature maps

created after the fitting process can be closely inspected using available post-processing in-

terpretability tools to uncover property relations and governing physics that were previously

unknown.

Neural networks are composed of individual compute units called neurons, which are

inspired from the biological neurons in the human brain. Each neuron in an NN is connected

to other neurons through a matrix of weights. The network consists of an input layer into

which the input descriptors are fed in, generally one or more hidden layers of computing

neurons, and an output layer. The architecture of a simple neural network is shown in

Fig. 1.5 . The input values pass are multiplied by the weights of the connections as they

pass through the hidden layers, until the final output layer is reached. Since this represents

a simple linear transformation, non-linearity is generally added at each neuron through the

use of an activation function which may be sigmoidal or a rectified linear unit (ReLU).

Neural networks have been used in several applications in the thermal transport com-

munity. For example, simple neural network architectures have been employed to learn and

predict the thermal boundary conductance between 2-dimensional materials such as graphene

and hexagonal boron nitride, with accuracies exceeding other machine learning methods such
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Figure 1.5. Schematic of a fully-connected neural network showing one input
layer, two hidden layers and an output layer

as random forest search and polynomial regression [84 ]. A class of neural networks called

convolutional neural networks (CNNs) which are suited for image processing tasks have also

been used to predict the thermal conductivity of composite materials and porous media from

input images of the cross sections[85 ]. The success of applying NNs in these tasks pave the

way forward for large-scale integration of such machine learning techniques in the search for

novel materials for thermal transport applications.

1.4.4 Metaheuristic methods for nanostructure design optimization

In addition to predicting properties of bulk materials using simulations and machine

learning methods, metaheuristics and machine learning methods have been successfully used

in design optimization problems to obtain nanostructures with extreme thermal properties.

Metaheuristics are a class of higher-level algorithms that can guide the search process of a

large design space without the need for exhaustively searching the entire domain, and often

incorporate a form of informed stochastic sampling. When coupled with a suitable simulation

methodology such as MD simulations or Monte Carlo calculations, they can converge towards

the optimal solution within a far fewer number of simulation runs than in an exhaustive or

random search. More interestingly, such methods have shown to successfully guide a search

towards solutions with properties contrary to the accepted knowledge[86 ].
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A genetic algorithm (GA) is an evolutionary algorithm which mimics the principle of

natural selection to search from the optimal candidate. With an initially random popu-

lation sampled from the design space, the GA performs an iterative search process with

each iteration first comprising a calculation step. In this step, the fitness values of all the

candidates is evaluated with respect to the objective function defined for the problem, us-

ing an appropriate calculation framework such as MD simulations. Based on this fitness

value, the population to be tested in the next generation is formed by selecting only the

best candidates, thus forming the natural selection step. Finally, to sample new candidates

in the design space, these selected solutions are passed through genetic operators, namely

crossover and mutation, which can partially alter the characteristics of the candidates to

provide potentially better solutions. The new population is again iterated upon and tested

for convergence according to the design criteria. In addition to genetic algorithms, other

metaheuristics that perform informed searches using similar iterative methods are simulated

annealing and particle swarm optimization.

An important challenge in the realm of applying machine learning methods to some

material science problems is that of insufficient training data. This is particularly true for

design optimization problems where a large number of simulation results for the unique

system is required, which is not available elsewhere. Even with the capability of parallel

computing platforms to perform tens or hundreds of simulation runs, the size of the training

dataset is generally not large by data science standards. In such cases, machine learning

methods such as Bayesian optimization (BO) are suitable to work with. A BO creates a

surrogate of the objective function and quantifies the uncertainty in that surrogate with

respect to the evaluated data points using Gaussian process regression. This surrogate can

then be queried using an acquisition function to find the next set of samples to evaluate

in order to further minimize the prediction error, and the process can be iterated until

the solution with target property can be predicted with an acceptable level of accuracy.

Such techniques have been recently applied to design nanostructures with optimized phonon

transport properties such as thermal conductivity and interface conductance [87 ]–[89 ].
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1.5 Objectives and organization of this thesis

The objective of this thesis is to develop and expand the understanding of phonon and

photon transport physics in nanostructured solids, using high-fidelity atomistic simulations

for predicting thermal transport properties and machine learning-based methods. Along

with developing general frameworks for accelerated optimization of nanostructure design

using datasets generated from atomistic simulations, the optimal and suboptimal structures

are closely studied to uncover the non-intuitive physical origins of the extreme thermal

properties. This thesis is organized as follows.

Chapters 2 and 3 describe thermal transport calculations performed using MD simula-

tions for a very important pair of thermoelectric materials, the binary compounds Bi2Te3

and Sb2Te3. In Chapter 2, we develop two-body classical interatomic potential parameters

in the Morse analytical form for bulk Sb2Te3 tuned to predict thermal conductivity[90 ]. The

parameters are fitted to an ab-initio generated potential energy surface along with lattice

constants, elastic properties, phonon dispersion and density of states. The PES is built

using density functional theory calculations to calculate the total lattice energies of various

lattice configurations with the atoms incrementally displaced from their equilibrium posi-

tions. Once the potential parameters are developed and validated, they are used in EMD

simulations to calculate the bulk thermal conductivity of Sb2Te3 at various temperatures.

The spectral accumulation of thermal conductivity is also obtained from a spectral energy

density analysis to obtain the mean free path distribution of thermal conductivity.

In Chapter 3, the previously developed potentials for Sb2Te3 along with similar a poten-

tial form for Bi2Te3 are used in NEMD simulations to calculate thermal transport across a

Bi2Te3-Sb2Te3 interface[91 ]. In addition, the spectral phonon transmission coefficients are

calculated using the diffuse mismatch model and used in the Landauer transport formalism

to calculate the interfacial resistance. A comparison between the resistances calculated from

the Landauer formalism and those using NEMD simulations provides insight into the con-

tribution of inelastic scattering processes in the efficient transfer of heat across the highly

matched interface. Subsequently, the thermal conductivities of 1-D Bi2Te3-Sb2Te3 binary

superlattice (SL) structures of varying superlattice period are calculated using NEMD simu-
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lations. The results show a characteristic minimum thermal conductivity as the SL period is

varied, in good agreement with experimental results. This is attributed to the competition

between transport regimes dominated by incoherent and coherent phonon scattering at large

periods and short periods respectively. Our results provide the first quantitative validation

of such systems and pave the way for further optimization of thermal properties for use in

thermoelectric devices.

In Chapters 4 and 5, we develop general purpose machine learning based approaches

for accelerated prediction of nanostructure transport properties and efficient identification

of nanostructures with target properties. In Chapter 4, a machine learning driven solution

approach is proposed for the task of identifying Si-Ge random multilayer (RML) nanostruc-

tures with ultra-low thermal conductivity[62 ]. NEMD simulations of thermal transport are

used as the predictor to evaluate candidate structures with respect to the objective function.

Given the failure of an intuition-driven search due to a prohibitively large design space,

we employ a genetic algorithm (GA) search process, which uses the operations of selection,

crossover and mutation to efficiently predict potentially optimal solutions. Our results show

that the GA is able to identify ultra-low thermal conductivity RML structures by exploring

a fraction of the design space. Moreover, by comparing characteristics of the optimal and

sub-optimal structures, we uncover the non-intuitive trends of thermal conductivity with

respect to structural features such as average period and degree of randomness. This shows

the importance of machine learning methods in the discovery of novel phonon transport

physics, which can then be used to guide an informed design of nanostructures for target

applications.

In Chapter 5, we further explore the accepted theory of randomness in SL period thick-

nesses leading to a reduction in thermal conductivity due to Anderson localization of coherent

phonon modes[92 ]. In particular, we ask the question: does any manner of randomization

of the layer thicknesses lead to a thermal conductivity reduction, or can a reverse effect, i.e.

enhancement of thermal conductivity take place as well? Such a question has never been

explored or answered because sufficient evidence has never been found in manual intuition-

driven search results. To uncover the answer to this, we use a convolutional neural network

(CNN) based prediction method for RML thermal conductivity in order to rapidly screen the
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design space of all RMLs with the same mass ration and average interface density as a SL.

Using an iterative methodology to ensure that the generated training set contains features

characteristic of thermal transport, we are able to show the success of our CNN in predicting

the thermal conductivity of RMLs with a high level of accuracy. Due to the extremely short

computation time required by the CNN, we demonstrate the successfully identification of

extremely low-probability-of-occurrence RMLs with higher thermal conductivity than the

corresponding SL.

In Chapter 6, we demonstrate the use of a similar machine learning based optimization

process for identifying multilayered photonic nanostructures with high reflectivity for appli-

cations as thermal barrier coatings. Here, we study CeO2-MgO multilayered structures with

varying total thicknesses (1 − 50µm) and average layer thicknesses. Our results for spectral

reflectivity in periodic superlattices of these materials show a photonic stopband, which can

be manipulated by varying the average layer thickness to obtain a maximum reflectivity of

the superlattice system. The addition of randomness to individual layer thicknesses is found

to further enhance the spectral reflectivity due to the effect of photon localization. We

employ a GA search process which is able to identify RML structures with the highest re-

flectivity at a given total thickness. Our results show that photon localization in certain layer

thickness distributions can preferentially lower transmissivity at wavelengths corresponding

to the peak intensity of the provided irradiation (calculated here for a blackbody irradia-

tion spectrum at T = 1500K), which leads to a high total reflectivity of the GA-optimized

structures.

Chapter 7 provides a summary of the thesis and the scope of future work.
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2. DEVELOPMENT OF INTERATOMIC POTENTIALS AND

PREDICTION OF THERMAL TRANSPORT IN BULK Sb2Te3

Experimental discovery of novel materials for various applications needs to be complemented

by high-throughput computer simulations of material properties. Due to the availability of

modern computer architecture and massively parallel systems, atomic level methods such as

ab initio calculations and molecular dynamics (MD) simulations enable us to efficiently pre-

dict properties over a variety of system sizes and time scales. In particular, MD simulation

has emerged as a powerful tool to predict properties of both bulk materials and nanostruc-

tures, due to its capability of simulating large systems (∼1 million atoms) for as long as

several hundred nanoseconds. Another advantage of MD simulations is that it does not re-

quire any fitting parameters as inputs, except suitable interatomic potential parameters to

describe the force field.

The development of an appropriate interatomic potential form for a material is a chal-

lenging task which involves approximating a complex many-body potential function with

generally a simple two-body or three-body form. Although interatomic potentials have been

developed for many elemental materials and simple compounds,[93 ] a significant lack of suit-

able potential parameters is observed for compounds with complicated crystal structures

that can have important applications such as in thermoelectric power generation and pho-

tovoltaics. For example, Bi2Te3 and Sb2Te3 have been known to exhibit the best bulk ther-

moelectric properties for more than 50 years; yet interatomic potentials for Bi2Te3 have only

been developed recently[94 ], [95 ] and are still absent in literature for Sb2Te3. Breakthroughs

in nanotechnology have enabled experimental demonstrations of even higher thermoelectric

performance in Bi2Te3/Sb2Te3 nanostructures.[14 ], [16 ], [96 ]–[104 ] However, computational

studies on such systems are few due to absence of developed potential parameters to describe

these materials. The presence of van der Waal’s interaction and polarization of charges in

these compounds makes it even more difficult to develop simple and transferable potential

parameters for them.

Traditionally, interatomic potentials are developed by fitting a chosen functional form

to reproduce available data for a material. The data used in fitting can be obtained from
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experimental measurements of bulk crystal properties like lattice constants, bond energies,

and elastic and bulk moduli. Such experimental data are generally obtained for the equi-

librium state of a material where the atomic interactions are harmonic in nature. However,

to accurately predict anharmonic phonon-phonon scattering and heat transfer processes, the

interatomic potential must be able to reproduce the anharmonicity in bonds at configura-

tions far from the equilibrium state. Hence, most of these potentials are appropriate for the

prediction of mechanical properties while not being suited for predicting thermal transport

properties. An alternative to using experimental data in the potential fitting process is to

generate the required data from ab initio calculations. The advantage of this method is

that it provides the capability to sample both equilibrium and non-equilibrium states with

appropriate weighting parameters chosen according to the purpose of potential development.

As a result, these potentials can accurately predict anharmonic vibrational properties such

as thermal conductivity. Using this method, Huang and Kaviany developed a three-body

potential for bulk Bi2Te3 and used it in equilibrium MD simulations to predict the phonon

thermal conductivity,[94 ] while Qiu and Ruan developed a simpler two-body Morse poten-

tial for bulk Bi2Te3.[95 ] The predicted lattice thermal conductivity of the bulk crystal agrees

very well with experimental data for both the potentials. As a result, these parameters have

been used extensively to study the thermal properties of bulk Bi2Te3,[94 ], [95 ], [105 ] thin

films[106 ]–[109 ] and nanowires.[110 ], [111 ] Katcho et al.[112 ] calculated the phonon modes

of a (Bi1−xSbx)2Te3 alloy for any composition x by using Qiu and Ruan’s Bi2Te3 potential

for Sb2Te3 with rescaled force constants. The rescaling factor was obtained by fitting to

the experimental phonon density of states (PDOS) for bulk (Bi1−xSbx)2Te3. However, the

bond lengths in bulk Sb2Te3 are different from that of Bi2Te3, and using the same potential

parameters for both would result in a strained Sb2Te3 lattice. More recently, Rohskopf et

al.[113 ] used a genetic algorithm based optimization method to fit a combination of different

functional forms of interatomic potentials for Si and Ge. Such modified potentials have been

shown to predict the phonon properties well for Si and Ge. Developing simple and accurate

potentials for phonon thermal transport in complex compounds is still challenging and an

issue of current interest.
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In this work, we describe the procedure of developing a simple two-body Morse potential

for the complex binary compound Sb2Te3 bulk crystal from ab initio calculations, and then

predict the phonon thermal conductivity using these potential parameters in MD simulations.

First, we perform density-functional theory (DFT) calculations to obtain the ground-state

energies of a large number of atomic configurations of the lattice. The interatomic potential

parameters are then fitted to this energy surface along with suitable experimental data such

as lattice constants and bulk modulus. The obtained potential parameters are validated

using lattice-dynamics calculations by reproducing the bulk crystal structure and harmonic

properties. Equilibrium MD simulations are then performed using the Green-Kubo method

to predict the lattice thermal conductivity over a temperature range of 200-500K. Frequency

domain normal mode analysis is also used to compute the phonon modal relaxation times

and the thermal conductivity accumulation with respect to phonon mean free path.

2.1 Electronic structure and phonon dispersion

Bulk Sb2Te3 has a tetradymite structure and belongs to the D5
3d (R3̄m) space group. The

atoms are arranged along the trigonal axis in a quintuple layered structure in the order of

Te1-Sb-Te2-Sb-Te1 (Fig. 2.1 ). The crystal can be described by the primitive rhombohedral

unit cell consisting of five atoms. The corresponding lattice parameters are aR = 10.447

Å, θR = 23.55◦ with the Sb and Te1 atoms located at (±u, ±u, ±u) and (±v, ±v, ±v)

respectively, where u = 0.3988 and v = 0.2128.[114 ] The more convenient representation is

the hexagonal conventional cell (Fig. 2.1 ) with lattice parameters a = 4.264 Å and c = 30.458

Å. To compute the electronic structure of the bulk crystal, we perform ab initio calculations

based on the Density Functional Theory (DFT) framework, using the Projector-Augmented

Wave (PAW) method as implemented in the Vienna ab-initio simulator package (VASP).

Electron exchange and correlation is treated using the generalized gradient approximation

(GGA) and the effect of spin-orbital coupling is included which is necessary to accurately

describe heavier elements such as Sb and Te. The cutoff for the plane wave basis set and

the density of the k-point grid in the Brillouin zone are chosen as 500 eV and 8 × 8 × 8

respectively according to convergence tests. To preserve the layered structure of Sb2Te3 in
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Figure 2.1. Quintuple-layered crystal structure of Sb2Te3 showing rhombo-
hedral (right) and hexagonal (left) unit cells

which the quintuple layers are held together by weak van der Waals forces of attraction, we

also include the DFT-D2 correction method of Grimme.[115 ] We find, in accordance with

previous reports,[116 ] that the vdW correction can better reproduce the experimental unit

cell parameters. The fully relaxed rhombohedral primitive cell parameters are obtained as

aR = 10.597 Å, θR = 23.12◦ with the atomic positions at u = 0.39712 and v = 0.21370,

which is in good agreement with previous studies using the DFT-D2 correction.[117 ], [118 ]

The calculated electronic band structure along some high symmetry directions is shown in

Figure 2.2 . Due to the inclusion of spin-orbit coupling, a multi-valley band structure is

observed which agrees well with previous studies in literature.[119 ]

To study the phonon properties of bulk Sb2Te3, we use the method of finite displace-

ments to calculate the forces and force constants using the PHONOPY code[120 ] coupled

with VASP as the calculator. Forces are calculated on each inequivalent atom in the rhombo-

hedral unit cell to generate the force constants and a 3 × 3 × 3 supercell is used. Spin-orbital
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coupling is not included in these calculations since previous reports suggest that the vi-

brational properties of Sb2Te3 are not affected significantly by the inclusion of spin-orbital

coupling.[121 ] The obtained phonon density of states (PDOS) is plotted in Figure 2.3 and

compared to experimental results from inelastic neutron scattering.[122 ] As seen in the fig-

ure, the ab initio calculations can successfully reproduce the position and relative strength

of the peaks and the overall cutoff range of frequencies with respect to the experimental

measurements. The A1g phonon mode calculated at the Gamma point showed a frequency

of 2.15 THz which is very close to the experimental value of 2.07 THz.[123 ] Since our cal-

culation of the ground state configuration including the vibrational properties are accurate

and consistent previous reports, it is used to generate the ab initio energy surface data for

parametrizing the classical interatomic potentials optimized for phonon transport properties.

Once the equilibrium lattice structure is obtained, the different configurations for the ab

initio energy surface are generated by following a systematic approach: 1) varying the in-

ternal atomic coordinates at the equilibrium lattice constant, 2) varying the lattice constant

while keeping the internal atomic coordinates (symmetry) fixed, and 3) varying the internal

atomic coordinates at different lattice constants. Figure 2.4 shows a schematic for generat-

ing the energy surface in this manner using these distorted lattice configurations. Several

interatomic potentials have been developed in literature by considering very small atomic
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Figure 2.2. Electronic band structure of Sb2Te3 along some high symmetry
directions computed using DFT
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Figure 2.3. Phonon density of states of Sb2Te3 computed from fitted inter-
atomic potential parameters (solid line), ab initio calculations (dashed line)
and experimental values from [122 ] (circles)

displacements from equilibrium, which can represent only the harmonic characeristics of in-

teractions between atoms. Since our aim is to fit potential parameters which can accurately

predict thermal conductivity, it is important to consider displacements that can represent the

anharmonicity of pairwise interactions in our temperature of interest. To achieve this, the

largest displacements from equilibrium positions given to the atoms are around 0.35 Å. This

is estimated from the characteristic thermal energy kBT at 300K and displacements of this

scale are expected to sample the anharmonicity comprehensively. We have also performed ab

initio molecular dynamics (AIMD) simulations at 300K to verify from the trajectories that

the atomic displacements are in the same range. As a result, this magnitude of displacement

given is sufficient to represent the anharmonic nature of the solid around our temperature

of interest. For better performance of the gradient-based fitting process, we artificially build

the configurations using these displacements to maintain as much symmetry of the lattice

as possible which helps in convergence of the fitting runs.

Apart from varying the internal atomic coordinates, the lattice constant is varied within

1.4% of the equilibrium value, and the atomic positions are varied at different lattice con-

stants. The inclusion of such configurations in the energy surface is necessary to capture the

temperature-dependent phonon properties due to thermal expansion. Also, since the bulk
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modulus is computed from the variation of energy with respect to the volume of the unit

cell, the inclusion of these configurations ensure that the fitted parameters are able to repro-

duce the equilibrium lattice constant and the bulk modulus. Besides fitting to the energy

surface, Rohskopf et al.[113 ] proposed fitting to the forces on each atom and the harmonic

and 3rd order interatomic force constants calculated from ab initio methods. Forces and

force constants are first order and higher order derivatives of the energy surface (∂E
∂ri

, ∂2E
∂ri∂rj

,
∂3E

∂ri∂rj∂rk
...) respectively. These are calculated using the method of finite differences from the

energy surface data points near the equilibrium configuration. As a result, using force con-

stants should be equivalent to our method of fitting to only the energy surface data, provided

the same number of energy surface data points near the equilibrium is used. To generate

data points representative of interatomic force constant calculations, we use the open source

software ALAMODE[124 ] to obtain configurations which would be used in force constants

(a)(b) (c) (d)

(e)

(f)

Figure 2.4. Schematic showing the generation of the ab initio energy surface.
The circles represent different configurations used in the energy surface such
as the equilibrium configuration (a), displacements of atom(s) at fixed lattice
constant (b,c and d), variation of lattice constant with atoms fixed at equilib-
rium positions (e) and displacement of atom(s) at varied lattice constant (f)
. The dashed line represents the classical interatomic potential fitted to the
energy surface
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calculations, and include these configurations in our ab initio energy surface. The total

number of configurations we use in fitting are 108, out of which 60 configurations represent

variation of internal atomic coordinates at the equilibrium lattice constant, 14 configurations

represent variation of the lattice constant with fixed atomic fractional coordinates, 19 con-

figurations represent variation of atomic fractional coordinates at a varied lattice constant,

and 15 configurations are made to be representative of force constant calculations.

Above, we have described a hierarchical process of including different configurations at

different stages of fitting till the thermal conductivity can be reproduced well. We shall

note that currently the methodology does not work in the perfect manner that the fitting

converges smoothly as more configurations are added. Due to the complicated nature of

the fitting process involving 21 variables, we find that simply adding more configurations

to the energy surface does not always generate a better fit. On the contrary, addition of

specific structures to the fitting dataset sometimes causes the fitting process to diverge,

and the relative weights of these configurations in the objective function may need to be

adjusted carefully to prevent this from happening. Often, some older configurations need

to be removed when new configurations are added. Another reason that inclusion of more

configurations does not always ensure better potential parameters is that the ab initio results

do not exactly match with the experimental data that are also included as fitting targets.

As a result, there needs to be a balance between the number of ab initio configurations used

and the experimental data included, so that the fitted potential parameters can reproduce

both types of observables with good accuracy. Finally, the potential parameters will depend

on the purpose the potential is used for and are not unique. For mechanical properties, often

only the near-equilibrium configurations need to be considered; for thermal conductivity,

anharmonic configurations away from the equilibrium need to receive considerable weight;

while for chemical reactions, configurations far away from the equilibrium and near bond-

breaking need to be included. This will impact the final fitted parameters since there is no

unique way to choose the weighting factors.
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2.2 Classical interatomic potential parameters

Interatomic potentials which can accurately reproduce the quantities of interest are the

primary requisite for performing meaningful MD simulations. For complex materials, the

choice of the potential functional form is also very important. Many-body potentials may

be able to provide a more accurate description of a material along a wider range of simula-

tion conditions, but they involve several parameters and are not very accessible due to their

complex forms. On the other hand, most two-body potential forms are simple to implement,

computationally less expensive and can reproduce material properties with good accuracy.

For example, the potential parameters developed by Qiu and Ruan for Bi2Te3 have a simple

two-body form which ensures better accessibility, while being able to predict phonon anhar-

monicity and thermal conductivity very well among other properties.[95 ] Since no potential

parameters exist in literature yet for Sb2Te3, we choose to develop two-body interatomic

potential parameters which can suitably describe its phonon transport properties.

We use a two-body potential form ϕ(rij) between atoms i and j composed of a short-range

interaction term ϕs(rij) and a long-range Coulombic term which can be written as

ϕ(rij) = ϕs(rij) + qiqj

rij
(2.1)

where rij is the distance between the atoms i and j. qi and qj are the partial charges on

the atoms, which are more appropriate to use for solids like Bi2Te3 and Sb2Te3 that have

a partially covalent nature. The partial charges used in the potential parameters are 0.30,

-0.22 and -0.16 for Sb, Te1 and Te2 atoms respectively, which were obtained by allowing the

charges to vary during the potential fitting process. In this work, we use a rigid ion model to

fit the atomic charges. Alternatively, a core-shell model might be used to better reproduce

the polarization in Sb and Te atoms. However, the increased number of fitting parameters

incurred due to this approach makes it very difficult to obtain converged parameters dur-

ing the parametrization process. The short-range interaction is modeled using the Morse
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potential form, which is suitable to describe the vibrational properties of solids including

anharmonicity. The functional form is given by

ϕs(rij) = De[{1 − e(−a(rij−ro))}2 − 1] (2.2)

Here, De is the depth of the potential well (bond strength), a is a measure of the width

of the well (bond rigidity), and ro is the location of the potential well minimum which

corresponds to the bond length. As in the case of the two-body potential development

of Bi2Te3,[95 ] we consider only the nearest neighbor interactions by carefully choosing the

cutoffs for different interactions. This treatment of short-range interactions has been found

to be crucial for preserving the complex layered structure of the crystal. The long-range

electrostatic potential is computed by the Ewald summation method with a real-space cutoff

radius of 12 Å.

Table 2.1. Fitted short-range Morse potential parameters for Sb2Te3. De
is the depth of the potential well, a is a measure of bond stiffness, r is the
pairwise atomic distance and rc is the cutoff distance

Type of De a ro rc

interaction (eV) (1/Å) (Å) (Å)
Sb - Sb 0.089 2.112 4.258 5.5
Te1 - Te1 0.072 1.720 3.795 5.0
Te2 - Te2 0.066 2.639 4.261 5.0
Sb - Te1 1.008 1.292 3.018 4.0
Sb - Te2 0.538 1.166 3.172 4.0
Te1 - Te2 0.750 0.595 4.486 5.5

The potential parameters are fitted to the ab initio energy surface using the General

Utility Lattice Program (GULP)[125 ] which is designed to handle multivariable optimization

problems. The total number of parameters allowed to be fit during the optimization is 21,

which includes 18 potential parameters for 6 different types of interactions, 2 partial charges

and an energy shift to account for the difference in reference level for potential energy. The

parameters obtained from the fitting process are then used to optimize the crystal structure

and calculate bulk properties at the equilibrium configuration. These are compared with
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experimental data and the process is iterated until the predicted results show good agreement

with experimental data. The optimized potential parameters are shown in Table 2.1 , along

with the cutoff radii rc. As in the Morse potential parameters for Bi2Te3 in Ref [95 ], we

see that the Te1-Te1 bond has a relatively weak bond energy (De) along with a high bond

stiffness (represented by a), which is attributed to the fact that these parameters represent

both the weak van der Waals interaction between Te1 atoms of two adjacent quintuple layers

(cross-plane), as well as the covalent Te1-Te1 interaction within the same layer (in-plane). In

contrast, the inter-layer (cross-plane) Sb-Te1, Sb-Te2 and Te1-Te2 bonds have a higher bond

energy and larger anharmonicity which suggests the more ionic nature of these bonds. They

also have lower bond stiffness due to which the material elasticity in the cross-plane direction

(C33) is lower than in the in-plane direction (C11). The elastic constants and bulk modulus

obtained using the fitted potential parameters are shown in Table 2.2 and compared with

those obtained from our own ab initio calculations as well as from previous literature.[126 ],

[127 ] It is apparent from these results that the phonon thermal transport in the cross-plane

direction is expected to be weaker than that in the in-plane directions.

The fitted potential parameters are also used to calculate the phonon density of states

by computing the dynamical matrix in GULP (Fig. 2.3 ). We can see that our classical

interatomic potential can successfully reproduce the low frequency acoustic phonon portion

Table 2.2. Computation of elastic constants and bulk modulus using fitted
potential parameters and comparison with ab initio calculations. All quantities
are in Gigapascals.

Property Ab-initio Ab-initio1
 Ab-initio2

 Classical
(this work) potential

C11 77.5 85.5 83.2 83.8
C12 21.9 21.0 21.2 28.1
C13 25.5 30.8 46.1 24.7
C14 14.3 21.1 - 9.5
C33 46.5 50.5 99.7 49.1
C44 27.8 37.9 44.6 20.6
C66 27.1 - 31.0 27.9
B 32.7 42.1 53.2 39.9
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Figure 2.5. Phonon dispersion of Sb2Te3 along some high-symmetry direc-
tions computed from ab-initio calculations (broken line), fitted interatomic
potential parameters (solid line) and experimental values from Ref. [123 ]
(circles)

of the phonon DOS compared to both ab initio calculations and experimental measurements

in terms of the position and relative magnitude of the low-frequency peaks. In contrast, the

position of the high-frequency optical peak is shifted significantly higher with respect to ab

initio and experimental data. To further analyze the phonon properties, the phonon disper-

sion along high-symmetry directions is compared to ab initio results and inelastic neutron

scattering data[123 ] in Figure 2.5 . We can see that the acoustic phonon branches are repro-

duced in very good agreement with experiment, but the optical branches are overpredicted.

These dissimilarities between calculation and experiment can be attributed to using a simple

two-body potential form to fit the energy surface, along with the use of a rigid ion model. A

more detailed core-shell charge model may be able to improve the optical phonon dispersion

by accouting for the charge polarization. In spite of the limitations of our simple potential

form, it is able to accurately describe the lattice structure, elastic properties and dispersion of

acoustic phonons. Moreover, simulations of thermal transport in Bi2Te3 using the Morse po-

tential parameters showed very good agreement with experimental measurements,[95 ] which

suggests that the contribution of optical phonons to lattice thermal conductivity is low for
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these compounds. Since the thermal transport is dominated by the low-frequency acoustic

phonons, we can expect that our potential parameters will be able to accurately predict the

lattice thermal conductivity of Sb2Te3.

2.3 Molecular dynamics simulations of lattice thermal conductivity

We use equilibrium molecular dynamics (EMD) to predict the lattice thermal conduc-

tivity of Sb2Te3 in the in-plane and cross-plane directions over a range of temperatures.

EMD simulations use the Green-Kubo linear-response formulation[128 ] to predict the ther-

mal transport properties, while the effect of system size has been found to be small due

to the application of periodic boundary conditions. Under the Green-Kubo formalism, the

phonon thermal conductivity of a system is given by

κl,α = 1
kBV T 2

∫ ∞

0
< Sα(0).Sα(t) > dt, α = x, y, z (2.3)

Here, V is the volume of the simulation cell, T is the absolute temperature in Kelvin,

Sα(t) is the heat current along a particular direction and < Sα(0).Sα(t) > represents the

heat current autocorrelation function (HCACF). For a pair potential, the heat current is

commonly written as

S =
∑

i
eivi + 1

2
∑
i,j

(Fij.vi)rij (2.4)

where ei is the energy and vi is the velocity of particle i, and Fij is the force acting between

particles i and j separated by rij. The integral in Equation 2.3 is in practice carried out over

a finite time interval which needs to be decided appropriately based on the longest phonon

lifetimes existing in the material.

We performed MD simulations of bulk Sb2Te3 on a system consisting of 6 × 6 × 2 hexag-

onal unit cells with a total of 1080 atoms. Convergence tests with larger system sizes show

negligible size effects. The equations of motion are integrated using the Verlet algorithm with

a time-step of 0.25 fs, which is sufficient to resolve the highest frequency phonon mode cal-

culated from lattice dynamics, while the Nose-Hoover thermostat is used to regulate system
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temperature. Initially, the bulk lattice structure is equilibrated under an NPT ensemble for

250 ps to minimize the stress on the system, after which it is switched to an NVE ensemble

and run for another 250 ps to observe conservation of energy. Following this step, the heat

current data is obtained for 20 ns to compute the HCACF, with a sampling interval of 10

timesteps. MD simulations are performed over a temperature range of 200K to 500K with

an interval of 50K.

To minimize statistical fluctuations, we perform runs for 10 independent ensembles at

every temperature. The uncertainty associated with calculation of thermal conductivity from

equilibrium MD simulations has recently been quantified by Wang et al.[129 ] who correlated

the standard deviation σκ of the predicted thermal conductivity about the average κave,

with the total simulation time ttotal, HCACF correlation time length tcorr and number of

independent runs N as

σκ

κave
= 2

(
N × ttotal

tcorr

)−0.5
(2.5)

Based on their suggestion, we compared the thermal conductivity from MD simulations

performed for the system at 300K with a total time of 2 ns and 20 ns and a fixed correlation

time of 125 ps. Our results indeed show that the spread in thermal conductivity values from

different runs reduces significantly with increasing total simulation time, which is expected

since time averaging in MD simulations is equivalent to ensemble averaging.

The variation of lattice thermal conductivity κl in both in-plane and cross-plane direc-

tions with temperature is shown in Figure 2.6 along with the 1/T fitting. The error bars

for each data point have been obtained using Equation 2.5 . Both the in-plane and the

cross-plane thermal conductivities generally follow a 1/T curve which indicates the domi-

nance of Umklapp scattering. Experimental measurements of thermal conductivity of bulk

Sb2Te3 in literature have large discrepancies among themselves. This may be due to the fact

that the values reported often do not separate either the contributions from electronic and

lattice contributions, or the in-plane and cross-plane anisotropy which is high for a layered

material such as Sb2Te3. The reported values for total thermal conductivity vary widely

from 2 - 5 Wm−1K−1,[20 ], [130 ], [134 ]–[138 ] while the lattice thermal conductivity is gener-
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Figure 2.6. MD predicted thermal conductivity in in-plane and cross-plane
directions and 1/T fitting compared with experimental data (Ref. [20 ], [130 ]),
calculations using a modified Calloway model (Ref. [131 ], [132 ]) and BTE +
3 phonon calculations (Ref [133 ])

ally estimated at around 1.3 - 2.5 Wm−1K−1.[20 ], [130 ], [137 ], [138 ] The theoretical lattice

thermal conductivity has been calculated using the modified Callaway model as κ‖ = 2.2

Wm−1K−1 and κ⊥ = 0.34 Wm−1K−1.[131 ], [132 ] Campi et al.[133 ] predicted the thermal

conductivity of Sb2Te3 from first principles by solving the Boltzmann Transport Equation.

The phonon-phonon scattering was derived by calculating the anharmonic force constants

using the framework of Density Functional Perturbation Theory. The in-plane thermal con-

ductivity at 300K obtained in their work is 2.0 Wm−1K−1 which is higher than the results

we observe in our calculations, while the cross-plane thermal conductivity obtained is 0.8

Wm−1K−1 which agrees well with our results. The higher in-plane conductivity may be due

to the fact that the authors in Ref. [133 ] have included only three-phonon scattering in their

computations, while our MD treatment inherently includes higher order processes such as

four-phonon scattering, which may be important. [139 ]–[141 ] Besides, the inaccuracy of the

potential to reproduce the optical phonon dispersion may also contribute to the observed

discrepancy.
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2.4 Phonon modal relaxation time and thermal conductivity accumulation

We also calculate the contribution of different phonon modes to the total cross-plane

lattice thermal conductivity using frequency domain normal mode analysis (FD-NMA). The

total thermal conductivity can be obtained as the sum of the mode-wise thermal conductiv-

ities kj of all phonon modes in the first Brillouin zone

κz =
∑

j
κj = 1

(2π)3

∑
ν

∫
(vλ · ẑ)2cλτλdk (2.6)

where, z is the cross-plane direction, λ represents the phonon mode (k, ν) with k being

the wave vector and ν the polarization branch, cλ is the phonon mode specific heat, τλ is

the relaxation time, vλ is the group velocity and the summation over the Brillouin zone is

converted to the continuous integral form using ∑
k = V/(2π)3 ∫

dk. The specific heat per

phonon mode is given by cλ = h̄ωλ∂n0
λ/∂T = kBx2ex/(ex − 1)2, where x = h̄ω/kBT , and

the phonon occupation number n0
λ = 1/(ex − 1) according to the Bose-Einstein distribution.

The phonon group velocity is given by the gradient of the phonon dispersion, v = dω/dk,

where ω is the phonon angular frequency.

The frequency domain normal mode analysis (FD-NMA) method was initially developed

by Wang et al.[65 ] and later extended by Shiomi and Maruyama,[66 ] De Koker,[67 ] Thomas

et al.[68 ] and Feng et al.[69 ] According to lattice dynamics, the vibrations of atoms in real

space can be mapped to the time-dependent normal mode coordinates,

qλ(t) =
3∑
α

n∑
b

Nc∑
l

√
mb

Nc

ul,b
α (t)eλ∗

b,α exp [ik · rl
0]. (2.7)

Here, ul,b
α (t) is the α component of displacement of the bth basis atom with mass mb in

the lth unit cell from equilibrium position, eλ∗
b,α is the complex conjugate of the eigenvector

component of the phonon mode λ, n is the total number of basis atoms in a unit cell, and
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Nc is the total number of unit cells. In FD-NMA, the total spectral energy density (SED) is

calculated for each k-point from the sum of the SED’s of all phonon branches,

Φ(k, ω) =
3n∑
ν

Φν(k, ω) =
3n∑
ν

|q̇k,ν(ω)|2 (2.8)

where

Φν(k, ω) = |q̇k,ν(ω)|2 = |
∫ ∞

0
q̇k,ν(t)e−iωtdt |

2

= Ck,ν

(ω − ωA
k,ν)2 + Γ2

k,ν

.
(2.9)

Here, Φν(k, ω) is the Fourier transform of the time derivative of qk,ν(t) and Ck,ν is a constant

of fitting related to the normal mode vibrational amplitude qk,ν,0. By fitting the SED function

at each k-point to 3n Lorentzian forms, we can extract the anharmonic phonon frequency ω

for each phonon mode. The phonon relaxation time τλ is also obtained from the full width

at half maximum of the fitted curve as τλ = 1/2Γk,ν . It is to be noted here that due to the

finite size and periodicity requirements of the MD domain, not all k-vectors in the Brillouin

zone can be sampled. Only those k-points in the first Brillouin zone satisfying the condition

e−ik·r = 1 can be resolved in the MD normal mode analysis, where r = ∑3
i=1 niAi and Ai is

the length vector of the simulation domain in direction i.

We perform FD-NMA on a 12 × 12 × 12 rhombohedral cell with 5 basis atoms, and a

12 × 12 × 12 k-point grid uniformly sampling the first Brillouin Zone. The rhombohedral

primitive cell is used since the number of phonon dispersion branches in this case is much

less than that obtained using the hexagonal cell, which makes the SED analysis simpler. The

system is first relaxed under an NPT ensemble at 300K for 200 ps and further under an NVE

ensemble for 200 ps. Following this, the system is run in an NVE ensemble to compute the

normal mode amplitudes from the MD trajectories at an interval of 10 fs, which is shorter

than the shortest phonon time period. The anharmonic phonon dispersion computed from

NMA along the Γ − Z direction is shown in Figure 2.7 (a) along with the harmonic phonon

dispersion computed from GULP for comparison, and also the quasi-harmonic dispersion

computed with the lattice constant at 300K. It is seen that there is noticeable softening
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Figure 2.7. (a) Anharmonic phonon dispersion at 300K from NMA (triangles
and broken lines), quasi-harmonic phonon dispersion (300K) from LD (dashed
lines) and harmonic phonon dispersion (0K) from LD (solid lines) along the
Γ − Z direction (b) Relaxation times of phonons along the Γ − Z direction (c)
Relaxation times of low-frequency accoustic phonons along Γ − Z, along with
f−2 fitting

of the phonon modes at finite temperature, which proves that our developed interatomic

potential can capture the anharmonicity of the material. The quasi-harmonic results are

very similar to the fully anharmonic results, indicating that the frequency shift is mainly

due to the lattice expansion. The phonon relaxation times predicted by FD-NMA along the

Γ − Z direction are shown in Figure 2.7 (b), where it can be seen that the phonon lifetime

decreases with increasing phonon frequency. The lifetimes of acoustic phonons below 1 THz

are very well fitted with a τ ∝ f−2 form (Figure 2.7 (c)), which is generally the power law

expression used in many works for calculating the thermal conductivity analytically. The

lifetime of the A1g phonon mode is predicted by the FD-NMA to be 4.5 ps, compared to

the experimental value of 3.4 ps obtained from time-resolved reflectivity measurements using

femtosecond pulses.[142 ] The overall range of phonon lifetimes is also similar to the phonon

lifetimes calculated for Bi2Te3 using time-domain normal mode analysis (TD-NMA) by Wang

et al.[143 ]

The phonon relaxation times obtained using FD-NMA and the group velocities are used

in Equation 2.6 to calculate the thermal conductivity of each phonon mode as well as the

total thermal conductivity. Obtaining a converged sum from Equation 2.6 requires proper

discretization of the Brillouin Zone to ensure we capture all important phonon modes. Due to
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the finite size of the MD simulation domain, the contribution of phonon modes with very long

wavelengths is absent; however, the density of states for these low frequency modes is low.

We have performed calculations for an 8 × 8 × 8 simulation domain with an 8 × 8 × 8 k-point

grid to test the size effect. The results for phonon lifetimes and total thermal conductivity

are similar to the 12 × 12 × 12 cell system, which suggests that our k-grid resolution is

able to ensure a converged sum. The total cross-plane thermal conductivity obtained from

FD-NMA is 0.92 W/mK, which agrees very well with the EMD value of 0.89 W/mK. The

difference in the two results can be attributed to process of fitting the Lorentzian form to a

large number of phonon modes, particularly for the higher frequency peaks which are often

clustered together and difficult to isolate. The accumulation of thermal conductivity in the

cross-plane direction with respect to phonon mean free path is shown in Figure 2.8 , where

the mean free paths along the cross-plane direction can also be obtained using the relation

λ = (v · ẑ). The results in Figure 2.8 show that phonons with mean free paths between 3

and 100 nm contribute to around 80% of the total cross-plane thermal conductivity. The

contribution of acoustic phonons to total thermal conductivity is 80% while the contribution

of optical phonons is 20%, compared to a 35% contribution of optical phonons calculated by

Campi et al.[133 ] from first principles.
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2.5 Conclusions

In summary, we have used density functional theory to calculate the electronic band

structure of bulk Sb2Te3 and the energies of different representative configurations away

from equilibrium. We then fit a two-body Morse interatomic potential form to the energy

surface and experimentally observed crystal properties like lattice constants and bulk mod-

ulus. The fitted potential form can reproduce the lattice structure and acoustic phonon

dispersion of the crystal in very good agreement with experiment, indicating that our devel-

oped potential is suitable to describe phonon thermal transport in the material. Molecular

dynamics simulations using the Green-Kubo linear response framework have then been per-

formed using this interatomic potential, and the lattice thermal conductivity in the in-plane

and cross-plane directions have been predicted over a range of temperature from 200-500K.

The in-plane thermal conductivity was found to vary from 0.9 − 2.6 Wm−1K−1, while the

cross-plane thermal conductivity was found to vary from 0.4−1.5 Wm−1K−1 as the tempera-

ture is decreased from 500 K to 200 K. The results at room temperature agree well within the

range of experimental values found in literature. The nature of phonon transport in Sb2Te3

is found to be extremely similar to that in Bi2Te3 as expected, with the cross-plane thermal

conductivity much lower than the in-plane one due to the weak nature of the van der Waal’s

bonds in the inter-layer direction. The modall decomposition of the cross-plane thermal

conductivity is also performed using frequency domain normal mode analysis (FD-NMA).

The anharmonic phonon dispersion along the Γ − Z cross-plane direction shows softening of

phonon frequencies, while the acoustic phonons are found to be approximated well by a f−2

fitting. In addition to being able to predict the thermal conductivity of bulk Sb2Te3, this

potential may be applied to the study of thermal transport in Bi2Te3 - Sb2Te3 alloys and

nanosctructures, which is the scope of future work.
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3. THERMAL CONDUCTIVITY AND INTERFACIAL

THERMAL RESISTANCE IN Bi2Te3-Sb2Te3 MULTILAYER

STRUCTURES FROM MOLECULAR DYNAMICS

Thermoelectric energy systems provide an attractive solution to convert large amounts of

waste heat, such as that generated by traditional fossil fuel based energy production systems,

into electrical power directly. The performance of a thermeoelectric generator can be char-

acterized by its figure of merit (ZT ), given by ZT = S2σT/(κe + κph), where S, σ and T are

the Seebeck coefficient, electrical conductivity and temperature respectively, and κe and κph

are the electronic and phononic contributions to the thermal conductivity of the material.

The difficultly to tune the ZT by modulating the terms in the numerator and denominator

independently arises due to the coupled nature of the electrical and thermal transport prop-

erties. Bismuth telluride (Bi2Te3), antimony telluride (Sb2Te3) and their alloys have long

been found to provide the highest figures of merit among bulk materials, due to their low

lattice thermal conductivities at room temperature. In recent decades, the ability to create

nanostructures comparable to phonon mean free paths has led to successful proof-of-concept

demonstrations of high ZT devices based on these materials[16 ], [25 ], [144 ]–[153 ], mainly by

reduction of the lattice thermal conductivity. In particular, multilayer structures such as

superlattices have received widespread attention due to their ultra-low thermal conductivity

caused by repeated phonon-interface scattering[16 ], [144 ], [153 ]–[155 ].

In order to expedite the search for higher efficiency systems and gain insight into the un-

derlying transport mechanisms, such experimental demonstrations need to be complemented

by computational studies of these systems. Moreover, such simulation results can also be

used as the training data in informatics and machine learning methods which have become

increasingly popular in performing highly accelerated design optimization of nanostructures

with targetted transport properties[88 ], [156 ]–[158 ]. Despite the long-standing importance of

Bi2Te3, Sb2Te3 and their nanostructures as thermoelectric materials, there are few modeling

studies in literature to characterize thermal transport in these devices. Pattamatta and Mad-

nia[159 ] studied the thermal transport in Bi2Te3-Sb2Te3 1-D superlattices and 2-D nanowire

composites using the Boltzmann transport equation (BTE). Since only the particle nature of
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phonon modes was considered within this approach, their results did not show the existence

of a minimum thermal conductivity with respect to varying superlattice period, which is

now widely understood to occur due to competing phonon wave effects. Katcho et al.[112 ]

calculated the thermal conductivity of (Bi1−xSbx)2Te3 alloys with and without embedded

spherical nanoparticles. Their results showed that significant reduction in thermal conduc-

tivities of the nanoparticle-alloy composites could be achieved with nanoparticle diameters

less than 10 nm. Morever, the BTE approach used in these studies required the estimation

of phonon mean free paths by fitting to the bulk thermal conductivities, and cannot be con-

sidered completely predictive methods. In contrast, molecular dynamics (MD) simulations,

which require no input fitting parameters except appropriate interatomic potentials, have

been used to study thermal transport in bulk Bi2Te3[94 ], [95 ], [160 ] and nanostructures[111 ],

[112 ], [161 ]–[163 ] with close agreement to experimental measurements. The thermal conduc-

tivity of bulk Sb2Te3 was also calculated using MD simulations in our previous work[90 ].

In this work, we calculate the phonon transport properties across a Bi2Te3-Sb2Te3 inter-

face and 1-D superlattices with varying periods, using non-equilibrium molecular dynamics

simulations. The simulation methodology including details of the multilayer structures is

described in Section 6.2 . The results for thermal conductance at the single interface and

thermal conductivity of the superlattices are then presented in Section 6.3 .

3.1 Methodology

3.1.1 Simulation materials

Bulk bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) both occur in quintuple

layered (QL) lattice structures (Fig 3.1 (a)), where each layer is composed as Te1−X−Te2−X−Te1

(X = Bi or Sb). The two Te atoms are in different bonding environments, with the Te2 atom

forming strong intra-layer bonds, and the Te1 atoms forming weaker inter-layer van der

Waal’s bonds. The bulk materials can be described by the primitive rhombohedral cell

containing 5 atoms or the conventional hexagonal unit cell having 15 atoms (3 QLs). The

experimental hexagonal cell lattice constants of the two materials are aBi2T e3 = 4.369 Å and

cBi2T e3 = 30.42 Å for Bi2Te3[164 ], and aSb2T e3 = 4.264 Å and cSb2T e3 = 30.458 Å for
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Figure 3.1. (a) Crystal structure of Bi2Te3 showing two quintuple layers, (b)
Schematic of Bi2Te3-Sb2Te3 single interface and (c) superlattice with period
dSL. (d) NEMD simulation domain, showing the fixed layers of atoms at each
end, the hot and cold baths and the direction of heat flux through the system
in between. (d) Representative temperature profile for the single interface
structure, showing the temperature drop ∆Ti at the interface.

Sb2Te3[165 ]. In this work, orthogonal simulation domains are created using the conven-

tional cells. A cross section size of 10 × 14 unit cells is used in the x and y directions, which

were found to provide converged thermal conductivity values. Along the z-direction, the sin-

gle interface and superlattice structures are created by stacking of the quintuple layers. The

periods of the superlattices studied in our work are varied from 1 − 5 QLs of each material

(1 − 5 nm). The structures of the single interface and a representative superlattice is shown

in Fig. 3.1 (b-c).

3.1.2 Molecular dynamics simulations

Non-equilibrium molecular dynamics (NEMD) are performed using the LAMMPS pack-

age[166 ]. The equations of motion are integrated using a Verlet algorithm with a time step

of 1 femtosecond, which is sufficient to resolve the phonon modes of both the materials. The

schematic of the simulation domain is shown in Fig. 3.1 (d). The Bi2Te3-Sb2Te3 system is

placed between two bulk regions of atoms at either end. Initially, periodic boundary condi-
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tions are imposed in all three directions. The entire simulation domain is first relaxed under

constant temperature and pressure (NPT) for 1×106 timesteps (1 ns) to reduce the strain on

the system, after which it is switched to a constant volume and energy ensemble (NVE) and

run for 0.5 × 106 timesteps (500 ps) for proper equilibration. Subsequently, 1 quintuple layer

of atoms at each end are fixed to implement fixed boundary conditions along the z-direction.

Next to each of the fixed ends, a 5 QL section of atoms are thermostatted using Langevin

dynamics to create and maintain a temperature gradient across the system. The thermal

conductivity calculated using NEMD simulations can be dependent on the lengths of the

heat reservoirs. By varying the length of the thermal reservoirs, we find that the thermal

conductivity does not depend on the length of the thermal reservoir if their length is 5 QL

(5 nm) or more. A temperature difference of 60 K is applied across the system through the

thermostatted regions. The temperature gradient in the system is obtained by dividing the

simulation domain into bins of 1 QL width, and averaging the kinetic energies of the atoms

within a bin. This temperature data is collected and averaged over 20 ns after steady state

is achieved, to minimize statistical fluctuations. The time taken to observe a steady state

temperature gradient and a stable heat current within the system depends on the simulation

domain length in the z-direction, and can vary from less than 1 ns for small systems to 5

ns for larger lengths. A representative temperature profile for the single interface structure,

showing the temperature drop ∆Ti at the interface, is provided in Fig. 3.1 (e). The interfa-

cial thermal conductance (G) can be calculated from the steady state heat flux (q) and the

temperature drop as

G = q

∆Ti
(3.1)

To calculate the thermal conductivity of the mutlilayer structure, a linear fit is made

to the temperature profile across the system. The sections near the thermal reservoirs are

excluded since they include non-linear effects due to the velocities of the reservoir atoms being

artificially scaled. The slope of the linear fit is used to calculate the thermal conductivity as
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κ = q

dT/dz
(3.2)

Suitable classical interatomic potentials need to be specified for each material to evaluate

the interatomic forces during the MD simulation. Here, we use a two-body Morse potential

form to represent the short range interactions for each material, which is given by

ϕs(rij) = De[{1 − e−a(rij−r0)} − 1] (3.3)

where, ϕs is the short-range interatomic potential between atoms i and j, rij is the distance

between the atoms, and De, a and r0 are the Morse potential parameters. The paramaters

for bulk Bi2Te3 were fitted to this form by Qiu and Ruan[95 ], and have been widely used to

predict thermal transport in both the bulk material[95 ], [160 ] and nanostructures such as thin

films[161 ]–[163 ], nanowires[111 ] and alloys with embedded nanoparticles[112 ]. Similarly, the

Morse potential parameters were fitted for Sb2Te3 in our previous work[90 ], and subsequently

used to predict the lattice thermal conductivity of the bulk material in good agreement with

experimental measurements. We employ the above parameters in this work to describe the

interactions among atoms belonging to the Bi2Te3 layers and Sb2Te3 layers respectively. In

each of these two sets of potential paramters, the cutoff radius (rc) for interactions has been

carefully chosen so as to preserve the layered structure of the materials. We use an arithmetic

mixing rule to obtain the Morse potential parameters for cross-interactions between two

atoms belonging to different materials. The cutoffs for the cross interactions are chosen to

be the same as those of the corresponding types of bonds within each of the bulk materials.

In addition to the short range interactions, we use a particle-particle particle-mesh (PPPM)

solver to handle the long range coulombic forces due to the charges on the atoms. Considering

the partially covalent nature of the materials, it is appropriate to assign partial charges to

the atoms, the details of which can be found in earlier works[90 ], [95 ].
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3.1.3 Modified Landauer transport calculation

Phonon transport across the single interface is also calculated using the modified Lan-

dauer transport calculations. For this, we consider an interface perpendicular to the z

direction, between two semi-infinite bulk regions. The interfacial thermal conductance is

calculated according to Eq 3.1 , where the heat flux across the interface is given by

q1→2 = 1
2(2π)3

∑
i

∫
k

h̄ω(k, i)|vg(k, i) · n|

[f(ω(k, i), T1) − f(ω(k, i), T2)]τ1→2(ω(k, i))dk (3.4)

In Eq 3.4 , ω(k, i) is the frequency of the phonon mode with branch i at the k-vector

k, vg is the phonon group velocity, n is the unit vector normal to the interface, f is the

phonon occupation number given by f(ω, T ) = 1/(e(h̄ω/kBT ) − 1) and τ1→2 is the frequency

dependent phonon transmission across the interface. To account for the highly anisotropic

phonon transport properties of the two bulk materials, the integration in Eq 3.4 is carried

out over the full Brilluoin Zone and the summation is over the different phonon branches

or polarizations. The phonon properties are obtained from lattice dynamics calculation

employing the above described interatomic potentials and perfomed using the General Utility

Lattice Program (GULP)[167 ]. We discretize the Brillouin Zone using a 65×65×65 k-point

grid to carry out the integration numerically. The acoustic mismatch model (AMM) and

the diffuse mismatch model (DMM) are two widely used models for calculating phonon

transmission coefficients across an interface considering elastic scattering only. Here, we use

the DMM to calculate the phonon transmission coefficients to compare with our NEMD

results. The DMM makes the assumption that phonons incident at an interface will lose all

memory of their initial state (within the constraint of elastic scattering) and can transmit

to either side with a probability proportional to the number of available phonon modes in

that side of the interface. As a result, the DMM transmission probability can be calculated

with respect to phonon frequency only, without considering the polarizations of the incident

and transmitted phonons. The DMM transmission coefficients are calculated as

74



τ1→2(ω) =

(
∑
k,i

|vg(k, i) · n|∆VBZ,2δ(ω(k, i), ω))/

(
∑
k,i

|vg(k, i) · n|∆VBZ,1δ(ω(k, i), ω)+

∑
k,i

|vg(k, i) · n|∆VBZ,2δ(ω(k, i), ω)) (3.5)

Here, the summations are carried out over the discretized BZs of each material using the

corresponding phonon properties, ∆VBZ,i is the volume of a discretized cell in material i and

δ(ω, ω) is the Kronecker delta function which evaluates to 1 when ω = ω and 0 otherwise,

to ensure elastic scattering.

Recently, it has been shown by Feng et al.[168 ] that phonon modes on either side of an

interface can be in strong thermal non-equilibrium with each other. The original Landauer

formulation does not include the effect of such non-equilibrium in the phonon temperatures

used to calculate the temperature drop across the interface given by

∆T = Te,1 − Te,2 (3.6)

Here, Te,1 and Te,2 are the emission temperatures of the phonons coming from the reser-

voirs in materials 1 and 2. However, the phonon temperature on each side of the interface

should be calculated after taking into account the presence of incident phonons and reflected

phonons from the bulk material on that side, and transmitted phonons from the material

on the other side. Considering the temperature of all these types of phonons, Shi et al.[169 ]

defined modal equivalent equilibrium temperatures (MEET) Tλ,1 and Tλ,2 given by

Tλ,1 = Te,1 − τλ,1→2(Te,1 − Te,2)/2 (3.7)
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Figure 3.2. (a) Phonon dispersion along the high symmetry Γ − Z (cross-
plane) direction in bulk Bi2Te3 (left) and bulk Sb2Te3 (right). (b) Phonon
density of states in bulk Bi2Te3 (blue) and bulk Sb2Te3 (red)

Tλ,2 = Te,2 + (1 − τλ,1→2)(Te,1 − Te,2)/2 (3.8)

Using these modified temperatures in the interface temperature drop as ∆Tλ = Tλ,1−Tλ,2,

the authors were able to show much better agreement of the calculated G with experimental

results. More importantly, their approach was able to resolve the failure of the original

Landauer formulation wherein a finite interfacial resistance is obtained even for an imaginary

interface within a bulk material. As a result, we use the modified effective equilibrium

temperatures in our Landauer transport calculations.
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3.2 Results and discussions

3.2.1 Interfacial thermal conductance

We first study the phonon transport across the Bi2Te3-Sb2Te3 single interface. The

atomic configurations, lattice constants and, thus, the phonon properties of the two bulk

materials are very similar to each other. Figure 3.2 (a) shows the phonon dispersions in the

two bulk materials along the high symmetry Γ − Z direction (cross-plane), obtained from

lattice dynamics calculations. The acoustic phonon branches and the lower optical phonon

branches are very well matched in both materials, indicating ease of energy transmission

across the interface. Since the simple two-body form of the developed interatomic potentials

are not well suited for accurately reproducing the higher optical phonon branches, we ignore

the mismatch at higher frequencies. Moreover, the contribution of optical phonons to the

thermal conductivities of the bulk materials was found to be low from previous molecular

dynamics simulation studies[90 ], [94 ], [95 ]. The phonon density of states (PDOS) over the

entire BZ for the two materials is also shown in Fig. 3.2 (b). As seen in the figure, the low

frequency portions of the PDOS show very little mismatch with respect to the position and

magnitude of the dominant peaks.

Non-equilibrium molecular dynamics simulations are performed to calculate the phonon

transport across the Bi2Te3-Sb2Te3 interface for a range of interface temperatures from 200−

400 K. The results for interfacial thermal conductance are shown in Fig 3.3 (a). The thermal

conductance value increases from 0.9×108 −1.3×108 W/m2K with increase in temperature,

indicating the greater ease of thermal transport at higher temperatures. At low temperatures,

the phonon transmission across the interface is largely expected to be elastic in nature, which

places a constrain on the number of available phonon modes on the other side to receive

thermal energy. With increase in temperature, the increase in inelastic scattering allows

transfer of energy to a larger number of phonon modes with different frequencies due to

three, four and higher order phonon-phonon scattering processes.

In order to gain insight into the spectral dependence of interfacial transport, we compute

the phonon transmission coefficients using the DMM (Fig. 3.3 (b)). The DMM transmission

coefficient is around 0.40 − 0.45 for frequencies less than 1 THz, which can be correlated to
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Figure 3.3. (a) Variation of thermal conductance of Bi2Te3-Sb2Te3 interface
with temeprature, calculated using NEMD simulations (solid boxes) and the
modified Landauer approach with DMM transmission coefficients (dashed line)
(b) Phonon transmission coefficients from Bi2Te3 to bulk Sb2Te3 calculated
using DMM

the highly matched PDOS and group velocities at these lower frequencies. The interfacial

thermal conductance obtained using the modified Landuaer transport calculations and DMM

transmission coefficients is plotted in Fig. 3.3 (a) for comparison with the NEMD calculated

conductances. The DMM conductance increases with temperature and saturates at a value of

0.75×108 W/m2K over temperatures of 40 K. The difference between the DMM conductance

and the NEMD conductance increases with increasing temperature, which is attributed to

the increase in pathways for energy transfer between the phonons due to inelastic scattering

processes.
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3.2.2 Thermal conductivity of superlattices

NEMD simulations are also used to calculate the thermal conductivities of the N −

N superlattice system with varying superlattice period, where N refers to the number of

quintuple layers of Bi2Te3 and Sb2Te3 within a period. The thermal conductivity calculated

using NEMD simulations is dependent on the length the system across which the non-

equilibrium conditions are maintained. If the system length is too short, phonons from one

reservoir can reach the other without scattering and also lead to artificial effects due to

phonon reflection at the reservoirs. Schelling et al.[170 ] proposed a formulation to correlate

the system length L to the limited phonon mean free path λ, given by λ−1 = λ−1
∞ + L1,

where λ∞ is the intrinsic phonon mean free path. As a result, a linear relation between the

inverse of thermal conductivity and the inverse of system length can be expected. The bulk

thermal conductivity can then be obtained by extrapolating the linear curve to infinite length.

Figure 3.4 (a) shows the calculation of bulk thermal conductivity from the extrapolated linear

fits for the 1 − 1 and 4 − 4 SLs.

The variation of the superlattice thermal conductivity with respect to SL period is shown

in Fig. 3.4 (b). The thermal conductivity initially decreases with increasing superlattice pe-

riod and reaches a minimum thermal conductivity of 0.27 W/mK at a period of 4 nm.

With further increase in superlattice period, the thermal conductivity increases. Several

experimental [16 ], [51 ], [53 ], [171 ], [172 ] and numerical[46 ], [47 ], [49 ], [50 ], [173 ] studies

have highlighted the existence of a minimum superlattice thermal conductivity as the pe-

riod length is varied, which has been attributed to the competition between incoherent

phonon and coherent phonon dominated transport regimes. At large superlattice periods,

the thermal transport is mainly limited by incoherent phonon scattering at the interfaces,

which increases at lower superlattice periods or higher interface densities. In this regime,

anharmonic phonon-phonon scattering leads to loss of phase information before the phonons

encounter an interface. However, if the period is reduced further, interference of phonons un-

dergoing phase-preserved reflections at the interfaces leads to a modified phonon spectrum.

In this regime, the coherent phonons are not scattered at the interfaces, and the thermal

conductivity actually increases at very low superlattice periods, which has been explained by
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mechanisms such as less zone folding leading to weaker band flattening and increased group

velocities.

The thermal conductivities of Bi2Te3 -Sb2Te3 SLs were experimentally measured by

Venkatasubramanian[16 ] using a thin film 3-ω method. Their data is plotted in Fig. 3.4 (b)

for comparison with our NEMD calculations. The experimental data shows a larger vari-

ation in thermal conductivity (0.22 − 0.48 W/mK) than our NEMD results (0.27 − 0.36

W/mK) for the range of superlattice periods considered in our calculations. Despite this, we

find that our calculated values lie in the same range as the experimental results and exhibit

similar trends. Moreover, the observed minimum thermal conductivity in our results occurs

around the same superlattice period as the experimental data. The discrepancies between
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experimental and calculated results can partly arise from difficulties in fabriacting superlat-

tices with nanometer-scale periods, which can lead to presence of atomic interdiffusion at

the interfaces and variance in the superlattice period thicknesses.

3.3 Conclusions

In summary, we have calculated the interfacial thermal conductance across Bi2Te3 -Sb2Te3

interfaces using non-equilibrium molecular dynamics (NEMD) simulations which employ

the two-body interatomic Morse potential parameters developed in our earlier works. The

interfacial conductances are found to increase over a range of temperatures from 200 − 400

K. We also use the modified Landauer transport calculations with the phonon transmission

coefficients obtained from the diffuse mismatch model (DMM). Our calculations consider the

phonon dispersion over the full Brillouin zone to account for the anisotropic phonon transport

properties of the bulk materials. The highly matched nature of the acoustic phonons and

the lower optical phonon branches are reflected in the DMM transmission coefficients at low

frequencies. The difference between our NEMD calculated conductances and those from

our Landauer transport calculations increases at higher temperatures, which is attributed

to the increasing contribution of inelastic phonon scattering processes. We also use NEMD

simulations to calculate the thermal conductivities of Bi2Te3 -Sb2Te3 superlattices (SLs) with

varying periods. A minimum SL thermal conductivity of 0.27 W/mK is observed at a period

of 4 nm from our NEMD calculations. Our results show good agreement with experimental

measurements found in literature, with respect to the range of thermal conductivities and

the location of the minimum SL thermal conductivities. The insight gained in our study

paves the way for designing efficient thermoelectric devices and investigating other potential

multilayer structures such as interfaces with atomic diffusion and random multilayers.
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4. MACHINE LEARNING MAXIMIZED ANDERSON

LOCALIZATION OF PHONONS IN APEROIDIC

SUPERLATTICES

4.1 Introduction

The design and discovery of nanostructured materials with targeted thermal transport

properties has become increasingly important in various applications such as thermal man-

agement of electronic chips and batteries [174 ], [175 ], thermal interface materials [176 ], [177 ],

thermal barrier coatings [178 ], [179 ] and thermoelectrics [180 ]. For example, high figure-of-

merit thermoelectric devices require ultra-low thermal conductivity materials without sig-

nificantly reduced electrical conductivity. Several methods have been investigated to reduce

thermal conductivity by increasing phonon scattering using isotopes[181 ], [182 ], defects[183 ],

[184 ] and grain boundaries[6 ]. In the past few decades, multilayer phononic structures such

as binary superlattices (SLs) have gained widespread attention due to their potential for low

thermal conductivity caused by increased interface scattering[16 ], [144 ], [154 ], [155 ]. The

thermal conductivity of SLs exhibits a minimum with variation of superlattice period, which

has been observed in many numerical studies[46 ]–[50 ] and confirmed in some experimental

investigations[16 ], [51 ]–[54 ].

Recently, it has been predicted that the minimum thermal conductivity can be further

suppressed by randomizing the SL layer thicknesses,[55 ], [58 ]–[60 ] which introduces phase-

preserving scattering mechanisms leading to coherent phonon localization. Wang et al. [59 ]

formulated a two-phonon model to decompose the thermal conductivity of SLs and RMLs

into coherent and incoherent phonon contributions. Moreover, the influence of parameters

such as bond strength[55 ], interface roughness[55 ], [57 ], [185 ] and isotopic modulation[186 ]

on the thermal conductivity of multilayer structures has also been investigated. More re-

cently, evidence of localization of coherent phonons in disordered graphene phononic crystals

was shown by Hu et al.[187 ], while Juntunen et al.[188 ] provided a spectral description of

the frequency-dependent phonon localization lengths in Si/Ge RML systems. We note that

in many of the above studies, the variation in thermal conductivities of RMLs arising from
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independently generated random structures was not elucidated. In contrast, Ju et al.[156 ]

observed a significant spread in thermal conductivities of Si/Ge RMLs with different distri-

butions of layer thickness, even at the same average period and composition ratio. Their

results indicate that such structural parameters give rise to a very large design space, yet

their effect on the lower limit of RML thermal conductivity has not been resolved. An

optimization study within this design space will enable us to obtain a more fine-grained tun-

ability of thermal conductivity as well as gain insight into the underlying physics of phonon

transport in RML structures.

The selection of experiments and simulations for materials discovery and property en-

gineering has traditionally been guided by the domain knowledge of researchers in the rel-

evant field. However, such intuition-based explorations, combined with prohibitively large

design spaces, may preclude the discovery of low-probability-of-occurrence novel solutions

which show counter-intuitive trends. Recently, metaheuristics and machine learning-based

methods have increasingly been used to accelerate the exploration of new materials with

targeted properties[157 ], [189 ], prediction of material structures[190 ], [191 ] and optimization

of nanostructure geometry[88 ], [156 ], [158 ]. The availability of specialized hardware archi-

tectures has led to increased popularity of various machine learning techniques including

neural networks[192 ]–[194 ], genetic algorithms[195 ], [196 ] and support vector machines[197 ]

among others. In this work, we use a genetic algorithm (GA)-based search process in con-

junction with molecular dynamics (MD) simulations to discover the lower limit of thermal

conductivity in Si/Ge random multilayer systems. Our machine learning-based approach

demonstrates the elimination of human bias in the search process, thereby allowing us to

identify non-intuitive trends in structural features leading to ultralow thermal conductivity.

It is observed that the minimum RML thermal conductivity occurs, surprisingly, at a lower

average period than that at which the minimum superlattice thermal conductivity is found.

Finally, it is desirable, but challenging, to come up with a set of descriptors out of the op-

timization process, which can be intuitively understood and adopted during experimental

realizations of such systems. Our work provides a hierarchical description of these structural

features that will provide guidance for application of RML systems in various applications.
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Figure 4.1. Representative structures showing (a) superlattice of period 4.4
nm and (b) random multilayer with the same average period. Inset shows
encoding of the RML structure in the GA as an N -bit array, where each bit
is assigned 1 or 2 if the unit cell is Si or Ge respectively. (c) Schematic of
the NEMD simulation setup showing the RML sandwiched between two heat
baths which are thermostatted to impose a heat flux through the system.

4.2 Simulation methods

4.2.1 Designing RML structures

We have studied superlattice (SL) and random multilayer (RML) structures created from

diamond structured Si and Ge with the heat transport along the [001] direction. A number

of theoretical and numerical studies have been performed on Si/Ge systems such as bulk

alloys[198 ], [199 ], superlattice thin films[200 ]–[203 ] and superlattice nanowires[204 ]–[206 ],

due to the ubiquitous presence of these semiconductors in a variety of applications. The

lattice constant is initially set at 0.543 nm which is the room temperature lattice constant

of silicon. To create the SL and RML structures, layers of Si and Ge are stacked along

the [001] direction in a periodic and random manner, respectively. The smallest allowable

thickness of a layer is chosen to be one unit cell. The representative SL and RML structures

are shown in Fig 4.1 (a-b). The period of the SL is defined as the total thickness of a pair of

consecutive Si and Ge layers, while for the RML, the period is calculated as the sum of the

84



average thicknesses of Si and Ge layers in the whole structure. We perform our calculations

for system sizes of 6 × 6 unit cells in the in-plane direction (cross-section), and 10 or 40 unit

cells (5.43 nm or 21.72 nm respectively) in the cross-plane direction. No constraint is placed

on the composition ratio of the RML structures (ratio of the number of layers of Si and Ge),

which is allowed to vary during the optimization procedure.

4.2.2 Non-equilibrium molecular dynamics simulations

Non-equilibrium molecular dynamics (NEMD) simulations are performed using LAMMPS[166 ]

to calculate the thermal conductivity of the multilayer structures. The schematic of the sim-

ulation setup is shown in Fig 4.1 (c). The SL/RML is placed between two heat bath regions

on either side which are capped by two end regions of fixed atoms to prevent sublimation.

The interaction between Si and Ge atoms is modeled using the Tersoff potential[207 ], which

has been widely used to predict thermal transport in Si-Ge system. The equations of motion

are integrated using a Verlet algorithm with a timestep of 0.5 fs. Initially, periodic boundary

conditions are applied in all directions and the system is relaxed at zero pressure and a tem-

perature of 300 K in an NPT ensemble for 500 ps, after which it is run for another 250 ps in

an NVE ensemble to observe proper conservation of energy. To introduce non-equilibrium

conditions, the atoms in the two end regions are then fixed, and the temperatures of the hot

and cold baths are maintained at 330 K and 270 K respectively using Langevin thermostats

to create a temperature gradient in the multilayer region. The system is allowed to reach

steady state over a time of 4.5 ns and the temperature profile is monitored by binning the ve-

locities of atoms along the direction of heat transport. The cross-plane thermal conductivity

is then obtained from the steady state heat flux q as

κ = q

∆T/L
(4.1)

where L is the length of the multilayer structure. The thermal boundary resistance (TBR)

is calculated from the temperature drop at each individual interface (∆Ti) as
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Figure 4.2. Schematic of the genetic algorithm based optimzation method
showing the different steps involved. The GA population is initialized ran-
domly with a chosen number of members and the fitness of each member is
based on its thermal conductivity evaluated using NEMD simulations. The
stopping criteria is checked and if it is not achieved, selection, crossover and
mutation operations are carried out on the best individuals to obtain the next
generation.

Ri = ∆Ti

q
(4.2)

4.2.3 Genetic Algorithm based optimization method

Genetic algorithms are a class of evolutionary algorithms which mimic the principle of

natural selection to arrive at the fittest solution in an optimization problem. The basic prin-

ciple used by the by a GA is that already identified good solutions can provide potentially

better solutions by evolutionary operations. In a GA based optimization approach, each

candidate solution in a multivariate design space is represented by a string called a chromo-

some, formed by concatenating the individual encoded variables or genes. A commonly used
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approach to encode variables in a GA is converting numeric values to binary strings, which

lends itself conveniently to evolutionary operations. Subsequently, an initial population is

formed out of a chosen number of chromosomes, which may be generated randomly or using

previous intuition about the design space. An objective function is designed for the particu-

lar problem to evaluate the performance of candidate solutions. Each member of the initial

population is assigned a fitness value based on its evaluation against the objective function.

In the next step of the iteration, a new population of the same size is generated by per-

forming the evolutionary operations of selection, crossover and mutation on the individuals

of the current population. Selection ensures that only the fittest individuals in the current

iteration are carried over to the next, and can be done probabilistically based on the fitness

values of the individuals. Crossover (or reproduction) produces new candidate solutions by

combining genes from the selected individuals, while mutation perturbs the value of ran-

domly selected genes within a chromosome so that unexplored areas of the design space can

be accessed. Together, these operators ensure that the search does not get trapped in a local

optimum within the solution space. The GA progresses by performing the above operations

on the new population members, until a convergence criteria is reached, which can be set

with respect to the change in fitness value over successive generations.

We now discuss the implementation of the above steps in our GA based optimization

process. To encode RML structures as chromosomes, an N -bit binary array is used for an

RML of N unit cells length in the cross-plane direction. As shown in the inset of Fig 4.1 ,

each position in the array is coded as 1 if it is a Si unit cell and 2 if it is a Ge unit cell. In

this way, each chromosome representing an RML structure is formed of N binary variables,

each of which can take values of 0 or 1. Additionally, the first and last unit cells which are

in contact with the heat baths at each end are fixed to be Si (0) and Ge (1) respectively.

As a result, the number of possible solutions in the design space is 2N−2. A population

size of 20 is used and the initial population is formed out of 20 RML structures which can

be generated randomly or according to our choice. The inverse of the cross-plane thermal

conductivity is chosen as the objective function, which is maximum for the structure with

the lowest thermal conductivity. We employ a rank-based selection scheme, in which the

probability of each individual being selected is proportional to the inverse of its rank when
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the individuals are sorted by fitness values from best to worst. For every two individuals

selected, crossover and mutation operations are performed to partially alter their genes so

that possibly better solutions can be obtained from the fittest individuals identified so far.

We implement a single-point crossover, in which a position along the N -bit array is chosen

randomly and the sections of the chromosome following this position are interchanged among

the two individuals. In contrast, mutation involves a single chromosome and is implemented

probabilistically in either of two ways: (i) at a single position randomly chosen along the

chromosome, the value of the gene is flipped (1 to 0 or vice-versa), or (ii) the size of a layer

of contiguous variables with the same value (0 or 1) is increased or decreased by switching

its neighboring variables to the same value. The first process can change the number of

interfaces in the RML structure by flipping the material type at a location, whereas the

second process alters the average period and composition ratio of the structure by changing

the thickness of a layer of Si or Ge. We use a crossover probability of 0.8 and a mutation

probability of 0.4 based on convergence rates observed in preliminary trials. A schematic

process flow of the GA based optimization process, involving evaluation of the fitness function

and implementation of the crossover and mutation operations, is shown in Fig 4.2 .

4.3 Results and discussions

4.3.1 Manual intuition-based search for the minimum RML thermal conductiv-
ity

The thermal conductivities of the N − N superlattice system of length 40 unit cells are

first calculated, where N = 1, 2, 4, 5, 10 and 20 to allow only an integral number of periods.

Figure 4.3 (a) shows that a minimum superlattice thermal conductivity of around 3.5 W/mK

is found to occur at period of 4.43 nm. The nature of the variation of thermal conductivity

with average SL period has been explored in literature in significant detail [16 ], [46 ]–[54 ].

The existence of the minimum superlattice thermal conductivity has been attributed to the

competition between incoherent and coherent phonon dominated transport regimes. When

the superlattice period d̄ is large, phase breaking occurs due to anharmonic phonon-phonon

scattering and the role of incoherent phonons become more important. As the superlattice
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Figure 4.3. (a) Variation of thermal conductivity with average period length
for N-N superlattices (red squares), RML structures obtained using manual
intuition-based optimization (diamonds) and RML structures obtained using
machine-learning based optimization (filled circles). The minimum RML ther-
mal conductivity obtained from our optimization algorithm occurs at a smaller
average period than that at which the minimum superlattice thermal conduc-
tivity is observed. The dashed purple line marks the random alloy limit. (b)
RML structure with minimum thermal conductivity obtained from a manual
optimization, (c) RML structure with minimum thermal conductivity obtained
from a machine-learning based optimization, and (d) RML structure with av-
erage period below d̄min, RML.

period decreases, the increase in interface density leads to higher phonon-boundary scattering

and reduced thermal conductivity. On the other hand, wave interference effects become

increasingly important at small d̄, and the phase breaking of phonons does not take place

before the phonons scatter at the interfaces. The repeated reflections at periodic interfaces

give rise to a modified phonon spectra including coherent phonon modes which are not

scattered at the interfaces. Decreasing d̄ below the critical superlattice period leads to an

increase in thermal conductivity, which has been explained by effects such as less zone folding

leading to weaker band flattening and increased group velocities.
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Figure 4.4. Variation of (a) thermal conducitivity and (b) average RML
period of the population with each iteration of the genetic algorithm based
search process. The blue circles mark the best individual (lowest κ) of each
generation

The design space for imparting randomization to the superlattices is extremely high,

making an exhaustive search for the RML with minimum thermal conductivity impossible.

For a multilayer system consisting of N unit cells where the shortest layer length is con-

strained to be one unit cell, the total number of possible RML structures is 2N . In such

cases, the traditionally adopted best approach is to search a smaller subset of the solution

space, guided by previously discovered knowledge and intuition about heat transport in mul-

tilayer structures. Since the superlattice thermal conductivity minimum is obtained around

a period of 4 nm considering our results and those in literature[202 ], it can be intuitively ex-

pected that the RML with minimum thermal conductivity can be obtained by randomizing

the layer thicknesses of the same superlattice. As a result, we perform a manual search by

evaluating the thermal conductivities of 100 randomly generated RML structures with an

average period of 4.43 nm. The thermal conductivities of such RML strcutures are plotted

in Figure 4.3 (a). The lowest thermal conductivity obtained among these structures is 2.45

W/mK for the structure shown in Fig 4.3 (b), which represents a 30% reduction from the

minimum superlattice thermal conductivity.
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4.3.2 Genetic Algorithm-based search for the minimum RML thermal conduc-
tivity

Considering the infeasibility of an exhaustive search of the extremely large solution space,

the use of machine learning can benefit the current problem significantly. Here, we choose a

genetic algorithm (GA) to predict the best simulations to perform on our finite computational

resources by utilizing information from the results of previously performed simulations. We

apply the GA based search process on RML systems consisting of 40 unit cells (21.72 nm). In

order to explore greater portions of the design space and avoid getting trapped within local

minima, 15 independent GA runs are performed starting from different initial populations.

Figure 4.4 shows the results of one run started with an initial population consisting entirely

of structures with a single Si-Ge interface and a composition ratio of 1. Since this structure

has the lowest possible interface density, we expect it to be the worst candidate in the design

space. As a result, this initial population can be considered as a starting point for the search

when no prior knowledge or intuition is available about the minimum thermal conductivity.

The genetic operators of crossover and mutation allow the GA to converge towards the

minimum thermal conductivity even with this sub-optimal initial population. The evolution

of the population with iterations of the GA is shown in terms of thermal conductivity in

Fig 4.4 (a) and the average RML period in Fig 4.4 (b). As seen in Figure 4.4 (a), although

all individuals of the initial population show high thermal conductivities, these gradually

get eliminated from the population in subsequent generations. The reason for this can be

understood by noting from Fig 4.4 (b) that the later generations contain RMLs with much

lower average periods and thus higher interface densities. The lowest thermal conductivity

value for the entire population decreases rapidly and saturates about the minimum value in

about 35 generations, in RMLs with an average period of 1.85 nm. The RML structure with

the lowest thermal conductivity amond all the GA searches performed is shown in Fig 4.3 

(c).
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4.3.3 Influence of average RML period on the minimum thermal conductivity

To gain insight into our optimization results, the thermal conductivity variation with

average period for the RMLs sampled during all our optimization runs on the 40 unit cell

RML system is plotted in Fig 4.3 (a). We only include structures with a composition

ratio of 1 in order that the results can be compared to the N − N superlattice system. The

major transport regimes can be easily identified from the relative magnitudes of SL and RML

thermal conductivities at different average periods. At high average RML periods (>10 nm),

the thermal conductivity of RMLs is similar to that of SLs, indicating that randomization of

layer thicknesses has negligible effect on thermal conductivity. Incoherent phonons, therefore,

dominate thermal transport in both SLs and RMLs at these high periods. Below 10 nm,

the thermal conductivity of RMLs keeps on decreasing with decreasing average period, while

that of SL starts to level off. As a result, we can infer that coherent phonon transport

starts becoming important in SLs in this region. As the average period further decreases,

the thermal conductivity of the N − N superlattice reaches a minimum at the critical SL

period (d̄min,SL) and then bounces back. However, the thermal conductivities of RMLs keep

on reducing until reaching a minimum at a period of d̄min,RML = 1.85 nm, which is, notably,

much lower than the critical SL period (d̄min,SL). This surprising behaviour can be attributed

to the fact that while the increasing phonon coherence leads to an increase in the thermal

conductivity for the SL, it puts more phonon modes in localization in RMLs causing a

decrease in thermal conductivity. Moreovoer, the occurence of the observed minimum RML

thermal conductivity at a smaller period than what was intuitively expected proves that

our previous manual search could at best converge to a local minimum, and highlights the

effectiveness of machine-learning based methods. We also calculated the random alloy limit

of thermal conductivity by randomly assigning 50 percent of atomic masses in a Si structure

of the same length to the mass of Ge, which is plotted in Figure 4.3 (a). As seen from the

figure, the GA-optimized RML structures are able to break the random alloy limit by more

than 25 %. Although the phonons in the random alloy structures have small mean free paths

due to alloy scattering, they can still propagate and contribute to the thermal conductivity.
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However, the majority of coherent phonons in the RML are completely localized and have

no contribution to the thermal transport, leading to lower thermal conductivity values.

Below d̄min,RML, the thermal conductivity of RMLs increases steeply as the average period

decreases further. This occurs because at such low average periods, the room for randomizing

the individual layer thicknesses from the periodic SL thickness becomes small, as a result

of which localization of coherent phonons is reduced significantly. This is seen in Fig 4.3 

(b-d) where the RML with the lowest thermal conductivities obtained for three different

average periods from the GA are plotted. For d̄ = d̄min,RML = 1.85nm (Fig 4.3 (c)), the

layer thicknesses have room to become sufficiently randomized to allow for localization of

coherent phonons, while providing a high interface density for incoherent phonon scattering.

The combination of both of these favorable effects leads to the existence of the minimum

RML thermal condcuctivity at this period. For d̄ = 1.38nm < d̄min,RML (Fig 4.3 (d)),

the majority of the superlattice has to be composed of single layers of Si and Ge arranged

periodically, which allows for less room for localization of coherent phonons. In the limiting

case of the shortest average period possible (d̄ = 1 unit cell of Si + 1 unit cell of Ge), the

RML structure is the same as a 1-1 superlattice with no room for introducing randomness.

On the other hand, at periods greater than d̄min,RML (Fig 4.3 (b)), the larger thicknesses of

individual layers provide more freedom for randomization and spatial distribution of layers.

However, the lower interface density also gives rise to lower incoherent phonon scattering

and overall higher thermal conductivities.

4.3.4 Degree of randomness

RMLs with the same average period and composition ratio can still have different distri-

butions of layer thickness within them. Since the interface densities and hence the degree of

incoherent phonon scattering in such RMLs are the same, the variation in thermal conduc-

tivity at a particular average period, observed in Fig 4.3 (a), is attributed to varying degrees

of localization of coherent phonon modes within the RMLs. The existence of partially lo-

calized phonon modes in RMLs was identified from the thermal conductivity accumulation

with respect to phonon frequency by Juntunen et al.[188 ]. Such partially localized modes,
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Figure 4.5. (a) Dependence of thermal conductivity of RML structures on
the degree of randomness (DOR) as defined in the text. The orange circles and
dashed lines represent the lower bound of thermal conductivity obtained using
our machine-learning based search process. For the four structures marked in
the plot, the calculated thermal boundary resistances of all interfaces in each
of the structures, superimposed on the visualization of the RML structures
themselves, are shown in figures (b)-(e).

which have finite contribution to thermal conductivity of RMLs, will depend on the local

randomization of layers throughout the RML structure. The degree of randomization of a

RML can be quantified by the normalized average deviation of layer thicknesses from that

of the corresponding SL of the same period, and is given by

DOR =
∑n

i=1 |ti − d̄/2|
n × d̄/2

(4.3)

Here, n is the number of periods in the RML, ti is the thickness of individual layers and

d̄ is the average RML period which is also the corresponding SL period. Normalization by
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the mean period accounts for the fact that the same average deviation from a smaller mean

period causes a larger degree of randomness than from a larger mean period. The variation

of thermal conductivity with DOR is plotted in Figure 4.5 (a) for all RML structures with

an average period of d̄ = d̄min,RML = 1.85 nm and a composition ratio of 1. Although it

is intuitively expected that a larger deviation from the periodic SL structure leads to lower

thermal conductivity of RMLs, we surprisingly find that the RML structure with minimum

thermal conductivity occurs at an intermediate degree of randomness. Moreover, a variation

in thermal conductivity of 25 % is observed within structures at this degree of random-

ness. To understand the reasons governing this non-intuitive trend, we calculate the thermal

boundary resistance (TBR) at the interfaces within four RMLs selected at different degrees

of randomness, as marked in Fig 4.5 . To eliminate the effect of lattice mismatch, the lattice

constants of both Si and Ge in these simulations are fixed at 0.543 nm. The trends in thermal

conductivity obtained for these lattice-matched RMLs is verified to be similar to those in the

original systems. The TBRs obtained within the four structures are shown in Figures 4.5 

(b-e), superimposed on the corresponding RML structures for easier visualization. At low

values of DOR, the deviation of the RML from the corresponding SL is low and much of it

retains the periodic structure. As a result, localization of coherent phonons is less in these

RMLs, leading to coupled interfaces with low values of TBR in these periodic regions as

seen in Fig 4.5 (d). On the other hand, high values of DOR require some layer thicknesses

of the RML to be quite large, while other regions are necessarily composed of contiguous

single layers leading to periodic interfaces and low TBR values (Fig 4.5 (e)). However, at

an intermediate degree of randomness, the occurence of both small and large layer thick-

nesses interspersed among each other creates a favourable environment for coherent phonon

localization, leading to relatively higher values of TBR across the entire structure (Fig 4.5 

(b)). Finally, Figure 4.5 (c) shows the TBRs calculated in another RML at this intermedi-

ate DOR, in which periodic sections with low interfacial resistances are noticed. Although

the distribution of layer thicknesses in this RML are similar to the best structure (b), the

different relative placement of these layers within the RML leads to formation of periodic

zones within this RML with low interfacial resistances and higher thermal conductivity.
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4.4 Conclusions

To summarize, we have searched for the lower limit of thermal conductivity in Si/Ge

based RML systems using both an intuition-guided manual search and a genetic algorithm

based search process. We find that our manual search is, at best, able to converge to a local

minimum of thermal conductivity, while the machine-learning based search can efficiently

lead us toward the RML structure with the globally minimum thermal conductivity. The

minimum RML thermal conductivity is found to occur at an average RML period that is

much lower than the period of minimum SL thermal conductivity. The location of this av-

erage period is determined by a tradeoff between high interface density at smaller periods

and sufficient scope for randomizing the layer thicknesses at larger periods. The variation

in thermal conductivity within RMLs having the same period is further resolved by defining

the degree of randomness as a measure of deviation of the RML layer thicknesses from the

periodic SL layer thickness. We have shown that the GA optimized minimum thermal con-

ductivity occurs for RMLs with an intermediate degree of randomness. By calculating the

thermal boundary resistances within different RMLs, it is observed that greater local mis-

match between adjacent layers leads to higher coherent phonon localization and thus higher

TBRs. The different distributions of layer thickness and moreover the spatial placement of

these layers causes a variation in the degree of coherent phonon localization. The generality

of our optimization method implies that it can be applied to other systems as well such as

graphene sheets with disordered arrangement of pores and binary superlattices with rough

interfaces of different geometries.
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5. AN ITERATIVE MACHINE LEARNING APPROACH FOR

DISCOVERING UNEXPECTED THERMAL CONDUCTIVITY

ENHANCEMENT IN APERIODIC SUPERLATTICES

5.1 Introduction

The demand for efficient energy systems and high-performance electronic devices has

created the challenging requirement to rapidly identify new materials and design nanostruc-

tures with extreme transport properties. As the limitations of traditional intuition-driven

trial-and-error search methods become more prominent, machine learning (ML) and data in-

formatics have emerged as powerful tools for solving these design and optimization problems.

In thermal transport, ML methods have found success in predicting material properties and

accelerating design of nanostructures with target thermal transport wei2020machine, [62 ],

[84 ], [85 ], [87 ], [208 ]–[211 ]. However, the applications of ML to solve thermal engineering

problems till date have been limited to finding optimal solutions which confirm previously

well understood phonon transport theory. ML has not yet been used to explore and discover

exceptional solutions which can help us uncover new facets of phonon transport theory and

guide the design of novel nanostructures. This can be attributed to the “interpolative” na-

ture of traditional ML algorithms which allows for accurate prediction and exploration within

the subspace spanned by known data points (and, therefore, known physics), but fails for

excursions outside the training dataset. Consequently, suitable adaptations are needed to

use ML methods in the identification of materials or nanostructures showing exceptional

physical properties.

In this work, we demonstrate the potential of an adaptive machine learning approach

to identify unexpected thermal transport behavior in aperiodic superlattices. Binary super-

lattices (SLs), composed of periodically alternating sections of two materials, have received

widespread attention in the recent decades due to their lower thermal conductivity compared

to the constituent materials [212 ]–[215 ]. The cross-plane lattice thermal conductivity in SLs

can be modulated by variation of the average SL period. This makes them greatly attrac-

tive for applications such as thermoelectric devices[144 ], [154 ], [155 ], where a low thermal
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conductivity is required to maintain a temperature gradient across the device. As a re-

sult, numerous experimental and theoretical studies have been performed to understand the

nature of the underlying phonon transport across SLs. Phonons travelling along the cross-

plane direction of SLs can exhibit particle-like behavior when anharmonic phonon-phonon

scattering causes them to lose phase information before encountering an interface. On the

other hand, multiple phase-preserved reflections at closely spaced periodic interfaces can

lead to wave-like phonon transport characteristics. The transition from particle-like phonon

transport (incoherent regime) at large SL periods to wave-like phonon transport (coherent

regime) as the period is reduced leads to a minimum SL thermal conductivity, which has

been predicted theoretically [47 ], [48 ], [213 ], [215 ] and recently observed experimentally [17 ],

[54 ], [171 ], [216 ].

Recently, randomizing the constituent layer thicknesses in periodic SLs has been proposed

as an efficient means to further reduce the thermal conductivity, even below the random alloy

limit [55 ], [58 ]–[60 ]. In the resulting aperiodic superlattices or random multilayers (RMLs),

destructive interference of coherent phonons due to reflections at the randomly spaced in-

terfaces can cause their localization similar to Anderson localization of electrons, thereby

limiting thermal transport by these long wavelength phonon modes [59 ], [61 ]. Naturally,

many studies have been performed to uncover the influence of structural parameters, such

as mass ratio [55 ], [58 ], average period[55 ], [59 ], [62 ], isotopic modulation[186 ] and inter-

facial mixing[55 ]–[57 ] on the thermal conductivity of RMLs. Due to the extremely large

design space of imparting random perturbations to the layer thicknesses, the RMLs stud-

ied in these works have been generated randomly or from the intuition of domain experts.

Moreover, studies using accelerated search algorithms have been performed to find the lower

limit of RML thermal conductivity and the underlying phonon transport characteristics, by

searching a subset of the entire RML design space[62 ], [87 ]. Machine learning algorithms

such as Bayesian optimization and genetic algorithm search have allowed efficient identifica-

tion of only the RML structures with ultra-low thermal conductivities, this mitigating the

computational cost associated with the prohibitevely large set of candidate structures.

Since the studies mentioned above aimed to gain insight into the lower limit of ther-

mal conductivity of RMLs, the resulting structures generated have been found to reinforce
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the accepted hypothesis that any manner of randomization of the layer thicknesses of the

periodic SL causes reduction in thermal conductivity. However, such intuition-based ex-

plorations precludes the discovery of novel solutions which may be contrary to previous

understanding. More specifically, it has not yet been elucidated whether certain random

distributions of SL layer thicknesses can lead to higher thermal conductivity than that of

the periodic SLs. If such RML structures showing enhancement of thermal conductivity do

exist within the search space, the governing transport characteristics can uncover new facets

of phonon transport theory and guide the design of novel nanostructures. Interestingly, Wei

et al.[86 ] performed a similar search over the design space of 2D graphene nanomeshes dif-

ferent configuration of pores, where it is understood that randomness in pore spacings leads

to a lower thermal conductivity due to localization of coherent phonons. Using a machine

learning based search process, they demonstrated the existence of nanomeshes with disor-

dered pore configurations which show higher thermal conductivity than that with uniformly

spaced pores. Such demonstrations further drive the search to find exceptions for other well

understood systems. However, the results from the search space already explored lead us to

believe that such RMLs constitute a very low fraction of the design space, and a systematic

approach is required to efficiently identify these low-probability-of-occurence solutions.

Here, we identify RML structures with unexpectedly higher κl than corresponding SLs

with same total length and average period. To accelerate the search over the prohibitively

large design space, a convolutional neural network (CNN)-based prediction method is used for

obtaining the κl of the candidate structures. An iterative approach is employed for generating

a representative training dataset that enables the CNN to accurately predict the high κl of

the target RML structures that are absent from the initial dataset. Finally, the identified

non-intuitive RML structures are used to gain insight into the heat transport mechanisms

leading to higher κl and its correlation with RML structural features. We find that the

presence of closely spaced interfaces in RMLs with a large average period leads to an increased

coherent phonon contribution, thereby causing lower interfacial thermal resistance. Our

work describes a general purpose and efficient method to perform an accelerated search or

optimization of nanostructure design, when the computational cost of individual simulations

is high.
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Figure 5.1. Schematic of the NEMD simulation setup showing the multi-
layer nanostructure (SL or RML) sandwiched between two thermal baths. A
layer of atoms is fixed at each end to impose fixed boundary conditions. The
corresponding temperature profile is also shown.

5.2 Simulation methods

5.2.1 Non-equilibrium molecular dynamics simulations

Thermal conductivity calculations for the multilayered nanostructures are performed us-

ing non-equilibrium molecular dynamics simulations with the LAMMPS package [217 ]. The

interatomic interactions are described using the three-body Tersoff potential [218 ], [219 ],

which is commonly used to study vibrational properties of the Si/Ge system. The unequal

equilibrium lattice constants of Si and Ge in these potential descriptions leads to a symmet-

ric cross-sectional strain in the system, which can cause large oscillations at the interface

regions [45 ]. To eliminate this strain, the lattice constant of Ge is artificially set to be equal

to that of Si within the interatomic Tersoff potential parameters. A 6 × 6 UC cross-section

is used, which is sufficient to provide converged κl values.The thermal conductivity of the

nanostructures is calculated at a temperature of 300 K. A timestep of 0.5 fs is used to inte-

grate the equations of motion, which is sufficient to resolve the highest frequency of phonon

vibrations in either material.

A schematic of the NEMD simulation domain for direct calculation of thermal conduc-

tivity is shown in Fig. 5.1 . Two bulk material regions consisting of 20 UCs of Si and Ge are

attached to either side of the SL or RML to act as thermal reservoirs. Initially, the entire

system is relaxed for 500 ps at 300 K, under a constant pressure and temperature ensemble

(NPT) with periodic boundary conditions applied to all three directions. Following this,
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another 250 ps of equilibration under fixed volume and energy (NVE) is performed. Subse-

quently, non-equilibrium conditions are applied by thermostatting the Si and Ge bulk regions

on either side at 330 K and 270 K respectively, using Langevin thermostats. Two UCs of

atoms at each end of the system are also kept fixed to mimic fixed boundary conditions

along the heat transport direction. The system is allowed to reach steady state under this

imposed temperature gradient over a period of 500 ps. Following this, the temperatures at

equal intervals along the cross-plane direction are obtained by from the velocities of atoms

in one-dimensional bins. The temperature and heat flux data is collected and averaged over

a period of 4 ns. The cross-plane lattice thermal conductivity (κl) is then calculated as

κl = q

∆T/L
(5.1)

Here, q is the steady state heat flux and L is the length of the SL or RML along the heat

transport direction. The thermal boundary resistance at each interface of the system (Ri)

can also be calculated from the temperature drop across the interface (∆Ti) as

Ri = ∆Ti

q
(5.2)

5.2.2 Convolutional neural network-based prediction of thermal conductivity

While the NEMD simulations can provide accurate measures of thermal conductivity of

the superlattice structures using a simple calculation framework, they are computationally

expensive when more than hundreds of simulations need to be performed for a particular

task. As a result, exhaustive searches using MD simulations over design spaces as large

as the current problem become impractical. In such scenarios, the conventionally adopted

approach is to use available “domain expertise” to search a subspace of the entire design

space for candidates with target properties. However, this method falls short in case one

wishes to search for solutions which are contrary to the previously understood knowledge,
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Figure 5.2. Schematic of the convolutional neural network architecture. The
SL or RML structure is encoded as a binary array and used as the input layer.
This is followed by a series of 1-D convolutional layers consisting of multiple
feature kernels. A max-pooling layer is added to reduce the feature sizes. A
flatten layer after the 1-D convolutional layers passes the features to a fully
connected layer. The output layer consisting of a single node provides the
predicted thermal conductivity.

and novel systematic methods must be considered to sample the search space. Moreover,

using an intuition-guided explorative method can limit the search process to regions around

a local optimum as opposed to the required globally optimum solution. This was highlighted

in our previous work[62 ], where a manual search for the aperiodic superlattice with lowest

thermal conductivity could not converge toward the structure with the globally minimum

solution in the search space. In such cases, it is desirable to use search techniques that do

not require previous intuition and, therefore, eliminates the possibility of confirmation bias.

In particular, the use of machine learning techniques which can greatly accelerate property

calculations, is considered in the context of the current problem.

With the advent of specialized computer hardware, highly parallelized computing envi-

ronments and availability of large amounts of data, machine learning techniques have excelled

in a variety of tasks involving data analysis, image processing and pattern recognition[220 ]–

[224 ]. In particular, neural networks (NNs) have emerged as a powerful tool for regression and

classification problems due to their ability to fit complex multifunctional datasets without

the need for encoded sets of rules which may introduce human bias. As a result, they have

been successfully used in several engineering problems, including predicting material proper-
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ties and informed design of experiments for predicting nanostructures with targeted thermal

transport properties[84 ], [85 ], [208 ]–[211 ]. Yang et al.[84 ] used a NN to predict the interfacial

thermal resistance at a graphene-hexagonal boron nitride interface, with good agreement be-

tween predicted resistance and the values calculated from MD simulations. Chakraborty et

al.[211 ] also used a neural network to predict the thermal conductivity of RML structures

based on a Lennard-Jones system, and identify the structural disorder parameters influenc-

ing thermal conductivity in these structures. Convolutional neural networks (CNNs) are a

class of NNs that have gained widespread popularity for their success in image and pattern

recognition applications, particularly due to their translational invariance characteristics. An

advantage of CNNs is their ability to form regression maps based on features extracted by

the NN itself from input arrays or images. This allows CNNs to identify relevant structural

features without the need for users to provide suitable descriptors, which would otherwise

be a very challenging task. Wei et al.[85 ] trained a CNN to predict the effective thermal

conductivities of composite materials using cross-sectional images as input data, while Rong

et al.[210 ] used a similar method to obtain the thermal conductivities of 3D composites using

2D cross-sectional images.

The thermal conductivity of 1-D SLs and RMLs is governed by features such as number

of interfaces and their spatial density and periodicity, which may be translationally invariant.

Given these considerations, we chose to employ a CNN to predict the thermal conductivity

from the multilayer structure. The architecture of the CNN used in this work is shown in

Fig. ??. The input layer to the CNN is an N-bit array, corresponding to the number of

UCs in the RML structure (20 or 40). Each bit can take a value of 1 or 2 depending on

whether the corresponding UC at that location along the superlattice length consists of Si

or Ge atoms respectively. This is followed by one or more one-dimensional convolutional

layers, each of which consist of several kernels or filters to extract the relevant features

from the input array by striding over the length of the input. Here, we use convolutional

layers consisting of 44 − 50 filters with filter lengths of 5 − 9 bits, a stride length of 1

and no-padding. A max pooling layer is used after every two convolutional layers, which

causes down-sampling of the identified features and incorporates translational invariance in

the feature maps. After multiple convolutional layers, we use a flatten layer to reduce the
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dimensionality of the features. Finally, a fully connected or dense layer consisting of 100

nodes is used to combine the identified features into a single output thermal conductivity

value. Non-linearity is accounted for within the CNN by using a Rectified Linear Unit

(ReLU) as the activation function throughout the network. For the 20 UC RML system, we

use a CNN consisting of 2 convolutional layers, 1 max-pooling layer and 1 fully connected

layer. On the other hand, for the 40 UC RML system where the number of input parameters

is much larger, we switch to a CNN architecture consisting of 4 convolutional layers with 1

max-pooling layer after every 2 convolutional layers, and 1 fully connected layer as before.

The weights of the different layers are initiated randomly and need to be fit to the

training data provided to the network. This is done by calculating a loss function over the

entire training set and back-propagating the errors over the various layers of the network

to minimize the loss. The loss function used to train our CNN is chosen to be the mean

absolute percentage error (MAPE), given by

MAPE = 1
N

N∑
i=1

|yi − ȳi

ȳi
| × 100% (5.3)

Here, N is the number of training data points provided to the network, yi is the predicted

output and ȳi is the target output. Apart from the loss function, the root mean square error

(RMSE) is also used a metric to evaluate the performance of the network. We note that

these metrics are most commonly associated with regression problems, instead of others

such as accuracy which are convenient for classification tasks. The training of the network

by back-propagation of errors is performed using the Adamax algorithm [225 ] and the fitting

is performed over 300 − 500 epochs within which sufficient convergence of the loss function

is observed. Overfitting of the data by the CNN, which is common occurence in neural

network training, is avoided using early stoppage of the fitting process if the testing loss is

found to become constant or increase. Once the CNN is trained, it can be used to predict

the thermal conductivities of the entire dataset of RML structures within several seconds,

thereby making an exhaustive search possible. This is, of course, above the time required
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Figure 5.3. (a) Schematic of the Si/Ge periodic SL (left) and aperiodic SL or
RML (right). (b) Variation of κl with average period at 300 K for RML struc-
tures generated during the manual random search (triangles) and the machine
learning accelerated search (circles).The thermal conductivities of the reference
N − N superlattices are indicated by the diamonds. (b) Probability distribu-
tions of thermal conductivities (W/mK) of the RML structures generated by
a manual search (blue bars) and the ML search (yellow bars). The region
spanned by the thermal conductivities of the N − N SLs is shaded in red.

to generate a representative training dataset containing a reasonable number of data points,

which can be done systematically to a great advantage as explained in a subsequent section.

5.3 Results and discussions

5.3.1 Manual random search for higher thermal conductivity RMLs

We perform our calculations on the model Si/Ge system using non-equilibrium molecular

dynamics simulations to search for high κl RML structures. This system has been exten-

sively investigated in literature, given the wide application of these semiconductor materials

as multilayer systems [45 ], [202 ], [203 ], [226 ]–[229 ] and the simplicity of performing molec-

ular dynamics simulations using interatomic potential parameters. The SLs and RMLs are

constructed by stacking the diamond cubic unit cells (UCs) of each material along the [100]

direction. Two different lengths of SL and RML structures are studied in this work: a shorter

20 UC (11 nm) system and a longer 40 UC (22 nm) system. Periodic boundary conditions

are maintained in the other two directions, so that our system results in a superlattice thin

film. The smallest layer thickness allowed along the cross-plane heat transport direction
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is set to be 1 UC, and only RMLs with equal number of Si and Ge layers are studied to

ensure meaningful comparison of κl among all structures. Additionally, the first and last

UCs along the RML length are constrained to be Si and Ge respectively, to prevent extra

interfaces with the heat reservoirs. With these constraints imposed, the number of possible

RML structures is found to be 48620 for the 20 UC system and 35345263800 for the 40

UC system. Figure 5.3 (a) shows schematic images of representative periodic SL and RML

structures.

First, we search for 20 UC (10 nm) RMLs showing enhanced κl from the corresponding

SL structures. The thermal conductivities of the 20 UC N − N SL system are calculated,

where N is the number of unit cells of Si or Ge in one period of the SL. To ensure an

integral number of periods within the fixed total length of 20 UCs, N can take values of

1,2,5 and 10 only. The thermal conductivities obtained using NEMD simulations are shown

in Fig. 5.3 (b), where a minimum of 2 W/mK is obtained at an SL period of ∼ 2.2 nm.

This characteristic variation of κl with SL period has been predicted theoretically [47 ], [48 ],

[213 ], [215 ] and recently observed experimentally [17 ], [54 ], [171 ], [216 ], and is commonly

understood to be the result of the transition from coherent phonon to incoherent phonon

dominated transport regimes. Phonons travelling along the cross-plane direction of SLs with

large periods can exhibit particle-like behavior when anharmonic phonon-phonon scattering

causes them to lose phase information before encountering an interface. On the other hand,

multiple phase-preserved reflections at closely spaced periodic interfaces can lead to the

formation of coherent phonon modes showing wave-like phonon transport characteristics. At

periods greater than 2.2 nm, the interface density is small enough to ensure a low coherent

phonon contribution. As a result, the reduction in incoherent phonon scattering by the SL

interfaces leads to a greater thermal conductivity at higher periods. In contrast, when the

SL period is below 2.2 nm, a significant portion of the thermal transport is contributed by

the coherent phonon modes, which are no longer scattered by the closely spaced interfaces.

In this regime, the increase of thermal conductivity at lower periods has been attributed to

effects such as weaker band flattening and increased group velocities.

We then attempt the traditional intuition-guided search process to identify possible RMLs

showing κl enhancement due to aperiodicity. Due to the absence of any previous evidence
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Figure 5.4. Schematic of the iterative search algorithm used to discover
unexpected thermal conductivity (κl) enhancement in aperiodic superlattice
systems.

supporting the existence of enhanced κl RML structures, no guidance is available to narrow

down the search to a computationally tractable subset of the design space. In this case, a

random search can be considered to be one of the best possible search methods available.

To perform the manual search, we randomly choose 300 candidate RML structures from

the design space and calculate the thermal conductivities using NEMD simulations. The

results of these calculations are compared with the SL thermal conductivities in Fig. 5.3 

(b). We find, as expected, that all of the 300 randomly generated RMLs have significantly

lower thermal conductivities than the corresponding SLs. We also calculated the histogram

of thermal conductivity values for the 300 randomly generated RML structures as shown in

Fig. 5.3 (c). It can be observed that the majority of RMLs have low thermal conductivities

compared to the SLs. This shows the evident need for an alternative systematic and efficient

way to perform the search and motivates the use of machine learning for such tasks.

5.3.2 Machine learning accelerated search for higher thermal conductivity RMLs

We next perform an accelerated search using a convolutional neural network for rapid

thermal conductivity prediction. A well-known characteristic of neural networks is their
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“interpolative” nature, i.e. they cannot generally be expected to extrapolate to unknown

points outside the region spanned by the training dataset. This is problematic for our cur-

rent objective, where the CNN is required to accurately predict thermal conductivities of

high κl exceptional RMLs which are absent from the initial training dataset. To resolve this,

we utilize the ability of CNNs to extract spatial features contributing to locally enhanced

thermal transport. Although the training dataset is composed of RML structures with low to

moderate κl, many of these structures contain spatial features that lead to locally enhanced

thermal transport, such as large bulk regions or short regions of periodic interfaces. By

forming feature-property maps from these structural features, the CNN is able to assimilate

them and accurately predict the high κl of RMLs containing combinations of these favorable

features. On the other hand, randomly sampling the design space does not automatically

ensure inclusion of RML structures showing enhanced local thermal transport characteristics

within the dataset. This can be seen from the probability distribution of thermal conduc-

tivities of the 300 randomly generated RML structures (Fig. 5.3 (c)), where the majority of

RMLs have low thermal conductivities compared to the N −N SLs. In order to overcome this

challenge, we adopt an iterative approach to generate our training dataset comprising RMLs

with moderate to high thermal conductivities while performing the accelerated search. In

the initial step, the CNN is trained on a dataset of the 300 randomly generated RMLs. The

trained network is then used to predict the thermal conductivities (κCNN) of all structures

in the search space. Next, we select 100 RML structures predicted by the CNN to have

the highest thermal conductivities and perform NEMD calculations of thermal conductivity

(κNEMD) to validate the CNN predicted values. If any of these 100 RML structures identified

in the search show a higher κNEMD than the corresponding SL, the search is stopped with

successful identification of the exceptional RML structures. Otherwise, these RML struc-

tures are included in the training data with their κNEMD values, and the CNN is retrained

to fit the augmented data set. Subsequently, the thermal conductivities of all structures are

again predicted (with potentially higher accuracy) and the algorithm is progressed in this

manner. Figure 5.4 shows the complete work flow of the search algorithm followed in our

work. In the initial iteration, the κCNN values are not expected to be accurate over the

entire search space, given the relatively small size of the training dataset and the absence
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of representative features. However, the accuracy of prediction improves as the size of the

training dataset increases with each successive iteration and RMLs with high κl constitute

a greater fraction of the training data.
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Figure 5.5. (a) Variation of testing MAPE (black squares, left axis) and
RMSE (red squares, right axis) with each iteration of the iterative search pro-
cess for the 20 UC RML system. The top axis indicates the size of the dataset
on which the CNN is trained in that iteration of the search (b) Comparison
of CNN predicted κl and NEMD calculated κl (true value) for the dataset
of RML structures. The shaded area represents a ±0.1 W/mK bound from
y = x. (c) Thermal conductivities of 20 UC RMLs sampled by the random
search (squares) and the CNN accelerated search (circles) with total compu-
tational time spent. The dashed line represents the κl of the 5-5 SL structure
with error bounds. (d) The 20 UC and 40 UC RML structures with higher
thermal conductivities than the corresponding SLs which were identified by
the CNN accelerated search.

We first evaluate the performance of the CNN in predicting κl of the 20 UC RML system.

Figure 5.5 (a) shows the variation of the MAPE and the RMSE with each iteration of the

search process, when evaluated on a testing set of unknown RML structures not introduced to

the CNN during training. We observe that the CNN is able to predict thermal conductivities

with a very low MAPE varying from 4.6 − 6.4%, or an average RMSE of 0.09 W/mK. The

MAPE generally decreases with each progressing iteration of the search due to the addition

of more RML structures to the training dataset which increases the representative set of

features. The comparison between the predicted (κCNN) and “true” values (κNEMD) is shown
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by the parity plot in Fig. 5.5 (b) after training the CNN on data from 600 RML structures.

It is seen that the CNN can provide accurate predictions over a wide range of thermal

conductivities from 1−2.5 W/mK, thus demonstrating the capability of the CNN to extract

suitable spatial features governing low and high κl. The progress of the ML enabled search

for 20 UC RMLs with enhanced κ are shown in Fig. 5.5 (c), in comparison to a manually

performed random search. We only compare RML structures against the corresponding

SL having the same average period. As a result, the contribution of interface scattering

of incoherent phonons to the thermal transport is the same in the compared multilayer

structures, and any difference in κl is purely the result of coherent phonon transport. We

find that our ML-based search process is able to identify RML structures with higher κ

than the corresponding SL within two iterations of the search utilizing 200 CPU hours.

In contrast, the manual random search returns far lower κl than periodic SLs even after

double the simulation hours spent. The thermal conductivities of the RMLs scanned by the

ML search process are plotted with respect to average period in Fig. 5.3 (b). By searching

through RML structures with different average periods, the κl of RML structures are found

to exceed the superlattice κl at a relatively higher average period of 5.4 nm, corresponding

to the 5 − 5 SL. The identified RML κ of 2.36 W/mK is found to be higher than the SL κ of

2.28 W/mK by 3.5%, which is above the statistical uncertainty as confirmed by averaging

these values over multiple independent runs. The structures of the 5 − 5 SL and the RML

showing enhanced κl are shown in Fig. 5.5 (d).

We also perform a similar search for a larger RML system with a total length of 40 UCs.

Since the number of possible RML structures for this system is several orders of magnitude

larger than the 20 UC system, we limit our search to a tractable subset of the design space

by using the knowledge gained from the results of the search on the 20 UC RML system.

In particular, only RMLs with the relatively larger average period of 5.4 nm, corresponding

to perturbations of the 5 − 5 SL, are sampled. With this constraint, the reduced design

space consists of 938961 RML structures which can be efficiently handled by our ML search

framework. Similar to the previous search process, the CNN accelerated search method

can successfully identify an RML structure with higher κ than the corresponding SL within

validation of 612 RMLs which constitute less than 0.1% of the design space. The identified
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Figure 5.6. Calculated thermal resistances at all interfaces (yellow triangles)
in three different 40 UC RML structures: (a) RML with high κ identified by
the ML enabled search (b) 5-5 SL (c) RML with low κ identified by manual
random search. The RML structures are underlaid for ease of visualization.
(d) Comparison of the total interfacial thermal resistance (black squares) and
total thermal resistance (red squares) for the three RML structures (a-c).

structure, shown in Fig. 5.5 (d), has a κl exceeding that of the SL by 5.5% which is also

confirmed by averaging over multiple runs. Interestingly, the 40 UC RML structure identified

by our search is found to be a composite SL which can be created by combination of the

single interface structure and the shorter period 2 − 2 SL. As a result, the structure has the

features of a local periodicity which enhances thermal transport despite having a globally

random layer thickness distribution.

5.3.3 Contribution of interfacial resistance towards κl enhancement

Finally, the identified exceptional RML structures shown in Fig. 5.5 (d) are studied to

understand the underlying phonon transport characteristics leading to the disorder induced

enhancement of κl. We observe the presence of small layer thicknesses due to closely spaced

interfaces in these structures, which we attribute as the cause for the increased thermal

transport. At an SL period of 5.4 nm, the relatively large layer thicknesses are above the

coherence length of most phonons, as a result of which the contribution of coherent phonon
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transport to the SL κl is quite low. However, the reduced thicknesses of some layers in the

identified RMLs lead to an increased coherent phonon contribution, whereby the apparent

thermal resistance of the interfaces are lowered. To verify our hypothesis, we calculated

the total resistance across the RML as well as the contribution of the apparent interface

resistances for three different 40 UC structures: (i) the RML with κl higher than the 5 − 5

SL identified through our search process, (ii) the 5 − 5 SL and (iii) a RML with low κl

identified by the random search. The apparent interfacial thermal resistances at each of

the interfaces in the RML structure are shown in Fig. 5.6 (a-c), superimposed on the visual

representation of the RML structure. We can see that the compared to the 5−5 SL (Fig. 5.6 

(b)), the apparent interfacial resistances are visibly reduced in the high κ RML (Fig. 5.6 (a)),

which is the effect of a higher amount of coherent phonon transport. As a result, the RML

shows a lower total interfacial thermal resistance and total thermal resistance than the SL,

as seen in Fig. 5.6 (d). Finally, the localization of coherent phonon modes due to sufficient

layer thickness randomization in the RML structure shown in Fig. 5.6 (c) and the absence of

many closely spaced interfaces leads to a higher interfacial resistance and lower κl, which is

in accordance to the previously accepted hypothesis. Our results indicate that randomness of

layer thicknesses in SLs can be engineered to have dual effects via tuning the contribution of

coherent phonons, which can either decrease or enhance thermal conductivities. Generally,

in short period SLs, randomness can cause localization of coherent phonons and reduce κl.

On the other hand, certain forms of aperiodicity in large period SLs can enable stronger

coherent phonon transport that is not localized, thus enhancing κl.

5.4 Conclusions

In summary, we demonstrate a machine learning based approach for discovering nanos-

tructures with non-intuitive thermal transport charactestics. Although it is generally ac-

cepted that randomization of layer thicknesses of a binary periodic superlattice lowers its

cross-plane thermal conductivity, we aim to find structures showing the opposite trend, i.e.

an enhancement of thermal conductivity due to disorder. Since no previous intuition is

available to guide our search and given the extremely large design space, we first perform a
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random search which fails to identify any RMLs showing thermal conductivity enhancement.

Subsequently, we employ a convolutional neural network to rapidly predict the thermal con-

ductivities of all RMLs in the design space. An iterative method is employed to dynamically

generate the training dataset containing RMLs with moderate to high thermal conductivity,

which helps the CNN learn the spatial features leading to locally enhance phonon trans-

mission in the RML structures. The results show that our CNN accelerated search is able

to identify RML structures with higher thermal conductivity than the superlattice at an

average period of 5.4 nm. By analysing the identified optimal and suboptimal structures,

we attribute the enhanced RML thermal conductivity to an increase in coherent phonon

contribution at closely spaced RML interfaces as compared to the SL, thus causing lower

interfacial resistance in the RMLs. Our results demonstrate the ability of machine learning

based methods to help discover expections and low-probability-of-occurence solutions in a

large search space. The general purpose neural network based method used in this work

can be applied to several other tasks as well, such as identification of ideal interface con-

figurations in RMLs or stacking configuration of 2D heterostructures for optimized thermal

transport.
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6. MACHINE LEARNING OPTIMIZED APERIODIC

SUPERLATTICES WITH HIGH REFLECTIVITY FOR

THERMAL BARRIER COATINGS

6.1 Introduction

The design of thermal barrier coatings (TBCs) for high temperature applications is ex-

tremely important in order to keep pace with the demand for higher efficiency operation of

turbine engines and power generators. For example, although the efficiency of gas turbines

can be increased by raising the turbine inlet temperature, this is severely limited by material

considerations that provide an upper limit of temperature above which thermal degradation

can occur. Thermal barrier coatings play a crucial role in preventing the turbine blades and

rotors from reaching extremely high temperatures and mitigating the limitations imposed by

the mechanical and thermal stability of the constituent materials. Since TBCs are respon-

sible for retarding the transport of heat to the metallic turbine components, TBC materials

are required to have low thermal conductivity and high melting points, which are commonly

observed in ceramic materials such as yttria stabilized zirconia (YSZ). In the past decades,

significant efforts have been made to design improved TBC materials which can provide

better thermal insulation at a lower coating thickness, which reduces the parasitic mass load

for rotating turbine components.

Heat transport to the metallic substrate through the TBC can take place via two path-

ways: heat conduction through phonons and thermal radiation through photons. At low

temperatures, the heat transport is dominated by phonon mediated heat conduction and

radiation effects are small. Consequently, much effort has been devoted to design materials

and microstructures with low lattice thermal conductivity[230 ]–[235 ]. On the other hand,

at higher temperatures, heat transport by radiation can lead to a significant temperature

increase of the metallic substrate, even as high as 50°C[15 ]. Thermal transport due to radi-

ation can become the dominant mechanism if the TBC material is transparent in the peak

wavelegths of the irradiation, which is shifted to lower wavelength values at high tempera-

tures according to the Wien’s displacement law. For example, it has been shown that YSZ
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has a high transmittance to radiation in the wavelength of 0.3 − 5µm[236 ], which accounts

for 90% of the total blackbody irradiation at T = 1500K. As a result, TBC systems need

to incorporate both phonon and photon scattering mechanisms for efficient thermal isola-

tion at high temperatures. Similar to strategies for lowering lattice thermal conductivity

by enhancing phonon scattering, several methods have been investigated to enhance photon

scattering in TBCs for increased reflectivity to the incoming thermal radiation. Wolfe et

al.[237 ] studied the performance of ZrO2 − 8 wt. % Y2O3 (8YSZ) whose microstructure

was modulated by periodic strain fields, and found that the hemispherical reflectance was

increased by 28 − 56%. One of the effective methods to reduce photon transmission is the

use of multilayered and functionally graded TBCs. Such systems can overcome the limi-

tations imposed by the thermophysical and optical properties of a single material, as well

as enhance photon and phonon scattering at multiple interfaces within the system. Most

studies in literature on such multilayered TBC systems have focused on the fabrication[238 ],

[239 ], mechanical characterization[240 ] and failure analysis[238 ], [239 ], [241 ]. Kelly et al.[242 ]

reported a 73% infrared reflectance maximum at 1.85µm and an overall increase in reflection

spectrum from 1 to 2.75µm in multilayer 7YSZ-Al2O3 TBC coatings. Huang et al.[243 ] de-

signed and analyzed a system of similar constituent materials, where 7YSZ-Al2O3 multilayer

stacks of varying layer thicknesses were used to achieve broadband photon scattering and

high reflectivity. Ge et al.[244 ] fabricated and studied the radiative transport properties

of YSZ/NiCoCrAlY duplex TBCs and multilayered functionally graded TBCs with varing

multilayer structures, porosities and thicknesses. They found a negligible transmittance for

the majority of YSZ/NiCoCrAlY functionally graded TBCs studied, with the top YSZ layer

having a strong influence on the overall reflectance. Despite the superior performance of

these materials, they cannot be readily used at temperatures in excess of 1500°C due to

limitations of thermal stability. As a result, such high temperature applications require the

development of novel TBC materials and systems which can efficiently limit heat transport

by conduction and radiation, as well as show significant resistance to thermal degradation.

It is evident that multilayered TBC systems can exhibit superior performance in inhibit-

ing both phonon and photon heat transfer. However, the process of development of such

multilayered systems has largely been emperical and driven by experimental trial-and-error
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studies. Moreover, a large number of candidate materials and several design parameters such

as individual layer thicknesses and stacking order of the constituent materials lead to a huge

design space for multilayered TBC systems which cannot be efficiently searched using these

traditional methods. In such problems, machine learning (ML) and materials informatics

(MI) are an attractive and even indispensible tool in driving design optimization and dis-

covering novel physical phenomena. ML and MI-based optimization methods, coupled with

accurate yet inexpensive numerical simulations to evaluate candidate solutions, have been

recently adopted to solve thermal transport engineering problems with great success, such as

accelerating design of nanostructures with target thermal transport properties[62 ], [84 ]–[87 ],

[211 ]. For example, a design optimization of 1 − D aperiodic superattices (SLs) showing

ultra-low lattice thermal conductivity was performed using a Bayesian Optimizer by Ju et

al.[87 ] and using a Genetic Algorithm in one of our previous works[62 ]. Novel insights into

the phonon transport mechanisms in these structures, including the role of phonon localiza-

tion, was uncovered from the results of the MI-based optimization. MI methods have also

been used to optimize nanostructure design for target radiative transport properties, no-

tably for the design of selective emitters for radiative daytime cooling[245 ]–[247 ]. The great

success achieved by ML and MI methods in the above studies encourages us to employ such

methods for the design optimization of mutlilayered and functionally graded TBC systems.

In this work, we demonstrate the performance of CeO2 and MgO-based periodic and

aperiodic superlattice (SL) multilayer systems as high temperature TBCs with high reflec-

tivity to thermal radiation. We choose these candidate materials due to their good thermal

stability at the high temperature considered here, as well as their closely matched lattice

structures which can enable growth of high quality crystalline structures with perfect inter-

faces. Using a Genetic Algorithm (GA) optimization process, we are able to identify random

multilayer (RML) structures with total thicknesses of 5−30µm that can reflect ∼ 60−93% of

the blackbody radiation at T = 1500K. The spectral reflectivity and transmittance of each

candidate structure is calculated using the transfer matrix method. First, we calculate the

reflectance of periodic CeO2-MgO SLs with varying total and average layer thicknesses, and

identify the occurence of an optimal average layer thickness at which the total reflectivity is

maximized. The effect of randomness is studied by manually providing varying degrees of
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perturbation to the individual layer thicknesses, which causes localization of photons. Next,

we employ our GA based optimization process on multilayer systems with total thickness

varying from 5 − 30µm. The GA-optimized structures show a broadband high reflectivity

in the wavelengths coinciding with the peak blackbody radiation at the desired tempera-

ture. Moreover, our automated GA optimization framework is able to identify such high

reflectivity RML structures by performing evaluations for only a small number of candidate

structures in the design space, and does not require any previous intuition as input, which

also removes the possibility of human bias adversely influencing the search process.

6.2 Simulation methods

6.2.1 Materials and multilayer structures

We study multilayer structures composed of CeO2 and MgO, which are chosen due to

the large contrast in their refractive index, high melting points for thermal stability in high

temperature TBC applications and their closely matched lattice structures. A schematic

of a representative multilayer structure with N layers is shown in Fig. 6.1 (a). The layer

thicknesses can periodically alternate to form a superlattice (SL) or may be randomly chosen

to form a random multilayer (RML). The total thickness of the systems studied in this work

range from 5 − 50µm and the shortest thickness of each individual layer is allowed to be

10nm. We also assume perfectly smooth interfaces to exist between CeO2 and MgO layers.

The complex refractive indices of MgO and CeO2 are obtained from literature. The

refractive indices of MgO crystal was measured by Stephens and Malitson [248 ] for the

wavelengths of 0.36 − 5.35µm, while those of CeO2 were measured for wavelengths of 0.25 −

1.09µm by Guo et al. [249 ]. The refractive index at higher wavelengths till 8µm were obtained

using a simple linear extrapolation, which enables us to approximate the total reflectivity

integrated over the blackbody spectrum as defined in the subsequent section. We note that

the measured refractive index values were obtained at room temperature, which may be

different from those at the higher temperatures which are considered in this work. However,

we expect that use of lower temparture optical properties will be sufficient to capture the

relative differences in reflectivity between the different multilayer structures considered.
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Figure 6.1. (a) Schematic of the multilayer system with total length L, com-
posed of N layers with thicknesses d1, d2...dN . The field amplitudes within
each layer are shown, along with the incident and final transmitted fields. (b)
A representative plot of spectral reflectivity vs. wavelength for a multilayer
system. The shaded plot in the background represents the shape of the black-
body radiation spectrum at T = 1500K.

6.2.2 Transfer matrix method

The reflectance and transmittance of a one-dimensional multilayer structure can be eval-

uated using the transfer matrix method, which solves the Maxwell’s equations subject to a

uniform normal electric field E. Within the multilayer system, the field Ei is composed of

its forward (transmitted) component E+
i and its backward (reflected) component E−

i . The

schematic of the multilayer system with the field components is shown in Fig. 6.1 (a). We

use the convention of naming the fields at the left end of each layer as E+
i and E−

i and those

at the right end as E+
i and E−

i . The field components on each end of a layer of material A,

with complex refractive index mA, are related by:
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Here, (dA)1 is the thickness of the 1st layer composed of material A (as an example), kA =

2πmA/λ0 is the wave number and λ0 is the wavelength in vacuum. At any interface between

two materials A and B with complex refractive indices ma and mb respectively, the field

components on either side are related by the equation
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Equations 6.1 and 6.2 can be written for all N layers in a multilayer system, and the field

components at the boundaries of the multilayer can be related using the equation:

 E+
0

E−
0

 = I01(PA)1I12(PB)2I23...PNIN(N+1)

 E+
t

0

 (6.3)

For a given value of the incident field E+
0 , Eq. 6.3 may be solved for the reflected field

component E−
0 and the transmitted field component E+

t . One can then obtain the spectral

reflection and transmission coefficients from the relations:

R(λ) = |E
−
0

E+
0

|2 (6.4)

T (λ) = |E
+
t

E+
0

|2 (6.5)
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In order to evaluate the relative performances of the different multilayer structures stud-

ied, we calculate the total reflectivity using the blackbody radiation spectrum at 1500K,

which is representative of the thermal irradiation encountered in the proposed applications

of these multilayer structures as high temperature TBCs. Although the spectral properties

can provide insight into the physical behavior of these systems, an integrated scalar value

of reflectivity is required for evaluating a standardized optimization objective function as

defined in a later section. The total reflectivity is calculated as:

Rtotal =
∫

R(λ)Gbb(λ, T = 1500)dλ∫
Gbb(λ, T = 1500)dλ

(6.6)

where the blackbody radiation Gbb at a temperature T is given by:

Gbb(λ, T ) = 2πhc2

λ5
1

e
hc

kBλT − 1
(6.7)

Here, h is the Planck constant, c is the speed of light in vacuum and kB is the Boltzmann

constant. Figure 6.1 (b) shows a representative spectral reflectivity curve with the shaded

curve representing the blackbody radiation spectrum at 1500K.

6.2.3 Genetic Algorithm optimization of multilayer structure

In order to find the random multilayer configuration with the highest reflectivity, we

employ a Genetic Algorithm (GA) optimizer, which is an evolutionary algorithm that mim-

ics the principle of natural selection to find the optimal solution. Since the GA is not a

gradient-dependent optimization process, it works well for problems involving a complex

response surface since GA can avoid getting trapped within a region of local optimum.

Moreover, GA’s are found to have superior performance compared to other gradient-based

optimization problems when the number of optimization variables is large, and candidate

evaluations within each iteration can be parallelized to reduce computational time. In a GA

based optimization, candidate solutions within the design space are encoded as individuals
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Figure 6.2. (a) Schematic of the Genetic Algorithm (GA) based optimization
process, showing the implementation of the selection, crossover and mutation
steps.

or phenotypes with properties represented as chromosome strings which are altered by evo-

lutionary operations. The GA is started with an initial set of encoded individuals called

a population, which may be chosen randomly or using any prior knowledge available about

the design space. The set of individuals in each iteration are called a generation. In each

iteration, the individuals in that generation are evaluated with respect to a suitably designed

objective function, and a fitness value is assigned to the individual based on this evaluation.

In the next step, a new population of parents is formed by probabilistic selection from the

current generation, where individuals with high fitness value have higher probability of being

selected. This step ensures that only the best properties or genes in the each generation are

propagated to the next generation, thus leading the generation towards better fitness indi-

viduals. Subsequently, the evolutionary operations of crossover and mutation are performed

to breed a new generation from the selected population of high-fitness parents. Crossover

(or recombination) is performed by choosing a pair of individuals from the parent pool and

stochastically combining genes from these parents for form two new offspring. On the other

hand, mutation introduces genetic diversity in a single offspring by altering the value of

one or more randomly selected genes which can introduce candidate solutions from unex-

plored regions of the design space. Both these operations are performed with a probability

121



of occurence which needs to be suitably chosen to ensure a balance between exploration of

new solutions and exploitation of already explored solutions. A new generation of candidate

solutions is obtained after performing the operations of selection, crossover and mutation

which is then progressed to the next iteration of the GA. To stop the GA, a convergence

criteria can be set such as a target fitness value or a relative change in fitness value over

several successive generations.

In the current work, we encode the periodic and random superlattices as N -bit binary

arrays, where each bit in the array represents the type of material for a 10 nm thick layer

at the corresponding position along the length of the superlattice. Each bit in the array is

encoded as 1 if the corresponding position consists of a CeO2 layer or 2 if it consists of a MgO

layer. It is to be noted that following this implementation, each individual in the solution

space is composed of N chromosomes, each of which is a categorical variable taking values 1

or 2. The design space consists of 2N possible solutions for a superlattice system of 10×N nm

total thickness. A population size of 1000 is chosen for all thicknesses (and, thus, number of

variables in the GA) studied. Since we are aiming to identify the superlattice structure with

the highest reflectivity, the objective function is chosen as the total reflectivity calculated

using the transfer matrix method as described in the previous section. The evaluation of

reflectivity for each candidate structure using the transfer matrix method is very fast, and can

be run in parallel to other candidates in the generation on our high-performance computing

cluster. The initial generation is populated by randomly generating superlattice structures,

while also ensuring that the entire range of average periods possible is represented in the

population. The selection process implemented here is a rank-based selection, where the

probability of an individual to be selected as for the parent pool is inversely proportional

to the rank of the individual when the entire population is sorted in decreasing order of the

objective function. The probability of selection is given by the expression

P (i) ∝ 1
c + rank(i) (6.8)
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where c is a parameter that can be adjusted to control the selectivity of best-fit individuals.

After selection of the parent pool, crossover and mutation are performed with probabilities

of 0.8 and 0.5 respectively, i.e. they are performed 80% and 50% of the time. We implement

a single-point crossover, in which a random position is chosen along the N -bit binary arrays

of two parents and the sections of the arrays succeeding the chosen position are interchanged

between the two parents to form the two new offspring. The mutation operation is performed

in one of two ways which can occur with equal probability: (i) a single bit is chosen along

the N -bit array of the offspring, and its value of the variable is flipped (1 to 2 or vice-versa)

to change the material occuring at that location, or (ii) a random layer (group of bits with

the same value) is chosen and its length is increased or decreased randomly (the length of

the adjacent layer is decreased or increased correspondingly to ensure the total thickness of

the structure is preserved). The first method of mutation serves to perturb the number of

interfaces in the structure, while the second method provides random perturbations to the

layer thicknesses. Figure 6.2 provides a schematic of the GA optimization process, including

the implementation of selection, crossover and mutation operations.

6.3 Results and discussions

6.3.1 Reflectivity of multilayer structures and effect of randomness

We first evaluate the reflectivity of CeO2-MgO based periodic superlattice multilayer

structures using the transfer matrix framework as described previously. The main structural

features which can be varied in these SL structures are the total thickness L and the repeating

layer thicknesses dCeO2 and dMgO. Here, we only consider SLs with equal layer thicknesses

of CeO2 and MgO, i.e. the SL has a repeating period of 2d. Moreover, the total thickness L

is constrained to be integral multiples of the repeating period. Figure 6.3 (a) shows the total

reflectivity of SLs with varying total thickness from 1 − 50µm and average individual layer

thickness ranging from 10nm−1µm. The plots for each total thickness show a similar trend

where the total reflectivity initially increases with the average layer thickness and eventually

reaches a peak reflectivity value, following which a decrease in reflectivity is observed. To

understand the reason behind this trend, we compared the spectral reflectivity plots of
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Figure 6.3. (a) Variation of total reflectivity with average layer thickness
for CeO2-MgO periodic superlattice (SL) structures for total thicknesses of
1 − 50µm. The spectral reflectivity vs. wavelength is shown for three differ-
ent structures with total thickness of 5µm and average layer thickness of (b)
davg = 100nm, (c) davg = 278nm which gives the highest reflectivity among
SLs with total thickness of 5µm, and (d) davg = 625nm. The shaded plot in the
background represents the shape of the blackbody thermal radiation spectrum
at T = 1500K.

SLs with total thickness of 5µm and three different average layer thicknesses as shown in

Fig 6.3 (b)-(d). In all three cases, we observe the existence of strong oscillations in the

spectral reflectivity, obtained from constructive and destructive interference due to multiple

phase-preserved reflections at the different interfaces in the multilayer structure. We also

notice the existence of a high reflectivity photonic “stopband” in each of the structures which

is similar to that observed in distributed Bragg reflector systems. The wavelength at which

this stopband occurs is found to vary with the average layer thickness of the structure, and

coincides with the location of the peak blackbody thermal radiation spectrum (shown by the
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shaded plot in the background) at an average SL layer thicknesss of 277.78 nm, which leads

to the peak reflectivity at this layer thickness.

The total reflectivity of SLs with a fixed average layer thickness also shows an initially in-

creasing trend with increasing total thickness of the system. This can be seen in Fig. 6.3 (a),

where the reflectivity at a constant average layer thickness increases from L = 1µm to

L = 20µm. For higher total thicknesses, the reflectivity does not show an increasing trend,

and can even decrease slightly, as evident from the lines corresponding to L = 20µm and

L = 50µm. Moreover, the increase in reflectivity with increasing total thickness is more sig-

nificant at average layer thicknesses greater than 200nm. The trend of increasing reflectivity

with increasing total thickness at these average periods can be attributed to the increase in

the number of interfaces within the SL structure at larger thicknesses, causing more high

reflectivity peaks to appear within the range of incident wavelengths due to greater number

of repeated reflections.

Next, we evaluate the effect of randomization of layer thicknesses on the reflectivity of

superlattice structures. In providing such randomness to the SL layer thicknesses, we ensure

that the total multilayer thickness as well as the total thickness of each constituent material

are conserved. To quantify the degree of randomness in a random multilayer structure, we

use the standard deviation of the layer thickness perturbations as a percentage of average

layer thickness, which is calculated as:

δ =

√√√√ N∑
i=1

(∆i−∆̄)2

N−1

davg

× 100% (6.9)

where, ∆i is the deviation of the ith layer thickness of the N -layer RML from the corre-

sponding SL layer thickness, and ∆̄ = 0 for conservation of total thickness of the constituent

materials. We note that such a definition of degree of randomness does not uniquely specify

a RML structure, since the relative positions of the layers does not affect δ at all. As a

result, there may still be significant variation of reflectivity among structures with the same

total thickness, average layer thickness and degree of randomness. To account for this, we
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Figure 6.4. Total reflectivity vs. average layer thickness, showing the effect
of randomizing the superlattice layer thicknesses by δ = 10, 20, 40 and 60%,
for two total thicknesses of (a) L = 5µm and (b) L = 50µm. The spectral
reflectivity vs. wavelength is plotted for comparison between two 5µm struc-
tures with (c) δ = 0%(perfectly periodic) and (d) δ = 40%; and for two 50µm
structures with (e) δ = 0%(perfectly periodic) and (d) δ = 40%. The shaded
plot in the background represents the shape of the blackbody thermal radi-
ation spectrum at T = 1500K. (Inset multilayer structures are for visual aid
only and do not represent the actual structures)
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generate three independent random structures at each average layer thickness and degree of

randomness, and choose the maximum total reflectivity value among the three RMLs for the

corresponding data point.

Figures 6.4 (a) and (b) show the effect of randomization of superlattice layer thicknesses

on the total reflectivity for two total thicknesses of 5µm and 50µm respectively. For both

cases, the total reflectivity is found to increase with increasing degree of randomness upto

δ ∼ 40%, after which a non-monotonic fluctiation is observed. While the maximum reflec-

tivity observed in the periodic structure without randomness is 0.39 and 0.40 for 5µm and

50µm thick superlattices respectively, the addition of randomness can increase the reflectiv-

ity to 0.51 and 0.92. The reflectivity vs. wavelength is compared between a periodic and

random structure (with δ = 40%) for 5µm and 50µm total thicknesses in Fig. 6.4 (c)-(d) and

Fig. 6.4 (e)-(f) respectively. It can be seen that the randomization of layer thicknesses causes

an overall increase of the reflectivity peaks in the spectral reflectivity plot, implying a low

transmission in these structures. This effect can be attributed to the randomness-induced lo-

calization of photons, similar to Anderson localization of electrons[250 ], and has been studied

theoretically and experimentally in similar 1 − D disordered systems[251 ]–[253 ]. The phase-

preserved reflections occuring at the randomly distributed interfaces within the RML can

cause constructive and destructive interference in a manner that the field is enhanced in and

confined to certain finite spatial regions.

6.3.2 Genetic Algorithm based optimization of multilayer structure for high
reflectivity

As mentioned previously, for a fixed average layer thickness and degree of randomness,

there may exist a large number of possible values and spatial distributions of layer thick-

nesses, each leading to a different “realization” of a RML structure. Considering a smallest

allowable individual layer thickness of 10nm, the number of possible RML structures for a

total thickness of Lµm is 2100L. With increase in the total thickness of the structure, the size

of the design space containing all possible realizations increases exponentially, and cannot

be covered comprehensively by an exhaustive or even intuition-guided search. Moreover, our

simulation results on a small number of realizations for fixed total thickness, average layer
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Figure 6.5. (a) Evolution of maximum reflectivity identified by the genetic
algorithm (GA) optimizer vs. generation of optimization, for four different
total thicknesses of 5, 10, 20 and 30µm (b) The average layer thicknesses of
all individuals in the population (red crosses) at each generation of the GA
optimization run for a total thickness of 10µm. The solid line shows the average
layer thickness of the RML with highest reflectivity at each generation of the
optimization process. (c) Design of the GA-optimized RML structures with
high reflectivity for three total thicknesses of 5, 10 and 20µm.

thickness and degree of randomness show that a significant variation in total reflectivity can

exist between these different structures. It is evident that in order to efficiently scan the

design space for high reflectivity RML structures with a target total thickness, an alternative

approach such as an automated and data-driven optimization method is necessary and can

greatly benefit the current problem.

Here, we use a genetic algorithm optimization process to search for RML structures

with high reflectivity. Figure 6.5 (a) shows the evolution of the maximum reflectivity among

all structures in each generation of the GA optimization, for the different total thicknesses

studied in this work. In each case, the initial population was created with a large range of

average layer thicknesses in order to promote sufficient diversity among the individuals and

not provide any inherent bias to the optimization process. The maximum reflectivity for

each run is found to increase from an initially lower value, corresponding to the expected
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range of reflectivities obtained if an RML was randomly generated, and converge to a much

higher reflectivity after a number of generations. The maximum reflectivity obtained in

the optimized structures is 59, 73, 85 and 90% for total thicknesses of 5, 10, 20 and 30µm

respectively, which translates to an enhancement of ∼ 22%, 20%, 20% and 10% over that

obtained in randomly generated RML structures of the same total thicknesses. In order to

arrive at the high reflectivity RML structures, the GA optimizer searches through structures

with various average layer thicknesses. This is shown in Fig. 6.5 (b) for the case of an

optimization run on a system with total thickness of 10µm, where the GA initially scans

through a range of average layer thicknesses and finally converges to a value of 303nm, which

is found to provide the structure with the highest reflectivity. The average layer thicknesses

of the GA optimized structures for all total thicknesses studied are found to lie in the range

of 290 − 350nm.

The designs of the GA-optimized RML structures for different total thicknesses are shown

in Fig. 6.5 (c). An interesting feature observed in all the optimized structures is the presence

of a CeO2 layer at the beginning and end of the structure, which leads to an odd number of

layers within the RML. This is in contrast to the traditional method of superlattice design,

where the layers are usually paired and the structure contains an even number of layers.

Since CeO2 provides a higher contrast in refractive index to air than MgO, the presence of

a CeO2 layer at either end of the structure results in an interface with a higher reflection

coefficient leading to enhancement of the total reflectivity.

To gain insight into the superior performance of the GA-optimized RML structures, we

compare the spectral reflectivity of three different structures as shown in Fig. 6.6 (a)-(c): the

best 10µm total thickness RML structure identified by the GA, the reference periodic SL

structure with same average layer thickness, and an unoptimized RML which was randomly

generated from the reference SL structure using a degree of randomness δ = 40%. As

can be observed in the figure, the inclusion of randomness in layer thicknesses causes an

increase in the reflectivity peaks in a wide range of wavelengths from the reference periodic

SL. However, the wavelengths of the high reflectivity peaks in the GA-optimized structure

coincide with the location of the peak blackbody radiation spectrum at T = 1500K (shown

by the shaded plot in Fig 6.6 (a)-(c)). As a result, the integrated total reflectivity of the
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Figure 6.6. Spectral reflectivity vs. wavelength for three multilayer structures
with total thickness of 10µm: (a) GA-optimized RML with high reflectivity, (b)
periodic SL with same average layer thickness, and (c) an unoptimized RML
structure with same average layer thickness. The field intensity distribution
vs. position along the multilayer structure is shown for the same structures
for a wavelength of 1.84µm: (d) GA-optimized RML with high reflectivity,
showing significant field enhancement, (e) periodic SL with same average layer
thickness, and (f) an unoptimized RML structure with same average layer
thickness. The x-direction denotes the stacking direction of the multilayer
structures.

GA-optimized structure is higher than that of the periodic SL which shows an overall lower

spectral reflectivity, as well as the unoptimized RML for which the high reflectivity peaks

do not coincide with the location of peak blackbody radiation.

We also calculate the distribution of field intensity inside the above multilayer structures

to elucidate the effect of photon localization on the enhanced reflectivity in the GA-optimized

RML structure. The magnitude of the local field at any position x along the direction of the

multilayer structure can be obtained from the sum of the forward and backward components

as:

|E(x)| = |E+(x) + E−(x)| (6.10)
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The normalized field intensity at any position can then be calculated as |E(x)|2/|E0|2,

which is shown in Fig. 6.6 (d)-(f) for a representative wavelength of 1.84µm. Our results

show a significant field enhancement within certain spatial regions within the GA-optimized

RML structure, which is lower in the unoptimized RML structure and largely absent in the

periodic SL structure. This clearly demonstrates the presence of photon localization within

the optimized RML structures leading to high reflectivity.

6.4 Conclusions

In this work, we employed a materials informatics (MI)-based optimization method to

identify CeO2-MgO random multilayer (RML) structures with high reflectivity for applica-

tions as high temperature thermal barrier coatings (TBCs). The transfer matrix method

was used to evaluate the spectral reflectivity of candidate multilayer structures, and the

total reflectivity was determined by integrating over the blackbody radiation spectrum at

T = 1500K, which is representative of the high temperatures of application for such TBC

systems. We first systematically investigated the influence of superlattice(SL) and RML

design parameters on the reflectivity, such as the total thickness, average layer thickness

and degree of randomness in individual layer thicknesses. For the periodic SLs of different

total thicknesses from 1 − 50µm, the presence of an optimum average layer thickness was

noticed at which the total reflectivity at T = 1500K is maximized, due to the overlap of

a high reflectivity “stop band” within the spectral reflectivity curve with the peak of the

blackbody radiation spectrum. The influence of randomness in layer thicknesses was found

to increase the overall spectral reflectivity due to the effect of photon localization. Next,

a Genetic Algorithm (GA) optimization process was used to identify high reflectivity RML

structures with total thicknesses of 5, 10, 20 and 30µm, and the optimized structures were

found to have reflectivities of 59, 73, 85 and 90% respectively, which translates to an en-

hancement of 22, 20, 20 and 10% over the maximum reflectivity in periodic SLs with same

total thickness. Surprisingly, all our GA-optimized structures show the presence of an odd

number of layers with an unpaired CeO2 layer at the extreme end of the RML, which de-

viates from the traditional way of designing binary superlattices with paired layers. This
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occurs because the unpaired CeO2 layer in the optimized RMLs provide a greater contrast in

refractive index with air, leading to a higher interface reflectivity. Finally, we calculate the

spectral reflectivity and the field intensity distribution within the optimal and sub-optimal

RML structures to understand the impact of photon localization. Our work demonstrates

an efficient and general purpose method for performing MI-accelerated design optimization

for target radiative properties of nanostructures, as well as provides the design of high re-

flectivity multilayered TBCs with insight into the physical mechanisms leading to enhanced

performance.
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7. SUMMARY AND FUTURE DIRECTIONS

7.1 Summary

In this dissertation, we have used a combinations of computationally expensive but

high-fidelity atomistic simulation methods and accelerated machine learning based predic-

tion/search algorithms to advance the understanding of phonon thermal transport in nanos-

tructured solids.

7.1.1 Atomistic simulations of thermal transport in Sb2Te3 and Bi2Te3 nanos-
tructures

In chapter 2, we develop classical interatomic potential parameters to describe thermal

transport in the important thermoelectric material Sb2Te3. The lack of suitable interatomic

potentials for many complex materials greatly prohibits effective use of MD simulations to

investigate properties of bulk materials and nanostructures. We use the method of fitting

to an ab initio energy surface to develop our potential parameters for the complex binary

material. Density-functional theory is used to calculate the ground state electronic structure

of the Sb2Te3 crystal, following which the total energies of a series of artificially distorted

lattice configurations are calculated to create the energy surface. A Morse potential func-

tional form is fitted to the energy surface and experimental data, and the parameters are

used to calculate the bulk crystal properties and phonon spectra using lattice dynamics. Our

parameters are able to reproduce the lattice structure, elastic constants and acoustic phonon

dispersion in good agreement with experimental data. Molecular dynamics simulations are

performed using the fitted potential to calculate the thermal conductivity of bulk Sb2Te3

using the Green-Kubo method. The predicted thermal conductivity shows a 1/T variation

in both in-plane and cross-plane directions with the results in the range of experimental

measurements. Frequency domain normal mode analysis (FD-NMA) is used to calculate the

modal phonon relaxation times and the accumulation of thermal conductivity with respect

to phonon mean free path. Our results show that phonons with mean free paths between 3

and 100 nm contribute to 80% of the total cross-plane thermal conductivity.
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In chapter 3, we utilize the developed potentials to investigate the phonon transport

across Bi2Te3-Sb2Te3 interface and superlattice nanostructures. Bismuth telluride (Bi2Te3)

and its alloys with antimony telluride (Sb2Te3) have long been considered to be the best room

temperature bulk thermoelectric(TE) materials. Particularly, ultra-low thermal conductivi-

ties have been observed in Bi2Te3-Sb2Te3 1-D superlattices (SLs), leading to thermoelectric

figures of merit (ZT ) as high as 2.4. In contrast, very few numerical studies have been

performed to provide insight into the phonon transport across these nanostructures. In

this work, we perform phonon transport calculations across a Bi2Te3-Sb2Te3 interface using

non-equilibrium molecular dynamics simulations. The results are compared with a modified

Landauer transport approach using phonon transmission coefficients from the diffuse mis-

match model. Our results show that inelastic scattering processes contribute to increased

interfacial thermal conductance by as much as 40% from 200 − 400 K. We also calculate

the thermal conductivities of Bi2Te3-Sb2Te3 superlattices with varying periods. A minimum

thermal conductivity of 0.27 W/mK is observed at a period of 4 nm, which is attributed to

the competition between incoherent and coherent phonon transport regimes. Our results,

when compared against previous experimental measurements, show good agreement with re-

spect to the range of thermal conductivity values and the trend and location of the minimum

superlattice thermal conductivity.

7.1.2 Machine learning accelerated discovery of non-intuitive phonon transport
in nanosctructures

Anderson localization of phonons due to aperiodicity can reduce thermal conductivity

in superlattices, but the lower limit of thermal conductivity remains elusive due to the

prohibitively large design space. In Chapter 4, we demonstrate that an intuition-based

manual search for aperiodic superlattice structures (random multilayers or RMLs) with the

lowest thermal conductivity yields only a local minimum, while a genetic algorithm (GA)

based approach can efficiently identify the globally minimum thermal conductivity by only

exploring a small fraction of the design space. Our results show that this minimum value

occurs at an average RML period that is, surprisingly, smaller than the period corresponding

to the minimum SL thermal conductivity. Above this critical period, scattering of incoherent
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phonons at interfaces is less, whereas below this period, the room for randomization becomes

less, thus putting more coherent phonons out of Anderson localization and causing increased

thermal conductivity. Moreover, the lower limit of the thermal conductivity occurs at a

moderate rather than maximum randomness of the layer thickness. Our machine learning

approach demonstrates a general process of exploring an otherwise prohibitively large design

space to gain non-intuitive physical insights.

In Chapter 5, we explore the possibility of discovering exceptions to the well understood

theory of randomness in superlattice layer thicknesses leading to reduced thermal conduc-

tivity. In particular, we aim to identify RML structures showing enhancement in thermal

conductivity from the corresponding SL of same period, thus showing counter-intuitive trends

in thermal transport. Since no intuition is available to narrow the search to a smaller subset

of the large design space, a random search is first attempted but is unable to identify any

exceptional structures. We then employ a machine learning accelerated search using a con-

volutional neural network (CNN) to replace the computationally expensive MD simulations

for thermal conductivity prediction of the RML candidates. The training dataset for the

CNN is generated dynamically in a systematic manner, to ensure that CNN can learn the

relevant spatial features leading to locally enhanced thermal transport in thr RMLs. Us-

ing the rapid prediction tool, we are able to search the entire design space in an exhaustive

manner, and successfully identify RML structures with thermal conductivity higher than the

corresponding SL. The enhancement in thermal conductivity is attributed to the presence

of closely spaced interfaces in the RML leading to increase in local coherence, whereas the

same is absent in the SLs at the relatively large average period. Apart from being able to

discover exceptions to previously well understood transport mechanism, our results show the

importance of a machine learning based search process in guiding nanostructure design for

target applications.

7.1.3 Machine learning accelerated discovery of multilayered photonic struc-
tures for thermal barrier coatings

In Chapter 6, we demostrate the application of materials informatics based optimization

for identifying multilayer photonic structures with enhanced refelectivity for application as
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high temperature thermal barrier coating (TBC) systems. Although most TBC materials

are chosen for their low lattice thermal conductivity, such systems also need to incorpo-

rate mechanisms to prevent thermal transport by radiation which becomes dominant at

higher temperatures. We investigate the performance of CeO2-MgO based periodic SLs and

RMLs, where the spectral reflectivity and transmissivity is obtained using the transfer matrix

method, and the total reflectivity is evaluated by integrating over the blackbody radiation

spectrum at T = 1500K. We first manually vary design parameters such as total thickness

and average layer thickness, which provides an upper limit on the reflectivity in periodic

SL systems. The inclusion of randomness in individual layer thicknesses is shown to signifi-

cantly enhance the reflectivity from the reference SLs, however, a large variation is seen for

different realizations of RMLs with the same degree of randomness. In order to search the

large design space of RML structures efficiently, we employ a GA optimization process which

is able to identify RML structures with upto 22% enhancement in total reflectivity from the

reference SL structures of same total thickness. By calculating the spectral reflectivity of and

the field intensity distribution within the optimal and sub-optimal structures, we are able to

demonstrate the effect of photon localization leading to enhancement of reflectivity in the

GA-identified high reflectivity RML structures. Our results show an accelerated approach

for designing multilayer TBC systems that can incorporate broadband photon and phonon

scattering mechanisms, and can be extended to include other design modifications such as

rough interfaces, defects and multiple-material multilayers.

7.2 Future directions

In this final section of the dissertation, we present a few research directions that may

be explored in continuation of the objectives of this thesis work. Similar to the vein of the

dissertation, future endeavors may proceed along the two avenues of high fidelity atomistic

simulations of thermal transport in novel materials nanostructures, and machine learning

techniques utilizing the high fidelity data for accelerated design optimization.
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Figure 7.1. Generation of heirarchically disordered superlattice systems with
perturbations in layer thicknesses, interface mixing and defects (left) and the
interface with machine learning algorithms for prediction and optimization
(right)

7.2.1 Thermal transport in heirarchically disordered systems

The study of thermal transport in periodic and aperiodic superlattices performed so far

as part of this dissertation have shown the effectiveness of introducing disorder to reduce

thermal conductivity of periodic systems. The randomly spaced interfaces in an aperiodic

superlattice can scatter the long wavelength coherent phonons, but fail to affect mid-to-low

wavelength phonons which can still have significant thermal transport. On the other hand,

the presence of defects and rough interfaces have been shown to be effective in scattering

phonons of shorter wavelengths. Although these mechanisms have been investigated seper-

ately for specific systems, the combination of these can have the effect of broadband phonon

scattering over a range of phonon wavelengths and mean free paths, thus providing a powerful

strategy to reduce the thermal transport in nanostructured thermoelectric materials.

In addition, the class of van der Waal’s heterostructures of two-dimensional (2D) mate-

rials such as graphene, MoS2, WSe2 and other materials have gained widespread attention
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in the recent decades. Due to the relative ease with which such materials can be stacked

as layers with little effect of lattice mismatch, systems built of combinations of these mate-

rials are attractive candidates for applications where independent tuning of electronic and

thermal transport properties are required, such as in semiconductors. Several studies have

been performed to investigate thermal transport in multilayer heterostructures, however, the

effect of introducing disorder in these systems such as defects, angular mismatch between

layers etc. have not been elucidated in detail.

In this scenario, our work may be extended to the use of atomistic simualation methods

such as MD simulations to uncover the effect of various levels of disorder on the systems

described above. Figure 7.1 shows a workflow involving systematically generated superlattice

nanostructures with various levels of disorder including randomly spaced interfaces, imperfect

interfaces and defects within bulk materials. Similar approaches may be considered for

systems formed from combinations of 2D materials. Due to the extremely large design space

formed, the atomistic simulations need to be interfaces with a machine learning method for

rapid screening of such systems. As with our previous studies, the optimal structures will

progress the current understanding of broadband phonon scattering in such systems.

7.2.2 Machine learning accelerated prediction of four phonon scattering rates
in solids

One of the more challenging aspects of predicting thermal transport in solids using ab

initio methods is the calculation of the phonon scattering rates. Although all orders of

phonon-phonon scattering processes are important in anharmonic materials, traditionally

the phonon scattering is considered only upto three phonon scattering terms, since reason-

able agreement is found with experimental measurements of many materials. However, as

the focus has shifted to materials with more extreme thermal properties, a significant dis-

crepancy has been observed in some cases between theoertical predictions and experimental

measurements, indicating the need to refine existing methods.

Recently, the inclusion of four phonon scattering as a dominant scattering mechanism in

some materials has been able to bridge this gap. The calculation of four phonon scattering

rates is by no means a trivial task, and the sheer complexity and computational expense
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involved has been a major factor in the negligence of four phonon contribution in theoretical

predictions for a long time. Feng et al.[139 ], [140 ] were able to mitigate the high computa-

tional cost and propose an efficient method for calculating the four phonon scattering rates

in solids. Their work has, since, been supported by experimental observation of high four

phonon scattering rates in materials such as boron arsenide.

Calculation of the four phonon scattering rates is still an extremely challenging and

computationally intensive task for any material, given the large phonon phase space and

the vast number of possible four phonon scattering events for which the calculation needs

to be performed. Moreover, the relative importance of different four phonon processes in

comparison to others can provide a shortcut to performing all of these calculations. Finally,

the relation of bulk properties to the four phonon scattering mechanisms can provide us

with guidance to idenfying more materials where four phonon scattering is important. Here,

the full capability of machine learning may be used to identify the inherent relations in the

phonon phase space to further reduce the computational workload in these calculations. One

can also understand the importance of different material properties on the scattering rates,

using suitable data processing techniques.
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