
HIGH-PERFORMANT REPLICATED QUEUE-ORIENTED
TRANSACTION PROCESSING SYSTEMS ON MODERN

COMPUTING INFRASTRUCTURES
by

Thamir M. Qadah

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

School of Electrical and Computer Engineering

West Lafayette, Indiana

August 2021



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Arif Ghafoor, Co-Chair

School of Electrical and Computer Engineering, Purdue University

Dr. Mohammad Sadoghi, Co-Chair

Computer Science Department, University of California, Davis

Dr. Walid G. Aref

Department of Computer Science, Purdue University

Dr. Elisa Bertino

Department of Computer Science, Purdue University

Dr. Michael D. Zoltowski

School of Electrical and Computer Engineering, Purdue University

Approved by:

Dr. Dimitrios Peroulis

2



To my beloved parents Mohammad (Tajuddin) and Kalthom,

my wife Hanan, and my children Rayan and Iyad.

3



ACKNOWLEDGMENTS

First and foremost, all praise be to Allah Almighty, who blessed me and enabled me to

complete my doctoral studies. The Ph.D. journey has been very stressful at times. However,

the most vital source of my relief is the belief in the virtue and effectiveness of my Istkhara

prayer prior to my decision to start my graduate studies at Purdue and my belief that it is

the best choice made by Allah Almighty for me. Therefore, I ask Allah to continue guiding

me to the right path and enabling me to become beneficial to others with the knowledge and

skills I gained during my doctoral studies.

I am incredibly grateful to my advisor Prof. Mohammad Sadoghi for helping me in

developing my research ideas and succeeding in publishing them in top peer-reviewed venues.

His support in providing me with the computational resources to conduct the experiments

in my dissertation is invaluable and crucial to my ability to perform extensive experimental

evaluations of my research prototypes. Under his guidance, I was able to fulfill one of my

goals and get the best paper award for a peer-reviewed paper as the lead author, which

also happened to be my first! Working with him in the ExpoLab research group has been

a wonderful and fulfilling experience. I am indebted to my advisor Prof. Arif Ghafoor for

his continuous support during my studies. He has always been there to help me succeed

in completing my doctoral studies through his invaluable advice and encouragement. In

addition, I am grateful to Prof. Walid Aref for his excellent mentorship in the early stages of

my Ph.D. journey and for exposing me to the joy of database systems research. Furthermore,

I would like to extend my appreciation to Prof. Elisa Bertino and Prof. Micheal Zoltowski

for serving on my doctoral committee and for their thoughtful and valuable feedback on my

dissertation.

My utmost gratitude goes to my parents Mohammad (Tajuddin) Qadah and Kalthom

Qadah, who endured my selfishness in pursuing my graduate studies in the United States.

Their continuous prayers and encouragement for me have certainly played a big role in my

success in completing this milestone.

I am probably will not find myself where I am now without the vital support from my

wife, Hanan Alyamani, whose love, compassion, tolerance, patience, kindness, and sacrifices

4



have played a pivotal role in my ability to complete this journey. I am incredibly beholden to

her for standing by and supporting me during my difficult times in this journey despite her

own challenging situation being a student and a mother. Special thanks to my sons Rayan

and Iyad for bringing me joy during my stressful times.

Also, I would like to extend my thanks to my father-in-law Prof. Ahmad Alyamani

and mother-in-law Ensherah Makkawi whose prayers and encouragement have been a great

source of confidence. Furthermore, I would like to thank my brothers, sisters, uncles, aunts

for their encouragement and support. Many thanks to my colleagues from the Expolab

research group and the Distributed Multimedia Systems lab for the intriguing discussions

and their encouragement and friendship.

5



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Motivations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 QUEUE-ORIENTED CONCURRENCY

An earlier version of this chapter appeared in [ 2 ] . . . . . . . . . . . . . . . . . . . . . 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Emergence of Deterministic Data Stores  . . . . . . . . . . . . . . . . 19

2.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Transaction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Priority-based, Queue-oriented Transaction Processing . . . . . . . . . . . . 24

2.3.1 Proof of serializability . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Control-free Architectural Design . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Deterministic Planning Phase . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Deterministic Execution Phase . . . . . . . . . . . . . . . . . . . . . . 30

6



2.4.3 QueCC Implementation Details . . . . . . . . . . . . . . . . . . . . . 32

2.4.4 Discussion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.2 Workloads Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.3 YCSB Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.4 TPC-C Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Related Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 QUEUE-ORIENTED DISTRIBUTED TRANSACTION PROCESSING

An earlier version of this chapter appeared in [ 50 ] . . . . . . . . . . . . . . . . . . . . 50

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Transaction Processing in Calvin . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Q-Store’s Transaction Model . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Transaction Processing in Q-Store . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Queue-oriented Architecture . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Priorities in Q-Store . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.3 Logging and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Formalizing Q-Store  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7



3.4.1 Planning Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.2 Speculatively Executing Transactions . . . . . . . . . . . . . . . . . . 62

3.4.3 Conservatively Executing Transactions . . . . . . . . . . . . . . . . . 63

3.4.4 Serializability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.5 Read-committed Isolation . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.6 Discussion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Evaluation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.1 YCSB Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6.2 TPC-C Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7 Related Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 HIGHLY AVAILABLE QUEUE-ORIENTED SPECULATIVE TRANSACTION

PROCESSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 A Generalized Replication Framework . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Case Study: Calvin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.2 Case Study: Q-Store . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.3 Case Study: QueCC . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Queue-oriented Transaction Processing . . . . . . . . . . . . . . . . . . . . . 90

8



4.3.1 QR-Store Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.2 Replicated Planning Algorithm . . . . . . . . . . . . . . . . . . . . . 92

4.3.3 Speculative Queue-oriented Replication Protocol . . . . . . . . . . . . 94

4.3.4 Speculative Execution Algorithm . . . . . . . . . . . . . . . . . . . . 97

4.3.5 Commitment Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.6 Latency Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.7 Logging and Recovery in QR-Store . . . . . . . . . . . . . . . . . . . 101

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.1 Replication Layer Abstraction  . . . . . . . . . . . . . . . . . . . . . . 102

4.4.2 Replication Layer Implementations . . . . . . . . . . . . . . . . . . . 103

4.4.3 Synchronization Granularity . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Evaluation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6 Related Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Current Limitations of Queue-oriented Transaction Processing . . . . . . . . 117

5.2.1 Knowledge of the Read/Write Sets . . . . . . . . . . . . . . . . . . . 118

9



5.2.2 Resolving Data Dependencies . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Future Research Directions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.1 Challenges in the queue-oriented transaction processing paradigm . . 119

5.3.2 Applications of the queue-oriented paradigm . . . . . . . . . . . . . . 120

5.3.3 Using ML for adapting queue-oriented transaction processing systems 121

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

VITA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

10



LIST OF TABLES

2.1 YCSB Workload configurations. Notes: default values are in parenthesis; in
partitioned stores, it reflects the number of partitions; batch size parameters are
applicable only to QueCC; multi-partition transaction parameter is applicable only
to the partitioned stores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 TPC-C Workload configurations, default values are in parenthesis . . . . . . . . 37

3.1 Workload configurations parameters. Default values are in parenthesis.  . . . . . 70

4.1 System and workload configuration parameters. Default values are in parenthesis.
Default values are used unless stated otherwise.  . . . . . . . . . . . . . . . . . . 105

11



LIST OF FIGURES

2.1 Overview of Priority-based, Queue-oriented Architecture . . . . . . . . . . . 25

2.2 Example of concurrent batch planning and execution with 4 worker threads
(2 planner threads + 2 execution threads). Priority groups are color-coded
by planners. Execution threads process transactions from both priority groups. 32

2.3 Varying batch sizes and high data access skew (θ = 0.99) . . . . . . . . . . . 38

2.4 Time breakdown when varying number of worker threads. . . . . . . . . . . . 38

2.5 Variable contention (θ) on write-intensive YCSB workload  . . . . . . . . . . 40

2.6 Scaling Worker Threads Under Write Intensive Workload. High contention,
θ = 0.99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Results for varying the percentage of write operations in each transaction.
High contention, θ = 0.99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8 Results for varying the size of records under high contention, θ = 0.99. . . . 42

2.9 Results for varying the number of operations in each transaction. High con-
tention, θ = 0.99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.10 Results of multi-partition transactions with comparison to H-Store. . . . . . . 43

2.11 Results for 32 worker threads for TPC-C benchmark. Number of warehouses
= 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Overview of transaction processing in Calvin (left) and Q-Store (right) . . . 51

3.2 An example illustrating transaction dependencies in Q-Store. Execution-
queues (EQs) are planned by planning-thread PT(q,p)  . . . . . . . . . . . . . 55

3.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Server Node Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Impact of varying batch sizes on the system throughput and 99th percentile
latency of deterministic systems. . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 Impact of varying the data access skewness parameter θ of the Zipfian distri-
bution on systems throughput (log scale).  . . . . . . . . . . . . . . . . . . . 73

3.7 Impact of varying the percentage of multi-partitions transactions in the work-
load on the system’s throughput.  . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 Impact of varying the percentage of update operations in the workload on the
system’s throughput.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

12



3.9 The impact of varying the number of operation per transaction on system’s
throughput. We force each operation access a different partition. This results
is for low contention θ = 0.0.  . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.10 The impact of varying the number of partitions accessed by each transaction
on the system’s throughput.  . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.11 Throughput scalability results while varying the number of server nodes. . . 78

3.12 The impact of different TPC-C transaction mixes on the system’s throughput.
15% multi-partition transactions is used. . . . . . . . . . . . . . . . . . . . . 79

3.13 Varying the percentage of multi-partition transaction with equal ratios of
Payment and NewOrder transactions. . . . . . . . . . . . . . . . . . . . . . . 80

4.2 QR-Store System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Speculative Execution and Replication Timeline Example . . . . . . . . . . . 94

4.4 Zookeeper latency micro-benchmark. Latency is measured in milliseconds. . 96

4.6 Varying Batch Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.7 Scalability with increasing the number of servers/partitions in a cluster instance. 108

4.8 Varying Data Access Contention  . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.9 Varying Multi-partition transaction rate . . . . . . . . . . . . . . . . . . . . 109

4.10 Varying operation per transaction . . . . . . . . . . . . . . . . . . . . . . . . 110

4.11 Comparison with Calvin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.12 Node granularity vs. fine granularity synchronization . . . . . . . . . . . . . 112

4.13 Speculative replication versus synchronous replication . . . . . . . . . . . . . 113

4.14 Impact of the replication factor and replication compression. Dashed lines
represent configurations with replication compression enabled. Four nodes
per cluster for QR-Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

13



ABSTRACT

With the shifting landscape of computing hardware architectures and the emergence of

new computing environments (e.g., large main-memory systems, hundreds of CPUs, dis-

tributed and virtualized cloud-based resources), state-of-the-art designs of transaction pro-

cessing systems that rely on conventional wisdom suffer from lost performance optimization

opportunities. This dissertation challenges conventional wisdom to rethink the design and

implementation of transaction processing systems for modern computing environments.

We start by tackling the vertical hardware scaling challenge, and propose a deterministic

approach to transaction processing on emerging multi-sockets, many-core, shared memory

architecture to harness its unprecedented available parallelism. Our proposed priority-based

queue-oriented transaction processing architecture eliminates the transaction contention

footprint and uses speculative execution to improve the throughput of centralized determin-

istic transaction processing systems. We build QueCC and demonstrate up to two orders of

magnitude better performance over the state-of-the-art.

We further tackle the horizontal scaling challenge and propose a distributed queue-

oriented transaction processing engine that relies on queue-oriented communication to elim-

inate the traditional overhead of commitment protocols for multi-partition transactions. We

build Q-Store, and demonstrate up to 22x improvement in system throughput over the state-

of-the-art deterministic transaction processing systems.

Finally, we propose a generalized framework for designing distributed and replicated

deterministic transaction processing systems. We introduce the concept of speculative repli-

cation to hide the latency overhead of replication. We prototype the speculative replica-

tion protocol in QR-Store and perform an extensive experimental evaluation using standard

benchmarks. We show that QR-Store can achieve a throughput of 1.9 million replicated

transactions per second in under 200 milliseconds and a replication overhead of 8%-25%

compared to non-replicated configurations.
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1. INTRODUCTION

Transaction processing is an old-aged problem that has been an active area of research for

the past 40 years[1 ]. Classical transaction processing is characterized as non-deterministic

because the final database state cannot be entirely determined by the input database state

and the input set of transactions. The output database state acceptable as long as the

resulted history of concurrent transaction execution is equivalent to some serial history of

execution according to serializability theory.

1.1 Motivations

The goal of transaction processing protocols is to ensure ACID properties and increase the

concurrency of executed transactions. Serializable isolation ensures anomaly-free execution.

Using other isolation levels (e.g., Read-committed) improves concurrency but is prone to

producing anomalies that defy users’ intentions and leave the database in an undesirable

inconsistent state.

Due to the non-deterministic nature of classical transaction processing protocols, they

suffer from performance issues on modern computing environments such as main-memory

databases that use many-core and multi-socket CPUs, and cloud-based distributed environ-

ment.

With the shifting landscape of computing hardware architectures and the emergence of

new computing environments (e.g., large main-memory systems, hundreds of CPUs, dis-

tributed and virtualized cloud-based resources), state-of-the-art designs of transaction pro-

cessing systems that rely on conventional wisdom suffer from lost performance optimization

opportunities. This dissertation challenges conventional wisdom to rethink the design and

implementation of transaction processing systems for modern computing environments.

1.2 Dissertation Overview

In Chapter 2 , we emerging multi-sockets, many-core, shared memory architecture to

harness its unprecedented available parallelism. We propose a queue-oriented, control-free

15



concurrency architecture, referred to as QueCC, that exhibits minimal contention among con-

current threads by eliminating the overhead of concurrency control from the critical path

of the transaction. Our proposed priority-based queue-oriented transaction processing ar-

chitecture eliminates the transaction contention footprint and uses speculative execution to

improve the throughput of centralized deterministic transaction processing systems. QueCC

operates on batches of transactions in two deterministic phases of priority-based planning

followed by control-free execution. We extensively evaluate our transaction execution ar-

chitecture and compare its performance against seven state-of-the-art concurrency control

protocols designed for in-memory stores. We demonstrate that QueCC can significantly out-

perform state-of-the-art concurrency control protocols under high-contention by up to 6.3×.

Moreover, our results show that QueCC can process nearly 40 million YCSB transactional

operations per second while maintaining serializability guarantees with write-intensive work-

loads. Remarkably, QueCC out-performs H-Store by up to two orders of magnitude.

In Chapter 3 , we further tackle the horizontal scaling challenge of processing distributed

transactions in distributed database systems. Distributed database systems partition the

data across multiple nodes to improve the concurrency, which leads to higher throughput

performance. Traditional concurrency control algorithms aim at producing an execution

history equivalent to any serial history of transaction execution. Hence, an agreement on

the final serial history is required for concurrent transaction execution. Traditional agree-

ment protocols such as Two-Phase-Commit (2PC) are typically used but act as a significant

bottleneck when processing distributed transactions that access many partitions. 2PC re-

quires extensive coordination among the participating nodes to commit a transaction. Un-

like traditional techniques, deterministic concurrency control techniques aim for producing

an execution history that obeys a pre-determined transaction ordering.

Recent proposals for deterministic transaction processing demonstrate high potential for

improving the system throughput, which had led to their successful commercial adoption.

However, these proposals do not efficiently utilize and exploit modern computing resources

and are limited by design to conservative execution.

We propose a novel distributed queue-oriented transaction processing paradigm that fun-

damentally re-thinks how deterministic transaction processing is performed. The proposed

16



paradigm supports multiple execution paradigms, multiple isolation levels, and is amenable

to efficient resource utilization. We employ the principles of our proposed paradigm to build

Q-Store, which is the first to support speculative execution and exploits intra-transaction

parallelism efficiently among proposed deterministic and distributed transaction processing

systems. We perform extensive evaluation against both deterministic and non-deterministic

transaction processing protocols and demonstrate up to two orders of magnitude of improved

performance.

Finally, in Chapter 4 , we address the fault-tolerance and high availability challenge in

deterministic database systems. Deterministic database systems have received increasing

attention from the database research community in recent years. Despite their current limi-

tations, recent proposals of distributed deterministic transaction processing systems demon-

strated significant improvements over systems using traditional transaction processing tech-

niques (e.g., two-phase-locking or optimistic concurrency control with two-phase-commit).

However, the problem of ensuring high availability in deterministic distributed transaction

processing systems has received less attention from the research community, and this aspect

has not been analyzed and evaluated well. This chapter proposes a generic framework to

model the replication process in deterministic transaction processing and apply it to study

three cases from the literature. We design and implement QR-Store, a queue-oriented repli-

cated transaction processing system, and extensively evaluate it with various workloads based

on a transactional version of YCSB. Our prototype implementation QR-Store can achieve a

throughput of 1.9 million replicated transactions per second in under 200 milliseconds and

a replication overhead of 8%-25% compared to non-replicated configurations.
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2. QUEUE-ORIENTED CONCURRENCY

An earlier version of this chapter appeared in [2 ]

2.1 Introduction

New multi-socket, many-core hardware architectures with tens or hundreds of cores are

becoming commonplace in the market today [3 ]–[5 ]. This is a trend that is expected to

increase exponentially, thus, reaching thousands of cores per box in the near future [6 ].

However, recent studies have shown that traditional transactional techniques that rely on

extensive coordination among threads fail to scale on these emerging hardware architec-

tures; thus, there is an urgent need to develop novel techniques to utilize the power of

next generation of highly parallel modern hardware [7 ]–[11 ]. There is also a new wave to

study deterministic concurrency techniques, e.g., the read and write sets are known a pri-

ori. These promising algorithms are motivated from the practical standpoint by examining

the predefined stored procedures that are heavily deployed in customer settings [12 ]–[16 ].

However, many of the existing deterministic approaches do not fundamentally redesign their

algorithms for the many-core architecture, which is the precise focus on this work, a novel

deterministic concurrency control for modern highly parallel architectures.

The main challenge for transactional processing systems built on top of many-core hard-

ware is the increased contention (due to increased parallelism) among many competing cores

for shared resources, e.g., failure to acquire highly contended locks (pessimistic) or failure

to validate contented tuples (optimistic). The role of concurrency control mechanisms in

traditional databases is to determine the interleaving order of operations among concurrent

transactions over shared data. But there is no fundamental reason to rely on concurrency

control logic during the actual execution nor it is a necessity to force the same thread to

be responsible for executing both transaction and concurrency control logic. This impor-

tant realization has been observed in recent studies [10 ], [17 ] that may lead to a complete

paradigm shift in how we think about transactions, but we have just scratched the surface. It

is essential to note that the two tasks of establishing the order for accessing shared data and

actually executing the transaction's logic are completely independent. Hence, these tasks

can potentially be performed in different phases of execution by independent threads.
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For instance, Ren et al. [17 ] propose ORTHRUS which operates based on pessimistic

concurrency control, in which transaction executer threads delegate locking functionality

to dedicated lock manager threads. Yao et al. [10 ] propose LADS that process batches of

transactions by constructing a set of transaction dependency graphs and partition them

into smaller pieces (e.g., min-cut algorithms) followed by dependency-graph-driven transac-

tion execution. Both ORTHRUS and LADS rely on explicit message-passing to communicate

among threads, which can introduce an unnecessary overhead to transaction execution de-

spite the available shared memory model of a single machine. In contrast, QueCC embraces

the shared memory model and applies determinism in a two-phase, priority-based, queue-

oriented execution model.

The proposed work in this chapter is motivated by a simple profound question: is it pos-

sible to have concurrent execution over shared data without having any concurrency control?

To answer this question, we investigate a deterministic approach to transaction processing

geared towards multi-socket, many-core architectures. In particular, we propose QueCC, pro-

nounced Quick, a novel queue-oriented, control-free concurrency architecture that exhibits

minimal contention during execution and imposes no coordination among transactions while

offering serializable guarantees. The key intuition behind our QueCC’s design is to eliminate

concurrency control by executing a set of batched transactions in two disjoint and determin-

istic phases of planning and execution, namely, decompose transactions into (predetermined)

priority queues followed by priority-queue-oriented execution. In other words, we impose a

deterministic plan of execution on batches of transactions, which eliminates the need for

concurrency control during the actual execution of transactions.

2.1.1 Emergence of Deterministic Data Stores

Early proposals for deterministic execution for transaction processing aimed at data repli-

cation (e.g., [18 ], [19 ]). The second wave of proposals focused on deterministic execution in

distributed environments, and lock-based approaches for concurrency control. For example,

H-Store is exclusively tailored for partitionable workloads (e.g. [14 ]) as it essentially relies on

partition-level locks and runs transactions serially within each partition. Calvin and all of its
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derivatives primarily focused on developing a novel distributed protocol, where essentially

all nodes partaking in distributed transactions execute batched transactions on all replicas

in a predetermined order known to all. For local in-node concurrency, in Calvin all locks

are acquired (in a pre-determined order to avoid deadlocks) before a transaction starts and

if not all locks are granted, then the node stalls [12 ]. In fact, Calvin and QueCC dovetails,

the former sequences transactions pre-execution to essentially (almost) eliminate agreement

protocol while the latter introduces a novel predetermined prioritization and queue-oriented

execution model to essentially (almost) eliminate the concurrency protocol.

Serializablility Deterministic data stores guarantee serializable execution of transac-

tions seamlessly. A deterministic transaction processing engine needs to ensure that (a) the

order of conflicting operations, and (b) the commitment ordering of transactions follow the

same order that is determined prior to execution. With those two constraints are satisfied by

the execution engine, serializable execution is guaranteed. In fact, from the scheduling point

of view, deterministic data stores are less flexible compared to other serializable approaches

[20 ], [21 ] because there is only one possible serial schedule that is produced by the execution

engine. However, this allows the protocol to plan a near-optimal schedule that maximizes

the throughput. Furthermore, given the deterministic execution, evaluating and testing the

concurrency protocol is dramatically simplified because all non-determinism complexity has

been eliminated. The determinism profoundly simplifies the recovery execution, in fact,

normal and recovery routines become identical.

Future of Deterministic In-memory Data Stores Notably, deterministic data stores

have their own advantages and disadvantages that they may not be optimal for every pos-

sible workload [21 ]. For instance, it is an open question how to support transactions that

demands multiple rounds of back-and-forth client-server communication or how to support

the traditional cursor-based accesses. Clients must register stored procedures in advance

and supply all input parameters at run-time, i.e., the read-set and the write-set of a trans-

action must be known prior to execution, and the use of non-deterministic functions, e.g.,

currentTime(), is non-trivial. Notably, there have been several lightweight solutions to

efficiently determining read/write (when not known as a priori) through a passive, pre-play

execution model [12 ]–[16 ], [22 ].

20



2.1.2 Contributions

In this chapter, we make the following contributions:

• we present a rich formalism to model our re-thinking of how transactions are processed

in QueCC. Our formalism does not suffer from the traditional data dependency conflicts

among transactions because they are seamlessly eliminated by our execution model

(Section 2.2 ).

• we propose an efficient deterministic, queue-oriented transaction execution model for

highly parallel architectures, that is amenable to efficient pipelining and offers a flexible

and adaptable thread-to-queue assignment to minimize coordination (Section 2.3 ).

• we design a novel two-phase, priority-based, queue-oriented planning and execution

model that eliminates the need for concurrency control (Section 2.4 ).

• we prototype our proposed concurrency architecture within ExpoDB [23 ], [24 ], a compre-

hensive concurrency control testbed, which includes eight modern concurrency tech-

niques, to demonstrate QueCC effectiveness compared to state-of-the-art approaches

based on well-established benchmarks such as TPC-C and YCSB (Section 2.5 ).

2.2 Formalism

Before describing the design and architecture of QueCC, we first present data and trans-

action models used by QueCC.

2.2.1 Data Model

The data model used is the widely adopted key-value storage model. In this model, each

record in the database is logically defined as a pair (k, v), where k uniquely identifies a record

and v is the value of that record. Internally, we access records by knowing its physical record

identifiers (RID), i.e., the physical address in either memory or disk.
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Operations are modeled as two fundamental types of operations; namely, READ and WRITE

operations. However, there are other kinds of operations such as INSERT, UPDATE, and

DELETE. Those operations are treated as different forms of the WRITE operation[25 ].

2.2.2 Transaction Model

Transactions can be modeled as a DAG (Directed Acyclic Graphs) of “sub-transactions”

called transaction fragments. Each fragment performs a sequence of operations on a set of

records (each internally associated with a RID). In addition to the operations, each fragment

is associated with a set of constraints that captures the application integrity. We formally

define transaction fragments as follows:

Definition 2.2.1. (Transaction fragments):

A transaction fragment fi is defined as a pair (Sop, C), where Sop is a finite sequence of

operations either READ or WRITE on records identified with RIDs that are mapped to the same

contiguous RID range, and C is a finite set of constraints that must be satisfied post the

fragment execution.

Fragments that belong to the same transaction can have two kinds of dependencies, and

such dependencies are based on the transaction’s logic. We refer to them as logic-induced

dependencies, and they are of two types: (1) data dependencies and (2) commit depen-

dencies [26 ]. Because these logic-induced dependencies may also exist among transaction

fragments that belong to the same transaction, we call them intra-transaction dependen-

cies to differentiate them from inter-transaction dependencies that exist between fragments

that belong to different transactions. Inter-transaction dependencies are induced by the

transaction execution model. Thus, they are also called execution-induced dependencies.

An intra-transaction data dependency between fragment fi, and another fragment fj such

that fj is data-dependent on fi implies that fj requires some data that is computed by fi.

To illustrate, consider a transaction that reads a value vi of a particular record, say, ri and

updates the value vj of another record, say, rj such that vj = vi + 1. This transaction can be

decomposed into two fragments fi, and fj with a data dependency between fi and fj such
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that fj depends on fi. We formalize the notion of intra-transaction data dependencies as

follows:

Definition 2.2.2. (Intra-transaction data dependency):

An intra-transaction data dependency exist between two transaction fragments fi and fj,

denoted as fi
d→ fj, if and only if both fragments belong to the same transaction and the logic

of fj requires data computed by the logic of fi.

The second type of logic-induced dependency is called an intra-transaction commit de-

pendency. This kind of dependency captures the atomicity of a transaction when some of its

fragments may abort due to logic-induced aborts. We refer to such fragments as abortable

fragments. Logic-induced aborts are the result of violating integrity constraints defined by

applications, which are captured by the set of constraints C for each fragment. Intuitively,

if a fragment is associated with at least one constraint that may not be satisfied post the

execution of the fragment, then it is abortable.

A formal definition of abortable fragments is as follows:

Definition 2.2.3. (Abortable transaction fragments):

A transaction fragment fi is abortable if and only if fi.C 6= φ.

Using the definition of abortable fragments, intra-transaction commit dependencies are

formally defined as follows:

Definition 2.2.4. (Intra-transaction commit dependency):

An intra-transaction commit dependency exist between two transaction fragments fi and fj,

denoted as fi
c→ fj, if and only if both fragments belong to the same transaction and fi is

abortable.

The notion of transaction fragments is similar in spirit to the notion of pieces [26 ]–[28 ],

the notion of actions in DORA[11 ], and the notion of record actions in LADS [10 ]. However,

unlike those notions, we impose a RID-range restriction on records (i.e., partitioned data)

accessed by fragments and formally model the set of constraints associated with fragments.

Now, we can formally define transactions based on the fragments and their dependencies,

as follows:
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Definition 2.2.5. (Transactions):

A transaction ti is defined as a directed acyclic graph (DAG) Gti := (Vti , Eti), where Vti is

finite set of transaction fragments {f1, f2, . . . , fk}, and Eti = {(fp, fq)|fp
d→ fq ∨ fp

c→ fq}

In QueCC, there is a third type of dependencies that may exist between transaction frag-

ments of different transactions, which are induced by the execution model. Therefore, they

are called execution-induced dependencies. Since we are modeling transactions at the level of

fragments, we capture them at that level. However, they are called “commit dependencies”

in [29 ] when not considering the notion of transaction fragments. They are the result of

speculative reading of uncommitted records [30 ]. We formally define them as follows:

Definition 2.2.6. (Inter-transaction commit dependency):

An inter-transaction commit dependency exist between two transaction fragments fi and fj

is denoted as fi
s→ fj, if and only if both fragments belong to different transactions and fj

speculatively reads uncommitted data written by fi

Note that inter-transaction commit dependencies may cause cascading aborts among

transactions. This problem can be mitigated by exploiting the idea of “early write visibility”,

which is proposed by Faleiro et al.[26 ].

Also, note that execution-induced data dependencies among transactions, used to model

conflicts in traditional concurrency control mechanisms, are no longer possible in QueCC

because these conflicts are seamlessly resolved and eliminated by the deterministic, priority-

based, queue-oriented execution model of QueCC. Non-deterministic data stores that rely

on traditional concurrency control mechanisms, suffer from non-deterministic aborts caused

by their execution model that employs non-deterministic concurrency control. A notable

observation is that deterministic stores eliminate non-deterministic aborts, which improves

the efficiency of the transaction processing engine.

2.3 Priority-based, Queue-oriented Transaction Processing

We first offer a high-level description of our transaction processing architecture. Our

proposed architecture (depicted in Figure 2.1 ) is geared towards a throughput-optimized

in-memory stores.
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Figure 2.1. Overview of Priority-based, Queue-oriented Architecture

Transaction batches are processed in two deterministic phases. First, in the planning

phase, multiple planner threads ( 2 ) consume transactions from their respective client trans-

action queue ( 1 ) in parallel and create prioritized execution queues ( 3 ). Each planner

thread is assigned a predetermined distinct priority. The idea of priority is essential to the

design of QueCC and it has two advantages. First, it allows planner threads to independently

and in parallel perform their planning task. By assigning the priority to the execution queue,

the ordering of transactions planned by different planner threads is preserved. Secondly, the

priory enables execution threads to decide the order of executing fragments, which leads to

correct serializable execution.

The planner thread acts as a local sequencer with a predetermined priority for its assigned

transactions and spreads operations of each transaction (e.g., reads and writes) into a set of

queues based on the sequence order.

Each queue is defined over a disjoint set of records, and queues inherit their planner

distinct priorities. The goal of the planner is to distribute operations (e.g., READ/WRITE) into

a set of almost equal-sized queues. Queues for each planner can be merged or split arbitrarily

to satisfy balanced size queues. However, queues across planners can only be combined

together following the strict priority order of each planner. We introduce execution-priority

invariance, which is defined as follows:
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Definition 2.3.1. (Execution-priority Invariance):

For each record, operations that belong to higher priority queues (created by a higher priority

planner) must always be executed before executing any lower priority operations.

The execution-priority invariance is the essence of how we capture determinism in QueCC.

Since all planners operate at different priorities, then they can be plan independently in

parallel without any contention.

The execution queues ( 3 ) are handed over to a set of execution threads ( 4 ) based on

their priorities. An execution thread can arbitrarily select any outstanding queues within

a batch and execute its operations without any coordination with others executors. The

only criterion that must be satisfied is the execution-priority invariance, implying that if a

lower priority queue overlaps with any higher priority queues (i.e., containing overlapping

records), then before executing a lower priority queue, the operations in all higher priority

queues must be executed first. Depending on the number of operations per transaction and

its access patterns, independent operations from a single transaction may be processed in

parallel by multiple execution threads without any synchronization among the executors;

hence, coordination-free and independent execution across transactions. Execution threads

operate directly on the in-memory store ( 5 ). Once all the execution queues are processed,

it signals the completion of the batch, and transactions in the batch are committed except

those that violated an integrity constraint. The violations are identified by executing a set

of commit threads once each batch is completed.

To ensure recoverability, all parameters required to recreate the execution queues are

persisted at the end of the planning phase. A second persistent operation is done at the

end of the execution phase once the batch is fully processed; which is similar to the group

commit technique [31 ].

2.3.1 Proof of serializability

In this section, we show that QueCC produces serializable execution histories. We use

c(Ti) to denote the commit ordering of transaction Ti, and e(fij) to denote the completion

time for the execution of fragment fij, where fij belongs to Ti. For the sake of this proof, we
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use the notion of conflicting fragments to have the same meaning as conflicting operations in

serializability theory [32 ]. Without loss of generality, we assume that each fragment accesses

a single record, but the same argument applies in general because of the RID range restriction

(see Definition 2.2.1 ).

Theorem 2.3.1. The transaction execution history produced by QueCC is serializable.

Proof. Suppose that the execution of two transactions Ti and Tj is not serial, and their

commit ordering is c(Ti) < c(Tj). Note that their commitment ordering is the same as their

ordering when they were planned. Therefore, there exist two conflicting fragments fip and fjq

such that e(fjq) > e(fip). Because fip and fjq access the same record, we have the following

cases: (Case 1) if Ti and Tj are planned by the same planner thread, they must be placed in

the same execution queue (EQ). Since the commitment ordering is the same as the order they

were planned, the planner must have placed fip ahead of fjq in the execution queue which

contradicts the conflicting order. (Case 2) if Ti and Tj are planned by different planner

threads, their respective fragments are placed in two different EQs with the EQ containing

fip having a higher priority than the other EQ containing fjq. Having e(fjq) > e(fip) implies

that the priority execution invariance is violated, which is also a contradiction.

2.4 Control-free Architectural Design

In this section, we present planning and execution techniques introduced by QueCC.

2.4.1 Deterministic Planning Phase

In the planning phase, our aim is to answer the key questions: how to efficiently produce

execution plans and distribute them across execution threads in a balanced manner? How to

efficiently deliver the plans to execution threads?

A planner thread consumes transactions from its dedicated client transaction queue ,

which eliminates contention from using a single client transaction queue. Since each planner

thread has its own pre-determined priority, at this point, transactions are partially ordered

based the planners’ priorities. Each planner can independently determine the order within
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its own partition of the batch. The set of execution queues (EQs) filled by planners inherit

their planner’s priority thus forming a priority group (PG) of EQs ( 3 . To represent priority

inheritance of EQs, we associate all EQs planned by a planner with a priority group (PG).

Each batch is organized into priority groups of EQs with each group inheriting the priority

of its planner. We formally define the notion of a priority group as follows:

Definition 2.4.1. (Priority Group):

Given a set of transactions in a batch, T = {t1, t2, . . . , tn}, and a set of planner threads

{pt1, pt2, . . . . ptk}, the planning phase will produce a set of k priority groups {pg1, pg2, . . . pgk},

where each pgi is a partition of T and is produced by planner thread pti.

In QueCC, EQs are the main data structure used to represents the workload of transaction

fragments. Planners fill EQs with transaction fragments augmented with some additional

meta-data during the planning and assign EQs to execution threads on batch delivery. EQs

are recycled across batches, and they are dynamically expanded to hold transaction fragments

beyond their initial capacity. Planners may physically split or logically merge EQs in order

to balance the load given to execution queues. Splitting EQs is costly because it requires

copying transaction fragments from one queue to two new queues that resulted from the

split. The cost of allocating memory for EQs is minimized by maintaining a thread-local

pool of EQs, which allows recycling EQs after batch commitment.

We now focus on how each planner produces the priority-based EQs associated with its

PG. Our planning technique is based on RID value ranges.

Range-based Planning In our range-based planning approach, each planner starts by

partitioning the whole RID space into a number of ranges equal to the number of execution

threads1
 . For example, if we have 4 execution threads, then we will initially have 4 range

partitions of the whole RID space. Based on the number of transactions accessing each

range, that range can be further partitioned progressively into smaller ranges to ensure that

they can be assigned to execution threads in a balanced manner (i.e., each execution thread

will have the same number of transaction fragments to process). Note that each range is

associated with an EQ, and partitioning a range implies splitting their associated EQs as
1↑ The range partitioning can be learned, adapted, and tuned across batches
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well. Range partitioning from earlier batches is reused for future ones, which amortize the

cost of range partitioning across multiple batches, and reduces the planning time for the

subsequent batches.

A range needs to be partitioned if its associated EQ is full. In QueCC, we have an

adaptable system configuration parameter that controls the capacity of EQs. When EQs

become full during planning, they are split into additional queues. The split algorithm is

simple. Given an EQ to split, a planner partitions its associated range in half. Each range

split will be associated with a new EQ obtained from a local thread pool of preallocated

EQs2
 . Based on the new ranges, planners copy transaction fragments from the original EQ

into the two new EQs.

A planner needs to determine when a batch is ready. Batches can be considered complete

based on time (i.e., complete a batch every 5 milliseconds) or based on counts (i.e., complete

a batch every 1000 transaction). The choice of how batches are determined is orthogonal to

our techniques. However, in our implementation, we use count-based batches with the batch

size being a configurable system parameter. Using count-based batches allows us to easily

study the impact of batching. For count-based batches, a planner thread can easily compute

the number of transactions in its partition of the batch since the number of planners and the

batch size, are known parameters. Once the batch is planned and ready, it can be delivered

to execution threads for execution.

Operation Planning Planning READ and UPDATE operations are straightforward, but

special handling is needed for planning INSERT operations. When planning a READ or an

UPDATE operation, a planner will simply do an index lookup to find the RID value for the

record and its pointer. Based on the RID value, it determines the EQ responsible for the

transaction fragment. It will check if the EQ is full and perform a split if needed. Finally,

it inserts the transaction fragment into the EQ. DELETE operations are handled the same

way as UPDATE operations from planning perspective. For the INSERT operations, a planner

assigns a new RID value to the new record and places the fragment into the respective EQ.
2↑ If the pool is empty, a new EQ is dynamically allocated.
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2.4.2 Deterministic Execution Phase

Once the batch is delivered, execution threads start processing transaction fragments

from assigned EQs without any need for controlling its access to records. Fragments are

executed in the same order they are planned within a single EQ. Execution threads try

to execute the whole EQ before moving to the next EQ. The execution threads may en-

counter a transaction fragment that has an intra-transaction data dependency to another

fragment that resides in another EQ. Data dependencies exist when intermediate values are

required to execute the fragment in hand. Once the intermediate values are computed by

the corresponding fragments, they are stored in the transaction’s meta-data accessible by

all transaction fragments. Data dependencies may trigger EQ switching before the whole

EQ is consumed. In particular, an EQ switch occurs if intermediate values required by the

fragment in hand are not available.

To illustrate, consider the example transaction from Section 2.2 , which has the following

logic: fi = {a = read(ki)}, fj = {b = a+1;write(kj, b)}, where keys are denoted as ki. In this

transaction, we have a data dependency between the two transaction fragments. The WRITE

operation on kj cannot be performed until the READ operation on ki is completed. Suppose

that fi and fj are placed in two separate EQs, e.g., EQ1 and EQ2 respectively. An attempt

to execute fi before fj can happen, which triggers an EQ switch by the attempting execution

thread. Note that, this delaying behavior3
 is unavoidable because there is no way for fj to

complete without the completion of fi. This mechanism of EQ switching ensures that the

execution thread only waits if data dependencies associated with transaction fragments at

the head of all EQs are not satisfied. Our EQ switch mechanism is very lightweight and

requires only a single private counter per EQ to keep track of how many fragments of the

EQ are consumed.

Execution Priority Invariance Each execution thread (ET) is assigned one or more

EQ in each PG. ETs can execute fragments from multiple PGs. Since EQs are planned

independently by each planner, the following degenerate case may occur. Consider two
3↑ Notably, although further processing of a queue maybe delayed, the executor is not blocked and may
simply begin processing another queue.
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planner threads, say, PT0 and PT1 with their respective PGs (i.e., PG0 and PG1), and

two execution threads ET0 and ET1. A total of four EQs are planned in the batch. Each

EQ is denoted as EQij such that i refers to the planner thread index and j refers to the

execution thread index, according to the assignment. For example, EQ00 is assigned by PT0

to ET0, and so forth. Therefore, we have the following set of EQs: EQ00, EQ01, EQ10, and

EQ11. Now for each EQ, there is an associated RID range rij, and the indices of the ranges

correspond to planner and execution threads, respectively. A violation of the execution

priority invariance occurs under the following conditions: (1) ET0 start executing EQ10; (2)

ET1 has not completed the execution of EQ01; (3) a fragment in EQ01 updates a record,

while a fragment in EQ10 reads the same record (this implies that r10 overlaps with r01).

Therefore, to ensure the invariance, an executor checks that all overlapped EQs from higher

priority PGs have completed their processing. If so, it proceeds with the execution of the EQ

in hand, otherwise, it switches to another EQ. Fully processing all planned EQs in a batch

signifies that all transactions are executed, and execution threads can start the commit stage

for the whole batch. Notably, at any point during the execution, the executor thread may

act as commit thread, by checking commit dependencies of fully executed transactions as

described next.

Commit Dependency Tracking When processing a transaction, execution threads

need to track inter-transaction commit dependencies. When a transaction fragment specula-

tively reads uncommitted data written by a fragment that belongs to another transaction in

the batch, a commit dependency is formed between the two transactions. This dependency

must be checked during commitment (or as soon as all prior transactions are fully executed)

to ensure that the earlier transaction has committed. If the earlier transaction is aborted,

the later transaction must abort. This dependency information is stored in the transaction

context. To capture such dependencies, QueCC uses a similar approach to the approach used

in [29 ], [30 ] for dealing with commit dependencies. QueCC maintains the transaction id of

the last transaction that updated a record in per-record meta-data. During execution, the

transaction ID is checked and if it refers to a transaction that belongs to the current batch, a

commit dependency counter for the current transaction is incremented and a pointer to the

current transaction’s context is added to the context of the other transaction. During the
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Figure 2.2. Example of concurrent batch planning and execution with 4
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color-coded by planners. Execution threads process transactions from both
priority groups.

commit stage, when a transaction is committing, the counters for all dependent transactions

is decremented. When the commit dependency counter is equal to zero, the transaction is

allowed to commit. Once all execution threads are done with their assigned work, the batch

goes through a commit stage. This can be done in parallel by multiple threads.

2.4.3 QueCC Implementation Details

Plan Delivery After each planner, completes its batch partition and construct its PG,

it needs to be delivered to the execution layer so that execution threads can start executing

transactions. In QueCC, we use a simple lock-free delivery mechanism using atomic opera-

tions. We utilize a shared data structure called BatchQueue, which is basically a circular

buffer that contains slots for each batch. Each batch slot contains pointers to partitions of

priority groups which are set in a latch-free manner using atomic CAS operations. Priority

group partitions are assigned to execution threads. Figure 2.2 , illustrates an example of

concurrent batch planning and execution of batch bi+1 and bi respectively. In this example,
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planner threads denoted as PT0 and PT1 are planning their respective priority groups for

batch bi+1; and concurrently, execution threads ET0 and ET1 are executing EQs from the

previously planned batch (i.e., batch bi).

Delivering priority group partitions to the execution layer must be efficient and lightweight.

For this reason, QueCC uses a latch-free mechanism for delivery. The mechanism goes as fol-

lows. Execution threads spin on priority group partition slots while they are not set (i.e.,

their values is zero). Once the priority groups are ready to be delivered, planner threads

merge EQs into priority group partitions such that the workload is balanced, and each pri-

ority group partition is assigned to one execution thread. EQs can be assigned dynamically

by adapting to the workload or deterministically. To achieve balanced workload among exe-

cution threads, we have a simple greedy algorithm that keeps track of how many transaction

fragments are assigned to each execution thread. It iterates over the remaining unassigned

EQs until all EQs are assigned. In each iteration, it assigns an EQ to the worker with the

lowest load.

Once a planner is done with creating execution threads assignments, it uses atomic CAS

operations to set the values of the slots in the BatchQueue to point to the list of assigned

EQs for each execution thread, which constitutes the priority group partition assigned to

the respective execution thread.

Planning and Execution phases can be pipelinedin QueCC. In the pipelined design, ex-

ecution threads are either processing EQs or waiting for their slots to be set by planner

threads. As soon as the slot is set, execution threads can start processing EQs from the

newly planned batch. On the other hand, for the un-pipelined design, worker threads acting

as planner threads, will synchronize at the end of the planning phase. Once the synchro-

nization is completed, worker threads will act as execution threads and start executing EQs.

Note that in QueCC, regardless of the number of planner threads and execution threads,

there is zero contention with respect to the BatchQueue data structure.

RID Management Our planning is based on record identifiers (RIDs). RIDs can be

physical or logical depending on the storage architecture being row-oriented or column-

oriented. Typically, in row-oriented storage, physical RIDs are used. While in column-

oriented storage, logical RIDs are used. As opposed to traditional disk-oriented data stores,

33



where RIDs are typically physical and is composed of the disk page identifier and the record

offset, main-memory stores typically uses memory pointers as physical RIDs. On the other

hand, logical RIDs are independent of the storage layout. Therefore, they can facilitate

planning tasks since planners are dynamically creating logical partitions of the database by

planning EQs. Logical RIDs leads to performance improvements when a set of independently

accessed records are re-clustered logically regardless of their physical clustering. In QueCC,

we use logical RIDs from a single space of 64-bit integers and are stored alongside index

entries.

2.4.4 Discussion

QueCC supports “speculative write visibility” (SWV) when executing transaction frag-

ments because it defers commitment to the end of the batch and allows reading uncommitted

data written within a batch. In general, transaction fragments that may abort can cause

cascading aborts. To ensure recoverability, QueCC maintains an undo buffer per transaction,

which is populated by the before-image of records (or fields) being updated. A transaction

can abort only if at least one of its fragments is abortable and have exercised its abort action.

If a transaction aborts, the original values are recovered from the undo buffers. This

approach makes conservative assumptions about the abortability of transaction fragments

(i.e., it assumes that all transaction fragments can abort). The overhead of maintaining

undo-buffers can be eliminated if the transaction fragment is guaranteed to commit (i.e., it

does not depend on other fragments). We can maintain information on the abortability of

a transaction fragment in its respective transaction meta-data. Thus, instead of performing

populating the undo buffers “blindly”, we can check the possibility of an abort by looking at

the transaction context, and skip the copying to undo buffers if the transaction is guaranteed

to commit (i.e., passed its commit point[26 ]).

However, QueCC is not limited to only SWV and can support multiple write visibility

policies. Faleiro et al. [26 ] introduced a new write visibility policy called “early write visibil-

ity” (EWV), which can improve the throughput of transaction processing by allowing reads

on records only if their respective writes are guaranteed to be committed with serializability
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Table 2.1. YCSB Workload configurations. Notes: default values are in
parenthesis; in partitioned stores, it reflects the number of partitions; batch size
parameters are applicable only to QueCC; multi-partition transaction parameter
is applicable only to the partitioned stores.

Parameter Name Parameter Values
# of worker threads 4, 8, 16, 24, (32)
Zipfian’s theta 0.0, 0.4, 0.8, 0.9, (0.99)
% of write operations 0%, 5%, 20%, (50%), 80%, 95%
Rec. sizes 50B, (100B), 200B, 400B, 800B, 1KB, 2KB
Operations per txn 1, 10, (16), 20, 32
Batch sizes 1K, 4K, (10K), 20K, 40K, 80K
% of multi-partition txns. 1%, 5%, 10%, 20%, 50%, 80%, 100%

guarantees. Unlike SWV, which is prone to cascading aborts, EWV is not. In fact, both

EWV and SWV can be used at the same time by QueCC. A special token is placed ahead of

the original fragment to make ETs adhere to the EWV policy. If that special token is not

placed, then ETs will follow SWV course. One major advantage of using EWV in the con-

text of QueCC is eliminating the process of backing-up copies of records in the undo-buffers.

Since the transaction that updated record is guaranteed to commit, there will be no potential

rollback and the undo-action is unnecessary.

2.5 Experimental Analysis

We have evaluated the QueCC protocol in our ExpoDB platform [23 ], [24 ]. ExpoDB is an

in-memory, distributed transactional framework that not only offers a testbed to study con-

currency and agreement protocols but also has a secure transactional capability to study dis-

tributed ledger—blockchain. ExpoDB’s comprehensive concurrency testbed includes a variant

of two-phase locking [33 ] (i.e., NO-WAIT [34 ] as a representative of pessimistic concurrency

control), TicToc [35 ], Cicada [9 ], SILO [8 ], FOEDUS with MOCC [36 ], ERMIA with SSI and SSN

[37 ], and H-Store [14 ], all of which were compared against QueCC.
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2.5.1 Experimental Setup

We run all of our experiments using a Microsoft Azure G5 VM instance. This VM is

equipped with an Intel Xeon CPU E5-2698B v3 running at 2GHz, and has 32 cores. The

memory hierarchy includes a 32KB L1 data cache, 32KB L2 instruction cache, 256KB L2

cache, 40MB L3 cache, and 448GB of RAM. The operating system is Ubuntu 16.04.3 LTS

(xenial). The codebase is compiled with GCC version 5.4.0 and −O3 compiler optimization

flag.

The workloads are generated at the server before any transaction is processed, and are

stored in main-memory buffers. This is done to remove any effects of the network, and allows

us to study concurrency control protocols under high stress.

Every experiment starts with a warm-up period where measurements are not collected;

followed by a measured period. Each experiment is run three times, and the average value

is reported in the results of this section.

We focus on evaluating three metrics: throughput, latency, and abort percentage. The

abort percentage is computed as the ratio between the total number of aborted transaction

to the sum of the total number of attempted transaction (i.e., both aborted and committed

transactions).

2.5.2 Workloads Overview

We have experimented with both YCSB and TPC-C benchmarks. Below, we briefly

discuss the workloads used in our evaluation.

YCSB[38 ] is a web-application benchmark that is representative of web applications used

by YAHOO. While the original workload does not have any transaction semantics, ours is

adapted to have transactional capability by including multiple operations per transaction.

Each operation can be either a READ or a READ-MODIFY-WRITE operation. The ratio of READ

to WRITE operations can also vary. The benchmark consists of a single table. The table in

our experiments contains 16 million records. Table 2.1 summarizes the various configuration

parameters used in our evaluation, and default values are in parenthesis. The data access

patterns can be controlled using the parameter θ of the Zipfian distribution. For example,
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Table 2.2. TPC-C Workload configurations, default values are in parenthesis
Parameter Name Parameter Values
# of worker threads 4, 8, 16, 24, (32)
% of payment txns. 0%, 50%, 100%

a workload with uniform access has θ = 0.0, while a skewed workload has a larger value of

theta e.g., θ = 0.99.

TPC-C [39 ] is the industry standard benchmark for evaluating transaction processing

systems. It basically simulates a wholesale order processing system. Each warehouse is

considered to be a single partition. There are 9 tables and 5 transaction types for this

benchmark. The data store is partitioned by warehouse, which is considered the best pos-

sible partitioning scheme for the TPC-C workload [40 ]. Similar to previous studies in the

literature[7 ], [13 ], we focus on the two main transaction profiles (NewOrder and Payment) out

of the five profiles, which correspond to 88% of the default TPC-C workload mix. These two

profiles are also the most complex ones. For example, the NewOrder transaction performs

2 READ operations, 6 − 16 READ-MODIFY-WRITE operations, 7 − 16 INSERT operations, and

about 15% of these operations can access a remote partition. The Payment transaction, on

the other hand, performs 3 READ-MODIFY-WRITE operations, and 1 INSERT operation. One

of the reads uses the last name of the customer, which requires a little more work to look

up the record.

In this chapter, we primarily study high-contention workloads because when there is lim-

ited or no contention, then, generally, the top approaches behave comparably with negligible

differences. This choice also has an important practical significance [8 ], [9 ], [29 ], [35 ], [36 ] be-

cause real workloads are often skewed, thus, exhibiting a high contention. Therefore, in the

interest of space, we present our detailed results for high-contention workloads and briefly

overview the results for lower-contention scenarios.
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Figure 2.3. Varying batch sizes and high data access skew (θ = 0.99)

4 8 16 24 32
Number of worker threads

0

25

50

75

100100

R
u
n
 T

im
e
 %

(n
o
rm

a
liz

e
d
)

Other unmeasured times

Batch Planning time

Batch exec time

Batch Commit time

Sync after commit stage

Figure 2.4. Time breakdown when varying number of worker threads.

2.5.3 YCSB Experiments

Using YCSB workloads, we start by evaluating the performance of QueCC with different

batch sizes, which is a unique aspect of QueCC. Subsequently, we compare QueCC with other

concurrency control protocols.

Effect of Batch Sizes We gear our experiments to study the effect of batch sizes on

throughput and latency for QueCC because it is the only approach that uses batching. We use

a write-intensive workload, 32 worker threads, a record size of 100 bytes, Zipfian’s θ = 0.99,

and 16 operations per transaction.
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We observe that QueCC exhibit low average latency (i.e., under 3ms) for batches smaller

than 20K transactions Figure 2.3b , which is considered reasonable for many applications.

For the remaining experiments, we use a batch of size 10K.

Time Breakdown Figure 2.4 illustrates the time breakdown spent on each phase of

QueCC under highly skewed data accesses. Notably, QueCC continues to achieve high-

utilization even under extreme contention model. For example, even scaling to 32 worker

threads, over the 80% of the time is dedicated to useful work, i.e., planning and execution

phases.

Effect of Data Access Skew We evaluate the effect of varying record contention using

Zipfian’s θ parameter of the YCSB workload while keeping the number of worker threads

constant. We use 32 worker threads and assign one to each available core. Figure 2.5a , shows

the throughput results of QueCC compared with other concurrency control protocols. We use

a write-intensive workload which has 50% READ-MODIFY-WRITE operations per transaction.

As expected QueCC performs comparably with the best competing approaches under low

contention scenarios θ <= 0.8. Remarkably, in high contention scenarios, QueCC begins to

significantly outperforms all the state-of-the-art approaches. QueCC improves the next best

approach by 3.3× with θ = 0.99, and has 35% better throughput with θ = 0.9. The main

reason for QueCC’s high-throughput is that it eliminates concurrency control induced aborts

completely. On the other hand, the other approaches suffer from excessive transaction aborts

which lead to wasted computations and complete stalls for lock-based approaches. This

experiments also highlights the stability and predictability of QueCC with respect to degree

of contention.

Scalability We evaluate the scalability of QueCC by varying the number of worker threads

while maintaining a skewed, write-intensive access pattern. We observe that all other ap-

proaches scale poorly under highly concurrent access scenario (2.6a ) despite employing tech-

niques to reduce the cost of contention (e.g., Cicada). In contrast, QueCC scales well despite

the higher contention due to increased number of threads. For instance, QueCC achieves

nearly 3× the throughput of Cicada with 32 worker threads.

This result demonstrates the effectiveness of QueCC’s concurrency architecture that ex-

ploits the untapped parallelism available in transactional workloads. Figure 2.6b shows that
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Figure 2.5. Variable contention (θ) on write-intensive YCSB workload
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Figure 2.6. Scaling Worker Threads Under Write Intensive Workload. High
contention, θ = 0.99

the abort rate for Cicada, TicToc, and ERMIA as parallelism increases. This high abort-rate

behavior is caused by the large number of worker threads competing to read and modify a

small set of records (cf. Figure 2.6 ). Unlike QueCC, any non-deterministic scheduling and

concurrency control protocols will be a subject to significant and amplified abort rates when

the number of conflicting operations by competing threads increases.

Effect of Write Operation Percentage Another factor that contributes to contention

is the percentage of write operations. With read-only workloads, concurrency control pro-

tocols exhibit limited contention even if the data access is skewed. However, as the number
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Figure 2.7. Results for varying the percentage of write operations in each
transaction. High contention, θ = 0.99

of conflicting write operations on records increases, the contention naturally increases, e.g.,

exclusive locks need to be acquired for NO-WAIT, more failed validations for SILO and Cicada,

and in general, any approach relying on the optimistic assumption that conflicts are rare

will suffer. Since QueCC does not perform any concurrency control during execution, no

contention arise from the write operations.

In addition to increased contention, write operations translates into increased size of

undo logging for recovery. This is an added cost for any in-place update approach and

QueCC is no exception. As we increase the write percentage, more records are backed up

in the undo-buffers log and, thus, negatively impacts the overall system throughput. Of

course, using a multi-version storage model (e.g., [30 ] ) and avoiding in-place updates, the

undo-buffer overhead can be mitigated. Nevertheless, QueCC significantly outperforms other

concurrency control protocols by up to 4.5× under write-intensive workloads, i.e., once the

write percentage exceeds 50%.

Effect of Record Sizes Having larger record sizes may also negatively affect the per-

formance of logging component as shown in Figure 2.8 . Since the undo log maintains a copy

of every modified record, the logging throughput suffers when large records are used.
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Figure 2.8. Results for varying the size of records under high contention, θ = 0.99.
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Figure 2.9. Results for varying the number of operations in each transaction.
High contention, θ = 0.99

One approach to handle the logging is to exploit the notion of “abortabity” of the trans-

action last updated the record, and re-purpose the key principle of EWV[26 ].4  Even under

logging pressure that begins to become one of the dominant factor when the records size

reaches 2KB, QueCC continues to maintains its superiority and outperform Cicada by factor

of 3× despite the contention regulation mechanism employed by Cicada.
4↑ Similarly in QueCC, we check if all fragments of the last writer transaction has been executed successfully,
if so, we avoid writing to the undo buffers, and we further avoid adding the commit dependency.
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Figure 2.10. Results of multi-partition transactions with comparison to H-Store.

Effect of Transaction Size So far, each transaction contains a total of 16 operations.

Now we evaluate the effect of varying the number of operations per transaction, essentially

the depth of a transaction. Figure 2.9 shows the results of having 1, 10, 16, 20, and 32

operations per transaction under high data skew. For these experiments, we report the

throughput in terms of the number of operations completed or records accessed per second.

For all concurrency control protocols, the throughput is lowest when there is only a single

operation per transaction, which indicates that the work for ensuring transactional semantics

is becoming the bottleneck.

More interestingly, when increasing the transaction depth, the probability of conflicting

access is also increased; thereby, higher contention and higher abort rates. In contrast, under

higher contention, QueCC continues to have zero percent abort rates. It further benefits from

improved cache-locality and yields higher throughput because a smaller subset of records

is handled by the same worker thread. QueCC further exploits intra-transaction parallelism

and altogether improves up to 2.7× over the next best performing protocol (Cicada) when

increasing the transaction depth.

Comparison to Partitioned Stores QueCC is not sensitive to multi-partition transac-

tions despite its per-queue, single-threaded execution model, which is one of its key distinc-

tion. To establish QueCC’s resilience to non-partition workloads, we devise an experiment in

which we vary the degree of multi-partition transactions. Figure 2.10 illustrates that QueCC

throughput virtually remains the same regardless of the percentage of multi-partition trans-
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Figure 2.11. Results for 32 worker threads for TPC-C benchmark. Number
of warehouses = 1.

actions. We observed that QueCC improves over H-Store by factor 4.26× even when there

is only 1% multi-partition transactions in the workload. Remarkably, with 100% multi-

partition transactions, QueCC improves on H-Store by two orders of magnitude. H-Store is

limited to a thread-to-transaction assignment and resolves conflicting access at the partition

level. For multi-partition transactions, H-Store is forced to lock each partition accessed by

a transaction prior to starting its execution. If the partition-level locks cannot be acquired,

the transaction is aborted and restarted after some randomized delay. The H-Store coarse-

grained partition locks offer an elegant model when assuming partition-able workload, but

it noticeably limits concurrency when this assumption no longer holds.
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2.5.4 TPC-C Experiments

In this section, we study QueCC using the industry standard TPC-C. Our experiments

in this section focus on throughput and abort percentage under high contention with three

different workload mixes.

From a data access skew point of view, the TPC-C benchmark is inherently skewed

towards warehouse records because both Payment and NewOrder transactions access the

warehouse table. The scale factor for TPC-C is the number of warehouses, but it also

determines the data access skew. As we increase the number of warehouses, we get less data

access skew (assuming a fixed number of transactions in the generated workload). Therefore,

to induce high contention in TPC-C, we limit the number of warehouses to 1 in the workload

and use all the 32 cores for processing the workload.

Figure 2.11 captures the throughput and the abort percentage. With a workload mix

of 100% Payment transactions, Figure 2.11c , QueCC performs 6.34× better than the other

approaches. With the a 50% Payment transaction mix, QueCC improves by nearly 2.7× over

FOEDUS with MOCC. Despite the skewness towards the single warehouse record (where every

transaction in the workload would accesses it), QueCC can process fragments accessing other

tables in parallel because it distributes them among multiple queues, and assign those queues

to different threads. In addition, QueCC performs no spurious aborts which contributes its

high performance.

2.6 Related Work

There have been extensive research on concurrency control approaches, and there many

excellent publications dedicated to this topic (e.g., [41 ]–[44 ]). However, research interest in

concurrency control in the past decade has been revived due to emerging hardware trends,

e.g., mutli-core and large main-memory machines. We will cover key approaches in this

section.

Novel Transaction Processing Architectures Arguably one of the first papers that

started to question the status quo for concurrency mechanism was H-Store [14 ]. H-Store

imagined a simple model, where the workload always tends to be partitionable and advocated
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single-threaded execution in each partition; thereby, drop the need for any coordination

mechanism within a single partition. Of course, as expected its performance degrades when

transactions span multiple partitions.

Unlike H-Store, QueCC through a deterministic, priority-based planning and execution

model that not only eliminates the need for concurrency mechanism, but also it is not limited

to partitionable workloads and can swiftly readjust and reassign thread-to-queue assignment

or merge/spit queues during the planning and/or execution, where queue is essentially an

ordered set of operations over a fine-grained partition that is created dynamically.

Unlike the classical execution model, in which each transaction is assigned to a single

thread, DORA [11 ] proposed a novel reformulation of transactions processing as a loosely-

coupled publish/subscribe paradigm, decomposes each transaction through a set of ren-

dezvous points, and relies on message passing for thread communications. DORA assigns

a thread to a set of records based on how the primary key index is traversed, often a b-

tree index, where essentially the tree divided into a set of contiguous disjoint ranges, and

each range is assigned to a thread. The goal of DORA is to improve cache efficiency using

thread-to-data assignment as opposed to thread-to-transaction assignment. However, DORA

continues to rely on classical concurrency controls to coordinate data access while QueCC

is fundamentally different by completely eliminating the need for any concurrency control

through deterministic planning and execution for a batch of transactions. Notably, QueCC’s

thread-to-queue assignment also substantially improve cache locality.

Concurrency Control Protocols The well-understood pessimistic two-phase locking

schemes for transactional concurrency control on single-node systems are shown to have scal-

ability problems with large numbers of cores[7 ]. Therefore, several research proposals focused

on the optimistic concurrency control (OCC) approach (e.g., [8 ], [30 ], [35 ], [45 ]–[47 ]), which is

originally proposed by [48 ]. Tu et al.’s SILO [8 ] is a scalable variant of optimistic concurrency

control that avoids many bottlenecks of the centralized techniques by an efficient imple-

mentation of the validation phase. TicToc [35 ] improves concurrency by using a data-driven

timestamp management protocol. Both BCC [46 ] and MOCC [45 ] are designed to minimize

the cost of false aborts. All of these CC protocols suffer from non-deterministic aborts, which

results in wasting computing resources and reducing the overall system’s throughput. On
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the other hand, QueCC does not have such limitation because it deterministically processes

transactions, which eliminates non-deterministic aborts.

Larson et al. [29 ] revisited concurrency control for in-memory stores and proposed a

multi-version, optimistic concurrency control with speculative reads. Sadoghi et al. [30 ], [47 ]

introduced a two-version concurrency control that allows the coexistence of both pessimistic

and optimistic concurrency protocols, all centered around a novel indirection layer that serves

as a gateway to find the latest version of the record and a lightweight coordination mechanism

to implement block and non-blocking concurrency mechanism. Cicada by Lim et al. mitigates

the costs associated with multi-versioning and contention by carefully examining various

layers of the system [9 ]. QueCC is in sharp contrast with these research efforts, QueCC

focuses on eliminates the concurrency control overhead as opposed to improving it.

ORTHRUS by Ren et al. [17 ] uses dedicated threads for pessimistic concurrency control

and message passing communication between threads. Transaction execution threads del-

egate their locking functionality to dedicated concurrency control threads. In contrast to

ORTHRUS, QueCC plans a batch of transactions in the first phase and execute them in the

second phase using coordination-free mechanism. LADS by Yao et al. [10 ] builds dependency

graphs for a batch of transactions that dictates execution orders. Faleiro et al. [26 ] pro-

pose PWV which is based on the “early write visibility” technique that exploits the ability

to determine the commit decision of a transaction before it completes all of its operations.

In terms of execution, both LADS and PWV process transactions explicitly by relying on

dependency graphs. On the other hand, QueCC does satisfy transaction dependencies but

its execution model is organized in term of prioritized queues. In QueCC, not only do we

drop the partitionability assumption, but we also eliminate any graph-driven coordination

by introducing a novel deterministic, priority-based queuing execution. Notably, the idea

of “early write visibility” can be exploited by QueCC to further reduce chances of cascading

aborts.

The ability to parallelize transaction processing is limited by various dependencies that

may exist among transactions fragments. IC3 [28 ] is a recent proposal for a concurrency

control optimized for multi-core in-memory stores. IC3 decomposes transactions into pieces
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through static analysis, and constrain the parallel execution of pieces at run-time to ensure

serializable.

Unlike IC3, QueCC achieves transaction-level parallelism by using two deterministic phases

of planning and execution and without relying on conflict graphs explicitly.

Deterministic Transaction Processing All the aforementioned single-version transac-

tion processing schemes interleave transaction operations non-deterministically, which leads

to fundamentally unnecessary aborts and transaction restarts. Deterministic transaction pro-

cessing, e.g.,[12 ], [16 ]) on the other hand, eliminates this class of non-deterministic aborts and

allow only logic-induced aborts (i.e., explicit aborts by the transaction’s logic). Calvin[12 ] is

designed for distributed environments and uses determinism eliminate the cost of two-phase-

commit protocol when processing distributed transactions and does not address multi-core

optimizations in the individual nodes. Gargamel [49 ] pre-serilaize possibly conflicting transac-

tions using a dedicated load-balancing node in distributed environments. It uses a classifier

based on static analysis to determine conflicting transactions. Unlike Gargamel, QueCC is

centered around the notion of priority, and is designed for multi-core hardware.

BOHM [16 ] started re-thinking multi-version concurrency control for deterministic multi-

core in-memory stores. In particular, BOHM process batches of transactions in three se-

quential phases (1) a single-threaded sequencing phase to determine the global order of

transactions, (2) a parallel multi-version concurrency control phase to determine the version

conflicts, and (3) a parallel execution phase based on transaction dependencies, which op-

tionally performs garbage collection for unneeded record versions. In sharp contrast, QueCC

process batches of transactions in only two deterministic phases, and it has a parallel priority-

based queue-oriented planning and execution phases that do not suffer from additional costs

such as garbage collection costs.

2.7 Conclusion

In this chapter, we presented QueCC, a queue-oriented, control-free concurrency archi-

tecture for high-performance, in-memory data stores on emerging multi-sockets, many-core,

shared-memory architectures. QueCC exhibits minimal contention among concurrent threads
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by eliminating the overhead of concurrency control from the critical path of the transaction.

QueCC operates on batches of transactions in two deterministic phases of priority-based

planning followed by control-free execution. Instead of the traditional thread-to-transaction

assignment, QueCC uses a novel thread-to-queue assignment to dynamically parallelize trans-

action execution and eliminate bottlenecks under high contention workloads. We extensively

evaluate QueCC with two popular benchmarks. Our results show that QueCC can process al-

most 40 Million YCSB operation per second and over 5 Million TPC-C transactions per sec-

ond. Compared to other concurrency control approaches, QueCC achieves up to 4.5× higher

throughput for YCSB workloads, and 6.3× higher throughput for TPC-C workloads.
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3. QUEUE-ORIENTED DISTRIBUTED TRANSACTION

PROCESSING

An earlier version of this chapter appeared in [50 ]

3.1 Introduction

Distributed transaction processing is challenging due to the inherent overheads of costly

commit protocols like 2-Phase-Commit (2PC) [51 ]. Even for use cases such as in-memory

databases and stored-procedure-based transactions, 2PC is either used (e.g., [14 ], [52 ], [53 ])

or avoided by eliminating the processing of multi-partitioned transactions (e.g., [54 ], [55 ]).

Note that 2PC by itself does not ensure serializable transaction processing, and it requires a

distributed concurrency control protocol to guarantee serializability. Traditional concurrency

control protocols may abort active distributed transactions non-deterministically to ensure

serializable transaction processing. When such abort decisions are coupled with 2PC, the

cost of the distributed transaction processing is further increased because of the overhead of

rollbacks and restarts.

Deterministic databases [12 ], [56 ] reduce the cost of committing distributed transactions

by imposing a single order on executing a batch of transactions prior to actual execution.

By ensuring the same pre-execution ordering, deterministic database systems eliminate the

need to abort transactions for violating serializability guarantees (in optimistic concurrency

control), avoiding deadlocks (in pessimistic concurrency control), or node crash failures.

Unfortunately, the state-of-the-art designs of distributed deterministic databases suffer

from other inefficiencies. We identify three of these inefficiencies that limit their performance

and scalability. First, they rely on single-threaded pre-execution sequencing and schedul-

ing mechanisms which cannot exploit multi-core computing architectures and limit vertical

throughput scalability [13 ]. Second, they mostly support a conservative (non-speculative)

form of transaction execution. One exception is the work by Jones et al. [52 ], which per-

forms speculative-execution only for multi-partition transactions but limits the concurrency

for single-partition transactions (a property inherited from H-Store’s design). Third, they

follow a thread-to-transaction assignment which limits intra-transaction parallelism [2 ], [11 ].
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Figure 3.1. Overview of transaction processing in Calvin (left) and Q-Store (right)

In this chapter, we propose a novel transaction processing paradigm of queuing-oriented

processing, and describe Q-Store. Q-Store is built on the principles of queue-oriented paradigm,

which provides a unified abstraction for processing distributed transactions deterministically

and does not suffer from the inefficiencies such as lower utilization of cores. Furthermore,

it admits multiple execution paradigms (i.e., speculative or conservative) and multiple isola-

tion levels (i.e., serializable isolation or read-committed isolation) seamlessly, unlike existing

proposals of the deterministic database. It is important to note that several existing non-

deterministic database systems already support multiple forms of isolation levels (e.g., [30 ],

[57 ]–[60 ]).

Our queue-oriented transaction processing paradigm can efficiently utilize the parallelism

available with commodity multi-core machines by maximizing the number of threads doing

useful work. Q-Store processes batches of transactions in two multi-threaded yet determinis-

tic phases of planning and execution, as shown in the right side of Figure 3.1 . Each phase

utilizes all available computing resources efficiently, which improves the system’s through-

put significantly. The planning phase is carried out by multiple planning-threads, deliver-

ing maximum CPU utilization. Planning-threads generate queues of transaction operations

that require minimal coordination among execution-threads. These queues are executed by
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execution-threads that are assigned to different cores to maximize cache efficiency. Each

execution-thread is assigned one or more queues for execution. In other words, these queues

constitute a schedule for executing transnational operations of a batch of transactions. Any

coordination among execution-threads is performed via efficient and distributed lock-free

data structures. In particular, we make the following contribution, in this chapter.

• We propose a novel queue-oriented transaction processing paradigm that facilitates

distributed transaction processing and unifies local and remote transaction processing

in a single paradigm based on pre-determined priorities of queues. Our proposed

paradigm supports multiple execution paradigms and multiple isolation levels and leads

to implementation of efficient transaction processing protocol (Section 3.3 ).

• We present a formalization of our proposed paradigm and prove that it produces se-

rializable histories to guarantee serializable isolation. We also formally show how our

paradigm can support read-committed isolation seamlessly (Section 3.4 ).

• We design and build Q-Store, which is a distributed transaction processing system that

relies on the principles of our proposed queue-oriented paradigm (Section 3.5 ).

• We present the results of an extensive evaluation of Q-Store. In our evaluation, we

compare Q-Store against non-deterministic and deterministic transaction processing

protocols using workloads from standard macro-benchmarks such as YCSB and TPC-

C. We perform our evaluation using a single code-base, which allows us to conduct

an apple-to-apple comparison against 5 transaction processing protocols. Our experi-

ments demonstrate that Q-Store out-performs state-of-the-art deterministic distributed

transaction processing protocols by up to 22.1×. Against non-deterministic distributed

transaction processing protocols, Q-Store achieves up to two orders of magnitude better

throughput (Section 3.6 ).

3.2 Background

In this section, we give an overview of Calvin [12 ] as a representative for deterministic

databases. As far as we know, Calvin is regarded as the state-of-the-art distributed determin-
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istic transaction processing protocol, and has been commercialized [56 ]. Other deterministic

transaction processing protocols are either designed for non-distributed environments (e.g.,

[2 ], [15 ], [16 ]) or a variation that improves parts of Calvin’s protocol while re-using the remain-

ing parts as-is (e.g., [61 ]). These proposals are covered in Section 3.7 in more details. We also

briefly describe the transaction model used by Q-Store which adopts the same transaction

model used by [2 ], which is in sharp contrast from Calvin’s transaction model.

3.2.1 Transaction Processing in Calvin

This section gives a brief description of how Calvin works based on [12 ]. The basic pro-

cessing flow requires 3 phases: a sequencing phase, a scheduling phase, and an execution

phase with 5 sub-phases. Figure 3.1 (left), illustrate these phases.

Each node, in Calvin, runs a single sequencer thread, a single scheduler thread, and one or

more worker threads. The sequencer thread forms batches of sequenced transactions. It uses

a time-based demarcation of batches. Batches formed by different nodes are processed by

scheduler threads in strict round-robin fashion. Scheduler threads use deterministic locking

to schedule transactions that require the full knowledge of the read/write sets of transactions,

which is similar to Conservative 2PL [62 ]. Unlike Conservative 2PL, Calvin ensures that

conflicting transactions are deterministically processed according to their sequence number

in the sequencing batch. For example, let ta and tb denote two conflicting transactions (i.e.,

cannot be scheduled to execute concurrently), and seq(t) denote the sequence number of

transaction t as determined by the sequencer thread. If seq(ta) < seq(tb), then Calvin ensures

that ta is scheduled before tb. Once locks on all the records are acquired by the scheduler

thread, the transaction is ready for execution, and it is given to a worker thread for execution.

As Calvin is a distributed database system, each worker thread executes an assigned

transaction in the following phases:

Phase 1 - Read/write set analysis: This phase is used to determine the set of nodes

that are participating in the transaction. For this set, nodes that are executing at least

one write operation are marked as active participants.
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Phase 2 - Perform local read operations: This phase is performed by all participants

if records are available locally.

Phase 3 - Serve remote read operations: Multicast records to active participants. This

phase is the last phase performed by non-active participants. At this point, they can

declare the transaction as completed and move to the next transaction.

Phase 4 - Collect remote read operations: This phase is performed by active partici-

pants only, and they need to wait for remote records before moving to the next phase.

Hence, worker threads can postpone the active transaction (while waiting) and resume

another transaction that is ready for execution.

Phase 5 - Execute transaction logic and perform local write operations: This

phase is also performed only by active participants.

Discussion. The original Calvin paper by Thomson et al. [12 ] does not clearly describe

how a transaction is committed (or aborted). However, by looking into the code-base of one

of the implementations of Calvin from [13 ], which we ported to our test-bed, we discovered

that the basic idea goes as follows.

The sequencer determines the participant nodes of every sequenced transaction by per-

forming Phase 1 from above. When a participant node completes its work on a transaction,

it sends a one-way acknowledgment (ACK) message to the sequencer of the transaction.

When the sequencer collects all ACK messages from all participants, it commits the trans-

action and sends a response message to the client of the transaction. Worker threads (that

execute transactions) can re-use read/write set analysis performed by the sequencer thread

to avoid needless computation.

3.2.2 Q-Store’s Transaction Model

We adopt the same transaction model used by [2 ]. In this model, a transaction is broken

into fragments. A fragment can perform multiple operations on the same record, such as

read, modify, and write operations. A fragment can cause the transaction to abort, and in

this case, we refer to such fragments as abortable fragments.
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Figure 3.2. An example illustrating transaction dependencies in Q-Store.
Execution-queues (EQs) are planned by planning-thread PT(q,p)

Furthermore, there are can be dependencies among fragments. In Figure 3.2 , we illustrate

these dependencies. There are 7 planned transactions in 3 execution-queues. Fragments are

denoted as Oi,Tj where i denotes the fragment index in transaction Tj. We describe the

notations in detail in Section 3.4 .

Data dependencies exist when an operation in a fragment requires a value that is read

by another fragment of the same transaction (solid black arrow between O2,T5 and O3,T5).

Conflict dependencies exist between fragments from different transactions that access the

same record, and the dependee fragment performs a write operation (solid red arrow between

O3,T5 and O1,T7).

Two kinds of commit dependencies exist between fragments. The first kind is concerned

with fragments of the same transaction. In this case, a commit dependency exists between

two fragments of the same transaction if the dependee is an abortable fragment (dotted black

arrow between O2,T4 and O1,T4). In this example, O2,T4 is an abortable fragment. The second

kind of commit dependencies, which we refer to as speculation dependencies, exist between

fragments of different transactions. Tracking them is required when using the speculative

execution paradigm. A speculation dependency exists between the two fragments when the
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dependent fragment reads speculatively uncommitted data written by the dependee fragment

(dotted red arrow between O1,T4 and O1,T6).

Discussion. It is worth noting that speculation dependencies are a realization of conflict

dependencies. Tracking speculation dependencies is needed to ensure correct transaction

execution with speculative execution. Note that, in Q-Store, conflict dependencies are not

explicitly tracked during planning. It is possible to capture these during planning, but that

would introduce additional overhead to the planning phase, which is undesirable.

3.3 Transaction Processing in Q-Store

In this section, we describe the novel and unique features of Q-Store. As far as we know, Q-

Store is the first distributed deterministic transaction processing system to provide following

features.

Efficient two-phase distributed processing model. In Figure 3.1 , we show the

critical differences between Calvin’s processing model and Q-Store’ processing model. On the

left side (Calvin) of Figure 3.1 , the total number of phases required to process a batch of

transactions is 3 with the execution phase requiring 5 sub-phases. Note that the sequencing

and the scheduling phases in Calvin are single-threaded. On the right side, Q-Store processes a

batch of transactions in two multi-threaded phases of planning and execution. The execution

phase does not include any sub-phases. Q-Store reduces the number of phases compared to

Calvin (See Figure 3.1 ). Furthermore, Q-Store uses all available cores efficiently. All available

threads work on the planning of a batch, then all of them work on execution.

Multi-paradigm execution. The design of Q-Store admits multiple execution paradigm.

The processing of a batch of transactions can be speculative or conservative. Transaction

isolation can be serializable or read-committed.

Queue-oriented processing. The planning phase in Q-Store abstracts the logical se-

mantics of a transaction into prioritized queues of transaction fragments. Queues provide

ordering for conflict fragments that seamlessly resolve conflict dependencies among fragments

of different transactions. Therefore, threads during execution only deal with the other de-
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pendencies. Furthermore, queues can be implemented efficiently to ensure efficient execution

and communication.

3.3.1 Queue-oriented Architecture

In Figure 3.3 , we illustrate an example architecture of Q-Store, which consists of three

server nodes. A client may send transactions that require access to multiple partitions, which

we call multi-partition transactions. A client selects one of the server nodes for a given trans-

action and sends the transaction to the selected server. The role of the selected server is

to coordinate the execution of the received transaction. Note that a server can be selected

during the client session establishment, which allows mechanisms for load-balancing. Mech-
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anisms for load-balancing include client-side libraries and middle-ware-based mechanisms.

These details are beyond the scope of this chapter.

Also in Figure 3.3 , each node maintains a set of local client transaction queues. There is

one client transaction queue per planner-thread to avoid contention. Planner-threads create

fragments from transactions and capture dependencies, and create queues of fragments for

each execution thread. Each planner-thread also updates the Batch Meta-data distributed

data structure. The Batch Meta-data stores information about fragment dependencies, and

execution-queues progress status. It is a globally shared lock-free distributed data structure

that is used to facilitate minimal coordination among execution threads. In Figure 3.3 ,

yellow arrows depict communication patterns during the planning-phase while green arrows

depict communication patterns during the execution-phase.
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Zooming into a single node, Figure 3.4 , we illustrate the major components of a server

node. Similar to Figure 3.3 , yellow and green arrows, depict communication during planning-

phase and execution-phase, respectively.

Each server employs a set of threads to complete various tasks. We can broadly categorize

threads into two sets: (i) communication threads, and (ii) worker threads. Q-Store employs

communication threads to handle message transmission and reception among the servers

and clients. They are also responsible for handling messages between server components

and network buffers. They store client transactions in transaction queues, send and receive

remote execution-queues (EQs), and apply updates to the batch meta-data.

Each worker thread may participate in either one or two phases: planning and execution

(e.g., we can have dedicated worker threads for each phase). Hence depending on the phase,

we refer to these worker threads as either planning-threads or execution-threads. We use P to

represent the set of planning-threads and E to represent the set of execution-threads. The

planning-threads take a set of transactions and generate plans to execute these transactions.

The execution-threads execute transactions according to these plans.

3.3.2 Priorities in Q-Store

In Q-Store, we use the notion of priorities to impose order at various levels granularity.

The concept of priority captures the ordering of queues and transaction fragments elegantly.

Execution-threads need to respect these priorities to ensure the correct ordering of conflicting

transactions. We have three different levels of granularity from the perspective of execution.

We formalize the notion of priorities by representing our distributed system as a set S,

which is the set of server nodes. We assign each server Sq a priority q, that is,

S := {S1, S2, ...., Sq}, where q ≥ 1

Q-Store requires each server to associate a priority p with each of its planning-threads.

Note that the planning-thread priority p differs from the server priority q. As each planning-
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thread also inherits the priority of its server, so each planning-thread has two associated

priorities. Hence, we use the Pq,p representation for a planning thread with priority p.

Pq := {Pq,1, Pq,2, ...., Pq,p}, where q, p ≥ 1 (3.1)

Planning-threads create execution-queues for transactions and tag them with their prior-

ities. The execution-queues created by a planning-thread constitute schedules of transaction

fragments of the set of transactions processed by the planning-thread. Execution-threads

execute fragments according to planned schedules while respecting the priorities of execution-

queues in addition to checking and resolving dependencies among fragments.

3.3.3 Logging and Recovery

Q-Store like other deterministic transaction processing systems (e.g., [12 ], [14 ]) assumes a

deterministic stored procedure based transaction model [63 ]. Within this model, all inputs of

a transaction are available before this transaction can start execution. Therefore, the input

of a batch of transactions is logged before they are delivered to execution-threads. Periodic

check-pointing of the database state is used to reduce the time required for recovery in case

of a failure. In this chapter, we mainly focus on transaction execution as we can rely on the

same techniques for logging and recovery as [12 ], [14 ].

3.4 Formalizing Q-Store

We now formalize the planning and execution phases of Q-Store. Later in this section, we

also prove that Q-Store transaction processing protocol produces serializable histories.

3.4.1 Planning Transactions

As stated earlier in the previous section, the set of planning-threads Pq at a server inherit

its priority q, and each planning-thread Pq,p in the set Pq has another priority p to prioritize

planning-threads of the same server. In general, planning-threads may use any mechanism to

create execution-queues as long as they ensure that conflicting operations are placed in the
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same queue. For example, a range-based partitioning of the record-identifiers can be used,

which ensures that operations accessing the same record are placed in the same execution

queue. However, a placement strategy that minimizes the dependencies among execution-

queues can yield better performance. More sophisticated approaches based on some cost

model are also possible as long as the planning times are minimized and do not introduce

significant overhead to the processing latency. The study of such strategies is out of the

scope of this chapter.

We denote the set of these execution-queues as Qq,p and individual execution-queue as

Qi
q,p.

Qq,p := {Q1
q,p, Q

2
q,p, ..., Q

i
q,p}, where i ≥ 1 (3.2)

In Q-Store, each planning-thread processes a batch of transactions and places its frag-

ments in its respective execution-queues. Hence, each ith execution-queue Qi
q,p contains a

set of operations that access the records belonging to that sub-partition, which implies that

fragments from two execution-queues created by the same planning-thread have operations,

access records in different sub-partitions, and any conflicting fragments (i.e., access the same

records) are placed in the same execution-queue.

Q-Store’s planning-threads try to balance the load and create execution-queues equal to

the number of execution-threads in the system. Such planning is done to keep execution-

threads from being idle. More formally:

∀ Pq,p,∈ Pq, |Qq,p| ≥ |E| (3.3)

However, it is undesirable in practice to have the number of execution-queues much larger

than the number of execution-threads because it can lead to performance degradation due

to low-level issues (e.g., cache-locality).

Each transaction can perform multiple operations. These operations can be grouped

into fragments if they are accessing the same record. Otherwise, a fragment has a single

operation. We denote the set of fragments in a transaction T as OT . For presentation
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simplicity, let us assume that each fragment Ok,T in set OT can be either a read (R) or a

write (W ).

OT := {O1,T , O2,T , ..., Ok,T}

A planning-thread may distribute the fragments of a given transaction across multi-

ple execution-queues. Q-Store needs to impose an order to the transactions that are being

planned. This order can be as simple as the order imposed by the client-transaction-queue.

A transaction and its fragments inherit the priorities of its planning-thread.

Hence, we can identify the order of a transaction T using a triple (i, p, q), where q is the

priority of the server, p is the priority of the planning thread, and i can be the order imposed

by the client-transaction-queue.

∀ i, j, i < j→ T(j,p,q)
follows−−−→ T(i,p,q) (3.4)

Equation 3.4 shows that as T(i,p,q) has a smaller identifier (i) than T(j,p,q), so it must have

been placed in the client-transaction-queue before T(j,p,q).

Since transactions may have operations accessing remote partitions, planning-threads

similarly create remote execution-queues to be executed at remote nodes. Note that our

notation of an execution-queue Qi
q,p identifies the priority q of a remote server, which guides

the execution phase. Therefore, queue execution at remote nodes is also deterministic.

When the planning-threads have collectively processed a set of transactions, they mark

the resulting batch of execution-queues (local and remote) as ready for execution and deliver

them to (local and remote) execution threads.

3.4.2 Speculatively Executing Transactions

The execution phase is performed by a set of execution-threads. Each server consists of

a set of execution-threads E.

E := {E1, E2, ..., Ej}, where j ≥ 1
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We require all the execution-threads to adhere to the following condition strictly:

Condition: For each record, operations belonging to higher priority execution-queues must

always be executed before executing any lower priority operations.

∀ Qm ∈ Qq,p, ∀ Qn ∈ Qs,t, ∀ Oi ∈ Qm, ∀ Oj ∈ Qn

| (q > s) ∨ ((q = s) ∧ (p > t))→ Oj
follows−−−→ Oi

(3.5)

This condition ensures that the order of executed operations follows a single order within

and across servers. In other words, Q-Store requires execution-threads E to process the

operations from those execution-queues, which have the highest priority among all the servers

and planning-threads. However, Q-Store does allow the execution-queues produced by a single

planner thread to be executed in parallel because they have the same priority.

Execution-threads process fragments from the execution-queues speculatively such that

fragments are allowed to read uncommitted data (speculating that it would commit at a

later time). Q-Store tracks these speculative actions and captures corresponding speculation

dependencies (Section 3.2.2 ).

When a violation of an integrity constraint causes a transaction to abort, other frag-

ments of the same transaction that have updated records must rollback as well. The other

fragments may have uncommitted updates that have been read by fragments belonging to

other transactions. In this case, dependent fragments and their respective transactions must

rollback, causing a cascade of aborts through the batch.

3.4.3 Conservatively Executing Transactions

Q-Store also seamlessly supports a conservative execution, which introduces stalls when

processing queues, but has the advantage of avoiding cascading aborts. In Q-Store, a trans-

action is aborted when the transaction logic induces an abort (e.g., for violating an integrity

constraint). By design, non-deterministic aborts (e.g., for ensuring deadlock-free execution)

do not exist in Q-Store.
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Looking back at our example illustrating transaction dependencies from Section 3.2.2 ,

FragmentO1,T4 depends onO2,T4 which is abortable. In conservative execution, the execution-

thread executing EQ2
q,p stalls until the dependency is resolved. The event of resolving the

dependency indicates that O2,T4 is not going to abort. Therefore, any records updated by

fragment O1,T4 are safe for any read operations by subsequent fragments in the execution-

queue.

Fragments are marked by planning-threads to ensure that execution-threads know when

to wait and stall the processing of an execution-queue. When execution-threads encounter a

marked fragment, they stall waiting for its commit dependencies to be resolved. Execution-

threads can work on other execution-queues if they need to stall due to unresolved commit

dependencies. Therefore, we are still exploiting parallelism by allowing other fragments to

execute. If an integrity constraint violation happens, then, only one transaction is aborted

and rollbacked.

3.4.4 Serializability

We now prove the serializability guarantees of Q-Store’s transaction processing model.

Theorem 3.4.1. Q-Store’s distributed transaction processing is serializable.

Proof. One principle of our queue-oriented paradigm is to treat local and remote execution-

queues in the same way. Therefore, the fact that an execution-queue is remote or local is an

orthogonal concept.

Let us assume that Q-Store produces a non-serializable history, which means that there

exist 4 transaction fragments that are executed in an incorrect order. Let these fragments

be as follows: Oi,Tn , Oj,Tn , Ok,Tm and Ol,Tm . Here Oi,Tn conflicts with Ok,Tm and Oj,Tn conflicts

with Ol,Tm . Further, let n < m in the client transaction queue, which means that a planner

plans Tn before Tm. A non-serializable history means that at one execution-queue Oi,Tn is

executed before Ok,Tm while Ok,Tm is executed before Oi,Tn at another execution node. More

formally,

∃Qa, Qb s.t. {Oi,Tn , Ok,Tm} ∈ Qa ∧ {Oj,Tn , Ol,Tm} ∈ Qb (3.6)
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Furthermore, the following constraint captures one possible non-serializable history for

the transaction fragments.

Ok,Tm

follows−−−→ Oi,Tn ∧Oj,Tn

follows−−−→ Ol,Tm (3.7)

The other non-serializable history is captured by:

Oi,Tn

follows−−−→ Ok,Tm ∧Ol,Tm

follows−−−→ Oj,Tn (3.8)

Either Qa or Qb has fragments from Tm ordered before Tn, which contradicts the fact

that the planner of Qa and Qb planned Tn before Tm.

3.4.5 Read-committed Isolation

Not only that, Q-Store supports multiple execution paradigms but also multiple isolation

levels seamlessly using the queue-oriented paradigm. Supporting read-committed isolation

requires planning-threads to produce an additional set of execution-queues Qj
q,p such that

they only contain read-only transaction fragments as shown in Eq. 3.9 . Read-only transac-

tion fragments do not perform any write operations.

∀ Pq,p,∈ Pq,Qq,p := {Q1
q,p, Q

2
q,p, ..., Q

i
q,p}

∪ {Q1
q,p, Q

2
q,p, ..., Q

j
q,p}, where i ≥ 1, j ≥ 1

(3.9)

Furthermore, Q-Store employs a copy-on-write technique that creates a private copy of the

updated records. Using these two simple techniques, Q-Store can support read-committed

isolation seamlessly.

3.4.6 Discussion

The performance of speculative execution is dependent on the workload. Two properties

of the workload can degrade the performance of speculative execution. The activation of
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logic-induced aborts which leads to the cascading aborts phenomena. The conservative

execution solves this issue at the cost of more coordination among execution-threads.

For either of the execution paradigms, there is another workload property that impacts

their performance negatively. The existence of a large number of data dependencies among

fragments (see Section 3.2.2 ) in the planned workload limits the concurrency because it forces

additional coordination among threads to resolve these data dependencies.

In Q-Store, mitigating the impact of data dependencies require more intelligent planning.

Planning-threads can minimize the data dependencies among execution-queues. However,

solving the minimization problem cannot introduce significant latency. Furthermore, because

the database is partitioned, this can only work for local execution-queues. Planning-threads

can intelligently move read-only fragments to a special set of execution-queues that allow

resolving data-dependencies before executing dependent fragments. The implementation of

these optimization remains as future work.

3.5 Implementation

We now present some key details for our implementation of Q-Store. In our implementa-

tion of Q-Store, we model various components of Q-Store as a set of producers and consumers.

As stated in Section 3.3 , Q-Store includes a set of communication-threads. These threads

perform two tasks: (i) consuming messages from the network and storing them in respective

queues, and (ii) consuming messages from the worker-threads and pushing those on to the

network. The task of consuming messages from the network involves reconstructing the raw

buffers into appropriate message types so that other threads can interpret them.

In Q-Store, we partition the database using a range-partitioning scheme. At each server,

we allocate an equal number of worker threads that assume the roles of both the planning-

threads and execution-threads but only one role at a time. This scheme simplifies both the

planning and execution phases as computing the number of sub-partitions across the whole

cluster requires no additional communication.

When an input thread receives a client transaction, it places the transaction into a client-

transaction-queue associated with one of the planning-threads, in a round-robin fashion. We
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allocate one client-transaction-queue for each planning-thread. This approach eliminates

contention among the planning-threads to fetch the next transaction.

Q-Store employs a count-based batch demarcation mechanism which requires Planning-

threads to create batches of transactions containing a specific number of transactions. How-

ever, time-based implementations for defining batches are also possible (e.g., a batch is created

every 5 milliseconds).

Our Q-Store’s implementation requires minimal low-level synchronization among all the

threads in the system. Communication threads and worker threads utilize lock-free data

structures to interact. For instance, if a worker thread is currently acting as a planning-

thread, then as soon as it has processed the required number of transactions for the next

batch and created its execution-queues, it starts acting as an execution-thread and checks for

any available execution-queue to process. When it has executed all the required execution-

queues, then it resumes the role of a planning-thread.

Batch Meta-data Q-Store requires execution-threads to process both the local execution-

queues and remote execution-queues. This requirement implies there is a need to store

locally generated execution-queues and incoming remote execution-queues. We employ a

distributed lock-free data-structure, which we refer to as the Batch meta-data (illustrated

in Figures 3.3 and 3.4 ), to store these execution-queues as well as any relevant meta-data

needed to fulfill transactions dependencies. The implementation of dependencies uses a count

to represent the number of dependencies to be resolved. When a dependency is resolved,

we use atomic operations to decrement the dependency count. The communication-threads

push the incoming remote execution-queues directly to the batch meta-data, which makes

these queues available for execution. In this case, communication-threads are acting as vir-

tual planning-threads. Execution-threads access this batch meta-data to fetch any available

remote execution-queues. Moreover, the batch meta-data also stores the incoming acknowl-

edgment messages (ACK), which an execution-thread transmits after processing a remote

execution-queue, and the commit protocol uses them.

Commitment Protocol Q-Store’s design allows us to support two light-weight com-

mitment protocols. We can commit a transaction as soon as its last operation has been
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processed when using conservative execution. Alternatively, we can defer the commitment

of all the transactions to the end of the batch when using speculative execution.

Note that the former approach requires additional implementation complexity to ensure

that committed transactions do not read uncommitted updated from aborted transactions.

The latter approach could cause a non-trivial increase in the latency at the client because all

transactions are committed at the end. However, the latter approach also helps the system

to amortize the cost of the commit protocol over a batch of transactions [31 ].

One of the key advantages of employing deterministic transaction processing protocols

is that non-deterministic aborts are no longer possible (e.g., aborts induced by concurrency

control algorithms). Therefore, there no need to rely on costly commit protocols, such as

2PC.

For speculative execution in Q-Store, the commit protocol commits the whole batch after

all the execution-queues are processed. On completing the execution of an execution-queue,

the worker thread sends an ACK message notifying the planner’s node about it. When the

planner’s node receives the ACK message, it updates the batch meta-data associated with

the remote execution-queue. Further, Q-Store requires the local execution-threads to directly

update the batch meta-data. When all the local execution-queues are executed and remote

execution-queues are acknowledged, the planner node starts the commit stage for the planned

transactions.

To commit a particular transaction, we check if all of its fragments’ dependencies are

resolved. If so, the transaction is committed. Otherwise, the transaction needs to be aborted,

and the rollback process is started. During rollback, the speculative dependency path is

walked, and dependent transactions are aborted. Note that, in the conservative execution,

there are no speculative dependencies, and there are no cascading aborts.

3.6 Evaluation

In this section, we present an extensive evaluation of Q-Store. We implement our tech-

niques in ExpoDB [2 ], [23 ]. We compare the performance of Q-Store’s speculative execution
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with the following concurrency control techniques. The conservative execution’s performance

evaluation and analysis remain future work.

• NO-WAIT: A representative of pessimistic protocols. A two-phase locking (2PL) variant

that aborts a transaction if a lock cannot be acquired [34 ].

• TIMESTAMP: A basic time-ordering protocol [34 ] that is a representative of time-ordering

concurrency control protocols.

• MVCC: An optimistic concurrency control protocol that relies on maintaining multiple

versions of the accessed records. We select MVCC as representative of multi-version con-

currency control protocols.

• MaaT: An optimistic concurrency control protocol [64 ] that is a representative of optimistic

concurrency control protocols.

• Calvin: A deterministic transaction processing protocol [12 ].

We use a range-based partitioning instead of the original hash-based partitioning used

by [13 ].

Cluster Setup We use a total of 32 Amazon EC2 instances for all experiments (16 server

nodes and 16 client nodes). The instance type c5.2xlarge, which has 16GB of RAM and 8

vCPUs. We use Ubuntu 16.04 (xenial), GCC 5.4, Jemalloc 4.5.0 [65 ], [66 ] and compile our

code with -O2 compiler optimization flag. We pin threads to cores to reduce the variance

from the operating system scheduling and the effect of the caching system. Each dedicates 4

threads as worker threads, and 4 as communication threads. For Calvin, 2 out of the 4 worker

threads are dedicated to sequencing and scheduling tasks. Each client node maintains a load

of 10K active concurrent transactions.

Workloads We use two common macro-benchmarks for our evaluation. The first one

is YCSB [38 ]. YCSB is representative of web applications used by YAHOO. The YCSB

benchmark is modified to have transactional capabilities by including multiple operations

per transaction. Each operation can be either a READ or a READ-MODIFY-WRITE operation.

The benchmark consists of a single table that is partitioned across server nodes, and each
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Table 3.1. Workload configurations parameters. Default values are in parenthesis.
Parameter Name Possible Parameter Values
Common parameters:
% of multi-partition txns. 1%, 5%, 10%, 20%, (50%), 80%, 100%
YCSB Workloads:
Zipfian’s theta (0.0), 0.3, 0.6, 0.8, 0.9, 0.99
% of write operations 0%, 5%, 20%, (50%), 80%, 95%
Operations/txn. 2, 4, 8, 12, (16)
Partitions accessed/txn. 2, 4, (8), 12, 16
Server nodes counts 2, 4, 8, (16)
Batch sizes 5K, 10K, 20K, 40K, (80K), 160K, 320K
TPC-C Workloads:
% of Payment txn. 0%, 50%, 100%

node hosts 16 million records. The benchmark can be configured to capture various workload

characteristics.

We also experiment with workloads based on the industry-standard TPC-C [39 ]. The

TPC-C benchmark simulates a wholesale order processing system. There are 9 tables and 5

transaction types in this benchmark. All tables are partitioned across server nodes, where a

partition can host one or more warehouses. Similar to previous studies in the literature[7 ],

[13 ], we focus on the two main transaction profiles (NewOrder and Payment) out of the five

transaction profiles, which correspond to 88% of the default TPC-C workload mix [39 ].

We report the average of 3 trials where each experiment trial runs for 120 seconds, and

we ignore the measurements of the first 60 seconds, as it is used as a warm-up period. All

reported measurements are observed by the client-side; thus, they are reflective of practical

settings. Table 3.1 , shows the various configuration parameters we used in our evaluation.

Unless mentioned otherwise, we employ the default values.

Our experimental evaluation focuses on answering the following questions: (1) How does

batch size affects the performance of batch-based distributed transaction processing systems

(e.g., Calvin and Q-Store)? How do these systems handle high-volume workloads with large

batches of concurrent multi-partition transactions? How do the following workload char-

acteristics impact the performance of distributed transaction processing protocols: (a) the

contention induced by data access skew; the percentage of multi-partition transactions in the
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Figure 3.5. Impact of varying batch sizes on the system throughput and 99th

percentile latency of deterministic systems.

workload; (b) the percentage of update operations in each transaction; (c) the transaction

size (i.e., the number of operation per transaction); (d) the number of partitions accessed

per transaction, and; (e) the transaction profiles? (3) How do these transaction protocols

scale with respect to the number of nodes in the cluster?

3.6.1 YCSB Experiments

The YCSB benchmark is versatile, and we use it to answer many of the questions related

to sensitivity factors. We start by studying the impact of batch sizes for protocols that rely

on batching.

Impact of Batch Sizes Using the YCSB benchmark, we first study the impact of

batch size on protocols that rely on batching, such as Calvin and Q-Store. The current

implementation of Q-Store uses a count-based batch demarcation mechanism. On the other

hand, the original Calvin implementation uses a time-based mechanism. For this set of

experiments to be meaningful, we modified Calvin to use a count-based batch demarcation

mechanism and make it stand on the same ground as Q-Store. We use the default parameters
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and varying the batch size from 5K to 320K. The results are shown in Figure 3.5 . Compared

to Calvin, Q-Store scales very well as we increase the batch size up to 80K.

Moreover, Calvin’s throughput is very low because both the sequencing layer and the

scheduling layer are single-threaded per node. With a large number of transactions per

batch, those layers act as a bottleneck for the system. These results also show that Q-

Store’s architecture can utilize computing and network resources more efficiently. Beyond

80K, the throughput of Q-Store plateaus as transaction processing becomes CPU-bound,

and the latency starts to increase because worker threads take more time to process large

batches. Calvin cannot handle large batches as transaction latency values exceed the experi-

ment period. Remarkably, at 40K batches, Q-Store demonstrates an improvement of 22.1×

the throughput of Calvin and an order of magnitude lower latency.

The most significant insight for Q-Store is that for large deployments (e.g., here, we have

a total of 64 worker threads distributed over 16 server nodes), we need more work per thread

to ensure efficient transaction processing and to hide the latency. Q-Store can handle large

batches of concurrent transactions while keeping the latency low.

The presented results indicate that Q-Store is efficient in terms of performing useful work

locally. The bottleneck is in the communication protocol, which is expected because the

network is slower than local communication.

In the remaining experiments, we use the original time-based batch demarcation mech-

anism for Calvin and use their reported parameter of 5ms [13 ]. We observe that with 5ms

time-based batch demarcation, Calvin produces batches of size 160 per node approximately.

Variable Contention In this set of experiments (Figure 3.6 ), we vary the Zipfian skew

factor θ from 0.0 (uniform) to 0.99 (extremely skewed). As θ approaches 1.0, the data

access becomes more skewed within a partition, but the partitions are chosen uniformly per

transaction. In other words, each partition receives uniform access, but the record access

within the partition is skewed. It is possible to use a Zipfian distribution for partitions as

well, but that would not measure the performance of how each node is dealing with skewness.

Further, in such a case, mostly one node is active while the remaining nodes are idle most of

the time. We use a 50% multi-partition workload such that the 16 operations in a transaction

randomly access exactly 8 partitions.
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Figure 3.6. Impact of varying the data access skewness parameter θ of the
Zipfian distribution on systems throughput (log scale).

Both Calvin and Q-Store perform better because they both avoid the cost of the two-phase

commit protocol (2PC). However, Q-Store achieves up to 6× better throughput. The first

reason for that is queue-oriented execution and communication. Q-Store sends a queue of

ordered operations that belong to several concurrent transactions to remote nodes. Thus,

Q-Store ensures a more efficient communication.

Since different threads execute queues in parallel, Q-Store exploits intra-transaction par-

allelism (both within a node and across nodes) better than Calvin. For Calvin, the level of

contention does not affect its performance because the bottleneck is in the sequencing and

scheduling layer. Note that Q-Store’s throughput degrades slightly under high-contention

(i.e., beyond θ = 0.6) due to the imbalance in the size of execution queues.

The throughputs for non-deterministic protocols are low because they require a costly

2PC protocol for committing each transaction. As the contention increases, the abort rates

also increases, which lowers their performance even more. When transactions abort, they

are retried using a random back-off period. Under high-contention, transactions may abort

multiple times, which effectively increases the latency per transaction, which lowers the

throughput. Remarkably, Q-Store achieves nearly two orders of magnitude better system

throughput under high-contention in comparison to non-deterministic protocols.
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Figure 3.7. Impact of varying the percentage of multi-partitions transactions
in the workload on the system’s throughput.

Varying multi-partition transactions rate Now, we focus on the impact of multi-

partition transactions in the workload. We vary the percentage of multi-partition transac-

tions in the workload from 0% (single-partition transactions only) to 100% (multi-partition

transactions). We fix the values of other parameters to the default values. The results shown

in Figure 3.7 are for low contention (i.e., θ = 0.0). Note that in comparison to Figure 3.6 ,

there is no noticeable difference in the throughputs of the protocols with single-partition

transaction workloads, except for Calvin.

Non-deterministic protocols do not need to perform 2PC, which allows them to avoid

2PC’s cost. When the rate of multi-partition transactions increases, non-deterministic pro-

tocols incur the overhead of 2PC to ensure serializable execution, and thus, their throughput

decreases. Thus, our results validate previously published results (e.g., [13 ]), which illustrate

the poor performance of non-deterministic protocols.

Despite the deterministic nature of Calvin, its throughput also decreases as the rate of

multi-partition transaction increases. Calvin needs to send a given transaction to all partici-

pants and waits for their responses before scheduling the next conflicting transaction. This

approach increases the communication overhead per transaction and negatively affects the

performance of Calvin. Unlike Calvin, Q-Store is not sensitive to multi-partition transactions.
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Figure 3.8. Impact of varying the percentage of update operations in the
workload on the system’s throughput.

In addition to avoiding 2PC overhead, it has minimal communication overhead. Q-Store

communicates only a minimal number of execution queues between partitions, which contain

scheduled operations of several transactions. Thus, it effectively reduces the communication

overhead per transaction. Q-Store outperforms Calvin’s throughput by up to 10.6×.

Vary the percentage of update operations In the following experiments, we study

the impact of the percentage of the update operations on the transaction processing per-

formance. In previous experiments, we used a value of 50%, which means that 8 out of 16

operations are updating the database in each transaction. To study this factor, we vary the

percentage of update operations from 0% (read-only operations) to 95%. We fix the remain-

ing parameters to their default values. Note that increasing the rate of update operations

increases the contention on records (e.g., exclusive locks induce record contention).

Figure 3.8 shows the result of varying the percentage of update operations. The results

show that neither Q-Store nor Calvin are sensitive to this factor. Calvin employs determin-

istic locking to avoid aborting transactions unnecessarily while Q-Store executes operations

according to their order in a given queue. In other words, for Q-Store there is no difference

between the read or update operations as Q-Store executes each operation in-order, which

eliminates any sensitivity to this factor. With non-deterministic protocols, we observe that
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Figure 3.9. The impact of varying the number of operation per transaction
on system’s throughput. We force each operation access a different partition.
This results is for low contention θ = 0.0.

the abort-rate increases as the contention increases due to more update operations in the

workload. For NO-WAIT, MaaT, TIMESTAMP, and MVCC, the abort-rates are up to 41%,

19%, 7%, and 6%, respectively, at 95% update rate.

When a transaction is read-only, there is no need to perform 2PC, but participants

still need to communicate messages to finalize the running transaction. As the transaction

involves more update operations, the overhead of 2PC protocol becomes more substantial,

which negatively affects the performance of non-deterministic protocols that rely on 2PC as

their atomic commitment protocol. Notably, Q-Store shows an improvement in its system’s

throughput by up to 5.9× and 17.1× over Calvin and MVCC (the next best non-deterministic

protocol), respectively.

Vary the number of operations per transaction Now, we experiment with vary-

ing the number of operations per transaction. We set the percentage of multi-partition

transactions to 50%, and force each transaction to access the same number of partitions as

its number of operations. For example, if a transaction has 4 operations, the number of

partitioned accessed by that transaction is also 4. However, each partition has the same

probability of access by any operation, and we do not force operations to be remote.

76



2 4 8 12 16
Number of Partitions Accessed

105

106

T
ra

n
sa

ct
io

n
s 

p
e
r 

S
e
co

n
d

Figure 3.10. The impact of varying the number of partitions accessed by
each transaction on the system’s throughput.

This experiment aims to capture execution and communication overheads as transactions

become larger. For non-deterministic protocols, as the number of operations increases, the

cost of 2PC increases because it is more likely that more nodes need to participate in the

commitment protocol. Calvin performs better than other non-deterministic protocols, but its

performance does not scale with larger transactions. Q-Store, on the other hand, scales well

as the number of operations per transaction increases. With 16 operations per transaction,

Q-Store’s performance reaches a remarkable throughout of nearly 16 million operations per

second. These numbers are 12× and 20× better than those for Calvin and NO-WAIT, respec-

tively, as shown in Figure 3.9 . These gains are due to the proposed efficient queue-oriented

execution and communication. For Q-Store, the number of queues communicated is constant

(but their sizes may vary) while the other protocols exchange messages for remote operations,

which increases the overall communication overhead.

Vary partitions per transaction In Figure 3.10 , we show the results for varying the

number of partitions accessed by transactions having 16 operations. We use uniform data

access, which leads to a low contention workload. By having uniform data access, the effect

of contention is negligible, which can help us to examine the communication costs. As we

increase the number of partitions accessed by a transaction, the overhead of committing this
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Figure 3.11. Throughput scalability results while varying the number of server nodes.

transaction increases because the commitment involves agreement of more participants per

transaction. This issue is mainly a problem for non-deterministic protocols as the partici-

pants need to agree on the order for operations. As the number of participants increases,

more coordination is required to commit each transaction.

While Calvin eliminates the overhead of 2PC, it still suffers from increasing the number

of partitions accessed per transaction. The reasons for that are: (i) it needs to send the

transactions to more participants, and (ii) it needs to wait for acknowledgments from more

participants before declaring a transaction as committed. This communication overhead

increases as the number of partitions accessed increases. In contrast, Q-Store demonstrates

its insensitivity to this factor and achieves a throughput of around a million transactions

per second despite the increase in the number of partitions accessed per transaction. Since

the workload is uniform, the number of partitions accessed affects only the sizes of remote

execution queues, and there is no increase in the number of communicated execution queues.

Scalability For all previous experiments, we have used 16 servers. In this set of ex-

periments, we vary the number of nodes to evaluate the scalability. We set the percentage

of multi-partition transactions to 50%, and force each transaction to access all available

partitions. Figure 3.11 , shows that Q-Store scales well as the number of server nodes in-

creases in the cluster, achieving over 1 million transactions per second at 16 server nodes.
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Figure 3.12. The impact of different TPC-C transaction mixes on the sys-
tem’s throughput. 15% multi-partition transactions is used.

Other approaches do not scale due to the overhead of multi-partition transactions. Calvin’s

performance cannot scale because of the single-threaded pre-execution phases, while non-

deterministic protocols do not scale due to the increased overhead of 2PC.

3.6.2 TPC-C Experiments

We also evaluate Q-Store with workloads based on the industry-standard TPC-C bench-

mark. For this set of experiments, we use a total of 16 server nodes, with 4 warehouses

per server. Hence, the total number of warehouses is 64. We use three workloads: 100%

NewOrder-transaction workload, 50% Payment and 50% NewOrder transactions workload

mix, and finally 100% Payment-transaction workload. We use the standard rate of 15% of

the payment transactions coming from remote customers as the multi-partition transaction

rate, for all the transactions in the workloads. We also restrict the number of partitions

accessed to two even for NewOrder transactions.

The results are shown in Figure 3.12 . Both deterministic systems Calvin and Q-Store

significantly outperform other algorithms by a significant margin due to their use of 2PC.

Q-Store outperforms Calvin by up to 1.8×. Remarkably, Q-Store outperforms NO-WAIT, which

is the best performing non-deterministic protocol, by up to 55.2×. NO-WAIT suffers from
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Figure 3.13. Varying the percentage of multi-partition transaction with equal
ratios of Payment and NewOrder transactions.

high abort rates due to contended warehouse records (to avoid deadlocks) and the overhead

of 2PC for multi-partition transactions. On the other hand, Q-Store eliminates the overhead

of 2PC and execution-induced aborts.

The second set of experiments that use TPC-C workloads study the effects of multi-

partition transaction rates (Figure 3.13 ). The transaction profiles in TPC-C are more com-

plicated than their YCSB counterparts. It involves data dependencies among operations,

which can reduce the performance of Q-Store. For example, in the NewOrder transaction,

many operations require the new value of the OrderId, which is updated by the same transac-

tion. Our current implementation creates an execution-queue per warehouse, which serializes

all operations accessing records belonging to a given warehouse. Despite this unfavorable

data partitioning scheme, Q-Store’s throughput still outperforms Calvin’s throughput. 1
 

3.7 Related Work

Research on distributed transaction processing systems started several decades ago. One

of the key challenges in distributed transaction processing is managing the execution of con-

current transactions such that they produce serializable execution histories. Bernstein and
1↑ For TPC-C like workloads, unlike Calvin, Q-Store’s performance can be further optimized by further
splitting execution-queues and exploit parallelism instead of serializing operations per warehouse. However,
such optimization is beyond the scope of this chapter, and we leave it to future work.
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Goodman [34 ] give a comprehensive overview of distributed concurrency control techniques.

In this section, we cover some of the recently proposed distributed transaction processing sys-

tems and transaction processing techniques that are mostly related to Q-Store. We categorize

them as follows.

Non-deterministic Transaction Processing When a transaction updates multiple

partitions of the distributed database, there is a need for a commit protocol to ensure

that the updates are consistent across all the partitions because nodes may arrive at dis-

tinct order of execution for the transaction operations. As a result, aborts may occur non-

deterministically. The two-phase commit protocol is typically used to resolve this problem,

but naive implementations of 2PC suffer from costly overheads, which negatively impact the

system performance. Therefore, many optimizations for 2PC have been proposed (e.g., [64 ],

[67 ]–[69 ]) while preserving the non-deterministic nature of execution. However, due to this

non-determinism, these systems suffer from execution-induced aborts and cannot eliminate

the overhead of 2PC [63 ]. In contrast to these approaches, Q-Store processes transactions

deterministically and eliminates the overhead of 2PC and non-deterministic aborts during

execution.

Eliminating Multi-partition Transactions Some proposed approaches avoid the cost

of 2PC by avoiding the need to process multi-partition transactions. For example, G-store

[70 ] allows applications to declare arbitrary groups of records and moves these groups to a

single node to avoid the overhead of processing multi-partition transactions. In a similar

spirit, LEAP [54 ] avoids the cost of 2PC by moving records accessed by a given transaction

to a single node at run-time implicitly. Q-Store, on the other hand, embraces multi-partition

transactions, and deterministically orders operations into execution-queues; thus avoiding

the need for a 2PC protocol.

Deterministic Transaction Processing Deterministic approaches to transaction pro-

cessing showed great potential in the academic research literature and even had commercial

offerings, e.g., [56 ], [71 ]. For single-partitioned workloads, H-Store[14 ] uses single-threaded

serial execution per partition. For workloads having multi-partition transactions, H-Store

provides limited concurrency by employing a coarse-grained locking mechanism that locks

all the partitions prior to the start of a transaction. Jones et al. [52 ] studies the application
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of speculative concurrency control to multi-partition transactions in H-Store, which allows

transactions to read uncommitted updates of transactions that are performing distributed

commitment protocol. Unlike H-Store, Q-Store does not lock partitions to produce a seri-

alizable execution for operations of multi-partition transactions. Instead, Q-Store creates

execution-queues that capture the serializable order of conflicting operations, and it assigns

these execution-queues to worker threads. After that, each worker thread executes its as-

signed execution-queues according to the pre-determined priority of execution-queues, which

allows Q-Store to maintain its high performance despite the multi-partition workloads.

In Gargamel [49 ], a single dedicated load-balancing node pre-serializes (using static anal-

ysis) possibly conflicting transactions before their execution. The load-balancing node can

easily become the bottleneck for the system. Unlike Gargamel, Q-Store is centered around the

notion of priority and exploits multiple nodes for planning.

Calvin [12 ], [61 ] uses determinism to eliminate the cost of two-phase-commit protocol

when processing distributed transactions. T-Part [61 ] relies on the same system architecture

of Calvin, but its scheduling layer constructs transaction dependency graphs to reduce the

stalling of worker threads. There are fundamental architectural differences between Calvin

and Q-Store. The planning phase performs the same functionality as the two-step (sequencing

and scheduling) pre-processing phases, but in parallel, and the execution phase of Q-Store

does not rely on any locking mechanism and employs a queue-oriented (speculative and con-

servative) processing design. Additionally, in contrast to Calvin, which assigns a transaction

to a worker thread for processing, Q-Store assigns an execution-queue to a worker. Because

of this thread-to-transaction mapping, Calvin cannot exploit intra-transaction parallelism

opportunities within a single node.

Intra-transaction Parallelism Most transaction processing systems perform a thread-

to-transaction assignment, which makes these systems unable to exploit intra-transaction

parallelism efficiently. Several research studies proposed techniques for exploiting this kind

of parallelism in centralized environments (e.g., [2 ], [11 ], [26 ], [28 ]). Q-Store goes beyond

these proposals and exploits intra-transaction parallelism within and across nodes in the

context of distributed transaction processing.
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3.8 Conclusions

We presented Q-Store, which efficiently processes distributed multi-partition transactions

via queue-oriented priority-based execution model. We present a formalization of our system

and describe its design and implementation. We perform an extensive evaluation of Q-

Store using different workloads from standard benchmarks (that is, YCSB and TPC-C).

We demonstrate that Q-Store, consistently and significantly achieves higher performance

than existing non-deterministic and deterministic distributed transaction processing systems.

We experimentally demonstrate that Q-Store out-performs the state-of-the-art deterministic

distributed transaction processing protocol by up to 22.1× with YCSB workloads. Against

non-deterministic distributed transaction processing protocols, Q-Store achieves up to two

orders of magnitude better throughput with YCSB workloads, and up to 55× with TPC-C

workloads.

83



4. HIGHLY AVAILABLE QUEUE-ORIENTED SPECULATIVE

TRANSACTION PROCESSING

4.1 Introduction

Cloud providers continue to provide a virtual computing infrastructure that provides a

higher amount of main memory and virtual CPU cores. Currently, for instance, Amazon

Web Services provides virtual instances configurations that are equipped with up to 448

vCPUs, 24TB of memory, and 100Gbps network connectivity.1  Therefore, there is a growing

demand for utilizing this modern computing infrastructure efficiently.

Many deterministic database systems are proposed in the research literature to utilize

modern computing infrastructures more efficiently (e.g., [12 ], [14 ], [63 ]). Recent propos-

als of distributed deterministic transaction processing (DTP) systems demonstrated signif-

icant improvements over systems using traditional transaction processing techniques (e.g.,

2PL/OCC+2PC). While distributed DTP systems have shown significant improvements in

transaction processing performance, many database applications require high availability.

For example, users of online banking applications desire that it is available 24 × 7. Fur-

thermore, cloud providers’ service level agreements promise at least four nines (i.e., 99.99%

availability).2  Database replication for traditional transaction processing protocols is well-

studied (e.g., [72 ]–[74 ]). In contrast, the problem of ensuring high availability via replication

in distributed DTP systems has received less attention from the research community, and

this aspect of distributed DTP systems has not been analyzed and evaluated well.

We consider database systems where the database state can be partitioned and dis-

tributed across multiple nodes (e.g., [12 ], [14 ]–[16 ], [22 ], [55 ], [75 ]). Furthermore, the par-

titioned database state is replicated for high availability. With deterministic transaction

processing, the replication is simplified because transaction histories are deterministic and

strictly serializable. Strict serializability implies that transaction execution of conflicting

transactions follows a single order across all partitions and replicas. By requiring that the

predetermined order is followed during execution and in the replicated state, the replication
1↑ https://aws.amazon.com/ec2/instance-types/high-memory/
2↑ https://azure.microsoft.com/en-us/support/legal/sla/mysql
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process is simplified because the new database state is guaranteed to be equivalent due to de-

terministic execution. Thus, the key challenge with replication in distributed DTP systems

is the negative impact of performing replication on the transaction processing performance.

To address this challenge, we build on our highly efficient queue-oriented transaction

processing paradigm [2 ], [50 ], [76 ]. In our earlier work QueCC[2 ], we addressed the issue

of the overhead of exiting concurrency control techniques under high-contention workloads

and demonstrate that speculative and queue-oriented transaction processing can improve the

system’s throughput by up to two orders of magnitudes over the state-of-the-art centralized

(non-partitioned) transaction processing systems. In Q-Store[50 ], we improve the efficiency

of distributed and partitioned DTP systems by employing queue-oriented transaction pro-

cessing techniques and demonstrate up to 22× better performance.

In this chapter, we propose a generalized framework to analyze the design space of dis-

tributed and replicated deterministic transaction processing systems and extend QueCC and

Q-Store with replication support for high availability. Based on the proposed framework, we

propose a primary-copy approach and perform eager, speculative, queue-oriented replication

to mitigate the overhead of replication in distributed DTP systems. Our approach amortizes

the cost of replication and transaction processing over batches of transactions and processes

these batches in parallel on a replicated clusters of server nodes. Furthermore, we exploit the

fact that deterministic transaction execution and replication in DTP systems are indepen-

dent, which allows us to either fully or partially hide the cost of replication while ensuring

safe and strictly serializable transaction execution.

Our contributions in this chapter can be summarized as follows:

• we propose a generalized framework for DTP systems, a unified replication API for

DTP systems, and apply the framework on three systems from the literature (Section

4.2 );

• we design QR-Store, a highly available queue-oriented and replicated transaction pro-

cessing system version of Q-Store (Section 4.3 );

• we prototype QR-Store and propose optimization techniques to improve the performance

of state-of-the-art in queue-oriented deterministic transaction processing (Section 4.4 );
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Figure 4.1. Generalized Deterministic Transaction Processing Framework

• we extensively evaluate QR-Store using standard benchmarks such as YCSB (Section

4.5 ).

4.2 A Generalized Replication Framework

We propose a generalized DTP framework. In Figure 4.1 , we illustrate a simple frame-

work that adopts the client-server architecture. The system is composed of a set of clients

that sends transactions for processing to a set of servers. Clients receive commitment re-

sponses from servers when their submitted transactions are committed to the database. The

transaction processing workflow by a leader set of servers is composed of four generic stages

for processing transactions deterministically with strict serializability. These steps are order-

ing, scheduling, execution, and commitment. The processing work in each stage can be done

in a parallel and distributed fashion to improve the system’s performance (e.g., by multiple

worker threads deployed on a set of machines). It is important to note that DTP systems

use batching to improve the throughput performance of the system.

A DTP system ensures strict serializability of transaction histories by predetermining the

order of transactions execution/commitment before scheduling them for execution. In the

scheduling stage, the scheduling algorithm needs to guarantee that the execution and the
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commitment of the transactions do not violate the predetermined order. In between stages,

we define replication points (red circles in Figure 4.1 ). These are points in the transaction

processing workflow where replication can be done. The output of a stage can be replicated

using the replication layer to achieve system high availability. A set of follower servers

(replicas) get the replicated output from a stage and proceed to use it as an input to the

next stage.

In our framework, the replication layer is a logical layer. One implementation approach

is by using a shim that interacts with a replicated coordination service such as Zookeeper

[77 ] and etcd [78 ] or publish-subscribe systems like Kafka[79 ]. In this approach, the service

serves as a physical middleware between the leader set of servers and the follower set of

servers. Existing work uses Zookeeper in their prototype implementations (e.g., [12 ]), but

Zookeeper is not designed for this purpose. In our experiments, we observed that Zookeeper

could not handle the replication load when the replication request rate is high. Therefore,

using a service like Kafka appears to be a better option, and we plan to study that in future

work.

Another implementation approach for the the replication layer is having the shim imple-

ments a protocol such as Paxos [80 ], Viewstamped replication [81 ], or Raft[82 ] directly. This

integrated approach has a lower overhead (no need for additional dedicated nodes for the

replication layer). However, it involves a more tight integration with the DTP system and

is more complex to realize.

To realize both approaches in a generalized way, we introduce a simple API that abstracts

away the complexity and hides the details behind the underlying implementations. The API

is compromised of two simple functions replicateData and receiveData. More details

about this API are presented in Section 4.4 .

Our proposed framework is general enough to admit existing work on deterministic trans-

action processing systems as specialized implementations. We discuss three case studies to

illustrate the applicability of the proposed generalized framework to provide a unified frame-

work to understand DTP systems.
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4.2.1 Case Study: Calvin

Calvin [12 ] is one of the first DTP systems that supports replication. In Calvin, the

ordering stage performs epoch-based batching of transactions and it is called sequencing.

Calvin uses the replication point that follows the ordering stage and replicates batches of

sequenced transactions. In the scheduling stage, Calvin uses a deterministic locking algorithm

to schedule transactions for execution. In deterministic locking, the order of lock acquisition

follows the predetermined transaction order by the sequencing layer. Calvin is a distributed

DTP system and requires the use of a distributed commit protocol (CP) in the commitment

stage. However, it avoids using the traditional heavyweight two-phase commit protocol and

uses a lightweight CP that exploits deterministic execution. Transactions in Calvin commit

when all the operations of the distributed transactions complete. The CP aborts transactions

when the transaction has a logic-induced abort, and it is aborted deterministically across all

partitions and replicas. In the absence of a logic-induced abort, transactions are committed,

and the commit response is sent to the clients by the sequencing node that originally received

the transaction and sequenced it.

Calvin’s original proposal [12 ] proposed replicating the output of the ordering stage. How-

ever, based on our framework, it is possible to use other replication points. For example, the

updated records in the execution stage can be logged and replicated before commitment.

4.2.2 Case Study: Q-Store

Q-Store [50 ] is also another distributed DTP system, but unlike Calvin, it combines the

ordering stage and the scheduling stage into a single parallel stage called planning. The

execution stage uses the concept of execution queues (EQs) of operations as an execution

primitive while Calvin uses the concept of a transaction as an execution primitive. Q-Store

focuses on distributed transaction processing without replication. The planning stage maps

batches of transactions to execution queues tagged with execution priorities. The execution

stage executes them based on their priorities, and the commitment stage maps them back

to transactions and sends responses to clients.
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Replication in Q-Store can use any one of the replication points. The first replication point

occurs in the middle of planning and is similar to the replication in Calvin (i.e., replicating

sequence batches of transactions). At follower nodes, the replicated sequence is planned into

execution queues. Interestingly, if the first replication point is used, it is possible to have

heterogeneous configurations of servers. For example, a group of servers can follow Calvin’s

DTP approach while the others can follow Q-Store’s.

When using the second replication point, which is after the planning stage, a novel

replication scheme emerges. Because the execution primitive of Q-Store is a set of execution-

queues (a.k.a. plans), the set is replicated to follower servers, and the follower servers can

take the replicated plans and use them in the next stages. With this approach, Q-Store is

also required to replicate transaction contexts so that in the commitment stage, the replicas

can map execution queues back to transactions for commitment.

Q-Store can also use the third replication point, which also introduces yet another novel

replication scheme. In this case, instead of creating traditional logs, Q-Store creates plans

of execution queues containing write-only operations of updated records. When replicated

successfully, it is fed to the execution stage at the replicas, and no specialized stage is needed

to process the replicated plans. Furthermore, only the last write operation on the record

needs to be inserted in the write-only execution queues.

4.2.3 Case Study: QueCC

QueCC [2 ] is a single node DTP system that is designed and optimized for multi-socket,

many-core machines. QueCC uses the same concepts as Q-Store in terms of having planning

and execution stages, but all stages are parallel but not distributed by design. QueCC can

be extended to become a replicated DTPS. In this case, the leader server set contains only

a single node that contains the entire database state, and its state is replicated using the

replication layer. Compared to Q-Store, QueCC does not exploit partitioning and horizontal

scalability; however, it can scale vertically by using more cores. Furthermore, it is possible to

have heterogeneous hardware configurations for replicas where replicas don’t have the same

hardware specifications as the leader node.
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Figure 4.2. QR-Store System Architecture

4.3 Queue-oriented Transaction Processing

Based on the generalized framework described in Section 4.2 , we focus on designing

replication schemes for Q-Store and study their impact on the system’s performance. We

build QR-Store which is a replicated version of Q-Store and give some overview of QR-Store.

4.3.1 QR-Store Architecture

As a distributed DTP system, QR-Store runs on a cluster of nodes. Each node holds

a partition of the database. It supports processing multi-partition transactions where a

transaction may access records from different partitions. Each partition is replicated inde-

pendently with a replication factor rf . For example, if rf = 2 for partition p0, then the

system has three nodes hosting p0. One of them is the leader node, while the others are

followers. On the left side of Figure 4.2 , we show an example system architecture with three

partitions and a replication factor of three (i.e., rf = 2). Visually, horizontal grouping of

nodes implies a cluster of QR-Store nodes comprising a full replica of the distributed database

instance, while vertical grouping implies replication groups. For example, nodes L00, L10,

and L20 form a cluster instance of QR-Store, while nodes L00, F01, and F02 form a replication
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group. Note that replication messages are communicated within a replication group only,

while all other messages related to processing transactions are communicated within a clus-

ter instance. This communication scheme ensured minimal communication among nodes in

QR-Store.

On the right side of Figure 4.2 , we show the key components internal to a server node.

Each node receives client transactions that are processed by communication threads into a

set of client Transaction Queues. Worker threads on each node process client transactions in

two phases: planning and execution. Note that we consider the commitment stage as part of

the execution phase. In the planning phase, worker threads create execution queues (EQs)

that access a sub-partition of the node’s partition. To facilitate scheduling of EQs during the

execution phase in QR-Store, each worker thread in QR-Store tags its EQs with a priority value.

This value can be static or dynamic, but we assume statically predetermined priorities. There

are remote EQs and local EQs. Remote EQs are executed at remote nodes as transaction

fragments in them access other remote partitions. In addition to EQs, transaction contexts

are maintained, which captures transaction dependencies and other transactions metadata.

EQs and transaction contexts are stored in the Batch metadata, which distributed shared

data structure. Furthermore, worker threads in the leader set of nodes use the Replication

API to facilitate replication of the Batch metadata to the replicas.

During the execution phase, worker threads execute and commit EQs based on their

priorities. For example, say we have two EQs qi and qj. The fact that qi can be either remote

or local is orthogonal, and the same applies to qj. Let pr(q) denote the priority of an EQ q.

QR-Store maintains a global execution invariant such that qi is executed before qj if and only

if pr(qi) > pr(qj). Maintaining this global execution invariant with a cluster ensures a single

global order of conflicting operations, which produce strict serializable histories. In Figure

4.2 , yellow arrows depict interactions during the planning phase while green arrows depict

interactions during the execution phase.
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Algorithm 1 Planning phase
VARs: CTQ client transaction queue, C : nodes in the cluster instance, TC : transaction

contexts data structures, s : status of the current node
1: function planBatch(s, bid, p)
2: B ← {}
3: if isLeader(s) then
4: while not B.ready() do
5: m ← CTQ.pop()
6: EQ ← planMessge(m, TC)
7: B ← B ⊕ EQ
8: end while
9: return deliverBatch(B)

10: else
11: return receiveData((bid, p), (B, TC), deliverBatch(B))
12: end if
13: end function
14: function deliverBatch(B)
15: LEQ ← {q ∈ B| isLocal(q)}
16: REQ ← {q ∈ B| isRemote(q)}
17: setLocalEQs(LEQ)
18: sendRemoteEQs(REQ, C)
19: replicateData((bid, p),(B, TC))
20: end function

4.3.2 Replicated Planning Algorithm

We start by describing the planning algorithm. Algorithm 1 presents pseudocode for

the planning phase. To simplify our presentation, we assume the availability of some global

variables.

CTQ is a variable for the queue holding client transaction. Communication threads push

into this queue as they receive transaction messages from clients.

C is the set of nodes composing the cluster instance. For example, suppose a worker

thread running in the planning phase calls PlanBatch on server L00. In this case, C =

{L00, L10, L20}.

TC is the data structure that holds the transaction contexts for each planned transac-

tion and holds necessary transaction metadata (e.g., the number of operations and their

dependencies).
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The variable s is the status of the node running the worker thread. For instance, for

server {L00}, s = L, and for {F01}, s = F . When s = L, isLeader(s) = true.

The PlanBatch function is called by each worker thread in each server. Each thread

starts by computing the batch identifier bid, which determines the order between batches cre-

ated at different epochs. In our prototype implementation, we use monotonically increasing

numbers for batch identifiers. Therefore, for a batch created at epoch 0, its batch identifier

is also 0. p is the global priority value of the worker thread. As mentioned previously, these

values can be either static or dynamic. The only requirement is that no two threads have

the same priority. In our implementation, we use static priority values for nodes and worker

threads.

Depending on the status of the server node, the planning phase takes two different routes.

In case of a node being in the leader set, the worker thread follows Lines 4−9, reads a message

from CTQ, and plans the message (Line 6).

When planning a message, the read/write set of the transaction is analyzed. When

the read/write set of a transaction includes access to a remote partition, a transaction

fragment is created and is placed into a remote EQ destined to the node hosting the target

partition. Thus, knowing the full read/write set and the record-to-partition mapping is

necessary for planning. The planMessage function returns a set of EQs, and they are merged

with previously planned EQs. Merging EQs means that transaction fragments accessing the

same partition are inserted into the same EQ.

The call of B.ready() at Line 4 determines when the batch is ready for delivery. Once the

batch is ready, it is delivered to the respective nodes (Lines 14− 20). Local EQs are set in

the local partition of the Batch metadata distributed data structure. Remote EQs are sent

to their respective nodes to be installed into the remote partitions of the batch metadata.

Finally, (in Line 19) the planned EQs and the transaction contexts are replicated using the

replication API (i.e., calls replicateData) to the replica groups (e.g., for L00 they are

replicated to nodes F01 and F02).

When the planBatch function call is made by a follower node, it calls the receiveData

(Line 11) and provides the deliverBatch function as the callback function. This way

when the replicated plans are received, the deliverBatch is called to deliver the planned
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Figure 4.3. Speculative Execution and Replication Timeline Example

EQs to node in the replica cluster instance. Using Figure 4.2 as our example, node F01

delivers the replicated batch to nodes P1(F1) and P2(F1).

4.3.3 Speculative Queue-oriented Replication Protocol

As we described in Section 4.2.2 , there are many possible replication schemes that can

be used with QR-Store. We propose using the second replication point (from Figure 4.1 ),

which is before the execution stage, to perform the replication of EQs and TC using the

replication API. The EQs and TC are serialized into a byte string payload and replicated

via the replication layer.

Speculative EQ Replication. We propose a queue-oriented speculative approach to

replication. The replication is speculative because QR-Store speculates that the replication

would be successful and proceed with the execution phase. The speculation is verified before

the commitment stage. Thus, we effectively hide the EQs’ replication latency by performing

it concurrently with EQs’ execution.
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Figure 4.3 illustrates an example timeline (time goes from left to right) of the replicated

transaction processing workflow. A client is associated with a server in the leader set that is

considered the home server for that client. At the start (before 1 ), clients send transactions

to home servers. In this example, C0 sends transactions to server L00 (i.e., the blue partition)

while C1 sends transactions to L10 (i.e., the red partition). At 1 , the batch is ready for

delivery, and both leaders send their planned remote EQs to the other node. At 2 , the

leaders submit their replication requests to the replication layer (i.e., using replicateData

API call). Leader nodes start the execution phase immediately without waiting for the

outcome of the replication at 3 following the speculative replication approach. Between

3 and 5 processing acknowledgments messages are exchanged within the leader cluster

instance. The replication layer ensures that replication requests are delivered reliably to the

followers by 4 (i.e., using receiveData API call). Replicated plans are exchanged in the

follower clusters by 6 . The replication layer responds to the leader set nodes by 7 . After

7 , leader nodes safely proceed with the commitment stage and commit transactions. At

the follower clusters, the execution phase starts at 6 , and the commitment stage starts at

8 . The commitment stage at the follower nodes requires acknowledgments from nodes in

their cluster instance to ensure that multi-partitioned transactions are processed successfully

by all participating partitions (i.e., between 6 and 8 ). By 9 leader nodes respond to

clients.

Discussion Note that the replication layer can respond to the replication request by the

leader set of nodes before the followers receive the EQs. This invariant is stated as follows:

Invariant 1 (Replication Invariant). The leader nodes receive acknowledgments of their

replication request from the replication layer if and only if the replication layer guarantees

that followers eventually receive replicated data.

It is the responsibility of the replication layer implementation to ensure the eventual

delivery of replicated data. The above invariant allows some flexibility in implementing the

replication layer, which can be a middleware-based or an integrated implementation.

Replication Payload Compression. Replication payload is a function of the batch

size. Therefore for large batch sizes, they can be in the order of a few hundred kilobytes.
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Algorithm 2 Execution algorithm
VARs: BM batch metadata

1: function executeBatch(tid)
2: while not BM .done() do
3: q ← BM .getTop(tid)
4: while not q.empty() do
5: f ← q.pop()
6: executeTF(f)
7: resolveDependency(f)
8: end while
9: if isRemote(q) then

10: sendAck(q)
11: else
12: updateTC(q)
13: end if
14: end while
15: end function

At this scale of message sizes, the latency can be undesirably too high. Figure 4.4 shows

the result of a micro-benchmark of submitting 100 concurrent requests to Zookeeper (as a

replication service) while varying the payload size from 100 bytes to 800 kilobytes. Note

that Zookeeper can only support a maximum of 1 megabytes of data stored as a single

Zookeeper node. We can observe that for large message sizes, the latency can reach up to

26 milliseconds.

To reduce the payload size of replicated data in QR-Store, we compress replication data

only using Snappy [83 ], we observed a reduction of payload sizes by 60%.
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4.3.4 Speculative Execution Algorithm

In this section, we present the execution algorithm in QR-Store. The algorithm is simple,

and its pseudo-code is presented in Algorithm 2 . BM is a reference to the Batch metadata

data structure, which is assumed to have global access. A worker thread at the execution

phase keeps working on executing EQs until all EQs are processed. It retrieves the next

available EQ at Line 3 using getTop. The returned EQ must satisfy the following condi-

tions:

1. Condition 1: if a worker thread i gets EQ q using getTop, no other worker thread j

gets q. The thread identifier tid is used to ensure this condition is satisfied.

2. Condition 2: The read/write sets of transaction fragments in q do not overlap with

read/write sets of any other transaction fragment in EQs that remains in BM .

3. Condition 3: q has the highest priority in BM

These conditions ensure the following global execution priority invariant is maintained

across all worker threads in the cluster when executing Line 6 .

Invariant 2 (Global Execution Priority Invariant). Across all nodes in a cluster, transaction

fragments from higher priority EQ are always executed before transaction fragments from

lower priority EQs.

After executing a transaction fragment, we need to resolve any data dependencies of

that fragment (Line 7 ). An example of a data dependency is a transaction fragment that

performs the following operation f : x = x+ y. In this case, x and y are records that belong

to different partitions. Reading record y is needed to resolve the dependency of computing

the new value of x. Hence, to resolve the dependency on x, we need to send the value of

y to the node executing the transaction fragment f , which is the node that holds record x.

The transaction contexts maintain the state of transactions, and they are updated during

execution. If q is a remote EQ, an ACK is sent to the original planning node (Line 10 ). When

the ACK is received by the planning node, the transaction contexts of relevant transactions
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are updated (e.g., updating the number of fragments that are completed). If q is local (i.e.,

q is planned by the same node that executed q), the transaction contexts are updated locally

(Line 12 ).

This execution is speculative because transaction fragments from different transactions

are executed and the commitment is done at a later stage. For example, an EQ q can contain

transaction fragments from f1 and f2 from transactions t1 and t2, respectively. A worker

thread executes f1 followed by f2. However, t1 is committed later after executing f2.

Discussion The main problem associated with speculative execution is the notion of

cascading aborts [2 ]. DTP systems abort only if the transaction has explicit abort logic.

For example, a transaction ti that makes a product purchase would abort if the product’s

stock == 0. Any transaction that conflicts with ti will also abort if it reads any records

updated by ti because values written by ti are not committed and should not be visible.

QR-Store keeps track of transaction conflict information in the form of a dependency graph.

The graph is made available to the commitment stage so that transactions are committed

according to the correct isolation level. We assume serializable isolation in throughout this

chapter. However, as shown in [50 ], we can also support other isolation levels.

4.3.5 Commitment Algorithm

For transaction commitment, the original planner node act as the transaction coordinator

for all transaction it planned. Thus, it requires receiving ACKs for all remote EQs. These

ACK messages are communicated to the transaction coordinator node as remote EQs are

executed. As an illustration, in Figure 4.3 , they are communicated between 3 and 5 for

the leader set, and between 6 , and 8 for the replica sets.

Algorithm 3 shows the pseudo-code for the commitment algorithm used by the transaction

coordinator nodes. Because a leader node can run multiple planning producing different sets

of plans, each planning thread is identified by the tid. Thus, the tid is used to commit a

transactions planned by a specific planner (Line 2 ). In Line 3 , P is initialized to an empty

FIFO queue to hold transactions pending commit. The order of commitment is concerned

only with conflicting transactions. Non-conflicting transactions can commit in any order, and
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Algorithm 3 Commitment Algorithm
VARs: BM batch metadata

1: function commitBatch(tid)
2: T ← BM.TC.getTransactions(tid)
3: P ← empty FIFO queue for pending transactions
4: for t ∈ T do
5: status ← commitTxn(t)
6: if not status then
7: P .push(t)
8: end if
9: end for

10: while not P .empty() do
11: status ← commitTxn(P .head)
12: if status then
13: P .pop()
14: end if
15: end while
16: end function

our algorithm allows. In Lines 4 to 9 , we perform a single iteration to commit transactions.

In Line 5 , the commitTxn function checks if the transaction can commit (i.e., all of its

fragments are executed successfully). It returns true if the transaction t is committed, and

false otherwise. If a transaction cannot commit at this time (Line 6 ), it is pushed into

the pending transaction queue P for a later check, which happens in Lines 10 to 15 . A

transaction is checked at the head of the queue without removing it (Line 11 ). It is only

removed if it is committed (Line 13 ).

Note that a single-threaded implementation of the commitment algorithm can join all

transactions into a single set for commitment. The only requirement is that to ensure that

the correct commit order of conflicting transactions is preserved.

Regardless of the implementation of the commitment algorithm, the commit stage needs

to adhere to the following invariant. We use po(t) to denote planning order, and co(t) to

denote the commitment order of transaction t, respectively.

Invariant 3 (Commitment Invariant). For any two conflicting transactions ti and tj, co(tj) >

co(ti) ⇐⇒ po(tj) > po(ti).
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Based on the above three invariants, we state the following theorem and provide a proof

sketch.

Theorem 4.3.1. QR-Store’s transaction processing protocol is safe and strictly serializable.

Proof. It follows from the three invariants stated above that the QR-Store processes transac-

tions with strict serializability. Invariant 3 ensures that the commitment order of conflicting

transactions follows the planning order. Planning threads impose ordering by using the or-

dering property of queues in EQs. The order between EQs planned by different planning

threads is determined by the priority order of the planning threads. Thus, there is a global

partial order of all transaction fragments, which is preserved by Invariants 2 and 3 . Fur-

thermore, because the commitment stage does not start until the replication requests are

acknowledged according to Invariant 1 , the transaction commitment is safe.

4.3.6 Latency Model

In this section, we model the latency for our queue-oriented transaction processing with

replication. The key idea of performing speculative replication is to hide the replication

latency overhead. The following equation models the latency of completing the processing

of a single batch which is denoted as Tb.
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!repl(b)

!pl(b) !ex(b)!repl(b)

!pl(b) !ex(b) !c(b)
!repl(b)

(a)

(b)

(c)

!c(b)

Time

!pl(b)

!ex(b) !c(b)

!repl(b)Time spent on planning

Time spent on execution

Time spent on replication

Time spent on commitment

Figure 4.5. Illustrating Replication Overhead in QR-Store
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T (b) = Tpl(b) +max(Tdeliv. + Tex(b),Trepl(b)) + Tc(b) (4.1)

• Tpl(b) is the time spent in the planning phase for batch b

• Tdeliv. is the time spent on delivering remote EQ messages for batch b

• Tex is the time spent in the execution stage for batch b

• Trepl is the time spent waiting for the replication to be confirmed for batch b by the

replication layer

• Tc is the time spent on committing transactions for batch b

In Figure 4.5 , we show a visualization of three cases of queue-oriented replication. (a)

depicts using synchronous replication in QR-Store. In this case, the replication request must

be acknowledged before we start the execution phase. Thus, the overhead of replication is

directly added to the latency of processing a batch in QR-Store. (b) and (c) in Figure 4.5 

are the two cases of using the speculative replication approach. In (b), the replication takes

longer than the execution, which forces the execution threads to wait for the replication

confirmation before starting the commit stage. The optimal case is depicted by (c), which

totally hides the replication latency, while in (b), the replication overhead is partially hidden.

4.3.7 Logging and Recovery in QR-Store

All proposed DTP systems assume a deterministic stored procedure transaction model

(e.g., [2 ], [12 ], [14 ], [50 ], [76 ]). Furthermore, the stored procedure model assumes that the

transaction logic is deterministic. In other words, the output is the same as long as the

procedure is given the same input.

DTP systems use a combination of checkpointing and command-logging to facilitate

logging and recovery. With command-logging, only the input of the transactions is logged,

and on recovery, the log is applied from the latest stable checkpoint. Checkpointing can be

done asynchronously to the disk to avoid blocking the transaction processing workflow.
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In QR-Store, when a leader node crashes and resumes operation, the first step is to deter-

mine the new leader. The next step is to request all EQs from the current leader since the

last stable checkpoint and execute them to recover the database partition state. After that,

it acts as a follower by getting its plans from the replication layer.

Follower nodes detect leader nodes crashes via heartbeat messages exchanged periodically

between leaders and followers. When followers detect that a leader has failed, they run a

leader election process among them. Once a new leader is elected, the newly elected leader

node requests leadership ACKs from other followers to determine the last committed batch.

It requests any missing queues and replays them.

Using command-logging only with QR-Store introduces a recovery challenge. First, logged

commands need to be planned again, which increases the latency of recovery. Second, when

recovering multi-partition transactions, participation from all partitions is required to resolve

data dependencies.

Therefore, instead of using command-logging and simply log transaction inputs, QR-Store

create special write-only EQs that contain the last write operation of records accessed by

planned EQs. These write-only EQs are logged to facilitate recovery. Thus, to recover a

node’s state, it is sufficient to request these write-only EQs from other nodes. This approach

also resolves data dependencies associated with replaying multi-partition transactions be-

cause the logged value does not have any data dependencies.

4.4 Implementation

This section discusses the implementation aspects of the replication layer and optimiza-

tions related to synchronization granularity. We show the impact of these implementations

and optimizations in Section 4.5 .

4.4.1 Replication Layer Abstraction

As mentioned in Section 4.2 that we provide a simple API abstraction for the replication

layer. We now give some details on the API, which consists of the following two functions.
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replicateData(meta_data, data, [callback]). This is an asynchronous function

that is called by the leader set of nodes (the dotted arrow in Figure 4.1 originating from

the red circles). meta_data parameter can have some identifying information of the data

being replicated (e.g., a batch identifier). The data parameter is a byte string of the data

being replicated. callback parameter is a function that is called after the replicateData

function completes. Since the function is asynchronous, the callback function provides a way

to perform some actions (e.g., error handling).

receiveData(meta_data, callback). This is also an asynchronous function, and it

is called by replicas to receive the replicated data. (the solid arrow in Figure 4.1 originating

from the green replication layer) The meta_data parameter can have some identifying infor-

mation about the replicated data from the replica’s perspective. For example, it can include

the expected batch identifier. The callback parameter is a function that is called with and

passed the replicated data. It is used to construct the DTP system’s representation of the

replicated data from byte string passed to replicateData.

4.4.2 Replication Layer Implementations

Our prototype provides two implementations of the replication layer, and we describe

these implementations in this section.

Middleware Replication The first one uses Zookeeper [77 ] as a middleware to imple-

ment the replication Layer. Leader servers and replica servers act as clients to the Zookeeper

cluster. While leader servers make write requests, replica servers make read requests to get

the replicated data. The Zookeeper cluster is a highly available system, and it does not con-

stitute a single point of failure because it uses its internal replication and consensus protocols

to ensure correct fail-over. The consensus protocol used by Zookeeper is called ZAB[84 ] The

advantage of this approach is that it simplifies the replication layer shim implementations at

the server nodes. The disadvantages include adding an overhead of the middleware to the

transaction processing protocol. This approach is adopted by Calvin in their original proposal

[12 ] and also in our experiments.
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Integrated Replication The second implementation of the replication layer integrates

a quorum-based replication protocol with the transaction processing protocol and effectively

eliminates the middleware overhead. Our implementation is based on RAFT[82 ] and View-

stamped replication [81 ]. With this implementation, the leader server nodes send replicated

data messages to replicas. On receiving replicated data messages, replicas reply with ac-

knowledgment messages to leader servers. Depending on the number of node failures to

tolerate, there is a minimum number of acknowledgment messages that confirm a successful

replication. Let the number of node failures be denoted as f such that the total number

replica for a given node is n = 2f + 1. The number of acknowledgment messages is f + 1.

4.4.3 Synchronization Granularity

In QR-Store, we support multiple granularities of transaction processing synchronization

within a cluster. A coarse-grained synchronization puts node-level barriers between batches.

Hence, before any thread can start processing the next batch, it has to wait for all other nodes

to finish processing the current batch. At the cost of additional implementation complexity,

it is possible to have a more fine-grained synchronization at the thread level. This thread-

level synchronization allows worker threads to start the planning phase of the next batch as

soon as other nodes acknowledge the execution of their respective planned EQs. Thread-

level synchronization improves the concurrency of the phases across batches. Our previous

prototype implementation for Q-Store [50 ] uses node-level synchronization while our current

prototype uses thread-level.

4.5 Evaluation

In this section, we present our experimental evaluation. We implement the three case

studies that we discussed in Section 4.2 . We use the first replication point for Calvin, and use

the second replication point for QR-Store and a fully replicated version of QueCC (denoted as

QueCC-R). The experimental study of the other replication points admitted by our proposed

framework in Section 4.2 remains future work.

104



Table 4.1. System and workload configuration parameters. Default values
are in parenthesis. Default values are used unless stated otherwise.

P# Parameter Name Possible Parameter Values
P1 % of multi-partition txns. 0%, 10%, 15%, (50%), 75%, 100%
P2 Zipfian’s theta (0.0), 0.4, 0.6, 0.8, 0.9, 0.99
P3 Operations/txn. 2, 4, 8, 12, (16)
P4 Batch sizes 2K, 5K, 10K, (20K), 40K, 80K, 100K
P5 Server nodes counts 2, 4, 8, (16)
P6 Replication factor (0), (1), (2), 4, 6, 8

We mainly focus on QR-Store with various replication factors configured. The current

prototype of QR-Store is the optimized and improved version of our previous work presented

in [50 ]. In our comparison with Calvin, we use Zookeeper as the implementation of the

replication layer as it is originally presented in [12 ].

4.5.1 Experimental Setup

We use up to 64 c2-standard-8 instances on Google Cloud Platform to run our ex-

periments. These instances have 8 vCPUs, 32GiB of RAM, and the default egress network

bandwidth available is 16Gbps. Each node runs Ubuntu 18.04 (bionic beaver), and the code-

base is compiled with the −O3 compiler optimization flag. We use four worker threads and

four communication threads. Threads are pinned to cores to minimize potential variance

due to the operating system.

Furthermore, our Calvin’s implementation dedicates one worker thread for the sequencer

role and another worker thread for the scheduler role. This configuration leaves two threads

for processing transactions 3
 .

Each data point is the average of three trials. Each trial consists of a warm-up phase of

60 seconds where measurements are not collected, followed by a measurement phase of 60

seconds.

System and workload parameters In Table 4.1 , we present all system and workload

parameters used in our experiments. P1 is the percentage of multi-partition transactions

(MPTs) in the workload. An MPT accesses more than one partition and requires a dis-
3↑ using additional worker threads reduces Calvin’s performance by nearly 50% according to our observations
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tributed commit protocol. P2 is the parameter that controls the access distribution of

transactions. Higher values of θ make the access skewed to a small set of records. P3 is the

parameter that controls the number of operations per transaction and requires transaction

atomicity when there is more than one operation in a transaction. A transaction with a sin-

gle operation is atomic by definition. P4 is the size of transaction batches that are processed

by queue-oriented transaction processing systems such as QR-Store, Q-Store and QueCC. P5

controls the number of server nodes used in a cluster. A cluster of nodes forms an instance

of the database, and each node manages a single partition. By default, we use one client

node per server node. P6 represents the number of replicas used per cluster of servers. For

example, a value of 2 means that there are 2 additional replicated database instances.

4.5.2 Experimental Results

We first study the impact of replication. We use three configurations. As a baseline, we

use Q-Store which does not perform replication. QR-Store-rf1 and QR-Store-rf2 has a replication

factor of 1 and 2, respectively.
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Figure 4.6. Varying Batch Size

Varying the batch size In this set of experiments, we want to understand the effect

of the batch size on the performance of QR-Store. We use 50% MPT transactions in the
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workload, uniform access distribution (i.e., a value of θ = 0.0), 50% update operation per

transaction, 16 operation per transaction, and each transaction access 8 partitions. The

number of server nodes is 16.

Figure 4.6 , shows the system throughput and the 99th percentile latency of transaction

processing. Q-Store which is the configuration without replication performs the best both in

terms of throughput and latency (up to 2.3 million TPS executed in under 750 milliseconds).

While Q-Store’s throughput performance keeps increasing with batch sizes greater than 20K

transactions, the latency also increases significantly. With larger batches, worker threads

spend more time planning and executing transactions. Also, the size of messages exchanged

between the server nodes within the cluster becomes larger. Moreover, beyond the 20K

batch size, the gap in performance Q-Store, and the replicated configurations (i.e., QR-Store-

rf1 and QR-Store-rf2) becomes more significant because the leader cluster needs to prepare and

replicate larger plans. With QR-Store-rf2 the number of messages that are sent by the leader

nodes is twice the number sent by the QR-Store-rf1 configuration. Hence, as these messages

become larger, the computation and communication requirements increase. For example,

for rf = 2 the 99th percentile latency increases from 30% at 40K batches to 43% at 100K.

Notably, at 20K batches, the latency overhead is only 16% in this workload configuration.

Scalability when increasing number of server nodes In this set of experiments,

the percentage of MPT is 50%, the Zipfian theta parameter is set to θ = 0.0, the percentage

of write operations is 50%, the number of operations per transaction is 16, the batch size is

set to 20K transactions, and we force each transaction to access all available partitions. In

other words, MPTs will always access all servers. We vary the number of server nodes from

2 to 16.

Figure 4.7 shows that all configurations scale linearly as we add more nodes into the

server cluster. The linear scaling is because operations in each transaction are processed in

parallel by all available nodes. Notably, the throughput performance reaches 2, 1.8, and 1.7

million transactions per second for Q-Store, QR-Store-rf1, and QR-Store-rf2, respectively. The

99th percentile latency remains under 216 milliseconds.
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Figure 4.7. Scalability with increasing the number of servers/partitions in a
cluster instance.
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Figure 4.8. Varying Data Access Contention

When using higher replication factors (i.e., QR-Store-rf1, and QR-Store-rf2), the impact of

replication becomes larger. In our experiments with 16 server nodes, the performance drops

by 15%. We believe that this is a reasonable cost to ensure fault tolerance.
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Figure 4.9. Varying Multi-partition transaction rate

Varying Data Access Contention In Figure 4.8 , we vary the value of the Zipfian

distribution θ from 0.0 to 0.99. Using 0.0 for θ creates uniform access to database records,

while a value 0.99 creates extremely skewed access resulting in an increased contention on

database records.

Our queue-oriented approach naturalizes the high contention because the operations ac-

cessing the same set of records are placed in the same EQ and are executed by the same

worker thread. However, as shown in Figure 4.8 , we observe a decrease in performance when

there is medium contention (i.e., 0.4− 0.8). For Q-Store, the throughput drops by 19− 29%,

and the latency increases by 28−39%. The throughput drops by 19−26% and 17−26%, and

the latency increases by 23−42% and 26−42% for QR-Store-rf1 and QR-Store-rf2, respectively.

At medium contention, some EQs contain more operations than others, which increases the

execution time. However, at high contention (i.e., 0.9 − 0.99), the performance gets better

because the caching becomes more effective as most operations in the large queues access a

small set of records. Notably, at low contention (i.e., θ = 0.0), the overhead of replication is

6% and 13% for QR-Store-rf1 and QR-Store-rf2, respectively.
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Varying MPT percentage Now, we look into the effect of increasing the percentage

of the multi-partition transactions in the workload. For this set of experiments, we use

uniform access and enforce each MPT to access 8 partitions of the 16 partitions. The update

operation percentage remains at 50%. Increasing the MPT percentage increases the sizes

of remote EQs that are planned. The throughput performance gets better at a low ratio

of MPT in the workload by 6.5%, 10.5% and 24% for Q-Store, QR-Store-rf1, and QR-Store-rf2,

respectively, because some operations are executed remotely by other nodes which reduced

the load on local worker threads. However, as we increase the ratio, the performance starts

dropping to even below the performance of a pure single partition workload because remote

executions take longer times to be acknowledged.
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Figure 4.10. Varying operation per transaction

Varying the number of operations per transaction The number of operations per

transaction represents the transaction size. Again, we fix the other system and workload

parameters to their default values and vary the number of operations per transaction. In

Figure 4.10 , we use the number of operations processed per second instead of the number

of operations. All configurations scale their throughput performance linearly as we increase

the number of operations, and the throughput performance reaches up to 33, 30, and 27 mil-
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Figure 4.11. Comparison with Calvin

lion operations per second for Q-Store, QR-Store-rf1 and QR-Store-rf2, respectively. The 99th

percentile latency is between 110 − 220 milliseconds. With a low number of operations per

transaction, the communication overhead is more significant. As the number of operations

per transaction increases, the EQs become larger and more efficient to execute. With repli-

cation the throughput performance drops by 9% and 18% for QR-Store-rf1 and QR-Store-rf2,

respectively.

Comparison with Calvin

In this set of experiments, we want compare QR-Store’s performance to Calvin’s [12 ]. We

implemented Calvin’s approach to replication which uses Paxos via Zookeeper. QR-Store’s

approach uses an integrated replication protocol (Section 4.4 ). Hence, QR-Store’s implemen-

tation of the replication layer eliminates the overhead of a replication middleware. We use

four server nodes per cluster and enable compression for Calvin replicated messages. We use

a highly skewed workload for the workloads with θ = 0.9, 10 operations per transaction, 50%

MPT, update ratios, and force each transaction to access two partitions.

As shown in Figure 4.11 , QR-Store’s configurations (denoted as QR-Store-rf1 and QR-Store-

rf2) outperforms Calvin’s configurations (denoted as Calvin-rf1 and Calvin-rf2) by up to 6×.

Multiple factors are contributing to this improvement. The first one is the use of the queue-

oriented speculative transaction processing model, which is more efficient than Calvin’s trans-

action execution model. The second factor is the use of the integrated replication implemen-
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Figure 4.12. Node granularity vs. fine granularity synchronization

tation as opposed to Zookeeper, which introduces significant replication processing overhead.

Using the integrated approach, QR-Store introduced no more than 8% performance overhead

compared to the Q-Store within a four-node cluster configuration.

Impact of node-granularity synchronization One of the key optimizations that we

introduced in our current prototype is the granularity of synchronization in QR-Store. In

our previous work [50 ], we adopted a node-level synchronization protocol that runs after

processing a batch, which synchronizes all worker threads before they start working on the

next batch. Using this approach simplified our prototype implementation and allowed us

to avoid locking shared data structures. However, it also introduced unnecessary idle time

periods where worker threads can perform useful work for the next batch.

In our current prototype, we designed and implemented a fine-grained synchronization

protocol that increases the concurrency of planning and execution phases. With our queue-

oriented transaction processing paradigm, a node-level partition is further partitioned by

planning threads. Instead of waiting for every other node in the cluster before starting

its planning phase, it starts the planning phase, and it only waits for ACK messages for

the remote EQs that it planned before delivering the EQs for the new batch. Hence, this

approach effectively implements a fine-grained synchronization protocol at the thread level

instead of the node level.
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Figure 4.13. Speculative replication versus synchronous replication

Figure 4.12 , shows a comparison of node-level synchronization and thread-level synchro-

nization with various configurations of QR-Store. We use four server nodes per cluster and

the default workload parameters. The configurations that use node level synchronization

are denoted with -NS suffix. The thread-level synchronization technique provides up to 5%

improvement in throughput performance and up to 14% in latency reduction.

Speculative replication vs. synchronous Another key technique in QR-Store is the

concept of speculative replication. The basic idea is that instead of waiting for the replication

to complete before starting the execution phase of a batch, QR-Store speculates that the

replication is expected to succeed and starts the execution phase without waiting. However,

before starting the commit stage, the system waits for acknowledgments confirming the

success of the replication requests. In Figure 4.13 , we show a comparison between the two

techniques (the synchronous configuration is denoted with a -SYNC suffix). The speculative

replication technique improves the performance by up to 30% with a four-node cluster and

the default workload parameters.

Impact of the replication factor The replication factor dictates the number of replicas

of the database instance. The leader set of server nodes perform a proportional amount of

work to the number of configured replicas. We perform a set of experiments involving four

nodes per cluster and a fully replicated configuration. The fully replicated configuration

implements the third case study described in Section 4.2.3 . In Figure 4.14 , QueCC-R is a
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Figure 4.14. Impact of the replication factor and replication compression.
Dashed lines represent configurations with replication compression enabled.
Four nodes per cluster for QR-Store

non-partitioned (i.e., single-node database instance) and replicated configuration of QR-Store

while QR-Store is the partitioned and replicated configuration with four-node per cluster. We

increase the replication factor from 1 up to 8. As we can see, the overhead of replication

beyond a replication factor of four becomes significant. It reduces the performance by up to

41% and 26% as we increase the replication factor to 8 for QR-Store and QueCC-R, respectively.

The large drop is due to the increased demand for network resources as the number of

replication messages increases proportionally to the replication factor.

Impact of using compression for replication Intuitively, using compression reduces

the number of bytes that go over the network for replication messages by the leader set of

nodes in both QR-Store and QueCC-R. However, it increases the CPU computation require-

ments on the leader set of nodes as more CPU cycles are needed to perform the compression.

Hence, compression is not a silver bullet and is not always beneficial. We conduct experi-

ments to demonstrate that. Figure 4.14 shows that compression can be beneficial when the

replication factor is high (e.g., at 6 or 8). The 99th percentile latency improves by up to
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35%. Compression is also beneficial for Calvin because it uses Zookpeer as the replication

layer. In our experiments, Calvin latency improved by up to 53%. This result agrees with our

micro-benchmark result shown in Figure 4.4 . However, it increases the work on the leader

nodes in all other cases, which negates its benefits.

4.6 Related Work

In this section, we discuss relevant work from the literature. In this chapter, we addressed

an important challenge of high-performance replication in distributed deterministic trans-

action processing systems. However, the database replication techniques have been studied

since several decades ago [85 ]. These techniques are mainly studied with respect to two

dimensions. The first dimension is whether to allow transactions to update at any replica

or designate a primary copy replica. The second dimension is when to synchronize replicas

and whether we should do that synchronization eagerly or lazily. Furthermore, traditional

database replication techniques reuse non-deterministic transaction processing protocols e.g.,

2PL, 2PC [1 ] and OCC [48 ]. The reader is referred to existing literature that cover the tra-

ditional database replication techniques very well (e.g., [18 ], [72 ]–[74 ], [86 ]) for more details.

Compared to traditional database replication techniques, the techniques proposed in this

chapter are deterministic, speculative, and adopt the queue-oriented transaction processing

paradigm [76 ]. Hence, this chapter explores a new research territory.

Replication Frameworks Wiesmann et al. [87 ] proposed a general replication frame-

work to study replication techniques developed by the database systems research community

and the distributed systems research community. However, it does not address the design

choices made by DTP systems. Our proposed general framework complements their replica-

tion framework by focusing on replications in DTP systems.

Deterministic transaction processing protocols Deterministic transaction process-

ing approaches are shown to process transactions more efficiently when compared to non-

deterministic approaches. Recently, there have been many proposals for deterministic trans-

action processing protocols. These systems can be centralized (e.g., [2 ], [10 ], [15 ], [16 ], [26 ])

or distributed (e.g., [12 ], [14 ], [22 ], [50 ]). The main focus of these proposals is on the con-
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currency control aspects of processing transactions. In contrast, this chapter goes beyond

existing deterministic transaction processing systems by addressing the replication challenge

in a systematic way and build on queue-oriented principles, which allows efficient transaction

processing and database replication.

Replication and Consensus Protocols In the distributed systems community, con-

sensus and replication have received a great deal of attention (e.g., [80 ]–[82 ], [88 ]). Such

work focused on state-machine replication and aimed to achieve linearizability. In contrast,

this chapter is concerned with strict serializability guarantees of transaction processing on

distributed, partitioned, and replicated databases.

4.7 Conclusion

In this chapter, we propose a generalized framework for designing replication schemes

for distributed DTP systems. Using the framework, we study three cases from the litera-

ture and discuss how replication can be reasoned about. We propose a novel queue-oriented

speculative replication technique and describe how it is supported in QR-Store. Finally, we

perform an extensive evaluation of several configurations of QR-Store and demonstrate effi-

cient replicated transaction processing that can reach up to 1.9 million replicated transactions

per second in under 200 milliseconds and a replication overhead of 8% − 25% compared to

non-replicated configurations.
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5. CONCLUSIONS

In this chapter, we provide concluding remarks on the contributions of this dissertation.

First, a brief summary of this dissertation is provided. Moreover, the current limitations of

queue-oriented transaction processing are discussed. Finally, recommendations on the future

research directions are discussed.

5.1 Summary

In this dissertation, we addressed challenges in deterministic transaction processing in

main-memory databases. The first challenge is concerned with how to efficiently utilize the

high number of cores available in modern computing infrastructure. The second challenge

is concerned with how to perform distributed transaction processing efficiently. Finally,

the third challenge is concerned with how to perform replication efficiently in deterministic

transaction processing systems to support fault tolerance. Our focus in this dissertation is

on developing queue-oriented principles for efficient transaction processing. We prototype

the proposed techniques and extensively evaluate them using standard transaction process-

ing benchmarks. Our experimental result shows significant improvement in the transaction

processing system performance. However, our proposed queue-oriented transaction process-

ing approach has several limitations, and these limitations are discussed in the following

sections.

5.2 Current Limitations of Queue-oriented Transaction Processing

Advantages and disadvantages of deterministic transaction processing are discussed in

the literature [21 ]. Since our queue-oriented transaction processing is deterministic, these

advantages and disadvantages extend to our proposed queue-oriented paradigm. Previous

chapters demonstrated that it is possible to achieve highly efficient transaction processing

performance by adopting queue-oriented transaction processing principles for designing and

implementing distributed and replicated deterministic transaction processing systems. Like

other deterministic transaction processing systems [12 ], [63 ], queue-oriented transaction pro-
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cessing assumes the knowledge of the full read/write set of transactions prior to the planning

phase. In this section, we discuss existing techniques that are concerned with this assump-

tion. Furthermore, we discuss an intra-transaction property that inhibits the performance

in queue-oriented transaction processing.

5.2.1 Knowledge of the Read/Write Sets

A key limitation of the deterministic transaction processing is that the knowledge of the

full read/write sets is required. However, there are few approaches to address this problem.

One approach is to run the transaction without committing its write-set to compute the full

read/write sets [12 ], [89 ]. In general, this approach does not guarantee the finality of the

read/write set when running the transaction. Another approach is to partially execute the

transaction over multiple batches instead of a single batch.

The above approaches aim to do the heavy lifting on behalf of database application

developers. Conversely, it is possible to expose an API to the application developers and

specify the read-write sets in the transaction specification. While this approach puts a

larger burden on application developers compared to earlier approaches, we believe that it is

a very reasonable trade-off because it is typical for application developers to optimize their

applications for performance, and this API can be used as an optimization tool.

5.2.2 Resolving Data Dependencies

Our proposed queue-oriented execution exploits any available intra-transaction paral-

lelism. However, intra-transaction data dependencies among transaction fragments reduce

the parallel execution efficiency by forcing the execution of an EQ to be stalled and cause

execution threads to switch to other available queues. One way to remedy this is by per-

forming out-of-order queue execution, which can minimize the switching overhead. However,

the gained execution efficiency of this approach heavily depends on the workload.

Moreover, when executing multi-partition transactions issue of data dependencies be-

comes even more prominent as resolving data dependencies require a trip over network which

more costly than resolving a local dependency. Fortunately, our planning phase can lever-
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aged to reduce cost. To illustrate this benefit, consider two transactions t1 : {r1(a), r1(c), a =

a + c, w1(a), Commit} and t2 : {r2(a), r2(c), b = b + c, w2(b), Commit}. t1 increments the

value of record a by the value of c. t2 performs a similar operation with record b. In this

example, records a and b reside on the same partition which record c resides on a remote

partition in a different node. Transaction fragments w1(a) and w2(b) To complete the write

operation w1(a), have data dependencies on r1(c) and r2(c), respectively. To resolve these

data dependencies, r1(c) and r2(c) must be executed and the value of record c is propagated

to the node executing w1(a) and w2(b). Because the both transaction t1 and t2 are planned

by the same planning thread, the planning thread can indicate that once the dependency

on w1(a) is resolved, the same value of record c can be used to resolve the dependency on

w2(b). In the next section, we discuss future research directions.

5.3 Future Research Directions

In this section, we discuss three future research directions. The first one is to support well-

known features of relational database management systems in our proposed queue-oriented

transaction processing paradigm. The second direction is applying queue-oriented principles

to process transactions in blockchain systems. The final one is to apply machine learning

techniques to build self-learning and adaptive queue-oriented transaction processing systems.

5.3.1 Challenges in the queue-oriented transaction processing paradigm

Relational database systems had come a long way since their inception decades ago. In

this dissertation, we only scratched the surface of the queue-oriented paradigm. Our current

prototypes use hash-based indexes to look up records for point-based queries. Supporting

secondary indexes, triggers, and range-based queries remain open problems within our pro-

posed paradigm. Furthermore, our transactions are written in C++. Adding support for

more standard database application programming languages such as PL/SQL can lead to

interesting engineering challenges.
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From a storage point of view, we currently use a single version storage system to maintain

a single version per record. It remains interesting to explore multi-versioned storage and

time-traveling queries.

In Chapter 3 , we outlined how we support read-committed isolation in addition to the

serializable isolation. Supporting other isolation levels such as snapshot isolation is also an

interesting challenge to address.

Moreover, worker threads in our system prototypes alternate between the planning phase

and the execution phase. We plan to explore pipelined architectures where the worker threads

work concurrently and collaboratively on the planning and execution phases.

Furthermore, we currently use a simple round-robin to assign a transaction to planning

threads as input to the planning phase. Thus, there is no notion of a user-defined priority

level. Supporting user-defined priorities for transactions while maintaining a certain level of

fairness is also an interesting future direction.

Finally, in our current prototypes, we use simple planning techniques to avoid adding

significant overhead to the planning phase. For instance, we use a range-based partitioning

approach of record identifiers and map operations to these ranges to form the execution

queues. However, our simple techniques may not produce optimal plans. As mentioned ear-

lier, dependencies between transaction fragments in different queues can reduce the parallel

execution efficiency. Hence, developing planning techniques that can produce near-optimal

plans that minimize both dependencies among queues and the planning overhead is yet

another interesting research direction.

5.3.2 Applications of the queue-oriented paradigm

Future work includes exploring the application of our queue-oriented transaction pro-

cessing principles to design and implement efficient blockchain transactions. There are re-

newed research interests in byzantine fault-tolerance for transaction processing [24 ], [90 ]–[95 ].

We plan to support Byzantine fault tolerance for database transactions using our proposed

queue-oriented transaction paradigm. On the one hand, blockchain transactions are deter-

ministic, which aligns with the kind of transactions that our paradigm supports. On the
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other hand, it is very challenging to design and implement efficient, Byzantine fault-tolerant

protocols. We believe that the design principles behind QR-Store can lead to efficient Byzan-

tine fault-tolerant protocols, as very few blockchain proposals look at optimizing execution.

Another interesting research direction is to apply queue-oriented transaction process-

ing principles to build location-based services, spatial, spatiotemporal databases and data

streaming systems (e.g., [96 ]–[98 ]). By modeling operations in these systems as transac-

tions, the queue-oriented transaction processing techniques have the potential to improve

the performance of these systems.

5.3.3 Using ML for adapting queue-oriented transaction processing systems

As with many complex software systems, queue-oriented transaction processing systems

have many system parameters that can be tuned to optimize the system performance ob-

served by the end-user. Hence, it is interesting to explore how to extend these systems and

give them the ability to adapt to workload changes or other user requirements in a cloud envi-

ronment dynamically by leveraging advanced techniques from the machine learning research

literature.
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[73] B. Kemme, R. Jiménez-Peris, and M. Patiño-Mart́ınez, Database Replication, ser. Syn-
thesis Lectures on Data Management. Morgan & Claypool Publishers, 2010. doi:
10.2200/S00296ED1V01Y201008DTM007 . [Online]. Available: https://doi .org/10.
2200/S00296ED1V01Y201008DTM007 .

129

https://doi.org/10.14778/2732269.2732270
http://dx.doi.org/10.14778/2732269.2732270
http://dx.doi.org/10.14778/2732269.2732270
http://jemalloc.net/
https://doi.org/10.1145/7239.7266
http://doi.acm.org/10.1145/7239.7266
http://dl.acm.org/citation.cfm?id=645478.654794
http://dl.acm.org/citation.cfm?id=645478.654794
http://dl.acm.org/citation.cfm?id=645919.672675
http://dl.acm.org/citation.cfm?id=645919.672675
https://doi.org/10.1145/1807128.1807157
http://dx.doi.org/10.1145/1807128.1807157
http://dx.doi.org/10.1145/1807128.1807157
https://www.voltdb.com/
https://doi.org/10.1007/978-3-030-26253-2
https://doi.org/10.1007/978-3-030-26253-2
https://www.springer.com/gp/book/9783030262525
https://doi.org/10.2200/S00296ED1V01Y201008DTM007
https://doi.org/10.2200/S00296ED1V01Y201008DTM007
https://doi.org/10.2200/S00296ED1V01Y201008DTM007
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