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ABSTRACT

We generalize the work of Gelbart, Miller, Pantchichkine, and Shahidi on constructing

p-adic measures to the case of totally real fields K. This measure is the Mellin transform

of the reciprocal of the p-adic L-function which interpolates the special values at negative

integers of the Hecke L-function of K. To define this measure as a distribution, we study the

non-constant terms in the Fourier expansion of a particular Eisenstein series of the Hilbert

modular group of K. Proving the distribution is a measure requires studying the structure

of the Iwasawa algebra.
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INTRODUCTION

Motivation

The idea that special values of L-functions encode information about the arithmetic

objects they are attached to is a recurring theme in Number Theory. For example, the class

number formula relates the residue at s = 1 of the Dedekind zeta function to the class

number of the number field. The Birch and Swinnerton Dyer Conjecture, one of the most

difficult problems, predicts that the value at s = 1 of the L-function attached to an elliptic

curve relates to the rank of a certain abelian group of the elliptic curve.

In the mid nineteenth century, Kummer [1 ] proved that the special values of the Riemann

zeta function satisfy nice congruences modulo prime powers for a given odd prime p. Kubota

and Leopoldt [2 ] reformulated these congruences in 1964 and introduced a p-adic analogue to

the Riemann zeta function. The special values of the Kubota Leopoldt p-adic zeta function

at negative integers interpolate those of the classical Riemann zeta function, and furthermore

the Kummer congruences translate to the continuity of this function p-adically. The family

of p-adic L-functions arising from certain congruences in a similar fashion to the Kubota

Leopoldt p-adic zeta function are known as analytic p-adic L-functions.

In line with the duality between the analytic and arithmetic pictures, Iwasawa [3 ] dis-

covered a deeper connection between p-adic L-functions and Galois modules over towers of

cyclotomic fields. The p-adic L-functions which arise following this method are called arith-

metic p-adic L-functions. The main conjecture of Iwasawa theory, proven by Mazur and

Wiles [4 ], along with several of its generalizations, essentially states that the analytic and

arithmetic p-adic L-functions are the same object. These statements translate to saying that

the values of p-adic L-functions at negative integers encode arithmetic information.

This significance leads us to the question of constructing p-adic L-functions in order

to study the arithmetic objects. We will start by describing some known constructions in

greater details.
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Kubota-Leopoldt p-adic L-function

Recall that the values of the Riemann zeta function at negative integers are given by the

Bernoulli numbers. For any k ≥ 1, we have

ζ(1− k) = −Bk

k
(1)

where the Bernoulli numbers Bk are the coefficients of the power series expansion

t

et − 1 =
∞∑

k=0
Bk

tk

k! . (2)

Kummer studied the Bernoulli numbers in order to understand when a prime p is regular -

that is, when p does not divide the class number of the pth cyclotomic field. He discovered

the following congruences:

Theorem 0.0.1 (Kummer Congruences). ([5 ] Corollary 5.14) Suppose that m ≡ n 6≡ 0 mod

p− 1 are positive, even integers. Then

Bm

m
≡ Bn

n
mod p.

More generally, if m and n are positive even integers with m ≡ n mod (p − 1)pa and n 6≡

0 mod p− 1, then

(1− pm−1)Bm

m
≡ (1− pn−1)Bn

n
mod pa+1.

The values (1− pk−1)Bk

k
are the special values of the Riemann zeta function at negative

integers with the Euler p factor removed. Kubota and Leopoldt then defined the p-adic zeta

function for k ≥ 1 to be

ζp(1− k) = (1− pk−1)ζ(1− k). (3)

The p-adic continuity of this function depends heavily on the congruences between Bernoulli

numbers which are difficult to generalize to other cases.

Mazur reinterpreted the Kummer congruences as p-adic measures. A p-adic measure

is a Zp-linear map µ : C(Zp,Zp) → Zp, where C(Zp,Zp) denotes the ring of all Zp-valued
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continuous functions on Zp. A key fact is that given any p-adic measure µ, if m ≡ n mod (p−

1)pa, then ∫
Z∗

p

xm dµ ≡
∫
Z∗

p

xn dµ mod pa+1. (4)

It ensures that there exists a Zp-valued measure that produces the values of the p-adic

function when it is evaluated against the functions f(x) = xk.

Theorem 0.0.2 ([6 ]). For each integer a ≥ 2 prime to p, there exists a Zp-valued measure

µ(a) such that for any k ≥ 0

∫
Zp

xk dµ(a) = (1− ak+1)ζ(−k).

Eisenstein Measures

Serre [7 ] gave a different construction of the p-adic zeta function as the constant term of

the q-expansion of a p-adic Eisenstein series. It is well known that the holomorphic Eisenstein

series on the full modular group SL2(Z)

Ek(z) =
∑

(m,n)∈Z2\(0,0)

1
(mz + n)k

(5)

has the Fourier series expansion

Ek(z) = 2ζ(k) + 2(−2πi)k

(k − 1)!

∞∑
n=1

∑
d|n
dk−1

 exp(nz) (6)

for any even k ≥ 4, where exp(z) = e2πiz. The sums σk(n) = ∑
d|n d

k are called divisor

functions. The divisor functions with the p factor removed

σ∗
k(n) =

∑
d|n
p-d

dk (7)

satisfy congruences similar to the Kummer congruences, namely σk(n)∗ ≡ σk′(n)∗ mod pm

whenever k ≡ k′ mod pm−1(p).
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Serre considered σk(n)∗ as a p-adic limit of a collection of divisor functions {σki(n)}.

There is a collection {Ei} of classical Eisenstein series with compatible weights ki that have

non-constant terms {σki(n)}. The p-adic properties of the non-constant terms of {Ei} imply

similar congruences for the constant term. Serre thus defined a p-adic Eisenstein series on

SL2(Z) formally as a q-expansion which is the p-adic limit of the q-expansions of {Ei} :

E∗
k = 2ζ∗(1− k) + 2(−2πi)k

(k − 1)!

∞∑
n=1

σ∗
k−1(n) exp(nz). (8)

The p-adic zeta function in this case is the constant term of the p-adic Eisenstein series.

Serre’s construction is the first instance of objects we now refer to as Eisenstein mea-

sures because of the connection between Eisenstein series and L-functions. In fact, when

Langlands studied Eisenstein series for general reductive groups G [8 ], he showed that the

constant terms of these Eisenstein series are quotients of products of L-functions. This

method of constructing Eisenstein measures thus has the possibility of being generalized

since L-functions show up as the constant terms of a large class of Eisenstein series.

In the early 1980s, Shahidi calculated the non-constant terms of Eisenstein series and

showed that L-functions occur in their denominators [9 ]. Around the same period of time,

Langlands wrote a letter to Gelbart concerning a conversation he had with Coates about

the possibility of constructiong p-adic L-functions by using the Langlands-Shahidi method.

However, these ideas were forgotten until Gelbart stumbled on the letter again in 2010. At

that time, Gelbart, Miller, Panchishkin, and Shahidi had already started studying p-adic

congruences between the non-constant terms of Eisenstein series on SL2(Z).

In [10 ], the authors study the partial Eisenstein series

εk,pm(b) =
∑

(c,d)∈Z2

(c,d)=1
d≡b mod pm

(pmcz + d)−k. (9)

They calculate the pmth non-constant term as

(−2πi)k

pmkΓ(k)

m∑
j=0

pj(k−1) ∑
n6=0
p-n

µ(|n|)
nk

exp(npjb/pm) (10)

11



where n denotes the inverse of n mod pm. Up to a correction factor which depends only on p

and ζ(1−k), these terms define a p-adic measure µ∗
k whose Mellin transform is the reciprocal

of the Kubota-Leopoldt p-adic zeta function

∫
Z∗

p

xk−1 dµ∗
k(x) = ζp(1− k)−1 (11)

for all positive even integers k.

Main Result

Our main result generalizes this construction to Eisenstein series on SL2(O) when O is

the ring of integers of a totally real number field K. The Hecke L-function attached to a

character χ with conductor n is given by

L(s, χ) =
∑

(a,n)=1

χ(a)
N(a)s

=
∑
[a]
χ([a])

∑
b∈[a]

1
N(b)s

(12)

where [a] denotes the class of the ideal a. Siegel [11 ] proved that the values of the partial

L-function ∑
b∈[a] N(b)k−1 are rational, which led to several different constructions of the

p-adic L-function for a totally real field [12 ], [13 ],[14 ],[15 ].

If we denote the degree of extension of K over Q by r and its class number by h, then

SL2(O) embeds componentwise into SL2(R)r and has h inequivalent cusps as a Riemann

surface. Let C ∈ CK be an ideal class of K and let a be any integral ideal in C. The Eisenstein

series of weight k attached to the ideal class C is defined by

Ek,C(z) =
∑

(c,d)∈a×a/O∗

N(a)k

(cz + d)k
. (13)

In this case, Ek,C has a Fourier series expansion at each of the cusps κ. When κ = ∞, this

expansion is given by

Ek,C = ζK,C−1(k) + (2πi)kr

(k − 1)!r |D|
1/2−k

∑
ν≡0 mod d−1

ν�0

σk−1(νd) exp(νz) (14)
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where σk−1(n) is the divisor function defined by

σk−1(n) =
∑
a|n
N(a)k−1. (15)

The expansions at the other cusps κ′ can be calculated by translating κ′ to∞ through matrix

multiplication.

Following the ideas in [10 ], we study the partial Eisenstein series

εk,pm,bj(a) := (α3A
−1z + α4)k

∑
{c,d}∈a×a

gcd
(

c
a

, d
a

)
=1

d≡a2 mod pma

N(a)k

(pmcA−1z + d)k
. (16)

The pmth coefficient in its Fourier series expansion is given by

(−2πi)krN(bj)k

(k − 1)!r|D| 2k−1
2

m∑
u=0

N(p)u(k−1)−mk
hpm,+∑

i=1

∑
t∈Ci

µ(t)
N(t)k

exp
(
tia2p

ubj

pmd

)
. (17)

We can define a measure λ to be equal to this coefficient plus a correction factor. We now

state our main theorem:

Theorem 0.0.3. Let p ∈ Q be an odd prime number such that p does not divide [K : Q] or

the class number of K(e2πi/p). Assume further that no prime ℘ of the field K(e2πi/p + e−2πi/p)

lying above p splits in K(e2πi/p). Let p be a prime ideal of O lying above p and h+ the strict

class number of K.

1. There exists a p-adic measure λ on GK,p whose Mellin transform is the reciprocal of

the p-adic L-function of the totally real field K

∫
GK,p

N(x)k−1 dλ = h+(1−N(p)k−1)−1ζ(1− k)−1

for all even positive integers k.

2. For any non-trivial Hecke character of finite type χ mod pm with m > 0 , we have

∫
GK,p

χ(x)N(x)k−1 dλ = h+L(1− k, χ)−1

13



for any positive integer k satisfying the parity condition χ(−1) = (−1)k.

Moreover, the measure λ can be expressed in terms of Fourier coefficients of the Eisenstein

series defined by χ on the Hilbert upper half plane.

The conditions on p are those that ensure that Kummer’s criterion holds for K [16 ].

Greenberg mentions in the introduction to loc. cit. that the condition p - [K : Q] may be

relaxed. However, the other conditions are the regularity conditions on p and cannot be

removed.

We now give an outline of this thesis.

Outline

Chapter 1 presents the notation and framework of this work. We introduce the ray class

groups of a number field and recall Artin’s reciprocity theorem from Class Field Theory.

This map forms an isomorphism between the strict ray class group of K modulo p∞ and the

Galois group of the maximal unramified-outside-p extension of K, which is the domain of

definition of our measure.

Chapter 2 discusses the L-functions which form the core of this dissertation. In Section

2.1, we show that Hecke characters which are trivial at the infinite places are equivalent to

characters on O/n for some integral ideal n of K. We define Hecke L-functions in Section 2.2

and state their main properties, then we study the Kummer congruences that occur between

their special values at negative integers in Section 2.3.

Chapter 3 describes the construction of p-adic measures for general number fields. Sec-

tions 3.1 and 3.2 introduce p-adic measures on Galois groups and Section 3.3 presents the

specific case when K is totally real.

Chapter 4 describes the structure of the Iwasawa algebra. In Section 4.1, we describe

its structure analytically as a power series ring by using the Mahler transform. In Section

4.2, we describe its structure algebraically. This allows us to define in Section 4.3 the p-adic

L-function of K as the Mellin transform of the p-adic measure.

Our main approach to construct p-adic measures is by studying Eisenstein series. Chapter

5 presents the background material on the Hilbert modular group and Hilbert modular forms.

14



In Chapter 6, we study certain partial Eisenstein series of weight k and level Γ0(n). We

define them carefully at all the cusps in Section 5.1 and derive their Fourier series expansions

in Section 5.2.

This is the main computation that leads to the definition of a reciprocal p-adic measure

in Chapter 7. In Section 7.1, we state the definition of λ as a distribution and show that it

satisfies the required properties. Section 7.2 gives some generalities about elements of the

Iwasawa algebra which are needed to prove that λ is a measure in Section 7.3.
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1. CLASS FIELD THEORY

Our first goal is to explain how to generalize p-adic integration over Zp to higher dimensions.

The most natural domain of integration turns out to be

lim←−
n

{prime-to-p fractional ideals of K} / {< α >: α ∈ K,α� 0, α ≡ 1 mod pn} . (1.1)

This turns out to be the strict ray class group of the maximal field extension of K which is

unramified outside p. In this chapter, we will present describe this isomorphism in detail.

The class group CF of a number field F is a finite abelian group that measures how much

the ring of integers of F fails at being a unique factorization domain. In 1927, Artin proved

his celebrated reciprocity law, which gives an isomorphism between certain ideal class groups

and Galois groups. Almost 75 years prior, in 1853, Kronecker had declared that every finite

abelian extension of Q lies in some cyclotomic field Q(ζm), a theorem which is now known

as the Kronecker-Weber theorem.

Weber was interested in generalizing Dirichlet’s prime number theorem, which states

that there are infinitely many prime numbers of the form p+ kq if p and q are two coprime

numbers. A key element in the proof of Dirichlet’s theorem is the non-vanishing of the

Dirichlet L-function at s = 1. For this reason, in 1897, Weber introduced the notion of

the ray class groups. These groups generalize the class group of F . Moreover, each ray

class group corresponds through Artin reciprocity to the Galois group of a class field which

generalizes some cyclotomic field. In fact, a generalization to the Kronecker-Weber theorem

states that every finite abelian extension of F is contained in some class field. Moreover,

Weber introduced an L-function attached to ray class characters and consequently proved

the first inequality of class field theory.

1.1 The Base Field

We fix the following notation throughout the dissertation:

Let K be a totally real number field of degree r over Q. This means that there are r

embeddings of K into C that all lie in R. We fix an ordering of the r embeddings K ↪→ R.

16



For any α ∈ K, we denote by α(1), · · · , α(r) the conjugates of α. We say α is totally positive,

denoted α� 0, if α(i) ≥ 0 for all 1 ≤ i ≤ r.

Let O denote the ring of integers of K. O is a lattice in K and its dual lattice is the

largest fractional ideal O∨ ⊂ K consisting of elements whose trace is a rational integer. The

different ideal d is the inverse ideal of O∨ :

d = (O∨)−1 = {α ∈ K | αO∨ ⊂ O}. (1.2)

Let N : K → Q denote the norm map on K given by N(α) = ∏r
i=1 α

(i) for any α ∈ K.

For an integral ideal a, its norm is the size of the quotient N(a) = |O/a|. The discriminant

D of K in absolute value is the norm of the different ideal N(d) = |D|.

1.2 Ray Class Groups

In this section, we will describe the ray class groups which are used in the ideal theoretic

formulation of class field theory. We follow the presentation given in Chapter 3 of [17 ].

A modulus m = m0m∞ is a formal product where the finite part m0 = ∏
p<∞ pnp is an

integral ideal and the infinite part m∞ is the set of real embeddings of K into C. Given

two moduli m = m0m∞ and n = n0n∞, we say n divides m, denoted n | m, if n0 ⊃ m0 and

n∞ ⊂ m∞.

A non-zero fractional ideal a of K is coprime to m, denoted (a,m) = 1, if we can write

a = b
c
, where b and c are integral ideals such that b + m0 = c + m0 = OK .

Let ImK = {a fractional ideal of K | (a,m) = 1} denote the subgroup of fractional ideals

of K which are coprime to m. We denote by Km the set {α ∈ K∗ | (〈α〉,m) = 1}.

An element α ∈ K∗ is multiplicatively congruent to 1 modulo m, denoted α ≡ 1 mod ×m,

if 〈α〉 = b
c
∈ ImK and α ∈ 1 + mc−1. We denote the set of all such α by Km,1.

Let Pm
K = {〈α〉 | α ∈ K,α ≡ 1 mod ×m} denote the subgroup of fractional ideals 〈α〉 in

ImK which are generated by α ∈ Km,1.

Definition 1.2.1. The ray class group modulo m is the quotient given by

Cm
K = ImK/P

m
K .

17



If m = O is the trivial modulus, this is the usual class group

CK = {fractional ideals of K}/{principal ideals of K}.

Theorem 1.2.1. We have an exact sequence

1→ O∗ ∩Km,1 → O∗ → (O/m)∗ → Cm
K → CK → 1.

In particular, the ray class group modulo m is finite.

We denote the cardinality of Cm
K by hm and that of CK by h.

Proof. The map O∗ ∩Km,1 → O∗ is the natural embedding and the map O∗ → (O/m)∗ is

the natural surjection. Given an element α ∈ O∗, we denote its image in (O/m)∗ by α. By

definition, O∗ ∩Km,1 is the kernel of the map O∗ → (O/m)∗ .

Moreover, any ideal class contains an ideal which is coprime to m, so the map Cm
K → CK

is the natural surjection.

The only non-trivial map is (O/m)∗ → Cm
K . This map sends any element α ∈ (O/m)∗

to the ideal class of 〈α〉 in Cm
K . First, we need to show that it is well-defined. Suppose that

α, β ∈ (O/m)∗ are such that the class of 〈α〉 and 〈β〉 are equal in Cm
K . This means that

〈α〉〈β〉−1 ∈ Pm
K , or equivalently α

β
≡ 1 mod ×m. Hence α and β are equal in (O/m)∗ .

We now prove the exactness of the sequence. We start with showing that Im(O∗ →

(O/m)∗) = ker((O/m)∗ → Cm
K). Suppose that α ∈ (O/m)∗ maps to the trivial class of Cm

K .

This means that 〈α〉 ∈ Pm
K , so there exists β ≡ 1 mod ×m such that 〈α〉 = 〈β〉. Hence,

α
β
∈ O∗. Since β ≡ 1 mod ×m, then

(
α
β

)
= α, so α ∈ Im(O∗ → (O/m)∗).

Lastly, we need to prove that Im((O/m)∗ → Cm
K) = ker(Cm

K → CK). Let [a] ∈ Cm
K be

an ideal class which maps to the trivial class in CK . This means that a = 〈α〉 is a principal

ideal coprime to m. Hence, (α,m) = 1, so α ∈ (O/m)∗ and [a] ∈ Im((O/m)∗ → Cm
K).

Now let us define Pm,+
K = {〈α〉 | α ∈ K,α� 0, α ≡ 1 mod ×m} .
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Definition 1.2.2. The strict (or narrow) ray class group modulo m is the quotient

Cm,+
K = ImK/P

m,+
K .

The strict class group modulo m is finite and its cardinality is denoted by hm,+.

1.3 The Artin Map for Abelian Extensions

In this section, we study the canonical isomorphism between the Galois group of the

maximal abelian unramified outside p extension of K and its strict ray class group. We

present the main ideas from the ideal theoretic point of view following Chapters 3 and 5 of

[18 ] while skipping many proofs. An excellent treatment can be found in [19 ] from the idele

theoretic point of view.

Let L be a finite abelian extension of K. We denote by OL the ring of integers of L. Fix

a prime p in K which does not ramify in L and let q be a prime in L which lies above p.

Definition 1.3.1. The Frobenius element is the unique element σq of Gal(L/K) for which

σq(x) ≡ xN(p) mod q

for all x ∈ OL.

Note that the Frobenius elements σq for a11 q lying above p are conjugate. We denote

them all by the Artin symbol
(

L/K
p

)
. If a is any ideal ofK with prime factorization a = ∏

i p
ni
i ,

we define the Artin symbol of a by

(
L/K

a

)
=
∏

i

(
L/K

pi

)ni

. (1.3)
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Theorem 1.3.1. Suppose that L/K is a finite abelian extension of number fields. Let m be

a modulus for K which is divisible by all the ramified primes. Then the Artin map

ψm
L/K : ImK → Gal(L/K)
∏
p-m

pnp →
∏
p-m

(
L/K

p

)np

is surjective.

Proof. Let H ⊂ Gal(L/K) be the image of ψm
L/K and let LH be its fixed field. The auto-

morphism ψm
L/K(p) acts trivially on LH for any p ∈ ImK . Hence, ψm

L/K(p) = 1, which implies

that p splits completely in LH . Hence, [LH : K] = 1 and H = Gal(L/K).

Theorem 1.3.2 (Artin Reciprocity). The Artin map induces a canonical isomorphism be-

tween each subextension L/K of K(m)/K and Cm
K/kerψm

L/K . In particular, it gives an order

preserving bijection between the set of subgroups Pm
K ⊂ C ⊂ ImK and the set of abelian

extensions L/K whose conductor divides m.

The importance of Artin’s Reciprocity theorem for us is that it implies the following

Proposition 1.3.1. The strict class group Cp∞,+
K of K modulo p∞ is isomorphic to the

Galois group GK,p.

We need to define the Galois group GK,p. As a profinite group, GK,p = lim←−n
GK,pn and

each GK,pn is isomorphic to Cpn,+
K .

To describe GK,p as a Galois group, let K be the separable algebraic closure of K.

This extension is infinite but it contains a tower K ⊂ K1 ⊂ K2 ⊂ · · · of finite Galois

extensions over K. The Galois group of the extension K/K is called the absolute Galois

group GK = Gal(K/K). GK is a profinite group, and in particular it is neither finite nor

finitely generated as a topological group. Hence, it is more convenient to work with an

abelian quotient of GK . The most convenient quotient is GK,p, the Galois group of the

maximal abelian extension of K which is unramified outside p.

Finally, we note that |Cpn,+
K | = h+

pn = |GK,pn|.
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2. L-FUNCTIONS

In this chapter, we will discuss the complex analytic L-functions L(s, χ) which are attached

to a totally real field K. We will also describe the Kummer congruences which occur between

the values L(1−k, χ) at negative integers. These congruences are equivalent to the continuity

of the p-adic L-function.

2.1 Characters

We review in this section the theory of characters of the strict ray class group. We closely

follow the material in [20 ] Chapter 7, Section 6. Our main goal is to show that the strict

ray class characters χ with modulus m which have a trivial infinite part can be written in a

simpler form as a character of O/m.

Definition 2.1.1. A character of a group G is a continuous group homomorphism χ : G→

C∗.

We will be particularly interested in certain characters on the strict ray class group.

Definition 2.1.2. A strict ray class character modulo m is a character χ : Cm,+
K → C∗. We

say χ is primitive if it does not factor through any n|m and we call m the conductor of χ.

We need to describe a more general character, called the Hecke character, in order to

study the strict ray class characters modulo m.

Definition 2.1.3. A Hecke character with modulus m is a character χ : ImK → C∗ which can

be written as a product χ = χfχ∞ for some characters χf : (O/m)∗ → C∗ and χ∞ : Rr → C∗.

We denote a Hecke character with modulus m by χ mod m and we call χf the finite part

of χ and χ∞ the infinite part of χ. We say χ mod m is primitive if χf does not factor through

(O/n)∗ for any ideal n | m. The conductor of χ is the smallest divisor f | m such that χ mod f

is primitive.

Definition 2.1.4. A Hecke character with modulus m is said to be of finite type whenever

χ∞ is the trivial character. In this case, χ mod m : (O/m)∗ → C∗.
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Since (O/m)∗ ' {α ∈ K∗ | (〈α〉,m) = 1}/Km,1, we can write any α ∈ {α ∈ K∗ |

(〈α〉,m) = 1} as α = a
b

with a, b ∈ {α ∈ O∗ | (〈α〉,m) = 1}. Hence we can extend a Hecke

character χ mod m to {α ∈ K∗ | (〈α〉,m) = 1} by setting χ(a
b
) = χ(a)χ(b)−1.

Proposition 2.1.1. The strict ray class characters modulo m are exactly the Hecke characters

modulo m which are of finite type. Moreover, the conductors of the strict ray class characters

and the corresponding Hecke characters are equal.

Proof. First suppose that χ is a Hecke character modulo m of finite type. If a ∈ O is such

that a ≡ 1 mod m, then clearly χf (a) = 1 and χ(〈a〉) = χf (a)χ∞(a) = 1. Hence χ factors

through Pm,+
K and is a narrow ray class character modulo m.

Now suppose that χ is a narrow ray class character modulo m. The restriction of χ to

Km,1/Km,1,+ ' (±1)r induces a character χ∞ : (R∗)r → C∗. Defining χf = χχ∞ produces a

character on (O/m)∗ . Therefore, χ = χfχ∞ is a Hecke character modulo m of finite type.

2.2 Hecke L-functions

Let m be a non-zero integral ideal of K and consider the strict ray class group Cm,+
K . Let

χ : Cm,+
K → C∗ be a character. We briefly define the Hecke L-functions L(s, χ) and state

some of their properties, following [20 ] Chapter 7, Section 8.

Definition 2.2.1. The Hecke L-function is defined by the sum

L(s, χ) =
∑
a⊂O

(a,m)=1

χ(a)N(a)−s

whenever Re(s) > 1.

It is easy to see that we may decompose the L-function according to the strict ray classes

modulo m as

L(s, χ) =
∑

C∈Cm,+
K

χ(C)
∑
a⊂O
a∈C

(a,m)=1

N(a)−s. (2.1)
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As usual, L(s, χ) admits an Euler product over all prime ideals p ⊂ O

L(s, χ) =
∏
p

(1− χ(p)N(p)−s))−1

and may be continued to a meromorphic function which is holomorphic except for a simple

pole at s = 1. Moreover, L(s, χ) satisfies a functional equation. We will start by defining

the Gauss sum.

Definition 2.2.2. Let χ be a finite order Hecke character modulo m and let y ∈ m−1d−1.

The Gauss sum of χ is the sum

τ(χ, y) =
∑

x∈(O/m)∗

χ(x) exp(xy).

Note that the Gauss sum depends only on the coset of y mod d−1. Given two represen-

tatives x and x′ such that x ≡ x′ mod m, then x′y − xy ∈ mm−1d−1 = d−1. This implies

that Tr(x′y) ≡ Tr(xy) mod Z, so exp(x′y) = exp(xy). The argument for two representatives

y ≡ y′ mod d−1 is similar. Hence, we will use the notation

τ(χ) =
∑

x∈(O/m)∗

χ(x) exp(x/md). (2.2)

Proposition 2.2.1. Let χ be a primitive Hecke character modm and x ∈ O. Then the

Gauss sum satisfies the transformation

∑
x∈(O/m)∗

χ(x) exp(xx/md) =


χ(x)τ(χ) if (x,m) = 1

0 otherwise
. (2.3)

Proof. Let x ∈ O, (x,m) = 1. As x runs through (O/m)∗ so does xx. Then

∑
x∈(O/m)∗

χ(x) exp(xx/md) = χ(x)
∑

x∈(O/m)∗

χ(xx) exp(xx/md) (2.4)

= χ(x)τ(χ). (2.5)
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When (x,m) = n 6= 1, there exists a ∈ (O/m)∗ such that χ(a) 6= 1 and a ≡ 1 mod mn−1.

Hence, xa ≡ x mod m which implies that

χ(a)
∑

x∈(O/m)∗

χ(x) exp(xx/md) =
∑

x∈(O/m)∗

χ(x) exp(xax/md) (2.6)

=
∑

x∈(O/m)∗

χ(x) exp(xx/md). (2.7)

Since χ(a) 6= 1, the Gauss sum is equal to 0.

Theorem 2.2.1 ([20 ] Corollary 8.6). The completed L-function

Λ(s, χ) = |DK |s/2N(m)s/2L∞(s, χ)L(s, χ) (2.8)

satisfies the functional equation

Λ(s, χ) = W (χ)Λ(1− s, χ−1)

where W (χ) ∈ C is a constant depending on χ such that |W (χ)| = 1. In particular, when

s = k is a positive integer, we have

L(k, χ) = (2πi)krN(m)1−k|D| 1−2k
2

2r(k − 1)!rτ(χ−1) L(1− k, χ−1) (2.9)

The functional equation of L(k, χ) will play a crucial role in the proof of our main

theorem. We will use it to show that evaluating our p-adic distribution against characters

results in reciprocals of the special values of L(s, χ) at negative, odd integers.

2.3 Congruences between Special Values

The values of the Hecke L-function L(1−k, χ) for even integers k satisfy nice congruences

called the generalized Kummer congruences. They were initially proven by Coates and

Sinnott [14 ] in the case of real quadratic fields and Deligne and Ribet [15 ] in the case of any

totally real field. In this section, we develop the Kummer congruences following [21 ] in a

more general case for L-series attached to locally constant functions.
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Let p be any (rational) prime number, Zp the p-adic integers, and Qp the field of fractions

of Zp. Let Cp be the completion of the algebraic closure of the field of p-adic numbers Qp

and let | · |p denote its p-adic valuation.

Definition 2.3.1. A function f on a topological group G is called locally constant if for

every g ∈ G there exists a neighborhood Ug ∈ G such that f |Ug is constant.

Let f be a non-zero integral ideal of K and let Gf be the strict ray class group of K

modulo f. Let ε : Gf → C be a locally constant function. Consider the L-series

L(s, ε) =
∑

(x,f)=1
ε(x)N(x)−s.

When ε is a character, this L-series is simply the Hecke L-function. In particular, we can

define the values L(1−k, ε) for k ≥ 1 by using the meromorphic continuation and functional

equation of L-series. In order to p-adically interpolate the L-values, we need to know that

they are rational. This was proven by Siegel.

Theorem 2.3.1 ([11 ]). Suppose the values of ε lie in Q. Then L(1 − k, ε) is a rational

number for all k ≥ 1.

Now suppose that ε : Gf → Qp. The values L(1− k, ε) in Qp are defined by the sum

L(1− k, ε) =
∑
a∈Gf

ε(a)ζ(1− k, a, f). (2.10)

Proposition 2.3.1. The L-values L(1 − k, ε) are well defined when we view ε as a locally

constant function modulo another integral ideal f′ ⊂ f.

First, we need to define the twisted function εc. For c ∈ Gf, we denote by εc the multi-

plication by c map εc(g) = ε(cg). For c ∈ G = lim←−Gf, we denote by c the image of c under

the projection G→ Gf. The multiplication by c map is defined in this case by εc(g) = ε(cg).
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Proof. Let d be a divisor of f′ with (f, d) = 1. Then there is a map Gf′d−1 → Gf since f′d−1 ⊂ f.

Composing this map with εd gives a locally constant function ε′
d modulo f′d−1. We can then

write

L(1− k, ε) =
∑

d

L(1− k, ε′
d)N(d)k−1. (2.11)

In particular, if f and f′ have the same prime divisors, then d = 1 is the only such divisor

and L(1− k, ε) = L(1− k, ε′), where we write ε′ for the composition of ε with Gf′ → Gf.

Let N : G → Z∗
p be the unique continuous character which extends the norm map. For

k ≥ 1, define

∆c(1− k, ε) = L(1− k, ε)−N (c)kL(1− k, εc). (2.12)

Clearly, by the previous discussion, the definition of ∆c(1− k, ε) does not depend on the

choice of f. Moreover, if ε is a character, then ε(cg) = ε(c)ε(g), which implies that

∆c(1− k, ε) =
(
1−N (c)kε(c)

)
L(1− k, ε). (2.13)

Now suppose that εk : Gf → Qp, k ≥ 1, is a family of functions which are almost all zero.

Define a map

φ(a) =
∑
k≥1

εk(a)N (a)k−1 (2.14)

for any integral ideal a which is coprime to f. Apriori, φ(a) ∈ Qp.

Theorem 2.3.2 (Generalized Kummer Congruences, [15 ] Theorem 8.2). If φ(a) ∈ Zp then∑
k≥1 ∆c(1− k, εk) ∈ Zp for all c ∈ G.

The proof of the generalized Kummer congruences for totally real fields depends on the

q-expansion principle for Hilbert modular forms. This principle states that if the coefficients

in the Fourier series expansion of a Hilbert modular form f at one cusp are all rational then

the coefficients at all the cusps are rational as well. The idea then is to define an Eisenstein

series whose constant term is essentially the L-series L(1 − k, ε) and whose non-constant

terms are all p-adic integers of the form φ(a) and to show that this forces the constant term

to be a p-adic integer as well.
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3. P-ADIC MEASURES

The generalized Kummer congruences imply that the p-adic L-function which results from

interpolating the special values L(1 − k, χ) is continuous p-adically. In this chapter, we

will describe the construction of a p-adic measures on profinite groups and explain how to

integrate over the specific group GK,p. We then construct a measure whose Mellin transform

is the p-adic L-function over the totally real field K, although this fact will be shown in the

next chapter.

3.1 Integration on Profinite Groups

We will start with some generalities about integration over a profinite group G. Our main

reference for this section is [22 ] Chapter 3, Section 9 and Chapter 4, Section 3.

Let G be any profinite abelian group and let C(G,Cp)LC denote the set of all locally

constant functions f : G → Cp. This set is dense in the set C(G,Cp) of all continuous

functions on G with values in Cp.

Proposition 3.1.1. A function f : G → Cp is locally constant if there exists an open

subgroup Gi ⊂ G such that f is a function on G/Gi.

Proof. Since G is compact, there exists finitely many points g1, · · · , gk ∈ G such that

G =
k⋃

i=1
Ugi

where each Ugi is a neighborhood of gi such that f |Ugi
is constant. By the definition of

the topology on G, a basis of open sets is given by {g + Gj | g ∈ G, j = 0, 1, · · · } . Thus, there

exists j ∈ N such that Ugi ⊃ gi + Gj for all i ∈ {1, · · · , k}. This implies that f induces a

function fi : G/Gi → Cp.

Definition 3.1.1. A distribution µ on G with values in Cp is a homomorphism from the set

of all locally constant functions f : G → Cp to Cp.
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Proposition 3.1.2. A function µ : {g + Gi | g ∈ G, i ≥M} → Cp is induced from a distri-

bution if and only if µ satisfies the relation

µ(h+ Gi) =
∑

g∈Gi/Gj

µ(h+ g + Gj)

for all h ∈ G and j ≥ i.

Proof. Let charH denote the characteristic function of an open subset H ⊂ G. When j ≥ i,

we have the decomposition

charh+Gi =
∑

g∈Gi/Gj

charh+g+Gj . (3.1)

Given a distribution µ, we get

µ(h+ Gi) = µ(charh+Gi) =
∑

g∈Gi/Gj

µ(charh+g+Gj) =
∑

g∈Gi/Gj

µ(h+ g + Gj). (3.2)

Conversely, suppose that µ satisfies the compatibility relation. For a locally constant

function f on G, choose i large enough so that µ(g+Gi) is well-defined and put fi : G/Gi → Cp.

We define

µ(f) =
∑

g∈G/Gi

fi(g)µ(g + Gi). (3.3)

For any other j ≥ i, we have fi(g) = fj(g) for all g ∈ G. Hence,

µ(f) =
∑

g∈G/Gi

fi(g)µ(g + Gi)

=
∑

g∈G/Gi

fi(g)
∑

h∈Gi/Gj

µ(g + h+ Gj)

=
∑

g∈G/Gj

fj(g)µ(g + Gj).

This proves that the definition of µ(f) does not depend on the subgroup chosen.

Definition 3.1.2. We say a distribution µ is bounded if there exists a constant C > 0 such

that |µ(f)| ≤ C|f | for all f ∈ C(G,Cp).
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Definition 3.1.3. If a distribution µ is bounded, we call µ a measure on G. We use the

notation

µ(f) =
∫

G
f dµ.

3.2 Measures on Galois Groups

We now want to describe p-adic measures on the Galois group GK,p. Let C(GK,p,Cp)

denote the ring of all continuous functions f : GK,p → Cp.

Recall that we have the isomorphism GK,p = lim←−n
Clp

n,+
K and so GK,p is profinite. Propo-

sition 3.1.2 implies the following construction.

Definition 3.2.1. A Cp-valued distribution µ on GK,p is a family of maps

µpn : Clp
n,+

K → Cp

which satisfy the compatibility relation

µpn1 (x) =
∑

y≡x mod pn1

µpn2 (y)

for all pn1 | pn2 .

This definition is not practical to use in our computations. Instead of looking at the

infinite tower of ray class groups modulo pn, we can view GK,p as the disjoint union of strict

ideal classes of K, each of which is the inverse limit of one ideal class modulo pn.

Let b1, · · · , bh represent the strict ideal classes of K, where each bj is the ideal generated

by the lower row of the matrix Aj associated with the distinct cusps κj. By construction, all

the ideals bj are relatively prime to p.
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We can decompose GK,p as tjb
−1
j (O∗

p/U), where U is the closure in O∗
p of the subgroup

of all totally positive units in O∗ ([22 ], Section 3.9). Then for any continuous function φ on

GK,p, we can define a continuous function φj on Op by

φj(x) =


φ(b−1

j x) if x ∈ O∗
p

0 otherwise.
(3.4)

We then define p-adic measures on GK,p by setting

∫
GK,p

φ dµ =
∑

j

∫
Op

φjdµj. (3.5)

Integration on Op is simple when we fix a strict ideal class of K. Since Op = lim←−O/p
n,

Proposition 3.1.2 implies that it is enough to specify the value of µ at the classes a mod pn

for some ideal a in the specified strict ideal class.

3.3 p-adic Measures for Totally Real Fields

We now want to define a p-adic measure that is equivalent to the p-adic L-function of

totally real fields. Let f be divisible by all the primes of K lying above p. Recall the definition

∆c(1− k, ε) = L(1− k, ε)−N (c)kL(1− k, εc).

We obtain for any k ≥ 1 and c ∈ G a distribution

µc,k : {ε : G→ Qp} → Qp

ε→ ∆c(1− k, ε).

Theorem 3.3.1 ([21 ] Theorem 4.1). µc,k is a measure on G with values in Zp. Moreover,

µc,k := N k−1µc,1.
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Proof. We need to show that

∫
εN k−1 dµc,1 ≡ ∆c(1− k, ε) mod pnZp (3.6)

for all k ≥ 1, n ≥ 1, and locally constant function ε : G→ Zp.

Let η : G→ Zp be a locally constant function such that η ≡ N k−1 mod pn. Let εk : G→

Zp be a family of locally constant functions defined by ε1 = εη, εk = −ε, and εi = 0 for all

other i. Then we see that for any integral ideal a such that (a, f) = 1, we have

∑
k≥1

εk(a)N (a)k−1 = ε(a)η(a)N (a)k−1 − ε(a)N (a)k−1 ∈ pnZp. (3.7)

The generalized Kummer congruences then imply that

Zp 3
∑
k≥1

∆c(1− k, εk) = ∆c(0, εη)−∆c(1− k, ε) ∈ pnZp. (3.8)

This concludes the proof, since we then have

∆c(1− k, ε) ≡ ∆c(0, εη) =
∫
εη dµc,1 ≡

∫
εN k−1 dµc,1 mod pnZp. (3.9)
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4. THE IWASAWA ALGEBRA

In this chapter, we introduce the Iwasawa algebra Λ(G) of a profinite group G, which is

the algebra consisting of all p-adic measures on G. Mahler’s theorem induces a power series

structure on Λ(G), which we will need later to define inverse measures. Moreover, Λ(G) has

an algebraic structure that relates p-adic measures to p-adic L-functions. Our main reference

is [23 ] Chapter 3.

4.1 The Power Series Structure of the Iwasawa Algebra

Let Zp[G/Gi] denote the group ring over Zp. That is, Zp[G/Gi] is the set of all formal

power series ∑
x∈G/Gi

cGi(x)x; cGi(x) ∈ Zp. (4.1)

This space is isomorphic to the space of all continuous functions f : G/Gi → Zp, the corre-

spondence being given by

f : G/Gi → Zp ⇐⇒
∑

x∈G/Gi

f(x)x. (4.2)

Definition 4.1.1. The Iwasawa algebra Λ(G) is defined to be

Λ(G) = lim←−
Gi

Zp[G/Gi]

where Gi runs over all the open subgroups of G.

Proposition 4.1.1. The elements of the Iwasawa algebra are p-adic measures on G.

Proof. Let λ be an element of Λ(G) and let f : G/Gi → Cp be a locally constant function.

Let λGi denote the image of λ in Zp[G/Gi]. We define the integral of f against λ by

∫
G
f dλ =

∑
x∈G/Gi

cGi(x)f(x). (4.3)

This definition is independent of the choice of Gi.
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Now let f be any continuous Cp-valued function on G. There is a sequence {fn} of locally

constant functions which converge to f. We then define the integral of f against λ by

∫
G
f dλ = lim

n→∞

∫
G
fn dλ.

The elements of the Iwasawa algebra satisfy the following properties:

• Every element g ∈ G induces a Dirac measure µg ∈ Λ(G) by

∫
G
f dµg = f(g). (4.4)

• The multiplication in Λ(G) is given by the convolution of measures

∫
G
f(x) d(µ1 ∗ µ2)(x) =

∫
G

∫
G
f(x+ y) dµ1(x) dµ2(y). (4.5)

• A group homomorphism χ : G → Cp can be extended to an algebra homomorphism

χ : Λ(G)→ Cp by setting χ(µ) =
∫

G χdµ.

We want to find an orthonormal basis for the space of continuous functions on G. Mahler’s

theorem affirms that the set of binomial polynomials forms such a basis.

Definition 4.1.2. Define the binomial polynomial ( x
n ) to be 1 if n = 0 and

x
n

 = x(x− 1) · · · (x− n+ 1)
n!

for n ≥ 1.

Theorem 4.1.1. (Mahler’s Theorem) Let f : Zp → Cp be any continuous function. Then f

can be written uniquely as

f(x) =
∞∑

n=0
an

x
n


for some coefficients an ∈ Cp such that limn→∞ an = 0.
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Proof. Define the constants an by

an =
n∑

k=0
(−1)n−k

n
k

 f(k).

We show first that this definition of an gives the desired values f(x). We calculate the sum

∞∑
n=0

an

x
n

 =
∞∑

n=0

 n∑
k=0

(−1)n−k

n
k

 f(k)


x
n


The outer sum is in fact finite since ( x

n ) = 0 whenever n > x. Then we can switch the order

of summation and by using properties of the binomial polynomial we get

x∑
n=0

 n∑
k=0

(−1)n−k

n
k

 f(k)


x
n

 =
x∑

k=0
f(k)

x−k∑
j=0

(−1)j

j + k

j


 x

j + k



=
x∑

k=0
f(k)

x
k

 x−k∑
j=0

(−1)j

x− k
j

 .
The inner sum is equal to 1 when x = k and 0 otherwise, so this proves the claim

∞∑
n=0

an

x
n

 = f(x)

for all x ∈ N. Certainly, an ∈ Cp and limn→∞ an = 0 follows from the (p-adic) continuity of

the function x → ( x
n ). It remains to show that the an are unique. Since N is dense in Zp,

this shows that the equality is true for all x ∈ Zp.

Suppose by way of contradiction that there exists some coefficients bn 6= an such that

f(x) =
∞∑

n=0
bn

x
n

 .
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Then clearly ∑∞
n=0(an − bn)( x

n ) = 0. Let k be the smallest integer such that ak − bk 6= 0.

Such a k exists since the sequences an and bn are not equal. Then ∑k−1
n=0(an − bn)( k

n ) = 0

because each term is 0, and
∞∑

n=k+1
(an − bn)

k
n

 = 0 (4.6)

because n > k. Hence, we must have (ak − bk)( k
k ) = 0 = ak − bk which contradicts the

minimality of k. Therefore the coefficients an are unique.

Definition 4.1.3. The Mahler transform M : Λ(Zp)→ Zp[[T ]] is defined to be

M(µ) =
∞∑

n=0

∫
Zp

x
n

 dµ

T n

where µ ∈ Λ(Zp).

Theorem 4.1.2. The Mahler transform is an isomorphism of Zp algebras.

Proof. Consider the power series g(T ) = ∑∞
n=0 cnT

n as an element of Zp[[T ]]. We want to

explicitly define an inverse to the Mahler transform. Given a function f(x) = ∑∞
n=0 an( x

n ),

write

L(f) =
∞∑

n=0
ancn. (4.7)

For every open subgroup Gi ⊂ G and every element g ∈ G/Gi, set

µGi =
∑

g∈G/Gi

L(charg)g. (4.8)

These elements µGi form a compatible system and their inverse limit is an element µ ∈ Λ(G).

The map g(T )→ µ is the inverse of the Mahler transform.

Proposition 4.1.2. The Mahler transform of the characteristic function on Zp is 1 + T.

This is clear by direct computation. In particular,

∫
Zp

(1 + T )x dµ(x) =
∑
n≥0

T n
∫
Zp

( x
n ) dµ(x). (4.9)
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In conclusion, note that since ( x
n ) is a polynomial, µ can be defined by calculating the

integrals of xm against µ.

4.2 The Algebraic Structure of the Iwasawa Algebra

We now want to give a (different) algebraic structure of the Iwasawa algebra Λ(G).

Proposition 4.2.1. The group G decomposes as

G = ∆× Γ

where ∆ is a cyclic group and Γ is isomorphic to Zp.

The case which is of interest to us is when G = GK,p. In this case, ∆ is the Galois group

of the field extension K(µpn)/K, where µpn denotes the group of roots of unity ζpn = 1, and

Γ is the Galois group of the maximal cyclotomic extension of K in K(µp∞) = ∪nK(µpn).

To define this isomorphism (in the general case), let ω(x) = limn→∞ xpn be the Teich-

muller character defined over Zp. ω ◦ N defines a character of order p = [(K(µp) : K] on

integral ideals of K which we will again denote by ω. Then, an arbitrary element x ∈ G

factors as

x = ω(x) · x

ω(x) ∈ ∆× Γ. (4.10)

We let 〈x〉 = ω(x)−1x denote the projection of G to Γ.

Any measure ν on Γ can be extended to the rest of G by setting ν(aU) = ν(U) for any

a ∈ ∆ and compact open U ⊂ Γ. Since each ωi is a continuous function on G, the product

(ωiν)(aU) is a measure on G satisfying (ωiν)(aU) = ai(ωiν)(U).

On the other hand, every measure µ on G can be decomposed as a sum of measures of

the form ωiνi :

µ = 1
p

p∑
i=1

ωiνi (4.11)

by setting ωiνi(U) = ∑
a∈∆ ω(a)−iµ(aU).
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For any continuous homomorphism χ : G → C∗
p, let χ|Γ denote the restriction of χ to Γ.

The values of χ(ω(x)) are pth roots of unity in C∗
p, and hence χ|Γ has the form x→ x−j for

some j mod p.

Fix a topological generator γ of Γ. If the isomorphism Γ ∼= Zp is given by α, then for any

x ∈ Γ, we can write x = γα(x). Moreover, the homomorphism χ : G → C∗
p can be written as

χ = χ∆χΓ, where χ∆ is a character which is trivial on Γ and χΓ : x→ χ(γ)α(x).

Proposition 4.2.2. There is a unique isomorphism Λ(G)→ Zp[µp][[T ]] given by γ → 1 +T.

This isomorphism is given by setting the integral

∫
χdµ =

∑
n≥0

an(χ(γ)− 1)n

where the coefficients an are given by

∫
G
χ∆(x)

x
n

 dµ(x).

In particular, when the image of γ in Zp is 1, this map is simply the Mahler transform.

4.3 p-adic L-functions for Totally Real Fields

We want to show that the measure µc,1 gives rise to a p-adic L-function Lp(s, ε) when ε

is an even continuous character on G. We show that the function Lp(s, ε) exists by defining

a measure which interpolates the values L(1− k, ε). The fact that Lp(s, ε) is analytic follows

from the structure of the Iwasawa algebra.

Theorem 4.3.1. Choose c ∈ G such that at least one of c and ε(c) are not equal to 1. Let

µ = 1
1−c
N−1µc,1. For k ≥ 1, we have

∫
N kε dµ = L(1− k, ε).

37



Proof. This is true by direct computation. We have

∫
N kε dµ =

∫
N kε d (N−1µc,1)
1−N (c)kε(c) =

∫
N k−1ε dµc,1

1−N (c)kε(c)

=

(
1−N (c)kε(c)

)
L(1− k, ε)

1−N (c)kε(c) = L(1− k, ε)

Definition 4.3.1. A character χ : Zp → Zp is called Iwasawa analytic if there exists a power

series f ∈ Zp[[T ]] such that f(γ1−s − 1) = χ(s).

By the structure theory described in the previous section, this power series is unique and

does not depend on the choice of γ.

Theorem 4.3.2 ([21 ], (4.8)-(4.9)). For each c ∈ G, both
∫
N kε d (N−1µc,1) and 1−N (c)kε(c)

are Iwasawa analytic. Moreover, if ε∆ is non-trivial on ∆, then the p-adic L-function Lp(s, ε)

extends to an Iwasawa analytic function on Zp

Lp(s, ε) =
∫
ε〈x〉1−s dµ.

This integral is called the Mellin transform of Lp(s, ε).
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5. HILBERT MODULAR FORMS

Having described the construction of the p-adic L-function of a totally real field K both as

a p-adic measure and as an Iwasawa function, we wish to proceed in defining our reciprocal

measure. This definition is based on the study of the non-constant terms of Hilbert Eisenstein

series.

In this chapter, we introduce the Hilbert modular group and the modular forms which

act on it. We follow Chapter 1 of [24 ].

5.1 Structure of the Hilbert Modular Group

In this section, we want to study the structure of the Hilbert modular group and some

of its discrete subgroups.

Given any ring F, SL2(F ) will denote the group

SL2(F ) =

A =

a b

c d


∣∣∣∣∣∣∣a, b, c, d ∈ F, det(A) = 1

 . (5.1)

Definition 5.1.1. The Hilbert modular group is the subgroup SL2(O) of SL2(K).

Embedding the totally real field K into Rr induces an embedding of SL2(K) into SL2(R)r

componentwise. Thus we can realize SL2(O) as the subgroup SL2(Z)r ⊂ SL2(R)r via the

map A→ (A(1), · · · , A(r)), where A(i) denotes the ith embedding

A(i) =

a(i) b(i)

c(i) d(i)

 . (5.2)

Recall that the special linear group SL2(Z) acts on the upper half plane

h = {z = x+ iy ∈ C | y > 0} (5.3)
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by fractional linear transformations

A · z = az + b

cz + d
. (5.4)

This action induces an action of SL2(O) on the product of r copies of h by Mobius trans-

formations componentwise: for any A = ( a b
c d ) ∈ SL2(O) and any z = (z1, · · · , zr) ∈ hr,

A · z =
(
a(1)z1 + b(1)

c(1)z1 + d(1) , · · · ,
a(r)zr + b(r)

c(r)zr + d(r)

)
. (5.5)

The quotient space SL2(O)\hr is not compact. However, attaching a finite number of

points {αj} to SL2(O)\hr results in a compact space. We will now explain this precisely.

We start by considering the action of SL2(O) on the larger space hrr
, where

hr = hr ∪K ∪ {∞} = hr ∪ P1(K). (5.6)

Since

lim
z→∞

az + b

cz + d
= a

c
, (5.7)

defining the action of SL2(O) on rational tuples q =
(

s1
t1
, · · · , sr

tr

)
∈ Qr by

A · q =
(
a(1)s1 + b(1)t1
c(1)s1 + d(1)t1

, · · · , a
(r)sr + b(r)tr
c(r)sr + d(r)tr

)
(5.8)

guarantees its continuity.

Definition 5.1.2. The orbits of P1(K) ⊂ P1(R)n under SL2(O) are called the cusps of

SL2(O). We also call the representative element κ of an orbit the cusp.

Proposition 5.1.1. There is a bijection

f : SL2(O)\P1(K)→ CK

(α : β)→ 〈α, β〉.
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Proof. First, we need to show that this map is well defined. Let ( a b
c d ) ∈ SL2(O) and suppose

that
α

β
=

a b

c d

 γ

δ
. (5.9)

We have f((α : β)) = 〈α, β〉 = 〈aγ + bδ, cγ + dδ〉 ⊂ f((γ : δ)). Moreover,

γ

δ
=

 d −b

−c a

 α

β
(5.10)

which implies similarly that f((γ : δ)) ⊂ f((α : β)). Hence, f((α : β)) = f((γ : δ)).

Now, we show that f is injective. Let a be a fractional ideal of K. Suppose that 〈α, β〉 and

〈γ, δ〉 are two different sets of generators of a. We need to show that there exists A ∈ SL2(O)

such that (α, β) = (γ, δ)A.

The set of fractional ideals of K forms a group under multiplication, so there exists an

ideal b such that ab = O. Since 1 ∈ O, there exists elements a1, a2, b1, b2 ∈ b satisfying

a1β − b1α = a2δ − b2γ = 1. In particular, the matrices

A1 =

a1 b1

α β

 , A2 =

a2 b2

γ δ

 (5.11)

are integral and have determinant 1, so they belong to SL2(O). Moreover,

(γ, δ)A−1
2 A1 = (γ, δ)

 δ −b2

−γ a2

A1 = (0, 1)A1 = (α, β). (5.12)

Finally, f is surjective since every integral ideal can be generated by two elements.

Proposition 5.1.2 ([24 ], Corollary 3.5). The equivalence classes of cusps κ under the action

of SL2(O) are in one-to-one correspondence with the ideal classes of K. In particular, the

number of inequivalent cusps is h.

In particular, the cusp κ = ∞ = (∞, · · · ,∞), which is represented by (1 : 0) ∈ P1(K),

corresponds to the trivial ideal class consisting of all principal ideals of K.
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Definition 5.1.3. Let n be a non-zero integral ideal of K. The principal congruence subgroup

of SL2(O) of level n is defined to be

Γ(n) =

γ =

a b

c d

 ∈ SL2(O)

∣∣∣∣∣∣∣ γ ≡
1 0

0 1

 mod n

 . (5.13)

A congruence subgroup SL2(O) is any discrete subgroup Γ containing some Γ(n).

We will be most interested in the congruence subgroups

Γ0(n) =

γ =

a b

c d

 ∈ SL2(O)

∣∣∣∣∣∣∣ γ ≡
∗ ∗

0 ∗

 mod n

 (5.14)

and

Γ1(n) =

γ =

a b

c d

 ∈ SL2(O)

∣∣∣∣∣∣∣ γ ≡
1 ∗

0 1

 mod n

 . (5.15)

The number of inequivalent cusps of Γ0(n) and Γ1(n) are related in a similar way to the

number of strict ideal classes h+,n of K modulo n.

5.2 Hilbert Modular Forms

Recall that we have fixed an ordering of the r embeddings K ↪→ R. For a point z =

(z1, · · · , zr) ∈ Cr, a tuple k = (k1, · · · , kr) ∈ Zr, and elements c, d ∈ K, we write

Tr(k) =
r∑

i=1
ki Tr(z) =

r∑
i=1

zi (5.16)

(cz + d)k =
r∏

i=1
(c(i)zi + d(i))ki (5.17)

Definition 5.2.1. Let f : hr → C be a complex valued function and let ( ∗ ∗
c d ) be an element

of SL2(O). The slash operator |k is defined by

(f |k ( ∗ ∗
c d ))(z) = (cz + d)−kf(( ∗ ∗

c d ) · z).
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Definition 5.2.2. Let Γ be a congruence subgroup of SL2(O). We say that f is a Hilbert

modular form of weight k = (k1, · · · , kr) and level Γ if

1. f is a holomorphic function on hr

2. f satisfies the modularity condition f |k γ = f for all γ ∈ Γ.

When k1 = k2 = · · · = kr = k, we say the Hilbert modular form is of parallel weight k.

We denote the space of all the Hilbert modular forms of parallel weight k and level Γ by

Mk(Γ).

Theorem 5.2.1. A Hilbert modular form f ∈ Mk(Γ) has a Fourier expansion at the cusp

∞ of the form

f(z) =
∑

ν≡0 mod d−1
ν�0

a(ν) exp(νz)

where exp(νz) = e2πiT r(νz).

Proof. By the modularity condition, it is easy to see that f(z + a) = f(z) for any a ∈ O.

Since O is a lattice in Rr, f has a Fourier series of the form

f(z) =
∑
ν∈Ô

a(ν) exp(νz) (5.18)

where Ô is the dual lattice to O. By definition, Ô = d−1.

It remains to show that a(ν) = 0 unless ν is totally positive or ν = 0. Suppose without

loss of generality that a(ν) 6= 0 and ν(1) < 0. There exists a unit ε � 0 such that ε(1) > 1

and 0 < ε(i) < 1 for 2 ≤ i ≤ r such that Tr(εν) < 0. This implies that Tr(εmν) → −∞ as

m→∞, which contradicts the holomorphicity condition.

For any arbitrary cusp κ 6=∞, there is a matrix A = ( α1 α2
α3 α4 ) of determinant 1 such that

Aκ =∞ ([25 ] pg. 181). Moreover, A can be chosen so that

κ = −α4

α3
, b = 〈α3, α4〉, b−1 = 〈α1, α2〉, gcd(n, b) = 1. (5.19)
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In this case, f admits a Fourier expansion at κ = A−1∞ of the form

(α3A
−1z + α4)kf(A−1z) =

∑
ν≡0 mod b2(d)−1

ν�0

aA(ν) exp(νz). (5.20)

Definition 5.2.3. A Hilbert modular form f of weight k is a cusp form if the constant term

a0 vanishes in the Fourier series expansion of f |k A for any A ∈ SL2(O). Otherwise, f is

an Eisenstein series.

Proposition 5.2.1. Suppose that k = (k1, · · · , kr) is not a parallel weight - that is, ki 6= kj

for some 1 ≤ i 6= j ≤ r. Then f is a cusp form.

Proof. Let ε ∈ O∗. Then f transforms under the matrix
(

ε 0
0 ε−1

)
as

∑
ν≡0 mod d−1

ν�0

a(ν) exp(νz) = εk1 · · · εkr
∑

ν≡0 mod d−1
ν�0

a(ν) exp(ε2νz) (5.21)

Comparing coefficients, the result follows.

5.3 Eisenstein Series

The Eisenstein series provide some basic examples of Hilbert modular forms. We keep

the notation (cz + d)k = ∏r
i=1(c(i)zi + d(i))ki as before and we assume that k = (k, k, · · · , k).

The most natural definition for the Eisenstein series is an r−dimensional analog to the

elliptic Eisenstein series:

Enaive(z) =
∑

c,d∈O

1
(cz + d)k

. (5.22)

However, this sum cannot converge, for given a unit ε ∈ O∗ and k ∈ N even, we have

(εcz + εd)−k =
r∏

i=1
(ε(i)c(i)zi + ε(i)d(i))−k = N(ε)−k(cz + d)−k = (cz + d)−k (5.23)

and the unit group O∗ is infinite. Thus, we must quotient the summand by the action of

the unit group. This action is given on an integral ideal a in an ideal class C ∈ CK by

(c, d)→ (εc, εd) for (c, d) ∈ a× a and ε ∈ O∗.
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Definition 5.3.1. Let k ≥ 2 be an even integer. Let C ∈ CK be an ideal class of K and let

a be any integral ideal in C. The Eisenstein series of weight k attached to the ideal class C is

defined by

Ek,C(z) =
∑

(c,d)∈a×a/O∗

N(a)k

(cz + d)k
.

Proposition 5.3.1. The Eisenstein series Ek,C(z) does not depend on the choice of a rep-

resentative ideal a ∈ C.

Proof. Let a and a’ be two distinct ideals in C. There exists an element α ∈ K∗ such that

a’ = αa. Thus N(a’) = |N(α)|kN(a) = N(α)kN(a) since k is even. Moreover, there is

a one-to-one correspondence between tuples (c, d) ∈ a × a and (c’, d’) ∈ a’ × a’ given by

multiplication by α. Hence,

∑
(c’,d’)∈a’×a’/O∗

N(a’)k

(c’z + d’)k
=

∑
(c,d)∈a×a/O∗

N(α)kN(a)
(αcz + αd)k

=
∑

(c,d)∈a×a/O∗

N(α)kN(a)
N(α)k(cz + d)k

=
∑

(c,d)∈a×a/O∗

N(a)k

(cz + d)k
. (5.24)

Theorem 5.3.1. Let k > 2 be an even integer. Then the Eisenstein series {Ek,C | C ∈ CK}

are linearly independent.

As in the elliptic case, the Eisenstein series has an explicit Fourier expansion. Recall the

partial Dedekind zeta function ζK,C(s) of K is given by

ζK,C(s) =
∑
n∈C
n⊂O

N(n)−s. (5.25)

Theorem 5.3.2 ([26 ] Theorem 15.4.17). Let k > 2 be an even integer. Then the Eisenstein

series Ek,C admits the Fourier series expansion

Ek,C = ζK,C−1(k) + (2πi)kr

(k − 1)!r |D|
1/2−k

∑
ν≡0 mod d−1

ν�0

σk−1(νd) exp(νz)

where σk−1(n) is the divisor function defined by σk−1(n) = ∑
a|nN(a)k−1.
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6. EISENSTEIN SERIES

In the previous chapter, we defined Eisenstein series over the full modular group SL2(O).

We are now interested in defining Eisenstein series over a congruence subgroup Γ0(n) and

studying their Fourier series expansions.

6.1 Eisenstein Series of Weight k and Level Γ0(n)

Let n be an integral ideal of K. Given a Hecke character χ mod n of finite type, an integer

k ≥ 3, and a cusp κ of Γ0(n), the weight k holomorphic Eisenstein series for Γ0(n) at κ is

given by

Ek,n(χ, z, κ) =
∑

γ∈Γ0(n)κ\Γ0(n)
χ(γd)Im(γz)k (6.1)

for any z ∈ hr, where γd denotes the (2, 2) entry of the matrix γ. Here, for any congruence

subgroup Γ, Γκ denotes the stabilizer of κ inside Γ.

The Eisenstein series Ek,n is a linear combination of Eisenstein series EΓ1
k,n of level Γ1(n)

at the cusps κ1 lying above κ. To see this, let γ be a representative element of Γ0(n)κ\Γ0(n).

Then γ−1 belongs to a set R ⊂ Γ0(n) which contains one element γκ of each orbit Γ0(n)κ.

If we consider the Γ1(n) orbits of κ, we see that there are only finitely many such orbits in

Γ0(n)κ. Let γ1, · · · , γj ∈ Γ0(n) denote the representatives of the Γ1(n) orbits. Then there

exists subsets Rj ⊂ Γ1(n) such that R = tjRjγj. The elements of Rj represent the orbits

Γ1(n)γjκ. Thus, we have

Ek,n(χ, z, κ) =
∑

γ=
(

a b
c d

)
∈Γ1(n)\Γ0(n)

χ(〈d〉)EΓ1
k,n(χ, z, κ1). (6.2)

We can describe the Eisenstein series explicitly at the cusp κ =∞. This cusp corresponds

to the trivial ideal class so all the ideals are principal. Two matrices in SL2(O) are left-

equivalent under Γ∞ if and only if they have the same bottom row (c, d) ∈ O × O. Fix

a principal ideal a which is not necessarily integral. A tuple (c, d) is the bottom row of a

matrix in Γ0(n) or Γ1(n) precisely when c, d ∈ a, gcd
(

c
a
, d
a

)
= 1, and the tuple satisfies the

congruence condition (5.14 ) and (5.15 ) of the respective subgroup (BMP pgs. 706 Equation
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(46)). Since a = 〈α〉 is principal, every element a ∈ a can be written as a = a∗α, and we

use the notation a
a

to denote a∗. Choose a set of representatives a2 ∈ a which runs over all

the congruence classes modulo na. Now the sum in Equation (6.1 ) at the cusp κ = ∞ can

be written as

Ek,n(χ, z) := Ek,n(χ, z,∞) =
∑

a2∈(a/na)×

χ(〈a2〉)
∑

{c,d}∈a×a

gcd
(

c
a

, d
a

)
=1

n|c
d≡a2 mod na

N(a)k

(cz + d)k
(6.3)

=
∑

a2∈(a/na)×

χ(〈a2〉)
∑

{c,d}∈a×a

gcd
(

c
a

, d
a

)
=1

d≡a2 mod na

N(a)k

(ncz + d)k
. (6.4)

The notation {c, d} means that two tuples (c, d) and (c′, d′) are identified together if there

exists ε ∈ O∗, ε ≡ 1 mod n such that c = εc′ and d = εd′.

We now want to describe the Eisenstein series at a cusp κ 6= ∞, which corresponds to

a (fixed) non-trivial ideal class. The idea is to translate the cusp κ to ∞ where an explicit

expression of the Eisenstein series is easy to describe.

By Equation (5.20 ), the Fourier expansion of Ek,n(χ, z, κ) at κ is equal to the Fourier

expansion of Ek,n(χ, z)|k A−1 = (−α3z + α1)−kEk,n(χ,A−1z) at ∞. Since detA = 1, a direct

computation shows that (−α3z + α1) = (α3A
−1z + α4)−1. Hence, we have

Ek,n(χ, z, κ) = (α3A
−1z + α4)k

∑
a2∈(a/na)×

χ(〈a2〉)
∑

{c,d}∈a×a

gcd
(

c
a

, d
a

)
=1

d≡a2 mod na

N(a)k

(ncA−1z + d)k
. (6.5)
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6.2 Fourier Coefficients

We are interested in calculating the non-constant Fourier coefficients of (6.5 ). Indeed,

this will be the main calculation needed to construct our p-adic measure λ. We start by

defining a more general Eisenstein series by

Gk(z, a1, a2, n, a) =
∑

{c,d}+∈a×a
(c,d)≡(a1,a2) mod na

N(a)k

(cz + d)k
. (6.6)

The notation {c, d}+ means that two tuples (c, d) and (c′, d′) are identified together if there

exists a unit ε ∈ O∗ which is totally positive and congruent to 1 mod n such that c = εc′

and d = εd′.

Proposition 6.2.1. We have

∑
{c,d}∈a×a

gcd
(

c
a

, d
a

)
=1

d≡a2 mod na

N(a)k

(cz + d)k
=

∑
a1∈a/an

hn,+∑
i=1

∑
t∈Ci

µ(t)
N(t)k

Gk(z, τa1, τa2, n, at)

where µ(m) denotes the Mobius function for any integral ideal m given by

µ(m) =



1 if m = O

(−1)r if m = p1 · · · pr

0 if p2|m for some prime ideal p

(6.7)

and h(n) denotes the strict ideal class number of K mod n.

Proof. Recall the following property of the Mobius function:

∑
t|n
µ(t) =


1 if n = O

0 otherwise
. (6.8)
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We can use this property to remove the coprimeness condition. Recall that c
a
, d
a
∈ O, which

implies that the ideal gcd
(

c
a
, d
a

)
is an integral ideal. We now have

∑
{c,d}∈a×a

gcd
(

c
a

, d
a

)
=1

(c,d)≡(a1,a2) mod na

N(a)k

(cz + d)k
=

∑
{c,d}∈a×a

(c,d)≡(a1,a2) mod na

N(a)k

(cz + d)k

∑
t| gcd( c

a
, d
a

)

µ(t) (6.9)

=
∑

gcd(t,n)=1
µ(t)

∑
{c,d}∈a×a

(c,d)≡(a1,a2) mod na
(c,d)≡(0,0) mod at

N(a)k

(cz + d)k
. (6.10)

Let C1, · · · , Ch(n) denote the strict ideal classes of K modulo n. Choose integral ideals

t1, · · · , th(n) such that ti ∈ C−1
i for all i ∈ {1, · · ·h(n)}. For each t ∈ Ci, let (τ) = tti

where τ ≡ 1 mod n. Then the previous sum is equal to

hn,+∑
i=1

∑
t∈Ci

gcd(t,n)=1

µ(t)
∑

{c,d}∈a×a
(c,d)≡(τa1,τa2) mod nat

N(a)k

(cz + d)k
(6.11)

=
hn,+∑
i=1

∑
t∈Ci

µ(t)
N(t)k

Gk(z, τa1, τa2, n, at). (6.12)

Summing up over the equivalence classes of a1 modulo na, we get the desired result.

The Fourier expansion of the Eisenstein series in Equation (6.6 ) has been computed by

Klingen ([25 ], pg. 181, 182) as follows:

Theorem 6.2.1. The Fourier expansion of Gk(z, a1, a2, n, a) at a general cusp κ is given by

δ

(
(a∗

1)
nab

)
N (a)k

∑
d≡a∗

2 mod nab−1

{d}+

sgnkN(d)
|N(d)|k

+ (−2πi)krN(a)k−1N(b)
(k − 1)!rN(n)|D|1/2

∑
c≡a∗

1 mod nab
ν≡0 mod b/nad

cν�0,{c}+

sgnN(ν)N(ν)k−1 exp (a∗
2ν + cνz) (6.13)

where a∗
1 = α4a1 − α1a2 ∈ ab and a∗

2 = α1a2 − α2a1 ∈ ab−1.

We use this Fourier expansion to prove the following:
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Theorem 6.2.2. The Fourier expansion of the partial Eisenstein series

(α3A
−1z + α4)k

∑
{c,d}∈a×a

gcd
(

c
a

, d
a

)
=1

d≡a2 mod na

N(a)k

(ncA−1z + d)k

at the cusp ∞ is given by

∑
l≡a∗

2 mod nab−1

N(a)k

N(l)k

∑
t∈K
t|〈l〉
n-t

µ(t)

+ (−2πi)krN(b)k

(k − 1)!rN(n)k|D| 2k−1
2

hn,+∑
i=1

∑
t∈Ci

µ(t)
N(t)k

∑
ν∈O

cν�0,{c}+

sgnN(ν)N(ν)k−1 exp
(
tia

′
2νb

nd
+ cνb2z

d

)
.

Proof. Lemma 6.2.1 implies that we need to calculate the Fourier expansion of

(α3A
−1z + α4)k

∑
a1∈a/an

hn,+∑
i=1

∑
t∈Ci

µ(t)
N(t)k

Gk(nA−1z, τa1, τa2, n, at). (6.14)

Theorem 6.2.1 along with Equation (5.20 ) now show that the constant term of (6.14 ) is

non-zero only when a∗
1 ≡ 0 mod natb. This implies that the contribution from the terms

of the outermost sum are all zero except for one equivalence class of a1. The nonzero term

remaining is
hn,+∑
i=1

∑
t∈Ci

µ(t)
N(t)k

N (at)k
∑

d≡τa∗
2 mod natb−1

{d}+

sgnk N(d)
|N(d)|k . (6.15)

The ideals n and t being coprime, we can rewrite d ≡ τa∗
2 mod natb−1 as two equivalences

modulo nab−1 and atb−1. We now obtain the constant term to be

hn,+∑
i=1

∑
t∈Ci

µ(t)
N(t)k

∑
d≡a∗

2 mod nab−1

d≡0 mod ab−1t
{d}+

N (at)k sgnk N(d)
|N(d)|k . (6.16)
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Switching the order of summation and writing 〈l〉 for the ideal generated by l, the constant

term becomes

∑
t∈K
p-t

µ(t)
N(t)k

∑
td≡a∗

2 mod nab−1

{d}+

N (a)k 1
N(d)k

(6.17)

=
∑

l≡a∗
2 mod nab−1

N(a)k

N(l)k

∑
t∈K
t|〈l〉
n-t

µ(t). (6.18)

We consider next the non-constant terms. Note that as a1 varies over the equivalence classes

of a/an, a∗
1 varies over the equivalence classes of ab/abn. It is clear then that the non-constant

terms are

(−2πi)krN(b)
(k − 1)!rN(n)|D|1/2

∑
a∗

1∈ab/abn

hn,+∑
i=1

∑
t∈Ci

µ(t)
N(t)k

N(at)k−1

∑
c≡τa∗

1 mod nabt
ν≡0 mod b/natd

cν�0,{c}+

sgnN(v)N(ν)k−1 exp(τa∗
2ν + cνnz). (6.19)

As before, we can split the equivalence modulo nabt into two equivalences modulo nab and

abt. Moreover, we make a change of variables ν → νb
nadt

and c→ abtc. Since N(d) = |D|, we

get

(−2πi)krN(b)k

(k − 1)!rN(n)k|D| 2k−1
2

hn,+∑
i=1

∑
t∈Ci

µ(t)
N(t)k

∑
ν∈O

cν�0,{c}+

sgnN(ν)N(ν)k−1 exp
(
tia

′
2νb

nd
+ cνb2z

d

)
.

(6.20)
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7. THE RECIPROCAL MEASURE

We are now ready to use the non-constant Fourier coefficients of the partial Eisenstein series

to define a distribution λ whose Mellin transform is the reciprocal of Lp(1 − k, χ). We will

show that λ is a measure by proving that the measure associated to Lp(1−k, χ) is invertible

in the Iwasawa algebra Λ(GK,p) and that its inverse is related to λ.

7.1 Definition of λ

The structure of the Galois group GK,p allows us to define a distribution λ on GK,p by

defining it on each piece b−1
j (O∗

p/U). We will denote the restriction of λ to each b−1
j (O∗

p/U)

by λj.

Fix a strict ideal class bj. Define a map

εk,pm,bj(a) : O/pmO → (Mk(Γ1(pm))) (7.1)

by

εk,pm,bj(a) := (α3A
−1z + α4)k

∑
{c,d}∈a×a

gcd
(

c
a

, d
a

)
=1

d≡a2 mod pma

N(a)k

(pmcA−1z + d)k
. (7.2)

Let Cn denote the map which sends a holomorphic Hilbert modular form to the coefficient

of e2πiT r(nz) in its Fourier expansion. Theorem 6.2.2 states that

Cpm(εk,pm,bj) = (−2πi)krN(bj)k

(k − 1)!r|D| 2k−1
2

m∑
u=0

N(p)u(k−1)−mk

hpm,+∑
i=1

∑
t∈Ci

µ(t)
N(t)k

exp
(
tia2p

ubj

pmd

)
. (7.3)

Define a distribution on b−1
j (O∗

p/U) by

λj(a + pmOp) = 1
2rN(bj)k

Cpm(εk,pm,bj) + γ(k)λHaar (7.4)
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where

γ(k) =


N(p)2k−1

N(p)k−1
(1−N(p)k−1)−1

ζ(1−k) for k even

0 otherwise
. (7.5)

Note that since a2 ∈ ab−1
j , the term inside the exponential function, and hence the definition

of λ, does not depend on the ideals bj. Henceforth we will write a instead of a2bj.

Theorem 7.1.1. Let χ be a Hecke character of finite type with conductor pm for some

m ≥ 1. Let k be an integer of the same parity as χ. Then we have

∫
GK,p

χ−1(x) dλ(x) =
h+

(
1− χ(p)N(p)k−1

)−1

L(1− k, χ) (7.6)

where h+ denotes the strict class number of K.

Proof. First, we consider the case when χ is the trivial character and k is even. By finite

additivity, we have

λj(O∗
p) =

∑
a∈O/pO

λj(a + pOp) (7.7)

=
∑

a∈O/pO

1
2r
Cp(εk,p,bj) +

∑
a∈O/pO

γ(k)λHaar. (7.8)

We calculate each sum separately and start with the first sum. Since the sum of roots of

unity modulo p is 0, we have

∑
a∈O/pO

exp
(
tia

pd

)
= −1. (7.9)

Moreover, exp
(
tia
d

)
= e2πiT r(tia/d) = 1 for our choice of ti and a, so

∑
a∈O/pO

exp
(
tia

d

)
= N(p)− 1. (7.10)
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These comments directly imply that the first sum is equal to

(−2πi)kr

2r(k − 1)!r|D| 2k−1
2

∑
t∈K
p-t

µ(t)
N(t)k

1∑
u=0

N(p)u(k−1)−k
∑

a∈O/pO
exp

(
tip

ua

pd

)
(7.11)

= (−2πi)kr

2r(k − 1)!r|D| 2k−1
2

∑
t∈K
p-t

µ(t)
N(t)k

(
−N(p)−k + N(p)− 1

N(p)

)
. (7.12)

The term ∑
t∈K
p-t
µ(t)N(t)−k is the reciprocal of the Dedekind zeta function with the Euler

factor at p removed, so the previous sum is equal to

(−2πi)kr

2r(k − 1)!r|D| 2k−1
2

(1−N(p)−k)−1

ζ(k)

(
−N(p)−k + N(p)− 1

N(p)

)
. (7.13)

The functional equation of the Dedekind zeta function is given by

1
ζ(1− k) = (−2πi)kr

2r(k − 1)!r|D| 2k−1
2

1
ζ(k) . (7.14)

It directly implies the first sum is equal to

(1−N(p)−k)−1

ζ(1− k)

(
N(p)k −N(p)k−1 − 1

N(p)k

)
. (7.15)

The second sum is
N(p)2k−1

N(p)k − 1
(1−N(p)k−1)−1

ζ(1− k)
N(p)− 1
N(p) . (7.16)

Adding Equations (7.15 ) and (7.16 ) gives

λj(O∗
p) = (1−N(p)−k)−1

ζ(1− k) . (7.17)

Summing up over j equivalence classes we get the required result.
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Next we consider the case when χ is a non-trivial Hecke character of finite type with

conductor pm and k is an integer of the same parity as χ. Since χ is orthogonal to Haar

measure, the integral of χ against λHaar is zero. The integral of χ against λj is

∫
O∗

p

χ−1(x) dλj(x) = (−2πi)kr

(k − 1)!r|D| 2k−1
2

m∑
u=0

N(p)u(k−1)−mk

hpm,+∑
i=1

∑
t∈Ci

µ(t)
N(t)k

∑
a∈(O/pm)×

χ(a) exp
(
tiap

u

pmd

)
. (7.18)

If χ is primitive and x ∈ O, then

∑
x∈O/pm

χ(x)e2πiT r(xx/d) =


χ(x)τ(χ) if gcd(x, pm) = 1

0 otherwise
. (7.19)

Then the term with u = 0 is the only non-zero term in Equation (7.18 ), so we have

(−2πi)kr

2r(k − 1)!rN(pm)k|D| 2k−1
2

hpm,+∑
i=1

∑
t∈Ci

µ(t)
N(t)k

∑
a∈(O/pm)×

χ(a) exp
(

tia

pmd

)
(7.20)

= (−2πi)kr

2r(k − 1)!rN(pm)k|D| 2k−1
2

∑
t∈K
p-t

µ(t)
N(t)k

χ(t)−1τ(χ) (7.21)

= (−2πi)kr

2r(k − 1)!rN(pm)k|D| 2k−1
2
τ(χ) 1

L(k, χ) . (7.22)

The functional equation of the Hecke L-function of a totally real field along with the relation

τ(χ)τ(χ) = χ(−1)N(pm) gives the integral against λj to be L(1−k, χ)−1. Summing over the

strict ideal classes of K proves the result.

7.2 Invertibility of Measures

Recall that the group GK,p decomposes as GK,p = ∆×Γ, where ∆ is the Galois group of

the field extension K(µpn)/K and Γ is the Galois group of the maximal cyclotomic extension

of K in K(µp∞). We keep the same notation as Chapter 4.
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Since χ transforms under ∆ by ω−j, the integral of χ against µ only involves the term

for i = j and equals

∫
GK,p

χ(x) dµ = 1
q

∫
GK,p

χ(x) d(ωjνj) =
∫

Γ
χ|Γ dνj, (7.23)

reducing the integration of the character χ on GK,p to that of χ|Γ on Γ.

Now assume that νi ≡ 0 whenever i is even and that νi|Γ is a unit in the Iwasawa

algebra Λ(GK,p) whenever i is odd. Since Λ(GK,p) ∼= O[[T ]] has a formal power structure,

the invertibility condition is equivalent to the constant term of the power series

(ωiνi)(Γ) =
∑
a∈∆

ω(a)−iµ(aΓ) =
∫

GK,p

ω(x)−i dµ (7.24)

being a p-adic unit. In this case, for each odd value of i mod q, there exists an inverse

measure ν−1
i such that νi ∗ ν−1

i is equal to the Dirac distribution µ1 at the identity, or in

other words ∫
Γ
f(x) d(νi ∗ ν−1

i )(x) =
∫

Γ

∫
Γ
f(xy) dνi(x) dν−1

i (y) = f(1) (7.25)

for any continuous Cp-valued function on Γ. In particular, when i is odd,

∫
Γ
χ|Γ dν−1

i =
(∫

Γ
χ|Γ dνi

)−1
. (7.26)

We can then define an inverse measure µ−1 on GK,p by

µ−1 = 1
q

∑
1≤i≤q
i odd

ωiν−1
i . (7.27)

Moreover, evaluating the inverse measure µ−1 against odd characters χ,

∫
GK,p

χ(x) dµ−1 =
∫

Γ
χ|Γ dν−1

j =
(∫

Γ
χ|Γ dνj

)−1
=
(∫

GK,p

χ(x) dµ
)−1

, (7.28)

we see that the integrals of µ and µ−1 are reciprocals of each other.
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7.3 Continuity

We will prove that λ is a bounded measure by showing that the p-adic measure on totally

real fields µ1,c is a unit in the Iwasawa algebra and that the regularization µ∗ of its inverse

µ−1
1,c is equal as a distribution to a multiple of λ.

We start by considering the p-adic measure on totally real fields µ1,c. By Equation (7.24 ),

νi is invertible whenever the integral

∫
G
ω−i(x) dµ1,c (7.29)

is a p-adic unit. Using the property

∫
G
χ(x)N(x)n−1 dµ1,c(x) = (1− χ(c)N(c)n)L(1− n, χ), (7.30)

the integral in (7.29 ) is equal to (1− ω−i(c)N(c))L(0, ω−i). Kummer’s criterion in the case

of totally real fields ([16 ]) implies that p divides L(0, ω−i) for any odd 1 ≤ i ≤ q if and only

if p divides the class number of K(e2πi/p). Since p is regular by assumption, this does not

happen, so the νi are p-adic units.

Therefore, we conclude that the measure µ−1
1,c satisfies the property

∫
G
χ(x)N(x)k−1 dµ−1

1,c = (1− χ(c)N(c)k)−1L(1− k, χ)−1 (7.31)

for any Hecke character χ and non-negative integer k of the same parity. Moreover, by direct

computation, the regularization

µ∗(U) = µ−1
1,c (U)−N(c)µ−1

1,c (cU) (7.32)

satisfies ∫
G
χ(x)N(x)k−1 dµ∗ = L(1− k, χ)−1. (7.33)

We are now ready to prove that λ is a measure.

Theorem 7.3.1. The distribution λ defined in Equation 7.4 is a p-adic measure.
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Proof. Define a distribution λ on G by λ(U) = λ(U−1). The integral in Equation (7.6 ) is then

equal to
∫

G χ(x) dλ. Moreover, since µ∗ is a measure, so is N(x)k−1µ∗ for any k. Comparing

Equations (7.6 ) and (7.33 ), we see that λ− h+N(x)k−1µ∗ vanishes when integrated against

any Hecke character of finite type whenever k ≥ 3. Since these span the space of locally

constant functions on G, the distribution λ− h+N(x)k−1µ∗ is identically zero. This implies

that λ is equal to h+N(x)k−1µ∗ as distributions and so it is bounded. This implies that λ is

a measure.
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