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ABSTRACT

Given the increasing importance of mobile data access, extending broadband wireless

access have become a global grand challenge. Wireless sensor networks (WSNs) and mil-

limeter wave (mmWave) systems have been introduced to resolve these issues which motivate

us to have further investigation. In this paper, the first two work assuming a quantized-and-

forward WSN. We first develop a rate adaptive integer forcing source coding (RAIF) scheme

to enhance the system throughput by assigning optimal quantization rate to each sensor

optimally. Then, we are interested in developing an supervised online technique for solving

classification problems. In order to enhance the classification performance, we developed

this technique by jointly training the decision function that determines/estimates class la-

bel, quantizers across all sensors, and reliability of sensors such that M most reliable sensors

are enabled. Finally, we develop an idea to provide a folded low-resolution ADC array

architecture that can utilize any of the widely published centralized folded ADC (FADC)

implementation by placing the centralized FADC branches at different antenna elements in

a millimeter wave (mmWave) system. With adding a simple analog shift and modulo opera-

tions prior to the sign quantizer, we show that the multiple low-resolution ADCs across the

array elements can be properly designed such that they can be combined into an effective

high-resolution ADC with excellent performance characteristics.
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1. INTRODUCTION

More than half of the world’s population do not have access to the internet due to a lack of

communication infrastructure [1 ]. Two most popular solutions to resolve this probability is

wireless sensor network and distributed mmWave MIMO wireless communication network.

Although these two areas are extensively studied for the past few decades, we introduce

two quantization schemes, which are Rate adaptive integer forcing source coding and folded

analog to digital converter, are compatibility with these two networks to further enhance the

system throughput.

1.1 Implementation of rate-adaptive integer forcing compression in distributed
wireless relay networking

The relay networking provide the reliable transmission and broad coverage. It provides

[2 ] make them good candidates to extend coverage to underdeveloped areas or to regions that

suffered from natural disasters. One example is the deployment of Google balloons in Peru

and Puerto Rico to provide wireless coverage when infrastructure was destroyed because of

natural disasters.

For the past two decades, there has been much work focusing on different forms of relay

networking. This work can be mostly divided into four categories; amplify-and-forward [2 ]–

[7 ], decode-and-forward [8 ]–[12 ], compress-and-forward [13 ]–[17 ], and compute-and-forward

relaying [18 ]–[23 ]. Amplify-and-forward relaying is the simplest among the four because

the relay network linearly processes its received signals and retransmits the signals to the

receivers. On the contrary, decode-and-forward relaying decodes or partially decodes the

received signal before forwarding the decoded symbols to the receiver while compress-and-

forward relaying quantizes the observations at the relay network and forwards the quantized

observations to the receiver side to decode. Recently, compute-and-forward has been studied

to harness the interference by decoding linear equations of the transmitted messages using

the noisy linear combinations at the output of the uplink channel. The relay network then

forwards many of these linear combinations to the receiver to decode the desired message.
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We consider a compress-and-forward relaying strategy utilizing a cooperative distributed

relay network consisting of many relay nodes. The relay nodes cooperate together to trans-

mit the data of an intended transmit user to a receiving user. The relay nodes perform

a quantization strategy based on integer forcing that is proposed in [24 ]. Integer forcing

source coding (IFSC) is a recently proposed quantization scheme that is based on lattice

vector quantization [25 ]. It is proposed as a distributed lossy compression strategy that

requires symmetric quantization rates and equal desired distortions. IFSC encoders are im-

plemented inside the relay network to perform the dithered quantization modulo operation

on observed signals. The processed signal is then forwarded from the relay network to the

receiving user. Decoders at the receiving user recover the integer linear combinations of the

quantized signals subject to desired distortion levels.

An extension of IFSC has been studied in [26 ] which we denote by modified IFSC in this

thesis. The modified IFSC is proposed to be applied in cloud radio access networks (CRAN)

[26 ]. In contrast to IFSC, different coarse and fine lattices are considered to achieve different

distortion levels while maintaining symmetric quantization rates. Although the work in [26 ]

enhances the throughput of the system, it increases the computational complexity because

of the assumption of different coarse and fine lattices.

Different from [24 ] and [26 ], we propose a novel IFSC-based quantization strategy that

can support different quantization rates with lower computational complexity. We denote the

proposed strategy by rate-adaptive integer forcing (RAIF) compression. We deploy RAIF

compression at the relay network in our cooperative distributed relaying system. Each node

quantizes its observation using a predetermined quantization rate. The quantization rates

are optimally allocated to minimize the difference between the mean square error (MSE)

when the relay nodes does not perform any quantization and the MSE when the relay nodes

quantize their observations. The proposed rate-allocation algorithm is inspired by the work

in [27 ]. The relay network then broadcasts its signals to all users. When the receiving user

is decoding the transmission of a certain user, the transmissions of the rest of the users are

treated as interference. In contrast to IFSC in [24 ] and modified IFSC in [26 ], our compression

strategy uses asymmetric quantization rates to achieve different desired distortion levels. In
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addition, we consider a lattice design that uses the same coarse lattice and different fine

lattices which reduces the computational complexity as explained in following chapter

1.2 Nonparametric decentralized detection and sparse sensor selection via on-
line kernel scalar quantization

Wireless sensor networks (WSNs), which leverage intermediate sensors to sample and pro-

cess the data from an environment, have been extensively studied in the past few decades [1 ],

[28 ]–[42 ]. A variety of WSN applications in, e.g., wireless communications [1 ], [28 ]–[36 ] and

radar [37 ] have already or will soon impact our day-to-day lives significantly. This widespread

use of WSNs is driving research in a number of communication and signal processing direc-

tions. Of particular continuing interest is leveraging WSNs to provide detector/estimator of

one or more underlying phenomena, e.g., for signal classification tasks [38 ]–[42 ].

In this paper, we focus on a decentralized detection problem [38 ]–[48 ] exploiting a compress-

and-forward sensor network [28 ]–[36 ], [38 ]. In these settings, each sensor forwards the pro-

cessed information based on the local decision rule to a fusion center for further processing

and decision-making. Decentralized detection problems can be divided into parametric [44 ]–

[46 ] and non-parametric categories [38 ]–[42 ], [47 ], [48 ]. A parametric decentralized detection

problem assumes that a fusion center knows or partially knows the joint distribution of X

(random vector) and Y (random variable), denoted as P (X, Y ), where X is the observation

vector made by the sensors and Y is the class label of X. However, this assumption could lead

to performance limitations and an increase in system complexity [39 ]. Thus, non-parametric

decentralized detection can be considered.

We are interested specifically in non-parametric decentralized detection for signal classifi-

cation tasks. In the past, authors have studied this topic by leveraging kernel-based learning

techniques, e.g., [38 ]–[42 ]. Kernel methods are commonly employed in learning problems to

deal with non-linearly separable statistical models [38 ]–[42 ]. The scenarios studied in [38 ]–

[40 ] most closely align with our focus in this paper. In these works, each sensor forwards the

quantized observation based on a quantization rule (refers to the local decision) to a fusion

center. Then, the fusion center employs a decision function chosen from a high-dimensional

function space that takes the mapped quantized observations by the kernel to the set of
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reals. The output of the decision function is used to infer the corresponding signal classi-

fication class label. To maximize classification performance, a joint optimization problem

with respect to the quantizers (i.e., quantization rules across the sensors) and the decision

function is considered [38 ]–[40 ].

The methods in [39 ], [40 ] are based on batch learning (BL), where model training is

conducted after all data is collected. For contemporary WSN applications which require

learning over large volumes of samples, BL approaches potentially consume high computa-

tional power and require a significant amount of memory. The detector/estimator learnt by

the BL approach is highly dependent on the input training sample distribution, i.e., P (X, Y ).

If the testing dataset distribution is mismatched to the current WSN inputs, which will hap-

pen when the environment evolves over time, the performance (e.g., classification) can be

degraded significantly. To address these challenges, we consider an online learning (OL)

approach to signal classification that processes the data over time dynamically. Note that

the OL problem has a variety of applications [41 ], [42 ], [49 ]–[53 ], but, generally, the role of

quantization has not been considered.

In this paper, our primary goal is to develop an OL methodology for WSNs that jointly

finds quantizers and the decision function dynamically. Our theoretical analysis will also

establish relationships between the OL and the BL cases studied in [39 ]. In doing so, we will

see how the proposed algorithm affects the quantization rules based on some computation

friendly marginalized kernels.

In a WSN, it can be expected that quantization outputs will furnish varying contributions

to the signal classifier at the fusion center, e.g., some sensors are naturally less reliable when

they are deployed over a large area. Hence, to promote the network power efficiency, we

are interested in the sensor selection problem [40 ], [54 ], [55 ], where a certain number of

lowest contributing sensors are disabled. We can accomplish this within our framework

by introducing a marginalized weighted kernel [40 ]. Compared to our prior work [38 ], we

consider multiple sensors, introduce new techniques for obtaining the quantization rules

across the sensors and the decision function, and provide sensor selection strategy.

Notations for Chapter 2: Scalars and column vectors are written using lower case letters,

e.g., x, and a boldface lower case letters, e.g., x, respectively. Random variables and vec-
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tors are written using upper case letter, e.g., X, and a boldface upper case letter, e.g., X,

respectively. sgn(·) is the signum function. ‖ · ‖1 denotes the L1 norm. ‖ · ‖0 is the count of

the number of non-zero elements. ‖ · ‖ denotes the L2 norm. | · | means cardinality of the

set. O(·) is big O notation. 1(·, ·) is an indicator function.

1.3 A folding approach for multiple antenna arrays using low-resolution ADCs

Multiple antenna wireless systems are now considered necessary for any high-rate wire-

less standard, and the number of antennas continues to increase with each new broadband

wireless standard release. It is expected that beyond-5G systems operating in sub-6 GHz and

millimeter wave (mmWave) bands will utilize large-scale multiple antenna arrays, with much

focus on massive multiple-input multiple-output (MIMO) and mmWave beamforming/pre-

coding systems [56 ]–[66 ]. Massive MIMO techniques utilize large numbers of antennas at the

base station to increase the number of users that can be supported across the time-frequency

resources [62 ]. The mmWave bands offer wide bandwidths and enhance system throughput

for future wireless deployments [56 ]. However, mmWave comes with propagation challenges,

which necessitate the use of a large antenna array and multiple antenna signal processing at

the transmitter and receiver.

Past MIMO work has used “small” numbers of antennas at the receiver and assumed

a high-speed high-resolution (e.g., six bits or more) analog-to-digital converter (ADC) for

each of the in-phase and quadrature streams at each element [67 ], [68 ]. When the num-

ber of antennas grows large, the economics and power requirements of the array hardware

change, causing high-resolution ADCs to become costly in dollars and power. To overcome

this, there has been much work on signal processing techniques that utilize a low-resolution

ADC at each element [63 ], [64 ], [67 ]–[86 ], with the most popular choice being to use a sign

quantizer for each of the in-phase and quadrature signals at each element [77 ]–[80 ]. At a

high-level, the multitude of low-resolution quantization outputs coming from the antennas

can be fused together by using the diversity advantages offered by the spatially-varying

channels corresponding to the different array elements.
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Because of the channel dependence, the foremost problem of the sign-based low-resolution

ADC array is that the sign bits from the different antennas are not necessarily complemen-

tary. A simple example is to study the case when the channel realization between the

transmitter and every receiver is one. In this scenario, all output bits from the array are

noisy versions of the same bit, and the throughput is limited to at most one bit per channel

use per dimension. For more general channels, the achievable rate performance of a system

with sign quantization has an upper-bound that grows logarithmically with the number of

array elements in the high signal-to-noise ratio (SNR) regime [79 ]. This is problematic be-

cause ideally the rate of a properly designed quantizer should scale linearly with the number

of antennas. The other problem is amplitude uncertainty. Unless highly accurate statistical

channel models are available [73 ], the sign quantizer is unable to distinguish between two

transmit symbols that are scaled versions of each other (i.e., two symbols s1 and s1 = αs2

with α 6= 1). In most practical scenarios, this limits the transmit symbol to phase shift

keying (PSK) constellations. In summary, the sign-based low-resolution ADC arrays gen-

erally offer far from optimal performance, especially when the channels are not sufficiently

spatially diverse.

In this thesis, we show how to overcome these challenges by designing simple analog

processing that varies across the array elements in a carefully chosen way. This diversity of

analog processing acts to supplement the channels’ spatial diversity to facilitate detection

that can recover high-rate constellations. This per-element analog processing is inspired from

techniques previously used in the high-resolution ADC literature, building upon past work

in [83 ]. For example, we show how to design an M -antenna array that uses two single-bit

per sample ADCs at each element, and we show to use signal processing theory developed

for a single high-resolution ADC that produces 2M bits of information for each sample.

There are a variety of techniques developed for use in high-resolution ADCs. In initial

work, researchers, including us, focused on the structure of the ∆Σ (or Σ∆) ADC [63 ], [64 ],

[83 ]–[86 ]. However, ∆Σ ADCs require complex signal processing in the analog domain to

perform noise shaping in order to overcome the quantization loss. In this thesis, we focus on

other popular high-resolution ADCs called folded ADCs (FADCs) (or folding-related ADCs)

e.g., [40 ], [67 ], [68 ], [87 ]–[98 ]. Note that folded ADCs are widely studied by researchers in
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circuits and used commercially [67 ], [68 ]. The word folded comes from the analog modulo

operation which can be implemented based on a simple low-power consumption analog signal

processing circuits, e.g., [87 ].

In our framework, each of the in-phase and quadrature signals at each element utilizes

simple shift and modulo processing followed by a sign quantizer. To select the shift and

modulo processing across the multiple array elements, we make use of techniques from the

multi-branch FADC. Our framework is not circuit specific and can be implemented with

any of the widely published per-branch circuits employed for centralized high-sampling rate

FADC implementations, e.g., [67 ], [68 ]. Compared to prior work on the low-resolution ADC

array based on ∆Σ ADC theory, the analog signal processing of the proposed design at each

antenna in the analog domain is simpler. The proposed array also outperforms the sign-based

low-resolution ADC array that use only a sign quantizer at each array element with our

technique easily supporting multiple amplitude constellations such as quadrature amplitude

modulation (QAM) even when the channel lacks spatial variation. Most importantly, we

show that our proposed low-resolution array that uses folding at each element can provide

an achievable rate that increases linearly with the number of elements in the high SNR

regime, a strong improvement over the logarithmic scaling of the sign-based low-resolution

ADC array. In addition, our folded low-resolution ADC array offers deep connections to other

quantization and source coding schemes. In particular, the modulo quantization structure

of the proposed design has connections to lattice codes using integer forcing source coding,

but the constructions of the quantizers the assumptions used for the system performance

analysis are completely different [24 ], [26 ], [99 ], [100 ]. The unique reconstruction of the high-

rate constellations such as QAM also relates to labeling systems such as those used in the

residue number system [101 ].

Notations for Chapter 3: Scalars and column vectors are written using lower case letters,

and a boldface letter denotes a vector. All logarithms are assumed to be base two. The

function sgn(·) is the signum function. We denote Re(x) and Im(x) as the real and imaginary

part of x, respectively. log [ · ] is denoted as log base two. The probability density function

and the entropy are denoted by p(·) and H(·), respectively. The absolute value of x is defined

as |x| and the modulo of a of size b is written as [a] mod b. The transpose and the conjugate
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transpose are denoted by (·)T and (·)∗, respectively. The Kronecker product is written as ⊗.

Card(S) means cardinality of the set S.
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Figure 2.1. End-to-end system model

2. RATE ADAPTIVE INTEGER FORCING SOURCE CODING

2.1 System Model

We consider a multi-user distributed relay network where communication between any

pair of K users is facilitated by a relay network that consists of M relay nodes as shown in

Fig. 1. In particular, the receiver not only captures the signal that is formed by the intended

transmit user, but also receives the transmitted signals from the interfering users (i.e., the

other K − 1 users). The relay nodes and the users are assumed to be equipped with a signal

antenna.

In the uplink (transmission from the transmit user to the relay network), all of the users

transmit their signals simultaneously through fading channels to the relay network. The

observed signal at the mth relay node at the `th channel use can be written as

xm[`] =
K∑

k=1
hm,k[`]sk[`] + zm[`]

= hm,1s1[`] +
K∑

k=2
hm,ksk[`] + zm[`]

(2.1)
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where sk[`] ∈ R is the signal transmitted by the kth user at the `th channel use satisfying a

power constraint that

E[sk[`]2] = Pk, (2.2)

hm,k[`] ∈ R is the fading uplink channel between the kth user and the mth relay node which is

distributed as N (0, 1), and zm[`] ∈ R is the additive white Gaussian noise (AWGN) at the mth

relay node which is spatially and temporally independent and identically distributed (i.i.d)

N (0, σ2). We assume that the uplink channels are static over the length of the quantization

block of size L (i.e., hm,k[`] = hm,k for ` = 0, 1, . . . , L − 1). Without loss of generality, the

first user (i.e., k = 1) is considered to be the intended user.

In this thesis, we assume that any lattice in high dimensional nested lattice chains is

a discrete subgroup of RL which is denoted as Λ ⊆ Λf,1 ⊆ · · · ⊆ Λf,m. All of the fine

lattices Λf,m for m = 1, . . . , M are considered to be good for MSE quantization such that

the relationship between the distortion levels and quantization rates can be found. The

coarse lattice Λ is considered to be good for channel coding such that the overload error

probability can be neglected with high probability [24 ]. This assumption is a relaxed version

of “good” nested lattice chains, whose existence has been proposed and rigorously analyzed

in [102 ].

The mth relay node collects the observations through L channel uses constructing the

combined row vector xm = [x[0], x[1], . . . , xM [L − 1]] ∈ R1×L. The mth relay node then adds

the dither vector dm. The reason we add the dither vector is to make the quantization

error independent of the observed signal [24 ]. The vector dm is independent of xm and is

uniformly distributed in Vf,m which is the fundamental Voronoi region of the fine lattice at

the mth relay node. The dither vector is assumed to be known to both the encoder and the

decoder. The sum (i.e., xm + dm) is quantized onto the fine lattice Λf,m using QΛf ,m and

then mapped onto the fundamental Voronoi region of the coarse lattice using mod Λ. The

quantization function QΛf ,m is defined to be [18 ], [24 ]

QΛf ,m(x + d) = argmin
λ̄∈Λf ,m

||x + d − λ̄||. (2.3)
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The quantized signals can be written as

ym =
[
QΛf ,m(xm + dm)

]
mod Λ. (2.4)

We assume the downlink channel (between the relay network and the receiver) is robust.

This assumption follows from the bandwidth constraint enforced on the total number of bits

that can be broadcast from the relay network. The mth relay node forwards ym defined in

(2.4 ) to the receiver. At the receiver, the decoder subtracts the dither vectors and reduces

the result using mod Λ. The reconstructed vector at the receiving user is

ỹm =
[
[QΛf,m

(xm + dm)]mod Λ − dm

]
mod Λ. (2.5)

Adding and subtracting xm in the right hand side of (2.5 ) gives

ỹm =
(

xm −
[
(xm + dm) − QΛf,m

(xm + dm)
]

︸ ︷︷ ︸
Quantization Error

)
mod Λ

= (xm + δq,m) mod Λ.

(2.6)

The vector δq,m is the qunatization error at the mth relay node which is statistically inde-

pendent of xm for m = 1, . . . , M and uniformly distributed over Vf,m by Crypto Lemma

which is stated in [103 , Lemma 1]. As the number of channel uses increases without bound

(i.e., L → ∞), the cumulative density function of δq,m is upper bounded by the cumulative

density function of an i.i.d zero-mean Gaussian vector whose covariance matrix is diagonal

in [18 , Lemma 8]. Thus, in this thesis, we use this upper bound for the quantization error

δq,m which is assumed to be an i.i.d zero-mean Gaussian vector whose covariance matrix is

Uq = diag {µ1, µ2, · · · , µM} and µm is the distortion level of the fine lattice at the mth relay

node. We can write (2.6 ) in a matrix form such that

Ỹ = (X + ∆q) mod Λ, (2.7)
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where

X = [xT
1 , . . . , xT

M ]T ∈ RM×L,

∆q = [δT
1 , δT

2 , . . . , δT
M ]T ∈ RM×L,

Ỹ = [ỹT
1 , . . . , ỹT

M ]T ∈ RM×L.

The observations of the relay nodes can then be estimated at the receiver side to be

X̂ = A−1([AỸ] mod Λ)
(a)= (X + ∆q),

(2.8)

where X̂ = [x̂T
1 , . . . , x̂T

M ]T ∈ RM×L is the estimate of the matrix X, A ∈ ZM×M is the

IFSC integer coefficients matrix as defined in [24 ], and the equation (a) only holds with high

probability as it follows from the properties of the modulo operation and the assumption

that the coarse lattice is good for channel coding.

The receiver estimates the intended signals that were transmitted over L channel uses(
i.e., the vector s1 = [s1[0], s1[1], · · · , s1[L − 1]]

)
by combining the output of the M relay

nodes to find ŝ1 as in

ŝ1 = wTX̂, (2.9)

where w ∈ RM is the receive combiner at the receiving user side.

2.2 Rate-Adaptive Integer Forcing Compression

In this section, we propose a novel integer forcing compression strategy that utilizes lattice

vector quantization. We dub the proposed strategy RAIF compression. The construction

of the lattice vector quantizer depends on the second moment of the fine and the coarse

lattices. There is a correlation between the quantization rates and the second moments of

the fine and coarse lattices. In particular, the quantization rate of the mth relay node is

rm = min
A∈ZL×L

det(A) 6=0

max
i=1,...,M

1
2logσ2

Λ(ai)
σ2

Λf,m

, m = 1, . . . , M, (2.10)
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where σ2
Λf,m

is the second moment (distortion level) of the fine lattice at the mth relay node

becuase of the assumption of the fine lattice is good for quantization [24 ], σ2
Λ(ai) is the second

moment of the coarse lattice corresponding to ai, and ai is the ith row of the matrix A. Note

that the integer coefficient matrix A in the equation (2.10 ) is the same for all 1 ≤ m ≤ M .

Therefore, we can write

σ2
Λf,m

= µm. (2.11)

The second moment of the coarse lattice with respect the ith row of A is [24 ]

σ2
Λ(ai) = aT

i (QXX + Uq)ai, (2.12)

where QXX = E[XXT] is the correlation matrix of X. Hence, the optimal coarse lattice

is found by its second moment which depends on designing the optimal integer coefficient

matrix A. The matrix A can be obtained by solving the optimization problem

rm = min
A∈ZL×L

det(A)6=0

max
i=1,...,M

1
2logaT

i (QXX + Uq)ai

µm

. (2.13)

Different from the case of symmetric quantization rate, we assume that each relay node

is assigned a different quantization rate. We denote the allocated quantization rate at the

mth relay node to be r̃m. Allocation of quantization rates is done such that the MSE caused

by the quantization performed at the relay nodes is minimized. The second moments of the

fine and the coarse lattice are all related to the distortion levels which, in turn, depend on

the allocated quantization rates. Therefore, before being able to solve (2.13 ), we derive the

optimal quantization rates that are allocated to each of the relay nodes.

Similar to [27 ], we introduce a rate-allocation optimization problem based on the min-

imization of the difference between the MSE of the system for the case when the receiver

has access to the quantized observations of the relay nodes and the case when the receiver
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has access to the unquantized observations of the relay nodes. The optimization problem is

written as
argmin

r̃m

h̃T
1 Uqh̃1,

subject to
M∑

m=1
rm = rtot,

(2.14)

where Uq is a function of the quantization rate (r̃m) as will be shown later in (2.16 ), h̃1 =

C−1h1, and C is the covariance matrix of the noise and interference during the fading block

of length L use which is defined as

C = E
[
(

K∑
k=2

hksk + z)(
K∑

k=2
hksk + z)T

]
.

The rate-allocation is described in the following corollary.

Corollary 1. Given the coarse lattice is good for channel coding and the fine lattices are

good for the quantization, where goodness is defined as in [24 ] and for any second moment

of the coarse lattice σ2
Λ(ai), the optimal quantization rate is

r̃m = rtot

M
+ 1

2M

M∑
j=1

log
(

h̃2
m,1

h̃2
j,1

)
, (2.15)

where h̃j,1 is the jth entry of h̃1. In the case of having the negative quantization rates, we

remove the corresponding relay nodes and redo the optimization problem on the rest of the

relay nodes.

Given the optimal quantization rate of each relay node, we can find the optimal integer

coefficient matrix A that solves the optimization problem in (2.13 ). Since the optimization

problem in (2.13 ) is NP-hard, a common way for finding A is to apply the LLL algorithm

[104 ] as shown in Algorithm 1. In this algorithm, we use the fact that we have the same

coarse lattice to map the distortions of all the relay nodes to the distortion of the mth relay

node to be

µj = µm4r̃m−r̃j for j = 1, . . . , M. (2.16)

Therefore, instead of having the distortions of all the relay nodes affecting the optimization

problem in (2.13 ), the algorithm maps the distortions of all relay nodes to the distortion
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Algorithm 1 Rate-Adaptive Integer Forcing Compression
procedure RAIF(QXX, r̃) . r̃ = [r̃1, . . . , r̃T

M ]
Initialization: Fix µm = 10−3, µm = µj4r̃j−r̃m .
Calculate: A = LLL(QXX + Uq).

Calculate: rm = 1
2log

(
aT

i (QXX + Uq)ai

µm

)
.

while
(

|rm − r̃m|> ε OR rm > r̃m

)
do

Increase µm

Calculate: A = LLL(QXX + Uq).

Calculate: rm = 1
2log

(
aT

i (QXX + Uq)ai

µm

)
.

return A, Uq.
end procedure

of the mth relay node using (2.16 ). Hence, we can write Uq in terms of µm only. As

mentioned earlier, we enforce the same coarse lattice for RAIF compression. Therefore, the

computational complexity of the algorithm does not increase exponentially with the number

of relay nodes as happens if multiple coarse lattices are used.

2.3 Simulation Results

In this section, Monte Carlo simulations are used to study the effect of different integer

forcing source coding strategies, namely; RAIF compression, Modified IFSC [26 ] and IFSC

[24 ], on the system throughput. We also compare against the throughput in the case of

theoretical Gaussian approximation of the distortion which is shown in [27 ]. The effect of

uplink channel variations on the throughput for each strategy is also studied. The uplink

channels are modeled as spatially i.i.d Rayleigh fading channels. Four users are considered

and the power of the transmitted signals from all users are equivalent. Our performance

metric is the overall system throughput which is defined as

R = Eh1

[1
2log

(
1 + SNRhT

1 (C + Uq)−1h1
)]

.
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Figure 2.2. Ergodic capacity performance for different IFSC-based compres-
sion strategies with four users and Rayleigh fading uplink channels and four
relay nodes.

In Fig. 2, we assume that the relay network consists of four relay nodes and that the total

number of quantization bits is 12 bits/channel use. In this figure, we show the throughput

when the relay nodes use RAIF compression (defined in Algorithm 1), IFSC [24 ] (which can

be derived by assuming equal rates in Algorithm 1), modified IFSC [26 ], and modified IFSC

with optimized rates. It should be noted that even though the algorithm in [26 ] can be

modified to run a different quantization rate for each relay node, it does not have a way to

find these assigned rates. Therefore, we use the optimized quantization rates that we derived

in (2.15 ).

As shown in Fig. 2, the throughput is higher when the optimal quantization rates are

applied than when quantization rates are distributed equally among the relay nodes. When

the values of SNR are higher than 30 dB, the throughput saturates for all the strategies

and RAIF compression is 0.4 bits/sec/Hz higher than IFSC. Although the throughput of

the rate-adaptive modified IFSC is slightly higher than our proposed algorithm, this comes

at a cost of exponential increase in the computational complexity with the number of relay

nodes. The exponential increase in computational complexity comes from the fact that rate-

adaptive modified IFSC algorithm optimizes the distortion level of each relay node separately

to achieve the optimal quantization rate assigned to this relay node.

27



Figure 2.3. Ergodic capacity performance of RAIF compression and approx-
imate Guassian vector quantization for four users with Rayleigh fading uplink
channels.

A comparison of the throughput of RAIF compression versus the theoretical throughput

derived in [27 ] is shown in Fig. 3. In this figure, we consider two cases where the number

of relay nodes are 4 and 20 while the total number of quantization bits at the relay network

are 12 and 60 bits/channel use, respectively. As the number of the relay nodes increases,

the throughput of our proposed algoithms becomes better than the throughput in [27 ]. The

reason for this is that the quantization in [27 ] is done at each relay node separately while

the relay nodes in our proposed algorithm are cooperating together.

In Fig. 4, we show how the quantization rate optimization in (2.15 ) makes the system

sensitive to severe channel variations. The relay network contains ten relay nodes and the

total number of quantization bits is 30 bits/channel use. The uplink channels are distributed

as N (0, 1). Two cases are considered. In the first case, we assume that the gain of the uplink

channel between the intended transmit user and one of the relay nodes which is denoted as g̃

is higher than the average gain of the other uplink channels. In the second case, we consider

all uplink channels are generated without severe channel variations.

The throughput of RAIF compression and IFSC are saturated at 0 dB in the first case

because g̃ = 50 is applied into the system. The throughput of RAIF compression is almost
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Figure 2.4. Ergodic capacity performance of RAIF compression and approx-
imate Guassian vector quantization for a relay network of ten relay nodes -
the number of users is four with a strong uplink channel between the intended
user and the first relay node.

one bit/sec/Hz better than IFSC that is using symmetric quantization rates. At 15 dB,

the throughputs of both cases are saturated. Moreover, the gap of the throughput between

RAIF compression and IFSC in the first case is twice as bit as the gap of the throughput

between RAIF compression and IFSC in the second case. This shows that our proposed

algorithm is adaptive to changes in the uplink channel conditions.
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3. NONPARAMETRIC DECENTRALIZED DETECTION AND

SPARSE SENSOR SELECTION VIA ONLINE KERNEL

SCALAR QUANTIZATION

3.1 System Model and Preliminaries

In this section, we first describe the system model (Section 3.1.1 ). Then, we provide basic

background on kernels and decision functions which will be later employed (Section 3.1.2 ).

3.1.1 Wireless Sensor Network System Model

We consider a decentralized problem consisting of M sensors connected to a common

fusion center as shown in Fig. 4.1 . The fusion center must utilize the sensors to train a

decision function to determine the true class, which is represented by y ∈ Y , representing a

statistical model for the target (dependent) variable of interest. Y is considered as a finite

discrete set as we will focus on the cases of classification. Although the proposed system

model and methods are applicable for any multi-class problem, our prime focus is the

binary classification case, i.e., Y ∈ {−1, 1}, in this paper.

We assume perfect synchronization among sensors. The fusion center primarily i)

trains a decision function chosen from a function space H to determine the class and ii)

determines a quantization rule to be employed by each sensor’s quantizer in order to maximize

classification performance. Followed by this, we are interested in making the fusion center

iii) utilize M of M quantized observations which can promote the network power efficiency,

for 1 ≤ M ≤ M .

Ideally, the fusion center and quantizers would have access to P (X, Y ) of the sensor

observations and the class, where Y ∈ Y and X = [X1, X2, . . . , XM ]T . However, we consider

a non-parametric decentralized detection approach where P (X, Y ) is unknown. To overcome

this lack of knowledge, we solve this problem based on a sequence of training samples S =

(sn)N
n=1 such that sn = (xn, yn), where xm,n ∈ Xm is element m of xn ∈ X , X = X1×· · ·×XM ,

and yn ∈ Y for all n. We assume Xm and X are finite sets for all m. Note that we use a
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subscript n to denote the time index. This motivate us to leverage empirically-driven learning

techniques, e.g., OL and BL approaches.

Formally, we collect the sensor observations at time n into a vector xn and the quantized

outputs into a vector qn = [q1,n · · · qM,n]T ∈ Q such that Q = Q1 × · · · × QM . We assume

Qm and Q are assume to be finite sets such that |Qm| ≤ |Q|, |Qm| ≤ |Xm|, and |Q| ≤

|X |, for all m. Each element of qn, e.g., qm,n, is produced based on the quantization rule

Pm,n(qm,n|xm,n) such that Pm,n(qm,n|xm,n) ∈ [0, 1] and ∑qm,n∈Qm
Pm,n(qm,n|xm,n) = 1 follows

axioms of probability [105 ], for all qm,n ∈ Qm and xm,n ∈ Xm. Moreover, the quantization

rules across the sensors inspired by [38 ]–[40 ], are assumed to be

Pn(qn|xn) =
M∏

m=1
Pm,n(qm,n|xm,n), (3.1)

for all possible qn and xn. As a result, we can form a set P of the feasible quantization rules

across the sensors as

P =
{

P (Q|X) : ∀q ∈ Q, x ∈ X , P (q|x) ≥ 0,∑
q∈Q

P (q|x) = 1, and P (q|x) =
M∏

m=1
Pm(qm|xm)

}
.

(3.2)

After quantization, the WSN forwards qn to the fusion center. Similar to [38 ]–[40 ], we

assume that the fusion center perfectly observes qn, i.e., the channel does not introduce

significant noise to the quantized measurements. The fusion center is assumed to know the

behavior of the quantizers perfectly (i.e., quantization rules across the sensors, Pn(qn|xn))

at time n. Hence, the fusion center jointly trains the decision function, updates quantization

rules, and performs sensor subset selection, which will be discussed in Section 3.2.2 .

3.1.2 Kernel and Decision Function

Kernel

We are interested in developing an OL algorithm that can work with both linearly and

non-linearly separable statistical models of the quantized data. One possible approach to
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dealing with non-linearly separable statistical models is to map a vector to a high-dimensional

space H using a mapping function φ(·) : Q → H [38 ]–[42 ], [49 ], [106 ]. Generally, this

mapping function is not unique. An algorithm is developed based on the inner product

between points, i.e., 〈φ(qτ ), φ(qτ )〉 ∈ R, for all possible quantization points qτ , qτ ∈ Q so

that the problem is solved using one or more (approximately) linear decision boundaries [38 ]–

[42 ], [49 ], [106 ]. Although it might be challenging to construct φ(·), it is easy to construct

the output of 〈φ(qτ ), φ(qτ )〉[106 ]. To accomplish this, we utilize kernel-based techniques to

replace 〈φ(qτ ), φ(qτ )〉 using the definition of the kernel [106 ] below.

Definition 3.1.1. A real-valued symmetric function k(·, ·) : Q × Q → R is called a kernel if

the Gram matrix K = [Kτ,τ ], Kτ,τ = k(qτ , qτ ) for τ, τ = 1, ..., |Q|, is positive semi-definite.

The mapping function is related to the kernel according to φ(qτ ) = k(qτ , ·) so that

〈k(qτ , ·), k(qτ , ·)〉 = k(qτ , qτ ). In this paper, we are interested in using a special kernel, called

weighted kernel [40 ]. A weighted kernel kw(qτ , qτ ) is used to convey a level of reliability

from the sensors using a weight parameter vector w that satisfies

‖w‖1 = M and w � 0, (3.3)

where w � 0 indicates wm ≥ 0, for all m. Thus, a large weight parameter of a sensor (e.g.,

wm) indicates that the corresponding sensor is more reliable [40 ]. We consider sensor m to

be disabled when wm = 0 for some m = 1, 2, . . . , M . For this reason, the weighted kernel

will be critical to our OL algorithm development. Note that the construction of the weighted

kernel is not unique. An example weighted kernel is the weighted count kernel described by

[39 ], [40 ]1  

kw(qτ , qτ ) =
M∑

m=1
w2

m1(τ = τ). (3.4)

1↑ Another example inspired by [39 ] is the weighed linear kernel, e.g., kw(qτ , qτ ) =
∑M

m=1 w2
mqτ

mqτ
m.
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Figure 3.1. Illusion of the generic decentralized detection system model

Decision function

The purpose of the decision function is to estimate/predict the class of the input samples.

For any given kernel (including the weighted kernel), the decision function induced by the

mapping space H can be defined as

f
(
qτ
)

=
|Q|∑
τ=1

ατ kw(qτ , qτ ), (3.5)

where ατ ∈ R. We assume that H is a reproducing kernel Hilbert space (RKHS). A RKHS

H is one for which there is a kernel kw : Q × Q → R and a dot product 〈·, ·〉 in H such that

• kw has the producing property:

f(qτ ) = 〈f , kw(qτ , ·)〉, for all f ∈ H and τ. (3.6)

• H is the closure of the space of all kw(qτ , ·), for all τ .

We refer to f as the weight of f(·), which is also expressed as f = ∑|Q|
τ=1 ατ kw(·, qτ ) based on

(3.5 ) and (3.6 ).
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3.2 Estimation Model

In this section, we introduce the binary classification problem for the BL (Section III-A)

and OL (Section III-B) settings.

3.2.1 Prior Work: Batch Learning Problem Formulation

We assume that the fusion center does not have access to P (X, Y ). Hence, a BL approach

[39 ], [40 ], [106 ] can be employed based on the i.i.d. sample sequence S which will be useful

in our subsequent development of the OL case. The BL approach is one of the popular,

empirically-driven learning approaches when the dataset has been collected in advance. To

simplify the presentation, we denote a solution set for the BL approach, which is γ ={
f , {P (qn|xn)}N

n=1, w
}

for all qn ∈ Q and xn ∈ X . The weight of the decision function f ,

the quantization rules across the sensors P (qn|xn), and the weight parameter vector w are

determined offline based on S. We use subscript n in the BL setting denote the sample

index.

An empirical risk function is introduced by [39 ], [40 ] to obtain optimal γ, which is given

by

Remp(S) =
N∑

n=1

∑
qn∈Q

1
N

`
(
f
(
qn

)
, yn

)
P (qn|xn). (3.7)

where `(·, ·) is a loss function which can either be a differentiable or non-differentiable convex

function. For example, the logistic loss is a differentiable function, which is

`(f
(
Q
)
, Y
)

:= log
(

1 + exp
{

− Y f (Q)
})

. (3.8)

On the other hand, the soft margin loss function takes the following non-differentiable form

[49 ], which is

`
(
f
(
Q
)
, Y
)

:= max
{
0, ρ − Y f

(
Q
)}

, (3.9)

where ρ > 0 is the margin parameter. (3.9 ) denoted as the hinge loss function when ρ = 1.

Eqn. (3.9 ) is most notably used for the binary classification problem [38 ]–[40 ], [106 ] To
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prevent model overfilling and perform sensor selection, the regularized empirical risk function

described by [40 ] is given by

R̄reg(S) = Remp(S) + λ1‖f‖2

2 + λ2‖w‖1. (3.10)

We treat the regularization parameters λ1, λ2 ≥ 0 as being fixed. λ2 ≥ 0 controls how many

reliable sensors are selected for the classification [40 ]; ‖ · ‖1 helps enforce a sparse solution

while retaining convexity.

It is difficult to learn the desired parameters in (3.10 ) based on expectation of the loss

function over qn for all n [39 ], [40 ]. Moreover, it also requires huge computational power to

obtain the desired parameters when we solve the upper bound of (3.11 ). To resolve this, [39 ]

and [40 ] apply Jensen’s inequality to work with the lower bound of (3.10 ),

Rreg(S) =
N∑

n=1

`(〈f , Φ(xn)〉, yn))
N

+ λ1‖f‖2

2 + λ2‖w‖1, (3.11)

where 〈f , Φ(xn)〉 is a modified version of the decision function. We define Φ(·) ∈ H as a

marginalized mapping function based on [39 ], [40 ]

Φ(xn) =
∑

qn∈Q
P (qn|xn)kw(qn, ·). (3.12)

Note that (3.10 ) and (3.11 ) are equal when the quantizers are deterministic [39 ], [40 ], i.e.,

Pm(qm,n|xm,n) =


1, if qm,n = qm,

0, otherwise ,

for some qm ∈ Qm, (3.13)

for all m and sample n. Although the optimal solutions are generally derived based on the

upper bound, the optimal γ can be derived based on (3.13 ), has been studied in [39 ], [40 ].

With this in hand, we move on formulating a risk function for the OL setting, which will

build upon (3.11 ) for the BL case.
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3.2.2 Online Learning Problem Formulation

Instead of solving for the parameters offline (i.e., a BL approach), one of the main

contributions is to solve the problem in the online setting. Specifically, we need to up-

date the weight of the decision function fn ∈ H, the quantization rules across the sensors

Pn(qn|xn) ∈ P , and the weighted parameter vector wn satisfying (3.3 ) at each time n.

To simplify the presentation, we will use (γn = {fn, Pn(qn|xn), wn})N
n=1 as a solution set

sequence across the sensors per time n.

The risk function must accommodate new data points in each time. Thus, we formulate

the following instantaneous regularized risk function, inspired by [40 ], [49 ],

R(sn) = `
(
〈fn, Φn(xn)〉, yn

)
+ λ1‖fn‖2

2 + λ2,n‖wn‖1, (3.14)

which is an approximation of Rreg(S) using the data at time n. As before, λ1 > 0 and

λ2,n ≥ 0 for all n are regularization terms. Note that λ2,n controls how many sensors are

disabled which evolves over time. The modified decision function at time n is 〈fn, Φn(xn)〉,

inspired by (3.11 ). The marginalized mapping function Φn(xn) at time n is

Φn(xn) =
∑

qn∈Q
Pn(qn|xn)kw·,n(·, qn). (3.15)

We define kΦi,n(xi, xn) = 〈Φi(xi), Φn(xn)〉 the marginalized kernel [38 ]–[40 ], which is given

by

kΦi,n(xi, xn) =
∑

qi,qn∈Q
Pi(qi|xi)Pn(qn|xn)kwi,n(qi, qn), (3.16)

where kwi,n(qi, qn) is the weighted kernel with respect to time i and n. kw·,n(·, qn) can be

considered as the mapping function associated with wn at time n.
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In this paper, we will consider a computationally friendly weighted marginalized kernel

inspired by [107 ]2  , namely, the weighted count marginalized kernel with time i and n, i.e.,

kΦi,n(xi, xn)

=
M∑

m=1

∑
qm,n,qm,i∈Qm

wm,iwm,nPm,i(qm,i|xm,i)

× Pm,n(qm,n|xm,n)1(qm,i = qm,n, xi,m = xn,m),

(3.17)

where an additional constraint xi,m = xn,m is added in 1(·, ·) compared to [40 ], for all i =

1, 2, . . . , n. This change benefits the classification performance while ensuring the quantizer

of each sensor is a(n) (approximate) deterministic quantizer. A detailed discussion is shown

in Section 3.4.3 . There are various ways to construct kΦi,n(xi, xn), as long as the construction

of kwi,n(qi, qn) in (3.16 ) follows Definition 3.1.1 . In reality, the BL and OL approaches require

a feedback system which is not our focus to modify/disable the quantizers across the sensors.

3.3 Online Learning Methodology

Inspired by [38 ]–[40 ], we develop an MSOKSQ algorithm exploiting (sub)-gradient descent-

based methods to solve (3.14 ) by iteratively updating each element in (γn)N
n=1. This is because

(3.14 ) is convex assuming two of three elements in γn are given. In this paper, we focus on a

non-differential loss function used in (3.14 ), where the sub-gradients of elements in γn prior

to each update need to be derived. We can extend the results of the algorithm to any dif-

ferentiable loss function since the sub-gradient of a differentiable loss function is its gradient

[106 ]. Hence, after we initialize f1, w1, and P1(q1|x1) for all possible q1 ∈ Q and x1 ∈ X , we

first derive fn given Pn(qn−1|xn−1) and wn at time n−1 (Section 3.3.1 ), where Pn(qn−1|xn−1)

is the updated version of Pn−1(qn−1|xn−1). Then, we derive Pn+1(qn|xn) given fn and wn

at time n (Section 3.3.2 ). Finally, we derive wn+1 given fn and Pn+1(qn|xn) at time n, and

Algorithm 2 (Section 3.3.3 ).
2↑ Another example is the marginalized weighed linear kernel with time i and n, i.e., kΦi,n

(xi, xn) =∑M
m=1 wm,iwm,nE[φ(Qm)|xm,i]E[φ(Qm)|xm,n].
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3.3.1 Obtaining the weight of decision function fn

Motivated by [49 ], given Pn(qn−1|xn−1) and wn, the update of fn is occurred at time n−1

based on (3.14 ) using

fn = fn−1 − ηn−1∂fn−1R(sn−1), (3.18)

where ηn−1 ≥ 0 is the learning rate. ∂fn−1R(sn−1) is the sub-gradient of R(sn−1) with respect

to fn−1, which is

∂fn−1R(sn−1)

= ∂〈fn−1,Φn−1(xn−1)〉`
(
〈fn−1, Φ̃n−1(xn−1)〉, yn−1

)
× Φ̃n−1(xn−1) + λ1fn−1

(3.19)

using the chain rule. We define Φ̃n−1(·) as the updated marginalized mapping function at

time n − 1 such that

Φ̃n−1(xn−1) =
∑

qn−1∈Q
Pn(qn−1|xn−1)kw·,n−1(·, qn−1). (3.20)

Initializing f1 = 0, we update fn as

fn =
n−1∑
i=1

αi,nΦ̃i(xi), (3.21)

where αi,n is the coefficient at time n of Φ̃i(xi), which is,

αi,n =


−ηi∂〈fi,Φ̃i(xi)〉`

(
〈fi, Φ̃i(xi)〉, yi

)
, if i = n − 1,

(1 − ηn−1λ1)αi,n−1, if i < n − 1.

(3.22)

To form fn, the new coefficient αn−1,n is generated with Φ̃n−1(xn−1) based on the sub-gradient

of `(·, ·), and αi,n on the previous Φ̃i(xi) are multiplied by (1 − ηnλ1) for i = 1, 2, . . . , n − 1.

Followed by this, we can write the modified decision function, which is given by

〈fn, Φn(xn)〉 =
n−1∑
i=1

αi,nkΦi,n(xi, xn). (3.23)
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Algorithm 2 MSOKSQ algorithm for signal classification.
procedure MSOKSQ(S)

Set system parameters: N, M > 0
Initialize hyper-parameters: η1, ηP

1 , ηw
1 , λ1, λ2,1 > 0

Initialize hyper-parameters: f1 = 0, w1 = 1, and P (q|x) ∈ P for all possible q ∈ Q
and x ∈ X

for n = 1 : 1 : N − 1 do
Calculate Pm,n+1(qm,n|xm,n) using Proposition 3.3.1 , (3.29 ), (3.30 ), and (3.31 ), given

wn and fn

Update Pn+1(qn|xn) using (3.1 )
Calculate wm,n+1 using Proposition 3.3.2 , (3.38 ), and (3.40 ), given fn and

Pn+1(qn|xn)
Update wn+1 based on wm,n

Update fn+1 using (3.21 ), given wn+1 and Pn+1(qn|xn)
return (γn)N

n=1
end procedure

3.3.2 Obtaining Pn+1(qn|xn) for all possible qn and xn

We derive Pn+1(qn|xn) ∈ P given fn and wn for all possible qn ∈ Q and some xn ∈ X .

This is done by first deriving Pm,n+1(qm,n|xm,n) using a conditional (coordinate) sub-gradient

method described by [38 ]–[40 ] for all qm,n ∈ Qm, some xm,n ∈ Xm, and m = 1, 2, . . . , M .

Then, we use the relationship described in (3.1 ) to obtain the resulting Pn+1(qn|xn). Note

that Pm,n+1(qm,n|xm,n) is the updated Pm,n(qm,n|xm,n). The following Theorem gives the

sub-gradient of R(sn) with respect to Pm,n(qm,n|xm,n) for any weighted marginalized kernel

at time n, for all m.

Theorem 3.3.1. Given fn, wn, and an i.i.d sequence S, for any marginalized weighted kernel

defined in (3.16 ), ∂Pm,n(qm,n|xm,n)R(sn) is

∂Pm,n(qm,n|xm,n)R(sn)

=
n−1∑
i=1

∑
qi,qn∈Q

µ1,nαi,nPi(qi|xi)
Pn(qn|xn)

Pm,n(qm,n|xm,n)

× kwi,n(qi, qn),

(3.24)
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where qi and qn are possible quantization outputs across the sensors at time i and n, respec-

tively, and

µ1,n = ∂〈fn,Φn(xn)〉`
(
〈fn, Φn(xn)〉, yn

)
. (3.25)

Proof. Using the chain rule, we can write

∂Pm,n(qm,n|xm,n)R(sn)

= ∂〈fn,Φn(sn)〉`
(
〈fn, Φn(xn)〉, yn

)
× ∂Pm,n(qm,n|xm,n)〈fn, Φn(xn)〉.

(3.26)

The first term on the right hand side (RHS) of (3.26 ) can be represented by (3.25 ). The

second term on the RHS of (3.26 ) is

∂Pm,n(qm,n|xm,n)〈fn, Φn(xn)〉
(a)= ∂Pm,n(qm,n|xm,n)

n−1∑
i=1

∑
qi,qn∈Q

αi,nPi(qi|xi)

× Pn(qn|xn)kwi,n(qi, qn),

(3.27)

where (3.27 a) holds based on (3.16 ) and (3.23 ). Thus, (3.24 ) is obtained by applying (3.1 )

and (3.27 a), where

∂Pm,n(qm,n|xm,n)Pn(qn|xn) = Pn(qn|xn)
Pm,n(qm,n|xm,n) .

Based on Theorem 3.3.1 , the computational power of computing the sub-gradient in-

creases significantly when |Q| increases. To resolve this, the following proposition provides

a special form of ∂Pm,n(qm,n|xm,n)R(sn) based on (3.17 ).

Proposition 3.3.1. Given fn, wn, and an i.i.d sequence S, ∂Pm,n(qm,n|xm,n)R(sn) can be

shown based on (3.17 ) as

∂Pm,n(qm,n|xm,n)R(sn)

=
n−1∑
i=1

µ1,nαi,nwm,iwm,nPm,i(qm,i|xm,i)

× 1(qm,i = qm,n, xm,i = xm,n),

(3.28)

where µ1,n is defined in (3.25 ).
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Proof. As we use (3.26 ) in Theorem 3.3.1 , we can further expand (3.27 ) using (3.17 ) to get

(3.28 ).

Since Pm,n(qm,n|xm,n) must satisfy the summation constraint described in (3.2 ) for all

m and n, we can update Pm,n(qm,n|xm,n) to Pm,n+1(qm,n|xm,n) through the conditional sub-

gradient method with a simplex problem [39 ], [40 ], [108 ]. Note that a simplex constraint

refers to the summation in (3.2 ). We focus on this particular method because the quantizers

will become to deterministic quantizers after some time instance which will be discussed in

Section (3.4.3 ) in detail. The OL setting considered in this paper has the added complexity of

dealing with data per time. We must update Pm,n (qm,n|xm,n) at time n for some xm,n ∈ Xm

that is observed, as opposed to all possible xm,n ∈ Xm comparing to the BL setting [39 ],

[40 ], simultaneously. Hence, Pm,n+1 (qm,n+1|xm,n+1) does not necessarily correspond to the

updated version of Pm,n (qm,n|xm,n), e.g., Pm,n+1(qm,n|xm,n), because xm,n may not equal

xm,n+1, for all possible qm,n, qm,n+1 ∈ Qm and some n = 1, 2, . . . , N − 1.

For this reason, we introduce a time index nix ∈ {1, 2, . . . , N} with a positive integer

ix, where ix = 1, 2, . . . , Nx, (e.g., Nx ≤ N) represents the number of times that sensor m

observes x, i.e., xnix = x for some x ∈ Xm, when µ1,nix 6= 0 and αi,nix 6= 0 considering

(3.24 ) for all i = 1, 2, . . . , nix . One benefit of introducing this time index is to make sure

that the quantization rules strictly follows the summation described in (3.2 ). If the updated

quantization rules do strictly follow the summation, then it contradicts axioms of proba-

bility. Hence, to strictly follow the summation constraint, we show the updated as follows.

If ∂Pm,nix (qm,nix |xm,nix )R(snix ) < 0, then the update of Pm,nix (qm,nix |xm,nix ) inspired by [108 ],

is given by
Pm,nix+1(qm,nix |xm,nix )

= (1 − ηP
nix

)Pm,nix (qm,nix |xm,nix ) − 1(qm,nix = qm)

× ηP
nix

sgn
(
∂Pm,nix (qm,nix |xm,nix )R(snix )

)
.

(3.29)

However, if ∂Pm,nix (qnix |xm,nix )R(snix ) ≥ 0, then the updates are not performed, e.g.,

Pm,nix+1(qm,nix |xm,nix ) = Pm,nix (qm,nix |xm,nix ) (3.30)
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for all qm,n ∈ Qm. ηP
nix

> 0 is the learning rate of the quantizaiton rule. qm is picked as

qm = argmax
qm∈Qm

∥∥∥∂Pm,nix (qm,nix =qm|xm,nix )R(snix )
∥∥∥. (3.31)

Followed by this, the quantization rule when sensor m observes x for the ix +1 times at time

nix+1 is given by

Pm,nix+1(qm,nix+1|xm,nix+1) = Pm,nix+1(qm,nix |xm,nix )

because xm,nix+1 = xm,nix . Then, the expression of Pn+1(qn|xn) follows (3.1 ) and the fact

Pm,n+1(qm,n|xm,n) = Pm,nix+1(qm,nix |xm,nix ), for all m. (3.32)

3.3.3 Obtaining weighted parameter vector wn+1

Finally, we consider obtaining the updated weight parameter vector wn+1 given fn and

Pn+1(qn|xn). Recalling the purpose of introducing wn is to properly select the M most reli-

able sensors among all sensors in the classification model. Thus, the developed OL algorithm

updates wn+1 to promote sparse sensor selection. The update will be terminated when at

most M elements of wn+1 are not 0.

To make a fair reliability comparison, we initialize w1,1 = · · · = wM,1 and λ2,1 ≥ 0. We

update wn+1 using one of the conditional sub-gradient methods that can enforce the sparse

solution, e.g., the project sub-gradient method, to update each wm,n+1 individually. Thus,

we first derived a general expression of the sub-gradient of R(sn) with respect to wm,n using

the chain rule for any weighted marginalized kernel at sensor m, which is given by

∂wm,nR(sn) = µ2,n∂wm,n〈fn, Φ̃n(xn)〉 + λ2,n, (3.33)

where Φ̃n(xn) defined by (3.20 ) is the updated marginalized mapping function at time n.

µ2,n in (3.33 ) is given by

µ2,n = ∂〈fn,Φ̃n(xn)〉`
(
〈fn, Φ̃n(xn)〉, yn

)
. (3.34)
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The term that multiplies µ2,n using (3.23 ) is given by

∂wm,n〈fn, Φ̃n(xn)〉 = ∂wm,n

n−1∑
i=1

∑
qi,qn∈Q

αi,nPn+1(qn|xn)

× Pi(qi|xi)kwi,n(qi, qn).
(3.35)

The computational power for solving (3.35 ) increases with |Q|. Thus, the following proposi-

tion uses (3.17 ) to obtain ∂wm,nR(sn) in order to reduce the computational power.

Proposition 3.3.2. Given fn, Pn+1(qn|xn), and an i.i.d sequence S, ∂wm,nR(sn) can be

shown based on (3.17 ) as

∂wm,nR(sn)

= λ2,n +
n−1∑
i=1

∑
qm∈Qm

(
µ2,nαi,nwm,iPm,i(qm,i|xm,i)

× Pm,n+1(qm,n|xm,i)1(qm,i = qm,n, xm,i = xm,n)
)

.

(3.36)

Proof. The proof starts by considering (3.33 ) which can be written in terms of (3.34 ) and

(3.35 ). Thus, we can end the proof by obtaining an expression using (3.17 ) for (3.35 ), which

is
(3.35 ) =

n−1∑
i=1

∑
qm,i∈Qm

αi,nwm,iPm,i(qm,i|xm,i)

× Pm,n+1(qm|xm,n)1(qm,i = qm,n, xm,i = xm,n).
(3.37)

Thus, we obtain (3.36 ) using (3.17 ), (3.33 ), and (3.37 ).

Followed by this, we can employ a projected sub-gradient method to update wn+1 while

satisfying the constraint in (3.3 ), for all n. Additionally, given the objective of selecting

M ≤ M sensors to be kept on, the update is terminated once we reach a time instance n

such that M − M elements of wn+1 are zero. Thus, at time n, we update

wm,n+1


w̃mM

‖w̃‖1
, if ‖wn‖0 < M − M,

wm,n+1 = wm,n, if ‖wn‖0 = M − M,

(3.38)
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to maintain the constraint (3.3 ), where the mth element of w̃ is

w̃m = max{0, wm,n − ηw
n ∂wm,nR(sn)} (3.39)

and ηw
n > 0 is learning rate with respect to wn. To accomplish M sensors are enabled, we

can design the regularization constant λ2,n such that at most one sensor is set to zero in

(3.38 ) at each time n, i.e.,

λ2,n = min
{
{wm,n − ∂wm,n〈fn, Φ̃n(xn)〉

× ∂〈fn,Φ̃n(xn)〉`
(
〈fn, Φ̃n(xn)〉, yn

)
}M

m=1

}
.

(3.40)

There are various control settings that can be imposed here; for example, combining (3.38 )−(3.40 )

where we set ηw
n = 1 will shorten number of time instance to achieve the similar goal. Addi-

tionally, other settings for λ2,n which will result in ‖wn‖0 = M − M while yielding possibly

different values of wn+1 comparing to the described equations (3.38 )−(3.40 ). In this paper,

we focus on disabling a sensor per time to make the algorithm adjustable over time. For

example, a sensor could be the most reliable sensor at time n, but it might become the less

reliable sensor at time n + 1 due to the external environment or interference which have not

been made here.

Algorithm 2 summarizes the procedure developed in this section when M sensors are

enabled. Given the fact that we turn to the non-differentiable, soft margin loss function

from (3.9 ), we can express (3.22 ), (3.25 ), and (3.34 ) based on

∂〈fn, Φn(xn)〉`
(
·, ·
)

=


−yn, if yn〈fn, Φn(xn)〉 ≤ ρ,

0, otherwise.

(3.41)

3.4 Performance Analysis

In this section, we analyze the classification performance of the OL setting. Thus, we

first provide reasonable assumptions for the OL and BL approaches similar to [39 ], [40 ],

[49 ] (Section 3.4.1 ). Then, we study the relationship between the OL and BL approaches
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(Section 3.4.2 ). Followed by this, we discuss the update behavior of the quantization rules

across the sensors and weighted parameter vector (Section 3.4.3 ). Finally, the convergence

analysis is made between the OL and the BL approaches (Section 3.4.4 ).

3.4.1 Assumptions

We define a set Γ that contains all possible (γn)N
n=1 for the OL setting and γ for the BL

setting for all elements of (γn)N
n=1 and γ. Moreover, we define a deterministic set Γd ⊂ Γ

such that the weight of the decision function and the weight parameter vector are jointly

derived based on the quantization rules defined in (3.13 ) for both the OL and the BL setting.

We assume that xn is the nth sample at the nth time of the OL setting while xn represents

the nth sample of the BL setting.

Given a fix i.i.d. sequence S and the weighted parameter vectors with respect to the OL

setting wn and BL setting w satisfy (3.3 ), there is Ψ > 0 such that ‖Φn(xn)‖, ‖Φ(xn)‖ ≤ Ψ

inspired by (3.16 ), for all n and xn ∈ X . Note that Φn(xn) and Φ(xn) relate to the OL and

BL setting, respectively. We assume that f derived by the BL approach is bounded such

that ‖f‖ ≤ F for any f ∈ H, where

F ≥ cΨ
λ1

, for λ1 > 0, for some c > 0. (3.42)

The value of c > 0 is derived based on the loss function `(·, ·) that satisfies the Lipschitz

condition [49 ]

‖`(ξ1, y) − `(ξ2, y)‖ ≤ c‖ξ1 − ξ2‖, (3.43)

where ξ1, ξ2 ∈ R and y ∈ Y , for some c. Hence, for the OL approach, given ‖f1‖ = 0, we

bound ‖fn+1‖ ≤ (1 − λ1ηn)‖fn‖ + ηncΨ considering (3.19 ) for all possible fn and n. Hence,

we need to set ‖fn‖ ≤ cΨ
λ1

in order to maintain the fact ‖fn+1‖ ≥ 0, for all n. As we set

‖Φn(xn)‖ ≤ Ψ and ‖fn‖ ≤ cΨ
λ1

, we obtain ‖∂fnR(sn)‖ ≤ 2cΨ.
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3.4.2 Connection Between OL and BL Approach

Inspired by [41 ], [42 ], [49 ], [106 ], the performance of the OL approach is analyzed theoret-

ically based on the relationship between the average instantaneous regularized risk function

related to the OL setting, i.e.,

Ravg(S) = 1
N

N∑
n=1

R(sn) (3.44)

and the regularized empirical risk function Rreg(S) defined in (3.11 ). Thus, we start this

section by showing an inequality first.

As we consider (3.18 ), the inequality inspired by [49 ]

1
ηn

(‖fn − f‖2) − 1
ηn+1

‖fn+1 − f‖2

≥ −4ηnc2Ψ2 + 2R(sn) − 2Rf (sn)

+
(

1
ηn

− 1
ηn+1

)
‖fn+1 − f‖2

(3.45)

holds based on (3.43 ) and the convexity of R(·) such that 〈∂fnR(sn), fn − f〉 ≥ Rf (sn)−R(sn),

where

Rf (sn) = `
(
〈f , Φn(xn)〉, yn

)
+ λ1

2 ‖f‖2 + λ2,n‖wn‖1. (3.46)

The only difference between R(sn) and Rf (sn) is the weight of the decision function com-

paring (3.14 ) and (3.46 ).

Lemma 1. Given an i.i.d sequence S, suppose γn ∈ Γ is produced Algorithm 2 with ηn =

η1n
−0.5 and η1 ∈ (0, 1], for all n, then, for any γ ∈ Γ and some c > 0,

Ravg(S) =
N∑

n=1

cF ‖Φn(xn) − Φ(xn)‖
2N

+
N∑

n=1

c
∥∥∥λ2,n‖wn‖1 − λ2‖w‖1

∥∥∥
2N

+ Rreg (S) + O(N−0.5).
(3.47)
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Proof. We start the proof by first considering the RHS and left hand side (LHS) of (3.48 ),

which is given by

‖f1 − f‖2

η1
− ‖fn+1 − f‖2

ηn+1

(a)=
N∑

n=1

[
‖fn − f‖2

ηn

− ‖fn+1 − f‖2

ηn+1
+
(

1
ηn

− 1
ηn+1

)
‖fn+1 − f‖2

]
(b)
≥ −8c2η1Ψ2N0.5 + 2

N∑
n=1

R(sn) − 2
N∑

n=1
Rf (sn) − 4F 2N0.5

η1
(c)
≥ −8c2η1Ψ2

N0.5 + 1
N

N∑
n=1

2R(sn) − 2Rreg(S) − 4F 2

N0.5η1

− c
N∑

n=1

(
F ‖Φn(xn) − Φ(xn)‖ +

∥∥∥λ2,n‖wn‖1 − λ2‖w‖1

∥∥∥)
2N

.

(3.48)

Inspired by [49 ], we obtain (3.48 a) by adding ∑N
n=1

‖fn+1−f‖2

ηn+1
−∑N

n=1
‖fn+1−f‖2

ηn
. The first

three terms on the RHS of (3.48 b) are derived using ∑N
n=1 ηn ≤ 2ηN0.5 shown in [49 ] and

(3.45 ). The fourth term on the RHS (3.48 b) holds because ‖fn+1 − f‖2 ≤ 4F 2,

N∑
n=1

1
ηn

− 1
ηn+1

= 1
η1

− 1
ηN+1

= 1
η1

− (N + 1)0.5

η1
,

and −N0.5 ≤ 1 − (N + 1)0.5. We derive (3.48 c) using

1
N

( N∑
n=1

Rf (sn)
)

− Rreg(S)

(a)
≤ 1

N

N∑
n=1

∥∥∥∥` (〈f , Φn(xn)〉, yn)

− ` (〈f , Φ(xn)〉, yn) + (λ2,n‖wn‖1 − λ2‖w‖1)
∥∥∥∥

(b)
≤ c

N

N∑
n=1

(
F‖Φn(xn) − Φ(xn)‖

+
∥∥∥λ2,n‖wn‖1 − λ2‖w‖1

∥∥∥),

(3.49)

where (3.49 a) follows Jensen’s inequality and the weights of 〈f , Φn(xn)〉 and 〈f , Φ(xn)〉 are

the same. (3.49 b) follows (3.43 ) and Cauchy Schwartz inequality. Now, we show

‖f1 − f‖2

η1
− ‖fn+1 − f‖2

ηn+1
≤ F 2

η1
− 0, (3.50)

47



where (3.50 ) holds based on the facts f1 = 0 and ‖fn+1 − f‖ ≥ 0. Then, (3.47 ) is justified

considering (3.48 ) and (3.50 ).

Lemma 1 establishes the relationship between the OL and the BL approach. However, the

derived solution in (3.47 ) is very loose which motivates us to further investigate Algorithm

2 and assumptions that can be used to tighten (3.47 ).

3.4.3 Quantization Rules and Weight Parameter Vector Analysis

To tighten up the bound shown in (3.47 ), the goal is to close the gap introduced by

(3.47 ). The first term of (3.47 ) relates to the quantization rules and the weighed parameter

vector while the second term relates to the weight parameter vector. Thus, we need to study

how Algorithm 2 affects the updates of the quantizaiton rules and the weighted parameter

vector per time when the soft margin loss function (3.9 ) for the binary classification problem

is considered.

Quantization Rules Analysis

The quantizaiton rules across the sensors have significant impacts on the classification

performance which will be shown in Section 3.5 . However, the update behaviors of the

quantization rules across the sensors have never been discussed even in the BL [39 ], [40 ]

and OL approaches [38 ]. Thus, we are interested in studying the update behaviors of the

quantization rules across the sensors based on (3.17 ) with respect to time n, for all n. Before

we provide the detailed explanations, some facts needs to be addressed.

Recalling nix ∈ {1, 2, . . . , N} is the time index, where ix represents the number of times

that sensor m obverses x when µ1,nix 6= 0 and αi,nix 6= 0 for all nix . The values of αi,nix and

µ1,nix based on (3.22 ) and (3.25 ) are affected by ρ defined in (3.9 ), for all nix . Hence, for any

x ∈ X , as we consider (3.22 ), (3.25 ), and (3.41 ), the following relationship is given by

sgn
(
αi,nix1(xm,i = xm,nix )

)
= −sgn(µ1,nix ). (3.51)
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This indicates that

sgn
(
∂Pm,nix (qm,nix |xm,nix )R(snix )

)
< 0, for all qm,nix ∈ Qm (3.52)

Hence, the update of Pm,nix+1(qm,nix |xm,nix ) occurs when ∂Pm,nix (qm,nix |xm,nix )R(snix ) < 0

for some qm,nix ∈ Qm. Additionally, Pm,nix (qm,nix = qm|xm,nix ) is increased by ηP
nix

−

ηP
nix

Pm,nix (qm,nix = qm|xm,nix ) > 0 while Pm,nix (qm,nix 6= qm|xm,nix ) is reduced by ηP
nix

based

on (3.29 ).

Before we introduce the following proposition, we first initialize

Pm,n1(qm,n1|xm,n1) = Pm(qm|xm), (3.53)

for n1 ∈ {1, 2, . . . , N} and m = 1, 2, . . . , M such that

Pm(qm|xm) = max
qm∈Qm

{Pm(qm|xm)} (3.54)

for all xm ∈ Xm, and some qm ∈ Qm. Then, qm in (3.54 ) is guaranteed to be selected at

each iteration based on (3.22 ), (3.29 ), (3.31 ), and (3.51 )−(3.53 ). This motivate us to find

the expressions of the quantization rules across the sensors over time

Proposition 3.4.1. Given an i.i.d sequence S, suppose quantization rules across the sensors

are initialized based on (3.53 ) and (3.54 ), and `(·, ·) defined in (3.9 ) with a properly selected

ρ such that {∂Pm,nix (qm,nix |xm,nix )R(snix ) < 0}Nx
ix=1, then Pm,nNx

(qm,nNx
|xm,nNx

) is updated based

on (3.17 ) as

Pm,nNx+1(qm,nNx
|xm,nNx

) =



1 − O
(
(1 − η)Nx

)
,

if qm,nNx
= qm,

O
(
(1 − η)Nx

)
,

otherwise,

(3.55)

49



where a fixed qm ∈ Qm is described by (3.54 ) and

η = 1 −
Nx∏

ix=1
(1 − ηP

nix
)

1
Nx . (3.56)

Proof. This proof starts with generalizing the expression of Pm,nNx+1(qm,nNx
6= qm|xm,nNx

),

which is given by

Pm,nNx+1(qm 6= qm|xm,nNx
)

=
Nx∏

ix=1
(1 − ηP

n1)Pm,n1(qm,n1 6= qm|xm,n1)

= (1 − η)NxPm,n1(qm,n1 6= qm|xm,n1)

= O
(
(1 − η)Nx

)
(3.57)

using (3.29 ), (3.31 ), (3.51 )-(3.53 ), and (3.56 ). Followed by this, we use the summation

described in (3.2 ) to obtain Pm,nNx+1(qm,nNx
= qm|xm,nNx

) = 1 − O
(
(1 − η)Nx

)
.

Based on Proposition 3.4.1 , as we set the learning rate ηP
nix

= 1 for all nix , the quantizer

of sensor m will become a deterministic quantizer for all m when Nx > 1. If a fixed Nx is

assumed to be large, e.g., Nx � 1, then the quantizer of sensor m can be approximated as

the deterministic quantizer when ηP
nix

∈ (0, 1) for all nix and m = 1, 2, . . . , M .

Weighted Parameter Vector Analysis

The purpose of Algorithm 2 for solving wn is to handle the fact that the sensor output

will vary in quality, and M − M sensors can be disabled with minimal effect on classification

performance. Moreover, since the optimization problems and algorithms used for computing

the desired solutions for the OL and BL approaches are different it is challenging to show

that wn equals or approximately equals to w. The values of {wn}N
n=1 are not unique which

depend on the control settings discussed in Section 3.3.3 . Hence, closing the gap in (3.47 )

under the assumptions made in this paper can be very challenging.

However, since the primary goal is to train the decision function and the quantization

rules across the sensor, this allows us to study the case when the sensor selection strategy
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is not used (i.e., M = M). Additionally, the algorithms proposed by [39 ] and [40 ] are the

same when λ2 = 0 and fixed w = 1. Hence, we can study Ravg(S) and Rreg(S) defined in

[39 ] when λ2 = λ2,n = 0 and w = wn which indicates that

kw·,n(·, qn) = kw(·, qn), for n = 1, 2, . . . , N, (3.58)

where kw·,n(·, ·) and kw(·, ·) associate with the OL and the BL setting [39 ], respectively.

3.4.4 Convergence Analysis

Before the convergence bound is studied, some assumptions made in [39 ] need to be

addressed. For the BL approach in [39 ] (same assumptions made in [40 ]), the relationship

between the true risk function defined in LHS of (3.59 ) and empirical risk function of the

BL approach (the first term on the RHS of (3.11 )) have been analyzed in detail in [39 ], [40 ]

using
argmin
γtrue∈Γ

EX,Y [EQ [` (f(Q), y)| X, Y ]]

= argmin
γ∈Γd

N∑
n=1

`(〈f , Φ(xn)〉, yn))
N

+ O(N−0.5),
(3.59)

where γtrue is the optimal solution of the true risk function assuming the fusion center and

all sensors know P (X, Y ). γ ∈ Γd indicates that

P (qn|xn) =


1, if qn = q,

0, otherwise,
for some q ∈ Q. (3.60)

Theorem 3.4.1. Given `(·, ·) in (3.9 ) with a properly selected ρ, ηn = η1n
−0.5, an i.i.d

sequence S such that all sensors observe all possible x ∈ Xm at least Nx + 1 times at time

N , wn = w, and λ2,n = λ2 = 0, for n and some fixed N < N , suppose the initialized

quantization rules of the OL approach described in (3.53 ) and (3.54 ), and the deterministic

quantization rules of the BL approach described in (3.13 ) follow (3.54 ), then

Ravg(S) = Rreg (S) + O(h(N)), (3.61)

51



such that h(N) is given by

h(N) = max
{
N−0.5, O((1 − η)Nx)

}
, (3.62)

where η is defined by Proposition 3.4.1 and a very large N .

Proof. Given the fact that λ2,n = λ2 = 0 and wn = w for all n, (3.47 ) can be re-written

based on Lemma 1 as

Ravg(S) =
N∑

n=1

cF ‖Φn(xn) − Φ(xn)‖
2N

+ Rreg (S) + O(N−0.5). (3.63)

The norm in (3.63 ) can be written

‖Φn(xn) − Φ(xn)‖

=
∥∥∥∥ ∑

qn∈Q
kw·,n(·, qn)

(
Pn(qn|xn) − P (qn|xn)

)∥∥∥∥. (3.64)

where (3.64 ) follows (3.58 ). Note that Pn(qn|xn) and P (qn|xn) are quantization rules across

the sensors with respect to the OL and BL approaches, respectively. Hence, we need to

obtain the expression of Pn(qn|xn) in order to complete the proof, for all possible qn ∈ Q,

xn ∈ X , and n = 1, 2, . . . N .

There exits a time instance N < N such that each sensor observes all possible x at least

Nx times. After time n such that n ≥ N , we can approximate the quantization rules across

the sensors based on Proposition 3.4.1 and (3.2 ) as

Pn(qn|xn) =


1 − O

(
(1 − η)Nx

)
, if qn = q,

O
(
(1 − η)Nx

)
, otherwise,

(3.65)

where a fixed q ∈ Q. Now, as we consider

N∑
n=1

cF ‖Φn(xn) − Φ(xn)‖
2N

=
N−1∑
n=1

cF ‖Φn(xn) − Φ(xn)‖
2N

+
N∑

n=N

cF ‖Φn(xn) − Φ(xn)‖
2N

,

(3.66)
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we can approximate

N∑
n=1

cF ‖Φn(xn) − Φ(xn)‖
2N

≤ NcFΨ
2N

= O
( 1

N

)
(3.67)

and
N∑

n=N+1

cF ‖Φn(xn) − Φ(xn)‖
2N

= O((1 − η)Nx) (3.68)

because the initialized quantization rules of the OL and the deterministic quantization rules

of the BL follow (3.54 ). Hence, (3.61 ) follows (3.67 ) and (3.68 ).

Note that in the case when η = ηP
1 = ηP

2 = · · · = ηP
N = 1, (3.61 ) can be written based on

Proposition 3.4.1 as

Ravg(S) = Rreg(S) + O(N−0.5). (3.69)

Remark 1. Placing a deterministic quantizer at each sensor indicates that the size of |X |

is reduced to |Q|. For any x ∈ X , the class label of x is always the same as that of

q, where q is the corresponding quantization output of x. Thus, we are also interesting

in analyzing the classification performance between a log2|Qm|−bit deterministic quantizer

and the infinite-resolution deterministic quantizer. In this paper, the infinite-resolution

deterministic quantizer indicates that the quantization operation can be neglected, i.e., Qm =

Xm. Each sensor using an infinite-resolution deterministic quantizer also indicates that

sensors are equally reliable and Algorithm 2 can be treated as native online regularized-risk

minimization algorithm (NORMA) [49 ]. NORMA described by [49 ] only trains the weighted

of the decision function that can be implemented in the proposed multi-sensor model. Given

the fact that the classification performance of NORMA [49 , Theorem 4] are approximately

equal to the BL setting when the infinite-resolution deterministic quantizers are considered,

we use NORMA as the upper bound based line in Section 3.5 assuming N is very large.

3.5 Numerical Performance Analysis

In this section, we evaluated Algorithm 2 and analytic results based on two types of finite

datasets which are 2-class randomly generated dataset and the 3-class Iris dataset introduced
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by University of California, Irvine (UCI) repository dataset [109 ]. For both cases, we set the

learning rate for fn, ηn = 0.1n−.5, learning rate for Pn(·|·), ηP
n = 0.1, learning rate for wn,

ηw
n = 0.5, margin parameter ρ = 1, and λ1 = 0.1. We set f1 = 0 and w1 = 1. We initialize

Pn(·|·) that follows (3.53 ) and (3.54 ). The simulations are done using the weighted count

marginalized kernel. Inspired by [110 ], the quantization points are bounded in [ − A, A] that

are drawn from

Qm =
{

(2τ + 1 − |Qm|)A
|Qm|

}|Qm|−1

τ=0
. (3.70)

Before we analyze the following figures, we need to define labels appeared in each simula-

tion. We define MSOKSQ without updating wn and log2[|Qm|]−bit deterministic quantizer

MSOKSQ when Algorithm 2 is performed with wn = 1 for all n and any Qm. MSOKSQ

without updating Pm,n(·|·) and wn can be considered as NORMA because Pm,n(·|·) and wn

are not being updated by Algorithm 2 for all n. MSOKSQ optimally selects M sensors means

that Algorithm 2 is performed given M sensors need to be enabled. MSOKSQ randomly

selects M sensors indicates that M sensors are randomly enabled comparing to MSOKSQ

optimally selects M , which can be done by reassigning the value of wm,n produced by Al-

gorithm 1 randomly for all m. NORMA introduced by [49 ] can be used for the proposed

multi-sensor mode, where each sensor forwards its observation directly to the fusion center.

It acts as the upper bound baseline when we analyze the proposed system model because each

sensor can be considered to equip infinite-resolution deterministic quantizer, i.e., Qm = Xm,

please refers to Remark 3 .

3.5.1 Randomly Generated Data for Binary Classification Problem

Now, we consider the first finite dataset, i.e., the two-class randomly generated dataset.

It is randomly generated based on |Xm|, which is

xm =


y − 0.75 ((1 + c1)c2 + c2

2) , when y = 1,

y + 0.75 ((1 + c1)c2 + c2
2) , when y = −1,

(3.71)
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where c1 ∈ (0, 1] a constant and c2 is uniformly drawn from (0, 1) such that xm ∈ [−1, 1], for

m = 1, 2, . . . , M . Any element in Xm belongs to the interval [−1, 1] such that X1, X2, . . . , XM

are not necessarily equivalent to each other. Although there are various ways to generate

the data, we consider (3.71 ) because we can produce separable and non-separable dataset

when we properly select c1. For example, at sensor m, Fig. 3.2 shows the construction of the

two-class finite sets Xm with 100 data points (50 data points/class). Followed by this, Fig.

3.3 shows the performance of (3.71 ) over N . In particular, Xm with c1 = 0.1 is separable

dataset while Xm with c1 = 1 is non-separable dataset.

Fig. 3.4 −Fig. 3.6 are simulations based on the following assumptions. We consider

N = 600 time instances. We assume that Pm,n(qm,n|xm,n) is initialized based on (3.2 ) for

all possible qm,n ∈ Q and xm,n ∈ Xm. Given the fact any element in X belongs to [ − 1, 1],

each sensor equips with a 3-bit uniform quantizer, where Qm is defined as (4.7 ). Followed

by this, it is straightforward to generalize Qm when 1-bit and 2-bit uniform quantizers are

considered. At time n, each sensor makes its observations xm,n that is assumed to be drawn

from Xm randomly, where |Xm| = 20 and 10 data points/class. Moreover, the class of xm,n,

e.g., yn ∈ {−1, 1} is assumed to be the same, for m = 1, 2, . . . , M . The fusion center first

classifies the quantization outputs qn forwarded by the sensors using the decision function

〈fn, kw·,n(·, qn)〉 =
n−1∑
i=1

αi,n
∑

qi∈Q
Pi(qi|xi)kwi,n(qi, qn), (3.72)

where kwi,n(qi, qn) follows (3.4 ). Then, the fusion center updates the desired solution γn

based on Section 3.3 . The accuracy classification rate (ACR) is defined as a classification

performance metric, which is

ACR =
N∑

i=1

1
N
1
(
sgn

(
〈fi, kw·,i(·, qi)〉

)
= yi

)
. (3.73)

In Fig. 3.4 , we study how the number of sensors and optimal quantization rules affect

the ACR performances. We consider the number of sensor m = 1, 5, and 10. We assume

that the elements in a two-class finite dataset are non-separable, i.e., c1 = 0.1 described by

(3.71 ). The ACR for both MSOKSQ without updating wn and MSOKSQ without updating
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Pm,n(·, ·) and wn increase with number of sensors. As the time instance increases, MSOKSQ

without updating wn offers superior ACR performance than MSOKSQ without updating

Pm,n(·|·) and wn. Moreover, the ACR performances of MSOKSQ without updating wn

converge to the ACR performance of NORMA because the randomized quantizers become

the deterministic quantizers. As each sensor uses a 1-bit deterministic quantizer, the ACR

performance of MSOKSQ overlaps NORMA, refers Remark 2.

Fig. 3.5 analyzes the ACR performances for both optimal and random sensor selections

when the total number of sensor is M = 11. In particular, we compare three different cases

when M = 1, 5, and 10 number of sensors are enabled given sensors equip 3-bit quantiz-

ers. Although the ACR performances of MSOKSQ with optimal/random sensor selection

increase with time, MSOKSQ optimal sensor selection out-performs MSOKSQ random sen-

sor selection for M = 1, 5, and 10. Followed by this, the ACR performances of MSOKSQ

optimal/random sensor selections converge to NORMA as the time instance increases for

all M . This is because the randomized quantizers become the deterministic quantizers. Fi-

nally, as each sensor uses a 2-bit deterministic quantizer, the ACR performance of MSOKSQ

overlaps NORMA, refers Remark 2.

Fig. 3.6 demonstrates the behavior of the quantization rule when xm,n = 0.4329 for all

m and n. The assumptions of Fig. 3.6 are the same as Fig. 3.5 . Given Qm is defined in

(4.7 ), the quantization rule of sensor m is initialized such that

Pm,n1(qm,n1 = 0.5|xm,n1 = 0.4329)

= max
qm,n1x

∈Qm

Pm,n1(qm,n1|xm,n1 = 0.4329).
(3.74)

Fig. 3.6 indicates that Pm,n1(qm,n1 = 0.5|xm,n1 = 0.4329) approaches to one as ix increases

while maintaining the summation constraint of the quantizaiton rules proposed by (3.2 ).

Note that ix is the ixth times sensor m observes 0.4329 when ∂Pm,nix (qm,nix |xm,nix =0.4329)R(snix ) 6=

0. Thus, Fig. 3.6 validates Proposition 3.4.1 .
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Figure 3.2. Construction of Xm based on (3.71 ) with c1 = 0.1 and c1 = 1.

Figure 3.3. Demonstrating examples that sensor m observes data/time drawn
from the non-separable (c = 0.1) and separable dataset (c = 1).

3.5.2 UCI Iris Data for Multi-Class Problem

Although this paper focuses on the binary classification problem, Algorithm 2 can also

handle a multi-class classification problem. Here, we introduce a second type of the finite

dataset which is the 3-class Iris dataset [109 ] whose labels at time n, yn = [y1,n, y2,n] are

drawn from Y ∈ {[ − 1, 1], [1, −1], [1, 1]}. Moreover, given the fact each sensor uses a

scalar quantizer, we assume that each xm ∈ Xm has the same class such that X1 = X2 =

· · · = XM , where Xm is the finite dataset representing the petal width of the Iris [109 ], for

m = 1, 2, . . . , M . Followed by the petal width of the Iris, if we assume each sensor equips a
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Figure 3.4. The ACR performance for Algorithm 2 between MSOKSQ with-
out updating wn and MSOKSQ without updating wn and Pn(·|·) assuming
a 3-bit quantizer is used for each sensor. The ACR performance for between
NORMA and MSOKSQ when each sensor uses a 1-bit deterministic quantizer
given M = 10.

Figure 3.5. The ACR performance for Algorithm 2 between MSOKSQ with
optimal/random sensor selection when M = 1, 5, and 10 sensors are enabled
among M = 11 and 3-bit quantizer is used for each sensor. The ACR per-
formance for between NORMA and MSOKSQ when each sensor uses a 2-bit
deterministic quantizer given M = 11.

2-bit quantizer, then, the quantization points can be drawn from {−3, −1, 1, 3} [110 ]. Over

N = 600 time instances, each sensor makes its observations xm,n that is assumed to be

drawn from Xm randomly per time instance, for all m. One way of solving this multi-class

problem is to use the One Versus All (OVA) technique which has been extensively discussed
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Figure 3.6. Demonstrating the value of Pm,nix (qm,nix = 0.5|xm,nix = 0.4329)
for ix = 1, 2, . . . , 30, where ix is the ixth times that sensor m observes 0.4329
when ∂Pm,nix (qm,nix |xm,nix =0.4329)R(snix ) 6= 0.

ACR =
n∑

i=1

1
(
sgn

(
〈f1,i, kw·,i(·, qi)〉

)
= y1,n, sgn

(
〈f2,i, kw·,i(·, qi)〉

)
= y2,n

)
n

, (3.75)

in [106 ], [111 ], [112 ]. As a result, we need two decision functions, where the first and the

second decision functions classify the first label, y1,n and the second label, y2,n, respectively.

This means Algorithm 1 runs twice with respect to each decision function independently.

The ACR for the multi-class problem is defined in (3.75 ), where f1,i and f2,i are the weights

of the decision functions that will be use to determine yi, for i = 1, 2, . . . , n.

The purpose of providing Fig. 3.7 is to show how the number of quantization bits affects

the ACR for the multi-class problem. We assume the total number of sensor M = 11. We

compare the cases when each sensor produces 1-bit and 2-bit outputs assuming M = 1, 5,

and 10 number of sensors are enabled. At the beginning, the ACR performance of the 1-

bit quantizer exceeds that of the 2-bit quantizer because the quantization rules of the 1-bit

quantizer becomes deterministic faster than the quantization rules of the 2-bit quantizer.

However, a 1-bit quantizer maps xm,n onto one of the two quantizaiton points. Hence, as

the time instance increases, Fig. 3.7 shows that the ACR performance of using a 2-bit

quantizer/sensor out-performs a 1-bit quantizer/sensor as expected. Intuitively, the system

requires at least 2-bit quantizers assuming each sensor uses same number of quantizer to
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handle a 3-class problem. Moreover, as each sensor uses a 1-bit deterministic quantizer, the

ACR performance of MSOKSQ overlaps MSOKSQ optimal sensor selection given M = 5, 10,

refers Remark 2.

The purpose of Fig. 3.8 is same as Fig. 3.5 which shows the ACR performance of both

optimal and random sensor selection when M = 11. We assume each sensor equips 2−bit

quantizer. The assumptions made in Fig. 3.8 shares similar to Fig. 3.7 . We compare three

different cases when M = 1, 5, and 10 number of sensors are assumed to be enabled. Fig.

3.8 shows a similar trend to that of Fig. 3.5 , as would be expected, please refers to Fig.

3.5 . Moreover, as each sensor uses a 2-bit deterministic quantizer, the ACR performance of

MSOKSQ overlaps NORMA, refers Remark 2.

The purpose of Fig. 3.9 much like Fig. 3.4 studies how the number of sensors and optimal

quantization rules affect the ACR performance defined in (3.75 ). Similar to Fig. 3.4 , we

consider the number of sensors m = 1, 5, and 10. Fig. 3.9 shows a trend similar to that of

Fig. 3.4 as expected, please refers the analysis in Fig. 3.4 . Finally, as each sensor uses a

3-bit deterministic quantizer, the ACR performance of MSOKSQ overlaps NORMA, refers

Remark 2.

Remark 2. Sensors are equally reliable when the deterministic quantizers are considered.

As Fig. 3.4 , Fig. 3.5 , and Fig. 3.7 − Fig. 3.9 show, if we properly select the size of

the quantization points of the deterministic quantizers, e.g., |Qm|, for all m, the ACR

performance of the log2[|Qm|]-bit deterministic quantizer converge to NORMA.
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Figure 3.7. The ACR performance for Algorithm 2 between MSOKSQ with
optimal and random sensor selection. M = 1, 5, and 10 sensors are assumed
to be enabled and a 2−bit quantizer is used for each sensor. The ACR per-
formance for between NORMA and MSOKSQ when each sensor uses a 1-bit
deterministic quantizer given M = 11.

Figure 3.8. The ACR performance for Algorithm 2 between MSOKSQ with-
out updating wn and MSOKSQ without updating wn and Pn(·|·). M = 1, 5,
and 10 sensors are assumed to be enabled and a 2-bit quantizer is used for each
sensor. The ACR performance for between NORMA and MSOKSQ when each
sensor uses a 2-bit deterministic quantizer when M = 11.
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Figure 3.9. The ACR performance for Algorithm 2 between MSOKSQ with
optimal and random sensor selection. M = 1, 5, and 10 sensors are assumed
to be enabled and a 2−bit quantizer is used for each sensor. The ACR per-
formance for between NORMA and MSOKSQ when each sensor uses a 3-bit
deterministic quantizer when M = 11.
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4. A FOLDING APPROACH FOR MULTIPLE ANTENNA

ARRAYS USING LOW-RESOLUTION ADCS

4.1 System Model and Low-Resolution ADC Array Architecture

In this section, we explain our general system model. Then, we motivate the framework

of constructing a high-resolution ADC by using multiple antennas with each antenna served

by a low-resolution ADC.

4.1.1 System Model

We consider an N transmit antenna by M receive antenna wireless MIMO system. We

assume perfect synchronization pan1, [99 ] and a frequency flat, narrow-band channel with

a complex baseband representation at the receiver of

yc = Hfcsc + nc (4.1)

= hsc + nc, (4.2)

where yc = [yc,1 · · · yc,M ]T , H ∈ CM×N is the channel matrix, fc ∈ CN×1 is the transmit

beamforming vector, h = [h1 · · · hM ]T is the effective channel vector, and nc ∼ CN (0, I) is

the complex additive (spatially and temporally) independent and identical white Gaussian

noise. The transmit symbol sc is assumed to be uniformly selected from a finite set Sc ∈ C

which is designed to satisfy E[|sc|2] = P . Since channels can be estimated using [69 ]–[74 ], we

assume that the transmitter and the receiver have any necessary knowledge of the effective

channels. Note that (4.2 ) means that the MIMO system model can be translated into an

effective single-input multiple-output (SIMO) problem.

In our paper, a low-resolution ADC array architecture is considered, which is shown in

Fig. 4.1 . At antenna m, we assume phase shifting dependent on the phase of the effective
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Figure 4.1. Implementation of low-resolution ADC array at the receiver.

channel hm, which can be done, for example, using an analog per-antenna phase alignment

[113 ]–[117 ]. Mathematically, the processed baseband signal at antenna m is

ỹc,m = h∗
myc,m

|hm|
= |hm|sc + nc,m, (4.3)

where |hm| is the magnitude of the effective channel and we redefine the noise as nc,m since

phase rotation does not change the distribution. Then, the processed real and imaginary

parts of the receive signal are fed to low-resolution ADCs to be quantized separately which

are

Q (Re(ỹc)) = [Q1 (Re (ỹc,1)) · · · QM (Re (ỹc,M)) ]T , (4.4)

Q(Im(ỹc)) = [Q1 (Im (ỹc,1)) · · · QM (Im (ỹc,M)) ]T , (4.5)

to the detector. Note that ỹc = [ỹc,1 · · · ỹc,M ]T .

4.1.2 Low-Resolution ADC Array Construction by Deconstructing a High-
Resolution ADC

A low-resolution ADC array uses a small number of bits received from each of a (po-

tentially large) number of antennas. Therefore, across the entire array, the number of bits
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per sample may be quite large. The goal then is to design the analog processing and low-

resolution ADC used at the different elements to be complementary when the array is con-

sidered as a whole.

There has been much research over the last few decades on centralized ADCs (i.e., a

single ADC that is designed for general applications as in [67 ], [68 ]). Many of the highest-

performance centralized ADCs can be implemented using a parallel structure[67 ], [68 ]. In

this structure, the ADC circuit consists of multiple branches where each branch produces a

single bit per sample, e.g.,pan1, [96 ], [118 ]. Note that there is a strong analogy between this

kind of structure and the architecture of low-resolution ADC arrays. In this work, we will

show how ideas gained from the architecture of a specific kind of high-performance ADC,

called an FADC, can be used to develop a new form of low-resolution ADC array.

Before providing a description of our proposed low-resolution ADC array, it is critical to

recall the basics of ADCs in general. For this reason, the discussion in this subsection will

start with a focus on the case of a single or centralized high-resolution ADC that produces

B−bits per sample. Designing an ADC can be viewed as designing a quantizer that maps

a real input to a quantization point from a finite set A = {a0, a1, . . . , a2B−1}. Thus, each

quantization point a` in the set A can be represented by a B−bit binary vector (or bit label)

denoted by b`, where 0 ≤ ` ≤ 2B −1. The set of all possible binary outputs for the quantizer

are in the set B = {b0, b1, . . . , b2B−1}. We describe the quantization function of an ADC as

QADC(·) : R → {−1, +1}B.

The simplest quantization scheme is uniform quantization [110 ] which we focus on through-

out this paper. In uniform quantizers, the quantization points in the set A are equally spaced

in a bounded interval [ − A, A] where A > 0. The minimum distance between quantization

points is

dmin , |a`+1 − a`| = A

2B−1 , for 0 ≤ ` ≤ 2B − 2. (4.6)

The quantization points of the uniform quantizer are

a` = (2` + 1 − 2B)A
2B

, for 0 ≤ ` ≤ 2B − 1. (4.7)
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The mapping of bit labels to quantization points can be done in a variety of ways. Natural

labeling, which is used as the bit labeling throughout much of this paper, uses the base-two

labels b` on a`. The explicit expression for the mapping between a` and b` is written

a` = A

2B

B∑
i=1

b`,i2B−i, (4.8)

where b`,i ∈ {−1, +1} is the ith element of b`. Eqn. (4.8 ) is obtained by first establishing

the connection between 2` + 1 − 2B in (4.7 ) and its binary natural label b̂` ∈ {0, 1}B based

on β−expansion [119 ]–[121 ]. Hence, it is straightforward to show

2` =
B∑

i=1
b̂`,i2B−i+1, (4.9)

where b̂`,i ∈ {0, 1} is the ith element of b̂` and

2B − 1 =
B∑

i=1
2B−i. (4.10)

Then, as we apply (4.9 ) and (4.10 ) into the right hand side of (4.7 ), we have

a` = A

2B

B∑
i=1

(2b̂`,i − 1)2B−i = A

2B

B∑
i=1

b`,i2B−i, (4.11)

where b`,i = 2b̂`,i − 1 ∈ {−1, +1}. For example, if we use a two-bit uniform quantizer, which

corresponds to B = 2 and L = 2B, with quantization points uniformly distributed between

−A and A, then we have the quantization points a0 = −3A/4, a1 = −A/4, a2 = A/4, a3 =

3A/4 based on (4.7 ). A natural labeling of the quantization points is b0 = [ − 1 − 1], b1 =

[ − 1 1], b2 = [1 − 1], b3 = [1 1] so that b` can recover a` above using (4.8 ). Note that the

quantization points can be labeled with bits in a variety of ways.

Many high-performance centralized high-resolution ADCs use a parallel implementation

e.g.,pan1, [67 ], [68 ], [96 ]. This parallel form means that the quantization function of the ADC

can be written as QADC(α) = [QADC,1(α) · · · QADC,B(α)]T ∈ {−1, +1}B, where QADC,i(·) ∈

{−1, +1} is a one-bit quantizer for the ith branch. Using this kind of parallel ADC thinking,
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we move on to provide a detailed explanation of our folded low-resolution ADC array in

Section 4.2 .

4.2 Folded Low-Resolution ADC Array Design and Implementation for Multi-
ple Antenna Communication

In this section, we first explain the design of a low-resolution ADC array based on the

multi-branch architecture, with a specific focus on the FADC architecture. Then, we derive

the desired parameters needed to facilitate folded low-resolution ADC array operation even

when there is little to no spatial channel diversity. Finally, we discuss how our implementa-

tion affects the output statistically.

4.2.1 Basics of Folding

A folded low-resolution ADC array employs analog processing and a simple sign quantizer

at each array element. To ease our exposition, we will concentrate on an explanation based on

concepts from QAM. This QAM assumption alone differentiates our approach from the sign-

based low-resolution ADC array, because our formulation can easily handle a constellation

with symbols of varying magnitudes.

Further recall that any rectangular QAM constellation can be written in terms of two

independently modulated pulse amplitude modulation (PAM) constellations. To simplify

the explanation, we assume a square QAM constellation is used. This allows us to design

the in-phase and quadrature analog processing at each of our array elements in the same way.

The square QAM constellation is assumed to be formed of symbols Sc = {Re(sc) + jIm(sc) :

Re(sc), Im(sc) ∈ S}, where Card(S) = 2M . Therefore, we explain the design of the folded

low-resolution ADC array operating on a real vector y = [y1 · · · yM ]T throughput the paper,

where y ∈ {Re(ỹc), Im(ỹc)}.

The quantization function of the folded low-resolution ADC array in real space in (4.4 )

and (4.5 ) is denoted as QFADC(y) = [Q1(y1) · · · QM(yM)]T , where QFADC(·) ∈ {−1, +1}M

and the one-bit quantizer Qm(·) ∈ {−1, +1}. This means that the multiple one-bit quan-

tizers spread across the array produce M bits per sample for the in-phase portion of the
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signal and M bits per sample for the quadrature portion of the signal. As mentioned ear-

lier, the symmetry of a square QAM constellation allows us to focus only on the in-phase

portion without loss of generality. This indicates that we can think of the entire array as a

high-resolution quantizer, with B = M , that is composed of M one-bit quantizer branches

corresponding to each antenna element in the array. Therefore, the goal is to formulate the

M different one-bit quantizers Qm(·), for all m, such that they are complementary to each

other and provide a form of quantization diversity that will allow the receiver to fuse the

quantization outputs together.

The proposed real one-bit quantizer Qm(·) used at each array element consists of analog

processing followed by a sign quantizer. The analog processing used at each antenna element

contains a folding stage, which consists of a carefully chosen additive offset (or shift) and

a modulo. Thus, in this thesis, we name the proposed real one-bit quantizer as a one-

bit modulo quantizer. We discuss the analog processing at the more abstract signal level,

but it should be noted that there is a long and well-developed history of shift and modulo

circuit implementations [87 ]. Mathematically, ym is folded at the mth array element located

at antenna m using the function Fm(·) ∈ [ − βm, Λm − βm), which we refer to as a folding

function, described by

Fm(ym) = ([ym + γm] mod Λm) − βm, (4.12)

where Λm > 0 is the modulo size, and γm and βm are real-valued constants.

Each one-bit modulo quantizer is designed to perform uniform quantization, which will

mean that the sizes of [ − βm, 0) and [0, Λm − βm) are equal, i.e., βm = Λm − βm. Therefore,

the relationship between βm and Λm is

βm = Λm

2 . (4.13)

As a result, we rewrite the folding function as

Fm(ym) = [ym + γm] mod Λm − Λm

2 (4.14)
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throughout the remainder of the paper. After folding, Fm(ym) is quantized by a sign quantizer

so that Qm(·) is described by

Qm(ym) = sgn (Fm(ym)) . (4.15)

As mentioned earlier, our goal is to select the low-resolution ADC, e.g., Qm(·) for all

m, at the array elements in a complementary way. This will mean that the low-resolution

quantization across the array has a kind-of diversity and that the folding functions must be

jointly designed. The goal is thus to derive Λm and γm for all m in (4.14 ). As will be shown,

our joint design has a close tie to the bit-to-quantization point mapping described in (4.8 )

in the following subsection.

4.2.2 Design of Folded Low-Resolution ADC Array

We define the transmit symbol in the real space as s ∈ {Re(sc), Im(sc)}, which is uni-

formly drawn from a finite set S such that

S =
{(

2` + 1 − 2M
) d

2 : 0 ≤ ` ≤ 2M − 1
}

, (4.16)

where d denotes the minimum distance between any of the adjacent QAM constellation

points. Each symbol s` ∈ S can be written using the corresponding natural labels b`

according to

s` = d

2

M∑
m=1

b`,m2M−m (4.17)

by exploiting (4.6 )-(4.8 ) when B = M is assumed.

To find the desired parameters γm and Λm of Fm(·) for all m, we first derive a closed-form

solution of Λm using Proposition 1. Then, we use Λm and Fm(·) to derive γm, for all m.

Proposition 4.2.1. Assume |h1| , . . . , |hM | are arbitrary positive reals. A symbol s` ∈ S that

is defined by (4.17 ) can be described according to

s` =
M∑

m=1
b`,m

Λm

4|hm|
, (4.18)
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where b`,m is the mth element of b` and Λ1
|h1| = 2Λ2

|h2| = 22ΛM−1
|hM−1| = . . . = 2M−1ΛM

|hM | if and only if

Λm = 2M−m+1d|hm|, for 1 ≤ m ≤ M . (4.19)

Proof. We first assume that (4.18 ) holds. Applying Λ1
|h1| = 2Λ2

|h2| = . . . = 2M−1ΛM

|hM | into (4.18 ),

we can reconstruct (4.18 ) as

s` =
M∑

m=1
b`,m2M−m ΛM

4|hM |
. (4.20)

Since both of (4.17 ) and (4.20 ) are two representations of the quantization point s`, the

relationship between the right hand sides of both equations are shown as

d

2

M∑
m=1

b`,m2M−m =
M∑

m=1
b`,m2M−m ΛM

4|hM |
.

Comparing both sides of coefficients of b`,i in the described relationship, (4.19 ) holds.

To prove the converse part of this lemma, we assume that (4.19 ) holds. Using the fact

that b` follows natural labeling and substituting (4.19 ) into (4.17 ), the result leads directly

to (4.18 ).

Once we obtain Λm, the mapping of the natural bit labels to the constellations is accom-

plished when we set

γm =


Λm

2 , when m = 1,

0, when m 6= 1,

(4.21)

where the values of γm are not unique as long as the output of the folded low-resolution

ADC array follows natural labeling. Note that the m = 1 offset γ1 is different from the other

values. This follows because the first bit represents the sign of the quantization point for

the portion of the real line that the transmit signal is constrained to in the natural labeling

mapping as shown in (4.18 ).
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Therefore, the one-bit modulo quantization process can be summarized as follows. For

1 ≤ m ≤ M , ym is folded into
[

−Λm

2 , 0
)

when ym ∈ ⋃
k∈Z

[(
k − 1

2

)
Λm − ∆m, kΛm − ∆m

)
,

where

∆m = γm − Λm

2 . (4.22)

The corresponding quantization output of the one-bit modulo quantizer bm = −1. Similarly,

the input ym is folded into
[
0, Λm

2

)
when ym ∈ ⋃

k∈Z

[
kΛm − ∆m,

(
k + 1

2

)
Λm − ∆m

)
. The

corresponding quantization output bm = 1. Thus, we denote Rm,1 and Rm,2 as the folding

quantization regions such that

Rm,1 =
⋃

k∈Z

[(
k − 1

2

)
Λm − ∆m, kΛm − ∆m

)
, (4.23)

Rm,2 =
⋃

k∈Z

[
kΛm − ∆m,

(
k + 1

2

)
Λm − ∆m

)
. (4.24)

The size of each interval that is obtained by Rm,1 or Rm,2 is equal to Λm

2 . In addition,

(4.23 ) and (4.24 ) indicate Rm,1
⋂Rm,2 = ∅ and Rm,1

⋃Rm,2 = R.

Remark 3. The analog shift and modulo operations proposed in this thesis shape the magni-

tude of the observation of each antenna in a particular way before the sign-based quantization

operation is performed at each array element. Thus, assumptions made by the sign-based low-

resolution ADC array are compatible with the proposed designs. In addition, our description

of folding is based on a square constellation. However, it can be used for other constellations,

e.g., circular QAM or PSK constellations, by embedding the non-grid constellation into the

QAM grid. This has the benefit of potentially generating soft information for use in error

control decoding schemes. This embedding is beyond the scope of this paper.

4.2.3 Statistical Analysis of Folded Low-Resolution ADC Array in Real Space

Having characterized the implementation of the folded low-resolution ADC array, we

discuss how the one-bit modulo quantizer affects the output by studying the conditional

probability in real space. For given s ∈ S and hm, ym is distributed as N
(
|hm|s, 1

2

)
. This
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Figure 4.2. Showing the red regions must be integrated over to compute the
received bit probabilities, e.g., Pr(b1 = 1

∣∣∣s, h1).

can be combined with the spatial independence of the noise to compute the conditional

probability

Pr(b|s, h) =
M∏

m=1
Pr(bm |s, hm). (4.25)

This probability will be computed using p(ym|s, hm) = 1√
π
e−
(

ym−|hm|s
)2

.

For any given s and hm, Section 4.2.1 indicates that the outputs bm = −1 when ym ∈

Rm,1 and bm = +1 when ym ∈ Rm,2. Thus, the conditional probabilities are written as

Pr(bm = −1
∣∣∣s, hm) =

∫
Rm,1

p(ym

∣∣∣s, hm)dym and Pr(bm = +1
∣∣∣s, hm) =

∫
Rm,2

p(ym

∣∣∣s, hm)dym.

The folded quantization regions Rm,1 and Rm,2 that are shown in (4.23 ) and (4.24 ) are the

union of an infinite number of non-overlapping intervals. Therefore, we define the conditional

probabilities of the one-bit modulo quantizer at antenna m as

Pr(bm = −1
∣∣∣s, hm) =

∑
k∈Z

∫ kΛm−∆m

(k− 1
2 )Λm−∆m

p(ym

∣∣∣s, hm)dym, (4.26)

Pr(bm = +1|s, hm) =
∑
k∈Z

∫ (k+ 1
2 )Λm−∆m

kΛm−∆m

p(ym

∣∣∣s, hm)dym, (4.27)

for all m. Note that Pr(bm|s, hm) is obtained by summing the area of p(ym|s, hm) under Rm,1

or Rm,2. Fig. 4.2 demonstrates the relationship between the areas corresponding to each

bit value. In this figure’s example, the red regions would be integrated over to compute the

value of Pr(b1 = +1|s, h1).
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4.3 Folded Low-Resolution ADC Array Enhancements

In this section, we are interested in enhancing the achievable rate performance by mak-

ing the quantization outputs more reliable. Thus, we first explain the implementation of

the folded low-resolution ADC array using Gray labeling and discuss the reliability of the

outputs. Then, we explore using the sign quantizer to modify the folded low-resolution ADC

array into the sign left-most bit (LMB) folded low-resolution ADC array. Finally, we discuss

antenna ordering strategies in the low and the moderate-to-high SNR regimes. Note that we

analyze the modified design in the real space similar to Section 4.2 .

4.3.1 Folded Low-Resolution ADC Array using Gray Labeling

Gray labeling is extensively studied and widely used in systems Agrell , [122 ]–[124 ],

[126 ], including in practical bit-to-constellation point mappings. We use the superscript G

to designate Gray labeling. An M−bit binary vector follows Gray labeling when only one

entry of bG
` and bG

`+1 are different for ` = 0, . . . , 2M − 2. There are various ways to represent

Gray labeling, and we focus on the Gray labeling that is obtained by a specific remapping

of natural labeling [126 ]. This corresponds to the conversion

bG
`,m =


b`,m, when m = 1,

−b`,mb`,m−1, when m 6= 1.

(4.28)

The intuitive behavior of the folded low-resolution ADC array with Gray labeling is very

similar to the development in Section 4.2 . When using Gray labeling, each array element

still uses a folding function followed by a sign quantizer. The folding function from array

antenna element m is now F G
m(ym) =

([
ym + γG

m

]
mod ΛG

m

)
− ΛG

m

2 , and the low-resolution

ADC output from array antenna element m is QG
m(ym) = sgn

(
F G

m(ym)
)
.
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The parameters ΛG
m and γG

m can be found based on the relationship that is shown in

(4.28 ). The modulo size at receive antenna m is

ΛG
m =


Λm, m = 1,

2Λm, m 6= 1,

(4.29)

and

γG
m =



ΛG
m

2 , when m = 1,

−ΛG
m

4 , when m = 2,

ΛG
m

4 , otherwise.

(4.30)

Note that depending on how Gray labeling is defined, the construction of the folded low-

resolution ADC array using Gray labeling is not unique.

The folding quantization regions RG
m,1 and RG

m,2 can be represented in a similar way as

(4.23 ) and (4.24 ), respectively, by replacing the parameters γm and Λm with γG
m and ΛG

m.

Moreover, the size of each interval obtained from RG
m,1 and RG

m,2 are equal to ΛG
m

2 . Thus, the

expression of Pr(bG
m|s, hm) is obtained using (4.26 ) and (4.27 ) by replacing Rm,1 and Rm,2

with RG
m,1 and RG

m,2.

In the moderate-to-high SNR regime, the quantization output of antenna m of a folded

low-resolution ADC array using Gray labeling has a reliability that exceeds that of natural

labeling, for 1 < m ≤ M . We can make such a determination by comparing the value of

Pr(bG
m = bG

`,m|s = s`, hm) and Pr(bm = b`,m|s = s`, hm). We denote Pr(bG
m = bG

`,m|s = s`, hm)(
or Pr(bm = b`,m|s = s`, hm)

)
as the conditional probability of correct reception. Note that

the values of Pr(bm = b`,m|s = s`, hm) and Pr(bG
m = bG

`,m|s = s`, hm) are dominated by the

area of p(ym|s = s`, hm) under the interval centered about the mean in the moderate-to-high

SNR regime. As the size of the interval with respect to Gray labeling is twice as large as

natural labeling as shown in (4.29 ), it is straightforward to show Pr(bG
m = bG

`,m|s = s`, hm) >

Pr(bm = b`,m|s = s`, hm) which indicates that the quantization output of antenna m of Gray

labeling is more reliable than natural labeling, for 1 < m ≤ M .
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4.3.2 Sign LMB Folded Low-Resolution ADC Array

The analog modulo operation folds the input, even when the bit that is detected is

the sign bit, i.e., b1. Thus, we can modify the structure of the folded low-resolution ADC

array by replacing the one-bit modulo quantizer of antenna 1 with a sign quantizer, e.g.,

Q1(y1) = sgn(y1) while the one-bit modulo quantizer at antenna m is the same as (4.15 ) for

all m 6= 1. We refer to this as the sign left-most bit (LMB) folded low-resolution ADC array.

By doing so, the quantization output of antenna 1 is less likely to be in error which is shown

in the following lemma. We define bsgn
1 as the output of the sign quantizer to distinguish the

output of the one-bit modulo quantizer b1.

Lemma 2. For any s ∈ S and h1, the conditional probability of correct reception satisfies

Pr(bsgn
1 = b`,1|s = s`, h1) − Pr(b1 = b`,1|s = s`, h1) > 0. (4.31)

Proof. We start the proof assuming |h1|s` ∈ [0, Λ1
2 ) for some `. Therefore, the correct

quantization output of antenna 1 is +1, i.e., b1 = +1. We show

Pr(bsgn
1 = +1|s = s`, h1) − Pr(b1 = +1|s = s`, h1)

=
∫ ∞

0
p(y1|s = s`, h1)dy1 −

∑
k∈Z

(∫ (k+ 1
2 )Λ1

kΛ1
p(y1|s = s`, h1)dy1

)

=
∑

k∈Z+

(∫ kΛ1

(k− 1
2 )Λ1

p(y1|s = s`, h1)dy1 −
∫ (−k+ 1

2 )Λ1

−kΛ1
p(y1|s = s`, h1)dy1

)
(a)=

∑
k∈Z+

(∫ kΛ1

(k− 1
2 )Λ1

p(y1|s = s`, h1)dy1 −
∫ 2|h1|s`+kΛ1

2|h1|s`+(k− 1
2 )Λ1

p(y1|s = s`, h1)dy1

)
(b)
> 0,

(4.32)

where (4.32 a) follows the fact that p(y1|s = s`, h1) is the Gaussian probability that is sym-

metric about the mean |h1|s` and (4.32 b) holds because p(y1|s = s`, h1) is decreasing for

y > |h1|s`. The proof assuming |h1|s` ∈ (−Λ1
2 , 0] is similar for some `.
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4.3.3 Antenna Ordering Strategies

In designing the folding functions so far, we have implicitly assumed that the folding

function Fm(·) corresponds to antenna m. We can adapt the analog processing as a function

of the effective channel to make the output more reliable because any real system will have

antenna gain variation across the antennas. Therefore, we relabel the antennas as i1, . . . , iM
such that |hi1| ≥ |hi2 | ≥ . . . ≥ |hiM |.

Antenna ordering in the low SNR regime

All bits suffer from a high error probability in the low SNR regime. Therefore, standard

spatial diversity analysis shows that folding functions should be assigned to antennas to

maximize the reliability of the most reliable output bit. The probability analysis in (4.26 ),

(4.27 ) show that F1(·) corresponds to the most reliable bit. Maximizing this reliability means

that the folding function F1(·) should be assigned to antenna i1. Note that performance can

be even further increased by assigning F1(·) to all antennas.

Antenna ordering in the moderate-to-high SNR regime

The goal is to maximize the number of bits conveyed through the channel, meaning

to design the system to receive as many reliable bits as possible. It is straightforward to

show that the quantization outputs bM , . . . , b1 are ordered by reliability where bM is the

least reliable bit and b1 is the most reliable when we assume |h1| = |h2| = . . . = |hM |. This

ordering for the equal channel gain assumption follows from the fact that the value of Pr(bm =

b`,m|s = s`, hm) is dominated by the area of p(ym|s = s`, hm) under the interval centered

about the mean |hm|s`. The size of the interval at each antenna follows the relationship
Λ1
2 > Λ2

2 > . . . > ΛM

2 .

If our goal is to get all bits b1, . . . , bM through reliably, we can maximize the reliability

of the least reliable bit. This corresponds to mapping the mth most reliable bit to the mth

least reliable channel. From a folding function perspective, this means Fm(·) is assigned to

iM+1−m. This leads to modulo size Λim = 2md|him|, for im = i1, . . . , iM . Note that the sign
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LMB folded low-resolution ADC array, which is described in Section 4.3.2 , can adapt the

antenna ordering strategies in both cases as well.

Remark 4. Most practical systems exploit the statistical channel model to develop algo-

rithms so that the reconstructed signal has less quantization error [24 ], [26 ], [81 ], [82 ], [99 ],

[100 ]. However, different from [24 ], [26 ], [81 ], [82 ], [99 ], [100 ], we modify the parameters

of the analog shift modulo operations to make each bit of the bit stream more reliable. It is

unnecessary to consider the reconstructed signal because this would potentially lead to a loss

of information [127 ].

Remark 5. Although finding an optimal input distribution is not the goal of this paper, it

can be done using similar method as in [77 ]. This is because the folded low-resolution ADC

array can be considered as a replacement of the centralized high-resolution ADC.

4.4 System Throughput Analysis

We analyze the system throughout using different system models, quantizers, and QAM

constellations. The complex domain mutual information can be considered as the combi-

nation of the independently derived mutual information in the real and imaginary spaces.

Thus, we analyze the mutual information in the real space, which can be mapped to the

complex space.

4.4.1 Mutual Information Preliminary

The general form of the mutual information in the real space is [127 ]

I(b, s
∣∣∣h) = H(b

∣∣∣h) − H(b
∣∣∣s, h) (4.33)

where H(b
∣∣∣h) is the entropy given by

H(b
∣∣∣h) = −

2M −1∑
`=0

Pr(b = b`

∣∣∣h)log
[
Pr(b = b`

∣∣∣h)
]
. (4.34)
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Using the fact that s is uniformly selected from S, we write Pr(b
∣∣∣h) as [127 ]

Pr(b
∣∣∣h) =

∑
s∈S

1
2M

Pr(b
∣∣∣s, h), (4.35)

where s is independent of h.

Followed by this, we express H(b
∣∣∣s, h) as

H(b
∣∣∣s, h) = −

2M −1∑
`=0

∑
s∈S

Pr(b = b`

∣∣∣s, h)log
[
Pr(b = b`

∣∣∣s, h)
]

2M
. (4.36)

4.4.2 System Throughput Analysis in High SNR Regime

In this section, we begin with the definition of εe(P ).

Definition 4.4.1. Let f(·) is a real-valued function. We write f(P ) = εe(P ) if there exits

u ∈ R and v > 0 such that |f(P )| ≤ ue−vP .

Note that this means

εe(P ) = c(P )εe(P ), (4.37)

for any finite order real polynomial c(P ).

Lemma 3. In the high SNR regime, i.e., P → ∞, for any s ∈ S and hm, the conditional

probability of error can be written

Pr(bm 6= b`,m|s = s`, hm) = εe(P ), (4.38)

and the conditional probability of correct reception is written

Pr(bm = b`,m|s = s`, hm) = 1 − εe(P ). (4.39)
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Proof. We start this proof by first finding an upper bound of all the conditional probabilities

of error. Then, we use the definition of εe(P ), i.e., Definition 4.4.1 , to generalize (4.38 ).

Finally, (4.39 ) is obtained based on

Pr(bm = b`,m|s = s`, hm) = 1 − Pr(bm 6= b`,m|s = s`, hm) (4.40)

The upper bound of all the conditional probability of error can be described by

Pr(bm 6= b`,m|s = s`, hm)
(a)
< Pr(ym ∈ R̃m|s = s`, hm)

= 2Q
(√

2(d|hm|)2

4

)
(b)
≤ 2e−

(
d|hm|

2

)2

,

(4.41)

where Pr(ym ∈ R̃m|s = s`, hm) is the probability of any ym lies in R̃m, using

ym ∈ R̃m =
(

−∞, |hm|
(

−d

2 + s`

))⋃[
|hm|

(
d

2 + s`

)
, ∞

)
,

given |hm|s` ∈
[
|hm|(−d

2 + s`), |hm|(d
2 + s`)

)
based on (26). This is inspired by the error

probability calculation for the inner PAM constellation points in an AWGN channel [128 ],

[129 ]. Considering (4.26 ), (4.27 ), the inequality of (4.41 a) follows the fact that R̃m
⋃Rm =

R̃m and the area of p(ym|s = s`, hm) under Rm resulting Pr(bm 6= bm,`|s = s`, hm), for all

m. Note that Rm ∈ {Rm,1, Rm,2}, where Rm,1 and Rm,2 are defined by (4.23 ) and (4.24 ),

respectively. Eqn. (4.41 b) holds using the Chernoff bound of the Q−function [130 ].

Since d is written in terms of P , there exists v > 0 depending on |h1|, . . . , |hM | such that

Pr(bm 6= b`,m|s = s`, hm) ≤ ue−vP , for some u ∈ R and all m. Then, (4.38 ) and (4.39 ) are

derived using Definition 4.4.1 and (4.40 ).

Theorem 4.4.1. In the high SNR regime, for any given hm and s ∈ S, the real-valued

system throughput satisfies

I(b, s| h) = M − εe(P ). (4.42)
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Proof. The proof starts with finding the expressions of Pr(b = b˜̀|s = s`, h), for all `, ˜̀ =

0, . . . , 2M − 1. Then, we derive the expressions of H(b|h) and H(b|s, h) to get I(b, s|h)

based on Pr(b = b˜̀|s = s`, h).

Thus, using (4.25 ), we first show

Pr(b = b`|s = s`, h) =
M∏

m=1
Pr(bm = b`,m|s = s`, hm) = 1 − εe(P ), (4.43)

where (4.43 ) follows (4.37 ) and Lemma 3 . Followed by this, we generalize

Pr(b = b˜̀|s = s`, h) =


1 − εe(P ), for ˜̀= `,

εe(P ), for ˜̀ 6= `,

(4.44)

by first considering (4.43 ) and (4.45 )

Then, we show

Pr(b 6= b`|s = s`, h) =
(
1 − εe(P )

)M1
εe(P )M2 = εe(P ) (4.45)

using (4.37 ) and Lemma 3 , where M1 + M2 = M .

As we obtain (4.44 ), we show Pr(b = b`|h) before we derive the expression of H(b|h).

In order to obtain

Pr(b = b`|h) = 1
2M

− εe(P ), (4.46)

we rewrite Pr(b = b`|h) in (4.35 ) as

Pr(b = b`|h) (a)= 1
2M

(
Pr(b = b`|s = s`, h) + ∑

s∈S\{s`}
Pr(b = b`|s, h)

)
(4.47)

Note that (4.47 a) follows the fact that s` has a unique binary representation b`. As we apply

(4.44 ) into (4.47 a), (4.46 ) is obtained using (4.37 ).
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Then, the entropy H(b|h) is written in terms of (4.46 ) as shown

H(b|h) = −
2M −1∑
`=0

(
1

2M − εe(P )
)

log
[

1
2M − εe(P )

]
(a)= M − εe(P ),

(4.48)

where (4.48 a) follows (4.37 ) and

log [1 − εe(P )] (a)=
∞∑

i=0

(−1)i(−εe(P ))i+1

(i+1)ln[2]

(b)=
L∑

i=0

(−1)i(−εe(P ))i+1

(i+1)ln[2] + εe(P )
(c)= εe(P ).

(4.49)

Note that (4.49 a) follows the Taylor series expansion. As we assume that there is a large L

such that
∞∑

i=0

(−1)i(εe(P ))i+1

(i + 1)ln[2]
−

L∑
i=0

(−1)i(εe(P ))i+1

(i + 1)ln[2]
≤ ue−vP , (4.50)

for some u ∈ R and v > 0 depend on L, P , and |hm| for all m, we extend right hand side of

(4.49 a) to obtain (4.49 b) using (4.50 ) and Definition 4.4.1 . This is because log [1 − εe(P )] is

bounded considering (4.46 ). Finally, we obtain (4.49 c) using (4.37 ).

Before we approximate the expression of H(b|s, h), some facts need to be addressed.

Since Definition 4.4.1 indicates that εe(P ) ∈ R, we cannot use (4.45 ) to approximate the

closed-form solution directly because log [εe(P )] is not valid if εe(P ) ≤ 0. Thus, we need

to discuss Pr(b 6= b`|s = s`, h) before we provide the detailed derivation. The facts that

0 ≤ Pr(b 6= b`|s = s`, h) and (4.45 ) indicate that

Pr(b 6= b`|s = s`, h) = |εe(P )|, (4.51)

where |εe(P )| = εe(P ) considering Definition 4.4.1 . Thus, we use (4.51 ) to show

Pr(b 6= b`|s = s`, h) log [Pr(b 6= b`|s = s`, h)] =
|εe(P )| ln

[
|εe(P )|

]
ln [2]

= εe(P ) (4.52)

where (4.52 ) follows |εe(P )| = εe(P ) and (4.37 ).
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Followed by this, we show

H(b|s, h) = −
2M −1∑
`=0

∑
s∈S

1
2M

Pr(b = b`|s, h) log
[
Pr(b = b`|s, h)

]
(a)= εe(P ).

(4.53)

By expanding the summation of s, we obtain (4.53 a) using (4.37 ) and (4.49 ) , and (4.52 ).

Then, (4.42 ) follows (4.33 ) and (4.37 ).

Remark 6. The conditional probability Pr(bm|s, hm) depends on how the processed signal is

quantized at each antenna. Therefore, the mutual information expression is dependent on

the one-bit quantization structure at each antenna. This makes it intractable to generate

exact mutual information expression for arbitrary SNR values and channel realizations. We

numerically study the mutual information in Section 4.5 and discuss how the one-bit modulo

architecture affects the mutual information for different SNRs.

4.5 Numerical Analysis

In this section, we analyze an N transmit antenna by M receive antenna wireless MIMO

system. We mainly consider two diverse channel models for our simulations. We first consider

a single-path uniform planar array (UPA) channel meant to model mmWave channel [56 ],

[57 ], [131 ]. To show the effect of rich multi-path (e.g., channels often found in sub-6 GHz

bands), we consider the extreme case when the number of paths grows large by modeling the

channel as a spatially i.i.d Rayleigh fading channel. The single-path UPA structure mmWave

channel matrix is H = gere∗
t , where the channel gain g is distributed as CN (0, 1), er and et

are array response vectors corresponding to the receiver and the transmitter, respectively[56 ],

[57 ], [131 ].

To understand the impact of the transmit antenna array, we also look at two diverse

transmit beamformers. We consider non-adaptive beamforming where the multiple transmit

antennas are used for transmit power enhancement by considering the beamformimg vector

fu = 1√
N

[1 · · · 1]T . We also look at optimal spatially adaptive beamforming using maximum
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ratio transmission (MRT). The beamforming vector fsvd = v1, where v1 is the first column

of the right singular value of H.

The folded low-resolution ADC array simulations consider 4, 16, 64, and 256−QAM

constellations, which correspond to M = 1, 2, 3, and 4, respectively. The sign-based low-

resolution ADC array simulations consider 4, 16, 64, and 256−PSK constellations, which

also correspond to M = 1, 2, 3, and 4, respectively. We assume that the transmit symbol is

selected uniformly from 22M−QAM and 22M−PSK constellation. As M denotes the number

of antennas, there are 2M bits in the constellations (the real and the imaginary part of the

constellation). Monte Carlo simulations are used to study the achievable rate of the designs

of the folded low-resolution ADC array in Section 4.2.2 and Section 4.3.1 , the designs of

the sign LMB folded low-resolution ADC array in Section 4.3.2 , and the sign-based low-

resolution ADC array [79 ]. We simulate the theoretical achievable rate using (4.26 ), (4.27 ),

and (4.33 ).

In Fig. 4.3 , we show the achievable rates for the sign LMB folded low-resolution ADC

array using both labelings and the sign-based low-resolution ADC array [79 ]. The channel

was assumed to follow the single-path UPA mmWave channel with a transmitter perform-

ing beamforming fu. It is expected that the achievable rate of the design of the sign LMB

folded low-resolution ADC array outperforms the sign-based low-resolution ADC array when

M = 2, 3 because the sign LMB folded low-resolution ADC array exploits the QAM constel-

lation. The sign LMB folded low-resolution ADC array using Gray labeling offers superior

performance because the modulo sizes used in Gray labeling are larger or equal than those

of natural labeling. The relationships among the modulo sizes are shown as (4.29 ).

Fig. 4.4 shows the achievable rates for the sign LMB folded low-resolution ADC array

using both labelings and the sign-based low-resolution ADC array. The simulations again

used the single-path UPA mmWave channel and transmit beamformer fu. We assume that

N = 16, M = 1, 2, 3, and 4. We set the SNR to 42dB to emulate the high SNR regime in

Fig. 4.3 . The achievable rates of the sign LMB folded low-resolution ADC array using both

labelings increase linearly with M . In contrast to the folded low-resolution ADC array, the

achievable rate of the sign-based low-resolution ADC array increases logarithmically with

M . Thus, Theorem 4.4.1 is validated.

83



In Fig. 4.5 , we analyze the achievable rates of the sign LMB folded low-resolution ADC

arrays for both labelings in the low SNR regime. We assume that N = 16 and M = 2, 3.

The channel was assumed to follow the single-path UPA mmWave channel with a transmitter

performing beamforming with fu. The achievable rate ratio is defined as the simulated-derived

achievable rate of the sign LMB folded low-resolution ADC array over the analytically-

derived approximate achievable rate. The analytically-derived approximate achievable rate

is obtained by considering the most reliable bit only using the antenna ordering strategy,

which is written

I(bi1 , s | hi1) = P |hi1|2

π ln [2]
+ o(P ), (4.54)

where i1 = argmax
m∈{1,··· ,M}

|hm| and s is uniformly drawn from S. The proof shares similarity with

[79 ]. Fig. 4.5 shows the ratio between simulated-derived achievable rate and analytically-

derived approximate achievable rate approximates to one which indicates that the output of

the one-bit modulo quantizer is independent of its input. In addition, the achievable rate is

dominated by the most significant bit.

In Fig. 4.6 .(a) and Fig. 4.6 .(b), we assume that N = 16, M = 2, and fu is used.

We compare the achievable rates for the designs of the sign LMB folded low-resolution

ADC array and the folded low-resolution ADC array using the single-path UPA mmWave

channel model in Fig. 4.6 .(a) and the Rayleigh fading channels in Fig. 4.6 .(b). In Fig.

4.6 .(a), the achievable rates of the designs of the sign LMB folded low-resolution ADC

arrays outperform the designs of the folded low-resolution ADC array at about -9 dB. In

Fig. 4.6 .(b), the achievable rates of the designs of the sign LMB folded low-resolution ADC

arrays outperforms the designs of the folded low-resolution ADC arrays at about -4dB. In

the low SNR regime, the achievable rate is dominated by the most reliable bit despite the

design difference with respect to both labelings. As the SNR keeps increasing, the sign LMB

folded low-resolution ADC array using Gray labelings provides better performance than the

sign LMB folded low-resolution ADC array using natural labeling. Moreover, the achievable

rate of the folded low-resolution ADC array using either labeling underperforms the sign

LMB folded low-resolution ADC array with the same labeling as shown in both figures.

84



-15 -10 -5 0 5 10 15 20 25 30 35 40 45

SNR(dB)

0

1

2

3

4

5

6

A
c
h

ie
v
a

b
le

 r
a

te
 b

it
s
/s

/H
Z

6-bit mmW sign LMB FADC Gray labeling

6-bit mmW sign LMB FADC natural labeling

6-bit mmW sign ADC

4-bit mmW sign LMB FADC Gray labeling

4-bit mmW sign LMB FADC natural labeling

4-bit mmW sign ADC

Figure 4.3. Achievable rates for sign LMB folded low-resolution ADC arrays
using both labelings and sign-based low-resolution ADC array with single-path
UPA structure mmWave channel when M = 2, 3 and N = 16.

Fig. 4.7 shows the impact of antenna ordering strategies on achievable rate. The channel

was assumed to follow Rayleigh fading channels with a transmitter performing beamforming

fu. We assume that N = 16 and M = 3. At low SNR, it is clear that assigning the sign

quantizer to the antenna with the strongest magnitude channel, offers throughput enhance-

ment. As the SNR increases, we assign Λim = 2md|him| to the antenna with the ithm strongest

magnitude channel, and this approach offers an achievable rate improvement.

In Fig. 4.8 , we assume that M =1, 2, 3 and N = 16. We analyze how beamforming

affects the achievable rate given a design of the sign LMB folded low-resolution ADC array

using Gray labeling. In particular, we compare the performance when we use fu and fsvd. As

we use single-path UPA structure for the mmWave channels, the performance of applying

fsvd is better than the performance of applying fu as expected.

Intuitively, for a fixed beamforming vector fsvd, number of receive antenna M , and sign

LMB folded low-resolution ADC array, the achievable rate can be further enhanced by in-

creasing the number of transmit antennas. Fig. 4.9 using N = 16 and 64, M = 1, 2, and 3.

The rest of the assumptions are the same as in Fig. 4.8 . As we increase N = 16 to N = 64,

the achievable rate behaves as expected.
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Figure 4.4. Achievable rates for sign LMB folded low-resolution ADC array
using both labelings and sign-based low-resolution ADC array with single-path
UPA structure mmWave channel when M = 1, 2, 3, 4, N = 16.
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Figure 4.5. Ratio of achievable rate over approximate achievable rate with
single-path UPA mmWave channel when M = 2, 3 and N = 16.

Remark 7. In our paper, we propose an architecture that can utilize any of the widely

published centralized FADC implementations found in [67 ] by placing the centralized ADC

branches at different antenna elements. Unlike a single antenna system, our system model

exploits spatial diversity using multiple antennas. Like nearly all other low-resolution ADC

arrays, the quantization at each array element makes it impossible to blindly combine the

bits using any of the typical receive combiners. If standard receive combining is desired, it is
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Figure 4.6. Achievable rates for designs of sign LMB folded low-resolution
ADC arrays v.s. folded low-resolution ADC arrays when M = 2 and N =
16. (a) and (b) use single-path UPA mmWave channel and Rayleigh fading
channel, respectively.
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Figure 4.7. Achievable rates for LMB folded low-resolution ADC arrays
with antenna ordering for moderate-to-high SNR, antenna ordering for low
SNR, and no antenna ordering with Rayleigh fading channel when M = 3 and
N = 16.
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Figure 4.8. UPA structure mmWave fading channel model achievable rates
of sign LMB folded low-resolution ADC arrays using Gray labeling comparing
fu v.s. fsvd when M = 1, 2, 3 and N = 16.

better to perform this processing in the analog domain and then use a single high-resolution

ADC.
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Figure 4.9. UPA mmWave channel model achievable rates of sign LMB folded
low-resolution ADC arrays using Gray labeling for N = 16 and N = 64 given
M = 1, 2, and 3 and beamforming vector fsvd.
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5. SUMMARY

In this thesis, we study two topics that can resolve the wireless communication demands,

which are WSNs and mmWave systems. In the WSNs, our first topics develop an RAIF

algorithm based on a proposed vector quantizer to enhance the system throughput in the

quantized-and-forward relaying. Then, the second topic introduces an online supervised

learning technique to enhance the classification performance of the classification problems.

In mmWave systems, we develop a folded low-resolution ADC array to resolve issues such as

the high power consumption and cost in the traditional communication system.

For our first topic, we proposed an end-to-end wireless system model that uses cooperative

distributed relay networking. A lattice-based quantization strategy with low computational

complexity was introduced to enhance the achievable rate performance. We also derived a

rate-allocation scheme that made the system more sensitive to channel variations. Numerical

simulations were used to show the advantages of the proposed algorithm comparing to prior

works.

For our second topic, we proposed a novel framework that combines quantization, sensor

selection strategy, classification to maximize the ACR to develop an online learning technique

which is called MSOKSQ. We analyzed how the quantization rules are updated based on the

proposed algorithm and the convergence bound that of the OL approaches theoretically. We

provided numerical results to back our propositions and lemmas. Moreover, the simulation

results validate our theoretical results. In our future work, we are interested in understanding

the role the proposed system model in the field of wireless communication. Ideally, a realistic

model for wireless communication should be combined with MSOKSQ. In particular, we use

proposed algorithm to design the transmit beam-former, quantizer designs, and error control

coding.

For our third topic, we proposed the folded low-resolution ADC array for multiple antenna

wireless communication. We showed how the sign quantizer can be modified using properly

designed folding functions to substantially enhance performance. We also discussed a num-

ber of practical enhancements including antenna ordering and optimized modulo regions.

Simulation results validate our analysis. We would like to point out that our formulation
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is a little different than that used in traditional digital communications modulation design.

Our architecture’s antennas do not directly detect the transmit symbol. Instead, we are

designing an array that acts as a quantizer and uses bit assignments that are independent of

those used by the transmitter. Thus, the proposed design can be implemented in distributed

wireless communication [24 ], [26 ], [66 ], [99 ], [100 ], [132 ]–[134 ] as well. We believe that the use

of high-resolution centralized ADC architectures in multiple antenna low-resolution arrays

offers numerous research and implementation opportunities. There has been a tremendous

amount of work over the last few decades on high-performance and low-power ADC design.

If this research can be leveraged to develop new low-resolution arrays, there could be many

performance and implementation benefits.
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