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ABSTRACT

Cities face significant challenges in developing urban infrastructure systems in an inclusive,

resilient, and sustainable manner, with rapid urbanization and increasing frequency of shocks (e.g.,

climate hazards, epidemics). The complex and dynamic interdependencies among urban social,

technical, institutional, and natural components could cause disruptions to cascade across systems,

and lead to heterogeneous recovery outcomes across communities and regions. Large scale data

collected from mobile devices, including mobile phone GPS data, web search data, and social

media data, allow us to observe urban dynamics before, during, and after disaster events in an

unprecedented spatial-temporal granularity and scale. Despite these opportunities, we lack data-

driven methods to understand the underlying mechanisms that govern the recovery and resilience

of cities to shocks. Such dynamical models, in contrast to static index based metrics of resilience,

will allow us to test the effects of policies on the heterogeneous post-disaster recovery trajectories

across space and time.

In this dissertation, I studied the recovery dynamics and resilience of urban systems to disas-

ters using a large-scale human-centered data-driven modeling approach, with particular emphasis

on the complex interdependencies among social, economic, and infrastructure systems. First, sta-

tistical analysis of large-scale human mobility data collected from over 1 million mobile phone

devices in five major disaster events across the globe, revealed universal population recovery pro-

cesses across regions and disasters, including disproportionate disaster effects based on income

inequalities and urban-rural divide. Second, human mobility data are used to infer the recovery

of various socio-economic systems after disasters. Using Bayesian causal inference models, re-

gional and business sectoral inequalities in disaster recovery are quantified. Finally, the analysis

on social, economic, and physical recovery were integrated into a dynamical model of coupled

urban systems, which captures the bi-directional interdependencies among socio-economic and

physical infrastructure systems during disaster recovery. Using the model and data collected from

Puerto Rico during Hurricane Maria, a trade-off relationship in urban development is revealed,

where developed cities with robust centralized infrastructure systems have higher recovery effi-

ciency of critical services, however, have socio-economic networks with lower self-reliance during
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crises, which lead to loss of community resilience. Managing and balancing the socio-economic

self-reliance alongside physical infrastructure robustness is key to resilience.

The proposed models and results presented in this dissertation lay the scientific foundations of

urban complexity and resilience, encouraging us to move towards dynamical and complex systems

modeling approaches, from conventional static index-based resilience metrics. Big data-driven,

dynamical complex systems modeling approaches enable quantitative understanding of the under-

lying disaster recovery process (e.g., interdependencies, feedbacks, cascading effects) across large

spatial and temporal time scales. The approach is capable of proposing community-based policies

for urban resilience via cross-regional comparisons and counterfactual scenario testing of various

policy levers.
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1. INTRODUCTION

1.1 Background and Motivations

1.1.1 Rising Frequency and Intensity of Shocks

Natural hazards are increasing both in terms of intensity and frequency across the globe in

recent years, due to effects of climate change [1 ]–[3 ]. Figure 1.1 shows the number of disaster

events by year, collected from EM-DAT. EM-DAT is a global database on natural and technological

disasters, containing data on the occurrence of more than 21,000 disasters in the world, from 1900

to present. EM-DAT contains all disasters from 1900 until the present where more than one of

the following criteria are conformed: 1) 10 or more people dead, 2) 100 or more people affected,

3) declaration of a state of emergency is issued, or 4) a call for international assistance is issued

(https://www.emdat.be/ ). The number of disaster events are increasing over time, especially floods

and extreme weather events, which are caused by climate change. A recent paper by the United

Nations Office for Disaster Risk Reduction reported that climate-related and geophysical disasters

have caused 1.3 million deaths and left a further 4.4 billion injured, homeless, displaced or in

need of emergency assistance between 1998 and 2017 [4 ]. While the majority of fatalities were

due to geophysical events, mostly earthquakes and tsunamis, 91% of all disasters were caused by

floods, storms, droughts, heatwaves and other extreme weather events. In addition to human losses,

disaster affected countries experienced direct economic losses valued at US$ 2.9 trillion. This is a

significant increase from the preceding 20 year period, with an increase by 151% in reported losses

from extreme weather events. A study using decades of empirical data and statistical methods has

shown that the estimated upward trend of disaster intensity and frequency is indeed responsible for

an increase in economic damages across the globe [5 ], [6 ].

Given these increasing threats of natural hazards, reducing people’s vulnerability and improv-

ing the resilience of communities has become a more prioritized policy item among governments

and multilateral development agencies [7 ]. Recently there have been many major international

conferences and target frameworks to address these policy needs, including the Third United Na-

tions World Conference on Disaster Risk Reduction, the United Nations Sustainable Development

Goals (SDGs), and the Paris Agreement for Climate Change. The Third United Nations World

Conference on Disaster Risk Reduction, which was held in Sendai, Japan, led to the adoption of

13
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the Sendai Declaration and the Sendai Framework for Disaster Risk Reduction 2015 – 2030. The

Sendai Framework targets “substantial reduction of disaster risk and losses in lives, livelihoods

and health and in the economic, physical, social, cultural and environmental assets of persons,

businesses, communities and countries.” The SDGs include several goals that are closely tied with

disaster risk reduction and urban resilience, including Goal 1 “No Poverty”, especially Target 1.5

that focuses on “building the resilience of the poor and those in vulnerable situations and reduce

their exposure and vulnerability to climate-related extreme events and other economic, social and

environmental shocks and disasters”, and Goals 9 “Industry, Innovation and Infrastructure”, 11

“Sustainable Cities and Communities”, and 13 “Climate Action”. The Paris Agreement also sup-

ports more resilient development by reducing the vulnerability to future climate change scenarios.

The agreement includes priority areas such as early warning systems, emergency preparedness,

comprehensive risk assessment and management, and risk insurance facilities, climate risk pool-

ing, and other insurance solutions [8 ]. While disaster recovery efforts often focus on repairing

infrastructure services to pre-disaster conditions, the concept of “build back better” is also gain-

ing attention among the international community [9 ]. Build back better aims to take advantage of

that opportunity to build the social and physical systems to even more robust levels than before

to decrease vulnerability to future hazards [10 ]. Such strategies include improved preparedness,

Figure 1.1. Number of disaster events by year. Figure produced by author using
data provided by EM-DAT (https://www.emdat.be/ ).
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innovations in rebuilding (e.g. decentralized) infrastructure [11 ], empowering local organizations

[12 ]–[15 ] and various other ways to amplify existing social connectivity and adaptive capacity.

Improving the resilience to natural hazards and various other forms of shocks, are complemen-

tary with efforts to reduce poverty [16 ], [17 ]. Numerous studies have shown that disaster events

disproportionately affect the poor and underprivileged, increasing the socio-economic inequality

among the population. For example, a study that examined the effects of Typhoon Milenyo in rural

Philippines showed that while the poor suffered from sharp drops in the price of fish, which are

their main source of income, the richer experienced positive net welfare gains and also were able to

cope better with the typhoon, with better protection with insurance [18 ]. Similar disproportionate

effects were observed in various other regional disaster contexts, including Haiti [19 ], Myanmar

[20 ], Senegal [21 ], and the United States [22 ]. Such disproportionate effects could further pull

down the poor while enabling the rich to stay as rich, resulting in significant gaps among society.

In addition to economic inequality, disasters are known to disproportionately affect populations

based on gender [23 ] and disabilities [24 ]. The recent coronavirus pandemic (a different form of

shock) highlighted this inequality as well. Many studies have reported that the COVID-19 pan-

demic affected the poor populations more, because of their inability to work remotely from home,

lack of healthcare, and social protection [25 ]–[28 ]. Therefore, improving the resilience of cities to

various shocks is essential in order to eradicate poverty and boost shared prosperity [29 ].

“Shocks”, in this dissertation, refers to not only acute events (e.g., earthquakes, floods, hur-

ricanes), but also includes various types of chronic stresses that are less severe in intensity but

are more persistent. In the context of urban systems, chronic stresses are low-intensity but fre-

quent or persistent shocks that degrade the system performance but not to the extent of complete

malfunction on its own, including traffic jams, pipe bursts, and power outages. Chronic stresses

also include social system characteristics, such as poverty, fragility and violence. Such chronic

stresses also disproportionately affect the poor and informal populations, as shown in a study in

Rio de Janerio [30 ]. Both empirical and theoretical results indicate that such chronic shocks could

exacerbate the impacts of rare but high-intensity acute shocks, and could contribute to the loss of

resilience of urban systems [31 ]. This raises a need for a holistic framework that can analyze the

resilience of cities to compound impacts of both acute and chronic shocks along the time horizon.
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The rising frequency and intensity of shocks due to accelerating climate change poses a press-

ing need for policy makers, academics, and communities to find solutions to improve the resilience

of cities. Despite the increasing attention to disaster risk, recovery, and resilience from the inter-

national community, widening socio-economic inequality and the persistence of socio-economic

and political chronic stresses that exacerbate the impacts of acute disaster events pose significant

challenges. An additional factor that urges us to act immediately to address these issues is the rapid

progression of urbanization in cities across many low- and medium-income countries.

1.1.2 Rapid Urbanization

According to a report by the World Bank, over 4 billion people around the world, which is

more than half the global population, live in cities [32 ]. Cities have been the central drivers of

economic and cultural productivity with its dense social networks of knowledge and labor igniting

innovations and new ideas. A recent study reported that the ten most innovative cities in the United

States account for 23% of the national population, but for 48% of its patents and 33% of its gross

domestic product [33 ]. The economic productivity concentrated in urban areas leads to an increase

in better labor opportunities in cities, attracting people to relocate to urban areas. This reinforcing

feedback cycle is propelling the urbanization process in many cities around the world, and by 2050,

nearly 7 of 10 people in the world is projected to be living in cities. Figure 1.2 shows the rapid

growth of urban areas in Shenzhen over a twenty year time horizon, between 1992 and 2013, using

calibrated satellite images (DMSP-OLS) [34 ].

This trend of rapid urbanization could lead to further acceleration of innovations and pro-

ductivity if managed well. However, the scale and speed of urbanization poses a wide range of

challenges for government agencies to build resilient, sustainable, and inclusive urban systems. In

many cities, we have witnessed a failure of urban management, where unplanned urban sprawl

have resulted in an increase in informal settlements with insufficient physical infrastructure ser-

vices and connectivity (e.g., case study of Brazil [35 ]). In such scenarios, existing infrastructure

systems and governance agencies are overwhelmed by increasing demands, and lack of required

financial and technological resources to maintain and build required infrastructure. Communities

living in informal settlements (20-30% of urban population) are not connected to centralized in-
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Figure 1.2. Rapid growth of urban areas in Shenzhen, China, observed using night
light data from satellite images (DMSP-OLS). Figure produced by author using data
provided by Li et al. [34 ].

frastructure and/or to governance institutions. These communities do not receive adequate critical

services, and cope with chronic shortages of power [36 ], accessibility to water supplies [37 ], and

have less accessibility to various education and job opportunities [38 ], [39 ]. These communities

are further marginalized by not having a political ”voice” and participation in management and

decision processes [40 ].

In addition to such challenges in managing rapid urbanization with sufficient public services,

rapid urbanization increases the exposure and vulnerability of residents to climate risks and shocks.

According to the World Bank, almost half a billion urban residents live in coastal areas (defined as

100km inland from the coast), and in the 136 biggest coastal cities, there are 100 million people

(20% of their population) and $4.7 trillion in assets exposed to coastal floods, according a global

study by Hallegatte et al. [41 ]. Around 90% of urban expansion in developing countries is near

hazard-prone areas and built through informal and unplanned settlements [32 ]. In particular, infor-

mal settlements are equipped with housing structures and water irrigation infrastructure with low

standards. Such areas could face much substantial impacts due to climate shocks, such as flooding,

including loss of housing and assets, inundation, and casualties [42 ]. Combined with lack of ac-

cess to public health services and adequate infrastructure systems, informal settlements are prone

to spread of diseases [43 ].

As a result of the increasing vulnerability to hazards, past events have shown that disasters

trigger mass population movements across regions, including evacuation to safer locations [44 ],
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displacement due to difficulties in living in original locations [45 ], long term migration to other

regions [46 ], and returning back to original locations after the region has recovered [47 ]. For ex-

ample, Hurricane Irma which made landfall in September 2017 caused one of the largest mass

evacuation events in the history of the country, where over 6 million people were ordered to evacu-

ate in Florida [48 ]. Understanding the mass movement dynamics of people affected by disasters is

crucial for making various policy decisions, including allocation strategies of relief resources, op-

timal investment to repair damaged physical infrastructure, and providing subsidies for damaged

local businesses for quick recovery to support the demand of disaster affected residents. Mass

population movement triggered by disaster events could have various consequences on spatial

distributions of population groups, economic activities, and demand for public infrastructure ser-

vices, which could have significant implications on urban policy making. At the same time, various

policies on post-disaster repairing of physical infrastructure systems, land use planning, and pub-

lic incentive schemes for businesses and households could alter the outcomes of the post-disaster

population dynamics. This bi-directional dependency between social systems, comprised of house-

holds, businesses, and local organizations, and physical infrastructure systems managed by public

agencies and decision makers, is one example of the complex processes that governs the dynamics

of cities.

1.1.3 Complexity of Cities

During the past couple of decades, cities have been treated as complex systems, which are

composed of networks of heterogeneous components with dynamic interactions and interdepen-

dencies [49 ], [50 ]. With the help of various novel sensor data, various empirical analysis has been

conducted to understand the properties of cities. Empirical observations have revealed “scaling

relationships in cities”, where on average, various urban quantities (e.g., gross domestic product,

total road mileage) grow super-linearly with the population of the city [51 ]. Such scaling relation-

ships, or fractal properties, have also been discovered in the functionality of urban infrastructure

networks, such as water pipe networks [52 ], road networks [53 ], human settlement with respect to

river networks [54 ], and urban heat island topology [55 ]. Cities are composed of social systems,

including networks of households, business firms, local organization, and public agencies, physi-
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cal infrastructure systems composed of various critical services, such as power grids, water pipe

networks, and transportation systems, and natural systems, such as river networks and terrains.

Recent disaster events have revealed the complexity and uncertainty in recovery dynamics after

disasters, resulting in drastically heterogeneous outcomes across communities and regions [56 ]–

[58 ]. Various functional interdependencies that exist between the social, physical, institutional,

and natural components in urban systems complicate the recovery process. For instance, the re-

covery of service of physical infrastructure systems (e.g., power networks) are dependent on the

repairing capacity of institutional systems, and on the other hand, the operation capacity of insti-

tutional systems are dependent on the performances of the physical systems. Social systems (e.g.,

households and business firms) depend on the physical systems to provide critical services, and

on public agencies to provide stability, safety, and recovery assistance after disasters. Population

movements of residents, including evacuation, migration, and returning decisions, are also affected

by the states of both physical and institutional systems, as well as the capacity (social capital) and

decisions of the peer members in their community [57 ]. Moreover, such mobility decisions of peo-

ple in one region could affect the mobility decisions of people in neighboring cities, as the influx

of populations would increase the demand for public services and cause competition of resources

in destination cities (inter-regional dependencies). Such complex intra-regional interdependencies

across social and physical systems, as well as the inter-regional effects contribute to the complexity

of post-disaster recovery dynamics 1.3 .

Understanding the interplay between the physical infrastructure systems and social systems,

and their impacts on population movement (displacement and return) and to the overall recovery of

Figure 1.3. Disaster disruptions could cascade across social, economic, and physi-
cal infrastructure systems.
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the urban systems after large-scale disasters is essential for developing policies that could enhance

effective population recovery in communities, and foster sustainable development in hazard prone

areas [59 ].

Taken together, this dissertation is motivated by the increasing societal importance and ur-

gency of improving the resilience of urban systems to the intensifying external shocks, and the

scientific ambition to unravel how the complexity of urban systems characterize their resilience.

In this dissertation, we present novel approaches that improve our understanding of the underlying

complex dynamics of coupled urban socio-physical systems after shocks, which can be used to

inform decision making for designing more resilient cities.

1.2 Literature Review

Understanding the resilience of systems have been studied in many disciplines, ranging from

ecological, engineered, to social systems. This dissertation aims to understand the resilience of

coupled urban socio-physical systems in a dynamic and quantitative manner, building upon the

concepts and theories of resilience, community resilience theories, and data-driven modeling tech-

niques. This Section reviews these topics and provides a holistic review and evaluation of the

related literature to provide a basis for my dissertation work. Section 1.2.1 reviews the concepts

and theories related to resilience, starting from the ecological sciences, socio-ecological resilience,

and towards network and engineered resilience. Section 1.2.2 discusses the current literature in

disaster recovery and community resilience, both from qualitative and quantitative approaches.

Section 1.2.3 surveys the novel data sources that are available and are being used for analyzing

disaster recovery, and their applications are discussed in Section 1.2.4.

1.2.1 Resilience Concepts

Socio-Ecological Resilience

The concept of resilience emerged from the field of ecology in the 1960s through the analysis

of interacting population groups and their stability [60 ]. In his seminal paper, Holling introduced

resilience as “the persistence of relationships within a system and is a measure of the ability of

these systems to absorb changes of state variables, driving variables, and parameters, and still
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persist” [61 ]. Studies on ecological resilience, using shallow lakes, tropical forests, and biological

systems as examples, illustrated the concepts of multiple basins of attractions, and how disruptions

could tip the system over a critical threshold (“tipping points”) to an alternative stable equilibrium

state (causing a “regime shift”) [62 ]–[64 ]. Such concepts have been mathematically studied using

nonlinear dynamics and chaos theory [65 ], leading to a better understanding of how and why

critical slowing down [66 ]–[68 ], rising variance [69 ], and changing skewness [70 ] could be used as

early warning signals for regime shifts [71 ]. Ecological systems are known to follow the “adaptive

cycle” process which follows the four phases: growth, conservation, collapse, and reorganization,

which is important in understanding the resilience of ecological (and other types of) systems. The

growth phase (often referred to as the foreloop) is a slow process that allows system components

to connect and accumulate capital (e.g., nutrients and biomass in ecosystems, assets and social

capital in social systems), and the destruction phase (the backloop) is a rapid process that leads to

reorganization and renewal of the system. Moreover, this adaptive cycle exists in multiple scales

– from microscopic and quick to macroscopic and slow – and are connected via vertical feedback

loops. This hierarchical organization of adaptive cycles is known as the panarchy framework

[72 ], and helps us to understand the resilience of ecological systems and, more recently, social-

ecological systems.

The concept of resilience has been further adopted in other domains including social systems,

and the nexus of social and ecological systems [73 ]. Social dynamics, including collapse of soci-

ety [74 ] and opinion dynamics [75 ] have been studied using resilience concepts including regime

shifts. Instead of studying social systems and ecological systems in isolation, socio-ecological

systems modeling attempts to understand the interdependencies (feedback effects) that exist be-

tween social systems and ecological systems due to actions and disturbances such as resource

management, exploitation, and changing environmental conditions. Biggs et al. proposed seven

key principles for building resilience in social-ecological systems, including “maintaining diversity

and redundancy, managing connectivity, managing slow variables and feedbacks, fostering com-

plex adaptive systems thinking, encouraging learning, broadening participation, and promoting

polycentric governance systems” [76 ]. Adaptive capacity of social systems allow socio-ecological

systems to reconfigure and adapt to changing environments without significant disruptions in re-

source supply or degradation in natural and ecological services [77 ]. In socio-ecological systems
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and other coupled social systems, adaptive capacity is constituted by the ability of organizations,

institutions, and more broadly, social networks to accumulate knowledge and experience, and to

develop problem solving capacities to navigate through environmental changes for transitions to

favorable states [78 ].

Theories of Network Resilience

Social systems, ecological systems, and socio-ecological systems all can be perceived as com-

ponents (e.g., households, lakes, institutions) that are connected together through bi-directional

dependencies, forming dynamical networks. Motivated by such views of systems, the resilience

of networks have been studied extensively in the physics community, under the field of network

science [79 ], [80 ]. The resilience of internet networks with power-law degree distributions ([81 ])

to random breakdowns [82 ] and intentional and targeted attacks [83 ] have been studied using an-

alytical and percolation approaches, and have revealed that internet networks are robust against

random breakdowns, but are sensitive to intentional attacks. Studies have investigated methods in

which to mitigate such attacks by re-configuring the network structures [84 ]. Moreover, recently

an analytical framework that systematically separates the roles of the system’s dynamics and net-

work topology and collapses the behaviour of different networks onto a single universal resilience

function was proposed [85 ]. A more thorough literature review on this area can be found in [86 ].

In addition to single networks, there are extensive literature on the robustness [87 ] and re-

silience of interdependent networks. Theoretical results show that catastrophic cascades of fail-

ures that could occur on interdependent networks, using the case study from the power outage in

Italy [88 ]. Another study shows that reducing the coupling strength between the interdependent

networks leads to a change from a first to second order percolation transition [89 ]. Given such

theoretical foundations of the resilience of interdependent networks, studies have proposed analyt-

ical solutions to stop failure cascades [90 ]. Furthermore, a more complex, network composed of

interdependent networks [91 ] and their robustness [92 ] have been studied. While there is a rich

literature on the theoretical understandings of complex networks and their resilience to various

shocks, many of the studies are based on strong assumptions. Including realistic features such as

the properties of the coupling between networks, the dynamical nature of networks, and various
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spatial properties of networks remain as critical challenges when applying these theories to real

world problems, such as the disaster resilience of urban systems [93 ].

Resilience of Engineered Systems

In engineering, resilience has often been referred to differently from ecological systems, as the

efficient stability of a system state, which is more close to the concept of risk and robustness [94 ].

For example in the context of transportation systems, “resilience” has been measured using various

indices including vulnerability, robustness, rapidity of recovery, and flexibility (for a review, see

[95 ]). Other studies apply a percolation based method to analyze the resilience of transportation

systems [96 ]. However, more recently, this definition has been revised towards the original defini-

tion proposed in ecology, as “an emergent property of what an engineering system does, rather than

a static property the system has” [97 ], [98 ]. Recent views on engineering resilience point out that

physical infrastructure systems are not capable of recovering and transforming on their own, and

that the interdependencies between social systems are crucial for physical systems to recover [99 ].

Moreover, studies have pointed out the various types of complex interdependencies that critical

physical infrastructure have across eachother [100 ]. Therefore, resilience of engineered systems i)

need to be analyzed at the systems level instead of inspecting each infrastructure component indi-

vidually, ii) needs to take into consideration the interdependencies with social systems that manage

physical systems, and iii) needs to be studied in a dynamic manner, by observing the dynamic sys-

tem states, making controls based on predictions, learning from past events, and adapting to new

environmental scenarios.

In this dissertation, we adopt this notion of engineering resilience to study the resilience of

social and physical coupled systems to external shocks. Using novel datasets, the complex inter-

dependencies between dynamical socio-economic and physical infrastructure systems, and their

effects on resilience (potential regime shifts) will be modeled and analyzed. In the next section,

we review the vast literature on the resilience of social systems (i.e., cities and communities) to

disasters, and identify key research gaps that we will bridge in this dissertation.
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1.2.2 Disaster Recovery and Community Resilience

Index-based Approaches

The recovery process and resilience of cities to disasters have been studied from multiple per-

spectives and disciplines. The disaster resilience of place (DROP) model provides a conceptual

framework that outlines the components and processes that need to be considered to model the re-

silience of cities and communities [101 ]. The DROP model frames disaster resilience as a continu-

ous process dependent on antecedent conditions, where effects of disaster events accumulate over

time, and communities respond and adapt to such shocks by repetitive mitigation and preparation.

The study listed the key variables that are theoretically validated to affect disaster resilience, from

dimensions of ecological, social, economic, institutional, infrastructure, and community compe-

tence. Following the DROP model, numerous studies have attempted to measure disaster resilience

of communities using various indexes and metrics. For example, a study in Nepal quantified the

resilience of communities by using 22 variables as indicators of social, economic, community,

infrastructure, and environmental resilience [102 ]. A study reviewed twenty seven different re-

silience assessment tools, indices, and scorecards across the world, and evaluated them using four

different parameters: focus, spatial orientation, methodology, and domain area [103 ]. Common

factors used in the index-based community resilience measures include social, economic, insti-

tutional, infrastructure, community capital, and environmental factors. Such measurement index

tools can quantify the resilience of communities to disasters and provide directions for future de-

velopment, it models disaster resilience as a static measure and neglects the dynamic feedbacks

and complexities of urban systems resilience. Moreover, using static metrics, we are not able to

understand the existence of tipping points, which are critical thresholds where systems experience

regime shifts in the performances of urban systems (as shown in [63 ]). An alternative approach

to this index-based quantification of resilience is to develop dynamical models of urban recovery,

and to evaluate resilience using simulations.
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Dynamical Modeling Approaches

To overcome such drawbacks of index-based measures, several dynamic models have been pro-

posed for understanding community resilience. Studies have modeled the interdependent dynamics

in physical systems [104 ]. On the social systems side, studies have used household surveys and

interviews to understand post-disaster evacuation behavior for the past several decades (e.g., [44 ],

[105 ], [106 ]). Various characteristics including hazard characteristics, ethnicity, gender and race

[107 ], as well as storm intensity [108 ], risk perception [109 ], information dissemination methods

[110 ], past disaster experiences [111 ], and social network effects [112 ], [113 ] have been under-

stood to affect evacuation decisions of individuals and households. By leveraging such empirical

insights, there has been numerous efforts to build agent based models for simulating post-disaster

mobility patterns [44 ], [114 ].

However, such studies treat social and physical systems in isolation, neglecting any complex

interdependencies which might exist in the recovery process. Several studies have modeled the in-

teractions between social and physical (structural) systems. For example, Dong et al. constructed

an agent based modeling framework to simulate the resilience of healthcare facilities during flood-

ing events [115 ]. Grinberger et al. investigate the welfare effects of disaster recovery after an

earthquake in Jerusalem using an agent based simulation [116 ]. The COPEWELL framework is a

system dynamics model for predicting community functioning and resilience after disasters [117 ].

Several interdisciplinary system dynamics models that model the housing recovery after disasters

are presented [118 ], [119 ]. The agent based simulation by Kanno et al. is a human-centered mod-

eling framework of urban systems to capture various types of interdependency underlying urban

sociotechnical and socioeconomic systems [120 ]. Despite such advancements, they lack empirical

testing using large-scale real world data from past disaster events. Without such empirical testing

from various events and regions, it is difficult to obtain generalizable insights on the resilience of

urban systems to disasters. To bridge this research gap, we leverage novel large scale data sources

in this dissertation. In the next section, we review the various types of novel data sources, their

properties, and their applications.
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Table 1.1. Brief descriptions and applications of the four novel types of data: mobile
phone location data, social media data, web search query data, and satellite imagery
night time light data.

Data type Data Description Applications

Mobile phone lo-
cation data

Location information and times-
tamps collected from individual
mobile/smart phones. Typically are
either call detail records (CDRs),
which record the locations of cell
phone towers, or GPS signals.

Monitor and analyze human mo-
bility patterns at the urban scale
for various applications ranging
from population mapping, epidemic
modeling, traffic analysis, disaster
management.

Social media data

Content of social media posts
(text, images), online social net-
work structures of users, and occa-
sionally geo-locations.

Sentiment analysis, topic model-
ing, text mining for understand-
ing social dynamics during politi-
cal/disaster events.

Web search query
data

Query words that individual users
have searched in browsers. Rarely
used compared to social media and
mobile phone location data.

Modeling the online information
seeking behavior of individuals, an-
alyzing the needs of the users dur-
ing disaster events.

Nightime light
data

Satellite image data; DMSP-OLS
(1993-2017) and VIIRS DNB
(2012-2020) are commonly used to
capture nighttime lights.

Modeling the online information
seeking behavior of individuals, an-
alyzing the needs of the users.

1.2.3 Novel Data Sources in Urban Analytics

With the ubiquitousness of mobile devices and low cost sensors, we are now capable of col-

lecting various types of data from individual users at an unprecedented scale. In this section, we

will review mainly four types of novel data sources that have become increasingly popular in the

past decade, their pros and cons, and applications in tackling urban challenges. Brief descriptions

of the four types of data: mobile phone location data, social media data, web search query data,

and satellite imagery data, are listed in Table 1.1 .

Mobile Phone Location Data

The recent spread in mobile devices allow us to observe and analyze the individual mobility

patterns of people at an unprecedented granularity and scale [121 ], [122 ]. During the last decade,
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Figure 1.4. Number of research articles returned by searching “human mobility”
and “mobile phone” in Google Scholar by year. Research has substantially increased
over the years and was further spurred in 2020 due to the COVID-19 pandemic. The
count for 2021 was computed on July 12th, 2021.

mobile phone location data, also known as call detail records (CDR), have become one of the pri-

mary data sources for analyzing human mobility patterns on the urban scale [123 ] (see Figure 1.4 

for number of publications on human mobility and mobile phone data). Mobile phone location data

can be classified into three main categories: mobile phone call detail records (CDR), smartphone

GPS location data collected by location intelligence companies, and smartphone GPS location data

collected and processed by major tech companies. Table 1.2 organizes how they are collected, the

pros, cons, and examples of providers for each dataset.

Mobile Phone Call Detail Records (CDR)

During the last decade, mobile phone call detail records (CDR) have become one of the primary

data sources for analyzing human mobility patterns on the urban scale [123 ]. Call detail records

typically contain the unique ID of the user, timestamp, and location information of the observed

cell phone tower. Note that unlike smartphone GPS data introduced later, the location information

of CDRs are not the actual location of the user, thus contains typically around couple 100 meters

to several kilometers in the rural areas where cell phone towers are sparsely located. Using large-
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Table 1.2. Brief descriptions and applications of the four novel types of data: mobile
phone location data, social media data, web search query data, and satellite imagery
night time light data.

Data type Description Pros and Cons Providers (e.g.)

Mobile phone
call detail records
(CDR)

Location information
of cell phone towers
when users make calls
or text messages

(+) substantial coverage of
the population (-) Low
spatial and temporal res-
olution compared to GPS
datasets

NCell, Orange,
Vodafone, Turk-
cell

Smartphone
GPS location
data (Location
Intelligence
firms)

GPS data collected and
aggregated from several
third party smartphone
applications

(+) precise location infor-
mation of users (-) No
transparency in data gen-
eration process; covers a
small sample of popula-
tion compared to CDR;
available for fewer coun-
tries

Cuebiq, Ve-
raset, Safegraph,
Unacast

Smartphone GPS
location data
(Major Tech
firms)

GPS data collected and
aggregated from their
own platforms

(+) Available in standard-
ized formats across mul-
tiple countries and across
time (-) Outputs restricted
to selected metrics pro-
duced by the tech firms

Google, Face-
book, Apple,
Yahoo Japan

scale datasets of CDR data, a seminal paper by Gonzalez et al. unraveled the basic laws of human

mobility patterns [124 ]. Several more papers have used CDR data to understand spatio-temporal

patterns of urban human mobility, routine behavior, and their predictability (e.g., [125 ], [126 ]).

Moreover, human activity patterns and land use patterns have been studied using CDR data (e.g.,

[127 ]). In addition to understanding human behavioral laws, such data has enabled us to obtain

dynamic and spatially detailed estimations of population distributions (e.g., [128 ]), social inte-

gration and segregation of mobility (e.g., [129 ]), and macroscopic migration patterns (e.g., [130 ]).

Moreover, these datasets have been applied to solve various urban problems such as preventing dis-

ease spread [131 ]–[133 ], estimating traffic flow (e.g., [134 ], [135 ]), and estimating socioeconomic

statistics (e.g., [136 ]) and impacts of shocks [137 ] (for a full review, see [121 ], [122 ]).
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Smartphone GPS Location Data from Location Intelligence Firms

More recently, we have seen an increase in the availability of mobile phone GPS location

datasets collected by location intelligence companies, such as Cuebiq (https://www.cuebiq.com/ ),

Unacast (https://www.unacast.com/ ), and Safegraph (https://www.safegraph.com/ ). Location in-

telligence companies collect location data (e.g., GPS data) from third-party data partners such

as mobile location-based application developers. GPS data have been previously collected from

taxis (for example, see [138 ]) to understand traffic patterns. Typically for each data point, a user

identifier, timestamp of observation, and the longitude and latitude information are included in

the dataset. More recently, these firms have started provided more aggregate (e.g., aggregated for

each point-of-interest) data to preserve the privacy of the users. Compared to CDR, GPS logs

have higher spatial preciseness, and moreover, higher observation frequency, allowing us to un-

derstand mobility patterns in more detail. However, often the specific sources of the location data

nor the process in which the data are collected and combined from several application services are

undisclosed to the users. Therefore, using such data requires a rigorous analysis of checking the

representativeness of the mobile phone location dataset.

Smartphone Location Data from Major Tech Firms

Similar to the smartphone GPS location data collected by location intelligence firms, major

tech firms such as Facebook, Google, and Apple, also collect GPS location data from their users.

The major difference in the data generative process is that these major tech firms use data col-

lected from their own platform, not by third party services. Often, these data are provided in a

pre-processed form, aggregated by both time and space. Facebook, through its “Data for Good”

program, provides various types of location information products to researchers, agencies, and

non-profits (https://dataforgood.fb.com ). In particular, the “Facebook Disaster Maps” provides

detailed density maps of the population density and movement patterns before, during, and after

disaster events. The data is temporally aggregated (usually every 24 hours), spatially aggregated

(usually into 360,000 square meter tiles), and spatially smoothed, to anonymize and protect the

users’ privacy [139 ], [140 ]. The Maps have been utilized by many significant nonprofit organiza-

tions and international agencies in disaster response, including the International Federation of the
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Red Cross, the World Food Programme, the United Nations Children’s Fund (UNICEF), NetHope,

Direct Relief, and others.

The availability of such high-frequency, high-resolution data has become more common with

the coronavirus pandemic in 2020/2021. During the current COVID-19 crisis, researchers from

academia, industry, and government agencies have utilized large-scale mobility datasets to esti-

mate the effectiveness of control measures in various countries including China, Germany, France,

Italy, Spain, Sweden, United Kingdom and the United States [141 ]–[152 ]. We have made several

contributions to the scientific literature during the COVID-19 pandemic, including understand-

ing the effects of non-compulsory lockdown orders on mobility restrictions in Tokyo (Figure 1.5 )

[152 ], the income inequality in mobility reductions in the United States [28 ], and a policy brief

with the Asian Development Bank Institute on the importance of balancing out economic recovery

and pandemic suppression, and the usage of large-scale mobility data [25 ]. Data sharing plat-

forms such as the PlaceKey community (https://www.placekey.io/ ) has contributed to this effort

by providing a semi-open platform where researchers can freely access aggregated mobile phone

location data for analysis. I have summarized the efforts on using such novel data for development

in Section 6.3.1.

1.2.4 Application of Mobile Phone Data in Disaster Management

Recently, mobile phone data has been utilized in many applications for disaster response and

recovery, given its high spatial and temporal granularity, scalability to analyze millions of individ-

uals’ mobility, and increasing availability. In this section, the studies using mobile phone data for

natural hazard response and recovery are categorized into 3 categories of applications: population

displacement and evacuation modeling, longer-term recovery analysis, and inverse inference of

damages to the built environment. The required inputs, methodologies, obtained outputs, and case

studies are presented for each application.

Population Displacement and Evacuation Modeling

The most widely studied applications of mobile phone location data in disaster response and

recovery is to estimate the population displacement and evacuation dynamics after disasters. In
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Figure 1.5. (A-C) Population distribution estimated from mobile phone GPS loca-
tion data, on 3 different dates at same times (12PM), each on the same day of week
(Mondays) in Tokyo during the COVID-19 pandemic. Substantial decrease in the
population density at stations and cities along the Yamanote-line (ring railway) can
be observed. (D) shows the amount of contacts an individual potentially encounters
outside home for each time period. (E) shows the non-linear relationship between
the mobility metrics and R(t). (Yabe et al., 2020 [152 ])

their seminal paper, Lu et al. used CDR to study the predictability of displacement mobility pat-

terns after the Haiti Earthquake in 2010 [45 ]. Using data collected from 1.9 million mobile phone

users during the period from 42 days before to 341 days after the shock, the study estimated that

23% of the population in Port-au-Prince had been displaced due to the earthquake. Despite the

substantial displacement, they also found that the destinations of the displaced people were highly

correlated with their pre-earthquake mobility patterns. This finding shed light on the possibility of

predicting post-disaster mobility patterns, and had significant implications on relief operations in-

cluding the pre-positioning of distribution centers [153 ] and evacuation shelters. Another seminal

disaster event that highlighted the use of mobile phone location data was the Gorkha Earthquake

(intensity of 7.8Mw) which struck Nepal in 2015 [154 ]. Wilson et al. rapidly analyzed the dis-

placement movements of 12 million de-identified mobile phone users after the earthquake within

nine days from the event [155 ]. It was estimated that over 390,000 people left the Kathmandu

31



Figure 1.6. Population displacement after the Puebla Earthquake in Mexico City.
Anomaly score (z score; number of standard deviations more/less than the pre-
earthquake mean) of population density during the day (left) and night (right) on
September 19th, 2017 in Mexico City. Significant displacement is observed during
the night time of the day of the earthquake (Source: [157 ])

Valley after the earthquake. These results were released as a report with the United Nations Office

for the Coordination of Humanitarian Affairs (UN OCHA) and a range of relief agencies. This

effort by Flowminder, a non-profit foundation for analyzing mobile phone location datasets, was

the first significant practical use-case of large scale mobile phone location data in disaster relief

and response [156 ].

Following the aforementioned two seminal works after the Haiti Earthquake and Gorkha Earth-

quake, several studies have developed methods to estimate population displacement and post-

disaster evacuation patterns using mobile phone location data. A general framework for the spatio-

temporal detection of behavioral anomalies using mobile phone data was proposed by Dobra et al.

[158 ]. Using smartphone location data from before and after disasters, population displacement

can be quantified by measuring the anomaly score (z-score; the number of standard deviations

more or less from the mean population on a typical day) of the daytime and nighttime population

in highly granular (1km x 1km) grid cells, as shown in Figure 1.6 [157 ]. During the night time after

the earthquake, blue-colored clusters with z scores below -2, indicating a likelihood of less than 1%

on a typical day, can be observed in central Mexico City, showing significant decrease in nighttime
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population. Yabe et al. used smartphone GPS location data collected by Yahoo Japan Corpora-

tion to analyze the evacuation rates after five earthquake events in Japan [159 ]. Cross-comparative

analysis of five earthquakes and over 100 affected communities revealed similar relationships be-

tween evacuation rates and seismic intensity levels, where evacuation rates significantly increased

in communities that experienced magnitudes above 5.5. Several computational frameworks have

been proposed to estimate the spatial patterns of evacuation destinations and hotspot locations us-

ing anomaly detection techniques on large-scale mobility data [160 ]. Just after the Kumamoto

Earthquake in April 2016, population distribution and evacuation hotspot maps were produced

jointly by researchers at the University of Tokyo and Yahoo Japan Research, and were delivered to

city governments for relief and response [161 ]. Duan et al. studied the evacuation patterns after a

train collision incident in China using mobile phone location data, identifying a two-stage evacua-

tion process, and also behavioral changes in commuters’ travel route choices [162 ]. Ghurye et al.

study the displacement patterns after the Rwanda Flood in 2012 using Markov Chain models and

CDR [163 ]. The study compares the observed human behavior during a disaster with the behavior

expected under normal circumstances to understand the causal effects of the disaster event. Yin

et al. combined mobile phone location data with agent based simulations (which are widely used

in evacuation analysis; e.g., [114 ]) to improve the estimation accuracy of evacuation movement,

proposing a hybrid approach [164 ].

More computational approaches using data assimilation techniques have been explored for on-

line, near real-time predictions of post-disaster mobility patterns. Song et al. proposed a mobility

prediction model based on a Hidden Markov Modeling framework, and tested its validity using

data collected from 1.6 million mobile phone users in Japan before, during, and after the Great

East Japan Earthquake in 2011 [165 ]. Sudo et al. developed a Bayesian data assimilation frame-

work by combining the particle filter and Earth Mover’s Distance algorithms, that updates the

urban-scale agent based mobility simulation in an online manner using spatially aggregate mo-

bile phone location data provided in real time [166 ], [167 ]. Several online algorithms have been

proposed since these seminal works, including CityMomentum [168 ] that uses a mixture of mul-

tiple random Markov chains, CityCoupling [169 ] that aims to perform cross-city predictions, and

inverse reinforcement learning approaches that attempt to learn the behavioral patterns of human

mobility during disasters from large scale data [170 ], [171 ]. Although these computational, on-
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line approaches are shown to be effective in experimental and post-hoc settings, none have been

utilized in real-time after real-world disaster events.

Longer-term Analysis: Migration and Recovery

One advantage of mobile phone location data is the ability to track the movements of users

over a long period of time (several months ∼ year) with high frequency (e.g., hourly ∼ daily),

which are extremely difficult to perform using household survey data. Therefore, in the normal

setting, there have been attempts to use mobile phone location data to estimate population migra-

tion dynamics [130 ], [172 ], [173 ]. In the disaster setting, Lu et al. studied the migration patterns

in regions stressed by climate shocks in Bangladesh using CDR [174 ]. In addition to analyzing the

short term human mobility patterns after Cyclone events (hours ∼ weeks), the study quantifies the

incidence, direction, duration and seasonality of migration in Bangladesh. Acosta et al. quantified

the migration dynamics from Puerto Rico after Hurricane maria using mobile phone, showing a

shift from rural to urban areas after the disaster [175 ]. Marzuoli et al. used mobile phone data

to analyze the recovery dynamics of residents in South Texas after Hurricane Harvey [176 ]. The

study provided detailed statistics of population movement and origin destination patterns for dif-

ferent zipcodes in Texas. In addition, the role of social networks [113 ], [177 ], hedonic behavior

[178 ], and post-disaster spatial segregation [179 ] have been tested using mobile phone location

data after disasters. Although mobile phone location data provide significant advantages in an-

alyzing longer-term phenomena (e.g., migration and recovery after disaster events) compared to

household survey data, most studies focus on shorter term displacement and evacuation analysis,

leaving substantial room for research in understanding the long term recovery and resilience of

urban and rural areas to disasters.

Inverse Inference of Damage to the Built Environment

The studies introduced in the previous two subsections studied the anomalies in human mo-

bility patterns disrupted by shocks (e.g., hurricanes, earthquakes, tsunami) inflicted to the built

environment. However, several studies have approached the problem in an inverse manner, by

using anomalies observed in the mobile phone location data and human mobility dynamics to
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inversely estimate the damage to and recovery of the built environment, which have traditionally

been estimated using hazard simulations and structural mechanics (e.g., [180 ]). Andrade et al. pro-

pose a novel metric “reach score” that quantifies the amount of movement of mobile phone users,

and finds that the reach score has significant correlation with the damage inflicted to infrastructure

systems by the earthquake at the canton level in Ecuador [181 ]. Pastor-Escuredo et al. show that

by analyzing the anomalous patterns in mobile phone communications, we are able to conduct

infrastructure impact assessment due to flooding events, using retrospective data collected from a

flood in Mexico [182 ]. Finally, Yabe et al. propose a machine learning algorithm that combines

mobile phone location data with terrain information to conduct a rapid and accurate estimate of

the inundated areas during a flood event [183 ]. These studies show the potential of using mobile

phone location data to infer the abnormal states of the built environment. Mobile phone location

data has several advantages compared to conventional methods in data quality, including satellite

imagery which are often observed sparse in time (e.g., once a day at most), and social media data

which are more sparsely observed. While the application potential of these studies are promising,

we lack comprehensive analysis of its real-time feasibility and accuracy under different types of

events.

Despite the increasing number of studies using large scale mobility data sources for human

mobility analysis, there is still little work that utilizes such novel mobile phone location datasets

to fully understand the longitudinal dynamics of recovery after disasters. This dissertation con-

tributes to this area of research by developing methods and models to further utilize large-scale

mobile phone location data collected before/during/after disasters, to reveal the complex dynamics

of disaster recovery.

Social Media Data

Mobile phone location datasets are relatively new to the research field, however, there are

other data sources that have been used more extensively in urban science and disaster recovery

research. Social media data, mainly data collected from Twitter, allows us to observe individual

users’ views and opinions on various topics, as well as their mood and sentiment, at an extremely

large scale (scale of millions of users). Due to this advantage in scale and temporal granularity
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compared to conventional surveys, Twitter data has been a popular source for analyzing social

dynamics across disciplines, including public health [184 ], [185 ], analysis of political discourse

and election predictions [186 ], [187 ], and disaster management [188 ]. In particular, studies have

used Twitter data to understand communication patterns before, during, and after disaster events

[189 ]–[191 ], disruptions in mobility behavior during disasters using Twitter geotag data [192 ],

[193 ], earthquake event detection [194 ], and rapid assessment of disaster impacts [195 ]. We have

made several contributions in this literature, on understanding emergency needs of disaster affected

users via text analysis and machine learning [196 ], and predicting evacuation and return behavior

of users by using sentiment analysis and machine learning [197 ]. Social media data are similar

to mobile phone location data in the sense that the data are disaggregated to individuals, however,

the percentage of tweets that contain location information (geotags) are extremely sparse (around

0.1% of all tweets), and is difficult to use for mobility analytics [198 ].

Web Search Data

Another type of data that are more recently used, are the web search query data of individual

users [199 ]. Studies have used aggregate web search query counts to predict various phenomena,

including epidemics and disease spread [200 ], [201 ]. Others have used web search data to predict

users’ demographics [202 ], to understand consumer behavior [203 ] and to improve click through

rates [204 ], mainly for commercial applications. More recently, web search query datasets of

individual users have become available for analysis. To analyze web search queries, a popular

approach is to produce word embeddings using methods such as word2vec [205 ], FastText [206 ],

GloVe [207 ], and Query2Vec [208 ]. We used individual web search data and developed a bi-level

long short term memory (LSTM) model to predict the evacuation mobility behavior of individuals

[209 ].

During the COVID-19 pandemic, many studies have utilized web search query data to under-

stand information seeking behavior and the occurrence of infodemics [211 ]–[213 ]. Others have

used such data to detect the increase in COVID-19 symptoms (e.g. loss of smell) [214 ], [215 ],

and also for predicting outbreaks [216 ], [217 ]. With the availability of open datasets [218 ], there

is great potential in further using web search query data for pandemic response and prevention.
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Our study used web search data and GPS location data, which are linked with common user IDs,

to predict outbreak hotspot locations [210 ]. Validation using data from Tokyo, Japan showed that

compared to previously proposed metrics, the high risk social contact index is capable of predicting

the timing of outbreaks 1-2 weeks beforehand in a microscopic (125 meters) spatial scale (Figure

1.7 ). Web search data, despite its infancy, has great potential in understanding and predicting social

dynamics, along with mobile phone location data and social media data.

1.2.5 Literature Summary and Research Gaps

In this section, we have reviewed the literature on three broad topics: 1) resilience concepts,

2) disaster recovery and community resilience, and 3) novel data sources. The literature can be

organized using two axes: complexity of the modeling approach, and the characteristics of the data

used for analysis. As summarized in Figure 1.8 , the current literature are focused in three out of the

Figure 1.7. Predicting COVID-19 outbreaks with web search data. Time lagged
cross correlation analysis of the high risk users, social contact index, and high risk
social contact index metrics against the daily number of new cases. Web search-
driven metrics preceded the daily cases trend by 8-9 days during the first wave, and
by 16 days during the second wave. (Yabe et al., 2020 [210 ])
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four quadrants in this space. Component-level analysis, for example of social behavior modeling

of evacuation analysis, have been performed using both conventional (e.g., household surveys) and

novel datasets (e.g., mobile phone location data; introduced in Section 1.2.3). While there has

been several studies on the analysis and modeling of interdependent systems using agent based

models and system dynamics, such studies have been based on conventional survey data. This

dissertation attempts to make contributions in the top right quadrant, to model the interdependent

systems dynamics using novel datasets. In summary, the literature review has identified several

key research gaps in the field of disaster resilience modeling:

• Despite the vast literature on disaster resilience, there is limited work that investigate the

dynamical interdependencies across social, economic, and physical infrastructure systems,

and their effects on the resilience to shocks of the overall urban system.

• In addition to the above gap, existing work on disaster recovery and resilience simulations

lack rigorous empirical validation using large-scale novel datasets from various disasters and

regions, despite their availability.

• Many studies across various disciplines have used novel large-scale datasets for post-disaster

analysis, however, we lack methods to leverage such data to understand the complex recovery

dynamics of coupled systems.

1.3 Overarching Goal and Objectives

The overarching goal of the dissertation is to address the aforementioned key challenges in

the resilience literature, by developing data-driven dynamical systems methods to understand

the post-disaster recovery dynamics of coupled socio-physical systems. A series of novel data-

driven, computational methods will be developed with a multi-disciplinary approach, integrating

methods and theories from machine learning, Bayesian statistics, social network analysis, eco-

logical resilience and system dynamics. To achieve the overarching goal of the dissertation, the

following five major objectives are proposed in this dissertation:

1. To develop a data-driven generalizable model of post-disaster recovery dynamics using large

scale empirical data collected from various disaster events.
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Figure 1.8. Research gap in data-driven dynamical systems modeling that this dis-
sertation attempts to bridge.

2. To unravel intra-regional, intra-sectoral socio-economic inequalities that exist in the recovery

of heterogeneous social systems.

3. To develop a data-driven system dynamics model of coupled urban socio-physical systems

exposed to external shocks to predict post-disaster recovery dynamics.

4. To apply the developed system dynamics model for evaluating the resilience of urban sys-

tems to hypothetical future climate scenarios.

5. To develop artificial intelligence methods that identifies functional similarities across cities,

to transfer knowledge from past disasters across cities.

To fulfill these objectives, novel data-driven models, algorithms, and theories are developed in

Sections 2, 3, 4, and 5. While each Section focuses on a particular set of research questions and

attempts to answer a set of hypotheses on the corresponding topics, the overarching hypotheses of

the dissertation on the recovery and resilience of coupled urban systems are as follows:
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H1. Similar to usual human mobility behavior (as shown in [124 ]), the recovery patterns of hu-

man mobility and population movement after shocks can be characterized by a universal

function in the form of truncated power law distributions.

H2. The recovery speed of social systems after shocks vary across regions and industry cate-

gories, however the recovery sequences of business categories are similar across regions.

H3. Urban systems are composed of interdependent socio-economic and physical infrastructure

systems, however, the degree of interdependency varies across regions depending on the

urban-ness of the region, which affects the resilience of coupled systems.

1.4 Organization of Dissertation: a Synthesis Approach

The dissertation aims to develop data-driven computational models that improve our under-

standing of the disaster recovery dynamics of coupled socio-physical systems, and to provide

methods and case studies that can assist future decision makings in improving the resilience of

cities to future disasters. The overall structure of the dissertation is shown in Figure 1.9 . The

contents of the dissertation are organized to collectively address the aforementioned objectives

and research questions. Although each chapter may be read independently of each other, analyses

and modeling in some of the chapters depend on models and insights from the preceding chap-

ter(s). For example, the insights from disaster recovery trajectories and intra-regional inequalities

in Chapters 2 and 3, respectively, are key components used in the system dynamics modeling in

Chapter 4.

Chapter 2 of the dissertation focuses on developing methods and models to extract theoretical

insights of post-disaster population recovery dynamics from large-scale mobility data (e.g. mobile

phone GPS data). Section 2.1 uses large-scale mobility data collected from five heterogeneous

disasters (e.g. tsunami, hurricane, earthquake, flood) across the US and Japan to generate universal

insights on population recovery patterns. In addition to discovering the universal patterns, the

observed heterogeneity in recovery model parameters across communities are explained using a

set of key factors in Section 2.2. Furthermore, the significance of social and physical network

effects are investigated in Section 2.3 using spatial econometric models.
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Chapter 3 further investigates the intra-regional heterogeneity and inequalities in post-disaster

recovery patterns. Using Miami-Dade after Hurricane Irma as a case study, methods based on

information theory are proposed to quantify the inequity in post-disaster evacuation and return

movements in Section 3.1. Section 3.2 proposes and tests a Bayesian structural time series model

to quantify the causal impact of a disaster on local businesses using foot traffic data observed via

mobile phone location data. The model is tested on data collected from Hurricane Maria in Puerto

Rico to estimate the inequality in disasters impacts on different business categories and business

locations. Section 3.3 further characterizes the sequence of disaster recovery of business sectors

across regions.

Chapter 4 integrates the insights and models from Chapters 2 and 3 to develop a system dynam-

ics model of coupled socio-physical systems after disasters. Section 4.1 focuses on developing the

formulation and analysis of the system dynamics model, by extending socio-physical system dy-

namics models developed in the socio-ecological domains. Section 4.2 integrates the model with

empirical data from Hurricane Maria in Puerto Rico to unravel the effects of interdependencies

on resilience, and critical trade-offs between infrastructure efficiency and socio-economic self-

reliance. Section 4.3 further proposes a network diffusion model that characterizes the inter-city

spillover effects of disaster recovery, using insights obtained from Section 2.3.

Chapter 5 proposes a new stream of work, on developing deep-learning based techniques to

transfer insights across different cities using a data-driven approach. Section 5.1 introduces an

unsupervised machine translation approach that translates the functionality of places that are pro-

duced via LSTM-based representation models. Section 5.2 presents a methodology that utilizes

the urban hierarchical structures to overcome the difficulties in translating the functionalities of

places across cities of different sizes (i.e. domain imbalance problem).

Chapter 6 will synthesize the key contributions of the dissertation, present transitions from

data-driven modeling to data-driven dynamical systems approach, and also discuss the important

future research directions.
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Figure 1.9. Organization of dissertation.

42



2. DISASTER RECOVERY TRAJECTORIES

In this chapter, aim to understand how cities recovery after shocks through the lens of human

mobility dynamics. As introduced in Section 1, human mobility patterns are known to follow

a universal law – a truncated power law distribution – in the usual setting (normal, daily lives)

[124 ]. Truncated power law distributions are products of substantial variance in behavioral patterns

and limits in space and time of observation. We hypothesize that even after shocks (e.g., floods,

earthquakes, hurricanes, tsunami), human mobility behavior exhibit universal patterns, similar to

a truncated power law distribution (Hypothesis 1). To answer this question, we use large mobile

phone location data collected from five large scale disasters across the US and Japan.

Household surveys and interviews have been the primary data sources to understand post-

disaster evacuation behavior for the past several decades [105 ]. Surveys conducted after various

disasters and events have revealed the high complexity of evacuation decision making processes

[106 ]. Previous works have studied the effects of various factors on the evacuation process (for

a review on this topic, see [44 ]). Although findings vary across disaster events due to the dif-

ferences in social context and the hazard characteristics, personal and household characteristics

such as ethnicity, gender and race [107 ], as well as storm intensity [108 ] have been understood to

affect evacuation decisions. Moreover, risk perception [109 ] and past disaster experiences [111 ]

affect how individuals and households react to disasters. In addition to such individual-level char-

acteristics, how evacuation orders are delivered to households during evacuation [219 ] and also

the type of sources the information is disseminated through are also known to be important factors

[110 ]. Also, recent studies have revealed the significant effect of social influences [220 ] through

connected peers in their social networks [112 ]. A study in rural Indiana showed the importance

of social capital, personal networks, and emergency responders in evacuation decision making

[113 ]. Studies have also used survey data to understand evacuation activities after no notice dis-

asters [221 ]. In terms of Hurricane Irma, a study analyzed survey data collected from surveys to

show the importance of social connections on evacuation behavior [222 ]. Similar to evacuation

behavior, the effect of various features on reentry behavior has been analyzed using data collected

via household surveys [47 ]. Another study analyzed the evacuation behavior after Hurricane Irma

using discrete choice models based on data collected from surveys, with 645 respondents [223 ].
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Despite the various advantages of survey data (e.g. qualitative details on individual experiences),

such data have several drawbacks that limit our analysis on the evacuation behavior of the affected

individuals. The main limitations are the number of samples (number of respondents were 645 in

[223 ]) and the coarse spatio-temporal granularity in which we are able to track the movements of

people.

In the context of disasters, studies have used mobile phone location data to analyze population

displacement patterns [155 ], [174 ]. Lu et al. [45 ] revealed the predictability of displacement

destinations from pre-disaster behavioral patterns in Haiti. Other studies have used a more online

machine learning approach to predict the population flow after disasters using real time location

data in an online manner [165 ], [166 ]. Despite the increasing number of studies using large scale

mobility data sources for human mobility analysis, none of the existing studies have used mobility

data to model the longitudinal post-disaster population dynamics.

Summary of key challenges related to disaster recovery trajectories: Based on the liter-

ature review, the key challenges in modeling post-disaster population dynamics in urban systems

can be summarized as the following:

1. There is a lack of understanding of how the complex and dynamic coupling between social,

physical and institutional systems effect inter-city population dynamics after disasters.

2. Many of the studies on the analysis of disaster recovery and resilience lack sufficient empir-

ical testing, often due to the limitations of data collected via household surveys.

3. Despite the availability of large-scale mobility data collected from various disaster events,

we lack computational methods to leverage such data to model and predict post-disaster

population dynamics.

Key hypotheses to be tested in this chapter:

H2-1. Similar to usual human mobility behavior (as shown in [124 ]), the recovery patterns of hu-

man mobility and population movement after shocks can be characterized by a universal

function in the form of truncated power law distributions.

H2-2. Heterogeneity in recovery parameters (speed, initial displacement rate, long term displace-

ment rate) can be explained by a set of key socio-economic parameters.
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H2-3. Topological organizations of cities and the structures of the inter-city networks (character-

ized by both physical distance and social mobility flow) affect recovery outcomes.

2.1 Universal Recovery Patterns

In order to bridge the gaps in the current literature, we analyzed large scale mobile phone GPS

datasets collected before and after multiple disasters across different counties. We collaborated

with 3 different companies across the US and Japan that collect GPS location data from mobile

phones, and studied the movements of more than 1.9 million mobile phones of affected individuals

over a six-month period. We studied the recovery patterns after Hurricane Maria (Puerto Rico,

USA, 2017), Hurricane Irma (Florida, USA, 2017), Tohoku Tsunami (Tohoku area, Japan, 2011),

Kumamoto Earthquake (Kyushu area, 2016), and Kinugawa Flood (Ibaraki area, Japan, 2015),

shown in Figure 1a. These five disasters, in total, destroyed more than 1.5 million residential

buildings, caused power outages in more than 8 million households, and caused more than $350

billion in economic loss. The five disasters were diverse in various aspects including the type

of disaster (tsunami, earthquake, hurricane, flood), location of occurrence (Puerto Rico, Florida,

Tohoku, Kumamoto), and the socio-economic characteristics of the affected regions.

For each disaster, we analyzed the longitudinal population recovery patterns in the affected

areas (Table 2.1 ). The affected areas were defined as the set of local government units (LGUs),

which experienced damages to residential buildings due to the hazard. LGUs correspond to coun-

ties in Florida and Puerto Rico, and “shichoson (cities/wards)” in Japan in this study. There are

mainly 3 reasons to why we perform our analysis on the LGU scale. Firstly, due to the limitation in

the number of mobile phone user samples, analysis at a further finer scale would yield statistically

insignificant results especially in rural areas. Second, the LGU scale is the finest scale in which we

can obtain socio-economic data in Japan, unlike the US where data is available on the census tract

level through the American Community Survey. Third, government agencies often make policy

decisions on the LGU scale, thus insights on that spatial scale would provide decision makers with

relevant and useful insights.

Housing damage data collected from official sources are used to understand the spatial extent

of damage inflicted to each of the communities. For disasters in the US, the “housing damage
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Table 2.1. Statistics of GPS data for all disasters. For all disasters, GPS location
data of affected individuals were observed for approximately 6 months, including
days before and after the disaster. All datasets had more than 30 datapoints per day
for each individual on average, allowing us to accurately track where each individual
stayed every night after the disaster.

Disaster Main Study Area
Observed

Period
Users

(affected)
Observations

(/day/user)

Hurricane Maria Puerto Rico
2017/9/1-
2018/3/15

53,511
(53,511) 82.8

Hurricane Irma Florida, USA
2017/9/1-
2018/3/1

1,730,326
(1,599,370) 97.0

Tohoku Tsunami Tohoku, Japan
2011/3/1-
2011/9/1

68,416
(10,697) 33.4

Kumamoto Earthquake Kumamoto, Japan
2016/4/1-
2016/10/1

80,933
(5,944) 40.7

Kinugawa Flood Ibaraki, Japan
2015/9/1-
2016/3/1

2,580
(437) 46.0

rate” of a given LGU refers to the rate of houses approved for the Individuals and Households

Program of FEMA in each LGU [224 ]. For disasters in Japan, it refers to the rate of residential

buildings classified as “totally destroyed” or “half destroyed” by the Cabinet Office of Japan (COJ)

in each LGU [225 ]. Both datasets are publicly accessible. 78 LGUs in Puerto Rico, 49 LGUs in

Florida, 30 LGUs in Tohoku, 33 LGUs in Kumamoto, and 10 LGUs in Kinugawa were classified

as affected areas with housing damages, and were included in the analysis. Figure 2.1 shows the

LGUs that were included in the analysis along with the housing damage rates in red color.

Mobile phone location data for the five disasters were provided by 3 different companies

in Japan and the US. Location data were collected by Yahoo Japan Corporation (https://www.

yahoo.co.jp/ ) for Kumamoto Earthquake and Kinugawa Flood, by Zenrin Data Com (http://www.

zenrin-datacom.net/toppage ) for Tohoku Tsunami and Earthquake, and Safegraph (https://www.

safegraph.com/ ) for Hurricanes Irma and Maria. All companies obtained the location information

(time, longitude, latitude) of mobile phones from users who agreed to provide their location data

for research purposes, and all information were anonymized to protect the security of users. Each

mobile phone user’s home location was estimated by performing a weighted mean-shift clustering
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Figure 2.1. Locations and disaster events of study. Location, spatial scale, and
severity of disasters that were studied. Red colors indicate the percentages of houses
that were severely damaged in each community.

on the GPS location points observed during nighttime prior to the disaster date [226 ], [227 ]. As

a result, a total of 1.9 million individual users were identified to be living in the affected areas

before the disaster. We refer to these users as “affected users”. Correlations (both Pearson and

Spearman rank correlations) between the number of affected mobile phone users in each LGU and

the census population data were very high in all datasets. Thus, we assume that distribution of

mobile phone users have little spatial bias, and that they are representative of the entire population

in the macroscopic spatial scale, which is also shown in previous works using other mobile phone

datasets [45 ], [128 ], [159 ]. The mobility trajectories of each user were tracked during and after

the disaster, and were used to quantify the longitudinal population recovery patterns. The rate of

displacement on a given day was defined as the rate of affected users who stayed outside their
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Figure 2.2. Macroscopic population recovery patterns after each disaster. Raw
observations of displacement rates were fitted with a negative exponential function.
D0, D160 and τ denote the displacement rates on day 0, day 160, and recovery time
parameter of each fitted negative exponential function. Black horizontal dashed line
shows average displacement rates observed before the disaster.

home LGU out of all affected users on that day. To capture the short term fluctuations in the popu-

lation recovery patterns, the raw observations of displacement rates were denoised using Gaussian

Process Regression, which is a non-parametric probabilistic model for denoising and regression

[228 ]. To capture the general trend of population recovery, the raw observations were fitted using a

negative exponential function D(t) = (D160−D0)exp(− t
τ
)+D160, where D0, D160, and τ denote

the displacement rates on day 0, day 160, and recovery time parameter, respectively. Further, the

fitted negative exponential functions were normalized D̃(t) = D(t)−D160
D0−D160

= e−t
τ to compare the speed

of population recovery across different disasters.

48



Despite the differences in the disaster types and the heterogeneity in socio-economic charac-

teristics among the affected regions, the recovery of displacement rates after the five disasters were

all approximated well by a negative exponential function D(t) = (D0−D160)exp(− t
τ
) +D160,

where D0 and D160 denote the displacement rates on day 0 and day 160, respectively, and τ are

the recovery time parameters. Figures 2.2 show the observed daily displacement rates, smoothed

trend estimated using Gaussian Process Regression, and the fitted exponential functions for each

disaster. Goodness of fit measures were computed to show that the exponential functional form

fits the data well, and that the estimation of parameters are robust. The observations were cut off

on day 160 due to data limitation. Minor anomalies observed in the recovery patterns were due to

national holidays such as Christmas (around day 100 of Hurricane Maria and day 110 of Hurricane

Irma), Thanksgiving Holidays (around day 80 of Hurricane Irma), and “Obon Breaks”, which is a

national holiday in Japan (around day 120 of Kumamoto Earthquake). The baseline (pre-disaster)

displacement rates are shown in Figures 2.2 in horizontal gray dotted lines (mean) and the gray

shaded region (standard deviation) to compare the post-disaster displacement rates with the “usual”

displacement rates that are caused by activities such as travelling. In extreme disasters such as Hur-

ricane Maria and Tohoku Tsunami, we observe a high long term displacement even after 150 days

from the disaster. We can infer that this population segment could have migrated out of the disaster

affected areas to other locations. Figure 2.2 shows the normalized displacement rate observations

D̃(t) for each disaster in colors, along with the negative exponential function (D̃(t) = e−t
τ ) shown

in black. The closeness between the standard negative exponential function and the normalized

population recovery patterns show that for all disasters, population recovery curves can be well

approximated by a negative exponential function.

The negative exponential functional form of the population recovery patterns across the five

disasters imply that the majority of users returned quickly within a couple of weeks from the

disaster, but the rest of the users gradually returned over a longer time period. The exponential

decay also indicates that for each day, a constant rate 1
τ

of the remaining displaced population

decides to return to their original home location. This variance in recovery timings can be explained

by observing the relationship between the temporal duration and spatial distance of individual

displacement mobility patterns. Figure 2.3 a shows that the average evacuation duration increases

with evacuation distance. Figure 2.3 b shows the probability density plots of the maximum distance
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traveled from his/her estimated home location on a usual day before the disaster (gray), on the day

of the disaster (brown), 10 days after the disaster (red), and 1 month after the disaster (orange).

More people stayed further away (> 103m) from their home locations after disasters compared

to before the disaster due to evacuation activities. The distribution of evacuation distances is long

tailed after all disasters at various time points, which indicates the majority of people evacuate short

distances (thus short duration) and a small fraction evacuation extremely long distances (thus long

duration). This explains why we observe the negative exponential function in population recovery

patterns after all disasters. The recovery times after disasters that occurred in Japan and Florida

were relatively short (3 < τ < 8), but very long τ = 26.8 after Hurricane Maria. The differences in

recovery time parameter values τ across disasters can be explained by the differences in the speed

of infrastructure recovery in each of the affected regions. In Japan and Florida, power was restored

in over 90% of the households (that were not destroyed) within 10 days from the disaster, while it

took more than 200 days for Puerto Rico.

Revealing the negative exponential function common across different disasters and locations

could significantly contribute to the efforts in modeling and simulating human mobility patterns

after disasters [114 ]. Further analysis using the individual evacuation mobility patterns showed

that these patterns emerge because of the combined effect of long-tailed distributions in evacuation

distances and positive correlation between evacuation distance and duration. The long tailed dis-

tributions of evacuation distance had been observed in previous studies using other datasets from

Haiti [45 ] and Japan [159 ], however, the latter relationship had not been shown in previous studies.

2.2 Spatial Heterogeneity

We now downscale our analysis to LGUs (counties in the US, cities/wards in Japan) within

each affected area to understand the spatial heterogeneity in population recovery patterns. Since

only one a few number of LGUs (10) were affected by the Kinugawa Flood, with most of them

(9) having little housing damage (less than 1% housing damage rates), the Kinugawa Flood was

not included in the LGU-scale analysis. The LGU-scale analysis was performed on the four major

disasters (Hurricanes Maria and Irma, Tohoku Tsunami, and Kumamoto Earthquake). In total,

there are 200 LGUs with large diversity in socio-economic characteristics that were affected by
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Figure 2.3. Relationship between displacement distance and duration after disas-
ters. a. The longer the evacuation distance, the longer the average evacuation dura-
tion. b. Probability densities of maximum distance from home on a usual day (gray)
and at various timings after the disaster day (brown: day of occurrence, red: 10 days
after, orange: 1 month after) are all long-tailed. The long tailed distribution of evac-
uation distances and the relationship between displacement distance and duration
were common across disasters. The majority of people evacuating short distances
(thus short duration) and a small fraction of the people evacuating extremely long
distances (thus long duration) explains why similar negative exponential functions
were observed after the disasters.

the four disasters. The inset in Figure 3a shows the large heterogeneity in recovery patterns across

LGUs, even within each disaster. Figure 2.4 a shows moderate level of correlation (R = 0.612)

between D0 and D160 for all LGUs.

To understand the effect of the independent variables on the displacement rates and the speed of

recovery, we apply a generalized linear regression modeling framework. Because the displacement

rates are probabilities, 0 < D(t) < 1 holds for any t. Therefore, we apply a logit link function to

the displacement rates in the regression model. Similarly, because the recovery times take only

positive values (0 < τ), we apply a log link function to the speed parameter. Equations (3) and
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Figure 2.4. Explaining the spatial heterogeneity in population recovery using key
common factors. a. D0 and D160 of all LGUs. Each trajectory corresponds to an
LGU, and colors represent the disaster. D0 and D160 have a moderate correlation of
R = 0.612. The inset shows the high spatial heterogeneity of recovery trajectories.
b. Density plots of the four features of the affected LGUs, showing the heterogeneity
in socio-economic characteristics. c. Observed and estimated D0 for all LGUs in all
disasters had high correlation R = 0.864. d. Observed and estimated D160 values
had high correlation R = 0.848.

(4) show the generalized linear regression model where β are the regression coefficients, x are

the independent variables explained in the next section, and ε ∼N (0,σ2) is the error term. The

model parameters are estimated via maximum likelihood estimation.

log
( D(t)

1−D(t)

)
= β

T x+ ε (2.1)
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Table 2.2. Descriptions, variable transformations, and sources of socio-economic data
Variable Description Trans. Data Source

Households Number of households in LGU log
Statistics Bureau (Japan)
ACS* (USA)

Median income Median household income in LGU log
Statistics Bureau (Japan)
ACS* (USA)

Housing damage Rate of households damaged in LGU -
Cabinet Office (Japan)
FEMA (USA)

Proximity to large cities

∑j∈S(i) Nj
Ni

Ni: households in LGU i
S(i): nearby cities from i

- -

Proximity to wealthy cities

∑j∈S(i)(MI)j
(MI)i

(MI)i: income in LGU i
S(i): nearby cities from i

- -

Infrastructure recovery Days until power recovery in LGU - Local government reports
*ACS: American Communty Survey

log(τ) = β
T x+ ε (2.2)

In the regression models of population recovery, socio-economic data (population, median

income, housing damage rates, power outage recovery time, connectedness to surrounding cities)

were used as independent variables (Table 2.2 ). In addition to housing damage rates which directly

quantify the magnitude of the disaster effect on each LGU, socio-economic variables (population

and income) of LGUs were included in the model to seek any inequality between the urban and

rural, and the rich and poor on the disaster recovery performances. Infrastructure recovery (power

outage duration) was included in the model to assess the importance of the local agency’s capacity

to respond to extreme events. Moreover, we test whether the geographical configurations and ac-

cessibility between LGUs are important for post disaster recovery, by including variables related

to the proximity to large and wealthy cities. For Florida and Puerto Rico, population data were

obtained from the US National Census (https://www.census.gov/ ), and median income data were

obtained from the American Community Survey (https://www.census.gov/programs-surveys/acs  ).

Similarly, for Japanese LGUs, population and income data were obtained from the Statistics Bu-
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reau (https://www.stat.go.jp/ ) of the Ministry of Internal Affairs and Communications of Japan.

Power outage data of LGUs in Puerto Rico were collected from the website StatusPR (http:

//status.pr/ ), which is a government operated website that showed the recovery status of Puerto

Rico after the Hurricane. Power outage data of Hurricane Irma were collected from the Florida

Division of Disaster Management (https://www.floridadisaster.org/ ). Power outage information in

the Japanese disasters were collected from the utility companies. The connectedness to surround-

ing cities were calculated by dp(i) =
∑j∈S(i) Nj

Ni
, where Ni is the number of households in city i, and

S(i) is the set of cities that can be reached within 1 hour by vehicles from city i. dp would be large

for small cities that have large cities around it, and small for more isolated cities. For cities with

similar population levels, dp would be proportional to the total population of surrounding cities.

Similarly, we propose the proximity to wealthy cities by using the median income value instead

of the household number in the previous equation. This value would be large if the origin city

has a relatively low income and it is surrounded by wealthier cities nearby. Note that these two

complex variables capture not only the characteristics of the origin city, but that of the receptor

cities. Correlations among variables in all disasters were not significantly high, thus we included

them in the regression analysis. Power outage recovery time was excluded in the models for es-

timating D0, since this information would not be available on day 0. The probability densities of

the four attributes in each disaster are shown in Figure 2.4 b. Housing damage rates and median

income levels significantly differ across the four disasters, however the number of households and

the connectedness of cities have more similar distributions. The set of independent variables for

the best model for each disaster was chosen based on the lowest AIC value and statistical sig-

nificance (p < 0.1). Figure 2.4 c plots the observed values and estimated D0. Although we use

only key variables in our model, the estimated values had high correlation with observed values

(R= 0.864). For LGUs in Japan (Tohoku Tsunami and Kumamoto Earthquake) and Florida (Hurri-

cane Irma), housing damage rates were good estimators of D0. On the other hand, housing damage

rates had low and insignificant correlation with log
( D0

1−D0

)
in Puerto Rico after Hurricane Maria.

Rather, median income levels and number of households for each community had significant and

stronger correlations with initial displacement rates. Median income and the proximity to wealthy

cities had negative correlations with initial displacement rates, indicating that communities with

lower incomes in isolated areas had higher initial displacement rates. Figure 2.4 d shows that D160
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values were predicted by the five variables with high accuracy (R = 0.848). Median income and

housing damage rates had positive effects on long term displacement, implying that people with

more income were able to evacuate from the affected regions. In addition to such socio-economic

variables, infrastructure recovery speed had a significant effect on long term displacement rates.

Recovery speed log(τ) had the lowest predictability out of all objective variables. The significant

variables varied across different disasters, however, the connectedness to large cities and wealthy

cities was a common variable with significant impact on recovery speed across three disasters. The

negative coefficient implies that if a city is surrounded by larger or wealthier cities, it has a shorter

time needed for recovery. To check the temporal robustness of these findings, we performed the

regression analysis on various timepoints (D10,D20,D30,D60,D90,D120), and found that the set of

important variables generally stay similar for all disasters across different timepoints. However, as

time progresses, infrastructure recovery variables become more significant while the significance

of housing damage rates gradually decrease.

Previous studies on individual case studies have noted the relationship between such variables

and population recovery (reentry) decisions. For example, studies on Hurricanes Katrina and Rita

show that the rate of disadvantaged populations (characterized by variables including household in-

come), density of the built environment, and housing damage contribute to migration and displace-

ment [229 ]. This work contributes to the literature in disaster resilience and population migration

by testing the insights obtained from individual case studies with multiple disasters in different

locations.

Figure 2.5 shows pairwise comparisons after Hurricane Maria and Tohoku Tsunami where a

pair of similar LGUs with different levels of connectedness to neighboring cities have distinct re-

covery outcomes, even though other socio-economic characteristics such as population, housing

damage rates and income levels are similar. This contradicts previous findings on non-disaster

human mobility patterns (e.g. commuting), where out-migration increases with amount of oppor-

tunities available in surrounding cities [230 ]. This finding shows that after disasters, the existence

of neighboring cities act as catalysts that enhance recovery rather than attractors that drain popula-

tion from damaged cities. This extends the theories on the importance of social capital and social

support [57 ], [113 ] to an intercity-scale. One example of such effect is how Tono City, an inland

city close to the Tohoku area towns that were affected by the tsunami, acted as a recovery support
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Figure 2.5. Connectedness to neighboring cities as a key factor to recovery. a. Map
of Ciales and Guanica, Puerto Rico. Light colored areas show the area that can be
reached from each city within one hour of driving time. b. Recovery patterns of
both communities, showing the faster recovery of Ciales. c. Comparison of factors
for both cities. Factors other than connectedness to other large cities (e.g. San
Juan) were similar between the two communities. d-f. Similar phenomenon was
seen after Tohoku Tsunami in Japan. Minamisanriku city and Ohtsuchi city shared
similar characteristics except for the connectedness to large cities (e.g. Ishinomaki),
resulting in differences in recovery patterns.

hub after the Tohoku Tsunami [231 ]. The coastal cities were provided humanitarian, informa-

tional, and material support from surrounding nearby cities such as Tono City which experienced

less damage due to the tsunami/earthquake. The effect of inter-city connectivity on community

recovery is understudied in the urban resilience literature, and could have significant implications

on the planning of inter-city networks to enhance the resilience of communities.

2.3 Social and Physical Network Effects

In this section, we further investigate how inter-city dependencies in both physical as well

as social forms contribute to the recovery of cities after disasters. We investigate this problem

through a case study of the population recovery patterns of 78 Puerto Rican counties after Hurri-

cane Maria. We analyze mobile phone location datasets, which include the GPS location data of

more than 50,000 unique users from over 6 months before and after the Hurricane. Various metrics
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from the spatial networks literature are used to quantify the node-level characteristics of Puerto

Rican counties on social and physical inter-city networks to understand the types of inter-city de-

pendencies that play an important role for effective post-disaster recovery. We find that inter-city

social connectivity, which is measured using pre-disaster mobility patterns, is crucial for quicker

recovery after Hurricane Maria. More specifically, counties that had more influx and outflux of

people prior to the hurricane were able to recover faster. Our findings highlight the importance of

fostering the social connectivity between cities as well as strengthening the physical infrastructure,

to prepare effectively for future disasters. This paper introduces a new perspective in the commu-

nity resilience literature, where we take into account the inter-city dependencies in the recovery

process rather than analyzing each community as independent entities.

2.3.1 Node-level Network Statistics

Distance Metrics for Edge Weights

To investigate the effect of various types of inter-city dependencies on post-disaster recovery,

we construct multiple networks based on various edge weights between nodes (78 counties in

Puerto Rico). Table 2.3 lists the 5 distance metrics that were used as edge weights to build the

inter-city network N in this study. Given a distance metric x, we denote the network built using

distance metric x as Nx. The distance metrics (edge weights) are Euclidean distance e, travel time

T T , road distance RD, mobility flow F , and the number of overnight stays S. Euclidean distance

is an undirected metric, calculated by eij =
√

(xi− xj)2 +(yj− yj)2 given center points of two

counties (xi,yi) and (xj,yj). Travel time and road distance between counties i and j were calculated

using Google Maps API1
 in the usual conditions (prior to the disaster). Although these metrics

are almost symmetrical, there are differences in travel times and fastest routes depending on the

direction of travel, thus would produce directed networks. The two social distance metrics are

mobility flow F and the number of overnight stays S, which are both observed using mobile phone

data from prior to the disaster. Mobility flow Fij is defined as the inverse of the average number of

travelers from node i to node j in the usual state (prior to disaster). The number of overnight stays

1↑ https://developers.google.com/maps/documentation/ 
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Table 2.3. Distance metrics x that were used as edge weights to build inter-city network Nx

Distance Metric x Notation Directed? Category Description

Euclidean distance eij Undirected Physical
Euclidean distance between
center of counties i and j

Travel time T Tij Directed Physical
Driving time from i to j in usual
state (GoogleMaps API)

Road distance RDij Directed Physical
Road distance on quickest route
from i to j in usual state
(GoogleMaps API)

Mobility flow Fij Directed Social
Inverse of the # of travelers from
i to j in usual state
(from mobile phones)

# of overnight stays Sij Directed Social

Inverse of the # of visitors
from county i who stay overnight
in county j in usual state
(from mobile phones)

Sij is similar to mobility flow, and is defined as the inverse of the average number of visitors from

node i who stay overnight at node j in the usual state (prior to disaster).

Figure 2.6 visualizes the networks built using the 5 distance metrics. Node sizes are propor-

tional to the pre-disaster population of each county prior to the disaster. All of these metrics can be

defined for all origin-destination pairs, however for clarity of the figures, we only show the edges

with the 500 highest edge weights. The weight of each edge is shown as the width of each edge.

For the direct networks (B-E), sum of the weights on both directions are visualized. From visual

inspection, we can see a large difference in the structure of networks built based on physical (A-C)

and social metrics (D,E). In particular, in D) and E), we can see that some cities on the coast have

large direct weights between San Juan, which mean that despite the large physical distance, there

are many people who travel and/or stay overnight between these cities.

Table 2.4 shows the element-wise Pearson correlation between edge weights based on different

distance metrics. We can see that Euclidean distance Ne has high correlations with road distance

NRD and travel times NT T , thus we exclude Euclidean distance from our analysis, and focus on

networks constructed by the four remaining distance metrics.
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Figure 2.6. Visualization of distance weights of each network metric.
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Table 2.4. Correlation between edge weights based on distance metrics Nx

Ne NT T NRD NF NS

(Ne) 1.000 0.605 0.933 0.271 0.293
NT T 1.000 0.923 0.357 0.341
NRD 1.000 0.307 0.304
NF 1.000 0.509
NS 1.000

Network Statistics

Using the four different networks built from physical and social distance metrics defined above,

we attempt to understand what type of network statistic on these networks can explain the time until

recovery well in Puerto Rico. Identifying the most highly correlated network statistic and distance

metric could provide insights into the underlying process that dictates the recovery of counties

after disasters. In a similar manner as the distance metrics, we test various node-level statistics to

compute the importance of each node in each network. Table 2.5 lists the node-level statistics that

we will test on the four different networks Nx. The six network statistics for node i in network Nx

are: weighted in, out, and total degrees (WI(Nx)i, WO(Nx)i, and W (Nx)i, respectively), weighted

clustering coefficient CC(Nx)i, direct distance from the source of recovery (San Juan in the case

of Puerto Rico) DSJ(Nx)i, and shortest path distance from the source of recovery SPSJ(Nx)i.

Such network statistic measures were proposed in the literature of weighted directed and spatial

networks to quantify the characteristics of each node [232 ]–[236 ]. Such metrics are applied in

various domains to assess the importance of nodes in weighted networks, including urban networks

[237 ], urban traffic networks [238 ], airport networks [239 ], and metabolic processes [240 ].

A weighted network Nx can be described with a N×N adjacency matrix W , where wij denotes

the (i.j)-th element and the weight assigned to edge i to j. The weighted in, out, total degrees,

weighted clustering coefficient, and weighted betweenness centrality of node i were calculated

for each weighted network Nx. The weighted in-degree of node i is calculated by WI(Nx)i =

∑j∈V (i)wji, where V (i) is the set of nodes connected to node i. Similarly, the weighted out-degree

of node i is calculated by WO(Nx)i = ∑j∈V (i)wij. The weighted total degree of node i is the

sum of in and out degrees W (Nx)i = WI(Nx)i +WO(Nx)i. The weighted clustering coefficient
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Table 2.5. Node-level statistics of node i given inter-city network Nx

Network statistic Notation Description

Weighted in-degree WI(Nx)i
Total weighted in-degree
of i on Nx

Weighted out-degree WO(Nx)i
Total weighted out-degree
of i on Nx

Weighted total degree W (Nx)i
Total weighted degree
of i on Nx

Weighted clustering coefficient CC(Nx)i
Weighted clustering coefficient
of i on Nx

Direct distance from San Juan DSJ(Nx)i
Direct distance
to i from San Juan on Nx

Shortest path distance from San Juan SPSJ(Nx)i
Distance of shortest path
to i from San Juan on Nx

measures the statistical level of cohesiveness around node i. In general, this value decays with

respect to degrees, shown in both airplane network and authors network [234 ]. This is because

low degree nodes are connected to highly connected communities, while large degree nodes are

connected to many nodes that are not directly connected. It is computed by CC(Nx)i =
(Ŵ+Ŵ T )3

ii
2T D

i
,

where Ŵ = {w
1
3
ij} and T D

i = dtot
i (dtot

i − 1)− 2d↔i , d↔i = W 2
ii . The direct distance from San Juan

of node i is the simply the distance metric between node i and San Juan. San Juan is chosen as

the destination because it was the major source of recovery after Hurricane Maria in Puerto Rico.

Similarly, we also measure the shortest path distance from San Juan on network Nx.

Thus, in summary, we construct networks based on four different distance metrics, and define

six node-level statistics for each defined network. This gives us 24 different network metrics that

each quantify the physical and/or social characteristics of each node from different aspects. In the

next section, we test whether these network metrics can explain the variance in recovery speed

across counties in Puerto Rico after Hurricane Maria.
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2.3.2 Spatial Regression Models

First, ordinary least squares (OLS) method is used to estimate the parameters of the general

regression model specified below.

yyy = xxxβββ + ε (2.3)

where, yyy is an n×1 vector representing the objective variable (recovery time), xxx is an n× k matrix

of the independent variables, and βββ is a k× 1 vector of the coefficients. Here, the error term ε

is assumed to be an i.i.d. normal. When there is spatial dependence in the error term, the i.i.d.

normal assumption is violated. Two approaches are taken to deal with spatial correlation [241 ].

First is the spatial lag model, where the error term is decomposed into a spatially lagged term for

the dependent variable and an independent error term, ε = ρWy+ e, where W is the matrix that

reflects the spatial proximity between areas which is commonly defined by encoding the k-nearest

neighbors. This gives us the spatial lag model, described by the following equation:

yyy = ρWWWyyy+ xxxβββ + ε (2.4)

where ε ∼ N(0,σ2I). The parameters can be estimated using maximum likelihood estimation.

The other approach is to assume that the error is spatially correlated, instead of the objective

variables affecting the objective variables of neighboring areas. We can write the spatial error

model as follows:

yyy = xxxβββ +λWWWξξξ + ε (2.5)

where ε ∼ N(0,σ2I). In the following regression analysis, we first test the general regression

model and also test for significance in spatial lag ρ and spatial error λ terms. Then, we apply the

appropriate spatial regression analysis accordingly.

Estimation Results

Table 2.6 shows the statistics of the independent and objective variables. In the regression

models, recovery time Ti is set as the objective variable. The variables in the second block (county

population, median income, and housing damage rate) and one variable from the third block (net-
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Table 2.6. Statistics of independent and objective variables
Variable Min. Max. Med. Mean Std. Dev. Corr. with Ti

Recovery time Ti (days) 1 243 74 80.2 58.2 –

County population 1,818 395,326 34,154 46,862 53,884 -0.476***
Median income ($) 11528 35074 17054.5 18152 4466 -0.489***
Housing damage rate 0.138 0.657 0.339 0.349 0.119 0.384***

WI(NT D) 0 1.0 0.183 0.232 0.197 0.054
WI(NT T ) 0 1.0 0.585 0.581 0.152 0.105
WI(NF) 0 1.0 0.356 0.386 0.208 -0.55***
WI(NS) 0 1.0 0.396 0.404 0.201 -0.43***
WO(NT D) 0 1.0 0.184 0.232 0.198 0.054
WO(NT T ) 0 1.0 0.578 0.580 0.151 0.084
WO(NF) 0 1.0 0.310 0.352 0.205 -0.564***
WO(NS) 0 1.0 0.341 0.350 0.204 -0.498***
W (NT D) 0 1.0 0.184 0.232 0.198 0.054
W (NT T ) 0 1.0 0.582 0.580 0.151 0.094
W (NF) 0 1.0 0.349 0.400 0.217 -0.602***
W (NS) 0 1.0 0.359 0.382 0.220 -0.511***
CC(NT D) 0 1.0 0.182 0.221 0.185 0.098
CC(NT T ) 0 1.0 0.832 0.811 0.151 0.011
CC(NF) 0 1.0 0.361 0.373 0.150 0.533***
CC(NS) 0 1.0 0.509 0.509 0.176 0.570***
DSJ(NT D) 0 1.0 0.367 0.451 0.279 0.092
DSJ(NT T ) 0 1.0 0.431 0.487 0.272 0.187*
DSJ(NF) 0 1.0 0.084 0.185 0.243 0.282**
DSJ(NS) 0 1.0 0.185 0.288 0.263 0.397***
SPSJ(NT D) 0 1.0 0.036 0.064 0.154 0.198*
SPSJ(NT T ) 0 1.0 0.367 0.451 0.279 0.092
SPSJ(NF) 0 1.0 0.117 0.143 0.144 0.326***
SPSJ(NS) 0 1.0 0.173 0.205 0.179 0.482***

work statistics) are used as independent variables for each of the regression models. The network

statistic variables are normalized by the following equation:

x̂ =
x−min(x)

max(x)−min(x)
(2.6)

where max(x) and min(x) are maximum and minimum values of variable x.
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The Pearson correlations between recovery time and each independent variable are shown in

the right column of Table 2.6 . We observe that all socio-demographic variables (county popula-

tion, median income, and housing damage rate) have moderate correlations with recovery time, as

shown in past studies [242 ]. Among the network statistic variables, all of the node-level statistics

of the mobility flow based network and overnight stay network had significant correlations with

recovery time, indicating the significant effect of inter-city social connectivity on post-disaster re-

covery. In contrast to social connectivity, node-level statistics computed from physical networks

were less significantly correlated with recovery time in Puerto Rico. To examine the collinear-

ity effect of these network statistics, we test the regression models using each node-level network

statistics. Figure 2.7 shows the Akaike Information Criterion (AIC) and adjusted R2 of each regres-

sion model. We observe that the regression model using the weighted total degree of the mobility

flow network (W (NF)) has the lowest AIC and adjusted R2 value. Table 2.7 shows the detailed

regression results of the two regression models with and without the W (NF) variable. The esti-

mated regression coefficients and their significance levels are shown in stars. Using the network

statistic, both the AIC and adjusted R2 improve significantly, and we observe that the population

variable becomes insignificant when considering the inter-city network variable. Moreover, the

results show that the network metric variable negatively affects recovery time, meaning that the

more the influx and outflux mobility flow before the disaster, the quicker the recovery.

The spatial dependence of recovery time is tested using various metrics in Table 2.8 . All

metrics including the Moran’s I, the lag Lagrange multiplier ρ , and the error Lagrange multiplier λ

are significant, showing significant spatial dependence. Robust tests of both Lagrange multipliers

show that the error Lagrange multiplier λ is more significant. Thus, we test the Spatial Error

Model and compare the results with the OLS Model in Table 2.9 . Results show that the AIC is

lower in the Spatial Error Model, indicating that spatial dependence in the error term explains the

heterogeneity in recovery time across the counties in Puerto Rico. In both models, income levels

and the network metric (W (NF)) have significant effects on the recovery time. Housing damage

rates, however, become insignificant under the spatial error model.

Our analyses based on observational data from Puerto Rico after Hurricane Maria confirmed

that inter-city network metrics, namely the pre-disaster mobility flow, has a significant positive

influence on the speed of recovery. The results imply that the more socially connected an area is
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Figure 2.7. (A) AIC and (B) adjusted R2 of ordinary least squared regression mod-
els using different node level network statistics.

Table 2.7. Ordinary Least Squares Regression Results with W (NF) as network metric

Socio-demographic Only Socio-demographic + Network Metric

Constant 297.21*** 22.48
ln(Population) -19.18** 10.54
Income -4.06*** -2.78**
Housing Damage 140.6** 140.1**
Network Metric – -145.5***

Adjusted R2 0.329 0.416
AIC 829.21 819.48

*** p < 0.01, ** p < 0.05

Table 2.8. Spatial dependence tests
Moran’s I 7.433***
Lag Multiplier ρ 24.82***
Error Multiplier λ 31.60***
Robust Lag Multiplier ρ 0.747
Robust Error Multiplier λ 7.53***

*** p < 0.01

to other counties, the more easier it is for people living in those communities to receive support

and to recovery quickly. This paper introduces a new perspective in the community resilience

literature, where we take into account the inter-city dependencies in the recovery process rather

than analyzing each community as independent entities. These insights encourage communities to

prepare for future hazards by not only preparing its physical infrastructure (e.g. roads), but also
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Table 2.9. Regression Results of Spatial Error Model
Non-Spatial Spatial Error Model

Constant 22.48 78.40
ln(Population) 10.54 12.31
Income -2.78** -3.17**
Housing Damage 140.1** 10.86
Network Metric -145.5*** -155.49***
λ – 0.78***

AIC 819.48 796.84
*** p < 0.01, ** p < 0.05

by strengthening their social connectivity with other cities, to have greater chances of receiving

support in case of emergencies.

Now, we discuss future research opportunities that this study enables. First, Puerto Rico is a

unique case study because of its island geography. It is valuable to examine whether the same

rules apply to other regions with different geographical characteristics. We will start collecting ad-

ditional data from other disaster events to test the generalizability of our method between different

disaster events. The Haiti Earthquake is an example where a large disaster struck a low-income is-

land region. Another example where we observe severe damage is the Tohoku Tsunami (Japan) in

2011, where the coastal cities of the east coast of the Tohoku region are still struggling to recovery

from the disaster. Comparing the analysis presented in this study across different disaster instances

would be an interesting topic for future research.

Second, modeling the underlying process of recovery was not in the scope of this study. This

work was limited to testing the statistical significance of network metrics using econometric mod-

els. To better understand, predict and control the recovery of communities after disasters, there is

a need to model the underlying process that dictates the population recovery. Developing agent

based models and system dynamics models for predicting community recovery based on the in-

sights obtained from this study will be the next steps in our research.

Thirdly, the reliability of the results in this study could improve if we could increase the di-

versity of datasets to quantify the social connectivity between counties. One candidate would be

Twitter data, where we can use text-mining to determine counties that have frequent contacts via
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messaging or retweeting. Also, call records of mobile phones would be a good data source to

quantify social connections between two counties. In Puerto Rico, social connectivity measured

by the mobility of people was shown to explain recovery times. It would be valuable to investigate

whether the social measures used in this study would apply to other regions with different social

norms, such as Japan or mainland US. Using more datasets to investigate such questions on the

inter-city dependencies in the recovery process would be the focus of future studies.

Finally, the analysis presented in this chapter were conducted on community level (e.g., coun-

ties, census tracts, census blocks) aggregation to obtain recovery insights that can be used for

regional policy making. However, mobile phone location data has significant potential in revealing

how individuals behave and react to disaster events. More specifically, we are able to under-

stand the types and sequences of points-of-interests that each individual visits after disasters while

evacuating and returning to their original communities. This avenue of research opens up a wide

array of research questions on the detailed movement patterns of individuals after disasters (e.g.,

whether they frequently check back to their damaged homes before permanent return) and their

socio-demographic and -economic determinants.

Using large scale mobile phone data collected from Puerto Rico, we revealed the importance

of inter-city social connectivity on disaster recovery after Hurricane Maria. More specifically, we

showed that observing the mobility patterns between counties prior to the disaster can increase the

predictability of time until recovery of communities. These insights highlight the importance of

communities and policy makers to invest more into developing the social networks across counties

or nearby cities through the interaction of people prior to the disaster to prepare for future disas-

ters, as well as investing into the physical infrastructure networks. In the next section, we further

downscale the analysis to investigate the inequalities that exist within communities, businesses,

and regions, during disaster recovery.
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3. INTRA-REGIONAL INEQUALITY

Among the various dimensions of disaster management, social equity [243 ] is understood to be

an important concept that needs to be addressed for effective disaster relief and recovery [244 ].

Social equity during a disaster is defined as the state where all affected people are given equal

access to resources and opportunities that enable them to meet their needs for safe evacuation and

recovery [245 ]. In the context of social equity in disaster evacuation and reentry, it is essential

to quantify and understand the effects of inequality that exist between socio-economic groups

using observations from past disasters. More specifically, quantifying how the evacuation rates and

destination characteristics differ across different income groups is crucial for addressing policies

that enhance social equity. Studies have used data from household surveys collected after disasters

to understand the effect of household socio-economic characteristics on evacuation behavior [106 ].

Although findings differ across disasters, in general, past studies have used survey data collected

after disasters to show that higher income households are able to evacuate more and further away

compared to low income households [108 ]. Such effects of inequality on evacuation behavior

could allow higher income households to evacuate to safer locations compared to lower income

households, which would increase the social inequity across population groups after disasters,

leading to depletion of social resilience of communities [246 ]. A quantitative understanding of

the effects of socio-economic inequality on evacuation and reentry behavior are needed, however,

such efforts have been hindered by the low spatio-temporal resolution and limited scale of data

collected from household surveys.

3.1 Income Inequality in Post-Disaster Mobility

Social equity is an important concept in disaster management that addresses the fair treatment

of all individuals in the face of disaster situations [245 ]. It is now understood that social equity

plays an important role in the social resilience of communities after disasters [246 ]. [106 ] found

that higher income households were able to evacuate with a higher rate after disasters, and [247 ]

found that households with higher income were able to evacuate further distances after Hurricane

Katrina. Moreover, income segregation and fractionalization are known to have negative impacts

on the economic performance of cities and communities [248 ]. As a result, many efforts have been
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allocated to promote integration and diversity within communities. Recent studies have quantified

income segregation in cities and communities on usual days, by combining large scale mobility

data (e.g. mobile phone data) with income information obtained from economic census [249 ].

In the disaster context, studies have assessed the effect of natural hazards on the dynamics of

income distributions [250 ], and a cross-comparative study on disasters across 73 countries for a

period of 22 years showed that higher income inequality leads to more deaths due to disasters on

the national scale [251 ]. To overcome the issues regarding social equity during evacuation after

disasters, studies have focused on the evacuation of disadvantaged population groups such as older

people [252 ]. Studies have been conducted in the transportation engineering domain to assess the

effectiveness of carsharing [253 ], [254 ] and bus-based evacuation [255 ] as potential solutions to

issues in social equity after disasters [256 ]. To assess the impact of such solutions for disaster

social equity, a quantitative understanding of the effects of income inequality on evacuation and

reentry behavior is needed.

While there are various socio-economic characteristics that affect social equity, we focus on the

effects of income inequality in this study. In this study, we aim to overcome the aforementioned

research gaps by answering the following research questions using large scale mobility data of

affected individuals observed before, during, and after a severe disaster.

1. Do the dynamic patterns of evacuation and reentry rates differ across income groups? If so,

by how much?

2. Do the effects of income inequality hold under various settings, including evacuation from

inside and outside mandatory evacuation zones?

3. How do the effects of income inequality on evacuation behavior result in macroscopic spatial

segregation of income groups over time after the disaster?

4. Are there differences in evacuation destination characteristics across income groups?

To answer these research questions, we analyze mobility data collected from more than 1.7 mil-

lion mobile phone users in Florida affected by Hurricane Irma. The income level of each mobile

phone user is estimated by spatially overlaying census-block level median income information

obtained from national census with the estimated home locations of mobile phone users. The
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spatio-temporal movement trajectories of individual mobile phone users attributed with estimated

income values are tracked over a 3 month period from the landfall of the hurricane.

3.1.1 Case Study of Miami-Dade after Hurricane Irma

Mobile Phone Location Data

Mobile phone location data used in this study were provided by Safegraph, a data company

that aggregates anonymized location data from numerous applications in order to provide insights

about physical places. To enhance privacy, SafeGraph excludes census block group information if

fewer than five devices visited an establishment in a month from a given census block group. Each

observation in the dataset contains the user ID, timestamp, longitude, latitude of mobile phones

measured via the Global Positioning Satellite (GPS) system, with the agreement of individuals

to provide their location data for research purposes. All user IDs were anonymized and other

demographic information were not collected to protect the privacy of the users. In total, mobile

phone data of 1,730,326 unique users who were observed in Florida at least once with in the period

between 10 days before the landfall of Hurricane Irma (August 31st) and landfall (September

10th) were collected. The location data of these users were collected from 2 weeks before the

landfall of Hurricane Irma, until 3 months after the landfall date. Each user was observed at high

frequency with 97 observations on average per day, which is temporally granular enough to capture

the date the users evacuated from their home locations, where they evacuated to, how long they

were evacuated for, and where they stayed the night each day.

The mobile phone data contains several limitations. The first limitation is that the data does not

include the exact demographic characteristics of the individual users. Such demographic charac-

teristics include information such as age, gender, and occupation. This is a disadvantage compared

to survey based data, however, we use mobile phone data for this study because of the advantages

in the number of samples (over 1.7 million versus several hundreds), and also because such demo-

graphic data are not required for our objective of the study. The second limitation is the potential

bias in the user samples. People who do not own mobile phones are more likely to have a lower

income, which could skew the income distribution upwards. The third limitation is that we are not

able to completely exclude the non-residents (e.g. tourists and transients) from the dataset. We
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Figure 3.1. Comparison between census population and mobile phone users in (A)
county scale, (B) census tract scale, and (C) census block scale.

find that the estimated number of mobile phone users in each census block agrees well with actual

census population data (shown in Figure 3.1 ).

Hurricane Damage Data

Hurricane Irma made landfall on Florida on September 10th as a category 4 hurricane and

traversed through the Florida peninsula, spawning storm surge and causing major inland flood-

ing. Especially in the Florida Keys, 25 percent of the homes were destroyed and 65 percent were

damaged. Many homes and businesses suffered damage or destruction, with more than 65,000

structures damaged to some degree in West Central and Southwest Florida alone. The hurricane

caused more than 7.7 million homes and businesses to be out of power in the entire state of Florida,

and at least 134 fatalities were confirmed [48 ]. The total economic losses caused by the hurricane

is estimated to be $50 billion [257 ].

To understand the spatial distribution of hurricane damage, we use the housing damage rates

in each zip code. The housing damage rate of a given zip code area refers to the rate of houses

approved for the Individuals and Households Program of FEMA in each zip code. This dataset

is publicly accessible from the FEMA website [224 ]. Figure 3.2 A shows the housing damage

rates in all zip codes in Florida. Out of all the counties, 6 of them experienced extensive damage,

with housing damage rates of more than 10%. In particular, Miami-Dade County experienced the

largest number of affected households (179,069), which was 25% of all of the affected households

(Table 3.1 ). In addition to the housing damage rate data, we also used the power outage data
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Figure 3.2. (A) Trajectory of Hurricane Irma and housing damage rates in each zip
code. (B) Median income of all census blocks in Miami-Dade County. Miami-Dade
County has the largest income inequality among all counties in Florida State. (C)
Hurricane evacuation zones in Miami-Dade County.

provided by the Florida Division of Emergency Management. This data contains the percentage

of power outages in each county every six hours between September 9th and 28th. The floodzone

map of Miami-Dade County (Figure 3.2 C) was obtained from the Open Data Hub of Miami-Dade

County [258 ]. In Miami-Dade County, mandatory evacuation orders were issued to residents in

evacuation zones A and a portion of B that covers barrier islands between Biscayne Bay and the

ocean on September 6th at around 6AM, and were expanded to zones A, B, and C on September

7th at around 2:15PM.
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Table 3.1. Miami-Dade county had largest hurricane damage and income inequality in Florida.

Rank in State
Households affected by Hurricane Irma Income inequality

County Number of Households Percentage County Gini Index

1 Miami-Dade 179,069 25.0% Miami-Dade 0.5256
2 Broward 86,811 12.1% Lafayette 0.5248
3 Pinellas 44,603 6.2% Collier 0.5237
4 Orange 43,685 6.1% Martin 0.5219
5 Lee 39,423 5.5% Palm Beach 0.5197

(State Total) 715,679 100.0% (State Average) 0.4858

Socio-Economic Data

Out of all the counties in Florida, Miami-Dade County has the largest Gini Index, meaning that

the income inequality is highest among all counties (Table 3.1 ). The Gini index, or Gini coefficient,

is a metric that quantifies the degree of inequality in a distribution [259 ]. Given a set of values xi

(i = 1, ...,n), the Gini index G is calculated as:

G =
∑

n
i=1 ∑

n
j=1 |xi− xj|
2n2x̄

(3.1)

where x̄ = 1
n ∑

n
i=1 xi. The Gini Index takes a value between 0 and 1, where 0 indicates perfect

equality and 1 indicates maximal inequality where one individual owns all income and all others

own nothing. Considering that Miami-Dade County also had the largest number of affected house-

holds due to Hurricane Irma (Table 3.1 ), we focus our analysis on the residents of Miami-Dade

County in this study. Population data, median income data, and Gini Index data on the census

block, census tract, and county level were all obtained from the American Community Survey

[260 ]. Income ranges used commonly by the United States Census Bureau (less than $40,000,

$40,000 to $49,999, $50,000 to $59,999, $60,000 to $74,999, more than $75,000) were used in

the analysis [261 ]. To perform spatial analysis including geographical extraction and labeling, we

used the Shapefile data of Florida provided by the National Census [262 ].
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3.1.2 Effects of Income Inequality on Evacuation and Reentry

We first quantify the evacuation and reentry rates of Miami-Dade County residents on each day

during the observation period. Figure 3.3 shows the net evacuation rates of the Miami-Dade County

residents on each day before, during and after Hurricane Irma. The upper panel (A) shows the rate

of evacuees who evacuated outside Miami-Dade County, and the lower panel (B) shows the rate of

evacuees who went outside the State of Florida. The net evacuation rates of different income groups

are shown in color in each panel. The Thanksgiving Holidays (around November 23rd to 26th) are

highlighted as unusual periods. Several observations can be made from the analysis results. First,

we observe a sharp increase in the net evacuation rates in both panels until September 10th, which

is the date of hurricane landfall. The daily differences of the net evacuation rates show that most

evacuation occurred on September 8th (+12.3% for all income groups aggregated together), which

was a day after the evacuation orders were issued. We also observe a large portion of evacuation

on September 10th, which was the day of the landfall (+9.0% for all income groups aggregated

together). After September 10th, the evacuation rates gradually decrease and by around September

18th, the rates stabilize. Most evacuees returned and reentered Miami-Dade County on September

11th and 12th, shortly after the hurricane struck the peninsula. Second, we observe a significant

difference in evacuation rates across income groups, where higher income population groups had

higher evacuation rates, both in terms of out-of-county evacuation and out-of-state evacuation rates.

This difference was verified to be statistically significant (p < 0.01) in most days (shaded in gray)

using a Chi-Squared test. 38.6% of high income ($75,000 or more) residents were able to evacuate

from Miami-Dade County, compared to 21.7% of low income residents ($40,000 or less). The

differences between income groups are larger in out-of-state evacuation rates, indicating that higher

income groups were more likely to travel further away from Miami-Dade when evacuating. Third,

the evacuation rates stayed significantly larger than pre-disaster (August 31st to September 5th)

levels for a long duration after the hurricane (around 10% for high income groups on November

15th). Similar to short term evacuation rates, the high income population groups had higher long

term evacuation rates, indicating that these people were able to find places to stay for long durations

outside Miami-Dade County. Fourth, we see weekly fluctuations in evacuation rates after the

hurricane in both panels, where evacuation rates are higher on Fridays and Saturdays compared
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Figure 3.3. Out-of-county and out-of-state evacuation rates of Miami-Dade resi-
dents. Higher income residents were more likely to evacuate than low income resi-
dents, and were also able to stay away from the affected areas for a longer duration.
Gray shades indicate days where differences in evacuation rates were statistically
significant between income groups.

to weekdays. This pattern indicates that a fraction of the people traveled outside the county or

state on weekends. This weekly increase in evacuation rates may be due to actual evacuation, or it

may contain non-evacuation trips going outside of the county or state since we are not capable of

identifying trip purposes from mobile phone trajectories, which is one limitation of our analysis.

The analysis presented in the previous section shows the rates of evacuation from all residential

areas. In the following results (Figure 3.4 , we group the mobile phone users into residents of areas

inside the mandatory evacuation zones (zones A, B, C in Figure 3.2 C), and residents outside the

mandatory evacuation zones. Distinguishing between these two population groups is important

from the viewpoint of disaster management officials, since they need to develop policies for future

disasters based on how the residents in the designated flood zones complied with the evacuation or-

ders, and also by how much of the residents outside those regions evacuated (“shadow evacuation”)

despite receiving no evacuation orders.
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Figure 3.4. Out-of-county evacuation rates of residents (A) living inside mandatory
evacuation zones (zones A, B, C), and (B) living outside mandatory zones (shadow
evacuation rates), across different income groups.

Figure 3.4 shows the (A) out-of-county net evacuation rates of residents in the mandatory

evacuation zones (zones A, B, C) and (B) shadow net evacuation rates for residents outside the

mandatory zones. We observe that the peak evacuation rate from the mandatory zones (47.5%)

was around double of the shadow evacuation rates (21.3%). The effects of income inequality in

evacuation rates for both zone types were strikingly similar, where we observe significant differ-

ences in both short term and long term evacuation rates across income groups. This difference was

also verified to be statistically significant (p < 0.01) in most of the days (shaded in gray) using a

Chi-Squared test. During the reentry phase, effects of income inequality were larger inside manda-

tory evacuation zones, where for example on September 15th, the evacuation rates of high income

residents were around double (13.3%) compared to low income residents (7.5%). On the other

hand, reentry patterns were similar across income groups outside of the mandatory evacuation

zones, with less days with statistical significant differences across income groups.

In addition to quantifying the effects of income inequality on evacuation and reentry rates

and spatial segregation after the hurricane, we further analyze the characteristics of evacuation

destinations across different income groups. The box plots in the two panels (each consisting of 4
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sub-panels) in Figure 3.5 show the various characteristics of evacuation destinations of evacuees

belonging to each of the 5 income groups (shown in blue to red colors). In each sub-panel, the

horizontal line in each whisker plot shows the median value, and the white marker shows the mean

value of each population group.

The left panel (Figure 3.5 (a)) shows the results for September 10th, which is the day of the

landfall. The top left sub-panel shows the the distributions of evacuation distances of the five pop-

ulation groups. In addition to Figures 3.3 and 3.4 where it was shown that people with higher

income evacuate at a higher rate, it is shown here that people with higher income tend to evacu-

ation longer distances. Since the mean distance is significantly greater than the median distance

in low income groups, we can infer that the majority of the low-income evacuees traveled short

distances (less than 10km). Similar to how we estimated the income of evacuees based on their

residential census block, we estimated the income level of the destination area of each individ-

ual using census block level income data. The top right sub-panel shows that people with higher

income were more likely to evacuate to locations of high income. Moreover, using the power out-

age data, the distributions of the power outage rate of the destination locations were estimated for

each income group. The bottom left sub-panel shows that the high-income evacuees were able to

reach areas with less power outage rates compared to low income evacuees. Similarly, the bottom

right sub-panel shows that high income evacuees were able to reach locations with lower hous-

ing damage rates compared to low income evacuees. These latter two results which indicate that

higher income residents were able to reach safer locations than lower income residents, highlight

the inequity in evacuation destinations across income groups. To test the statistical significance of

these differences, Kolmogorov-Smirnov tests (KS-tests) were performed on the neighboring pairs

of data in each of the panels in Figure 3.5 . The p-values of the KS-tests for the pair of data dis-

tributions of neighboring income groups are shown in the figures. For most neighboring pairs of

income groups, the differences in the data distributions were significant with p < 0.1, often even

with p < 0.01. The instances with no significant differences are observed mainly between the sec-

ond group ($40K∼$50K) and third group ($50K∼$60K). However, in many of the income group

pairs, significant differences in evacuation destination characteristics were observed. In summary,

the more high income population groups were able to reach safer locations with less power out-

ages and housing damages, whereas the lower income population groups had to stay in areas with
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(a) Results for September 10th (b) Results for September 12th

Figure 3.5. Evacuees with higher income levels were able to evacuate further, to
locations of higher income, lower power outages, and less housing damages due to
the hurricane compared to lower income evacuees.

more damage. These analyses were performed for all days after the hurricane, and these findings

were found to be consistent over days after the hurricane until the end of September. Results for

September 12th are shown in the right panel Figure 3.5 (b).

3.1.3 Temporal Variation of Spatial Income Segregation

As a result of the effects of income inequality on evacuation and reentry mobility patterns, we

observe high spatial income segregation between people who stayed inside Miami-Dade County

and people who moved to outside Miami-Dade County after the disaster. Figure 3.6 shows the

histograms of mobile phone users’ income values for the two population groups: users who stayed

inside Miami-Dade (gray color) and users who evacuated out of the county (green color), for each

day between September 4th and 15th. Since previous studies have empirically shown that the

income values of the majority (97% ∼ 99%) of the population are distributed log-normally [263 ],

we fit the income values of the two groups with log normal distributions. The probability density

function of the (2-parameter) log-normal distribution is

f (x) =
1

xs
√

2π
exp
{
−
(

ln( x
m)
)2

2s2

}
(3.2)
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Figure 3.6. Income distributions and fitted lognormal density functions of residents
staying inside Miami-Dade County (in gray) and residents who evacuated outside
Miami-Dade (in green) for all days between September 4th and 15th. Vertical dotted
lines show the mean income values of the two population groups.

where s is the shape parameter (and also is the standard deviation of the log of the distribution)

and m is the scale parameter (which is also the median of the distribution). We may also have

location parameter θ in the formulation, however this parameter does not appear in our formulation

because we restrict this to θ = 0. We assume that an income value of a resident who is INside

(or OUTside) Miami-Dade County on day t, which is denoted as xIN
t (or xOUT

t ) comes from a

lognormal distribution with parameters (sIN
t ,mIN

t ) (or (sOUT
t ,mOUT

t )). All parameters for both IN

and OUT, for all days t, are estimated using maximum likelihood estimation:

m̂IN
t = exp

{
µ̂

IN
t
}

(3.3)

ŝIN
t =

√
∑

N
i=1
(

ln(xIN
t )i− µ̂ IN

t
)2

N
(3.4)

where, µ̂
IN
t =

∑
N
i=1 ln(xIN

t )i
N

(3.5)
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Figure 3.7. Quantifying spatial segregation after disasters. (A) Shape parameter
and (B) scale parameter estimates of income distributions of the 2 population groups
over time. (C) Kullback-Leibler Divergence between the income distributions of the
two population groups over time.

The above equations are applied to estimate parameters for all days of observation t and for both

user groups inside (IN) and outside (OUT) Miami-Dade County. Figure 3.6 shows the income dis-

tributions and fitted lognormal density functions of residents staying inside Miami-Dade County

(in gray) and residents who evacuated outside Miami-Dade (in green) for all days between Septem-

ber 4th and 15th. Vertical dotted lines show the mean income values of the two population groups.

We visually observe that the income distributions are very similar before the hurricane on Septem-

ber 4th and 5th. However, the the distributions of evacuated users diverge to the right, indicating

that a larger fraction of the high income populations evacuated to outside the county, causing spa-

tial income segregation.

The estimated parameter values of the lognormal distributions are shown in Figure 3.7 A (shape

parameter st) and 3.7 B. In Figure 3.7 A, the estimated ŝIN
t and ŝOUT

t are plotted in gray and green

colors, respectively. The gray square scatter plots show the shape parameter values that are anoma-

lous compared to usual values. Anomalies were detected using the 3-standard deviations rule.
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More specifically, the horizontal dashed gray line is the mean value of ŝIN
t before the evacua-

tion starts (t ≤ 6), which is calculated by µ IN
s = 1

6 ∑
6
t=1 ŝIN

t . The standard deviation of ŝIN
t before

the evacuation starts (t ≤ 6), can be calculated by σ IN
s =

√
1
6 ∑

6
t=1(ŝ

IN
t −µ IN

s )2. The dotted lines

above and below the mean horizontal line are µ IN
s + 3σ IN

s and µ IN
s − 3σ IN

s , respectively. Simi-

larly, in Figure 3.7 B, anomalous scale parameters were plotted with gray squares. We observe that

in both panels A and B, the estimated parameters of the users inside Miami-Dade significantly

(anomalously) decrease between September 7th and September 14th. Decrease in both of the pa-

rameters indicate that the income distribution shifts to the left (towards lower income), and that

the distribution has less variance. On the other hand, both the shape and scale parameters of users

who have evacuated outside of Miami-Dade County increase, indicating that the distribution shifts

to the right and that the variance also increases. The shifts of the two distributions in sum indicate

that the distributions are shifting away from each other, implying an increase in spatial income

segregation.

Further, we quantify the magnitude of segregation by calculating the Kullback-Leibler Diver-

gence (KL divergence) between the two income distribution functions. The KL divergence between

2 functions P(x) and Q(x) is formulated by the following equation:

DKL(P||Q) =
∫

∞

−∞

P(x) log
{Q(x)

P(x)

}
dx (3.6)

Figure 3.7 C plots the daily KL divergence between the income distributions of the two population

groups (inside and outside Miami-Dade County). Similar to the previous analyses, the dashed and

2 dotted horizontal lines mark the mean, mean plus 3 standard deviations, mean minus 3 standard

deviations, respectively, of the KL divergence values before the evacuation started on September

7th. The black square plots show the anomalous values of KL divergence, indicating that spatial

segregation is occurring with statistical significance (p < 0.01). We observe significant spatial

segregation in most of the days in September, and over a long period of time after the landfall

even during November (2 months after landfall). To summarize, the analysis presented in this

section using mobility data and income information shows that spatial income segregation does

occur after disasters due to the effects of income inequality in post-disaster mobility patterns, and

that it persists for a long period of time after the hurricane landfall.
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The presented results should be considered in the light of some limitations. For example, the

income values of the individual mobile phone users were estimated by using the median income

values of census blocks. This approximation neglects the variance that exists within census blocks

and could cause the income inequality and segregation effects to shrink compared to the true ef-

fects. One method to overcome this issue would be to use a Monte Carlo approach where we

stochastically draw income values of each user from the income distribution.

3.2 Region and Sector Inequality in Business Impacts

The ability of businesses to rebuild after disasters is a critical factor that significantly con-

tributes to the economic recovery of cities. Previous studies have analyzed the post-disaster recov-

ery of businesses through the means of surveys and interviews. Such studies have identified factors

such as pre-disaster size of the business and category of business that partly explain the reopening

and demise of businesses after disasters including Hurricanes Katrina [264 ], [265 ], Andrew [266 ],

and more recently, Harvey [267 ]. Although these studies provide a general understanding of the

effect of various characteristics of businesses that affect the post-disaster recovery performances,

they suffer from two critical drawbacks. First, observations are limited to discrete measurements at

a few number of timings, failing to give a quantifiable, continuous and longitudinal understanding

of the recovery process of businesses. Second, the applied methods fail to model the causal effect

of the disaster, which require a statistical framework that predicts the performances of businesses

if the disaster did not occur.

With the emergence of novel and often large-scale data collected from mobile sensors and on-

line social platforms, we are now capable of observing and analyzing the dynamics of people,

goods, and information at an unprecedented spatio-temporal granularity [268 ]. In particular, lo-

cation data collected from mobile phones (e.g. call detail records, GPS trajectories) have enabled

us to observe individual mobility patterns at an unprecedented high spatio-temporal granularity

[121 ], [124 ]. Despite such progress, none of the previous studies have used large scale mobility

data to analyze the recovery of businesses after disasters. A recent study using mobile phone GPS

data (same data used in this study) revealed the impact of the recent policy regarding the usage of

bathrooms in Starbucks on the visit behavior of people to the cafe chain [269 ]. They validated that
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the spatio-temporal granularity of the mobile phone GPS data is of sufficient detail to analyze the

store level visit behavior. In this study we apply a similar approach, and estimate the visit behavior

of people to stores and businesses using mobile phone GPS data. Recent advances in statistical

models, in particular Bayesian structural time series (BSTS) models, allow flexible predictions of

time series data, which can be used to estimate the causal impact [270 ]. BSTS has several advan-

tages over conventional difference in differences models [271 ], including its flexibility to model

the causal impact over a longitudinal time horizon rather that across 2 time points. A recent study

using website click-through data applied BSTS models to quantify the causal impact of an online

advertisement [272 ]. We take advantage of this recently proposed methodology to quantify the

causal impact of hurricanes on businesses in Puerto Rico.

This study makes several contributions to overcome the aforementioned drawbacks in the pre-

vious studies on business recovery after disasters. First, this is the first work to utilize large scale

mobility data collected from mobile phones to estimate the popularity of businesses before, during

and after a disaster. Second, a Bayesian structural time series model combined with an inter-city

matching scheme is proposed to infer the causal impact of the disaster on businesses. Third, the

proposed methodology is applied on mobile phone data collected from Puerto Rico to quantify the

resilience of businesses after Hurricane Maria. Figure 3.8 illustrates the overview of the study. The

causal inference procedure is composed of 3 steps. i) To measure the causal impact of the disaster

on business i, we first identify a similar business j in another region which was not affected by

the disaster. ii) We then predict the counterfactual (“what-if the disaster did not occur?”) visit

count of i after the disaster timing using observed data from j, via a Bayesian structural time series

model. iii) As a result, we can quantify the causal impact of the disaster by taking the difference

between the predicted and observed visit counts in i.

Establishment-level visit data are provided by Safegraph1
 , a data company that aggregates

anonymized location data collected from smartphone applications to provide insights about physi-

cal places. Safegraph’s location dataset covers around 10% of all smartphones in the United States,

and each observation is consisted of a unique (but anonymized) user ID, longitude, latitude, and

timestamp information. The longitude and latitude information are accurate to within a few me-

ters, allowing us to analyze the visit counts to each establishment. To detect a user visiting an

1↑ https://www.safegraph.com/ 
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Figure 3.8. Our causal inference procedure is composed of 3 steps. i) To measure
the causal impact of the disaster on business i, we first identify a similar business
j in another region which was not affected by the disaster. ii) We then predict the
counterfactual (“what-if the disaster did not occur?”) visit count of i after the disas-
ter timing using observed data from j. iii) We can quantify the causal impact of the
disaster by taking the difference between the predicted and observed visit counts in
i.

establishment, the location data are first cleaned by removing GPS signal drifts and jumpy obser-

vations using a spatial threshold, then clustered into a staypoint using a spatio-temporal DBSCAN

algorithm. Then, the visited establishment is predicted from establishments nearby the clustered

staypoint by using a machine learning algorithm that takes into account various features such as

distances from establishment to the cluster centroid, time of day, and North American Industry

Classification System (NAICS) code. Performing this procedure for all days in the dataset pro-

duces a time series data of daily visit counts for each establishment.

We use daily visit data of establishments located in Puerto Rico and the State of New York

between January 2017 and March 2018 to quantify the causal impact of the hurricane on business

resilience. Daily visit data of businesses in New York are used since these businesses constitute a

reasonable control group which were not affected by the disruptions caused by Hurricane Maria.
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Figure 3.9. Characteristics of businesses in Puerto Rico. (A) Business locations
and categories in Puerto Rico. (B) 3 regions of Puerto Rico used in this study.

How we use the visit data from the control group in the causal inference model is explained in

the Methods section. We limit the analysis to business categories that sell products or services

directly to the customers, since we will approximate business performances from the number of

visits per day, observed from mobile phone data. We also limit the analysis to medium or large

sized businesses with more than 100 customers per day on average (before the disaster), since we

are not able to observe visit patterns below that level using mobile phone data.

Socio-economic data

In this study, population and income data of each county were used for later analysis. Popu-

lation data were obtained from the US National Census2
 , and median income data were obtained

from the American Community Survey3
 .

2↑ https://www.census.gov/ 

3↑ https://www.census.gov/programs-surveys/acs 
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Spatial distribution of housing damages due to Hurricane Maria

Physical damage caused by the hurricane are measured by the housing damage rates in each

county, which was provided through the “Housing Assistance Data” provided by the Federal Emer-

gency Management Agency (FEMA). The raw data can be found through the link4
 . We defined

“housing damage rate” for each county as the total number of houses that were inspected to have

had more than $ 10,000 worth of damage due to the target hurricane, divided by the number of

households in that county. Many of the counties in Puerto Rico experienced high housing damage

rates, between 20% and 60%.

3.2.1 Bayesian structural time series model

Compared with the classical DiD model [271 ], [273 ], a structural time series model promis-

ingly relaxes the parallel trends assumption and captures the variations of time-varying local trends

and seasonality for time-correlated response variables [270 ], [274 ]. In addition, structural time se-

ries models encompass a flexible model structure that enables us to analyze the dynamic effects of

the outcome of interest during a time period [275 ]. Due to a large number of predictors in structural

time series models, a Bayesian approach was introduced to sparse the estimation of coefficients.

Scott and Varian [276 ], [277 ] proposed a spike-and-slab prior to the regression coefficients in a

Google search query study, which significantly reduces the size of the problem. Nakajima and

West [278 ] elicited a dynamic spike-and-slab prior that sparsified the estimation of time-varying

parameters for a Bayesian macroeconomic time series model. The most recent Google study for

causal inference of a market intervention [272 ] slightly revised the dynamic version of pike-and-

slab prior [278 ] with a weakly informative prior. In addition, the Bayesian structural time series

models (BSTS) have been constructed to strengthen causal inference for time series data (Figure

3.10 ). To address the fundamental problem in causal inference [279 ], pre-treatment observations

are trained and tested via BSTS and consequently the fitted BSTS can simulate the counterfactual

as the synthetic post-treatment controls via posterior predictive samples. This method is exten-

sively applied in causal inference throughout various fields, such as socio-economics [280 ], [281 ],

political science [282 ], [283 ], environmental studies [284 ], [285 ].

4↑ https://www.fema.gov/media-library/assets/documents/34758 
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The basic structural time series model is defined as the following:
yt,i = µt,i + τt,i +βxt,i + εt,i ∀t

εt,i ∼N (0,σ2
y )

σy ∼Cauchy(0,2.5)

(3.7)

where yt,i is the observed daily visits to business i on day t in the target region (in our case, Puerto

Rico). yt,it is predicted by state components µt,i, τt,i and βxt,i that capture critical features of the

time-series data [272 ]. A weakly informative prior is elicited for each state component.

Local Level Trend: The local level model represents local variations of the time series data.

To simplify the model structure, we assume the mean of the trend is a random walk with the

initialization of µ1: 

µt+1,i = µt,i +η1,t,i ∀t > 1

µ1,i ∼N (µ0,σ
2
0 )

η1,t,i ∼N (0,σ2
µ)

σ0,µ0,σµ ∼Cauchy(0,2.5)

(3.8)

Seasonality: Let S denote the total number of seasons. The sum of seasonal effects over S

time periods is assumed to be zero. In this study, weekly seasonality is taken into account (S = 7)

with the initialization of τ1,i, τ2,i, τ3,i, τ4,i, τ5,i, and τ6,i:

τt+1,i =−∑
S
s=1 τt−s,i +η2,t ∀t > 1

τ1,i,τ2,i,τ3,i,τ4,i,τ5,i,τ6,i ∼N (µτ0,σ
2
τ0
)

η2,t ∼N (0,σ2
τ )

µτ0,στ0,στ ∼Cauchy(0,2.5)

(3.9)

Choice of Covariates: Apart from the local level model and seasonality, there are other un-

observed effects such as impacts of holidays and sport events that may contaminate the estimation

of the yt,i. To capture the unobserved heterogeneity, xt,i in Equation (1) is used as the simultaneous

daily visits to a similar business type at time t in a different region that was not affected by the

disaster (in our case, New York). xt,i accounts for the shared variance of the time series data from
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Figure 3.10. Graphical representation of the Bayesian structural time series model.

two different regions. The static coefficient β represents the relationship between daily visits to

a specific business type from Puerto Rico and New York. In this study, we test three methods for

the choice of covariates, which we will test in the experiments Section: (i) no covariate, (ii) use

the average daily visit trends of the same brand businesses in the other city as covariate (e.g. if yi

was a Starbucks, we would use the average daily visit counts of all Starbucks in New York as the

covariate), which we denote as xcategory, and (iii) use the daily visit count of a specific business

which has the highest correlation with the target business, which we denote as xspeci f ic. For (iii),

we compute the Pearson’s correlation between the daily visit count data of the target business with

that of all same category businesses in New York, and use the business with the highest Pearson R.

Estimating causal impact of disasters on businesses: Let N denote the total number of days

observed. We first fit the BSTS model with pre-disaster data (n = 150) from New York and Puerto

Rico. For each business with index i, posterior predictive samples can be simulated to develop a

counterfactual as the synthetic control group (t = n+1, ...,N) from Equation (4).

ˆyt,i ∼ p( ˆyt,i|yt,i) t ≥ n (3.10)
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Let m ∈ [n,N] denote the the day when the Hurricane Maria struck Puerto Rico. Point-wise

comparisons estimate the impacts of hurricane on daily visits to a target business type between

treatment and control groups.

φt,i =
yt,i− ˆyt,i

ȳi
t = m+1, ...,N (3.11)

where, ȳi denotes the mean visit count to the visits prior to the disaster (t < n). The impact φt,i is

a normalized measure of the disaster impact to the business. φt,i measures the number of business-

as-usual days worth of impact (damage) the disaster inflicted on the business.

Moreover, We hope to estimate the cumulative causal effects of hurricane on a target business

type over time, which represents the resilience of business after hurricane. The cumulative sum of

causal increments is a practical quantity when the response variable yt,i is measured over time. We

calculate the total impact of the disaster to business i by the following equation.

φi =
N

∑
t=m

φt,i (3.12)

Daily visits to businesses in Puerto Rico and New York from January 2017 to March 2018 (400

days) are analyzed. As explained in the Methods Section, we will test three methods of selecting

the covariate: no covariate, xcategory, and xspeci f ic. To verify the which type of covariate improves

the prediction accuracy the most, two different model settings will be explored:

• Setting 1 (Inter-State prediction): Pre-disaster data will be used from Puerto Rico and New

York. The model will be fitted using data until day 150, and tested using data between days

151 and 200.

• Setting 2 (Intra-State prediction): To test the accuracy of long-term predictions, data from

businesses in Manhattan will be used to predict the visit counts of businesses in Up-State

New York, using the whole observation period (train: 0-150, test: 151-400).

Evaluation Metrics

The prediction tasks will be evaluated using 2 different metrics: i) Pearson’s R, which captures

the correlation between the predicted and true time series values, and ii) mean absolute percentage
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error (MAPE), which captures the relative magnitude of the absolute error between the predicted

and true time series values. MAPE is calculated by the following equation:

MAPEi =
1
n

n

∑
t=1

∣∣∣∣yt,i− ˆyt,i
yt,i

∣∣∣∣ (3.13)

We measure the performance of the methods using these two distinct metrics, where Pearson’s

R measures the relative correlation between the two sequences, while MAPE measures the absolute

magnitude of discrepancy between the two vectors.

3.2.2 Estimation Results of Disaster Impacts

The performances of the BSTS models with three types of covariates, were tested on the afore-

mentioned two experimental settings, using Pearson’s correlation and MAPE as evaluation met-

rics. Table 3.2 shows the performances of the three BSTS models on both settings. Surprisingly,

although the model with business-category covariates perform the best on average in both exper-

imental settings, the predictive performances of the three methods are quite similar. Using extra

covariates do not always improve the prediction model, and we see that over 34% of the busi-

nesses in experiment setting 1 had best performances when not using extra covariates (similarly,

over 40% of businesses in experimental setting 2). Extra covariates, which are aimed to capture

the long term trends and anomalies (e.g. New Years, Christmas), are not effective when making

predictions of businesses that have less long-term variation and a relatively stable periodicity in

visit counts. From experiment 1, we determine the best performing model out of the three for each

business, and we use that business to predict the counterfactual daily visit counts after the disaster

period.

Figure 3.11 shows an example of how the the disaster impact is quantified. As shown in panel

(A), we first predict the counterfactual daily visit counts after the disaster (blue plot) using the

best performing model identified in the model validation experiment. Then, as shown in (B), we

calculate the point-wise disaster impact φt,i, by subtracting the observed daily visit count sequence

from the predicted sequence and normalizing it by the pre-disaster mean daily visits. The cumula-

tive disaster impact φi can be calculated by aggregating the point-wise disaster impacts over time.
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Table 3.2. Model validation results of two experimental settings.
Evaluation

Metric
Use of Covariates

No Covariates xcategory xspeci f ic

Setting 1

Train
MAPE 12.35 (±16.67) 10.50 (±14.03) 10.66 (±14.46)

Pearson R 0.539 (±0.222) 0.696 (±0.169) 0.626 (±0.136)

Test
MAPE 8.568 (±14.37) 8.518 (±15.85) 8.888 (±15.30)

Pearson R 0.351 (±0.238) 0.354 (±0.239) 0.295 (±0.257)

Selected (%) 34.9 40.4 24.7

Setting 2

Train
MAPE 0.229 (±0.257) 0.249 (±0.251) 0.257 (±0.252)

Pearson R 0.855 (±0.144) 0.742 (±0.145) 0.744 (±0.115)

Test
MAPE 0.704 (±0.811) 0.475 (±0.612) 0.477 (±0.538)

Pearson R 0.420 (±0.189) 0.512 (±0.181) 0.466 (±0.183)

Selected (%) 40.3 25.1 34.6

Panel (C) shows the cumulative disaster impact over time from the time of the landfall of the hur-

ricane. In this particular business, we observe a significant negative impact until around day 300

with around φi = −25, meaning that by day 300, this business lost a 25 business-as-usual days

worth of customers due to the hurricane. We actually see positive impacts of the hurricane before

the 2 hurricanes, however the positive impacts are significantly negated by the negative impacts.

Gradually after 1 month from the hurricane landfall, we see an increase in visits compared to pre-

disaster levels, which decrease the negative disaster impact. As a result of the BSTS modeling, we

are able to obtain the quantified disaster impact for each of the businesses in Puerto Rico over time.

In the next section, we analyze the obtained results to further understand which business categories

in which locations suffered disaster impact in Puerto Rico after Hurricane Maria.

Now, using the BSTS method for predicting the counterfactual business performances, we

quantitatively analyze the resilience of businesses after Hurricane Maria and answer the following

questions:

1. How does the disaster impact evolve over time, and do the temporal patterns vary across

business categories and locations?
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Figure 3.11. Example of how the disaster impact is quantified. (A) Predicted and
actual observed daily visit patterns for a randomly selected business. (B) Point-wise
impact φt,i, and (C) cumulative impact φi of the disaster.

2. Can we explain why we observe such heterogeneity in disaster impacts across businesses in

Puerto Rico?

Since it was revealed that the optimal prediction models varied across different businesses in the

Model Validation Section, we use the best performing model out of the three (either no covariate,

average NY trend as covariate, or specific NY business trend as covariate) to predict the counter-

factual visit time series for each of the businesses in Puerto Rico.

Quantifying disaster impact patterns to businesses

To answer the first research question, we aggregate the disaster impacts over the time horizon

by business category and business location (San Juan Municipio, Metropolitan Area, Rural Area,

shown in Figure 3.9 B). Figure 3.12 shows the longitudinal point-wise disaster impact, which is
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the difference between the actual and the predicted business performances across time (φt = yt −

ŷt) for all nine business categories. Negative values of φt would mean that the disaster had a

negative impact on businesses, resulting in loss of customers, while a positive φt would mean that

the number of customers increased due to the impact of the disaster. In each panel, the disaster

impacts to businesses in the three regions are separately shown in blue (San Juan Municipio), green

(Metropolitan Area), and red (rural area). The vertical lines show the timings of the two hurricanes

(dotted: Hurricane Irma, solid: Hurricane Maria).

Several interesting observations can be made from these visualizations. First, we observe com-

mon trend across several business categories, where all three regions experience negative impact

right after Hurricane Maria, and then the businesses in the urban areas recover quicker compared

to those in rural areas. This intuitive trend can be observed in various business categories including

building materials, supermarkets, restaurants, telecommunications, and grocery stores. Second, we

see a significant increase in gasoline stations in metropolitan areas (green) after Hurricane Maria.

This reflects the high travel demand from the rural areas towards the metropolitan areas in the

island due to evacuation mobility [177 ]. Third, in some business categories such as hospitals and

hotels, we see an increase in visits after the hurricanes compared to before, especially in the San

Juan region (blue). An increase in hospital visits reflect the large number of injuries and casualties

caused by the flooding and severe winds caused by the hurricane. Significant increase in visits to

hotels in San Juan reflect the large number of residents who evacuated from the rural areas in Puerto

Rico to the capital city, which agrees with previous studies that observe the influx of population

movements in San Juan from the suburban and rural areas of the island [177 ]. Minor details are

captured in the figures as well, for example, how weekly fluctuations are estimated more vividly

in universities (students do not attend classes on weekends) compared to other business types,

and also how the impacts of Hurricane Irma, although minimal compared to Hurricane Maria, are

captured in the time series data.

To further understand the impact of Hurricane Maria on the businesses, we computed the cumu-

lative disaster impact (φ = ∑t φt) for each business in each region. The cumulative disaster impacts

are shown in Figure 3.13 for three different aggregation time thresholds, including (A) landfall to

1 month from landfall, (B) until 2 months from landfall, and (C) until 4 months from landfall. For

each business category, the cumulative disaster impacts are aggregated by regions, with the same

93



Figure 3.12. Point-wise disaster impacts across different business categories and
business locations.

color coding as Figure 3.12 . The numbers of φi should be interpreted as “the number of business-

as-usual days worth of impact”. For example, building material businesses in San Juan experienced

a median disaster impact of φ = −10 during the first month. This indicates that the building ma-

terial businesses in San Juan lost 10 days worth of customers who were supposed to visit if the

disaster did not occur. Most of the regions and business categories experience a negative impact

in the first month, except for hotels in San Juan. We also clearly observe the urban-rural disparity
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in disaster impacts across many of the business categories across all three temporal thresholds.

However, the urban-rural gap gradually closes down as time passes, and in many of the industries

we observe little differences by 4 months from landfall (e.g. building material, grocery stores,

restaurants, and telecommunications).

Although the general patterns show consistent insights such as the urban-rural disparity, larger

impact right after the landfall, and differences in disaster impacts across business categories, we

are not able to delineate the effects of each characteristic on disaster impacts. In the next section,

we attempt to reveal the impacts of business characteristics on the observed disaster impacts, by

applying a hierarchical Bayesian modeling techniques.

Although the results shown in the previous section revealed various patterns and correlations,

the quantified disaster impacts were all conditioned on various features including the business char-

acteristics (e.g. business category and location) and disaster characteristics. To delineate such ef-

fects and to understand the resilience of different business types, we apply a hierarchical Bayesian

model approach. Hierarchical Bayesian models (HBMs) allow us to flexibly model the group-level

effects on the estimand by introducing hyper prior distributions on the model parameters. This is

a significant difference from regular linear regression models which can only either i) assign one

global parameter for all groups, or ii) estimate parameters separately for each group. For further

details on the advantages of HBMs, readers should refer to [286 ].

To estimate the cumulative disaster impact of all businesses, we construct the HBM as the

following: 

φi ∼ N(βXi +δr(i)+ γc(i),σ
2)

δr(i) ∼ N(0,τ2
δ
), ∀r ∈ {0,1,2} #region

γc(i) ∼ N(0,τ2
γ ), ∀c ∈ {0,1,2,3,4,5,6,7,8} #category

β ,σ ,τδ ,τγ ∼Cauchy(0,2.5)

(3.14)

where, r(i) ∈ {0,1,2} and c(i) ∈ {0,1,2,3,4,5,6,7,8} denote the region index and category index

for business i. We assume that the cumulative disaster impact on business i, denoted by φi, can be

modeled as a linear sum of the effects of exogenous features Xi (which include pre-disaster business

mean visits, housing damages caused by the disaster), regional effects δr, and business categorical
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Figure 3.13. Cumulative disaster impacts across different business categories and
regions. Results are shown for different aggregation time thresholds, including (A)
landfall to 1 month from landfall, (B) until 2 months from landfall, and (C) until 4
months from landfall.
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Figure 3.14. Posterior estimates of model parameters of the hierarchical Bayesian
model. Using the model, we are able to understand the business impacts that each
business category experiences conditioned on other factors such as housing damage
rates, pre-disaster business sizes, and locations.

effects γc. The model is Bayesian in the sense that the model parameters (β ,δ ,γ) all have priors,

and the model is also hierarchical since the hyper-parameters in the prior distributions (τδ ,τγ )

come from another higher level distribution. We assume that the hyper-parameters are drawn from

weakly informative priors (Cauchy distribution). The hierarchical prior distributions allow us to

model the dependencies across different groups (regional groups and categorical groups).
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The model was implemented using stan, which performs sampling using Hamiltonian Monte

Carlo method, and was coded on the Pystan package. Sampling was performed for 20,000 iter-

ations with the first 1,000 used as warm-up. Thus, in total 19,000 samples were drawn for each

parameter. The sampling was ran on a regular laptop computer with an Intel i7 processor with

3.30GHz, and 8GB of RAM. The sampling took less than 5 minutes in total, which was much

faster than the BSTS model due to the small number of parameters. The mixing of the sampling

was effective, where R̂ values were extremely close to 1.0000 (±0.0001) for all parameters. Effec-

tive sample sizes were all significantly large, where the least was 5143.

Figure 3.14 shows the posterior estimates of the model parameters in the hierarchical Bayesian

model (β ,δ ,γ). The housing damage observed in the county of the business location had a signif-

icantly negative effect on the cumulative disaster impact, which was very intuitive. On the other

hand, the intercept as well as the pre-disaster business size, which was measured by the mean visits

to each business in the first 150 days of the observation (Hurricanes Irma and Maria struck on days

248 and 262), had no effect on the disaster impact. This contradicted previous studies which claim

that business sizes have significant impact on the recovery of businesses [265 ]. However, the study

did not have detailed information on the category of the business (only whether or not the business

was in the service sector). The effect of the business category may have negated the effect of pre-

disaster business size. The estimated location effect agreed with our previous analyses (Figures

3.12 and 3.13 ), showing that urban businesses had less negative disaster impact than rural ones.

By delineating all of these effects, we are able to estimate the business impacts that each busi-

ness category experiences, conditioned on other factors such as housing damage rates, pre-disaster

business sizes, and locations. The estimated effects (γ parameter estimates) are shown in the right

column of Figure 3.14 . This shows that gasoline stations, hotels, building material, and telecom-

munications had positive disaster impacts, meaning that people visited these locations after the

disaster more than before. This agrees with various news articles and studies that raise evidence of

people rushing to purchase gas [287 ] and evacuating and staying in hotels [288 ]. This also reflects

the household recovery process, where people purchase building materials for rebuilding homes

and visits telecommunication companies to fix their mobile devices for internet connectivity. On

the other hand, universities and supermarkets had a significant negative disaster effect. Again, this
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Figure 3.15. Partition results of counties in Puerto Rico based on pre-disaster hu-
man mobility flow dynamics network. Each sub-network is labeled by the major
cities, respectively. These subnetworks describe the regional clusters that have sig-
nificant intra-regional mobility flow. The sizes of the nodes correspond to the pop-
ulation in each county, and the width of the links connecting each node represent
the amount of mobility flow during normal times (before the hurricane). The links
connecting nodes from the same subnetworks are colored with the color of the sub-
network, otherwise colored in gray.

agrees with closures of universities in Puerto Rico after Hurricane Maria [289 ] and news articles

pointing out under-supply in supermarkets after the disaster [290 ].

3.2.3 Unraveling the Recovery Sequence of Industries

Network Partition of Regional Mobility Flow

First, to conduct analysis on the regional heterogeneity in social and economic recovery tra-

jectories, the entire island is partitioned into appropriate geographical regions. Such geographical

regions should reflect the spatial boundaries of daily livelihood and activity patterns of the res-

idents. An ideal partitioned sub-network would include a set of counties with a large amount of

internal mobility flow among them (e.g. core city and periphery cities) in the same regional cluster,

but separate counties that have small amount of mobility flow among them. More formally, given a

directed bi-directional network of mobility flow patterns (from mobile phone movement data), we

attempt to find an optimal way to partition the network into subnetworks so that we achieve high
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network modularity. Various computational algorithms have been proposed to tackle this prob-

lem in the context of community detection in networks (or graphs) [291 ]. Among the variety of

network partitioning algorithms, the infomap algorithm is shown to be an effective and compu-

tationally efficient method [292 ], and has been applied to network community detection tasks in

various domains, including human mobility modeling [293 ]. infomap is an information-theoretic

graph partitioning method, which uses the flows of random walkers to find groups of dynamically

related nodes in directed, weighted network. The algorithm was implemented on Python, using the

igraph package for implementation (https://igraph.org/r/doc/cluster infomap.html ).

The scatter plots and the solid lines in Figure 3.16 show the recovery dynamics of aggregated

visits to all points-of-interest (POIs) in each of the five regions based on mobile phone data. The

recovery observations, despite the differences in speed, all resemble a logistic growth, which can

be modeled with the following equation:

g(t) =
L

1+ exp(−k(t− t0))

The foot traffic values start at a low value close to 0, and gradually recover to a stable value

near L with decreasing growth rate as the value approaches the stable value in the long term. The

steepness (rate) of the curve is characterized by parameter k, and the midpoint timing (timing when

recovery reaches 0.5L) is characterized by parameter t0. The solid lines in Figure 3.16 show the

logistic curves fitted to the data. The estimated parameters of the logistic growth function and the

Pearson correlation between the data and fitted curves rsoc are shown in Table 3.3 . We observe

significant heterogeneity in recovery curves after Hurricane Maria across the five regions. The San

Juan region recovers the fastest after Hurricane Maria in all of the POI types, followed by Arecibo,

Mayaguez, Ponce, and Humacao. In particular, Humacao has slowest recovery and by the end of

the year 2017, the foot traffic only recovers to up to 50% of the original value.

By dis-aggregating the foot traffic data to various POI types, we observe significant increase in

visits to all of the POIs in all regions just before the landfall of Hurricane Maria, and also before

Hurricane Irma for medical and construction POI types (Figure 3.17 ). This implies significant

pre-disaster preparation behavior (e.g. shopping for goods), which agrees with insights from past

human behavior modeling studies [294 ]. Also, a decrease in visits to POIs just before Hurricane
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Figure 3.16. Inter-regional heterogeneity in recovery dynamics of visits to various
points-of-interest (POIs) in Puerto Rico after Hurricane Maria. The data can be
fit well to a logistic growth function g(t) = L

1+exp(−k(t−t0))
, shown in solid curves.

Note: Aggregated foot traffic of 1 indicates pre-hurricane standards.

Irma can also be observed; however they are shown to be less severe compared to Hurricane Maria.

Further analysis of the spatial heterogeneity and differences across POI types in disaster impacts

has been presented in recent studies using the same dataset [295 ]. Not all POI types in the five

regions recovered back to the original (pre-hurricane) states. For example, grocery stores and

construction stores in Humacao recovered only to up to 50% of the pre-hurricane visit count, while

all three POI types in San Juan recovered to pre-hurricane levels, and even experienced an increase

in demand around 1 month after the landfall (in particular for construction material in San Juan on

end of October).

Analyzing the fitted parameters of the logistic growth function further reveals how the affected

residents coped with the disaster. Figure 3.18 shows the estimated parameter values (k, t0, L) of

each type of POI in each region. The numbers between 1 and 6, annotated above the barplots indi-

cate the rank among the six POI categories within each region. From these results, we infer that,

in four regions except Humacao, foot traffic to automobile stores (which includes gas stations and

repair) recovered the quickest (largest steepness of curve k and shortest midpoint t0). This suggests

that people first visited gas stations and automotive repair stores to obtain a mode of transport,
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Table 3.3. Estimated parameter values and goodness of fit of social and physical
recovery models.

Region τ rphys k t0 L rsoc

San Juan 0.061 0.914 0.215 11.5 0.925 0.951
Mayaguez 0.031 0.950 0.131 23.9 0.800 0.976
Arecibo 0.031 0.958 0.203 22.5 0.824 0.984
Ponce 0.037 0.945 0.147 23.8 0.707 0.979

Humacao 0.030 0.949 0.091 30.8 0.513 0.986

to begin their recovery and rebuilding processes. Then medical, construction, and grocery POIs

were visited for recovery. Education POIs, on the other hand, recovered the slowest in most of the

regions, indicating that such educational services recover only after all essential recovery has pro-

gressed. POIs in Humacao had different recovery trajectories, where construction POIs recovered

the quickest (highest steepness and shortest midpoint time), reflecting the high housing damage

rates in Humacao region compared to the other regions within the island. While parameters k

(Figure 3.18 A) and t0 (Figure 3.18 B) represent the speed of recovery, parameter L (Figure 3.18 C)

shows how each POI recovers in the longitudinal time horizon compared to pre-disaster standards.

We observe that despite the slow speed, educational facilities were able to recover to relatively

high standards (ranks 2nd, 1st, 1st, 1st, 3rd, and 1st).

The results observed from different data sources provide several insights on community recov-

ery and resilience. They highlight the disproportionate effects of the hurricane on different regions

within the island of Puerto Rico, both in terms of physical (through water service deficit) and so-

cial (through the recovery of various essential POI types) systems. We observe that San Juan, the

capital city of Puerto Rico, recovers much faster than other regions both physically and socially,

while Humacao and Mayaguez fail to recover back to their original states. In addition to such cor-

relations, these relationships of recovery speed suggest the existence of interdependencies among

the social and physical systems during the post-disaster recovery period. In the next Section, we

further investigate into the recovery dynamics of coupled social and physical systems, and how

such interdependent relationships affect the resilience of the overall system.

102



Figure 3.17. Inter-regional heterogeneity in recovery dynamics of visits to POIs
in Puerto Rico after Hurricane Maria. Normalized visit counts with respect to pre-
disaster (before August 31st, 2017) mean visits are shown on the vertical axis, and
dates are shown on the horizontal axis. Colors of the curves correspond to the
regions in Figure 3.15 . The two dotted vertical lines correspond to the landfall of
Hurricanes Irma and Maria.
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Figure 3.18. Inter-regional and inter-POI heterogeneity in recovery speed of visits
to POIs in Puerto Rico after Hurricane Maria. Panels A, B, and C show the estimated
parameters k, t0, L of the logistic functions, respectively. Numbers (1∼ 6) annotated
above the bars show the rank among the six POI categories within each region.
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4. SOCIO-PHYSICAL SYSTEM INTERDEPENDENCIES

Urban communities depend on reliable provision of multiple critical services supplied through in-

frastructure networks, which are centrally managed by public and private utilities. In this study,

we categorize components of cities into social and physical systems. Social systems include

community-based entities at all spatial scales, such as households, non-government organizations,

faith-based groups, and businesses. On the other hand, physical systems denote the structural

infrastructure systems that serve urban agglomerations, including water pipe networks, road net-

works, sewage pipe networks, and power grids. These social and physical systems are binded

together with complex interdependent relationships embedded within and among urban systems,

and its complexity is increasing due to rapid urban growth and expansion in many cities around the

world [296 ]. On the other hand, with the rising intensity and frequency of natural hazards glob-

ally, there is an increasing need for agencies to enhance the resilience of urban systems to future

shocks [297 ]. Because of the strong and complex socio-physical coupling, shocks caused by nat-

ural hazards may cascade across urban systems, amplifying the disruptions caused by the disaster.

This poses significant challenges in understanding, modeling and predicting the recovery of cities

from future shocks, and identifying operational mechanisms in social and physical networks that

enhance the resilience of cities [298 ], [299 ].

The complexity of interdependencies between social and physical systems vary with urban

scales. Larger cities have bigger social capital to build and manage critical physical infrastructure,

and to acquire necessary natural resources (e.g., water, energy, food), and also have access to ex-

ternal technical and financial assistance (subsidy), not readily available to smaller cities. Typically,

small cities rely on their extant social networks and social capacity inherent in the community. Dur-

ing a disaster, due to lack of quick infrastructure recovery, people draw upon their social networks

and these are further strengthened [300 ], [301 ]. However, in large cities, due to larger infusions of

resources on physical infrastructure, these networks recover quickly [302 ]. The recovery of physi-

cal networks is primarily based on resources from a central actor (e.g. government) whereas social

networks and the resulting social capital is primarily decentralized. As many smaller cities face

urban growth, how could these cities, along the rural – urban growth trajectory, manage the inter-

dependent relationships between social and physical systems for resilient recovery from disasters?
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Figure 4.1. Fusion of large-scale data and dynamical model for unraveling socio-
physical interdependencies. A. Schematic showing the overview of the study. We
are interested in how coupled urban socio-physical systems respond to a series of
external shocks. Resilience of a CUSPS is quantified using data, system dynamics
models, and simulations. B. Puerto Rico was divided into five regions based on
the modularity of human mobility flow patterns. C. Recovery of social systems
were measured by visits to various places-of-interest (POIs) using mobile phone
location data. D. Regional differences in recovery of water service deficit after
Hurricane Maria in Puerto Rico. Data were available after September 29th 2017,
thus observations for initial service deficits between September 20th and September
29th are missing. Negative exponential functions ( f (t) ∝ exp(−τt); solid curves)
approximate the recovery dynamics well.

A key task is to identify the right amount of self-reliance of social systems despite the existence

of robust centralized physical infrastructure, that leads to better recovery outcomes for cities based

on their size, location and demographics [303 ]. Although studies have explored the role of social

and physical networks on urban resilience and recovery in isolation (e.g., social [58 ], [113 ], [304 ],

[305 ], physical [100 ], [104 ], [306 ], [307 ], economic [308 ]), the interdependencies between socio-

physical systems and its implications on urban resilience have been largely neglected in existing

studies.

We examine the recovery dynamics of five regions in Puerto Rico island after the devastating

damage from the Category 5 Hurricane Maria, to (1) quantitatively assess the temporal trajectories
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of social and physical recovery, (2) evaluate regional differences in degrees of interdependencies

between social and physical systems, and (3) understand the implications of managing such socio-

physical interdependencies on urban resilience. To achieve these research goals, a data-driven

system dynamics modeling approach is applied to estimate the coupled dynamics between social

and physical systems during the disaster recovery process (Figure 4.1 A). Empirical data from five

regions in Puerto Rico (Figure 4.1 B) after Hurricane Maria, including large-scale mobility data

collected from mobile phones and recovery data of water infrastructure systems, were used to

calibrate and test the dynamics model of coupled socio-physical systems. We also extend this

model-data analysis to examine the resilience of urban socio-physical systems in the longer time

horizon, exposed to a sequence of shocks. We close with a discussion on strategies on managing

the degree of social-physical interdependencies, to design resilient cities as many of them face

rapid urban growth in the near future.

4.1 Modeling Interdependent Socio-Physical Systems

4.1.1 Observations of Social and Physical Recovery

Physical Recovery Data

Data for service deficit of physical infrastructure systems after Hurricane Maria in Puerto Rico

were publicly posted on the StatusPR website, which was active until August 2018, which was

the following year from the landfall of Hurricane Maria. The StatusPR website served as a web

dashboard that curates physical infrastructure service data from multiple public utility companies

in Puerto Rico including gas, water, power, and mobile phone tower connectivity. Despite the

availability of various physical infrastructure service deficit data, only the water service deficit

rates were provided in the regional level; others were all aggregate measures for the entire island.

The water service deficit rates were provided for five regions in the island (metro, north, south,

west and east). Significant spatial co-location of various physical infrastructure networks with

water service networks imply that deficit of water infrastructure systems could serve as an adequate

approximation for the aggregated physical infrastructure systems recovery [309 ]. Therefore, in this

study, we use water service deficit recovery data to represent the recovery dynamics of physical
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infrastructure systems. The recovery dynamics of water service deficit in the five regions are shown

in Figure 1D.

Mobile Phone Location Data

The point of interest (POI) visit dataset was provided by Safegraph Inc (https://www.safegraph.

com/ ), a company that aggregates anonymized location data collected from smartphone applica-

tions to provide insights about physical places. Safegraph Inc. collects GPS location information

from an approximately 10% sample out of all mobile phones and smartphones in the United States

through various apps. Each GPS data point consists of an anonymized unique user identifier, the

longitude, latitude, and timestamp of the observation. The longitude and latitude information have

high spatial accuracy (typically within 10 meters), thus allows us to analyze visit movements to

each POI. Users’ consent to collect and use their location data were obtained by Safegraph.

The number of daily visits to each POI were estimated using the mobile phone location data.

To avoid errors in the estimation, spatial noise in the location data were cleaned by removing

jumpy observations where the velocity of the movement was unrealistically high (> 150 kilome-

ters per hour). The cleaned data points were then spatially clustered to detect “stay points”using

the DBSCAN algorithm [310 ]. From the estimated stay points, the visited POI is estimated using

a machine learning algorithm that uses various features including: the distance from POI to the

stay point, time of day, and likelihood of visits to POI categories (using the North American Indus-

try Classification System code also provided by Safegraph Inc.). This data-processing procedure

produces a time series data of daily visit counts to each POI. The POIs in the dataset were cate-

gorized into 6 major POI types: education, medical, construction, automobile, grocery, and other

department stores. Table S2 shows the number of POIs in each region, in each category.

Regional Socio-Demographic, -Economic, and Hurricane Damage Data

Social and economic data of the 78 counties in Puerto Rico were collected from publicly avail-

able sources. For example, the county population and median income data were retrieved from the

American Community Survey (https://www.census.gov/programs-surveys/acs  ). Housing damage
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Table 4.1. Socio-demographic, -economic, and hurricane damage statistics of the
five regions in Puerto Rico island.

Region Households Mean Income ($) Damaged housing (%)
San Juan 658,457 23,823 36.2
Mayaguez 199,355 15,614 31.4
Arecibo 143,795 16,492 38.9
Ponce 152,153 16,505 40.8

Humacao 83,420 19,047 45.1

percentages in each county represent the percentage of housing structures that were approved for

the Individuals and Households Program of FEMA [311 ].

Figure 4.1 C shows the normalized visits to various points-of-interest (POIs) in the five regions

observed from mobile phone location data, which increasingly have been used to understand urban

dynamics [121 ], [124 ]. Several important observations can be made from the time series plotted

in Figure 4.1 C. First, we observe significant differences in the speed of recovery across the re-

gions after Hurricane Maria. San Juan region experienced the quickest recovery, followed by the

Arecibo, Ponce, Mayaguez, and Humacao regions. Socio-demographic, -economic, and hurricane

damage characteristics of the five regions are shown in Table 4.1 . The recovery trajectories, despite

the differences in rates, can be well approximated using a logistic curve starting from around zero

(complete failure), and asymptotically converging to one (full recovery) over the long term, which

corresponds to the pre-hurricane chronic baseline. We also observe significant increase in visits in

all regions just before the landfall of Hurricanes Irma and Maria. This indicates substantial prepa-

ration activities of the residents before the hurricane (e.g. shopping for grocery and goods), which

was also identified in previous studies [294 ]. Decreases in visits just before Hurricane Irma are

much less compared to Hurricane Maria, reflecting the difference in the severity of the hurricanes.

Further analysis of the disaster impact differences in the region and category of the POIs has been

studied in a past study using the same dataset [295 ].

Figure 4.1 D shows the time series data of water service deficit rates in the five regions after

Hurricane Maria [312 ]. Negative exponential functions ( f (t) ∝ exp(−τt)), shown in solid curves,

are shown to fit the recovery of physical service deficit well with Pearson correlation higher than

R = 0.9. This trend agrees with previous observations from other disasters including Hurricane
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Irma in Florida, Tohoku Tsunami in Japan, and Kumamoto Earthquake in Kyushu, Japan [313 ].

The recovery rate coefficient τ is significantly different among the five regions, with San Juan

being the quickest and Mayaguez having the slowest recovery. The initial value of water supply

deficit, which varies among regions but are all below 1, is indicative of estimated initial deficit that

was caused by Hurricane Irma.

4.1.2 Socio-Physical Systems Dynamics Model

Klammler et al. [31 ] proposed a unique approach for modeling the resilience dynamics of

socio-physical (or “technological-social”) systems. The dynamics of the social and physical sys-

tems are characterized by coupled differential equations based on modeling insights from the social

and ecological sciences. The adaptive capacity of social systems Ω(t) and service deficit of physi-

cal systems Φ(t) are described using the following differential equations in the original model:

dΦ

dt
= (1−Φ)b−wΦΩ+ξ (4.1)

dΩ

dt
= (1− c1Φ)Ω(1−Ω)− r

Ωn

Ωn +β n − c2ξ (4.2)

where, b, r, β and n are model parameters that characterize the functionality of the systems, c1 and

w are parameters that describe the strength of coupling between the social and physical systems,

and ξ represent the external shocks (i.e., natural hazards) that affect the system. c2 controls how

much the social systems are affected by the external shocks. Each of the equations are composed

of three components: replenishment (or improvement), depletion (or degradation), and external

shock. The equation of physical systems dynamics Φ is characterized by an exponential growth

term of degradation (parameterized by b), exponential recovery which depends on the social system

state and parameter w, and an external shock ξ . The equation of social capacity dynamics Ω is

characterized by a logistic replenishment function term, which depends on the physical deficit state

by parameter c1, a Hill type function representing the depletion of social capacity parameterized

by r, n and β , and an external shock multiplied by the impact factor c2. Simulation results using

synthetic data showed that even without external shocks with severe intensity, a series of small but

repetitive shocks may tip the system over to a stable undesirable state [31 ]. While this model was
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limited to the theoretical discussion of the model and lacked empirical validation, [314 ] applied

the model to the context of water systems, and evaluated the resilience of water systems of various

cities around the world. The model parameters were assigned for each city based on a capital

portfolio approach that quantifies various urban characteristics [315 ].

In this study, we modify this model by relaxing the assumption that physical recovery is deter-

ministically dependent on social systems recovery, and to allow the socio-physical system to have

no functional coupling. To adjust the model to meet our objective, we reformulate the model by

introducing an additional model parameter q, that represents physical system recovery which is in-

dependent of social system recovery. Moreover, to fit the dynamics model to data from Hurricane

Maria, we remove the repetitive shock sequences ξ , and represent the shock impact using the initial

disruption values of Φ and Ω, denoted as Φ0 and Ω0, respectively. To simplify the dynamics of the

model, and to obtain better convergence probabilities in the estimation of model parameters, we fix

n = 1. Moreover, we study the socio-physical recovery dynamics for each region i = {1,2, . . . , I}.

Thus, the full model in this study is as follows:

dΦi
dt

= (1−Φi)bi− (wiΩi +qi)Φi (4.3)

dΩi
dt

= (1− ciΦi)Ωi(1−Ωi)− ri
Ωi

Ωi +βi
(4.4)

i = 1,2,3, ..., I (4.5)

where, initial conditions are given by Φi(0) = Φi
0, and Ωi(0) = Ωi

0, which are also model parame-

ters. Using this formulation, we are able to estimate and analyze the regional heterogeneity in the

system dynamics and model parameters. The social dynamics in each region will be analyzed for

multiple POI categories c = {1,2, . . . ,C} as well, to understand the intra-regional heterogeneity in

the model parameters. The descriptions of the model parameters are summarized in Table S3. It is

important to note that when ci = 0, recovery of social systems are independent of physical deficit

states, and when wi = 0, physical recovery occurs independently of social system states. A system

where ci = wi = 0 denotes a completely decoupled system, which serves as our null hypothesis

model.
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Estimation of Model Parameters

To estimate the model parameters Θi = {Ωi
0,Φ

i
0,ci,ri,βi,wi,bi,qi}, we apply a Hamiltonian

Monte Carlo (HMC) sampling approach and obtain the maximum a posteriori (MAP) estimate

using empirical observations of social and physical systems collected during the recovery phase

after Hurricane Maria. Given the discrete time series data of social and physical systems in region

i, ω i
t and φ i

t , respectively, and the simulated trajectories of social and physical systems of region i,

Ω(Θi) and Φ(Θi), respectively, the likelihood is computed using a Gaussian distribution:

p(Ωt(Θi))∼N (ω i
t ,σ

2
i ) (4.6)

p(Φt(Θi))∼N (φ i
t ,σ

2
i ) (4.7)

ci,ri,βi,wi,bi,qi,σi ∼ Hal f −Cauchy(0,2.5) (4.8)

Ω
i
0,Φ

i
0 ∼Uni f orm(0,1) (4.9)

To allow flexibility, half-Cauchy priors with scale of 2.5 are assigned to the model parameters,

including the standard deviation σ of the likelihood function. The HMC sampler for this MAP

estimation is constructed using stan, a Bayesian computational framework. The sampler drew

5000 samples for each model parameter, and was made sure that the sampler had good mixing by

observing that R̂ was equal to 1.0. The MAP estimate of the model parameters were obtained by

taking the mode of the posterior distribution, using Kernel density estimation.

To evaluate the model fit, the Pearson correlation between the simulated and observed system

dynamics was computed. Given two time series vectors x and y, the Pearson correlation coefficient

ρxy is computed by the following equation:

ρxy =
cov(x,y)
σ(x)σ(y)

(4.10)

where, cov(x,y) is the covariance between x and y, and σ(x) denotes the standard deviation of x.

Furthermore, to interpret the model parameters, multivariate regression was performed on the

model parameters using the socio-economic variables listed in Table 4.1 . We investigate which

socio-economic variable explains the heterogeneity in the estimated model parameters by selecting
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Figure 4.2. Estimation of regional socio-physical recovery dynamics. A-E. Ob-
served (dotted) and estimated (solid curves) social (orange) and physical (skyblue)
recovery dynamics in each region, using the calibrated socio-physical system dy-
namics model. The shaded ranges around the simulated dynamics show the 95%
Bayesian credible interval. In addition to the strong and significant correlation
shown in Table S4, the plots qualitatively show that the system dynamics model
is able to replicate the observed dynamics. F. Equilibrium analysis of the five re-
gions. Each region has 2 stable equilibrium points (color filled circles: desirable
(high Ω, low Φ) and undesirable (Ω = 0)). Direction field for San Juan are shown
(arrows).

the variable with the highest statistical significance in the regression analysis. All of the model

parameters as well as the socio-economic variables were log transformed prior to the multivariate

regression to assure positivity.

These empirical observations on the dynamic states of social and physical systems are useful in

identifying the disparities across the five regions in disaster recovery [316 ]. Although such obser-

vations could be informative for monitoring system states, analyzing them in isolation neglects the

functional interdependent relationships that exist between the urban social and physical systems.

Examples of functional interdependencies include: dependence of water networks’ (physical sys-

tems) recovery on local and federal agencies (social systems), operation of local businesses (social

systems) depending on power-grid infrastructure (physical systems), and communities depending
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on recovery of critical services. In order to quantitatively capture the functional coupling between

the social and physical systems, the empirical observations are integrated with a dynamic model

of coupled socio-physical systems.

The coupled dynamics model of socio-physical systems, originally proposed by Klammler et al.

[31 ], is composed of two coupled differential equations. This model is applied due to its high sim-

ilarity with empirical observations, especially the logistic recovery curve of social systems (Figure

4.1 C) and exponential recovery curve of physical systems (Figure 4.1 D). In this study, we revised

the model by including an additional parameter q in Equation (1) to relax the assumption that

the recovery of physical systems deterministically depend on social systems recovery; the second

term −(wΩ+q)Φ is the general form of the original −wΦΩ term. Among the model parameters

Θ = {Ω0,Φ0,c,r,β ,w,b,q}, c and w dictate the coupling strength among the socio-physical sys-

tems, and completely decoupled urban systems can be characterized with c = w = 0. Descriptions

of the model parameters are listed in Table S3. The model parameters were calibrated to the data

in the five regions using Hamiltonian Monte Carlo (HMC) sampling methodology and maximum

a posteriori (MAP) estimation. Figure 4.2 A-E show the observed social and physical recovery

dynamics (in dotted lines) against the calibrated social and physical simulation dynamics (in solid

lines), colored in orange and blue, respectively, for each region in Puerto Rico. The plots show the

high reproducibility of the socio-physical recovery dynamics model, with high Pearson correlation

(all higher than R = 0.9) between the data and the model. The estimated model parameter val-

ues (mean and 95% credible intervals) for the five regions as well as for different point-of-interest

categories are shown in Table S4. The generalizability of the socio-physical dynamics model was

evaluated via testing on recovery data of different point-of-interest (POI) categories (Figure 4.3 ),

including education, medical, construction, automotive, grocery, and other stores. The fitting re-

sults in Figure 4.4 show that the socio-physical dynamics model is capable of evaluating industry

level recovery. The stability of the socio-physical systems in the five regions was analyzed. Figure

4.2 F shows the phase plane of the socio-physical systems. The stable equilibrium points (filled cir-

cles), null-clines (solid lines), and direction field (arrows; only for San Juan is shown) are shown

in the diagram.

The socio-physical systems in the five regions each have 2 stable equilibrium points, 1 being

a desirable equilibrium (high social recovery Ω, low physical service deficit Φ), and 1 being an
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Figure 4.3. Location and categories of POIs in Puerto Rico used in the analysis.

undesirable equilibrium (Ω = 0). The desirable equilibrium state of Humacao (red) in particular, is

Ω∼ 0.5 and Φ∼ 0.13, which highlights the long-term chronic deficit compared to other regions.

4.1.3 Urban Scale and Socio-Physical Interdependencies

The coupled urban socio-physical model and the estimated parameters allow us to further un-

derstand the regional heterogeneity of characteristics in Puerto Rico. Among the model parameters

shown in Figure 4.5 A, c and w govern the strength of interdependencies that exist across the so-

cial and physical systems (i.e. “coupling parameters”). Parameter c (“dependence”) controls to

what extent physical service deficit slows down the recovery of social systems. Larger dependence

indicates that social systems are highly dependent on the recovery of physical systems, lacking

self-reliance. Parameter w (“efficiency”) controls how efficiently the social systems are able to

restore damaged physical systems. Larger efficiency indicates higher recovery capacity of social

systems. Figure 4.5 B shows the parameters c,w of the five regions. The estimated parameters

suggest a trade-off relationship between efficiency w and dependence c, where San Juan (blue)

(most populated, higher average income) have high recovery efficiency but the social systems have
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Figure 4.4. Observed (dotted) and estimated (solid curves) social (orange) and
physical (skyblue) recovery dynamics in each region for different POI types, using
the calibrated socio-physical system dynamics model. The shaded ranges around
the simulated dynamics show the 95% Bayesian credible interval.

high dependence on the physical systems, and on the other hand, Humacao (red) (less populated)

has less recovery efficiency but are more self-reliant. Arecibo (skyblue) and Mayaguez (orange)

(intermediate population density) are placed in between San Juan and Arecibo regions. Although

Ponce (green) had less recovery efficiency, its social systems had high dependence on physical

systems. The implications of these coupling parameters on the resilience of the regions are further

investigated and discussed in the following section (Figure 4.6 ).

To further interpret the estimated model parameters, multivariate analysis was conducted on

the model parameters of the POI types in the five regions Θ using socio-economic variables, in-

cluding the total number of housing damage rates, mean income, and gross regional income (GRI)

of each region, shown in Table 4.1 . As a result, it was found that log10(GRI) had relatively weak

but statistically significant correlation with model parameters (c,r,w), Panels C-F in Figure 4.5 

show the significant correlation (weak scaling) between the model parameters c,r,w, q
w and GRI.
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Figure 4.5. Regional differences in system dynamics model parameters. A. Setup
of the coupled socio-physical system dynamics model and the model parameters.
B. Estimated coupling parameter values for the five regions suggest a trade-off
relationship between efficiency in recovery (w), and dependence on physical in-
frastructure systems (c). C-F. Correlation between the estimated model parameters
(c,r,w, q

w ) and the gross regional income (GRI) in log-log plot. Colors correspond
to the five regions in Figure 4.1 B, and the dotted black line shows the linear re-
gression of the logged variables. The Pearson correlation coefficient is shown in
the bottom corner of each plot, with stars indicating its statistical significance (***:
p < 0.01, **:p < 0.05, *:p < 0.1). Significant correlation was observed, indicating
that regions experience different recovery dynamics based on their GRI.

The color-filled square plots show the parameters for the aggregated regional dynamics, and open

circles show the estimated parameters for each POI category. The strong positive correlation be-

tween GRI and c, and between GNI and w indicate that regions with more population and income

are more efficient in recovery, but also more dependent on physical systems. This shows that the

bi-directional dependencies between social and physical systems grow stronger as cities become

larger and wealthier. This supports our hypothesis that larger urban systems are embedded within

more complex interdependencies between social and physical systems. This also agrees with the

analysis in Padowski et al. [317 ] on water systems in several cities in US and Africa, which showed
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how managers of larger cities need to overcome the lack of local resources by constructing more

complex social and physical frameworks. Such wealthier regions also are affected by lower de-

pletion rates of social systems (r), which suggest better maintenance capacities. Moreover, these

regions require less external support for physical recovery, in relative terms with respect to their

internal recovery efficiency ( q
w ).

4.2 Interdependencies and Resilience

To measure the resilience of the coupled urban socio-physical systems defined by the systems

dynamics model and estimated model parameters, we simulate the longitudinal dynamics under

various disaster scenarios. Based on the literature, we assume that hurricane occurrence follow

a Poisson process with rate of λ [318 ]. Moreover, we assume that the intensity of hurricanes

follow an exponential distribution with mean α , as assumed in previous modeling literature [31 ].

According to the Tropical Meteorology Project at Colorado State University and the GeoGraphics

Laboratory at Bridgewater State University, Puerto Rico is predicted to have a 8% probability of 1

or more major (Category 3-4-5 on the Saffir-Simpson scale) hurricanes tracking within 50 miles of

the island in a given year [319 ]. We convert this value to parameters λ and α using the following

logic. Parameter λ is calibrated based on the frequency of hurricane occurrence. The cumulative

probability function of an exponential distribution with mean α is given by F(x;α) = 1− eαx

when x > 0. Thus, the probability of the shock exceeding x is given by p = 1−F(x;α) = e−αx.

Thus, if we assume that a major hurricane has an intensity of 1, in order to have probability p, we

set α = − log p. We assume that hurricanes only occur during the hurricane season (June 1st ∼

November 30th), and 500 simulations (each simulating over a 10 year time horizon) were run for

each region.

Using this simulation framework, we investigate whether by reforming the strengths of interde-

pendencies between the social and physical systems (model parameters c,w), the resilience of these

regions in Puerto Rico could be improved. To address this question, regional model parameters on

efficiency w and dependence c are varied within a range of parameters (0≤ w≤ 0.1, 0≤ c≤ 1.5),

while keeping all of the other model parameters (i.e., r,β ,q,b) the same for each region. In each

simulation run, the collapse time (timestep when Ω = 0) was recorded to represent the resilience
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(= ability to build back after shocks) of the region. Similar to the aforementioned framework, the

impacts of reforming coupling parameters on the regional resilience (this time, using mean col-

lapse time) are simulated. Panels B-F in Figure 4.6 show the resilience of the five regions under

different strengths of socio-physical interdependencies. The black crosses indicate the current sit-

uation of socio-physical interdependencies in the regions. Warmer colors indicate longer collapse

times (more resilient), while colder colors indicate quicker collapse times (less resilient). In all

of the regions, we observe that improving recovery efficiency w and lowering the dependence on

physical systems c lead to resilient urban systems. However, note that the marginal improvements

of the two levers vary for different regions. While San Juan, Mayaguez, and Arecibo could gain

more resilience by shifting in both directions (right-wards and down-wards), Humacao may yield

little marginal gain by strengthening its physical efficiency (right-wards). Rather, Humacao should

further decrease its dependence on physical infrastructure and strive towards a self-sustainable and

decentralized system to improve its resilience to future shocks. Reforming the socio-physical in-

terdependencies is one policy lever that can be implemented to enhance resilience. Other policies

include improving the robustness of physical infrastructure, which can be also simulated with our

model by applying a buffer that reduces the magnitude of shocks when they are below a certain

threshold. Improving the robustness of infrastructure is also shown to be effective in improving the

resilience of these regions (Figure 4.7 ), which agrees with current practices (e.g., building struc-

tures such as sea walls, water drainage systems). To enhance the resilience of urban systems to

future shocks, it is crucial to not only focus on the structural improvements but also to maintain

self-reliance of social systems, especially in urban areas.

In many OECD countries, reliable critical services (e.g., water, sewage, power, transport) are

available on demand, provided by robust connectivity to efficiently (and often centrally) managed

critical infrastructure systems. On the other hand, cities in less developed regions and countries

have less reliable provision of such services, thus, citizens often utilize a wide array of adaptive

strategies to cope and to overcome service deficits of critical infrastructure systems [314 ], [320 ].

For example, household interviews have found that citizens in the Humacao region, which were

most heavily affected by Hurricane Maria, supported eachother in the absence of critical physical

infrastructure services (e.g., “... Her neighbors and the community bakery allow her to store cold

food in their refrigerators.”) [321 ]. In such regions, households use reserves (e.g., pre-positioning
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Figure 4.6. Resilience implications of socio-physical interdependencies. A. Cumu-
lative density functions of collapse timing across the shock sequence simulations in
the five regions. San Juan and Humacao are shown to be the most and least resilient,
respectively. B-F. Resilience implications of reforming the interdependencies (effi-
ciency w and dependence c) between the social and physical systems. In all regions,
increasing efficiency and lowering the dependence on physical systems benefit re-
gional resilience, although the marginal effects vary across regions. Note that the
color bar scales vary across panels.

critical supplies or boarding homes) or seek assistance from alternate providers (sharing generators;

purchasing bottled water) [315 ]. As more cities face urbanization and robust physical infrastructure

are built, the dependence of social entities (e.g., households, businesses) on such physical systems

will increase. As suggested in San Juan’s case in this study, high robustness and efficiency of

physical infrastructure could lead to changes in people’s behavioral patterns, putting higher depen-

dence on physical infrastructure, similar to the citizens in OECD countries. The exception seems

to be Ponce, which had both high dependence and low efficiency (Figure 4.5 A). This was because

Ponce was not in the direct path of the hurricane, and the region was given more financial support

from federal agencies such as FEMA [322 ]. However, with increasing frequency and intensity of

climate related hazards, recent disasters have shown the risk of over-reliance on physical systems,

as no engineered system is fail-proof [98 ]. The simulation results obtained in this study reinforce
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this point, based on empirical data and modeling, that increasing dependency on physical systems

decreases the resilience of communities. Therefore, the proposition of this study – the importance

of maintaining self-reliance of social systems – will become key as cities simultaneously face rapid

urbanization and climate change.

Enhancing community-level resilience requires trade offs at multiple spatial and temporal

scales [323 ], [324 ] between security at household scales to sustainability at larger scales. Similarly,

trade offs need to be made between increasing robustness of the physical (engineered) infrastruc-

tures or decentralizing their management. Adaptive capacity required to cope with chronic dis-

turbances and major shocks requires balancing diverse ”capitals” (see [315 ]), which are unequally

distributed within and among urban communities in a region. Thus, optimizing interdependencies

and resource flows among affected communities is another path to enhancing regional resilience.

Another challenge in building community resilience is that persistent inequalities exist in adap-

tive capacity within and between urban communities [315 ]. Poorest and marginalized communities

suffer the most during disasters, and lacking adaptive capacity or access to external subsidies, re-

cover the last , or may not recover at all. Thus, regional community resilience must ensure equitable

access to reliable critical services [325 ].

The insights presented in this study could be applied in policy making to provide more resilient

urban systems and favorable recovery outcomes after disasters [326 ]. Together with detailed es-

timations of costs to implement various policy levers (e.g., decreasing household dependence by

installing power generators in rural areas, improving connectivity of social networks enabling more

social capital in urban areas), policy makers will be able to perform cost-benefit analysis for en-

hancing regional resilience. One important next step in this line of research is to operationalize

the policy levers by quantitatively connecting them with changes to the model parameters. This

could be achieved by further downscaling the model and using survey data that asks households

and communities on their level of social bonding and reliance on centralized infrastructure during

diaster events. As discussed in this paper, the extent of self-reliance should be carefully weighed

based on the type of community (urban versus rural), the starting points of the physical and social

networks, the socio-demographics and the local institutional rules that govern the recovery. The

marginal benefit from an improvement in social networks versus physical networks vary across

urban and rural areas. For instance in Humacao, we observe that if the physical networks are not
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improved from their current situation, improvements in social networks can only result in small

improvements in the collapse time (Figure 4.6 F). A key finding is that rural communities need to

have a base level of physical network efficiency for them to be resilient.

By taking into account deep uncertainties in future climate conditions, macroeconomic trends,

and demographic changes, a robust decision making framework can be applied to the coupled

socio-physical dynamics model to make robust policy decisions [327 ]. Although the model was

evaluated on data collected from Puerto Rico after Hurricane Maria, the model is generalizable to

any type of disaster in any given region or city. Recently, data collected from mobile devices have

been increasingly used for post-disaster assessment of population dynamics, which can be used

to capture the recovery of social systems [45 ], [155 ], [313 ]. Applying the coupled socio-physical

dynamics model to other regions of various characteristics could generate insights on its resilience

in future climate scenarios.

Several limitations in the proposed approach and results open up various research opportu-

nities. First, investigation at a finer-spatial resolution, for example on a county or census tract

scale, could provide more detailed results and estimations that could be utilized by decision mak-

ers in municipal governments. However, down-scaling the analysis could bias the estimations

with data sparsity. A more robust model parameter estimation method could be a topic worthy

of investigation for future studies. A finer grained analysis could allow a more detail analysis on

socio-demographic inequalities and equitable resilience to disasters [179 ], [328 ], [329 ]. On the

other hand, previous studies have focused on larger cities, often with several million households

[314 ]. Extending this data-model approach towards both microscopic and macroscopic directions

would be an interesting next step. Moreover, the resilience simulations assumed that changing

the coupling parameters do not affect the other model parameters of social and physical systems.

Further investigation relaxing this assumption is needed to obtain a full picture of the resilience

implications. Second, the data on the recovery of physical systems on the regional scale used to

calibrate the model was limited to just water service deficit, due to the lack of available data in

Puerto Rico after Hurricane Maria for the other types of infrastructure systems. Collection of data

for other physical infrastructure including power, gas, transportation systems, more specifically a

regionally disaggregated time series data on the service deficit could allow us to extend the anal-

ysis to a multi-layer physical network. Third, a scaling relationship between the estimated model
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parameters and regional gross income can be found in Figure 4.5 . Bettencourt et al. [330 ] have

shown that the generalizability of scaling patterns by testing various urban metrics including total

wages, total electricity consumption, and total road length. Similarly, the results should be exam-

ined further by using datasets of recovery after other events in different cities, regions, and across

different disaster types.

The complexity of cities are increasing due to rapid urbanization around the world. Such inter-

dependencies between social and physical systems could amplify the impact of disruptions caused

by natural hazards, posing a threat to cities within an impacted region as we face climate change. In

this study, we proposed a data-driven modeling framework to infer the socio-physical interdepen-

dencies in urban systems and their effects on regional-scale disaster recovery and resilience. Large-

scale mobility data collected from mobile phone users in Puerto Rico during Hurricane Maria were

used to calibrate the model across five regions within the island. Estimation results indicated that

as cities grow in scale and expand their centralized infrastructure systems, the recovery efficiency

of critical services improves, however, curtails the self-reliance of socio-economic systems dur-

ing crises, posing a trade-off in urban management. Further longitudinal simulation results using

hypothetical future climate scenarios showed that maintaining self-reliance among social systems

could be key in developing resilient urban socio-physical systems for cities facing rapid urban

growth. Economic expansion and population growth in larger cities increase community demands

for critical services based on resources drawn from increasing regional scales. Migration from

smaller cities to larger cities adversely impacts the socioeconomic well being of smaller commu-

nities, while overwhelming the existing critical infrastructure, a problem most evident in growth

of informal settlements in mega-cities in Asia, Africa, and South America. Thus, evaluating and

managing community resilience at regional scales is of increasing importance. These results en-

courage a paradigm shift in urban planning – to carefully assess the complex interdependencies

between social and physical systems – to improve regional resilience of urban systems to future

shocks.
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5. TOWARDS INTER-REGIONAL TRANSFERABILITY

The previous sections have used large-scale novel datasets to measure and model the post-disaster

recovery dynamics of urban socio-physical systems, revealing significant heterogeneity in recovery

trajectories across different regions due to their diverse socio-demographic and -economic charac-

teristics. Such modeling techniques are shown to be successful in regions and disaster events

where large amounts of human behavior data could be collected from mobile devices. One crit-

ical drawback of such data-driven modeling techniques lie in their inability to model scenarios

where data are sparse or not available, which is common in disaster events in low-income regions

or developing countries where mobile phone (or smartphone) penetration rates are relatively low.

To overcome this challenge, in this Section, we develop supplemental methods to transfer model-

derived predictions and insights across different regions.

5.1 Inter-Regional Translation of Places

In the urban computing field, large mobility datasets collected from mobile devices such as

GPS trajectory data have allowed us to observe the dynamics of cities at an unprecedented spatio-

temporal resolution and scale [331 ], [332 ]. Combined with recurrent neural network (RNN) mod-

els, recent studies have made significant progress in quantifying the functions of places in an

analogical manner to word embeddings in the natural language processing field (e.g. [333 ]–[337 ]).

Such high dimensional representations of places (“place embeddings”) have been shown to effec-

tively capture the complex functions of places within cities [338 ], and have been applied in various

downstream tasks in urban planning, such as identifying spatial clusters with respect to function-

ality [339 ], choosing sites for opening new stores [340 ], and predicting where users will go to in

future timesteps [341 ].

However, such studies have been limited to understanding the place representations of cities in

an individual manner, and has lacked an inter-city perspective. Because the representations of dif-

ferent cities were not generated in a common vector space, it has been difficult to transfer insights

based on place representations from one city to another, let alone transferring various phenomena

(e.g. evacuation after disasters) across cities. If we could map place representations learned in one

city to another, in the same way we translate words to words across different languages, we would
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be able to utilize knowledge accumulated in other cities to perform better analyses and predictions.

For example, we may be able to predict locations that could become evacuation shelters in future

disasters in city ψ , by translating the representations of places that became evacuation shelters in

a past disaster in city φ to city ψ .

In this study, we attempt to bridge these gaps by treating cities and languages analogously,

which extends the analogies made by previous studies (“places and words” and “trip sequences

and sentences”). More specifically, our goal is to develop methods that can map places from dif-

ferent cities with similar meanings closely on a common vector space via an operation analogous

to translation. We propose models that extend the methods developed in the natural language pro-

cessing field for unsupervised machine language translation tasks [342 ]–[344 ]. Figure 5.1 shows an

illustration of our problem setting and approach. Given representations of places Xφ , Xψ in cities

φ and ψ , directly overlaying Xφ on Xψ would be uninformative, since the vector spaces are not

aligned with eachother. Using methods to translate representations, we obtain X̃φ = f (Xφ ) which

is aligned to the space of city ψ , allowing us to compare representations of places in different cities

for further analyses and predictions.

The model performances are tested using real world data collected from mobile phones in 2

cities in Japan, and are validated using landuse data. Results show that our methods are able to

accurately translate place representations from one city to another.

The main contributions of this section are as follows:

• We propose and test methods to translate place representations across cities, which can map

places from different cities with similar functions closely together.

• We verify that our method can successfully translate place representations, using real mobil-

ity world data from 2 cities.

• We make the translated place representations publicly available for researchers and practi-

tioners.
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Figure 5.1. Illustration of our problem setting. Given representations of places
in 2 cities (φ ,ψ) generated from the observed mobility patterns, our problem is to
translate the place representations of city φ to the vector space of city ψ , so that
similar places from the two cities become mapped closely in the common vector
space, as shown in the bottom right panel.

Definition 1 (Human Mobility Patterns)

Sequences of users’ staypoint locations with timestamps are extracted from mobility data using

methods explained in Section 3.1. The usual human mobility patterns of a city c is the set of all

staypoint sequences of individuals whose home location belongs to city c.

Definition 2 (Place Representations)

A city c is divided into disjoint cells by grid sizes of r meters. We will call each cell as a place

i, and denote its representation as xc
i , which is a d-dimensional vector. Place representations xc

i are

learned from the human mobility patterns observed in city c, using methods explained in Section

3.2. Representations of all places are stacked as a (d× nc) matrix Xc, where nc is the number of

places in city c.
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Problem Definition (Translation of Place Representations)

Place representations Xc are learned for each city c from the observed mobility patterns. Thus,

for different cities, the vector spaces are not shared. Translating place representations from city

φ to city ψ is equivalent to finding a mapping function f that aligns the two vector spaces, i.e.,

Xψ ≈ X̃φ = f (Xφ ). Methods used to translate place representations are explained in Section 3.3.

5.1.1 Methodology: Unsupervised machine translation of places

Extracting Human Mobility Patterns

We first extract human mobility pattern datasets for each city, from the location data observed

from mobile phones. Each observation of the location data contains the user ID, timestamp, lon-

gitude and latitude. More details of the mobile phone data that we use in this study are explained

in Section 4.1.1. Our goal is to extract users’ sequences of staypoint locations from the observa-

tions. We achieve this by setting two threshold parameters; one spatial threshold and one temporal

threshold. To cope with noisy location observations (e.g. spatial errors in GPS data), we perform

mean shift clustering to estimate the true location for each observation, as described in previous

studies (e.g. [226 ], [227 ]). For each user, we read their location data in time order, and search for

locations where the user has stayed within the distance defined by the spatial threshold parameter

for a duration longer than the time defined by the temporal threshold parameter. We use 1000

meters as the spatial threshold, and 30 minutes as the temporal threshold in this study. As a result,

we are able to obtain sequences of staypoint locations for each user, which will be used to generate

place representations using methods explained in the following section.

Generating Place Representations

To obtain the representations of places in a city, we solve a self-supervised task in which an

LSTM RNN model is trained to predict the next staypoint of a user using mobility data, which

is analogous to language models which are trained to predict the next word in a sentence. After

training an LSTM RNN model using staypoint sequences of a city c, we extract and stack the

embedding layer’s parameters of the size nc×d, and define it as the matrix of place representations
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Xc. We refer to this place representation learning architecture as “MobLSTM” in the following

sections. Specific model hyperparameter settings are explained in Section 4.2.1.

Translating Place Representations

Three approaches for translating place representations across cities are tested. The first ap-

proach is to jointly learn the place representations of places in both cities using a common MobLSTM

architecture (Section 3.3.1). The second and third approaches learn place representations using

MobLSTM separately for different cities, and then attempt to align them using an optimization

method (Section 3.3.2), or adversarial training (Section 3.3.3).

Joint Learning Approach

In the first approach, we apply the MobLSTM model to the two cities together on the self-

supervised next staypoint prediction task. We merge the mobility datasets of two cities into one,

train the model over the merged data, and use the transposed embedding layer matrix of the size

d× (nφ + nψ) as the representation matrix. The rationale behind this approach is that, represen-

tations of places with similar functions will be visited in a similar manner (e.g. time of day, day

of week, after and before certain places) regardless of the city the places belong to. To let the

model treat places of cities φ and ψ as equally as possible, we mask the candidates of ψ at the

output when the next staypoint belongs to φ and vice versa, releasing the model from the burden

of distinguishing between two cities. A previous study shows that this approach is effective in

translating embeddings of one language to another in an unsupervised manner [345 ]. We refer to

this translation method as “Joint-MobLSTM”.

Procrustes Transformation Approach

The second approach applies the Procrustes transformation method, which is originally used in

the supervised problem setting. Given place representations Xψ and Xφ , and a dictionary of pairs of

places which are ranked by their popularity (indicated by the superscript (i)), orthogonal Procrustes
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is applied to align them together into a common vector space by optimizing the following function:

R∗ = argmin
RT R=I

N

∑
i=1

∥∥RX (i)
φ
−X (i)

ψ

∥∥
F (5.1)

where R∈Rd×d , and
∥∥ ·∥∥F is the Frobenius norm. The solution gives the best rotational alignment

of the two vector spaces. Although our original problem is in the unsupervised setting, we generate

synthetic representation pairs by pairing up the top N visited places from both cities. We use

N = 500 as the default number of place pairs, however we test its effect on translation performance

in Section 4.4.4. We refer to this translation method as “MobLSTM-P”.

Adversarial Training Approach

The Procrustes method requires a dictionary of pairs of places from the two cities that are

expected to be mapped closely together, however, a fully unsupervised approach is shown to work

better in some settings [343 ], [346 ]. The third approach uses adversarial training to learn the

transition matrix R, which is then used for translating the representations learned via MobLSTM

between the two cities. A similar approach as Conneau et al. [343 ] is taken here, where a model is

trained the discriminate between representations randomly selected from RXφ and Xψ . R is then

trained to prevent the discriminator from making accurate predictions [347 ]. The standard training

procedure of deep adversarial networks is used for train the adversarial model [348 ]. We refer to

this translation method as “MobLSTM-Adv”.

5.1.2 Experimental Validation

In our experiments, we define the sizes of the places as r = 1000m×1000m grid cells. Through

the qualitative analysis of the place representations in Section 4.3.3, we confirm that this spatial

scale is granular enough to be able to identify specific places. Moreover, the evacuation shelter

analysis in Section 5 shows that the scale is informative enough to assist disaster relief officers

in practice. We generated and translated representations of places (grid cells) instead of specific

place of interests (POIs) that are specified in maps, because there are cases where places with no

particular POI could have significant meanings to the people.
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Table 5.1. Data statistics for the two cities
Kumamoto Okayama

# Users 94,053 119,349
# GPS staypoints 2,832,329 2,382,861

Data period 2016/2/1∼2/29 2018/6/1∼6/30
# places nc 2565 2163

Mobile Phone Data

Yahoo Japan Corporation1
 collects location information of mobile phone app users in order to

send relevant notifications and information to the users. The users in this study have accepted to

provide their location information. The data are anonymized so that individuals cannot be speci-

fied, and personal information such as gender, age and occupation are unknown. Each GPS record

consists of a user’s unique ID (random character string), timestamp, longitude, and latitude. The

data acquisition frequency of GPS locations changes according to the movement speed of the user

to minimize the burden on the user’s smartphone battery. If it is determined that the user is staying

in a certain place for a long time, data is acquired at a relatively low frequency, and if it is deter-

mined that the user is moving, the data is acquired more frequently. The data has a sample rate

of approximately 2% of the population, and past studies suggest that this sample rate is enough to

grasp the macroscopic urban dynamics [160 ], [349 ]. Table 5.1 shows the statistics of the dataset

collected for two cities (Kumamoto and Okayama), which are the cities that we focus on in this

study. There are around 100,000 unique active users from both areas, and their location data were

analyzed to extract their home locations and staypoint locations using methods in Section 3.1.

Landuse Data

To validate whether the generated and translated place representations correctly reflect the

functionality of the places, we use the Urban Area Land Use Mesh Data2
 in the National Land

Numerical Information Database3
 provided by the Ministry of Infrastructure, Land, and Transport

1↑ https://about.yahoo.co.jp/info/en/company/ 

2↑ http://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L03-b-u.html 

3↑ http://nlftp.mlit.go.jp/ksj/ 
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Figure 5.2. The overview of the LSTM RNN decoder/autoencoder

and Tourism of Japan. The dataset divides all urban areas of the entire country into 100m×100m

grid cells, and assigns one category to each grid cell out of 17 options. The 17 options include

farmland, residential area, business district, parks, forests, factories, public facilities, water body,

open spaces, roads, railways, golf courses, etc. We aggregate these data into our spatial scale

(1000m×1000m), thus for each place, we have a 17 dimensional vector where each element shows

how many pixels of a specific land type exists in that place.

Model Hyperparameter Settings

To conduct the representation learning of places described in Section 3.2, we setup the model

and input data as follows (Figure 5.2 ). The model consists of the embedding layer, LSTM RNN

block, readout layer, and the output layer. While the main input of the model is a sequence of

staypoints representing a user’s movement, we added two supplementary values, which are the

timestamp of when the user had entered that place and the duration time of the stay, to incorporate

time-dependency of the users’ behavior. The embeddings of staypoints were set to 96-dimensional

vectors.
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The timestamp and stay duration were converted to 8-dimensional and 4-dimensional vectors

respectively, and the three vectors at each step were concatenated into a 108-dimensional vector.

The LSTM RNN block scanning over the embedding sequence consists of two layers of the size

128, and the hidden vectors of both layers were fed into the readout layer of the size 96, which were

then read by the output layer producing the probability distribution over staypoints for the next

place prediction. The parameter matrix of the staypoint embedding was reused as the output layer’s

matrix to reduce the total number of parameters and make the training data usage more efficient.

We applied dropout with the keep probability 0.7 to three points of the model: the embedding layer,

readout layer, and output layer. We continued the training for 20 epochs, evaluated performance

on the validation data at the end of each epoch, and used the embedding matrix of the best model

for subsequent processing.

Comparative Methods

We first assess the quality of place representations generated by MobLSTM and Joint-MobLSTM

in Section 5.1.3 . Then, after clarifying that the generated representations accurately embed the

functions of places in each city individually, we validate the performances of translation models

MobLSTM, Joint-MobLSTM, MobLSTM-Adv, and MobLSTM-P in Section 5.1.3 .

Evaluation Metrics

Two metrics are used to evaluate the performances of the translation methods. Given two sets

of places, we measure the average mutual norm distance and average mutual cosine similarity of

the place representations of those places.

Average Mutual Norm Distance (AMND). Given 2 place representations xi,xj ∈Rd , norm dis-

tance is defined as Norm-Dist(i, j) =
∥∥xi− xj

∥∥. The average mutual norm distance between sets of

places I and J is defined by the following:

snd(I,J) =
1

Z(I,J)∑
i∈I

∑
j∈J;j6=i

Norm-Dist(i, j) (5.2)
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where Z(I,J) is the number of unique combinations between the places in sets I and J.

Average Mutual Cosine Similarity (AMCS). Cosine similarity is a commonly used metric

to measure the similarity between 2 place representations xi,xj ∈ Rd , and is defined as:

cos-sim(i, j) = xi · xj∥∥xi
∥∥∥∥xj

∥∥ (5.3)

We use the average mutual cosine similarity to measure the similarity between representations of

two sets of places. Similar to the average mutual norm distance, average mutual cosine similarity

between sets of places I and J is defined by the following:

scs(I,J) =
1

Z(I,J)∑
i∈I

∑
j∈J;j 6=i

cos-sim(i, j) (5.4)

In both experiments (Sections 4.3.1 and 4.3.2), we show whether the results are statistically

significant by comparing the performance metrics to random pairs of places generated by the same

model. For example, to assess the quality of place representations of MobLSTM for business places

in Kumamoto in Section 4.3.1, we compare the AMND between representations of pairs of busi-

ness places in Kumamoto generated by MobLSTM, against the AMND between representations of

pairs of business places and randomly selected non-business places in Kumamoto generated by

MobLSTM. Similarly, for example, to validate the translation performance of MobLSTM-P for busi-

ness places in Section 4.3.2, we compare the AMND between representations of pairs of business

places in Kumamoto and Okayama translated by MobLSTM-P, against the AMND between repre-

sentations of pairs of business places in Kumamoto and randomly selected non-business places in

Okayama translated by MobLSTM-P. Similarity between random pairs are shown in Figures 5.3 and

5.4 as gray crosses (vertical line indicate error bars).

5.1.3 Results

Intra-city Validation of Place Representations

To validate whether the place representations were correctly generated (i.e. representations

of places with the same functionality are mapped closely), we measured the AMND and AMCS
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Figure 5.3. Intra-city validation results of business, shopping, residential and farm-
land areas in Kumamoto and Okayama with (A) AMND and (B) AMCS metrics.
For both models, generated representations of all landuse types showed statistically
significant intra-city similarity.

between places with the same landuse labels (business districts, shopping malls, residential ar-

eas, and farmland areas). We refer to this validation scheme as “intra-city validation”. Figure 5.3 

shows the validation results for both cities. Note that for norm distance (A), lower is better, and

for cosine similarity (B), higher is better. All error bars (vertical lines) show the standard devia-

tion of the results of 10 iterations. Results show that both models were able to generate accurate

representations, and embedded places with same landuse labels closer to eachother than randomly

selected pairs of places. MobLSTM and Joint-MobLSTM had comparable performances for gener-

ating place representations, however we see that MobLSTM had slightly better performances (lower

norm distances and higher cosine similarity) for many of the landuse types. This result agrees with

our intuition, because MobLSTM is able to allocate more dimensions in the parameter space to en-

code information related to places in their own city, whereas Joint-MobLSTM shares the parameter

space across different cities, having less dimensions to encode the representations for each city.
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Figure 5.4. Inter-city translation results from Kumamoto to Okayama of business,
shopping, residential and farmland areas with (A) AMND and (B) AMCS met-
rics. MobLSTM-P is able to translate place representations across Kumamoto and
Okayama for business, shopping, and residential areas, but not for farmland areas
where little human mobility patterns are observed.

Inter-city Translation of Place Representations

To quantitatively validate the performance of translating place representations across cities,

we measured the AMND and AMCS between places with same landuse types across different

cities (e.g. similarity between representations of places with shopping malls in Kumamoto and

representations of places with shopping malls in Okayama). We refer to this validation scheme

as “inter-city translation”. Figure 5.4 shows the translation accuracy of all tested methods. Out

of the four models, MobLSTM has had no translation operation, and in all landuse types the AMCS

performance is worse than random, which confirms the negative example illustrated in Figure 5.1 
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Figure 5.5. Qualitative analysis and inspection of the translated place representa-
tions across cities using MobLSTM-P. The three panels show that for both directions
(Kumamoto→ Okayama and vice-versa), places such as shopping malls, business
districts, and public parks were successfully translated so that places with similar
functions from different cities were mapped closely together in the common vector
space.
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does occur, and that a translation operation is indeed needed to compare place representations from

different cities.

The rest of the models compare the performances of different translation methods. For busi-

ness, shopping, and residential areas, the AMND seems to be lower than random for all methods,

which implies that all of these types of places are clustered together in the vector space, away

from the farmland areas. The AMCS metric allows us to measure more specific differences in

the place representations, by normalizing the vectors by their lengths. AMCS results show that

MobLSTM-P is able to translate representations of business, shopping and residential places suc-

cessfully (statistically significantly). Even though Joint-MobLSTM and MobLSTM-Adv approaches

are shown to succeed in language translation tasks, they fail to do so in place translation tasks. The

failure of Joint-MobLSTM implies that the model was complex enough to completely distinguish

places between Kumamoto and Okayama, and to embed them separately in the common vector

space, contrary to our intuition. For Joint-MobLSTM to perform better, further searching for the

appropriate model architecture may be effective, however is not cost effective considering the vast

model space. MobLSTM-Adv failing to align the two vector spaces indicates that the probability

distribution of the place representations of two cities are completely different, in contrary to word

vector spaces. Even with MobLSTM-P, representations of farmlands were not successfully trans-

lated across cities. This is because we are not using many farmland areas as anchor points in our

dictionary for solving the optimization problem (Section 3.3.2), due to the lack of observed human

mobility patterns in such areas. Overall, results in Figure 5.4 confirm that MobLSTM-P is success-

ful in translating representations of places visited by people (business, shopping, and residential)

across cities.

Qualitative Inspection of Translated Representations

In addition to the quantitative evaluation, we inspected whether the place representations trans-

lated by MobLSTM-P were actually mapped close to similar places in the target city. Figure 5.5 

shows successful cases where the place of the source city is mapped closely with similar locations

in the target city. In each of the three panels, the original place in the source city is shown in the

left black box (e.g. Shopping Mall “Aeon Mall Kurashiki” of Okayama), and the cosine-similarity
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Figure 5.6. Translation performance of shopping malls from Kumamoto to
Okayama using MobLSTM-P, using different number of anchor places for transla-
tion (x-axis), chosen by 2 different criteria (most frequently visited or random).

values between the representations of all places in the target city and the translated representation

of the original place is shown in color on the map. Red and blue colors show high and low sim-

ilarity, respectively. The color bar is adjusted so that only the places with top 5 percentile cosine

similarity are shown in red. For places with high similarity (red places), POIs within each place

are annotated on the map.

The left panel shows how a shopping mall in Okayama, when translated to the Kumamoto

vector space, becomes mapped close to major shopping malls in Kumamoto, including the central

shopping district, Aeon Mall Kumamoto, and several other shopping facilities. The two panels on

the right side show how translation of places in the opposite direction (Kumamoto→ Okayama)

also produced intuitive and accurate results. The top right panel shows that the business districts

of Kumamoto (the Kami-tori and Shimo-tori area), when translated to the Okayama vector space,

were similar to the two major city center districts (Okayama city center and Kurashiki city center),

implying that urban functionality can also be translated successfully, reinforcing our results in

Figure 5.4 . The bottom right panel shows an instance where even a major public park in Kumamoto

(“Suizenji-Ezuko Park”) was successfully translated so that it became mapped close to a major park

in Okayama (“Okayamaken Kurashiki Sports Park”). Although public parks were not included in

our quantitative evaluation, this result implies that MobLSTM-P can translate more specific places

of interest to other cities. Overall, Figure 5.5 shows promising results that MobLSTM-P successfully

maps similar places together onto the common vector space.
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Sensitivity to Number of Place Pairs

The MobLSTM-P model requires a synthetic dictionary (a dataset with pairs of places) used to

solve the optimization task. In the previous sections, we used N = 500 as the number of anchor

places (i.e. pairs of places used for the optimization task). Here we show a sensitivity analysis of

this parameter, by looking at the average mutual cosine similarity of shopping places in Kumamoto

and Okayama using MobLSTM-P with different values of N. We observe from Figure 5.6 that the

performance initially increases as we increase the number of pairs. However we see a plateau

in performance after N = 100, and a decrease after N = 500, implying that choosing too many

places as anchors adds too much irrelevant information for choosing the optimal rotation. Even

though our method beats random pairing (light green color) for all N values, this result indicates

that selecting the appropriate number of anchor places is important for the performance of our

method. Further investigation using data from more cities is needed to determine whether there is

a universal rule in determining the appropriate parameter value for N.

In this paper, we proposed and tested methods to translate place representations across cities.

Experimental results using real world mobility data from two cities in Japan clarified that we are

indeed able to translate representations of places across cities accurately using MobLSTM-P, which

finds the best rotational alignment between vector spaces using anchor places based on visit fre-

quencies through optimization. We clarified both quantitatively and qualitatively that places from

different cities with similar landuse types became mapped closely in the common vector space after

translation. Moreover, although the task of translating place representations across cities is analo-

gous to word translation across languages, we observed several differences in the problem setting

through failures of methods that were successful in the language translation domain, namely the

joint learning (Joint-MobLSTM) and adversarial learning (MobLSTM-Adv) approaches. In addi-

tion to evaluating the translation performances, we showcased a case study of an important urban

challenge that may be better approached using our inter-city translation method, which was to use

the representations of evacuation shelter locations from a disaster in the past to predict evacuation

shelters in a future disaster in another city.

Now, we discuss future research opportunities that this study enables. The first direction of re-

search is on improving the accuracy of the translation task. In this study, we tested several methods
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that extended the state of the art methods for unsupervised machine language translation developed

in the natural language processing field. However, we believe that we are able to improve the accu-

racy by further integrating characteristics specific to geographical locations, that are different from

words and sentences. For example, words have stronger interchangeability characteristics, since

words can often be interchanged with very little or even no cost at all (I have a cat↔ I have a dog).

However, that is much less likely in sequence of places and it is much rare to have two or more

places with exact interchangeability in the routines for human beings. Integrating insights from the

human behavioral sciences into building the representation learning and translation model would

be an interesting topic for future studies.

The second direction of research is to increase the diversity of cities for testing. Although the

finding that we are able to translate place representations across different cities (Kumamoto and

Okayama) was insightful and promising, we are motivated in further investigating whether this

method works between a more diverse set of cities, such as Tokyo, Japan and Indianapolis, USA,

where various aspects (e.g. social norms, peoples’ mobility patterns, city structures) are more

different than between Kumamoto and Okayama. Should the method fail in such diverse pairs of

cities, developing new models that consider exogenous contexts via fusion with other data sources

would be an important and interesting problem. We hope to utilize a larger mobility dataset to

investigate this topic in future studies.

We would also like to look into potential problems where we can apply this technique. Se-

lection of appropriate locations to open new stores has been a popular problem in urban planning

[340 ]. Testing whether translating successful/unsuccessful locations across cities could predict

success/failure of new stores, is of future research interest.

5.2 Overcoming City Size Imbalance via Hierarchical Anchoring

A recent study adopted unsupervised language translation methods into the urban computing

field to share knowledge and insights among different cities [350 ]. Several unsupervised neural

machine translation methods developed in the natural language processing field were tested to per-

form translation of places across cities. However, due to the rather straightforward adoption of the

translation methods, further validation showed that the translation method perform poorly across
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cities with different scales (e.g. Tokyo with 30M residents and Niigata with 0.8M). One possible

reason of this failure was the significant imbalance in the scales of the source and target domains,

since the scales of cities have much larger variance than that of vocabulary sizes across languages

[351 ]. This domain imbalance problem is a key issue that needs to be solved to translate place em-

beddings across cities (Figure 5.7 ). Solving this issue could also potentially benefit unsupervised

translation tasks in various fields of research in addition to languages and cities, where the source

and target domains could have significantly different scales.

Analysis of mobility patterns within cities around the globe using novel mobility datasets have

revealed various interesting properties of urban structures [352 ], including fractal properties [353 ],

scaling laws [330 ], and hierarchical organization [354 ]. In particular, a recent study revealed pos-

itive connections between the hierarchical properties of cities and key urban indicators including

higher use of public transport, higher levels of walkability, lower pollutant emissions per capita

and better health indicators [355 ].

In this study, we attempt to overcome the aforementioned domain imbalance problem that

exist in unsupervised translation tasks with an innovative method that utilizes the hierarchical

structures that are common across domains of different sizes. We demonstrate our approach and its

effectiveness through the example of unsupervised translation of place embeddings across cities

with varying scales. We propose a translation model that aligns the vector spaces of the source

and target domains using the hierarchical structure common across both domains. The model

performances are tested using real world mobility data collected from mobile phones in 6 cities of

varying scales in Japan, and are validated using landuse data. Results show that our methods are

able to accurately translate place embeddings across cities, especially under the domain imbalance

problem setting, where the urban scales are significantly different.

The key contributions of this section are as follows:

• To the best of our knowledge, this study is the first to address the domain imbalance prob-

lem in unsupervised embedding translation tasks, and to present a method to overcome the

problem.

• We propose a novel unsupervised translation method that leverages the common hierarchical

structures across domains to generate effective anchor points.
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Figure 5.7. Illustration of the domain imbalance problem setting, where our objec-
tive is to translate embeddings across domains with significant imbalance in vocab-
ulary sizes in an unsupervised manner.

• We verify that our method can successfully improve the unsupervised translation accuracy

of place embeddings across cities with varying sizes, using real world mobility data from 6

heterogeneous cities.

5.2.1 Methodology: Hierarchical Anchoring

Generating Place Embeddings from Human Mobility Trajectories

We first extract human mobility patterns in each city from the location data observed from mo-

bile phones. Each observation of the location data contains the user ID, timestamp, longitude and

latitude. More details of the mobile phone data that we use in this study are explained in Section

4.1.1. Our goal is to extract users’ sequences of staypoint locations from the observations. We

achieve this by setting two threshold parameters; one spatial threshold and one temporal threshold.

To cope with noisy location observations (e.g. spatial errors in GPS data), we perform mean shift

clustering to estimate the true location for each observation, as described in previous studies (e.g.

[226 ]). For each user, we read their location data in time order, and search for locations where the
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Figure 5.8. Universal hierarchical structure of cities used in our study.

user has stayed within the distance defined by the spatial threshold parameter for a duration longer

than the time defined by the temporal threshold parameter. We use 1000 meters as the spatial

threshold, and 30 minutes as the temporal threshold in this study. As a result, we are able to obtain

sequences of staypoint locations for each user, which will be used to generate place embeddings

using methods explained in the following section.

To obtain the embeddings of places in a city, we solve a self-supervised task in which an Long

Short-Term Memory (LSTM) RNN model is trained to predict the next staypoint of a user using

mobility data, which is analogous to language models which are trained to predict the next word in

a sentence. After training an LSTM RNN model using staypoint sequences of a city c, we extract

and stack the embedding layer’s parameters of the size nc×d, and define it as the matrix of place

embeddings Xc. We refer to this place embedding learning model as “IndivLSTM” in the following

sections. Specific model hyperparameter settings are explained in Section 4.2.1.

Analysis of Hierarchical Structure

One popular method of determining the hierarchical structures in cities is to iteratively apply

the Loubar method proposed in [352 ], which uses the Lorentz curve of the number of visits to
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each location [355 ]. The Lorentz curve, which is a standard notion in the economics domain, is

a cumulative distribution function of a distribution of datapoints. Given the average daily visit

count values for all places in a city, we first sort the datapoints by ascending order and denote them

as (n1 < · · · < ni < · · · < nNc), where nk is the daily visit count in the k-th popular place in city

c, and Nc is the total number of places in city c. The Lorentz curve is constructed by plotting the

proportion of the places F = i
Nc

on the horizontal axis and the cumulative proportion of the covered

visit counts L, which is calculated by the following equation. An example of the Lorentz curve is

shown in the Supplementary Material (Figure A1)

f (i) =
∑

i
j=1 nj

∑
Nc
j=1 nj

(5.5)

If the visit counts of all places were equal, the Lorentz curve would be a linear diagonal function.

The minimum threshold value of the first hierarchical level is computed by taking the intersec-

tion between the tangent of f (F) at point F = 1 (i.e. the maximum value of the Lorentz curve) and

the horizontal axis ( f (F) = 0). In Louail et al., [352 ], the computed minimum threshold value was

used to classify places in a city into “hotspots” and other places. Bassolas et al. [355 ] extended

this method in an iterative manner to find multiple minimum thresholds for different hierarchical

layers. After extracting the places in hierarchical level l, those places are excluded from the data

distribution, and the minimum threshold value is recalculated using the new distribution to extract

the places in hierarchical level l + 1. This procedure is iterated until all of the places in the city

are assigned to a hierarchical level. For a more detailed explanation on the methods of urban hier-

archical structure analysis, readers should refer to the Supplementary Material and Bassolas et al.

[355 ].

Figure 5.8 shows the estimated urban hierarchical structures in each city used in this study. The

first row shows the colored maps of each city, where the colors indicate the hierarchical level each

place belongs to (red: hierarchical level 1, blue: hierarchical level 11). The second row shows

the histogram of the number of places belonging to each of the hierarchical levels in each city.

The third row shows the total number of visits observed in the places belonging to each layer,

which is calculated as ∑j:l(j)=L nj for hierarchical level L where l(j) denotes the hierarchical level

of place j. While the second row highlights the different distributions of the number of places in
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Figure 5.9. Illustrative explanation of how the embeddings across the pair of cities
are aligned in different methods.

each hierarchy (i.e. Tokyo and Fukuoka are more shifted to the left with more high-level places

compared to Niigata), the distribution of the total number of visits in each hierarchical level are

strikingly similar across all cities, where the majority of the visits are concentrated in the first

couple of hierarchical levels in all cities. This common hierarchical characteristic across cities

motivates us to exploit the urban hierarchical structures. In the next section, we explain how we

take advantage of this common hierarchical structure in our method for translating embeddings

across imbalanced domains.

Translation via Hierarchical Anchoring

In previous studies in the natural language processing field, various methods have been pro-

posed to obtain the best rotation matrix R ∈Rd×d that maps 2 embedding matrices Xψ ,Xφ ∈Rd×N

in an unsupervised manner. A previous study on unsupervised translation of place embeddings

showed that a rank-based Procrustes alignment performed best out of the various methods [350 ].

Although this method was shown to be successful in cases where the source and target domains

were of similar scales, a straightforward application to domain imbalanced settings could be prob-

lematic (and we show in the experiments that this is indeed the case). To overcome the difficulty
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in translation of embeddings under domain size imbalance (e.g. cities with different sizes), we

propose a hierarchical alignment strategy to map the two domains. The main idea is to generate

anchoring points based on hierarchical levels.

To perform translation, we first create anchoring embedding matrices, which serve as reference

points to compute the optimal alignment operators. Figure 5.9 illustrates the different methods to

create anchoring embedding matrices across cities. The left panel shows the rank-based anchor-

ing method, which generates a one-to-one matching based on the sorted rank of places to generate

anchoring pairs to align the embeddings. The center panel shows the hierarchical stochastic

anchoring approach, where anchoring pairs of embeddings are selected within each hierarchical

level in a stochastic manner with a predefined probability p, and are stacked together to obtain the

anchoring embedding matrices for the two domains. The right panel shows the hierarchical batch

anchoring approach, which instead of randomly selecting the embedding pairs, the mean vectors

of the embeddings in each hierarchical level are computed and stacked to generate the anchoring

embedding matrices, which are used to find the best alignment operator.

To find the optimal alignment operator using the anchoring embedding matrices, we test the

Orthogonal Procrustes alignment and Affine alignment methods. Given the anchoring embedding

matrices X∗
φ

and X∗
φ

for cities φ and ψ , respectively, Orthogonal Procrustes alignment computes

the rotational matrix that optimizes the following equation:

R∗ = argmin
RT R=I

∥∥∥RX∗φ −X∗ψ
∥∥∥

F
(5.6)

where, R ∈ Rd×d is the optimal rotational matrix, and ‖·‖F is the Frobenius norm. Affine align-

ment introduces an extra transformation vector that increases the model complexity, and solves the

following problem:

A∗,b∗ = argmin
A,b

∥∥∥(AX∗φ +b)−X∗ψ
∥∥∥

F
(5.7)

where, A∗ ∈ Rd×d is the optimal rotational matrix and b∗ ∈ Rd is the optimal transformation vec-

tor. The optimization can be performed using standard solvers using least squares method. In

the experiments, we test the effectiveness of different combinations of anchor embedding matrix
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Table 5.2. Statistics showing the varying scales of the cities
Scale City # Users # Steps. # Places (Urban)

Large Tokyo 308,140 43,498,760 8020 (589)

Medium

Fukuoka 41,111 7,288,330 1636 (84)
Kyoto 29,920 4,867,294 1363 (30)
Hiroshima 21,868 3,876,699 1741 (25)
Kobe 17,172 2,704,310 676 (63)

Small Niigata 10,619 2,156,353 3312 (8)

generation methods (rank-based, hierarchical stochastic, and hierarchical batch), and alignment

methods (Orthogonal Procrustes and Affine alignment).

5.2.2 Experiment Settings

Mobile Phone Location Data

Yahoo Japan Corporation4
 collects location information of mobile phone app users in order to

send relevant notifications and information to the users. The users in this study have accepted to

provide their location information. The data are anonymized so that individuals cannot be speci-

fied, and personal information such as gender, age and occupation are unknown. Each GPS record

consists of a user’s unique ID (random character string), timestamp, longitude, and latitude. The

data acquisition frequency of GPS locations changes according to the movement speed of the user

to minimize the burden on the user’s smartphone battery. The data has a sample rate of approxi-

mately 2% of the population, and past studies suggest that this sample rate is enough to grasp the

macroscopic urban dynamics. Table 5.2 shows the statistics of the dataset collected for 6 cities that

we focus on in this study. We observe that the cities are significantly imbalanced in terms of the

number of mobile phone users, total step sizes, and the number of places classified as urban areas.

4↑ https://about.yahoo.co.jp/info/en/company/ 
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Land Use Data

To validate whether the translated place embeddings correctly capture the functionality of the

places, we use the Urban Area Land Use Mesh Data5
 in the National Land Numerical Informa-

tion Database6
 provided by the Ministry of Infrastructure, Land, and Transport and Tourism of

Japan. The dataset divides all urban areas of the country into 100m×100m grid cells, and assigns

one category to each grid cell out of 17 options. The 17 options include farmland, residential

area, business district, parks, forests, factories, public facilities, water body, open spaces, roads,

railways, golf courses, etc. Because the categories are very detailed, we categorize these landuse

categories into 7 label types: high-rise buildings, low-rise dense residential areas, low-rise sparse

residential areas, industrial areas, agricultural areas, public facilities and parks, and water bodies.

We aggregate these data into our spatial scale (500m×500m), and label each place with the landuse

label which has the majority number of pixels in that 500m×500m place.

Model Hyperparameters

To learn the place embeddings described in Section 3.1, we setup the model and input data

with the following procedure. The model consists of the embedding layer, LSTM RNN block,

readout layer, and the output layer. While the main input of the model is a sequence of staypoints

representing a user’s movement, we added two supplementary values, which are the timestamp

of when the user had entered that place and the duration time of the stay, to incorporate time-

dependency of the users’ behavior. The embeddings of staypoints were set to 64-dimensional

vectors. The timestamp and stay duration were converted to 8-dimensional and 4-dimensional

vectors respectively, and the three vectors at each step were concatenated into a 76-dimensional

vector. The LSTM RNN block scanning over the embedding sequence consists of two layers of

the size 128, and the hidden vectors of both layers were fed into the readout layer of the size 64,

which were then read by the output layer producing the probability distribution over staypoints

for the next place prediction. The parameter matrix of the staypoint embedding was reused as the

output layer’s matrix to reduce the total number of parameters and make the training data usage

5↑ http://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L03-b-u.html 

6↑ http://nlftp.mlit.go.jp/ksj/ 
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more efficient. We applied dropout with the keep probability 0.8 to three points of the model:

the embedding layer, readout layer, and output layer. We continued the training for 20 epochs,

evaluated performance on the validation data at the end of each epoch, and used the embedding

matrix of the best model for subsequent processing.

Comparative Methods

We compare the translation performances of the methods described in Section 3.3, as well as a

state-of-the-art method used in language translation tasks. The combinations of the anchor embed-

dings matrix generation and alignment methods are as follows: rank based + Procrustes (RP), rank

based + Affine (RA), hierarchical stochastic anchoring + Procrustes (HSP), hierarchical stochastic

anchoring + Affine (HSA), hierarchical batch anchoring + Procrustes (HBP), and hierarchical batch

anchoring + Affine (HBA). For the stochastic anchoring methods, results using p = 0.5 are reported

since this probability had the best performance out of all 0.1 incremental values of p. In addition,

we test JointLSTM, which applies the IndivLSTM model to all of the 6 cities together on the self-

supervised next staypoint prediction task. We merge the mobility datasets of the cities into one

and train the model over the merged data to obtain the place embeddings of all cities. To allow the

model to treat places of the two cities as equally as possible, we mask the candidates of ψ at the

output when the next staypoint belongs to φ and vice versa, releasing the model from the burden of

distinguishing between two cities. The rationale behind this approach is that, places with similar

functions will be visited in a similar manner (e.g. time of day, day of week, after and before certain

places) regardless of the city, and that the mobility patterns of people are common across different

cities. A previous study shows that this approach is effective in translating word embeddings of

one language to another in an unsupervised manner [345 ].

Evaluation Metrics

To evaluate the performance of the translation methods, we test the prediction accuracy of

landuse classification using the translated place embeddings. Embeddings and landuse labels from

the source city are used as training data, and the embeddings and landuse data from the target city

are used as test data. We denote the place embeddings of the source (φ ) and target (ψ) cities as
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Table 5.3. Quality of generated place embeddings measured by land use classification accuracy.

Method
Cities

Tokyo Fukuoka Kyoto Hiroshima Kobe Niigata

IndivLSTM 0.691 0.809 0.794 0.827 0.675 0.748
JointLSTM 0.679 0.780 0.724 0.710 0.639 0.735

Random 0.341 0.383 0.353 0.437 0.315 0.507

Xφ and Xψ . Similarly, we denote the landuse labels of each place in the source and target cities

as yφ and yψ . We also denote the translated place embeddings of city φ as f (Xφ ) := X̃φ using

the translation function f (·). We first train the landuse label classifier using the labels (yφ ) and

translated place embeddings from the source city (X̃φ ). Then, we test the predictive accuracy of

landuse labels (yψ ) using the trained classifier and the place embeddings from the target city (Xψ ).

If the embeddings are perfectly translated and mapped into the target city, the classifier would

be able to classify the landuse labels using the test data similarly as the training data. We use

logistic regression as the classifier, and since the problem is a multi-class classification task, we

use accuracy and F1-score as the evaluation metrics. The default hyper-parameter of the logistic

regression model was set to C = 1, but we clarify that the ranking of the performances of the

various translation methods do not depend on the choice of the classifier or the hyper-parameter.

5.2.3 Results of Domain Imbalance Urban Translation

Quality of Generated Place Embeddings

Before performing any translation task, we check that the place embeddings produced by the

two LSTM models described in Section 3.1 are of high quality. Table 5.3 shows the land use

classification accuracy using the produced place embeddings in each city. As previously explained,

logistic regression was used to classify the land use labels using only the place embeddings as

features. Training and test data were randomly shuffled and split into 80% and 20% of the data,

and the reported accuracy results are the mean values of 10 trials. Details of the experiment settings

are noted in Section 2.6 of the Supplementary Material. We observe that for all cities, despite some

differences across cities, both the place embeddings generated by IndivLSTM and JointLSTM are
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Figure 5.10. Translation performance of methods, measured by mean accuracy (A-
C) and mean F1-score (D-F) of landuse prediction. (A) and (D) show results across
all city pairs. (B) and (E) show results of translation when source or target city is
either Tokyo or Niigata. (C) and (F) show performances when source and target
cities are both medium sized.

able to encode landuse information well, as previously shown by various studies (e.g. [338 ]). The

results also show that the quality of place embeddings drop using the JointLSTM model compared

to the IndivLSTM model, since the JointLSTM model shares model parameters across all cities.

We note that the unsupervised translation methods are agnostic of the place embedding generation

methods. In the unsupervised translation experiments, we use the place embeddings produced by

these LSTM-based models.

Translation Accuracy

In this study, we quantitatively evaluate the translation accuracy of each method using the pre-

dictive performance of the landuse labels, which is a multi-class classification task. Figure 5.10 

shows the translation performances of the proposed method (red) and the comparative methods
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Figure 5.11. Mean pairwise translation accuracy across all source and target cities
with different scales. Left: Accuracy using the JointLSTM method. Center: Ac-
curacy using rank-based anchoring and Procrustes alignment method [350 ]. Right:
Accuracy using hierarchical batch anchoring Affine alignment method (Proposed
method).

(Table 5.2 ). In all panels, the horizontal dashed gray line shows the accuracy when we use ran-

domized labels. The left column presents the performances using accuracy, and the right column

uses the weighted F1-score. The top row shows the mean performance metrics of place embedding

translation across all city pairs, whereas the panels in the center row and the bottom row show the

performances when Tokyo or Niigata (large or small cities) are either or both the source or the

target city, and when both the source and target cities are medium sized cities (Fukuoka, Kyoto,

Hiroshima, or Kobe), respectively. Most importantly, we observe that our proposed translation

method that performs Affine alignment using hierarchical batch anchoring (“HBA”) performs best

in all of the cases. Using the hierarchical structures for anchoring performs better than using rank

based anchoring (“RP” and “RA”) in all of its variants (“HBP”, “HSP” and “HSA”). The joint

learning approach (“Joint”) performs better than the random baseline in most cases, however its

performances are limited compared to the hierarchical approaches. The rank-based Procrustes ap-

proach (“RP”), which was shown to perform well in a previous study across cities with similar

sizes [350 ], performs well across medium source and target city pairs in this study as well (panels

C and F), however is inferior to the hierarchical anchoring approaches under domain imbalance.

To obtain a more detailed understanding of the translation accuracy across the cities with differ-

ent scales, we plot the pairwise translation performances of the three main methods (JointLSTM,

rank-based anchoring + Procrustes alignment, and hierarhical-batch anchoring + Affine) in Figure

5.11 . The matrices show the predictive F1-scores from the source city (vertical axis) to the target
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city (horizontal axis), where warmer colors (red, orange) show higher predictive performances.

The diagonal elements are colored white because there are no translation operations involved in

predicting landuse labels of the same city. The matrices are divided into sections with black border

lines, showing the boundaries between large, medium, and small cities. We can immediately ob-

serve a significant difference in predicting the target landuse labels in Tokyo (large city), where the

RP (Rank-based Orthogonal Procrustes) method performs particularly poorly. Translation from

medium cities to Niigata (small city) works better using our proposed method compared to the two

other methods. One exception was the predictive accuracy from Tokyo to Niigata, where the RP

method performed better compared to the hierarchical batch anchored Affine mapping. This phe-

nomenon can be explained by looking at the sensitivity analysis conducted in the next subsection,

where we point out the effects of selecting which hierarchical layers to use for translation on the

performances.

Which Hierarchical Levels should we use?

So far, we have clarified the effectiveness of our unsupervised translation approach that uses

hierarchical anchoring. Here, we further conduct sensitivity analysis on the number of hierarchical

layers used in our translation method. Figure 5.12 A shows the relationship between the number of

hierarchy levels used and the prediction accuracy in landuse classification task using HBA method

for each source-target city pair. The red, blue, black, and green plots show the translation tasks

with Tokyo as the source (“From Tokyo”), Tokyo as the target (“To Tokyo”), from Tokyo to Ni-

igata, and tasks with other cities as source and target, respectively. We observe intuitive trends in

translation across the source-target groups. The increasing trend in the red plots (Tokyo as source

city) indicate that increasing the number of hierarchical levels and including more rural areas in-

creases the translation accuracy to cities smaller than itself, whereas the decreasing trend in the

blue plots (Tokyo as target city) indicate that increasing the number of hierarchical levels and in-

cluding information from more rural areas in the more rural source city decreases the translation

accuracy. In contrast to these dependencies of translation accuracy from and to Tokyo on the num-

ber of hierarchical levels, the translation accuracy stays consistent with respect to the number of

hierarchical levels across source and target cities of similar scales.
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Figure 5.12. Sensitivity of translation accuracy with respect to the hierarchical
levels used for translation using HBA. (A) Using hierarchical levels from the highest
level L = 1 to Llower. (B) Using hierarchical levels starting from Lupper to the lowest
level L = 11. Llower = 11 in panel A and Lupper = 1 in panel B correspond to the
same case, where all hierarchical levels from L = 1 to L = 11 are used.

Figure 5.12 B shows the inverse setting of Figure 5.12 A, where we select only a subset of the

lower hierarchical layers for translation. We observe that once again, the translation accuracy stays

consistent with respect to the number of hierarchical levels across medium source and target cities.

However, we observe that when using Tokyo as the source, the accuracy increases when we limit

the hierarchical layers to lower layers (e.g. L = 8,9,10). In fact, although we observed a low

translation accuracy for Tokyo→ Niigata in Figure 5.11 , we clarify that this was because we used

the upper-level hierarchical information from Tokyo which was less relevant to Niigata. When we

use Tokyo as the target, the translation accuracy drops as we throw away upper-level hierarchical

information from the medium and smaller sized cities.
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Figure 5.13. Case study showing the results of translating Tsukiji Fish Market
(Tokyo) to Hiroshima, Kyoto, and Niigata via hierarchical batch anchoring and
Affine alignment. We were able to translate the fish market in Tokyo into large
scale shopping malls and local markets across cities of different scales.

Case Study: Translating Tsukiji Fish Market

Finally, we qualitatively assess the translation performance through a case study of translating

a point-of-interest (POI). Figure 5.13 shows the translation results of “Tsukiji Fish Market” from

Tokyo to Hiroshima, Kyoto, and Niigata. Tsukiji Fish Market7  , one of the largest fish markets in

Tokyo, is a very popular tourist spot for visitors and also for local residents. Each of the panels

in Figure 5.13 show the similarity of each place to the translated Tsukiji Fish Market embedding

x̃T sukiji. Given the norm distance of place i, denoted as d(xi) =
∥∥xi− x̃T sukiji

∥∥
2, the similarity is

computed by normalizing the norm distances with respect to all the places in the city. Normalized

similarity is computed as S(i) = maxd(xi)−d(xi)
maxd(xi)−mind(xi)

. Places colored in bold red color indicate high

proximity close to S(i) = 1 with minimum norm distance, and the POIs inside those places are

annotated in the maps. We can observe that for all the cities, we are able to detect large scale

shopping malls (e.g. Aeon Malls in all cities) and even the Nishiki market8  in Kyoto and Niigata

Fish Market, which are popular markets for purchasing local products, via translation of places.

7↑ https://en.wikipedia.org/wiki/Tsukiji fish market 

8↑ https://en.wikipedia.org/wiki/Nishiki Market 
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Discussions

In this study, we proposed a novel unsupervised translation method that exploits the hierarchi-

cal structure that exist across different domains to enable translation of embeddings across domains

of imbalanced sizes. The effectiveness of our method was shown through experiments using real

data collected from 6 Japanese cities with varying sizes. It was interesting to observe that hier-

archical batch anchoring worked better than hierarchical stochastic anchoring in all experiment

settings. This implies that the hierarchical anchoring works best with fewer but less noisy anchor

points. Although the joint learning method is considered to be one of the state-of-the-art methods

in unsupervised translation tasks in the language domain, our analysis showed that the method

using hierarchical structures worked better under domain imbalance settings. The key assumption

of the joint learning method is that the mobility patterns (or sentences in the language domain)

have similar structures across different cities. However, as we can see from Table 5.2 , the average

length of staypoints per user differed significantly across cities of different sizes (e.g. Tokyo: 141

steps/user, Niigata: 203 steps/user), indicating that such assumptions do not hold in cities.

In addition to the improvement in landuse label prediction tasks using the translated place em-

beddings, further analysis on using different combinations of hierarchical levels for translation in

Section 5.2.3 provided interesting insights and possible reasoning on the translation performances

of the proposed method. Figure 5.12 shows the strong dependence of translation accuracy on the

hierarchical layers we use for translation. In general, it was found that when translating from a

large city (e.g. Tokyo) to smaller cities, using the full set of hierarchical levels is optimal. In the

extreme domain imbalance case (from Tokyo to Niigata), it was found that limiting information to

only the bottom 2 hierarchical levels produced best translation accuracy. On the other hand, when

we translate from smaller cities to larger cities, using information from only the higher hierarchical

levels was often sufficient and better than using information from all of the layers in the smaller

cities. Although these findings match our intuition, further investigation needs to be done in find-

ing rules and methods in choosing the optimal ranges of hierarchical levels that we should use for

translation, given the sizes of the source and target domains.

We believe this study leads to many research questions worthy of investigation. Representation

(or embedding) learning has become a large branch of machine learning in recent years [356 ],
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and its techniques have been applied to various data types, including graphs [357 ] and images

[358 ]. A natural extension of this study would be to apply our method to unsupervised translation

tasks using embeddings generated from other types of data, such as language translation where

vocabulary sizes significant vary across the languages. Since hierarchical structure analysis is

agnostic to data, it can be easily extended to other problem settings. For example in the language

setting, vocabulary can be grouped into hierarchical levels based on their appearance frequencies.

Applying the translated place embeddings to solve various downstream urban problems would be

another broad research direction. For example, selection of appropriate locations to open new

stores has been a popular problem in urban computing [340 ]. Applying the translation results of

place embeddings, such as the example shown in Figure 5.13 on the Tsukiji Fish Market, may

assist planning of new store locations.

Despite the rising interest in unsupervised translation tasks, how to overcome the domain im-

balance problem has been understudied. Using place embeddings and cities as an example problem

setting, we propose and test a novel unsupervised translation method that exploits the hierarchical

structures that are common across different domains despite scale differences. Experiments using

data collected from 6 Japanese cities of different sizes clarified that our hierarchical anchoring

approach improves the translation performance compared to previously proposed methods. Our

method is agnostic to the type of input data, thus could be applied to unsupervised translation tasks

in various fields in addition to linguistics and urban computing.

The next step is to utilize the methods developed in this chapter for disaster resilience applica-

tions, such as evacuation and return movement prediction tasks. An experimental setup would be

to train an evacuation destination model using place embedding and human mobility data from one

city, translate the embeddings to the target city and simulate/test the evacuees’ destinations using

the trained model and translated place embeddings. Several experiments need to be conducted to

validate the effectiveness of the framework. For example, a thorough investigation is needed to un-

ravel the types of region pairs that the inter-city translation of places are successful, and when they

fail, to effectively operationalize this technique. Secondly, how to combine the translated place

embeddings with variables that cannot be captured using POI information, such as government

capacity and decision making during disaster response, and effects of social network influence and

social norms that are crucial for evacuation decision making. A natural methodological next step of
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this work would be to develop a model that can translate human mobility trajectories (not places)

across cities, similar to document translation methods in NLP, such as Seq2Seq models.
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6. KNOWLEDGE SYNTHESIS

With rapid urbanization progressing in cities around the world and climate change increasing the

intensity and frequency of natural hazards, improving the resilience of urban systems has never

been more important, as emphasized in Section 1.1. In the meanwhile, novel, high-frequency,

high-granular, and large-scale datasets, which were comprehensively summarized in Section 1.2,

have become more and more available for academic and research activities. In this dissertation, I

synthesized the vast body of work and my novel scientific contributions that utilize such big data for

disaster recovery and urban resilience, from four interconnected aspects – recovery trajectories of

communities after disasters (Chapter 2), socio-economic inequality that exist in recovery among

communities (Chapter 3), understanding the interdependencies between socio-physical systems

among communities and how they govern the recovery trajectories (Chapter 4), and methods for

inter-regional transfer of insights (Chapter 5). Here, I will synthesize the knowledge obtained from

Chapters 2-5 to present a holistic understanding of urban disaster resilience, and then proceed to

show 2 key steps that are currently needed to translate the technical contributions to real-world

impacts on improving the resilience of cities.

6.1 Summary of Contributions on Urban Resilience Research

In this dissertation, we started off in Chapter 2 by investigating whether generalizable pat-

terns exist in disaster recovery trajectories across different regions and disaster events, similar to

how universal patterns were found in typical human behavior [124 ]. Using large-scale mobility

datasets collected from over 1 million mobile phone users across five major disaster events that

occurred in the US and Japan, we discovered that population displacement and recovery follow a

universal exponential pattern, irrespective of the type of disaster or the region that they occur in.

Further investigation explained this exponential pattern through the positive relationships between

displacement distance and time until return. While universal patterns were observed on the macro-

scopic scale, substantial heterogeneity was also observed across communities, even with similar

levels of disaster damage. The heterogeneity was explained by a set of factors including social and

physical networks, and guided us to look more deeper into intra-regional inequalities in recovery.

Chapter 3 was dedicated to quantifying the intra-regional inequality in recovery among households
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and business firms, using a causal inference framework. Data from Hurricane Irma in Florida and

Hurricane Maria in Puerto Rico revealed significant inequality in both post-disaster evacuation

mobility with respect to household income, and economic recovery of business firms with respect

to the located regions and business category. Taken together, such data-driven insights in recovery

patterns (both universality and heterogeneity/inequality) can be used to develop policy decisions

for achieving a better, quicker, and inclusive recovery after disasters.

The vast literature on the complexity of cities and the insights on the importance of social

and physical networks on disaster recovery obtained in Chapter 2 motivated us to investigate the

interdependencies between social and physical systems during disaster recovery. We proposed a

data-driven dynamical systems modeling approach, where large-scale observations of social and

physical recovery were used to calibrate a dynamical model of coupled systems. Using Puerto Rico

as a case study, it was revealed that indeed, social and physical systems are interdependent during

the disaster recovery phase, and the degree of such interdependencies varied across regions. More

specifically, we discovered the trade-off relationship between infrastructure recovery efficiency and

socio-economic self-reliance, and that as cities grow in scale, infrastructure efficiency improves but

results in loss of self-reliance, which erode the resilience of communities. This lays a scientific

foundation to further investigate the interdependencies between social and physical systems in

cities, and how to improve resilience of the overall urban system. The future research questions

that this study motivates us to pursue are discussed in Section 6.4. Finally, we propose an artificial

intelligence approach to transfer the data-driven knowledge obtained in Chapters 2, 3, and 4 across

different cities. We showed that by applying techniques from the unsupervised machine translation

literature in natural language processing field and tailoring it for the urban settings, we are able to

identify places with similar functionality across different cities by just using large-scale mobility

data, with no prior knowledge. This final chapter opens up several interesting avenues of research

on the inter-city learning of disaster recovery dynamics to prepare for unprecedented disasters (also

known as “black swan events”), or under scenarios where data are sparse, such as in developing

countries and rural regions.

In summary, this dissertation discussed computational approaches to understanding urban re-

silience from various perspectives. Given these theoretical, empirical, and methodological ad-

vances, now I will indicate two future steps that the urban resilience research community needs
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to follow to further maximize the impacts on policy making for building resilient and inclusive

communities.

6.2 From “Data-Driven Modeling” to “Data-Driven Dynamical Systems Modeling”

Data-Driven Modeling

Throughout chapters 2 and 3, I have summarized various efforts that utilize or develop applied

statistical models to unravel correlations between variables and outcomes in large-scale datasets.

Examples of this practice, which I refer to as “Data-Driven Modeling”, include long short term

(LSTM) memory neural networks to predict evacuation mobility using web search text as input

(Section 2.3), generalized linear regression to understand factors that contribute to communities’

quicker population recovery after disasters (Section 3.1), and Bayesian structural time series mod-

els to predict the non-disaster trends of foot traffic to businesses (Section 4.2). Despite the stark

differences in the complexity of the models (i.e., number of model parameters, non-linearity of

model structure), the common denominator of these models are that they exploit correlations be-

tween features and the objective variable(s). With models with simple structures (e.g., linear mod-

els), we are able to obtain coefficients, or some form of weight, that quantifies the contributions of

each variable, which can provide interpretability of the model to some extent. However, one key

criticism of these data-driven models is the lack of understanding in the (often dynamical) genera-

tive processes of the observed phenomena. This is especially an issue in our problem context, since

disaster recovery is a dynamic process, which is affected by various other dynamic factors (e.g.,

interdependencies with physical infrastructure recovery, social and physical network effects) over

the time horizon. In order to develop effective policies and apply them in the right timing, we need

a structured and interpretable understanding of the disaster recovery process. Therefore, although

data-driven modeling could provide useful insights in monitoring and quantifying the states of

systems, the field needs to move beyond “Data-Driven Modeling”, towards a more physics-based

“Systems Modeling” approach, powered by the available big data sources.
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Systems Modeling

To address the limitations of the “Data Driven Modeling” approaches, in Chapter 5 of this

dissertation, I present a synthesis of an alternative approach that uses physics-based dynamical

modeling techniques, which I refer to as “Systems Modeling”. Systems modeling aims to capture

complex feedbacks, cascading effects, and interdependencies across various heterogeneous com-

ponents that constitute the system through mathematical and computational tools (cite). Often,

the complex (and non-linear) interactions between components result in outcomes that cannot be

derived from summation of individual behavior, such as critical transitions, tipping points, and

bifurcations [62 ]. Examples of such phenomena include critical transitions in ecological systems

such as shallow lakes exposed to accumulation of phosphorus and organic matter [359 ], shifts in

climate scenarios [66 ], and percolation in social systems [360 ]. Systems modeling approaches can

be implemented in various granularity of detail, ranging from a parsimonious model composed by

a set of differential equations (DE), to high fidelity agent based model simulations (ABM), both

with complementing pros and cons. The biggest advantage of a DE approach is that it allows re-

searchers to obtain an understanding of the essential processes that govern the system, laying a

scientific foundation for more detailed investigation. Moreover, DEs enable analytical tractability

on the stability of the system, identification of equilibrium points, and significant interpretability of

the model parameters. However, they are often limited to an aggregated understanding of the sys-

tem due to its parsimonious nature, and lacks the ability to deliver specific policy recommendations

in the context of disaster recovery and resilience. Chapter 5 shows examples of such parsimonious

modeling approaches, using differential equations to capture socio-physical interdependencies. On

the other hand, ABMs enable a more detailed, often spatially explicit understanding of the dynamic

process, with the cost of analytical tractability and parsimony. ABMs are often more suitable for

evaluating the effects of concrete policies on disaster recovery outcomes.

Data-Driven Systems Modeling

Compared with “Data-Driven Modeling” approaches, “Systems Modeling” has three main ad-

vantages. Systems modeling enables 1) better understanding and transparency of the underlying

process that generates the observed data; 2) simulation of non-linear (e.g., feedbacks, cascades, in-
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Figure 6.1. Illustration of differences between the Data-driven modeling, dynamical
systems modeling, and data-driven dynamical systems modeling (D3S) approaches.

terdependencies) effects outside observed domain in data; and 3) counterfactual scenario analyses

using various input parameters and synthetic data. Such characteristics are essential for informing

policy decision making, since accountability and interpretability of the models are critical for the

decision making process, and evaluating counterfactual scenarios is also essential for running cost-

benefit analysis between multiple policy levers. To leverage the advantages of systems modeling

approaches and also the availability of novel datasets, a “Data-driven Systems Modeling” approach

is proposed and tested in this dissertation. The coupled urban socio-physical dynamics model pre-

sented in Section 5.1 demonstrates an example of the Data-driven Systems Modeling approach.

The study presents a parsimonious model that characterizes the interdependencies between social

and physical systems in urban systems, and calibrates the model parameters using a Markov Chain

Monte Carlo approach. As a result, the model was able to: 1) unravel the interdependent and

non-linear dynamics between social and physical systems during disaster recovery, 2) quantify the

intra-regional variability in socio-physical coupling and recovery inequality, and 3) evaluate the
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resilience of urban systems to hypothetical recursive shocks under various socio-physical coupling

parameter settings.

While the presented model was designed to be parsimonious, there are countless directions in

which the systems model can be extended, to account for more detailed urban characteristics. For

example, we may account for interdependencies with different urban systems, including cyber sys-

tems that consider various wireless sensor networks and power grids that connect households and

vehicles during disaster recovery (“cyber-social-physical systems”). Social and physical systems,

which were regionally aggregated components in the presented study, may be more disaggregated

to account for heterogeneity within the systems. Social systems can be decomposed into various

entities, including household networks, public agency networks, and non-profit organization net-

works, which in aggregate characterize the social capital of the communities [57 ]. Physical systems

can also be disaggregated into various types of networks, including road networks, power grids,

water and sewage pipelines, and natural resources such as rivers. Such physical systems could be

interconnected through various types of interdependencies, including physical, cyber, geographic,

and logical interdependencies [100 ]. As I will discuss in Section 6.2, such detailed systems mod-

els could be useful in identifying effective and concrete policies to improve the resilience of the

entire system. Such disaggregation of the system models come in hand with new challenges, in-

cluding the need to overcome the lack of data for model calibration. Such new research challenges

that arise due to model disaggregation, and recent new ideas to overcome such challenges, will be

further discussed in the following Sections.

6.3 Linking “Data-Driven Systems Modeling” and “Management”

Given the enormous size of economic damage inflicted by natural hazards on communities

(more than US$ 2 trillion over the past 20 years globally), federal and local government agencies

are the major source of funding for disaster response, recovery, and resilience (cite). Therefore,

naturally one of the primary goals of developed models of disaster recovery and resilience becomes

informing decision making agencies on most effective policies for improving resilience. However,

practices of using novel high-frequency datasets (e.g., mobile phone location data) for public policy

decision making is still in its infancy.
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6.3.1 Opportunities

Increasing Availability of Data Products

As reviewed in Chapter 1, many studies have already utilized the various kinds of mobile phone

location data for disaster management. However, these were often enabled by direct partnerships

or collaborations between researchers and private companies who own the data, making the data

extremely difficult to access for researchers outside the agreement. Due to the increased attention

and interest on mobile phone location data during the COVID-19 pandemic, there has been several

notable efforts where mobile phone location data, in their anonymized forms, are being made

openly available for the public use. For example, the PlaceKey community (https://www.placekey.

io/ ) have contributed to this effort by providing a semi-open platform where researchers can freely

access aggregated mobile phone location data for analysis. The data are spatially and temporally

aggregated to point-of-interests, and also made sure that a substantial small number of visit counts

are masked, so that the individual users are unidentifiable. There are cases where researchers have

led the efforts in anonymizing the data and making the mobility data open source. The team of

researchers from The Robert Koch Institute and Humboldt University of Berlin have developed a

dataset which contains mobility data collected from mobile phones in Germany during the first half

of 2020 (January-July), and mobility data from March 2019, which can be used to study changes

in mobility during the COVID-19 pandemic in 2020 (https://www.covid-19-mobility.org/ ).

In addition to these efforts, various organizations including major tech firms have made sig-

nificant contributions in publishing aggregate statistics of mobility (e.g., social distancing, travel

distance) during the COVID-19 for various regions around the world. The Google COVID-19

Community Mobility Reports, which contained the time series data of travelled distance in various

cities around the world, was used by practitioners to monitor the effects of non-pharmaceutical

policies on mobility restrictions [361 ]. A similar report on mobility patterns was also issued by

Apple [362 ]. Camber Systems developed the county-level social distancing tracker based on ag-

gregated and anonymous location data to understand how populations are engaging in social dis-

tancing over time (https://covid19.cambersystems.com/ ). The COVID-19 Mobility Data Network

(CMDN) is a network of infectious disease epidemiologists at universities working with technol-

ogy companies to use aggregated mobility data to support the COVID-19 response. The CMDN
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developed the Facebook Data for Good Mobility Dashboard, which visualizes the aggregate mo-

bility trends, computed from Facebook mobility data, at the regional levels for various countries

around the world (https://visualization.covid19mobility.org/ ).

Data for Development

With the availability of various types of novel datasets including social media data, mobile

phone location data (call detail records, GPS), web search query data, and satellite imagery data,

there has been significant efforts to utilize big data analytics for tackling challenges in develop-

ment [363 ]. Several open data challenges have been initiated by collaborations between academia

and industry data providers, such as the Data4Development Challenge held by Orange, which pro-

vided mobile phone data from Ivory Coast for analysis [364 ]. Large tech firms, including Google,

Facebook, Apple, and Microsoft, have all boosted their efforts in utilizing the enormous amount of

collected data for development and disaster management. Google.org, the is the charitable arm of

Google, has committed roughly US$100 million in investments and grants to nonprofits annually to

tackle various issues including disaster response, improving accessibility to education, and more

recently, recovering from COVID-19 impacts (https://www.google.org/ ). International agencies

have also accelerated their engagement in utilizing such big data sources for development projects.

The World Bank has initiated the Development Data Partnership (https://datapartnership.org/ ),

which is a partnership between international organizations and companies, created to facilitate

the use of third-party data in research and international development. The Partnership includes

more than 20 private companies, including location intelligence companies such as Google, Cue-

biq, Safegraph, and CARTO, and social media companies including Twitter and Facebook. To

assist the utilization of these datasets, recently, the Global Facility for Disaster Reduction and Re-

covery (GFDRR) - a partnership hosted within the World Bank - has undertaken efforts on using

GPS location data collected from smartphones to analyze post-disaster population displacement for

disaster relief and urban planning policy making. GFDRR has published working papers and pub-

lications on several case studies using smartphone location data accessed through the Development

Data Partnership initiative, including the population displacement patterns and income inequality
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Figure 6.2. Pre-disaster density maps (∼ 2017/9/16) of estimated home locations,
office locations, and difference in density. Hotspots during the day and night are
visualized in Mexico City and peripheral regions [157 ]

in Mexico City after the Puebla Earthquake [157 ] and socioeconomic gaps in mobility reduction

during the COVID-19 pandemic in Colombia, Mexico, and Indonesia [365 ].

Open Source Toolkits for Mobility Analytics

To assist policy makers and non-data experts to leverage the increasing availability of mobile

phone location datasets, there has also been several efforts to develop open source toolkits for

mobility data analytics. scikit-mobility is a Python-based library that enables various opera-

tions and analyses on large-scale mobility data [366 ]. Compared to previous Python based mo-

bility analysis libraries such as Bandicoot [367 ] and movingpandas [368 ], scikit-mobility

is most comprehensive, containing functions for pre-processing, stop detection, computation of

mobility metrics (e.g., displacements, characteristic distance, origin-destination matrix), trajectory

synthesis, visualizations, and privacy risk quantification. There exists several libraries to conduct

trajectory analysis in the R ecosystem, however, none of the libraries are optimized for human

mobility data, thus lacks functions for generating synthetic trajectories and producing advanced

visualizations (for a review, see [369 ]). OSMnx is a powerful library for acquiring, constructing,

analyzing, and visualizing complex street networks from OpenStreetMap [370 ]. In combination

with human mobility data, OSMnx enables users to perform various spatial analysis including route

estimation and point-of-interest visit estimation. More recently, the GFDRR developed an open-

source location data analytics toolkit in Python, MobilKit, in collaboration with Purdue University
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Figure 6.3. Flowchart of the disaster mobility analytics toolkit that we developed
in collaboration with The World bank [371 ].

and MindEarth (a non-profit based in Switzerland; https://www.mindearth.org/ ), which extends

the functions in scikit-mobility to conduct post-disaster mobility analysis (https://github.com/

GFDRR/mobilkit ) [371 ]. To enable non-experts to use the softwares, the codes are optimized using

Dask [372 ] for parallel computing, so that analysis on massive mobility datasets can be conducted

under constrained resources, on local laptop or desktop computers. Figure 6.3 shows the flowchart

of the disaster mobility analytics toolkit that we developed. Using the toolkit, we analyzed data

collected from the Puebla Earthquake in Mexico, and revealed income inequality effects in dis-

placement patterns, as well as differences in urban catchment patterns of various points-of-interest

[157 ]. Figure 6.2 shows the pre-earthquake home locations, office locations, and difference in den-

sity estimated from mobile phone location data. Hotspots during the day and night are visualized

in Mexico City and peripheral regions.

6.3.2 Challenges in Linking Data, Systems Modeling, and Policy

Despite such efforts, we still lack strong pipelines connecting data-driven modeling, data-

driven systems modeling, and policy evaluation and analysis. While there needs to be further
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collaboration between academics and practitioners to establish such information pipelines, there

are specific challenges that need to be addressed.

Understanding the Data Generative Process

One of the key drawbacks of using the more recently available smartphone GPS location data

is the lack of our understanding in how these data are collected and processed. Several studies have

conducted investigations on the representativeness of these datasets (e.g., [242 ]) using raw data,

by quantifying the correlation between the number of mobile phone users estimated to be living in

each geographical region, and the census population information. This metric, however, is far from

comprehensive, and we have pressing demand for a more thorough investigation on various aspects

of socio-demographic and socio-economic characteristics, and to ensure that the observation sam-

ples in the data are not biased towards a specific population group of wealth, region, ethnicity,

gender, etc. This procedure becomes even more difficult when only aggregate information, such

as the total number of daily users in a specific region or the daily number of visitors to a specific

point-of-interest, are provided by the data providers. In addition to the uncertainties in the sample

representativeness, the data collection procedure is not transparent. For example, some softwares

and applications collect location data when the device detects substantial movement, therefore,

only a very small number of points would be observed if the user stays at one location (e.g., home)

during the entire day. Other algorithms collect location information in extremely high frequency

(e.g., every minute), irrespective of the amount of movement. This is partly the reason why we

observe such a large variance (i.e. truncated power law) in the number of observation points per

user [242 ]. In the absence of methods and algorithms for correcting the bias in the data, the trust-

worthiness of the data products and analysis will be undermined. A more open discussion between

data users – researchers and practitioners – and data providers to further understand the process

of dataset generation, and a standardized way of quantifying and reporting the representativeness

biases and the potential errors present within the dataset are essential for more inclusive, fair, and

trustworthy data products for disaster response.
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Data Governance

As we experience an increase and universal accessibility to large scale mobile phone location

data, the protection of personal privacy has never been more important [373 ]. Previous studies

have revealed that a very few number of data points could reveal the identity of the user with high

accuracy, highlighting the importance of anonymization techniques [374 ]. Following such public

concerns, data providers have started to provide processed data, aggregated by space and time. For

example, the Disaster Maps data in the Facebook Data for Good program aggregates population

density and flow into each day, into 6 kilometer size grid cells, and further applies spatial smoothing

algorithms to anonymize the data. This process, although effective in anonymizing the data and

protecting the users’ privacy, comes with a price in the data granularity and uncertainties in the

data quality, as explained in the previous Section. To address this issue and to balance out the

data quality with privacy protection, the concept and techniques of differential privacy are gaining

attention. Differential privacy is a criterion, which tools are devised to satisfy. It enables the

collection, analysis, and sharing of statistical estimates using personal data while protecting the

privacy of the individuals in the dataset [375 ]. Techniques such as differential privacy may serve

as one baseline to ensure the safety of personal privacy, but we are still amidst the search for a

holistic framework that integrates technical solutions, ethical guidelines, and regulations on the

use of mobile phone location data.

Tailoring Model Outputs with Policy Needs

As discussed in the previous Section, the Data-Driven Dynamical Systems Modeling approach

can be implemented in a wide range of spatial and temporal granularity, as well as system compo-

nent details and scale. In order to link model outputs with policy needs, there needs to be sufficient

input from the policy maker side to specify the model details. More specifically, the following

questions should be asked to build the systems model: What are the specific policy levers that the

policy makers have as options, and what are their spatial and temporal scale of interest? What

variables and evaluation metrics consist the objective function of the decision maker? How much

uncertainty do the policy makers want to consider when simulating the likely future outcomes? Ex-
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tensive communication between researchers and practitioners is key to effectively linking models

to development policy support tools.

Preparing for Unprecedented Events

The Tohoku Tsunami, which struck the Tohoku coast in Japan in 2011 following a Magnitude

9.0 earthquake, caused over 15,000 deaths and over $360 billion in economic damage. Despite

the large number of earthquakes hitting Japan each year, the previous tsunamis that hit the Tohoku

coast were in 1896 (over 20,000 deaths), 1933 (over 3,000 deaths), and a minor event in 1960 (142

deaths). This makes the 2011 Tohoku Tsunami the most catastrophic disaster event in over 100

years (since the 1896 tsunami). Similarly, Hurricane Maria (Category 5) was the largest hurricane

to make landfall in Puerto Rico. This rarity, even though such climate shocks are increasing year

by year, increases the difficulty in preparing for severe natural hazards, since many cities do not

have prior data to predict future disaster scenarios. Spatially explicit simulation models perform

poorly when applied to different cities, because of varying urban properties (e.g. socio-economic,

geographic characteristics). One approach to overcome this challenge is to develop computational

techniques that allows us to transfer insights, dynamics, and simulation models across regions

so that cities can learn from each others’ experiences. This could lead to better preparation for

unprecedented, black swan events (e.g. “What if a 2011 Tohoku-level Tsunami hit Los Angeles?”).

Various analogical problem settings have been worked on in the computer science field. For

example, transfer learning [376 ] and reinforcement learning [377 ] are computational frameworks

that can be applied in these settings. Recent works have attempted to learn human behavior from

one city and use the learned behavioral model to predict human mobility dynamics in counterfac-

tual scenarios in a different city using inverse reinforcement learning [378 ]. Our studies described

in Chapter 5, based on unsupervised machine translation approaches, are also attempts to bridge

this research gap. Despite such methodological advances, we still lack extensive empirical testing

that validates the performance of these algorithms, and the limits of inter-regional transfer. For ex-

ample, understanding the pairings of cities where knowledge transfer and translation works well,

and those where they fail, are still under-studied.
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Effective Communication of Findings

To effectively communicate the prediction results from various simulation models to different

stakeholders, and to obtain feedback to further improve the models, the measures and indices

of recovery and resilience need to be tailored for different stakeholders. For instance, for city

agencies, the effects of various policies on household and business recovery at the aggregate level,

and any inequalities that may emerge in recovery, should be emphasized. On the contrary, when

presenting results to local community members, metrics of recovery should focus more on the

individual and household levels to enhance engagement. When communicating the results to policy

makers, it is important to quantify the sources of uncertainties and to what degree they can affect the

outcomes of the simulation predictions. Recently, various visualization tools including dashboards

and web-based GIS platforms have been developed for this purpose. Such tools would enable

us to communicate the sensitivity of recovery predictions under various policy scenarios using

toggle bars and have a sustainable, bi-directional dialogue with community stakeholders at various

workshops. For example, the “MyCityForecast” tool, developed by researchers at The University

of Tokyo, is a successful example of such visualization tool [379 ]. Other dashboards have been

developed to tackle the COVID-19 pandemic (e.g., [380 ]), however, we currently lack effective

interfaces to communicate disaster resilience simulation results to policy makers.

6.4 Future Research Directions

To address the aforementioned two recommended trajectories of the research field, I propose

various exciting research directions left for future research endeavours, ranging from technical

innovations in data-driven dynamical systems modeling, to establishing an open-source platform

where scientists and practitioners can share data, models, and insights for a more united approach

to tackling resilience challenges.

1) Disaggregation of Social and Physical System Components

The data-driven systems model explained in Section 5.1 was a parsimonious model, composed

of aggregate “social” and “physical” systems. While this modeling approach laid out a scientific
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foundation for further understanding the resilience of coupled urban systems to shocks by revealing

socio-physical interdependencies and their effects on resilience, such aggregation comes with a

drawback of not being able to capture the specific dynamics that occur within various systems.

For example, aggregation of social systems results in neglecting the structures of social networks

among households and local organizations, which are understood to be crucial in building up social

capital and community resilience [57 ]. Physical infrastructure systems are also inter-connected

and interdependent with each other in many ways [100 ] (for example, traffic lights that control

transportation infrastructure depend on functioning power networks). Enhancing the details of

the coupled model by disaggregating social and physical system components is a computationally

challenging but important research direction.

2) Spatially Explicit Modeling for Decision Making

The presented models in Chapter 4 were agnostic in the location; that is, it could be applied

to any location of interest with availability of data. However, to further apply the model results

for decision making, the models need to take into consideration various spatial and local con-

texts. One example of such context is the spatial configuration of the social and physical networks.

More specifically, many specific urban characteristics such as the spatial distributions of population

groups, spatial segregation of income groups, locations with high risks of flooding, the spatial lay-

out of the power grid in urban areas, all affect how the disaster effects play out in cities. In addition

to disaggregating the social and physical system components (Future research direction 1), there

is a need to model the dynamics in a more spatially explicit manner. Agent based simulations of

urban dynamics is a useful approach that is used in various disciplines and problem settings (e.g.,

[114 ], [115 ], [120 ]). Efforts to integrate insights that were revealed by system dynamics models

into agent based simulation frameworks is a promising direction for urban disaster resilience.

3) Application to Resilience of Specific Infrastructure Systems

Many urban infrastructure systems are functionally coupled with social systems. One example

of such infrastructure are transportation networks. So far in the literature, transportation resilience

has been studied from an engineering resilience perspective (e.g., [95 ], [96 ], [381 ]), neglecting
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the complex feedback dynamics that occur between physical systems service deficit (traffic con-

gestion), and human travel behavior. By applying the theoretical framework of socio-physical

coupling posed in this dissertation, we may be able to better understand the resilience of specific

infrastructure systems. Fusion with domain expertise (e.g., transport modeling, electrical engineer-

ing) could further increase the reality and usefulness of the developed models.

4) Feedbacks Across Spatial Scales

In many of our studies, we have collected various data from individuals (e.g., mobile phone

users) and analyzed/modeled them to extract insights about the urban social and physical systems in

a spatially aggregated scale (i.e., county-level). Such analysis of collective individual patterns have

revealed interesting emergent patterns, such as universal population recovery patterns (Section

2.1) and logistic recovery of business firms (Section 3.3). Insights at the aggregated level are

useful for decision makers on the municipal and regional government levels. However, to build

community resilience from the bottom up, there needs to be more efforts on giving back such

knowledge to stakeholders at the community and household levels. With the ubiquitousness of

smartphones and online social networking platforms, the cost of reaching local communities has

substantially decreased. How to translate the insights obtained from aggregate models into the

local stakeholders’ scale is a challenging but important research direction for the future.

5) Cross-City Learning for Unprecedented Shocks

As addressed as one of the challenges in linking systems modeling to development, despite

the increasing number of various shocks to cities due to climate change and rapid urbanization

(see Section 1.1), from each city’s point of view, (fortunately) there are not enough disaster events

that they experience to fully learn from. In order to prepare for future unprecedented shocks, it

is necessary to synthesize insights from various past disaster events across the world. Therefore,

the million dollar question becomes; how can cities learn from eachother for better preparation?

Although this has been implemented in the operational knowledge sharing perspectives through

various inter-city organizations such as the Rockefeller Foundation’s 100 Resilient Cities Initia-

tive (https://www.rockefellerfoundation.org/100-resilient-cities/ ), on the more computational and
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predictive levels, transfering insights of post-disaster dynamics across cities is a challenging task.

Utilizing novel approaches such as transfer learning [376 ] and reinforcement learning [377 ], as

well as unsupervised machine translation approaches [343 ], [346 ], [382 ] as shown in Chapter 5,

could provide solutions for this problem.

6) Fusion of Multiple Data Sources

While we have seen a rapid increase of the usage of mobile phone location data, there are

several other types of data that have been used frequently in disaster management, including satel-

lite imagery (for a review article, see [383 ]) and social media data (for review articles, see [188 ],

[384 ]). Satellite imagery, despite its low frequency of data collection, enables the observation of

damages to the natural and built environments in a detailed spatial scale. On the other hand, so-

cial media data contains rich information on the peoples’ opinions, ideas, and sentiments at a high

temporal granularity. Moreover, combining mobile phone location data with household surveys

could allow us to analyze both the post-disaster mobility patterns as well as the motivations behind

such behavior. More recently, credit card transaction data has become more available for research

purposes (e.g., [385 ]). Using credit card data, we are able to understand the economic impacts

of disasters and epidemics at a spatially and temporally granular level. Combining these datasets

with mobile phone location data and human mobility analytics (e.g., application in poverty esti-

mation [386 ]) could enable a more holistic understanding of the social, physical, and economic

dimensions of the disaster response and recovery dynamics.

7) Open-Source Platform For Data, Models, and Insights

As discussed in the challenges in linking systems modeling to development, in order to en-

hance knowledge sharing for cities across the globe and between researchers and practitioners, we

need a unifying scheme to share data, models, and insights. We developed an open-source Github

repository with the Global Facility for Disaster Recovery and Reduction (GFDRR) of The World

Bank (https://github.com/GFDRR/mobility-analysis/  ), which enables non-experts to analyze mo-

bile phone location data for disaster resilience and urban planning applications on their local laptop

computer environments. As introduced in the previous sections, with the increase in popularity for
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using mobility data during the COVID-19 pandemic has led to more data sharing platforms and

communities, with careful considerations of differential privacy [387 ], [388 ]. However, there is

still little effort in information sharing between academics and industry stakeholders, who have

more access to disaggregate datasets. Further collaborations need to be facilitated to have a bet-

ter understanding of how such data are collected from users, data representativeness, and various

socio-economic biases that exist in the sample populations, which could significantly skew analysis

results and lead to inequitable policy decisions.
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