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ABSTRACT

Cochlear implants (CI) are sensory neuroprostheses capable of partially restoring hearing

loss by electrically stimulating the auditory nerve to mimic normal hearing conditions. De-

spite their success and ongoing advances in both hardware and software, CI patients can still

struggle to understand speech, most notably in complex auditory settings, also referred to as

the cocktail party problem. Efforts to develop new CI algorithms to overcome this challenge

rely on CI simulators and vocoders to test with normal hearing (NH) patients. However,

recent studies have suggested that these tools fail to reproduce the stimuli perceived by CI

patients. It is therefore critical to develop tools capable of producing better representations

of the stimuli as perceived by CI patients. Thus, this work proposes a framework that in-

corporates physiological models of the peripheral auditory nerve. Using these models, the

framework generates stimulations that elicit a neural response at the auditory nerve closer

to that observed in NH conditions. Stimulations generated by the framework were evaluated

by performing a vowel identification task. However, the task was performed by a classifier

trained using deep learning techniques instead of a CI patient. These results give insight into

how the framework could be applied for the development and validation of CI stimulation

strategies.
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1. INTRODUCTION

Hearing loss is one of the most prevalent disabilities in the United States, and different

treatments are available based on its nature and severity. Among them, cochlear implants are

arguably the most successful machine-brain interface capable of partially restoring auditory

perception in those with moderate to profound sensorineural hearing loss, where more than

300,000 people have received implants worldwide [149 ]. Cochlear implants deliver electrical

pulses to the cochlea inside the ear to directly stimulate the auditory nerve. Over the years,

technology has advanced to provide better hardware and software to enhance speech quality;

however, cochlear implants users still struggle to understand speech, most notably in complex

auditory settings. Moreover, studies have shown that vocoders, a commonly used tool in

the development of cochlear implant stimulation algorithms, misrepresent acoustic stimuli

as perceived by cochlear implant users [37 ], [87 ]. Therefore, there is a need for developing

tools that better represent the percept of sound that cochlear-implant users receive from the

electrical stimuli.

To address this need, the present thesis uses a framework that incorporates physiological

aspects of hearing rather than focusing on only the phenomenon itself [1 ], [86 ]. Therefore, the

proposed framework seeks to match neural responses elicited by electrical stimulation of the

auditory nerve to those observed from acoustic stimulation. To do so, computational models

of the auditory nerve are chosen to represent both electrical and acoustic stimulation, and a

cochlear implant simulator is used to recreate their processing algorithms. For the purpose

of this work, the performance of the framework was evaluated using a deep learning-derived

classifier performing a vowel identification task.

The remainder of this thesis is organized as follows. Chapter 2 presents an overview of

the literature covering the anatomy of the peripheral auditory system, types of hearing loss, a

description of cochlear implant technologies and their processing algorithms, computational

models of the periphery auditory system, cochlear implant simulators, and performance of

current technologies on speech perception. Chapter 3 presents the methods used, including

the corpus used in this work, a detailed description of the proposed framework, and the clas-

sifier chosen to evaluate its performance. Chapter 4 presents the results of the functionality

10



of the framework and the performance of the classifier for a vowel identification task. Chap-

ter 5 discusses the findings of this work and its shortcomings. Lastly, Chapter 6 proposes

possible future directions to improve upon the work presented.
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2. BACKGROUND

2.1 Hearing loss

Hearing loss is one of the most prevalent disabilities in the United States, with roughly 20

percent of the population, aged 12 or older, reporting unilateral or bilateral hearing loss [93 ].

The ability to communicate with others plays an important role in cultural and social life,

and as such, efforts have been made for the past decades towards restoring hearing. Different

technologies are available depending on the type and severity of hearing loss. However, the

focus of this dissertation is on cochlear implant devices.

The following sections give an overview of the anatomy and physiology of the peripheral

auditory system, as well as technologies developed for restoring hearing. In particular,

components and signal processing algorithms used in cochlear implants are reviewed, as

well as case studies illustrating their performance in speech perception and simulators used

for evaluating signal processing algorithms. Following this, computational models of the

peripheral auditory system are presented. Lastly, a framework using computational models

for the development of signal processing algorithms on cochlear implants is introduced.

2.1.1 Normal hearing

The peripheral auditory system is comprised of three sections: outer ear, middle ear, and

inner ear. The outer ear includes the pinna that helps with spatial sound localization, and

the external auditory meatus (ear canal). The tympanic membrane or eardrum sits at the

end of the ear canal and serves as a barrier separating the outer and middle ear. On the

other side of the eardrum, a series of small bones or auditory ossicles (malleus, incus, and

stapes) connect the tympanic membrane to the oval window in the cochlea. Lastly, the inner

ear includes the cochlea that is connected to the cochlear nerve that goes to the brain. A

diagram of the auditory peripheral system is shown in Figure 2.1 .

The cochlea contains three chambers: the scala tympani, the scala media, and the scala

vestibuli (see Figure 2.2 ). All three chambers are fluid-filled, where the scala vestibuli and

scala tympani contain a sodium rich fluid called perilymph, and the scala media a potassium
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Figure 2.1. Anatomy of the auditory peripheral system. Image from Watts (1993) [144 ]

rich fluid called endolymph. The membrane separating scalae vestibuli and media is called

Reissner’s membrane, and separating scalae tympani and media is the basilar membrane

(BM). If the cochlea is uncoiled, the area closer to the oval and round windows is referred

to as base, and the tip where the scalae vestibuli and tympani meet is referred to as apex.

Inside the scala media and attached to the BM is the Organ of Corti, which contains

the hair cells. There are two types of hair cells: outer hair cells (OHC), and inner hair cells

(IHC); and humans have three and one rows of each, respectively, as shown in Figure 2.3 .

Atop the hair cells there are fine filaments called stereocillia, which in OHCs are attached

to the tectorial membrane (TM), but not for IHCs. Each type of hair cell serves a different

purpose and therefore their innervation differs as well. OHCs innervation is predominately of

efferent fibers to receive information from the medial nucleus of the trapezoid body (MNTB)

in the central nervous system (CNS). In contrast, IHCs innervation is predominately of

afferent fibers from the spiral ganglion, specifically, type I neurons. This innervation allows

IHCs to function as auditory sensory transducers [137 ]. Additionally, OHCs contain a motor
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protein called prestin that allows them to transduce electrical stimulation into mechanical

movement. As a result, when OHCs are stimulated by efferent fibers, they can modify their

length to change the movement of the BM, acting as amplifiers.

Figure 2.2. Cross section of the cochlea. Image from Watts (1993) [144 ]

When an auditory stimuli is presented to the auditory system, sound waves travel through

the ear canal causing vibrations in the air. When these vibrations reach the tympanic

membrane, the auditory ossicles transform it into mechanical energy and transmits it to the

cochlea. The movement of the stapes connected to the oval window causes the fluid inside

the cochlea to move allowing waves to travel from the scala vestibuli to the scala tympani. As

the traveling waves propagate through the perilymph, the vibrations cause a displacement of

the BM. Subsequently, the stereocillia of OHCs are pressed against the TM causing them to

bend, and the stereocillia of IHCs bend as well, due to the drag force caused by the movement

of the fluid between the TM and the hair cells. The movement of the stereocillia triggers an

influx of ionic currents into the hair cells, causing depolarization of the membrane and the

release of neurotransmitters. This increase of neurotransmitters facilitates the firing of an

action potential or spike by the spiral ganglion cells (SGC) connected to the hair cells.
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Figure 2.3. Organ of Corti. Image from Watts (1993) [144 ]

The pattern of neural activity generated by all IHCs going up the auditory nerve fibers

(ANF) is referred to as a neural activation pattern (NAP), representing an estimate of

the probability of the auditory nerve evoking an action potential as a function of time and

location along the cochlea [124 ]. Subsequently, spikes generated by the SGCs are transmitted

to the cochlear nuclei, where information is collected from each cochlea. This corresponds

to the first relay of the primary auditory pathway, followed by stages at the superior olivary

complex, inferior colliculus, medial geniculate body, and lastly, the auditory cortex.

As described above, hair cells are an essential component in the process of firing ac-

tion potentials in response to the vibration of the BM from traveling sound waves inside

the cochlear duct. The mass and stiffness of the BM varies from base to apex, producing

maximum vibration amplitudes at the base for high frequency sounds, and maximum dis-

placement at the apex for low frequencies [100 ]. The correlation between cochlear location
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and stimulus frequency is known as tonotopy, and has been characterized by the Greenwood

function shown in Equation 2.1 [61 ], [62 ].

f = A(10ax − k) (2.1)

Constants A, a, and k are determined based on experimental data and vary between

species. In humans, A = 165.4 (to yield frequencies in Hz), a = 0.06 if x is expressed in

millimeters, or a = 2.1 if normalized with respect to basilar length, and k = 0.88 (to yield a

lower frequency limit of 20 Hz).

2.1.2 Impaired hearing

Reduction or loss of the ability to perceive sounds in one or both ears is referred to

as hearing loss. The American Speech-Language-Hearing Association (ASHA) distinguishes

three types of hearing loss based on their origin: (a) conductive hearing loss related to a

malfunction in the outer or middle ear; sensorineural hearing loss (SNHL) associated with

damage to the inner ear or auditory nerve pathway; and mixed hearing loss involving a

combination of the previously mentioned conditions. Hearing loss can be classified in up to

six categories based on the severity of the loss: (1) slight (16–25 dB HL), (2) mild (26–40

dB HL), (3) moderate (41–55 dB HL), (4) moderately severe (56–70 dB HL), (5) severe

(71–90 dB HL), and (6) profound (91+ dB HL) [22 ]. Decibel (dB) is a logarithmic unit

used to express the magnitude of a signal relative to a reference value. In audiology, dB HL

(dB hearing level) refers to the loudness of a sound in dB relative to the quietest sound an

average normal hearing (NH) listener can perceive [130 ].

Depending on the type and severity of hearing loss, different technologies are available.

For a mild to moderate hearing loss, a hearing aid (HA) can help restore hearing. The HA

amplifies the incoming sound and can be programmed to do so at specific frequency bands

according to the need of the patient. HAs are typically worn behind the ear (BTE) or in the

ear.

If the patient experiences a moderate to profound SNHL, then a cochlear implant (CI) is

a viable alternative. CIs are medical devices designed to electrically stimulate the auditory
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Figure 2.4. Diagram with stages of the peripheral auditory system for normal
(upper) and electrical (bottom) stimulation.

nerve fibers inside the cochlea, bypassing the functions of outer, middle, and inner ear as

shown in Figure 2.4 . Various stimulation strategies have been developed in the past decades

to deliver stimuli that best reproduce normal hearing. A more in depth discussion will be

covered in the following sections.

In cases where patients qualify for a CI but have residual hearing at low frequency

bands, then an electric-acoustic stimulation (EAS) implant could help. This type of system

combines both technologies described above: a HA processes low frequency sounds such

as barks, honks, or vowels; and a CI processes mid and high frequency sounds such as

whistles, chirps, or consonants. EAS systems have shown to provide significant benefits

when compared to electric stimulation alone by preserving and utilizing the residual hearing

of the patient [74 ].

2.2 Cochlear Implants

The most common causes of SNHL involve damage or loss of cochlear hair cells in the

inner ear due to natural aging of the auditory system, also known as presbycusis, or prolonged

exposure to high-level of noise. Under these circumstances, the central auditory system

remains intact and restoration of some percept of hearing is possible, by using an alternative

source of auditory nerve stimulation: cochlear implants [100 ]. CIs are arguably the most

successful machine-brain interfaces for restoring auditory perception in those with moderate
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to profound SNHL, and more than 300,000 people have received CIs worldwide [149 ]. These

implantable devices can benefit both children and adults with prelingual and post-lingual

deafness. There are currently three CI manufacturers with Food and Drug Administration

(FDA) approval to distribute devices in the United States: Cochlear Inc., MED-EL, and

Advanced Bionics. Although implantation criteria vary among manufacturers, it is generally

agreed that adults with bilateral severe-to-profound hearing loss are eligible candidates, as

well as children ages 12 to 14 months with bilateral profound hearing loss [55 ].

Figure 2.5. Schematic of a cochlear implant’s core components. Image from
Harczos (2015) [63 ]

CIs have evolved since the first implementation of an auditory prosthesis in 1957 [28 ]–

[30 ], [150 ]. However, a common architecture can be identified among all developed devices:

(1) an external unit, (2) a transmission link, and (3) an internal unit. Figure 2.5 shows

a typical block diagram of a modern CI. The external unit consists of a microphone to

capture sound waves, a digital signal processor (DSP) unit to extract features from the

audio signal and generate a stream of data, and a power amplifier to drive energy to the

transmission link. The transmission link can be either a percutaneous connection or a

transcutaneous connection. In systems with a percutaneous connection, no electronics other

than the electrodes are inserted inside the skull, leaving a plug to connect the external

unit. In contrast, systems with a transcutaneous connector insert an electronic receiver that
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decodes the signal transmitted through a radio frequency (RF) link from the external unit.

Percutaneous implantation has the advantage of not being constrained on the information

that can be decoded by an implanted receiver under the skull, making for a flexible platform

for researching new stimulation strategies [94 ]. However, the Ineraid implant, a percutaneous

cochlear implant developed at the University of Utah, never received FDA approval in the

United States. As of 2008, all commercially available devices with FDA approval have opted

for a transcutaneous connector [94 ].

In systems with a transcutaneous connector, the internal unit is powered by the trans-

mission link using coils. The stream of data is then decoded to determine the sequence of

electrodes to be stimulated in the electrode array, located inside the cochlea. Modern CIs

have electrode arrays with up to 22 electrodes. Additionally, some devices have incorporated

a back-telemetry circuit for monitoring and evaluating purposes [88 ], [150 ]. Detailed descrip-

tions of CI components and their functionality have been well documented in the literature

[38 ], [94 ], [146 ], [150 ].

The most commonly used stimulation strategies include: (a) continuous interleaved sam-

pling (CIS), (b) advanced combination encoder (ACE), (c) MP3000TM, (d) fine structure

processing (FSP), and (e) HiRes 120 (HiResolution). These approaches have been developed

and implemented by the top three CI manufacturers in the international market: Cochlear

Inc.(CIS, ACE, MP3000TM), Med-El (CIS, FSP), and Advanced Bionics (HiRes 120).

Recent studies have developed new algorithms to enhance CI strategies by addressing im-

proved processing performance [3 ] and channel selection [4 ], [5 ], [113 ], as well as incorporating

temporal fine structures [90 ], [111 ], across-frequency delays [140 ], and rapid temporal adap-

tation [50 ]. Other attempts have tried less traditional approaches based on neural networks

(NN) [12 ], wavelet transform [27 ], [59 ], [115 ], bionic wavelet transform [26 ], and auditory

models [1 ], [60 ], [64 ], [80 ], [86 ], [87 ]. Some of these stimulation strategies are discussed in

the following section.
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2.3 Stimulation Algorithms

Multiple stimulation strategies have been developed over the past decades which vary in

the number of channels used to code the input signal, the number of electrodes stimulated,

the type of stimulation, and the extracted spectral features. The audio signal is divided into

sub-bands to extract spectral information, where a large number of bands provides better

spectral resolution, i.e., the ability to carry pitch information from the acoustic source to

the brain. In most cases, the number of bands used is directly related to the number of

electrodes available. Multiple algorithms have been developed to decide what features are

relevant to produce a high-quality representation of the input signal [94 ].

In 1961, House and Doyle implanted two subjects with an electrode in the inner ear and

reported some auditory percept when electrically stimulated. Similar results were reported

by Simmons at Stanford in 1965 [6 ], [135 ], [150 ]. Their efforts led to the development of

single-channel CIs to stimulate the membrane at fixed locations inside the cochlea [45 ], [73 ],

[104 ]. Despite their low spectral resolution, subjects were able to recognize phonemes and

words; however, their performance was highly variable and inconsistent between English

[24 ] and German [143 ] speaking subjects. During the late 1970s and early 1980s, multi-

channel CIs were introduced, providing wider coverage of the cochlea to exploit its place-

frequency encoding mechanism, thereby increasing the spectral information transferred to

the auditory nerve from the audio signal [39 ], [103 ], [131 ]. Another important aspect to

consider is the type of stimulation used, which can be analog or pulsatile. Early CIs used a

compressed analog processor which presented analogue waveforms as stimuli to the electrode

array, limiting implants to simultaneous excitation of all electrodes. Modern CIs are digital

and programmed to perform multiple stimulation strategies while delivering both analog and

pulsatile stimuli.

As previously mentioned, the number of electrodes is closely related to the number of

bands processing the input signal. However, recent developments have introduced the con-

cept of virtual channels where two or more neighboring electrodes are stimulated to create

virtual channels between physical electrodes, thus increasing the spectral resolution [42 ], [81 ].

CI Manufacturer Advanced Bionics implemented this approach in their devices to create the
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HiRes Fidelity 120TM stimulation strategy, which demonstrated improved speech perception

performance in both quiet and noisy conditions [14 ], [20 ], [82 ].

As for strategies with fixed channels, two different approaches have been used based on

the number of electrodes to be stimulated. While Continuous Interleaved Sampling (CIS)

uses all available electrodes to stimulate the cochlea, others (Advanced Combination Encoder

(ACE) and Spectral Peak Coding (SPEAK)) solely use channels with the highest envelope

amplitudes. This is referred to as ‘n-of-m’ coding where only ‘n’ (typically four to eight

electrodes) out of ‘m’ available electrodes are stimulated. While the strategies mentioned so

far seek to better represent spectral information carried in the audio signal, other strategies,

such as FSP or MP3000TM, aim to better represent the fine temporal structure of the audio

source, which is usually masked by higher magnitude spectral components.

These strategies have been well documented in other studies, and a brief description of

each strategy is presented in the following subsections [95 ], [149 ], [150 ].

2.3.1 Continuous Interleaved Sampling (CIS)

Figure 2.6. Block diagram of Continuous Interleaved Sampling algorithm.
Based on Ahmad et al. (2009) [3 ]
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CIS was developed by researchers at the Research Triangle Institute (RTI) as a solution

to the channel interaction problem observed in Compressed Analog (CA) processors where all

channels are simultaneously stimulated [148 ]. CIS is a multi-channel strategy that extracts

spectral information from the audio signal. As result, interleaved, non-simultaneous pulses

are delivered to each electrode, thereby avoiding interference [147 ], [148 ].

As shown in Figure 2.6 , the audio signal is passed through an automatic gain circuit

(AGC) to pre-emphasize high frequencies resulting in a flatter spectrum, which facilitates

extraction of spectral cues. Then, a filter bank, composed of band-pass filters, is applied to

divide the spectral information into sub-bands. At the output of the filter bank, signals are

rectified and low-pass filtered with a typical cutoff of 200 Hz. Each resulting amplitude is

compressed to match the dynamic range of the corresponding electrode. These ranges are

specific to each CI user and can vary among channels. To compress the signal, two non-linear

transformations are typically used: (a) power-law compression function (Equation 2.2 ) and

(b) logarithm compression function (Equation 2.3 ).

y = Axp + B (2.2)

y = A log(x) + B (2.3)

In these equations, A and B are constants, x is the uncompressed amplitude, and y is

the compressed amplitude. For power-law transformation, p < 1. Parameters A and B

are defined using two acoustic measures: T-Level and C-Level, and the relationships are as

follows:

A = Clevel − Tlevel

xmax − xmin
(2.4)

B = Tlevel − Axmin (2.5)

T-Level is the threshold in dB for the softest sound the CI user can detect, and C-Level

is the highest comfortable loudness level that the CI user can tolerate. These parameters

are patient-dependent and can vary from channel to channel [3 ], [95 ].
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Once the amplitudes to each electrode are compressed to the corresponding dynamic

range, a biphasic pulse modulates the output for time multiplexing, and therefore avoids

inter-channel interference. Stimulation rates range from 500 to 2000 pulses per second (pps)

per channel, and 12 to 24 channels are typically programmed in this scheme.

2.3.2 Advanced Combination Encoder (ACE)

Developed as a successor to the Spectral Maxima Sound Processor (SMSP) and Spectral

Peak coding (SPEAK), ACE coding is a multi-channel stimulation strategy sharing many

similarities with CIS coding. However, only frequency bands with the largest amplitudes are

selected for determining which electrodes must be stimulated during each cycle. In contrast

with SMSP where electrodes are stimulated in order of descending amplitude, ACE presents

them in tonotopic order [132 ]. This scheme is referred to as ‘n-of-m’, where ‘n’ electrodes

with the largest envelope amplitudes are selected out of ‘m’ electrodes available. ACE is the

most commonly used scheme by Cochlear Inc. in their Nucleus implants, where four to eight

electrodes are stimulated out of the total electrodes available. SPEAK and ACE follow the

same scheme of stimulation, however, ACE is capable of achieving higher stimulation rates,

between 600 to 1800 pps, compared to a limited 200-300 pps range in the SPEAK scheme

[79 ].

2.3.3 Fine Structure Processing (FSP)

Previously described algorithms rely on the amplitude of band-pass filter outputs ex-

tracted with an envelope detector to determine which electrodes to stimulate, although no

frequency information is recovered. However, using the Hilbert transformation, the signal can

be decomposed into its envelope and temporal fine structure (TFS) as shown in Figure 2.7 .

y(t) = Ac cos
(

2πfct + 2πf∆

∫ t

0
xm(τ)dτ

)
(2.6)

TFS shown in Figure 2.7 is referred to as a frequency modulated (FM) signal, defined

in Equation 2.6 . The carrier’s base frequency, fc, corresponds to the central frequency of
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the band-pass filters used for processing the auditory stimulus, f∆ is the frequency deviation

away from fc, and xm(τ) characterizes the modulation over time. TFS has been shown to

play an important role in pitch and speech perception, and efforts have been made to incor-

porate it into improving CI performance [107 ], [108 ]. MED-EL developed the FineHearingTM

technology based on FSP, where a burst of pulses is delivered to more apical electrodes (i.e.,

to the low frequency range), while the remaining electrodes follow a CIS-like scheme. These

bursts are aligned with the zero-crossing locations in the band-pass filter output to preserve

the fine structure information [7 ], [71 ], [126 ].

Figure 2.7. Acoustic signal decomposed into its envelope and temporal fine structure.

2.3.4 MP3000

MP3000TM is a stimulation strategy that introduces a psychoacoustic masking model to

reduce the number of active channels and to improve speech perception [114 ]. The concept

underlying masking models describes excitation at a given location in the cochlea spreading

out to adjacent regions and stimulating adjacent frequencies based on tonotopic coding.

Therefore, low-energy frequency components close to a stronger adjacent component are

masked, and there is no need to stimulate those regions, increasing spacing between stimuli

in the cochlea and reducing electrode interference [18 ], [149 ]. This concept has previously

been used to compress audio signal under the MP3 standard. Following an ‘n-of-m’ strategy,

the highest ‘n’ components, relative to an estimate of the spread of masking, are selected.
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While MP3000TM is used exclusively for implants manufactured by Cochlear Inc., a similar

strategy, Psychoacoustic Advanced Combination Encoder (PACE), is widely available [114 ].

2.3.5 HiRes (High Resolution)

Advanced Bionics introduced the HiRes (High Resolution) processing scheme to incorpo-

rate TFS of the audio signal. This system is based on the use of virtual channels to increase

the number of excitable locations lying along the cochlea. Using independent current sources

to drive each electrode, one or two adjacent electrodes can be simultaneously activated and

current can be adjusted to control the location at which the maximum stimulation is deliv-

ered between the two physical electrodes.

The above concept, dubbed denominated current steering, was studied by Donaldson

et al. (2005) who conducted a study on six post-lingually deafened adults [32 ]. Results

showed that subjects could successfully discriminate different pitches depending on the level

of current delivered to each pair of electrodes. Koch et al. (2007) showed that CI recipients

using HiRes 90k, a processing strategy implemented in Advanced Bionics implants with 16

electrodes and a high stimulation rate (83,000 pps), were able to discriminate between an

average of 93 potential channels [81 ]. Subsequently, an updated version of the standard HiRes

90k introduced eight additional stimulation sites between each pair of electrodes, creating a

total of 120 potential spectral channels, hence, HiRes 120.

2.4 Speech understanding performance

Audiological evaluation is used to assess both pre- and post-operative performance of

CI patients. In 1996, the American Academy of Otolaryngology-Head and Neck Surgery

(AAO-HNS), along with the American Academy of Audiology (AAA), and CI manufactur-

ers recommended the usage of a Minimum Speech Test Battery (MSTB) for clinical and re-

search assessment [105 ]. This battery set includes monosyllabic consonant-nucleus-consonant

(CNC) words [91 ], [122 ] to assess open-set word recognition, and utterances from the hearing

in noise test (HINT) [112 ] to assess open-set sentence recognition in quiet and speech-shaped

noise. A revised version of the MSTB was issued in 2011, replacing HINT sentences by the
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AzBio, and Bamford-Kowal-Bamford Speech-in-Noise (BKB-SIN) tests. No changes were

issued to CNC word tests [105 ].

In open-set tests, patients are asked to listen to auditory stimuli and repeat back what

they heard without providing them feedback. Speech-shaped noise is used to simulate more

everyday life situations where the patient tries to understand speech while other acoustic

sources are present in the background. For example, having a conversation at a crowded bar

or restaurant. This problem is referred to as the cocktail party.

A review of case studies evaluating the speech performance of the CI stimulation strate-

gies described in Section 2.3 is presented below.

2.4.1 Continuous Interleaved Sampling (CIS)

Pelizzone et al. (1995) conducted a study comparing CI users using a Ineraid implant

(CA strategy) to the CIS scheme. Two patients were evaluated during a six month period

using a portable CIS processor prototype. Speech perception was evaluated using consonant

and vowel identification tests in the absence of background noise. Results reported a 5-11%

improvement in hearing performance during experimental sessions, as well as in everyday

life usage with CIS compared to the CA scheme [121 ].

Kompis et al. (1999) conducted a similar study comparing both strategies in three expe-

rienced Ineraid users who participated in three sessions over a period of three weeks. Five

different levels of signal-to-noise ratios (SNR) with broadband noise were evaluated. Re-

sults indicated that consonant and sentences are better transmitted by CIS when no noise is

present (average score differences of CIS with respect to CA for the consonant tests yielded

+7.8% correct at 15 dB SNR, and -6.8% at 5 dB SNR). However, vowel identification tests

favored CA over CIS (average differences ranging from -5% to -20%), most likely due to a

longer training period when switching between schemes [84 ].

2.4.2 Advanced Combination Encoder (ACE)

In a study comparing ACE and SPEAK conducted by Pasanisi et al. (2002), nine con-

genitally deaf children, wearing a Nucleus CI24M implant, were evaluated over a period of
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three months [116 ]. At the end of the study, subjects reported significant improvements on

open-set word and sentence recognition tasks with the ACE strategy, noting the greatest

improvement in the presence of background noise at SNR of +10 dB (mean score differences

of +20% in quiet, and +40% in noise).

In a separate study conducted by Psarros et al. (2002), seven children participated in an

A-B-A experiment comparing SPEAK and ACE strategies over a period of 16 weeks [123 ].

The SPEAK strategy was used at the first and final sections of the study (A) corresponding

to 2 and 4 weeks respectively. The ACE strategy was used during the middle of study (B)

for 10 weeks. Using 2-way analysis of variance (ANOVA), significant improvements were

reported for open-set monosyllabic words in quiet conditions, and sentence improvements

were reported in competing noise. Both cases revealed mean differences ranging from +5%

to +10% when switching from SPEAK to ACE. However, SPEAK outperformed ACE in

sentences scores when subjects switched back to SPEAK. Improvements in the production

of medial consonant sounds were also observed using the ACE strategy (mean score difference

of +5.2%).

2.4.3 Fine Structure Processing (FSP)

In a study by Magnusson (2011), 20 experienced CI users were evaluated to compare an

FSP strategy to CIS variations (CIS+ and HDCIS, both implemented in MED-EL devices)

in speech and music perception. Statistical analysis using a repeated measures ANOVA

showed significant within-subject differences in mean scores. Bonferroni adjusted pairwise

comparisons between initial and final mean scores revealed no significant differences between

strategies, although participants tended to prefer HDCIS over FSP for both speech and music

[99 ].

In a different study by Muller and Mertins (2012), 46 adult CI users tested the same

three strategies over a period of four months. Pairwise comparison tests yielded statisti-

cally significant non-inferior performance of FSP compared to HDCIS and CIS+ in speech

understanding tests, except for monosyllable scores, where FSP outperformed CIS+. A

significantly lower pitch perception and preference for FSP was also reported [110 ].
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Two additional coding strategies based on FSP, FS4 and FS4-p, have been introduced

by MED-EL to extend the maximum number of fine structure channels from three to four.

While no significant differences regarding speech perception were observed among the three

strategies, most participants preferred either FS4 or FS4-p over FSP. This outcome is believed

to be influenced by the last strategy used by the participants [127 ].

2.4.4 MP3000

The study by Büchner et al. (2011) compared MP3000TM coding to the SPEAK/ACE

strategies in 221 Nucleus implant recipients following an A-B-A-B-A design over a time

period of 14 weeks [18 ]. Strategies SPEAK/ACE (A) and MP3000 (B) were alternated

following 4, 4, 2, 2, and 2 week periods respectively. Individuals were scored on identification

performance in quiet conditions (depending on their native language), and sentences in the

presence of noise. ANOVA tests showed no significant differences among strategies for both

speech perception and coding preference in quiet and in noisy conditions. Fixed stimulation

rates were used for all three schemes; however, a battery duration increase was observed when

MP3000TM was used due to the lower number of active channels in MP3000TM compared to

SPEAK/ACE (4 to 6 vs. 6 to 14).

A similar study conducted by Lai et al. (2008) compared music perception in two expe-

rienced CI users but yielded no significant differences between strategies [89 ]. Nogueira et

al. (2005) conducted a similar study to compare PACE and ACE strategies in eight adult

users of Nucleus 22. Results showed significant improvements in speech perception when four

electrodes were stimulated, but no significant differences were observed when eight electrodes

were selected [114 ].

2.4.5 HiRes (High Resolution)

Studies comparing both standard HiRes and HiRes 120 have reported no significant

differences in speech recognition tests in quiet and in +10 dB SNR conditions. However,

subjects using HiRes 120 reported higher ratings on music quality in terms of pleasantness
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and distinctness, as well as an overall preference for HiRes 120 at the conclusion of the

studies [19 ], [41 ].

2.4.6 Summary

Despite the improvements achieved by each individual stimulation strategy mentioned

above, overall speech perception scores are not significantly different among them. In prac-

tice, most post-lingually deafened users of CIs performing open-set CNC word identifica-

tion tasks, the gold standard in CI testing [10 ], achieve around 60% correct rates in quiet

conditions [8 ], [56 ], [72 ]. However, this performance drops significantly in common social

conditions of background noise [40 ], [46 ], [70 ].

2.5 Cochlear Implant Simulators

For the past 20 years, noise-band vocoders have been used in research to simulate the

output delivered to CI users [46 ]–[48 ], [96 ], [133 ], [134 ]. These simulators have been used to

evaluate speech perception in NH subjects, increasing control over experiments and the size

of potential subject pools. In this process, acoustic signals are first filtered using simulations

of CI processors. Next, amplitude profiles are extracted from outputs of each channel and

used to modulate limited-band noise or sine waves centered in the middle of each analysis

band. Resulting signals are then delivered as acoustic stimuli to NH subjects.

Although simulators cannot provide the exact stimulation experienced by CI users, mul-

tiple studies have been conducted to compare speech perception between NH subjects and

CI users. These studies have been done to evaluate the effect of channel number [33 ], [34 ],

[36 ], [46 ], insertion depth [35 ], intensity resolution [97 ], and information transfer [2 ]. While

stimuli can be generated offline, most studies have used computer-driven CI simulators to

provide real-time assessment of acoustic stimulation [43 ], [44 ], [78 ], [109 ], [138 ].

The study conducted by Svirsky et al. (2013) evaluated speech intelligibility in a CI user

with single-sided-deafness [138 ]. Stimuli were presented directly to the implant (with the

microphone deactivated) and through a loudspeaker with the goal of assessing similarities

between stimuli when different CI simulators were used. Results from this case study showed
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that most CI simulators sounded better than the sound provided by the CI, suggesting that

results from NH subjects cannot be directly extrapolated to CI users.

In a separate study, Laflen et al. (2002) computed neural responses using auditory models

in response to an acoustic stimulus and its representation using either a vocoder or a CIS

strategy. Results showed that the neural response from the vocoder was closer to that from

normal hearing than the one observed using a CI stimulation strategy (CIS or n-of-m),

suggesting that they may not be a good representation of implant stimulation [87 ].

2.6 Computational Models

Stimulation strategies used in CI processing as described in Section 2.3 use a phenomeno-

logical approach focus on better characterizing acoustic stimuli rather than taking advantage

of the underlining physiological process involved. Therefore, physiological computational

models are useful resources to describe the auditory system, thus their development can

help to better understand how the peripheral auditory system codes sound in normal and

impaired hearing conditions. In 1975, Biondi et al. proposed a mathematical model to

characterize the behavior of the peripheral auditory nerve [11 ]. Since then, advances in

computational power have made possible the development of more complex mathematical

models to compare and contrast predictions with experimental data.

Since models of the auditory pathway to the auditory cortex are beyond the scope of this

dissertation, only models of the peripheral auditory system, from the outer ear to the auditory

nerve, will be discussed. The complexity of the auditory system makes it challenging to

combine components into one unique model. Therefore, multiple models have been developed

over the past decades, which focus on specific stages of audition that can be coupled together

in cascade [125 ]. Some of these models have been integrated into frameworks, such as the

Auditory Image Model (AIM), and the Auditory-Nerve Fibers models from Carney Lab. A

brief description of these frameworks is presented below.
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2.6.1 Auditory Image Model (AIM)

Developed by Patterson and Holdsworth, the Auditory Image Model (AIM) seeks to

analyze complex sounds (everyday sounds, music, speech, etc.) and transform them into

‘auditory images’ representing our initial impression of sound in the brain [119 ]. Early

implementations of AIM used a functional model; however, growing interest in the scientific

community to compare results more directly with physiological models led to the development

of AIM as shown in Figure 2.8 [118 ].

Figure 2.8. The three-stage structure of AIM. Left-hand column: functional
path; right-hand column: physiological path. Based on Patterson et al. (1995)
[118 ]

AIM is structured in three stages: spectral analysis, neural encoding, and time-interval

stabilization, with a pre-processing stage where the input signal is filtered to simulate the

middle ear transfer function. Various approaches have been used to model the middle ear

transfer function: analog electrical circuits [58 ], [85 ], [106 ], [117 ], biomechanics and finite ele-

ment methods [49 ], [83 ], and linear digital filters [128 ], with the latter being most commonly

used.
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On the spectral analysis stage, the functional path uses a gammatone function to convert

sound waves into basilar membrane motion (BMM). This function is known to account for

physiological characteristics observed in the impulse response of the auditory filter in mam-

mals, and also psychological behaviors comparable to functions commonly used to character-

ize the human auditory filter [119 ]. The gammatone filter is a linear filter with a symmetric

frequency response, but BM responses are non-linear and asymmetric depending on their

location along the membrane and the amplitude of the stimulus [125 ], [129 ]. Gammatone

function variants have been designed to account for these discrepancies and contribute to a

more physiologically-relevant filter. Examples of these efforts include the all-pole gamma-

tone filter (APGF) [98 ] and the gammachirp filter [75 ], [76 ], both producing an asymmetric

gammatone-like filter. On the other hand, the physiological approach uses a transmission

line model to represent cochlear hydrodynamics obtaining time-domain numerical solutions

by using a technique called wave digital filtering [57 ].

On the neural encoding stage, the output from the BMM is converted into a NAP,

simulating the transduction process at the IHCs. In the functional path, two-dimensional

adaptive thresholding is applied simultaneously in time and frequency domains, introducing

compression, rectification, adaptation, and enhancement of the stimulus. Adaptive thresh-

olding causes low activity areas to be suppressed by higher activity areas, creating a masking

effect that helps sharpen formants and reduce noise. The thresholding output generates a

NAP which represents afferent neural activity at the auditory nerve. In the physiological

path, individual IHC models [102 ] are coupled to each output of the BMM to simulate the

flow of neurotransmitters from IHCs to ANFs. This model accounts for the non-linearities

occurring at the junction between hair cells and ANFs.

NAPs are not representations of sounds perceived by humans, but temporal integration

of NAPs can produce auditory images. However, temporal integration removes fine structure

information contained in the NAPs, which is known to play an important role in assessing

sound quality and source identification [118 ]. Therefore, AIM implements a module to pre-

serve fine structure information during integration thereby producing better representations

of auditory images [118 ]. In the functional path, strobed temporal integration uses a bank

of delay lines to store the NAP [120 ]. On the other hand, the physiological path implements
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an auto-correlation function between each channel of the NAP to extract periodicity and

preserve fine structure information [136 ].

2.6.2 Auditory-Nerve-Fiber Model by Carney Lab

Carney and colleagues from Carney Lab at the University of Rochester developed a

composite model of the auditory nerve response from the auditory stimulus at the eardrum

to the spikes transmitted to the cochlear nucleus via the auditory nerve. An early version of

this model was proposed by Carney to model the auditory-nerve fiber response in cats [21 ].

This model incorporates a narrow-band filter to represent the BM, and a feedback loop for

the OHCs’ response properties. A low-pass filter was used to model the effect of the IHCs,

followed by a non-linear adaptation stage between the IHCs and the auditory nerve that

affects the discharge rates of the auditory fibers.

Figure 2.9. Diagram of the computational model of the auditory-nerve re-
sponse developed at Carney Lab. Image from Zilany et al. (2009) [156 ]

Zhang et al. (2001) extended this work by replacing the feedback loop for a wide-band,

feed-forward control path, adding non-linear response properties as well as two-tone sup-
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pression [152 ]. However, this model was limited to responses of high-spontaneous-rate ANFs.

This was then expanded by Heinz et al. (2001) to include low- and medium-spontaneous-rate

ANFs. Heinz et al. also incorporated a time-varying discharge rate of the ANFs rather than

using a modified Poisson renewal process. Additionally, frequency resolution was modified

to fit human data, which allowed evaluation of normal and impaired human psychophysical

performance [68 ]. Subsequent studies explored performance limits achieved by the model

[66 ], [67 ] and added level-dependencies to provide more complete response features [142 ].

Bruce et al. (2003) used Zhang’s model to study how impaired OHCs and IHCs would

impact the auditory nerve response [16 ]. Results yielded degraded tonotopy in the cochlea,

showing potential to predict the effects of frequency modulations on the auditory nerve.

Zilany and Bruce (2006) extended this model to incorporate high-level responses of ANFs,

with previously determined low and mid-level responses [153 ]. This version of the model is

represented in the upper section of Figure 2.9 . In this approach, an acoustic signal measured

in Pascals is first filtered through the middle-ear (ME) filter. This filter is adapted from

Bruce et al. (2003), but simplified from eleventh-order to fifth-order to ensure stability [16 ].

C1 and C2 filters are presented in Bruce et al. (2003) [16 ] and Zhang et al. (2001) [152 ],

where C1 models the interaction between OHCs and taller rows of IHCs, and C2 models

the shorter IHCs independent of neighboring hair cells [92 ]. Next, the feed-forward control

path introduced by Zhang et al. (2001) models the level-dependent properties in the cochlea

by regulating the gain and bandwidth of the C1 component. The outputs of the C1 and

C2 filters are low-pass filtered by the IHC membrane, and then pass through the IHC-AN

synapse model and discharge generator. The synapse model is the same as in previous

versions and uses a time-varying three-store diffusion model [21 ], [145 ]. The model was

used to predict vowel responses in cats and compared predictions to physiological data. The

researchers observed a qualitative and quantitative match between their predictions and the

physiological data [154 ].

Despite these promising results, the synapse model did not account for offset adaptation

after the stimuli. Therefore, Zhang and Carney (2005) proposed a modified model based

on models by Meddis (1986) [101 ] and Westerman and Smith (1988) [145 ] to account for

both onset and offset adaptations and yield a more physiologically accurate synapse [151 ].
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First, a shift is introduced to the synapse output that preserves the onset response of the

original model, but generates a faster offset adaptation. However, this shifting generates an

unnatural modulation in the auditory nerve response.

In a more recent study, a different approach was taken to incorporate both exponential

and power-law dynamics and the physiological behavior observed within the IHCs and their

interactions with ANFs. These modifications were developed by Zilany et al. (2009) as shown

in the lower section of Figure 2.9 , where two parallel power-law functions are added after

the exponential functions used previously [156 ]. This new approach successfully describes

responses to amplitude-modulated tones, noise, pure tones, and spontaneous activity that

was not achievable with previous models. The most recent implementation of this model has

addressed minor issues to better represent physiological data while preserving its structure

and core components [155 ].

2.7 Physiological-based stimulation strategy

Auditory models have been integrated into speech coding algorithms to mimic human

performance in speech recognition tasks [31 ], [51 ]–[54 ]. Furthermore, some of these models

have been used in the development of physiologically based stimulation strategies that could

be implemented on CI processors [60 ], [63 ], [64 ], [80 ]. While these approaches have integrated

auditory models to better mimic normal hearing auditory processing, the resulting neural

response elicited at the auditory nerve is not guaranteed to be closer to that of NH conditions

since there is not feedback loop or optimization implemented into their designs. Therefore,

and following the findings in Laflen et al. (2002) described in Section 2.5 , Laflen (2003)

proposed solving the inverse problem of finding the optimal electrical stimulation such that

the neural response elicited at the auditory nerve by a CI processor best matches that

observed in NH conditions [86 ]. It is worth mentioning that Bondy et al. (2004) proposed

and implemented a similar approach to that from Laflen (2003) but for HA devices. Using

the auditory periphery model from Bruce et al. (2003) [16 ], a neurocompensator is proposed

to fit a HA such that its neural response best matches that of normal hearing [13 ]. However,
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these approaches are usually complex and computationally expensive, thus limiting their use

in practical applications.

This section describes the framework proposed by Laflen (2003) [86 ], later implemented

by Aguiar (2012) [1 ], including preliminary results of an unpublished case study using the

proposed framework. Their findings serve as the basis of the present dissertation work to be

covered in the following chapters.

2.7.1 Framework

The proposed framework presents an acoustic stimulus to models of acoustic and electrical

stimulation. For acoustic stimulation, the model of the auditory periphery system from

Zilany and Bruce (2006) [153 ] is used to represent normal hearing conditions (top section

of Figure 2.10 ). For electrical stimulation, the model from Bruce et al. (1999) [15 ], [17 ] is

used to transform electrical pulses generated by a CI processor into neural responses at the

auditory nerve (bottom section of Figure 2.10 ). The CI processor simulator can implement

either a CIS or ACE stimulation strategy.

Figure 2.10. Architecture of the optimization framework proposed by Aguiar (2012) [1 ]
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NAPs generated by both models are compared using a perceptual distance metric (PDM)

to assess the degree of similarity between the response observed in CI patients to that from

NH conditions. The PDM is used to adjust the output of the CI simulator to solve the

optimization problem:

θ̂∗ = arg max
θ̂

D(NAPCI(θ̂), NAPNH) (2.7)

In equation 2.7 , NAPCI and NAPNH are the outputs of the electrical and acoustic

stimulation models respectively, D() is the function used to compute the PDM, θ̂ is the

sequence of electrodes stimulated by the CI processor, and θ̂∗ is the optimal sequence of

electrodes that maximizes the similarity between NAPs. Aguiar implements D() to be a

correlation function.

Aguiar proposed solving the optimization problem by using a state machine architecture,

where each state represents a possible electrode to be stimulated. All states are connected

forming a graph called trellis. Then, the Viterbi algorithm is used to find the path that

maximises a given objective function. In its implementation, the PDM is used as the objective

function. Therefore, the problem is reduced to find the Viterbi path that produces the

NAPCI that best correlates with the target NAPNH . However, as the number of channels

increases, so does the number of combinations to be evaluated, resulting in a computationally

expensive optimization process requiring up to 48 hours to produce less than a second of

stimulus.

2.7.2 Case Study

The following section describes an unpublished case study using the framework described

above.

A 56-year old female post-lingually deafened subject, implanted unilaterally for 8 years,

following a period of at least 5 years of bilateral profound hearing loss, was recruited for the

study.

The experiment was conducted over four 60-minute sessions to evaluate two electrical

stimulation algorithms: (A) the subject’s preferred stimulation strategy, and (B) the opti-
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mized sequence of electrode stimulation generated by the proposed framework. These algo-

rithms were evaluated following an A-B-A-B paradigm, with each session corresponding to

a single electrical stimulation algorithm. In each session, the subject performed two identifi-

cation tasks: a 9-alternative-forced-choice (9AFC) vowel identification task, and an open-set

word identification task. For the first task, 9 /hVd/ utterances (had, hawed, head, heard,

heed, hid, hood, hud, who’d) were presented to the subject 15 times in a randomized order

using a MATLAB-based graphical interface, providing feedback after each trial. The task

was performed twice to test two acoustic conditions: (1) “quiet”, in which the stimulus was

presented without noise, and (2) “noise”, in which the stimulus was presented with speech-

shaped noise added such that the SNR was +10 dB. For the second task, the subject was

asked to transcribe on the computer 24 unique words drawn from a phonetically-balanced

(PB) word list, where the first half were presented in quiet, and the second half in noise.

The level of noise used in these experiments was empirically derived from results presented

in Aguiar (2012) [1 ].

For analysis purposes, two random variables, X and Y , were defined corresponding to

the presented and perceived stimuli from the vowel identification tasks, respectively. Data

were organized into confusion matrices for each background noise condition and stimulation

strategy. Then, confusion rates were normalized such that all perceptual outcomes for any

given presentation sum to one, and then divided by the total number of stimuli. The resulting

matrices correspond to the joint probability between X and P (X, Y ), i.e., the probability

of a subject identifying stimulus y when presented with stimulus x. Additionally, marginal

probabilities for X and Y are computed from the joint probability matrices.

Using the probabilities described above, both entropy (H) and mutual information (I)

are computed. While the former conveys how much information is contained in a random

variable, the latter is a measure of how much information from the input is preserved in the

output of the system and is computed as shown in equation 2.8 .

I(X; Y ) = H(Y ) − H(Y |X) (2.8)
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H(Y ) is defined as the entropy of the perceived stimuli, and H(Y |X) is the conditional

entropy of the perceived stimuli given the presented stimuli. These terms are defined in

equations 2.9 and 2.10 respectively.

H(Y ) = −
∑
y∈Y

pY (y) log2 py(y) (2.9)

H(Y |X) = −
∑

x∈X,y∈Y

p(x, y) log2
p(x, y)
p(x) (2.10)

Speech perception scores on the vowel identification tasks ranged between 74.8% and

85.2% under quiet conditions, with a mean score of 80.0% for the preferred stimulation

strategy, and 80.4% for the optimized stimulation strategy (Table 2.1 ). Perception scores

under +10 dB SNR noise conditions ranged between 62.2% and 80.0%, with a mean score of

68.9% and 79.6% for the preferred and optimized stimulation strategies respectively (Table

2.2 ).

Table 2.1. Speech perception scores on the vowel identification tasks without
added noise. Each /hVd/ stimulus was presented 15 times, and the number
of correct answers is shown in this table for each utterance. Average correct
rates and standard deviation for each day are shown at the bottom. Mutual
information (measured in bits) is computed for each day under the preferred
and optimized stimulation strategies

Stimuli in quiet Preferred Optimized
Day 1 Day 2 Day 1 Day 2

/had/ 12/15 14/15 15/15 15/15
/hawed/ 14/15 15/15 15/15 14/15

/head/ 4/15 13/15 10/15 13/15
/heard/ 15/15 15/15 14/15 15/15
/heed/ 13/15 15/15 15/15 15/15

/hid/ 15/15 15/15 1/15 3/15
/hood/ 15/15 13/15 15/15 12/15
/hud/ 4/15 0/15 9/15 5/15

/who’d/ 9/15 15/15 15/15 15/15
Avg correct rate 74.8 ± 30.1% 85.2 ± 32.5% 80.7 ± 31.9% 80.0 ± 29.2%

Mutual information 2.363 2.769 2.650 2.585(bits)
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Table 2.2. Speech perception scores on the vowel identification tasks with
added speech-shaped noise (+10 dB SNR). Each /hVd/ stimulus was presented
15 times, and the number of correct answers is shown in this table for each
utterance. Average correct rates and standard deviation for each day are shown
at the bottom. Mutual information (measured in bits) is computed for each
day under the preferred and optimized stimulation strategies.

Stimuli in noise Preferred Optimized
Day 1 Day 2 Day 1 Day 2

/had/ 12/15 15/15 15/15 15/15
/hawed/ 15/15 15/15 15/15 15/15

/head/ 3/15 10/15 4/15 4/15
/heard/ 15/15 15/15 15/15 15/15
/heed/ 12/15 15/15 14/15 15/15

/hid/ 8/15 12/15 14/15 12/15
/hood/ 3/15 5/15 15/15 15/15
/hud/ 1/15 0/15 0/15 2/15

/who’d/ 15/15 15/15 15/15 15/15
Avg correct rate 62.2 ± 38.2% 75.6 ± 36.4% 79.3 ± 38.1% 80.0 ± 34.8%

Mutual information 2.027 2.441 2.692 2.695(bits)

Table 2.3 shows speech perception scores on the open-set word identification tasks. Re-

sults are presented as total number of correct phonemes per session for each condition and

stimulation strategy evaluated. Scores ranged between 42.1% and 59.5% when stimuli were

presented in quiet, and between 2.5% and 37.5% in noise.
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Table 2.3. Speech perception scores on the open-set word identification tasks.
Total number of correct phonemes per session are displayed for each assessed
condition (quiet and noise) under the preferred and optimized stimulation
strategies.

Preferred Optimized
Day 1 Day 2 Day 1 Day 2

Quiet 16/38 22/40 25/42 17/39
42.1% 55.0% 59.5% 43.6%

Noise 1/40 7/34 15/40 9/35
2.5% 11.8% 37.5% 25.7%

2.8 Summary

This chapter introduced the anatomy of the peripheral auditory system, as well as the

processes involved in hearing and the different technologies developed to restore hearing when

some of these processes are impaired. Among these technologies, the focus of this dissertation

is on CIs, medical devices for restoring hearing in those with moderate to profound SNHL.

Since their introduction in the 1970s, various algorithms have been developed to process the

incoming auditory stimulus and determine how the electrodes inserted inside the cochlea

should be stimulated. Over the years, CI simulators have been used in the development and

assessment of new algorithms, giving researchers a controlled environment and access to a

larger subject pool, i.e., NH subjects. However, recent studies have shown that current CI

simulators might not be delivering an stimuli that elicit a neural response close to that from

CI patients.

Computational models of the peripheral auditory system have been developed to help

better understand how hearing works. However, these models are typically complex and

computationally expensive to implement for practical applications. Therefore, some attempts

have been made to incorporate approximations or simplified versions of these models into CI

signal processors. Following this approach, Laflen proposed the use of physiological models

to compute an optimized electrical stimulation that could elicit a neural response closer to
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that observed under NH conditions. A framework was proposed, and later implemented by

Aguiar as described in Section 2.7 .

Results of an unpublished case study using the proposed framework were presented in

Section 2.7.2 . Although a simple objective function was used for the optimization, these

preliminary results yielded increased and more consistent vowel identification rates in quiet

and noisy conditions. The present dissertation seeks to further expand on the results obtained

in this case study using an updated version of the proposed framework.
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3. METHODS

3.1 Acoustic Stimuli

As described in Section 2.4 , CNC words are commonly used in vowel identification tasks

to evaluate the performance of CI stimulation strategies among CI patients. Expanding on

the case study described in Section 2.7.2 , the present work used a speech corpus with CNC

words of the form /hVd/. However, the number of utterances available in the aforementioned

corpus was limited, therefore, a different corpus was used instead, the Nationwide Speech

Project (NSP) corpus [23 ].

Figure 3.1. Major dialects and regions of American English language (Image from [23 ])

The NSP corpus includes speech samples from a total of 60 American English speakers

from six regions across the United States: West, North, Midland, South, New England, and

Mid-Atlantic (see Figure 3.1 ). Speech samples include isolated words, sentences, passages,

and interview speech. A set of 10 /hVd/ words (had, hayed, head, heed, hid, hod, hoed,

hood, hudd, who’d) from a total of 15 male speakers across three regions (West, North,

and Midland) were used for the purpose of the present work. However, loudness of speech

samples varied across utterances and speakers, creating potential bias in the analysis. There-

fore, samples were processed to create homogeneous conditions across all stimuli using the

algorithms described below.
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3.1.1 Signal conditioning

Each speech recording was individually processed and went through four stages: crop-

ping, low-pass filtering, normalization, and noise reduction. Each stage of processing was

performed using scripts developed in MATLAB as described below.

Cropping

Speech recordings from the NSP corpus are approximately 2-seconds long with silence

segments at the beginning and end. To reduce processing time in later stages, the silence

segments were cropped out using a MATLAB graphic user interface (GUI) (see Figure 3.2 ).

The GUI allows the user to select the start and end points of the segment, as well as listening

and saving the resulting cropped recording. Audio files were save in .WAV format with a

sampling rate of 44,100 kHz.

Figure 3.2. MATLAB GUI developed for cropping speech recordings.

Low-pass filtering

CIs have a limited frequency range, and in most cases electrodes are mapped to a max-

imum frequency of 8,000 Hz. Therefore, speech recordings were low-pass filtered using a

fourth order Butterworth filter with cut-off frequency at 7,300 Hz. Filtering was applied to

each recording using the MATLAB GUI shown in Figure 3.3 . The input cropped speech

recording from the previous step is shown in the first row at the top, and the low-pass fil-
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tered signal is shown in the second row. The GUI displays the temporal waveform (left) and

spectrogram (right) of each signal.

Figure 3.3. MATLAB GUI developed for low-pass filtering (second row),
normalizing (third row), and noise reduction (bottom row) of speech record-
ings. A red dashed vertical line is included in the bottom panels to visualize
the silence segment used for noise reduction. Temporal waveforms are shown
in the left panels, and spectrograms in the right panels.

Normalization

Speech recordings were normalized using a non-linear gain function to amplify voiced

segments only and increase their SNR. The moving root mean square (RMS) value was

calculated for each sample in the recording and used to compute the gain (g) as the ratio

between the target RMS and the measured RMS value. The gain function used depends
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on whether the sample needs to be amplified (g > 1) or attenuated (g ≤ 1) as shown in

Equation 3.1 .

y(x) =


x × (1 + f(x)), if g > 1

x × g, otherwise
(3.1)

where f(x) is a logistic function of the form:

f(x) = L

1 + e−k(x−x0) (3.2)

Parameter L is the curve’s maximum value and is calculated as (g −1) because f(x) ∈ [0, L].

Parameter x0 is the sigmoid’s middle point and is calculated as the average between the lower

and upper amplification thresholds. The lower amplification threshold (Tl) is the point at

which samples are amplified at T% of the gain, and the upper amplification threshold (Tu)

is the point at which the gain reaches (1 − T )% of its value. Lastly, parameter k is the

steepness of the curve and is calculated as:

k = −
log(1−T

T
)

Tl − x0
(3.3)

Parameters used for the processing were empirically chosen and are shown in Table 3.1 

Table 3.1. Parameters used by the MATLAB GUI for normalization.

Parameter Description Value

- Target Amplitude (dB) 74
Tl Lower amplitude threshold (dB) 58
Tu Upper amplitude threshold (dB) 64
T Sigmoid’s threshold 0.05
x0 Sigmoid’s middle point (dB) 61

Noise Reduction

Background noise intrinsic to the recordings can be amplified despite the use of a non-

linear gain function for normalization in the previous step. Therefore, a noise reduction stage

was incorporated to reduce background noise. For this purpose, the algorithm for speech
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enhancement proposed by Berouti et al. (1979) [9 ] was implemented in MATLAB and its

output is shown at the bottom row of the GUI in Figure 3.3 . The algorithm uses a technique

called spectral subtraction where an estimate of the noise power spectrum is subtracted from

the speech power spectrum. The estimated noise power spectrum is taken from the silence

segment at the beginning of each utterance. A red dashed vertical line in the bottom panels

of the GUI marks the end of the silence segment and its location can be modified using the

controls at the bottom of the GUI.

3.1.2 Measurement of SNR improvement

The improvement achieved by the signal conditioning was measured by computing the

SNR before and after processing for each stimuli. The RMS value of the noise was computed

from the first 0.05 seconds corresponding to the silence portion of each stimuli. The RMS

value of the signal, however, was computed for the entire stimuli using a moving RMS, and

its peak value was used to compute the SNR as shown in Equation 3.4 .

SNR = 20 log10

(
signalRMS

noiseRMS

)
(3.4)

3.2 Optimization Framework

As discussed in Section 2.8 , the present work uses an updated version of the framework

implemented by Aguiar (2012) [1 ]. The underlying concept behind the framework was de-

scribed in Section 2.7.1 . Figure 3.4 depicts the updated framework and the implementation

of its components is presented in the following sections.

3.2.1 Acoustic stimulation models

The current iteration of the framework implements the AN model developed by Zilany et

al. (2014)[155 ] to model the behavior of the peripheral auditory system under NH conditions

(see Section 2.6.2 for a description of the model). The model provides the response of the

auditory nerve at a given location inside the cochlea. As described in Section 2.1.1 , the
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Figure 3.4. Schematic diagram of the updated framework for the optimiza-
tion of CI electrode selection based on matching acoustic and electrical neural
responses at the AN.

cochlea is tonotopically organized, and the frequency at which the AN is more sensitive to is

known as characteristic frequency (CF). For the purposes of this framework, the cochlea was

modeled using 300 fibers linearly distributed. Then, the location of the fibers was mapped

to their corresponding CF using Greenwood’s equation (see Equation 2.1 ) and limited to the

frequency range from 125 to 20,000 Hz. The lower boundary is imposed by the model itself,

while the upper boundary corresponds to the highest frequency humans can perceive.

Each fiber creates a time series with spike activity in response to the acoustic stimulus.

Spikes are grouped together in what is known as a peri-stimulus time histogram (PSTH) to

provide information of how many spikes are fired per time unit. Then, the probability of

firing spikes can be estimated by computing the average of PSTHs across multiple iterations

of the model. The probabilities of firing spikes from each fiber are grouped together to form

what was previously introduced as a NAP.

The acoustic stimulus was presented to the model multiple times (N = 100) and their

PSTHs were used to compute a NAP. Given the stochastic nature of the model, each acoustic

stimulus was presented multiple times to generate a total of 5 different NAPs per stimulus.

The NAPs generated by the model (NAPNH) were used in later stages of the framework as

the target neural response to be mimicked by the CI processor (see Figure 3.4 ).

48



3.2.2 Electrical stimulation models

The framework incorporates two modules involved in modeling electrical stimulation: a

CI simulator, and a model of electrical stimulation of the AN. The former was implemented

using the Nucleus Matlab Toolbox (NMT), provided by Cochlear, to recreate the processing

performed by their CI processors. And the latter was implemented using Bruce’s model of

electrical stimulation of the AN [15 ], [17 ].

The NMT was set up to emulate the processing performed by a Nucleus processor. For

this purpose, the following modules of processing were included: (1) front-end/microphone

signal scaling, (2) auto-gain control (AGC), (3) filterbank filtering, (4) rectification, (5)

loudness growth compression, (6) uniform resampling, and (7) pulse mapping. The NMT

produces a frequency-time matrix (FTM) containing the energy at the frequency band of

each electrode, for each analyzed sample in time. The FTM is processed using the stimu-

lation strategy of choice to transform it into a sequence of electrodes to be stimulated and

their respective amplitudes. Electrodes available and their dynamic range are patient de-

pendent and are adjusted accordingly. For the purpose of this dissertation, two stimulation

strategies were used: (1) ACE to serve as control, and (2) the optimized sequence generated

by the present framework. Details of the optimization algorithm are described below in

Section 3.2.3 .

The sequence of electrodes and amplitudes is used as input to stimulate Bruce’s model of

the AN as shown in the bottom section of Figure 3.4 . The model first generates a pulse with

amplitude specified by the input sequence and duration according to the parameters set for

the implant itself. Depending on the state of the system, which is influenced by past and

current stimulation pulses, the model decides whether or not a spike should be generated.

Due to the stochastic nature of the model, a total of 250 repetitions were simulated to

estimate the probability of firing a spike in response to the input stimulus.

The total number of AN fibers simulated was the same as for acoustic stimulation and

was selected as described above in Section 3.2.1 . The probability of firing spikes by each fiber

were grouped together to produce the NAP in response to electrical stimulation (NAPCI).

For the control case, the NAPCI was generated in response to a fixed electrode sequence
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produced by the ACE strategy. Therefore, the subsequent stages shown in Figure 3.4 were

not applicable to the control case.

3.2.3 Optimization algorithm

The optimization algorithm takes as input the outputs from the acoustic stimulation

model, NAPNH, and the electrical stimulation model, NAPCI. While NAPNH is computed

upfront for the whole stimulus, NAPCI is computed one segment at a time. Each segment

of NAPCI is the result of stimulating the AN with one of the values contained in the FTM,

where each row corresponds to one of the available electrodes n ∈ [1, N ], and each column

corresponds to the sample being processed m ∈ [1, M ]. The sampling rate for the FTM is

computed based on the number of electrodes set to be stimulated and the pulse rate per

electrode.

Then, each segment of NAPCI is compared against the corresponding segment in NAPNH

using a PDM. As introduced in Section 2.7.1 , the PDM chosen for the optimization algorithm

was the cross-correlation at lag zero (n = 0) between NAPs. The processing is repeated for

each available electrode for a given sample, and the optimal electrode to be stimulated, θ̂∗,

is selected such that:

θ̂∗ = arg max
θ̂

(
NAPCI(θ̂) ? NAPNH

)
[0] (3.5)

As shown in Figure 3.4 , the optimal electrode selected is stored as part of the system

state and used in the subsequent iterations of the algorithm. For each sample, the search for

the optimal electrode is repeated until all electrodes to be stimulated are selected. Once all

samples are processed, the framework generates a sequence with all selected electrodes and

their corresponding amplitudes, along with a NAPCI for the completed stimulus.

3.2.4 Framework Validation

As described in Section 3.1 , 10 /hVd/ words from 15 male speakers were selected for

testing the framework. For each utterance, there were five recordings available per speaker,

accounting for a total of 750 acoustic stimuli. To reduce computational time, only a segment
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of the vowel in each utterance was used. Each segment was processed by (1) the frame-

work to generate the optimal stimulation sequence and its corresponding NAPCI, and (2)

the ACE strategy as the control case. To assess similarities between NAPNH and NAPCI,

the following metrics were computed: (1) cross-correlation, (2) mean square error (MSE),

(3) peak SNR (pSNR), and (4) mutual information. Metrics were calculated for both the

optimized sequence and ACE strategy.

Simulations were run on a desktop computer with a 6-cores Intel Core i5-9600 @ 3.10

Ghz, 32 GB of RAM, and running Ubuntu 18.04.5 LTS. The acoustic stimulation model and

the CI processor were both implemented using Matlab, and the electrical stimulation model

and the optimization algorithm were implemented in C++. All modules in the framework

incorporated parallel computing, with Matlab scripts using the Parallel Computing Toolbox,

and the C++ scripts using OpenMP.

Implant-specific parameters were chosen to mimic those from the patient who participated

in the case study described in Section 2.7.2 . A full list of parameters used by each module

is shown in Table 3.2 .
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Table 3.2. Parameters used for testing the optimization framework.

Parameter Description Value

numFibers Total number of AN fibers simulated 300
MonteCarloNum Number of Monte Carlo repetitions 250
cohc AN OHC condition 1 (normal)
cihc AN IHC condition 1 (normal)
species AN model tuning 2 (humans from Shera et al.)
noiseType AN type of fractional Gaussian noise (fGn) 1 (variable)
fiberType AN spontaneous spike rate 3 (high)
implnt AN implementation of power-law function 0 (approximation)
stimdb AN stimulus intensity (dB SPL) 74
CF_range AN CF range (Hz) 125–20000
nrep AN number of stimulus repetitions 100
psthbinwidth AN PSTH binwidth (ms) 0.14
electconfig CI electrode configuration mp (monopolar)
pulserate CI stimulation rate (pulses / sec) 7200
pulsewidth CI pulse width (µs) 37
numChan CI total number of electrodes 22
num_bands CI number of electrodes available 12
implantMaxima CI number of electrodes stimulated (maxima) 6
insertDepth CI normalized insertion depth from apex 0.2857

3.3 NAP Classification

As described in Section 2.4 , vowel identification tasks are commonly used to assess speech

performance in CI patients. In these assessments, the stimulation can be presented through

a loudspeaker, or by directly stimulating the implant through connection with a computer.

In both cases the acoustic stimulus evokes a neural response at the AN fibers that is then

interpreted by higher brain processes to be identified as one word or another. One of the

goals of this work is to recreate the identification task performed by the CI user, which is

implemented with a classifier using machine learning techniques. This section describes the

classifier implementation, the inputs needed for its training and testing, and the experiments

conducted to validate its functionality.
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3.3.1 Classifier

The classifier implemented a closed-set vowel identification task. In this type of task the

number of possible classes is limited to a reduced set of options, which is one of the 10 /hVd/

words used in this work. The elements to be used by the classifier were the NAPs generated

using the models described in Section 3.2 that are two-dimensional matrices and can be

treated as images. To classify these images, a solution using machine learning techniques

from the well studied field of image classification was implemented. The solution used

transfer learning to retrain a convolutional neural network (CNN) to classify the images of

interest.

The CNN chosen was a 50-layer residual neural network, commonly referred to as ResNet-

50, developed by He et al. (2016) [65 ]. The CNN was pre-trained using ImageNet, a large

dataset of natural images developed by Deng et al. (2009) [25 ] that over the years has grown

to have more than 10 million images. Using a Matlab script, the last layers of the CNN were

replaced and trained to identify the new classes, i.e., one of the 10 /hVd/ words.

3.3.2 Segmentation

The ResNet-50 requires images of size 224x224x3 as inputs, corresponding to width,

height, and number of color channels, respectively. However, NAPs generated using acoustic

and electrical models are larger both in the time and frequency domain. Therefore, the

NAPs had to be resized before used with the CNN.

Using a Matlab script, a segment of the vowel was extracted from each NAPNH and the

corresponding acoustic stimuli was saved as an audio file in WAV format. Two segment

sizes, 224 and 448 samples, were chosen to evaluate its impact in the performance of the

classifier. Then, each audio file was used to stimulate the CI simulator and generate a

NAPCI using both the optimized framework and the ACE strategy. Segmented NH NAPs

were normalized between [0, 1] to increase contrast by limiting the probability range to

[0.05, 0.25], clipping any values outside the range, and saved as 8-bit grayscale images in

PNG format. No normalization was performed on CI NAPs. Resulting NAPs were resized

to match the input size required by the CNN to account for the number of AN fibers modeled
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(frequency domain), the duration of the segment extracted (time domain), and the number

of color channels (grayscale to RGB).

3.3.3 Testing

Using a Matlab script, the ResNet-50 was trained with segmented NAPNH to recreate

higher brain processes used for identifying words under NH conditions. Then, NAPCI were

evaluated using the trained network to recreate the scenario of a post-lingually deafened

CI patient performing the task. NAPNH were generated using acoustic stimuli from all 15

subjects available, each one repeated five times, for a total of 3730 NAPs (four stimuli were

discarded due to poor quality). The dataset was divided so that data from 12 subjects (2980

NAPs) were used for training and validation of the CNN, split 80% and 20%, respectively.

The data from the remaining three subjects were used for testing the classifier under NH

conditions (750 NAPs), and to generate NAPCI for testing CI conditions. However, each

stimulus was repeated only one time due to computational time constraints, accounting for

a total of 150 NAPCI. Lastly, the CNN trained with NAPNH was evaluated using NAPCI

from both the optimization framework and the ACE strategy.

The training, validation, and testing of the CNN was repeated a total of 50 times. Train-

ing and validation was performed in 6 epochs with 208 iterations each.
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4. RESULTS

4.1 Acoustic stimuli

Measurements of SNR pre and post signal conditioning for each utterance are shown

in Figure 4.1 . Mean SNR values varied between 39.7 and 44.6 dB pre-signal conditioning

and between 50.6 and 52.3 dB post conditioning. Averaging over all stimuli, SNR improved

by 8.4 dB after signal conditioning. Performing a two-sample t-test showed that the SNR

improvement was statistically significant (p < 0.0001).

Figure 4.1. Measurements of SNR pre (blue) and post (orange) signal condi-
tioning. Mean values and the standard deviation are shown for each individual
utterance. Average values are included in the last bars on the right.
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4.2 Framework

(a) NH NAP Full stimulus

(b) NH NAP Close-up

Figure 4.2. NAP generated using the AN model corresponding to NH con-
ditions. (a) Full stimulus of word /had/. (b) Close-up of the vowel between
0.2 and 0.3 seconds.

A NAP generated using the AN model under NH conditions for the word /had/ is shown

in Figure 4.2 . The full utterance is shown in panel (a), and a close-up of the vowel portion

is shown in panel (b). For each of the panels, the x-axis shows time in seconds, and the

y-axis shows the normalized distance measured from the apex inside the cochlea. For the
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latter, values closer to zero are mapped to low frequencies (apex), and values closer to one

are mapped to high frequencies (base). Lastly, the color scale represents the probability of

firing an action potential by the AN fiber at each time and location. Probability values were

clipped between 0.025 and 0.25 for visualization purposes.

(a) CI NAP (ACE) Full stimulus

(b) CI NAP (ACE) Close-up

Figure 4.3. NAP generated using the electrical stimulation model and the
ACE coding strategy. (a) Full stimulus of word /had/. (b) Close-up of the
vowel between 0.2 and 0.3 seconds.
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Similarly, NAPs generated with the electrical stimulation model and the CI simulator

using the ACE strategy (control) and the optimization framework are shown in Figure 4.3 

and Figure 4.4 , respectively. As before, panel (a) shows the full stimulus, and panel (b) a

close-up of the vowel portion of the utterance /had/. The probability of firing an action

potential spans the full range between 0 and 1.

(a) CI NAP (Optimized) Full stimulus

(b) CI NAP (Optimized) Close-up

Figure 4.4. NAP generated using the electrical stimulation model and the
optimization framework. (a) Full stimulus of word /had/. (b) Close-up of the
vowel between 0.2 and 0.3 seconds.
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Figure 4.5. Electrodograms showing electrodes and amplitudes stimulated
using the optimization framework (A) and the ACE stimulation strategy (B).

Electrode sequences used to generate NAPCI are shown in Figure 4.5 as electrodograms.

An electrodogram shows the channel being stimulated and the amplitude of the pulse being

delivered to the electrodes. Electrodes’ numbers increase from base to apex, thus, electrode

10 stimulates high frequencies and electrode 22 stimulates low frequencies. Panel (a) shows

the electrodogram generated using the optimization framework, and panel (b) shows the
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electrodogram using the ACE strategy for comparison. As before, both sequences were

generated in response to the utterance /had/.

Overall, most electrodes were stimulated similarly by both approaches, most notably

electrodes 14, 15, 18, 19, and 20. However, the optimization framework provided a cleaner

stimulation at mid- and low-frequencies (electrodes 16, 17, and 22) and an emphasis of high

frequencies (electrodes 12 and 13) when compared to the ACE strategy.

Figure 4.6. Performance metrics comparing CI NAPs generated using the
ACE strategy and the optimization framework, computed with respect to NH
NAPs. (A) Cross correlation. (B) Mean Square Error (MSE). (C) Peak signal-
to-noise (PSNR). (D) Mutual Information (MI)

Lastly, results of the performance metrics are shown in Figure 4.6 . Panel (a) shows the

cross correlation computed for the NAPCI using the optimization framework and the ACE

strategy, both with respect to the NAPNH. Subsequent panels show the same comparison

60



for the mean square error (panel B), peak signal-to-noise (panel C), and mutual information

(panel D). Results shown were computed using NAPs from five different instances of the word

/had/. Cross correlation scores showed statistically significant differences favoring the opti-

mization framework (p < 0.05). However, mean square error and peak signal-to-noise scores

showed statistically significant differences favoring the ACE strategy (p < 0.05). Lastly,

mutual information scores showed better scores for the optimization framework, however,

differences were not statistically different.

4.3 Classifier

(a) NH (224) (b) ACE (224) (c) Optimized (224)

(d) NH (448) (e) ACE (448) (f) Optimized (448)

Figure 4.7. Examples of images of NAPs used for training, validation, and
testing of the CNN. All images are 224x224 in size, where those in the first
row were taken from segments that were 224 samples long, and those in the
second row from segments that were 448 samples long. (a & d) Segment of a
NAPNH. (b & e) Segment of a NAPCI (ACE). (c & f) Segment of a NAPCI
(Optimized).
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Examples of the segmented NAPs used for training the CNN classifier are shown in

Figure 4.7 . Segments that were 224 samples long in duration (time) are shown in the top

row, and segments with 448 samples are shown in the bottom row. NAPNH used for training

and validation of the CNN are shown on the left column (a & d panels). NAPCI used for

testing the CNN are shown in the center (b & e panels) and right (c & f panels) columns for

the ACE strategy and the optimized stimulation, respectively.

Results for the trained CNN identifying NAPNH (blue), NAPCI using ACE (orange),

and NAPCI using optimization framework (green) are shown in Figure 4.8 . Identification

scores are shown for each individual utterance and the overall average (last bars on the

right), displaying mean values and standard deviation across all 50 instances of the CNN.

Identification scores of the CNN trained and tested with 224-samples long segments are

shown in panel A (left), and with 448-samples long segments are shown in panel B (right).

Figure 4.8. Recognition scores of the vowel identification task performed by
the trained CNN to recognize NAPNH and NAPCI (ACE and optimized). Mean
values and the standard deviation are shown for each individual utterance.
Average values are included in the last bars on the right. Panel A shows
results for 224-samples long NAPs, and panel B for 448-samples.

Overall recognition scores achieved by each type of NAP for the two segment sizes used for

training and testing the CNN are shown in Figure 4.9 . Identification scores using 448-samples

long segments were higher across all NAPs; however, the differences were not statistically

significant.
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Figure 4.9. Overall recognition scores of the vowel identification task for each
segment size.

Confusion matrices corresponding to one out of the 50 instances of the CNN are shown

in Figures 4.10 and 4.11 for segment sizes 224 and 448, respectively. Each element of the

matrix shows what percentage of the presented stimulus (rows) is classified as one class or

another (columns). Elements along the diagonal correspond to correctly classified stimuli,

and elements outside the diagonal represent misclassifications. Classification results of test-

ing the CNN with NAPNH are shown in panel A, and classification results for NAPCI using

the ACE strategy and the optimization framework are shown in panels B and C, respectively.

Lastly, examples of the NAPNH and NAPCI used for training and validation of the classi-

fier are shown in Figures 4.12 (224-sample segments) and 4.13 (448-sample segments). Panels

A-J show a NAPNH for each of the utterances to be identified by the classifier. Panels K

and L show NAPCI computed by either the ACE strategy or the optimization framework.

These NAPs serve as an example to visualize that the fine details observed in NAPNH are

absent in NAPCI; however, the periodicity at which some features are repeated over time is

preserved.
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(a) NAPNH

(b) NAPCI (ACE) (c) NAPCI (Optimized)

Figure 4.10. Confusion matrices of the vowel identification task using 224
sample segments performed with NAPNH (A), NAPCI ACE (B), and NAPCI
Optimization framework (C). Each row corresponds to the presented stimulus,
and each column to the perceived stimulus.
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(a) NAPNH

(b) NAPCI (ACE) (c) NAPCI (Optimized)

Figure 4.11. Confusion matrices of the vowel identification task using 448
sample segments performed with NAPNH (A), NAPCI ACE (B), and NAPCI
Optimization framework (C). Each row corresponds to the presented stimulus,
and each column to the perceived stimulus.
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(a) /had/ (b) /hayed/ (c) /head/ (d) /heed/ (e) /hid/

(f) /hod/ (g) /hoed/ (h) /hood/ (i) /hudd/ (j) /who’d/

(k) /who’d/ (ACE) (l) /who’d/ (Optimized)

Figure 4.12. Examples of NAPNH and NAPCI (224 samples) used for training
and testing of the classifier. NAPNH of each utterance are shown in panels a-j.
NAPCI of the word /who’d/ using the ACE and optimization framework are
shown in panels k and l, respectively.
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(a) /had/ (b) /hayed/ (c) /head/ (d) /heed/ (e) /hid/

(f) /hod/ (g) /hoed/ (h) /hood/ (i) /hudd/ (j) /who’d/

(k) /who’d/ (ACE) (l) /who’d/ (Optimized)

Figure 4.13. Examples of NAPNH and NAPCI (448 samples) used for training
and testing of the classifier. NAPNH of each utterance are shown in panels a-j.
NAPCI of the word /who’d/ using the ACE and optimization framework are
shown in panels k and l, respectively.
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5. DISCUSSION

5.1 Optimization Framework

The cross correlation performance results show that the framework, as described in Sec-

tion 3.2.3 , was successfully implemented and maximized the similarity between NAPCI and

NAPNH. However, results from other commonly used metrics to compare image quality (MSE

and PSNR) suggest that NAPCI produced using the ACE strategy better match NAPNH than

those produced by the optimization framework. Lastly, mutual information scores suggest

that NAPCI produced by the optimization framework carry more information than those

generated by the ACE strategy; however, differences were not statistically significant.

The mixed results described above could be partially attributed to the limitations of the

chosen metrics. The metrics PSNR and MSE are known to be susceptible to misalignment

errors, meaning that delays introduced by the models used in the framework could lead to

a mismatch between NAPCI and NAPNH. Therefore, a NAPCI that is more similar to the

target NAPNH but not properly aligned would score lower in these metrics, putting more

weight on the error due to the mismatch rather than that from their differences. Additionally,

misalignment errors can be enhanced due to the more sparse nature of NAPCI (see Figures 4.3 

and 4.4 ) when compared to NAPNH (see Figure 4.2 ). With fewer pixels to match between

NAPCI and NAPNH, a misalignment between NAPs could have a significant impact on the

scores of these metrics. Consequently, introducing a processing stage to better align NAPCI

and NAPNH before computing these metrics would be suggested.

Another factor contributing to the observed results is the number of samples used in this

work. Due to computational limitations, performance metrics were computed from 100-ms

NAP segments corresponding to the vowel portion of five different instances of the word

/had/ performed by the same speaker. Therefore, the results described above could be

biased by the utterance or speaker chosen to compute the metrics. It is unclear if these

results are generalizable due to the fact that only one utterance was used instead of the

ten total utterances available. Similarly, the observed results do not take into account the

variability introduced by different speakers. Consequently, the performance metrics should

be computed over a larger number of speakers using all utterances available to remove bias.
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Despite the cross correlation results favoring the optimization framework, the resulting

NAPCI still lack some of features observed in NAPNH. For instance, the neural activity

seen in NAPNH creates traces that run vertically across locations along the cochlea (see

Figure 4.2 ). The bottom section of these traces are delayed as they get closer to the apical

region. It is believed that these observed behaviors are attributed to the effect of the traveling

wave. Due to the tonotopicity of the cochlea, high frequency stimuli are encoded first at

the basal region (top section of a NAP), and low frequency stimuli are encoded last at the

apical region (bottom section of a NAP). However, the effect of the traveling wave is missing

in NAPCI from both the ACE strategy and the optimization framework (see Figures 4.3 

and 4.4 ). On the other hand, the traces observed in NAPNH repeat themselves in a periodic

manner. Even though the fine details of the traces is missing in NAPNH, the periodic aspect

of the traces is still captured by NAPCI in both the ACE strategy and the optimization.

However, no measurements were performed to assess the accuracy of the periodicity observed

in NAPCI with respect to NAPNH.

It was hypothesized that the cross correlation function would help recreate the neural

response seen in NAPNH, including the effect of the traveling wave. However, results so

far seem to only support this hypothesis up to some extent. It is believed that the sparse

nature of NAPCI might be contributing to the observed results. Additionally, the resolution

achieved with a limited number of electrodes in CIs might not be sufficient to recreate the

traces as seen in NAPNH. Even though the optimization framework selects the sequence of

electrodes that maximizes similarity with respect to NAPNH, it is possible that none of the

neural responses produced during the optimization process contained portions of the traveling

wave. Consequently, it is believed that the chosen electrical stimulation model might not be

capable of recreating the fine details observed in NAPNH. Efforts have been made to develop

models that better capture the phenomena of electrically stimulated auditory nerve fibers

as described in the review by Takanen et al. (2016) [141 ]. For instance, models proposed by

Joshi et al. (2017) [77 ] or Tabibi et al. (2021) [139 ] could be explored as alternatives to the

electrical stimulation model currently used by the optimization framework.
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5.2 Classifier

Despite the limited dataset available for training and validation, the classifier identi-

fied NAPNH with average recognition scores ranging between 74% and 77% as shown in

Figure 4.9 . These recognition scores were higher than those of NAPCI most likely due to

training the classifier with only NAPNH. Although identification scores were higher when

using NAPNH that carried more information (448 samples vs 224 samples), the differences

were not statistically significant (see Figure 4.9 ). When observing average recognition scores

per word, data show that the classifier scored lower for words /had/ and /hid/, independent

of the number of samples used (see Figure 4.8 ). Furthermore, results shown in Figures 4.10 a

and 4.11 a, corresponding to one out of 50 instances of the CNN, suggest systemic errors in

classification. For example, the word /had/ is confused in most cases by /head/, and the

word /hid/ is confused by either /heed/ or /hayed/, regardless of sample size. It is believe

that these confusions could be attributed to the similarity in frequency of their first (F1)

and second (F2) formants. Using the data from Hillenbrand et al. (1995) [69 ], we observe

that the vowel sounds /æ/ in /had/ and /E in /head/ have their F1 at 580 and 588 Hz, and

their F2 at 1799 and 1952 Hz for male speakers, respectively. It is important to mention that

these frequencies are average values and they can vary across speakers; therefore, they have

to be interpreted as part of a vicinity where each vowel sound can exist as shown in Figure

3 in Hillenbrand et al. (1995) [69 ]. Similarly, the vowel sounds /I/ in /hid/ (F1: 427 Hz, F2:

2034 Hz), /i/ in /heed/ (F1: 342 Hz, F2: 2322 Hz), and /eI/ in /hayed/ (F1: 476 Hz, F2:

2089 Hz) also have formants in the vicinity of each other. Words /hid/ and /hayed/ have

more similar formant frequencies than /hid/ and /heed/, which is reflected in more tokens

misclassified as /hayed/ than /heed/.

On the other hand, recognition scores for NAPCI were closer to chance level regardless

of the stimulation strategy used. As shown in Figure 4.9 , average recognition scores for

NAPCI stayed within the vicinity of 10% regardless of the sample sizes used. While average

recognition scores per word shown in Figure 4.8 might suggest that words such as /had/,

/hayed/, /heed/, or /hod/ are being labeled correctly, individual results suggest otherwise.

As shown in Figures 4.10 and 4.11 for one out of 50 instances of the CNN, all utterances
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are being classified in two or three classes only. These results suggest that the classifier

cannot use the features learned from NAPNH to correctly identify NAPCI. As discussed

in Section 5.1 , NAPCI lack the fine details observed in NAPNH while still capturing their

periodicity. Therefore, it is believed that the classifier is identifying utterances based mainly

on the number of periodic segments present in the NAP rather than other features. In the

case shown in Figure 4.12 , we observe that the NAPCI for the word /who’d/ has four cycles

with prominent peaks at the beginning of each of them. Then, out of all 10 classes, only the

NAPNH for words /hayed/ and /hod/ also have four full cycles. As a result, the classifier

preferentially selected /hayed/ and /hod/ when presented with the word /who’d/ as shown

in Figure 4.10 . While the example is given for only one of the utterances, it is believed that

this behavior might help explain the similar trends observed for other tokens in Figure 4.10 .

Similarly, when the number of samples used per segment is increased to 448, we observed

that the number of cycles in the NAPCI for the word /who’d/ matches that of the NAPNH

for words /had/ and /heed/ (see Figure 4.13 ). These results are in line with the trends

observed in Figure 4.11 .

Another potential factor influencing the low recognition scores observed in NAPCI is the

information encoded in their periodicity. It is believed that the frequency at which the cycles

repeat in each NAP might correlate with the fundamental frequency (F0) associated with the

speaker. While a more extensive assessment should be conducted to validate this hypothesis,

then it would imply that the performance of the classifier is speaker dependent. Given that

utterances from different speakers would have different fundamental frequencies, then NAPs

would be classified in a way that favors matching the fundamental frequency rather than the

utterance being modeled.

A final factor impacting the low recognition scores seen in NAPCI is the type of images

that the classifier was originally trained on. As described in Section 3.3 , the classifier was

trained to distinguish between natural images, such as a dog from a tree. Since the NAPs are

more similar to each other than a dog is to a tree, it is believed that the set of features needed

to discriminate between NAPs is different from that used for natural images. Additionally,

the performance of the classifier might be prone to errors due to location of the NAP segment

chosen for classification. Traditionally, the location of the object of interest within the frame
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in natural images would not affect the performance of the classifier. However, in this work

the classifier uses a segment of the NAP and selecting different starting points would result

in different segments. As discussed previously, the classifier might be relying on the number

of periods seen in NAPCI; therefore, selecting a segment that leaves out part of a period

might have an impact on the classification of the utterances.

The initial hypothesis that motivated the usage of a classifier stated that it would help

model the scenario of a post-lingually deafened CI user. Under this scenario, the clas-

sifier was trained with NAPNH to represent the existing brain connections in the user

pre-implantantion. Using the proposed framework, NAPCI were optimized to best match

NAPNH. Therefore, it was expected that the features learned from NAPNH would be suffi-

cient to correctly identify NAPCI; however, that was not the case. Instead, it could be argued

that the low recognition scores achieved by the classifier on NAPCI resemble that of CI users

when their implant is activated for the first time. It is known that CI users can perform

poorly at first and require time and training before their brains adapt to the new type of

stimulation. To account for this adaptation period, most studies recruit CI users when their

performance has plateaued, usually three to six months after implantation. Similarly, the

classifier trained with NAPNH lacks the knowledge to correctly identify NAPCI and might

require additional training to learn a new set of features to achieve that. Therefore, training

the classifier with NAPCI could lead to better recognition scores in the same way CI users

improve their speech understanding upon training.

The incorporation of NAPCI into the training of the classifier might not only help in-

crease its overall performance but also model the improvement experienced by CI users upon

training. The current implementation of the classifier was trained 100% with NAPNH, but

this percentage could be reduced in favor of adding NAPCI. For instance, the ratio between

NAPNH and NAPCI could be changed in increments of 10% from 100/0 to 90/10 and so

on, to assess the impact of the types of NAPs in the overall performance of the classifier.

The results of this experiment would help better understand how CI users improve their

performance over time, having the potential for predicting experimental data. However, a

longitudinal study following the progress of a CI population post-implantation would be nec-

essary to validate the findings of the proposed experiment. Having access to experimental
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data would not only help address the shortcomings of the classifier but also some of the

limitations of the optimization framework discussed in Section 5.1 .

A validated optimization framework and classifier capable of predicting behavioral data

would provide insight into explaining behavioral results beyond what the classifier was

trained on. For instance, it could be used for studying and designing experiments that

would highlight specific results observed with CI users. If CI users are displaying difficulties

at recognizing specific words, then this framework could be used to model that specific be-

havior. Currently, counselors lack the data to support how CI users’ performance improves

upon training. Consequently, having this type of data available for new CI users during their

training could help provide better and personalized counseling.
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6. CONCLUSION

CIs have been successfully used as sensory neuroprostheses to partially restore hearing for

those with moderate to profound SNHL. Despite advances in both hardware and software,

CIs are unable to allow their users to fully understand speech, achieving around 60% word

recognition in standardized tests [8 ], [56 ], [72 ], but dropping significantly in complex acous-

tic scenarios [40 ], [46 ], [70 ]. Traditionally, the design of algorithms for CI processing has

focused on characterizing acoustic stimuli using phenomenological approaches. However,

newer technologies with more computational power allow physiological approaches to be ex-

plored. Therefore, this work focused on exploring the second approach and incorporated

computational models of the peripheral auditory system.

In this work, a framework was proposed to best match neural responses elicited by elec-

trical stimulation of the auditory nerve to those elicited by acoustic stimulation. The frame-

work implements Zilany et al. (2014) [155 ] model to represent acoustic stimulation, Bruce

et al. (1999) [15 ], [17 ] model for electrical stimulation, and a CI simulator. The optimal

neural activation pattern, or NAP, is computed by solving the optimization problem of find-

ing the sequence of electrodes that needs to be stimulated to produce the desired response.

Resulting NAPs were evaluated using a vowel identification task performed by a classifier

developed using deep learning techniques. The classifier was trained to identify NAPs gen-

erated by acoustic stimulation (NAPNH), and evaluated using NAPs generated by electrical

stimulation (NAPCI)

Results suggest that the framework generates NAPCI that correlate better to NAPNH

when compared to those generated by a more traditional stimulation strategy (ACE). How-

ever, while the classifier was successful at identifying NAPNH, it performed poorly at identify-

ing NAPCI. It is believed that the observed behavior might resemble that of a post-lingually

deafened CI user whose implant is activated for the first time and their brain has yet to adapt

to the new type of stimulation. Additionally, NAPCI lack some of the fine details observed

in NAPNH, suggesting that the electrical model used in this framework or the electrical

stimulation itself might not fully capture what happens at the auditory nerve.
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Despite promising results, the current framework has shown some shortcomings that

would need to be addressed in a future iteration. For instance, it would be worth exploring

alternative models of electrical stimulation to evaluate whether or not they can produce

NAPs that better represent the fine details observed in those from acoustic stimulation.

Additionally, performance metrics (cross correlation, MSE, PSNR, and MI) should be com-

puted for all available stimuli to assess to what extent results shown in this work could be

generalized.

Similarly, improvements can be made to the evaluation of the framework. ResNet-50,

the CNN used to develop the classifier, is one of many CNNs available and it would be

worth exploring other alternatives such as GoogleNet, AlexNet, or VGG. In the same way

CI users’ brains have to adapt to the new type of stimulation, it would be reasonable to

train the classifier with NAPCI. In the case of post-lingually deafened CI users, their brains

had been trained to recognize NAPNH and has to learn to extract a new set of features to

recognize NAPCI. Therefore, it would be worth evaluating how the ratio between NAPCI

and NAPNH used for training the classifier affects identification scores.

Ultimately, the framework needs to be evaluated with CI users to assess its performance

on speech recognition tasks. Additionally, data collected from subjects would help validate

to what extent the proposed classifier can predict recognition scores. The present work

lays out the foundations of a new approach for developing and validating cochlear implant

stimulation strategies. However, further research is needed to generalize the findings of this

dissertation.
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