
EFFICIENT AND SECURE
EQUALITY-BASED TWO-PARTY COMPUTATION

by

Javad Darivandpour

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

August 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Mikhail J. Atallah, Chair

Department of Computer Science

Dr. Greg N. Frederickson

Department of Computer Science

Dr. Samuel S. Wagstaff Jr.

Department of Computer Science

Dr. Aniket Kate

Department of Computer Science

Approved by:

Dr. Kihong Park

2

I dedicate this dissertation to my mother and father

for their endless love, support and encouragement.

3

ACKNOWLEDGMENTS

It gives me great pleasure to express my gratitude to many people who contributed, one

way or another, to me achieving my goals.

First and foremost, I would like to thank my family, my lovely parents and my dear sister,

for encouraging me every step of the way. I would not have been able to pursue my dreams if

it was not for your full support, unconditional care, and everlasting encouragement. I would

also like to thank my dear aunt, Ferial, for always being there for me.

My most sincere gratitude goes to my academic advisor, Professor Mikhail J. Atallah,

for his invaluable guidance and genuine support. It is my absolute honor and pleasure to

be given the opportunity of working with such an inspiring mentor who taught me how to

improve myself in both professional and personal aspects of life. You taught me how to

organize my ideas, pay attention to every detail, and treat people with the utmost respect.

I thank you with all my heart for creating such a healthy and nurturing environment for me

to grow and prosper.

Shortly after, I would like to thank my advisory committee members, Professor Greg N.

Frederickson, Professor Samuel S. Wagstaff, and Professor Aniket Kate, for their valuable

support and mentorship. Moreover, I am forever grateful and indebted to Professor Susanne

E. Hambrusch, Professor Petros Drineas, and Professor Elena Grigorescu for their amazing

mentorship and unconditional support. Furthermore, I thank my collaborator and dear

friend Duc V. Le for his valuable help in Chapter 5 .

Last but not least, I am greatly thankful to my friends, who never stopped energizing

me. I would like to thank Poolad Imany, Babak Ravandi, Amir Sadeghi, Faezeh Ravazdezh,

Samaneh Saadat, Mahsa Fardisi, Peyman Yousefi, Siamak Rabienia, Ali Hekmatfar, Mohsen

Minaei, Hadi Shagerdi, Farzin Shamloo, Mohammad Chegini, Yasaman Taebi, Elham Mo-

hammadrezaei, Hamed Saiedi, Nima Johari, and Ahmad Darki.

4

TABLE OF CONTENTS

LIST OF TABLES . 8

LIST OF FIGURES . 9

LIST OF PROTOCOLS . 10

LIST OF SYMBOLS . 11

ABBREVIATIONS . 12

ABSTRACT . 13

1 INTRODUCTION . 14

1.1 Secure Two-party Computation . 15

1.2 Functionality Formulation . 15

1.3 Function Representation . 16

1.4 Summary of Our Contributions . 17

1.4.1 Private Equality Testing . 18

1.4.2 Secure Wildcard Pattern Matching 18

1.4.3 Secure Two-party Input-size Reduction 19

1.5 Organization of the Thesis . 20

2 PRELIMINARIES . 21

2.1 General MPC Threat Models . 21

2.1.1 Semi-honest Adversary . 21

2.1.2 Malicious Adversary . 21

2.1.3 Augmented Semi-honest Adversary 22

2.2 Additive Secret Sharing (Secret Splitting) 22

2.2.1 Properties of Secret Splitting . 24

2.2.2 Basic Operations and Arithmetic Black-box Model 24

2.3 Pseudorandom Function (PRF) . 27

2.4 Convolution . 28

3 PRIVATE EQUALITY TESTING . 32

3.1 Summary of Contributions . 33

3.2 Related Work . 34

3.3 Secure and Lightweight Protocol for Computing FEQZ(JsKA, JsKB) 35

Phase 1: Evaluating the Equality Predicate Using Arithmetic Over F3 36

Phase 2: Modular Conversion in Split Form 37

3.4 Overall Performance . 41

4 SECURE WILDCARD PATTERN MATCHING 42

4.1 Problem Definition . 43

4.2 Related work . 44

4.3 Summary of Contributions . 45

4.3.1 Wildcard Pattern Matching Algorithm 45

5

4.3.2 Secure Protocols . 46

4.3.3 Experimental Results . 46

4.3.4 Functionality Generalization . 46

4.4 Convolution-based Wildcard Pattern Matching Algorithm 47

4.4.1 Alphabet Preprocessing . 48

4.4.2 Proposed Algorithm (Wildcards in Only P) 52

4.4.3 Proposed Algorithm (Wildcards in Both P and T) 54

4.5 Secure Two-party Protocols for Wildcard Pattern Matching 56

4.5.1 Secure Convolution Computation . 57

4.5.2 Secure SWPM Protocols Using FEQZ 59

Secure Protocol for (⊥,Γ) = FSSWPM(T,P) 59

Secure Protocol for (⊥, γ) = FCSWPM(T,P) 61

Secure Protocol for (⊥, (γ > 0)) = FDSWPM(T,P) 63

4.5.3 Secure SWPM Protocols Using Relaxed Equality Testing 65

Secure Protocol for (⊥,Γ) = FSSWPM(T,P) 66

Secure Protocol for (⊥, γ) = FCSWPM(T,P) 68

Secure Protocol for (⊥, (γ > 0)) = FDSWPM(T,P) 74

4.6 Experimental Results . 78

4.6.1 Performance: Execution Time & Transferred Data 78

4.6.2 Comparison with Previous State of the Art 80

4.7 Discussion: SWPM in Stronger Adversarial Models 81

4.7.1 Bob Learns Only the Leftmost Match 83

4.7.2 Bob Learns One Match at Random 84

5 SECURE TWO-PARTY INPUT-SIZE REDUCTION 86

5.1 Motivation and Overview . 86

5.2 Related Work . 88

5.3 Summary of Contributions . 89

5.3.1 Problem Formulation . 89

5.3.2 Proposed Constructions . 90

5.3.3 Use Cases and Implications . 91

5.4 Problem Definition . 91

5.5 Major Challenges . 93

5.6 Constructing a Minimal Perfect SPHF for S = SA ∪ SB 93

5.6.1 FINDSPHF: Randomized LABEL-THEN-UNIFY 97

5.6.2 FINDSPHF: Randomized MERGE-THEN-UNIFY 100

5.7 Distribution: Probabilistic Input Partitioning 104

5.7.1 Challenge 1: Preventing Exploitation of Distributor Function’s Structure 105

5.7.2 Challenge 2: Possible Failure of a Distributor Candidate and Its Con-
sequences . 109

5.7.3 FINDDISTRIBUTOR: Putting Pieces Together to Find a Valid Distributor 112

5.8 Overall Distribution-Resolution Scheme . 115

5.9 Discussion: Use Cases and Implications in 2PC 118

5.9.1 Faster General Template Matching 118

5.9.2 Search Queries in High-precision Scientific Data 119

6

5.9.3 Implications of Secure Perfect Hashing for Private Set Intersection . . 120

6 SUMMARY . 123

REFERENCES . 126

7

LIST OF TABLES

3.1 Comparison of the secure realizations of FEQZ functionality in the ABB model
of computation and semi-honest threat model. ` = dlog2 qe denotes the input’s
bit-length, and κ is a correctness parameter. 34

4.1 All times are measured in seconds, and all transferred data volumes are measured
in megabytes. This table demonstrates LiLiP’s performance for pattern queries
of 64 characters, i.e., |P| = m = 64. 79

4.2 All times are measured in seconds, and all transferred data volumes are measured
in megabytes. This table demonstrates LiLiP’s performance for pattern queries
of 128 characters, i.e., |P| = m = 128. 79

4.3 All times are measured in seconds, and all transferred data volumes are measured
in megabytes. This table demonstrates LiLiP’s performance for pattern queries
of 512 characters, i.e., |P| = m = 512. 80

5.1 Performance of proposed SPHF constructions: Let mA = |SA|,mB = |SB|, m =
mA + mB and the security-performance parameter κ be a small integer; as m
grows larger, a smaller κ suffices for the same level of security (see Section 5.8 for
choice of κ). 91

8

LIST OF FIGURES

3.1 (JeKA, JeKB) = FPET(s1, s2) such that JeK = 1 if and only if s1 = s2. 32

3.2 (JeKA, JeKB) = FEQZ(JsKA, JsKB) such that JeK = 1 if and only if s = 0. 32

3.3 Modular conversion encodings and potential combinations: Alice and Bob each
locally encodes its respective share of Je(3)K into two bits a1a0 and b1b0 such that
a1a0 ⊕ b1b0 = 00 if and only if Je3K = 0. 37

4.1 (⊥,Γ) = FSSWPM(T,P) . 44

4.2 (⊥, γ) = FCSWPM(T,P) . 44

4.3 (⊥, (γ > 0)) = FDSWPM(T,P) . 44

4.4 Secure two-party circular convolution functionality 57

4.5 (JeKA, JeKB) = FREQZ(JsKA, JsKB) . 65

4.6 Single-blind Permutation Functionality . 69

4.7 (⊥, τ(Γ)) = F τSWPM(T,P) . 83

5.1 (%A, %B) = FSPHF(SA, SB) . 92

5.2 High-level illustration of FindSPHF through an example (γ = 4). Sections 5.6.1

and 5.6.2 propose protocols that securely and efficiently apply this approach. . . 94

5.3 The hypothetical function φ used in the proof of Lemma 5.1 95

5.4 (JYKA, JYBK) = FDBP(JXKA, JXKB) such that JYK = Jπ(X)K for a random per-
mutation π that is unknown to both parties. 96

5.5 (JZKA, JZKB) = FMERGE
(
(JXKA, JYKA), (JXKB, JYKB)

)
, which takes sorted vectors

JXK and JYK as input, and outputs their sorted combination as vector JZK in split
form. 101

5.6 Distribution functionality (ψA, ψB) = FDIST(SA, SB), where (i) Ψ is cooperatively
and securely computable; and, (ii) the maximum load bins for SA and SB under
Ψ have at most γ items, i.e., |SAi |, |SBi | ≤ γ for 0 ≤ i < m. 106

5.7 “Pick-any-One” functionality (t, t) = FPA1(JDKA, JDKB): The input JDK is a
length-κ vector of 0s and 1s. If {i | di = 1} = ∅, then t = 0; or else,
t

$←− {i | di = 1}. 110

5.8 Upper bound pfail ≤ m · (e/γ)γ for various choices of γ as a function of m 116

5.9 Overview of the Distribution-Resolution approach for the SPHF construction.
Black-box reductions in the same level denote independent secure computations
in parallel. 117

5.10 Hamming similarity of Xi,j and T . 119

9

LIST OF PROTOCOLS

3.1 Secure realization of (JeKA, JeKB) = FEQZ(JsKA, JsKB) using modular conversion . 40

4.1 Secure realization of (JZAK, JZKB) = FCONV(X,Y) 58

4.2 Secure realization of (⊥,Γ) = FSSWPM(T,P) based on FEQZ 60

4.3 Secure realization of (⊥, γ) = FCSWPM(T,P) based on FEQZ 62

4.4 Secure realization of (⊥, (γ > 0)) = FDSWPM(T,P) based on FEQZ 64

4.5 Secure realization of (JeKA, JeKB) = FREQZ(JsKA, JsKB) 65

4.6 Secure realization of (⊥,Γ) = FSSWPM(T,P) based on FREQZ 67

4.7 Secure realization of (JZKA, JZKA) = FSBP(π,X) using precomputed auxiliary
inputs RA, RB and UB = π(RA −RB) . 70

4.8 Secure realization of (⊥, γ) = FCSWPM(T,P) based on FREQZ 73

4.9 Secure construction of the augmented vector E′ by obliviously injecting chaff and
clone entries . 76

4.10 Secure approximation of (⊥, (γ > 0)) = FDSWPM(T,P) based on FREQZ 77

4.11 Secure realization of (⊥, τmin(Γ)) = F τmin
SWPM(T,P) based on FEQZ 85

5.1 Secure realization of FINDSPHF approach in constant rounds 99

5.2 Construction of ODPRF2
2 . 107

5.3 Secure realization of (t, t) = FPA1(JDKA, JDKB) 111

5.4 Finding a valid distributor function. Note that Step 1 is equivalent to κ invoca-
tions of Gen(1τ) from Protocol 5.2 . 114

5.5 Private Set Intersection built on Secure Perfect Hashing 121

10

LIST OF SYMBOLS

· Scalar product

∗ Convolution operator

? Wildcard symbol

� Pointwise product of two vectors

⊕ Bitwise exclusive-OR

⊥ Null

JsK An additively shared secret s

Superscript A Alice’s private ownership

Superscript B Bob’s private ownership

X A vector

xi The ith entry in vector X

Xrev The reverse of vector X

X||Y The concatenation of vectors X and Y

r
$←− S Choosing an item r uniformly at random from the set S

11

ABBREVIATIONS

Aux. Auxiliary

a.k.a also know as

w.p. with probability

w.h.p. with high probability

w.l.o.g. without lost of generality

Inj. Injective

Mult. Multiplication

MPC Secure Multiparty Computation

2PC Secure Two-party Computation

PET Private Equality Testing

SWPM Secure Wildcard Pattern Matching

PHF Perfect Hash Function

SPHF Secure Perfect Hash Function

PRF Pseudorandom Function

OPRF Oblivious Pseudorandom Function

DPRF Distributed Pseudorandom Function

ODPRF Oblivious Distributed Pseudorandom Function

12

ABSTRACT

Multiparty computation refers to a scenario in which multiple distinct yet connected

parties aim to jointly compute a functionality. Over recent decades, with the rapid spread

of the internet and digital technologies, multiparty computation has become an increasingly

important topic. In addition to the integrity of computation in such scenarios, it is essential

to ensure that the privacy of sensitive information is not violated. Thus, secure multiparty

computation aims to provide sound approaches for the joint computation of desired func-

tionalities in a secure manner: Not only must the integrity of computation be guaranteed,

but also each party must not learn anything about the other parties’ private data. In other

words, each party learns no more than what can be inferred from its own input and its

prescribed output.

This thesis considers secure two-party computation over arithmetic circuits based on

additive secret sharing. In particular, we focus on efficient and secure solutions for funda-

mental functionalities that depend on the equality of private comparands. The first direction

we take is providing efficient protocols for two major problems of interest. Specifically, we

give novel and efficient solutions for private equality testing and multiple variants of secure

wildcard pattern matching over any arbitrary finite alphabet. These problems are of vital

importance: Private equality testing is a basic building block in many secure multiparty

protocols; and, secure pattern matching is frequently used in various data-sensitive domains,

including (but not limited to) private information retrieval and healthcare-related data anal-

ysis. The second direction we take towards a performance improvement in equality-based

secure two-party computation is via introducing a generic functionality-independent secure

preprocessing that results in an overall computation and communication cost reduction for

any subsequent protocol. We achieve this by providing the first precise functionality for-

mulation and secure protocols for replacing original inputs with much smaller inputs such

that this replacement neither changes the outcome of subsequent computations nor violates

the privacy of sensitive inputs. Moreover, our input-size reduction opens the door to a new

approach for efficiently solving Private Set Intersection. The protocols we give in this thesis

are typically secure in the semi-honest adversarial threat model.

13

1. INTRODUCTION

Cryptography (rooted in Greek for “hidden writing”) emerged thousands of years ago as a

means for communicating secret messages. Its boundaries have expanded vastly over time

alongside the emergence of more complex communication and computation needs in human

societies. In recent decades, with the rapid development of computing devices, the modern

state of computation and communication calls for extremely sophisticated tools to address

safety and privacy demands in various domains. Hence, cryptography has become a well-

structured ever-developing mathematical science that provides for these needs.

One of the (relatively) recent subfields of cryptography is Secure Multiparty Computation

(MPC) that was formally introduced in 1982 by Yao [1]. In general, MPC refers to a setting in

which n parties P1, P2, · · · , Pn with respective private inputs x1, x2, · · · , xn wish to compute

a function f(x1, x2, · · · , xn) while preserving the privacy of their input data as much as

possible. Due to its strong security guarantees, MPC has a wide range of applications such

as secure general data analysis and data mining [2]–[9], biomedical computations [10]–[14],

financial computations [15]–[18], and many more task-specific use cases.

General-purpose MPC protocols that are capable of securely evaluating any function

have been known since the 1980s. The first protocol to realize MPC was presented by Yao

[1] through the introduction of garbled circuits. This seminal work was followed by other

general-purpose MPC solutions for secure evaluation of any function [19]–[21]. Although

such protocols were mainly of theoretical interest due to their inefficiencies in computation

and communication complexities, they led the cryptographic community into the area of

general-purpose MPC compilers (e.g., [22], [23]). The idea behind such compilers is to allow

programming in (fairly) high-level languages, then converting them to a circuit format that

will be executed using secure computation protocols. This would reduce the burden of

designing protocols and allow non-experts to use MPC for secure computations of interest.

Building efficient and easy-to-use general-purpose MPC compilers is an ongoing effort [24].

However, the general-purpose MPC solutions tend to be rather inefficient; their generality

does not allow exploiting all optimization opportunities specific to a problem of interest.

Another course of research towards practically applicable MPC is designing highly-optimized

14

special purpose MPC protocols for specific functions of interest (e.g., [25]–[27]). In this

dissertation, we follow this latter paradigm for achieving efficient two-party protocols for

problems whose answers depend on equality of input symbols (e.g., pattern matching and

private set intersection).

1.1 Secure Two-party Computation

In this dissertation, we focus on Secure Two-party Computation (2PC) as a special case

of MPC [28]. In 2PC, two distrusting parties (say, Alice and Bob) wish to jointly compute a

function of their private inputs while satisfying two main requirements: i) Each party must

receive its correct intended output (correctness); and, ii) neither party learns anything other

than what can be deduced from its own input and its prescribed output (privacy). The most

basic 2PC problems are:

1. Yao’s millionaires problem [1] in which two millionaires intend to determine who is

richer without revealing their net worth to each other.

2. Socialist millionaires problem in which two millionaires aim to determine whether or

not they are as rich as each other. This problem is often referred to as private equality

testing.

Despite their basic nature, these 2PC problems have proven to be of vital importance in

many computations in the digital world, including applications in online auctions, voting

systems, sensitive signal processing, and private search queries, to mention a few.

Extensive research has been dedicated to efficient 2PC solutions for a wide variety of

problems (e.g., [27], [29]–[37]). As a result, 2PC has recently become a more practically

applicable cryptographic technology [38].

1.2 Functionality Formulation

Privacy in 2PC requires that neither party can deduce any information other than what

can be deduced from its own input and prescribed output. Unlike a function, a functionality

specifies not only what is computed but also who provides each input and who learns which

15

output. Formally, consider a functionality F that takes Alice’s (resp. Bob’s) private input

inA (resp. inB), and in return provides her (resp. him) with the output outA (resp. outB);

such an ideal functionality is denoted as follows:

(outA, outB) = F(inA, inB)

To clarify, we discuss two distinct 2PC functionality definitions for private equality testing,

where private inputs inA and inB are integers:

1. First, we consider a case in which the functionality discloses the test outcome to Bob

but not to Alice. In other words, Bob learns the predicate value e = (inA == inB)

while Alice learns nothing; i.e., outA = ⊥ and outB = e. Note that the output e = 1

inherently reveals the integer inA to Bob, whereas the output e = 0 reveals nothing

about inA to Bob except the fact that inA 6= inB.

2. Now, we consider another case in which the functionality does not disclose the test

output to either party, but returns the predicate value e = (inA == inB) as a shared

secret; i.e., neither party’s private output alone gives any information about e, but e

can be reconstructed using both shares of the output. In this scenario, neither party

learns anything about the other party’s input.

In the remainder of this thesis, we typically require the outputs to be shared secrets, unless

we explicitly state otherwise. This allows us to maintain a maximum level of privacy when

a protocol itself serves as a building block in another solution, without sacrificing generality

because the output can be reconstructed if either party is supposed to learn it in its entirety.

1.3 Function Representation

After choosing a proper formulation based on the desired goals, a natural question is how

to mathematically represent functions; there are two primary choices:

• Boolean circuits in which a function’s inputs and outputs are encoded as bits.

16

• Arithmetic circuit over a prime field in which a function’s inputs and outputs are

elements in the finite field Fq of integers modulo a prime q.

The trade-off between these two choices boils down to the impact of the underlying encoding

on the efficiency of computing basic building blocks. On the one hand, boolean functions

such as equality and inequality tests are easy to compute in the boolean circuit, whereas they

are challenging in the arithmetic circuit. On the other hand, the addition and multiplication

of secrets can be performed efficiently in the arithmetic circuit but not in the boolean circuit.

This thesis aims to provide efficient approaches in the arithmetic circuit when the desired

functionality depends on equality tests that involve private comparands. In order to obtain

guaranteed privacy while maintaining efficiency, we use additive secret sharing (see Section

 2.2).

In 2006, the seminal results of [39] resolved the gap between arithmetic circuits and

boolean circuits. Damg̊ard et al. [39] proposed, for the first time, a bit-decomposition tech-

nique that converts a shared secret integer into the sharings of its bits. This technique was

the first bridge between boolean and arithmetic circuits in MPC. Moreover, Schoenmakers et

al. [40] proposed similar results based on homomorphic cryptosystems that obtain encrypted

bits of an integer from the encrypted integer itself.

1.4 Summary of Our Contributions

We take two distinct approaches to improve the performance of equality-based 2PC

protocols. First, we present efficient solutions for two problems of interest, namely, Private

Equality Testing (Chapter 3) and Secure Wildcard Pattern Matching (Chapter 4). Both of

these problems play fundamental roles as building blocks in a wide variety of more complex

2PC problems. Our second approach presented in Chapter 5 aims to improve the performance

of equality-based 2PC protocols through a generic secure preprocessing that reduces the

inputs’ sizes. Most of the results of this thesis have already been published in scholarly

venues: Parts of Chapter 4 in [41]; and, Chapter 5 in [42]. Below, we briefly review our

contributions.

17

1.4.1 Private Equality Testing

Both instances of secure comparison of private integers (Yao’s millionaires and socialist

millionaires problems) are among the most fundamental 2PC problems. These functionali-

ties, alongside the basic addition and multiplication operations, are widely used as building

blocks for solving other problems. Here, we concentrate on private equality testing, which is

itself vastly studied [39], [43]–[55] (see Section 3.2 for a detailed review).

In private equality testing, Alice’s and Bob’s respective private inputs are integers a and b,

and they would like to securely evaluate the predicate “(a == b)”. Due to its non-arithmetic

nature, private equality testing is a major efficiency bottleneck for many 2PC protocols in the

arithmetic circuit model. Although bit-decomposition is sufficient for solving this problem

[39], [43], protocols that involve bit-decomposition are rather expensive and should be con-

sidered as a last resort. In Chapter 3 , we present a novel lightweight protocol that securely

evaluates the equality predicate over the arithmetic field Fq. In order to obtain efficiency,

all internal states of our protocol are over F3 rather than Fq; at the end, our protocol uses

our novel modular conversion technique, that uses only three secure multiplications over Fq,

to convert the secret-shared test result from F3 to Fq.

1.4.2 Secure Wildcard Pattern Matching

Pattern matching, in its various forms, is one of the primary problems when it comes to

data processing and maintenance. Its countless applications include bioinformatics and DNA

sequencing, digital forensics, intrusion detection, spelling checking, plagiarism detection,

spam filtering, search engines, and content search in large databases. Pattern matching in

a 2PC setting has comparatively many applications and is also well-studied [4], [56]–[59].

In Chapter 4 , we address the Secure Wildcard Pattern Matching (SWPM) problem, which

serves as a building block in numerous 2PC problems.

Let Σ ⊆ Fq be the underlying alphabet. In secure pattern matching, a party (say, Alice)

has a private text string T ∈ Σn and the other party (say, Bob) has a private pattern string

P ∈ Σm, where m ≤ n; the goal is for Bob to learn only about the occurrences of P in T

without learning any additional information about T. Meanwhile, Alice must learn nothing

18

about P. Note that secure pattern matching can be interpreted as a generalization of private

equality testing (with output disclosure to Bob), which corresponds to the special case of

n = m = 1. SWPM also allows the use of a wildcard (or, “don’t care”) symbol ? 6∈ Σ that

matches any alphabet symbol. There are three major variants of SWPM:

• Search version: Bob learns all positions in T at which P occurs.

• Counting version: Bob learns only the count of occurrences of P in T.

• Decision version: Bob learns only whether or not P occurs in T at least once.

Throughout, by occurrence of P in T we mean as a substring of T. In spite of the extensive

work done on secure pattern matching, the bulk of the existing work in the literature is

dedicated to the search version. In Chapter 4 , we first propose a linearithmic wildcard

pattern matching algorithm which is particularly well suited for easy and efficient secure

instantiation. Then, we build on it to give provably secure protocols that solve all three

variants of SWPM.

Additionally, we point out that the traditional search version of SWPM has a major

definitional drawback in the stronger security models where Bob can lie about his input: An

adversarial Bob who may use a judiciously crafted input string P̃ (rather than his prescribed

input P) can learn Alice’s input T, partially or even in its entirety. This drawback is inherent

to the functionality definition, and it defeats the purpose of using any secure solution. We

address this issue through formulating a generalized SWPM functionality with respect to a

filtering function that restricts what Bob learns. Moreover, we show that our solutions to

the three main variants of the problem fit in this more general definition. Finally, we give

two additional instances of filtered SWPM that relate to the search version but do not allow

Bob to learn Alice’s input text.

1.4.3 Secure Two-party Input-size Reduction

In Chapter 5 , we consider a novel approach for improving the performance of equality-

based 2PC protocols. In particular, we focus on the obvious fact that the performance of

any protocol depends on its inputs’ sizes. As a result, a secure preprocessing of inputs that

19

replaces each input symbol (an element in Fq) with a much smaller integer, in a manner that

does not change the outcome of subsequent protocols, would reduce the computation and

communication costs. In other words, we intend to transfer all computations from Fq to Fq̂
for q̂ � q. Such a preprocessing is especially advantageous when its cost can be amortized

over subsequent computations that all benefit from the smaller inputs. There are some task-

specific [31], [60] secure size reduction approaches. However, our work is the first attempt

towards a generic solution in this domain; e.g., it does not matter if our size-reduction scheme

is used before invoking a protocol for secure pattern matching or for private set intersection.

We formalize the 2PC input-size reduction problem, propose efficient and secure solutions

to it, and discuss its use cases. In a nutshell, Alice’s and Bob’s inputs are their respective

private sets SA and SB of large integers, and their private outputs are images of their

sets under a function ρ that injectively maps SA ∪ SB into {0, 1, · · · , N − 1} for a small

N ≥ |SA| + |SB|; this allows executing subsequent protocols over Fq̂ instead of Fq, where q̂

is the smallest prime larger than N − 1. Alice’s (resp. Bob’s) knowledge of this mapping on

SA (resp. SB) must reveal nothing about SB (resp. SA). Thus, neither party should be able

to learn ρ(x) for any x that is not in its private set; otherwise, either party could exploit the

small codomain of ρ to learn about the other party’s set.

1.5 Organization of the Thesis

This dissertation is organized as follows. Chapter 2 reviews the underlying concepts that

are used in this document. Chapters 3 and 4 present the first direction that we take for

improving equality-based 2PC. In particular, Chapter 3 reviews and gives a new solution

to the private equality testing problem, and Chapter 4 is dedicated to the secure wildcard

pattern matching problem. Chapter 5 presents our second direction that addresses the need

for a generic secure preprocessing of inputs that results in a performance improvement for

any subsequent 2PC equality-based computation. Finally, we summarize this dissertation in

Chapter 6 .

20

2. PRELIMINARIES

This chapter reviews the existing concepts and primitives used in the remainder of this thesis.

2.1 General MPC Threat Models

Adversarial behavior is one of the major factors in designing secure two-party protocols.

Often, 2PC protocols are investigated in the presence of either a semi-honest or a malicious

adversary. In a nutshell, the former model considers a corrupted party that behaves honestly

but curiously tries to learn about the other party’s private data by probing its transcript of

the protocol steps. There is no restriction on a malicious adversary’s behavior, and it may

deviate from the protocol as it desires. In what follows, we discuss these models in detail and

review a third model that serves as a bridge between them. In this document, we assume

a static corruption model in which honest and corrupted parties are fixed in the beginning

and remain so during the course of protocol execution.

2.1.1 Semi-honest Adversary

A semi-honest (a.k.a honest-but-curious or passive) adversary follows the protocol spec-

ifications correctly. However, it maintains the transcript of all the messages received, and

attempts to use it for learning unauthorized information about the other party’s private

data. Although this adversarial model may seem insufficient for practical purposes, it is use-

ful in many cases. First, it perfectly models inadvertent leakage of information in protocols’

design. Moreover, designing secure protocols in the semi-honest model is often the first step

for obtaining secure protocols in the stronger malicious model.

2.1.2 Malicious Adversary

A malicious (a.k.a active) adversary can arbitrarily deviate from the protocol specifica-

tion. In this model, the goal is to catch a cheating adversary with overwhelming probability.

Providing security in the presence of malicious adversaries ensures that no adversarial attack

can succeed. However, protocols that are secure in this model are usually much less efficient.

21

One of the common approaches in obtaining security in the malicious model is i) designing

a secure protocol in the semi-honest model, and ii) using some cryptographic primitives to

enforce a semi-honest behavior on both parties.

2.1.3 Augmented Semi-honest Adversary

By definition, a semi-honest adversary always provides its prescribed input. However, it

is only natural to allow a corrupted party to modify its input before the protocol execution

begins. This is because of the following two reasons [28]:

• Subjectively, it can be argued that choosing a different input is not improper behavior.

Hence, this free choice of input is in the spirit of semi-honest behavior.

• When protocols secure in the semi-honest model are used as a stepping stone for

obtaining secure protocols in the malicious model, it is crucial to allow the semi-honest

adversary to modify its input. In fact, Goldreich introduces the augmented semi-

honest model as above when describing how to obtain security in the malicious model

from protocols that are secure only against a semi-honest adversary [61]. On another

note, it is only natural that any protocol that is secure in the malicious model must

also be secure in the weaker semi-honest model. Hazay et al. [28] discuss that this is

guaranteed to hold only when the semi-honest adversary can also change its input.

2.2 Additive Secret Sharing (Secret Splitting)

Secret sharing schemes distribute a secret s among n parties such that any subset of the

participants that satisfy a certain criterion are able to reconstruct s. In particular, a secret

sharing scheme is an (n, t)-threshold scheme if the shared secret s among n parties can be

reconstructed by any subset of t ≤ n or more participants, and fewer than t parties cannot

learn anything about the secret [62]. Such a secret sharing scheme must be able to uniquely

determine the secret s (correctness); furthermore, any group of less than t parties must not

be able to learn anything about s (privacy).

22

Additive secret sharing (a.k.a secret splitting) over a finite field Fq is the simplest form

of secret sharing, and it is an (n, n)-threshold scheme. In the two-party case (n = 2), a

split secret s among two parties, Alice and Bob, consists of two uniformly distributed shares

JsKA ∈ Fq (Alice’s share) and JsKB ∈ Fq (Bob’s share) such that s = JsKA + JsKB. Secret

splitting is a valid (2, 2)-threshold scheme:

• Correctness: Given both shares, s can be reconstructed uniquely through one addition.

• Privacy: Each party’s share is statistically independent of the secret s; hence, one

share alone does not reveal any information about s.

Moreover, a secret s that is private to one party (say, Alice) can be shared among parties as

follows:

1. Alice generates a uniform random r
$←− Fq.

2. Alice sends r to Bob as his share of the secret s; she also computes s − r as her own

share of the secret. In summary,

JsKA = s− r and JsKB = r (2.1)

Clearly, s = JsKA+JsKB, and each party’s share is a uniform random that is independent of the

secret s; moreover, Bob learns nothing about Alice’s private secret s because he learns only

the uniform random r. Note that in the above special case when one party owns s (hence,

knows it), it is not necessary to make the shares uniform randoms that are both independent

of s, but it suffices to ensure that the second party’s share does not carry any information

about the secret. Therefore in such a case, the parties can split s non-interactively as follows:

JsKA = s and JsKB = 0 (2.2)

Obviously, s = JsKA + JsKB, and Bob learns nothing about Alice’s secret s because his share

JsKB = 0 is independent of s and carries no information about it.

Notation 2.1. In the remainder of this document, we use JsK to denote a secret s that is

additively split among Alice and Bob.

23

2.2.1 Properties of Secret Splitting

Secret splitting has the following two well-known properties:

1. Linearity: For two split secrets Js1K and Js2K and public integers c and d, Alice and

Bob can compute Js3K = Jc · s1 + d · s2K without any interaction as follows:

Js3KA = c · Js1KA + d · Js2KA and Js3KB = c · Js1KB + d · Js2KB (2.3)

The correctness of this property follows immediately from the definition of secret split-

ting.

2. Efficient secure multiplication: For two split secrets Js1K and Js2K, there is a one-round

multiplication protocol that allows Alice and Bob to securely compute Js3K = Js1 · s2K.

More details about this property will be reviewed below in Section 2.2.2 .

The two properties above play an important role in the efficiency of protocols built on

additive secret sharing.

2.2.2 Basic Operations and Arithmetic Black-box Model

The performance of our protocols depends on lightweight and secure computations of

basic operations in split form, including addition and multiplication of split secrets as well

as generating split randoms. Here, we give a high-level overview of these operations and how

they are modeled in the remainder of this thesis.

Addition in Split Form

Addition of two secret inputs (private or shared) does not need any interaction among

parties; it requires only one local addition by each party:

Js1 + s2KA = Js1KA + Js2KA and Js1 + s2KB = Js1KB + Js2KB (2.4)

24

Multiplication in Split Form

It is well-known that secure multiplication of two secrets, unlike addition, requires Alice

and Bob to interact. One common practice for secure multiplication of split secrets over a

finite field is through Beaver multiplication triples [63]:

1. Input-independent offline phase: Generating a triple of correlated randoms 〈JaK, JbK, JcK〉

such that JcK = Ja · bK. Since this offline phase is input-independent, it can be carried

out ahead of time before the actual inputs are available.

2. Online phase: For split secrets Js1K and Js2K, Alice and Bob collaborate in a lightweight

derandomization step that uses 〈JaK, JbK, JcK〉 to obtain Js1 · s2K. For that, Alice and

Bob first compute Js1 − aK, Js2 − bK, then reveal s1 − a and s2 − b to each other by

exchanging their respective shares of these values; afterwards, they compute:

Js1 · s2K = JcK + Js1K(s2 − b) + Js2K(s1 − a)− (s1 − a)(s2 − b) (2.5)

Note that this online phase does not use any cryptographic primitives. Moreover, it

requires exactly one round of communication for exchanging shares of Js1 − aK and

Js2 − bK. Since Equation 2.5 involves only addition in split form and multiplication by

publicly known integers, it can be computed non-interactively due to the linearity of

secret splitting.

Generating Beaver triples has been extensively studied based on various assumptions and

frameworks (e.g., [64]–[66]).

Split Random Generation

To generate a uniform random field element JrK $←− Fq in split form, it suffices for Alice

and Bob to choose uniform random shares JrKA $←− Fq and JrKB $←− Fq, which inherently

gives the uniform random JrK. Sometimes, it is required to guarantee that JrK 6= 0. Note

that generating JrK as described above results in JrK = 0 with probability |Fq|−1 which is

negligible if the finite field Fq is large enough. However, if JrK = 0 with probability |Fq|−1 is

25

not acceptable, then a simple approach for Alice and Bob to make sure JrK $←− Fq \ {0} is as

follows:

1. Alice and Bob generate two uniform randoms Jr1K, Jr2K
$←− Fq as described above.

2. Alice and Bob securely compute Jr1 · r2K and reveal r1 · r2 to each other by exchanging

their respective shares of Jr1 · r2K.

3. If r1 · r2 6= 0, then it is true that r1 6= 0 and r2 6= 0. As a result, they keep Jr1K as the

desired non-zero split random JrK and dispose of Jr2K. In the other case (of r1 · r2 = 0),

they discard the randoms and try again.

Arithmetic Black-box Model.

Our protocols use secret splitting to securely carry out the desired computations on

private inputs and internal values that must not be revealed to either party. After obtaining

the desired output(s) in split form, it is straightforward to reveal the result to either party

(if needed) through reconstructing the desired shared output. In order to focus on the task

at hand rather than the detailed specifications and security guarantees of the underlying

protocols for basic operations discussed earlier, we use the Arithmetic Black-box (ABB)

model of computation as in [67]. In the ABB model, each basic operation is provided

through access to an ideal functionality. These ideal functionalities can be interpreted as a

(hypothetical) trusted third party, who provides generation and storage of elements of Fq as

well as arithmetic computations on field elements.

Below, we provide an intuitive presentation of how this model works for the non-trivial

operation of secure multiplication. For computing the product Js1 · s2K, the trusted third

party securely collects the inputs from both parties, carries out the computation, splits the

result, and provides each party with a share of the computation result; i.e.,

1. Alice sends her shares Js1KA and Js2KA to the trusted server. Similarly, Bob sends his

Js1KB and Js2KB to the trusted server.

2. The server reconstructs secrets s1 and s2. Then, it computes the product s3 = s1 · s2.

26

3. The server splits the multiplication result s3 and distributes its two shares. Specifically,

the server chooses a uniform random r
$←− Fq; then, it sends Js3KA = s3−r and Js3KB = r

to, respectively, Alice and Bob.

One needs to make sure that in practice such an ideal functionality can be replaced with

(existing) two-party protocols without compromising the overall security. This is possible

because there are protocols [66] that securely realize these ideal functionalities in the Univer-

sal Composability (UC) model of [68]. The UC framework, introduced by Canetti [68], is a

general-purpose method for the security analysis of cryptographic protocols. Protocols that

are UC-secure remain secure even if executed sequentially or in parallel in composition with

other protocols. Henceforth, we avoid the details of these basic operations and use them in

a black-box manner.

2.3 Pseudorandom Function (PRF)

Let τ be a security parameter, and F : {0, 1}τ × {0, 1}`in → {0, 1}`out be a keyed func-

tion (the first input being the key denoted by k ∈ {0, 1}τ) such that F (k, x) is efficiently

computable for all k and x. Typically, one chooses k uniformly at random and obtains a

single-input function Fk : {0, 1}`in → {0, 1}`out defined by Fk(·) = F (k, ·). Function F is a

PRF if no probabilistic polynomial-time (PPT) distinguisher can distinguish whether it is

interacting with Fk(·) or a truly random function f : {0, 1}`in → {0, 1}`out [69].

Definition 2.1 (Pseudorandom Function [69]). Let F be an efficiently computable keyed

function and τ be the security parameter. Function F is a Pseudorandom Function if for all

PPT distinguishers D, there is a negligible function negl(·) such that:

|Pr[DFk(·)(1τ) = 1]− Pr[Df(·)(1τ) = 1]| ≤ negl(τ),

where the superscript of D denotes distinguisher’s oracle access to the corresponding function.

Moreover, the first probability is over the choice of key k and randomness of D, and the second

probability is over the choice of truly random function f and randomness of D.

27

Note that the security parameter τ (key length) must be chosen for the desired security

level, while the input and output lengths, `in and `out, are determined by the application in

which the PRF is being used; `in and `out must be polynomially bounded in τ [69].

Oblivious PRF (OPRF)

An OPRF is a tuple 〈F,ProtOPRF
F 〉, where F is a PRF, and ProtOPRF

F is a two-party

protocol that enables a party who has the key k to allow a querier to compute Fk(x) for

a private query x. The querier learns nothing other than Fk(x), and the key holder learns

nothing about x and Fk(x) [28], [70], [71].

Distributed PRF (DPRF)

A t-out-of-n DPRF refers to a threshold evaluation of Fk(·); in a system of n parties, any

subset of t parties can compute Fk(x); but, any subset of fewer than t parties should not be

able to obtain any information about Fk(x) [72].

2.4 Convolution

In its most general form, linear convolution (denoted by ∗) is a mathematical binary

operation that operates on two functions f and g to produce a third function h. It is well-

known that this operation is linear and commutative. Below, we briefly review its definition

as well as one of its special cases that will be used in the remainder of this document.

The convolution function h = f ∗ g is defined as the integral of the product of f and

g after one is reversed and shifted; this integral is assessed for all possible values of shift.

Formally,

h(x) = f(x) ∗ g(x) =
∫ ∞
−∞

f(y) · g(x− y) dy (2.6)

or, equivalently

h(x) = f(x) ∗ g(x) =
∫ ∞
−∞

f(x− y) · g(y) dy (2.7)

Discrete convolution refers to the case in which functions f and g are defined on the set

Z of integers. Accordingly, the convolution of two sequences F = [f0, f1, · · · , fλ1−1] ∈ Cλ1

28

and G = [g0, g1, · · · , gλ2−1] ∈ Cλ2 is a sequence H of length λ = λ1 + λ2 − 1 such that for

0 ≤ i ≤ λ:

hi =
∞∑

j=−∞
fj · gi−j (2.8)

or, equivalently

hi =
∞∑

j=−∞
fi−j · gj (2.9)

where any entry with an out-of-range index is considered to be equal to zero, i.e.,

fk = 0 for k < 0 and k ≥ λ1

gk = 0 for k < 0 and k ≥ λ2

(2.10)

In what follows, we focus on discrete convolution of two sequences.

Circular Convolution

Circular convolution (denoted by ~) of two same-length sequences F,G ∈ Cλ is defined

as a length-λ sequence H such that for 0 ≤ k < λ:

hk =
∑

i+j=k (mod λ)
fi · gj =

λ−1∑
i=0

fi · g(k−i mod λ) (2.11)

or, equivalently

hk =
∑

i+j=k (mod λ)
fj · gi =

λ−1∑
i=0

f(k−i mod λ) · gi (2.12)

Note that circular convolution is defined for same-length sequences; in the case that F and G

have different length, circular convolution is possible only after padding the shorter sequence

with enough zeros to equalize the lengths of both sequences. Although linear convolution

and circular convolution are fundamentally different operations, an equivalency can be es-

tablished among them under certain conditions. In case of convolving two sequences, circular

convolution can be viewed as linear convolution when the sequences represent periodic func-

tions; thus, shifting a sequence can be interpreted as its rotation because the values repeat

due to the periodicity.

29

Fast Convolution Computation

It is well-known that fast transforms with a convolution property can be used for efficient

computation of circular convolution [73]–[75]; i.e., the circular convolution of two sequences

F,G ∈ Cλ can be computed with O(λ log λ) computation complexity due to the convolution

theorem, which states that the Discrete Fourier Transform (DFT) of F ~ G is equal to the

pointwise product of the DFT of F and the DFT of G [73]–[75], i.e.,

DFT(F ~ G) = DFT(F)�DFT(G) (2.13)

Hence, given any Fast Fourier Transform (FFT) algorithm that requires O(λ log λ) work to

compute the DFT (and its inverse DFT−1) of a sequence, the circular convolution of two

leqngth-λ sequences can also be computed with O(λ log λ) work as follows:

F ~ G = DFT−1
(
DFT(F)�DFT(G)

)
(2.14)

In Chapter 4 of this thesis, we will use the Number Theoretic Transform (NTT) for fast

convolution computation. NTT is a generalization of DFT over the finite field Fq of integers

modulo a prime q. NTT allows performing convolution computation on integer sequences as

it satisfies the convolution property [74]. Using NTT (rather than DFT) for convolving inte-

ger sequences is beneficial as it is somewhat faster and also avoids floating-point arithmetic

that could have resulted in roundoff errors.

The linear convolution of two sequences F̂ ∈ Cλ1 and Ĝ ∈ Cλ2 can be obtained using any

algorithm for computing circular convolution as follows [73]:

1. Augment both sequences F̂ and Ĝ by padding them with enough zeros to make them

both of length λ = λ1 + λ2 − 1; i.e.,

F = F̂||[
length: λ2−1︷ ︸︸ ︷
0, 0, · · · , 0] and G = Ĝ||[

length: λ1−1︷ ︸︸ ︷
0, 0, · · · , 0]

30

2. Compute H, a sequence of length λ = λ1 + λ2 − 1, that is the circular convolution of

the augmented sequences. More formally,

H = F ~ G = F̂ ∗ Ĝ

Although the above approach through zero padding of both sequences F̂ and Ĝ is sufficient

on its own, it is not advisable when one sequence is much longer than the other for two

reasons [73] (w.l.o.g., λ1 � λ2):

• The shorter sequence Ĝ must be padded with too many zeros, which results in an

unacceptable amount of unnecessary computations.

• The DFT (or NTT) must be performed on very long sequences which may be imprac-

tical or inconvenient.

There exist well-known segmenting techniques such as overlap-add and overlap-save that are

often used to avoid the drawbacks discussed above [73]. The idea in these techniques is to

divide the (longer) sequence of length λ1 into shorter blocks with a length that is proportional

to λ2; then, each block is separately convolved with the shorter sequence and the resulting

convolution vectors are combined to construct H = F̂ ∗ Ĝ [73]. Using these segmenting

approaches further improves the cost of convolution computation to O(λ1 log λ2).

31

3. PRIVATE EQUALITY TESTING

Private equality testing (PET) is a central primitive in 2PC as many protocols require to

test if two private or encrypted values are equal. In this chapter, we propose a lightweight

and provably secure solution to this problem. To maintain generality, we emphasize that the

test output must not be disclosed to either party (unless they agree to do so). Hence, our

protocol returns the test result as a split secret.

In the original PET formulation (socialist millionaires problem), Alice has a private

integer s1 ∈ Fq and Bob has a private integer s2 ∈ Fq, and they intend to securely evaluate

the predicate value “(s1 == s2)”. Formally, the PET functionality (denoted by FPET) is

defined as in Figure 3.1 .

e = (s1 == s2)
FPETAlice

s1

JeKA

Bob
s2

JeKB

Figure 3.1. (JeKA, JeKB) = FPET(s1, s2) such that JeK = 1 if and only if s1 = s2.

Recall that an integer that is private to a party can be split in a non-interactive manner

by setting the other party’s share to be 0. Moreover, in many 2PC scenarios, s1 and s2 may

not be known by either party (e.g., they are internal values of another protocol). Hence,

we consider the more general case of PET in which inputs are additively split secrets, and

(perhaps) unknown to either party. On the other hand, for any two split secrets it is true

that Js1K = Js2K if and only if Js1 − s2K = 0. Thus, it suffices to give a secure protocol that

computes the “equal to zero” functionality (denoted by FEQZ) as illustrated in Figure 3.2 .

In the remainder of this document, private equality testing refers to FEQZ.

e = (s == 0)
FEQZAlice

JsKA

JeKA

Bob
JsKB

JeKB

Figure 3.2. (JeKA, JeKB) = FEQZ(JsKA, JsKB) such that JeK = 1 if and only if s = 0.

32

3.1 Summary of Contributions

Our equality testing protocol, ZeroTest (Protocol 3.1), is built based on the two fol-

lowing observations:

• JsK = 0 if and only if JsKA = −JsKB

• If q is an `-bit prime (i.e., ` = dlog2 qe), then any integer x ∈ Fq has a unique binary

representation Bits(x) = x`−1x`−2 · · · x0 that does not result in a modular wraparound

in Fq when computing x = ∑`−1
i=0 xi · 2i mod q; i.e,

`−1∑
i=0

xi · 2i =
(`−1∑
i=0

xi · 2i
)

mod q (3.1)

We use the above-mentioned unique binary representation to resolve the gap caused by

the boolean nature of FEQZ while working in the arithmetic circuit model. Even a naive

implementation of the solution we give would require only 2` − 1 invocations to a secure

multiplication protocol over Fq, which itself results in a much more computationally efficient

protocol compared to those based on bit-decomposition [39], [43] that require O(` log `)

secure multiplications (with large hidden constant factors; see Table 3.1). But, our final

protocol does even better: It obtains a more lightweight equality testing by using a new

modular conversion technique that allows all internal computations to be over F3 rather

than Fq, while the final output is still additively split over Fq. In particular, our ZeroTest

protocol carries out the above-mentioned 2`−1 secure multiplications over F3; this avoids the

additional overhead of arithmetic over Fq. Note that the result of a number of multiplications

over F3 will be also in F3. However, since FEQZ is defined over Fq, its output must be in Fq
as well. Our modular conversion technique uses only three secure multiplications over Fq to

convert the test result e ∈ {0, 1} ⊂ F3 to its counterpart in Fq. In summary, ZeroTest

carries out all internal arithmetic over F3 and uses exactly three secure multiplications to

generate the final output in Fq.

33

3.2 Related Work

Private equality testing is one of the most well-studied problems in the 2PC setting as it

has proven to be a core primitive in many secure two-party applications [52]–[55]. Solutions

in various models and frameworks have been proposed based on secret sharing [39], [43]–[46],

garbled circuits [47], [48], and homomorphic encryption [49]–[51]. Below, we focus on the

existing work based on secret sharing as those are closest to our approach. In what follows, `

denotes the bit-length of the input and κ is a correctness parameter. Moreover, since among

basic operations over Fq the secure multiplication is the dominant cost factor in the arithmetic

model, the performance of protocols is measured based on the count of required invocations

to a secure multiplication protocol and the total number of communication rounds.

Damg̊ard et al. [39] proposed, for the first time, a bit-decomposition technique that con-

verts a shared secret JsK into the sharings of the bits of s in a constant number of rounds. This

tool was the first bridge between arithmetic and boolean circuit models in 2PC. Building on

bit-decomposition, [39] gives a secure protocol for computing FEQZ(JsKA, JsKB); this protocol

requires 98` + 94` log2 ` invocations in a total of 39 rounds. Nishide et al. [43] proposes a

simplified bit-decomposition scheme that can be used to securely compute FEQZ(JsKA, JsKB)

through 98` + 47` log2 ` invocations in 26 rounds of communication. Moreover, [43] gives

another equality testing protocol (without bit-decomposition) that requires 81` invocations

in a total of 8 rounds. Another course of research [45], [51] obtains sublinear (in `) number

Table 3.1.
Comparison of the secure realizations of FEQZ functionality in the ABB model
of computation and semi-honest threat model. ` = dlog2 qe denotes the input’s
bit-length, and κ is a correctness parameter.

Solution Secure Mult. Over Fq Rounds Error Rate
[39] (Bit-decomposition) 98`+ 94` log2 ` 39 0
[43] (Bit-decomposition) 98`+ 47` log2 ` 26 0

[43] (Bit-oriented) 81` 8 0
[43] (Legendre symbol) 12k 4 2−k

[44] (Prob. ModCNVq→2) k 8 2−k
ZeroTest (Bit-oriented) 3 3 + log2 ` 0

34

of invocations in the online phase of the protocols; however, these latter protocols are based

on more intensive offline computations and give results in a total of O(`) invocations.

For some probabilistic equality testing protocols [43], [44] the number of invocations is

independent of the input bit-length `; in these solutions, the count of invocations merely

depends on a correctness parameter κ that results in an error probability 2−Ω(κ). Note

that in spite of this, the overall computation and communication complexities inherently

depend on ` because of arithmetic over Fq. The probabilistic solution in [43] computes the

Legendre symbol multiple times: The key idea is that for a uniform random r ∈ Fq, s = 0

always results in
(
r
q

)
=
(
s+r
q

)
; on the other hand, if s 6= 0, then

(
s
q

)
=
(
s+r
q

)
with a non-

negligible probability. This approach requires 12κ invocations in 4 rounds of communication

to obtain the desired failure probability. Yu et al. [44] adapts the solution above and uses a

probabilistic and lightweight modular conversion instead of the Legendre symbol; this gives

a performance of κ invocations in 8 rounds. Note that our deterministic modular conversion

differs from the probabilistic PET solution based on randomized modular conversion in [44].

3.3 Secure and Lightweight Protocol for Computing FEQZ(JsKA, JsKB)

In this section, we present our provably secure two-party protocol, ZeroTest (Protocol

 3.1), for securely computing (JeKA, JeKB) = FEQZ(JsKA, JsKB) as illustrated in Figure 3.2 .

ZeroTest consists of two phases:

• Phase 1 computes the predicate (JsK == 0) using arithmetic over F3, and obtains the

test result JeK ∈ {0, 1} ⊂ F3.

• Phase 2 converts the output of Phase 1 to its counterpart in Fq.

Notation 3.1. Hereafter, superscripts (3) and (q) for an integer e denote the integer in,

respectively, F3 and Fq. For instance, Je(3)K = 1 means that there are private shares

Je(3)KA, Je(3)KB ∈ F3 such that Je(3)KA + Je(3)KB mod 3 = 1.

Moreover, if the superscripts are used for a bit α (rather than an integer), then α(3) and

α(q) denote the corresponding integers in, respectively, F3 and Fq:

• If α = 0, then α(3) = 0 ∈ F3 and α(q) = 0 ∈ Fq

35

• If α = 1, then α(3) = 1 ∈ F3 and α(q) = 1 ∈ Fq

Notation 3.2. For bit operations, this document follows the established notations used in

the literature, namely, if α and β are two bits then

• ᾱ denotes the complement of α, i.e., ᾱ = 1− α

• α⊕ β denotes the exclusive-OR of bits α and β.

Phase 1: Evaluating the Equality Predicate Using Arithmetic Over F3

Let Bits(JsKA) = α`−1α`−2 · · ·α2α1α0 and Bits(−JsKB) = β`−1β`−2 · · · β2β1β0 be the unique

binary representations of, respectively, JsKA and −JsKB with the property summarized in

Equation 3.1 . Clearly, JsK = 0 if and only if Bits(JsKA) = Bits(−JsKB). In other words,

JsK = 0 if and only if ᾱi ⊕ βi = 1 for all 0 ≤ i ≤ ` − 1. Moreover, it can easily be verified

that
(ᾱi ⊕ βi)(3) = ᾱ

(3)
i + β

(3)
i − 2(ᾱ(3)

i · β
(3)
i)

(ᾱi ⊕ βi)(q) = ᾱ
(q)
i + β

(q)
i − 2(ᾱ(q)

i · β
(q)
i)

(3.2)

This enables securely computing Jz(3)
i K = J(ᾱi ⊕ βi)(3)K through one secure multiplication

invocation over F3, as follows:

1. Alice and Bob compute Jᾱ(3)
i · β

(3)
i K

2. Alice computes Jz(3)
i KA = ᾱ

(3)
i − 2Jᾱ(3)

i · β
(3)
i KA

3. Bob computes Jz(3)
i KB = β

(3)
i − 2Jᾱ(3)

i · β
(3)
i KB

Hence, Alice and Bob obtain Jz(3)
i K for 0 ≤ i ≤ `− 1 in one round via ` independent secure

multiplications carried out in parallel. Obviously, JsK = 0 if and only if Jz(3)
i K = 1 for all

0 ≤ i ≤ `− 1. Hence, for obtaining the desired output Je(3)K, it suffices to compute

Je(3)K =
`−1∏
i=0

Jz(3)
i K (3.3)

Computing the product of Equation 3.3 in a binary tree fashion needs `− 1 secure multipli-

cations in a total of log2 ` = log2 log2 q rounds.

36

Alice encodes Je(3)KA as follows:

0 ∈ F3 → a1a0 = 00
1 ∈ F3 → a1a0 = 01
2 ∈ F3 → a1a0 = 10

Bob encodes Je(3)KB as follows:

0 ∈ F3 → b1b0 = 00
1 ∈ F3 → b1b0 = 10
2 ∈ F3 → b1b0 = 01

(a) Local encodings: Alice and Bob encode their shares of Je(3)K into two pairs of bits (resp.) a1a0 and
b1b0 such that a1a0 ⊕ b1b0 = 00 if and only if Je(3)K = 0.

Combination 1: (Je(3)KA, Je(3)KB) = (0, 0) −→ a1a0 ⊕ b1b0 = 00
Combination 2: (Je(3)KA, Je(3)KB) = (1, 2) −→ a1a0 ⊕ b1b0 = 00
Combination 3: (Je(3)KA, Je(3)KB) = (2, 1) −→ a1a0 ⊕ b1b0 = 00
Combination 4: (Je(3)KA, Je(3)KB) = (0, 1) −→ a1a0 ⊕ b1b0 = 10
Combination 5: (Je(3)KA, Je(3)KB) = (1, 0) −→ a1a0 ⊕ b1b0 = 01
Combination 6: (Je(3)KA, Je(3)KB) = (2, 2) −→ a1a0 ⊕ b1b0 = 11

(b) All possible combinations of (Je(3)KA, Je(3)KB), and the resulting pair of bits a1a0 ⊕ b1b0.

Figure 3.3. Modular conversion encodings and potential combinations: Alice
and Bob each locally encodes its respective share of Je(3)K into two bits a1a0
and b1b0 such that a1a0 ⊕ b1b0 = 00 if and only if Je3K = 0.

Phase 2: Modular Conversion in Split Form

Since the input JsK is an element in Fq, we have to make sure that so is the output.

Although Phase 1 correctly computes the equality testing output, it returns Je(3)K ∈ {0, 1} ⊂

F3. Phase 2 of ZeroTest maps Je(3)K to its counterpart Je(q)K ∈ {0, 1} ⊂ Fq. In order to do

so, we introduce a modular conversion technique that uses only three secure multiplications

over Fq in a total of two rounds. Below, we first describe a high-level overview of this

technique, then we give step-by-step instructions for it.

37

Procedure overview: Alice and Bob locally encode their respective shares Je(3)KA and

Je(3)KB into two pairs of bits, respectively, a1a0 and b1b0 as in Figure 3.3a ; by construction,

this encoding results in:

c1c0 = a1a0 ⊕ b1b0 = 00 if Je(3)K = 0

c1c0 = a1a0 ⊕ b1b0 ∈ {01, 10, 11} if Je(3)K = 1
(3.4)

Then, both parties cooperate to obliviously compute Jδ(q)K that is the count of non-zero bits

in c1c0. Equation 3.4 ensures that

Jδ(q)K = 0 ⇐⇒ Je(3)K = 0

Jδ(q)K ∈ {1, 2} ⇐⇒ Je(3)K = 1
(3.5)

Hence, Alice and Bob must securely map Jδ(q)K to Je(q)K as follows:

Je(q)K =

 0 if Jδ(q)K = 0

1 if Jδ(q)K ∈ {1, 2}
(3.6)

In summary, the overall modular conversion works as illustrated below:

Je(3)KA, Je(3)KB local encodings−−−−−−−−−−→
as in Figure 3.3a

a1a0, b1b0
first round−−−−−−−−−→

2 secure mult.
Jδ(q)K second round−−−−−−−−−→

1 secure mult.
Je(q)K (3.7)

Step-by-step instructions:

1. Alice and Bob use Figure 3.3a to obtain their respective private two-bit encodings a1a0

and b1b0 according to their private shares Je(3)KA and Je(3)KB.

2. In order to securely compute the two-bit exclusive-OR c1c0 = a1a0⊕ b1b0 with outputs

in Fq, Alice and Bob simply use two instances of Equation 3.2 for i ∈ {0, 1} as follows:

Jc(q)
i K = J(ai ⊕ bi)(q)K = Ja(q)

i + b
(q)
i − 2(a(q)

i · b
(q)
i)K (3.8)

38

Then, they compute (non-interactively)

Jδ(q)K = Jc(q)
0 K + Jc(q)

1 K (3.9)

3. At this point, Alice and Bob must apply the mapping of Equation 3.6 in a secure

manner. This can be done through one secure multiplication because of the following

observation: The choices of private encodings a1a0 and b1b0 (see Figure 3.3b) guarantee

that
Je(3)KA = 2 −→ Jδ(q)K ∈ {0, 2} ⊂ Fq

Je(3)KA 6= 2 −→ Jδ(q)K ∈ {0, 1} ⊂ Fq,
(3.10)

As a result, in order to obliviously obtain Je(q)K, it is sufficient that Alice chooses an

auxiliary private integer τ (q) such that

τ (q) =

 2−1 mod q if Je(3)KA = 2

1 if Je(3)KA 6= 2
(3.11)

Afterwards, Alice and Bob engage in a single secure multiplication over Fq to compute

Je(q)K = Jτ (q) · δ(q)K (3.12)

Remark 3.1. The property summarized in Equation 3.10 symmetrically holds for Bob; i.e.,

Je(3)KB = 2 −→ Jδ(q)K ∈ {0, 2} ⊂ Fq

Je(3)KB 6= 2 −→ Jδ(q)K ∈ {0, 1} ⊂ Fq
(3.13)

As a result, the roles of Alice and Bob can be exchanged in Step 3 of the above instructions.

Lemma 3.1 (Correctness and Security of Protocol 3.1). Protocol ZeroTest, on Alice’s

and Bob’s respective private inputs JsKA and JsKB, securely computes the “equal to zero”

functionality (JeKA, JeKB) = FEQZ(JsKA, JsKB) in the semi-honest threat model. Moreover, the

protocol is unconditionally secure in the ABB model of computation.

39

ZeroTest

Alice Bob
On input JsKA ∈ Fq On input JsKB ∈ Fq

. Phase 1: Computing Je(3)K = (JsK == 0) .

1 : For α = JsKA, For β = −JsKB,
Bits(α) = α`−1α`−2 · · ·α1α0 Bits(β) = β`−1β`−2 · · ·β1β0

(Using Equation 3.2)
z

(3)
i = (ᾱi ⊕ βi)(3)

{αi}0≤i<`

{Jz(3)
i KA}0≤i<`

{βi}0≤i<`

{Jz(3)
i KB}0≤i<`

2 : {Jz(3)
i KA}0≤i<` {Jz(3)

i KB}0≤i<`

e(3) =
∏`−1
i=0 z

(3)
i

{Jz(3)
i KA}0≤i<`

Je(3)KA

{Jz(3)
i KB}0≤i<`

Je(3)KB

. Phase 2: Modular Conversion - Convert Je(3)K to Je(q)K .

3 : a1a0 = encode(Je(3)KA) b1b0 = encode(Je(3)KB)
as in Figure 3.3(a) as in Figure 3.3(a)

(Using Equation 3.2)
δ(q) =

∑1
i=0(ai ⊕ bi)(q)

a1a0

Jδ(q)KA

b1b0

Jδ(q)KB

4 : Choose τ (q) ∈ {1, 2−1}
as in Equation 3.11

e(q) = τ (q) · δ(q)
τ (q), Jδ(q)KA

Je(q)KA

Jδ(q)KB

Je(q)KB

5 : return Je(q)KA return Je(q)KB

Protocol 3.1. Secure realization of (JeKA, JeKB) = FEQZ(JsKA, JsKB) using
modular conversion

Proof. Proof of correctness for Protocol 3.1 is straightforward by construction. For its se-

curity, note that i) all steps in both phases merely use local computations and/or secure

multiplications in split form, and ii) none of the shared or private secrets are ever revealed

to either party. Moreover, the property summarized in Equation 3.10 (symmetrically, Equa-

tion 3.13) does not provide any information to Alice (symmetrically, Bob) because it only

40

depends on her own private share Je(3)KA and the fact that in secret splitting, each share

alone is independent of the secret.

3.4 Overall Performance

Note that for a secure multiplication over an `-bit field parties need to exchange O(`)

bits, and each party has to carry out O(`2) local bit operations (see Section 2.2 for Beaver’s

multiplication technique). On the other hand, protocol ZeroTest uses O(`) secure multi-

plications over F3 and three secure multiplications over Fq. This results in a total of O(`2)

bit operations by each party and communicating O(`) bits. Note that without modular

conversion, all O(`) multiplications of Phase 1 would have been over Fq, which would have

resulted in O(`3) bit operations with a communication complexity of O(`2). Finally, Ze-

roTest needs 3+log2 ` rounds of communication: 1+log2 ` rounds in Phase 1 and 2 rounds

in Phase 2.

ZeroTest requires only three invocations of secure multiplication over Fq, which is by

far the best result among the existing equality testing protocols. This improvement comes

at the cost of O(log `) round complexity. We argue that this trade-off is not a drawback at

all. Note that for a primitive as fundamental as private equality testing, the actual cost of

the protocol is prominent compared to its asymptotic behavior. For all practical purposes

• the exact number of rounds for ZeroTest (i.e., 3+log2 ` rounds) is much smaller than

the large constant number of required rounds by solutions based on bit-decomposition.

Recall that the protocols of [39] and [43] that need, respectively, 39 and 26 rounds;

and,

• the exact number of rounds for ZeroTest is comparable to the number of required

rounds for other solutions such as the bit-oriented protocol of [43] and the probabilistic

solution of [44] (both require 8 rounds).

41

4. SECURE WILDCARD PATTERN MATCHING

In its various forms, pattern matching is a fundamental problem in computer science, and

has been studied extensively. The problem has also been considered by the security and

privacy community; in the 2PC framework, Alice has a length-n private text string T and

Bob has a length-m private pattern P; they wish to learn about the occurrences of P in T

without revealing any additional information about their private inputs to each other. Very

credible arguments were given in the literature about why participants would want to not

reveal their inputs to each other, arguments that we refrain from repeating (for motivational

details see [4], [56]–[59]). There are many protocols that enable Alice and Bob to securely

carry out such computations; however, the existing protocols for the problem mentioned

above have drawbacks that detract from practical deployment. For some, the drawback

is their quadratic complexity O(mn); even those protocols with quasilinear complexity [76]

make use of expensive cryptographic primitives such as homomorphic encryption and impose

limitations on input and alphabet sizes.

In this chapter, we consider Secure Wildcard Pattern Matching (SWPM), in which the

wildcard (or, “don’t care”) symbol is a non-alphabet symbol that matches any alphabet

symbol. We address three variants of SWPM, namely, search, counting and decision versions.

We give two 2PC protocols for each version: First, we solve all variants assuming a black-box

access to the ideal functionality FEQZ that was discussed in Chapter 3 . Our second approach

uses a relaxed “equal to zero” functionality, FREQZ, which can be securely realized much more

efficiently compared to FEQZ; however, using FREQZ requires additional steps to achieve

correctness and the desired level of security. All our protocols avoid the previously discussed

drawbacks of existing solutions for these functionalities: The protocols we propose have

linearithmic computation complexity and linear communication complexity in a constant

number of rounds. Furthermore, our schemes use only lightweight computational primitives,

modular addition and multiplication, and avoid expensive cryptographic primitives such

homomorphic encryption and public-key operations.

42

4.1 Problem Definition

Let Σ = {1, 2, . . . , σ} be a fixed finite alphabet and ? 6∈ Σ be the wildcard symbol that

matches any symbol in Σ∪{?}. In this document, for the sake of simplicity, we mainly focus

on solving SWPM with wildcards in the pattern string; however, Section 4.4.3 discusses how

our solutions can be easily modified to support wildcards in both text and pattern strings.

In SWPM, Alice has a text string T ∈ Σn and Bob has a pattern string P ∈ (Σ ∪ {?})m,

where m ≤ n. Bob wants to search in T for (possibly overlapping) occurrences of P; neither

party is willing to reveal anything about its private input to the other party, other than Bob

learning his prescribed output.

Notation 4.1. In the remainder of this chapter, we use l to denote the number of wildcards

in the pattern string P; moreover, m′ denotes the count of occurrences of alphabet symbols

in P, i.e., m′ = m− l.

Notation 4.2. In this work, Ti = titi+1 · · · ti+m−1 for 1 ≤ i ≤ N ; we consider pattern

matching without wraparounds, i.e., N = n − m + 1. Moreover, Ti
?= P denotes that P

matches the substring Ti, considering that the wildcard symbol ? matches all symbols. For

example, 312 ?= 3 ? 2 (whereas, 312 6= 3 ? 2).

Remark 4.3 will discuss how our scheme can be modified to also detect matchings with

wraparounds, i.e., when N = n and all indices in Ti = titi+1 · · · ti+m−1 are (mod n).

In general, the goal is that Bob learns only about the occurrences of P in T, while Alice

learns nothing. The three variants of SWPM are:

1. Search version (⊥,Γ) = FSSWPM(T,P): As illustrated in Figure 4.1 , Bob learns

all positions in T at which P occurs; i.e., he learns the set

Γ = {i | Ti
?= P} (4.1)

2. Counting version (⊥, γ) = FCSWPM(T,P): As illustrated in Figure 4.2 , Bob learns

only the count γ = |Γ|.

43

FSSWPM
Alice T

⊥

BobP

Γ

Figure 4.1. (⊥,Γ) = FSSWPM(T,P)

FCSWPM
Alice T

⊥

BobP

γ

Figure 4.2. (⊥, γ) = FCSWPM(T,P)

3. Decision version (⊥, (γ > 0)) = FDSWPM(T,P): As illustrated in Figure 4.3 , Bob

learns only the predicate value (γ > 0).

FDSWPM
Alice T

⊥

BobP

(γ > 0)

Figure 4.3. (⊥, (γ > 0)) = FDSWPM(T,P)

4.2 Related work

Due to its importance, several studies have investigated secure two-party pattern match-

ing; some address the problem under the stronger malicious adversarial model [56], [76]–[78],

while others assume the less powerful semi-honest adversarial model (or they can be opti-

mized for the semi-honest model) [56], [59], [79]. A group of studies, including [78], [80], [81]

concentrate on binary-alphabet pattern matching. In this document, we focus on the more

general version of secure wildcard pattern matching over any arbitrary finite alphabet.

Recently, Riazi et al. [59] provided a solution based on Yao’s Garbled Circuit where

parties require O(1) communication rounds at the price of O(nm log |Σ|) computational

complexity. Their scheme has been built based on the provably secure Yao’s garbled circuit

protocol, which uses expensive primitives in the oblivious transfer parts of the protocol.

44

Baron et al. [56] propose a scheme (appropriate for both malicious and semi-honest

models) that reduces pattern matching to a linear algebra formulation that allows for generic

solutions based on any Additively Homomorphic Encryption. In the semi-honest model, their

approach requiresO(1) rounds of communication, O(n+m) encryptions and exponentiations,

O(nm) multiplications as well as O((n + m)κ) communication complexity, where κ is a

security parameter.

In [76], Vergnaud builds an approach on top of the string matching algorithms in [82],

[83]. The scheme has O(n logm) computational complexity and requires constant rounds

of communication; however, it uses homomorphic encryption and imposes restrictions on

inputs and alphabet size.

A different approach to address the SWPM problem is constructing an automaton based

on the pattern string and obliviously evaluating it on the text string. Works in [84], [85] sug-

gest such schemes; these solutions require O(nm) and O(nm|Σ|) computational complexity

for, respectively, Bob and Alice. An elaborate comparison for the solutions of [84] and [85]

can be found in [85].

4.3 Summary of Contributions

Below, we briefly review the contributions of this chapter.

4.3.1 Wildcard Pattern Matching Algorithm

In Section 4.4 , we propose a novel convolution-based algorithm for wildcard pattern

matching without any security and privacy considerations. The algorithm’s computational

bottleneck is the use of (just one) convolution operator that results in an overall complexity

of O(n logm). The scheme consists of three steps: Preprocessing the alphabet, convolution

computation, and processing the convolution output to find all occurrence positions. Our

scheme is a template algorithm in the sense that it has multiple possible instantiations based

on various alphabet preprocessing approaches.

45

4.3.2 Secure Protocols

In Section 4.5 , we give protocols that build on our wildcard pattern matching algorithm

to securely realize the three variants of SWPM in the 2PC setting. In particular, we propose

1. A lightweight protocol for secure convolution computation. The protocol requires

O(n logm) local computation by each party and only O(n) secure multiplication invo-

cations in one round of communication.

2. Lightweight protocols for each of the search, counting and decision versions of SWPM

in the semi-honest model. We give two secure solutions for each version, one based

on the FEQZ functionality and the other based on a relaxed private equality testing,

namely, FREQZ. All our protocols require constant rounds of communication between

Alice and Bob. Moreover, the computational bottleneck in all these protocols is the

secure convolution computation; they all have a linearithmic computation complexity

and a linear communication complexity.

4.3.3 Experimental Results

As a proof of concept, we have implemented our solutions based on FREQZ, that we call

LiLiP (Lightweight, Linearithmic & Private), and it performs very well in practice. Our

experimental results presented in Section 4.6 demonstrate the practicality of our solutions

even for very large input sizes. Our experiments show that our scheme is 1.4× to 21.5×

faster than PriSearch [59], which is itself superior to other approaches.

4.3.4 Functionality Generalization

In Section 4.7 , we go beyond the semi-honest threat model and point out that the search

version of SWPM , as the most commonly used variant of SWPM has a definitional drawback

in the stronger adversarial models that makes the use of any secure protocol for computing

it unavailing. In particular, we show that if Bob uses a judiciously crafted input pattern

P̂ rather than his prescribed input P, he can learn Alice’s input T. Such an attack by

Bob is possible due to the power of the wildcard symbol, and it has nothing to do with the

46

choice of the secure two-party protocol used for computing (⊥,Γ) = FSSWPM(T,P). In order

to address this issue, we propose the use of a filtering function τ that restricts what Bob

may learn. Accordingly, we suggest two additional variants of SWPM, in each of which Bob

learns the position of exactly one occurrence of P in T (if any).

4.4 Convolution-based Wildcard Pattern Matching Algorithm

The connection of pattern matching and convolution has been long studied [76], [82],

[83], [86]–[88]. This section presents a novel algorithm based on convolution, Algorithm 1 ,

that we propose for solving the traditional wildcard pattern matching without any security

and privacy concerns. Algorithm 1 consists of three phases:

1. Input strings T and P are mapped to their respective unique counterparts T̂ and P̂ in

a new alphabet domain where certain properties hold. For this, Alice and Bob require

a (one-time) preprocessing of Σ ∪ {?} to map each symbol in it to a unique value in

the new alphabet domain; later, the above mapping is used to obtain T̂ and P̂ for any

pair of input strings T ∈ Σn and P ∈ (Σ ∪ {?})m.

2. Obtaining a score vector C = [c1, c2, · · · , cN], where the ith entry ci = ∑m−1
j=0 t̂i+j · p̂j is

the matching score for P and the subtrsing Ti. Specifically, for 1 ≤ i ≤ N

ci = m′ ⇐⇒ Ti
?= P (4.2)

As will become apparent, exactly one convolution computation is sufficient for obtain-

ing the score vector C.

3. Processing the score vector C to obtain the set Γ containing all positions in T at which

P occurs, i.e., Γ = {i | Ti
?= P} = {i | ci = m′}.

Below, we first describe the properties required for preprocessing the symbols in Σ ∪ {?},

and provide two preprocessing approaches that are sufficient for solving wildcard pattern

matching. Then, we present the overall algorithm.

47

4.4.1 Alphabet Preprocessing

As the first step in our pattern matching algorithm, we need to translate the alphabet

Σ∪{?} to a new domain with certain properties described below. This preprocessing is based

on a pair of correlated mappings fT and fP that are used to map the symbols appearing in,

respectively, T and P into the new alphabet domain.

Notation 4.3. For the mapping function fT : Σ→ Σ′, where Σ′ is the new alphabet domain,

we use T̂ = fT(T) to denote T̂ = fT(t1)fT(t2) · · · fT(tn). Similarly, for fP : Σ ∪ {?} → Σ′,

we use P̂ = fP(P) to denote P̂ = fP(p1)fT(p2) · · · fT(pm).

The desired properties for mappings fT and fP are:

1. Both fT and fP must be injections to avoid any collisions among alphabet symbols.

2. The codomain of fT and fP (i.e., Σ′) must be algebraically suitable for fast convolution

computations.

3. For any substring Ti = titi+1 · · · ti+m−1, the scalar product fT(Ti) · fP(P) = m′ if and

only if Ti
?= P.

4. (Optional) The codomain of mappings fT and fP (i.e., Σ′) supports modular arithmetic

over the finite field Fq.

Although Property 4 is not necessary for efficient wildcard pattern matching, it is included

to avoid floating-point arithmetic and obtain a higher level of security in protocols of Section

 4.5 . The latter is because modular addition and multiplication of a secret and a uniform

random provide perfect secrecy over, respectively, Fq and Fq \ {0} (a.k.a additive one-time

pad and multiplicative one-time pad). On the other hand, non-modular arithmetic would

provide only statistical security and the randoms used to hide a secret must be much greater

(in magnitude) than the secret itself.

Example 4.1 (Complex Mappings fT : Σ → C and fP : Σ ∪ {?} → C). Here, we describe

the first pair of mappings with the complex field C used as the new alphabet domain.

This pair of mappings fulfills properties 1 , 2 and 3 , but not property 4 . With C as the

48

new arithmetic space, one needs to use FFT to apply convolution efficiently. The mapping

functions fT : Σ→ C and fP : Σ ∪ {?} → C are defined as follows:

fT(k) = exp(2π
√
−1
σ

k), for k ∈ Σ (4.3)

fP(k) =

 exp(−2π
√
−1
σ

k) if k ∈ Σ

0 if k = ?
(4.4)

Lemma 4.1. Mappings of Example 4.1 satisfy properties 1 , 2 and 3 .

Proof. Property 4 does not hold since mappings deal with powers of σth root of unity in C.

Below, we prove that all other properties hold:

Property 1 : fT (resp. fP) is injective on Σ because it maps any alphabet symbols

k ∈ Σ = {1, . . . , σ} to the kth (resp. −kth) power of σth primitive root of unity.

Moreover,

0 = fP(?) 6= fP(k) = exp(−2π
√
−1
σ

k) for k ∈ Σ

Property 2 : Since the selected codomain is C, the classic Fast Fourier Transform can

be used for efficient convolution computation [73]–[75].

Property 3 : We need to show that

fT(Ti) · fP(P) = T̂i · P̂ = m′ ⇐⇒ Ti
?= P

49

Let M? = {j | (1 ≤ j ≤ m) ∧ (pj = ?)}, i.e., the set of all indices corresponding to

wildcards in P. Note that

fT(Ti) · fP(P) =
m∑
j=1

fT(ti+j−1)fP(pj)

=
∑
j 6∈M?

fT(ti+j−1)fP(pj) +
∑
j∈M?

fT(ti+j−1)fP(pj)

=
∑
j 6∈M?

exp(2π
√
−1
σ

ti+j−1) exp(−2π
√
−1
σ

pj) +
∑
j∈M?

0

=
∑
j 6∈M?

exp(2π
√
−1
σ

ti+j−1) exp(−2π
√
−1
σ

pj)

=
∑
j 6∈M?

exp(2π
√
−1
σ

(ti+j−1 − pj))

It remains to show that

∑
j 6∈M?

exp(2π
√
−1
σ

(ti+j−1 − pj)) = m′ ⇐⇒ ti+j−1 = pj for all j 6∈M?

The “⇐” direction is straightforward because if ti+j−1 = pj, then ti+j−1− pj = 0; thus,

∑
j 6∈M?

exp(2π
√
−1
σ

(ti+j−1 − pj)) =
∑
j 6∈M?

exp(0) =
∑
j 6∈M?

1 = m′

The “⇒” direction holds because 1 ≤ pj, ti+j−1 ≤ σ, and that any mismatch ti+j−1 6= pj

results in

1− σ ≤ ti+j−1 − pj 6= 0 ≤ σ − 1

Hence, the real part of exp(2π
√
−1
σ

(ti+j−1− pj)) for a character mismatch is guaranteed

to be smaller than 1. Hence, the existence of at least one such symbol mismatch gives

a summation result with a real part that is smaller than m′, and this implies that the

scalar product fT(Ti) · fP(P) cannot be equal to m′.

As mentioned earlier, mapping alphabet symbols to the complex space as in Example 4.1

is sufficient for solving wildcard pattern matching efficiently. However, because of dealing

50

with the floating-point arithmetic, the method suffers from being limited with machine-

precision in numerical computations. Moreover, using it in the two-party protocols of Section

 4.5 cannot provide perfect secrecy as modular arithmetic is not present. Example 4.2 extends

this mapping to its counterpart over the finite field Fq. The resulting pair of mappings

satisfies all four above-mentioned properties.

Example 4.2 (Modular Mappings fT : Σ → Fq and fP : Σ ∪ {?} → Fq). In order to also

satisfy the optional property discussed earlier, we use the finite field Fq as the new alphabet

domain. With Fq as the new arithmetic space, Number Theoretic Transform (NTT) can be

used for efficient convolution computation. The prime q must be chosen based on the input

size n and alphabet size σ: Fix a prime q = αn + 1 such that q > σ and α is a positive

integer; the existence of such a prime is guaranteed due to Dirichlet’s theorem [89].

The mapping functions fT : Σ→ Fq and fP : Σ ∪ {?} → Fq will be defined analogous to

their definition in Example 4.1 . Particularly, let ωσ be a σth principal root of unity modulo

q; then,

fT(k) = ωkσ mod q, for k ∈ Σ (4.5)

fP(k) =

 ω−kσ mod q if k ∈ Σ

0 if k = ?
(4.6)

where ω−kσ mod q = (ω−1
σ)k mod q, and ω−1

σ ≡ ωσ−1
σ mod q. Note that the σth principal

root of unity ωσ must not be confused with the nth principal root of unity ωn used in NTT

where n is the length of vectors to be convolved.

Lemma 4.2. The mappings of Example 4.2 satisfy all desired properties 1 , 2 , 3 and 4 .

Proof. Clearly, Property 4 holds since the codomain of fT and fP is Fq. Moreover, the

validity of properties 1 , 2 , and 3 follow similar arguments to their proofs in Lemma 4.1

due to i) the similar functions’ definitions for the symbol translations using powers of σth

primitive root of unity, and ii) the fact that NTT is a generalization of the classic Discrete

Fourier Transform to the finite field Fq.

51

Although the above transformations involve (modular) exponentiation computations for

alphabet symbols, these are for a one-time preprocessing step that is carried out for the

alphabet Σ well before input strings T and P are known. This preprocessing can be done

ahead of time for selected values of n close to the ones expected in practice, e.g., powers

of two, in which case padding with zeros and partitioning T can be used to make the

encountered n have one such length. After such a preprocessing, any desired number of

instances of the wildcard pattern matching over Σ can be solved without these modular

exponentiations.

Remark 4.1. One might consider using the mappings fT and fP such that

fT(k) = k mod q, for k ∈ Σ

fP(k) =

 k−1 mod q if k ∈ Σ

0 if k = ?

to avoid roots of unity and the |Σ| modular exponentiations in the preprocessing. However,

with a closer look it becomes apparent that the use of such mapping functions would violate

Property 3 ; i.e., these mappings could result in T̂i · P̂ = m′ even if T̂i 6
?= P̂.

4.4.2 Proposed Algorithm (Wildcards in Only P)

Given a pair of mappings fT and fP as described in Section 4.4.1 , one can solve the

wildcard pattern matching problem through exactly one convolution as in Algorithm 1 .

Henceforth, we assume the pair of mappings fT and fP as in equations, respectively, 4.5

and 4.6 from Example 4.2 . After applying the preprocessing and obtaining T̂ = fT(T) and

P̂ = fP(P), a score vector C is computed such that

ci = T̂i · P̂ for 1 ≤ i ≤ N (4.7)

Notation 4.4. Hereafter, any use of the convolution operator refers to discrete linear con-

volution, unless stated otherwise. Moreover, when we use C = T̂ ∗ P̂rev, we assume that C

contains only the “max(|T̂|, |P̂rev|)−min(|T̂|, |P̂rev|) + 1” valid entries of the actual convo-

52

lution vector Ĉ = T̂ ∗ P̂rev; i.e., C contains only those entries in Ĉ that correspond to a

complete overlap of the shorter input vector P̂rev with a T̂i for 1 ≤ i ≤ N .

In order to obtain the score vector C with the desired property summarized in Equation

 4.7 , it suffices to convolve T̂ and P̂rev; i.e., C = T̂ ∗ P̂rev.

Algorithm 1 Pattern Matching with Wildcards Only in P
Inputs: Text string T ∈ Σn and pattern string P ∈ (Σ ∪ {?})m, where m ≤ n

Outputs: Set Γ = {i | Ti
?= P}

1: procedure Wildcard-Pattern-Matching(T,P)

2: Γ← ∅

3: m′ ← |{pi | pi = ?}|

4: T̂← fT(T) . See Equation 4.5

5: P̂← fP(P) . See Equation 4.6

6: C← T̂ ∗ P̂rev . Using NTT in this case

7: N ← n−m+ 1

8: for i← 1 to N do

9: if ci = m′ then

10: Γ← Γ ∪ {i}

11: end if

12: end for

13: return Γ

14: end procedure

Theorem 4.4.1 (Correctness of Algorithm 1). Algorithm 1 , on inputs T ∈ Σn and P ∈

(Σ ∪ {?})m, returns the set of all positions in the text string T at which P occurs; i.e.,

Γ = {i | Ti
?= P}.

Proof. This follows directly from Property 3 of alphabet mappings fT and fP, and the fact

that the convolutions C = T̂ ∗ P̂rev results in ci = T̂i · P̂ for 1 ≤ i ≤ N by the definition of

convolution.

53

Remark 4.2. Algorithm 1 can easily be extended to also detect matchings with wraparounds.

In order to do so, it suffices to use N = n (rather than N = n−m + 1) and modify Step 6

 1 as follows:

C = (T̂||[t̂1, t̂2, · · · , t̂m−1]) ∗ P̂rev

4.4.3 Proposed Algorithm (Wildcards in Both P and T)

Algorithm 1 presented above supports wildcard symbols only in the pattern string P.

Here, we discuss how Algorithm 2 simply extends Algorithm 1 to also support wildcards in the

text string T. The first step towards supporting wildcards in T is to augment Equation 4.5

for fT to also include the mapping fT(?) = 0; i.e., the augmented mapping f ′T : Σ∪{?} → Fq
is defined as below:

f ′T(k) =

 ωkσ mod q if k ∈ Σ

0 if k = ?
(4.8)

Using the augmented mapping f ′T, the convolution T̂ ∗ P̂rev results in a contribution of +0

to all corresponding score values in C for alignments of T and P that involve a wildcard

in T. However, this convolution does not account for the +1 contributions to the score

values due to matches between alphabet symbols in P and wildcards in T. Algorithm 2

addresses this shortcoming by computing another convolution T̄ ∗ P̄rev where the binary

vectors T̄ = gT(T) and P̄ = gP(P) are obtained using the additional pair of mappings

gT, gP : Σ ∪ {?} → {0, 1} ⊂ Fq defined below:

• gT maps all alphabet symbols to 0, and it maps ? to 1; i.e.,

gT(k) =

 0 if k ∈ Σ

1 if k = ?
(4.9)

• gP maps all alphabet symbols to 1, and it maps ? to 0; i.e.,

gP(k) =

 1 if k ∈ Σ

0 if k = ?
(4.10)

54

Hence, it is sufficient to modify Step 6 in Algorithm 1 as follows:

C← T̂ ∗ P̂rev + T̄ ∗ P̄rev (4.11)

Theorem 4.4.2 (Correctness of Algorithm 2). Algorithm 2 , on inputs T(Σ ∪ {?})n and

P ∈ (Σ ∪ {?})m, returns the set of all positions in text T at which P occurs when both may

contain wildcards; i.e., Γ = {i | Ti
?= P}.

Proof. Any entry in the score vector C is a sum of two terms:

ci = T̂i · P̂ + T̄i · P̄

These terms together account for all possible types of character matching, and each match is

accounted for exactly once. In particular, the structures of mappings f ′T, fP : Σ ∪ {?} → Fq
and gT, gP : Σ ∪ {?} → {0, 1} ⊂ Fq ensure that all three match types discussed below are

accounted for:

• Match type ti+j−1 6= ?, pj 6= ? and ti+j−1 = pj : In this case t̂i+j−1p̂j = 1 and

t̄i+j−1p̄j = 0 resulting in an overall contribution of +1 to ci.

• Match type ti+j−1 = ? and pj 6= ?: In this case t̂i+j−1p̂j = 0 and t̄i+j−1p̄j = 1

resulting in a contribution of +1 to ci.

• Match type ti+j−1 ∈ Σ∪{?} and pj = ?: In this case t̂i+j−1p̂j = 0 and t̄i+j−1p̄j = 0

resulting in an overall contribution of +0 to ci. Note that (similar to Algorithm 1),

the comparison of Step 11 is ci = m′ rather than ci = m. Recall that m′ = m − l,

where l is the count of wildcards in P. Hence, contribution of a character matching

that corresponds to pj = ? is accounted for via reducing the required match count (-1

per wildcard in P) rather than contributing a +1 to the score value ci.

55

Algorithm 2 Pattern Matching with Wildcards in both T and P
Inputs: Text string T ∈ (Σ ∪ {?})n and pattern string P ∈ (Σ ∪ {?})m, where m ≤ n

Outputs: Set Γ = {i | Ti
?= P}

1: procedure Wildcard-Pattern-Matching(T,P)

2: Γ← ∅

3: m′ ← |{pi | pi = ?}|

4: T̂← f ′T(T) . See Equation 4.8

5: P̂← fP(P) . See Equation 4.6

6: T̄← gT(T) . See Equation 4.9

7: P̄← gP(P) . See Equation 4.10

8: C← T̂ ∗ P̂rev + T̄ ∗ P̄rev . ∗ denotes convolution [by NTT in this case]

9: N ← n−m+ 1

10: for i← 1 to N do

11: if ci = m′ then

12: Γ← Γ ∪ {i}

13: end if

14: end for

15: return Γ

16: end procedure

Remark 4.3. Algorithm 2 can easily be extended to also detect matchings with wraparounds.

In order to do so, it suffices to use N = n (rather than N = n−m + 1) and modify Step 8

as follows:

C = (T̂||[t̂1, t̂2, · · · , t̂m−1]) ∗ (P̂rev + T̄||[t̄1, t̄2, · · · , t̄m−1]) ∗ P̄rev

4.5 Secure Two-party Protocols for Wildcard Pattern Matching

In this section, we investigate secure wildcard pattern matching (SWPM) and give proto-

cols that deploy Algorithm 1 to securely compute the desired functionalities FSSWPM,FCSWPM

and FDSWPM as defined in Section 4.1 . In what follows, all arithmetic is modular; this is

56

possible because the underlying alphabet preprocessing (from Example 4.2) has Fq for a

prime q as the new alphabet domain. Moreover, note that Alice and Bob locally compute,

respectively, T̂ = fT(T) and P̂ = fP(P) without any privacy concerns; this is because the

underlying alphabet is known by both parties and the alphabet preprocessing is independent

of the private inputs T and P. Hence, there is only need for secure convolution computation

and secure protocols that process the resulting (split) score vector to securely realize each

SWPM version FSSWPM,FCSWPM and FDSWPM.

4.5.1 Secure Convolution Computation

Recall from Section 2.4 that efficient computation of discrete linear convolution of two

vectors is possible through efficient discrete circular convolution. Hence, it suffices to give

a secure protocol that computes circular convolution of private vectors. Formally, the two-

party convolution functionality in split form (illustrated in Figure 4.4) takes as inputs, Alice’s

and Bob’s length-λ private input vectors X and Y, and outputs JX~YK; i.e., the function-

ality is defined as (JZKA, JZKB) = FCONV(X,Y) such that JZK = JX ~ YK. The following

Protocol 4.1 , Convolution, securely computes this functionality via only λ secure multi-

plications.

Z = X ~ Y
FCONVAlice X

JZKA

BobY

JZKB

Figure 4.4. Secure two-party circular convolution functionality

Lemma 4.3 (Correctness and Security of Protocol 4.1). Protocol Convolution, on Al-

ice’s and Bob’s respective private inputs X and Y, securely computes the functionality

(JZKA, JZKB) = FCONV(X,Y) in the semi-honest threat model. Moreover, the protocol is

unconditionally secure in the ABB model of computation.

57

Convolution

Alice Bob
On input X On input Y

. .

1 : NX = NTT(X) NY = NTT(Y)

F = NX �NY

Pointwise product
NX

JFKA

NY

JFKB

2 : JZKA = NTT−1(JFKA) JZKB = NTT−1(JFKB)

3 : return JZKA return JZKB

Protocol 4.1. Secure realization of (JZAK, JZKB) = FCONV(X,Y)

Proof. The correctness follows immediately from the convolution theorem together with the

linearity of Number Theoretic Transform; in particular,

Z = JZKA + JZKB

= NTT−1(JFKA) + NTT−1(JFKB)

= NTT−1(JFKA + JFKB) (Linearity of NTT)

= NTT−1(F)

= NTT−1(NX �NX)

= NTT−1(NTT(X)� NTT(Y))

= X ~ Y (Convolution Theorem)

Security of Protocol 4.1 follows from the fact that the only step with joint computations

involves λ invocations of secure multiplication on (distinct) pairs of inputs, with outputs in

split form; hence, each party receives only a uniform vector over Fλq that, in the absence of

the other party’s output, is statistically independent of Z. Moreover, note that the output

JZK being additively split is a crucial factor in maintaining the privacy of the input vectors.

That is because if a party learns the vector Z, combined with their input, she/he can use

the convolution theorem to reconstruct the other party’s input.

58

Complexity. Protocol 4.1 requires one round of communication (in Step 1); moreover,

its computation and communication complexities are, respectively, the O(λ log λ) and O(λ).

Notation 4.5. Henceforth, any use of a unary functionality (or protocol) with a vec-

tor as its input denotes computing the intended functionality for each entry of the vec-

tor independently. For example, if X is length-λ vector, then FEQZ(JXKA, JXKB) denotes

FEQZ(JxiKA, JxiKB) for all 1 ≤ i ≤ λ.

4.5.2 Secure SWPM Protocols Using FEQZ

In this section, we present our protocols for securely computing all three variants of

SWPM that securely deploy Algorithm 1 with a black-box access to the functionality FEQZ

(see Figure 3.2). The mutual first step in all protocols that follow is computing JCK =

JT̂ ∗ P̂revK using Protocol 4.1 .

Secure Protocol for (⊥,Γ) = FSSWPM(T,P)

The following Protocol 4.2 , Search-Swpm, allows Bob to learn only the set Γ containing

all indices in the range 1 ≤ i ≤ N for which Ti
?= P. The construction of JCK ensures that

i ∈ Γ if and only if the score value ci = m′, where m′ is the count of non-wildcard characters

in P. m′ is private to Bob and should not be revealed to Alice. Since subtraction in split form

does not need any interaction among parties, Alice and Bob can simply obtain a modified

score vector JDK as follows:

JDKA = JCKA and JDKB = JCKB −
length: N︷ ︸︸ ︷

[m′,m′, · · · ,m′] (4.12)

Clearly,

JdiK = 0 ⇐⇒ JciK = m′ (4.13)

Hence, it suffices for Alice and Bob to obliviously obtain an indicator vector JEK such that

JeiK = J(di == 0)K for 1 ≤ i ≤ N . They achieve this through N independent (but, parallel)

59

Search-Swpm

Alice Bob
On input T On input P

. Phase 1: Compute the indicator vector JEK .

1 : T̂ = fT(T) P̂ = fP(P)
m′ = |{i | pi 6= ?}|

(Using Protocol 4.1)
C = T̂ ∗ P̂rev

T̂

JCKA

P̂rev

JCKB

2 : JDKA = JCKA JDKB = JCKB −

length: N︷ ︸︸ ︷
[m′,m′, · · · ,m′]

ei = (di == 0)
for 1 ≤ i ≤ N

FEQZ

JDKA

JEKA

JDKB

JEKB

. Phase 2: Reveal set Γ to Bob .

3 : JEKA

4 : E = JEKA + JEKB

5 : Γ = {i | ei = 1}
6 : return ⊥ return Γ

Protocol 4.2. Secure realization of (⊥,Γ) = FSSWPM(T,P) based on FEQZ

invocations of “equal to zero” functionality, i.e., (JeiKA, JeiKB) = FEQZ(JdiKA, JdiKB). At this

point, Alice sends JEKA to Bob, and he construct the set

Γ = {i | ei = 1} = {i | di = 0} (4.14)

as desired.

Lemma 4.4 (Correctness and Security of Protocol 4.2). Protocol Search-Swpm, on Alice’s

and Bob’s respective private inputs T and P, securely computes the functionality (⊥,Γ) =

FSSWPM(T,P) in the semi-honest threat model. Moreover, given a black-box access to the

FEQZ functionally, the protocol is unconditionally secure in the ABB model of computation.

60

Proof. The correctness of Protocol 4.2 follows from the previously discussed correctness of

Algorithm 1 based on the mapping functions fT(·) and fP(·) together with the construction

of vector JDK as summarized in Equation 4.12 that ensures JdiK = 0 for 1 ≤ i ≤ N if and

only if Ti
?= P.

The security of Phase 1 follows from the unconditional security of protocol Convolution

in Step 1 and the black-box access to the ideal functionality FEQZ used in the second step

of this phase. Hence, to prove the overall security of Protocol 4.2 , it is enough to argue that

revealing the indicator vector E to Bob in Phase 2 does not provide him with any information

about T that he would not be able to learn from his prescribed output Γ = {i | Ti
?= P}.

For that, it suffices to show that given Γ, Bob can construct the indicator vector E without

any additional information or any help from Alice; Bob can obtain E from Γ by computing

ei for 1 ≤ i ≤ N as follows:

ei =

 1 if i ∈ Γ

0 if i 6∈ Γ

In other words, the vector E is just a representation of Bob’s prescribed output Γ, and this

completes the proof.

Complexity. Protocol 4.2 requires three rounds of communication; moreover, its com-

putation and communication complexities are, respectively, O(n logm) and O(n).

Secure Protocol for (⊥, γ) = FCSWPM(T,P)

In order for Bob to learn the count γ = |Γ|, Alice and Bob first securely compute the

indicator vector JEK as discussed earlier. However, it is unacceptable if Alice sends her share

JEKA to Bob; doing so would reveal the set Γ to Bob while the functionality FCSWPM requires

Bob to learn nothing about Γ other than its cardinality. Since JeiK ∈ {0, 1}, Alice and Bob

can simply use the non-interactive property of addition in split form to efficiently address

this issue. In particular, Alice and Bob compute JγK = ∑n
i=1JeiK as follows:

JγKA =
N∑
i=1

JeiKA and JγKB =
N∑
i=1

JeiKB (4.15)

61

At this point, Alice sends her share JγKA to Bob, and he reconstructs the desired value

γ = |Γ|.

Counting-Swpm

Alice Bob
On input T On input P

. Phase 1: Compute indicator vector JEK .

1 : T̂ = fT(T) P̂ = fP(P)
m′ = |{i | pi 6= ?}|

(Using Protocol 4.1)
C = T̂ ∗ P̂rev

T̂

JCKA

P̂rev

JCKB

2 : JDKA = JCKA JDKB = JCKB −

length: N︷ ︸︸ ︷
[m′,m′, · · · ,m′]

ei = (di == 0)
FEQZ

JDKA

JEKA

JDKB

JEKB

. Phase 2: Reveal the count γ to Bob .

3 : JγKA =
N∑
i=1

JeiKA JγKB =
N∑
i=1

JeiKB

4 : JγKA

5 : γ = JγKA + JγKB

6 : return ⊥ return γ

Protocol 4.3. Secure realization of (⊥, γ) = FCSWPM(T,P) based on FEQZ

Lemma 4.5 (Correctness and Security of Protocol 4.3). Protocol Counting-Swpm, on

Alice’s and Bob’s respective private inputs T and P, securely computes the functionality

(⊥, γ) = FCSWPM(T,P) in the semi-honest threat model. Moreover, given a black-box ac-

cess to the FEQZ functionally, the protocol is unconditionally secure in the ABB model of

computation.

Proof. For correctness, note that the first phase for computing the indicator vector JEK is

similar to that of Protocol 4.2 . Thus, it suffices to argue that at the end of Phase 2, Bob

62

learns γ = |Γ|. Recall from the construction of functions fT(·) and fP(·) in Example 4.2 that

the prime modulo q is larger than max(n, σ) and hence larger than N . This choice of prime

q together with the property that JeiK = 1 if and only if Ti
?= P ensures that the summation∑N

i=1JγK in Step 3 does not result in a modular wraparound; this immediately implies that

the result of this summation is guaranteed to be the count of entries in JEK that are equal

to 1; this completes the proof that Bob’s output γ is indeed equal to |Γ|.

The security of Phase 1 follows from the unconditional security of protocol Convolution

used in Step 1 and the black-box access to the ideal functionality FEQZ used in the second

step of this phase. Moreover, the information revealed to Bob in Phase 2 is exactly that of

his prescribed output as in the functionality definition. Hence, it is impossible for Bob to

learn anything about T other than his prescribed output.

Complexity. Protocol 4.3 requires three rounds of communication; moreover, its com-

putation and communication complexities are, respectively, O(n logm) and O(n).

Secure Protocol for (⊥, (γ > 0)) = FDSWPM(T,P)

In order for Bob to learn the predicate (γ > 0), Alice and Bob first securely compute the

count JγK as discussed earlier. However, it is unacceptable if Alice sends her share JγKA to

Bob; doing so would reveal the count γ to Bob while the functionality FDSWPM requires Bob

to learn nothing about γ other than whether it is zero or not. Hence, Alice and Bob need to

invoke an instance of “equal to zero” functionality, i.e., (JtKA, JtKB) = FEQZ(JγKA, JγKB). At

this point, Alice sends her share JtKA to Bob, and he reconstructs t and outputs the desired

predicate value (γ > 1) = 1− t.

Lemma 4.6 (Correctness and Security of Protocol 4.4). Protocol Decision-Swpm, on

Alice’s and Bob’s respective private inputs T and P, securely computes the functionality

(⊥, (γ > 0)) = FDSWPM(T,P) in the semi-honest threat model. Moreover, given black-box

access to the FEQZ functionality, the protocol is unconditionally secure in the ABB model of

computation.

Proof. Both correctness and security of Protocol 4.4 follow a similar argument as in the

proof of Lemma 4.5 for Protocol 4.3 . This is because Protocol 4.4 is the same as Protocol

63

Decision-Swpm

Alice Bob
On input T On input P

. Phase 1: Compute indicator vector JEK .

1 : T̂ = fT(T) P̂ = fP(P)
m′ = |{i | pi 6= ?}|

(Using Protocol 4.1)
C = T̂ ∗ P̂rev

T̂

JCKA

P̂rev

JCKB

2 : JDKA = JCKA JDKB = JCKB −

length: N︷ ︸︸ ︷
[m′,m′, · · · ,m′]

ei = (di == 0)
FEQZ

JDKA

JEKA

JDKB

JEKB

. Phase 2: Reveal the predicate (γ > 0) to Bob .

3 : JγKA =
N∑
i=1

JeiKA JγKB =
N∑
i=1

JeiKB

t = (γ == 0)
FEQZ

JγKA

JtKA

JγKB

JtKB

4 : JtKA

5 : t = JtKA + JtKB

6 : return ⊥ return 1− t

Protocol 4.4. Secure realization of (⊥, (γ > 0)) = FDSWPM(T,P) based on FEQZ

 4.3 except that in Phase 2 it evaluates the predicate (γ == 0) through a black-box access

to the ideal functionality FEQZ and reveals its value to Bob instead of revealing the count γ

to him.

Complexity. Protocol 4.4 requires four rounds of communication; moreover, its com-

putation and communication complexities are, respectively, O(n logm) and O(n).

64

4.5.3 Secure SWPM Protocols Using Relaxed Equality Testing

In this section, we present another group of protocols for securely computing all three

variants of SWPM. These protocols are built on the observation that in protocols 4.2 , 4.3

and 4.4 , Bob learns the outcome of (some) FEQZ instances; this allows Alice and Bob to

use a relaxed “equal to zero” functionality, (JeKA, JeKB) = FREQZ(JsKA, JsKB), as illustrated

in Figure 4.5 . In particular, the result of this relaxed equality test is as follows:

• If JsK = 0, then JeK = 0.

• If JsK 6= 0, then JeK is a uniformly distributed non-zero random, i.e., JeK $←− Fq \ {0}.

e =
0 if s = 0
r

$←− Fq \ {0} if s 6= 0

FREQZAlice
JsKA

JeKA

Bob
JsKB

JeKB

Figure 4.5. (JeKA, JeKB) = FREQZ(JsKA, JsKB)

Protocol 4.5 , ZeroTest-Relaxed, securely computes the functionality FREQZ through

exactly one secure multiplication. It is enough to use a uniformly chosen non-zero random

r
$←− Fq \ {0} to compute JeK = Js · rK.

ZeroTest-Relaxed

Alice Bob
On input JsKA On input JsKB

. .

1 : JrKA
$←− Fq \ {0} JrKB = 0

e = r · s
Secure Multiplication

r, JsKA

JeKA

JsKB

JeKB

2 : return JeKA return JeKB

Protocol 4.5. Secure realization of (JeKA, JeKB) = FREQZ(JsKA, JsKB)

65

Remark 4.4. Note that in protocol ZeroTest-Relaxed Alice chooses the non-zero ran-

dom r; hence, the test output JeK must never be revealed to her, otherwise, she learns the

input s. In order to obtain a protocol after which the output can be revealed to either party,

it suffices to instead use a split uniform non-zero random JrK $←− Fq \ {0} that is unknown to

both parties.

Lemma 4.7 (Correctness and Security of Protocol 4.5). Protocol ZeroTest-Relaxed, on

Alice’s and Bob’s respective private inputs JsKA and JsKB, securely computes the functionality

(JeKA, JeKB) = FREQZ(JsKA, JsKB) in the semi-honest threat model. Moreover, the protocol is

unconditionally secure in the ABB model of computation.

Proof. Correctness follows from the facts that multiplying the input by a uniform non-

zero random i) preserves the “equal to zero” property, and ii) it uniformly distributes any

non-zero input. Moreover, the protocol’s security follows immediately from the security of

multiplication in split form.

Complexity. Protocol 4.5 requires 1 round of communication; moreover, both its com-

putation and communication complexities are O(1).

The above secure realization of FREQZ is much more efficient, in both computation and

communication, compared to the existing solutions for FEQZ (see Chapter 3). Thus, using

this relaxed functionality provides a noticeable performance advantage; however, considering

that the outcome of FREQZ can be any random integer in Fq (rather than either 0 or 1),

simply replacing FEQZ with FREQZ in protocols 4.2 , 4.3 and 4.4 would result in incorrect

solutions. Below, we present our modified protocols that use FREQZ instead of FEQZ for

securely computing functionalities FSSWPM,FCSWPM and FDSWPM.

Secure Protocol for (⊥,Γ) = FSSWPM(T,P)

Protocol 4.6 below, Search-Swpm-Relaxed, securely computes FSSWPM. This protocol

is similar to Protocol 4.2 except that i) it uses FREQZ instead of FEQZ, and ii) Bob constructs

the set Γ = {i | ei = 0} rather than using Equation 4.14 (i.e., Γ = {i | ei = 1}).

66

Search-Swpm-Relaxed

Alice Bob
On input T On input P

. Phase 1: Compute the modified score vector JDK .

1 : T̂ = fT(T) P̂ = fP(P)
m′ = |{i | pi 6= ?}|

(Using Protocol 4.1)
C = T̂ ∗ P̂rev

T̂

JCKA

P̂rev

JCKB

2 : JDKA = JCKA JDKB = JCKB −

length: N︷ ︸︸ ︷
[m′,m′, · · · ,m′]

. Phase 2: Reveal the set Γ to Bob .

3 :

ZeroTest-Relaxed
JDKA

JEKA

JDKB

JEKB

4 : JEKA

5 : E = JEKA + JEKB

6 : Γ = {i | ei = 0}
7 : return ⊥ return Γ

Protocol 4.6. Secure realization of (⊥,Γ) = FSSWPM(T,P) based on FREQZ

Lemma 4.8 (Correctness and Security of Protocol 4.6). Protocol Search-Swpm-Relaxed,

on Alice’s and Bob’s respective private inputs T and P, securely computes the functionality

(⊥,Γ) = FSSWPM(T,P) in the semi-honest threat model. Moreover, the protocol is uncondi-

tionally secure in the ABB model of computation.

Proof. Correctness follows a similar argument as in Lemma 4.5 except that in Phase 2 the

vector JEK is such that JeiK = 0 if and only if Ti
?= P for 1 ≤ i ≤ N , based on which, in

Step 6 Bob constructs the set Γ as follows:

Γ = {i | ei = 0} (4.16)

67

rather than using Equation 4.14 . In particular, the resulting set Γ is as desired because

JciK = m′ ⇐⇒ JdiK = 0⇐⇒ JeiK = Jri · diK = 0www�
Γ = {i | JciK = m′} = {i | JdiK = 0} = {i | ei = 0}

The security of Phase 1 follows from the unconditional security of protocol Convolution

in Step 1 and the security of (non-interactive) addition in split form. Hence, to prove the

overall security of Protocol 4.2 , we only need to argue that revealing vector E to Bob in

Phase 2 does not provide him with any information about T that he would not be able to

learn from his prescribed output Γ = {i | Ti
?= P}. For that, it suffices to show that given Γ,

Bob can construct a vector Ê that is perfectly indistinguishable from E; Bob constructs such

a vector Ê from Γ without any additional information or any help from Alice by computing

êi for 1 ≤ i ≤ N as follows:

êi =

 0 if i ∈ Γ

r
$←− Fq \ {0} if i 6∈ Γ

The vectors Ê and E are statistically identical because i) êi = 0 if and only if ei = 0, and ii)

any non-zero entry êi and its corresponding entry ei are both uniform integers in Fq \ {0}.

This implies that the vector E is just a representation of Bob’s prescribed output Γ, and

this completes the proof.

Complexity. Protocol 4.6 requires three rounds of communication; moreover, its com-

putation and communication complexities are, respectively, O(n logm) and O(n).

Secure Protocol for (⊥, γ) = FCSWPM(T,P)

Protocol 4.8 below, Counting-Swpm-Relaxed, extends Protocol 4.6 such that it hides

both actual and relative matching positions (if any) while counting them remains possible.

The key idea is that instead of revealing vector E to Bob, reveal to him a random permutation

of E. In other words, Protocol 4.8 provides Bob with E′ = π(E), where π : {1, 2, · · · , N} →

68

{1, 2, · · · , N} is a uniformly chosen permutation that is unknown to him. Afterwards, Bob

simply counts the number of zero entries in E′ to learn the prescribed output γ = |Γ|. It

therefore suffices to give a protocol that permutes the split vector JEK according to such

a permutation without revealing π to Bob. Note that Alice can know the permutation π

because the resulting permuted vector will never be revealed to her. Moreover, due to the

linearity of permutation

π(E) = π(JEKA + JEKB) = π(JEKA) + π(JEKB) (4.17)

Hence, Alice can locally compute π(JEKA), and it remains to give a secure protocol that

computes π(JEKB) without revealing π to Bob and JEKB to Alice. We call such a permutation

functionality Single-blind Permutation; below, we describe the required characteristics of

single-blind permutation and propose Protocol 4.7 that securely computes it.

Single-blind Permutation

The single-blind permutation functionality (illustrated in Figure 4.6) takes as inputs,

Alice’s private (uniformly chosen) permutation π : {1, 2, · · · , λ} → {1, 2, · · · , λ} and Bob’s

private length-λ vector X, and outputs Jπ(X)K. It is crucial that the output is a split vector;

otherwise, a party who would learn π(X) may reconstruct the other party’s input.

Z = π(X)
FSBPAlice π

JZKA

BobX

JZKB

Figure 4.6. Single-blind Permutation Functionality

Protocol 4.7 below, Single-Blind-Perm, is a lightweight protocol that is particularly

designed for the use in the secret splitting framework. Our protocol requires auxiliary inputs

consisting of correlated random length-λ vectors RA $←− Fλq (private to Alice) and RB $←−

Fλq ,UB ∈ Fλq (private to Bob) such that UB = π(RA−RB). Note that these auxiliary inputs

69

and the permutation π are independent of Bob’s input vector X; hence, Alice and Bob may

choose π,RA and RB, and compute UB ahead of time. Henceforth, we assume that these

correlated vectors are provided to Alice and Bob ahead of time by a helper server that is

trusted to not collude with either party.

Single-Blind-Perm

Alice Bob
On input π On input X

Aux. input RA Aux. inputs RB,UB

. .

1 : X + RB

2 : Y = π(X + RB −RA)

UA $←− Fλq

Y−UA

3 : JZKA = UA JZKB = Y−UA + UB

4 : return JZKA return JZKB

Protocol 4.7. Secure realization of (JZKA, JZKA) = FSBP(π,X) using pre-
computed auxiliary inputs RA, RB and UB = π(RA −RB)

Lemma 4.9 (Correctness and Security of Protocol 4.7). Protocol Single-Blind-Perm,

on Alice’s private inputs π and Bob’s private inputs X (as well as their respective auxiliary

inputs RA and RB,UB), securely computes the functionality (JZKA, JZKB) = FFSB(π,X) in

the semi-honest threat model. Moreover, the protocol is unconditionally secure in the ABB

model of computation.

70

Proof. The correctness of Protocol 4.7 follows from the linearity of permutation. We show

that the sum of Alice’s and Bob’s respective outputs, JZKA = UA and JZKB = Y−UA+UB,

is in fact equal to π(X):

Z = JZKA + JZKB

= UA + Y −UA + UB

= Y + UB

= π(X + RB −RA) + UB (Y = π(X + RB −RA))

= π(X + RB −RA) + π(RA −RB) (UB = π(RA −RB))

= π(X + RB −RA + RA −RB) (Linearity of π)

= π(X)

Security of Protocol 4.7 follows from the unconditional security of (additive) one-time pad

encryption. Note that Alice receives only X + RB that is indistinguishable from a uniformly

chosen random vector to her (because RB $←− Fλq is private to Bob). On the other hand, Bob

receives only Y − UA that is indistinguishable from a uniformly chosen random vector to

him (because UA $←− Fλq is private to Alice). Although Bob knows UB = π(RA −RB) and

RB, he cannot learn anything about either π or RA because both these objects are chosen

uniformly at random.

Complexity. Protocol 4.7 requires two rounds of communication; moreover, its com-

putation and communication complexities are both O(λ). Note that the protocol uses only

addition and does not involve any (secure) multiplications.

Observation 4.1. Given that Alice and Bob can use the protocol Single-Blind-Perm to

securely compute the functionality (JZKA, JZKB) = FSBP(π, JEKA), they can securely obtain

JE′K = Jπ(E)K by obtaining its private shares as follows:

JE′KA = π(JEKA) + JZKA and JE′KB = JZKB

71

Proof. Below, we show that E′ is indeed equal to π(E):

E′ = JE′KA + JE′KB

=
(
π(JEKA) + JZKA

)
+ JZKB

= π(JEKA) +
(
JZKA + JZKB

)
= π(JEKA) + π(JEKB)

(
π(JEKB) = JZKA + JZKB

)
= π(JEKA + JEKB) (Linearity of π)

= π(E)

Protocol 4.8 uses Observation 4.1 to extend Protocol 4.6 for securely computing the

FCSWPM(T,P) functionality.

Lemma 4.10 (Correctness and Security of Protocol 4.8). Protocol Counting-Swpm-

Relaxed, on Alice’s and Bob’s respective private inputs T and P, securely computes the

functionality (⊥, γ) = FCSWPM(T,P) in the semi-honest threat model. Moreover, the protocol

is unconditionally secure in the ABB model of computation.

Proof. Correctness of Protocol 4.8 follows from Observation 4.1 that states E′ = π(E). As

a result, the count of zeros in E′ is equal to the count of zeros in E; hence, the computed

output γ = |Γ′| is indeed equal to Bob’s prescribed output |Γ|. For the proof of security,

note that Protocol 4.8 is a modification of of Protocol 4.6 such that it reveals E′ = π(E)

to Bob (rather than revealing E); moreover, π is a uniform permutation that is unknown to

Bob. Hence, it suffices to show that given the prescribed output γ, Bob can obtain a vector

Ê that is perfectly indistinguishable from E′. To do so, Bob fixes a set of γ random indices

I = {i1, i2, · · · , iγ} such that 1 ≤ i1 < i2 < · · · < iγ ≤ N ; then, he constructs Ê without any

additional information or any help from Alice by computing êi for 1 ≤ i ≤ N as follows:

êi =

 0 if i ∈ I

r
$←− Fq \ {0} if i 6∈ I

72

Counting-Swpm-Relaxed

Alice Bob
On input T On input P

Aux. inputs π,RA Aux. inputs RB,UB = π(RA −RB)

. Phase 1: Compute the permuted vector JE′K .

1 : T̂ = fT(T) P̂ = fP(P)
m′ = |{i | pi 6= ?}|

(Using Protocol 4.1)
C = T̂ ∗ P̂rev

T̂

JCKA

P̂rev

JCKB

2 : JDKA = JCKA JDKB = JCKB −

length: N︷ ︸︸ ︷
[m′,m′, · · · ,m′]

ZeroTest-Relaxed
JDKA

JEKA

JDKB

JEKB

3 :

Z = π(E)
Permute-and-Split

π

RA

JZKA

JEKB

RB,UB

JZKB

JE′KA = π(JEKA) + JZKA JE′KB = JZKB

. Phase 2: Reveal the count γ to Bob .

4 :

JE′KA

5 : E′ = JE′KA + JE′KB

6 : Γ′ = {i | e′i = 0}
7 : γ = |Γ′|
8 : return ⊥ return γ

Protocol 4.8. Secure realization of (⊥, γ) = FCSWPM(T,P) based on FREQZ

The vectors Ê and E′ are statistically identical because i) the count of zeros in both is equal

to γ, ii) any non-zero entry in either vector is a uniform integers in Fq \ {0}, and iii) E′ is a

uniform permutation of E; this completes the proof.

Complexity. Protocol 4.8 requires five rounds of communication; moreover, its compu-

tation and communication complexities are, respectively, O(n logm) and O(n).

73

Secure Protocol for (⊥, (γ > 0)) = FDSWPM(T,P)

In this case, Bob only gets to learn whether or not P occurs in T at least once. Clearly,∏N
i=1JdiK = 0 if and only if P appears in T. However, an unacceptably high number of rounds

would be required if Alice and Bob were to compute the predicate value (γ > 0) through

securely evaluating 1−∏N
i=1JdiK, and revealing its result to Bob. In what follows, we propose

Protocol 4.10 , Decision-Swpm-Relaxed, that achieves a small constant number of rounds

at the expense of allowing Bob to learn a loose upper bound on the count γ. In particular,

Protocol 4.10 extends Protocol 4.8 such that Bob learns either γ = 0 (in case of no matches)

or an upper bound on γ (if there exists at least one match). The key idea in Protocol 4.10

is to create an augmented vector JE′K, such that

• It contains vector JEK as a subsequence.

• It contains some fake entries that are either chaff or clones. A chaff entry is a fake

element injected to the inputs and/or outputs to create artificial samples that are

indistinguishable from the original entries [90], [91]. Here, a chaff entry is either a

random non-zero integer (fake no-match) or a zero (fake match). On the other hand,

a clone is a copy of an entry of JEK such that multiple replicas of the same entry are

split differently so they cannot be tied to each other.

• For any entry Je′iK, Bob does not know if it is a chaff or a copy of some real entry JejK.

Let θ (chosen by Alice) and ν be, respectively, the number of chaff entries that are 0 and the

total count of zeros in JE′K. Clearly, θ = ν if and only if γ = 0; if γ > 0, then ν is a loose

upper bound on γ because not only does ν count the original matches, but also it counts

the fake matches created by chaffing and cloning. Hence, it suffices for Bob to learn ν; then,

Alice and Bob use FREQZ to obliviously check whether or not Jν − θK = 0.

Chaffing and Cloning

The main difficulty in the above-mentioned approach is to obtain the augmented vector

JE′K in a manner that Bob learns nothing about JEK and the position of fake/real entries in

it. Below, we describe how Alice and Bob achieve this.

74

• Alice chooses chaffing parameters c ≥ N and θ
$←− {1, 2, · · · , c}, as well as a cloning

parameter r > 1; she sends r and c (but not θ) to Bob.

• Alice generates a length-c vector Chaff , where exactly θ entries in it are equal to 0

and the other c− θ entries are random non-zeros.

• Alice and Bob (non-interactively) construct an intermediary vector JE′′K of length

length t = rN + c such that

JE′′KA =
r copies︷ ︸︸ ︷

JEKA||JEKA|| · · · ||JEKA ||
length: c︷ ︸︸ ︷
Chaff (4.18)

JE′′KB =
r copies︷ ︸︸ ︷

JEKB||JEKB|| . . . ||JEKB ||
length: c︷ ︸︸ ︷

[0, 0, ..., 0] (4.19)

• Alice and Bob securely obtain JE′K = Jπ̂(E′′)K, where π̂ : {1, 2, · · · , t} → {1, 2, · · · , t}

is a uniform permutation that is chosen by Alice and unknown to Bob.

Lemma 4.11 (Correctness and Security of Protocol 4.9). Protocol Chaffing-and-Cloning,

on Alice’s and Bob’s respective private inputs JEKA and JEKB, securely constructs an aug-

mented vector JE′K with the desired properties in the semi-honest threat model. Moreover,

the protocol is unconditionally secure in the ABB model of computation.

Proof. The fact that the resulting JE′K has all desired properties follows from the construction

of the intermediary vector JE′′K and the uniform choice of permutation π̂. Particularly, Alice

and Bob (non-interactively) construct JE′′K as in equations 4.18 and 4.19 such that for r > 1

and c ≥ N

JE′′K =
r copies︷ ︸︸ ︷

JEK||JEK|| . . . ||JEK ||J
length: c︷ ︸︸ ︷
ChaffK (4.20)

Then, they obliviously permute and re-split it to obtain E′. Not only is it guaranteed that

JE′K includes JEK as a subsequence, but also the uniform choice of permutation π̂ (unknown

to Bob) ensures that all entries are in an arbitrary order; thus, Bob cannot determine whether

75

Chaffing-and-Cloning

Alice Bob
On input JEKA On input JEKB

Aux. inputs π̂, R̂A Aux. input R̂B, ÛB

. .

1 : Choose parameters r, c, θ

r, c

2 : Construct JE′′KA Construct JE′′KB

as in Equation 4.18 as in Equation 4.19
3 :

Z = π̂(JE′′KB)

Permute-And-Split
π̂, R̂A

JZKA

JE′′KB

R̂B, ÛB

JZKB

JE′KA = π̂(JE′′KA) + JZKA JE′KB = JZKB

4 : return JE′KA and θ return JE′KB

Protocol 4.9. Secure construction of the augmented vector E′ by obliviously
injecting chaff and clone entries

or not an entry is a chaff or a replica of an entry in JEK. The security of Protocol 4.9 follows

immediately from the previously discussed security of protocol Permute-and-Split.

Complexity. Protocol 4.9 requires three rounds of communication; moreover, its compu-

tation and communication complexities are both O(rN + c), where r and c are, respectively,

the cloning and chaffing parameters.

Protocol 4.10 uses Protocol Chaffing-and-Cloning to extend Protocol 4.8 for securely

computing the FDSWPM(T,P) functionality such that in the end Bob learns either γ = 0 or

just a loose upper bound on the non-zero count γ.

Lemma 4.12 (Correctness and Security of Protocol 4.10). Protocol Decision-Swpm-

Relaxed, on Alice’s and Bob’s respective private inputs T and P, approximates the func-

tionality (⊥, (γ > 0)) = FDSWPM(T,P) in the sense that Bob learns either that γ = 0, or

if γ > 0, he learns only an upper bound on γ. Moreover, the protocol is secure in the

semi-honest threat model.

76

Decision-Swpm-Relaxed

Alice Bob
On input T On input P

Aux. inputs π̂, R̂A Aux. inputs R̂B, ÛB = π̂(RA −RB)

. Phase 1: Compute the augmented vector JE′K .

1 : T̂ = fT(T) P̂ = fP(P)
m′ = |{i | pi 6= ?}|

(Using Protocol 4.1)
C = T̂ ∗ P̂rev

T̂

JCKA

P̂rev

JCKB

2 : JDKA = JCKA JDKB = JCKB −

length: N︷ ︸︸ ︷
[m′,m′, · · · ,m′]

ZeroTest-Relaxed
JDKA

JEKA

JDKB

JEKB

3 :

Chaffing-and-Cloning
JEKA

π̂, R̂A

θ

JE′KA

JEKB

R̂B, ÛB

JE′KB

. Phase 2: Reveal the predicate value (γ > 0) to Bob .

4 :

JE′KA

5 : E = JE′KA + JE′KB

6 : Γ′ = {i | e′i = 0}
7 : ν = |Γ′|
8 :

ZeroTest-Relaxed
−θ

JeKA

ν

JeKB

9 :

JeKA

10 : e = JeKA + JeKB

11 : return ⊥ return 1− sgn(e)

Protocol 4.10. Secure approximation of (⊥, (γ > 0)) = FDSWPM(T,P) based on FREQZ

77

Proof. The correctness of Protocol 4.10 follows from the construction of the augmented

vector E′ = π(E′′). The count of zeros in E′′ (hence, E′) is ν = rγ + θ: the first term, rγ, is

because of the replicas component of E′′, i.e.,
r copies︷ ︸︸ ︷

JEKA|| · · · ||JEKA, and the second term, θ, is due

to the structure of the vector Chaff chosen by Alice that has exactly θ ≥ 1 zeros. Clearly,

ν = θ if and only if γ = 0. Hence, computing (JeKA, JeKB) = ZeroTest-Relaxed(−θ, ν)

results in JeK = 0 if and only if γ = 0, which ensures that 1−sgn(e) is equal to the predicate

value (γ > 0).

Security of Phase 1 in Protocol 4.10 follows from the previously discussed security of the

protocols 4.1 , 4.5 and 4.9 . Thus, it suffices to show that in the second phase Bob learns

no more than an upper bound on γ; note that he learns ν, which is the number of genuine

matches (γ) plus the count of fake matches (ν − γ = (r − 1)γ + θ). Existence of the fake

entries guarantees that Bob does not learn a lower bound on the number of matches. On

the other hand, the use of protocol ZeroTest-Relaxed for revealing to Bob that whether

or not ν = θ ensures that he does not learn anything about the count gap ν − γ.

4.6 Experimental Results

We implemented our SWPM Protocols based on the FREQZ functionality, that we call

LiLiP (Lightweight, Linearithmic & Private). We implemented the scheme using Java

programming language, 64-bit JRE 8; the experiments were performed using a 2.80 GHz

Intel Core i7 CPU with 16GB RAM on macOS. Although our implementation is a proof-

of-concept and a more optimized implementation can obtain even better performances, the

experimental results show that our protocols perform very well in practice.

4.6.1 Performance: Execution Time & Transferred Data

The tables below show the execution time and volume of transferred data by LiLiP on

various input size combinations. All input strings used in our experiments are over the

alphabet of all ASCII characters (including both standard and extended ASCII characters),

i.e., size |Σ| = 256; this choice of alphabet demonstrates practicality of the proposed protocols

78

for larger alphabets (i.e., not only binary, DNA or natural language alphabets). The text

string lengths in our experiments ranged from thousands to more than a million characters.

Tables 4.1 , 4.2 and 4.3 present the cases where the pattern string P consists of 64, 128

and 512 characters respectively. Furthermore, for the decision version, we used chaffing and

cloning parameters c ' n and r = 2.

As the computations involving the generation and pre-computations on randoms, roots

of unity, and alphabet translations do not depend on the input strings, we did not group

them with computations that depend on the input strings; the reason is that the former can

be done offline, ahead of time, and in fact stored on external storage to be used later by

Alice and Bob whenever they need to do pattern matching. Hence, the tables below show

performance of computations that involve the input and pattern strings.

Table 4.1.
All times are measured in seconds, and all transferred data volumes are mea-
sured in megabytes. This table demonstrates LiLiP’s performance for pattern
queries of 64 characters, i.e., |P| = m = 64.

|T| = n 210 214 216 220

Time Data Time Data Time Data Time Data

Search-Relaxed 0.12 0.036 0.48 0.61 1.24 2.45 18.54 39.18

Counting-Relaxed 0.15 0.055 0.55 0.91 1.40 3.67 20.34 58.78

Decision-Relaxed 0.18 0.136 0.64 2.43 2.08 9.79 53.37 156.73

Table 4.2.
All times are measured in seconds, and all transferred data volumes are mea-
sured in megabytes. This table demonstrates LiLiP’s performance for pattern
queries of 128 characters, i.e., |P| = m = 128.

|T| = n 210 214 216 220

Time Data Time Data Time Data Time Data

Search-Relaxed 0.15 0.036 0.53 0.61 1.41 2.45 20.16 39.18

Counting-Relaxed 0.18 0.053 0.54 0.92 1.46 3.67 20.99 58.78

Decision-Relaxed 0.19 0.144 0.82 2.44 2.12 9.79 57.09 156.74

79

Table 4.3.
All times are measured in seconds, and all transferred data volumes are mea-
sured in megabytes. This table demonstrates LiLiP’s performance for pattern
queries of 512 characters, i.e., |P| = m = 512.

|T| = n 210 214 216 220

Time Data Time Data Time Data Time Data

Search-Relaxed 0.23 0.028 1.27 0.60 3.89 2.44 59.32 39.18

Counting-Relaxed 0.27 0.038 1.33 0.90 4.02 3.65 60.89 58.76

Decision-Relaxed 0.46 0.086 1.40 2.38 4.15 9.73 95.95 156.69

A comparison of tables 4.1 , 4.2 and 4.3 shows that the volume of transferred data de-

creases as the pattern size |P| = m increases. This may seem contradictory at first sight;

however, an accurate scrutiny clarifies this phenomenon: Recall that we consider wildcard

pattern matching without wraparounds; hence, the larger the pattern length m, the smaller

the max index N = n−m+ 1. Thus, avoiding the wraparound indices N + 1, N + 2, · · · , n

results in smaller data transfer among Alice and Bob.

4.6.2 Comparison with Previous State of the Art

We shall now compare LiLiP with PriSearch [59] because the latter had a better perfor-

mance among previous SWPM schemes. For instance, PriSearch performs 15× faster than

[85] which is itself more efficient compared to other automaton-based approaches; further-

more, PriSearch is 2× faster than the 5PM scheme of [56]; see [59] for more details on these

comparisons.

Before we compare LiLiP and PriSearch, we note that the system in [59] (Intel Core

i7 CPU @ 3.4 GHz processors, 12GB RAM with 64-bit Ubuntu 14 operating system) is

somewhat faster than the setting we used for our experiments. Below, we compare our

scheme to the two cases of secure wildcard pattern matching (search version) considered in

[59]:

80

1. n = 216 and m = 100 (m = 128 in our case): LiLiP performs almost 21.5× faster

than PriSearch. LiLiP takes 2.12 seconds while PriSearch’s reported execution time is

45.49 seconds. Moreover, the volume of transferred data is 9.78 MB for LiLiP, which

is drastically smaller than 4.74 GB for PriSearch.

2. n = 220 and m = 10 (m = 16 in our case): LiLiP performs almost 1.4× faster than

PriSearch. LiLiP takes 51.02 seconds while PriSearch’s reported execution time is 69.37

seconds. Moreover, the volume of transferred data is 176.54 MB for LiLiP, which is

drastically smaller than 7.21 GB for PriSearch.

Note that our speeds are much better even though we used slower hardware and somewhat

larger values for m. It is noticeable that LiLiP’s performance advantage increases as m

grows larger; this is expected because our scheme has sub-quadratic computation complexity

and linear communication complexity, whereas PriSearch’s computation and communication

complexities are both O(nm log |Σ|).

4.7 Discussion: SWPM in Stronger Adversarial Models

The most broadly used and studied variant of secure wildcard pattern matching is its

search version, (⊥,Γ) = FSSWPM(T,P), in which Bob learns the set Γ that contains all

positions in Alice’s text T at which P occurs. In what follows, we point out that in FSSWPM

a judicious choice of pattern P would result in Bob learning an unacceptable amount of

information about Alice’s private text T. In other words, in the augmented semi-honest and

malicious threat models that allow participants to use any input rather than their prescribed

input, the output-receiving party (i.e., Bob) can obtain more information about T than he is

supposed to learn. This drawback is due to the functionality definition, and can be exploited

regardless of the protocol used for secure computation.

The key idea in such an attack by Bob is that if P is a single alphabet symbol (i.e.,

m = 1 and P 6= “ ? ”), then the set Γ contains all positions in T where that alphabet symbol

appears. This, together with the power of the wildcard symbol ? that matches any alphabet

symbol, allows the dishonest Bob to (partially) reconstruct Alice’s private text T. Example

 4.3 below, illustrates how Bob can carry out such an attack.

81

Example 4.3. Let Σ = {1, 2}, n = 16, and m = 4, where

T = “1122121121222121”, and P = “122 ? ”

Moreover, we assume that Alice and Bob have access to a trusted third party who receives

the private inputs from both party’s and returns Γ to Bob. This shows that the following

attack by Bob is independent of the secure protocols used for obtaining Γ. In this example,

we compare what Bob learns about Alice’s private text T in two cases:

• Bob honestly inputs the prescribed pattern P = “122 ? ”: The given pattern

P ∈ (Σ∪{?})4 is a valid input for FSSWPM, hence the trusted party proceeds and returns

Γ = {i | Ti
?= P} = {2, 10}. From this, Bob learns that T = “?122?????122????” and

that titi+1ti+2 6= “122” for any i < 14 such that i 6∈ {2, 10}.

• Bob dishonestly inputs the crafted pattern P̃ = “1 ? ? ? ”: The given pattern

P̃ ∈ (Σ∪{?})4 is a valid input for FSSWPM, hence the trusted party proceeds and returns

Γ′ = {i | Ti
?= P̃} = {1, 2, 5, 7, 8, 10}. From this, what Bob learns about T is that

T = “1122121121222???”.

Clearly, Bob learns more about T in the latter case. Moreover, engaging in another instance

of FSSWPM in which Bob uses P̃′ = “ ? ? ? 1” would enable him to learn T in its entirety.

Note that in the case of m = 1, Alice would have known the risk of exposure and may

not have engaged in the computation. However, the fact that m > 1 together with the

requirement that Alice learns nothing about Bob’s private pattern make it impossible for

her to determine whether or not Bob’s behavior is baleful.

To remedy the weakness described above, we propose a Filtered SWPM, denoted by

F τSWPM, in which Bob learns only τ(Γ) for an agreed-upon output-filtering function τ ; Figure

 4.7 illustrates this functionality. It is evident that F τSWPM is the most general instantiation

of SWPM in the 2PC setting; all previously discussed versions of SWPM can be obtained

by a proper choice of the filter function τ(·) as discussed below:

• Search version: FSSWPM is equivalent to the filtered SWPM with τ(·) being the “iden-

tity” function, i.e., τid(Γ) = Γ.

82

• Counting version: FCSWPM is equivalent to the filtered SWPM with τ(·) being the

“cardinality” function, i.e., τcard(Γ) = |Γ|.

• Decision version: FDSWPM is equivalent to the filtered SWPM with τ(·) being the “is-

not-empty” function, i.e., τine(Γ) = (Γ 6= ∅).

Our solutions in Section 4.5 directly reflect the above instances of the filtered SWPM func-

tionality. In the remainder of this section, we give two more instances of filtered SWPM in

which Bob learns only one member of Γ (only if the set is non-empty).

4.7.1 Bob Learns Only the Leftmost Match

Filtering function τmin(Γ) allows Bob to learn only the smallest i such that Ti
?= P; i.e.,

τmin(Γ) =

 min(Γ) if Γ 6= ∅

0 if Γ = ∅
(4.21)

Protocol 4.11 , Filtered-Swpm-LeftMost, securely realizes F τmin
SWPM(T,P). In a nutshell,

Alice and Bob first obtain the indicator vector JEK such that ei = 1 if and only if Ti
?= P

(as discussed in Section 4.5.2). Then, they overwrite all entries in it, except one, with 0. For

that, Alice and Bob first compute (non-interactively) an intermediary vector JĒK such that

JēiK = ∑i
j=1 j · JejK for all 1 ≤ i ≤ N ; then, they obliviously compute a final matching vector

JLK as in Equation 4.22 below:

JliK =

 JēiK if i = 1

J(ēi−1 == 0) · ēiK if 2 ≤ i ≤ N
(4.22)

Γ = {i | Ti
?= P}

F τSWPM

τ(·)

Alice T

⊥

BobP

τ(Γ)

Figure 4.7. (⊥, τ(Γ)) = F τSWPM(T,P)

83

By construction, JLK has at most one non-zero entry that is equal to the leftmost non-zero

entry in JĒK, which is itself the smallest integer in Γ. Hence, Alice and Bob can simply

compute (non-interactively)

Jτmin(Γ)K =
N∑
k=1

JlkK

Then, Alice sends her share Jτmin(Γ)KA to Bob so he can reconstruct the desired output

τmin(Γ).

4.7.2 Bob Learns One Match at Random

Filtering function τrand1(Γ) allows Bob to learn exactly one index i ∈ Γ (if any) chosen

uniformly at random; i.e.,

τrand1(Γ) =

 i
$←− Γ if Γ 6= ∅

0 if Γ = ∅
(4.23)

Filtered-Swpm-LeftMost (Protocol 4.11) can easily be modified to obtain a secure

realization of (⊥, τrand1(Γ)) = F τrand1
SWPM(T,P). The key idea is to find the leftmost non-zero

entry in JE′K = Jπ(E)K (rather than in JEK), where π is a random permutation that is

unknown to Bob. Hence, the required modifications to Filtered-Swpm-LeftMost are:

1. After computing the indicator vector JEK (right before Phase 2), Alice and Bob use

the protocol Single-Blind-Perm and Observation 4.1 to obtain JE′K = Jπ(E)K as

described above.

2. In Phase 2, Alice and Bob find the leftmost none-zero entry in JE′K (rather than JEK).

For that it suffices to only modify Step 3, by replacing JejKA and JejKB with Je′jKA and

(respectively) Je′jKB.

84

Filtered-Swpm-LeftMost

Alice Bob
On input T On input P

. Phase 1: Compute the indicator vector JEK .

1 : T̂ = fT(T) P̂ = fP(P)
m′ = |{i | pi 6= ?}|

(Using Protocol 4.1)
C = T̂ ∗ P̂rev

T̂

JCKA

P̂rev

JCKB

2 : JDKA = JCKA JDKB = JCKB −

length: N︷ ︸︸ ︷
[m′,m′, · · · ,m′]

ei = (di == 0)
FEQZ

JDKA

JEKA

JDKB

JEKB

. Phase 2: Reveal t = τmin(Γ) to Bob .

3 : Compute JĒKA s.t. for 1 ≤ j ≤ n Compute JĒKB s.t. for 1 ≤ j ≤ n

JējKA = j · JejKA JējKB = j · JejKB

4 : Compute JÊKA s.t. for 1 ≤ i ≤ n Compute JÊKB s.t. for 1 ≤ i ≤ n

JêiKA =
i∑

k=1

JēkKA JêiKB =
i∑

k=1

JēkKB

(Using Equation 4.22)
Compute L

JÊKA

JLKA

JÊKB

JLKB

5 : JtKA =
N∑
k=1

JlkKA JtKB =
N∑
k=1

JlkKB

6 :

JtKA

7 : t = JtKA + JtKB

8 : return ⊥ return t

Protocol 4.11. Secure realization of (⊥, τmin(Γ)) = F τmin
SWPM(T,P) based on FEQZ

85

5. SECURE TWO-PARTY INPUT-SIZE REDUCTION

Secure two-party computation has recently become a more practically applicable crypto-

graphic technology, and many researchers have been pursuing efficient solutions to a wide

variety of 2PC problems (e.g., [27], [29]–[37]). Some protocols use preprocessing of inputs

to improve the overall performance, mainly using techniques that are either problem-specific

or approach-specific [31], [60]. In this work, we develop a generic preprocessing mechanism,

applicable for all 2PC problems that rely on equality tests (e.g., pattern matching). Our

mechanism reduces the bit-length of inputs such that using the size-reduced inputs to solve

the problem of interest results in the same output as if the original inputs had been used.

Such input-size reduction is especially advantageous when its cost can be amortized over mul-

tiple subsequent computations that all benefit from the already-done size-reduction. This

is true for most 2PC approaches, e.g., in garbled circuits, the circuit size depends on the

inputs’ bit-length, and in many number-theoretic approaches, the arithmetic cost depends

on the size of input integers.

Aiming for faster information retrieval and saving memory space in a 2PC setting, Gol-

dreich et al. [60] considered the problem of mapping long names into smaller abbreviations.

The solution in [60] (i) requires a trusted party who knows all input names, and (ii) allows a

small probability of collision for each pair of names, which is when two distinct long names

are mapped into the same abbreviation. In this chapter, we consider the above size-reduction

problem when there is no such trusted party. Moreover, we impose two further desiderata:

We require (i) a very small abbreviation space (codomain), where small means equal or close

to the number of input items (we later make this notion more precise); and, (ii) a guarantee

of no collisions at all, which is particularly challenging because of the above requirement of

a very small codomain. Although these requirements make the problem considerably more

difficult, they are necessitated by our results’ specific applications.

5.1 Motivation and Overview

Consider a 2PC functionality F whose inputs are over a large domain Σ ⊂ Fq, but only a

small subset of Σ appears in the inputs (see Section 5.9 for examples). In such situations, it

86

is desirable to avoid the communication and computation costs corresponding to symbols of

Σ that do not occur in the inputs. If security were not a concern, it would be easy to replace

the large inputs with shorter ones whose bit-length is the logarithm of the count of occurring

symbols (rather than log2 |Σ|). However, in the 2PC setting where each input is private to

a party, it would be inappropriate to reveal the set of occurring symbols because doing so

would leak information about the private inputs. Hence, a secure preprocessing mechanism

is needed to obtain the size-reduced symbols. In other words, symbols that appear in the

inputs must be securely mapped to smaller values in such a way that

• the mapping is consistent among all parties;

• the mapping is collision-free; and,

• the bit-length of size-reduced symbols is as small as possible.

Section 5.9 gives examples of 2PC problems that benefit from such a secure input-size re-

duction.

The secure input-size reduction problem discussed in this chapter is reminiscent of (but

different in fundamental ways from) the classic perfect hashing problem: Let S be a set

containing large integers (i.e., S ⊂ Σ = {0, . . . , 2σ − 1} = {0, 1}σ). A perfect hash function

(PHF) for S is a function ρ : Σ→ {0, 1, . . . , N − 1} such that N is a small integer (close to

|S|) and ρ is injective on S [92], [93]. In this chapter, we propose a secure perfect hashing

approach to the above-mentioned secure input-size reduction problem. Although perfect

hashing is a well-studied and broadly used topic when security and privacy are of no concern

[92]–[100], the patent document by Nawaz et al. [101] seems to be the only existing work that

considers perfect hashing in a secure setting; however, the results of [101] do not solve the

secure input-size reduction problem (see Section 5.2 for details). We first formally introduce

Secure Perfect Hash Functions (SPHFs) for the union of two private sets SA and SB. Then,

we propose provably secure protocols to construct such a hash function and argue that SPHFs

are sufficient for secure input-size reduction.

87

5.2 Related Work

This section reviews the existing work in the literature related to perfect hashing and

secure input-size reduction. Construction and analysis of perfect hash functions are well-

studied in the area of algorithms and data structures when security and privacy are not of

concern [92]–[100]. Some constructions [94]–[96] rely on the theoretical properties of sets

of integers. Though these methods are simple and theoretically interesting, they tend to

be slow either in the construction step or the evaluation step (or both). Fredman et al.

[97] proposed an efficient two-level PHF construction that obtains asymptotically minimal

codomain size O(|S|). The key idea in [97] is to partition the items into m subsets using

a universal family of hash functions [102], followed by another layer of universal hashing

to obtain injective behavior on each subset. More recent works such as [98]–[100] focus on

efficient solutions to (nearly) minimal perfect hashing.

Nawaz et al. [101] seems to be the only existing work that addresses the need of a secure

perfect hash function for data matching applications between private databases. They pro-

pose a solution based on cryptographic hash functions and the simple and space-efficient min-

imal perfect hashing “hash, displace, and compress” technique [98], [103]. In [101], authors

argue that their scheme is secure with respect to the private sets due to the preimage-resistant

properties of cryptographic hash functions like SHA2. However, this is not necessarily true

since their design uses only a few bytes of the cryptographic hash output to construct a

perfect hash function. Thus, the resulting SPHF is prone to a membership-testing attack

that will be described in Section 5.4 . Also, [101] lacks formal security, correctness, and

performance analyses and is vague as to how parties interact.

Following the GGM construction for Pseudorandom Functions (PRFs) [104], Goldreich

et al. [60] considered the problem of mapping long names into smaller abbreviations with a

small probability of collision for each pair of items. This achieves faster information retrieval

and saves memory space [60]. As an application, Goldreich et al. [60] designed a Friend

or Foe Identification (FFI) mechanism, which enables members of a secret club to identify

each other. The PRF-based solution to FFI [60] is suitable for cryptographic purposes as it

is more robust than schemes based on classical primitives such as universal hashing [102].

88

In FFI, only “club members” can use the system, and their designated leader knows all

members’ names. By contrast, we consider the above name-reduction problem when there

is no such leader. As stated earlier, we also impose the requirement of no collisions at all,

while achieving a very small codomain.

In 2015, Pinkas et al. [31] proposed a bit-length reduction scheme specifically geared

towards faster Private Set Intersection (PSI) in the MPC framework. The proposed method

in [31] elegantly applies simple hashing for partitioning the input sets into a number of bins

such that the reduced bit-representations for two items in the same bin are equal if and only

if the two items are equal. The scheme in [31] results in no intra-bin collisions, but does not

guarantee the absence of inter-bin collisions; i.e., the size-reduction technique of [31] allows

two items to have the same size-reduced representations as long as they are not in the same

bin. Although the above works perfectly for solving PSI, the fact that it allows inter-bin

collisions prevents its use for many other problems. Our solutions do not allow collisions of

any type.

Some articles use terminologies reminiscent of ours but are different in nature. One

is Oblivious Hashing [105], which is a software integrity verification scheme. Another is

PerfectDedup [106], which is a mechanism for data deduplication in cloud storage manage-

ment that uses a PHF on encrypted data to securely identify the popular data segments for

deduplication.

5.3 Summary of Contributions

We present the first formal attempt to define and solve the secure perfect hashing problem

and use it for secure input-size reduction in the 2PC framework. Although our definitions

and solutions have natural extensions for any number of parties, we focus on the two-party

case. Below, we give an overview of our main contributions.

5.3.1 Problem Formulation

In Section 5.4 , we formulate secure two-party input-size reduction by formalizing the

notion of a Secure Perfect Hash Function (SPHF) for the union of private sets SA and SB

89

as a PHF for S = SA ∪ SB such that the knowledge of its mapping on SA (resp. SB) does

not reveal anything about SB (resp. SA). Definition 5.1 presents the formal definition of a

SPHF.

5.3.2 Proposed Constructions

We first propose an approach, FindSPHF, to construct a minimal perfect SPHF for S; we

give two embodiments for it that trade off round complexity for computation complexity. We

further improve both round and computation complexities by introducing a Distribution level

that divides S into m disjoint subproblems; then, each subproblem is solved independently

using FindSPHF. Table 5.1 compares the performance and resulting codomain size of our

SPHF constructions.

• Perfect SPHF Construction (Section 5.6): We show that if a hash function

ρ : Σ→ {0, 1, . . . , N − 1} is chosen uniformly at random among all functions that are

injective on S = SA ∪ SB, then ρ is a minimal perfect SPHF for S. Afterward, we

propose a Las Vegas approach, FindSPHF, that securely and efficiently obtains such

a function ρ. The key idea in FindSPHF is assigning unique random labels to items

in SA and SB, followed by a judicious label unification step for duplicates x ∈ SA∩SB.

We give two embodiments for FindSPHF, namely, Label-then-Unify and Merge-

then-Unify.

• Distribution-Resolution Construction (Sections 5.7 and 5.8): For more effi-

cient SPHF construction, Section 5.7 introduces a Distribution level that uses a stan-

dard balls and bins analysis [107] to find a distributor function Ψ that securely parti-

tions S into m = |SA| + |SB| subproblems of size O(logm) each. Then, FindSPHF

solves these subproblems independently (but in parallel) giving SPHFs ρi that we call

resolvers (because they resolve intra-bin collisions). Section 5.8 describes how to com-

bine Ψ and the ρis to obtain the desired SPHF ρ for S. One of the security measures

in Distribution level is formulating the notion of two-party Oblivious Distributed PRF

(ODPRF), whose DPRF part is in the spirit of Naor et al. [72]. The use of an ODPRF

as a distributor function forces a party (querier) to seek assistance of the other party

90

Table 5.1.
Performance of proposed SPHF constructions: Let mA = |SA|,mB = |SB|,
m = mA + mB and the security-performance parameter κ be a small integer;
as m grows larger, a smaller κ suffices for the same level of security (see Section

 5.8 for choice of κ).

Scheme Computation &
Communication Rounds Codomain

Cardinality

Label-then-Unify (§ 5.6.1) O(mA ·mB) O(1) m

Merge-then-Unify (§ 5.6.2) O(m logm) O(logm) m

Distribute-Label (§ 5.7 and § 5.6.1) O(m(κ+ (logm
log logm)2)) O(1) O(m logm

log logm)

Distribute-Merge (§ 5.7 and § 5.6.2) O(m(κ+ logm)) O(log logm) O(m logm
log logm)

for computing Ψ(x), without compromising either x or Ψ(x). We propose a two-party

ODPRF based on a combination of Micali and Sidney’s xor-PRFs [108] and any stan-

dard Oblivious PRF (e.g., [28], [70], [71], [109], [110]).

5.3.3 Use Cases and Implications

In Section 5.9 , we describe two applications for which input-size reduction through SPHFs

results in significant performance improvements. We also discuss the implicit connection of

secure perfect hashing with the important and well-studied problem of Private Set Intersec-

tion (PSI). In particular, we show that given an SPHF for S = SA ∪ SB, PSI on inputs SA

and SB can be solved through exactly |SA|+ |SB| invocations of secure multiplication in one

round of communication.

5.4 Problem Definition

The first step in designing Secure Perfect Hash Functions (SPHFs) is to precisely formu-

late the security requirements with respect to the private input sets SA and SB (recall that

S = SA∪SB ⊂ Σ). One requirement is that neither Alice nor Bob should be able to individ-

ually compute ρ(x) for x ∈ Σ, where ρ is the desired SPHF. Otherwise, the inherently small

codomain of ρ would enable a party to obtain information about the other party’s private

91

set via a membership-testing attack – because of ρ’s small codomain, it would be trivial to

find integers that collide under ρ, resulting in information leakage about the private sets.

For example, if y ∈ SA, Alice learns that any x 6= y with ρ(x) = ρ(y) cannot be in SB,

thereby leaking information about SB to Alice. The above vulnerability cannot be fixed by

enlarging the codomain as doing so would defeat the purpose of input-size reduction and

perfect hashing. To overcome this vulnerability, our definition will require that Alice and

Bob learn only the image of their own respective private set under ρ as illustrated in Figure

 5.1 .

Definition 5.1 (Secure Perfect Hash Function). A hash function ρ : Σ→ {0, 1, . . . , N − 1}

is an SPHF for S = SA ∪ SB if and only if

1. Correctness: ρ is a PHF for S (ρ is injective on S).

2. Security: Given Alice’s private output %A = {(x, ρ(x))}x∈SA, but not ρ itself, Alice

must not be able to learn anything about SB. Formally, for any y ∈ Σ

|Pr[y ∈ SB | %A]− Pr[y ∈ SB]| ≤ negl, (5.1)

Similarly, for Bob’s private output %B = {(x, ρ(x))}x∈SB and any y ∈ Σ

|Pr[y ∈ SA | %B]− Pr[y ∈ SA]| ≤ negl, (5.2)

where negl is a negligible function in the implicit security parameter. In the special

case of negl = 0, ρ is called a perfect SPHF.

ρ : Σ→ {0, 1, · · · , N − 1}
as in Definition 5.1

FSPHFAlice SA

%A = {(x, ρ(x))}x∈SA

BobSB

%B = {(x, ρ(x))}x∈SB

Figure 5.1. (%A, %B) = FSPHF(SA, SB)

92

The security requirement in Definition 5.1 implies that a minimal SPHF has a codomain of

N = |SA|+ |SB| possible hash values. Note that defining SPHF minimality as N = |SA∪SB|

would reveal information about SA ∩ SB.

5.5 Major Challenges

There are two major obstacles towards obtaining an SPHF for S = SA ∪ SB:

1. Privacy and Security: The classical perfect hashing algorithms (e.g., [97], [98]) require

centralized knowledge of S to obtain the injective behavior. Even the secure size-

reduction scheme in [60] depends on a trusted party who knows all the input items

(the scheme also allows collisions with a small probability). Our solutions reveal only

a value m that is equal to |SA| + |SB|. If it is desired to hide |SA| and |SB| [111],

parties may add a random number of dummy items to their respective private sets

before engaging in our SPHF construction protocols, thereby revealing only a loose

upper bound on the sizes of their respective sets.

2. Efficiency: It is not clear how to use the general 2PC techniques to practically and se-

curely implement the classical perfect hashing algorithms. For example, currently there

is no known practical circuit for implementing such schemes through garbled circuits.

Moreover, such a (hypothetical) circuit would have a large number of gates, because

of the large input items in SA and SB. Our solutions mitigate this “curse of large

inputs” through a judicious combination of local computations and fast cryptographic

primitives such as lightweight computations in additive split form.

5.6 Constructing a Minimal Perfect SPHF for S = SA ∪ SB

W.l.o.g., we assume |SA| = |SB| = γ resulting in m = 2γ. Let InjΣ,2γ(S) denote the

set of all functions f : Σ Injective on S−−−−−−−→ {0, 1, . . . , 2γ − 1}. Lemma 5.1 formally argues that

any function chosen uniformly at random from InjΣ,2γ(S) is a minimal perfect SPHF for

S = SA ∪ SB (recall that a minimal SPHF has a codomain of size N = m). Based on this

93

observation, we propose the FindSPHF approach that gives a minimal perfect SPHF for S.

The key idea in FindSPHF consists of two steps:

1. Obliviously assigning distinct random hash values in the range {0, 1, . . . , 2γ − 1} to

items in SA and SB; then,

2. obliviously unifying the labels for duplicate items x ∈ SA ∩ SB.

SA = {10, 7, 23, 11} SB = {87, 10, 11, 27}︸ ︷︷ ︸www�
Assign a random unique label from {0, 1, · · · , 7} to each item

A A A A B B B B
x 10 7 23 11 87 10 11 27
l(x) 6 2 7 1 0 5 3 4

www�
Unify labels for duplicates x ∈ SA ∩ SB

A A A A B B B B
x 10 7 23 11 87 10 11 27
ρ(x) 6 2 7 1 0 6 1 4

www�
Return private outputs %A and %B

︷ ︸︸ ︷
%A = {(10, 6), (7, 2), (23, 7), (11, 1)} %B = {(87, 0), (10, 6), (11, 1), (27, 4)}

Figure 5.2. High-level illustration of FindSPHF through an example (γ =
4). Sections 5.6.1 and 5.6.2 propose protocols that securely and efficiently
apply this approach.

94

Figure 5.2 illustrates the FindSPHF approach for a small example (γ = 4). We propose two

embodiments of the above idea: The first embodiment, Label-then-Unify (Section 5.6.1),

requires O(γ2) computation in O(1) rounds; the second embodiment, Merge-then-Unify

(Section 5.6.2), needs O(γ log γ) computation in O(log γ) rounds.

Lemma 5.1. Let SA, SB ⊆ Σ such that |SA| = |SB| = γ; any function ρ chosen uniformly

at random from InjΣ,2γ(S) is a minimal perfect SPHF for S = SA ∪ SB.

Proof. We show that ρ satisfies the requirements of Definition 5.1 . Injectivity and minimality

of ρ follow from the choice ρ ∈ InjΣ,2γ(S). For the security requirement, we prove security

against Alice by showing that for %A = {(x, ρ(x))}x∈SA and any y ∈ Σ

Pr[y ∈ SB | %A] = Pr[y ∈ SB] (5.3)

that is equivalent to Equation 5.1 with negl = 0; security against Bob as in Equation 5.2

follows a symmetric argument.

Let φ : Σ → {0, 1 . . . , 2γ − 1} be constructed as in Figure 5.3 . In particular, the con-

struction samples hash values for all items in a certain order: First, it samples (without

φ
$←− InjΣ,2γ(S)

1 : Γ = {0, 1, · · · , 2γ − 1}
2 : for all x ∈ SA do

3 : φ(x) $←− Γ
4 : Γ = Γ \ {φ(x)}
5 : endfor
6 : for all x ∈ SB \ SA

7 : φ(x) $←− Γ
8 : Γ = Γ \ {φ(x)}
9 : endfor

10 : for all x 6∈ S do

11 : φ(x) $←− {0, 1, · · · , 2γ − 1}
12 : endfor

Figure 5.3. The hypothetical function φ used in the proof of Lemma 5.1

95

replacement) hashes φ(x) for x ∈ SA, and then continues for x ∈ SB \SA; finally, it samples

(with replacement) hashes φ(x) for x ∈ Σ \ S. By construction, φ is chosen uniformly at

random from InjΣ,2γ(S). Moreover, the mapping of SA under φ is independent of the set SB;

thus, by definition

Pr[y ∈ SB | {(x, φ(x))}x∈SA] = Pr[y ∈ SB]

Furthermore, any function ρ
$←− InjΣ,2γ(S) is statistically identical to φ, hence,

Pr[y ∈ SB | %A] = Pr[y ∈ SB | {(x, ρ(x))}x∈SA]

= Pr[y ∈ SB | {(x, φ(x))}x∈SA]

= Pr[y ∈ SB]

This completes the proof that Equation 5.3 holds.

Our secure constructions for the FindSPHF approach use the Double-blind Permutation

functionality as illustrated in Figure 5.4 : Given a length-λ input vector JXK, the functionality

(JYKA, JYKB) = FDBP(JXKA, JXKB) is such that JYK = Jπ(X)K for a random permutation

π : {1, 2, · · · , λ} → {1, 2, · · · , λ} that is unknown to both parties. There are protocols in

the literature that securely realize this functionality [112], [113]. Preferable is a symmetric

double-use (with two independent random permutations) of protocol Single-Blind-Perm

that was proposed in Chapter 4 , which is particularly suitable for use in the secret splitting

framework. Such a double use of Protocol 4.7 requiresO(λ) computation and communication

in a total of 2 rounds. Henceforth, we use the Double-blind Permutation functionality in a

black-box manner.

Y = π(X)
FDBPAlice

JXKA

JYKA

Bob
JXKB

JYKB

Figure 5.4. (JYKA, JYBK) = FDBP(JXKA, JXKB) such that JYK = Jπ(X)K for
a random permutation π that is unknown to both parties.

96

Notation 5.1. Henceforth, for simpler representation we use the established predicate no-

tation to denote the general “private equality test” functionality that can be obtained from

FEQZ. Recall that the output of predicate evaluation is always additively split, while the

operands may or may not be split; for example, (JaK == b) gives J1K if a == b, and (a == b)

gives J0K if a 6= b.

5.6.1 FINDSPHF: Randomized LABEL-THEN-UNIFY

Protocol 5.1 , Label-then-Unify, securely computes FindSPHF in two phases:

1. Label items randomly and uniquely, then unify labels for duplicate items:

Alice (resp. Bob) creates a length-γ vector U (resp. V) with items of SA (resp. SB)

in arbitrary order. Alice and Bob assign random distinct labels to entries in U and

V by generating an initial label vector JLK consisting of hash values {0, 1, · · · , 2γ − 1}

in a random order; i.e., JLK = Jπ([0, 1, . . . , 2γ − 1])K, where π is unknown to both

parties. Pairing U and the first γ entries of JLK gives an initial mapping of item-hash

pairs {(ui, JliK)} for 1 ≤ i ≤ γ. Similarly, pairing V and the second γ entries of JLK

gives an initial mapping {(vj, Jlγ+jK)} for 1 ≤ j ≤ γ. However, this initial mapping is

inconsistent (by construction) when SA∩SB is non-empty, in the sense that Alice’s and

Bob’s initial mappings give different hash values for any x ∈ SA ∩ SB; more formally

∀x ∈ SA ∩ SB ∃ 1 ≤ i, j ≤ γ s.t. ui = x = vj ∧ li 6= lγ+j (5.4)

The following Protocol 5.1 unifies such inconsistent labels for x by overwriting Jlγ+jK

with JliK. To do so, Alice and Bob first compute a γ × γ indicator matrix J∆K that

obliviously captures the position of duplicate items, i.e., Jδi,jK = (ui == vj). Then, an

updated label vector JL′K is computed as follows:

Jl′iK = JliK for 1 ≤ i ≤ γ

Jl′γ+jK = Jδi,j · liK + J(1− δi,j) · ljK for 1 ≤ j ≤ γ ∧ Jδi,jK = 1
(5.5)

Remark 5.1. Note that

97

(a) The initial label vector JLK = Jπ([0, 1, · · · , 2γ− 1])K is independent of SA and SB

and can be computed ahead of time, which allows Protocol 5.1 to take JLK as an

auxiliary input.

(b) The random permutation π determines the choice of ρ ∈ InjΣ,2γ(S); π enforces

injectivity on S, while allowing (implicit) arbitrary mapping of items in Σ \ S.

(c) Alice and Bob cannot determine which labels have been unified because any label

Jlγ+jK is overwritten either with itself (if Jδi,jK = 0 for all 1 ≤ i ≤ γ), or with some

JliK (if Jδi,jK = 1 for exactly one index i). Recall that the secure multiplication in

split form implicitly re-splits the resulting secret shares, which prevents parties

from recognizing if a label has been overwritten with itself or with another label.

2. Return private outputs: At this point, Alice and Bob have an SPHF in split form.

Alice sends Jl′γ+1KA, Jl′γ+2KA, . . . , Jl′2γKA to Bob, and Bob sends Jl′1KB, Jl′2KB, . . . , Jl′γKB to

Alice. Following this, each party computes their respective private output:

%A = {(x, ρ(x))}x∈SA = {(ui, l′i)} for 1 ≤ i ≤ γ

%B = {(x, ρ(x))}x∈SB = {(vj, l′γ+j)} for 1 ≤ j ≤ γ
(5.6)

Lemma 5.2 (Correctness of Protocol 5.1). A function ρ : Σ → {0, 1 . . . , 2γ − 1} obtained

by Label-then-Unify is a minimal perfect SPHF for S = SA ∪ SB.

Proof. Due to Lemma 5.1 , it suffices to prove that the protocol returns a function chosen

uniformly at random from InjΣ,2γ(S); below, we prove that for any φ ∈ InjΣ,2γ(S)

Pr[ρ = φ] = 1
|InjΣ,2γ(S)| , where |InjΣ,2γ(S)| = (2γ)!

(2γ − |S|)! · (2γ)|Σ\S| (5.7)

Below, we partition Σ into three disjoint sets and analyze ρ’s behavior for each one separately:

1. “S ′ = S \ (SA ∩ SB)”: Protocol 5.1 merely uses the random permutation π to assign

unique hash values to items in S ′; the unification process does not modify these hashes.

Thus, choice of π fixes one of the (2γ)!
(2γ−|S′|)! possible mappings for items in S ′.

98

2. “SA ∩ SB”: Step 1 in the protocol assigns two distinct and unique hash values to each

x ∈ SA ∩ SB; then, Step 3 overwrites one of these labels with the other one. Hence,

the choice of π determines one of the (2γ−|S′|)!
(2γ−|S′|−|SA∩SB|)! possible mappings for items in

SA ∩ SB, and it does not matter which one is used.

3. “Σ \ S”: Protocol 5.1 allows (implicit) arbitrary mapping of items in Σ \ S to hash

values {0, 1 . . . , 2γ − 1}; there are (2γ)|Σ\S| such mappings.

FindSPHF: Label-then-Unify (public parameter γ)

Alice Bob
On input SA On input SB

Aux. input JLKA Aux. input JLKB

. Phase 1: Label items randomly and uniquely, then unify labels for duplicate item .

1 : Create vector U that Create vector V that

contains items of SA contains items of SB

in an arbitrary order in an arbitrary order
2 :

Construct
Matrix ∆γ×γ s.t.
δi,j = (ui == vj)

U

J∆KA

V

J∆KB

3 : J∆KA, JLKA J∆KB, JLKB

Update labels
(Using Equation 5.5)

J∆KA

JLKA

JL′KA

J∆KB

JLKB

JL′KB

. Phase 2: Return private outputs .

4 : Jl′γ+1KA, Jl′γ+2KA, . . . , Jl′2γKA

Jl′1KB, Jl′2KB, . . . , Jl′γKB

5 : %A = {(ui, l′i)}1≤i≤γ %B = {(vj , l′γ+j)}1≤j≤γ

6 : return %A return %B

Protocol 5.1. Secure realization of FINDSPHF approach in constant rounds

99

Hence, the function ρ obtained by Protocol 5.1 is chosen uniformly at random among

(2γ)!
(2γ − |S ′|)! ·

(2γ − |S ′|)!
(2γ − |S ′| − |SA ∩ SB|)! · (2γ)|Σ\S|

possible functions in InjΣ,2γ(S). As a result, recalling that S ′ and SA ∩ SB are disjoint, we

get

Pr[ρ = φ] = (2γ − |S ′|)!
(2γ)! · (2γ − |S ′| − |SA ∩ SB|)!

(2γ − |S ′|)! · 1
(2γ)|Σ\S|

= (2γ − |S|)!
(2γ)! · (2γ)|Σ\S| = 1

|InjΣ,2γ(S)|

Lemma 5.3 (Security of Protocol 5.1). Protocol Label-then-Unify, on Alice’s and Bob’s

respective private inputs SA and SB, that computes the functionality (%A, %B) = FSPHF(SA, SB)

is secure in the semi-honest threat model. Moreover, given black-box access to the FEQZ func-

tionality, the protocol is unconditionally secure in the ABB model of computation.

Proof. It suffices to discuss the security of steps 2 and 3: Step 2 merely uses the “equal to

zero” functionality (FEQZ from Chapter 3) in a black-box manner, and Step 3 applies the

mapping summarized in Equation 5.5 that only uses secure addition and multiplication in

split form. Hence, Protocol 5.1 is unconditionally secure in the ABB model of computation.

5.6.2 FINDSPHF: Randomized MERGE-THEN-UNIFY

The key observation for improving computation and communication complexities of the

Label-then-Unify protocol is that the γ × γ indicator matrix J∆K computed in Step 2

of Protocol 5.1 has at most one non-zero entry in each row and each column. This allows

reducing the dimension of J∆K from γ × γ to 1 × 2γ through the use of Oblivious Merge

functionality as illustrated in Figure 5.5 : Given two sorted input vectors JXK and JYK,

the functionality (JZKA, JZKB) = FMERGE
(
(JXKA, JYKA), (JXKB, JYKB)

)
is such that JZK =

JMerge(X,Y)K, where Merge(X,Y) is the sorted combination of X and Y. For computing

100

this functionality, we shall use the results of Jónsson et al. [114] that give a secure two-party

protocol adaptation of Batcher’s merge [115] for secure merging in split form. For two input

vectors of length γ, the secure merge protocol of [114] requires O(γ log γ) computation and

communication in O(log γ) rounds.

Z = Merge(X,Y)
FMERGEAlice

JXKA, JYKA

JZKA

Bob
JXKB, JYKB

JZKB

Figure 5.5. (JZKA, JZKB) = FMERGE
(
(JXKA, JYKA), (JXKB, JYKB)

)
, which

takes sorted vectors JXK and JYK as input, and outputs their sorted com-
bination as vector JZK in split form.

Following the observation above, we propose another embodiment for our FindSPHF

approach, Merge-then-Unify, which needs O(γ log γ) computation and communication

in O(log γ) rounds. Merge-then-Unify consists of three phases:

1. Mark ownership, sort and merge: First, Alice and Bob locally mark their private

inputs so they can determine the owner of each item after merging, randomly permut-

ing, and processing the data in split form. To do so, they locally construct marked

sets SA × {0} and SB × {1}, thereby, pairing each item x with an ownership indicator

(denoted by Owner(x)).

After marking ownership, Alice and Bob locally sort their private sets and obtain

strictly increasing length-γ vectors U and V. Then, they obliviously merge U and

V to obtain the sorted combination of both, i.e., a length-2γ vector JZK. Note that

for any x ∈ SA ∩ SB, (x, 0) from Alice’s input immediately precedes (x, 1) from Bob’s

input (the ownership bits will be also split).

2. Label items randomly and uniquely, then unify labels for duplicate items:

Alice and Bob assign random distinct labels from {0, 1 . . . , 2γ − 1} to items in JZK by

pairing JZK with an initial label vector JLK = Jπ1([0, 1, · · · , 2γ − 1])K, where π1 is a

double-blind permutation. This results in an initial mapping {(JziK, JliK)}1≤i≤2γ that is

101

inconsistent (by construction) when SA∩SB is non-empty, in the sense that Alice’s and

Bob’s initial mappings give different hash values for any x ∈ SA ∩ SB; more formally

∀x ∈ SA ∩ SB ∃ 2 ≤ i ≤ 2γ s.t. zi−1 = (x, 0) ∧ zi = (x, 1) ∧ li−1 6= li (5.8)

This phase unifies the inconsistent labels for duplicates by overwriting JliK with Jli−1K.

To do so, Alice and Bob compute a 1 × 2γ vector J∆K that obliviously captures the

position of duplicates, i.e., Jδ1K = 0 and JδiK = (zi−1 == zi) for 2 ≤ i ≤ 2γ. Then,

they compute an updated label vector JL′K such that

Jl′1K = Jl1K

Jl′iK = Jδi · li−1K + J(1− δi) · liK for 2 ≤ i ≤ 2γ
(5.9)

Remark 5.2. Note that (similar to Remark 5.1)

(a) The initial label vector JLK = Jπ1([0, 1, · · · , 2γ − 1])K is independent of SA and

SB and can be computed ahead of time.

(b) The random permutation π1 determines the choice of ρ ∈ InjΣ,2γ(S); π1 enforces

injectivity on S, while allowing (implicit) arbitrary mapping of items in Σ \ S.

(c) Alice and Bob cannot determine which labels have been unified because any label

JliK for 2 ≤ i ≤ 2γ is overwritten either with itself (if JδiK = 0), or with Jli−1K (if

JδiK = 1). Recall that the secure multiplication in split form implicitly re-splits

the secret shares, which prevents parties from recognizing if a label has been

overwritten with itself or with another label.

3. Shuffle, and return private outputs: After unifying labels for duplicates, Alice

and Bob have an SPHF in split form. Since JZK is sorted, revealing the ownership bits

would reveal information about the rank of items in S, and thus about SA and SB.

Hence, before revealing ownership bits, Alice and Bob shuffle both JZK and JL′K using

102

a double-blind permutation π2 to obtain JZ′K = π2(JZK) and JL′′K = π2(JL′K). At this

point, Alice and Bob safely reveal the ownership bits for all items in JZ′K and obtain

IA = {i | 1 ≤ i ≤ 2γ ∧Owner(z′i) = 0},

IB = {i | 1 ≤ i ≤ 2γ ∧Owner(z′i) = 1},
(5.10)

Then, Alice sends {Jz′iKA, Jl′′i KA}i∈IB to Bob, and Bob sends {Jz′iKB, Jl′′i KB}i∈IA to Alice.

Finally, each party computes his/her respective private output as follows:

%A = {(x, ρ(x))}x∈SA = {(z′i, l′′i)}i∈IA

%B = {(x, ρ(x))}x∈SB = {(z′i, l′′i)}i∈IB
(5.11)

Lemma 5.4 (Correctness of Merge-then-Unify). A function ρ : Σ → {0, 1 . . . , 2γ − 1}

obtained by Merge-then-Unify is a minimal perfect SPHF for S = SA ∪ SB.

Proof. The proof that ρ satisfies Definition 5.1 follows a similar argument to the proof of

Lemma 5.2 ; i.e., the function ρ is chosen uniformly at random from InjΣ,2γ(S) due to the

uniform choice of permutation π1 in the second phase.

Lemma 5.5 (Security of Protocol 5.1). Protocol Merge-then-Unify, on Alice’s and Bob’s

respective private inputs SA and SB, that computes the functionality (%A, %B) = FSPHF(SA, SB)

is secure in the semi-honest threat model. Moreover, given black-box access to the FEQZ,

FMERGE and FDBP functionalitities, the protocol is unconditionally secure in the ABB model

of computation.

Proof. Similar to the security argument in the proof of Lemma 5.3 , all joint computations

are consist of either (i) a black-box access to one of the functionalities FEQZ, FMERGE and

FDBP for which there are secure realizations or (ii) secure arithmetic in split form. Hence, it

suffices to ensure that neither party learns anything about the other party’s private data due

to the sorted order of items in vector Z; this follows from the use of random permutations

π1 and π2 in a double-blind manner:

• The use of random permutation π1 in Phase 2 of the protocol guarantees that the label

assigned to any item zi has no correlation with the rank of that item.

103

• The use of random permutation π2 in Phase 3 of the protocol before revealing the

ownership bits for all items ensures that neither party learns anything about the rank

and order of items.

5.7 Distribution: Probabilistic Input Partitioning

Although the FindSPHF approach gives a solution to both secure perfect hashing and

secure two-party input-size reduction problems, it requires either quadratic computation

and communication (Label-then-Unify) or a logarithmic number of rounds (Merge-

then-Unify). In this section, we further improve the performance of our constructions by

building on the FindSPHF approach. To do so, we use a standard balls and bins analysis

[107] to create m subproblems of size O(logm) through a consistent partitioning of private

sets SA and SB. Then, each subproblem will be solved independently using the FindSPHF

approach; finally, our scheme combines the obtained SPHFs for these subproblems to provide

an overall SPHF for the original set S. According to the balls and bins analysis, if m balls

(input items) are distributed into m bins uniformly and independently at random, then the

probability of having a bin with more than γ balls is at most m · (e
γ
)γ, which is not more

than 1
m

for sufficiently large m and a choice of γ ≥ 3 lnm
ln lnm [107].

For a function Ψ : Σ → {0, 1, · · · ,m − 1}, we define bins (subproblems) Si for 0 ≤ i ≤

m− 1 as follows (private bins SAi and SBi are defined accordingly):

Si = {x | x ∈ S ∧Ψ(x) = i} (5.12)

We are interested in finding a function Ψ that, when applied to the private sets SA and SB

separately, results in a maximum load bin of at most γ items; formally,

max
0≤i<m

(|SAi |) ≤ γ and max
0≤i<m

(|SBi |) ≤ γ (5.13)

If Equation 5.13 holds, we say Ψ is a distributor for S. Note that Equation 5.13 implies that

max0≤i<m(|Si|) ≤ 2γ.

104

Remark 5.3 (Relaxed PHF [98]). For any set S and an integer k > 0, a function h is

considered to be a (S, k)-PHF if each bin Si under h contains at most k items. In other

words, a (S, k)-PHF guarantees no more than k collisions per hash value. According to this

relaxed definition of perfect hashing, a distributor Ψ for S must be both a (SA, γ)-PHF and

a (SB, γ)-PHF; this guarantees Ψ being a (S, 2γ)-PHF. Clearly, additional security measures

(discussed below) are necessary for a distributor function.

Because of the security and performance requirements, there are two major challenges for

finding a distributor Ψ. We first (in sections 5.7.1 and 5.7.2) discuss these challenges, and

how we address them. Then (in Section 5.7.3), we propose our FindDistribtor protocol

to obtain such a distributor Ψ for set S.

5.7.1 Challenge 1: Preventing Exploitation of Distributor Function’s Structure

Given a distributor Ψ and any x ∈ Σ, neither party should be able to unilaterally compute

Ψ(x). Otherwise, an adversarial party (say, Alice) may exploit Ψ to gain information about

the other party’s set, e.g., through a membership-testing attack; for example, Alice would

easily find γ′ > γ items which lay in the same bin under Ψ, and learn that some of these

γ′ items are not in SB (this would violate the security property in Definition 5.1). In order

to prevent such a structure exploitation, we first define the Distribution functionality (as

illustrated in Figure 5.6) analogous to the SPHF functionality: Alice and Bob must learn only

the mapping of their respective private sets under Ψ, which gives the desired partitioning.

To satisfy all the requirements, Ψ must be a cooperatively and securely computable PRF in

the sense that:

• Cooperatively computable Ψ: A querier who wants to compute Ψ(x) for a private query

x must need the other party’s cooperation via execution of a protocol. Any evaluation

of Ψ(x) without cooperation of both parties must be no better than a random guess.

• Securely Computable Ψ: A protocol that enables the querier party to compute Ψ(x)

must be secure with respect to the querier’s input and output; i.e., the other party

involved in computing Ψ(x) must not learn anything about x and Ψ(x).

105

Ψ : Σ→ {0, 1, · · · , γ − 1}
FDISTAlice SA

ψA = {(x,Ψ(x))}x∈SA

BobSB

ψB = {(x,Ψ(x))}x∈SB

Figure 5.6. Distribution functionality (ψA, ψB) = FDIST(SA, SB), where (i) Ψ
is cooperatively and securely computable; and, (ii) the maximum load bins for
SA and SB under Ψ have at most γ items, i.e., |SAi |, |SBi | ≤ γ for 0 ≤ i < m.

To obtain the properties above, we combine the notions of OPRF and DPRF (both

reviewed in Section 2.3) that leads to the formulation of an Oblivious Distributed PRF

(ODPRF). Definition 5.2 formalizes 2-out-of-2 ODPRFs (denoted by ODPRF2
2). Then, we

propose Protocol 5.2 that combines Micali and Sidney’s xor-PRFs [108] with any standard

OPRF, 〈F,ProtOPRF
F 〉, to obtain an ODPRF2

2.

Definition 5.2 (Oblivious Distributed PRF). Let the keyed function Ψ be a PRF with the

security parameter τ . A 2-out-of-2 oblivious computation of Ψ is a triple of efficient protocols

〈Gen,ΨA:B,ΨB:A〉 such that

• Gen(1τ) generates a key k = (α, β) consisting of two secret keys α and β, one for each

party.

• ΨA:B is a secure protocol that enables Alice to efficiently compute Ψk(x) for her pri-

vate query x with Bob’s cooperation. Moreover, Alice cannot evaluate Ψk(x) without

invoking ΨA:B; i.e., for a truly random function f(·) and any PPT distinguisher D

|Pr[DΨk(·)(1τ , α) = 1]− Pr[Df(·)(1τ , α) = 1]| ≤ negl(τ) (5.14)

• ΨB:A is a secure protocol that enables Bob to efficiently compute Ψk(x) for his pri-

vate query x with Alice’s cooperation. Moreover, Bob cannot evaluate Ψk(x) without

invoking ΨB:A; i.e., for a truly random function f(·) and any PPT distinguisher D

|Pr[DΨk(·)(1τ , β) = 1]− Pr[Df(·)(1τ , β) = 1]| ≤ negl(τ) (5.15)

106

In both equations 5.14 and 5.15 , the first probability is over the randomness of D and choices

of secret keys α and β; the second probability is over the randomness of D and choices of

secret keys α, β and the truly random function f ; superscripts of D denote oracle access to

the corresponding function.

Lemma 5.6. Let 〈F,ProtOPRF
F 〉 be an OPRF with the security parameter τ . Then, the

function Ψk(x) = Fα(x) ⊕ Fβ(x), where α and β are respectively, Alice’s and Bob’s secret

keys, together with the triple 〈Gen,ΨA:B,ΨB:A〉 as in Protocol 5.2 is an ODPRF2
2.

Proof. Since subprotocol Gen generates two random bit-strings of length τ as secret keys α

and β, α = β may happen only with the negligible probability 2−τ ; thus, we assume α 6= β.

Also, we consider secure computation of F through ProtOPRF
F in a black-box manner.

The triple 〈Gen,ΨA:B,ΨB:A〉 in Protocol 5.2 satisfies Definition 5.2 : Gen generates the

secret keys α and β, each of them being a key for F . Protocol ΨA:B (resp. ΨB:A) enables

Construction of ODPRF2
2 (security parameter τ)

Alice Bob
. Subprotocol Gen(1τ): Generate key k = (α, β). .

1 : α
$←− {0, 1}τ β

$←− {0, 1}τ

. Subprotocol ΨA:B: Compute Ψk(x) when Alice is the querier .

2 : On input x ∈ SA, α On input β

ProtOPRF
F

x

Fβ(x)

β

3 : return Ψk(x) = Fα(x)⊕ Fβ(x) return ⊥

. Subprotocol ΨB:A: Compute Ψk(x) when Bob is the querier .

4 : On input α On input x ∈ SB, β

ProtOPRF
F

α x

Fα(x)

5 : return ⊥ return Ψk(x) = Fα(x)⊕ Fβ(x)

Protocol 5.2. Construction of ODPRF2
2

107

Alice (resp. Bob) to securely evaluate Ψk(x) via invoking ProtOPRF
F once, followed by only

local computations. Hence, both ΨA:B and ΨB:A are as secure as the underlying OPRF.

It remains to prove that equations 5.14 and 5.15 hold; i.e., as long as at least one of the

secret keys α and β is unknown, Ψk(·) is indistinguishable from a truly random function

f(·). Since Ψk is symmetric by construction, we prove only Equation 5.14 . For the sake of

contradiction, assume there exists a PPT distinguisher D and a non-negligible ε s.t.

|Pr[DΨk(·)(1τ , α) = 1]− Pr[Df(·)(1τ , α) = 1]| = ε

Below, we use D to construct a PPT distinguisher D̄, which distinguishes Fβ(·) from a truly

random function f̄(·) with probability ε. D̄ intervenes the messages between D and an oracle

(namely, Orac) that computes either Fβ or f̄ as follows:

• On D’s query x, D̄ passes it to Orac and receives the oracle’s response Orac(x).

• D̄ computes Orac(x)⊕ Fα(x) and sends it to D as the oracle’s response to query x.

In the end, D̄ returns 1 if and only if D returns 1. D runs in polynomial-time and F is

efficiently computable, thus, D̄ also runs in polynomial-time. If the oracle computes Fβ,

then, Orac(x) ⊕ Fα(x) = Ψk(x); or else, if the oracle computes a random function f̄ , then,

f(x) = Orac(x)⊕ Fα(x) = f̄(x)⊕ Fα(x) is also a truly random function. Thus,

|Pr[D̄Fβ(·)(1τ , α) = 1]− Pr[D̄f̄(·)(1τ , α) = 1]| = ε,

which contradicts the assumption that F is a PRF.

Corollary 5.1. Assuming a PPT adversary, the ODPRF2
2 in Lemma 5.6 is a cooperatively

and securely computable function:

1. Due to Lemma 5.6 , in the absence of at least one of the secret keys α and β, any

evaluation of Ψk(x) is no better than a random guess. Thus, the cooperation of both

parties is necessary for computing Ψk(·) on any input x.

2. Computing Ψk(x) through ΨA:B (resp. ΨB:A) does not reveal anything about x and

Ψk(x) to Bob (resp. Alice). Thus, Ψk(·) is securely computable for any input x.

108

For a distributor, we need an ODPRF2
2 with domain Σ and codomain {0, 1, · · · ,m− 1};

thus, the input and output lengths for the underlying PRF must be, respectively, `in = σ

and `out = log2m.

5.7.2 Challenge 2: Possible Failure of a Distributor Candidate and Its Conse-
quences

In order to find a distributor, Alice and Bob need to randomly choose a distributor

candidate, and obliviously verify if it satisfies Equation 5.13 ; if the candidate fails (with

probability pfail ≤ 1
m

), then they try another candidate. This is a cause for two concerns:

1. An undetermined number of rounds.

2. Information leakage if the candidate fails. For example, if a candidate fails but gives

a maximum load of at most γ for SA, Alice learns that SB \ SA 6= ∅ and that violates

the privacy of Bob’s private set SB.

Our scheme addresses these issues by using a security-performance parameter κ to make

the probability of failure arbitrarily small. Initially, Alice and Bob agree on κ independent

distributor candidates and verify their validity independently, but in parallel. This reduces

the overall probability of failure to (pfail)κ ≤ m−κ, which is negligible in κ. This completely

handles the concern for undetermined number of rounds. Moreover, it provides a way to

address the second concern: It is enough to inform Alice and Bob that one specific candi-

date is a valid distributor without giving them any information about the validity of other

candidates. In order to do this, Alice and Bob compute an indicator vector JDK of length κ

such that JdiK = 1 if and only if the ith candidate is a valid distributor. Then, they use an

auxiliary secure lightweight protocol, PickAnyOne (Protocol 5.3), which returns the index

of a valid distributor uniformly at random; Figure 5.7 below, illustrates the corresponding

“Pick-any-One” functionality (denoted by FPA1).

Protocol PickAnyOne securely computes the functionality (t, t) = FPA1(JDKA, JDKB)

in two phases:

109

t
$←− {i | di = 1}
FPA1Alice

JDKA

t

Bob
JDKB

t

Figure 5.7. “Pick-any-One” functionality (t, t) = FPA1(JDKA, JDKB): The
input JDK is a length-κ vector of 0s and 1s. If {i | di = 1} = ∅, then t = 0; or
else, t $←− {i | di = 1}.

1. Random shuffling: Alice and Bob first (non-interactively) compute a vector JD′K

such that Jd′iK = JdiK · i; for any non-zero entry JdiK, the corresponding entry Jd′iK

obliviously stores the index i, i.e.,

Jd′iK =

 i if JdiK = 1

0 if JdiK = 0

Then, Alice and Bob use the double-blind permutation functionality, FDBP, to shuffle

the vector JD′K and obtain JYK = Jπ(D′)K.

2. Finding the leftmost non-zero entry in JYK: Any non-zero entry in JYK corre-

sponds to a non-zero entry in JDK. To obliviously search for the leftmost non-zero

entry in the shuffled vector JYK, Alice and Bob first compute (non-interactively) a

vector JUK as the prefix-sum of JYK, i.e., for 1 ≤ i ≤ κ

JuiK =
i∑

j=1
JyjK

By construction, vector JUK consists of (some) zeros followed by (some) non-zeros.

Also, the leftmost non-zero entry in JUK is equal to the leftmost non-zero entry in JYK;

to find this entry, it suffices to compute vector JVK as follows:

JviK =

 JuiK if i = 1

J(ui−1 == 0) · uiK if 2 ≤ i ≤ κ
(5.16)

110

On the one hand, JYK 6= ~0 results in JVK with exactly one non-zero entry equal to

the leftmost non-zero entry in JYK; on the other hand, JYK = ~0 results in JVK = ~0.

Thus, it is enough for Alice and Bob to compute JtK = ∑κ
i=1JviK (non-interactively),

and exchange their respective shares of JtK so they both learn the desired output t.

Complexity. Protocol 5.3 , PickAnyOne, requires O(κ) computation and communi-

cation in O(1) rounds.

PickAnyOne

Alice Bob
On input JDKA On input JDKB

. Phase 1: Random shuffling .

1 : Construct JD′KA s.t. Construct JD′KB s.t.

Jd′iK
A = JdiKA · i Jd′iK

B = JdiKB · i

(Permutation π)
FDBP

JD′KA

Jπ(D′)KA

JD′KB

Jπ(D′)KB

JYKA = Jπ(D′)KA JYKB = Jπ(D′)KA

. Phase 2: Finding the leftmost non-zero entry in JYK .

2 : Compute JUKA s.t. Compute JUKB s.t.

JuiKA =
i∑

j=1

JyjKA JuiKB =
i∑

j=1

JyjKB

Compute Vector V
(Using Equation 5.16)

JUKA

JVKA

JUKA

JVKB

3 : JtKA =
κ∑
i=1

JviKA JtKB =
κ∑
i=1

JviKB

JtKA

JtKB

4 : return t return t

Protocol 5.3. Secure realization of (t, t) = FPA1(JDKA, JDKB)

111

Lemma 5.7 (Correctness of Protocol 5.3). Let JDK be a length-κ vector of 0s and 1s.

On Alice’s and Bob’s respective inputs JDKA and JDKB, protocol PickAnyOne correctly

computes the functionality (t, t) = FPA1(JDKA, JDKB).

Proof. The proof is straightforward, but is given nevertheless for the sake of completeness.

Clearly, if JDK = ~0, then JD′K = JYK = JUK = ~0, which by construction results in t = 0. If

JDK has at least one non-zero entry, Phase 1 of Protocol 5.3 first computes JD′K such that

Jd′iK = i if and only if JdiK = 1 (otherwise, Jd′iK = 0). Then, it uses a random double-blind

permutation π to shuffle JD′K resulting in JYK; the uniform choice of π implies that all non-

zero values in JD′K are equiprobable to become the leftmost non-zero entry in JYK. Then,

Phase 2 of the protocol finds the leftmost non-zero entry in JYK as described earlier.

Lemma 5.8 (Security of Protocol 5.3). Protocol PickAnyOne is secure with respect to JDK

in the semi-honest threat model. Moreover, given a black-box access to the functionalities

FEQZ and FDBP, the protocol is unconditionally secure in the ABB model of computation.

Proof. The security of Protocol 5.3 follows immediately from the fact that its only joint

computations are (i) the use of FDBP in Phase 1, and applying Equation 5.16 in Phase 2,

which uses only secure multiplication and functionality FEQZ.

5.7.3 FINDDISTRIBUTOR: Putting Pieces Together to Find a Valid Distributor

Protocol 5.4 , FindDistributor, takes sets SA, SB, as well as integer parameters τ , κ

and γ as input; it finds an ODPRF2
2 that is a valid distributor for S = SA∪SB. The protocol

consists of two phases:

1. Randomly generate candidates and verify local validity: Alice and Bob gen-

erate ODPRF2
2s Ψ1, . . . ,Ψκ uniformly and independently at random (Ψi abbreviates

Ψki). After computing all private bins for all candidate functions, each party locally

verifies whether or not each candidate has a local maximum load of at most γ.

2. Pick a valid candidate uniformly at random: Alice and Bob compute a length-κ

indicator vector JZK such that JziK = 1 if and only if Ψi is a valid distributor. Then,

112

Alice and Bob invoke protocol PickAnyOne from Section 5.7.2 on input vector JZK

to securely find an index t s.t. JztK = 1. Finally, Alice and Bob keep only item-hash

pairs corresponding to Ψt and dispose of all other pairs. Formally, Alice’s and Bob’s

private outputs are
ψAt = {(x,Ψt(x)) | x ∈ SA}

ψBt = {(x,Ψt(x)) | x ∈ SB}
(5.17)

Complexity. Protocol 5.4 , FindDistributor, requires O(κm) computation and com-

munication in O(1) rounds (assuming that ProtOPRF
F requires O(1) rounds).

Lemma 5.9 (Correctness of Protocol 5.4). Protocol FindDistributor on private inputs

SA and SB, and public parameters τ , κ and γ

1. finds a valid distributor Ψt for S = SA ∪ SB w.p. at least 1−m−κ.

2. given ψAt (resp. ψBt), Alice (resp. Bob) learns nothing about SB (resp. SA).

Proof. Claim (1): Since SA, SB ⊆ S, it suffices to prove that the protocol finds a function

Ψt that gives a maximum load of at most γ for S; i.e.,

Pr[∃t s.t. for Ψt max
1≤i<m

(|Si|) ≤ γ] ≥ 1−m−κ (5.18)

Since all candidates are PRFs, we prove Equation 5.18 assuming that any candidate Ψi

distributes |S| ≤ m items into the m bins uniformly and independently at random (otherwise,

Ψi would not be indistinguishable from a truly random function) [69]. As discussed earlier,

balls and bins analysis [107] implies

pfail = Pr[max
1≤i<m

(|Si|) > γ] ≤ m · (e/γ)γ,

which can be further simplified as m · (e/γ)γ ≤ 1
m

for γ ≥ 3 lnm
ln lnm and large enough m [107];

also, the κ candidates are chosen independently. Hence, at least one of the candidates is

a distributor for S with probability at least 1 − m−κ. This completes proof of Claim (i).

Claim (ii) follows directly from the fact that Ψt is an ODPRF2
2: From a PPT point of view

113

FindDistributor (public parameters τ , κ and γ)

Alice Bob
On input SA On input SB

. Phase 1: Randomly generate candidates and verify local validity .

1 : α1, α2, . . . , ακ
$←− {0, 1}τ β1, β2, . . . , βκ

$←− {0, 1}τ

2 : for 1 ≤ i ≤ κ do
(in parallel)

ΨA:B
SA, αi

ψAi

βi

ψAi = {(x,Ψi(x))}x∈SA

1 ≤ i ≤ κ for 1 ≤ i ≤ κ do
(in parallel)

ΨB:A
αi SB, βi

ψBi

ψBi = {(x,Ψi(x))}x∈SB

1 ≤ i ≤ κ

3 : Create vector VA based on ψAi s Create vector VB based on ψBi s

vAi = 1 iff Ψi is locally valid vBi = 1 iff Ψi is locally valid

. Phase 2: Pick a valid candidate uniformly at random .

4 : VA VB

Z = VA �VB
Pointwise product

VA

JZKA

VB

JZKB

5 : JZKA JZKB

(Protocol 5.3)
PickAnyOne

JZKA

t

JZKB

t

6 : if t 6= 0 return ψAt if t 6= 0 return ψAt

else return ⊥ else return ⊥

Protocol 5.4. Finding a valid distributor function. Note that Step 1 is
equivalent to κ invocations of Gen(1τ) from Protocol 5.2 .

Ψt distributes |S| items uniformly and independently; also, each party learns only the image

of their own private set under Ψt and does not know the other party’s secret key for the

114

candidate. A formal proof follows an argument similar to the proof of Lemma 5.1 , and is

straightforward (hence omitted).

Lemma 5.10 (Security of Protocol 5.4). Protocol FindDistributor is secure with respect

to sets SA and SB in the semi-honest threat model.

Proof. Security of Phase 1 in the protocol follows from the already argued security of pro-

tocols ΨA:B and ΨB:A (see Lemma 5.6); note that for 1 ≤ i ≤ κ each party learns only the

image of their own private set under the candidate Ψi and does not know the other party’s

secret key for Ψi. Security of Phase 2 follows from the fact that it uses only secure multipli-

cation in split form (Step 4) and protocol PickAnyOne (Step 5) which is itself secure due

to Lemma 5.8 .

5.8 Overall Distribution-Resolution Scheme

We explain how Distribution-Resolution scheme (Figure 5.9) combines the schemes of

sections 5.6 and 5.7 to construct an SPHF. We also discuss the inherent trade-off between

parameters γ and κ. Finally, Theorem 5.8.1 states the correctness and security of our

Distribution-Resolution scheme.

Let Ψ be the distributor that partitions S into m subproblems of size at most 2γ each.

Moreover, let ρ0, ρ1, . . . , ρm−1 be the resolvers obtained by FindSPHF for each subproblem.

As depicted in Figure 5.9 , SPHF ρ = 〈Ψ, ρ0, ρ1, . . . , ρm−1〉 works as follows: There are 2γ

hash values reserved for each subproblem Si. Any x ∈ S with Ψ(x) = i resides in Si and

has, within this subproblem, an offset of ρi(x) < 2γ. Thus, the desired hash value ρ(x) is

the sum of two terms: The first term is 2γ · i which corresponds to the hash values reserved

for subproblems S0, · · · , Si−1; the second term is ρi(x), and represents the offset assigned to

x among all 2γ reserved hash values for Si. In summary,

ρ(x) = 2γ · i+ ρi(x), for i = Ψ(x) (5.19)

115

216 224 232 240 248 256 264

m

10−62

10−52

10−42

10−32

10−22

10−12

10−2

U
p

p
er

b
ou

n
d

on
p f

ai
l

γ = d 3 log(m)
log log(m)e

γ = d 4 log(m)
log log(m)e

γ = dlog(m)e

Figure 5.8. Upper bound pfail ≤ m · (e/γ)γ for various choices of γ as a function of m

The codomain cardinality of ρ is linear in γ, and naturally a larger γ results in a smaller

pfail for each randomly chosen distributor candidate. Figure 5.8 illustrates pfail for three

choices of γ as a function of m. Note that for all choices of γ, pfail decreases as m grows; this

suggests a trade-off between parameters γ and κ. For example, if m = 224 and it is desired

to find a valid distributor with probability at least 1−10−50 (i.e., (pfail)κ ≤ 10−50), Alice and

Bob may choose γ = dlogme = 24 and κ = 4, or γ = d 3 logm
log logme = 16 and κ = 10.

Theorem 5.8.1 (Correctness and Security). Let ρ = 〈Ψ, ρ0, ρ1, . . . , ρm−1〉 be a function

obtained by the Distribution-Resolution scheme on private inputs SA and SB:

1. ρ is an SPHF for S = SA ∪ SB.

2. Construction of ρ is secure with respect to the private sets SA and SB in the semi-honest

threat model.

Proof. For claim (1), we show that ρ satisfies Definition 5.1 . Function ρ is injective on S

by construction: First, S is partitioned into m subproblems of size at most 2γ; then, each

subproblem is solved using FindSPHF and obtained SPHFs are combined using Equation

 5.19 . It remains to prove the security property in Definition 5.1 ; since equations 5.1 and 5.2

are symmetric, we prove only Equation 5.1 , i.e., for %A = {(x, ρ(x))}x∈SA

|Pr[y ∈ SB | %A]− Pr[y ∈ SB]| ≤ negl(τ)

116

The resolvers ρ0, ρ1, . . . , ρm−1 are perfect SPHFs, i.e., Pr[y ∈ SB|%Ai] = Pr[y ∈ SB] for all

0 ≤ i ≤ m − 1. This, together with the structure of ρ(x) as in Equation 5.19 , implies

Pr[y ∈ SA|%A] = Pr[y ∈ SB|ψA] (recall that ψA = {(x,Ψ(x))}x∈SA). In other words, any

(hypothetical) difference between Pr[y ∈ SB|%A] and Pr[y ∈ SB] must be caused by the

distributor Ψ. Thus, it suffices to argue that such a difference is negligible:

|Pr[y ∈ SB | ψA]− Pr[y ∈ SB]| ≤ negl(τ) (5.20)

Recall that Ψ is an ODPRF2
2 and is indistinguishable from a truly random function except

w.p. negl(τ). If Equation 5.20 did not hold, then a PPT distinguisher could distinguish Ψ

from a truly random function, which would contradict the fact that Ψ is a PRF.

For claim (2), recall that all m subproblems Si are mutually disjoint and are dealt with

separately via independent invocations of secure protocols proposed in Section 5.6 for the

Distribution-Resolution for the SPHF ρ = 〈Ψα,β, ρ0, . . . , ρm−1〉

Alice Bob
On input SA On input SB

. Distribution Level (using agreed-upon parameter γ) .

ODPRF Ψα,β

γ

α, SA

ψA

β
ODPRF Ψα,β

γ

α β, SB

ψB

for 0 ≤ i < m for 0 ≤ i < m

SAi = {x ∈ SA | Ψ(x) = i} SBi = {x ∈ SB | Ψ(x) = i}

. Resolution Level (using agreed-upon parameter γ) .

Resolver ρ0

SA0

%A0

SB0

%B0

Resolver ρ1

SA1

%A1

· · ·
SB1

· · ·
%B1

Resolver ρm−1

SAm−1

%Am−1

SBm−1

%Bm−1

Apply Equation 5.19 Apply Equation 5.19

return %A = {(x, ρ(x))}x∈SA return %B = {(x, ρ(x))}x∈SB

Figure 5.9. Overview of the Distribution-Resolution approach for the SPHF
construction. Black-box reductions in the same level denote independent secure
computations in parallel.

117

FindSPHF approach. Hence, the overall security reduces to the security of the Distribution

level (Lemma 5.10) that was already discussed in Section 5.7 .

5.9 Discussion: Use Cases and Implications in 2PC

Below, we describe two MPC applications for which input-size reduction and/or using

SPHFs result in significant performance improvements. We also discuss the implicit connec-

tion of secure perfect hashing with the important and well-studied problem of Private Set

Intersection (PSI).

5.9.1 Faster General Template Matching

Alice has an image X ∈ Σn1×n1 and Bob owns a template T ∈ Σn2×n2 , where n2 < n1.

They want to securely measure the similarity of Xi,j = X[i · · · i+n2− 1, j · · · j+n2− 1] and

T for all 1 ≤ i, j ≤ n1−n2 +1. The problem has been extensively studied for various notions

of similarity [87], [116]–[118]. The performance of many solutions to this problem depends

on |Σ|, including those based on secure convolution or oblivious automata evaluation. We

explain how to use SPHFs for faster secure Hamming similarity computation between Xi,j

and T for all i and j. As illustrated in Figure 5.10 , Alice and Bob intend to compute a score

matrix JCK containing the Hamming similarity of Xi,j and T such that

Jci,jK =
n2∑
k=1

n2∑
l=1

(xi+k−1,j+l−1 == tk,l)

A convolution-based solution [116] for computing JCK consists of one secure convolution

in split form [41] per alphabet symbol z ∈ Σ such that any occurrence of z in X and T is

replaced with a bit 1 and all other symbols are replaced with 0. Each convolution computes

a partial score matrix JCzK accounting for the contribution of z to JCK with the overall

contribution being JCK = ∑
zJCzK. Computing JCK takes O(|Σ|n2

1 log n2) computation and

communication (O(n2
1 log n2) for each convolution) in O(1) rounds; the use of our approach

essentially replaces the |Σ| in the complexity with the size of a much smaller alphabet domain.

118

𝑛!

𝑛"

𝑛" – 𝑛! + 1

C

𝑐𝑖,𝑗

… …

… …

… …

…
…

…
…

…
…

T
X

Figure 5.10. Hamming similarity of Xi,j and T

For instance, let X and T be images with RGB encoding (i.e., |Σ| = 224), with n1 = 210

and n2 = 26 corresponding to a 210×210 image and a 26×26 template. Unlike any non-secure

setting, in the MPC framework, Alice and Bob cannot reveal to each other which alphabet

symbols occur in X and T to simply ignore the non-occurring symbols; this forces them

to compute |Σ| convolutions, most of which pertain to non-occurring symbols. There are

at most n2
1 + n2

2 < 221 distinct RGB codes contributing to JCK; thus, the above algorithm

computes at least 224 − 221 ≈ 15 × 106 redundant convolutions in split form, each of which

contributes only 0s to the score matrix JCK. Our input-size reduction results in securely

avoiding such redundant costs: Let SA (resp. SB) be the set of occurring symbols in X

(resp. T). Alice and Bob (i) find an SPHF ρ : Σ → {0, 1, · · · , N − 1} for S = SA ∪ SB,

where N = |SA|+ |SB|, (ii) replace each symbol z ∈ Σ that appears in X and T with ρ(z),

and (iii) compute Hamming similarities using the reduced alphabet {0, 1, · · · , N − 1} rather

than the much larger Σ.

5.9.2 Search Queries in High-precision Scientific Data

High-precision scientific data typically has at least 64 bits of precision, therefore |Σ| ≥ 264.

Even though searches in such data may not be exact but approximate, e.g., within 12 bits

119

based on a quantization that reduces alphabet size from 264 to 252 (i.e., compressing a range

of values to a single value), the alphabet is still too large. Such a large alphabet results in

a huge overhead for search queries, specifically in the MPC framework where the structure

of items and how they relate to each other (e.g., their order) cannot be exploited for faster

search queries. In these scenarios, SPHFs can be used to securely create a dictionary of items

for better performance (e.g., faster search queries and saving memory space).

5.9.3 Implications of Secure Perfect Hashing for Private Set Intersection

Private Set Intersection (PSI) is one of the most well-studied MPC problems [31], [119]–

[122]. PSI allows Alice and Bob to obtain the intersection of their private sets without

revealing any information about items not in the intersection. Although naive hashing

based solutions to PSI are very efficient, they are insecure if the input domain does not have

high entropy or is not large [119]. Below, we discuss how our input-size reduction inherently

solves PSI (whereas the input-size reduction of [31] must be followed by parallel applications

of a circuit- or OT- based PSI protocol).

Let ρ : Σ→ {0, 1, . . . , N−1} be an SPHF for SA∪SB, where SA, SB ⊆ Σ are respectively

Alice’s and Bob’s private input sets. Alice and Bob use ρ to obtain an indicator vector JPK

for membership in SA ∩ SB:

1. Alice creates a length-N indicator vector ZA for membership in SA such that for

1 ≤ i ≤ N :

zAi =

 1 if ∃x ∈ SA s.t. i = 1 + ρ(x)

0 otherwise
(5.21)

Similarly, Bob creates a length-N indicator vector ZB for membership in SB such that

for 1 ≤ i ≤ N :

zBi =

 1 if ∃x ∈ SB s.t. i = 1 + ρ(x)

0 otherwise
(5.22)

Equations 5.21 and 5.22 use “i = ρ(x) + 1” rather than “i = ρ(x)” becasuse in our

notation all arrays are 1-indexed, while hash values are in the range {0, 1, · · · , N − 1}.

120

2. Alice and Bob compute the joint indicator vector JPK = JZA�ZBK for membership in

SA ∩ SB.

3. At this point, Alice and Bob may, depending on what they are trying to achieve,

(i) learn SA ∩ SB through revealing P to each other by exchanging their shares of

it, (ii) learn the intersection cardinality |SA ∩ SB| = ∑N
i=1 pi without revealing the

intersection, or (iii) proceed with any other subsequent computation of interest on JPK

without revealing anything about the intersection.

Private-Set-Intersection (Public parameter: N)

Alice Bob
On input %A = {(x, ρ(x))}x∈SA On input %B = {(x, ρ(x))}x∈SB

. .

1 : Create ZA as in Equation 5.21 Create ZB as in Equation 5.22

P = ZA � ZB
Pointwise product

ZA

JPKA

ZB

JPKB

2 : return JPKA return JPKB

Protocol 5.5. Private Set Intersection built on Secure Perfect Hashing

This PSI solution is as secure as the underlying SPHF because the only joint computation

in Protocol 5.5 consists of N secure multiplication in split form.

Lemma 5.11 (Correctness and Security of Protocol 5.5). Let ρ : Σ → {0, 1, · · · , N − 1}

be an SPHF for S = SA ∪ SB. Protocol Private-Set-Intersection, on Alice’s and

Bob’s respective private inputs %A = {(x, ρ(x)) | x ∈ SA} and %B = {(x, ρ(x)) | x ∈ SB},

securely computes the intersection of SA and SB in split form. Moreover, the protocol is

unconditionally secure in the ABB model against a semi-honest adversary.

121

Proof. Correctness of the protocol follows from the injectivity of ρ on SA∪SB together with

the construction of private indicator vectors ZA and ZB as in equations 5.21 and 5.22 :

zAi = 1⇔ ∃x ∈ SA s.t. i = 1 + ρ(x) ∧ zBi = 1⇔ ∃x ∈ SB s.t. i = 1 + ρ(x)www�
pi = zAi · zBi = 1⇔ ∃x ∈SA ∩ SB s.t. i = 1 + ρ(x)

Security of Protocol 5.5 follows from the fact that the only step with joint computations

involves N invocations of secure multiplication on (distinct) pairs of inputs, with outputs in

split form; hence, each party receives only a uniform vector over FNq that, in the absence of

the other party’s output, is statistically independent of P.

Complexity. Protocol 4.8 requires one round of communication; moreover, its compu-

tation and communication complexities are both O(N) = O(|SA ∪ SB|).

122

6. SUMMARY

In this dissertation, we have presented approaches and techniques for improving the per-

formance of secure two-party computation of functionalities that depend on equality of

comparands. In pursuit of this goal, we considered performance improvement from two

distinct aspects. First, we proposed lightweight and provably secure protocols for computing

two fundamental problems of interest: Private equality testing and secure wildcard pattern

matching. Both of these problems are of vital importance in secure two-party computation;

they have many applications and are often used as basic building blocks for secure computa-

tion of other functionalities. Our second point of view concentrates on lowering the impact

of inputs’ sizes on any subsequent protocol’s overall cost for computing a functionality of

interest. Accordingly, we presented the first formal attempt at formulating and solving the

problem of preprocessing for input-size reduction in a secure two-party setting.

Private Equality Testing

Chapter 3 of this thesis investigated the boolean problem of private equality testing

(the socialist millionaire problem) over the finite field Fq of integers modulo a prime q.

This functionality allows two parties to securely check the equality of their respective secret

integers a ∈ Fq and b ∈ Fq without revealing any other information about these secrets.

We presented a protocol that computes the value of the desired predicate in split form;

hence neither party learns the outcome (unless they agree to do so), but they can use it for

further computations. Moreover, our solution is lightweight in the sense that all internal

computations are additions and multiplications over the small finite field F3 and only three

multiplications over Fq are used in the final step of the protocol to convert the obtained test

result in F3 to its counterpart in Fq.

Secure Wildcard Pattern Matching

In Chapter 4 , we proposed a template algorithm to solve the wildcard pattern matching

problem (over any finite alphabet), using a single convolution computation. Its sub-quadratic

123

complexity, together with the linearity of convolution, make this scheme an appropriate tool

for use in the secure two-party framework. We also presented protocols for the secure im-

plementation of our algorithm. Accordingly, we gave two sets of protocols for securely

computing all three versions (search, counting, and decision) of secure two-party wildcard

pattern matching. All of our protocols require sub-quadratic computation complexity and

linear communication complexity in a constant number of rounds. Moreover, our proto-

cols use only lightweight operations and avoid expensive cryptographic primitives such as

homomorphic encryption and public-key operations.

In Section 4.7 , we went beyond the semi-honest threat model. We pointed out that the

conventional search version of the problem has a definitional drawback that would defeat

the purpose of using any secure protocol in the presence of a stronger adversary such as aug-

mented semi-honest and malicious. This definitional drawback allows the pattern owner (in

our case, Bob) to learn the other party’s input text in its entirety by providing a judiciously

crafted pattern string. We proposed a fix for this issue by generalizing the problem to use

an output-filtering function that restricts what Bob learns. All three traditional versions of

the problem are special cases of our general formulation. Moreover, we proposed protocols

for two other versions of secure two-party wildcard pattern matching.

Secure Two-party Input-size Reduction

Chapter 5 of this thesis presented the first formal attempt at formulating and solving the

secure input-size reduction problem as a generic preprocessing that aims for more efficient

secure two-party equality-based protocols without affecting their outputs. To do so, we for-

malized the notion of secure perfect hash functions in the two-party framework and proposed

efficient constructions that obtain such functions. In addition to solving the input-size reduc-

tion, this also brings the advantages of traditional perfect hashing (i.e., less memory space,

faster memory access) to the multiparty framework. To overcome the inherent obstacles of

efficient secure perfect hashing, we used the notion of Oblivious Distributed Pseudorandom

Functions and gave a practical two-party construction for it. Furthermore, we discussed the

performance improvements made possible by this approach in image template matching and

124

in searches done on high-precision data. Finally, we also discussed the implications of secure

perfect hashing for Private Set Intersection, which is one of the fundamental problems in the

secure two-party framework.

125

REFERENCES

[1] A. C. Yao, “Protocols for secure computations,” in 23rd Annual Symposium on Foun-
dations of Computer Science (FOCS 1982), IEEE, 1982, pp. 160–164.

[2] W. Du, M. J. Atallah, et al., “Privacy-preserving cooperative scientific computations.,”
in CSFW, Citeseer, vol. 1, 2001, p. 273.

[3] W. Du and M. J. Atallah, “Privacy-preserving cooperative statistical analysis,” in Sev-
enteenth Annual Computer Security Applications Conference, IEEE, 2001, pp. 102–110.

[4] W. Du and M. J. Atallah, “Secure multi-party computation problems and their applica-
tions: A review and open problems,” in Proceedings of the 2001 Workshop on New Security
Paradigms, ACM, 2001, pp. 13–22.

[5] W. Du, Y. S. Han, and S. Chen, “Privacy-preserving multivariate statistical analysis:
Linear regression and classification,” in Proceedings of the 2004 SIAM International Confer-
ence on Data Mining, SIAM, 2004, pp. 222–233.

[6] D. Bogdanov, L. Kamm, S. Laur, P. Pruulmann-Vengerfeldt, R. Talviste, and J. Willem-
son, “Privacy-preserving statistical data analysis on federated databases,” in Annual Privacy
Forum, Springer, 2014, pp. 30–55.

[7] D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson, “High-performance secure multi-
party computation for data mining applications,” International Journal of Information Se-
curity, vol. 11, no. 6, pp. 403–418, 2012.

[8] W. Priesnitz Filho and C. N. da Cruz Ribeiro, “State of the art of secure multiparty
computation for privacy preserving data mining,” Revista GEINTEC-Gestão, Inovação e
Tecnologias, vol. 7, no. 4, pp. 4131–4148, 2017.

[9] F. A. N. Pathak and S. B. S. Pandey, “An efficient method for privacy preserving
data mining in secure multiparty computation,” in 2013 Nirma University International
Conference on Engineering (NUiCONE), IEEE, 2013, pp. 1–3.

[10] S. Jha, L. Kruger, and V. Shmatikov, “Towards practical privacy for genomic computa-
tion,” in 2008 IEEE Symposium on Security and Privacy (SP 2008), IEEE, 2008, pp. 216–
230.

[11] E. Check Hayden, “Extreme cryptography paves way to personalized medicine,” Nature
News, vol. 519, no. 7544, p. 400, 2015.

[12] H. Cho, D. J. Wu, and B. Berger, “Secure genome-wide association analysis using mul-
tiparty computation,” Nature Biotechnology, vol. 36, no. 6, pp. 547–551, 2018.

126

[13] B. Hie, H. Cho, and B. Berger, “Realizing private and practical pharmacological collab-
oration,” Science, vol. 362, no. 6412, pp. 347–350, 2018.

[14] K. A. Jagadeesh, D. J. Wu, J. A. Birgmeier, D. Boneh, and G. Bejerano, “Deriving
genomic diagnoses without revealing patient genomes,” Science, vol. 357, no. 6352, pp. 692–
695, 2017.

[15] E. A. Abbe, A. E. Khandani, and A. W. Lo, “Privacy-preserving methods for sharing
financial risk exposures,” American Economic Review, vol. 102, no. 3, pp. 65–70, 2012.

[16] D. Bogdanov, L. Kamm, B. Kubo, R. Rebane, V. Sokk, and R. Talviste, “Students
and taxes: A privacy-preserving study using secure computation,” Proceedings on Privacy
Enhancing Technologies, vol. 2016, no. 3, pp. 117–135, 2016.

[17] D. Bogdanov, R. Talviste, and J. Willemson, “Deploying secure multi-party computation
for financial data analysis,” in International Conference on Financial Cryptography and Data
Security, Springer, 2012, pp. 57–64.

[18] M. D. Flood, J. Katz, S. J. Ong, and A. Smith, “Cryptography and the economics of
supervisory information: Balancing transparency and confidentiality,” 2013.

[19] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual Symposium on
Foundations of Computer Science (FOCS 1986), IEEE, 1986, pp. 162–167.

[20] D. Chaum, C. Crépeau, and I. Damgard, “Multiparty unconditionally secure protocols,”
in Proceedings of the twentieth annual ACM Symposium on Theory of Computing, 1988,
pp. 11–19.

[21] S. Micali, O. Goldreich, and A. Wigderson, “How to play any mental game,” in Proceed-
ings of the Nineteenth ACM Symp. on Theory of Computing, STOC, ACM, 1987, pp. 218–
229.

[22] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella, et al., “Fairplay-secure two-party computation
system.,” in USENIX Security Symposium, San Diego, CA, USA, vol. 4, 2004, p. 9.

[23] A. Ben-David, N. Nisan, and B. Pinkas, “Fairplaymp: A system for secure multi-party
computation,” in Proceedings of the 15th ACM Conference on Computer and Communica-
tions Security, 2008, pp. 257–266.

[24] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “Sok: General purpose compil-
ers for secure multi-party computation,” in 2019 IEEE Symposium on Security and Privacy
(SP), IEEE, 2019, pp. 1220–1237.

127

[25] J. A. Montenegro, M. J. Fischer, J. Lopez, and R. Peralta, “Secure sealed-bid online auc-
tions using discreet cryptographic proofs,” Mathematical and Computer Modelling, vol. 57,
no. 11-12, pp. 2583–2595, 2013.

[26] L. Dery, T. Tassa, and A. Yanai, “Fear not, vote truthfully: Secure multiparty compu-
tation of score based rules,” Expert Systems with Applications, vol. 168, p. 114 434, 2021.

[27] M. Zarezadeh, H. Mala, and B. T. Ladani, “Secure parameterized pattern matching,”
Information Sciences, vol. 522, pp. 299–316, 2020.

[28] C. Hazay and Y. Lindell, Efficient secure two-party protocols: Techniques and construc-
tions. Springer Science & Business Media, 2010.

[29] L. Shundong, W. Daoshun, D. Yiqi, and L. Ping, “Symmetric cryptographic solution to
yao’s millionaires’ problem and an evaluation of secure multiparty computations,” Informa-
tion Sciences, vol. 178, no. 1, pp. 244–255, 2008.

[30] L. Shundong, W. Chunying, W. Daoshun, and D. Yiqi, “Secure multiparty computation
of solid geometric problems and their applications,” Information Sciences, vol. 282, pp. 401–
413, 2014.

[31] B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing: Private set intersection
using permutation-based hashing,” in 24th USENIX Security Symposium, 2015, pp. 515–530.

[32] C. Dong and G. Loukides, “Approximating private set union/intersection cardinality
with logarithmic complexity,” IEEE Transactions on Information Forensics and Security,
vol. 12, no. 11, pp. 2792–2806, 2017.

[33] M. von Maltitz and G. Carle, “A performance and resource consumption assessment of
secret sharing based secure multiparty computation,” in Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology, Springer, 2018, pp. 357–372.

[34] C. Zhao, S. Zhao, M. Zhao, Z. Chen, C.-Z. Gao, H. Li, and Y.-a. Tan, “Secure multi-party
computation: Theory, practice and applications,” Information Sciences, vol. 476, pp. 357–
372, 2019.

[35] M. Qaosar, A. Zaman, M. A. Siddique, C. Li, and Y. Morimoto, “Secure k-skyband com-
putation framework in distributed multi-party databases,” Information Sciences, vol. 515,
pp. 388–403, 2020.

[36] X. Wei, L. Xu, M. Zhao, and H. Wang, “Secure extended wildcard pattern matching
protocol from cut-and-choose oblivious transfer,” Information Sciences, vol. 529, pp. 132–
140, 2020.

128

[37] C. Zhao, S. Zhao, B. Zhang, S. Jing, Z. Chen, and M. Zhao, “Oblivious dfa evaluation
on joint input and its applications,” Information Sciences, vol. 528, pp. 168–180, 2020.

[38] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure two-party computa-
tion is practical,” in International Conference on the Theory and Application of Cryptology
and Information Security, Springer, 2009, pp. 250–267.

[39] I. Damg̊ard, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft, “Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and exponentiation,”
in Theory of Cryptography Conference, Springer, 2006, pp. 285–304.

[40] B. Schoenmakers and P. Tuyls, “Efficient binary conversion for paillier encrypted val-
ues,” in Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Springer, 2006, pp. 522–537.

[41] J. Darivandpour and M. J. Atallah, “Efficient and secure pattern matching with wild-
cards using lightweight cryptography,” Computers & Security, vol. 77, pp. 666–674, 2018.

[42] J. Darivandpour, D. V. Le, and M. J. Atallah, “Secure two-party input-size reduction:
Challenges, solutions and applications,” Information Sciences, vol. 567, pp. 256–277, 2021.

[43] T. Nishide and K. Ohta, “Multiparty computation for interval, equality, and comparison
without bit-decomposition protocol,” in International Workshop on Public Key Cryptography,
Springer, 2007, pp. 343–360.

[44] C.-H. Yu and B.-Y. Yang, “Probabilistically correct secure arithmetic computation for
modular conversion, zero test, comparison, mod and exponentiation,” in International Con-
ference on Security and Cryptography for Networks, Springer, 2012, pp. 426–444.

[45] T. Toft, “Sub-linear, secure comparison with two non-colluding parties,” in International
Workshop on Public Key Cryptography, Springer, 2011, pp. 174–191.

[46] H. Lipmaa and T. Toft, “Secure equality and greater-than tests with sublinear on-
line complexity,” in International Colloquium on Automata, Languages, and Programming,
Springer, 2013, pp. 645–656.

[47] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free xor gates and applica-
tions,” in International Colloquium on Automata, Languages, and Programming, Springer,
2008, pp. 486–498.

[48] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “Improved garbled circuit building
blocks and applications to auctions and computing minima,” in International Conference on
Cryptology and Network Security, Springer, 2009, pp. 1–20.

129

[49] T. K. Saha and T. Koshiba, “Private equality test using ring-lwe somewhat homo-
morphic encryption,” in 2016 3rd Asia-Pacific World Congress on Computer Science and
Engineering (APWC on CSE), IEEE, 2016, pp. 1–9.

[50] C. Gentry, S. Halevi, C. Jutla, and M. Raykova, “Private database access with he-
over-oram architecture,” in International Conference on Applied Cryptography and Network
Security, Springer, 2015, pp. 172–191.

[51] H. Lipmaa, “Verifiable homomorphic oblivious transfer and private equality test,” in
International Conference on the Theory and Application of Cryptology and Information Se-
curity, Springer, 2003, pp. 416–433.

[52] G. Couteau, “New protocols for secure equality test and comparison,” in International
Conference on Applied Cryptography and Network Security, Springer, 2018, pp. 303–320.

[53] M. Nateghizad, Z. Erkin, and R. L. Lagendijk, “Efficient and secure equality tests,” in
2016 IEEE International Workshop on Information Forensics and Security (WIFS), IEEE,
2016, pp. 1–6.

[54] F. Karakoç, M. Nateghizad, and Z. Erkin, “Set-ot: A secure equality testing protocol
based on oblivious transfer,” in Proceedings of the 14th International Conference on Avail-
ability, Reliability and Security, 2019, pp. 1–9.

[55] T. Turban, “A secure multi-party computation protocol suite inspired by shamir’s secret
sharing scheme,” M.S. thesis, Institutt for Telematikk, 2014.

[56] J. Baron, K. El Defrawy, K. Minkovich, R. Ostrovsky, and E. Tressler, “5pm: Secure
pattern matching,” in International Conference on Security and Cryptography for Networks,
Springer, 2012, pp. 222–240.

[57] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba, “Privacy-preserving
wildcards pattern matching using symmetric somewhat homomorphic encryption,” in Aus-
tralasian Conference on Information Security and Privacy, Springer, 2014, pp. 338–353.

[58] T. K. Saha and T. Koshiba, “An enhancement of privacy-preserving wildcards pattern
matching,” in International Symposium on Foundations and Practice of Security, Springer,
2016, pp. 145–160.

[59] M. S. Riazi, E. M. Songhori, and F. Koushanfar, “Prisearch: Efficient search on private
data,” in Proceedings of the 54th Annual Design Automation Conference 2017, ACM, 2017,
p. 14.

130

[60] O. Goldreich, S. Goldwasser, and S. Micali, “On the cryptographic applications of ran-
dom functions,” in Workshop on the Theory and Application of Crypto. Techniques, Springer,
1984, pp. 276–288.

[61] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applications. Cambridge
university press, 2009.

[62] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[63] D. Beaver, “Efficient multiparty protocols using circuit randomization,” in Annual In-
ternational Cryptology Conference, Springer, 1991, pp. 420–432.

[64] P. Pullonen, “Actively secure two-party computation: Efficient beaver triple generation,”
M.S. thesis, University of Tartu, 2013.

[65] D. Rathee, T. Schneider, and K. Shukla, “Improved multiplication triple generation over
rings via rlwe-based ahe,” in International Conference on Cryptology and Network Security,
Springer, 2019, pp. 347–359.

[66] N. Döttling, S. Ghosh, J. B. Nielsen, T. Nilges, and R. Trifiletti, “Tinyole: Efficient
actively secure two-party computation from oblivious linear function evaluation,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 2263–2276.

[67] I. Damg̊ard and J. B. Nielsen, “Universally composable efficient multiparty computation
from threshold homomorphic encryption,” in Annual International Cryptology Conference,
Springer, 2003, pp. 247–264.

[68] R. Canetti, “Universally composable security: A new paradigm for cryptographic pro-
tocols,” in Proceedings 42nd IEEE Symposium on Foundations of Computer Science, IEEE,
2001, pp. 136–145.

[69] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 2nd ed. Chapman and
Hall/CRC, 2014.

[70] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword search and oblivious
pseudorandom functions,” in Theory of Cryptography Conference, Springer, 2005, pp. 303–
324.

[71] S. Jarecki and X. Liu, “Efficient oblivious pseudorandom function with applications to
adaptive ot and secure computation of set intersection,” in Theory of Cryptography Confer-
ence, Springer, 2009, pp. 577–594.

131

[72] M. Naor, B. Pinkas, and O. Reingold, “Distributed pseudo-random functions and kdcs,”
in International Conference on the Theory and Applications of Cryptographic Techniques,
Springer, 1999, pp. 327–346.

[73] B. Porat, A Course in Digital Signal Processing. Wiley, 1997.

[74] J. Arndt, Matters Computational: ideas, algorithms, source code. Springer Science &
Business Media, 2010.

[75] A. V. Aho and J. E. Hopcroft, The Design and Analysis of Computer Algorithms. Pear-
son Education India, 1974.

[76] D. Vergnaud, “Efficient and secure generalized pattern matching via fast fourier trans-
form,” in International Conference on Cryptology in Africa, Springer, 2011, pp. 41–58.

[77] C. Hazay and Y. Lindell, “Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries,” Theory of Cryptography, pp. 155–
175, 2008.

[78] C. Hazay and T. Toft, “Computationally secure pattern matching in the presence of ma-
licious adversaries,” in International Conference on the Theory and Application of Cryptology
and Information Security, Springer, 2010, pp. 195–212.

[79] V. Kolesnikov, M. Rosulek, and N. Trieu, “Swim: Secure wildcard pattern matching from
ot extension,” in International Conference on Financial Cryptography and Data Security,
Springer, 2018, pp. 222–240.

[80] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba, “Secure pat-
tern matching using somewhat homomorphic encryption,” in Proceedings of the 2013 ACM
Workshop on Cloud Computing Security Workshop, ACM, 2013, pp. 65–76.

[81] C. Hazay and T. Toft, “Computationally secure pattern matching in the presence of
malicious adversaries,” Journal of Cryptology, vol. 27, no. 2, pp. 358–395, 2014.

[82] P. Clifford and R. Clifford, “Simple deterministic wildcard matching,” Information Pro-
cessing Letters, vol. 101, no. 2, pp. 53–54, 2007.

[83] M. J. Fischer and M. S. Paterson, “String-matching and other products.,” Massachusetts
Inst of Tech Cambridge Project Mac, Tech. Rep., 1974.

[84] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik, “Privacy preserving error
resilient dna searching through oblivious automata,” in Proceedings of the 14th ACM Con-
ference on Computer and Communications Security, ACM, 2007, pp. 519–528.

132

[85] K. B. Frikken, “Practical private dna string searching and matching through efficient
oblivious automata evaluation,” in IFIP Annual Conference on Data and Applications Se-
curity and Privacy, Springer, 2009, pp. 81–94.

[86] K. Abrahamson, “Generalized string matching,” SIAM Journal on Computing, vol. 16,
no. 6, pp. 1039–1051, 1987.

[87] S. R. Kosaraju, Efficient string matching, 1987.

[88] M. J. Atallah, F. Chyzak, and P. Dumas, “A randomized algorithm for approximate
string matching,” Algorithmica, vol. 29, no. 3, pp. 468–486, 2001.

[89] K. Yessenov, “Dirichlet’s theorem on primes in arithmetic progressions,” Web: http://people.
csail. mit. edu/kuat/courses/dirichlet. pdf, 2006.

[90] R. L. Rivest et al., “Chaffing and winnowing: Confidentiality without encryption,” Cryp-
toBytes (RSA laboratories), vol. 4, no. 1, pp. 12–17, 1998.

[91] W. Du and M. T. Goodrich, “Searching for high-value rare events with uncheatable grid
computing,” in International Conference on Applied Cryptography and Network Security,
Springer, 2005, pp. 122–137.

[92] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.
MIT press, 2009.

[93] Z. J. Czech, G. Havas, and B. S. Majewski, “Perfect hashing,” Theoretical Computer
Science, vol. 182, no. 1-2, pp. 1–143, 1997.

[94] C. Chang and C. Chang, “An ordered minimal perfect hashing scheme with single
parameter,” Information Processing Letters, vol. 27, no. 2, pp. 79–83, 1988.

[95] G. Jaeschke, “Reciprocal hashing: A method for generating minimal perfect hashing
functions,” Commun. ACM, vol. 24, no. 12, pp. 829–833, Dec. 1981, issn: 0001-0782.

[96] V. G. Winters, “Minimal perfect hashing in polynomial time,” BIT, vol. 30, no. 2,
pp. 235–244, Jun. 1990.

[97] M. L. Fredman, J. Komlós, and E. Szemerédi, “Storing a sparse table with o(1) worst
case access time,” Journal of the ACM, vol. 31, no. 3, pp. 538–544, 1984.

[98] D. Belazzougui, F. C. Botelho, and M. Dietzfelbinger, “Hash, displace, and compress,”
in Algorithms - ESA 2009, A. Fiat and P. Sanders, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 682–693.

133

[99] F. C. Botelho, R. Pagh, and N. Ziviani, “Practical perfect hashing in nearly optimal
space,” Information Systems, vol. 38, no. 1, pp. 108–131, 2013.

[100] A. Limasset, G. Rizk, R. Chikhi, and P. Peterlongo, “Fast and scalable minimal perfect
hashing for massive key sets,” arXiv preprint arXiv:1702.03154, 2017.

[101] Y. Nawaz, F. Olumofin, and S. H. Yuan, Secure perfect hash function, U.S. Pat. App.
14/733,000, Dec. 2016.

[102] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,” Journal of
Computer and System Sciences, vol. 18, no. 2, pp. 143–154, 1979.

[103] F. C. Botelho, R. Pagh, and N. Ziviani, “Simple and space-efficient minimal perfect hash
functions,” in Workshop on Algorithms and Data Structures, Springer, 2007, pp. 139–150.

[104] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random functions,”
JACM, vol. 33, no. 4, pp. 792–807, 1986.

[105] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. H. Jakubowski, “Oblivious
hashing: A stealthy software integrity verification primitive,” in Information Hiding, F. A. P.
Petitcolas, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 400–414.

[106] P. Puzio, R. Molva, M. Önen, and S. Loureiro, “Perfectdedup: Secure data deduplica-
tion,” in Data Privacy Management, and Security Assurance, Springer, 2015, pp. 150–166.

[107] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomization and Prob-
abilistic Techniques in Algorithms & Data Analysis. Cambridge Univ. Press, 2017.

[108] S. Micali and R. Sidney, “A simple method for generating and sharing pseudo-random
functions, with applications to clipper-like key escrow systems,” in Annual International
Cryptology Conf., Springer, 1995, pp. 185–196.

[109] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, “Efficient batched oblivious
prf with applications to private set intersection,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp. 818–829.

[110] J. Burns, D. Moore, K. Ray, R. Speers, and B. Vohaska, “Ec-oprf: Oblivious pseudo-
random functions using elliptic curves.,” IACR Cryptology ePrint Archive, 2017.

[111] Y. Lindell, K. Nissim, and C. Orlandi, “Hiding the input-size in secure two-party com-
putation,” in International Conference on the Theory and Application of Cryptology and
Information Security, Springer, 2013, pp. 421–440.

134

[112] M. J. Atallah and W. Du, “Secure multi-party computational geometry,” in Workshop
on Algorithms and Data Structures, Springer, 2001, pp. 165–179.

[113] G. Wang, T. Luo, M. T. Goodrich, W. Du, and Z. Zhu, “Bureaucratic protocols for se-
cure two-party sorting, selection, and permuting,” in Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security, ACM, 2010, pp. 226–237.

[114] K. V. Jónsson, G. Kreitz, and M. Uddin, “Secure multi-party sorting and applications.,”
IACR Cryptology ePrint Archive, vol. 2011, p. 122, 2011.

[115] K. E. Batcher, “Sorting networks and their applications,” in Proceedings of the April
30–May 2, 1968, Spring Joint Computer Conference, ACM, 1968, pp. 307–314.

[116] K. Abrahamson, “Generalized string matching,” SIAM J. on Computing, vol. 16, no. 6,
pp. 1039–1051, 1987.

[117] A. Amir and G. M. Landau, “Fast parallel and serial multidimensional approximate
array matching,” in Sequences, Springer, 1990, pp. 3–24.

[118] M. J. Atallah, “Faster image template matching in the sum of the absolute value of
differences measure,” IEEE Transactions on Image Processing, vol. 10, no. 4, pp. 659–663,
2001.

[119] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection based on ot
extension,” in 23rd USENIX Security Symposium, 2014, pp. 797–812.

[120] A. Abadi, S. Terzis, R. Metere, and C. Dong, “Efficient delegated private set intersection
on outsourced private datasets,” IEEE Transactions on Dependable and Secure Computing,
2017.

[121] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Spot-light: Lightweight private set inter-
section from sparse ot extension,” in Annual International Cryptology Conference, Springer,
2019, pp. 401–431.

[122] A. Kavousi, J. Mohajeri, and M. Salmasizadeh, “Improved secure efficient delegated
private set intersection,” arXiv preprint arXiv:2004.03976, 2020.

135

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF PROTOCOLS
	LIST OF SYMBOLS
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Secure Two-party Computation
	Functionality Formulation
	Function Representation
	Summary of Our Contributions
	Private Equality Testing
	Secure Wildcard Pattern Matching
	Secure Two-party Input-size Reduction

	Organization of the Thesis

	PRELIMINARIES
	General MPC Threat Models
	Semi-honest Adversary
	Malicious Adversary
	Augmented Semi-honest Adversary

	Additive Secret Sharing (Secret Splitting)
	Properties of Secret Splitting
	Basic Operations and Arithmetic Black-box Model

	Pseudorandom Function (PRF)
	Convolution

	PRIVATE EQUALITY TESTING
	Summary of Contributions
	Related Work
	Secure and Lightweight Protocol for Computing FEQZ(⟦s ⟧mA, ⟦s ⟧B)
	Phase 1: Evaluating the Equality Predicate Using Arithmetic Over F3
	Phase 2: Modular Conversion in Split Form

	Overall Performance

	SECURE WILDCARD PATTERN MATCHING
	Problem Definition
	Related work
	Summary of Contributions
	Wildcard Pattern Matching Algorithm
	Secure Protocols
	Experimental Results
	Functionality Generalization

	Convolution-based Wildcard Pattern Matching Algorithm
	Alphabet Preprocessing
	Proposed Algorithm (Wildcards in Only P)
	Proposed Algorithm (Wildcards in Both P and T)

	Secure Two-party Protocols for Wildcard Pattern Matching
	Secure Convolution Computation
	Secure SWPM Protocols Using FEQZ
	Secure Protocol for (⊥, Γ) = FSWPMS(T,P)
	Secure Protocol for (⊥, γ) = FSWPMC(T, P)
	Secure Protocol for (⊥, (γ> 0)) = FSWPMD(T,P)

	Secure SWPM Protocols Using Relaxed Equality Testing
	Secure Protocol for (⊥, Γ) = FSWPMS(T, P)
	Secure Protocol for (⊥, γ) = FSWPMC(T, P)
	Secure Protocol for (⊥, (γ> 0)) = FSWPMD(T, P)

	Experimental Results
	Performance: Execution Time & Transferred Data
	Comparison with Previous State of the Art

	Discussion: SWPM in Stronger Adversarial Models
	Bob Learns Only the Leftmost Match
	Bob Learns One Match at Random

	SECURE TWO-PARTY INPUT-SIZE REDUCTION
	Motivation and Overview
	Related Work
	Summary of Contributions
	Problem Formulation
	Proposed Constructions
	Use Cases and Implications

	Problem Definition
	Major Challenges
	Constructing a Minimal Perfect SPHF for S=SmA∪SB
	FINDSPHF: Randomized LABEL-THEN-UNIFY
	FINDSPHF: Randomized MERGE-THEN-UNIFY

	Distribution: Probabilistic Input Partitioning
	Challenge 1: Preventing Exploitation of Distributor Function's Structure
	Challenge 2: Possible Failure of a Distributor Candidate and Its Consequences
	FINDDISTRIBUTOR: Putting Pieces Together to Find a Valid Distributor

	Overall Distribution-Resolution Scheme
	Discussion: Use Cases and Implications in 2PC
	Faster General Template Matching
	Search Queries in High-precision Scientific Data
	Implications of Secure Perfect Hashing for Private Set Intersection

	SUMMARY
	REFERENCES

