
EFFICIENT CRYPTOGRAPHIC CONSTRUCTIONS FOR
RESOURCE-CONSTRAINED BLOCKCHAIN CLIENTS

by

Duc Viet Le

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

August 2021

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Aniket P. Kate, Co-Chair

School of Computer Science

Dr. Mikhail J. Atallah, Co-Chair

School of Computer Science

Dr. Jeremiah Blocki

School of Computer Science

Dr. Elena Grigorescu

School of Computer Science

Approved by:

Dr. Kihong Park

2

To my parents and my wife, Huyen Nguyen

3

ACKNOWLEDGMENTS

For months, I have been delaying writing this portion of the thesis. This is because

there are so many people that I am indebted to for the success of this journey, and I cannot

possibly list their contributions in just a few sentences. However, I will attempt to do my

best and hope that no one is missed.

First and foremost, my most sincere thanks go to my two advisers, Professor Aniket

Kate and Professor Mikhail Atallah. I am immensely grateful for the independence and

mentorship they provided me during these five years. The two of them have taught me how

to be a better researcher and a better person.

I am grateful to all my collaborators, whose contributions make this dissertation possible.

I would like to thank my co-author and friend Pedro Moreno Sanchez for his time in Vienna.

Pedro gave me invaluable advice and perspectives both in life and in research. Also, a special

thanks to Arthur Gervais for offering me an internship at his company and giving me the

freedom to choose research topics. Working with Arthur was a great pleasure.

I want to thank my committee members, Professor Jeremiah Blocki and Professor Elena

Grigorescu, for agreeing to be a part of my dissertation committee. I was lucky enough to

be a teaching assistant for Jeremiah’s Cryptography class. I learned a great deal from his

enthusiasm for teaching and research.

I am grateful to all labmates, present and past, for suffering me in the last five years.

Special thanks to Sze Yiu and Adithya for joining me in so many dinners and patiently

listening to all complaints about work and life.

Last but not least, I am indebted to my parents for their support and to my wife who

has sacrificed a lot for this journey. I owe this thesis to them.

4

TABLE OF CONTENTS

LIST OF TABLES . 9

LIST OF FIGURES . 10

ABSTRACT . 12

1 INTRODUCTION . 14

1.1 Challenges for Resource-constrained Devices in Permissionless Blockchains . 14

1.2 Contributions . 16

1.3 Outline of the Dissertation . 17

I Addressing Storage Overhead with Add-on Privacy Solu-
tions . 19

2 OBLIVIOUS DATABASE FRAMEWORK FOR SIMPLIFIED PAYMENT VEFI-

FICATION CLIENTS . 20

2.1 Design Goals and Solution Overview . 22

2.1.1 System Components . 22

2.1.2 Design Goals . 22

2.1.3 Solution Overview . 23

2.2 Preliminaries and Threat Model . 26

2.2.1 Trusted Execution Environment . 26

2.2.2 Oblivious Random-Access Machine 28

2.2.3 Blockchain . 29

2.2.4 Threat Model . 31

2.3 Proposed System . 32

2.3.1 Storage Structure of the UTXO set 32

2.3.2 Oblivious Read and Write Protocols 35

2.4 Evaluation and Comparison . 39

5

2.4.1 Configuration . 40

2.4.2 Experimental Results . 41

2.4.3 Comparison with Other Oblivious Systems 45

2.5 System Analysis . 46

2.5.1 Security Claims . 46

2.5.2 Other Goals Achieved by T 3 . 48

2.5.3 Other attacks and Countermeasures 49

2.6 Concluding Remarks . 50

3 AUTONOMOUS ADD-ON PRIVACY COIN MIXER, AMR 51

3.1 Preliminaries . 53

3.1.1 Background on Smart Contract Blockchains and Lending Platforms . 53

3.1.2 Cryptographic Primitives . 55

3.2 System Overview . 57

3.2.1 System Components . 57

3.2.2 Overview of AMR . 58

3.3 AMR System . 59

3.3.1 AMR Contract Setup . 60

3.3.2 AMR Client Algorithms . 60

3.3.3 AMR Contract Algorithms . 61

3.3.4 System Goals . 61

3.3.5 Threat Models . 63

3.4 Detailed zkSNARK-based System Construction 63

3.4.1 Building Blocks . 63

3.4.2 Contract Setup . 65

3.4.3 Client Algorithms . 69

3.4.4 Contract Algorithms . 71

3.5 System Analysis . 72

3.5.1 Privacy Metric . 73

3.5.2 Privacy Analysis . 74

6

3.5.3 Other Goals Achieved By AMR . 76

3.6 Evaluation . 77

3.6.1 Parameters . 77

3.6.2 Performance . 78

3.6.3 Empirical Analysis on Tornado Cash 80

3.7 Discussion and Applications . 82

3.8 Related Work on add-on privacy solutions 83

3.9 Concluding Remarks . 85

II Addressing Communication Overhead with Private Pay-
ment Channels . 86

4 ADDRESSING COMMUNICATION OVERHEADWITH PAYMENT CHANNELS

IN MONERO . 87

4.1 Background . 90

4.1.1 Linkable Ring Signatures (LSAG) . 91

4.1.2 Preliminaries . 93

4.2 Dual-Key LSAG (DLSAG) . 95

4.2.1 Key ideas and construction of DLSAG 96

4.2.2 Security analysis . 97

4.3 Implementation and performance analysis 106

4.4 DLSAG in Monero . 108

4.4.1 Putting all together . 109

4.5 Applications in Monero Enabled by DLSAG 110

4.5.1 Building blocks . 110

4.5.2 Payment channels in Monero . 111

4.5.3 Payment-Channel Network in Monero 114

4.6 Concluding remarks and outlook . 115

7

III Improving Computation Overhead with Flexible Signa-
ture Framework . 117

5 FLEXIBLE SIGNATURES . 118

5.1 Preliminaries . 121

5.2 Security Definition . 122

5.3 Flexible Lamport-Diffie One-time Signature 125

5.3.1 Construction . 125

5.3.2 Security Analysis . 126

5.4 Flexible Merkle Tree Signature . 128

5.4.1 Construction . 129

5.4.2 Security Analysis . 132

5.4.3 Other Signature Schemes . 134

5.5 Evaluation, Performance Analysis, and Discussion 135

5.5.1 Security Level of Flexible Lamport-Diffie One-time Signature 135

5.5.2 Security Level of Flexible Merkle Tree Signature 136

5.5.3 Implementation and Performance . 138

5.6 Concluding Remarks . 139

6 SUMMARY . 140

6.1 Future Work . 141

REFERENCES . 142

8

LIST OF TABLES

2.1 Performance of two different types of Path/CircuitORAM accesses on dif-
ferent block size. 40

2.2 Performance gain of multiple-thread read-once access on Path ORAM and
Circuit ORAM with N = 224 block size = 544 bytes. 42

2.3 Comparison between T 3 and other oblivious systems. 46

3.1 zk-SNARK Setup Cost . 77

4.1 Running time (in milliseconds) of DLSAG and LSAG for different ring sizes . 107

5.1 Comparing flexible signature schemes performance for different levels of sig-
nature verification with other signature schemes. 138

9

LIST OF FIGURES

2.1 Overview of T 3 design. 24

2.2 Single address into Single ORAM block. 33

2.3 Single Address into One/Many ORAM block(s). One approach allows the SPV
client to specify the number of ORAM accesses with a maximum threshold.
The other approach maps single address into a constant number of ORAM
access . 34

2.4 T 3 Oblivious Read Protocol. 36

2.5 T 3 Oblivious Write Protocol. 38

2.6 Number of transactions per wallet ID. By allowing each address can have up
to 2 UTXO, T 3 can cover approximate 92% of the UTXO set. 41

2.7 Performance of T 3 using Path/Cicruit ORAM with block of size 544B, the
current SPV with Bloom filter, Original BITE oblivious database block of size
32kB, and improved BITE with block of size 544B. For the SPV client with
Bloom filter, we used the false positive rate of 1% and 5%. 44

2.8 Communication cost of T 3 and the current SPV solution. Since both systems
return the information of unspent outputs to the client, the communication
overhead of BITE will be equal to the communication overhead of T 3. 45

3.1 AMR System Overview. 58

3.2 Illustrative example of the Merkle tree, Tdep. The tree keeps track of com-
mitments from by clients’ deposit transactions. The root of the tree, rootdep
is used to verify the NIZK proofs from withdrawing and redeeming-reward
transactions. 64

3.3 AMR Setup. The public parameters, pp, contains all information needed to
interact with the AMR contract, and pp can be queried by any client. 66

3.4 AMR’s deposit interactions between the client (Client’s CreateDepositTx
algorithm) and AMR contract (AMR’s AcceptDeposit algorithm). Trans-
action txdep is signed by sk. Block.Height denotes the block height of the block
containing txdep . 67

3.5 AMR’s reward-redeeming interactions between the client (Client’s CreateRedeemTx
algorithm) and AMR contract (AMR’s IssueReward algorithm). 68

3.6 AMR’s deposit interactions between the client (Client’s CreateWithdrawTx
algorithm) and AMR contract (AMR’s IssueWithdraw algorithm). 70

3.7 On-chain Costs of Deployments, Deposit, Withdrawal, and Reward Redemp-
tion for Different Tree Depths and Hash Functions. 78

3.8 zkSnark Proof Generation Time for Poseidon and MiMC hash functions. . . 79

3.9 Average number of deposit transactions issued to the contract over the span
of 5, 000, 10, 000, 15, 000, 20, 000, 25, 000, 30, 000 blocks. 80

3.10 Number of deposits and withdrawals issued to the tornado cash 10 ETH pool. 81

4.1 Illustrative example of a (simplified) Monero transaction. Alice (pkA) con-
tributes 5 XMR to pay 4 XMR to Bob (pkB) and get 1 XMR back (pkA). Finally,
the transaction is authorized with a ring signature σ from the input ring. . 91

10

4.2 Construction of LSAG in Monero [122]. For ease of exposition, in the signing
algorithm we assume that the secret key sk corresponds with the n-th public
key pkn. In practice, the position of true signer’s public key is chosen uniformly
random. 93

4.3 Construction of DLSAG. For ease of exposition, we assume that the secret
key skb corresponds with the public key pkn,b. As noted before, the position
of the true signer’s public key is chosen uniformly random. 98

4.4 A simplified Monero transaction using dual-key tuples and hidden timelocks. 109

4.5 Description of the protocol 2of2RSSign (pkAB,b, [skAB,b]A, [skAB,b]B, tx), where
pkAB denotes a one-time address shared between Alice and Bob, [skAB,b]A,
[skAB,b]B denote the Alice and Bob shares of the private key for pkAB,b, and tx
denotes the transaction to be signed. 112

5.1 Notation . 121

5.2 Construction of the Flexible Lamport-Diffie One-time Signature 125

5.3 An example of new authentication nodes for PK3 where Auth3 = (a1, a2, a3) is
the set of authentication nodes in the original scheme and Authc3 = (a1, a2, a3)
is the set of additional authentication nodes 130

5.4 The Flexible Merkle Signature Construction. 131

5.5 Security Level of Flexible Lamport-Diffie One-time Signature 137

5.6 Security Level of Flexible Merkle Tree Signature 137

11

ABSTRACT

The blockchain offers a decentralized way to provide security guarantees for financial

transactions. However, this ability comes with the cost of storing a large (distributed)

blockchain state and introducing additional computation and communication overhead to

all participants. All these drawbacks raise a challenging scalability problem, especially for

resource-constrained blockchain clients. On the other hand, some scaling solutions typically

require resource-constrained clients to rely on other nodes with higher computational and

storage capabilities. However, such scaling solutions often expose the data of the clients

to risks of compromise of the more powerful nodes they rely on (e.g., accidental, malicious

through a break-in, insider misbehavior, or malware infestation). This potential for leakage

raises a privacy concern for these constrained clients, in addition to other scaling-related

concerns. This dissertation proposes several cryptographic constructions and system designs

enabling resource-constrained devices to participate in the blockchain network securely and

efficiently.

Our first proposal concerns the storage facet for which we propose two add-on privacy

designs to address the scaling issue of storing a large blockchain state. The first solution

is an oblivious database framework, called T 3, that allows resource-constrained clients to

obliviously fetch blockchain data from potential malicious full clients. The second solution

focuses on the problem of using and storing additional private-by-design blockchains (e.g.,

Monero or ZCash) to achieve privacy. We propose an add-on tumbler design, called AMR,

that offers privacy directly to clients of non-private blockchains such as Ethereum without

the cost of storing and using different blockchain states.

Our second proposal addresses the communication facet with focus on payment channels

as a solution to address the communication overhead between the constrained clients and

the blockchain network. A payment channel enables transactions between arbitrary pairs of

constrained clients with a minimal communication overhead with the blockchain network.

However, in popular blockchains like Ethereum and Bitcoin, the payment data of such chan-

nels are exposed to the public, which is undesirable for financial applications. Thus, to hide

transaction data, one can use blockchains that are private by design like Monero. However,

12

existing cryptographic primitives in Monero prevent the system from supporting any form

of payment channels. Therefore, we present Dual Linkable Spontaneous Anonymous Group

Signature for Ad Hoc Groups (DLSAG), a linkable ring signature scheme that enables, for

the first time, off-chain scalability solutions in Monero.

To address the computation facet, we address the computation overhead of the gossip

protocol used in all popular blockchain protocols. For this purpose, we propose a signature

primitive called Flexible Signature. In a flexible signature scheme, the verification algorithm

quantifies the validity of a signature based on the computational effort performed by the

verifier. Thus, the resource-constrained devices can partially verify the signatures in the

blockchain transactions before relaying transactions to other peers. This primitive allows

the resource-constrained devices to prevent spam transactions from flooding the blockchain

network with overhead that is consistent with their resource constraints.

13

1. INTRODUCTION

In recent years, there has been an increased interest in the public blockchain, as it has

enabled various financial applications without the need for a centralized trusted author-

ity. However, the increasing adoption of blockchain raises several scalability issues. While

the research community has proposed solutions to the scaling problem, those solutions are

typically designed for high-end computational devices (i.e., personal laptops, workstations).

Therefore, those solutions often prevent blockchain adoption for resource-constrained devices

which cannot participate in the blockchain network meaningfully. On the other hand, exist-

ing solutions [77] dedicated to resource-constrained devices often expose the data of those

devices to malicious nodes [68], thereby, raise another concern about privacy. In general,

besides the privacy issue, three notable challenges hindering the adoption of blockchain for

resource-constrained devices are the storage overhead, the communication overhead, and the

computation overhead.

1.1 Challenges for Resource-constrained Devices in Permissionless Blockchains

In the following, we summarize three main challenges for resource-constrained devices in

the permissionless Blockchain.

The Storage Overhead. It is well-known that the blockchain data (i.e., Bitcoin and

Ethereum) has become too large to be stored by resource-constrained devices of any kind.

To this end, the simplified payment verification (SPV) client has become a widely adopted

solution to resolve the storage problem. In such a solution, SPV clients rely on other nodes

to download and verify only the relevant part of the blockchain. However, such reliance

by resource-constrained clients on other nodes implies an increased risk to privacy, as this

solution clearly reveals clients’ their transaction data and their transactions of interest. This

information leakage is often undesirable for both business and personal entities because it

can reveal sensitive information about clients (e.g., trade deals or medical bills) to outsiders

(e.g., competitors or analytical companies). However, designing a privacy-preserving system

offering oblivious access to resource-constrained blockchain clients is technically challenging.

For instance, existing techniques proposed in research communities [105 , 131] are not scalable

14

to handle a large number of requests from clients due to the limitation of the underlying

cryptographic primitives.

On the other hand, to protect transaction data, some clients choose to use blockchains

that are private by design, such as Monero [5] and ZCash [143]. However, this adoption of

private blockchain leads to two significant problems. First, existing clients of smart-contract-

enabled blockchains need to store additional blockchain data of those private blockchains and

perform complicated swaps to exchange assets between two blockchains. Second, a complete

switch to private-by-design blockchain prevents resource-constrained clients from using ex-

pressive applications (e.g., Decentralized Finance (DeFi) Applications [1 , 41]) enabled by

smart contracts. Thus, resource-constrained clients with a lack of storage capability face a

dilemma between privacy and expressiveness. Therefore, it is natural to design an add-on

privacy solution for existing clients of non-private blockchains. However, existing offered by

the research community [108 , 78] have several limitations. A solution based on ring signa-

ture [108] only offers a small anonymity set. Other solutions rely on a non-trusted third

party [78 , 152] to mix crypto asset; however, a non-trusted third party can always censor or

prevent clients from mixing their assets (i.e., attack against availability).

The Communication Overhead. Opening communication and issuing many transac-

tions to the blockchain peer-to-peer (P2P) network can be expensive in terms of communica-

tion overhead for resource-constrained clients, as every transaction needs to be broadcasted

by the client and then validated by miners. Therefore, a natural direction to reduce such com-

munication overhead is to employ payment channels or payment channel networks [124] to

resource-constrained clients, a scalability solution already adopted in Bitcoin and Ethereum.

In a payment channel, two resource-constrained clients can open a channel with each other

by submitting one “opening” transaction agreed upon by both clients to the P2P network.

After creating the channel, the clients can exchange transactions faster without constantly

connecting to the P2P network. Finally, two clients can close the channel at any time by

submitting another “closing” transaction to the P2P network. Thus, payment channels and

payment channel networks significantly reduce the communication exchanged between the

P2P network and resource-constrained clients.

15

However, in blockchains like Ethereum and Bitcoin, the data of payment channels is

exposed to the public, which is undesirable for personal and business clients. Therefore, one

may want to leverage private-by-design blockchains like Monero to build private payment

channels in which the data of the channels are private. Still, building payment channels in

Monero is non-trivial due to the cryptographic primitives used in Monero.

The Computation Overhead. Most of the blockchain systems often use a gossip pro-

tocol for broadcasting transactions among peers. In the gossip protocol, participating nodes

need to verify the validity of incoming transactions via signature verification before relaying

them to other nodes. This mechanism prevents malicious to flood the network with spam

transactions. However, performing such a verification incurs a significant computation over-

head on resource-constrained clients as they need to verify all incoming transactions. Thus,

a cryptographic signature primitive that offers a trade-off between the computation and the

error probability in verification can be useful to clients in the gossip protocol. Neverthe-

less, it is far from trivial to build such primitive as none of the prominent digital signature

schemes (such as RSA and (EC)DSA) can offer such flexibility in the verification.

1.2 Contributions

This thesis takes a significant step towards addressing these major scaling challenges by

proposing different cryptographic constructions, especially suited for resource-constrained

devices to interact with the blockchain network securely and privately. This dissertation

focuses on demonstrating the following statement:

Current blockchain designs introduce significant scaling challenges to resource-

constrained clients in terms of storage, communication, and computation over-

heads. It is possible to build a secure and efficient system for resource-constrained

clients to address those challenges without sacrificing clients’ privacy.

In the following, we describe our contributions in addressing these challenges to demonstrate

the veracity of this statement.

Addressing Storage Overhead with Add-on Privacy Solutions. To address the

storage facet, this dissertation proposes two add-on privacy solutions: T 3 and AMR. In par-

16

ticular, T 3 framework offers efficient oblivious accesses for resource-constrained devices when

connecting to servers with a continuously changing database. T 3 can be used by blockchain

resource-constrained clients to obliviously fetch the blockchain data from potentially mali-

cious nodes. The other system, AMR, is a privacy-preserving autonomous mixer that allows

resource-constrained clients to mix their crypto assets privately. AMR directly allows users of

non-private blockchains (i.e., Ethereum) to maintain their transaction by obfuscating their

transaction graph. Thus, AMR eliminates the need of switching to private blockchains like

ZCash or Monero and avoids storing additional blockchain states of those private blockchains.

Addressing Communication Overhead with Private Payment Channels. to

address communication overhead and privacy challenges, we present a Dual Linkable Spon-

taneous Anonymous Group Signature for Ad Hoc Groups (DLSAG), a linkable ring signature

scheme that enables for the first time off-chain scalability solutions in Monero such as pay-

ment channels and payment-channel networks. Such primitive will reduce the communication

overhead required for the constrained devices when connecting in the blockchain peer to peer

network while hiding the transaction data from being exposed to the public network.

Finally, we present a Flexible Signature Framework. A flexible signature framework offers

a trade-off between the error probability in the verification procedure and the computation

overhead. With application to the blockchain, we envision that the flexible signature frame-

work will allow constrained devices to strengthen the blockchain network by helping verify

signatures in blockchain transactions; therefore, it helps minimize computation overhead for

constrained devices when participating in the blockchain network.

1.3 Outline of the Dissertation

This dissertation is organized into three parts. Part I focuses on how to address the

storage overhead and contains Chapter 2 and Chapter 3 . In Chapter 2 , we propose the

oblivious database framework, T 3, that allows constrained clients to obtain data from full

clients obliviously. In Chapter 3 , we present an autonomous mixer design, AMR, that directly

offers privacy to clients on non-private blockchain like Ethereum without the need of using

and storing state of private blockchains like ZCash or Monero. Part II focuses on how to

17

improve the communication overhead while preserving blockchain clients’ privacy. This part

consists of Chapter 4 . Part III, which consists of Chapter 5 , proposes a new signature

primitive, called Flexible Signature, that helps reduce the computation overhead of resource-

constrained blockchain clients. Finally, we summarize this dissertation in Chapter 6

18

Part I

Addressing Storage Overhead with

Add-on Privacy Solutions

19

2. OBLIVIOUS DATABASE FRAMEWORK FOR SIMPLIFIED

PAYMENT VEFIFICATION CLIENTS

Over the last few years, we have seen a great interest in the public blockchain. The Bitcoin

blockchain offers a way to provide security for financial transactions. However, due to the vast

adoption of Bitcoin, the size of its blockchain has become too large for resource-constrained

devices such as personal laptops or mobile phones, raising performance and privacy concerns

in the community. As of October 2018, the size of the unindexed Bitcoin blockchain was 230

GB.

To this end, Bitcoin’s simplified payment verification (SPV) client has become a widely-

adopted solution to resolve the storage problem for constrained devices. Satoshi Nakamoto

[120] sketched the idea of SPV clients in the Bitcoin whitepaper, and in the Bitcoin improve-

ment proposal 37 (BIP37) [77], Mike Hearn combined Nakamoto’s idea with Bloom filters to

standardize the design of Bitcoin SPV clients. This design has become a de facto standard

for other SPV clients such as BitcoinJ [23] and Electrum [58].

The core of SPV clients consists of downloading and verifying the part of the blockchain

that is relevant to the SPV client itself. In particular, the SPV client loads its addresses

into a Bloom filter and sends the filter to a Bitcoin full client, that uses the filter sent by

the client to identify and send back the block contains transactions that are relevant to the

SPV client, along with Merkle proofs for those transactions.

However, the current SPV solution relying on Bloom filters raises security and privacy

concerns to the SPV client when it communicates with potentially compromised nodes

(whether accidentally or maliciously). Gervais et al. [69] showed that it is possible for a

malicious node to learn several addresses of the client from the Bloom filter with high prob-

ability. Moreover, if the adversarial node can collect two filters issued by the same client, it

can learn a considerable number of addresses owned by the client.

To provide a strong privacy guarantee for SPV clients, one needs a solution that can hide

wallets/addresses queried by the SPV clients [79]. While such a system can be built using

private information retrieval (PIR) primitives, the existing cryptographic PIR solutions [83 ,

 131] are not scalable to handle millions of Bitcoin users. On the other hand, to gain more

20

efficiency, one can use ORAM and TEE to propose generic PIR systems [80 , 60 , 145]. How-

ever, as we will see later in this chapter, naively combining ORAM scheme as it is with TEE

makes the practicality of those generic systems questionable when used in a large network

like Bitcoin due to the lack of concurrency in ORAM as well as the limitation of TEE with

restricted memory.

Our Contributions. This work aims not only to design a system that provides SPV clients

with privacy-preserving access to the Bitcoin blockchain data but also to consider other

practical aspects on how to scale such a system to handle client requests in a large-scale.

Our contributions can be summarized as follows:

Firstly, we present a design for a system that can handle up to thousands of requests

per minute from Bitcoin SPV clients based on a restricted access Oblivious Random-Access

Memory (ORAM) and the trusted execution capabilities of TEE. In particular, one of the

main contributions of our design is the optimization access in the prominent tree-based

ORAM schemes that allow those ORAM schemes to support concurrent accesses which is

essential for handling SPV clients’ requests. In this design, the access privacy guarantee

is still maintained because of our natural assumption that the rational Bitcoin SPV clients

should only query for their particular transaction once before the arrival of a new Bitcoin

block. Nevertheless, we later show that even when the SPV clients are irrational then the

privacy for such clients is only compromised for a short period of time. The security guarantee

of T 3 also relies on the trusted execution capabilities of TEE that allows SPV clients to

perform ORAM operations securely and remotely. Our generic design works with other

blockchains, any tree-based ORAM schemes [147 , 149 , 158], and any TEE with attestation

capability.

Secondly, we implemented a prototype of T 3 and evaluated its performance to demon-

strate the practicality of our approach. More specifically, we extracted the unspent trans-

action outputs set of Bitcoin in October 2018 and used it to measure the performance of

the system when handling clients’ requests. The implementation of T 3 also adopts standard

techniques (i.e., oblivious operations using cmov [145 , 3 , 133]) to be secure against known

side-channel attacks [95 , 94 , 161]. Moreover, the use of recursive ORAM constructions in

T 3 makes the system much more suitable for TEE with restricted trusted memory like Intel

21

SGX. We then show that the running time of the ORAM read access decreases linearly with

the number of the threads used. Our implementation is available at [151].

Finally, we conclude that putting natural restrictions on the access patterns on oblivious

memory can lead to significant performance improvement and better ORAM design. While

the applicability of T 3 in cryptocurrencies beyond Bitcoin is apparent, we believe our work

will also motivate further research on oblivious memory with restricted access patterns.

2.1 Design Goals and Solution Overview

In this part, we define the system components, outline our security goals, and give an

overview of how our system works.

2.1.1 System Components

There are three key components of this system: the Bitcoin network, a client, and an

untrusted full node. The Bitcoin Network is a set of nodes that maintains the Bitcoin

blockchain, and the network validates and relays the new Bitcoin block produced by min-

ers. A Client is a Bitcoin Simplified Payment Verification node that remotely connects to

the secure TEE on the untrusted full node to perform oblivious searches on the unspent

transaction output (UTXO) set. The client is also able to connect to the Bitcoin Network

to obtain other network metadata such as the latest Bitcoin block header. A Full Node is

an untrusted entity made up of two components: an untrusted full node and several trusted

TEEs (i.e., the managing, reading, and writing TEEs). Moreover, the untrusted full node

stores three encrypted databases which are the read-once ORAM tree, the original ORAM

tree, and the Bitcoin header chain. The untrusted full node hosts a potentially malicious

Bitcoin client (e.g., bitcoind) that handles the communication with the Bitcoin Network.

2.1.2 Design Goals

The goal of our system is to leverage the trusted execution capabilities of a Trusted

Execution Environment (TEE) with attestation to design a public Bitcoin full node that

supports oblivious search and update on the current Bitcoin unspent transaction output

22

database. Our system aims to provide data confidentiality and privacy to Bitcoin SPV

clients on a large scale by using standard encryption and Oblivious RAM techniques on the

current set of unspent transaction outputs. The main goals that T 3 tries to achieve are:

Privacy. T 3 aims to provide privacy and confidentiality to SPV clients’ requests. In par-

ticular, the system allows SPV clients to obliviously search its relevant transactions without

revealing their addresses to potentially malicious providers by using TEE to encrypt the

data and using ORAM schemes to eliminate known side channel leakages [133 , 3 , 80 , 145].

Validity. The SPV client should be able to obtain valid information based on the

provided addresses, and a malicious adversary should not able to tamper the Blockchain

data with invalid transaction outputs.

Completeness. The system should provide clients with access to most of its relevant

transactions to determine balance or to obtain essential information to form new transactions.

Efficiency. The system should be practical to deploy. More specifically, the system

should be efficient enough to handle different concurrent SPV clients’ requests without com-

promising the privacy of the clients.

2.1.3 Solution Overview

The idea of using ORAM schemes and trusted execution environments to construct

database systems that support oblivious accesses has been investigated by the research com-

munity [80 , 60 , 145]. However, the efficiency and scalability of those systems are hampered

by the lack of concurrency of traditional ORAM schemes [149 , 158].

In this work, we design T 3 to overcome the limitations of efficiency and concurrency

plaguing existing systems. Our design is motivated by the following observations. The first

observation is that each ORAM access in a standard tree-based ORAM setting is a combi-

nation of two operations: a read-path operation and an eviction operation. By separating

the effects of two operations into two different trees: a read-once ORAM tree and an original

ORAM tree, one can use read-path operation on the read-once ORAM tree to handle clients’

requests simultaneously while performing a non-blocking eviction operation on the original

ORAM tree sequentially.

23

4

Read-once	ORAM Original	ORAM

R-Enclave R-Enclave W-Enclave
6

Evict	Queue

BTC	Daemon

Bitcoin
Network

SPV
Clients

1

2

3

5

6

1

2

3

5

8

Secure	Channel
Unsecure	Channel

#

#
Update	Steps

Read	Steps

7

Managing	Enclave

Bitcoin	Block
Header	DatabaseWrite	Queue

4

Figure 2.1. Overview of T 3 design.

The second observation is that the access privacy guarantee of this approach relies on the

characteristic of the Bitcoin blockchain. In particular, the Bitcoin network generates new

Bitcoin block on average of 10 minutes, and if we require T 3 to periodically synchronize these

the two trees, then the privacy of clients’ queries is preserved. Moreover, if we assume that

upon receiving transactions belonged to its addresses, the rational client should not query

same transactions again until the next block arrives, the proposed approach on the separation

of read-path and eviction procedure not only does not affect the privacy guarantees of ORAM

access but also allows T 3 to efficiently handle more clients’ requests. More importantly, we

argue that even when the SPV clients are irrational by submitting requests for the same

transaction more than once, the privacy of those clients is only compromised for a short

period (i.e., 10 minutes for the Bitcoin network) because T 3 will always synchronize the

old instance of the read-once ORAM tree with the more updated instance of the original

ORAM tree. With the intuition of T 3 described above, we outline the workflow of our design

in Fig. 2.1 :

Full node Initialization 1 - 8 : Initially, the managing TEE will initialize a writing TEE

that creates an empty ORAM tree. For each of Bitcoin block obtained from the network, the

24

managing TEE verifies the proof of work of the block before passing relevant update data to

the writing TEE in order to populate the ORAM tree. With the current size of the Bitcoin

blockchain, this operation may take several hours. However, once the TEEs catch up with

the current state of the Bitcoin blockchain, we expect that the TEE only has to perform a

batch of update accesses on the ORAM tree every 10 minutes. When the initialization is

completed, the managing TEE creates two copies of the ORAM tree which are the read-once

ORAM tree and the original ORAM tree.

Oblivious read-once Protocol 1 - 6 : To obtain its unspent outputs, the client first per-

forms the remote attestation to the managing TEE. The remote attestation mechanism

allows the client to verify the correctness of program execution inside the TEE. More impor-

tantly, after a successful attestation, the client can use standard key exchange mechanism [55]

to share a secret session key with the TEE to establish a secure connection with themanaging

TEE. Upon receiving client’s connection requests, the managing TEE creates a reading TEE

with its copies of the ORAM position map and the ORAM stash to handle client subsequent

requests. Next, after having a secure channel, the client will send his Bitcoin addresses along

with the proof of ownership of those addresses to the TEE. The reading TEE will use a

mapping function to map Bitcoin addresses into the ORAM block identification number and

performs read-once ORAM access on the ORAM tree. Those read-once ORAM access do

not involve the eviction procedure which requires re-encrypting and remapping the ORAM

block. The eviction procedure will be performed on the original ORAM tree by the writing

TEE.

Oblivious Write Protocol 1 - 8 : The T 3 requires to update the ORAM tree via batch

of write accesses every 10 minutes on average. T 3 will rely on a standard Bitcoin client to

handle the communication with the Bitcoin network to obtain blockchain data

1
 . Thus, T 3

needs to verify the block relayed by a potentially malicious Bitcoin client before updating

the ORAM tree. More specifically, in the design, T 3 stores a separate Bitcoin header chain

to verify the proof of work and the validity of all transactions inside a Bitcoin block. After

the verification, the managing TEE forms a batch of ORAM updates and delegates those

updates to the writing TEE. Once those updates are finished, the managing TEE will queue
1

 ↑ This feature can be easily included in the future implementation of T 3.

25

up read requests from SPV clients to allow the writing TEE to finish the eviction requests

from the read TEEs during the updating interval. As soon as the writing TEE finishes

performing those eviction requests, the managing TEE updates the position map and stash,

and makes the ORAM tree used by the writing TEE become the new ORAM tree used by

reading TEE. At this point, the reading TEE can use the new tree instance to respond to

clients’ requests while the writing TEE performs the eviction procedure on another copy of

the same ORAM tree.

2.2 Preliminaries and Threat Model

2.2.1 Trusted Execution Environment

The design of T 3 relies on a trusted execution environment (TEE) to prove the correctness

of the computations. TEE is a trusted hardware that provides both confidentiality and

integrity of computations as well as offer an authentication mechanism, known as attestation,

for the client to verify computation correctness. In this work, we chose Intel SGX [43] to

be the building block of our system. However, with minor modifications, the design of

our system can be extended to any TEE with attestation capabilities such as Keystone-

enclave [87] and Sanctum [44] as other trusted execution environments might not have the

same strengths/weaknesses as Intel SGX.

Intel SGX is a set of hardware instructions introduced with the 6th Generation Intel

Core processors. We use Intel SGX as a TEE for the execution of an ORAM controller on

the untrusted full node. The relevant elements of intel SGX are as follows: Enclave is the

trusted execution unit that is in a dedicated portion of the physical RAM called the enclave

page cache (EPC). The SGX processor makes sure that all other software components on

the system cannot access the enclave memory. Intel SGX supports both local and remote

attestation mechanisms to allow remote parties or local enclaves to authenticate and verify

if the program is correctly executed within an SGX context. More importantly, attestation

protocols provide the authentication required for a key exchange protocol [43], i.e., after a

successful attestation, the concerned parties can agree on a shared session key using Diffie-

Hellman Key Exchange [55] and create a secure channel.

26

Limitations. Intel SGX comes with various limitations that have been uncovered by the

academic community over the past few years. Some of these limitations are:

• Side-Channel Attacks: While Intel SGX provides security guarantees against di-

rect memory attacks, it does not provide systematic protection mechanisms against

side-channel attacks such as page table-based [161 , 94], cache-based [31], and branch-

prediction-based [95]. Through page table and cache attacks, a privileged attacker

can observe cache-line-granular (i.e., 64B) memory access patterns from the enclave

program. On the other hand, the branch-prediction attack can potentially leak all the

control-flow taken by the enclave program.

• Enclave Page Cache Limit: The size of the Enclave Page Cache (EPC) is limited to

around 96MB [8]. Although Intel SGX alleviates this limitation by supporting page-

swapping between trusted memory region and untrusted memory region, this operation

is expensive due to encryption and integrity verification [43 , 8].

• System Calls: Intel SGX programs are restricted to ring-3 privileges and therefore

rely on the untrusted OS for ring-0 operations such as file and network I/O. Vari-

ous previous works try to solve this problem using library OSes [155] and/or other

techniques [80].

Oblivious Operations Inside the Enclave. Several techniques [133 , 80 , 145 , 123]

have been introduced to mitigate side-channel attacks on the SGX. In this work, we built

our system based on the implementations of both Zerotrace [145] and Obliviate [3]. There-

fore, our system inherited standard secure operations from both of libraries. In particular,

their implementations use an oblivious access wrapper by using the x86 instruction cmov

as introduced by Raccoon [133]. Using cmov, the wrapper accesses every single byte of a

memory object while reading or writing only the required bytes in memory. From the per-

spective of an attacker (which can only observe access-patterns), this is the same as reading

or modifying every byte in memory. We refer readers to [145 , 3 , 133] for detailed descriptions

of these oblivious operations.

27

2.2.2 Oblivious Random-Access Machine

Oblivious Random Access Machine (ORAM) was first introduced by Goldreich et al [70]

for software protection against piracy. The core of ORAM is to hide the access patterns

resulted from reading and writing accesses on encrypted data. The security of ORAM can

be described as follows.

Definition 2.2.1. [149] Let
→
y= (opi, bidi, datai)i∈[n] denote a sequence of accesses where

opi ∈ {read, write}, bidi is the identifier, and datai denotes the data being written. For an

ORAM scheme Σ, let AccessΣ(
→
y) denote a sequence of physical accesses pattern on encrypted

data produced by
→
y . We say: (a) The scheme Σ is secure if for any two sequences of accesses

→
x and

→
y of the same length, AccessΣ(→x) and AccessΣ(

→
y) are computationally indistinguish-

able. (b) The scheme Σ is correct if it returns on input
→
y data that is consistent with

→
y with

probability ≥ 1− negl(|
→
y |) i.e negligible in |

→
y |

Tree-based ORAM schemes. One strategy of designing an ORAM scheme is to

follow the tree paradigm proposed by Shi et al. [147] and Stefanov et al. [149]. In tree-

based ORAM, the client encrypts their database into N different encrypted data blocks and

obliviously stores those data blocks in a binary tree of height dlog2(N)e. Each node in the

tree is called a bucket, and each bucket can contain up to Z blocks. The client also maintains

a position map, to indicate which path a data block resides on. Finally, the client needs to

have a stash to store a path retrieved from the server.

Each access in both ORAM schemes requires two operations: a ReadPath operation and

an Evict operation. Intuitively, ReadPath takes as input the ORAM block identifier, bid,

accesses the position map, and retrieves the path that block bid resides onto the stash, S.

After performing ORAM access (i.e., read/write) on the identified block, the block is assigned

to a different path and pushed back to the tree via the Evict operation. In general, the Evict

operation takes a stash and the assigned path as input, writes back blocks from stash to the

assigned path, and updates the position map.

PathORAM/CircuitORAM Scheme. In this work, we consider two popular tree-

based constructions of ORAM: PathORAM [149] and CircuitORAM [158]. While

28

PathORAM offers simple ReadPath and Evict operations, CircuitORAM offers a smaller

circuit complexity for the Evict procedure. Thus, CircuitORAM is more efficient when

implemented with Intel SGX. As noted in [145 , 80], CircuitORAM can operate with Z = 2

compared to Z = 4 as in PathORAM; therefore, the server storage overhead is significantly

reduced. Moreover, the size of stash in CircuitORAM is smaller compared to the size of

stash in PathORAM; this allows a more efficient performance when scanning the stash as

one needs to scan the whole path and stash to avoid side-channel leakage.

Recursive ORAM. In a non-recursive tree-based ORAM setting, the client has to store

a position map of the size O(N) bits. This approach, however, is not suitable for a resource-

constrained client. Stefanov et. al [149] presented a technique that reduces the size of the

position map to O(1). The main idea of those constructions is to store a position map as

another ORAM tree in the server, and the client only store the position map of the new

ORAM tree. The client recursively stores the position map into another ORAM tree until

the size of the position map is small enough to be saved on the client’s storage. One main

drawback of those constructions is the increased cost in the communication between a client

and the server. In our setting, this cost can be safely ignored because the communication

between client and server becomes the I/O access between TEE and the random access

memory.

2.2.3 Blockchain

The Bitcoin blockchain is a distributed data structure maintained by a network of nodes.

On average of 10 minutes, the network outputs a block which is a combination of transactions

and a block header. Each block header contains relevant information about the Bitcoin block

such as Merkle root, nonce, network difficulty. The Merkle root can be used to verify the

membership of Bitcoin transactions, and the nonce and difficulty are used to check the proof

of work. Each Bitcoin transaction contains a set of inputs and outputs where transaction

inputs are unused outputs of previous transactions.

Unspent Transaction Output Database. In the Bitcoin network, the balance of a

Bitcoin address is determined by the values of those outputs that have not been used in other

29

transactions. These outputs are called Unspent Transaction Outputs (UTXO). Moreover,

in the implementation of common Bitcoin nodes such as Bitcoin core [20], Bitcoin nodes

maintain a separate database that keeps track of all unspent transaction outputs and other

metadata of the Bitcoin blockchain. Therefore, we realize that if a full node can securely

update and maintain the integrity of the UTXO set via while provides SPV clients with

oblivious accesses to the UTXO set, the privacy of the SPV client is preserved.

Bitcoin transaction types. In the Bitcoin, transactions are classified based on the

structure of the input and output scripts. There are five types of standard script tem-

plates which are Pay-to-Pubkey (P2PK), Pay-to-PubkeyHash (P2PKH), Pay-to-ScriptHash

(P2SH), Multisig, and Nulldata. Intuitively, scripting in Bitcoin provides a way to prove the

ownership of the coins.

In this work, we only consider two types of transactions: Pay-to-PubkeyHash (P2PKH)

transaction and Pay-to-ScriptHash (P2SH) transaction. According to [52 , 116], those two

types of transactions made up of 97-99% of the UTXO set. Also, one can assume that the

Pay-to-Pubkey-Hash transaction is one variant of the Pay-to-Script-Hash transaction because

both transaction types require the spender’s knowledge of the preimage of the hash digest

before being able to spend those outputs. For simplicity, from this point on, we assume that

the only information needed to obtain the unspent output is the public key hash, pkh. All

other transaction types such as Multisig and P2PK can be easily supported in the future.

Block creation interval. The block creation time in Bitcoin is the time that the

network takes to generate a new block, and block creation time is specified to be 10 minutes

on average by the network. We call the waiting period between the most recent block and a

new block, block creation interval. In this work, we discretize time as block creation intervals.

Deterministic Wallet. In Bitcoin, a deterministic wallet [53] is a system that allows the

creation of several public addresses on-fly from a single seed. The main idea of deterministic

wallets is to generate an unlimited number of addresses for a client to help mitigate the risk

of reusing addresses [2]. Thus, ideally, in Bitcoin, users are expected to create a new address

for each person who is paying, and after receiving the coin, the address should never be used

30

again. Therefore, it is reasonable to expect that the number of unspent outputs for each

address is one.

UTXO-based Blockchains. After the advent of Bitcoin, the blockchain community

has developed different cryptocurrencies to address the shortcomings of Bitcoin. While

the employed underlying cryptographic primitives are different, the transaction structure of

those cryptocurrencies follows the similar design paradigm as in Bitcoin: Transactions are

formed based on outputs of previous transactions, and the creation of transactions forms

new unspent outputs, and the notion of balance in these cryptocurrencies is determined by

the values of those unspent outputs. We called those UTXO-based cryptocurrencies. Few

examples of UTXO-based currencies are Litecoin [100], Dash [50], and Zcash [143]. Thus,

as the design will become apparent in later sections, we argue that the design of T 3 applies

not only to Bitcoin but also to other UTXO-based blockchains.

2.2.4 Threat Model

We assume that SPV clients are honest and rational which means that before during

the block creation interval, an SPV client should not request the full node for transaction

outputs of the same public key hash more than once.

The underlying remote attestation service provided by TEE is assumed to be secure and

trusted. The local attestation between enclaves is secure. The full node and its programs

are assumed to be untrusted except for programs running within an enclave.

We assume that the adversary who controls the operating system can observe, inject,

and modify encrypted messages sent by enclaves. The adversary also can observe memory

access patterns of both trusted and untrusted memory. Also, the computation power of the

adversary is assumed to be limited. During the block creation interval, the adversary should

not have enough computation power to forge a new Bitcoin block that satisfies the current

Bitcoin network difficulty. As the time of writing, the network difficulty [22] is around 6×109;

therefore, the expected number of hashes to mine a Bitcoin block is roughly 272.

The full node’s attacks on availability are out of scope. More specifically, denial of

service (DoS) attacks by system admin and untrusted operating system are out of the scope.

31

Otherwise, such adversaries can prevent the enclaves from receiving new bitcoin block by

shutting down the communication channel between the enclave and the Bitcoin network as

the enclave has to rely on the untrusted OS to perform system calls such as file and network

I/O. On the other hand, for DoS attacks from the client, we will outline possible DoS attacks

and offer solutions to mitigate them in Section 2.5 .

2.3 Proposed System

In this section, we describe how T 3 stores the UTXO set by exploring different mappings

between the unspent transaction outputs and the ORAM blocks. Next, we demonstrate

how Intel SGX can be considered as a trusted execution unit to access ORAM and perform

read/write operations in an oblivious manner. Finally, we will describe how the system

handles clients’ requests during a write operation.

2.3.1 Storage Structure of the UTXO set

In this part, we show how T 3 stores the UTXO set into ORAM tree structures.

Bitcoin unspent transaction output mapping. In the design of T 3, the SPV clients

only know his/her addresses (i.e., the public key hashes); therefore, to return the outputs

belonging to the client’s address, TEE needs to know the mapping between the address and

the ORAM block identification.

We propose two secure mappings to store unspent outputs in the ORAM tree as naive

mapping may lead to attacks on the system. Both approaches use standard pseudorandom

function (PRF) along with a secret key generated by the enclave. The first approach is to

map a single Bitcoin address into a single ORAM block, and the second approach is to map

a Bitcoin address into multiple ORAM blocks. We will later explain the trade-off between

these two approaches.

Single address into single ORAM block. In this design, during the initialization, we

require the program inside the enclave to use a PRF to map the public key hash to ORAM

block identification. The secret key of the PRF is generated inside the enclave; thus, the

mapping is known only to the SGX. We define the mapping as follow:

32

• bid← OBlockMap(pkh, kb): the function takes as input a 20-bytes hash digest pkh and

a secret key kb, it outputs the block identification number bid ∈ {0, . . . , N − 1}.

The PRF approach offers some flexibility when deciding the size of an ORAM blocks and

the size of height of the ORAM tree. These two factors affect the size of the position map

(resp. number of recursive levels) for non-recursive (resp. recursive) ORAM constructions.

However, since the output domain of OBlockMap(·, ·) is limited to the size of the ORAM

blocks, there will exist collisions. The following lemma gives us a loose upper bound on the

number of addresses that should be stored inside an ORAM block.

Lemma 2.3.1. (Addresses per ORAM block) Let m be the number of public key hashes, N

be the number of ORAM blocks. If the OBlockMap() acts as a truly random function,

then the maximum number of addresses in each ORAM block is smaller than e ·m/N with a

probability 1− 1/N .

Proof. This is a standard max-load analysis. We refer readers to [48] for detailed analysis.

We note that there exists a tighter bound, but we use e · m/N bounds to simplify the

equation.

The second approach of Figure 2.2 gives us a high-level overview of this approach.

Single address into many ORAM blocks. Mapping a single address into a single

ORAM block incurs less work on the full node as it requires a single ORAM access for an

address. However, if one wants to allow each address to have more than one output, using

the first approach implies that the storage overhead will increase linearly. Thus, we need

a different mapping without linear increasing in storage overhead. To fix this shortcoming,

Enclave

pkh

kb

OBlockMap() ORAM bid

Figure 2.2. Single address into Single ORAM block.

33

the system needs to assign unspent outputs into ORAM block uniformly. One method is to

allow a client to specify the number of ORAM accesses to obtain all its unspent outputs as

long as the number of requests does not exceed certain threshold. We define the mapping

as follows:

• {bidi}i∈{0,...,δ−1} ← OBlockMap(pkh, kb, δ): the function takes as input a 20-bytes

hash digest pkh, a secret key kb, and a number δ where the maximum value of δ is spec-

ified by the system. It outputs a set of block identification numbers {bidi}i∈{0,...,δ−1} ⊆

{0, . . . , N − 1}.

This approach also introduces some leakage as some addresses may contain more unspent

outputs than others. Alternatively, the system can fix the value of δ ORAM accesses for

all addresses with the expense of performance (i.e., one address incurs constant ORAM

accesses). Similarly, the storage overhead of T 3 can be computed using the following claim:

Lemma 2.3.2. (UTXO per ORAM block) Let m be the number of unspent outputs, N be

the number of ORAM blocks. If the OBlockMap acts as a truly random function, then the

maximum number of outputs in each ORAM block is smaller than e ·m/N with probability

at least 1− 1/N

The proof is identical to proof of Lemma 2.3.1 . Figure 2.3 offers an overview of both

approaches.

Enclave

pkh

kb

OBlockMap()
ORAM bid

δ = 2 ORAM bid pkh

Enclave
kb

OBlockMap()
ORAM bid
ORAM bid

δ = 2max = 3

Figure 2.3. Single Address into One/Many ORAM block(s). One approach
allows the SPV client to specify the number of ORAM accesses with a max-
imum threshold. The other approach maps single address into a constant
number of ORAM access

Storage. In this system, we require the untrusted full node to store three separate

databases which are the read-once ORAM tree, the original ORAM tree, and the blockheader

34

chain. In particular, Read-Once ORAM Tree serves as a dedicated storage to handle

clients’ requests. The structure of the tree is identical to the standard ORAM tree. Original

ORAM Tree is where all standard ORAM eviction operations are performed. In this work,

we also require the enclave to maintain the Bitcoin Header Chain to verify the proof of

work of the bitcoin block sent by other bitcoin clients. The header chain is stored in the

untrusted memory with an integrity check.

2.3.2 Oblivious Read and Write Protocols

In T 3, the SPV client is the party who invokes read accesses, and the Bitcoin network

is the party who invokes write accesses. The TEE in the full node is the one that performs

both of those accesses on behalf of the client and the Bitcoin network.

Full Node’s System Components. Before explaining how oblivious read and write

accesses work, we first start outlining the different components of our design. The full node

is initialized with different enclaves: Managing Enclave Em coordinates other enclaves and

to handle requests from the clients. The managing enclave also handles the communication

with other Bitcoin client or local Bitcoin client (bitcoind) via request procedure calls (RPC)

to obtain Bitcoin blocks. Upon receiving the Bitcoin block, themanaging enclave also verifies

the integrity of the block using a separated header chain. Reading Enclave Er is a dedicated

enclave initialized by the managing enclave. It has a copy of ORAM position map and its

own stash. The reading enclave operates on the read-once ORAM tree. Also, the reading

enclave only performs ORAM ReadPath operations to obtain data while ORAM Eviction

operations will be handled by the writing enclave. Writing Enclave Ew performs Eviction

procedure for each read request and performs ORAM writing accesses when a new Bitcoin

block arrives from the Bitcoin network.

Oblivious read-once Protocol. In this part, we describe how a remote client can

perform a read access on the UTXO set. First, we denote Kb to be the block mapping

key, bid to be the ORAM block identification. We let (Enc,Dec) denote an authenticated

encryption scheme. We assume that the the full node has already been initialized with a

writing enclave, Ew and a managing enclave, Em. The managing enclave has a similar copy

35

Read-once	ORAM Original	ORAM

R-Enclave R-Enclave W-Enclave

Evict	Queue

SPV
Clients

1

2

3

5

6

Managing	Enclave

Secure	Channel

#Read	Steps

4

Figure 2.4. T 3 Oblivious Read Protocol.

of the position map as the map in the writing enclave. Figure 2.4 presents the oblivious read

protocol of T 3. The oblivious read protocol can be described as follows:

1. The client establishes a secure channel

2
 with the managing enclave 1 :

First, the client performs a remote attestation with the secure managing enclave, Em,

and agrees on a session key, Ks. The client encrypts his address along with the proof

of ownership of that address and sends the encrypted query to the full node to be

passed to Em. For simplicity, we assume that the plaintext only contains a public key

hash, pkh, that the client is interested in, and the proof of ownership of the pkh is

φ, C ← EncKs(pkh, φ). Note that there are different ways to prove the ownership of

public key hash/addresses. In Bitcoin, if the public key is never revealed before, the

proof of ownership can simply be the public key (i.e., φ = pk such that H(pk) = pkh).

Alternatively, the system can enforce a client to provide the signature and the public

key to prove the ownership of the public key hash.
2

 ↑ The standard instantiation of a secure channel is using SSL/TLS channel

36

2. The managing enclave initializes a reading enclave 2 : after receiving a client’s

request, Em initializes a dedicated reading enclave, Er to handle the client’s future

requests. Also, we require that the enclaves authenticate each other, and the existence

of a secure channel between enclaves. Moreover, the reading enclave has its copy of

the position map, its own stash, the block mapping key Kb, and the agreed session key

Ks.

3. The managing enclave identifies and forwards ORAM Block ID to both

reading and writing enclaves 2 : After decrypting the ciphertext (pkh, φ) ←

DecKs(C), Em verifies the proof φ and pkh, then uses OBlockMap(·, ·)

3
 function

to learn the ORAM block ID, bid ← OBlockMap(pkh,Kb) where Kb is the secret

key generated by the enclave during initialization for mapping purposes. After obtain-

ing the ORAM id, bid, the managing enclave forwards bid to the writing enclave for

the eviction procedure, and forwards the (pkh, bid) to the reading enclave.

4. The reading enclave performs read-once ORAM access on the read-once

ORAM tree 3 : Based on the given bid, the reading enclave performs ORAM read

only accesses on the ORAM tree to obtain the block. If the block contains the unspent

output that belongs to the public key pkh, the reading enclave adds outputs into the

response R. To mitigate the size leakage, the response R is padded with dummy data

if there is no UTXO found.

5. The reading enclave responds to the Client 4 - 5 : The enclave encrypts the

response, R, using the session key Ks then sends it to the client.

6. The writing enclave performs the eviction procedure on the original ORAM

tree 6 : After obtaining the bid from the managing enclave, the update enclave will

perform a standard ORAM read accesses on the original ORAM tree. The goal of

this procedure is to use the Eviction procedure inside standard ORAM operation to

rerandomize the location of the actual block. No actual data is return in this step.
3

 ↑ For simplicity, we assume that the one-to-one mapping is used here

37

Read-once	ORAM	 Original	ORAM

R-Enclave R-Enclave W-Enclave
6

Evict	Queue

BTC	Daemon

Bitcoin
Network

SPV
Clients

1

2

3

5

8

Secure	Channel
Unsecure	Channel

#Update	Steps

7

Managing	Enclave

Bitcoin	Block
Header	DatabaseWrite	Queue

Prospective	Read

6 ... 85...1

a ... bDuring	step	a	and	b

4

Figure 2.5. T 3 Oblivious Write Protocol.

Oblivious Write Protocol. We explain how T 3 handles oblivious write accesses while

handling clients’ requests as presented in Fig. 2.5 :

1. The managing enclave verifies a new Bitcoin block 1 - 3 : Once a bitcoin block

arrives to the system from the Bitcoin network, the managing enclave Em can obtain it

from the Bitcoin client. The enclave needs to verify the integrity of the new block by

computing the Merkle root and verifying the proof of work to make sure that the block

has not been tampered by the untrusted OS. For the detail of these computations, we

refer readers to [21]. Moreover, as discussed in Section 2.3.1 , to verify a newly arrived

block, the system is required to keep a separate block headers chain with integrity

check in the untrusted memory. Once Em verifies the bitcoin block, Em starts pruning

the transactions to obtain relevant information of the transactions’ inputs and outputs.

Then, Em uses OBlockMap(·, ·) to find the ORAM block identification to queue up

ORAM write requests to the writing enclave. During this process, the oblivious read

protocol performs as normal on the read-once ORAM tree.

2. The managing enclave sends write requests to the writing enclave 4 : Once

the pruning process completes, the Em starts sending write requests based on data

38

extracted from the bitcoin block to the writing enclave, Ew. On the other hand, for

each eviction request resulted from SPV client’s requests, Em starts queuing up those

eviction requests.

3. The writing enclave performs write accesses on the original ORAM tree 4 -

5 : Upon receiving writing requests from Em, the Ew performs all writing requests in

the writing queue on the original ORAM tree.

4. The writing enclave finishes all eviction requests queued up on the original

ORAM tree 6 - 7 : Once finished updating the tree, the Ew signals Em to start queuing

up clients’ requests and performs all eviction requests incurred by SPV clients’ read

requests during update interval. Finally, when it finishes, it signals the Em to update

the read-once ORAM tree and make a copy of the position map.

5. The managing enclave performs an update the read-once ORAM tree and

the original ORAM tree and enclave metadata 8 : In particular, Em discards

the current copy of the read-once ORAM tree, and makes 2 identical copies of the

most updated original ORAM tree. One is used as read-once ORAM tree, and the

other is used as original ORAM tree. Also, the new position map and new stash are

updated for the managing enclave. Once this process is finished, Em starts answering

SPV clients’ requests again.

Figure 2.5 gives us an overview of the oblivious write protocol.

2.4 Evaluation and Comparison

In this section, we describe our configuration, our experimental results, and the storage

overhead of the system based on the analysis of the UTXO set on the Bitcoin blockchain.

Moreover, we give a comparison between T 3 and the current existing SPV solution in term

of performance and communication overhead. Finally, we address the capabilities of T 3

compared to other related works.

39

Table 2.1. Performance of two different types of Path/CircuitORAM
accesses on different block size.

T 3 (PathORAM, Z = 4) T 3 (CircuitORAM, Z = 2)
N Block Size read-once Access Standard ORAM Access read-once Access Standard ORAM Access
220 6, 528 bytes (96 utxos) 16.34 ms 30.40 ms 2.13 ms 6.45 ms
221 3, 264 bytes (48 utxos) 9.24 ms 16.58 ms 1.27 ms 3.76 ms
222 2, 176 bytes (32 utxos) 7.56 ms 12.42 ms 1.05 ms 2.92 ms
223 1, 088 bytes (16 utxos) 4.12 ms 7.78 ms 0.72 ms 2.09 ms
224 544 bytes (8 utxos) 2.43 ms 5.89 ms 0.64 ms 1.70 ms

2.4.1 Configuration

Software. We implemented our system with C++ using Intel SGX SDK v2.1.3. The

implementation of the ORAM controller is built on top the Zerotrace [145] implementa-

tion. In order to handle the communication with the Bitcoin network, we have used

libjson-rpc-cpp [84] framework to build C++ wrapper functions to communicate with

the Bitcoin daemon (bitcoind [20]) from inside the enclave through JSON-RPC calls.

For extracting the UTXO database, we used the bitcoin-tool implementation proposed

in [52]. This allows us to save time during the initialization phase. Finally, we used

python-bitcoinlib [130] to compare the performance of T 3 with the current existing SPV

solution.

Database. To reduce the time of initializing both ORAM trees from the genesis block,

we used bitcoin-tool implementation proposed in [52] to extract the Bitcoin UTXO set

in February 2019. We have downloaded a snapshot of the Bitcoin blockchain including

block 0 to 551, 731, containing a total of 58, 156, 895 Unspent Transaction Outputs (UTXO).

Figure 2.6 shows the distribution of the unspent transaction outputs per address. Despite

the Bitcoin community’s suggestion [2] against the address reuse, we find that more than

7% of the addresses have more than 2 UTXOs. However, to give one the benefit of doubt,

we considered at most two UTXOs per wallet ID. This results in covering more than 92% of

all the UTXOs per wallet ID. Also, as discussed in section 2.3 , by using different mapping,

one can cover more percentage of Bitcoin addresses.

40

0 1 2 3 4 5 6 7 8 9

Number of unspent outputs per address

0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
n
ta

ge
of

ad
d

re
ss

es 85.58

6.47
2.37 1.21 0.82 0.58 0.38 0.29

≈ 8% of all addresses
have more than 2 UTXOs

Figure 2.6. Number of transactions per wallet ID. By allowing each address
can have up to 2 UTXO, T 3 can cover approximate 92% of the UTXO set.

Hardware. We evaluated the performance of T 3 on a desktop which is equipped with

Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz, 128GB RAM. Since Intel(R) Xeon(R) silver

4116 is not SGX-enabled CPU, we obtain the performance results by running our imple-

mentation in the simulation mode. However, we expect to not have much of a performance

difference when executing in the two different modes. More specifically, we have tested

the performance of T 3 using a smaller ORAM tree in the hardware mode on a commodity

desktop equipped with SGX-enabled Intel Core i7. Comparing the hardware and simulation

mode results (i.e., simulation on the Intel Core i7 CPU), we see no noticeable difference in

the running time of both read-once and standard ORAM accesses.

2.4.2 Experimental Results

We have implemented the proof of concept of T 3 using multiple threads. As reported in

[76 , 154], as long as the total amount of memory used by all threads does not exceed the

EPC limit, the performance gain should be similar to the use of different enclaves. In this

work, we implemented all functionalities in one single enclave, and we used multiple threads

to concurrently accesses the ORAM trees.

41

Table 2.2. Performance gain of multiple-thread read-once access on Path
ORAM and Circuit ORAM with N = 224 block size = 544 bytes.

Number of Threads T 3 (PathORAM) T 3 (CircuitORAM)
1 2.43 ms 0.64 ms
2 1.40 ms 0.58 ms
3 0.90 ms 0.43 ms
4 0.73 ms 0.35 ms

System parameters. We tested our system with both recursive PathORAM and

recursive CircuitORAM using different tree size N = 220, 221, 222, 223, 224. We allow each

Bitcoin address to have up to 2 unspent transaction outputs, and we use the single address

into single ORAM block mapping approach described in Section 2.3.1 to map addresses into

ORAM block. Finally, we use Lemma 2.3.1 to determine the size of each ORAM block.

Performance of read-once and standard ORAM accesses. In T 3, the reading en-

clave performs read-once accesses to handle client’s requests in an efficient manner. Table 2.1

presents an overall performance of a standard ORAM access as well as the performance of a

read-once access for both CircuitORAM and PathORAM. For this experiment, we took

the average running time of 10,000 accesses.

As shown in the results, ORAM constructions with smaller block sizes provide a better

performance in both schemes. The reason is that oblivious operations like oblivious compar-

isons and cmov-based stash scan are more efficient because of a smaller size stash. Moreover,

CircuitORAM gives a better performance compared to PathORAM, as it can operate

on a smaller block compared to PathORAM; therefore, CircuitORAM requires a smaller

stash size allowing faster oblivious executions.

Parallelization. Since there is no race condition in read-once accesses, the design of T 3

allows different threads to concurrently perform read-once accesses on the read-once ORAM

tree. Compared to other oblivious system like Bite [145], T 3 is able to handle bursty client

read requests concurrently while the eviction requests are distributed sequentially during the

block creation interval. To measure this performance gain, we used multiple threads to access

the read-once enclave and perform read-once access simultaneously on a tree of size N = 224

42

and ORAM block of size 544 bytes. Table 2.2 shows the performance of T 3 implemented

using multiple threads for both CircuitORAM and PathORAM.

Comparison to Current SPV Solutions. We give a comparison in term of perfor-

mance and communication overhead over several number of requests to the existing SPV

client’s solution and to BITE [105] Oblivious database.

1. Performance: Figure 2.7 gives us an overview of the performance of T 3 compared to

the performance of the current existing SPV with Bloom filter solution and the performance

of BITE Oblivious database. It shows the response latency from the client’s perspective. In

this comparison, a request for the SPV solution with Bloom filter solution means the time

the full node takes to scan one Bitcoin block, and a request for T 3 and BITE means the time

it takes to perform an ORAM access on the ORAM tree. For T 3, we used N = 224 and block

of size 544 bytes for both PathORAM with Z = 4 and CircuitORAM with Z = 2. For

BITE database, based on our understanding of their construction, we re-implemented BITE

using non-recursive construction of PathORAM, and we used the same ORAM block of

size 32kB which leads to the number of block is N = 217. Also, we also provide an additional

construction of BITE which is implemented using recursive PathORAM and suggested

parameters for T 3 where the tree is of size 224 and block of size 544B. Figure 2.7 gives us

the overall performance of three existing solutions.

The performance of T 3 is better than the performance of the SPV with Bloom filter solution

because T 3 does not recompute the Merkle path again for each transaction as well as does

not use Bloom filter to scan the block. Also, T 3 outperforms BITE oblivious database as the

BITE system does not consider the use of recursive ORAM construction. Another reason

is that the size of the ORAM block used in BITE is large; hence, the cost of oblivious op-

eration like cmov-based stash scan becomes more expensive. Thus, we envision and realize

an improved construction of BITE using recursive construction of PathORAM to demon-

strate the practical impact of using recursive ORAM construction on TEE with restricted

memories.

2. Communication Overhead: In term of communication between client and full node,

T 3 offers much lower communication overhead compared to the existing solution for SPV

43

0 20 40 60 80 100 120 140 160

Number of requests

100

101

102

103

104

R
u

n
n

in
g

T
im

e
(m

s)
in

lo
g

sc
al

e

T 3 (Recursive PathORAM), Z = 4, N = 224

T 3 (Recursive CircuitORAM), Z = 2, N = 224

BITE (Path ORAM), Z = 4, N = 217

Improved BITE (Recursive PathORAM), Z = 4, N = 224

SPV with Bloom Filter FPR = 1%

SPV with Bloom Filter FPR = 5%

Figure 2.7. Performance of T 3 using Path/Cicruit ORAM with block of
size 544B, the current SPV with Bloom filter, Original BITE oblivious database
block of size 32kB, and improved BITE with block of size 544B. For the SPV
client with Bloom filter, we used the false positive rate of 1% and 5%.

clients. T 3 does not need to provide the SPV clients with the Merkle proofs to its relevant

transactions because all those proofs are validated by the Intel SGX before being added the

ORAM tree. Also, due to the false positive rate used in the Bloom filter, the traditional

full node will send additional irrelevant information to the SPV client. Figure 2.8 shows

an overview of the communication cost of T 3 compared to the current solution. To give an

estimation of the communication cost of the current SPV solution, we assumed that each

request requires a separate Merkle proof. Moreover, we set the size of the transaction data is

approximately fpr · BlockSize bytes where the fpr is the false positive rate and the BlockSize

is the size of the Bitcoin block. To obtain estimation, we used block 551, 731 that has the

block size of 1, 149 KB and contains 3, 017 transactions. In practice, we would expect the

Bitcoin blocks to have different sizes which results the communication cost to be different

across blocks. Therefore, the results in Fig. 2.8 is only a pessimistic estimation on the

communication overhead using the current SPV solution. We omit the comparison to the

44

0 10 20 30 40 50 60 70 80

Number of requests

0

2000

4000

6000

8000

C
om

m
u

n
ic

at
io

n
C

os
t

(K
B

)

T 3

SPV with Bloom Filter FPR = 1%

SPV with Bloom Filter FPR = 5%

Figure 2.8. Communication cost of T 3 and the current SPV solution. Since
both systems return the information of unspent outputs to the client, the
communication overhead of BITE will be equal to the communication overhead
of T 3.

communication overhead of BITE because both T 3 and BITE return a fixed amount a data

to the SPV clients.

Storage Overhead. As noted in the previous section, using ORAM incurs a con-

stant size blow up of the storage of the UTXOs (e.g., ≈ 4× for CircuitORAM, 6-8× for

PathORAM). In particular, for PathORAM with Z = 4, the storage cost of ORAM trees

is about ≈ 51GB, and for CircuitORAM with Z = 2, the storage cost of two ORAM

tree is around ≈ 26GB. For integrity protection, T 3 only requires the full node to store the

Bitcoin header chain with integrity check which is approximately 44MB in the untrusted

region.

2.4.3 Comparison with Other Oblivious Systems

We compare T 3 with Bite [105] Oblivious Database that also uses ORAM and TEE to

provide a generic PIR system for Bitcoin client, ConcurORAM [38] that provides concur-

rency access to ORAM clients, Obliviate [3] that prevents leakage from file system accesses,

and ZeroTrace that proposes an efficient generic oblivious memory access primitives. Sec-

tion 2.4.3 compares those systems based on the capabilities of supporting concurrency access,

enabling recursive construction, and preventing side-channel leakage.

45

Table 2.3. Comparison between T 3 and other oblivious systems.
Capabilities

System Concurrency Recursive Construction Side-channel Protection
ConcurORAM [38] 3 7 -

a

Obliviate [3] 7 7 3

Zerotrace [145] 7 3 3

Bite Oblivious Database [105] 7 7 3

T 3 (This work) 3 3 3

a
 ↑ ConcurORAM does not aim to provide side-channel protection for TEE. Hence, we omit this comparison.

For generic trusted hardware-based systems like Bite oblivious database and Oblivi-

ate, while providing protection against side-channel leakage, those systems do not consider

the use of recursive ORAM construction to reduce the EPC memory usage. Hence, the

performance of those systems will degrade once the database becomes too large. Other

works that harnesses the use of recursive ORAM construction are Zerotrace; however,

concurrency is not supported in the current version of Zerotrace. ConcurORAM is a

recent ORAM construction that offers concurrency accesses from the clients; however, due

to more optimized eviction strategy and complex synchronization schedule, the recursive

construction of ConcurORAM introduces implementation challenges.

2.5 System Analysis

2.5.1 Security Claims

In order to prove the security properties of T 3’s design, we put forth six claims, each of

which represents the security of a major component of T 3 in term of privacy goal.

Claim 2.5.1. The managing enclave does not leak user-related information to an attacker

The managing enclave is responsible for three tasks — (a) converting wallet IDs to

UTXOs, (b) creating and managing threads which will perform read operations on the read-

once ORAM tree, and (c) handle the updates to be performed on the original ORAM tree.

Firstly, the conversion of wallet IDs to their respective UTXOs is private since the channel

between clients and the managing enclave is secured by the shared key during the remote

46

attestation process. When receiving addresses from a client, the managing enclave uses

blockmapping function to map each address to a fixed number of ORAM blocks. This does

not reveal information about the number of outputs belonging to an address. Secondly,

each read thread performs the same operations irrespective of the wallet ID provided to it,

i.e., each thread simply retrieves an ORAM block using ORAM accesses implemented with

cmov-based oblivious executions. Lastly, the only thing revealed by the update process of

T 3 is the number of blocks updated into the Write Tree. However, this is public information

and T 3 does not try to hide it. Each update is performed using an ORAM access which

ensures that the attacker is unaware of the final position of each block.

Claim 2.5.2. The optimized read operations on read-once ORAM tree do not leak informa-

tion.

As explained in section 2.3 , the read-once ORAM tree is accessed using an optimized read

operation which chooses not to shuffle and write-back the retrieved path to the read-once

ORAM tree. However, as suggested by the Bitcoin protocol and the analysis of the UTXO

set shown in Section 2.4.1 , most of the addresses are generated once only to receive new

output from the sender. Thus, the read operations are secure as each path corresponding

to a UTXO should only be accessed once during a read interval and will be shuffled before

the next interval. On the other hand, the leakage happens only when the client queries the

same address again; however, the client does not need to request again as there are no new

transactions for the next block creation interval.

Claim 2.5.3. The write operations performed on the original ORAM tree do not leak infor-

mation.

There are two specific operations performed on the original ORAM tree— (a) the UTXOs

are updated based on the updated bitcoin block, and (b) the previously accessed ORAM

blocks are shuffled. However, all of these updating accesses are standard ORAM operations

implemented in a side-channel-resistant manners as previously done by [145 , 3]. Therefore,

all write operations reveal no information about a user’s UTXO.

Claim 2.5.4. The data fetched from the untrusted world to the TEE is correct.

47

There are two major sources of data transferred from the untrusted to the trusted world

— (a) the updated block fetched from the Bitcoin daemon after a fixed interval and (b) the

ORAM tree blocks which are fetched from the untrusted world into the TEE. As mentioned,

the enclave obtains Bitcoin blocks from outside the enclave. However, T 3 verifies the integrity

of the Bitcoin block based on the proof of work and the header chain, and since the cost of

producing a valid block is expensive, we argue that T 3 should be able to obtain valid block

from the Bitcoin network. Also, T 3 maintains a Merkle Hash Tree (MHT) of the ORAM

trees and therefore prevents malicious tampering by verifying all encrypted data fetched

from the untrusted memory using the MHT.

Claim 2.5.5. The multiple threads involved do not create synchronization issues.

It is worth-noting that multiple threads are only involved while accessing the Read Tree

of T 3. Thanks to the optimized read operation, T 3 does not run into synchronization bugs

since there is no memory region that could be simultaneously written to by more than one

thread. Each thread shares the position map but only reads from the position map. Each

thread contains its own stash memory which is written to separately by each thread.

Claim 2.5.6. The memory interactions within the enclave are side-channel-resistant.

The design of T 3 incorporates different defenses against the side-channel threats [161 ,

 94 , 95] plaguing Intel SGX. In particular, we used ORAM operations to hide all data access

patterns on the untrusted memory region, and we incorporated similar oblivious operation

techniques introduced in [133 , 3 , 145] to prevent operations inside the enclave from leak-

ing sensitive information. Finally, the implementation of T 3 is also secure against branch-

prediction attacks since each individual operation (e.g., accessing Read Tree, updating Write

Tree etc.) takes the same sequence of branches and therefore reveals no information to the

attacker, from the accessed branches.

2.5.2 Other Goals Achieved by T 3

In this subsection, in addition to the Privacy goal describe in Section 2.5.1 , we explain

how T 3 achieves the other goals mentioned in Section 2.1.2 .

48

Validity. Under the assumption that the adversary does not have enough computational

power to form a new Bitcoin block, the system will only obtain valid transaction by verifying

the Merkle root and the proof of work of the Bitcoin block.

Completeness. By offering different ways of mapping between Bitcoin addresses and

ORAM block id, we can offer services to 92− 96% of all clients with some trade-off between

storage overhead and performance.

Efficiency. Our contribution to efficiency is threefold. First, our system can handle

bursty requests from client concurrently because of the two-tree design. Second, we minimize

the downtime of the system by having the writing enclave performed updates on one tree

and reading enclave handled clients’ requests on the other tree. The full node’s downtime

now depends on the number of requests that the system receives when the writing enclave

performs ORAM updates on the original ORAM tree. Finally, by enforcing clients to provide

the proof of ownership of the address, we prevent other clients from querying addresses that

do not belong to them; hence, we reduce the number of redundant requests from the clients.

2.5.3 Other attacks and Countermeasures

Denial of Service Attacks from Malicious Clients. While the design of T 3 is

practical, a malicious client can still incur a large processing time on the full node by creating

lots of addresses and sending large number of requests for those requests. One way to mitigate

such attack is to apply fees on users of the service. Another approach to mitigate denial

of service attack is to use a cuckoo filter [61] to load and delete unspent addresses from

the UTXO set upon update. Upon receiving requests from client, the managing enclave can

verify if the address matches the filter as well as the proof of ownership of that address before

performing ORAM accesses.

Spectre and Related Attacks [99 , 89]. T 3 can employ any TEE which is vulnerable to

digital side-channels (i.e., access pattern-inference attacks such as page table, cache, branch

prediction, etc.) but is secure against micro-architectural defects (i.e., reading memory

contents directly from the TEE). Speculative execution attacks, which fall into the micro-

architectural defects category, is a concern; however, Intel has recently released hardware

49

patches to address those. Therefore, T 3 can be effectively used alongside patched processors

to provide SPV client protections against digital side-channel attacks.

2.6 Concluding Remarks

In this chapter, we developed a system design that supports an efficient oblivious search

on unspent transaction outputs for Bitcoin SPV clients while securely maintains the state

of the Bitcoin UTXO set via an oblivious update protocol. Our design leverages the TEE

capabilities of Intel SGX to provide strong privacy and security guarantees to Bitcoin SPV

client even with the presence of a potentially malicious full node. Moreover, by putting

reasonable assumptions on the accessing frequency of the SPV clients, we present different

optimizations in standard tree-based ORAM construction that offers both privacy and effi-

ciency to the clients. We showed that the prototype of the system is much more efficient than

the use of standard ORAM and TEE construction as it is. Also, our implementation shows

one order of magnitude performance gain when combining recursive ORAM construction the

current existing construction to stress the importance of using recursive ORAM construction

in TEE with restricted memory.

Finally, while the applicability of T 3 in cryptocurrencies beyond Bitcoin is apparent,

we believe our work will motivate further research on oblivious memory with the restricted

access patterns and other complex blockchains (i.e., Ethereum) that maintain much bigger

state than the UTXO state.

50

3. AUTONOMOUS ADD-ON PRIVACY COIN MIXER, AMR

More than a decade after the emergence of permissionless blockchains, such as Bitcoin, re-

lated work has thoroughly shown that the blockchain’s pseudonymity is not offering its clients

strong anonymity. Several works have therefore attempted to deanonymize clients, cluster

addresses [6 , 68], and build privacy solutions to protect the clients’ privacy [114 , 144 , 5 , 140 ,

 139 , 78]. Those existing privacy solutions can be categorized into two classes: (i) a funda-

mental blockchain redesign to natively offer better privacy to clients, and (ii) add-on privacy

solutions that aim to offer privacy for clients of existing, non-privacy-preserving blockchains.

However, the former class of solutions often requires existing clients of different blockchain

to download and store additional states of private-by-design blockchains. This additional

storage can be costly for existing resource-constrained clients of non-private blockchains if

they want to be a part of both blockchains. On the other hand, a complete switch to private

blockchain will prevent constrained clients from accessing decentralized financial applications

enabled by smart-contract enabled blockchains.

Thus, this work focuses on add-on privacy solutions that mix cryptocurrency coins within

an anonymity set. This solution directly allows existing clients of non-private blockchains to

obtain privacy without the need of switching or storing additional blockchain state. However,

one known problem of such mixers is that their provided privacy depends on the anonymity

set size, i.e., on the protocol’s number of active clients. Also, in those systems, to gain a

certain degree of privacy, users often need to keep their digital assets locked in the system for

a certain period before withdrawing. This locking period prevents users from performing any

financial activities on those assets, i.e., there is an opportunity loss of investing the assets

for a financial return.

Hence, this work’s particular focus is to find new ways to incentivize existing clients of

non-private to participate and keep their funds in the mixer. First, like to popular “DeFi

farming” protocols [42], our system, called AMR, chooses to reward mixer participants by

granting governance tokens when a client deposits coins for at least time t within the mixer.

Naturally, the reward payout must remain privacy-preserving, i.e., a reward payment must

be unlinkable to a deposit from the same client of the mixer. Clients can utilize the collected

51

tokens to govern AMR in a decentralized manner, without the need for an external server or

centralized entity. Secondly, by leveraging existing popular lending platforms [1 , 41 , 162],

AMR can allow clients to earn interest on their deposited funds. This approach makes AMR

the first mixer design that generates financial interest on participants’ funds. We hope that

such a mixer attracts clients that are privacy-sensitive and interested in a token reward to

maximize the anonymity set and client diversity within AMR.

We formalize the zk-SNARK-based AMR system, and implement the mixer in 1, 013 lines

of Solidity code. A deposit costs 1.2m gas (31.95 USD), while a withdrawal costs 0.3m gas

(9.12 USD), receiving a reward costs to 1.5m gas (41.07 USD)

1

2
 . These numbers support

a real-world deployment, that could support over 66, 000 deposits per day given Ethereum’s

transaction throughput (assuming no withdrawals). The resulting anonymity set sizes, which

can easily exceed 1, 000 while operating at constant system costs, offer stronger privacy than,

e.g., the ring signature-based privacy solution [108], whose costs scale linearly with the size

of the anonymity set and are hence practically capped at anonymity set sizes of 24 (8m gas

for withdrawing).

Our contributions can be summarized as follows.

• We formalize and present a practical zk-SNARK based mixer AMR, which breaks the

linkability between deposited and withdrawn coins of a client on a smart contract en-

abled blockchain, and we provide a formal security and privacy analysis of the proposed

system.

• To decentralize AMR’s governance and incentivise clients to join the system, we invent

a privacy-preserving reward scheme for its clients. We believe that in practice, an

incentive scheme would attract more and a wider variety of clients to such privacy

solution, and hence contribute to a better anonymity for all involved clients.

• We leverage popular existing lending platforms [1 , 41] to propose the first autonomous

decentralized on-chain mixer that allows users to earn interest on their deposited fund.

This approach further incentivises users to keep their funds in the system.
1

 ↑ Estimated using Ethererum price of $380.4 in 08/25/2020 14:39 UTC.
2

 ↑ Using the gas price of 70 Gwei. 1 GWei is 1× 10−9 Ether.

52

• We implement AMR and show that the system can be deployed and operated efficiently

on a permissionless blockchain. A deposit into the system costs 1.2m (31.95 USD), a

withdrawal costs 0.3m gas (9.12 USD) and collecting a reward costs 1.5m gas (41.07

USD) in transaction fees on the current Ethereum network. The anonymity set size of

AMR could grow to up to 2d

3
 , while operating at constant system costs once deployed

(we applied a Merkle depth tree of d = 30 within this evaluation). Generating client-

side zkSnark proofs costs 3.607 seconds respectively on commodity hardware.

3.1 Preliminaries

In this section, we define several building blocks for AMR.

3.1.1 Background on Smart Contract Blockchains and Lending Platforms

Ethereum Blockchain. The Ethereum blockchain acts as a distributed virtual machine

that supports quasi-Turing-complete programs. The capability of executing highly expressive

languages in those blockchains enables developers to create smart contract. The blockchain

also keeps track of the state of every account [160], namely externally-owned accounts (EoA)

controlled by a private key, and contract account own by contract’s code. Transactions from

EoA determine the state transitions of the virtual machine. Transactions are either used to

transfer Ether or to trigger the execution of smart contract code. The costs of executing

functions are expressed in terms of gas unit. In Ethereum, the transaction’s sender is the

party that pays for the cost of executing all contract operations triggered by that transaction.

For a more thorough background on blockchains, we refer the interested reader to [27 , 9].

Lending Platforms on Ethereum Blockchain. Smart-contract-enabled blockchains

like Ethereum give rise to many other decentralized financial (Defi) applications. Defi ap-

plications allow parties to participate in the financial market without relying on any trusted

third party while retaining full custody of their funds. Defi applications appear in differ-

ent forms, such as decentralized exchanges, lending platforms, or derivatives. At the time
3

 ↑ d is the depth of the Merkle tree

53

of writing, the Defi space accumulates over 10bn dollars of digital assets, and hundreds of

millions of dollars of assets are traded daily in those Defi platforms.

For this work, we focus on existing lending protocols [1 , 41]. At its core, lending protocols

let borrowers acquire digital assets with a specified interest rate by placing upfront collaterals

into the system. Later, to retrieve the collaterals, borrowers need to pay back the borrowed

funds along with an additional interest amount. Similarly, users also act as lenders by

depositing digital assets into the protocol, and the deposited amount will generate interest

until users redeem those assets. Finally, the interest rates for borrowing and lending are

determined by the state of the lending platforms. In this work, we are only interested in the

depositing and redeeming functionalities of lending platforms.

Definition 3.1.1. A lending protocol, Σ, reserves the following actions:

• amtΣ ← Deposit(amt) takes as input of amt of coins, and outputs a corresponding

amount of amtΣ tokens. amtΣ tokens are minted upon deposits and sent to the depositor,

and the value of amtΣ increases over time.

• amt + R ← Redeem(amtΣ) takes as input amtΣ tokens, and deposits amt + R to the

function invoker. The interest amount R is determined by protocol Σ.

This definition aims to capture a high-level overview of how the depositing and redeeming

functionalities work in a lending platform. For a detailed constructions of each actions in

these lending protocols, we refer interested readers to [1 , 41 , 162].

Governance Token and Yield Farming in Decentralized Finance (DeFi). Users

of DeFi platforms are often awarded governance tokens for interacting or providing liquidity

to DeFi platforms. These tokens can for instance be used for governance and value ac-

crual/yield farming. Governance means that users can use their tokens to vote for changes

in the contract during its lifetime. In term of value accrual, platforms [47 , 41] allow users to

lock their governance tokens in a pool to be eligible to obtain trading fees collected by the

DeFi platform. This approach allows a fair distribution of protocol fees to users who take

on the opportunity cost of holding the governance tokens. In this work, we adapt a similar

technique of having a distribution pool to fairly distribute total accrued interest collected

by the mixer to users.

54

3.1.2 Cryptographic Primitives

Notation. We denote by 1λ the security parameter, by negl(λ) a negligible function in λ,

and by poly(λ) a polynomial function in λ. We express by (pk, sk) a pair of public and secret

keys. Moreover, we require that pk can always be efficiently derived from sk, and we denote

extractPK(sk) = pk to be the deterministic function to derive pk from sk. k||r denotes

concatenation of two binary string k and r. We denote Z≥a to denote the set of integers that

are greater or equal a, {a, a + 1, . . . }. We let PPT denote probabilistic polynomial time.

We use st[a, b, c . . .] to denote an instance of the statement where a, b, c . . . have fixed and

public values. We use a shaded area i, j, k to denote the private inputs in the statement

st[a, b, c; i, j, k].

Collision Resistant Hash Function. a familyH of hash functions is collision resistant,

iff for all PPT A given h $←− H, the probability that A finds x, x′, such that h(x) = h(x′) is

negligible. we refer to the cryptographic hash function h as a fixed function h : {0, 1}∗ →

{0, 1}λ. For the formal definitions of cryptographic hash function family, we refer reader

to [137].

zk-SNARK. A zero-knowledge Succinct Non-interactive ARgument of Knowledge (zk-

SNARK) can be considered as “succinct” NIZK for arithmetic circuit satisfiability. For a

field F, an arithmetic circuit C takes as inputs elements in F and outputs elements in F.

We use the similar definition from Sasson et al.’s Zerocash paper [144] to define arithmetic

circuit satisfiability problem. An arithmetic circuit satisfiability problem of a circuit C :

Fn × Fh → Fl is captured by relation RC = {(st,wit) ∈ Fn × Fh : C(st,wit) = 0l}; the

language is LC = {st ∈ Fn | ∃ wit ∈ Fl s.t C(st,wit) = 0l}.

Definition 3.1.2. zk-SNARK for arithmetic circuit satisfiability is triple of efficient algo-

rithms (Setup,ZKProve,ZKVerify):

• (ek, vk) ← Setup(1λ, C) takes as input the security parameter and the arithmetic

circuit C, outputs a common reference string that contains the evaluation key ek later

used by prover to generate proof, and the verification key vk later used by the verifier

55

to verify the proof. The public parameters, pp, is given implicitly to both proving and

verifying algorithms.

• π ← Prove(ek, st,wit) takes as input the evaluation key ek and (st,wit) ∈ RC, outputs

a proof π that (st,wit) ∈ RC

• 0/1← Verify(vk, π, st) takes as input the verification key, the proof π, the statement

st, outputs 1 if π is valid proof for st ∈ LC.

In additional to Correctness, Soundness, and Zero-knowledge properties, a zk-SNARK

requires two additional properties Succinctness and Simulation Extractability. We defer the

definitions of these properties to [75].

Commitment Scheme. A commitment scheme allows a client to commit to chosen

values while keeping those values hidden from others during the committing round, and

later during the revealing round, client can decide to reveal the committed value.

Definition 3.1.3. A commitment scheme Com = (PCom,VCom) consists of: A committing

algorithm PCom(m, r) takes as input a message m and randomness r, and outputs the com-

mitment value c. A Reveal algorithm, VCom(c,m, r) takes as input a message m, and the

decommitment value r and a commitment c, and returns 1 iff c = PCom(m, r). Otherwise,

returns 0.

We use commitment schemes that achieve two properties: binding means that given

commitment c, it is difficult to find a different pair of message and randomness whose com-

mitment is c, and hiding means that given commitment c, it is hard to learn anything about

the committed message m from c.

Authenticated Data Structure (ADS). An authenticated data structure can be used

to compute a short digest of a set X = {x1, . . . , xn}, so that later one can prove certain

properties of X with respect to the digest. In this work, we are only interested in a data

structure for set membership:

Definition 3.1.4. An authenticated data structure for set membership Π = (Init, Prove,

Verify, Update) is a tuple of four efficient algorithms:

56

• y ← Init(1λ, X) the initialization algorithm takes as input the security parameter and

the set X = {x1, . . . , xn} where xi ∈ {0, 1}∗, output y ∈ {0, 1}λ.

• π ← Prove(i, x,X) takes as input an element x ∈ {0, 1}∗, 1 ≤ i ≤ n, and set X,

outputs a proof that x = xi ∈ X.

• 0/1 ← Verify(i, x, y, π) takes as input 1 ≤ i ≤ n, x ∈ {0, 1}∗, y ∈ {0, 1}λ, and proof

π, output 1 iff x = xi ∈ X and y = Init(1λ, X). Otherwise, return 0.

• y′ ← Update(i, x,X) takes as input 1 ≤ i ≤ n, x ∈ {0, 1}∗ and set X, output y′ =

Init(1λ, X ′) where X ′ is obtained by replace xi ∈ X with x.

We require the ADS to be correct and secure. We defer the formal definitions of these

properties to Boneh and Shoup’s book [25]. Typical examples of authenticated data struc-

tures are Merkle tree [112] or RSA Accumulators [96 , 17].

3.2 System Overview

We proceed to define the system components, overview, goals and the threat model.

3.2.1 System Components

There are three components of this system: the client, the AMR smart contract, and

onchain lending platforms. A Client interacts with the AMR smart contract through exter-

nally owned accounts. A client can either deposit coins, withdraw coins, or redeem a reward.

The AMR Contract is the blockchain smart contract that holds deposits and handles with-

drawals and reward redemptions. The contract keeps track of different data structures and

parameters to verify the correctness and the integrity of transactions sent to the contract.

The AMR Pool is a smart contract that takes the accrued interest from a lending platform

and proportionally distributes the reward among clients who lock their governance tokens to

the pool. The Lending Platforms (cf. Section 3.1.1) are smart contracts that allow users

to deposit digital assets and earn interest based on those assets.

57

Alice ()

Alice ()

Alice ()

AMR Contract

 blocks elapsed

1

3

Lending Contracts

2

4

5

AMR Pool

Alice ()

6

Reward/Governance Tokens

Deposit Tokens

Lending Platform Tokens

Figure 3.1. AMR System Overview.

3.2.2 Overview of AMR

Figure 3.1 outlines the overview of interactions in AMR.

Deposits. In AMR, clients deposit a fixed amount of coins into the system. The client

forms a depositing transaction to deposit coins, then sends this transaction through the

P2P Network 1 . Once the transaction is validated, miners record the transaction in a

blockchain block. Each deposit transaction decreases the balance of the clients’ address by

a fixed amount of coins. In step 2 , upon receiving a valid deposit from the user, AMR

deposits users fund into lending platforms to obtain an equivalent amount of tokens for

future withdrawals.

Reward Redemptions. AMR allows clients to earn governance tokens as rewards based

on certain conditions. In Figure 3.1 , the requirement for a client to redeem a reward is to

58

keep the deposit inside the contract pool for t blocks. To obtain a reward, a client forms a

redeeming transaction and forwards the transaction to the P2P Network 3 . The redeeming

transaction includes a cryptographic proof certifying that the client has deposited coins at

least t blocks in the past and that the coins remain in the AMR contract. Finally, miners

validate the redeeming transaction using the current state of the AMR contract. Once the

redeeming transaction gets validated, the transaction gets recorded to a blockchain block,

and the network updates the state of the AMR contract.

Withdrawals. The client forms a withdrawing transaction to withdraw coins, then

sends this transaction through the P2P Network 4 . The withdrawing transaction includes

cryptographic proof certifying that the client has issued a depositing transaction in the

past without revealing precisely which one the depositing transaction is. In step 5 , upon

receiving valid withdrawing transactions from the client, the contract autonomously redeems

the original deposit from lending platforms and the accrued interest. Finally, the contract

deposits the redeemed amount into user’s address and the accrued interest into a separate

AMR pool.

Fair Interest Allocation. At any given time, clients can lock their governance tokens

to the AMR pool 6 . AMR distributes the total accrued interest to addresses that lock their

AMR governance tokens in AMR pool. This step is straightforward but offers a fair allocation

of interest to users who contribute more to AMR’s privacy set.

3.3 AMR System

In the following, we discuss various components of the AMR system and provide more

details of how AMR operates. In the following algorithm descriptions, we use tx.sender to

denote the address of the sender from which tx was sent.

Condition for Reward in AMR. The longer time the clients wait before withdraw-

ing/redeeming, the more deposit transactions are issued to the AMR contract. Thus, as

the number of deposit transaction (i.e., the anonymity set) increases, the harder it is to

link a withdrawing/redeeming transaction with the original deposit transaction. In AMR,

we incentivise clients by providing rewards to clients who can prove that the deposit funds

59

are not withdrawn before a certain time, measured in several blocks. The provided reward

can for instance represent a governance token for a client to participate in the decentralized

governance of AMR parameters.

3.3.1 AMR Contract Setup

The setup phase generates public parameters and data structures for the AMR contract

and clients. All cryptographic parameters are generated for the contract. The contract is

also initialized with different data structures to prevent clients from double-withdrawal and

double-redemption. The deposit and reward amounts, amt and amtrwd, are specified as a

fixed deposit number of coins and a fixed reward amount of governance tokens. The condition

for redeeming rewards, tcon, is also declared. A lending platform, Σ, (cf. Section 3.1.1) is

determined during this setup phase. A pool, ΓAMR, is deployed, and this pool periodically

distributes the accrued interest to addresses that lock governance tokens.

We denote pph to be the state of the contract at block h. The state contains all data

structures initialized during the setup phase. Moreover, this state is given implicitly to all

clients’ and contract’s algorithms. Finally, the AMR contract is deployed during this phase.

3.3.2 AMR Client Algorithms

In our system, clients have access to the following algorithms to interact with the AMR

smart contract. Also, all transactions are implicitly signed by the client using the private

key of the Ethereum account that creates the transaction.

• (wit, txdep) ← CreateDepositTx(sk, amt) takes as input the private key sk and the

amount, amt, coins specified in the setup phase, outputs a deposit transaction txdep and

the secret note wit which is used as witness for creating future withdraw and reward

transactions.

• (wit′, txrwd) ← CreateRedeemTx(sk′,wit) takes as input a private key sk′ and the

secret note wit, outputs a reward-redeeming transaction txrwd along with a new secret

note, wit′.

60

• txwdr ← CreateWithdrawTx(sk′′,wit) takes as input a private key sk′′ and the

secret note wit, outputs a withdrawing transaction txwdr.

• txlock ← CreateLockTransaction(sk′, γrwd, tlock) takes as input an amount, γrwd,

of governance tokens and an unlock value, tlock, specifying how long, γrwd, will remain

locked in the system, outputs a locking transaction, txlock.

3.3.3 AMR Contract Algorithms

The AMR contract should accept the deposit of funds, handle withdrawals, and reward

redemptions. Summarizing, the AMR contract should provide the following functionalities.

• 0/1← AcceptDeposit(txdep) takes as input the deposit transaction txdep. The AMR

contract deposits amt into the lending platform Σ to obtain amtΣ. Finally, the algo-

rithm outputs 1 to denote a successful deposit, otherwise 0.

• 0/1 ← IssueWithdraw(txwdr) takes as input the withdraw transaction txwdr. The

AMR contract uses amtΣ to redeem amt+R from Σ. The algorithm outputs 1 to denote

a successful withdraw and deposits amt +R into txwdr.sender. Otherwise, outputs 0.

• 0/1← IssueReward(txrwd) takes as input the reward transaction txrwd and the con-

dition tcon specified during the setup algorithm, outputs 1 if txrwd satisfies the tcon for

reward and deposit amtrwd governance tokens as reward to txrwd.sender. Otherwise,

output 0.

3.3.4 System Goals

In the following, we outline our system goals.

Correctness. Generally, AMR needs to ensure that clients should not be able to steal

coins from the AMR contract or from other clients. Moreover, we design AMR such that

clients can redeem a reward after they have deposited their coins into the AMR contract for

certain period of time, as a reward system will incentivise clients to deposit more into the

system while contributing to the size of the anonymity set.

61

AMR needs to provide the following guarantees: (i) It is infeasible for clients to issue n

withdrawal transactions without issuing at least n deposit transactions into the AMR contract

beforehand. (ii) It is infeasible for a client to issue a redeeming transaction without having

any coins locked in the AMR contract. (iii) A valid redeeming transaction indicates that a

client always has at least one deposit locked in the AMR contract for a specified duration.

Privacy. In addition to correctness, AMR needs to ensure the privacy to clients of the

system. Considering an adversary that has access to the history of all depositing, with-

drawing, and redeeming transactions sent to AMR contract, the system needs to ensure (i)

the unlinkability between deposit and withdrawing transactions (ii) the unlinkability be-

tween deposit and redeeming transactions (iii) the unlinkability between withdrawing and

redeeming transactions.

Availability. Like to the availability definition proposed by Meiklejohn and Mercer’s

Möbius system [108], AMR should ensure that (i) no one can prevent clients from using the

mixer, and (ii) once the coins are deposited to the contract, no one can prevent clients from

withdrawing their coins.

Frontrunning Resilience. Some transactions (i.e., deposit transactions) in AMR alter

the state of the AMR contract, while other transactions (i.e. withdrawing/redeeming trans-

actions) have to rely on the state of the contract to form the cryptographic proofs. Thus, if

there are multiple concurrent deposit transactions issuing to the contract, some transactions

will get invalidated by those transactions that modify the state of the contract. For example,

in AMR, to withdraw or redeem a reward, a client Alice has to issue a withdrawal and a

redemption transactions containing cryptographic proofs proving that Alice deposited a coin

in the past. Alice generates those cryptographic proofs w.r.t all current deposit transactions

issued to the AMR contract. However, if another client Bob tries to deposit coins into the

AMR contract, and Bob’s transaction gets mined before Alice withdrawing/redeeming trans-

actions, the proofs included in Alice transactions are no longer valid (because the state used

for her proofs is outdated). This is a front-running problem [35 , 59].

Therefore, to ensure the usability of the system, the AMR contract should be resilient

against front-running by both clients and miners.

62

3.3.5 Threat Models

We assume that the cryptographic primitives (cf. Section 3.1) are secure. We further

assume that adversaries are computationally bounded and can only corrupt at most 1/3 of

the consensus participants of the blockchain. Thus, we assume that an adversary cannot

tamper with the execution of the AMR smart contract. We assume that clients can always

read the blockchain state and write to the blockchain. Note that blockchain congestion might

temporarily affect the availability property of AMR but does not impact the correctness and

privacy properties. We assume that the adversary has the capabilities of a miner, i.e. can

reorder transactions within a blockchain block, inject its own transactions before and after

certain transactions. Also, we assume that the adversary can always read all transactions

issued to the AMR contract, while the transactions are propagating on the P2P network,

and afterwards when they are written to the blockchain. For a withdrawal and a redeem

transaction, we assume that the client pays transaction fees either through a non-adversarial

relayer (cf. Section 3.7), or the client possesses a blockchain address with funds that are not

linkable to his deposit transaction. Finally, we assume that the underlying lending platforms

used by AMR are secure.

3.4 Detailed zkSNARK-based System Construction

We now present a zk-SNARK-based construction of AMR.

3.4.1 Building Blocks

Hash Functions. Hp : {0, 1}∗ → F is a preimage-resistant and collision-resistant hash

function that maps binary string to an element in F, H2p : F×F→ F be a collision-resistant

hash function that maps two elements in F into an element in F.

Deposit Commitments. A secure commitment scheme (PCom, VCom) can be con-

structed using a secure hash function, Hp : {0, 1}∗ → F, as follows: (1) PCom(m, r) returns

c = Hp(m||r), (2) VCom(c,m, r) verifies if c ?= Hp(m||r).

63

In AMR, before depositing into the contract, a client samples randomnesses, kdep, r and

computes the deposit commitment: cm = Hp(kdep||r) as a part of a deposit transaction.

Merkle Tree over Deposit Commitments, Tdep. The AMR contract maintains a

Merkle tree, Tdep, over all commitments. a Merkle tree is an instance of an authenticated

data structures for testing set membership [25] (cf. Section 5.1). The Merkle tree in the AMR

contract is a complete binary tree and initialized with zero values at its leaves. As deposit

transactions arrive, the AMR contract keeps track of the number of deposit transactions and

updates the trees through the AcceptDeposit algorithm. A Merkle tree can be constructed

using a collision-resistant hash function, H2p.

We denote pathi the Merkle proof of cmi. We denote the Merkle tree root at block h to

be roothdep. We let rootdep.blockheight to be the height of the blockchain block when rootdep
gets updated. Figure 3.2 gives an illustrative example of the Merkle tree maintained by the

AMR contract.

Withdrawal Proof. To withdraw coins from AMR, a client needs to prove three con-

ditions: (i) the client knows the committed values of some existing commitments used to

compute the tree root via zkSnark proof, (ii) the client did not withdraw in the past by pass-

ing a fresh nullifier value, (iii) the client knows the secret key used to issue the withdrawing

transaction.

rootdep

. . .

H2p(·, ·)

cmdep,1

Hp(·)

k1||r1

cmdep,2

Hp(·)

k2||r2

. . .

. . .

. . . H2p(·, ·)

. . . 0n

Figure 3.2. Illustrative example of the Merkle tree, Tdep. The tree keeps track
of commitments from by clients’ deposit transactions. The root of the tree,
rootdep is used to verify the NIZK proofs from withdrawing and redeeming-
reward transactions.

64

The last condition prevents network adversaries from stealing a valid proof by binding

the public/private key to the zksnark proof. For a Merkle tree T with a root, rootdep, a client

needs issue a proof proving the following relation:

Rwdr : {pk, sn, rootdep; sk, kdep, r, pathi :

pk = extractPK(sk) ∧ sn = Hp(kdep) ∧

cm = Hp(kdep||r) ∧ T.Verify(i, cm, rootdep, pathi))}

Where pk, sn, rootdep are public values and

sk, kdep, r, pathi are private values.

(3.1)

The nullifier value is used to ensure correctness by preventing clients from double-withdrawal.

Reward Proof. Intuitively, to prove that funds remained in the system for a certain

time period, users can simply prove to the contract that they know some commitment their,

cm, that is a member of an older Merkle root. To achieve such condition, the AMR contract

always maintains an tcon-blocks-old Merkle root that serves as an anchor for clients to issue

the reward proof. Like withdrawing, to redeem, clients need to nullify the old commitment,

cm, by issuing a nullifier value, sn, and submit a new commitment, cm′ to be eligible for future

redeems and withdrawals. This requirement allows AMR to maintain system correctness and

hide the link between reward-redeeming and withdrawing transactions.

In summary, to redeem coins from AMR, a client needs to prove that: (i) the client

knows the committed value of some existing commitments used to compute the current

reward Merkle tree root via a zkSnark proof, (ii) the client did not withdraw in the past

by passing a fresh nullifier value sn, and (iii) Finally, the client needs to refresh its original

deposit by submitting a new commitment to be eligible for future reward redemptions and

withdrawals.

3.4.2 Contract Setup

Let F be the finite field used in AMR, during the AMR contract setup phase, the setup

algorithm samples secure hash functions Hp : {0, 1}∗ → F, H2p : F × F → F from secure

collision-resistant hash families. The AMR contract is initialized with several parameters:

amt for the fixed number of coins to be mixed, amtrwd indicating the fixed amount of coins

65

ContractSetUp(1λ)

1 : Sample Hp : {0, 1}∗ → F and H2p : F× F→ F
2 : Choose amt ∈ Z>0 to be a fixed deposit amount
3 : Choose amtrwd ∈ Z>0 to be a fixed reward amount
4 : Choose tcon ∈ Z>0 to be condition for getting reward
5 : Choose d ∈ Z>0, Let X = {x1, . . . , x2d}
6 : where xi = 0λ for all xi ∈ X
7 : Choose Σ to be the lending platform
8 : Deploy ΓAMR to be the interest distribution pool
9 : Initialize an empty tree rootdep = T.Init(1λ, X),

10 : Choose k ∈ Z>0, set RootListwdr,k[i] = rootdep,
for 1 ≤ i ≤ k

11 : Set rootcurr
rwd = rootnext

rwd = rootdep, index = 1
12 : Construct Cwdr for relation described in Equation (3.1).
13 : Let Π be the zk-SNARK instance.

− Run (ekdep, vkdep)← Π.Setup(1λ, Cwdr)
Initialize: DepositList = {},NullifierList = {},

14 : Deploy smart contract AMR with parameters :
pp = (F, Hp, H2p, amt, amtrwd, tcon,Σ,ΓAMR

T, index,RootListwdr,k, rootcurr
rwd, rootnext

rwd,

(ekdep, vkdep),DepositList,NullifierList)

Figure 3.3. AMR Setup. The public parameters, pp, contains all information
needed to interact with the AMR contract, and pp can be queried by any client.

to be rewarded, and tcon specifying the minimum number of blocks that clients need to wait

before redeeming rewards.

Setting up Merkle Trees. Let T be the Merkle tree of depth d, the setup algorithm

described in Section 3.3.1 initializes T with zero leaves and initializes index = 1 to keep track

of latest deposits. Also, the algorithm initializes two lists: RootListwdr,k to be the list of k

most recent roots of T . Finally, the contract keeps track of the current reward root, rootcurr
rwd

that is used by clients to form reward proofs. and the next reward root rootnext
rwd. Recall

that tcon to be the minimum number of blocks that clients need to wait before redeeming a

66

Deposit Interactions

Client(sk, amt)

CreateDepositTx(sk, amt) :

1 : Sample (kdep, r)
$←− {0, 1}λ

2 : Compute cm = Hp(kdep||r)
3 : return : (txdep = (amt, cm),wit = (kdep, r))

txdep

AMR Contract

AcceptDeposit(txdep)

1 : Parse txdep = (amt′, cm)
2 : Require amt=amt′ and index < 2d

/* Invest to the lending platform */
3 : Execute Σ.Deposit(amt) to obtain amtΣ

4 : Append cm to DepositList
5 : Increment index = index + 1
6 : Compute:

- rootnew = Tdep.Update(index, cm,DepositList)
7 : Append rootdep to RootListwdr,k

/* Update reward roots*/
8 : If Block.Height− rootnext

rwd.blockheight ≥ tcon :
- Set rootcurr

rwd = rootnext
rwd

- Set rootnext
rwd = rootnew

9 : return 1

txdep

Figure 3.4. AMR’s deposit interactions between the client (Client’s Creat-
eDepositTx algorithm) and AMR contract (AMR’s AcceptDeposit algo-
rithm). Transaction txdep is signed by sk. Block.Height denotes the block height
of the block containing txdep

reward, we require: rootnext
rwd.blockheight− rootcurr

rwd.blockheight ≥ tcon. This approach helps the

AMR contract maintain tcon-blocks-old reward root without storing all other roots.

Setting up zk-SNARK parameters. Let Π be the zk-SNARK instance used in AMR,

the setup algorithm Section 3.3.1 constructs circuit Cwdr capturing the relation described

in Equation (3.1). Then, the setup algorithm runs Π.Setup on the circuit to obtain two

keys, (ekdep, vkdep).

67

Reward-Redeeming Interactions

Client(sk′,wit)

CreateRedeemTx(sk′,wit) :

1 : Parse wit = (kdep, r)

2 : Sample wit′ = (k′dep, r′)
$←− {0, 1}λ

3 : Obtain pph from the contract
4 : Compute :

− snrwd = Hp(kdep), cmold = Hp(kdep||r), cmnew = Hp(k′dep||r′)
5 : Get index i of cmold from DepositListh

6 : Compute pathhi such that:
- Trwd.Verify(i, cmold, rootcurr

rwd, pathhi) = 1
7 : Form witrwd = (sk′, kdep, r, pathhi)
8 : πrwd ← Π.Prove(ekrwd, st[pk′, snrwd, rootcurr

rwd],witrwd)
9 : return txrwd = (snrwd, rootcurr

rwd, πrwd, cmnew),wit′ = (k′dep, r′)

txrwd

AMR Contract

IssueReward(txrwd) :

1 : Parse txrwd = (snrwd, root′dep, πrwd, cmnew)
2 : Require:

- rootcurr
rwd = root′dep

- snrwd /∈ NullifierList
- Π.ZKVerify(vkrwd, πrwd, st[msg.sender, snrwd, rootcurr

rwd]) = 1
3 : Append snrwd to NullifierList

/* Refresh the old commitment */
4 : Append cmnew to DepositList
5 : Increment index = index + 1
6 : Compute rootnew = Tdep.Update(index, cm,DepositList)
7 : Append rootdep to RootListwdr,k

/* Update reward roots*/
8 : If Block.Height− rootnext

rwd.blockheight ≥ tcon :
- Set rootcurr

rwd = rootnext
rwd, rootnext

rwd = rootnew
Do txrwd.sender.transfer(amtrwd)

9 : return 1

txrwd

Figure 3.5. AMR’s reward-redeeming interactions between the client (Client’s
CreateRedeemTx algorithm) and AMR contract (AMR’s IssueReward al-
gorithm).

68

Setting up commitments and nullifier lists. The AMR contract is initialized with

two empty lists: a list, DepositList, that contains all cm included in depositing and reward-

redeeming transactions, a list, NullifierList, that contains all unique identifiers (i.e. sn) ap-

peared in withdrawing and reward-redeeming transactions. Figure 3.3 formally describes

this setup algorithm.

3.4.3 Client Algorithms

These following algorithms specify how clients interact with the AMR smart contract.

Depositing. CreateDepositTx allows a client to deposit coins into the contract and

outputs secret notes, wit, that can later be used to withdraw coins or obtain a reward.

Redeeming Reward. CreateRedeemTx allows clients with the secret note, wit, and

the secret key sk to issue a proof, πrwd, to prove to the AMR contract that that client has not

withdrawn their deposited coins after certain number of block counts. In order to form such

NIZK proof, the client obtains the current state of the contract to compute private inputs

(i.e. Merkle path) for the zk-SNARK proof generation. Also, the proof generation requires

the client to use an older root maintained by the contract as part of the computation.

This approach allows a client to prove to the contract that the client’s transaction was

deposited before the root was computed. Along with the NIZK proof, a client will include

the nullifier value as part of the transaction to prevent double-redemption from the AMR

contract. Finally, the client includes a new commitment value, cm, in the reward-redeeming

transaction to be eligible for future withdrawal and reward-redemption.

Withdrawing. CreateWithdrawTx allows a client with the secret note, wit, and

secret key sk to issue proofs, πwdr, to withdraw amt to the public key pk. In this step, AMR

requires the client to issue a proof to verify that the client has deposited coins in the past

along with a nullifier value sn to prove that those coins have not been withdrawn before and

to prevent clients from withdrawing coins without having any coins deposited to the AMR

contract.

69

Withdraw Interactions

Client(sk,wit)

CreateWithdrawTx(sk,wit) :

1 : Obtain pph from the contract
2 : Parse wit = (kdep, r)
3 : Compute snwdr = Hp(kdep), cm = Hp(kdep||r)
4 : Get index i of cm from DepositListh

5 : Choose rootdep ∈ RootListwdr,k
6 : Compute pathhdep,i such that

- T.Verify(i, cm, rootdep, pathhdep,i) = 1
7 : Form: witdep = (sk, kdep, r, pathhdep,i)
8 : πwdr ← Π.Prove(ekdep, st[pk, snwdr, rootdep],witdep)
9 : return txwdr = (snwdr, rootdep, πwdr)

txwdr

AMR Contract

IssueWithdraw(txwdr) :

1 : Parse txwdr = (snwdr, rootdep, πwdr)
2 : Require

- rootdep ∈ RootListwdr,k
- snwdr /∈ NullifierList
- Π.ZKVerify(vkdep, πwdr,

st[msg.sender, snwdr, snrwd, rootdep]) = 1
3 : Let balanceΣ be the Σ token balance
4 : Let NoDepositsLeft be the number of deposits remained

/* Redeeming from the lending platform */
5 : Redeem balance +R by executing Σ.Redeem(balanceΣ)

where balance = NoDepositsLeft · amt
6 : Append snwdr to NullifierList

/* Send the accrued interest to the distribution pool */
7 : Do ΓAMR.transfer(R/NoDepositsLeft)

/* Send the original deposit to sender*/
8 : Do txwdr.sender.transfer(amt)

/* Reinvest into the lending platform */
9 : Let removedFund = amt +R/NoDepositsLeft

10 : Execute Σ.Deposit(balance +R− removedFund)
11 : return 1

txwdr

Figure 3.6. AMR’s deposit interactions between the client (Client’s Cre-
ateWithdrawTx algorithm) and AMR contract (AMR’s IssueWithdraw
algorithm).

70

3.4.4 Contract Algorithms

In this part, we formally define the contract algorithms.

Accepting Deposit. Upon receiving a deposit transaction from an externally owned

account, the contract verifies the amount amt, updates the tree structure, recomputes the

Merkle roots for the Merkle tree, and updates the DepositList list. Next, the AMR contract

deposits amt into the lending platform Σ to retrieve amtΣ. Finally, depending on the number

of blocks mined, the contract always maintains a tcon-blocks-old root, so that clients use it

to redeem rewards. Figure 3.4 formally describes this procedure.

Issuing Reward. Upon receiving reward transactions, the contract verifies that the

proof, πrwd, is valid with the rootcurr
rwd, and the nullifier snrwd is not in the NullifierList. Once the

verification passes, the contract updates the NullifierList to prevent future double-redemption

and double-withdrawal. Here, we note that rootcurr
rwd is the old state of the reward tree;

therefore, being able to prove the membership of this root, one can prove that their deposit

has not been withdrawn. Finally, the AMR contract updates the Merkle tree with the new

commitment, cmnew. This update is similar to the deposit phase, and it helps the client to

refresh their original commitment to be eligible for future redemption and withdrawals.

Issuing Withdraw. Upon receiving withdrawal transaction, the contract verifies the

proof, πwdr and verifies that the nullifier snwdr is not in the NullifierList. To prevent future

double-withdrawal, the AMR contract then appends snwdr to NullifierList. Then, the AMR

contract redeems all deposited funds from lending platform Σ along with the accrued interest

R. Finally, the AMR deposits amt to the user’s address and redeposits leftover funds into

lending platforms. To avoid leakage in distributing accrued interest, AMR deposits the

interest into a separate pool, ΓAMR. Only users who hold the governance tokens obtained

from rewards can later obtain this interest.

Figure 3.4 , Figure 3.5 , and Figure 3.6 formally describe the interactions between the

clients and the smart contract in AMR.

Distributing Accrued Interest. We adapt the time-weight voting proposed by

Curve [47] for this distribution step. In particular, in AMR, the pool, ΓAMR, receives a

portion of the total accrued interest upon each withdrawal. Clients need to lock governance

71

tokens to the pool to be eligible for redeeming this interest. The AMR pool periodically

distributes the total accrued interest proportionally to clients based on their voting power.

Client’s voting power is calculated based on their amount of governance tokens and how

long they are willing to lock those tokens in the distribution pool. The pool requires two

main functionalities: CreateLock and Claim. The pool is initialized with a value tmax
denoting the maximum amount of blocks that client can lock their governance tokens.

• CreateLock(txlock) takes as input the locking transaction, txlock, from the client.

The locking transaction contains the governance tokens, γrwd, and tlock specify the

number of blocks that the client will lock γrwd in the pool. At any given point in time,

the voting power of the client is γrwd · t
tmax

where t is the time left to unlock t ≤ tlock.

• Claim() is a contract function that can be periodically triggered by the clients. When

a client triggers this function, the pool calculates the client’s current voting weight as

w = γrwd · t
tmax

, and the total voting power of all users, W . Finally, the pool distributes

the accrued interest proportionally to the client according their voting power and the

total voting power, w
W
.

The main goal of time-weighted voting is to distribute more reward not only to users

who contribute more to AMR (i.e., having more governance tokens) but also to users who

commit more to the system (i.e., locking their stakes for a longer period). Finally, for a more

detailed description of this time-weight voting technique, we refer interested readers to [47].

3.5 System Analysis

In this section, we informally discuss how AMR achieves the security goals mentioned

in Section 3.3.4 . As mentioned in Section 3.3.5 , the underlying cryptographic primitives

(i.e., zk-SNARK, commitment scheme, hash functions) are assumed to be secure, and AMR’s

depositing and withdrawing functionalities can be thought as the shielding and de-shielding

transactions in ZCash with a fixed denomination. Therefore, the security of AMR follows from

the security of zk-SNARK-based applications like ZCash [144]. In particular, the malicious

outsider will not be able to learn any information from the public data. However, adversaries

72

can still guess the pair-wise link between a withdrawing, a depositing, and reward-redeeming

transactions. The probability of guessing correctly largely depends on the number of deposits,

redemptions, and withdrawals issued to AMR. Thus, we need to understand this adversarial

probability to quantify the privacy offered by AMR.

3.5.1 Privacy Metric

We let h be the height of the blockchain, we define: AnomSeth be the set of commitments

issued to the AMR contract until block height h by honest users, and the adversary does not

know the preimages of those commitments. NullifierSeth be the set of nullifiers appeared in

either reward-redeeming or withdrawing transactions issued to the AMR until block height

h by honest users. AnomSet and NullifierSet are always available to the adversary. We also

assume that |AnomSeth| − |NullifierSeth| > 0 for all h.

We say cm originates sn, when kdep is used to compute both cm in txdep and snwdr in txwdr
or txrwd. We define:

• cm link← sn : if the value k used to compute cm = Hp(k||r) ∈ txdep or ∈ txrwd is equal to

the value k used to compute sn = Hp(k) ∈ txrwd or ∈ txwdr.

The reward linking advantage is the probability that an adversary can output the correct

commitments that originates the nullifier value appeared in reward-redeeming transactions.

We define that probability is as follow:

Definition 3.5.1. (Reward Linking Advantage) Let A be the PPT adversary, txh+1
rwd be the

only valid reward-redeeming transaction issued at block h+ 1 from an honest user. Let snh+1
rwd

be the nullifier appeared in txh+1
rwd We define the adversarial advantage as follow:

AdvhA,rwd = Pr [A(txh+1
rwd)→ cm ∈ AnomSeth s.t. cm link← snh+1

wdr]

Similarly, the adversarial advantage in linking withdrawing transaction to other transac-

tions is the probability that an adversary can guess correctly the commitment that originates

the nullifier value appeared in withdrawing transaction.

73

Definition 3.5.2. (Withdraw Linking Advantage) Let A be the PPT adversary, txh+1
wdr be the

only valid withdrawing transaction issued at block h + 1 from an honest user. Let snh+1
wdr be

the nullifier appeared in txh+1
wdr . We define the adversarial advantage as follow:

AdvhA,wdr = Pr [A(txh+1
wdr)→ cm ∈ AnomSeth s.t. cm link← snh+1

wdr]

We assume that the deposit addresses are independent and unlinkable accounts for our

privacy metric to hold. If the same entity deposits from different addresses, but a blockchain

analysis allows to link those addresses, the anonymity set would only grow by at most 1

deposit.

3.5.2 Privacy Analysis

Systems without reward. In a vanilla AMR system that only supports depositing and

withdrawing functionalities, a withdrawal transaction can be at the origin of any deposit

transactions of honest users before the withdrawal transaction , under the assumption that

all underlying cryptographic primitives are secure. The adversarial advantage in linking

withdrawing transaction to the original deposit transaction is: AdvhA,wdr = 1/|AnomSeth| +

negl(λ) where negl(λ) is the adversarial advantage in breaking the underlying cryptographic

primitive.

System with reward. Because AMR involves redeeming transactions, we need to an-

alyze the adversarial advantages under different scenarios. In the following, we show the

adversarial advantage in linking different transactions through the following claims.

Claim 3.5.1. Assuming that all underlying cryptographic primitives are secure, the adver-

sarial advantage in linking reward-redeeming transaction to other transactions as defined in

Definition 3.5.1 is less than 1/|AnomSeth−tcon |+ negl(λ)

Sketch. AMR is parameterized with the value tcon, the number of blocks that a client needs

to wait to be eligible for a reward. The adversary observes a redeeming transaction issued to

the AMR contract after block height h+1 from an honest user. A valid redeeming transaction

indicates to the adversary that the sender has issued commitment into the system at least h−

74

tcon blocks ago. Therefore, the probability that the adversary links the redeeming transaction

to the correct commitment is hence: AdvhA,rwd ≤ 1/|AnomSeth−tcon | + negl(λ) where negl(λ)

is the adversarial advantage in breaking the underlying cryptographic primitive.

Claim 3.5.2. Assuming that all underlying cryptographic primitives are secure, the adver-

sarial advantage in linking between withdrawing transaction to other transactions as defined

in Definition 3.5.2 is 1/|AnomSeth|+ negl(λ).

Sketch. Since we assume that the underlying cryptographic primitives are secure, the

adversarial advantage in guessing correctly by breaking those primitives is negligible. More-

over, since each deposit and reward-redeeming transaction in AMR adds another leaf to the

Merkle tree, the probability of guessing a correct leaf is equal to the number of Merkle leaves

that are not controlled by the adversary. In another word, the probability is 1/(|AnomSeth|).

Therefore, the adversarial advantage, AdvhA,wdr ≤ 1/|AnomSeth| + negl(λ) where negl(λ) is

the adversarial advantage in breaking the underlying cryptographic primitive.

In summary, in AMR, given a reward-redeeming transaction, to guess the correct com-

mitment, the adversary can reduce the size of the anonymity set by narrowing the search

window to tcon blocks before the block containing the reward-redeeming transaction. On

the other hand, given a withdrawing transaction, the adversary’s advantage in guessing the

correct commitment is still the same as the adversarial advantage in the system without

reward, 1/|AnomSeth|+ negl(λ). The main reason is that, in AMR, beside each deposit, each

reward-redeeming transaction also adds one additional commitment to the Anonymity Set,

AnomSet. Therefore, AMR offers a bigger anonymity set than system without reward.

Privacy of the Accrued Interest Distribution. One naïve way to distribute the

accrued interest is to split the total accrued interest equally among depositors. This approach

reveals nothing about the original deposits. However, it introduces an unfair allocation of

interest as users joining the system later receive the same amount of interest as users joining

the system earlier.

In AMR, to achieve fairness in the accrued interest distribution, AMR allows users with

governance tokens to lock their tokens in a separated pool (i.e., ΓAMR). This pool receives

a portion of the accrued interest from the AMR contract upon each withdrawal, and it

75

periodically distributes the total accrued interest to addresses that lock their governance

token into the pool. The amount each address receives is based on the number of governance

tokens and how long those tokens are locked. It’s not difficult to see that AMR ensures

the fairness in the accrued interest allocation because only users contributing more to the

anonymity set of AMR, can redeem more governance tokens; therefore, they can obtain more

accrued interest.

3.5.3 Other Goals Achieved By AMR

In addition to the privacy goal, we briefly explain how AMR achieves the other goals

defined in Section 3.3.4 .

Correctness. AMR satisfies correctness. If an adversary can provide a withdrawal

transaction that verifies without depositing any coins into the system, there are two possible

scenarios: First, the adversary can derive a new valid transaction for the current state of

the contract (i.e. observing commitment list), or it intercepts a withdrawal transaction and

replaces the recipient address with its address. However, in the first case, it implies that the

adversary breaks the preimage-resistant security of the underlying hash function Hp(·), and

the second case implies that the adversary breaks the security of the zk-SNARK instance.

Availability. We argue that AMR satisfies availability. Unlike existing centralized tum-

bler designs [78], the availability of the system relies on the fact that the tumbler has to stay

online. Similar to Möbius [108], AMR is a smart contract that executes autonomously on the

blockchain, so adversary cannot prevent clients from interacting (i.e., reading and writing)

with the blockchain.

Front-Running Resilience. Recall that the AMR contract stores a list of k recent

roots. To invalidate a withdrawal transaction, an adversary needs to “front-run” at least k

deposit transactions before a withdrawal transaction. Thus, one can choose the value k to

be sufficiently large so that the cost of attacking is too expensive for the adversary to carry

out. More specifically, to invalidate a single deposit transaction, the amount of token an

adversary needs to have are at least k × (amt + feedep) where amt is the fixed denomination

specified in Section 3.4.2 and feedep is the deposit fee. For example, if we set k = 1000,

76

Table 3.1. zk-SNARK Setup Cost
Tree Depth # Constraints Setup Time Keys Size

Cwdr twdr (ekwdr, vkwdr = 640B)
Poseidon MiMC Poseidon MiMC Poseidon MiMC

10 4, 245 15, 045 86.56s 246.99s 4.3MB 7.3MB
15 5, 460 21, 660 107.34s 377.44s 5.8MB 11.1MB
20 6, 675 28, 275 126.51s 465.27s 7.3MB 13.8MB
25 7, 890 34, 890 146.41s 642.04s 8.8MB 18.6MB
30 9, 105 41, 505 185.64s 729.03s 10.8MB 21.4MB

amt = 10, assuming feedep = 0.02, and let the token be ether, the adversary needs at least

k × (amt + feedep) = 10, 020 ethers (38m USD) to carry out the attack, and the adversary

will lose at least 20 ethers (76, 000 USD) in term of fee.

3.6 Evaluation

3.6.1 Parameters

Choice of cryptographic primitives. We use Groth’s zkSNARK [75] as our instance

of zk-SNARK due to its efficiency in term of proofs’ size and verifier’s computations. For

cryptographic hash functions, we use a Pedersen hash function [113] for Hp and evaluate

AMR using two different choices of hash functions for H2p: the MiMC [4] and the Posei-

don hash function [73]. Arithmetic circuits using MiMC and Poseidon hash yield a lower

number of constraints and operations when compared to arithmetic circuits relying on other

hash functions [85 , 4] (i.e. SHA-256, Keccak). Moreover, both MiMC and Poseidon hash

functions are not only designed specifically for SNARK applications, but also highly efficient

for Ethereum smart contract applications in terms of gas costs. Finally, as discussed in Sec-

tion 3.4.1 , the commitment scheme and the Merkle tree can be directly instantiated using

Pedersen and MiMC/Poseidon hash functions.

Software. For the arithmetic circuit construction, we use the Circom library [81] to

construct the withdrawing circuit, Cwdr for the relation described in Equation (3.1). We

use Groth’s zk-SNARK proof system implemented by the snarkjs library [82] to develop

the client’s algorithms (cf. Section 3.3.2), and to perform the trusted setup for obtaining

77

6

8
G

as
co

st

×106

10 15 20 25 30
Tree Depth

0

2

Deployment

Reward (MiMC)

Reward (Poseidon)

Deposit (Poseidon)

Deposit (MiMC)

Withdraw

Figure 3.7. On-chain Costs of Deployments, Deposit, Withdrawal, and Re-
ward Redemption for Different Tree Depths and Hash Functions.

the proving and evaluation keys for the AMR contract and clients. We deploy AMR to the

Ethereum Kovan testnet

4

5
 . AMR contract consists of 1013 lines of Solidity code.

Hardware. We conducted our experiment on a commodity desktop machine, which is

equipped with an Intel Core i5-7400 @3.800GHz CPU, 32GB RAM.

3.6.2 Performance

We measure the performance and the cost of AMR using the following tree depths d =

10, 15, 20, 25, 30.

zk-SNARK Setup. Table 3.1 presents an overall performance of the zk-SNARK setup

for the withdraw circuit. For the MiMC hash function, for a tree of depth d, the withdraw

circuit has 1, 815 + 1, 323 × d constraints. For the Poseidon hash function, the withdraw

circuit has 1815 + 243× h constraints.
4

 ↑ AMR’s address: 0xdE992c4fBd0f39E5c0356e6365Bcfafa1e94970b
5

 ↑ A demo video AMR can be found at the following URL: https://youtu.be/-oAQlsRTF08

78

https://youtu.be/-oAQlsRTF08

10 15 20 25 30
Tree Depth

2

4

6

8

10
P

ro
of

G
en

er
at

io
n

(s
)

Poseidon Hash MiMC Hash

Figure 3.8. zkSnark Proof Generation Time for Poseidon and MiMC hash functions.

Onchain Costs. Figure 3.7 provides the overall costs of deployment, deposit, reward,

and withdraw for different tree depths. The cost of deploying the contract is the most

expensive operation, accounting from ≈ 6m gas for h = 10 to ≈ 8m gas for h = 30 for both

the MiMC and Poseidon hash functions. However, we note that the deployment cost is a

one-time cost which is amortized over the lifetime of the contract. The cost of the depositing

transaction depends on the depth of the tree, which is approximately 43, 000 + 51, 000 × h

for the MiMC hash and approximately 43, 000 + 41, 000× h for the Poseidon hash function.

The gas cost for verifying a withdrawing transaction is approximately 320, 000 for all tree

depths and both choices of hash functions. The gas cost for a reward-redeeming transaction

is equal to a total gas cost of a deposit and a withdraw as the AMR contract needs to verify

the zkSnark proof as well as to update the Merkle tree.

zk-SNARK Proof Generation. As the Poseidon hash function generates less con-

straints for the arithmetic circuit, than the MiMC hash function (i.e. 243 vs 1323), we

observe a reduction of 3× for the clients’ proof generation time with an AMR system using

the Poseidon hash function. Figure 3.8 presents the time for a client to generate the zkSnark

proofs for different tree depths and hash functions.

79

5000 10000 15000 20000 25000 30000
Number of blocks (tcon)

8.90

17.80

26.70

35.52

44.50

53.40

N
u

m
b

er
of

d
ep

os
it

s

Figure 3.9. Average number of deposit transactions is-
sued to the contract over the span of 5, 000, 10, 000, 15, 000,
20, 000, 25, 000, 30, 000 blocks.

Lending Platforms’ Additional Costs. In additional to the cost of executing crypto-

graphic functions in the AMR contract, we also need to consider the cost of other interactions

with decentralized lending platforms such as Aave [1] or Compound [41]. These costs are the

gas cost of depositing into and redeeming from lending platforms. We estimate the costs of

these interactions using data from Etherscan

6
 and Compound developer documentations

7
 .

Thus, depositing into these lending platforms takes approximately 0.3m gas (for both Aave

and Compound), and redeeming from these platforms takes less than 0.2m gas for Aave and

less than 0.1m gas for Compound. Therefore, depending on the choice of lending platforms,

we would expect additional 0.3m gas for AMR’s depositing function and additional 0.2m gas

for AMR’s withdrawing function.

3.6.3 Empirical Analysis on Tornado Cash

To become eligible for a reward payment in AMR, clients need to keep their deposit in

the contract locked for a predefined period (i.e. tcon blocks). Thus, one needs to decide what

the suitable value for tcon is (this value could be set by voting with the governance token).
6

 ↑ https://etherscan.io/

7
 ↑ https://compound.finance/docs#networks

80

https://etherscan.io/
https://compound.finance/docs#networks

2020-01

2020-02

2020-03

2020-04

2020-05

2020-06

2020-07

2020-08

Block Height

500

1000

1500

2000

2500

N
u

m
b

er
of

T
ra

n
sa

ct
io

n
s

Number of Deposits

Number of Withdrawals

Figure 3.10. Number of deposits and withdrawals issued
to the tornado cash 10 ETH pool.

We perform an empirical analysis on the tornado cash system [153] which is, to the best

of our knowledge, the only zk-SNARK-based mixer deployed to the Ethereum main net.

Tornado cash supports two operations: deposit and withdraw. We analyzed their 10.0 ETH

denomination deposit pool

8
 from block 9, 161, 895 (25 December 2019) to block 10, 726, 597

(25 August 2020) to understand how frequent clients deposit to the tornado cash system.

This frequency allows us to derive an appropriate value for how long client should keep their

funds in AMR contract to be eligible for a reward. For example, Figure 3.9 suggests that for

the waiting period of tcon = 30, 000 (approximately 4.5 days), we can expect an additional 52

deposit transactions issued to the contract intermittently, and the more deposit transactions

reach the contract, the higher the anonymity set becomes.

Moreover, over the course of 8 months (Cf. Figure 3.10), we observe a total of 2, 810

deposit transactions, and 2, 606 withdrawing transactions on the tornado cash contract.

We note that if the number of withdrawing transactions equals to the number of deposit

transactions at any point in time, the size of the anonymity set is reduced to zero. Thus,

in contrast to Tornado cash, the reward mechanism in AMR is used to incentivise clients to

keep a deposit in the system to help maintain a healthy gap between the number of deposits

and withdrawals.
8

 ↑ Address: 0x910Cbd523D972eb0a6f4cAe4618aD62622b39DbF

81

3.7 Discussion and Applications

Trusted Setup in zk-SNARK. As discussed in Section 3.1 , a zk-SNARK requires

a trusted setup to generate the evaluation and proving key for each circuit. While one

can assume that there exists a trusted third party which helps run the setup, this trust

assumption is typically not welcome by the blockchain community, because if such third

party can maliciously generate the keys (or the common reference string), it can form a valid

proof and steal the contract funds.

To remove the trusted third-party assumption, one can run a multi-party computation

(MPC) setup where users can contribute a share to the trusted setup. Several works [28 ,

 16 , 29] proposed different protocols for such trusted setup, and they showed that as long

as one participant is honest, the zk-SNARK instance will be secure. In particular, the

Zcash team has performed such MPC setup for their protocol parameters in 2017 [115].

However, the MPC setup may need to be carried out independently for different circuits and

related works [104 , 37 , 66 , 39] have proposed several zk-SNARK constructions that utilizes

a universal setup that can be used for any circuits with bounded size. These zk-SNARK

constructions can be easily integrated into AMR in the future.

Transferring arbitrary denomination. The current version of AMR does not al-

low clients to transfer arbitrary number of coins privately among clients. To achieve such

property, one either needs an out-of-band communication channel between a sender and a

recipient to transfer secret notes, or the sender can spend more fees to store additional en-

crypted data onchain. Moreover, to prevent a sender from stealing coins from the recipient,

one could use a similar commitment scheme and encryption as used in Zcash [143]; however,

the use of these primitives will increase the cost of the onchain verification. Nevertheless,

we will leave the transferring functionality of AMR for the future work.

Sender outsources transaction fee payment. Issuing a transaction requires the

payment of fees, and clients should not use the same address for such payment, otherwise

their addresses can be linked. In practice users can chose to use a relayer, who broadasts

transactions and is paid from a fraction of the withdraw or reward transaction. The relayer

can receive the corresponding client proof through a side channel.

82

Constant querying state. Most blockchain clients (e.g. MetaMask) outsource their

blockchain information to centralized services such as Infura. Those centralized services are

aware of, the clients’ blockchain address(es), IP address as well of the fact that the client

queried the AMR contract state. These services are therefore privacy critical, as they may

be able to link different addresses from the same client. We hence recommend a privacy

aware client to operate an independent validating full blockchain client or use network-level

anonymity solutions such as Tor or Virtual Private Network (VPN) before connecting to

these centralized services.

Decentralized Governance. Once deployed, AMR’s system parameters, will likely

need to be adjusted during its lifetime. One could choose an admin key to govern AMR,

for the sake of decentralization, however, we believe that a decentralized approach would

be beneficial. A governance token is hence the natural choice, whereby AMR can itself

distribute those tokens to the clients participating in the protocol. We have identified the

following parameters that should be governed: (i) new relayer addresses, (ii) condition for

client reward, (iii) the amount of the reward. Once a new version of AMR is developed,

the governance mechanism could vote to (iv) migrate deposits to a new contract with new

features/bug fixes.

3.8 Related Work on add-on privacy solutions

Add-on Privacy Solutions for Smart Contract-enabled Blockchains. While we

are not aware of any academic works that propose a zk-SNARK-based mixing system as ours,

Tornado cash [153] appears to be the first system deployed in production which allows clients

to deposit and withdraw fixed amount of coins. Our work is to the best of our knowledge

the first academic work which presents such a system, formalizes the privacy and security

properties, and importantly, adds a novel privacy preserving reward mechanism.

Meiklejohn et al. [108] propose an Ethereum-based tumbler called Möbius. The construc-

tion of Möbius relies on the linkable ring signature primitive and stealth address mechanism

used in Monero [5] to hide the address of the true sender and the recipient. However, in

Möbius, the size of the anonymity set is limited to the size of the ring, and the gas cost of

83

the withdrawing transaction increases linearly with the size of the ring. Thus, in term of

privacy, AMR offers a bigger anonymity set over time while operating at constant system

costs.

Bünz et al. proposed a private payment protocol for the Ethereum blockchain called

Zether [35]. The core idea of Zether is to use Elgamal to encrypt the balances of clients.

However, the cost of Zether transactions (i.e., 7.8m gas) is expensive for Ethereum, and

Zether does not hide the receiver and recipient of a transaction. Diamond proposed Anony-

mous Zether [54] to address the later drawback, but the cost of Anonymous Zether is still

expensive for blockchains such as Ethereum. For the maximum anonymity set of size 64 re-

ported in the paper, the gas cost of a single transferring call in Anonymous Zether is 48.7m

gas which is approximately 32 times the cost of an AMR deposit and 130 times the cost of

an AMR withdrawal for h = 30 (The block gas limit in Ethereum is about 15m gas at the

time of writing).

Rondelet and Zajac propose Zeth [138], which implements all functionalities of Zero-

Cash [144] as an Ethereum smart contract. While Zeth allows expressive functionalities,

such as transferring arbitrary denomination of notes, it comes with the cost of using a bigger

zk-SNARK circuit than in AMR. The choice of the SHA256 hash function in Zeth would

result in approximately 59, 281 constraints in the arithmetic circuit, which is 50× bigger than

the constraints from using the MiMC hash (i.e., 1, 323 constraints) and 200× bigger than the

constraints from using the Poseidon hash (i.e., 243 constraints). While the authors of Zeth

did not report any numbers on the proof generation time, we expect that the zk-SNARK

proof generation time in Zeth is an order of magnitude larger than in AMR. The Zeth con-

tract needs to store all encrypted notes from transferring function calls, and depending on

the size of the transaction, this additional storage also incurs cost (storing a 32-byte data

costs 20, 000 gas [160]). The authors of Zeth also report that an estimated cost of verifying

a zk-SNARK proof is approximately 2m gas (5× the cost in AMR).

Other Tumbler Designs. The community proposes several centralised tumbler de-

signs [26 , 157 , 78 , 152]. The main essence of those designs relies on a centralised offchain

server to mix users’ funds, e.g., Tumblebit [78] and A2L [152]. Both require less trust in

84

the offchain server than solutions such as Mixcoin [26] and Blindcoin [157] by preventing

the server from stealing funds from participants. However, centralised tumbling protocols

cannot ensure the availability property, because the centralised system can always censor

deposits from clients.

Existing decentralized tumbler designs, such as Coinshuffle [140 , 141] and Coinjoin [106],

address the availability problem by proposing protocols allowing participants to interact and

form transactions that helps hide the sender from the recipient. However, the availability of

participants and the interactivity among them can be difficult to enforce and may lead to

privacy leaking side channels.

3.9 Concluding Remarks

Coin mixers allow alleviating to some degree the missing privacy properties of open and

permissionless blockchains. Their operations are cost-intensive both from a transaction fee

perspective and because “better” privacy is more expensive than “weaker” privacy when

measuring privacy quality quantitatively with the anonymity set size.

In this work, we introduce a zk-SNARK-based coin mixer AMR. AMR is to our knowledge

the first construction that allows to reward mixer participants which hold coins within the

mixer for at least time t. Moreover, AMR allows users to earn interest on the deposited

funds by leveraging popular DeFi lending platforms. This incentive mechanism should not

only attract privacy-seeking users, but also participants that are interested in the underlying

reward distribution. Therefore, we hope that such a system fundamentally broadens the

diversity of the mixer user, improving the anonymity set quality for all involved users. Our

implementation and evaluation shows that our mixer is practical by supporting anonymity

set sizes beyond thousands of users.

85

Part II

Addressing Communication Overhead

with Private Payment Channels

86

4. ADDRESSING COMMUNICATION OVERHEAD WITH

PAYMENT CHANNELS IN MONERO

Bitcoin does not provide thorough privacy guarantees as largely demonstrated in the litera-

ture [109 , 10 , 7 , 90 , 134 , 148]. In this state of affairs, Monero appeared in the cryptocurrency

landscape with the distinguishing factor of adopting privacy by a design principle, combining

for the first time stealth address [142], linkable ring signatures [101], cryptographic commit-

ments [125] and range proofs [34]. As of the time of this writing, Monero has been regularly

among the top 15 cryptocurrencies in market capitalization, has processed more than 6

million transactions since its creation [156], and is the most popular CryptoNote-style cryp-

tocurrency [46]. Currently, the Monero blockchain processes around 4, 000 daily transactions

and Monero coins are parts of a daily trade volume of more than 76M USD [40]. However,

Monero leaves significant room for improvement. First, Monero suffers from reduced ex-

pressiveness: While cryptocurrencies like Bitcoin or Ethereum enable somewhat complex

policies for spending coins (e.g., a coin can be governed by script-based rules), Monero only

supports coins governed with (mostly a single) private key, reducing the functionality to

simple transfer of coins with no policy associated with it.

Cryptocurrencies such as Bitcoin and Ethereum overcome this lack of expressiveness by

adding script languages at the cost of fungibility [159] (i.e., transaction inputs/outputs can

be easily distinguished by their script) and interoperability as those script languages are

not compatible with each other. Thus, it is interesting to include new policies on spend-

ing Monero coins cryptographically, instead of including a scripting language that hampers

fungibility and interoperability.

Second, Monero suffers from similar scalability issues as Bitcoin [45]: The permissionless

nature of the Monero consensus algorithm limits the block rate to one block every two

minutes on average. In fact, the scalability problem in Monero is more pressing. The crucial

privacy goal in Monero relies on well-established cryptographic constructions to homogenize

transactions: linkable ring signatures are used to obfuscate what public key corresponds to

the signer of a transaction while commitment schemes and range proofs are leveraged to hide

the exchanged amounts, ensure transaction validity and the expected coin supply. These key

87

design choices make Monero transactions require higher on-chain footprint than transactions

in other cryptocurrencies. Although used only for less than five years, the Monero blockchain

has currently a size of 59.37 GB and grows at around 635MB per month [117].

Given this trend, it would be interesting to enable payment channels and payment channel

networks [103 , 129 , 132] in Monero, a scalability solution already adopted in Bitcoin and

Ethereum where the transaction rate is no longer limited by the global consensus but rather

by the latency among the two users involved in a given payment. However, this is far from

trivial as current payment-channel networks are built upon script languages (e.g., hash-time

lock contract) or digital signatures schemes such as ECDSA or Schnorr that are not available

in Monero. Leveraging these techniques in Monero would hamper its fungibility.

In summary, the current state of affairs in Monero with respect to the reduced expres-

siveness, lack of interoperability, and severe scalability issues calls for a solution. Adopting

solutions provided in other cryptocurrencies like Bitcoin and Ethereum is not seamlessly

possible as they are not backwards compatible with Monero. Moreover, as aforementioned,

the inclusion of a scripting language would hamper the fungibility and interoperability of

Monero.

Our contributions. In this work, we present Dual Linkable Spontaneous Anonymous

Group Signature for Ad Hoc Groups (DLSAG), the linkable ring signature scheme for Monero

that improves upon the lack expressiveness, interoperability, and scalability guarantees in

Monero. In particular:

• Expressiveness. We formalize DLSAG (Section 4.2), a new linkable ring signature

scheme that relies only on cryptographic tools already available in Monero and improves

its expressiveness. In a bit more detail, DLSAG enables for the first time that Monero

coins can be spent with one of two signing keys, depending on the relation between a

time flag and the height of the current block in the Monero blockchain.

• Scalability. We describe how to leverage the DLSAG signatures to encode for the

first time non-interactive refund transactions in Monero, where Alice can pay to Bob

a certain amount of coins redeemable by Bob before a certain time in the future. Af-

ter such time expires, the coins can be refunded to Alice. Refund transactions are

88

the building block that opens the door for the first time to scalability solutions based

on payment channels for Monero (Section 4.5). In particular, we describe how to

build uni-directional payment channels, payment-channel networks, off-chain condi-

tional payments and atomic swaps.

• Interoperability. We further show that it is possible to combine the aforementioned

payment channels protocols with the corresponding ones in other cryptocurrencies,

making thereby Monero interoperable (Section 4.5).

• Formal analysis. We formally prove that DLSAG achieves the security and privacy

goals of interest for linkable ring signatures, namely, unforgeability, signer ambiguity,

and linkability as introduced in [101] (Section 4.2).

• Implementation and adoption. We have implemented DLSAG and evaluated its

performance (Section 4.3) showing that it imposes a single bit more of communication

overhead and smaller computation overhead as the current digital signature scheme in

Monero, demonstrating thus its practicality. In fact, DLSAG is a new result that paves

the way in practice towards an expressiveness and scalability solution urgently needed

in Monero to improve its integration in the cryptocurrency landscape. DLSAG is

actively being discussed within the Monero community as an option for adoption [121 ,

 135] and it is compatible with other CryptoNote-style cryptocurrencies [46].

Comparison with related work. Poelstra introduced the notion of Scriptless

Scripts [128] as a means of encoding somewhat limited smart contracts that no longer require

the Bitcoin scripting language. Malavolta et al. [102] formalized this notion and extended

it to support Schnorr and ECDSA digital signatures. In this work, we instantiate the no-

tion of Scriptless Scripts to realize conditional payments compatible with DLSAG and the

current Monero protocol. Bitcoin payment channels [124 , 129 , 51] have been presented in

the literature as a scalability solution for the Bitcoin blockchain. Bitcoin payment chan-

nels have been then leveraged to build payment-channel networks in academia [74 , 103 ,

 88] and in industry [129 , 132 , 127]. However, none of these solutions are compatible with

the current Monero. They rely on either Bitcoin script [103 , 129 , 132], ZCash script [74],

89

Ethereum contracts [88] or Schnorr signature scheme [127], none of which are available in

Monero. Similarly, Bitcoin scripts have been leveraged to construct an atomic swap proto-

col [30]. We, instead, present a payment-channel network and atomic swap protocols that no

longer require scripting language, and it is compatible with Monero. Goodell and Noether

have proposed threshold signatures [72] for Monero whereas Libert et al. [97] proposed a

logarithmic-size ring signature from the DDH assumption; although interesting, they do not

address the expressiveness, interoperability and scalability issues considered in this work.

4.1 Background

Notation. We denote by G a cyclic group of prime order q and by g we denote a fixed

generator of such group. We denote by (pk, sk) a pair of public and secret keys. We denote

by ~pk an array of public keys. We use letters A to Z to identify users in a protocol. We denote

by XMR the Monero coins. Finally, we consider two hash functions: (i) Hs takes as input a

bitstring and outputs a scalar (i.e., Hs : {0, 1}∗ → Zq); (ii) Hp takes as input a bitstring and

outputs an element of G (i.e., Hp : {0, 1}∗ → G).

Transactions. A Monero transaction [142] is divided in inputs and outputs. They are

defined in terms of tuples of the form (pk,Com(γ),Π-amt) where pk denotes a fresh public

key, Com(γ) denotes a cryptographic commitment [125] to the amount γ and Π-amt denotes

a range proof [34] that certifies that the committed amount is within a range [0, 2k] where k

is a system parameter. In particular, each input consists of a set of such tuples while each

output consists of a single tuple. The set of public keys included in an input is called a ring.

Finally, the transaction includes a digital signature σ for each input.

In the illustrative example shown in Fig. 4.1 , we assume that Alice has previously re-

ceived 5 XMR in the public key pkA. We also assume that she wants to pay Bob 4 XMR.

For that, Alice first should get Bob’s public key (pkB) and a fresh public key for herself

(pkA) to keep the change amount. Second, Alice should choose a set of n − 1 output tu-

ples {(pki,Com(vi),Π-amti)} already available in the Monero blockchain to complete the

input. Finally, Alice should create a valid signature of the transaction content using the ring

90

Inputs:
[0] {(pk1,Com(v1),Π-amt1), . . . , (pkn−1,Com(vn−1),Π-amtn−1),

(pkA,Com(5),Π-amtA)}
Outputs:
[0] pkB, Com(4), Π-amtB; [1] pkA, Com(1), Π-amtA
Authorizations:
[0] σ

Figure 4.1. Illustrative example of a (simplified) Monero transaction. Alice
(pkA) contributes 5 XMR to pay 4 XMR to Bob (pkB) and get 1 XMR back (pkA).
Finally, the transaction is authorized with a ring signature σ from the input
ring.

(pk1, . . . , pkn−1, pkA) and her private key skA. For that, she uses a linkable ring signature

scheme.

4.1.1 Linkable Ring Signatures (LSAG)

The signature scheme used in Monero is an instantiation of the Linkable Spontaneous

Anonymous Group Signature for Ad Hoc Groups (LSAG)

1
 signature scheme [101]. We recall

the definition of LSAG in Definition 4.1.1 . Here, we explicitly add a generic definition of the

linking algorithm which was briefly mentioned in [101].

Definition 4.1.1 (LSAG [101]). An LSAG signature scheme is a tuple of algorithms (Key-

Gen, Sign, Vrfy, Link) defined as follows:

• (sk, pk)← KeyGen(1λ): The KeyGen algorithm takes as input the security parame-

ter 1λ and outputs a pair of private key sk and public key pk.

• σ ← Sign(sk, ~pk,m): The Sign algorithm takes as input a private key sk, a list ~pk of

n public keys which includes the one corresponding to sk, a message m and outputs a

signature σ.
1

 ↑ Monero in fact uses a matrix version of LSAG (MLSAG) [122] to prove balance without revealing spent
ring members. We describe here the simplest LSAG version but our constructions can be trivially extended
to support matrix version.

91

• b ← Vrfy(~pk,m, σ): The Vrfy algorithm takes as a public key list ~pk, a message

m and a signature σ, and returns 1 if ∃sk, pk ← KeyGen(1λ) s.t. pk ∈ ~pk and

σ := Sign(sk, ~pk,m). Otherwise, it returns 0.

• b ← Link((~pk1,m1, σ1), (~pk2,m2, σ2)): The Link algorithm takes as input two triples

(~pk1,m1, σ1) and (~pk2,m2, σ2). The algorithm outputs 1 if ∃(sk, pk) ← KeyGen(1λ)

s.t. pk ∈ ~pk1, pk ∈ ~pk2, σ1 := Sign(sk, ~pk1,m1) and σ2 := Sign(sk, ~pk2,m2). Other-

wise, the algorithm outputs 0.

Apart from the straightforward correctness definition, Liu et al. [101] define three security

and privacy goals for a LSAG signature scheme. We present them here informally and defer

their formal description to Section 4.2.2 .

• Unforgeability: The adversary without access to the secret key should not be able

to compute a valid signature σ on a message m.

• Signer ambiguity: Given a valid signature σ on a message m, the adversary should

not be able to determine better than guessing what public key within the ring corresponds

to the secret key used to create the signature.

• Linkability: Given two rings ~pk1, ~pk2, two valid signatures σ1, σ2 in two messages

m1, m2, there should exist an efficient algorithm that faithfully determines if the same secret

key has been used to create both signatures.

The current LSAG in Monero only supports transfer of coins authorized by a signature,

reducing the expressiveness to payments. Adding a script language (as done in Bitcoin

or Ethereum) would harm fungibility (i.e., transaction inputs/outputs can be easily distin-

guished by their script) and interoperability as those languages are not compatible with each

other. Instead, in this work we aim to propose a signature scheme for Monero that crypto-

graphically supports more expressive transaction authorization policies, without hampering

the security and privacy guarantees of the current digital signature scheme.

Linkable Ring Signature in Monero. Fig. 4.2 shows the construction of LSAG

originally used in the current Monero cryptocurrency.

92

Construction of LSAG in Monero [122]

• (sk, pk) ← KeyGen(1λ): Choose sk uniformly at random and set pk := gsk. Output
sk, pk.

• σ ← Sign(sk, ~pk, tx): Parse: (pk1, . . . , pkn) ← ~pk. Sample s0, s1, . . . , sn−1 from Zq.
Compute:

I := Hp(pkn)sk;L0 := gs0 ; R0 = Hp(pkn)s0 ;
h0 := Hs(tx||L0||R0).

For i ∈ {1, . . . , n− 1} compute the following series:

Li := gsi · pkhi−1
i ; Ri := Hp(pki)si · Ihi−1

hi := Hs(tx||Li||Ri)

Solve for s0 such that: Hs(tx||gs0 · pkhn−1
n ||Hp(pkn)s0 · Ihn−1) = h0. For that, we get

that s0 = s0 − hn−1 · sk. Return σ = (s0, s1, . . . , sn−1, h0, I)

• b← Vrfy(~pk, tx, σ): Parse:

(s0, s1, . . . , sn−1, h0, I)← σ, (pk1, . . . , pkn)← ~pk

For i ∈ {1, . . . , n}, compute the sequences:

Li := gsi · pkhi−1
i ; Ri := Hp(pki)si · Ihi−1

hi := Hs(tx||Li||Ri)

Return 1 if h0 = hn. Otherwise, return 0.

• b← Link((~pk1, tx1, σ1), (~pk2, tx2, σ2)): If (Vrfy(~pk1, tx1, σ1) ∧ Vrfy(~pk2, tx2, σ2)) =
0, return 0. Else: parse (s0, s1, . . . , sn−1, h0, I1) ← σ1 and (s0, s1, . . . , sn−1, h0, I2) ←
σ2. Return 1 if I1 = I2. Otherwise, return 0.

Figure 4.2. Construction of LSAG in Monero [122]. For ease of exposition,
in the signing algorithm we assume that the secret key sk corresponds with
the n-th public key pkn. In practice, the position of true signer’s public key is
chosen uniformly random.

4.1.2 Preliminaries

In order to prove the security of DLSAG, we first need to introduce the following defini-

tions and results.

Definition 4.1.2 (Forking algorithm [15]). Let A be a PPT algorithm that takes as input

some inp. Assume A has access to a random oracle OHs that outputs random element from

93

Zq and the query responses are temporally ordered by index e0, e1, . . . , eqH−1. Define the

forking algorithm associated with A, denoted FA, as the following algorithm:

1. Take as input some inp, select random coins ρ for A, and select qH oracle query

responses, e0, e1, . . . , eqH−1
$← Zq.

2. Execute α← A(inp; ρ), responding to the ith query to OHs made by A with the response

ei.

3. If α = ⊥ return ⊥ and terminate. Otherwise, parse (j, out)← α.

4. Select new oracle query responses e′j, e′j+1, . . . , e
′
qH−1

$← Zq.

5. Execute α′ ← A(inp; ρ), responding to the ith query to OHs made by A with the response

ei when i < j and e′i otherwise.

6. If α′ = ⊥, return ⊥ and terminate. Otherwise, parse (j′, out′)← α′.

7. If j = j′ and ej 6= e′j, return (j, out, out′). Otherwise, return ⊥.

Lemma 4.1.1 (Generalized Forking Lemma [15]). Let qH be an integer, A be a randomized

algorithm which takes as input some main input inp and h0, h1, . . . , hqH−1 ∈ Zq and returns

either a distinguished failure symbol ⊥ or a pair (j, out), where 0 ≤ j < q and out is some

side output. The accepting probability of A, denoted acc(A), is defined as the probability that

A does not output ⊥ (where this probability is measured over the random selection of inp,

{ei}qH−1
i=0 , and {e′i}

qH−1
i=j). Let B be the forking algorithm associated with A from Definition

 4.1.2 . Let acc(B) be the probability (over the draw of inp and the random coins of B) that B

returns a non-⊥ output. Then

acc(B) ≥ acc(A)
(
acc(A)
qH

− 1
q

)
.

In particular, if A has non-negligible acceptance probability, then so does B.

Definition 4.1.3 (One-More Discrete Logarithm Hardness [12]). Let λ be a security param-

eter. Let N be natural number such that 1 ≤ N < polyλ. Let (G, q, g)← Setup(1λ) be some

94

group parameters. Let OC be a corruption oracle. For any fixed N , these group parameters

are said to satisfy the one-more discrete logarithm hardness (OMDL) assumption for N if

any PPT algorithm A has at most a negligible probability of success in the following game.

1. A sequence of N + 1 independent and identically distributed observations of a uniform

random variable on G are made, S = {H0, . . . ,HN} ⊆ G. The group parameters

(G, q, g) and the set S are sent to A.

2. A is granted oracle access to OC.

3. A outputs an index 0 ≤ i ≤ N and a scalar x ∈ Zq.

A succeeds if gx = Hi, the corruption oracle OC is not queried with Hi, and the corruption

oracle OC is queried at most N times.

Definition 4.1.4. If A is an algorithm that runs in time at most t and succeeds at the

one-more discrete logarithm game for some N with probability at least ε, then we say A is

a (t, ε, N)-OMDL solver where ε is measured over the joint distribution of the random coins

of A and the challenge group elements Hi.

Definition 4.1.5 (Decisional Diffie-Hellman Assumption). Let (G, q, g) be the group parame-

ters. We say the Decisional Diffie-Helman Problem is hard relative to G if for all probabilistic

polynomial time algorithmsM there exist a negligible function ε(·) such that

Pr [M(G, g, q, A,B,C) = b : (A,B,C) = (Ab, Bb, Cb)

where (A0, B0, C0) = (ga0 , gb0 , gc0);

(A1, B1, C1) = (ga1 , gb1 , ga1b1)]

≤ 1
2 + ε(λ)

where ai, bi, ci for i ∈ {0, 1} are uniformly chosen from Zq.

4.2 Dual-Key LSAG (DLSAG)

In this section, we first describe DLSAG, our digital signature scheme for linkable ring

signatures.

95

4.2.1 Key ideas and construction of DLSAG

Our approach builds upon a tuple format defined as ((pkA,0, pkB,1), Com(γ), Π-amt, t)

and that enables to spend it to two different public keys (and potentially two different users)

depending on a flag t. A dual-key tuple deviates from the current Monero tuple in two main

points (highlighted in blue): (i) it contains two public keys instead of one to identify the

two users that can possibly spend the output; and (ii) it includes an additional element t

that denotes a switch (e.g., pkA,0 is used if t is smaller than the current block height in the

Monero blockchain) between the public keys.

Dual-key tuple format enables the encoding of the logic for a refund transaction. In the

sample tuple shown above, assume that t signals that pkA,0 must be used. Then Alice must

choose a ring of the form (~pk0, ~pk1), containing (pkA,0, pkB,1) at some position, and sign with

the secret key skA, that is, the secret key corresponding to the public key pkA,0. Conversely,

if t signals that pkB,1 must be used, Bob can then sign with skB instead. Note that if a single

user knows both skA and skB, such an user can always use a dual-key tuple independently of

the value t.

The remaining step is to design a linkable ring signature scheme that supports this new

tuple format. This, however, requires to address the following challenges.

Key-image mechanism. The ring signature scheme currently used in Monero achieves

linkability by publishing the key-image constructed from the single public key. For instance,

Alice produces a signature with skA; the signature will contain the key-image I = Hp(pkA)skA .

If Alice signs again with skA, the same key-image would be computed and this can be

detected. To mimic this behavior while handling the dual-key tuple format, the challenge is

to define a single key-image that uniquely identifies a pair of public keys (pk0, pk1) and yet

can be computed knowing only one of the signing keys skb. Similar to the Diffie-Hellman

key exchange mechanism [56], our approach redefines the key-image as J = gsk0·sk1 , fulfilling

thereby the expected requirements: (i) knowing skb suffices to compute J := pkskb
1−b; (ii) it

uniquely identifies (pk0, pk1) since pkskb
1−b = pksk1−b

b .

Hardening key-image linkability. The aforementioned key-image definition allows to

link the pair of public keys (pk0, pk1). However, it is crucial to make the key-image unique not

96

only to the pair of public keys but also to the output that contains them itself. Otherwise,

one of the users could create another dual-key tuple with the same pair of public keys, create

a signature with it (and thus a key-image), and effectively make the funds in the original

tuple unspendable since in Monero every key-image is only allowed to appear once. That

can be mitigated by introducing a random unique identifier, m, to each output, and this

identifier can be included in the computation of the key-image without violating the security

and privacy guarantees of the signature scheme. In Monero, such an unique identifier can be

constructed by hashing the transaction that included the output and the output’s position

in the transaction. Thus, we may view the rings used in DLSAGs as consisting of unique

triples, (pk0, pk1,m)[1,n], and we define the dual key-image to be J := gmj ·skj,0·skj,1 , for some

j ∈ [1, n] corresponding to the position of the true signer in the ring.

The rest is to follow the idea of the Monero LSAG modified to support the new linkability

tag. Figure 4.3 introduces the details of the DLSAG construction.

4.2.2 Security analysis

We use the existential unforgeability of ring signatures with respect to insider corrup-

tion introduced in [18]. Signer ambiguity and linkability properties are similar to those in

LSAG [101], adapted to DLSAG syntax for readability.

Definition 4.2.1. (Existential unforgeability of ring signature with respect to

insider corruption) Let λ be a security parameter, let N , qH , qS, qC be natural numbers

such that qC ≤ N ≤ poly(λ), 1 ≤ qH ≤ poly(λ), 1 ≤ qS ≤ poly(λ). Let (G, q, g) be some

group parameters from a Dual LSAG signature scheme (KeyGen, Sign, Verify, Link).

Let OC be a corruption oracle that can be queried up to qC times which acts as a discrete

logarithm oracle. Let OS be a signature oracle that can be queried up to qS times. Presume

OS takes as input some ring of public keys ~pk, message m, signing index `, and parity bit b,

and produces as output a valid signature. Let OH be a random oracle that can be queried up

to qH times.

97

Construction of DLSAG

• (sk, pk)← KeyGen(1λ): Choose sk0, sk1 uniformly at random from Zq,m as a bitstring
chosen uniformly at random from {0, 1}n. Set both pkb := gskb for b ∈ {0, 1}. Output
sk = (sk0, sk1), pk = (pk0, pk1,m).

• σ ← Sign(skb, ~pk, tx): Parse: ((pk1,0, pk1,1,m1), . . . , (pkn,0, pkn,1,mn)) ← ~pk. Sample
s0, s1, . . . , sn−1 from Zq. Compute:

J := pkmn·skb
n,1−b ; L0 := gs0 ; R0 := pks0·mn

n,1−b ; h0 := Hs(tx||L0||R0);

Then, for i ∈ {1, . . . , n− 1}, compute the following sequences:
Li := gsi · pkhi−1

i,b ; Ri := pksi·mi
i,1−b · J

hi−1 ; hi := Hs(tx||Li||Ri)

Now, solve for s0 such that Hs(tx||gs0 · pkhn−1
n,b ||pks0·mn

n,1−b · J hn−1) = h0. For that, we get
s0 = s0 − hn−1 · skb. Return: σ = (s0, s1, . . . , sn−1, h0,J , b).

• b←Vrfy(~pk, tx, σ): Parse
(s0, s1, . . . , sn−1, h0,J , b)← σ; ((pk1,0, pk1,1,m1), . . . , (pkn,0, pkn,1,mn))← ~pk

For i ∈ {1, . . . , n}, compute the sequences:
Li := gsi · pkhi−1

i,b ; Ri := pksi·mi
i,1−b · J

hi−1 ; hi := Hs(tx||Li||Ri)

Return 1 if h0 = hn. Otherwise, return 0.

• b ← Link((~pk1,tx1,σ1), (~pk2, tx2, σ2)): If (Vrfy(~pk1,tx1,σ1)∧Vrfy(~pk2,tx2,σ2)) =
0: return 0. Else, parse: (s0, s1, . . . , sn−1, h0,J1, b1) ← σ1 and (s0, s1,
. . . , sn−1, h0,J2, b2)← σ2. Return 1 if J1 = J2, and 0 otherwise.

Figure 4.3. Construction of DLSAG. For ease of exposition, we assume that
the secret key skb corresponds with the public key pkn,b. As noted before, the
position of the true signer’s public key is chosen uniformly random.

The Dual LSAG signature scheme is said to be existentially unforgeable with respect to

insider corruption if any PPT algorithm A has at most a negligible probability of success in

the following game.

1. The challenger selects a set of N public keys from the Dual LSAG signature scheme

key space ~PK ←
{

(pk1,0, pk1,1,m0), · · · , (pkN,0, pkN,1,mN)
}
and sends this set to the

player A.

2. The player is granted access to oracles OC, OS, and OH .

98

3. The player outputs a message m, a ring of public keys ~pk ={(Y1,0, Y1,1,m
′
1),

(Y2,0, Y2,1,m
′
2), · · · , (YR,0, YR,1,m′R)} ⊆ ~PK where R ≥ 1 and a purported forgery

(σ, b).

The player A wins if Verify(~pk,m, σ) = 1 and the following additional success con-

straints are satisfied:

• The keys in ~pk are distinct and every key (Yi,0, Yi,1,m′i) ∈ ~pk satisfies (Yi,0, Yi,1, m′i)

= (pkj(i),0, pkj(i),1,mj(i)) ∈ ~PK for some j(i);

• OC has not been queried with any Yi,b for any i;

• The purported forgery is not a complete copy of a query to OS with its corresponding

response.

Definition 4.2.2. Existential unforgeability with respect to insider corrup-

tion [18] For a fixed N , qH , qS, and qC, if A is an algorithm that operates in the game

defined Definition 4.2.1 in time at most t and succeeds at the above game with probability at

least ε, we say A is a (t, ε, N, qH , qS, qC)-forger where ε is measured over the joint distribution

of the random coins of A and the challenge set ~PK.

Definition 4.2.3 (DLSAG signer ambiguity [101]). A DLSAG signature scheme with secu-

rity parameter λ is signer ambiguous if for any PPT algorithm A, on inputs any message m,

any list ~pk of n public key pairs, any valid signature σ on ~pk and m generated by user π, such

that skπ /∈ Dt and any set of t private keys Dt := {sk1, . . . , skt} where {gsk1 , . . . , gskt} ⊂ ~pkb,

n− t ≥ 2 and b is extracted from σ. There exists a negligible function negl(·) such that:

∣∣∣∣Pr [A(m, ~pk,Dt, σ) = π]− 1
n− t

∣∣∣∣ ≤ negl(λ)

Definition 4.2.4 (DLSAG linkability). A DLSAG signature scheme is linkable if there exists

a PPT algorithm Link that takes as input two rings ~pk1, ~pk2, two messages tx1, tx2, their

corresponding DLSAG signatures σ1, σ2 (with respective true signing indices π1 and π2 not

99

provided to Link), and outputs either 0 or 1, such that there exists a negligible function

negl(·) with the property that:

Pr [Link((~pk1, tx1, σ1), (~pk2, tx2, σ2)) = 1|(pkπ1 ,mπ1) 6= (pkπ2 ,mπ2)]+

Pr [Link(~pk1, tx1, σ1), (~pk2, tx2, σ2)) = 0|(pkπ1 ,mπ1) = (pkπ2 ,mπ2)] ≤ negl(λ)

Theorem 4.2.1 (DLSAG unforgeability). DLSAG signature scheme is existentially un-

forgeable against adaptive chosen-plaintext attack (cf. Definition 4.2.2) provided that the

One-More Discrete Logarithm (OMDL) problem

2
 is hard, under the random oracle model.

Proof. We construct (t′, ε′, N ′)-OMDL solver B from a (t, ε, N, qH , qS, qC)-forger A. A takes

as input a set of N public keys from the signature scheme, has qS oracle queries available

to a signing oracle OS, has qH oracle queries available to a random oracle OHs , and has qC
oracle queries available to a corruption oracle OC . We wrap A in an algorithm A′ with the

same oracle access that is appropriate for use in the forking algorithm.

B takes as input a set of N ′ + 1 = 2N group elements (the challenge points) and has up

to N ′ queries available to a corruption oracle OC . B executes a forking algorithm FA′ as a

black box, passing the challenge points onto FA′ as input, which in turn forks a black box

execution of A′ (the simple wrapper of A) using the challenge points as input.

B answers corruption oracle queries made by FA′ by querying OC directly and passing

along the result. FA′ answers corruption oracle queries for A′ by passing them along to B.

FA′ simulates responses to random oracle queries to OHs (or signing oracle queries to OS,

respectively) made by A′ by flipping coins.

In a transcript resulting in a successful forgery, A′ queries the random oracle during

verification with all queries of the form

hi+1 ← OHs(tx || gsi · Y hi
i,b || Y

si

1,(1−b) · J
hi).

That is to say, A′ does not guess hi+1 but actually queries the random oracle at least

once in each transcript (except in transcripts that occur with negligible probability). To
2

 ↑ The One-More Discrete Logarithm hardness assumption is defined in [12].

100

see why, note that if A does not make one of these queries, then A is selecting hi+1 at

random by flipping coins and later discovering that hi+1 is precisely the image of some

(tx || gsi · pkhi
i,b || pksi

i,1−b · J hi) through the random oracle. This occurs with probability at

most 1/q which is negligible.

In the transcript ofA′, queries made to the random oracle occur in linear order; denote the

responses received by A as e0, e1, e2, Define the distinguished pair (j, i) to be the index of

the oracle response ej such that the oracle query ej = hi+1 = OHs(tx || gsi ·Y hi
i,b || Y

si

1,(1−b)·J hi)

corresponds to the first verification query made to the random oracle. We refer to such a

transcript as a (j, i)-forgery.

Note that any algorithm executing A in a black box can inspect the transcript of A and

extract the pair (j, i) in O(qH) time. Hence, if A takes time t, then the simple wrapper

A′ takes time t + O(qH). Note that the acceptance probabilities acc(A) = acc(A′), and

A′ can be used in the forking lemma. The algorithm FA′ runs A′ as a black box, selecting

its random tape. FA′ rewinds the transcript of A′ while preserving the random tape and

the oracle responses preceding the rewind point e0, e1, . . . , ej−1. The algorithm FA′ responds

with new random values e′j, e′j+1, . . . from that point forward. By the forking lemma, if A′

has success probability acc(A) > ε, then FA′ has success probability acc(B) > ε
(
ε
qh
− 1

q

)
. In

particular, if ε is non-negligible, then so is acc(FA′).

For timing, the forking algorithm associated with A′ runs in twice the time of A′ in

addition to whatever additional time is required to simulate the oracle queries made by A′.

In particular, since A′ runs in time t+O(qH), FA runs in time at most 2t+O(4qH + 2qS).

Now in both transcripts produced by FA′ , the first random oracle query relevant to the

forgery is the jth query, and in both transcripts, the inputs to this query are identical.

However, in each transcript, the query responses are different. In the first transcript we have

ej = OHs(tx || L || R)

and in the second transcript we have

e′j = OHs(tx || L || R)

101

for some ej 6= e′j, and where the inputs to these queries are identical.

Since ~pk is included in tx, the ring of public keys in the forgery is the same in each

transcript. At this point in the transcript, the forger may not have decided which ring

member this assignment is made to, i.e. may not have decided upon an index i or value si
such that L = gsi · Y hi

i,b , and R = Y si

1,(1−b) · J hi . Certainly the forger cannot know the values

of hi except with negligible probability, either, since the index j was selected to be the first

oracle query used in verification of the forgery.

In fact, since ej 6= e′j and this is the first oracle query made, the probability that the

subsequent signature challenges {hi}i are identical in each transcript is negligible. Yet the

forger has produced from the first transcript some si, hi and from the second transcript some

s′i, h
′
i such that L = gsi · Y hi

i,b = gs
′
i · Y h′i

i,b .

Any algorithm running the forking algorithm FA′ as a black box learns the index i common

to both transcripts, the signing data from each transcript si and s′i and the challenges hi, h′i
from those transcripts, and can compute the discrete logarithm

Yi,b = g
s′

i
−si

hi−h′
i

in time that is O(1) related to inverting scalars.

Hence, B takes 2N group elements as input, runs in time at most 2t+O(4qH + 2qS + 1),

has acceptance probability at least ε
(
ε
qh
− 1

q

)
, makes at most qC ≤ 2N − 1 = N ′ corruption

oracle queries, and yet successfully produces the discrete logarithm of at least one challenge

point.

Theorem 4.2.2 (DLSAG signer ambiguity). DLSAG achieves signer ambiguity according

to Definition 4.2.3 provided that the Decisional Diffie-Hellman assumption (DDH) is hard,

under the random oracle model.

Proof. We will consider WLOG that the DLSAG is signed by the first public key of the key

pair, i.e. the before-key. The case for the after key is completely analogous.

Let m be a message, and 0 ≤ t ≤ n− 2. Let ~pk be a ring of n public keys pairs, of which

t private keys are known that corresponding to some of the before-keys. Let σ be a DLSAG

102

of the message m, with the ring ~pk by a random public key of index π whose private key is

not among the revealed ones.

Assume that there exists a non-negligible function ε(·) and PPT A such that:

Pr [A(m, ~pk, σ) = π] ≥ 1
n− t

+ ε(λ)

We will use A to construct a PPT M that violates the DDH assumption with non-

negligible advantage.

Indeed, without loss of generality, we provide our proof for t = 0. The proof for t 6= 0

can be carried out in the same manner.

Upon receiving the DDH triple (A,B,C), A picks n − 1 public key pairs of which A

knows corresponding private before-keys. Append (A,B) at the end to obtain an n-sized

ring, [(Ai, Bi)]ni=1 Pick a random index π and swap the pair in that entry with (A,B), let

that be ~pk.

In order to generate a purported signature σ by that ring with the index π on the given

message. We will toss coins to set the random oracle query responses and feed those results

back to A when it queries the oracle for verification.

Specifically, we pick random values s1, . . . , sn, h1, . . . , hn, and define, for all i ∈ Zn the

oracle query responses as:

hi+1 := Hs(m||gsi · Ahi
i ||Bsi

i · Chi).

If C = gab, then the above will be a proper DLSAG signature with the given oracle; if

not, then C is just a random point and shouldn’t be more likely to be linked to A,B than

any other pair in the ring by A.

103

Since A is able to extract the true signer from the given key image with non-negligible

advantage, we feed σ = (h1, s1, . . . , sn, C) to it. We set M(A,B,C) to return 1 if

A(m, ~pk, σ) = π, and return a coin toss otherwise. ComputingM’s advantage:

Pr [M(A,B,C) = b|b = 1] = Pr [(M(A,B,C) = b|b = 1) ∧ (A(m, ~pk, σ) = π)]

+ Pr [(M(A,B,C) = b|b = 1) ∧ (A(m, ~pk, σ) 6= π)]

≥ 1 ·
(1
n

+ ε(λ)
)

+ 1
2

(
1− 1

n
− ε(λ)

)
= 1

2 + 1
2n + ε(λ)

2

And

Pr [M(A,B,C) = b|b = 0] = Pr [(M(A,B,C) = b|b = 0) ∧ (A = π)]

+ Pr [M(A,B,C) = b|b = 0 ∧ A 6= π]

= 0
(1
n

)
− 1

2

(
1− 1

n

)
= 1

2 −
1

2n

Combining the two equations, we get:

Pr [M(A,B,C) = b] =

Pr [b = 1]Pr [M(A,B,C) = b|b = 1] + Pr [b = 0]Pr [M(A,B,C) = b|b = 0]

≥ 1
2

(
1
2 + 1

2n + ε(λ)
2

)
+ 1

2

(1
2 −

1
2n

)
= 1

2 + ε(λ)
4

Since ε(λ) is non-negligible, so is ε(λ)/4, which shows thatM breaks the DDH assumption

with non-negligible probability, as we wanted to show.

Theorem 4.2.3 (DLSAG linkability). DLSAG scheme achieves linkability as defined in Def-

inition 4.2.4 provided that the OMDL problem is hard, under the random oracle model.

104

Proof. We will use the notation introduced in the previous proof. Notice that in the un-

forgeability proof, the discrete logarithm of Yi,b was extracted by comparing the two repre-

sentations of the same point L. At that point, one could have also extracted the discrete

logarithm of J with respect to the point Y mi

1,(1−b) by comparing the two representations of

the point R:

J = Y

(
s′

i
−si

hi−h′
i

)
mi

1,(1−b) .

Moreover, those discrete logarithms are the same.

Now, if there existed a PPT adversary A, having no prior knowledge of private keys in the

b-bit component other than the private key of a certain (Z(0),Z(1),m), that could produce

a signature σ with a purported dual key image J̄ , distinct from the honest key image J .

Then we could fork A and extract a second signature σ′ whose first verification query is

the same as that of σ.

ej = OHs(tx || L || R)

and in the second transcript we have

e′j = OHs(tx || L || R)

for some ej 6= e′j. Writing the representations of those two points we get:

gsi · Y hi
i,b = L = gs

′
i · Y h′i

i,b , and

Y simi

1,(1−b) · J̄
hi = R = Y

s′imi

1,(1−b) · J̄
h′i

There are two cases to consider: If Yi,b = Z(b), then, as observed at the beginning of this

proof, we extract the discrete logarithm of J̄ and conclude that J̄ = J , a contradiction.

Otherwise, if Yi,b 6= Z(b), then, again as observed at the beginning, we extract the discrete

logarithm of Yi,b, thus solving the DLP for that point.

By the above corollary, all we are left to show is that Pr [Link(tx1, σ1, tx2, σ2) =

1|(pkπ1 ,mπ1) 6= (pkπ2 ,mπ2)] is negligible.

105

Since our Link algorithm just compares the dual key images, this would require a PPT

algorithm A to obtain two tuples of the form (A,B,m1) and (C,D,m2) such that they both

have the same point as dual key image, J = gabm1 = gcdm2 .

However, if the output containing the dual address (A,B) is created at the i1 position

of the output vector of transaction tx1, then m1 := Hs(tx1, i1). This means, by the ROM,

that a and b have to be fixed before the value of m1. Similarly, m2 := Hs(tx2, i2) can only

be known after c and d are fixed.

Each side of the equation gabm1 = gcdm2 therefore behaves as a random oracle, so the

chance of they matching is negligible. This shows that our DLSAG scheme is linkable.

Further Security and Privacy Analysis. We have analyzed the security and privacy

of the digital signature scheme. Recent privacy studies on Monero [91 , 119] show that com-

position of several transactions (and thus signatures) can lead to new threats and leakages.

In particular, we observe that DLSAG allows an observer to track when the receiver spends

his coin if the sender use the stealth address mechanism used in Monero to generate the one

time address for the receiver. Such linkability issue can be mitigated if the receiver spends

his coins as soon as he receives it.

4.3 Implementation and performance analysis

Implementation. We developed a prototypical C++ implementation [57] of DLSAG

to demonstrate the feasibility of our DLSAG construction in comparison with the Monero

LSAG. We have implemented DLSAG and LSAG using the same cryptographic library,

libsodium [98], and cryptographic parameters (i.e. the ed25519 curve) as currently used in

Monero.

Testbed. We condsignucted our experiments on a commodity desktop machine,sign

which is equipped with Intel(R) Core(TM) i5-7400 CPU @ 3.00 GHz CPU, 12GB RAM. In

these experiments, we focus on evaluating the overhead of DLSAG over LSAG in terms of

computation time and signature size.

Computation Time. The results depicted in Table 4.1 show that the running time of

DLSAG is practically the same as the running time of LSAG in both signing and verifying

106

Table 4.1. Running time (in milliseconds) of DLSAG and LSAG for different ring sizes

LSAG DLSAG
Ring Size Sign Vrfy Sign Vrfy

5 1.929 ms 1.835 ms 1.771 ms 1.699 ms
10 3.863 ms 3.789 ms 3.665 ms 3.428 ms
15 5.873 ms 5.577 ms 5.625 ms 5.512 ms
20 8.045 ms 7.952 ms 7.516 ms 7.428 ms

algorithms. Thus, DLSAG could be included in Monero without incurring computation

overhead. We estimate that the computation time for DLSAG is systematically a 7% smaller

than that of LSAG. One of the main reasons is that in DLSAG, we eliminate the use of hash-

to-point evaluations (e.g., as required in the old key-image mechanism). More specifically,

for ring of size n, both DLSAG signing and verifying algorithms incur approximately ≈ 4n

group operations and n hash-to-scalar evaluations while in LSAG, signing and verifying

algorithms require additional n hash-to-point evaluations, which we see as the main factor

for the differences in running time. Therefore, our evaluation shows that DLSAG does

not impose any computation overhead in comparison to current LSAG. In fact, if adopted,

DLSAG might even slightly improve the signature creation and verification times.

Signature Size. Here, we studied the overhead in terms of signature size, and thus

indirectly the communication overhead imposed by DLSAG. We observed that in comparison

to the LSAG signature, the signature of DLSAG has just one extra parity bit to indicate the

position of the public key needed for verification (i.e., either pk0 or pk1). This short signature

size can be achieved at the cost of higher tuple footprint. However, DLSAG enables off-chain

payments and thus reducing the number of on-chain tuples required overall. In summary, this

evaluation shows that DLSAG can be deployed in practice with almost no communication

overhead and yet improves the scalability of Monero since it enables off-chain operations as

we discuss later in this chapter.

107

4.4 DLSAG in Monero

Bootstrapping DLSAG in Monero. DLSAG can be seamlessly added into Mon-

ero. First, Monero regularly performs network upgrades for consensus rules and protocol

improvements that allows for the integration of new functionality such as DLSAG. Second,

it is possible to have transactions that mix LSAG with DLSAG. A mixed transaction will

contain a LSAG signature for each single-key input and a DLSAG signature for each input

in the dual-key format. In fact, both formats only differ in the number of public keys and

the inclusion of an extra field (i.e. flag t). Thus, Monero operations and verifications on the

commitment and range proofs remain compatible.

Fungibility. Different tuple formats coexisting on the blockchain may be detrimental to

fungibility. For instance, miners might decide to stop mining certain transactions depending

on the tuple format chosen. In order to mitigate that, we note that direct transfers using

single-key tuples can easily be simulated by setting the two public keys of the dual-key

tuples to belong to a single user. Thus, the fungibility of Monero may not be hampered with

dual-key tuples only.

Backwards compatible timelock processing. Dual-key tuples contain a flag t in

the clear. We envision that this flag is implemented in Monero as a block height, so that

given a pair (pk0, pk1), pk0 can be used before block t is mined and pk1 is used afterwards.

Although it is unclear and an interesting future research work, it could be possible that the

different t values leak enough information for an adversary to break privacy, in the spirit

of Monero attacks shown in the recent literature [119 , 91]. Given that, in this work we

proactively propose an alternative timelock processing scheme that allows to have indis-

tinguishable timeouts. This scheme, added as an extension to the dual-key tuple format

and DLSAG signature scheme helps to maintain the fungibility of Monero. We note that

this timelock processing could be of individual interest as timelocks are part of virtually all

cryptocurrencies.

The core idea of the timelock processing scheme is as follows. Instead of including t in

the clear, each output contains a Pedersen commitment to that value Com(t, r1), where r1

is the mask value which is included along with a proof (Π-time) that t is in the range [0, 2k].

108

Inputs:
[0] ((pk1,0, pk1,1),Com(v1),Π-amt1,Com(t1),Π-time1), . . . ,
(pkn−1,0, pkn−1,1),Com(vn−1),Π-amtn−1,Com(tn−1),Π-timen−1),
((pkA, pkA),Com(10),Π-amtA,Com(tA),Π-timeA)
Outputs:
[0] (pkB, pkA), Com(10), Π-amtA, Com(tB), Π-timeB
Authorizations:
[0] σ0

Figure 4.4. A simplified Monero transaction using dual-key tuples and hidden timelocks.

Now, one can prove that t has expired as follows: pick t such that t < t. If T is a block height

such that t < T , that would tell the miner that indeed t < T , and such a transaction will

be mined only if the appropriate key is being used. In order to convince the miner that the

relation t < t holds, the signer picks a random mask r2 and forms the Pedersen commitment

Com(t− t, r2), and includes this commitment along with the value t, a range proof Π-time

to prove that t− t is in range [0, 2k] and other ring member information.

4.4.1 Putting all together

In this section, we use the illustrative example in Fig. 4.4 to revisit the processes of

spending and verifying a transaction assuming that Monero includes dual-key tuples, sup-

ports DLSAG signature scheme and the timelock processing scheme.

Assume that Alice has previously received 10 XMR in the public key (pkA, pkA) (i.e., input

[0]). Assume that she wants to pay Bob for a service worth 10 XMR with a certain timeout

tB. Thus, either Bob claims the 10 XMR before tB or Alice gets them refunded at the address

pkA. For this, Alice can create the transaction shown in Fig. 4.4 . After this transaction is

added to the Monero blockchain, Bob can get his coins by spending the output [0]. In the

following, we describe the generation of this transaction and how it can be verified by the

interested party (e.g., miners).

Transaction Generation. Assume that Alice wants to spend coins held in (pkA, pkA).

First, Alice invokes the Sign algorithm for DLSAG on input (skA, ((pk1,0, pk1,1), . . . ,

(pkn−1,0, pkn−1,1), (pkA, pkA), tx), obtaining thereby a signature σ. Second, she has to use

the timelock processing mechanism to prove that tA has not expired. For that, she creates

109

the tuple (Com(tA), tA,Com(tA− tA),Π-timeA) as mentioned above. Similar to the problem

of publishing commitment of amounts, publishing Com(tA) would reveal what public key

within the ring is being used, hindering thus signer ambiguity. Fortunately, we can adapt

the approach in Monero to handle value commitments for Com(tA).

Transaction Validation. Every miner can validate the inclusion of Alice’s transaction

in a block at height T by checking whether tA < T . If so, he proceeds to verify the range

proofs for the commitment values. Next, he verifies that the DLSAG signature is correct

using the corresponding Vrfy algorithm. Finally, the miner checks that the dual ring

signature is also correct using the Vrfy algorithm as defined in DLSAG. We remind that

using the extension of DLSAG as defined in the full version [118], the miner would have to

verify only one dual signature, using the DLSAG verification algorithm.

4.5 Applications in Monero Enabled by DLSAG

In this section we overview the applications that are released by the introduction of

DLSAG in Monero.

4.5.1 Building blocks

Commitment Scheme. A commitment scheme Com = (PCom,VCom) consists

of a commitment algorithm PCom(m) → (com, decom) and a verification algorithm

VCom(com, decom,m)→ b ∈ {0, 1}. The commiment scheme allows a prover to commit

to a message m without revealing it, and the verficiation algorithm allows a verifiers to be

able to verify that message m was committed using the revealed decommitment information

decom.

Zero-knowledge proofs (ZKP). A ZKP system allows a prover to prove to a verifier

the validity of a statement without revealing more information than the pure validity of

the statement itself. In particular, a ZKP is composed by two algorithms (ZKProve,

ZKVerify) defined as follows. First, the prove algorithm Π ← ZKProve(st, w) takes as

input a statement st and a witness w and returns a proof Π. The verification algorithm

>,⊥ ← ZKVerify(st,Π) takes as input a statement st and returns > if Π is a valid proof

110

for st. Otherwise, it returns ⊥. We require a ZKP that fulfills the zero-knowledge, soundness

and completeness properties [71].

In our constructions, we instantiate it with the sigma protocol [146], using the Fiat-

Shamir heuristic to make it non-interactive [63]. For simplicity of notation, we denote by

Π({x}, (X, g)) a proof of the fact that X = gx where X and g are public and x is maintained

private from the verifier. Moreover, we denote by Π({x}, (X, g)∧ (X ′, g′)) a proof of the fact

that X = gx and X ′ = g′x, where x is maintained private from the verifier and the rest of

values are public.

2-of-2 DLSAG signatures. Assume that Alice and Bob want to jointly pay

a receiver R for a service. We require that Alice and Bob jointly create a ring sig-

nature that spends γ XMR from a dual-key (pkAB,0, pkAB,1), distributing them as γ′ to

(pkR,0, pkR,1) and the remaining γ − γ′ back to themselves. For that, Alice and Bob execute

2of2RSSign(pkAB,b, [skAB,b]A, [skAB,b]B, tx) protocol, as shown in Fig. 4.5 . The 2of2RSSign

protocol largely resembles the Sign algorithm from the DLSAG scheme. The main difference

comes in the computation of h0 = Hs(tx||gr||pkrmAB,1−b) where he targets gr and pkrmAB,1−b, as

well as their shared key-image JAB, have to be jointly constructed by Alice and Bob.

This protocol results in Alice and Bob obtaining their share of the signature [σ]A
and [σ]B that they must combine to complete the final ring signature σ := ([s0]A +

[s0]B, s1, . . . sn−1, h0, (JA · JB), b). Interestingly, Alice (and similarly Bob) can verify that

[σ]B is indeed a share of a valid signature σ by computing

g([s0]A+[s0]B) ?= (RA ·RB)
pkhn−1

AB,b
, where RA = g[s′0]A and RB = g[s′0]B

4.5.2 Payment channels in Monero

Background. A payment channel enables several payments between two users without

committing every single one of them to the blockchain. For this reason, payment channels

are being widely developed as a scalability solution in cryptocurrencies such as Bitcoin [129].

However, the conceptual differences between Monero and Bitcoin hinder a seamless adop-

111

2of2RSSign (pkAB,b, [skAB,b]A, [skAB,b]B, tx)
Alice([skAB,b]A, Q = pkAB,1−b) Bob([skAB,b]B, Q = pkAB,1−b)

~s := (s1, . . . , sn−1) $←− Zn−1
q , [s′0]A

$←− Zq [s′0]B
$←− Zq;

JA := Q[skAB,b]Am; ĴA := Q[s′0]Am; JB := Q[skAB,b]Bm, ĴB := Q[s′0]Bm;
RA := g[s′0]A RB := g[s′0]B ;
πA = ΠA({[s′0]A}, (RA, g) ∧ (ĴA, Q

m)) πB ← ΠB({[s′0]B}, (RB, g) ∧ (ĴB, Q
m))

paramA := (~s,JA, ĴA, RA, πA) paramB := (JB, ĴB, RB, πB)
(comA, decomA)← PCom(paramA) (comB, decomB)← PCom(paramB)

comA

comB

paramA

If VCom(comA, decomA, paramA) = ⊥ : abort;
If ZKVerify(πA, (g,Qm)) = ⊥ : abort;

paramB

If VCom(comB, decomB, paramB) = ⊥ : abort;
If ZKVerify(πB, (g,Qm)) = ⊥ : abort;
Parse: paramA := (~s,JA, ĴA, RA, πA) Parse: paramB := (JB, ĴB, RB, πB)
h0 := Hs(tx||g[s′0]A+[s′0]B ||ĴA · ĴB) Compute {hi} as done by Alice;
Set J = JA · JB. Compute: [s0]B := [s′0]B − hn−1[skAB]B;
For i ∈ {1, . . . , n− 1} :

Li := gsi · pkhi−1
i , Ri := pksimi

i,1−b · J
hi−1

hi = Hs(tx||Li||Ri)
[s0]A := [s′0]A − hn−1[skAB, b]A
Output: Output:
[σ]A := ([s0]A, s1, . . . sn−1, h0,JA, b) [σ]B := ([s0]B, s1, . . . sn−1, h0,JB, b)

Figure 4.5. Description of the protocol 2of2RSSign (pkAB,b, [skAB,b]A,
[skAB,b]B, tx), where pkAB denotes a one-time address shared between Alice
and Bob, [skAB,b]A, [skAB,b]B denote the Alice and Bob shares of the private key
for pkAB,b, and tx denotes the transaction to be signed.

112

tion of Bitcoin payment channels in Monero. We instead leverage the refund transactions

described in this work.

The lifecycle of a payment channel between Alice and Bob consists of three steps. First,

Alice and Bob must open a payment channel by including an on-chain transaction that

transfers XMR from Alice into a public key pkAB whose private key skAB is shared by Alice

and Bob, that is, Alice holds [skAB]A and Bob holds [skAB]B such that [skAB]A+[skAB]B = skAB.

Second, they perform off-chain payments by locally adjusting how many XMR each of them

gets from the shared address. Finally, they must close the payment channel by submitting

a second on-chain transaction that distributes the XMR from the shared address to Alice and

Bob as defined by the last balance agreed off-chain. Thus, payment channels require only

two on-chain transactions (open and close) but allow for many off-chain payments to take

place during its life time. In the following, we show our design of payments channel using

the building blocks explained in Section 4.5.1 .

Open a payment channel. Assume that Alice holds γ XMR in a dual key (pkA,0, pkA,1)

and she wants to create a payment channel with Bob. First, she transfers γ XMR to a dual

key of the form (pkAB, pk′A) and sets the timeout to a desired block height t. This way, if Bob

never manages to coordinate with Alice to spend from pkAB, she will automatically regain

control of her funds after that height, eliminating the need for a separate refund transaction.

On the other hand, if Bob has received any off-chain transfers from pkAB, he needs to be sure

to put the final balance in a transaction on chain before the block with height t is published.

Off-chain payments. Assume that Alice wants to pay γ′ < γ XMR to Bob using the

aforementioned payment channel. For that, Alice transfers γ′ XMR from (pkAB, pkA) to a

Bob’s dual address (pkB,0, pkB,1) and the change γ − γ′ XMR back to an Alice’s dual address

(pkA.0, pkA,1). As the XMR are being spent from the shared address pkAB, the transaction must

be signed by both users to be valid. The cornerstone of payment channels, however, is that

only Alice signs otx and gives her share of the signature [σ]A to Bob, who can in turn verify

it. At this point, Bob publish the transaction and get the γ′ XMR before the timelock expires.

Instead, Bob locally stores otx and the corresponding signature [σ]A until either Bob receives

another off-chain payment for a value higher than γ′ XMR or the channel is about to expire.

113

Close channel. The channel between Alice and Bob can be closed for two reasons.

First, Bob does not wish to receive more off-chain payments from Alice. Then, assume that

Bob got a pair (tx, [σ]A), where tx is the last agreed balance. He can simply complete σ′

with his own share [σ′]B and publish the transaction. Second, if the timelock included in the

deposit transaction expires, and Alice regains control of the original γ XMR deposited.

4.5.3 Payment-Channel Network in Monero

Assume that Alice wants to perform an off-chain payment to Dave using a path of opened

payment channels of the form Alice, Bob, Carol, Dave. Such a payment is performed in three

phases. First, Dave creates a condition (Y := gy, Y ∗ := pkymCD,1) and communicates the con-

ditions (Y, Y ∗) to Alice. Second, Alice creates a conditional payment to Bob under condition

(Y, Y ∗), who in turn creates a conditional payment to Carol under the same condition, and

finally Carol creates the last conditional payment to Dave under condition (Y, Y ∗). Finally,

in the third phase, Dave reveals y to Carol to pull the coins from her, who in turn, reveals

y to Bob and finally Bob to Alice.

We have to overcome a subtle but crucial challenge to make such construction fully

compatible with Monero. The problem consists on that the same condition (Y, Y ∗) cannot

be used by every pair of users in the path: While g is the same for every user, each Y ∗i

requires the value y (only known by Dave before the payment is settled) and the dual address

(pkPiPi+1 , pkPi
) that defines each of the payment channels (and therefore only known by the

two users sharing the channel). To overcome that, we add an extra round of communication

where each pair of users forward to the receiver of the payment their shared address’ refund

address multiplied by their output identifier (i.e., pkmAB
A where pkA is the refund address of

the pair (pkAB, pkA)). Upon reception of these values, the receiver computes the pair (Y, Y ∗i)

for each user along with a zero-knowledge proof of the fact that both condition values are

constructed as expected. Finally, the receiver sends these conditions and proofs back to each

user in the payment path from the receiver to the sender.

Now, before setting the conditional payment, each user must validate the zero-knowledge

proof produced by the receiver to ensure that the condition for the incoming payment is

114

built upon the same value y as the condition for the outgoing payment. It is important to

note that soundness of the zero-knowledge scheme does not allow Dave to cheat on the proof

and still be correctly validated by other users. Otherwise, it could be the situation that an

intermediate user loses coins because his outgoing payment goes through but cannot use the

same value y for unlocking the incoming payment.

4.6 Concluding remarks and outlook

We present DLSAG, a linkable ring signature scheme that serves as a building block to

improve expressiveness, interoperability, and scalability in Monero. We have formally proven

that DLSAG provides unforgeability, sender ambiguity, and linkability. We also evaluate

the performance of DLSAG showing that DLSAG provides a single bit of communication

overhead while slightly reducing the computation overhead when compared to current LSAG.

Moreover, we contribute additional cryptographic schemes (e.g., timelock processing) to

help to maintain the fungibility of Monero. DLSAG enables payment channels, payment

channel networks, and atomic swaps for the first time in Monero. DLSAG is currently under

consideration by Monero researchers as an option for adoption and it is also compatible with

other CryptoNote-style cryptocurrencies [46].

Outlook. In the future, we identify the following future research directions:

• Bi-directional payment channels: In this work, we present a construction for uni-

directional payment channels. An extension is thus the design and implementation

of bi-directional payment channels. In particular, we find interesting to investigate if

techniques in other scalability solutions, such as the Lightning Network, are compatible

with our payment channels or what are the challenges otherwise.

• Further expressiveness: We envision that expressiveness of DLSAG could be ex-

panded with threshold signatures similar to those of Thring [72] and key aggregation

similar to that of [107]. A thorough investigation of these approaches constitutes a

venue for future research.

115

• Extend security and privacy models: So far, security and privacy definitions for

Monero focus on individual signatures. However, recent studies [119 , 91] show that an

adversary that considers several transactions (and thus several signatures) at a time,

can create profiling information about the users. Thus, new security and privacy models

are required to further characterized the security and privacy notions provided by the

complete Monero cryptocurrency. Moreover, we plan to study the privacy guarantees

provided by suggested extensions such as the timelock processing scheme.

• Timelock offset analysis and mitigations: To prove to the network that a certain

timelock t has or has not expired, the signer publishes the timelock offset value t,

which leaks information about the position of the real timelock t, which in turn leaks

information about whether a certain ring is likely to represent the spend of an output

that was controlled by two different parties, or just one. Coming up with heuristics

to separate those two cases, on one hand; on the other hand, figuring out the correct

timelock distributions to draw t from for transactions where it is not meaningfully

being used should become interesting areas of research.

• New privacy implications: With the use of DLSAG and the new key image mecha-

nism, we introduce a new privacy implication in the Monero blockchain. In particular,

given two rings and their corresponding signatures, the sender can determine whether

the two truly spent public keys belong to the same user (i.e., the two public keys where

derived from the same stealth address with randomness provided by the sender her-

self). We refer to the full version [118] for the detailed description of the traceability

method and practical countermeasures.

116

Part III

Improving Computation Overhead

with Flexible Signature Framework

117

5. FLEXIBLE SIGNATURES

Traditional cryptographic primitives are not designed for uncertain settings with unpre-

dictable resource constraints. Consider, for example prominent digital signature schemes

(such as RSA and ECDSA), that allow a signer who has created a pair of private and public

keys to sign messages so that any verifier can later verify the signature with the signer’s

public key. The verification algorithms of those signature schemes are deterministic and

only return a binary answer for the validity of the signature (i.e., 0 or 1).

Such verification mechanisms may be unsatisfactory for an embedded module with un-

predictable computing resources or time to perform the verification: if the module can only

partially complete the verification process due to resource constraints or some unplanned

real-time system interrupt, there are no partial validity guarantees available. Thus, the

cost of verifying can be relatively expensive, especially for resource-constrained devices in

the blockchain network as they need to verify blockchain transactions before relaying it to

others.

This calls for a signature scheme that can quantify the validity of the signature based

on the number of computations performed before the verification process was stopped. In

particular, for a signature scheme instantiation with 128-bit security, we expect the verifi-

cation process to be flexible enough to offer a validity (or confidence) level in the interval,

[0, 1], based on the resources available during the verification process. We observe that none

of the previous existing signature schemes offers such a trade-off between the computation

time/resource and the security level in a flexible manner.

Contribution. This chapter initiates the study of cryptographic primitives with flexible

security guarantees that can be of tremendous interest to real-time systems. In particular,

we investigate the notion of a flexible signature scheme that offers partial security for an

unpredictably partial verification.

As the first step, based on the standard definition of digital signatures, we propose a

new definition of a signature scheme with a flexible verification algorithm. Here, instead of

returning a binary answer, the verification algorithm returns a value, α ∈ [0, 1] ∪ ⊥ that

quantifies the validity of the signature based on a number of computations performed.

118

Next, we provide a provably secure construction of the flexible signature scheme based

on the Lamport-Diffie one-time signature construction [93] and the Merkle authentication

tree [111]. The security of our signature relies on the difficulty of finding a `-near-collision

pair for a collision-resistant hash function. Through our analysis, we demonstrate that our

construction still offers a high-security level against adaptive chosen message attacks despite

performing fewer computations during verification. For example, a security level of 80 bits

requires performing only around 2
3rd of the total required hash computations for a Merkle

tree of height 20.

Finally, we prototype our constructions in a resource-constrained environment by imple-

menting those on a Raspberry Pi. We find that the performance of the proposed construc-

tions is comparable to other prominent signature schemes in terms of running time while

offering a flexible trade-off between the security level and the number of computations. Im-

portantly, neither the security level nor the number of computations has to be pre-determined

during verification.

Related Work. Fischlin [64] proposed a similar framework for progressively verifiable

message authentication codes (MACs). In particular, the author presented two concrete

constructions for progressively verifiable MACs that allow the verifier to spot errors or invalid

tags after a reasonable number of computations. Also, the paper introduced the concept of

detection probability to denote the probability that the verifier detects errors after verifying

a certain number of blocks. In this work, we address the open problem of a progressively

verifiable digital signature scheme, and we incorporate the detection probability concept into

the security analysis of our schemes.

Bellare, Goldreich, and Goldwasser [14] introduced incremental signatures. Here, given

a signature on a document, a signer can obtain a (new) signature on a similar document

by partially updating the available signature. The incremental signature computation is

more efficient than computing a signature from scratch and thus can offer some advantage

to a resource-constrained signer. However, it provides no benefit for a resource-constrained

verifier; the verifier still needs to perform a complete verification of the signature.

119

Signature scheme with batch verification [36 , 13] is a cryptographic primitive that offers

an efficient verifying property. Namely, after receiving multiple signatures from different

sources, a verifier can efficiently verify the entire set of signatures at once. Batch verification

signature scheme and flexible signature scheme are similar in that they offer an efficient and

flexible verification mechanism. However, while the batch verification signature merely seeks

to reduce the load on a busy server, the flexible signature focuses on a resource-constrained

verifier who can tolerate a partial security guarantee from a signature.

Freitag et. al. [65] proposed the concept of signatures with randomized verification.

Here, the verifying algorithm takes as input the public key along with some random coin to

determine the validity of the signature. In those schemes, the attacker’s advantage of forging

a valid message-signature pair, (m∗, σ∗), is determined by the fraction of coins that accept

(m∗, σ∗). Freitag et. al. constructed a signature scheme with randomized identity-based

encryption (IBE) schemes using Naor’s transformation and show that the security level of

their signature scheme is fixed to the size of the underlying IBE scheme’s identity space.

While our work can be formally defined as a signature scheme with randomized verification,

our scheme offers a more flexible verification in which the security level of the scheme can

be efficiently computed based on the output of the verifying algorithm.

Finally, Fan, Garay, and Mohassel [62] proposed the concept of short and adjustable

signatures. They offered three variants, namely setup adjustable, signing adjustable, and

verification adjustable signatures offering different trade-offs between the length and the se-

curity of the signature. The first two variants allow the signer to adjust the length of the

signature, while the last variant allows the verifier to shorten the signature during the verifi-

cation phase. They presented three constructions for each variant based on indistinguishably

obfuscation (iO), and one concrete construction only for the setup-adjustable variant based

on the BLS Signature Scheme [24]. Unfortunately, none of those constructions is suitable

for constructing flexible signatures tolerating unpredictable interrupts.

120

λ Security parameter
[m] {1, . . . ,m}
m1||m2 Concatenation of strings m1 and m2
(di)i∈[m] Concatenation of m elements, d1||d2||...||dm
x

$← X x is chosen uniformly at random from some set X
∆(x, y) Hamming distance between two binary strings x and y
JrK Optional parameter r in an algorithm definition

Figure 5.1. Notation

5.1 Preliminaries

Fig. 5.1 presents prominent notational conventions that we use throughout this work.

Our constructions employ the following standard properties of cryptographic hash functions.

We use H : K×M→ {0, 1}n to denote a family of hash functions that is parameterized by

a key k ∈ K and message m ∈M and outputs a binary string of length n. For this work, we

consider two security properties for hash functions from [137], preimage resistance, collision

resistance, and one weaker security notion from [92 , 110], `-near collision resistance.

Definition 5.1.1. (Preimage Resistance) We call a family H of hash functions (tow, εow)-

preimage resistant, if for any A that runs for at most tow, the adversary’s advantage is:

AdvowH (A) = Pr

k $← K, x $←M

y ← H(k, x), x← A(k, y)
: H(k, x) = y

 ≤ εow

Definition 5.1.2. (Collision Resistance) We call a family H of hash functions (tcr, εcr)-

collision resistant, if for any A that runs for at most tcr, the adversary’s advantage is:

AdvcrH(A) = Pr

k $← K

(x, x)← A(k)
: (x 6= x) ∧ (H(k, x) = H(k, x))

 ≤ εcr

121

Definition 5.1.3. (`-near-collision Resistance) We call a family H of hash functions

(t`-ncr, ε`-ncr)-`-near-collision resistant, if for any A that runs for at most t`-ncr and 0 ≤ ` ≤ n,

the adversary’s advantage is:

AdvncrH,`(A) = Pr

k $← K;

(x, x)← A(k, `)
: (x 6= x) ∧ (∆(H(k, x), H(k, x)) ≤ `)

 ≤ ε`-ncr

Generic Attacks. To find the preimage tow = 2q is required to achieve εow = 1/2n−q

using exhaustive search. Due to the birthday paradox, however, only tcr = 2n/2 is required to

find a collision with a success probability of εcr ≈ 1/2. Finally, Lamberger et. al. showed in

[92] that at least t`-ncr = 2n/2/
√∑`

i=0

(
n
i

)
is required to find a `-near-collision with a success

probability of ε`-ncr ≈ 1/2.

Unkeyed Hash Functions. In practice, the key for standard hash functions is public;

therefore, from this point, we refer to the cryptographic hash function H as a fixed function

H :M→ {0, 1}n.

5.2 Security Definition

In this section, we define our flexible signature scheme. We adopt the standard definition

of a signature scheme [86] to the flexible security setting. An instance of an interrupted

flexible signature verification is expected to return a validity value, α, in the range [0, 1].

To model the notion of runtime interruptions in the signature definition, we introduce the

concept of an interruption oracle iOracleΣ(1λ) for signature scheme Σ and give the ver-

ification algorithm access to it. The interruption oracle outputs an interruption position

r in the sequence of computation steps involved the verification algorithm. For simplicity,

if we denote max to be the maximum number of computations needed (e.g. clock cycles,

number of hash computations, or modular exponentiations) for a signature verification, then

iOracleΣ(1λ) outputs a value r ∈ {0, . . . ,max}. The specification of the interruption po-

sition varies depending on the choice of the signature scheme; e.g., in this work, we define

the interruption position as the number of hash computations performed in the verification

algorithm.

122

Definition 5.2.1. A flexible signature scheme, Σ=(Gen,Sign,Ver), consists of three algo-

rithms:

• Gen(1λ) is a probabilistic algorithm that takes a security parameter 1λ as input and

outputs a pair (pk, sk) of public key and secret key.

• Sign(sk,m) is a probabilistic algorithm that takes a private key sk and a message m

from a message spaceM as inputs and outputs a signature σ from signature space S.

• Ver(pk,m, σ, JrK) is a probabilistic algorithm that takes a public key pk, a message m,

a signature σ, an optional interruption position r ∈ {0, . . . ,max} as inputs. If r is

not provided, then the algorithm will query an interruption oracle, iOracleΣ(1λ) to

determine r ∈ {0, . . . ,max}. The algorithm outputs a real value α ∈ [0, 1]∪{⊥}

1
 . The

signature is invalid if α = ⊥.

The following correctness condition must hold: For ∀(pk, sk) ← Gen(1λ), ∀m ∈ M,∀r∈

{0, ...,max} : Pr [Ver(pk,m,Sign(sk,m), r) = ⊥] = 0.

Remark 1. The interruption oracle only serves as a virtual party for definitional reasons.

In practice, the verification algorithm does not receive the interruption position r as an input,

and the algorithm continues to perform computations until it receives an interruption. To

model runtime interruptions using the interruption oracle iOracleΣ(1λ), in this work, we

expect the flow of the verification algorithm to not be affected/biased by the r value offered by

iOracleΣ(1λ) at the beginning of the verification. Also, we note that depending on signature

schemes, there can be more than one way to define the interruption position, r (e.g. clock

cycles, number of hash computations, or modular exponentiations).

Extracting Function. We assume that for a flexible signature scheme, there exists an

efficient function, iExtractΣ(·), that takes as input the validity of the signature α and

outputs the interruption position r. Intuitively, for the case of an unexpected interruption,

the verifier need not know when the verification algorithm is interrupted. However, based

on the validity output α, the verifier should be able to use iExtractΣ(·) to learn the
1

 ↑ α = 0 means that no operations are performed in the verification algorithm.

123

interruption position, r. The definition of extracting function depends on the specification

of the interruption position and signature scheme. We will define our iExtractΣ(·) for each

of our proposed constructions in Section 5.3 and Section 5.4 .

Security of Flexible Signture Scheme. We present a corresponding definition to the

existential unforgeability under adaptive chosen message attack (EUF-CMA) experiment

in order to prove the security of our scheme. For a given flexible signature scheme Σ =

(Gen,Sign,Ver) and α ∈ [0, 1], the attack experiment is defined as follows:

Experiment. FlexExpA,Σ(1λ, α) :

1. The challenger C runs Gen(1λ) to obtain (pk, sk) and iExtractΣ(α) to obtain posi-

tion r. C sends (pk, r) to A.

2. Attacker A queries C for signatures of its adaptively chosen messages. Let QSign(sk,·)
A

= {mi}i∈[q] be the set of all messages that A queries C where the ith query is a message

mi ∈M. After receiving mi, C computes σi ← Sign(sk,mi), and sends σi to A.

3. Eventually, A outputs a pair (m∗, σ∗) ∈ M× S

2
 , where message m∗ /∈ QSign(sk,·)

A and

sends the pair to C.

4. C computes α∗ ← Ver(pk,m∗, σ∗, r). If (α∗ 6= ⊥) and (α∗ ≥ α), the experiment

returns 1; else, it returns 0.

Definition 5.2.2. For the security parameter λ and α ∈ [0, 1], a flexible signature scheme

Σ is
(
t, ε, q

)
existential unforgeable under adaptive chosen-message attack if for all efficient

adversaries A that run for at most time t and query Sign(sk, ·) at most q times, the success

probability is:

Advflex
A,Σ(n) = Pr [FlexExpA,Σ(1λ, α) = 1] ≤ ε

Here, t and ε are functions of α and λ, and q = poly(λ).
2

 ↑ The higher validity implies a higher interruption position. Hence, the best strategy for the adversary is to
use the initial position defined by the challenger.

124

Flexible Lamport-Diffie One-time Signature

Given the security parameter λ, a preimage resistant hash function F : {0, 1}n → {0, 1}n,
a collision resistant hash function G : {0, 1}∗ → {0, 1}n, the flexible Lamport-Diffie one-time
signature scheme Σfots works as follows:

Gen(1λ) : for each i ∈ [n], b ∈ {0, 1} :

choose ski[b] $← {0, 1}n, set pkj [b] = F (ski[b])
output : SK = (ski[b])i∈[n],b∈{0,1}, PK = (pki[b]))i∈[n],b∈{0,1}

Sign(SK,m) :compute d = G(m) = (di)i∈[n], parse SK = (ski[b])i∈[n],b∈{0,1}

output : σ = (ski[di])i∈[n]

Ver(PK,m, σ, JrK) : if r is not provided: set r ← iOracle(1λ),
kF = 0, N = [n]
compute d = G(m) = (di)i∈[n]

write PK = (pki[b])i∈[n],b∈{0,1}, σ = (σi)i∈[n]

while (r > 0) and (N 6= ∅) :

choose i
$← N

if F (σi) 6= pki(di), return α = ⊥
N = N − {i}, kF = kF + 1, r = r − 1

output : α = kF /n

Figure 5.2. Construction of the Flexible Lamport-Diffie One-time Signature

5.3 Flexible Lamport-Diffie One-time Signature

In this section, we present our concrete construction of the flexible one-time signature

scheme. This construction is based on the Lamport-Diffie one time signature construction

introduced in [93].

5.3.1 Construction

We show the concrete construction of the flexible Lamport-Diffie one-time signature in

Fig. 5.2 . Here, we use the same key generation and signing algorithms from the Lamport-

Diffie signature and modify the verification algorithm.

Key Generation Algorithm. The key generation algorithm takes a parameter 1λ as

input, and generates a private key by choosing 2n bit strings each of length n uniformly at

random from {0, 1}n, namely, SK =(ski[b])i∈[n],b∈{0,1} ∈ {0, 1}2n2 . The public key is obtained

125

by evaluating the preimage-resistant hash function on each of the private key’s n bit string,

such that PK = (pki[b])i∈[n],b∈{0,1} where pki[b] = F (ski[b]) and F (·) is the preimage-resistant

hash function.

Signing Algorithm. The signing algorithm takes as input the message m and the

private key SK. First, it computes the digest of the message d = G(m) = (di)i∈[n] where

di ∈ {0, 1} and G(·) is a collision-resistant hash function that outputs digests of length n.

The signature is generated based on the digest d as σ = (ski[di])i∈[n].

Flexible Verification Algorithm. This algorithm takes as input a message m, a

public key PK, a signature σ, and an optional interruption position JrK and outputs the

validity of the signature α. In this construction, we model the interruption condition r ∈

{0, 1, . . . , n}, as the number of hash F (·) computations performed during verification. As

mentioned earlier in Section 5.2 , to faithfully model the interruption process, the flow of the

verification algorithm should not be biased by the r value in any intelligent manner. First,

the verification algorithm will query the interruption oracle to determine the interruption

position r. The algorithm then computes the digest of the message, d = G(m) = (di)i∈[n].

Now, instead of sequentially verifying the signature bits like the verification in the standard

scheme, the flexible verification algorithm randomly selects a position i of the signature and

checks whether F (σi[di]) = pki[di]. If there is one invalid preimage, the verification aborts

and returns α = ⊥. Otherwise, once the interruption condition is met or all positions are

verified, the algorithm returns the validity as the fraction of the number of bits that passed

the verification check over the length of the signature. In this Lamport-Diffie construction,

given the validity α value output by the verification algorithm, the verifier simply computes

the interruption position as follows: iExtractΣfots
(α) = bα · nc

5.3.2 Security Analysis

In the flexible Lamport-Diffie one-time signature setting, as the verification algorithm

does not perform verification at every position of the signature, the adversary can increase

the probability of winning by outputting two messages whose hash digests are close. This

is equivalent to finding an `-near-collision pair where ` is determined by the adversary.

126

Theorem 5.3.1 offers the trade-off between computation time and success probability for the

adversary.

Theorem 5.3.1. Let F be (tow, εow) preimage-resistant hash function, G be (t`-ncr, ε`-ncr)

`-near-collision-resistant hash function, kF , kG be the number of times F (·), G(·) evaluated in

the verification respectively, d be the Hamming distance between two message digests output

by A, and tgen, tsign, tver be the time it takes to generate keys, sign the message, and verify

the signature respectively. With 1 ≤ kF ≤ n, kG = 1, the flexible Lamport-Diffie one-time

signature Σfots is (tfots, εfots, 1) EUF-CMA where:

α = kF/n

tfots = min{tow, t`-ncr} − tsign − tver − tgen where 0 ≤ ` ≤ n− kF

εfots ≤ min
{

1, 2 ·max
{
kF−1∏
i=0

(
1− d

n− i

)
, 4n · εow

}}
where 0 ≤ d ≤ `

Proof. Let m be the message asked by A during the experiment FlexExpΣ,A(1λ, α), and

(m∗, σ∗) be the forgery pair. We define the distance, d = ∆(G(m), G(m∗)). We notice that for

a pair (m,m∗) output by the adversary during the forgery experiment, if ∆(G(m), G(m∗)) >

n − kF , then by pigeonhole principle, at least one of different positions will be checked.

Therefore, in order to maximize the success probability, the adversary has to choose ` and

find a `-near-collision pair where the Hamming distance of G(m) and G(m∗) is less than `

where ` ≤ (n−kF). In order to output such near-collision pair, A requires at least t = t`-ncr =

2n/2/
√∑`

i=0

(
n
i

)
. Also, on the other hand, A may win the forgery experiment by spending

tow to break the underlying preimage resistant hash function. Thus, subtracting the running

time of generating, signing, and verifying algorithms, we have: tfots = min{tow, t`-ncr}−tsign−

tgen−tver where 0 ≤ ` ≤ n−kF . For the success probability, we let Miss be the event that no

different bit gets verified. Since d is the Hamming distance between 2 message digests, either

none of those different positions were checked, or some of those positions passed the check

(i.e. the preimage was found). Thus, we rewrite A’s advantage for the forging experiment

as follows: Pr [FlexExpA,Σ(1λ, α) = 1] ≤ Pr [Miss] + Pr [FlexExpA,Σ(1λ, α) = 1 ∧Miss].

127

The event (FlexExpA,Σ(1λ, α) = 1∧Miss) implies that A wins the forgery experiment by

providing a preimage of F (·). Therefore, we can use A to construct a preimage finder B.

The reduction is presented in [33]. One can show:

Pr [FlexExpA,Σ(1λ, α) = 1 ∧Miss] ≤ 4n · Advpre
B,F(n) = 4n · εow (5.1)

Finally, Pr [Miss] implies the adversary can win the forging experiment if the challenger

does not perform verification on the different bits. Since d is the number of different bits

between two digests, the probability that the challenger does not perform verification on

those positions is:

Pr [Miss] =
kF−1∏
i=0

n− d− i
n− i

=
kF−1∏
i=0

(
1− d

n− i

)
(5.2)

From equations (5.1) and (5.2), we have:

Pr [FlexExpA,Σ(1λ, α) = 1] ≤ min
{

1, 2 ·max
{
kF−1∏
i=0

(
1− d

n− i

)
, 4n · εow

}}

which completes the proof.

Security Level. Towards making the security of flexible Lamport-Diffie one-time signatures

more comprehensible, we adapt the security level computation from [33]. For any (t, ε)

signature scheme, we define the security of the scheme to be log2 (t/ε). As, in the flexible

setting, the value of the pair (t, ε) may vary as the adversary decides the Hamming distance

`, for each value of kF ∈ {0, . . . , n}, we compute the adversarial advantage for all values

0 ≤ ` ≤ n − kF and output the minimum value of log2

(
tfots/εfots

)
as the security level of

our scheme. A detailed security level analysis for the Lamport-Diffie one-time signature is

available in Section 5.5.1 .

5.4 Flexible Merkle Tree Signature

We use the Merkle authentication tree [111] to convert the flexible Lamport-Diffie one-

time signature scheme into a flexible many-time signature scheme.

128

5.4.1 Construction

In the Merkle tree signature scheme, in addition to verifying the validity of the signature,

the verifier uses the authentication nodes provided by the signer to check the authenticity of

the one-time public key. We are interested in quantifying such values under an interruption.

To achieve such a requirement, we require the signer to provide additional nodes in the

authentication path.

Key Generation Algorithm. Our key generation remains the same as the one proposed

in the original Merkle tree signature scheme [111]. For a tree of height h, the generation

algorithm generates 2h Lamport-Diffie one-time key pairs, (PKi, SKi)i∈[2h]. The leaves of the

tree are digests of one-time public keys, H(PKi), where H(·) is a collision-resistant hash

function. An inner node of the Merkle tree is the hash digest of the concatenation of its

left and right children. Finally, the public key of the scheme is the root of the tree, and the

secret key is the set of 2h one-time secret keys.

Modified Signing Algorithm. In the original Merkle signature scheme, a signature

consists of four parts: the signature state s, a one-time signature σs, a one-time public key

PKs and a set of authentication nodes Auths = (ai)i∈[h]. The verifier can use PKs to verify the

validity of the σs and use nodes in Auths and state s to efficiently verify the authenticity of

PKs. For our signing algorithm, along with authentication nodes in the old construction, we

require the signer to send the nodes that complete the direct authentication path from the

one-time public key to the root. We call this set of nodes complement authentication nodes,

Authcs = (ai)i∈[h]. The reason for including additional authentication nodes is to allow the

verifier to randomly verify any level of the tree. Moreover, with additional authentication

nodes, verifier can verify different levels of the tree in parallel. Fig. 5.3 describes an example

of the new requirement for a tree of height three. The modified signature now consists of

five parts: a state s, a Lamport-Diffie one-time signature σs, a one-time public key PKs, a

set of authentication nodes Auths, and a set of complement authentication nodes Authcs.

Flexible Verification Algorithm. With additional authentication nodes, the verifi-

cation algorithm can verify the authenticity of the public key at arbitrary levels of the au-

thentication tree as well as use the flexible verification described in Section 5.3 to partially

129

root

a3

a2

PK1 PK2

a2

a1

PK3

a1

PK4

a3

PK5 PK6 PK7 PK8

Figure 5.3. An example of new authentication nodes for PK3 where Auth3 =
(a1, a2, a3) is the set of authentication nodes in the original scheme and Authc3 =
(a1, a2, a3) is the set of additional authentication nodes

verify the validity of the one-time signature. In the end, the verification returns α = (αv, αa)

that contains both the validity of the signature and the authenticity of the public key. In

this construction, we define the interruption r ∈ {0, 1, . . . , n + h + 1}, as the number of

computations performed during the verification step.

In contrast to the verification performed in the one-time signature scheme, the security

guarantee the verifier gains from the authenticity verification of the one-time public key

only increases linearly as the number of computations performed on the authentication path

increase: The adversary can always generate a new one-time key pair to sign the message

that is not a part of one-time key pairs created by the generation algorithm. In the original

Merkle scheme, such a key-pair will fail the authenticity check with overwhelming proba-

bility because the verifier can use the authentication nodes to compute and verify the root.

However, in the flexible setting, the verifier may not be able to complete the authenticity

verification, and there is a non-negligible probability that an invalid one-time public key will

be used to verify the validity of the signature. Therefore, the verifier gains an exponential

security guarantee about the validity of the one-time signature but only a linear guarantee

about the authenticity of the public key as the number of computations increases.

To address this issue, the verification algorithm needs to balance the computations per-

formed on the authentication path and the computations performed on the one-time signa-

130

Flexible Merkle Tree Signature Scheme

Given the security parameter λ, the tree height h, a preimage resistant hash function F : {0, 1}n →
{0, 1}n, a collision resistant hash function H : {0, 1}∗ → {0, 1}n, G : {0, 1}∗ → {0, 1}n, and a flexible
Lamport-Diffie one-time signature scheme Σfots = (Genfots,Signfots,Verfots). The stateful flexible
Merkle scheme Σfms works as follows:

Gen(1λ) : generate 2h ots pairs {(PKi, SKi)}i∈[2h] using Genfots(1λ)
compute the inner nodes of the Merkle tree as follows:

nodei[j] = H(nodei−1[2j − 1]||nodei−1[2j])
2 ≤ i ≤ h+ 1, 1 ≤ j ≤ 2h+1−i

node1[i] = H(PKi), 1 ≤ i ≤ 2h

output : SK = {SKi}i∈[2h],PK = root (i.e. nodeh+1[1]), s = 1
Sign(SK,m, s) : compute σs = Signfots(SKs,m), compute Auths = (ai)i∈[h], where

ai =
{
nodei[ds/2i−1e+ 1] if ds/2i−1e ≡ 1 mod 2
nodei[ds/2i−1e − 1] if ds/2i−1e ≡ 0 mod 2

compute Authc
s = (ai)i∈[h], where ai = nodei[ds/2i−1e]

output : σ = (s, σs,PKs,Auths,Authc
s), s = s+ 1

Ver(PK,m, σ, JrK) : if r is not provided: set r ← iOracle(1λ),
set N = [n], T = [h+ 1], kF = 0, kH = 0
compute G(m) = d = (di)i∈[n] parse (s, σfots,PKfots,Auth,Authc)← σ

write σots = (σi)i∈[n], PKfots = (pki[b])i∈[n],b∈{0,1},

Auths = (ai)i∈[h], Authc
s = (ai)i∈[h]

while r > 0 and H 6= ∅ and N 6= ∅ do :
if 1− 1/2kF /2 ≤ kH/(h+ 1) :

choose i
$← N, if F (σi) 6= pki(di), output : α = ⊥

N = N − {i}, kF = kF + 1

else : choose j
$← T, set ah+1 = PK

if j = 1 ∧ a1 6= H(PKs) : output : α = ⊥
if j > 1 ∧ aj is not a parent of aj−1 and aj−1 : output α = ⊥.
T = T − {j}, kH = kH + 1

r = r − 1
output : α = (kF /n, kH/(h+ 1))

Figure 5.4. The Flexible Merkle Signature Construction.

ture. We define the confidence for the validity of the one-time signature as 1−1/2kF /2 and the

confidence for authenticity of the one-time public key as kH/(h+ 1), where kF is the number

of computations performed on the one-time signature, kH is the number of computations

131

performed on the one-time public key, and h is the height of the Merkle tree. To balance the

number of computations, the verifier needs to maintain 1− 1/2kF /2 ≈ kH/(h+ 1). With the

new signing and verifying algorithms described above, we present a detailed construction of

the flexible Merkle signature scheme in Fig. 5.4 . In this Merkle signature construction, given

the validity α = (αv, αa) value output by the verification algorithm, the verifier can compute

the interruption position as follow: iExtractΣfms
(α) = bαvnc+ bαa(h+ 1)c.

5.4.2 Security Analysis

Theorem 5.4.1 presents the trade-off between computation time and success probability

for the adversary A.

Theorem 5.4.1. Let F be (tow, εow) preimage-resistant hash function, G be (t`-ncr, ε`-ncr)

`-near-collision-resistant hash function, H be (tcr, εcr) collision-resistant hash function,

kF , kG, kH be the number of times F (·), G(·), H(·) performed respectively, d be the smallest

Hamming distance between the forged message digest and other queried message digests, and

tgen, tsign, tver be the time it takes to generate keys, sign the message, and verify the signature

respectively. With 1 ≤ kF ≤ n, 0 ≤ kH ≤ h + 1, and kG = 1, the flexible Merkle signature

construction Σfms from flexible Lamport-Diffie one-time signature scheme is (tfms, εfms, 2h)

EU-CMA, where

α = (kF/n, kH/(h+ 1))

tfms =


O(1) when kH < h+ 1,

min
{
tow, t`-ncr, tcr

}
− 2h · tsign − tver − tgen where 0 ≤ ` ≤ n− kF

εfms ≤ min
{

1, 4 ·max
{

1− kH
(h+ 1) , 2

h
kF−1∏
i=0

(
1− d

n− i

)
, 2h+log2 4n · εow, εcr

}}

where 0 ≤ d ≤ `

Proof. Intuitively, if adversary A provides an invalid one-time public key, the verification

must fail for at least one level of tree. Otherwise, A successfully finds a collision of H.

However, in our scheme, since every level of the tree may not be verified, there is a possibility

132

that the forged level is not checked. We formalize the intuition as following; we let InvalidOPK

be the event that A provides an invalid one-time public key. Consider the Merkle tree

construction based on the one-time signature construction.

Pr [FlexExpA,Σ(1λ, α) = 1] = Pr [FlexExpA,Σ(1λ, α) = 1 ∧ InvalidPK]

+ Pr [FlexExpA,Σ(1λ, α) = 1 ∧ InvalidPK]
(5.3)

The FlexExpA,Σ(1λ, α) = 1 ∧ InvalidPK implies that A provided an invalid one-time public

key but won the forgery experiment. Thus, either the verifier failed to check a “bad” level

of the tree or A found a collision of H(·). For a tree of height h, there are h+ 1 levels that

one needs to verify for the complete authentication. Since kH is the number of times H(·) is

evaluated, using a union bound, we have:

Pr [FlexExpA,Σ(1λ, α) = 1 ∧ InvalidPK] ≤ 2 ·max
{

1− kH
h+ 1 , εcr

}
(5.4)

If A found a collision of H(·), then we can construct a collision finder [33].

The event FlexExpA,Σ(1λ, α) = 1∧InvalidPK implies that A won the flexible forgery exper-

iment for one-time signature scheme. Since we defined kF to be the number of F (·) evaluated,

the underlying flexible one-time signature is (tfots, εfots, 1). Therefore, using Theorem 1, we

get:

εfots ≤ 2 ·max
{
kF−1∏
i=0

(
1− d

n− i

)
, 4n · εow

}
where 0 ≤ d ≤ ` ≤ n− kF

Since there are 2h instances of the flexible Lamport-Diffie one-time signature, it means that

for 0 ≤ d ≤ ` ≤ n− kF , A wins the forgery game with probability:

Pr [FlexExpA,Σ(1λ, α) = 1 ∧ InvalidPK]

≤ 2 ·max
{

2h ·
kF−1∏
i=0

(
1− d

n− i

)
, 2h+log2 4n · εow

} (5.5)

133

From equations (5.3), (5.4) and (5.5), for 0 ≤ d ≤ ` ≤ n− kF , we have:

εfms ≤ 4 ·max
{

1− kH/(h+ 1), 2h·
kF−1∏
i=0

(
1− d

n− i

)
, 2h+log2 4n · εow, εcr

}

When kH < h + 1, we simply let tfms = O(1) because A will win the forgery experiment

with probability 1− kH/(h+ 1). When kH = h+ 1, we have:

εfms ≤ 4 ·max
{

2h ·
kF−1∏
i=0

(1− d

n− i
), 2h+log2 4n · εow, εcr

}
where 0 ≤ d ≤ ` ≤ n− kF

and using [33 , Theorem 5], we have tfms = min{tcr, tfots}− 2h · tsign− tver− tgen. Now, using

Theorem 1, we get: tfms = min{tow, t`-ncr, tcr} − 2h · tsign − tver − tgen where 0 ≤ ` ≤ n− k.

This completes the proof.

5.4.3 Other Signature Schemes

Over the last few years, several optimized versions of Merkle tree signature and one-time

signature schemes have been proposed. This includes XMSS [32] and SPHINCS [19] for the

tree signatures, and HORS [126], BIBA [136], HORST [19] and Winternitz [111] for one-

time signatures. While the security analysis for each scheme may vary, we can use the same

technique described above to transform those schemes into signature schemes with a flexible

verification. In this work, we choose to use Lamport-Diffie One-time signatures in our con-

struction for two reasons. First, the number of hash evaluations in Lamport-Diffie Signature

verification is fixed for constant size messages, and this gives better and more precise security

proofs. Second, Lamport-Diffie one-time signature has better performance in terms of the

running time. Thus, according to our experiment and analysis, the Lamport-Diffie One-time

signature scheme combined with Merkle Tree provides a better speed performance and more

concrete security proofs.

We also investigate number-theoretic signature schemes and observe that the similar ver-

ification technique can be applied to the Fiat-Shamir Signature Scheme [63] as its signature

is partitioned into different verifiable sets. However, compared to hash function evaluations,

the computation of modular exponentiation is significantly more expensive and thus may

134

not be suitable for flexible security application environments. On the other hand, lattice-

based signature schemes such as GPV signatures [67] can be an interesting candidate for a

flexible signature construction. For GPV signatures, a public key is a matrix output by a

trapdoor sampling algorithm, and a signature is output by a pre-image sampling algorithm.

The signature verification is performed using a matrix and vector multiplication. The same

randomized verification technique seems to be applicable here on different rows of the matrix.

In the future, we plan to explore a flexible version of GPV signatures.

5.5 Evaluation, Performance Analysis, and Discussion

In this section, we evaluate the performance and the security level of the flexible Lamport-

Diffie one-time signature and flexible Merkle signature schemes. For both schemes, the valid-

ity value α suggests the number of computations performed (i.e., kH , kF) during verification.

Based on the value α, the verifier determines the security level achieved by the (interrupted)

verification instance.

5.5.1 Security Level of Flexible Lamport-Diffie One-time Signature

The security level of a flexible Lamport-Diffie signature depends on the actual Ham-

ming distance between two message digests output by the adversary and it can increase

its advantage by spending more time to find a near-collision pair. However, it is un-

clear how to precisely measure the exact Hamming distance between those two digests.

Therefore, we outline some possible assumptions in order to estimate precisely the value

of ∆(G(m), G(m∗)). Using the generic attack on finding near collision pair [92], we can

assume that an adversary A who uses a generic birthday attack can always output a pair

(m,m∗) such that ∆(G(m), G(m∗)) ≤ ` after spending t`-ncr = 2n/2/
√∑`

i=0

(
n
i

)
. Second, for

a fixed value `, if the adversary finds a pair (m,m∗) such that ∆(G(m), G(m∗)) ≤ `, we

let d = ∆(G(m), G(m∗)) is equal to the expected value of ∆(G(m), G(m∗)). The intuition

behind the second assumption is that as we let the Hamming distance d decrease by 1, the

probability that ∆(G(m), G(m∗)) = d decreases by factor of n; therefore, the actual value of

d should be closer to ` than to 0.

135

We define the set B`(G(m)) = {x | x ∈ {0, 1}n ∧∆(x,G(m)) ≤ `}. If G(m) and G(m∗)

is a `-near-collision pair, then G(m∗) ∈ B`(G(m)). If G(·) behaves as an uniformly random

function, then given `, the expected value of ∆(G(m), G(m∗)) is:

E(∆(G(m), G(m∗))) =
∑̀
j=0

j ·

(
n
j

)
|B`(G(m))| =

∑̀
j=0

j ·

(
n
j

)
∑`
i=0

(
n
i

) (5.6)

For the case of Lamport-Diffie one-time signature, we have tgen = 2n, tsign = tver = n.

Combining Theorem 5.3.1 and equation 5.6 , we have:

tfots = max
1, 2n/2√∑`

i=0

(
n
i

) − 4 · n
 for ` ≤ n− kF

εfots ≤ min
1, 2 ·

kF−1∏
i=0

(
1− d

n− i

) where d = E(∆(G(m), G(m∗)),

given ∆(G(m), G(m∗)) ≤ `

Finally, the adversary’s advantage varies depending on the value of `. Therefore, for a

fixed value kF , we compute the adversarial advantage all values ` ≤ n− kF and output the

minimum value of log2

(
tfots/εfots

)
as the security level of the scheme.

Fig. 5.5 gives the trade-off between the number of computations and the security level

of the flexible Lamport-Diffie scheme. Compared to the original Lamport-Diffie scheme, our

construction offers a reasonable security level despite a smaller number of computations. For

example, while a complete verification requires 256 evaluations of F (·) to achieve the 128-bit

security level, with only 128 evaluations of F (·), the scheme still offers around the 92-bit

security level.

5.5.2 Security Level of Flexible Merkle Tree Signature

For the Merkle tree signature scheme, using the results from [49], [150], we have tgen =

2h · 2n + 2h+1 − 1, tver = n + h + 1, tsign = (h + 1) · n. There are two cases for the Merkle

tree signature: (1) The authenticity check is complete, kH = h+ 1 and (2) The authenticity

check is not complete, kH < h+ 1.

136

0 32 64 96 128 160 192 224 2560

16

32

48

64

80

96

112

128

Number of Computations

S
e
c
u
r
i
t
y

L
e
v
e
l

Figure 5.5. Security Level of
Flexible Lamport-Diffie One-
time Signature

0 32 64 96 128 160 192 224 2560

16

32

48

64

80

96

112

128

Number of Computations

S
e
c
u
r
i
t
y

L
e
v
e
l

Figure 5.6. Security Level
of Flexible Merkle Tree Signa-
ture

When kH < h+ 1, the adversary’s probability of winning is non-negligible, and the time

it needs to spend on the attack is constant; therefore, when the authenticity check is not

complete, we simply let: tfms = 1, εfms = 1−kH/(h+1). When the authenticity verification

is complete, kH = h+ 1, using the equation described in Theorem 2, we obtain the following

parameters for the flexible Merkle tree scheme:

tfms = max
{

1, t`-ncr − 2h+log2(h+1)n − 2h·log2 2n − 2log2(n−h−1)
}

for ` ≤ n− kF

εfms ≤ min
{

1, 2h ·
kF−1∏
i=0

(
1− d

n− i

)}
where d = E(∆(G(m), G(m∗)))

Using those formulas, we compute the security level of the flexible Merkle signature as

log2(tfms/εfms). Fig. 5.6 shows the trade-off between the security level of the scheme and

the number of computations of the flexible Merkle tree signature with h = 20. Notice that,

for small number of computations, the security level of Merkle tree construction does not

increase. The reason is that if the authenticity of the public key is not completely checked,

the probability that the adversary wins the forgery experiment is always the fraction of the

number of computations on the authentication path over the height of the tree, and the

forging time remains constant. Moreover, for a tree of height h, there are 2h instances of

flexible Lamport-Diffie one-time signature. Therefore, if F (·) evaluated only for a small

number of times, the cost of finding an `-near-collision pair (for ` ≤ n − kF) is cheap.

137

Table 5.1. Comparing flexible signature schemes performance for different
levels of signature verification with other signature schemes.

Signature Verification; Output Format: (Timings, Security Level)
Percentage of Computations 20% 40% 60% 80% 100%

RSA 3072, pk = 216 + 1 - - - - (1.43ms, 128)
DSA 2048 - - - - (4.93ms, 87)
EdDSA (Ed25519 curve) - - - - (3.21ms, 128)
ECDSA (nistp256 curve) - - - - (3.39ms, 128)
Lamport-Diffie OTS verification, n = 256 (0.16ms, 35) (0.31ms, 79) (0.43ms, 105) (0.47ms, 121) (0.54ms, 127)
Merkle signature verification, n = 256, h = 20 (0.85ms, 1) (0.93ms, 19) (1.00ms, 61) (1.06ms, 99) (1.23ms, 127)

The probability that such a pair passes the one-time verification step in one instance of 2h

instances of flexible Lamport-Diffie one-time signature is high. This leads to an undesirable

security level during the first few computations.

5.5.3 Implementation and Performance

We have implemented prototypes of our proposed constructions in C, using the SHA-256

implementation of OpenSSL. We evaluated the performance of our proposed constructions

on a Raspberry Pi 3, Model B equipped with 1GB RAM.

Table 5.1 gives the performance and security levels of the flexible verification algorithm

of both schemes compared to other standard signature schemes (i.e., RSA, DSA, ECDSA,

and EdDSA) based on the percentage of computations p = 20%, 40%, 60%, 80%, and 100%

for messages of size 256

3
 . For other signature schemes, we obtain the performance of those

schemes using the OpenSSL library. More specifically, for ECDSA, we used two standard

curves: Ed25519 and nistp256. For the RSA signature scheme, we used the smallest recom-

mended public key 216 + 1 for the verification algorithm. For the security levels of other

signature schemes, we use the information from [11 , 32]. As shown in Table 5.1 , the perfor-

mance of both flexible signature schemes is comparable to other standard schemes in terms

of the verification running time. More importantly, both constructions offer an increasing

security level at each step of the algorithm while other signature schemes can only provide
3

 ↑ We focus on the verification algorithm in this work. For the performance of signing, generation algorithms,
and the size of the signature we refer readers to [32 , 33].

138

such information at the end of the verification algorithm, and Table 5.1 demonstrates that

in the form of (Timings, Security Level) pairs. Also, notice that as the number of verifica-

tion computations increases, the Lamport-Diffie OTS gives a higher security level than the

signing shorter hash digest approach which offers the security level that is equal to half of

the length of the hash digest. The main reason is that the verification algorithm verifies

the signature at random locations, and while the adversary may learn about the number

of computations performed, the adversary does not know which indices of the signature get

verified. Thus, the adversary has to decide how close the two digests should be to maximize

his adversarial advantage. For the case of Merkle tree signatures, we do not see a huge

improvement in the performance of the verification despite a smaller number of computa-

tions. This is because the computation of H(PKfots) and G(m) can be expensive, because

of the use the Merkle-Damgård transformation in SHA2 hash family, as those computations

requires more calls to the compression function depending on the input size. Nevertheless,

for real-time environments, we expect messages to be smaller in size.

5.6 Concluding Remarks

We defined the concept of a signature scheme with a flexible verification algorithm. We

presented two concrete constructions based on the Lamport-Diffie one-time signature scheme

and the Merkle signature scheme and formally proved their security. We also implemented

prototypes of our proposed constructions and showed that the running time performance

of our proposed designs is comparable to other signature schemes in a resource-constrained

environment. More importantly, compared to standard signature schemes with deterministic

verification, our schemes allow the verifier to put different constraints on the verification

algorithm in a spontaneous manner and still guarantee a reasonable security level. Our

proposed signature scheme is one of the few cryptographic primitives that offers a trade-

off between security and resources. Flexible signature can be highly useful for resource-

constrained clients when validating and relaying transactions in blockchain networks.

139

6. SUMMARY

In this dissertation, we proposed several cryptographic constructions for resource-constrained

blockchain clients. We envision that these constructions can be useful for resource-

constrained devices to minimize the storage, the communication, and the computation over-

heads when participating in the permissionless blockchain. In particular, we proposed:

Minimizing Storage Overhead with Add-on Privacy Solutions We proposed an

oblivious access framework called T 3 in Chapter 2 . This framework offers efficient oblivious

access to constrained devices when connecting to a potential compromised server with contin-

uously changing database. This framework can be useful when building simplified payment

verification solutions for blockchain light clients. In such scenario, the constrained devices

that do not have the capability of storing the entire blockchain can outsource the blockchain

state storage to other servers that run T 3, and the constrained devices can later query these

servers for blockchain data obliviously. In Chapter 3 , we presented an autonomous mixer

design, that directly allows existing resource-constrained clients to mix their crypto assets

without the need of using private blockchains; therefore, AMR helps constrained clients re-

duce the storage overhead by avoiding storing additional states of private blockchains.

Reducing Communication Overhead with Private Payment Channels In Chap-

ter 4 , we proposed a new ring signature primitive, DLSAG, that enables payment channels on

the privacy-preserving blockchain, Monero, for the first time. Thus, with payment channels

in Monero, resource-constrained clients can reduce the amount of data sent to the blockchain

network and preserve the payment data of the channels at the same time.

Reducing Computation Overhead with Flexible Signature Framework Finally,

in Chapter 5 , we proposed a flexible signature framework. In a flexible signature, the ver-

ification algorithm assumes no resource restriction to be known in advance; therefore, the

verification algorithm allows an efficient trade-off between the error probability in verifica-

tion and the computation overhead. Hence, we believe that such a framework can be useful

for the blockchain gossip protocol by allowing resource-constrained devices to help verify

blockchain transactions with overhead that is consistent with their resource constraints.

140

6.1 Future Work

Beyond the work presented in this thesis, exploring the study of flexible security in both

cryptographic primitives and secure system designs can be an exciting venue. For instance,

we often see systems that offer fixed privacy and security guarantees, therefore, require a

fixed and expensive amount of computations on users, but we seldomly see systems that

flexibly give users a choice between computations and security. Thus, formalizing the trade-

off between computations and security is an interesting concept.

Thus, it would be interesting to see how the flexible verification (c.f Chapter 5) can be

extended on other cryptographic primitives, such as commitments, zero-knowledge proofs, or

different classes of digital signatures (e.g., Lattice-based and code-based signatures). More-

over, reducing the size of the public key and the signature of flexible signature constructions

can also be a venue that is worth exploring.

Moreover, T 3 (c.f Chapter 2) is a system that offers resource-constrained blockchain

clients efficient access with a robust privacy guarantee. However, T 3 relies on the existence

of TEEs. On the other hand, solutions [105 , 131] relying on pure cryptographic techniques

choose to sacrifice efficiency to offer a strong privacy guarantee. Thus, one question remained:

is it possible to design an oblivious database framework that offers a flexible trade-off between

efficiency and privacy without relying on the existence of TEEs?

141

REFERENCES

[1] Aave: The Money Market Protocol. https://aave.com/ .

[2] Address Reuse. https://en.bitcoin.it/wiki/Address_reuse . Accessed in Dec 2019.

[3] Adil Ahmad et al. “OBLIVIATE: A Data Oblivious Filesystem for Intel SGX”. In:
NDSS. 2018.

[4] Martin Albrecht et al. “MiMC: Efficient Encryption and Cryptographic Hashing with
Minimal Multiplicative Complexity”. In: Advances in Cryptology – ASIACRYPT
2016. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 191–219. isbn: 978-3-662-53887-6.

[5] Kurt M. Alonso. Zero to Monero: First Edition. A technical guide to a private digital
currency; for beginners, amateurs, and experts. https://web.getmonero.org/library/
Zero-to-Monero-2-0-0.pdf .

[6] Elli Androulaki et al. “Evaluating user privacy in bitcoin”. In: International Confer-
ence on Financial Cryptography and Data Security. Springer. 2013, pp. 34–51.

[7] Elli Androulaki et al. “Evaluating User Privacy in Bitcoin”. en. In: FC. 2013, pp. 34–
51. isbn: 978-3-642-39884-1.

[8] Sergei Arnautov et al. “SCONE: Secure Linux Containers with Intel SGX”. In: OSDI.
2016.

[9] Shehar Bano et al. “SoK: Consensus in the age of blockchains”. In: Proceedings of the
1st ACM Conference on Advances in Financial Technologies. 2019, pp. 183–198.

[10] Simon Barber et al. “Bitter to Better — How to Make Bitcoin a Better Currency”.
en. In: FC. 2012, pp. 399–414. isbn: 978-3-642-32946-3.

[11] Elaine Barker. Recommended for key management-Part 1: General. url: https ://
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf .

[12] Bellare et al. “The One-More-RSA-Inversion Problems and the Security of Chaum’s
Blind Signature Scheme”. In: Journal of Cryptology 16.3 (2003), pp. 185–215. issn:
1432-1378.

[13] Mihir Bellare, Juan A. Garay, and Tal Rabin. “Fast batch verification for modular
exponentiation and digital signatures”. In: EUROCRYPT 1998. 1998, pp. 236–250.

142

https://aave.com/
https://en.bitcoin.it/wiki/Address_reuse
https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

[14] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. “Incremental Cryptography:
The Case of Hashing and Signing”. In: CRYPTO 1994. 1994, pp. 216–233.

[15] Mihir Bellare and Gregory Neven. “Multi-signatures in the Plain public-Key Model
and a General Forking Lemma”. In: CCS. Alexandria, Virginia, USA, 2006, pp. 390–
399. isbn: 1-59593-518-5.

[16] E. Ben-Sasson et al. “Secure Sampling of Public Parameters for Succinct Zero Knowl-
edge Proofs”. In: 2015 IEEE Symposium on Security and Privacy. 2015, pp. 287–304.

[17] Josh Benaloh and Michael de Mare. “One-Way Accumulators: A Decentralized Alter-
native to Digital Signatures”. In: Advances in Cryptology — EUROCRYPT ’93. Ed.
by Tor Helleseth. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp. 274–285.
isbn: 978-3-540-48285-7.

[18] Adam Bender, Jonathan Katz, and Ruggero Morselli. “Ring signatures: Stronger defi-
nitions, and constructions without random oracles”. In: Theory of Cryptography Con-
ference. Springer. 2006, pp. 60–79.

[19] Daniel J. Bernstein et al. “SPHINCS: Practical Stateless Hash-Based Signatures”. In:
EUROCRYPT 2015. 2015, pp. 368–397.

[20] Bitcoin Core. https://bitcoin.org/en/bitcoin-core/ . Accessed in Dec 2019.

[21] Bitcoin Developer Reference. https://bitcoin.org/en/\developer-reference . Accessed
in Dec 2019.

[22] Bitcoin Difficulty and Network Hash Rate. https : / / bitcoinwisdom . com/bitcoin /
difficulty . Accessed in Nov 2019.

[23] BitcoinJ. https://bitcoinj.github.io/ . Accessed in Dec 2019.

[24] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil Pair-
ing”. In: Journal of Cryptology 17.4 (2004), pp. 297–319.

[25] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography. 2020.

[26] Joseph Bonneau et al. “Mixcoin: Anonymity for bitcoin with accountable mixes”.
In: International Conference on Financial Cryptography and Data Security. Springer.
2014, pp. 486–504.

[27] Joseph Bonneau et al. “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies”. In: Symposium on Security and Privacy. IEEE. 2015, pp. 104–121.

143

https://bitcoin.org/en/bitcoin-core/
https://bitcoin.org/en/\developer-reference
https://bitcoinwisdom.com/bitcoin/difficulty
https://bitcoinwisdom.com/bitcoin/difficulty
https://bitcoinj.github.io/

[28] Sean Bowe, Ariel Gabizon, and Matthew D. Green. “A Multi-party Protocol for Con-
structing the Public Parameters of the Pinocchio zk-SNARK”. In: Financial Cryptog-
raphy and Data Security. Ed. by Aviv Zohar et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2019, pp. 64–77. isbn: 978-3-662-58820-8.

[29] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable Multi-party Computation for zk-
SNARK Parameters in the Random Beacon Model. Cryptology ePrint Archive, Report
2017/1050. https://eprint.iacr.org/2017/1050 . 2017.

[30] Sean Bowe and Daira Hopwood. Hashed Time-Locked Contract transactions. 2017.
url: https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki .

[31] Ferdinand Brasser et al. “Software Grand Exposure: SGX Cache Attacks Are Practi-
cal”. In: WOOT. 2017. url: https://www.usenix.org/conference/woot17/workshop-
program/presentation/brasser .

[32] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. “XMSS - A Practical
Forward Secure Signature Scheme Based on Minimal Security Assumptions”. In:
PQCrypto 2011. 2011, pp. 117–129.

[33] Johannes Buchmann, Erik Dahmen, and Michael Szydlo. “Hash-based Digital Signa-
ture Schemes”. In: PQCrypto 2009. 2009, pp. 35–93.

[34] Benedikt Bünz et al. “Bulletproofs: Short Proofs for Confidential Transactions and
More”. In: S&P. 2018, pp. 315–334.

[35] Benedikt Bünz et al. “Zether: Towards Privacy in a Smart Contract World”. In: IACR
Cryptol. ePrint Arch. 2019 (2019), p. 191.

[36] Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen. “Batch Ver-
ification of Short Signatures”. In: EUROCRYPT 2007. Ed. by Moni Naor. 2007,
pp. 246–263.

[37] Matteo Campanelli, Dario Fiore, and Anaïs Querol. “LegoSNARK: Modular Design
and Composition of Succinct Zero-Knowledge Proofs”. In: Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. CCS ’19.
London, United Kingdom: Association for Computing Machinery, 2019, 2075–2092.
isbn: 9781450367479. doi: 10.1145/3319535.3339820 . url: https://doi.org/10.1145/
3319535.3339820 .

[38] Anrin Chakraborti and Radu Sion. “ConcurORAM: High-Throughput Stateless Par-
allel Multi-Client ORAM”. In: NDSS. 2019. url: https://www.ndss-symposium.org/
ndss-paper/concuroram-high-throughput-stateless-parallel-multi-client-oram/ .

144

https://eprint.iacr.org/2017/1050
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1145/3319535.3339820
https://www.ndss-symposium.org/ndss-paper/concuroram-high-throughput-stateless-parallel-multi-client-oram/
https://www.ndss-symposium.org/ndss-paper/concuroram-high-throughput-stateless-parallel-multi-client-oram/

[39] Alessandro Chiesa et al. “Marlin: Preprocessing zkSNARKs with Universal and Up-
datable SRS”. In: Advances in Cryptology – EUROCRYPT 2020. Ed. by Anne Can-
teaut and Yuval Ishai. Cham: Springer International Publishing, 2020, pp. 738–768.
isbn: 978-3-030-45721-1.

[40] CoinMarketCap. Bitcoin market capitalization. Available at: https://coinmarketcap.
com/currencies/bitcoin/ . 2019.

[41] Compound. https://compound.finance/ .

[42] Compound. Available at: https://compound.finance/ .

[43] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology ePrint Archive,
Report 2016/086. https://eprint.iacr.org/2016/086 . 2016.

[44] Victor Costan, Ilia Lebedev, and Srinivas Devadas. “Sanctum: Minimal Hardware
Extensions for Strong Software Isolation”. In: 25th USENIX Security Symposium.
2016. url: https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/costan .

[45] Kyle Croman et al. “On Scaling Decentralized Blockchains”. en. In: FC. 2016, pp. 106–
125. isbn: 978-3-662-53357-4.

[46] CryptoNote Currencies. https://cryptonote.org/coins .

[47] Curve DAO. https://curve.fi/ .

[48] Artur Czumaj. Lecture notes on approximation and randomized algorithms. http :
//www.ic.unicamp.br/~celio/peer2peer\/math/czumaj-balls-into-bins.pdf . Accessed
in 2019.

[49] Erik Dahmen et al. “Digital Signatures Out of Second-Preimage Resistant Hash Func-
tions”. In: PQCrypto 2008. 2008, pp. 109–123.

[50] Dash. https://www.dash.org/ . Accessed in Dec 2019.

[51] Christian Decker and Roger Wattenhofer. “A Fast and Scalable Payment Network
with Bitcoin Duplex Micropayment Channels”. In: Stabilization, Safety, and Security
of Distributed Systems SSS. 2015, pp. 3–18.

[52] Sergi Delgado-Segura et al. “Analysis of the Bitcoin UTXO Set”. In: BITCOIN. 2018.
doi: 10.1007/978-3-662-58820-8_6 . url: https://doi.org/10.1007/978-3-662-58820-
8_6 .

145

https://coinmarketcap.com/currencies/bitcoin/
https://coinmarketcap.com/currencies/bitcoin/
https://compound.finance/
https://compound.finance/
https://eprint.iacr.org/2016/086
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://cryptonote.org/coins
https://curve.fi/
http://www.ic.unicamp.br/~celio/peer2peer\/math/czumaj-balls-into-bins.pdf
http://www.ic.unicamp.br/~celio/peer2peer\/math/czumaj-balls-into-bins.pdf
https://www.dash.org/
https://doi.org/10.1007/978-3-662-58820-8_6
https://doi.org/10.1007/978-3-662-58820-8_6
https://doi.org/10.1007/978-3-662-58820-8_6

[53] Deterministic wallet. https://en.bitcoin.it/wiki/Deterministic_wallet . Accessed in
Dec 2019.

[54] Benjamin E. Diamond. "Many-out-of-Many" Proofs with Applications to Anonymous
Zether. Cryptology ePrint Archive, Report 2020/293. https://eprint.iacr.org/2020/
293 . 2020.

[55] W. Diffie and M. Hellman. “New Directions in Cryptography”. In: IEEE Transactions
on Information Theory (1976). issn: 0018-9448. doi: 10.1109/TIT.1976.1055638 . url:

 http://dx.doi.org/10.1109/TIT.1976.1055638 .

[56] W. Diffie and M. Hellman. “New Directions in Cryptography”. In: IEEE Trans. Inf.
Theor. 22.6 (Sept. 2006), pp. 644–654. issn: 0018-9448.

[57] DLSAG prototype numbers. https://github.com/levduc/DLSAG-prototype-number .
2019.

[58] Electrum Bitcoin Wallet. https://electrum.org/ . Accessed in Dec 2019.

[59] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. “SoK: Transparent
Dishonesty: Front-Running Attacks on Blockchain”. In: Financial Cryptography and
Data Security. Ed. by Andrea Bracciali et al. Cham: Springer International Publish-
ing, 2020, pp. 170–189. isbn: 978-3-030-43725-1.

[60] Saba Eskandarian and Matei Zaharia. “ObliDB: Oblivious Query Processing for Se-
cure Databases”. In: PVLDB (2019). doi: 10.14778/3364324.3364331 . url: http:
//www.vldb.org/pvldb/vol13/p169-eskandarian.pdf .

[61] Bin Fan et al. “Cuckoo Filter: Practically Better Than Bloom”. In: Proceedings of
the 10th ACM International on Conference on Emerging Networking Experiments
and Technologies. CoNEXT ’14. 2014. doi: 10.1145/2674005.2674994 . url: http:
//doi.acm.org/10.1145/2674005.2674994 .

[62] Xiong Fan, Juan Garay, and Payman Mohassel. Short and Adjustable Signatures.
Cryptology ePrint Archive, Report 2016/549. 2016.

[63] Amos Fiat and Adi Shamir. “How To Prove Yourself: Practical Solutions to Identifi-
cation and Signature Problems”. In: CRYPTO 1986. 1987, pp. 186–194.

[64] Marc Fischlin. “Progressive Verification: The Case of Message Authentication”. In:
Progress in Cryptology - INDOCRYPT 2003. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2003, pp. 416–429.

146

https://en.bitcoin.it/wiki/Deterministic_wallet
https://eprint.iacr.org/2020/293
https://eprint.iacr.org/2020/293
https://doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1109/TIT.1976.1055638
https://github.com/levduc/DLSAG-prototype-number
https://electrum.org/
https://doi.org/10.14778/3364324.3364331
http://www.vldb.org/pvldb/vol13/p169-eskandarian.pdf
http://www.vldb.org/pvldb/vol13/p169-eskandarian.pdf
https://doi.org/10.1145/2674005.2674994
http://doi.acm.org/10.1145/2674005.2674994
http://doi.acm.org/10.1145/2674005.2674994

[65] Cody Freitag et al. “Signature Schemes with Randomized Verification”. In: ACNS
2017. 2017, pp. 373–389.

[66] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations
over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryp-
tology ePrint Archive, Report 2019/953. https://eprint.iacr.org/2019/953 . 2019.

[67] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors for Hard Lat-
tices and New Cryptographic Constructions”. In: STOC 2008. 2008, pp. 197–206.

[68] Arthur Gervais et al. “On the privacy provisions of bloom filters in lightweight bitcoin
clients”. In: Computer Security Applications Conference. 2014, pp. 326–335.

[69] Arthur Gervais et al. “On the Privacy Provisions of Bloom Filters in Lightweight
Bitcoin Clients”. In: ACSAC. 2014. doi: 10.1145/2664243.2664267 . url: http://doi.
acm.org/10.1145/2664243.2664267 .

[70] O. Goldreich. “Towards a Theory of Software Protection and Simulation by Oblivious
RAMs”. In: STOC. 1987. doi: 10.1145/28395.28416 . url: http://doi.acm.org/10.
1145/28395.28416 .

[71] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs That Yield Nothing But
Their Validity Or All Languages in NP Have Zero-Knowledge Proof Systems”. In:
jacm 38.3 (1991), pp. 691–729.

[72] Brandon Goodell and Sarang Noether. Thring Signatures and their Applications to
Spender-Ambiguous Digital Currencies. Cryptology ePrint Archive, Report 2018/774.

 https://eprint.iacr.org/2018/774 . 2018.

[73] Lorenzo Grassi et al. Poseidon: A New Hash Function for Zero-Knowledge Proof
Systems. Cryptology ePrint Archive, Report 2019/458. https://eprint.iacr.org/2019/
458 . 2019.

[74] Matthew Green and Ian Miers. “Bolt: Anonymous Payment Channels for Decentral-
ized Currencies”. In: CCS. 2017, pp. 473–489.

[75] Jens Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: Advances
in Cryptology – EUROCRYPT 2016. Ed. by Marc Fischlin and Jean-Sébastien Coron.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 305–326. isbn: 978-3-662-
49896-5.

[76] Danny Harnik et al. “Securing the Storage Data Path with SGX Enclaves”. In: CoRR
abs/1806.10883 (2018). arXiv: 1806.10883 . url: http://arxiv.org/abs/1806.10883 .

147

https://eprint.iacr.org/2019/953
https://doi.org/10.1145/2664243.2664267
http://doi.acm.org/10.1145/2664243.2664267
http://doi.acm.org/10.1145/2664243.2664267
https://doi.org/10.1145/28395.28416
http://doi.acm.org/10.1145/28395.28416
http://doi.acm.org/10.1145/28395.28416
https://eprint.iacr.org/2018/774
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://arxiv.org/abs/1806.10883
http://arxiv.org/abs/1806.10883

[77] Mike Hearn and Matt Corallo. Connection Bloom filtering. 2012. url: https://github.
com/\\bitcoin/bips/blob/master/bip-0037.mediawiki .

[78] Ethan Heilman et al. “Tumblebit: An untrusted bitcoin-compatible anonymous pay-
ment hub”. In: Network and Distributed System Security Symposium. 2017.

[79] Ryan Henry, Amir Herzberg, and Aniket Kate. “Blockchain Access Privacy: Chal-
lenges and Directions”. In: IEEE Security & Privacy 16.4 (2018), pp. 38–45.

[80] Thang Hoang et al. “Hardware-Supported ORAM in Effect: Practical Oblivious
Search and Update on Very Large Dataset”. In: PoPETs. 2019.

[81] Iden3. Circom: Circuit compiler for zkSNARK. https://github.com/iden3/snarkjs .

[82] Iden3. Snarkjs: JavaScript and Pure Web Assembly implementation of zkSNARK
schemes. https://github.com/iden3/snarkjs .

[83] Angela Jäschke et al. “Short Paper: Industrial Feasibility of Private Information Re-
trieval”. In: SECRYPT. 2017.

[84] Json-roc-cpp. https://github.com/cinemast/libjson-rpc-cpp . Accessed in Dec 2019.

[85] Jubjub. Available at: https://z.cash/technology/jubjub/ .

[86] Jonathan Katz and Yehuda Lindell. “Introduction to Modern Cryptography”. In:
Chapman and Hall/CRC, 2007. isbn: 1584885513.

[87] Key Stone Project. https://keystone-enclave.org/ . Accessed in Dec 2019.

[88] Rami Khalil and Arthur Gervais. “Revive: Rebalancing Off-Blockchain Payment Net-
works”. In: CCS. 2017, pp. 439–453.

[89] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: S&P.
2019.

[90] Philip Koshy, Diana Koshy, and Patrick McDaniel. “An Analysis of Anonymity in
Bitcoin Using P2P Network Traffic”. en. In: FC. 2014, pp. 469–485. isbn: 978-3-662-
45472-5.

[91] Amrit Kumar et al. “A Traceability Analysis of Monero’s Blockchain”. In: ESORICS.
2017, pp. 153–173. isbn: 978-3-319-66399-9.

[92] Mario Lamberger and Elmar Teufl. “Memoryless Near-Collisions, Revisited”. In:
CoRR (2012).

148

https://github.com/\\bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/\\bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/iden3/snarkjs
https://github.com/iden3/snarkjs
https://github.com/cinemast/libjson-rpc-cpp
https://z.cash/technology/jubjub/
https://keystone-enclave.org/

[93] Leslie Lamport. Constructing Digital Signatures from a One Way Function. Tech.
rep. CSL-98. This paper was published by IEEE in the Proceedings of HICSS-43 in
January, 2010. Microsoft Report, 1979.

[94] Jaehyuk Lee et al. “Hacking in Darkness: Return-oriented Programming against Se-
cure Enclaves”. In: 26th USENIX Security Symposium. 2017.

[95] Sangho Lee et al. “Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing”. In: 26th USENIX Security Symposium. 2017.

[96] Jiangtao Li, Ninghui Li, and Rui Xue. “Universal Accumulators with Efficient
Nonmembership Proofs”. In: Applied Cryptography and Network Security. Ed. by
Jonathan Katz and Moti Yung. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 253–269. isbn: 978-3-540-72738-5.

[97] Benoît Libert, Thomas Peters, and Chen Qian. “Logarithmic-Size Ring Signatures
with Tight Security from the DDH Assumption”. In: Computer Security. Ed. by Javier
Lopez, Jianying Zhou, and Miguel Soriano. Cham: Springer International Publishing,
2018, pp. 288–308. isbn: 978-3-319-98989-1.

[98] Libsodium documentation. https://libsodium.gitbook.io/doc/ .

[99] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In: 27th
USENIX Security Symposium. 2018.

[100] Litecoin. https://litecoin.org/ . Accessed in Dec 2019.

[101] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. “Linkable Spontaneous Anony-
mous Group Signature for Ad Hoc Groups”. In: Information Security and Privacy.
2004, pp. 325–335.

[102] Giulio Malavolta et al. “Anonymous Multi-Hop Locks for Blockchain Scalability and
Interoperability”. en-US. In: NDSS. Jan. 2019.

[103] Giulio Malavolta et al. “Concurrency and Privacy with Payment-Channel Networks”.
In: CCS. 2017, pp. 455–471.

[104] Mary Maller et al. “Sonic: Zero-Knowledge SNARKs from Linear-Size Universal
and Updatable Structured Reference Strings”. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’19. Lon-
don, United Kingdom: Association for Computing Machinery, 2019, 2111–2128. isbn:
9781450367479. doi: 10 .1145/3319535 .3339817 . url: https : //doi . org/10 .1145/
3319535.3339817 .

149

https://libsodium.gitbook.io/doc/
https://litecoin.org/
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1145/3319535.3339817

[105] Sinisa Matetic et al. “BITE: Bitcoin Lightweight Client Privacy using Trusted Exe-
cution”. In: 28th USENIX Security Symposium. 2019. url: https://www.usenix.org/
conference/usenixsecurity19/presentation/matetic .

[106] Greg Maxwell. “CoinJoin: Bitcoin privacy for the real world”. In: Post on Bitcoin
forum. 2013.

[107] Gregory Maxwell et al. Simple Schnorr Multi-Signatures with Applications to Bitcoin.
Cryptology ePrint Archive, Report 2018/068. https://eprint.iacr.org/2018/068 . 2018.

[108] Sarah Meiklejohn and Rebekah Mercer. “Möbius: Trustless tumbling for transaction
privacy”. In: Proceedings on Privacy Enhancing Technologies 2018.2 (2018), pp. 105–
121.

[109] Sarah Meiklejohn et al. “A Fistful of Bitcoins: Characterizing Payments Among Men
with No Names”. In: IMC. IMC ’13. 2013, pp. 127–140. isbn: 978-1-4503-1953-9.

[110] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied
Cryptography. 1st. USA: CRC Press, Inc., 1996. isbn: 0849385237.

[111] Ralph C. Merkle. “A Certified Digital Signature”. In: CRYPTO 1989. 1990.

[112] Ralph C Merkle. “A digital signature based on a conventional encryption function”.
In: Conference on the theory and application of cryptographic techniques. Springer.
1987, pp. 369–378.

[113] Silvio Micali, Michael Rabin, and Joe Kilian. “Zero-Knowledge Sets”. In: Proceedings
of the 44th Annual IEEE Symposium on Foundations of Computer Science. FOCS
’03. USA: IEEE Computer Society, 2003, p. 80. isbn: 0769520405.

[114] Ian Miers et al. “Zerocoin: Anonymous distributed e-cash from bitcoin”. In: Sympo-
sium on Security and Privacy. 2013, pp. 397–411.

[115] Andrew Miller and Sean Bowe. Zcash MPC Setup. https ://www.zfnd.org/blog/
powers-of-tau/ .

[116] Mohsen Minaei, Pedro Moreno-Sanchez, and Aniket Kate. R3C3: Cryptographically
secure Censorship Resistant Rendezvous using Cryptocurrencies. Cryptology ePrint
Archive, Report 2018/454. https://eprint.iacr.org/2018/454 . 2018.

[117] Monero monthly blockchain growth. https ://moneroblocks . info/stats/blockchain -
growth .

150

https://www.usenix.org/conference/usenixsecurity19/presentation/matetic
https://www.usenix.org/conference/usenixsecurity19/presentation/matetic
https://eprint.iacr.org/2018/068
https://www.zfnd.org/blog/powers-of-tau/
https://www.zfnd.org/blog/powers-of-tau/
https://eprint.iacr.org/2018/454
https://moneroblocks.info/stats/blockchain-growth
https://moneroblocks.info/stats/blockchain-growth

[118] Pedro Moreno-Sanchez et al. DLSAG: Non-Interactive Refund Transactions For Inter-
operable Payment Channels in Monero. Cryptology ePrint Archive, Report 2019/595.

 https://eprint.iacr.org/2019/595 . 2019.

[119] Malte Möser et al. “An Empirical Analysis of Traceability in the Monero Blockchain”.
In: PETS 2018.3 (2018), pp. 143 –163.

[120] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. url: https://
bitcoin.org/bitcoin.pdf .

[121] Sarang Noether and Brandon Goodel. Dual linkable ring signatures. https ://ww.
getmonero.org/resources/research-lab/pubs/MRL-0008.pdf .

[122] Shen Noether and Adam Mackenzie. “Ring Confidential Transactions”. en. In: Ledger
1.0 (2016), pp. 1–18. issn: 2379-5980.

[123] Olga Ohrimenko et al. “Oblivious Multi-Party Machine Learning on Trusted Proces-
sors”. In: 25th USENIX Security Symposium. 2016.

[124] Payment Channels. url: https://en.bitcoin.it/wiki/Payment_channels .

[125] Torben P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable
Secret Sharing”. In: CRYPTO. 1991, pp. 129–140.

[126] Adrian Perrig. “The BiBa One-time Signature and Broadcast Authentication Proto-
col”. In: CCS 2001. 2001, pp. 28–37.

[127] Andrew Poelstra. Lightning in Scriptless Scripts. 2017. url: https://lists.launchpad.
net/mimblewimble/msg00086.html .

[128] Andrew Poelstra. Scriptless Scripts. 2017. url: https://download.wpsoftware.net/
bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf .

[129] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network. Whitepaper. 2016.
url: http://lightning.network/ .

[130] Python-bitcoinlib. https://github.com/petertodd/python-bitcoinlib . Accessed in Dec
2019.

[131] K. Qin et al. “Applying Private Information Retrieval to Lightweight Bitcoin Clients”.
In: 2019 Crypto Valley Conference on Blockchain Technology (CVCBT). 2019. doi:

 10.1109/CVCBT.2019.00012 .

[132] Raiden Network. url: https://raiden.network/ .

151

https://eprint.iacr.org/2019/595
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ww.getmonero.org/resources/research-lab/pubs/MRL-0008.pdf
https://ww.getmonero.org/resources/research-lab/pubs/MRL-0008.pdf
https://en.bitcoin.it/wiki/Payment_channels
https://lists.launchpad.net/mimblewimble/msg00086.html
https://lists.launchpad.net/mimblewimble/msg00086.html
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
http://lightning.network/
https://github.com/petertodd/python-bitcoinlib
https://doi.org/10.1109/CVCBT.2019.00012
https://raiden.network/

[133] Ashay Rane, Calvin Lin, and Mohit Tiwari. “Raccoon: Closing Digital Side-Channels
through Obfuscated Execution”. In: 24th USENIX Security Symposium. 2015.

[134] Fergal Reid and Martin Harrigan. “An Analysis of Anonymity in the Bitcoin System”.
en. In: Security and Privacy in Social Networks. New York, NY, 2013, pp. 197–223.
isbn: 978-1-4614-4139-7.

[135] Research meeting: 18 March 2019, 17:00 UTC. https://github.com/monero-project/
meta/issues/319 .

[136] Leonid Reyzin and Natan Reyzin. “Better Than BiBa: Short One-Time Signatures
with Fast Signing and Verifying”. In: ACISP 2002. 2002, pp. 144–153.

[137] Phillip Rogaway and Thomas Shrimpton. “Cryptographic Hash-Function Basics: Def-
initions, Implications, and Separations for Preimage Resistance, Second-Preimage Re-
sistance, and Collision Resistance”. In: FSE 2004. 2004, pp. 371–388.

[138] Antoine Rondelet and Michal Zajac. ZETH: On Integrating Zerocash on Ethereum.
2019. arXiv: 1904.00905 [cs.CR] .

[139] Tim Ruffing and Pedro Moreno-Sanchez. “Valueshuffle: Mixing confidential transac-
tions for comprehensive transaction privacy in bitcoin”. In: International Conference
on Financial Cryptography and Data Security. Springer. 2017, pp. 133–154.

[140] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. “Coinshuffle: Practical decen-
tralized coin mixing for bitcoin”. In: European Symposium on Research in Computer
Security. Springer. 2014, pp. 345–364.

[141] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. “P2P Mixing and Unlinkable
Bitcoin Transactions”. In: Network and Distributed System Security Symposium. 2017.

[142] Nicolas van Saberhagen. CryptoNote v 2.0. Whitepaper. 2013. url: https : / /
cryptonote.org/whitepaper.pdf .

[143] E. B. Sasson et al. “Zerocash: Decentralized Anonymous Payments from Bitcoin”. In:
S&P. 2014. doi: 10.1109/SP.2014.36 .

[144] Eli Ben Sasson et al. “Zerocash: Decentralized anonymous payments from bitcoin”.
In: Symposium on Security and Privacy. IEEE. 2014, pp. 459–474.

[145] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. “ZeroTrace : Oblivious
Memory Primitives from Intel SGX”. In: NDSS. 2018.

152

https://github.com/monero-project/meta/issues/319
https://github.com/monero-project/meta/issues/319
https://arxiv.org/abs/1904.00905
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://doi.org/10.1109/SP.2014.36

[146] C. P. Schnorr. “Efficient signature generation by smart cards”. In: Journal of Cryp-
tology 4.3 (1991), pp. 161–174.

[147] Elaine Shi et al. “Oblivious RAM with O((logN)3) Worst-Case Cost”. In: ASI-
ACRYPT 2011. 2011.

[148] Michele Spagnuolo, Federico Maggi, and Stefano Zanero. “BitIodine: Extracting In-
telligence from the Bitcoin Network”. en. In: FC. 2014, pp. 457–468. isbn: 978-3-662-
45472-5.

[149] Emil Stefanov et al. “Path ORAM: An Extremely Simple Oblivious RAM Protocol”.
In: CCS. 2013. doi: 10.1145/2508859.2516660 . url: http://doi.acm.org/10.1145/
2508859.2516660 .

[150] Michael Szydlo. “Merkle Tree Traversal in Log Space and Time”. In: EUROCRYPT
2004. 2004, pp. 541–554.

[151] T3 prototype implementation. https://github.com/TEE-3/T3 . 2019.

[152] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A2l: Anonymous atomic locks
for scalability and interoperability in payment channel hubs. Tech. rep. Cryptology
ePrint Archive, Report 2019/589, 2019.

[153] Tornado Cash. Available at: https://tornado.cash/ .

[154] Florian Tramer and Dan Boneh. “Slalom: Fast, Verifiable and Private Execution of
Neural Networks in Trusted Hardware”. In: International Conference on Learning
Representations. 2019. url: https://openreview.net/forum?id=rJVorjCcKQ .

[155] Chia-Che Tsai et al. “Cooperation and Security Isolation of Library OSes for Multi-
process Applications”. In: EuroSys. 2014. doi: 10.1145/2592798.2592812 . url: http:
//doi.acm.org/10.1145/2592798.2592812 .

[156] Understanding the structure of Monero’s LMDB and how explore its contents using
mdb_stat. https://monero.stackexchange.com/questions/10919/understanding-the-
structure-of-moneros-lmdb-and-how-explore-its-contents-using .

[157] Luke Valenta and Brendan Rowan. “Blindcoin: Blinded, accountable mixes for bit-
coin”. In: International Conference on Financial Cryptography and Data Security.
Springer. 2015, pp. 112–126.

[158] Xiao Wang, Hubert Chan, and Elaine Shi. “Circuit ORAM: On Tightness of the
Goldreich-Ostrovsky Lower Bound”. In: CCS. 2015. doi: 10.1145/2810103.2813634 .
url: http://doi.acm.org/10.1145/2810103.2813634 .

153

https://doi.org/10.1145/2508859.2516660
http://doi.acm.org/10.1145/2508859.2516660
http://doi.acm.org/10.1145/2508859.2516660
https://github.com/TEE-3/T3
https://tornado.cash/
https://openreview.net/forum?id=rJVorjCcKQ
https://doi.org/10.1145/2592798.2592812
http://doi.acm.org/10.1145/2592798.2592812
http://doi.acm.org/10.1145/2592798.2592812
https://monero.stackexchange.com/questions/10919/understanding-the-structure-of-moneros-lmdb-and-how-explore-its-contents-using
https://monero.stackexchange.com/questions/10919/understanding-the-structure-of-moneros-lmdb-and-how-explore-its-contents-using
https://doi.org/10.1145/2810103.2813634
http://doi.acm.org/10.1145/2810103.2813634

[159] What is Fungibility? https://www.investopedia.com/terms/f/fungibility.asp .

[160] Gavin Wood. “Ethereum: A secure decentralised generalised transaction ledger”. In:
Ethereum project yellow paper 151 (2014), pp. 1–32.

[161] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems”. In: S&P. 2015.

[162] Yearn Finance. https://yearn.finance/ .

154

https://www.investopedia.com/terms/f/fungibility.asp
https://yearn.finance/

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Challenges for Resource-constrained Devices in Permissionless Blockchains
	Contributions
	Outline of the Dissertation

	I Addressing Storage Overhead with Add-on Privacy Solutions
	OBLIVIOUS DATABASE FRAMEWORK FOR SIMPLIFIED PAYMENT VEFIFICATION CLIENTS
	Design Goals and Solution Overview
	System Components
	Design Goals
	Solution Overview

	Preliminaries and Threat Model
	Trusted Execution Environment
	Oblivious Random-Access Machine
	Blockchain
	Threat Model

	Proposed System
	Storage Structure of the UTXO set
	Oblivious Read and Write Protocols

	Evaluation and Comparison
	Configuration
	Experimental Results
	Comparison with Other Oblivious Systems

	System Analysis
	Security Claims
	Other Goals Achieved by T3
	Other attacks and Countermeasures

	Concluding Remarks

	AUTONOMOUS ADD-ON PRIVACY COIN MIXER, AMR
	Preliminaries
	Background on Smart Contract Blockchains and Lending Platforms
	Cryptographic Primitives

	System Overview
	System Components
	Overview of AMR

	AMR System
	AMR Contract Setup
	AMR Client Algorithms
	AMR Contract Algorithms
	System Goals
	Threat Models

	Detailed zkSNARK-based System Construction
	Building Blocks
	Contract Setup
	Client Algorithms
	Contract Algorithms

	System Analysis
	Privacy Metric
	Privacy Analysis
	Other Goals Achieved By AMR

	Evaluation
	Parameters
	Performance
	Empirical Analysis on Tornado Cash

	Discussion and Applications
	Related Work on add-on privacy solutions
	Concluding Remarks

	II Addressing Communication Overhead with Private Payment Channels
	ADDRESSING COMMUNICATION OVERHEAD WITH PAYMENT CHANNELS IN MONERO
	Background
	Linkable Ring Signatures (LSAG)
	Preliminaries

	Dual-Key LSAG (DLSAG)
	Key ideas and construction of DLSAG
	Security analysis

	Implementation and performance analysis
	DLSAG in Monero
	Putting all together

	Applications in Monero Enabled by DLSAG
	Building blocks
	Payment channels in Monero
	Payment-Channel Network in Monero

	Concluding remarks and outlook

	III Improving Computation Overhead with Flexible Signature Framework
	FLEXIBLE SIGNATURES
	Preliminaries
	Security Definition
	Flexible Lamport-Diffie One-time Signature
	Construction
	Security Analysis

	Flexible Merkle Tree Signature
	Construction
	Security Analysis
	Other Signature Schemes

	Evaluation, Performance Analysis, and Discussion
	Security Level of Flexible Lamport-Diffie One-time Signature
	Security Level of Flexible Merkle Tree Signature
	Implementation and Performance

	Concluding Remarks

	SUMMARY
	Future Work

	REFERENCES

