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ABSTRACT

Advances in virtualization technologies have revolutionized the design of the core of

cellular networks. However, the adoption of microservice design patterns and migration

of services from purpose-built hardware to virtualized hardware has adversely affected the

delivery of latency-sensitive services.

In this dissertation, we make a case for cloud-native (microservice container packaged)

network functions in the cellular core by proposing domain knowledge-driven, traffic-aware,

orchestration frameworks to make network placement decisions. We begin by evaluating

the suitability of virtualization technologies for the cellular core, and demonstrating that

container-driven deployments can significantly outperform other virtualization technologies

such as Virtual Machines for control and data plane applications.

To support the deployment of latency-sensitive applications on virtualized hardware, we

propose using Virtual Network Function (VNF) bundles (aggregates) to handle transactions.

Specifically, we design Invenio to leverage a combination of network traces and domain

knowledge to identify VNFs involved in processing a specific transaction, which are then

collocated by a traffic-aware orchestrator. By ensuring that a user request is processed by

a single aggregate of collocated VNFs, Invenio can significantly reduce end-to-end latencies

and improve user experience.

Finally, to understand the challenges in using container-driven deployments in real-world

applications, we develop and evaluate a novel caller-ID spoofing detection solution in Voice

over LTE (VoLTE) calls. Our proposed solution, Nascent, cross validates the caller-ID

used during voice-call signaling with a previously authenticated caller-ID to detect caller-

ID spoofing. Our evaluation with traditional and container-driven deployments shows that

container-driven deployment can not only support complex cellular services but also outper-

form traditional deployments.
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1. INTRODUCTION

Advances in virtualization technologies and widespread availability of cloud infrastructure

have revolutionized modern cellular networks. Cellular providers are increasingly adopting

Network Functions Virtualization (NFV) to leverage the cloud infrastructure and support

low cost, flexible, and on-demand service delivery. While the migration of monolithic imple-

mentations of Network Functions (NFs) to virtualized cloud-based infrastructure has been

successful, the transition of hardware-based NFs to cloud-native NFs is far from complete.

To maximize the use of cloud resources and allow fine-grained resource flexing, telecom-

munication NFs must transition from traditionally used monolithic designs to cloud-native

design patterns such as microservices architectures, containerized services and distributed

management and orchestration.

A key challenge in deployment of cloud-native telecommunication NFs is the inherent

design philosophy of traditional telecommunications NFs. In order to ensure deterministic

performance and support low latency services, NFs in the cellular core adopt monolithic

designs that result in Virtual Network Functions (VNFs) of large resource footprints which

do not readily lend themselves to cloud-native designs. Large footprint VNFs packaged in

Virtual Machines (VMs) severely limit the ability of the network orchestrator to place these

VNFs in close proximity, which can lead to high end-to-end (e2e) latency and Service Level

Agreement (SLA) violations. Additionally, owing to complexities in cellular protocol designs

and long Service Function Chains (SFCs) used in service delivery, SLA violations can quickly

cascade to severely degrade the quality of service.

In this work, we make a case for a cloud-native cellular core by tackling the problems faced

by network providers in migration of hardware-based NFs to cloud-native VNFs. Specifically,

we make the following contributions: (1) We analyze the efficacy of lightweight virtualization

technologies in supporting cellular VNFs, (2) We propose the use of functional decomposition

and VNF bundles (aggregates) to support deployment of low-latency applications, and (3)

We analyze the benefits of container-driven deployments in solving real-world problems by

developing a novel called-ID spoofing detection solution and comparing its performance in

traditional and container-driven deployments.
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We briefly describe our proposed solutions in the remainder of this chapter.

1.1 Empirical Analysis of Container-driven VNFs

The primary factors driving NFV adoption are efficient resource usage and agility in

terms of elastic resource allocation. Multiple virtualization technologies can be used to

deploy VNFs in the cloud, and selecting the right virtualization technology is a vital step

towards deploying cloud-native cellular cores.

We compare the performance and resource usage of three VNFs with bare metal (BM),

container, and VM instantiations. Our experiments indicate that compared to VM-driven

deployments, container-driven deployments have shorter instantiation times, incur signifi-

cantly lower performance overhead, and result in smaller overall footprints. These attributes

make containers an ideal choice for cellular VNFs where booting delays directly affect system

performance, and higher elasticity is desired to reduce the overall operational cost.

1.2 Latency-driven Deployment of VNFs

Current NFV deployments have merely focused on migration of traditional monolithic

NFs to virtualized cloud-based infrastructure. However, owing to the high memory and

resource footprints of monolithic applications, dynamic instantiation of these VNFs can fre-

quently lead to conditions where VNFs in an SFC are placed on different racks or even differ-

ent data centers (DCs). Distributed instantiations of SFCs and inherent latency variations

within data centers can result in significant performance degradation since current appli-

cations and network protocol stacks are designed for traditional deployments and therefore

react poorly to such “unbounded” latencies.

In Contain-ed, we propose functional decomposition of monolithic VNFs to support

deployment of latency-sensitive applications on DCs with unpredictable latency. We use

traffic-type based VNF aggregation to create affinity aggregates (AA) which are lightweight

microservice-based VNF bundles that handle messages of a single traffic type, and then use

traffic-aware orchestration to co-locate VNFs in AAs. To enable orchestrators to develop an

effective placement strategy for microservice-based SFCs without prior knowledge of service
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functionality, we also propose a system, Invenio, that uses the knowledge of user actions

and provenance information extracted from network traces to compute transactional affinity

between VNFs in an SFC for each traffic type. The transactional affinity values are then

used to make placement decisions to meet latency constraints of a given traffic type.

1.3 Container-driven Deployment of VoLTE Caller-ID Validation

An important consideration in adaption of new technologies in cellular core is the ease

with which they can integrated with existing cellular core. Since services in cellular core are

provided by long SFCs, VNFs deployed using cloud-native designs must often interact with

existing monolithic functions to support new services. It is therefore essential to understand

the efficacy of containers in supporting real-world applications with long SFCs.

We use Voice over LTE (VoLTE) caller-ID spoofing detection service as a case study

to understand the impact of container-driven cellular core. In this case study, we propose

Nascent, a novel Network-assisted caller ID authentication solution to validate the caller-

ID used during call setup. We prototype and experimentally evaluate the performance of

Nascent on traditional (bare metal) and container-driven deployments to understand the

efficacy of containers in supporting new real-world services. Our experiments confirm that

container-driven deployments are not only capable of supporting complex services with long

SFCs, but can also outperform existing bare metal service deployments.

1.4 Thesis Statement

The thesis of this work is as follows: Deploying latency-sensitive cellular services designed

using monolithic architectures on shared virtualized hardware can significantly reduce quality

of service. Functionality-driven decomposition of monolithic applications into microservice

components, coupled with traffic-aware orchestration frameworks, can increase quality of ser-

vice.
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2. BACKGROUND

In this chapter, we give some background on cellular networks and network functions virtu-

alization, and discuss some related research.

2.1 Introduction to Cellular Networks

The advent of mobile broadband radio access and the convergence of Internet and mo-

bile services have revolutionized cellular networks. Adoption of all Internet Protocol (IP)

network architecture by cellular networks has enabled them to support high-bandwidth ser-

vices promised by mobile broadband. Successive generations of cellular networks (3G, 4G,

5G) promise to support increasingly complex services driven by the evolution of high speed

Radio Access Networks (RANs) and faster access to internet servers. The part that links

these RANs and internet together is the core network. Core network combines the power

of high-speed radio access technologies with the power of innovative application enabled by

the internet to realize the promise of mobile broadband. Figure 2.1  presents the architecture

of the 4th generation of cellular networks (4G) called Long-Term Evolution (LTE) [1 ]. LTE

network is the first generation of cellular core to integrate an all IP core with high speed

RAN.
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Figure 2.1. LTE Network Architecture
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The basic LTE architecture is shown in Figure 2.1 . The LTE network can be divided in

two parts: RAN and Evolved Packet Core (EPC). The RAN comprises of the eNodeB, which

is responsible for providing radio connectivity to the users. The EPC network consists of the

Mobility Management Entity (MME), Home Subscriber Server (HSS), Serving Gateway (S-

GW), Packet Data Network Gateway (P-GW), and the Policy Rules and Charging Function

(PCRF). The MME and HSS are control plane entities responsible for signaling, mobility,

and security functions for User Equipment (UE) attaching over the RAN. S-GW and P-GW

are data path entities responsible for data transfer to and from the UEs. The P-GW along

with the PCRF is also responsible for Quality of Service (QoS) and gating control functions

for each mobile subscriber.

To uniquely identify a cellular subscriber, each UE’s SIM card is associated with two

globally unique identifiers (a) an International Mobile Subscriber Identity (IMSI) and (b) a

Mobile Station International Subscriber Directory Number (MSISDN) (telephone number).

The SIM card also contains a shared secret which is used to authenticate the UE to the

network with the help of a user database called HSS. The MME acts as the initial attach

point to the network. The MME relies on the subscription information stored in the HSS

to handle network attachment and creation of default/dedicated bearers that provide basic

IP connectivity to the UE. The MME supports several standard interfaces such as S1-AP,

S6a/S13, and S11 to interact with eNodeB, HSS, and S/PGW respectively. During the initial

attach, the UE generates an attach request to the eNodeB. Upon receipt of the attach request

from the eNodeB over S1-MME interface, the MME authenticates the user by retrieving the

authentication information stored in the user profile in the HSS using Diameter [2 ] based

S6a interface.

After the authentication step is completed, the MME initiates creation of default bearer

towards the S-GW over the S11 interface using the GTP-C protocol. The S-GW creates a

default bearer, and requests the P-GW to allocate an IP address to the attaching UE. After

the context setup at the eNodeB, the default bearer is activated and basic data connectivity

is established with the UE. After the default bearer procedure is completed, the P-GW

initiates the creation of a dedicated EPC bearer to support the Voice over LTE (VoLTE)

service. Unlike previous generation of cellular networks (2G/3G), VoLTE carries voice traffic
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and its signaling, in IP packets and therefore a dedicated bearer is created to tunnel VoLTE

signaling packets.

The VoLTE and SMS service in EPC is provided with the support of an external sub-

system called IP Multimedia Subsystem (IMS) [3 ]. The IMS offers voice and multimedia

services over IP via Call Session Control Functions (CSCFs) which use the Session Initiation

Protocol (SIP) [4 ] for call setup signaling. During the setup of a VoLTE call, P-GW acts as

the interface between the EPC and IMS networks. The P-GW typically includes the control

function commonly known as the Policy and Charging Enforcement Function (PCEF), which

forwards signaling packets to the Proxy-CSCF (P-CSCF) using the SGi interface. The S-

CSCF after decoding the SIP message, triggers network bandwidth allocation at the PCEF.

The communication between the S-CSCF and the PCEF is mediated by the PCRF which

communicates the the S-CSCF and the PCEF using Diameter-based [2 ] Rx and Gx interface,

respectively.

It is important to note that IMS is an independent subsystem and therefore it does not

use EPC user identifiers such as the IMSI and MSISDN for identification and authentication

of the callers. Instead, IMS uses SIP protocol based IP Multimedia Private Identity (IMPI)

and IP Multimedia Public Identity (IMPU) for user addressing and authentication. Usage

of different identifiers the EPC and IMS subsystem make the VoLTE network susceptible to

caller-ID spoofing attacks described in chapter 6.1 .

2.2 Introduction to Network Functions Virtualization

Network Functions Virtualization (NFV) is the decoupling of Network Functions (NFs)

from proprietary hardware appliances and running them as software applications using virtu-

alized technologies such as Virtual machines (VM) or containers. Network functions such as

firewalls, load balancers, and EPC elements (Chapter 2.1 ) deployed using NFV (referred to

as Virtual Network Functions (VNFs)) can then be instantiated on commercial off-the-shelf

(COTS) such as x86 servers.

Network services such as the VoLTE service in Chapter 2.1 are delivered using a com-

bination of network functions. A Service Function Chain (SFC) defines an ordered set of
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abstract NFs and ordering constraints that must be applied to packets and/or frames in the

process of service delivery. As an example, VoLTE call setup request must be processed by

the P-GW, P-CSCF, S-CSCF, and the PCRF (Figure 2.1  ), in that order, before call setup

can be completed. Network orchestrators dynamically instantiate VNFs involved in deliv-

ery of a service and then use programmable network technologies such as Software Defined

Networking (SDN) to switch together VNFs into SFCs.

The benefit of NFV is twofold: reduced capital/operational expenses and increased net-

work agility. Unlike traditional deployments where network functions and services are de-

ployed using purpose build hardware, network services in NFV are deployed on COTS servers

rented from public cloud platforms such as Amzaon EC2 [5 ], Google cloud [6 ], etc which

allows service providers to reduce the capital expense required to deploy new services. Addi-

tionally, since resources in NFV not pre-allocated, service providers can allocate additional

resources on demand, further reducing operational expenses. On demand resources can be

added by a) Scale-up: allocating additional resources to existing VNF instances, or b) Scale-

out: creating new instances of VNFs. New service offerings can now be created by adding

one or more VNFs to an SFC and an existing services can be extended by adding software

modules, whereas unpopular features can be removed by deleting service modules.

A new trend in the NFV is the use of microservice based architectures. Unlike tradi-

tional deployments and VM-based NFV deployments where cellular services were provided

by complex monolithic applications, microservice-based designs advocate the use of small,

loosely-coupled, Representational state transfer (REST)-based reusable components for ser-

vice delivery. Each microservice component provides a single functionality (such as key-value

store, timer service, etc) and communicates to other microservices using well defined REST-

based messages. Consequently, microservice-based architectures facilitate independent scal-

ing and update of individual microservices, avoiding long development cycles and improving

elasticity. Figure 2.2  shows the difference between an application deployed using monolithic

architecture and microservice architecture.

Despite their advantages, NFV and microservices represent a significant departure from

the traditional cellular deployments and have broad implications ranging from software de-

sign to orchestration. Unlike traditional deployments where proprietary hardware and cus-
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Figure 2.2. Difference in Monolithic and Microservice architecture

tom build low latency data centers were used to guarantee QoS, supporting low latency

services is becoming more challenging. Functional decomposition of monolithic applications

into smaller microservices is resulting in increasingly longer SFCs and the latency budgets

available to individual microservices are shrinking. Deployment of latency-sensitive ser-

vices while achieving conflicting goals of maximizing infrastructure usage and avoiding SLA

violation(s) therefore requires traffic-aware orchestration frameworks which can make e2e

placement and resource allocation decisions.

2.3 Related Work

In this section, we review the literature associated with the adoption of cloud native

designs in cellular cores. Specifically, we discuss the choice of virtualization technology,

research related to developing low latency cellular core, and automated placement solutions.

Further, we present a brief overview of existing caller-ID validation solutions, to put in

context the need for a network-assisted caller-ID validation solution and the advantages of

container-driven deployments in supporting such functional extensions in the cellular core.

Virtualization Performance: Network Function Virtualization [7 ] has gained signif-

icant momentum over the past few years [8 ]. Gember et al. [9 ] investigated application
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deployment in the cloud from various perspectives, including elasticity, network flow distri-

bution, and virtual machine placement. Banerjee et al. [10 ] discussed how NFV can help

scale EPC systems. Elasticity in intrusion detection systems has been investigated in [11 ],

[12 ]. None of the above studies specifically compares containers to virtual machines.

More recently, the use of containers has been studied by Anderson et al. [13 ] and Ka-

marainen et al. [14 ]. Anderson et al. [13 ] examined the impact of network technologies like

OVS, bridging and macvlan on the throughput of Docker containers. Kamarainen et al. [14 ]

explored the impact of virtualization techniques including containers and VMs on cloud

gaming systems. Their study examines the impact of virtualization on video encoding and

hardware resource sharing and does not consider transaction-based systems and network

layer entities as we do.

Service Decomposition: Placement problems and network latency have been widely

studied in the context of NFV. A generally accepted direction for scalable cloud-based in-

frastructure is decoupling user state storage from VNF processing logic. Kablan et al. [15 ]

investigate a stateless design that leverages technologies like RAMCloud over InfiniBand to

demonstrate how a Network Address Translation (NAT) function can be decomposed into

packet processing and data. The focus of their work is, however, on demonstrating how

a stateless design improves the elasticity of NFV deployments. They do not consider the

impact of stateless design principles on limiting e2e latency. Decoupled control and user

plane network functions are also described in [16 ]. This work aims at minimizing commu-

nication latency between the control plane elements while simultaneously bringing the user

data processing elements close to the network edge, improving the overall user experience.

Basta et al. [17 ], Hawilo et al. [18 ] and Katsalis et al. [19 ] propose redesign of exist-

ing networks to reduce latency. There is, however, little work that uses container-driven

backward-compatible solutions. Basta et al. [17 ] explore several implementation models in

which v-EPC can be deployed. However, the implementation models proposed can result in

extensive refactoring of existing implementations. The scope of their work is limited to the

placement of the user and control planes in EPC gateways, and does not include common

principles that can be applied to any SFCs. Hawilo et al. [18 ] discuss a scheme for bundling

EPC components, guided by the principles of a flat architecture and the decoupling of the

23



control and user planes. While this architecture proposes bundling an NF and provides an

analysis of the benefits of the proposed architecture, it does not investigate how these changes

can be implemented in current architectures. The work closest to ours was conducted by

Katsalis et al. [19 ]. This work analyzes a stateless 5G design pattern. They propose a micro

service-driven stateless RAN architecture which uses shared control plane contexts for data

storage. The work is limited to the analysis of RAN and does not delve into the application

of this design to general SFCs.

Service placement and monitoring: Functionality-based decomposition has been pro-

posed to reduce latency and increase throughput for cellular network control planes [19 ]–[22 ].

That work uses manual analysis of network architecture and traffic to find the functional

elements that can be aggregated. Stratos [23 ] avoids traversing oversubscribed inter-rack

links during function placement, and Selimi et al. [24 ] explore placement to maximize band-

width utilization. None of these studies consider workload types and transactions. Other

work [25 ]–[27 ] formulates the placement problem as a graph partitioning problem or an op-

timization problem. This is orthogonal to our work, as our notion of transactional affinity

is a new factor to consider as an input to the placement problem.

Recent studies [28 ]–[32 ] have highlighted challenges in integrating, deploying, and man-

aging microservice-based applications. For instance, ucheck [28 ] uses runtime verification

and enforcement of invariants to help service providers manage microservice-based appli-

cations. Probius [29 ] finds performance bottlenecks by correlating VNF, hypervisor, and

system metrics. NFVPerf [30 ] uses network traces collected from NFs to compute per-hop

message processing latency which is then used to infer performance bottlenecks. Our work

proposes transaction-driven microservice deployment, and is thus complementary to this line

of work.

Protocol inference and traffic enrichment: Extracting protocol state information

from network traces, or reverse engineering a protocol, has been widely studied in the lit-

erature. Prior work extracts specifications of unknown protocols [33 ]–[37 ], and uses inferred

message formats to detect malware signatures [34 ], [38 ]. Invenio also exploits protocol header

information, but utilizes protocol analyzer tools to extract user-identifying headers. Other

categories of work in this area use xml or json formats exported by tools such as wireshark
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to derive protocol state machines [39 ], [40 ]. Application-specific information is used to group

available messages into sessions [39 ]. Network traces identify dialogs in HTTP and SIP traf-

fic [40 ]. While Invenio shares finite-state machine extraction techniques with these papers,

it differs in one important aspect: we use the extracted state information to compute affinity

between NFs for an entire SFC. In contrast, prior work extracts the state machine for a single

NF and does not merge state machines from multiple NFs to derive transaction information

for an SFC.

Several efforts [41 ], [42 ] enrich network messages with “Metadata” [42 ] using the Network

Service Header (NSH [41 ]) which can be used by NFs to steer traffic and maintain per-

user state. Invenio can benefit from the presence of the NSH header in network messages.

Metadata carried in these headers can be utilized to identify the user associated with a

message.

Caller-ID validation: Several solutions for caller-ID validation have been proposed

in the literature. These solutions can be categorized as endpoint-only or network-assisted.

Some endpoint-only solutions [43 ], [44 ] use challenge-and-response between the caller and

callee, which requires the caller to respond to an SMS [44 ] or a call [43 ]. This requires the

caller’s cooperation, and mandates updates on all phones (i.e., all possible callers), which is

unlikely in the foreseen future. Most network-assisted solutions either deploy an additional

global authority (e.g., a public certification service [45 ]–[48 ]) or a Public Key Infrastructure

(PKI) [49 ] to authenticate each party before call setup. An easier-to-deploy approach is

to authenticate callers at the gateway during call setup [50 ], [51 ] by cross validating the

forwarded ID with the authenticated one. This approach is effective in principle but has not

been deployed in practice, partly because all existing solutions would incur an unacceptable

performance penalty. Our work adopts this general approach but designs a practical solution

compatible with current infrastructure at a much lower overhead.
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3. A CASE FOR CONTAINER-DRIVEN FINE-GRAINED VNF

RESOURCE FLEXING

In this chapter, we make a case for using lightweight containers for fine-grained resource

flexing for Virtual Network Functions (VNFs) to meet the demands of varying workloads.

We quantitatively compare the VNF performance and infrastructure resource usage of three

different instantiations (bare metal, virtual machine, and container) of three selected VNFs.

The three VNFs we use for our experiments are the Mobility Management Entity (MME) of

the Evolved packet core (EPC) architecture for cellular networks, the Suricata multi-threaded

Intrusion Detection System (IDS), and the Snort single-threaded IDS. Our results show that

container-based instantiations not only incur low resource usage but also have shorter boot

time. In order to understand the efficacy of containers in supporting real-world application

with long SFCs, we also evaluate a container based Voice over LTE (VoLTE) application.

Our results indicate that NFV based VoLTE deployments significantly outperforms existing

bare metal based service deployments, making containers an ideal choice for real-world NFV

deployments.

3.1 Introduction

Communication Service Providers (CSPs) are increasingly adopting Network Functions

Virtualtization (NFV) in their infrastructure. Two primary factors driving NFV adoption

are efficient resource usage, and agility in terms of elastic resource allocation [7 ]. However,

CSPs face key challenges in this NFV transformation. While virtualization allows service

and resource allocation agility, virtualization of network functions needs to be implemented

with minimal overhead for efficient resource usage. Virtual machines (VMs) and containers

are the two most widely deployed virtualization mechanisms in the cloud. Containers such

as LXC [52 ] and Docker [53 ] are becoming popular for tenant and application isolation in

cloud ecosystems. Compared to virtual machines, containers exhibit lower overhead and

higher performance.
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In this chapter, we compare the performance and resource usage of three Virtual Network

Functions (VNFs) with bare metal (BM), container, and Virtual Machine (VM) instantia-

tions, at a variety of load levels and resource allocation configurations. The three VNFs we

benchmark are: (1) The Mobility Management Entity (MME) of the Evolved packet core

(EPC) architecture for cellular networks, (2) the Suricata multi-threaded Intrusion Detec-

tion System (IDS), and (3) the Snort single-threaded IDS. To the best of our knowledge,

ours is the first extensive empirical study that compares resource usage efficiency and elastic

resource flexing of VMs and containers for VNF implementation.

We demonstrate that container-based deployments incur significantly lower performance

overhead, compared to VM-based deployments, while reducing the initialization time of the

system. This makes containers an ideal choice for systems where booting delays directly affect

how quickly additional resources can be allocated to VNFs (agility), and higher elasticity

is desired to reduce the overall operational cost. We experiment with deploying multiple

instances on the same hardware platform, and find that such an elastic deployment model

provides high resource utilization without the need for re-architecting unoptimized VNF

implementations such as single-threaded applications.

Thus, the contribution of this chapter is threefold:

1. We benchmark the performance of the Mobility Management Entity, Suricata, and

Snort VNFs on bare metal, containers and VMs under varying workloads and with

different numbers of instances.

2. We analyze the time required by the VNFs to start in VMs and containers.

3. Based on our results, we make several recommendations for resource flexing of VNFs,

including VNFs based on legacy single-threaded software.

3.2 Virtual Network Functions

We consider two types of VNFs for our empirical study: (1) an evolved packet core (EPC)

control plane VNF, MME, that is primarily a control plane network function, and (2) two
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IDS VNFs (Snort and Suricata) that are primarily data plane network functions and stress

the forwarding plane of the VNF ecosystem.

3.2.1 EPC Control Plane

We evaluate the performance of the Mobility Management Entity (MME) from the EPC

control plane. Figure 2.1  shows the position of the MME in the LTE network. MME is a

control plane entity which acts as the inital attach point to the LTE network and supports

user attach and authentication procedure. We use MME in our evaluations to understand

the impact of virtualization on control plane elements.

3.2.2 Intrusion Detection Systems

Suricata http://suricata-ids.org/ and Snort https://www.snort.org  are popular intrusion

detection systems. The reason we experiment with both of them is that Snort is single-

threaded whereas Suricata is multi-threaded. This difference allows us to evaluate the impact

of the implementation on total system throughput when NFV orchestration systems scale-out

by creating additional instances of the same VNF.

3.3 Experimental Setup

The testbed we use in our experiments includes two host machines that are directly

connected by Ethernet. One host acts as the sender running a traffic generator, and the other

as a receiver that runs our VNF. Both machines have the following hardware configuration:

CPU Intel Xeon X3430 @ 2.40 GHz; Nehalem; EIST disabled; VT-x and VT-d enabled;

HT not supported, RAM 2 x 2GB DDR3-1333, HDD 500GB Seagate 3.5" 7200RPM + 2

x 1 TB Seagate 3.5" 7200RPM, and NIC 2 x Broadcom 1 Gbps.

The sender host runs Ubuntu 14.04.4 64-bit LTS with gcc 4.8.4. The IDS experiments

use tcpreplay 4.1.1. The receiver host runs Ubuntu 15.10 64-bit with the following software:

gcc 5.2.1, docker 1.11.0, libvirt 1.2.16, and qemu 2.3.
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3.3.1 Evolved Packet Core Setup

In the MME experiments, we run the MME, SGW and PGW nodes on physical machines,

VMs, or Docker containers. The HSS and eNode applications are hosted on two physical

machines connected via a switch (Figure 3.1 ).

Figure 3.1. Setup for EPC Tests

The EPC experiments use the following setups: (1) Bare metal (BM): The MME runs

directly on the hardware and reads the incoming data directly from the NIC. (2) Container

(Docker): In case of multiple instances of the MME running within Docker, a bridge is

used to direct traffic from the NIC to the appropriate MME container instance. (3) Virtual

Machine (VM): We use QEMU/KVM [54 ] hypervisor to run VM instantiation of MME.

Similar to the container case, when there are multiple instances of MME, a bridge is used to

direct traffic from the NIC to appropriate MME instance. The VMs run the same version

of the operating system and software as their bare metal counterpart to ensure a consistent

runtime environment.

In all MME experiments, the memory limit it set as 2 GB for VM and containers. When

multiple VM instances are used, the CPU cores are proportionality divided among the MME

instances.
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3.3.2 IDS Setup

In the IDS experiments, the sender uses multiple instances of TCP-replay to generate

test traffic by replaying trace files (Figure 3.2 ).

Figure 3.2. Setup for IDS Tests

We use suricata 3.0.1 or snort 2.9.8.2 with EmergingThreat Rules 20160414. The

docker and VM image for Suricata and Snort resemble the software of the host, running

Ubuntu Server 15.10 64-bit and having the same gcc and Suricata/Snort (including config-

uration and rule set) versions.

The IDS experiments use setups similar to the MME experiments described earlier. Since

IDS VMs are primarily data-plane applications we also evaluated how their performance is

impacted by various virtualized network technologies being deployed by NFV users. In

particular, we experimented with three mechanisms for directing incoming IDS workload to

network function instances: (1) Direct NIC access: Direct access to the NIC is available

for bare metal and container instantiations. This direct access to NIC is not available for

the VM instantiation. With multiple instances, additional de-muxing support is required for

redirecting traffic appropriately. (2) macvtap: Instead of exposing host NICs to containers

as above, we create a macvtap device. After experimenting with different means of forwarding

traffic, including bridging and Virtual Ethernet Port Aggregator (VEPA), we found that

macvtap of mode “passthrough” (requiring VT-d and SR-IOV) and model “virtio” incurs
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the least overhead, and therefore we use it for our IDS experiments. This is consistent with

the findings of Anderson et al [13 ] for macvlan. We will use “DockerV” to refer to this setup.

(3) Linux Bridge: In this setup, a Linux bridge is used to direct traffic from the host NIC

to the VM or container. This setup is only used when multiple IDS instances run on the

same host.

3.4 MME Experiments

3.4.1 Methodology

We use openair-cn [55 ] to benchmark the performance of the EPC control plane. Openair-

cn is a 3GPP-compliant implementation of EPC components including MME, HSS, S-GW

and P-GW that can be executed on general purpose hardware. Our test setup includes a

MME node connected to the HSS and a client emulator framework based upon the openair-

interface oaisim [56 ] application. MME is co-located with the S-GW, and all communication

between them is handled via internal queues. The oaisim application connects to the MME

over the S1 interface, and generates attach requests emulating multiple UEs at a constant

rate per second.

The eNodeB emulator is used to generate registration requests which result in the ex-

change of several control plane messages between eNodeB, MME, HSS and the S-GW. During

the experiments, we measure the time taken by the MME to successfully process UE reg-

istration requests. The experiments are run multiple times to obtain a number of samples

(>= 20), and the average run time of all samples is used for comparison.

The emulator generates registration requests at a constant rate of 400 registration re-

quests per second and the total time taken by MME to respond to a total of 4000, 6000 and

8000 registration requests is measured. We measure the performance of the system with 1, 2

and 4 CPU cores enabled. Since the MME implementation handles most of the processing in

a single thread, enabling multiple cores allows us to analyze the scale-out capability provided

by VM and container deployments.
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3.4.2 Results

We analyze the time taken by each setup to handle the registration requests. The results

in Figure 3.3 show that VMs incur significantly higher overhead than the bare metal setup

and Docker containers. The VM can result in 10-21% overhead, whereas the overhead of

Docker is 0-3%. The traffic generation rate for these experiments is 400 registrations/second.

It takes 10, 15 and 20 seconds to generate the required 4000, 6000 and 8000 requests,

respectively. We note that time taken by the MME to handle these sessions increases as

the number of concurrent sessions handled increase. More sessions timeout when the system

load is higher.
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Figure 3.3. Time taken to handle registration requests.

As MME is a transaction-based system and stores all the active sessions in memory, the

maintenance overhead increases with number of active sessions. This includes indexing time

required to fetch and store the session related data in the internal data-structures, and timers

maintained to handle events like timeout and heartbeats. The current implementation of

MME uses a hash-based indexing mechanism to store the UE information. The likelihood

of collisions and chaining increases when the number of active sessions being handled by an

instance increases.

As noted earlier, the MME is co-located with the SGW and PGW. Consequently, when

only a single CPU core is available, performance of the system is constrained by the available

processing power. When 2 cores are available to the system, performance of the MME
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significantly increases as the MME application processing thread utilizes one of the CPU

cores and other features can use the second available core. However, this performance benefit

is not observed when 4 cores are available, augmenting the claim that the system is single-

threaded. This implementation limits the ability of MME application to utilize all the

available cores in the system as only a single instance of the application can be instantiated.

However, VM and container based systems can allow creation of multiple instances of the

MME application to allow better resource utilization. To analyze this capability, we replace

the single instance of the VM and container based MME application with two instances that

share the available resources.

In this test setup, we generate the same number of registration requests as the earlier

setup, but the number of registration requests handled by each instance is halved. Conse-

quently, the number of active sessions handled at each instance is reduced to 2000, 3000 and

4000. We also double the request generation rate from the client to 800 registrations/sec-

ond so that each MME instance receives the requests at 400 registrations/second. Both

instances of the MME are configured at the eNodeB, and the emulator sends the request to

each MME in a round-robin fashion. To establish a baseline, we first show the results when

a single instance of MME handles traffic at the rate of 800 registrations/second on a bare

metal machine. These results are presented in Figure 3.4 . We find that increasing the traffic

generation rate does not have a significant impact on the performance of the MME. This is

because the bottleneck when using a single instance of the system is the MME application

thread and not the transport receive thread.
Figure 3.5 shows that the time taken to handle the registration requests is considerably

reduced when traffic is split across two instances with similar processing resources. Addi-

tionally, as the number of CPU cores increase from 2 to 4, we find that the time taken by the

MME to handle registration requests decreases which indicates better utilization of available

processing resources, compared to the case when only a single instance of the MME was

used. While these results reflect the behavior of our MME implementation and may not be

directly applicable to other commercial deployments, they can be used to infer the benefits

of the microservices architecture in transaction-based systems.
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Figure 3.4. Time taken to handle registration requests on bare metal with
varying the request rate.
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Figure 3.5. Time taken to handle registration requests by bare metal and
two instances of VMs or containers.

We also study the time required for the MME to become operational. In cases where

virtual implementations are used to maximize the resource utilization, it should be possible

to provision a new instance of the MME without incurring significant delay. The boot time

of MME is the time taken to initialize internal data structure, create transport connections

and time taken to establish the diameter application-level connection. In the current im-

plementation, MME and HSS must exchange a diameter capability exchange request (CER)

and capability exchange response (CEA) before the MME can begin accepting connections

from the eNodeB.
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Table 3.1. Comparison of Activation time.
Metric Bare Metal Docker VM
Time(s) 4.77 4.81 12.01

As shown in Table 3.1 , the time taken by the Docker container to start is much closer

to the time taken by the bare metal, whereas the time taken by VM is considerably higher,

due to the overhead involved in loading and booting the guest-OS kernel and hypervisor.

3.5 Suricata Experiments

3.5.1 Methodology

We benchmark Suricata based on statistics it reports and resource usage of the entire

host machine. The reason why we examine resource usage of the entire system is that both

Docker and QEMU have overhead not reported by their API. For example, Docker’s stat

API only reports resource usage inside the container and excludes Docker itself. The CPU

and RAM overhead of forwarding traffic is not included in the Suricata, Docker, or QEMU

processes. Therefore, comparing resource usage of the entire system is more comprehensive.

Trace Files: We use two trace files: (1) bigFlows.pcap provided by TCPreplay. According

to the TCPreplay site, it captures “real network traffic on a busy private network’s access

point to the Internet” and contains 40686 flows and 132 network protocols [57 ]. It sends

359,457 KB of data in 791,615 packets in 5 minutes, and (2) snort.log.1425823194 – one

of the ISTS ’12 trace files [58 ]. It generates 155,823 KB of data in 22 seconds. Increasing

Load: To increase load, more TCPreplay processes may run in parallel. We will use “load

level” to denote how many concurrent processes are used. For example, “4X load” means that

a test has four TCPreplay processes concurrently replaying the trace file. Aggregating the

Results: We run each test configuration multiple times to obtain a number of samples (>=

30). We then take the median to generate a representation of the test. Before generating a

sample, the receiver host is rebooted to restore system state back to the original. We measure

host memory and CPU usage, and the number of packets captured, analyzed (decoded), and
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dropped by the IDS. We do not examine the number of alerts triggered because it is highly

affected by the packet drops.

3.5.2 Results

We first analyze resource usage by comparing memory and CPU utilization of the Suricata

host running different setups at various load levels, then compare the performance of Suricata

in different setups.

Unless otherwise noted, the memory limit is set to 2 GB for Docker, DockerV, and VM

setups, and all 4 CPU cores are accessible.

Memory Usage: Our results indicate that the memory overhead of Docker is trivial com-

pared to bare metal, while VM setup consumes substantially more memory. Table 3.2 shows

the memory usage (average and standard deviation σ) of Suricata in VM, Docker and bare

metal setups at 1X workload. Docker has a small memory footprint since the host and

Docker container have shared libraries of the same version, eliminating the need to load

more libraries. Although the VM runs the same software setup, a full-fledged guest operat-

ing system must be maintained, which results in high memory overhead.

Table 3.2. Memory Usage of Suricata at 1X workload
Metric Bare Metal Docker DockerV VM
Average 9.85 10.20 10.22 23.83

σ 0.33 0.33 0.34 2.29

We also tested Docker, DockerV, and VM with 4X bigFlows.pcap and a smaller 512 MB

memory limit. While the first two worked without problems, memory thrashing occurred to

the Suricata VM before CPU became the bottleneck.

CPU Usage: Table 3.3 shows the CPU usage of Suricata with Docker, VM and bare

metal with 1X workload. As seen from Table 3.3 , Docker does not impose significant CPU

overhead, while the CPU usage of the VM setup is considerably higher compared to bare

metal.

Comparing Table 3.3 to Table 3.4 , we find that the CPU usage of the bare metal, Docker

and DockerV setups multiplies corresponding to load level, but the VM setup saturates the
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Table 3.3. CPU Usage of Suricata at 1X workload.
Metric Bare Metal Docker DockerV VM
Average 19.65 20.92 21.81 269.39

σ 4.61 4.66 4.90 49.66

Table 3.4. CPU Usage of Suricata at 2X workload.
Metric Bare Metal Docker DockerV VM
Average 40.75 42.11 44.00 399.90

σ 9.87 9.90 10.44 0.70

CPU at 2X workload. This results in the CPU becoming a bottleneck at workloads greater

than 2X. We also observe that the Docker setup incurs an overhead of 1% to 4% depending

upon the load level. There is a roughly 0% to 5% increase in CPU usage associated with

macvtap depending on traffic throughput.

Packets Received: In all four load levels we use, packet capture is about the same for

all four setups. However, the VM setup tends to receive less packets in the end. After the

TCPreplay ends, we send SIGTERM signal to Suricata and wait for it to exit gracefully. It

is likely that for VM setup it still has packets yet to capture when exiting, resulting in the

discrepancy exhibited.
Packets Dropped: Dropping packets is a sign that Suricata cannot process the workload

given the resource constraints imposed. As seen from Figure 3.6 , only VM setup observes

packet dropping starting from 2X load, and almost all increased load above 2X is dropped.

This result is consistent with the CPU usage information in Table 3.4 . CPU is nearly

saturated by Suricata at 2X load level and therefore almost all additional traffic generated

by 4X load is dropped.

Packets Decoded: Comparing the numbers of packets decoded in Figure 3.6 , we find that

Docker and DockerV setups are on par with bare metal setup in terms of speed of packet

analysis (decoding). However, only at 1X load when CPU has not become a bottleneck, is

speed of packet decoding in VM setup comparable with bare metal, and the speed decreases

as load increases, which reveals severe performance degradation.
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Figure 3.6. Cumulative packets decoded and dropped by Suricata in four
setups at all loads.

3.5.3 Results from the Second Trace File

The trace file, snort.log.1425823194, requires the receiver host to use more CPU to

handle the high-throughput traffic. Similar results were observed, but we saw bare metal

saturated at 4X load. At 4X load, Suricata drops 67,126 packets in bare metal, 67,064 packets

in Docker, 81,282 packets in Docker with macvtap, and 282,453 packets in VM. In fact,

Suricata in VM runs so slowly that even the kernel drops 205,095 packets to reclaim buffer

space before Suricata is able to read them. This confirms that (1) Docker has comparable

performance with bare metal, (2) the overhead of macvtap can be nontrivial, and (3) the

VM setup runs more slowly than others.
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3.5.4 Root Cause Analysis for VM Results

To determine what caused the dramatic performance degradation, we profiled Suricata

running in bare metal and in VM. The culprit we found is the frequently called function

‘UtilCpuGetTicks()’ which flushes the instruction pipeline and reads the x86 Timestamp

Counter (TSC). The x86 instruction ‘rdtsc’ may cause VM exit [59 ], and by checking the

msr register we verified that it indeed causes VM exit in our VM setup. This makes the

instruction expensive in the VM, and results in a massive performance penalty. To further

isolate the cause, we ran this sole function 100 million times in bare metal and in VM, and

it takes 6.6 seconds (on average) to finish in bare metal, but 126.1 seconds in VM.

3.6 Snort Experiments

For the Snort experiments, we use the same setup as Suricata except that Suricata is

replaced by Snort. Again, we ran each test configuration at least 30 times, and used the

median of each metric to form a representation of the result. We discuss the outcome at 4X

load with bigFlows.pcap.

Snort exports statistics only on exit. Although a stop signal was sent to Snort process 20

seconds after TCPreplay finished, Snort did not stop immediately after receiving the signal.
Figure 3.7 confirms that Snort works best in bare metal, followed by Docker. Surprisingly,

DockerV and VM give similar results. There are two factors to take into account: (1) Snort

ran slightly longer than DockerV after receiving the exit signal, and (2) the total number of

packets to receive is supposed to be 3,166,460 – similar to what happened to Suricata in VM

at 4X load, Snort in VM failed to capture all packets. Although Snort is single-threaded,

the VM overhead caused the VM setup to use more than 100% CPU combined (Table 3.5 ).

Table 3.5. CPU Usage of Snort at 4X workload
Metric Bare Metal Docker DockerV VM
Average 73.62 75.17 79.42 137.23

σ 13.28 13.80 14.02 18.48
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Figure 3.7. Cumulative packets decoded and dropped by Snort in four setups
at all loads.

In terms of memory usage, the VM setup uses more than twice the memory of the Docker

setup. Docker and DockerV setups use slightly more RAM (∼1%, or ∼40 MB) than that of

bare metal (Table 3.6 ).

Table 3.6. Memory Usage of Snort at 4X workload
Metric Bare Metal Docker DockerV VM
Average 12.84 13.25 13.26 27.45

σ 0.40 0.32 0.33 0.36

3.7 Suricata and Snort with Multiple Instances

We now investigate Suricata and Snort when multiple instances of these IDSes are de-

ployed within the same host. Based upon our findings in previous experiments, we know

that Snort does not effectively utilize all available CPU cores in the system due to its single-

threaded design. While this design of Snort limits its scalability on the bare metal, we can
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deploy multiple instances of containers and VMs to utilize the available CPU cores more

effectively.

This setup uses a Linux bridge to transfer the incoming traffic to the VM and container

instances. Since both Snort and Suricata bare metal setups handle the 4X workload without

significant packet drops, we use 4X and 8X workload to evaluate the scalability of these

systems with multiple instances. The values presented in this section represent the median

value of (>=5) runs of each experiment.

In Figure 3.8 and 3.9 , CN is used to refer to a Docker setup with a Linux bridge, and

VM is used to indicate a VM setup with a Linux bridge. In case of multiple instances of

containers or VMs, the value presented is the sum of the number of packets processed by

each instance independently. 2-CN and 4-CN are used to indicate the number of packets

processed by two and four container instances, respectively. 2-VM represents the number of

packets processed by the two VM instances collectively.
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Figure 3.8. Performance of Snort with multiple VM and containers instances.
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Figure 3.8 shows that the performance of Snort improves significantly when the incoming

traffic is split between multiple instances. The performance difference is more pronounced

at 8X workload as a single Snort instance is unable to handle the incoming traffic. We find

that the number of packets dropped significantly decreases when two container instances are

deployed and continues to decrease with four instances. This behavior is consistent with our

earlier finding when multiple instances of MME were deployed on the same host. Further,

we note that while two VM instances provide significantly higher performance compared to a

single instance of VM and bare metal, the performance benefit is not on par with a multiple

container deployment.

We also analyze the performance of Suricata by deploying multiple instances of VMs or

containers on the same host machine. As noted earlier, Suricata is multi-threaded and is

capable of utilizing all available CPU cores even with a single instance deployment. Table 3.4 

showed that Suricata saturates the available CPU cores at 2X traffic when deployed as a

single instance.
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Figure 3.9. Performance of Suricata with multiple VM and container instances.
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From Figure 3.9 , we find that there is no observable performance difference between the

single and multiple instances deployment. While we observe some performance gain (∼1%) in

the VM setup when two VM instances are deployed, we find that the factor limiting system

performance is the available CPU and it cannot be circumvented by deploying multiple

instances.

The observations from both the MME and Snort experiments validate the efficacy of

a container-based microservice architecture for legacy software that is architecturally con-

strained from providing scalability on modern hardware platforms.

3.8 Chapter Summary

In this chapter we empirically compared the performance of various control and data

plane NFs on bare metal, VM and container based deployments. Our resuls show that

containerized instantiations of both control-plane (MME) as well as data-plane (Snort and

Suricata) VNFs consumed less CPU and memory resources in comparison to traditional

VM-based deployments. Smaller resource footprint and low performance overheads of con-

tainerized VNFs coupled with their smaller instantiation time, make containers an ideal

choice for the deployment of next generation cloud-native architecture required to support

low latency cellular services without compromising SLAs.
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4. CONTAIN-ED: AN NFV MICROSERVICE SYSTEM FOR

CONTAINING E2E LATENCY

Network Functions Virtualization (NFV) has enabled operators to dynamically place and al-

locate resources for network services to match workload requirements. However, unbounded

end-to-end (e2e) latency of Service Function Chains (SFCs) resulting from distributed Vir-

tualized Network Function (VNF) deployments can severely degrade performance. In partic-

ular, SFC instantiations with inter-data center links can incur high e2e latencies and Service

Level Agreement (SLA) violations. These latencies can trigger timeouts and protocol errors

with latency-sensitive operations.

Traditional solutions to reduce e2e latency involve physical deployment of service elements

in close proximity. These solutions are, however, no longer viable in the NFV era. In

this chapter, we present our solution that bounds the e2e latency in SFCs and inter-VNF

control message exchanges by creating microservice aggregates based on the affinity between

VNFs. Our system, Contain-ed, dynamically creates and manages affinity aggregates using

light-weight virtualization technologies like containers, allowing them to be placed in close

proximity and hence bounding the e2e latency. We have applied Contain-ed to the Clearwater

[60 ] IP Multimedia Subsystem and built a proof-of-concept. Our results demonstrate that,

by utilizing application and protocol specific knowledge, affinity aggregates can effectively

bound SFC delays and significantly reduce protocol errors and service disruptions.

4.1 Introduction

In traditional deployments of large carrier-grade systems, network service elements (func-

tions) execute on hardware with dedicated CPU, memory and storage resources. The hard-

ware boxes are connected via high speed links in operator data centers (DCs). Since the

network is purpose-built to handle predefined network elements (NEs) and workload, the de-

ployment is optimized to meet service requirements [61 ]. This includes allocating adequate

resources and carefully placing NEs to meet latency requirements. NEs that constitute a

Service Function Chain (SFC) or, more generally, a forwarding graph, are deployed in the
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same data center, and are carefully configured to meet Service Level Agreements (SLAs) or

Quality of Service (QoS) requirements.

Network Functions Virtualization (NFV) leverages Commercial off-the-shelf (COTS)

hardware to dynamically deploy network services. New network service instances are created

by adding NEs to existing SFCs using virtualization and programmable networking technolo-

gies such as Software Defined Networking (SDN). NFV orchestration frameworks can instan-

tiate these Virtualized Network Functions (VNFs) on-demand. The eventual placement of

these VNFs is a balancing act by the orchestrator to meet both the QoS requirements of the

deployed service and the need for cloud providers to maximize the utilization of the under-

lying infrastructure. Owing to the operational polices of the orchestrator and the physical

locations of the data centers that it manages, new NE instances may be located on different

racks or even different data centers. This, coupled with the unpredictable latency variations

due to the sharing of the underlying physical infrastructure among services, can cause vio-

lations of end-to-end (e2e) latency requirements of SFCs [62 ]. Distributed instantiations of

SFCs and latency variations can cause significant performance degradation since current ap-

plications and network protocol stacks are designed for traditional deployments and therefore

react poorly to such “unbounded” latencies.

In systems such as Evolved Packet Core (EPC) and IP Multimedia Subsystems (IMS)

where multiple NEs participate in service delivery, congestion on any interconnecting link

triggers message drops or retransmissions. Constituent NEs often aggressively retransmit

latency-sensitive messages to ensure timely execution of the protocol call flows [1 ]. Such

re-transmissions aggravate network conditions, leading to further QoS deterioration. Since a

single event/action can produce multiple message exchanges among the constituent elements

in an SFC, an orchestrator must consider, when placing the SFC elements, the type and

frequency of message exchanges among the SFC elements – a factor which is not considered

by current orchestration frameworks.

A natural solution to control latency with NFV is to instantiate service elements within an

SFC onto physical machines that are in close proximity. This ensures that congestion in other

parts of the DC, as well as latency due to inter-DC communication, can be avoided. However,

such a placement policy will force cloud provides to preallocate VNF resources in designated
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sections of the DC, ultimately undermining their ability to maximize infrastructure resource

utilization. Even if such a policy can be implemented, the footprints of current VM-based

VNFs are far too large to guarantee close proximity allocation. VNFs also support mobile

users: even if a user is assigned to an NE where all SFC elements meet latency demands, user

mobility makes it impossible to sustain such assignments. The mobile user can move across

geographic regions, and this generally entails handover of the user session to NEs physically

closer to the user location, which will inevitability result in user traffic traversing multiple

data centers.

In this chapter, we explore the design of a small-footprint, stateless and portable VNF so-

lution based on aggregating microservices. Our solution, Contain-ed, meets latency demands

while simultaneously supporting user mobility and elastic resource allocation. Contain-ed

aims to:

1. Bound e2e service latency by creating collocated aggregates of NEs.

2. Develop a service-aware, latency-sensitive orchestration and deployment framework at

a low cost to the provider.

4.2 Contain-ed Architecture

Our design is guided by two key observations: (1) VNF Affinity: The number of mes-

sages among VNFs depends on the standards being used and the SFC structure. For example,

in a virtualized EPC system [63 ], 41% of the signaling messages that are incident on the Mo-

bility Management Entity (MME) are propagated to the Serving Gateway (SGW), but only

18% of the MME signaling load is propagated to the Packet Data Network Gateway (PGW).

Protocol message exchanges and/or SFC dependencies enable us to identify affinity between

VNFs or VNF components (VNFCs). (2) Transactional Atomicity: Transactions are

sequences of messages that are exchanged among VNFs/VNFCs to handle a network event.

Table 4.1 enumerates common network events in the IMS and EPC systems. These network

events are often a result of user actions and each independent action (e.g., REGISTER) can

trigger a sequence of messages. VNFs involved in processing a user’s messages generally allo-

cate/update state information, and this state information is used to process future messages
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of this user. The state information is either stored locally (in traditional network designs) or

in shared storage (in NFV based designs). We observe that, due to state dependencies, user

messages that are part of a specific transaction are, in general, processed by a specific VNF

instance. However, once the transaction is completed, this state information can be shared

with other VNF instances to handle future transactions.

Contain-ed leverages these observations as follows. Affinity dictates that certain VNFs

in an SFC or VNFCs in a complex VNF be placed in close proximity to meet e2e latency

requirements. The smaller resource footprint of virtualization technologies like contain-

ers enables microservice bundles of VNFs with high affinity to be placed near each other.

Contain-ed creates network microservice bundles called Affinity Aggregates (AAs). AAs are

bundles of network services comprising VNFs that have message exchange affinity towards

each other. AAs are instantiated as a single logical entity of microservices using lightweight

virtualization technologies (containers). Each AA is configured to handle a predetermined

transaction type and only consists of VNFs/VNFCs involved in processing this transaction

type. Contain-ed includes components for managing and orchestrating AA instances, with

the goal of distributing load across active AA instances and resource flexing according to

workload variations. Figure 4.1 illustrates the Contain-ed architecture, whose components

we now describe.

Affinity Analytics Engine (AAE): The AAE is an offline module that analyzes SFC

dependencies and message exchange sequences to determine the required AA types. The

AAE uses the VNF affinity information derived from analyzing the VNF messages exchanges

to decide which VNFs should be bundled together as an AA. The AAE also determines

transactional boundaries so that the same AA instance is used to handle a transaction’s

message exchange sequence in an atomic manner. Additionally, the AAE determines what

to store in the shared state store across all AA instances.

A single transaction can generate significant amounts of intermediate state information,

based on the structure of the SFC and the protocols involved. While it is possible to publish

all intermediate state information generated by an AA to the shared state store, such a

design would lead to significant performance degradation due to increased message exchanges

between the AAs and the state store. Furthermore, all intermediate state information is not
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Figure 4.1. Contain-ed Architecture

required by the VNFs/VNFCs to handle independent transactions. As an example, the

MME processes 10 of the 18 messages generated during the EPC Attach procedure [63 ], and

each of these message exchanges is capable of generating intermediate state information.

However, if the AA instance that handles the Attach request does not change during Attach

procedure, there is little merit in publishing intermediate state information to the state

store. The AAE therefore leverages transactional boundaries to determine the minimum
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state information that must be shared across AA instances. Only state information that

persists across transactions is published in the state store.

Contain-ed transactions are specific to an SFC, and the messages that constitute a trans-

action are driven by protocol bindings within the SFC. Example message exchanges for IMS

and their transaction boundaries are shown in Figure 4.3 . Table 4.1 lists the AA types

from our analysis of IMS and EPC protocol message exchanges and latency requirements.

When AAs have the same VNFs, the same AA type can be used to handle different kinds

of transactions/network events. For services such as Home Subscriber Server (HSS), Pol-

icy and Charging Rules Function (PCRF) and Online Charging System (OCS) that need

database lookups, the Front End (FE) component [64 ] can be instantiated with the AA. The

REGISTER AA can also contain the Application Server (AS) if specified in the Initial Filter

Criteria (iFC) [3 ], [65 ].

AA Flex Orchestrator (AFO): The AFO manages the life-cycle of AA instances. It

continuously monitors their resource usage and workload. If the latency requirements of a

specific request type are not being met, the AFO deploys new AA instances with appropri-

ate resources and at appropriate locations to meet the latency requirements. Conversely,

if the workload decreases, the AFO removes unneeded AA instances after migrating active

user sessions to other active AAs. Contain-ed transactions are short-lived compared to user

sessions, which enables the AFO to elastically manage the resource allocation for the incom-

ing workload. AA instance information is communicated to the AA Director for forwarding

transactions. For example, all VNFs that participate in user registration can be bundled

into a REGISTER AA type. Depending on the allocated resources (hence capacity of the

AA type) and expected peak load, the AFO determines the number of instances of this AA

type to deploy and how/when to add/remove instances to match workload dynamics.

AA Director (AD): The AD is an online module that directs incoming traffic to dif-

ferent active AA instances based on transaction types. The AD maintains a list of all active

AA instances and their capabilities, and directs traffic (along transaction boundaries) ac-

cordingly. Multiple instances of a particular AA type can coexist with different resource

allocations. When a new AA instance is spawned, the AFO updates the AD with its AA

type and resource allocation. This enables the AD to intelligently load-balance the incom-
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Table 4.1. IMS and EPC Affinity Aggregates (AAs)
Network Event VNFs in AA AA Type

IP Multimedia Subsystem (IMS)
REGISTER P/I/S-CSCF,HSS REGISTER
INVITE P/I/S-CSCF, AS, OCS INVITE
NOTIFY
SUBSCRIBE

P/I/S-CSCF SUBSCRIBE

Evolved Packet Core (EPC)
ATTACH MME, HSS, SGW

PGW, PCRF
ATTACH-DETACH

DETACH MME, HSS, SGW
PGW, PCRF

ATTACH-DETACH

HANDOVER MME, SGW HANDOVER-SR
BEARER
SETUP

MME, SGW
PGW, PCRF

BEARER-CRT

SERVICE
REQUEST (SR)

MME, SGW HANDOVER-SR

ing workload on available AA instances. The AD analyzes each incoming packet to classify

it according to the AA types and transaction boundaries. All messages associated with a

particular transaction (e.g., messages that are part of a single user registration request) that

were handled by a specific AA instance will continue to be directed to the same instance

until the transaction is completed. This implies that AAs can only be deleted when there

are no active transactions pending. When the AFO decides to scale-in an AA instance, the

AD removes it from the active list and stops sending new transactions to it.

A single AD instance is capable of handling incoming traffic for multiple AA types. In

cases where these AAs are part of different systems, such as the EPC and the IMS, which

use different signaling protocols, the AD has to support multiple protocols. The AD is

not, however, required to understand all the protocols that are used within the SFCs. For

example, an analysis of the AAs in Table 4.1 reveals that all inbound messages for the IMS

AAs use the Session Initiation Protocol (SIP) [4 ]. Similarly, AAs in the EPC system use the

GPRS Tunneling Protocol (GTP-C) [66 ] for all inbound messages. Therefore, an AD that

handles both EPC and IMS traffic using the AAs described in Table 4.1 is only required to

support the SIP and GTP-C protocols.
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Shared State Store (SSS): The shared state store is used by AA instances to store

persistent state information across transaction boundaries. This allows incident workload

to be distributed across multiple AA instances. The SSS is implemented as a key-value

store and is agnostic to the actual structure/definition of state elements as specified by

VNFs. The AAs use a simple Representational State Transfer (REST) based interface to

store/fetch the sate information. Several VNFs (including Clearwater which we use in our

evaluation) already support persistent state information management for horizontal scaling

of individual components. The SSS can be deployed as a geographically redundant cluster

when a single instance cannot handle the workload. The AFO can create multiple instances

of the SSS in case the data store/fetch latency exceeds a predetermined threshold.

Contain-ed determines VNFs/VNFCs that handle messages of a specific transaction type

and deploys these VNFs or VNFCs as a single AA. For example, Contain-ed can create an AA

that handles only REGISTER messages (REGISTER-AA) and another that only handles

messages of type INVITE (INVITE-AA) as described in Table 4.1 . Such a decomposition

of the functionality of an SFC into AAs offers the following key advantages: (1) Since

not all elements of an SFC are involved in processing all transaction types, the resource

requirements of an AA can be significantly lower than that of the original SFC. AAs with

lower resource footprints are more likely to be instantiated in close proximity as compared to

the entire SFC. (2) AAs enable granular resource allocation by coupling resource allocation

with traffic composition. The AFO can scale-out AAs handling a specific transaction type

as the percentage of messages of that transaction type increases. This allows Contain-ed to

react, in real time, to incoming traffic composition.

4.3 Contain-ed in Action

In this section, we illustrate how Contain-ed can be leveraged for deploying an IMS

instance to increase the utilization of the underlying NFV infrastructure.
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Figure 4.2. Clearwater Architecture

4.3.1 Project Clearwater: IMS in the Cloud

We choose Clearwater, an open-source IMS implementation. The availability of a con-

tainerized implementation of Clearwater enabled us to better compare performance of dif-

ferent IMS deployment options. While Clearwater provides a horizontally scalable clustered

IMS implementation, the VNF components in Clearwater do not strictly match standard

IMS functional elements. Clearwater utilizes web-optimized technologies like Cassandra and

memcached to store long-lived state, provide redundancy, and eliminate the need for state

replication during scale-in and scale-out.

The architecture of Clearwater is illustrated in Figure 4.2 (adapted from [60 ]). For

brevity, only the components used in our experiments are depicted. We briefly explain the

Clearwater components that can be deployed individually and horizontally scaled. Bono is

the edge proxy component that implements the P-CSCF (Proxy Call Session Control Func-

tion) in the 3GPP IMS architecture [3 ]. SIP clients communicate with Bono over UDP/TCP

connections and are anchored at a Bono instance for the lifetime of the registration. Sprout

implements the Registrar, I/S-CSCF (Interrogating/Serving CSCF) and Application Server

components. Sprout nodes store the client registration data and other session and event

state in a memcached cluster. There are no long-lived associations between a user session

and a Sprout instance. Homestead provides a REST interface to Sprout for retrieving the
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Figure 4.3. Clearwater IMS Call Flow

authentication vectors and user profiles. Homestead can host this data locally or retrieve it

from the HSS using the Diameter Cx interface. Homer acts an XML Document Manage-

ment Server that stores the service profiles. Ralf implements the Off-line Charging Trigger

Function (CTF). Bono and Sprout report chargeable events to Ralf. Figure 4.3 illustrates

this call flow without a third-party REGISTER in the iFC.

4.3.2 Mapping with Contain-ed

We determine the AAs by applying the principles in §4.2 : (1) VNF Affinity: Analyzing

the 3GPP IMS architecture [3 ], we find that there is high affinity between the P-CSCF and

S-CSCF components. Therefore, we can aggregate the Bono and Sprout nodes in Clearwater

to create an AA. (2) Transactional Atomicity: We demonstrate the application of this

principle by analyzing user registration in IMS, which generates two messages by the user

device. Since both messages must be handled by the same instance of Bono and Sprout, we

consider user registration as a transactional boundary.
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We thus create an AA of type “REGISTER” corresponding to the SIP REGISTER call

flow. A similar reasoning allows us to create AAs of types “SUBSCRIBE” and “INVITE”

for the IMS user SUBSCRIBE/NOTIFY and INVITE call flows, respectively. The AAs for

“REGISTER” and “SUBSCRIBE” consist of an instance of Bono and Sprout, while the AA

for “INVITE” additionally contains an instance of Ralf due to the CTF interaction described

in Table 4.1 . We do not use an Application Server (AS) in our testing, so it is not included

in the AAs.

In Clearwater, Bono and Sprout operate in a transaction-stateful manner. Transactions in

the same SIP dialog can be handled by a different Sprout instance since the Sprout instances

share long-lived user state using memcached. Clearwater therefore supports the transactional

atomicity property of Contain-ed. Contain-ed leverages the Clearwater memcached as the

shared state store.

We develop the AD component based on the OpenSIPS [67 ] dispatcher. In this imple-

mentation, the AD anchors all the incoming and outgoing calls from Clearwater and acts a

stateless inbound proxy. It uses a hash on the message “Call-ID” to direct incoming request

messages. This mechanism ensures that the messages for the same user session are directed

to the same AA instance. For outgoing messages, the AD inserts appropriate SIP headers

to ensure that messages take appropriate paths.

4.4 Experimental Evaluation

We developed a prototype implementation of the Contain-ed deployment component (the

dark shaded box in Figure 4.1 ). We use the information in Table 4.1 to bundle the Clearwater

components into AA types. The AAs are instantiated at startup to match the workload

requirements (the AFO dynamic scaling/instantiation functionality is not yet implemented).

4.4.1 Experimental Setup

We use Docker version 17.03.0-ce and Docker-compose (v1.11.2) for microservice con-

tainer lifecycle management. The Clearwater VNF components run within a container on

the same physical host. A private subnet created by Docker is used for communication
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between these containers, thereby minimizing the communication latency among the Clear-

water VNF microservices. The physical resources of the server are shared by all containers

and there are no resource constraints on an individual container. The Contain-ed AD com-

ponent is deployed on the same physical machine as the Clearwater VNF. The AD runs on

the physical machine directly, and therefore shares the resources with the Clearwater VNF

components.

Workload generation: We use SIPp [68 ] as a workload generator. SIPp runs on a

dedicated physical machine, and generates two types of requests: REGISTER and SUB-

SCRIBE. As shown in Figure 4.3 , REGISTER requests are used to register the user device

in the network and result in the generation of two messages (initial request and challenge

response) from the user device. SUBSCRIBE requests are used to subscribe to the the state

of a user already registered with Clearwater. A SUBSCRIBE request from the requesting

client is followed by a NOTIFY request from the server to update the client with the user

subscription status. We measure the number of failures by the observing the result code in

the SIP response message. Per the SIP specification, for register, “200 OK” indicates success

and “401 Unauthorized” is used to challenge. All other 3XX and 4XX codes are considered

failures. We observe the error codes received by SIPp for each message type and use them

to infer the number of failures.

We generate a workload of 300 requests/s to 1800 requests/s in steps of 300 requests/s,

and measure the total number of failed calls for each workload type. As described earlier, ag-

gressive retransmission of requests by the client or middleboxes can exacerbate performance

problems, so we disable this to increase the overall throughput. In order to circumvent the

impact of retransmissions on our experiments, we configure SIPp to not retransmit requests

that failed due to timeouts. Each experiment runs for 60 seconds. The results presented

below represent the mean of at least 10 samples for each call rate and delay value.

The performance of a complex VNF like Clearwater is impacted by the control interplay

among its functional components. Previous studies [8 ] have revealed that disproportionate

resource utilization by Clearwater components can influence system performance, and the

overall throughput depends on the resources allocated to individual components. Clearwa-

ter employs token buckets and timeout-based peer blacklisting mechanisms for fault-tolerant
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overload control. This can also influence the overall throughput. Furthermore, individual

components may timeout and discard incoming requests. As an example, Sprout uses a timer

to wait for the response messages from Homestead, and if no response is received before a

timeout, a failure response (response code timeout 408) is issued to the client. To minimize

the impact of disproportionate resource utilization, we do not allocate dedicated resources

to any container and all Clearwater components share the available system resources. How-

ever, overall performance is limited by the token bucket rate and timeout(s) at individual

components, resource utilization notwithstanding.

4.4.2 Experimental Results

Our experiments are designed to investigate the impact of network latency on Clearwa-

ter, and to quantify the performance benefits of Contain-ed. We begin by benchmarking

Clearwater in “ideal” conditions on our testbed. In this case, all communicating VNF com-

ponents are instantiated on the same physical machine. A single instance of Clearwater is

created and both REGISTER and SUBSCRIBE messages are handled by this instance. This

setup is labeled “ideal” in our plots. We measure the performance of this setup with both

REGISTER and SUBSCRIBE workloads.

Homestead

State Store
memcached

Cassandra

REGISTER Affinity Aggregate Instance

SproutBono
Aggregate 
Director

Load 
Generator

Figure 4.4. Contain-ed setup with REGISTER AA

We also measure the performance of Clearwater when the VNF components are not lo-

cated on the same physical machine and therefore the communication latencies are higher

than the ideal case. We simulate a scenario where the Sprout node is located in a different

DC by adding delays on the Sprout-bound links. As described earlier, the SIP REGISTER

request generates two register messages from Bono to Sprout and two database lookup re-
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Figure 4.5. Successful REGISTER calls

quests from Sprout to Homestead, and therefore Sprout placement is vital to the performance

of Clearwater. We use “tc” to introduce delays on the links from Bono to Sprout and Sprout

to Homestead. We use delays of 5 ms, 10 ms, 15 ms, 20 ms and 25 ms and compare the

performance of this setup with the “ideal” case. Figures 4.5 and 4.7 present the results. In

both figures, the error bars represent the minimum and maximum values observed among all

samples for a data point. The label “Target” in the figures indicates the maximum number

of calls that can be successfully processed at a given call rate.

As seen from Figures 4.5 and 4.7 , increasing communication latency to a single Clearwater

component (Sprout) can result in significant performance degradation. The impact of the

introduced latency is not significant at low call rates. However, as the call rate reaches the

system capacity, there is significant drop in system throughput. This is a consequence of the

timeouts experienced at individual components. As load increases, the number of messages

that are waiting for a response at each individual component becomes larger, and higher

system capacity is utilized in sending timeout responses at each individual component.

We now describe our experimental setup using Contain-ed. Figure 4.4 shows an instan-

tiation of Contain-ed to handle REGISTER messages. It consists of the REGISTER AA

(Sprout and Bono), the shared state store, Homestead, and the AD. Figure 4.6 depicts the

setup of Contain-ed for handling SUBSCRIBE. This setup consists of two AAs (REGIS-

TER, SUBSCRIBE), since the users must be registered before SUBSCRIBE messages. Both
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the REGISTER and SUBSCRIBE AAs contain an instance of Bono and Sprout. All other

VNF components like Homestead and the shared state store are shared by the AAs. For

the SUBSCRIBE setup, all REGISTER messages are handled by the REGISTER AA, and

SUBSCRIBE/NOTIFY messages are handled by the SUBSCRIBE AA. A single instance of

AD is created in both the cases, which forwards the incoming traffic to the appropriate AA.
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Figure 4.6. Contain-ed setup with REGISTER/SUBSCRIBE AAs

300 600 900 1200 1500 1800
Calls/second

25000

50000

75000

100000

Su
cc

es
sf

ul
 ca

lls

Target
Ideal
Contain-ed
5ms

10ms
15ms
20ms
25ms

Figure 4.7. Successful SUBSCRIBE calls

Comparing the results of Contain-ed with “ideal” in Figures 4.5 and 4.7 , we conclude

that the AD does not result in significant call drop compared to the ideal setup, and the

overhead due to the AD does not significantly impact overall performance. The DC setup

with induced latency increasingly drops higher numbers of messages as the latency increases,

but the Contain-ed setup continues to process messages without suffering from significant

performance degradation. Even when multiple AA instances of different types are created,

the performance impact of the AD and Contain-ed is minimal.
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It is important to note that workloads react differently to increasing latency. This is due

to the nature of communication between various components within the VNF. User actions

that require memory lookup/update (authorization/billing events) will respond poorly to

increased latency towards the memcached/cassandra components and workloads that require

frequent communication with other components like SUBSCRIBE will respond poorly to

increased latency towards state management components within the VNF. With traditional

network placement, it is difficult to strike the right balance between workloads and their

dependencies. In contrast, the Contain-ed setup can ensure co-location of VNF components

for each workload type, and, as seen from the results above, will continue to process various

workload types without suffering from significant performance degradation.

4.5 Chapter Summary

In this chapter we presented Contain-ed, a VNF placement solution that bounds the

e2e latency in SFCs and inter-VNF control message exchanges by creating microservice

aggregates based on the affinity between VNFs. We showed that complex control plane

VNFs can be decomposed into functionality based microservices components which can then

be aggregated and deployed using light-weight virtualization technologies. Such microservice

aggregates when placed in proximity can bound e2e latency while providing fine grained

resource flexing. Our results demonstrate that, by utilizing application and protocol specific

knowledge, orchestrators can effectively bound SFC delays and significantly reduce SLA

violations.
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5. INVENIO: PROVENANCE-DRIVEN MICROSERVICE

DEPLOYMENT IN THE CELLULAR CORE

Cloud-native architectures enable rapid service deployment and scaling in the cellular core.

However, integrating poorly understood microservice components into traditional Service

Function Chains (SFCs) limits a provider’s control over the end-to-end latency incurred in

service delivery. Orchestration frameworks instantiate and place myriads of microservice

components without fully understanding the impact of their placement decisions on user

requirements.

In this chapter, we explore challenges faced by service providers in managing complex

SFCs, and propose Invenio to enable the providers to develop an effective placement strategy

for microservice-based SFCs without prior knowledge of service functionality. Invenio uses

the knowledge of user actions and provenance information extracted from network traces

to compute transactional affinity between the functions in an SFC for each user action.

The transactional affinity values are then used to make placement decisions to meet latency

constraints of individual user actions. Our experiments with two IP Multimedia Subsystem

(IMS) implementations demonstrate that transactional affinity-based placement significantly

reduces failures by limiting message processing latency within SFCs.

5.1 Introduction

Network Functions Virtualization (NFV) has enabled service providers to deploy virtu-

alized instances of Network Functions (NFs) on demand [69 ]. New service offerings are now

created by adding one or more NFs to a Service Function Chain (SFC), i.e., a graph of NFs.

An existing service can be extended by adding software modules, whereas unpopular features

can be removed by deleting service modules. Software architectures have evolved to support

this rapid pace of service deployment, and disaggregated fine-grained microservice designs

are now replacing monolithic designs [70 ], [71 ].

The power to rapidly add and delete new services comes at a cost, however. SFCs are

becoming more complex, and the effort associated with service deployment is growing [25 ]–
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[27 ], [32 ]. Service providers, in an attempt to cut costs, are increasingly using private or

public clouds to deploy services that had traditionally been confined to a single data center

and had used carefully-designed proprietary hardware. This cloudification poses unique

challenges to orchestration frameworks, particularly in instantiating and placing Virtualized

Network Functions (VNFs) in an SFC with strict Service Level Agreements (SLAs) [32 ].

Prior work [20 ]–[22 ], [72 ] has shown that network functions (NFs) in systems such as the

cellular Evolved Packet Core (EPC) and IP Multimedia Subsystems (IMS) have stringent

end-to-end latency requirements and react poorly to unpredictable latency variation. Fortu-

nately, service providers can leverage their knowledge of NF functionality and meticulously

define SFCs [1 ], [3 ]. Virtualization platforms such as Openstack [73 ], Kubernetes [74 ], and

Docker [53 ] allow administrators to configure “affinity policies” in NF placement. The affin-

ity policies specify which NFs should be co-located to meet SLA requirements. However, the

increasing use of non-standard interfaces and the ongoing integration of 5G core (5GC) [75 ]

into existing 4G network deployments is necessitating extensive manual re-analysis of com-

munication patterns. The diversity of NFs in modern networks and the new 5GC interfaces

make determining the SFCs involved in service delivery and the affinities between their

constituent NFs a time-consuming and error-prone task.

NFs with microservice designs further complicate SFCs. Microservices advocate the use

of fine-grained, independent components that can be deployed as autonomous entities com-

municating via REST-based proprietary interfaces [28 ], [31 ]. This results in disaggregation

and decomposition of a VNF into multiple smaller VNF Components (VNFCs), and longer,

more complex SFCs [71 ]. Further, lack of standardization in microservice architectures yields

VNFCs that play roles that do not accurately map to an NF defined by standards. That

is, a VNFC may take the role of several standard-defined NFs and support several network

interfaces. Conversely, the functionality of a standard-defined NF may be collectively per-

formed by multiple VNFCs. The ambiguity in the role of VNFCs implies that placement

using domain knowledge is insufficient, and we need automated tools to infer communication

patterns between microservice components to aid service providers. Our work attempts to

fulfill this need.
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We use the information exposed by microservices to optimize NF placement and meet

SLAs [25 ]–[27 ]. However, merely co-locating NFs based on the number of messages they

exchange [27 ] can yield unexpected results due to the diversity of workloads. Instead, we

propose grouping events triggered by a user action into transactions, and computing trans-

actional affinity between NFs. A provider can then make placement decisions based on

transactional affinity values, together with policy and transaction type distribution. For

example, a VNFC used during voice calls, but not for SMS (text-msg), can be placed based

on the most common traffic type.

In this chapter, we propose Invenio, a system for aiding service providers in deploying

control-plane NFs. Invenio maps user activity at the network edge to traffic in the network

core, computes transactional affinity, and makes placement decisions. Invenio includes two

subsystems that are executed after upgrades or policy and service changes: one in which a

snapshot of traffic is analyzed to compute affinity values, and another in which an orchestra-

tor uses computed transactional affinity values, in conjunction with policy rules and current

transaction type distribution, to make placement decisions. Invenio empowers providers to

optimize placement to meet SLA objectives even with upgrades in services and micorservices,

and changing user QoE demands. For example, a provider may choose to optimize place-

ment to (a) reduce latency of the currently dominant workload type, or (b) reduce latency

of interactive workload types, such as voice calls which have a higher impact on user Quality

of Experience (QoE) [76 ]. In summary,

1. We identify the challenges for a service provider to meet SLAs (§5.3 ) and introduce

the notion of transactional affinity (§5.4 ).

2. We propose Invenio for service providers to identify transaction types for user actions

(§5.5 ). This includes, to the best of our knowledge, the first session and transaction

slicing algorithms to isolate messages of a given transaction type for a specific user.

Invenio can also check NF interoperability and diagnose network problems (§5.7 ).

3. We experimentally demonstrate the benefits of placement based on affinity by applying

Invenio to microservice-based cellular network implementations and evaluating the

impact of placement on the performance of voice-call and text-msg workloads (§5.6 ).
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We find that placement with Invenio results in up to 21% performance gain compared to

message count-based placement algorithms, and up to 51% gain over default placement.

While our evaluation uses the 4G control plane as a case study, the principles underlying

Invenio are applicable to the service-based architecture of the 5GC and other microservice-

based deployments.

5.2 Motivation

A control-plane NF can be instantiated on bare metal (as a Physical Network Function

(PNF)) or on virtualized hardware (as a VNF), and a VNF can be deployed as a collection

of VNFCs. In the rest of this chapter, we use the term NF to refer to all three types of

instantiations (PNF/VNF/VNFC). The increasing use of private or public clouds to reduce

operational costs has yielded scenarios where NFs in an SFC are deployed across multiple

physical machines in one or more data centers. Consider Fig. 5.1 which shows an exam-

ple microservice-based cellular network for Voice over LTE (VoLTE) that includes wireless

access, session management, voice-call signaling, policy control (QoS), and billing. Latency-

sensitive NFs (such as signaling and policy) may be connected by high and unpredictable

latency links. An orchestrator that cannot instantiate the entire SFC in Fig. 5.1 on a sin-

gle machine or rack can identify the NFs exchanging a large number of messages and place

them in close proximity. Modern networks offer many services, however, and NFs exchange

different types and numbers of messages to support each service.
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Figure 5.1. A microservice-based cellular network
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Not all services have equal impact on user-perceived latency and QoE. For example,

interactive services such as voice calls impact user QoE more than non-interactive services

such as text-msg or presence services [76 ]. Orchestrators must reduce the end-to-end latency

of interactive services by minimizing the inter-NF latency for NFs handling these services.

Simple techniques such as counting total messages exchanged between NFs [27 ] are not

always effective in making placement decisions as they do not explicitly consider the impact

of inter-NF latency on user QoE.
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Figure 5.2. Impact of transaction type distribution on number of messages
exchanged between NF pairs in microservice-based VoLTE implementation

Fig. 5.2 shows the percentage of traffic exchanged by NF pairs (in our implementation

in §5.6.2 ) for two different transaction type distributions of voice-call, text-msg, and presence

services. The plot on the left uses traffic proportions from typical busy-hour IMS traffic [77 ]

in which presence is triggered ∼9x more frequently than voice. Clearly, exchanged messages

depend on the incoming transaction type distribution and therefore merely using the number

of messages for placement [27 ] may optimize non-interactive services such as presence and

degrade user QoE. To meet SLAs for latency-sensitive services, service providers may (a)

create dedicated NFs to optimize specific functionality [22 ], or (b) decompose existing mono-

lithic applications into lightweight microservice components, that are then aggregated by

functionality to create NF bundles, placed together with a higher probability [21 ]. Manually

identifying and configuring bundles can be difficult and error-prone, however.
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Our work empowers service providers to easily and automatically react to upgrades and

changing user QoE demands. Based on prior research [20 ]–[22 ], [72 ], we observe that: (a)

NFs typically exchange several messages to complete a seemingly simple user action such as

turning on User Equipment (UE) or making a voice call, and (b) Network endpoints only

perceive latency in the actions they trigger (i.e., end-to-end latency in Fig. 5.1 ) and are

oblivious to message exchanges and inter-NF latency within an SFC. User QoE therefore

only depends on user action/network response pairs, such as initiating a voice call (action)

and hearing a dial tone (network response), or turning on an Internet connection (action)

and being connected to a packet access network such as LTE (network response).

5.3 Challenges

The goal of Invenio is to facilitate NF placement by leveraging readily available knowledge

of endpoint actions. We group events or messages triggered due to a single user action into

transactions. We then use this transaction information to compute transactional affinity

(§5.4 ) between NFs for each transaction type. The transactional affinity information is used

for NF placement. Since NFs in modern networks exchange numerous messages, manually

determining control messages that are triggered due to a specific endpoint (or associated user

or subscriber) action can be tedious and error-prone. We propose to (a) automatically isolate

SFC control messages related to a user, and (b) map each message to an action invoked by

that user. We describe the challenges in accomplishing these tasks in the remainder of this

section.

Scale and complexity: We need to understand the protocols and message formats

exchanged by each NF. For example, consider a cellular network EPC (including NFs to inter-

work with previous generation networks (2G, 3G) and WiFi). Such an EPC deployment

can involve 60+ NFs communicating via 15+ protocols over 150+ interfaces using 500+

message types [1 ], [78 ]. While many of these NFs are logical, the sheer number of NFs,

supported protocols, and message types makes isolating and understanding control-plane

traffic a difficult task.
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User and session identification: Networks such as cellular networks check user

(subscriber) identifiers located in control messages to determine the user associated with a

device or a network endpoint, and NFs use these identifiers to enforce policies and bill users.

A user is identified by: (a) Subscriber-ID: the key used by the network to authenti-

cate a device, identify packets associated with it, and bill the user, and (b) Session-ID:

the key allocated by an NF to group together messages triggered by a device. Unlike the

subscriber-ID, the value of session-ID is not pre-allocated, i.e., NFs allocate a value at run-

time. Different protocols and interfaces use different terms to refer to the subscriber-ID

and session-ID carrying headers. Table 5.1 lists example protocol headers used by cellular

network protocols.

Since the session-ID is dynamically allocated, the relation between session-ID and subscriber-

ID may vary based on the NFs involved in message processing. When a single device creates

multiple connections at the same time (such as in EPC), multiple session-IDs may be allo-

cated to the same subscriber-ID. Additionally, an EPC/IMS may create a mapping between

the session-ID and the subscriber-ID, and then use the two values interchangeably. Fig. 5.4 

depicts an example where the IMS network uses the User-Name in the From header of the

SIP protocol [4 ] to determine the subscriber-ID while interacting with the user, but further

messages generated due to this user interaction use other protocol headers, such as the

Table 5.1. Example user and session headers
Interface Subscriber-ID Session-ID

Protocol Name Header Name Header Name
SIP Gm [3 ] To, From Call-ID

Cx [79 ] User-Name, Session-Id
Diameter Public-Identity

Gx [80 ] Subscription-Id Session-Id
S1AP [1 ] S1-MME IMSI, TMSI eNB-UE-S1AP-ID
HTTP/2 N7/N11 SUPI, SUCI pduSessionId
(5G) [75 ] Rx/N5 SUPI, SUCI appSessionId

Public-Identity/Subscription-Id [2 ] used when communicating with the Policy and Charg-

ing Rules Function (PCRF). After receiving the initial message ((2) CCR in Fig. 5.4a ) from

the Policy Charging and Enforcement Function (PCEF), the PCRF creates a mapping be-
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tween Subscription-Id and session-ID. This mapping identifies the user in all future message

exchanges between the PCRF and PCEF (9, 10, 15 and 16 in Fig. 5.4b omit the subscriber-

ID headers and only carry the session-ID header). Therefore, identifying all messages that

are triggered due to a user action requires understanding the mapping between session-ID

and subscriber-ID.

As in the 4G core, 5GC NFs [75 ] use headers such as Subscription Permanent Identifier

(SUPI) and Subscription Concealed Identifier (SUCI) to identify, authorize, and bill traffic.

A user can create multiple sessions with 5GC data networks and therefore the 5GC NFs

use session headers such as the pudSessionId in conjunction with the user ID to uniquely

identify user sessions. Example headers used in 5CG are shown in Table 5.1 . This shows

that Invenio principles are applicable to the 5GC. When 4G EPC and the 5GC coexist, the

complexity of manual NF placement further increases.

Proprietary microservices: Microservice architectures use fine-grained autonomous

components, fragmenting traditional control-plane NFs into multiple VNFCs [25 ], [26 ], [32 ].

The VNFCs are independently instantiated, and communicate with each other using propri-

etary message formats. This lack of standardization implies that the roles and functionalities

of VNFCs are not well-understood and can change with new versions, altering their affinity.

Consequently, service providers must (re)analyze affinity whenever NFs are upgraded or a

service is added/removed. Microservices also result in longer, more complex SFCs, reducing

the latency allowed for each VNFC component [71 ].

While the lack of standardization can complicate mapping a given message to a user

action, microservices often reuse the subscriber-ID/session-ID in traditional signaling proto-

cols [60 ], [81 ] to facilitate logging and reduce performance overhead. For example, the timer

service (Chronos) in Clearwater [60 ], a popular microservice-based IMS implementation, uses

the “Call-ID” header in Session Initiation Protocol (SIP) messages to manage timers. This

behavior can be exploited to trace VNFC-generated messages to user actions.

Lessons learned: The above discussion highlights three consequences for Invenio. First,

Invenio should automate message and event processing, which should be transformed into a

protocol-agnostic format before further processing. Second, Invenio should understand the

relation between different identifiers used by NFs to correlate messages related to the same
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user. This involves understanding the user-identifying headers used by standard protocols,

and correlation of identifiers in proprietary message payloads used by VNFCs. Third, Invenio

should understand user actions and their corresponding responses, and map each message to

a specific user action. Since internal implementations of microservice-based systems change

frequently, Invenio should only use endpoint messages which follow well-known protocols

(such as messages (1) and (2) in Fig. 5.1 ) to map messages to user actions.

5.4 Problem Definition

Consider sets N , U , M , and R, where N represents NFs (PNFs, VNFs, or VNFCs) in

a network, U represents user devices or end points that utilize the services provided by the

network, M represents messages that can be sent or received by all NFs in N , and R ⊆ M

represents user request messages generated by a user u ∈ U and responses sent back to users

∈ U .

To utilize network services, a user u ∈ U sends a request r to an NF in N . A request

sent by an endpoint u triggers the generation of several messages m ∈ M between a subset

of NFs. We denote this subset by Nr. NFs use a number of protocols to complete processing

user requests. Typically, an NF will handle a part of the functionality, and forward messages

to the next NF in an SFC. Additionally, an NF may utilize interfaces exposed by other

NFs to acquire information needed for processing the message itself. Since we aim to model

messages that are sent/received by each NF, the manner in which the messages are exchanged

is irrelevant and we model messages of all protocols using the set M .

Set Mr ⊂M represents the messages triggered to handle a given user request r ∈ R. Mr

does not include user-sent or received messages ∈ R. In addition to the messages Mr that

are generated by an NF to handle a user-triggered request r, NFs in an SFC may generate

messages that are not handling a request from u. Such messages include (but are not limited

to) messages generated to synchronize state between NFs, and keep-alive or setup/teardown

messages. These messages ∈ M but /∈ Mr for any r ∈ R. For example, an online charging

message that is generated by an NF to ensure the successful processing of a user-triggered
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message r is in Mr. An offline charging message that is generated by an NF to later bill the

user for an already processed request is ∈M but /∈Mr.

We use the function Ω to define a mapping between the user-triggered messages and the

NFs involved in processing these messages as well as the messages triggered by NFs to handle

these messages; that is, Ω(r) = (Nr, Mr).

A service request from an endpoint may simply include a request message rstart from

the endpoint and a response rend from the network where rstart, rend ∈ R. However, there

are cases such as challenge-response procedures where the endpoint may have to respond

to multiple requests from network to complete the initial request. That is, the sequence

of messages processed by the endpoint to complete a service request is < rstart · · · rend >.

We use the term “transaction” to refer to this set of messages, Rt, that are exchanged for

delivering a specific service to the endpoints, where Rt = {rstart, · · · , rend}.

For a given transaction t, we define Nt and Mt as follows.

Nt = ⋃
r∈Rt

Nr represents all NFs involved in processing transaction messages Rt.

Mt = ⋃
r∈Rt

Mr represents all messages processed by all NFs in Nt to handle transaction

messages Rt.

The NFs and messages involved in processing a transaction are typically the same for

every instance of a certain transaction type tt.

Let the c(tt, nx, ny) be the number of messages in Mtt exchanged between a pair of NFs

nx, ny ∈ Ntt for transaction type tt. The transactional affinity (referred to simply as “affinity”

in the remainder of the chapter) between NFs nx, ny is defined as:

Affinity(tt, nx, ny) = c(tt, nx, ny). (1)

Invenio affinity can easily incorporate additional metrics by updating Equation (1 ). For

example, the function c(tt, nx, ny) can incorporate the number of the hops traversed or

latency incurred in communicating with a specific NF or it can avoid over-subscribed links.

The function may also be updated to incorporate licensing or hardware constraints that limit

the placement of network servers such as the Home Subscriber Server (HSS) and the Online

Charging System (OCS).
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In summary, Invenio computes Nr and Mr, determines the mapping Ω(r) = (Nr, Mr) for

each request r, and identifies each transaction type tt and its associated Ntt and Mtt sets.

This information is then used in Equation (1 ) to compute the affinity between NFs for every

transaction type tt, in order to place NFs with relatively high affinity in close proximity.

Unlike prior work, Invenio affinity considers the complete transaction instead of one or a few

messages that are not accurate measures of the entire user experience.

5.5 Invenio Design

Fig. 5.3 shows the Invenio architecture. Invenio has two components: an affinity en-

gine, executed after upgrades, and a placement engine, executed when a new NF is to be

instantiated or after major changes in policies or transaction type distribution.
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Figure 5.3. Invenio architecture
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5.5.1 Inputs

NF message stream: Invenio uses messages exchanged between NFs in an SFC to identify

transactions and their associated messages. Message sequences can be extracted from net-

work traces or NF-provided information such as debug logs or a VNF Event Stream (VES) as

specified in ONAP [82 ] and OPNFV [83 ]. In the absence of such structured data steams, In-

venio uses traffic traces from running PNFs/VNFs/VNFCs. These traces can be collected at

individual PNFs where physical infrastructure is used, or at Open vSwitch (OVS) or Docker

bridge in case VNFs are deployed using virtualization platforms such as OpenStack [73 ] or

Docker [53 ].

Invenio uses traffic snapshots collected after microservice upgrades. Traffic traces can

also be collected during integration tests [84 ]. The affinity engine merges traffic traces in

order to compute affinity values for each transaction type (Equation (1 )). In the rest of this

chapter, we use the term trace stream to refer to these input traffic snaphots.

Trace streams often contain extraneous messages that are not generated due to endpoint

actions and are not part of any Mr. Such messages include setup messages, heartbeat

messages, and synchronization messages. These messages are exchanged between NFs even

in the absence of user-generated traffic. To eliminate such messages, Invenio uses a trace

steam collected during an idle period, henceforth referred to as noise stream. An idle

period is when NFs are running but no traffic is initiated by user devices.

Invenio utilizes output generated by open-source packet analyzer software such as Wire-

shark [85 ] to decode raw messages. We use Wireshark to export Packet Description Markup

Language (PDML) and Portal Structure Markup Language (PSML) files, and use these files

as inputs.

Protocol parameters: Invenio uses domain knowledge of the service provider, specified in

a configuration file containing the following information in xml format: (a) Transaction

start/end messages: are the message pairs rstart, rend ∈ R that are used by endpoints to

start and terminate a service request. These values are only required for protocols that are

used by endpoints. That is, for the example shown in Fig. 5.1 , these values are only required

for the SIP protocol used in the endpoint messages (1) and (2).
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(b) Subscriber-ID and session-ID header names: are the names of the headers

used by protocols to transmit subscriber-IDs and session-IDs. The headers may be used in

conjunction with the output of the header inference module (§5.5.2 ) to extract the subscriber-

ID and session-ID values from a message. These inputs are only necessary in cases such as

the GPRS Tunneling Protocol (GTP), which uses integer identifiers instead of (the more

common) text identifiers in the Uniform Resource Identifier format specified in RFC [86 ].

Transaction type distribution and policy: Invenio uses transaction type distribution

and provider policy information to decide NF placement. The transaction type distribution

can be obtained from an NF that processes endpoint messages. For example, the Proxy Call

Session Control Function (P-CSCF) handles all inbound SIP traffic and therefore the P-

CSCF NF instance(s) has the transaction type distribution information. Policy information

allows providers to optimize NF placement based on their specific requirements (§5.5.7 ).

5.5.2 Header Inference

The first step in generating the set Mtt for computing affinity is to find user-identifying

headers. A header inference module analyzes messages in the trace stream to identify possible

headers that carry the subscriber/session-ID values.

Algorithm 1 computes candidate header names. The algorithm has two stages. Stage 1

(lines 1-12 of Algorithm 1 ) computes all header names that can carry the subscriber-ID values

using the subscriber-ID formats described in [86 ]. This stage generates a list of candidate

subscriber-ID header names (candSubHdrN) per protocol. Stage 2 (lines 13-20 of Algorithm

1 ) identifies all headers whose values repeat in messages exchanged between a pair of NFs

using a specific protocol (Step 1, lines 13-16). Since the session-ID headers are used instead

of subscriber-ID headers, message exchanges must carry the same value of session-ID in all

messages. However, messages exchanged between NFs also carry routing or NF-identifying

headers which repeat frequently.

These header names are eliminated from the candSubHdrN (Step 2, lines 17-20). Ta-

ble 5.2 lists sample results that confirm that correct header names were inferred by the

algorithm from traces for SIP and Diameter.
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Algorithm 1: Candidate header analysis
Input : (traceF ile, endpointProtocol)
Output: candSubHdrN, candSnHdrN
/* Find candidate user header names for protocol */

1 for each packet p in endpointProtocol do
2 for each header h in p do
3 if h.value conforms to subscriber_id format then
4 candSubHdrN [p.protocol]←− candSubHdrN [p.protocol] ∪ h.name
5 p.candSubV ←− p.candSubV ∪ h.value
6 subHdrV = subHdrV ∪ (h.value, p.candSubV )

/* Find candidate user header names for all protocols */
7 for each value subV in subHdrV do
8 for each packet p in traceF ile do
9 if p.protocol 6= endpointProtocol then

10 for each header h in p do
11 if h.value ≈ subV then
12 candSubHdrN [p.protocol]←− candSubHdrN [p.protocol] ∪ h.name

/* Find candidate session header names */
/* Step 1. Find header values that repeat between a pair of NFs */

13 for each protocol protocol in all protocols do
14 for each packet p in protocol do
15 for each header h in p do
16 uniqueSnV [h.value]←− uniqueSnV [h.value] ∪ (h, p)

/* Step 2. Eliminate headers whose value repeats in messages of multiple
users */

17 for each entry e in uniqueSnV do
18 if |e.p| > 1 then
19 if |e.p.candSubV | == 1 then
20 candSnHdrN [p.protocol]←− candSnHdrN [p.protocol] ∪ e.h.name

Table 5.2. Invenio-generated candidate header names
Subscriber-ID Session-ID

Proto- Predicted Actual Predicted Actual
col Step-1 Step-2

FROM.user, FROM.user R.URI, VIA,
TO.user, TO.user Call-ID, Call-ID Call-ID

SIP contact.user CSEQ, ALLOW
Service-Ctx-Id Origin-Host,

Diam- User-Name User-Name, Origin-Realm
eter Sub-Id-Data, Sub-Id-Data Ssn-ID Ssn-ID Ssn-ID

e1164.msisdn Auth-App-Id
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5.5.3 Noise Filtering

The noise filtering module eliminates messages not generated due to user actions that

should not be part of Mtt for any transaction type. This includes (a) messages exchanged

by protocols that are not specified in any transaction start message in the configuration file,

(b) messages with type/name matching a message in the noise file, and (c) messages that do

not carry any subscriber-ID or session-ID header.

5.5.4 Attribute Extraction

Since protocols and interfaces use different encoding formats (binary or text) to exchange

information, we convert the input message stream to a protocol-agnostic intermediate format:

event objects. Each event object is associated with (a) Transport-layer information (source

and destination IP address and ports) to identify the NFs in the SFC, and (b) Subscriber-

ID and session-ID headers from each packet extracted using the output of header inference

module or configuration input.

5.5.5 Session Slicing

The session slicing module operates on the event objects generated by the attribute ex-

traction module, and uses event information to identify all messages associated with a single

user. That is, it computes Ω(r) = (Nr, Mr) for each user request. This involves correla-

tion of session and subscriber-ID headers from event objects, and identifying all session-IDs

that correspond to a single subscriber-ID. Since the input stream may contain messages and

events from multiple users, this module analyzes message sequences to find the longest se-

quence of successful message exchanges, simultaneously merging the shorter sequences due

to multiple session/subscriber-IDs.

5.5.6 Transaction Slicing

The transaction slicing module determines the NF set Ntt and message set Mtt associated

with each transaction type tt. The session slicing module gives possible message sequences
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in Ω(r). This set can include messages from multiple users, as a single user may not gen-

erate all possible transaction types. Since messages in the trace stream are chronologically

ordered, the packets in the set Mt corresponding to a certain transaction t have monotoni-

cally increasing identifiers. For example, in Fig. 5.4b , all messages from (7) INVITE to (12)

200 OK are part of the same transaction. Using the rstart, rend messages input by service

providers in the configuration file, Invenio slices messages of each transaction.

Each transaction type tt independently provides a service to a user u. In practice,

multiple transaction types may have a strict dependence, and a service may involve invoking

multiple transaction types. For example, a voice-call service requires INVITE and BYE as

shown in Fig. 5.4b (messages 7-18). Such transactions are merged in Invenio. Sets Ntt and

Mtt are then used to compute the affinity between NFs for every transaction type tt using

Equation (1 ).

5.5.7 Placement

The placement engine uses affinity information generated by the affinity engine, together

with input transaction type distribution and provider policies, to make the final NF place-

ment decisions. NFs with the highest affinity values (Equation (1 )) are co-located or placed

in close proximity. In our experiments, we focus on identifying NFs that must be co-located

to minimize the impact of inter-NF latency on interactive services. We have not implemented

complete multi-criteria placement algorithms [25 ]–[27 ], and leave the integration of Invenio

with a multi-criteria placement algorithm to future work.

5.6 Evaluation

We evaluate Invenio with two systems: (a) Clearwater: an open-source microservice-

based implementation of IMS, (b) VoLTE: a prototype Voice over LTE (VoLTE) implemen-

tation in which NFs are functionally decomposed into microservice-based VNFCs (Fig. 5.7 ).

We collect network traces from all NFs and use Invenio to compute affinity between NFs.

We use these affinity values to decide the NF placement and evaluate the performance of
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Table 5.3. Testbed configuration
Server CPU Cores RAM NFs Deployed
R430 2x Intel 16 64 GB Clearwater

Xeon E5-2620 v4
DL120 1x Intel 4 8 GB Swarm Workers,

Xeon X3430 Load-Generator

two workload types in deployments where NFs are connected by high latency links. Our goal

is to answer the following questions:

1. How effective is Invenio in computing affinity with multiple protocols? (§5.6.1 , §5.6.2 )

2. What influence do Invenio-generated affinity values have on NF placement? (§5.6.1 ,

§5.6.2 )

3. What is the impact of inter-NF latency on performance under different workloads?

(§5.6.1 , §5.6.2 )

Implementation: Invenio includes ∼2600 lines of Python code. We developed a proto-

type microservice-based VoLTE system using Kamailio [87 ] version 5.0.4 as the SIP server

for evaluation. We added a REST message interface to Kamailio to communicate with the

PCRF. We also developed prototype implementations of the PCRF and PCEF for the VoLTE

system. All REST-based components are developed as application extensions to the KORE

library [88 ] (version 2.0.0). The PCRF and PCEF are developed as application extensions

in the FreeDiameter library [89 ] version 1.2.1 (∼3700 lines of new C code).

Experimental testbed: Our testbed includes one Dell PowerEdge R430 and 5 HP Pro-

Liant DL120 G6 (Table 5.3 ) connected by a Gigabit Dell N2024 Switch. We use Docker [53 ]

version 17.03.0-ce and Docker-compose (v1.11.2) to deploy NFs for Clearwater (Fig. 5.5 ) and

VoLTE (Fig. 5.7 ). Each NF runs within a container and all containers are deployed on the

same physical host.

Workloads: We use two primary network services: (a) Voice-call: This service involves

two transaction types (INVITE and BYE). (b) Short Message Service (text-msg): This

service utilizes a single transaction of type MESSAGE. We also use SUBSCRIBE (which
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supports the Presence service) to illustrate the impact of message-count based placement on

system performance. However, SUBSCRIBE messages are not generated during performance

evaluation and system performance is only evaluated for interactive workloads (voice-call and

text-msg).

Following SIP standards, every SIP endpoint registers itself with the IMS network using

a REGISTER message (Fig. 5.4a ) before utilizing the voice-call or text-msg service, as

depicted in Fig. 5.4b and 5.4c . In VoLTE, where the SIP messages are tunneled over the

EPC network, a SIP endpoint must additionally attach itself to the EPC network before

generating the REGISTER message (steps 1−4 in Fig. 5.4a ). For brevity, we only depict the

communication between the IMS and EPC, and omit messages exchanged during the EPC

attach [1 ].

Methodology: SIPp [68 ] is used to generate two types of workloads: voice-call and text-

msg, sending four types of messages: REGISTER, INVITE, BYE and MESSAGE. Each SIPp

instance runs on a dedicated physical machine and saturates available system resources. We

measure failures by the observing the result code in the SIP response messages. We record

the total number of successful calls or messages for each workload type. For the voice-call

workload, where multiple transaction types are required to complete a call, we only count the

number of calls that were successfully completed; i.e., partially completed calls are ignored.

Each experiment runs for 30 seconds. Each experiment is repeated at least 5 times and

results are shown with 95% confidence intervals.

5.6.1 Clearwater Case Study

Architecture

Clearwater [60 ] is an open-source platform for a microservice-based containerized imple-

mentation of an IMS. Clearwater uses REST-based communication to retrieve authentication

vectors, manage timers and handle state synchronization, which makes it ideal for a case

study. The architecture is illustrated in Fig. 5.5 (adapted from [60 ]). Only the components

used in our experiments are depicted. We use Clearwater version 1.0 (clearwater-docker

release-120). Bono an edge proxy that implements the P-CSCF (Proxy Call Session Con-
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Figure 5.4. VoLTE workloads

trol Function (CSCF)) in the 3GPP IMS architecture [3 ]. SIP clients communicate with

Bono over UDP/TCP connections. Sprout implements the Registrar, I/S-CSCF (Interro-

gating/Serving CSCF) and Application Server components. Homestead provides a REST

interface to Sprout for retrieving authentication vectors and user profiles. Chronos is a

distributed, redundant, reliable timer service. Bono and Sprout report chargeable events to

the Charging Trigger Function Ralf.
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Table 5.4. NF affinity for Clearwater
Transaction NF Pair Affinity
Type (tt) (nx, ny) c(tt, nx, ny)

NFs: Bono, Sprout, Ralf

Voice-call Bono, Sprout 10
Bono, Ralf 8
Sprout, Ralf 4

Text-msg Bono, Sprout 4
Bono, Ralf 2
Sprout, Ralf 0

Affinity Analysis

We use Invenio to compute affinity between NFs in Clearwater for both voice-call and

text-msg workloads. The results are presented in Table 5.4 . We observe that the affinity

between Clearwater NFs is different for voice-call and text-msg traffic. For instance, for voice-

call traffic, there is high affinity between Bono, Sprout and Ralf, whereas for text-msg traffic,

Bono and Ralf only exchange two messages, and no messages are exchanged between Sprout

and Ralf. Ralf therefore has a higher affinity with Bono and Sprout for voice-call workload

compared to text-msg workload. The placement of Ralf w.r.t. to Bono and Sprout thus has

a higher impact on the performance of voice calls compared to the text-msg workload.
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Figure 5.6. Impact of latency and affinity on Clearwater
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Performance

We first benchmark the performance of the voice-call and text-msg workloads with neg-

ligible delay. These results serve as baselines and are labeled “ideal” in our plots. We then

use “tc” to introduce latency on links connecting two NF pairs (a) Ralf to Sprout and (b)

Ralf to Bono, to validate the impact of placement of Ralf on performance. We experiment

with delays of 5 ms, 10 ms, 15 ms, and 20 ms and compare to the “ideal” case. Fig. 5.6a 

and 5.6b present the results of voice-call and text-msg workloads, respectively. We make

the following observations from the figures: (a) Even a single high-latency link can result

in significant performance degradation for both voice-call and text-msg workloads, and (b)

Performance degradation for the voice-call workload (in which Ralf has higher affinity) is

more than for the text-msg workload (in which Ralf has lower affinity). These observations

underscore the need for careful VNFC placement. While manual analysis shows that Sprout

and Bono (which collectively implement the functionality of the CSCF) must always be

co-located, analysis of IMS standards does not suffice for proprietary IMS implementations

such as Clearwater in which internal implementation determines the affinity values between

VNFCs (Bono/Sprout and Ralf).

5.6.2 Microservice-based VoLTE

Fig. 5.7 shows the architecture of a VoLTE system which includes (a) a SIP server that

handles SIP/IMS signaling from the endpoints, referred to as the Application Function (AF),

(b) a PCRF that allocates QoS rules to a user, (c) a PCEF that enforces QoS rules per user,

and (d) a SUB module that provides Presence functionality. The messages exchanged for

voice calls and text messages are presented in Fig. 5.4b and Fig. 5.4c , respectively.

Our VoLTE implementation can be deployed in multiple configurations and is used to

study the impact of microservice decomposition and placement on system performance. In

the experiments in the rest of the chapter, we treat the VoLTE implementation as a whitebox

system. That is, we analyze the call flows manually to validate the Invenio output. In

contrast, the Clearwater IMS implementation was treated as a blackbox where we did not
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Figure 5.7. VoLTE system architecture

analyze the call flows but used Invenio affinity to study the impact of latency on network

services.

Microservice decomposition: We decompose the PCRF into independent microser-

vice components and deploy each microservice as an independent VNFC. Fig. 5.8 shows

the architectures we use to deploy the EPC PCRF. In the legacy PCRF model (monolithic

design) depicted in Fig. 5.8 (a) (top left), all components are deployed in a single process

and communicate via API calls. This communication is not externally observable, and the

entire PCRF is deployed as a single NF. In contrast, in the microservice designs depicted in

Fig. 5.8 (b,c,d), the PCRF functionality is collectively provided by the VNFCs described in

Table 5.5 . All VNFCs expose a synchronous REST interface for external communication, so

communication between the VNFCs is externally observable.

Table 5.5. Functionality of NFs in PCRF
VNF VNFC Interface Functionality

PCRF

PCRF-Base REST, Rx [90 ], Gx Diameter [2 ] protocol functionality and interface with other VNFCs
Gx-App REST Process Gx Interface messages
Rx-App REST Process Rx Interface messages
SDP REST Process Session Description Protocol (SDP) [91 ] payload
PCRF-Gx-Base Gx, REST Diameter functionality and interface with other Gx VNFCs
PCRF-Rx-Base Rx, REST Diameter functionality and interface with other Rx VNFCs
memcached REST Gx-App and Rx-App synchronization

Table 5.6 compares PCRF µService Design-1, 2 and 3. We observe that in µService

Design-1 (Fig. 5.8 (b)), PCRF-Base communicates with all other VNFCs and, consequently,

has affinity with all other VNFCs. In µService Design-2 (Fig. 5.8 (c)), the PCRF-Base only

has affinity with Rx-App and Gx-App. The SDP VNFC only has affinity with the Rx-

App, and the Gx-App has affinity with memcached. In µService Design-3 (Fig. 5.8 (d)), the

82



Policy Control and Rules Function (PCRF) 

Diameter Base ProtocolDiameter Base Protocol

(a) Monolithic Design (b) µService Design-1 

Diameter Apps (RX + GX)Diameter Apps (RX + GX)

RESTREST REST APP

SDP ParserSDP Parser

memcachedmemcached Memcached Protcol LEGACYLEGACY Legacy APP

PCRF-Base

Diameter Base Protocol

REST WrapperREST Wrapper

Diameter Base Protocol

REST Wrapper
PCRF-Base

Diameter Base Protocol

REST Wrapper

GX-AppGX-AppRX-AppRX-App

SDPSDP
mem-

cached
mem-

cached

GX-AppRX-App

SDP
mem-

cached

(c) µService Design-2

PCRF-Base

Diameter Base Protocol

REST WrapperREST Wrapper

Diameter Base Protocol

REST Wrapper
PCRF-Base

Diameter Base Protocol

REST Wrapper

(d) µService Design-3

GX-AppGX-AppRX-AppRX-App

SDPSDP
mem

cached
mem

cached

PCRF-Rx-Base

Diameter Protocol

REST WrapperREST Wrapper
PCRF-Rx-Base

Diameter Protocol

REST Wrapper
PCRF-Gx-Base

Diameter Protocol

REST WrapperREST Wrapper
PCRF-Gx-Base

Diameter Protocol

REST Wrapper

RX-App GX-App
mem-

cached
SDP

Figure 5.8. PCRF architectures

PCRF-Base VNFC is decomposed into PCRF-Rx-Base and PCRF-Gx-Base, which only have

affinity with Rx-App and Gx-App VNFCs, respectively.

Affinity Analysis

We collect traffic traces (tcpdump) of voice-call and text-msg traffic with PCRF deployed

in three configurations (µService Design-1, µService Design-2, and µService Design-3). Ta-

ble 5.7 gives the results.

We make two observations from the results: (1) Affinity differs for the voice-call and

text-msg traffic. For instance, in µService Design-1, PCRF-Base exchanges two messages

with the SDP VNFC in case of voice-call traffic, but the SDP VNFC is not involved in the

processing of text-msg traffic, and (2) Affinity differs in the three designs. For instance, for

voice-call traffic, in µService Design-2 there is affinity between the PCRF-Base and SDP

VNFC. In contrast, in µService Design-2, PCRF-Base only communicates with Rx-App and
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Table 5.6. Manual analysis of communication between VNFCs in PCRF µservice designs
PCRF PCRF Microservices (VNFCs)

Decomposition Gx-App Rx-App SDP memcached
µS Design-1 PCRF-Base 3 3 3 3

µS Design-2
PCRF-Base 3 3 7 7

Gx-App NA 7 3 3

Rx-App 7 NA 3 7

µS Design-3

PCRF-Gx-Base 3 3 7 7

PCRF-Rx-Base 7 3 7 7

Gx-App NA 7 3 3

Rx-App 7 NA 3 7

there is no affinity between the PCRF-Base and SDP VNFC. Affinity is only listed for the

monolithic and µService Design-3 for the text-msg workload since others are similar. The

SUB VNFC does not involve PCRF, and is omitted from Table 5.7 . We compare Invenio

results with the results of our manual analysis in Table 5.5 and verify that Invenio accurately

identifies the transactions and affinity values for all transaction types.

Placement

To study the impact of Invenio-generated affinity values on placement, we deploy VoLTE

with PCRF µService Design-3 on a Docker Swarm [92 ] cluster with three worker nodes. Each

worker node is allocated a maximum of 4 VNFCs by the orchestrator. Fig. 5.9 (a) (top) shows

an ideal placement on this cluster. AF is deployed as two VNFCs (Kamailio and Policy-

Module), which are always co-located, so we only show it as AF. Fig. 5.9 (b) shows placement

with Invenio-generated affinity values. The affinity values and resulting constraints are given

to the Swarm orchestrator by the “affinity_group” [93 ] parameter in the Docker-compose

configuration file. Fig. 5.9 (c) shows the result of an instantiation in which the number of

messages exchanged between VNFCs is used make the placement decision, as discussed by

Sampaio et al. [27 ]. This results in a placement where VNFCs that exchange highest number

of messages – (AF, SUB, and memcached) as seen from the left side of Fig. 5.2 – are co-

located. Any transaction type distribution which has at least 75% presence traffic (lower

than the 90% in busy-hour IMS traffic in [77 ]) will result in the same placement. Fig. 5.9 (d)
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Table 5.7. NF affinity for VoLTE
Transaction NF Pair Affinity
Type (tt) (nx, ny) c(tt, nx, ny)

Monolithic Design, NFs: AF,PCRF,PCEF

Voice-call AF, PCRF 4
PCRF, PCEF 4

Text-msg AF, PCRF 2
PCRF, PCEF 2

µService Design-1,
AF, PCRF-Base, Gx-App, Rx-App, SDP, memcached, PCEF

Voice-call

AF, PCRF-Base 4
PCRF-Base, Gx-App 4
PCRF-Base, Rx-App 4
PCRF-Base, SDP 2
PCRF-Base, memcached 4
PCRF-Base, PCEF 4

µService Design-2,
AF, PCRF-Base, Gx-App, Rx-App, SDP, memcached, PCEF

Voice-call

AF, PCRF-Base 4
PCRF-Base, Gx-App 4
PCRF-Base, Rx-App 4
Gx-App, memcached 4
Rx-App, SDP 2
PCRF-Base, PCEF 4

µService Design-3,
AF, PCRF-Rx-BASE, PCRF-Gx-Base,

Gx-App, Rx-App, SDP, memcached, PCEF

Voice-call

AF, PCRF-Rx-Base 4
PCRF-Rx-Base, Rx-App 2
PCRF-Rx-Base, PCRF-Gx-Base 2
Rx-App, PCRF-Gx-Base 2
Rx-App, SDP 2
PCRF-Gx-Base, Gx-App 4
Gx-App, memcached 4
PCRF-Gx-Base, PCEF 4

Text-msg

AF, PCRF-Rx-Base 2
Rx-App, PCRF-Gx-Base 2
PCRF-Rx-Base, Rx-App 2
PCRF-Gx-Base, Gx-App 2
Gx-App, memcached 2
Rx-App, SDP 0
PCRF-Gx-Base, PCEF 2
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depicts the results of an instantiation with no constraints given to the Swarm orchestrator.

This results in a random placement of NFs (labeled “Default” in Fig. 5.9 ).

Performance

We evaluate the performance of the four placement strategies shown in Fig. 5.9 using

the two workloads (voice-call and text-msg) and three different inter-NF latencies, where the

Docker worker nodes are connected by 200 µs (ideal), 1000 µs, and 2000 µs links. Fig. 5.10 

shows the results of two different outcomes of the default placement strategy – labeled

Default 1 (which corresponds to Fig. 5.9 (d)) and Default 2 with (PCEF, PCRF-RX) on

Worker-1, (AF, SUB, SDP, memcached) on Worker-2, and (PCRF-GX, GX-App, Rx-App)

on Worker-3. We choose PCRF µService Design-3 here as it completely decomposes the

NFs into constituent microservices and therefore it is ideal for demonstrating the impact of

placement.

Fig. 5.10a and 5.10b show that (1) Invenio closely matches the results of manual (hand-

crafted) placement for both voice-calls and text-msg workloads. The results of text-msg

workload with 1000 µs, and 2000 µs follow similar trends as the voice-call workloads, and are

omitted for brevity, (2) Both message count-based and default (random) placement strate-

gies experience significant performance degradation as the inter-worker (inter-rack) latency

increases. The impact of latency is insignificant at lower call rates, but there is significant

drop in the overall system throughput as the call rate approaches system capacity, (3) The

performance degradation for the voice-call workload is higher than the performance degra-

dation for the text-msg workload. For example, comparing default placement under ideal

conditions (inter-rack latency of 200 µs) to Invenio placement, for voice-call workload of

500 calls/second, nearly 52% calls are dropped but for text-msg workload of 900 calls/sec-

ond, less than 36% of calls are dropped. This is a consequence of higher affinity between

the NFs shown in Table 5.7 . (4) Default placement – as seen from the results of Default 1

and Default 2 – can lead to significant variation in system performance, complicating ca-

pacity planning for microservice-based applications. Invenio placement clearly outperforms
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count-based and default placement while avoiding the non-deterministic outcomes inherent

to count-based and default placement.

5.7 Other Applications

In addition to its use for affinity computation, Invenio can be extended for interoperability

checking and fault diagnosis.

NF interoperability: The Invenio “Session Slicing” module (§5.5.5 ) outputs the se-

quence of messages processed by individual NFs, which can be used to construct a partial

state machine. This state machine can be used to check interoperability between NFs from

different vendors or of different versions. As an example, we used Invenio to check inter-

operability between the Home Subscriber Server (HSS) in Openair-cn [94 ] and the Mobility

Management Entity (MME) in OpenEPC [95 ]. We configured Invenio to extract Diame-

ter [2 ] messages exchanged between the MME and HSS in the network traces collected from

OpenEPC and Openair-cn. By comparing these messages, we found that the OpenAir HSS

expects a Session-Id Attribute Value Pair (AVP) in all messages, which is not provided by

the OpenEPC MME. Proprietary message formats can also be supported. We developed

wireshark dissectors for the EPC implementation in [96 ], which uses proprietary message

formats, and successfully used Invenio to compare the state machine of this implementation

with NFs in Openair-cn.

Fault diagnosis: Invenio can be used to diagnose scenarios when configuration or im-

plementation problems at a specific NF result in service interruptions (failures or delays) for

one or more users. In production environments where NFs process thousands of messages

per second, identifying which NF in an SFC triggered a problem can be tedious and time-

consuming, and requires a service provider to understand all protocols and message formats.

An important step in identifying failures for a specific user is isolating messages (across an

entire SFC) associated with a given user. This can be achieved by the “Session Slicing”

module. Invenio can then report failed transactions and associated messages MT .
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5.8 Chapter Summary

In this chapter, we presented Invenio, a system that enables service providers to better

manage the ever-growing complexity of microservice-based network functions (NFs). We

showed that Invenio automatically computes the correct transactional affinity between NFs,

and allows service providers to make and update NF placement decisions without the time-

consuming and error-prone manual analysis currently used. Our experiments with IMS and

VoLTE implementations confirm that, by using transactional affinity-based NF placement,

service providers can effectively support services with stringent latency requirements, includ-

ing 5G services.
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6. NASCENT: CONTAINER-DRIVEN DEPLOYMENT OF

VOLTE CALLER-ID VERIFICATION

Caller-ID spoofing deceives the callee into believing a call is originating from another user.

Spoofing has been strategically used in the now-pervasive telephone fraud, causing substan-

tial monetary loss and sensitive data leakage. Unfortunately, caller-ID spoofing is feasible

even when user authentication is in place. State-of-the-art solutions either exhibit high

overhead or require extensive upgrades, and thus are unlikely to be deployed in the near

future. In this chapter, we seek an effective and efficient solution for 4G (and conceptu-

ally 5G) carrier networks to detect (and block) caller-ID spoofing. Specifically, we propose

Nascent, Network-assisted caller ID authentication, to validate the caller-ID used during

call setup which may not match the previously-authenticated ID. Nascent functionality

is split between data-plane gateways and call control session functions. By leveraging ex-

isting communication interfaces between the two and authentication data already available

at the gateways, Nascent only requires small, standard-compatible patches to the existing

4G infrastructure. We prototype and experimentally evaluate three variants of Nascent in

traditional and Network Functions Virtualization (NFV) deployments. We demonstrate that

Nascent significantly reduces overhead compared to the state-of-the-art, without sacrificing

effectiveness.

6.1 Introduction

Vulnerabilities in widely-deployed packet-based telecommunications services have raised

serious concerns about the security of current infrastructure [97 ]. A simple (and now perva-

sive) type of attack that exploits 4G Voice over LTE (VoLTE) vulnerabilities is the caller-ID

spoofing attack [98 ], where an attacker impersonates another user by spoofing their telephone

number or user name. An unsuspecting user may be deceived by the spoofed caller-ID dis-

played by their user equipment (UE) since this ID can correspond to a trusted organization

such as a government agency [99 ]. Telemarketers also often use caller-ID spoofing to avoid

detection by caller identification systems (e.g., Truecaller [100 ]), and trick users into receiv-
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ing marketing calls. A recent phenomenon, neighbor spoofing [98 ], [101 ], uses a caller-ID

that closely matches the receiver telephone number.

While caller-ID spoofing attacks were difficult to mount on traditional circuit-switched

networks, the proliferation of SIP-based VoLTE services and easy access to caller-ID spoofing

applications (e.g., SpoofCard [102 ] and SpoofTel [103 ]) have enabled an average telephony

subscriber to mount such attacks, leading to losses in the billions of dollars [101 ].

Fundamentally, the caller-ID spoofing attack stems from a well-known vulnerability in

the IP Multimedia Subsystem (IMS). Traditional IMS servers designed for Voice over IP

(VoIP) do not validate the subscriber identifier in incoming call setup requests, which allows

an attacker to impersonate other subscribers. Even if IMS servers can validate the caller-ID

of incoming calls, the IMS network alone does not have sufficient information to validate

the caller-ID [50 ]. In the case of VoLTE, a user is initially authenticated, but the identity

indicated in the call setup requests arriving later is not validated by the IMS.

Several solutions have been proposed to tackle caller-ID spoofing. These include network-

assisted authentication using shared secrets and cryptographic encryption [4 ], end-to-end

certificate authentication [45 ], [65 ], [104 ], [105 ], challenge-response authentication (between

caller and callee) [44 ], and call-back validation [43 ], [106 ]. Unfortunately, these solutions

suffer from several drawbacks. Encryption-based solutions require additional message ex-

change with endpoints and expensive encryption. Certificate-based authentication requires

additional infrastructure to manage and validate certificates. Call-back systems generate a

validation call towards the caller-ID of an incoming call, effectively doubling the signaling

workload. All endpoint-only approaches suffer from the problems that endpoints cannot

always be trusted, and that a massive number of endpoints would need upgrade. These

drawbacks ultimately make current solutions ineffective or infeasible to deploy. This leads

us to focus our attention on designing network-assisted solutions that are efficient and easy-

to-deploy.

We design a network-assisted approach to detect caller-ID spoofing, Nascent (Network-assisted

caller ID authentication). By sharing intelligence between the Evolved Packet Core (EPC)

and IMS networks, carriers can efficiently and effectively detect caller-ID spoofing at runtime,

without requiring major infrastructure deployment or endpoint upgrades. We leverage sub-
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scriber data already available to EPC control-plane functions, but cross validate the caller-ID

of an incoming voice call at the IMS to reduce the overhead on the EPC data-plane. We

make the following contributions:

1. We propose Nascent, a new lightweight spoofing detection approach that is easy-to-

deploy in 4G and beyond.

2. We develop prototypes of three variants of Nascent.

3. We experimentally evaluate the performance of Nascent variants, and compare them

to the RFC-defined proxy-to-user authentication [4 ] in both traditional and Network

Functions Virtualization (NFV) deployments. We demonstrate that Nascent is ef-

fective and exhibits low overhead.

The remainder of this chapter is organized as follows. In §6.2 , we describe VoLTE, caller-

ID spoofing, and related work. In §6.3 , we compare prior network-assisted approaches to

counter caller-ID spoofing. In §6.4 , we discuss the design of our new approach, Nascent, and

in §6.5 , we experimentally evaluate Nascent. In §6.6 , we discuss deployment of Nascent,

and §6.7 concludes the chapter.

6.2 Background and Related Work

4G LTE (and beyond) advance cellular networks to a packet-switched only infrastructure,

migrating traditional circuited-switched voice support to VoLTE [107 ]. VoLTE carries voice

traffic and its signaling in IP packets, akin to VoIP. In this section, we introduce necessary

VoLTE background and explain why caller-ID spoofing is possible even with authentication

in cellular networks. Finally, we summarize related work on countering caller-ID spoofing.

6.2.1 VoLTE Architecture and Call Setup.

Figure 6.1 depicts a simplified LTE network architecture and the VoLTE call setup flow.

LTE provides voice service to user equipment (UEs, i.e., phones) in its core network, which

consists of two main subsystems: Evolved Packet Core (EPC) and IP Multimedia Subsystem
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Figure 6.1. LTE network architecture and VoLTE call setup flow.

(IMS). EPC is responsible for data-plane packet delivery and its associated control functions

such as the Policy and Charging Rules Function (PCRF), user authentication, and security.

The Packet Data Network Gateway (PGW) is the EPC’s critical network function which

forwards packets and acts as the interface to other packet data networks like the Internet and

IMS. The PGW typically includes the control function commonly known as the Policy and

Charging Enforcement Function (PCEF), which communicates with the PCRF for quality

and billing policy enforcement. The IMS offers voice and multimedia services over IP via

Call Session Control Functions (CSCFs). IMS uses the Session Initiation Protocol (SIP) [4 ]

for call setup signaling, which is the standard for VoIP.

A caller’s UE must authenticate itself before making a call (step 1). User authentication

is performed when the UE initially attaches to the network (e.g., powers on). Each UE’s

SIM card is associated with an International Mobile Subscriber Identity (IMSI) and a Mobile

Station International Subscriber Directory Number (MSISDN) (telephone number), which

are globally unique. A UE secret key is stored at the Home Subscriber Server (HSS), a user

database. The Mobility Management Entity (MME) enforces user authentication towards

the HSS, and updates authenticated UE information at the PGW. After that, the UE is

authorized to make a call (step 2). To initiate a call, the UE sends a call setup request

in a SIP INVITE message to the IMS which forwards the request to the callee. IMS later

performs authentication and authorization (AA) with the PCRF (2d) and finally with the
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PGW (2e) using the Diameter protocol [108 ]. This is needed for charging and QoS policy

control. We show the signaling flow as a space-time diagram in Figure 6.3a .

6.2.2 Caller-ID Spoofing.

Caller-ID spoofing is feasible in VoLTE despite user authentication [97 ], [109 ]–[111 ]. The

IMS and EPC use different addressing mechanisms to identify a UE. In IMS, the caller-ID

is carried in the From header in the INVITE message. This header denotes the authentic

caller’s telephone number in the case of no spoofing. However, there is no guarantee that

the forwarded caller-ID in the (INVITE) is exactly the same as the one which was authen-

ticated in advance (IMSI and its true phone number) or associated with the derived one

(e.g., temporary ID or the IP address allocated). In fact, real-world experiments have al-

ready validated that the current practice does not enforce any binding between SIP IDs

and authenticated IDs, making users vulnerable to caller-ID spoofing [97 ], [109 ]–[111 ]. The

root cause of caller-ID spoofing lies in the separation between user authentication and call

setup signaling. Although authentication is initially executed (to authorize making a call),

no mechanism prevents the caller from later altering the forwarded ID, thus hiding its au-

thenticated ID during call setup.

Table 6.1. Comparison of network-assisted caller-ID spoofing detection solutions.
Effectiveness Ease of deployment Overhead

Solution SIP SIP & IP Infra- Standards- Network Compu- Storage
Spoofed Spoofed structure Compatibility # Core # UE tation

[RFC]
Proxy-to-
user au-
thentication
[4 ]

4 4 None Yes 6 6 High Low

[RFC]
TLS [4 ]

4 4 PKI Yes 5 5 High High

Passive vali-
dation [111 ]

4 8 Not applicable

iVisher [50 ] • 4 4 None No 21 0 Low Low
Kim et
al. [51 ]

4 4 None No 0/(8 �) 0 High High

Nascent 4 4 None Yes∗ 0/4/6∗ 0 Low Low
• Works for VoLTE and VoIP; � When stored in a remote key-value store; ∗ Depends on variant used
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6.3 Design Goals and Lessons Learned

In this work, we aim to develop practical spoofing detection in carrier networks. We

believe that detecting caller-ID spoofing with network-assistance is more effective and easier-

to-deploy. This is because carrier networks are under the control of a few trustworthy service

providers, which wish to protect users from ill-intended spoofing abuse, and enforce authen-

tication and authorization, as commonly expected. In this section, we present our design

goals and compare existing network-assisted approaches. Our objective is to understand the

pros and cons of current solutions and gain insights for the design of Nascent in §6.4 .

6.3.1 Goals

An ideal network-assisted solution should be effective, easy-to-deploy and efficient-to-run.

(1) Effectiveness: An effective solution should detect both simplistic and sophisticated

attacks. In the simplest case, the caller-ID in the INVITE From header is forged. An effective

solution must work when the attacker spoofs other caller-IDs carried in the From, To, or P-

Asserted-Identity fields, as well as the IP address. Note that when SIP messages are

tunneled using other protocols, the source/destination IP address can be easily spoofed

without impacting end-to-end packet delivery.

(2) Ease of deployment: An easy-to-deploy solution requires minimal hardware and soft-

ware upgrades to the existing infrastructure. Solutions should not require (i) additional

infrastructure such as PKI, or (ii) non-standard protocols or interfaces. A desirable solu-

tion should leverage existing, standard-compatible components and only require software

upgrades.

(3) Efficiency: An efficient solution should exhibit low overhead in three aspects. (i)

Network overhead refers to additional message exchanges required to support caller-ID

spoofing detection. This includes: (a) Messages exchanged between network functions (NFs)

within IMS or EPC, and (b) Messages exchanged between the UE and the EPC and IMS

NFs. Since the EPC and IMS networks are often co-located or connected via high-speed

links, message exchange between these NFs traverses fewer hops than message exchange
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between the UE and core network (IMS and EPC). Traversal of more hops, coupled with

the latency introduced by last-mile radio links, makes message exchange with a UE more

expensive. In the core, we count the logical number of messages exchanged between NFs.

In practice, NFs may be connected via multiple hops, or the functionality of an NF may be

collectively implemented by multiple nodes. (ii) Computation overhead refers to over-

head of message processing, e.g., cryptographic calculations have higher overhead compared

to trivial comparisons. (iii) Storage overhead refers to memory and disk usage. Since the

precise computation and storage overhead depends on the implementation and deployment

model, we only classify these overheads as high or low in Table 6.1 , but they highly affect

our results for both the PGW and IMS in §6.5 .

6.3.2 Comparison of Existing Proposals and Lessons Learned

We compare existing network-assisted solutions in Table 6.1 .

The standard (RFC 3261) [4 ] proposes two runtime caller-ID validation approaches: a

challenge-response procedure (proxy-to-user authentication) and an encrypted channel in

Transport Layer Security (TLS). Both are deemed effective but not efficient or easy-to-

deploy because they require additional infrastructure, exchange additional messages with

the endpoints, or involve expensive computations for decryption.

Passive validation [111 ] checks the caller-ID in the INVITE request only and thus is

ineffective when the attacker spoofs both the IP address and the SIP header. For this

reason, we do not consider it further. Some proposals utilize control-plane information

available at network gateways to validate the caller-ID. iVisher [50 ] validates the caller-ID

by tracing the call back to the originating gateway. While effective, iVisher requires several

new messages which are not standard-compatible and thus require substantial upgrades at

the gateways. An alternative solution [51 ] detects caller-ID spoofing by inspecting every

SIP message received at the EPC gateway (e.g., PGW). This incurs high computation and

storage overhead due to deep packet inspection, as the PGW is responsible for forwarding all

IP packets, not just SIP INVITE. It is also expensive for the PGW to encode SIP protocol
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messages and terminate data-plane connections – operations typically performed by the

CSCF – since the PGW is not SIP-aware.

Lessons learned: The above discussion sheds light on designing an effective, standard-

compatible, low-overhead solution. First, the solution should leverage existing infrastructure

and should purely be a software solution. Second, limiting the entire solution to a single

data-path network function induces unacceptable overhead. The EPC gateway has the user

authentication information needed for network-assisted validation but it lacks the context

of VoLTE call setup. A gateway-only solution has a high computation cost (deep packet in-

spection) and resource waste (most packets are not VoLTE relevant). An IMS-only solution

is infeasible since the IMS does not have authentication data to validate a caller-ID. Third,

overhead of network communication with the endpoints is much higher communication within

the core network, since messages to endpoints traverse lossy last-mile radio links and expe-

rience higher latency and more failures. Fourth, communication between network functions

should exploit existing protocols and interfaces; otherwise, it is not standard-compatible and

is more difficult to deploy (patch existing infrastructure).

6.4 Nascent Design

Based on the goals in §6.3.1 , we need to design an effective, low-overhead and easy-to-

deploy caller-ID spoofing detection solution that does not suffer from the drawbacks of the

state-of-the-art network-assisted approaches discussed in §6.3.2 .

6.4.1 Overview

Our solution, Nascent, uses a cross validation approach. Unlike passive identifier vali-

dation solutions [111 ] that only utilize information available to the IMS servers, cross vali-

dation compares UE identifiers from multiple networks: the EPC and IMS networks in our

case. The idea of cross validation stems from the availability of at least one authenticated

network identifier that can be reliably used to identify a network endpoint.

We make the following key decision in designing Nascent: We split the caller-ID cross

validation functionality among the IMS control plane and the PGW. We minimize expensive
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Figure 6.2. Nascent design: 1a and 3a are used to access local memory
(i.e., no messages are exchanged).

operations at the PGW, in order to reduce latency and overhead. Since IMS servers already

manage and terminate SIP sessions, they require minimal changes to implement caller-ID

validation. As shown in Figure 6.3a , the EPC network already supports communication

between the IMS servers and EPC packet gateways [65 ], [80 ], [90 ]. Figure 6.2 depicts the

basic idea of Nascent. The PGW creates a mapping of the EPC identifiers (e.g., MSISDN)

and IMS identifiers (e.g., SIP Call-ID [4 ], From) when it receives an INVITE message (step

1a). Before forwarding the INVITE request to the called UE, the IMS fetches the EPC

identifier associated with the INVITE message (step 3 and 3a) and cross validates the caller-ID

being forwarded against the MSISDN received from the EPC. Figure 6.2 depicts a simplified

view of a traditional deployment. In practice, however, the EPC and IMS functions can

be decomposed and deployed as multiple Virtualized Network Functions (VNFs) or can be

aggregated and deployed as a single VNF, which does not impact our design.

Nascent consists of following three components (new steps highlighted in blue in Fig-

ure 6.2 ):

(1) Mapping creation: The PGW monitors SIP messages generated by a UE and stores

a mapping between the IMS and EPC identifiers when a SIP INVITE message is observed.

The PGW already extracts the SIP payload from each tunneled packet and forwards this

payload to the IMS servers. The PGW typically allocates a dedicated network interface
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(Access Point Name (APN)) for IMS signaling messages and therefore SIP traffic can be

efficiently monitored by observing traffic on this interface. The Call-ID header can be used

by the PGW and IMS to uniquely identify a SIP message. (The actual headers/parameters

used by the PGW and IMS to identify a SIP message depend on the implementation.)

The PGW will extract the SIP headers (Call-ID, From, To) and IP address, and save a

mapping between these headers and the EPC identifiers (MSISDN, IMSI) associated with

the tunnel. This is effective because the EPC network uses data tunnels to transport VoLTE

signaling messages between the IMS and UE. We utilize the knowledge of tunnel identifiers

associated with a UE to validate the UE identity in SIP signaling messages. The tunnel

identifiers in EPC are used to transfer encrypted traffic between the PGW and UEs, and are

unchanged for the duration a user session. This property of tunnel identifiers allows us to

reliably associate each SIP request with a trusted identifier (MSISDN), using which runtime

validation of caller-ID can be performed.

(2) Caller-ID validation: The IMS server CSCF queries the PGW for the EPC identifiers

associated with a SIP INVITE message and validates the SIP headers (e.g., From, To) against

the EPC identifiers. Since the PGW is configured to store the mapping of SIP headers and

EPC identifiers, the CSCF uses the value extracted from the INVITE message to generate

a validation request towards the PGW. The EPC network already provides well-defined,

standard-compatible interfaces to communicate with IMS, and hence these interfaces can be

leveraged for this operation.

(3) Mapping deletion: After replying to the CSCF, the PGW deletes the EPC and IMS

identifier map for this caller-ID. Implicit deletion reduces memory requirements at the PGW

since each mapping is only stored for a few milliseconds.

6.4.2 Variants

The current VoLTE architecture presents two main challenges to the design of Nascent:

(1) The IMS AA procedure is performed after the callee is notified. As shown in

Figure 6.3a , the IMS server only triggers rule generation after receiving media information

from both caller and callee (from step 1a and step 2). Without additional signaling messages,
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the network can only detect a spoofed call after the user is notified of an incoming voice call

(post-notification). Even if a spoofed call is detected and terminated by the network, the

network has no means of conveying this information to the callee, and the user would still

receive a “missed call.” The network can convey the spoofed call notification to the user via

a SIP CANCEL message used to terminate a spoofed call, and the UEs can be upgraded

to support this spoofed call notification mechanism. Optionally, the operators can employ

an external notification mechanism (such as SMS) to convey the spoofed call alert. If the

percentage of spoofed calls in the network is relatively low, this may be acceptable.

(2) There is no direct communication between the IMS and PGW. If the net-

work can validate the caller identity before the voice call is forwarded to the callee (pre-

notification), spurious notifications can be avoided. In this case, the IMS network must

query the PGW. IMS-to-PGW communication is mediated by the PCRF (Figure 6.3a ). The

IMS network uses the Diameter Rx interface [90 ] to exchange messages with the PCRF. The

PCRF forwards messages to the PGW using the Diameter Gx [80 ] interface. A more efficient

way to exchange EPC identifier information is to allow the IMS network to directly query

the PGW by adding a new interface.

We therefore explore three alternative designs based on (a) whether the caller is validated

before forwarding the voice call to the callee, and (b) if the EPC identifier information is

queried using the existing Rx-Gx interface, or a new interface is added between the IMS and

the PGW. These Nascent variants are summarized as follows.

(1) Post-Notification No explicit messages are exchanged between the PGW and IMS to

detect a spoofed call. The PGW provides the EPC identifiers to the IMS during the normal

procedure after the user receives the voice call (Figure 6.3b ). Rx and Gx messages can be

modified to tunnel the additional parameters required to detect spoofing. The callee may

receive a missed call notification when this variant is deployed.

(2) Pre-Notification-Rx-Gx Caller-ID validation uses new signaling messages exchanged

between the PGW and IMS prior to the INVITE message being forwarded to the callee.

The PGW and IMS communicate using existing Rx and Gx interface messages and no

new interfaces are required. Additional messages (Figure 6.3c ) relayed via the PCRF incur
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Figure 6.3. Nascent variants.
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networking overhead but avoid maintaining additional configurations and connections at the

PGW and IMS.

(3) Pre-Notification-Rx+ Caller-ID validation uses a new REST interface between the

IMS and PGW. As shown in Figure 6.3d , the IMS uses this new interface to validate the caller

identity before forwarding the message to the callee. This incurs configuration overhead as it

requires the IMS to directly communicate with the PGW that is currently serving a user, and

the IMS must therefore maintain a list of currently active PGW instances in the network.

6.4.3 Meeting Design Goals

Nascent meets the goals of effectiveness, ease-of-deployment, and low overhead dis-

cussed in §6.3.1 as follows (see last row in Table 6.1 ): (a) Nascent is effective with so-

phisticated spoofing attacks through its use of tunnel identifiers, (b) Nascent does not

use PKI, does not define new protocol messages and is compatible with the standards, (c)

All Nascent variants only require few additional messages, all between NFs in the core,

thus exhibiting low network overhead, (d) Nascent does not communicate with endpoints,

reducing latency and overhead, (e) Nascent only requires the PGW to provide the EPC

identifiers associated with an INVITE message, and does not require the PGW to handle

SIP request/response messages or terminate transport-layer connections initiated by the

UE, thus incurring low computation overhead, and (f) Nascent only requires the PGW to

maintain each EPC and IMS identifier mapping for a brief period of time (until the call is

accepted/rejected) and therefore does not require significant storage at the PGW.

6.5 Experimental Evaluation

In this section, we quantify the throughput, resource utilization, and latency incurred in

VoLTE call setup.
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Figure 6.4. Experimental setup.

6.5.1 Implementation and Experimental Setup

We have developed a prototype of the IMS CSCF, PCRF and PGW to emulate VoLTE

calls in our test environment as shown in Figure 6.4 . The IMS consists of a SIP server

that is used for handling SIP messages from the endpoints, and a policy module. We use

Kamailio [87 ] version 5.0.4 as the SIP server. We extend the functionality of Kamailio

to use a REST message interface to communicate with the policy module. The policy

module supports REST interfaces using which Kamailio can trigger Diameter Rx Interface

functions [90 ], [112 ] to communicate with the PCRF. The PCRF communicates with the

PGW using the Diameter Gx [80 ] Interface. The policy module supports the REST interface

using using the KORE library [88 ] (version 2.0.0). The policy module, PCRF, and PGW

are developed as application extensions in the FreeDiameter library [89 ] version 1.2.1 using

the C language (∼3700 lines of new code).

We compare proxy-to-user authentication (§6.3.2 ) and the proposed Nascent variants

with a baseline in which the caller-ID is not validated. We select proxy-to-user authentication

as a representative network-assisted solution because (a) This approach is specified by the SIP

RFC [68 ] and is already supported by existing implementations, and (b) Previous work [113 ]

has found that its throughput is higher than TLS-based solutions.

In the baseline case, the PGW does not intercept SIP traffic from the UE, and Rx and

Gx interface messages do not carry additional EPC identifiers. Proxy-to-user authentication

is similar to the baseline case but uses additional messages to authenticate callers using the

procedure defined in [4 ].
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We use Docker version 17.03.0-ce and Docker-compose (v1.11.2) [53 ] to deploy and man-

age Virtualized Network Functions (VNFs) as shown in Figure 6.4 . Each VNF runs within

a container, and all containers are deployed on the same physical host: a Dell PowerEdge

R430 (2x Intel Xeon E5-2620 v4) with 16 cores and 64 GB RAM.

Deployment models: We evaluate two deployment models: (a) Traditional deployment,

and (b) Network Functions Virtualization (NFV) deployment. In traditional deployment,

IMS and EPC are independent physical systems and no resources are shared among them.

This setup emulates current deployments where IMS are EPC are deployed on separate

physical machines. Kamailio is allocated a single core on CPU-1, while the policy module,

PCRF, and PGW share the second CPU. This setup is used to measure the additional

resources required to support the caller-ID spoofing solutions on the IMS servers. In NFV

deployment, we instantiate all VNFs in Figure 6.4 on the same physical machine and configure

them to share 4 cores on CPU-1. This is akin to expected 5G deployments.

Workload generation: We deploy two instances of SIPp [68 ], each on a separate physical

machine. One SIPp instance is used as the caller and the other is used as the callee. Both

caller and callee SIPp instances register the UEs with the IMS prior to the generation of

INVITE messages. We observe the response codes received by SIPp and use them to infer

the number of failures. Per the SIP specification, only 200 OK messages indicate success and

all other response codes are considered failures. The timeout for INVITE messages is set to

1 second; that is, an INVITE call is considered successful if a 200 OK response is received

within 1 second.

To generate workloads where the caller-ID is spoofed by the SIP caller, we configure SIPp

to use a random value in the From header of the INVITE message. Rejection of a voice call

with a spoofed caller-ID is considered a successful result. Therefore, in the plots in §6.5.2 ,

we count INVITE calls rejected due to caller-ID mismatch as successful calls.

Our experiments aim at quantifying the overhead of caller-ID validation on the per-

formance of VoLTE. In real deployment scenarios, EPC networks are over-provisioned to

handle flash workloads, and therefore, rarely, if ever, reach actual capacity. We thus use

simulated workloads to study Nascent under a wide range of loads from light to heavy
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Figure 6.5. Percentage of successful calls with 0% spoofed calls.

(for stress testing). In both deployment models, we increase the workload until we saturate

available system resources. We generate workloads between 800 calls/s to 2000 calls/s. We

record the number of successful calls, CPU utilization, and time taken by the IMS to suc-

cessfully process a voice call request, i.e., time taken to send a 200 OK response code after

an INVITE request is sent. We also measure the impact of the percentage of spoofed calls

on performance. We generate workloads where 0-10% of INVITE message have a spoofed

caller-ID. Each experiment runs for 30 seconds and the results represent the mean of at least

10 samples for each experiment. We also compute the standard deviation among the values.

The standard deviation was within 1% of successful call percentage in the figures in §6.5.2 .

We will note the standard deviation for call setup latency where relevant. We use docker

stats [53 ] to measure the CPU usage of VNFs. CPU usage is monitored every second and

our plots represent the average CPU utilization over the experiment duration.

6.5.2 Experimental Results

Traditional Deployment Model

We begin by benchmarking the performance of the VoLTE calls in the baseline setup

when no caller-IDs are spoofed. We compare the number of successful calls for each caller-

ID validation solution to the baseline results.
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Figure 6.6. CPU utilization of IMS Server with 0% spoofed calls.
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Figure 6.7. Average latency in VoLTE call setup with 0% spoofed calls.

Figure 6.5 presents the percentage of successful calls with 0% spoofed calls. Proxy-

to-user authentication results in significant performance degradation even under light work-

load. The two Pre-Notification variants do not degrade performance under light and medium

workloads, but increasingly degrade performance under higher workloads. Despite utilizing

additional resources at the PGW, Post-Notification results in no significant performance

degradation of the overall throughput at the IMS server, even under heavy workload. The

performance degradation of proxy-to-user authentication (even at light workload) is a con-

sequence of CPU saturation at the IMS server (Kamailio).
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IMS CPU utilization: Figure 6.6 depicts the CPU utilization of the IMS server under four

different workloads. The IMS server saturates the allocated CPU core at 800 calls/second

with proxy-to-user authentication. This results in severe performance degradation as the

workload increases. Nascent variants do not utilize significantly higher CPU compared to

the baseline, and therefore do not result in performance degradation at light and medium

workloads. At high workloads, the baseline saturates the available CPU core and therefore

even Pre-Notification-Rx-Gx and Pre-Notification-Rx+ severely degrade performance.

PGW CPU utilization: Caller-ID validation solutions also require additional CPU re-

sources at the PGW. We find that we need additional∼15-29% CPU for the Post-Notification

solution and∼20-25% CPU for Pre-Notification-Rx+. At higher workloads, Post-Notification

successfully handles a higher percentage of calls and therefore has higher CPU utilization.

Call setup latency: Since a VoLTE call is only established after a 200 OK is received from

the IMS server, any additional messages processed by IMS server will induce additional la-

tency in the VoLTE call setup. Figure 6.7 presents these results. The standard deviation

among the values representing each of the 10 individual runs is below 18 ms (below 4 ms for

medium and light workloads) in this case. Proxy-to-user authentication incurs significant

latency compared to the baseline. The three Nascent variants do not incur high latency at

light and medium workloads. At higher workloads, as evident from Figure 6.6 , CPU satura-

tion leads to higher induced latency with Pre-Notification-Rx-Gx and Pre-Notification-Rx+.

Since Post-Notification does not introduce additional messages compared to the baseline,

the latency incurred is negligible.

Results with spoofed calls: Figure 6.8 and Figure 6.9 present the results at 5% and 10%

spoofed calls. Comparing Figure 6.8 and Figure 6.9 with Figure 6.5 , we observe that the

performance of caller-ID validation improves as the percentage of spoofed calls increases.

For example, Pre-Notification-Rx+ results in ∼18% call loss with 0% spoofing. However,

at 5% and 10% spoofed calls Pre-Notification-Rx+ results in only ∼12% and ∼4% call

drop, respectively. Since Pre-Notification rejects spoofed calls before forwarding the INVITE

message to the caller, a higher percentage of CPU is available to legitimate calls in this case.
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Figure 6.8. Percentage of successful calls with 5% spoofed calls.
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Figure 6.9. Percentage of successful calls with 10% spoofed calls.

NFV Deployment Model

We emulate a deployment where the EPC and IMS networks are instantiated on virtu-

alized hardware platforms and are co-located to allow EPC and IMS VNFs to share system

resources. This allows the IMS server to utilize more CPU resources and therefore we need

higher workloads to saturate the IMS. Figure 6.10 presents the percentage of success-

ful calls with 0% spoofed calls. Even with NFV deployment, proxy-to-user authentication

results in significant performance degradation at light workloads. Pre-Notification-Rx-Gx
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Figure 6.10. Percentage of successful calls with 0% spoofed calls with NFV deployment.
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Figure 6.11. CPU utilization with 0% spoofed calls with NFV deployment.

also results in significant performance degradation at medium and high workloads. Since

Pre-Notification-Rx-Gx relays the EPC identifiers via the PCRF, it exhibits higher CPU

utilization than the other two variants due to the additional messages processed by the

PCRF.

Figure 6.11 presents total CPU utilization. Proxy-to-user authentication uses the

highest overall CPU even in the absence of the PGW SIP message interception overhead.

Pre-Notification-Rx+ does not exhibit significantly higher CPU utilization or performance

degradation than the baseline.
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Figure 6.12. Average latency in VoLTE call setup with 0% spoofed calls with
NFV deployment.

Figure 6.12 presents the call setup latency incurred in NFV deployment. The stan-

dard deviation among the values representing each of the 10 individual runs is below 9 ms

(below 3 ms for medium and light workloads) in this case. Pre-Notification-Rx+ incurs

only negligible latency compared to the baseline and Post-Notification at light and medium

workloads.

Selective Validation

Selective validation at the IMS can be used in cases where the network is experiencing

heavy workloads. For example, IMS servers can use historical data to determine which

caller-IDs to be validated. Figure 6.13 shows the results of Pre-Notification-Rx+ when only

a specific percentage of randomly selected calls are validated. As expected, the performance

impact of caller-ID validation decreases as the percentage of calls that are validated decreases.

When 10% of calls are validated, Pre-Notification-Rx+ has negligible overhead.

Tradeoffs among the Three Variants

The three Nascent variants offer service providers the flexibility to prioritize user experi-

ence, performance overhead, or deployment effort. Post-Notification has negligible overhead
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Figure 6.13. Percentage of successful calls with varying spoofing percentage
for the Pre-Notification-Rx+ variant. The number within parentheses indi-
cates the % of calls validated.

and requires no operational changes, but it may adversely impact user experience. Mobile

subscribers may receive missed call notifications, and while this may be acceptable in the

absence of a subscription-based (and possibly paid) caller-ID validation service, it is not

ideal for end users.

Pre-Notification-Rx-Gx drops spoofed calls before the user is notified and does not require

high deployment effort (no new interfaces are added), but has the highest performance

overhead among the three variants. Therefore, it may not be acceptable for operators or

deployments which often encounter high flash workloads.

Pre-Notification-Rx+ overcomes the shortcomings of the other two variants at the cost

of higher deployment and operational effort. This variant requires standardization of a

new REST based interface and requires IMS servers to directly contact the PGW serving a

user. The list of PGWs currently deployed (and serving a user) can be easily configured for

traditional deployments, but this is more difficult for NFV deployments where PGW and

CSCFs are dynamically instantiated to meet workload requirements.
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6.6 Discussion

Microservice-based design: Extracting and storing subscriber identifiers can be imple-

mented as a microservice module which can be independently deployed. Such a design has

the following benefits: (a) It substantially reduces processing and storage requirements at

the PGW, and (b) It allows the CSCF to directly retrieve the caller-ID from the microservice,

thereby eliminating the need for PGW configuration (IP address and port) at the IMS. This

design also benefits NFV-based deployments where multiple PGW instances are dynamically

instantiated to handle incoming workload.

Legitimate use of caller-ID spoofing and service extensions: Caller-ID spoofing can

be used in legitimate cases such as privacy protection or when a user has multiple subscriber

identifiers, e.g., preferring to show a 1-800 number [98 ]. Nascent may flag these legitimate

cases as caller-ID spoofing. We leave freedom to the carriers to determine what action to

take once caller-ID spoofing is detected.

For instance, only spoofed calls from subscribers who use multiple or private caller-IDs,

or subscribe to a legitimate spoofing service, can be allowed through. Blocking caller-ID

spoofing can also be an add-on service. In Nascent, caller-ID validation is performed at

the IMS and therefore its design can be easily extended to support additional functional-

ity. Unlike the PGW, IMS servers have access to network databases (such as HSS), which

store IMS subscription information and can be used to allow legitimate caller-ID spoofing.

Nascent’s mapping tables can be exposed to more services, such as SMS, to enable them

to validate users.

Effective and gradual deployment: Nascent is effective when it is deployed in the

caller’s network, and does not need universal deployment. Nascent may not be helpful

if only deployed in the callee’s network when the forwarded ID has been spoofed. In this

case, other solutions may be necessary, such as endpoint-only caller-ID spoofing detection or

additional infrastructure for end-to-end authentication (e.g., via PKI or global certification

infrastructure). These solutions are orthogonal and can be simultaneously used.
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Extension to non-VoLTE calling: While our work focuses on VoLTE, it is conceptually

applicable to other voice services such as circuit-switched calls, WiFi calling, and Internet

telephony. The key idea is to enforce cross validation between the caller-ID used in the call

setup and the one authenticated by the carrier networks.

Applicability to 5G: Nascent can be naturally extended to 5G, which still uses a VoLTE-

like technique to support VoIP. The use of NFV in 5G makes it even easier to detect caller-ID

spoofing, as long as the proposed changes are integrated into the VNFs at the IMS and PGW.

During early stages of 5G deployment, it is easier to develop built-in defense against caller-ID

spoofing than to patch 4G.

6.7 Chapter Summary

In this chapter, we have proposed an effective, efficient, and easy-to-deploy solution,

Nascent, for detecting caller-ID spoofing. Nascent performs the main cross validation

operations at the IMS, hence reducing the load on the EPC data-plane gateways, but lever-

ages authentic identifier information supplied by the EPC network. We have implemented

and experimented with three variants of Nascent, and compared them to proxy-to-user

authentication. We find that Nascent achieves its goals of effectiveness and efficiency, and

the three variants offer service providers flexibility to prioritize user experience, performance

overhead, or deployment effort. Further, our evaluation of Nascent on NFV (container-

driven) deployment and traditional (bare metal) deployment, shows that container-driven

deployments that allow IMS and EPC NFs to share resources can outperform traditional

deployments.
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7. CONCLUSIONS AND FUTURE WORK

In this dissertation, we analyzed the case of cloud-native (microservice container packaged)

Virtual Network Functions (VNFs) in supporting latency-sensitive services in the cellular

core. We proposed that by leveraging knowledge-driven, traffic-aware, orchestration frame-

works, network providers can meet stringent Service Level Agreements (SLAs) of future

network services while simultaneously incurring lower deployment costs due to elastic on-

demand resource allocation on cloud infrastructure.

In Chapter 3 , we empirically demonstrated that container-driven instantiation of control

and data place VNFs incur significantly lower performance overheads compared to VM-driven

instantiations. We showed that low performance overhead of containerized VNFs coupled

with lower instantiation time and smaller footprints, make containers the logical choice for

cloud-native cellular core.

In Chapter 4 , we showed that functionality-based decomposition of monolithic cellular

control plane functions can yield stateless microservice components which can be aggregated

using domain knowledge and VNF affinity to create microservice aggregates. These microser-

vice aggregates can then be instantiated in close proximity by a traffic aware orchestrator

allowing network providers to bound end-to-end Service Function Chain (SFC) latency and

significantly reduce SLA violations.

In Chapter 5 , we developed Invenio, which automates identification of microservice ag-

gregates described in Contain-ed (Chapter 4 ) and allows service providers to make VNF

placement decisions without the time-consuming and error-prone manual analysis currently

used. Invenio automatically computes the correct transactions and affinity between VNFs

and makes automated affinity-driven placement decisions, enabling service providers to bet-

ter manage the ever increasing complexity of microservice-based VNFs.

Finally, in Chapter 6 , we evaluated the efficacy of container-driven deployments in sup-

porting real-world applications with long SFCs by developing a novel caller-ID validation

solution for VoLTE and comparing its performance on traditional and container-driven de-

ployment. Our evaluation of caller-ID validation solution in an container-driven VoLTE sys-
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tem showed that virtualized deployments which allow SFC components to share resources

can support new services without significantly degrading existing system performance.

We now discuss how lessons learned from this dissertation can be applied to the design

of emerging 5G networks, and some future directions that can hasten the adoption of cloud-

native designs in cellular service delivery.

7.1 Provisioning in the 5G Core

5G is the next generation of cellular networking technologies that promises ultra-fast,

ubiquitous connectivity for billions of wireless devices to enable a new wave of services.

Unlike previous generations of cellular networks (3G/4G) which were designed to support

voice and basic data connectivity services, the 5G core (5GC) network is expected to support

a wide variety of services with disparate bandwidth and latency requirements. Services in

5GC are therefore delivered using logically independent virtual networks called network

slices.

The design of the new 5GC marks a significant departure from the well-defined, stateful,

monolithic network functions used by earlier generations of cellular networks. 5GC adopts

stateless network functions, deployed as a collection of loosely-coupled microservice compo-

nents (Chapter 4 ) which are typically deployed on containers (Chapter 3 ). Consequently,

microservice-based architectures facilitate independent scaling and update of individual mi-

croservices, avoiding long development cycles, increasing elasticity, and reducing operational

costs (Chapter 6 ). This decomposition of NFs into multiple smaller microservice components,

or VNF Components (VNFCs), however, leads to longer, more complex SFCs.

When NFs are decomposed into smaller VNFCs, latency budgets available to individ-

ual VNFCs shrink. Compared to monolithic implementations, microservice-based VNFCs

exchange more messages to process a user request [71 ]. Consequently, even small communica-

tion delays between VNFCs can lead to significant performance degradation. Affinity driven

solutions such as Invenio (Chapter 4 ) can automatically derive the transactional affinity

values between VNFCs from the messages exchanged between VNFCs for each traffic type

and optimize processing of pre-determined (typically, latency-sensitive) workload types.
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Orchestrators monitor Key Performance Indicators (KPIs) of each VNF/VNFC instance,

and dynamically make placement and resource allocation decisions. However, owing to

stringent SLAs and dynamic instantiation of VNFs in 5GC, the performance of a 5G slice

also depends on a) Scaling strategy, which determines if additional resources should be added

via scale-up (add resources to existing VNF instances) or scale-out (create new instances of

VNFs), and b) Scaling sequence, which determines the order in which VNFs in an SFC

should instantiated and if multiple VNFs must be scaled-out/scaled-up at the same time.

Therefore, orchestrators should understand not only the incoming workload type and affinity

between VNFCs for each type, but also the communication patterns of multiple instances of

VNFCs with multiple instances of state stores. Future orchestrators will therefore require

solutions which make network placement decisions (cloud/edge) in tandem with resource

allocation decisions to jointly optimize service performance [114 ]. One potential avenue for

orchestrators, therefore, is to use Machine Learning (ML) algorithms to make joint placement

decisions.

7.2 ML-based Provisioning of Cellular Networks

Recent research has explored the benefits of ML-driven resource allocation [115 ]–[118 ].

However, resource utilization patterns of traditional monolithic VNFs exhibit high diversity.

Therefore, training ML models for monolithic VNFs requires extensive failure data which

is often unavailable due to over-provisioned cellular networks [116 ]. While the need for

training data remains a challenge, the simpler processing logic of microservice-based cloud-

native VNFs (VNFCs) makes individual VNFs within the cellular core more amenable to

ML-driven on-demand scaling. Future orchestrators can therefore employ ML-based solution

to instantiate and place VNFs.

Another challenge in supporting on-demand scaling of VNFs in cellular core is proactive

scaling. Provisioning latency-sensitive services requires anticipating overload and failures,

in order to proactively allocate and initialize additional resources before customer experi-

ence degrades. One solution to proactive scaling is to use ML algorithms to predict future

workloads [118 ]. Another possible solution is using low-cost cloud offerings for transparent
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scaling. For example, serverless functions can be used alongside traditional VM or container

instances to handle excess workload [119 ] and mitigate SLA violations while using predictive

scaling. We believe that the 5CG orchestrators will therefore use a combination of ML-based

workload prediction coupled with serverless functions to mitigate the impact of microbursts

in incoming workload (flash workloads) on user experience.

However, a key reason why current orchestrators fall short in preventing SLA violations

for latency-sensitive services is the lack of end-to-end scaling strategies. Longer SFCs com-

posed of VNFCs imply that only a fraction of the latency budget available to a monolithic

application is available to each microservice. To address the challenges posed by latency-

sensitive microservice-based applications, orchestrators must adopt end-to-end resource al-

location plans that make batch scaling decisions for an entire SFC, alleviating the cascading

QoS deterioration caused by reactive scaling of individual VNFs. An end-to-end cellular

network orchestrator should consider multiple factors in making scaling and placement deci-

sions, such as incident workload, workload type, position of a VNF in the SFC, and scaling

strategy. ML-based algorithms can play an important role in developing end-to-end solutions

for future cloud-native cellular cores.
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