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ABSTRACT 

Understanding of thermal transport in small scales gains more importance with increasing 

demand in microelectronics and advancing fabrication technologies. In addition, scarce in energy 

sources adds more pressure with increasing expectations on research in energy conversion 

devices and renewable energies. In parallel to these, new phenomena observable only in small 

scales are discovered with the research, bringing more opportunities for engineers to solve real-

world problems by applying the discoveries and more questions to answer. Thermal radiation as 

a thermal transport phenomenon is the epicenter of this research. Recent developments such as 

near-field radiative heat transfer exceeding blackbody radiation or control of radiative cooling 

via biasing grows the attraction on thermal radiation because these examples challenge our long-

lasting understanding of nature. Exploring nature further in the small scale may help us meet the 

expectations mentioned above. 

 

In this thesis work, first, we carry out analyses on radiative heat transfer of natural 

hyperbolic material, calcite, and compare to that of a polar material SiC. Our study reveals that 

the high- 𝜅 modes within the hyperbolic bands are responsible for the substantial enhancement in 

near field radiation. Comparison of calcite with SiC illustrates the significance of the high-𝜅 

modes in calcite vs. surface polariton modes in SiC in their contributions to near-field radiation 

enhancement, for temperature differences ranging from 1 K to 400 K. We also noticed that the 

contributions of high-𝜅 modes in calcite to near-field radiation is comparable to that of surface 

polaritons in SiC. The results of these analyses will be helpful in the search of hyperbolic 

materials that can enhance near field radiative transfer. 

 

Second, we demonstrate an experimental technique to measure near-field radiative heat 

transfer between two parallel plates at gap distances ranging from a few nanometers to far-field. 

A differential measurement circuit based on resistive thermometry to measure the defined 

temperatures are explained. To predict the defined temperatures, a computational method is 

utilized. We also detail an alignment technique that consists of a coarse and fine alignment in the 

relevant gap regions. This technique presents a method with high precision for gap measurement, 

dynamic gap control, and reliable sensitivity for extreme near-field measurements. Finally, we 
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report experimental results that shows 18,000 times enhancement in radiative heat transfer 

between two parallel plates. 

 

Third, we analyze near-field radiative transfer due to hyperbolic phonon polaritons, driven 

by temperature gradient inside the bulk materials. We develop a mesoscale many-body scattering 

approach to account for the role of hyperbolic phonon polaritons in radiative transfer in the bulk 

and across a vacuum gap. Our study points out the equivalency between the bulk-generated 

mode and the surface mode in the absence of a temperature gradient in the material, and hence 

provide a unified framework for near-field radiative transfer by hyperbolic phonon polaritons. 

The results also elucidate contributions of the bulk-generated mode and the bulk temperature 

profile in the enhanced near-field radiative transfer. 

 

Forth, we study radiative heat transfer in hyperbolic material, hyperbolic boron nitride 

(hBN), and show a major contribution to energy transport arising from phonon polaritons 

supported in Reststrahlen bands. This contribution increases spectral radiative transfer by six 

orders of magnitude inside Reststrahlen bands compared to that outside Reststrahlen bands. The 

equivalent radiative thermal conductivity increases with temperature increase, and the radiative 

thermal conductivity can be of the same order of the phonon thermal conductivity. Experimental 

measurements are discussed. We showed the radiative contribution can account for as much as  

27 % of the total thermal transport at 600 K. Hence, in hBN the radiative thermal transport can 

be comparable to thermal conduction by phonons. We also demonstrate contribution of 

polaritons to thermal transport in MoO3. To calculate radiative heat transfer in three principal 

coordinates separately, we modify and apply the derived many-body model. Our analysis shows 

that radiative thermal conductivity in both in- and out-of-plane directions increases with 

temperature and contribution to energy transport by polaritons exceeds that by phonons. 

 

Fifth, we build an experimental setup to examine near-field properties of materials using an 

external thermal source. The nanospectroscopy setup combines near-field microscopy technique, 

near-field scanning optical microscopy (NSOM), and Fourier-transform infrared (FTIR) 

spectroscopy. We further explain challenges in building a nanospectroscopy setup using a weak 
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thermal source and coupling two techniques. This method enables us to investigate spectral 

thermal radiation and local dielectric properties in nanoscale. 
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1. INTRODUCTION 

Thermal radiation is one of the fundamental physical phenomena. Understanding of 

thermal radiation in macro scale has been well developed since the end of 19th century. 

Theoretical studies in radiation field for the last half century and developments in manufacturing 

techniques for the last decades show that thermal radiation requires better understanding at micro 

and nano scale. Research in this direction gained tremendous momentum, and flourished with 

various applications such as thermal counterpart of logic gates [1], mid-IR thermal microscopy 

[2], [3], highly directional thermal antenna [4], and thermophotovoltaic [5]. Near-field radiative 

heat transfer is a further area finding its place in thermal radiation research. Bringing a hot object 

to proximity of cold object, or vice versa, drives heat transfer between objects via thermal 

radiation. Independent experimental studies in the last decade explored near-field heat transfer 

for separation distances ranging from micro to a few tens of nanometers between two flat plates. 

However, the separation distance from a few tens of nanometers to contact remains undiscovered 

due to extreme sensitivity to flatness and parallelism of flat plates as well as challenges in 

accurate dynamic manipulation of the gap in the corresponding range. Besides, material type 

plays a key role in radiative heat transfer. Surface phonon polaritons in polar dielectrics and 

hyperbolic phonon polaritons in hyperbolic materials give rise to near-field radiation, but roles of 

the polaritons in these materials have not been studied. Apart from radiative heat transfer across 

vacuum gap, current research efforts on radiative heat transfer in materials under temperature 

gradient are still in infancy. This thesis is constructed around explaining near-field radiative heat 

transfer between identical flat plates, made of polar dielectrics and hyperbolic materials, from 

contact point to micron size separation and investigating radiative heat conductance in hexagonal 

boron nitride (hBN) and -phase molybdenum trioxide (─MoO3) with temperature gradient. In 

this section, basic concepts of thermal radiation are introduced, followed by explanation of key 

components of near-field thermal radiation between parallel plates. This chapter will be 

concluded with a brief review of hyperbolic phonon polariton in hBN and ─MoO3 as hyperbolic 

material.  
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1.1 Thermal Radiation 

Any object with finite temperature emits radiation, the so-called thermal radiation, and the 

thermal radiation is in an electromagnetic (EM) energy form. The spectral EM energy density 

associated with electromagnetic wave in vacuum (free space) at position r is expressed by [6]  

 〈𝑈(𝒓, 𝜔)〉 =
𝜀𝑜

2
〈|𝐸(𝑟, 𝜔)|2〉 +

𝜇𝑜

2
〈|𝐻(𝑟, 𝜔)|2〉 (1.1) 

where 𝜀𝑜, 𝜇𝑜, 𝐸, 𝐻, and 𝜔 are dielectric permittivity and permeability of vacuum, electric and 

magnetic fields, and frequency, respectively. Eq. 1.1 is a general expression for any type of EM 

radiation, e.g., coherent laser illumination, incoherent thermal radiation. Instead, expressing the 

spectral EM energy density using the Planck radiation form is more insightful because the Planck 

form explicitly relates temperature with the radiation emitted by the object. As a side note we 

show in Section 1.2 the Planck form can be derived from Eq. 1.1 using fluctuation dissipation 

theorem (FDT). According to the Planck radiation, the spectral energy density of thermal 

radiation is obtained by multiplying the thermal energy of a quantum mode with the density of 

the modes in the frequency interval [6] 

 〈𝑈(𝜔)〉 = 𝜌(𝜔)ℏ𝜔 (𝑛(𝜔, 𝑇) +
1

2
) (1.2) 

 Here, 𝜌 denotes density of states, or modes, (DOS), and 𝑛 = (𝑒ℏ𝜔/𝑘𝐵𝑇 − 1 )
−1

is probability of 

finding a state occupied at temperature T, where 𝑘𝐵  is Boltzmann’s constant. 1/2 arises from 

zero-point energy. The zero-point energy drops in energy transfer calculations [7]. Thus, we 

neglect it in our calculations. Historically, Eq. 1.2 was only used to define blackbody radiation 

(far-field radiation). It is also applicable to near-field radiation, which is discussed in Section 1.2. 

Here in this section, we only discuss far-field thermal radiation. In far-field, 𝜌(𝜔) =
𝜔2

𝜋2𝑐𝑜
3. Then, 

Eq. 1.2 casts into the form 

 〈𝑈(𝜔)〉 =
𝜔2

𝜋2𝑐𝑜
3

ħ

𝑒
(

ħ
𝑘𝐵𝑇

)
− 1

 (1.3) 

Both counting EM modes in k-space (modern quantum optics) and using fluctuation-dissipation 

theorem in Eq. 1.1 results in the exact same form in Eq. 1.3 [8]. This form describes the energy 

density of the blackbody emission.   

 

We know that propagating EM energy in vacuum normal to an area (energy flux) can be 

found by multiplying energy density with speed of light per solid angle. In mathematical form, 
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spectral radiative heat flux [W/(m2 rad/s)] emitted to far-field by a surface per solid angle is 

expressed as follows 

 𝑞(𝜔) =
1

2

1

2𝜋
𝑐𝑜〈𝑈(𝜔)〉 (1.4) 

where 1/2 accounts for emission to upper or lower half space from the surface, 1/2𝜋 is for per 

solid angle, and speed of light is propagation speed of EM waves in vacuum. Eq. 1.4 expresses 

characteristic emission spectrum that contains thermal energy concentrated around a frequency, 

the so-called characteristic wavelength (𝜆𝑐), depending on T. Increasing temperature shifts 𝜆𝑐 to 

short wavelength range, meaning that peak thermal radiation increases with temperature. 𝜆𝑐 

obeys Wien’s displacement law [9] 

 𝜆𝑐𝑇 = 𝑏 (1.5) 

where b is Wien’s displacement constant and equals to 2.897x10-3 mK. We plot blackbody 

emission spectrum by inserting Eq. 1.3 into Eq. 1.4. Figure 1.1 illustrates thermal energy 

enhancing with and the characteristic wavelength shifting with temperature. Operating at 3000 K, 

Tungsten filament relies on thermal radiation spectrum as a broadband IR light source [10]. Far-

field thermal emission spectroscopy makes use of emission spectrum to extract macroscopic 

dielectric properties of materials [11]. More examples based on this phenomenon can be counted.  

 

 

Figure 1.1. Blackbody emission spectrum with respect to temperature 
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The drawback of sensing and imaging in far-field is that information carried by radiation 

(light) is limited. Free-space wavevector of light is 𝑘𝑜 = 𝜔
𝑐𝑜⁄ . Any feature on thermal source 

with a dimension 𝑥 <
1

𝑘𝑜
 cannot be resolved using far-field sensing methods because radiation 

with a wavevector 𝑘 > 𝑘𝑜 fades away in far-field. On the other hand, thermally emitting object 

contains enhanced energy concentrated in proximity to the object that is called near-field thermal 

radiation. In the next sections, we will distinguish far- and near-field effect and build the 

foundation necessary for understanding near-field radiative heat transfer. 

1.2 Near-Field Thermal Radiation 

Near-field is defined as a spatial region close to an emitting object with a distance smaller 

than characteristic length proportional to 𝜆𝑐. An emitted wave with 𝜆 < 𝜆𝑐,  𝑘 > 𝑘𝑜, disappears 

in far-field. Physically, energy density in near-field increases due to the number of modes 

supported in the object (medium). In theory, the near-field effect is modeled by extending DOS, 

𝜌(𝜔), definition to local density of state (LDOS), 𝜌(𝒓, 𝜔) [6], [12]. In this case, Eq. 1.2 is 

modified, and EM energy density depends on distance from surface [13]. In the next paragraph, 

we will show deriving the modified Eq. 1.2 by starting from Eq. 1.1.  

 

 

Figure 1.2. Semi-infinite medium (1) occupying a volume of V at finite temperature. 

Fluctuating particles in the medium induce EM field in vacuum (0).  

Energy density due to near-field thermal radiation is briefly explained in the following. 

Consider an object filling lower half space, as shown in Figure 1.2. Thermal energy due to finite 
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temperature causes particles (electrons, ions, etc.) to fluctuate. These particle fluctuations are 

modeled as current density 𝒋 = (𝑗𝑥, 𝑗𝑦, 𝑗𝑧) in the object as a function of position, 𝒓′ = (𝑥′, 𝑦′, 𝑧′), 

and frequency, 𝜔. Current fluctuations generate EM field, 𝑬, in vacuum at location, 𝒓 = (𝑥, 𝑦, 𝑧) 

above the interface, (𝑥, 𝑦, 0), [6] 

 𝑬(𝒓, 𝜔) = 𝑖𝜇𝑜𝜔 ∫ 𝑮⃡  (𝒓, 𝒓′, 𝜔) ∙ 𝒋(𝒓′, 𝜔′)𝑑3𝒓′
 

𝑉

 (1.6) 

Here, 𝑮⃡   is dyadic Green’s function that relates the source fields (current density), 𝒋, with the 

generated field, 𝑬. 𝑮⃡    is governed by Maxwell’s Equations [14], [15]. Green’s function depends 

on both material properties and shape of the interface between the materials. To find energy 

density above the interface, we start the derivation from Eq. 1.1. Then, the similarity between the 

derived expression and Eq. 1.2 will be constructed. First, spectral correlation functions of the 

generated fields (both magnetic, 〈|𝐻(𝑟, 𝜔)|2〉, and electric, 〈|𝐸(𝑟, 𝜔)|2〉) in Eq. 1.1 need to be 

evaluated. As an example, the correlation function of electric fields is found by plugging Eq. 1.6 

for the fields into the correlation expressions: 

 

⟨𝐸𝛼(𝒓, 𝜔).  𝐸𝛽
∗(𝒓′, 𝜔′)⟩

= 𝜇𝑜
2𝜔2 ∑ ∫ 𝑑3𝒓′′𝑑3𝒓′′′⟨𝐺𝛼𝑚(𝒓, 𝒓′′, 𝜔)𝐺𝛽𝑛

∗ (𝒓′, 𝒓′′′, 𝜔′)𝑗𝑚 (𝒓′′, 𝜔)𝑗𝑛
∗ (𝒓′′′, 𝜔′)⟩

 

𝑚,𝑛

 
(1.7) 

Here,  and  indicate the direction of the generated electric fields, and ,  =x,y,z. Also, m and 

n represent the direction of current density, and m, n=x,y,z. Note that Cartesian coordinate system 

is reference coordinate. Thus, x, y, and z refer to component of any variable in the corresponding 

axes, and x, y and z are unit vectors. Since the correlation functions of the electric fields at 

positions 𝒓 and 𝒓′ depends on the correlation of two independent current fluctuation densities at 

𝒓′′ and 𝒓′′′, frequency of the correlating fields, 𝜔 and 𝜔′, should be considered separately. In 

addition, variables with asterisk (*) represent complex conjugate of the variables. Finding the 

correlation function of the generated fields, ⟨𝐸𝛼(𝒓, 𝜔).  𝐸𝛽
∗(𝒓′, 𝜔′)⟩ , requires the correlation 

function of the current densities. Derived in various references [16]–[19], fluctuation-dissipation 

theorem (FDT) expresses the spectral correlation of current densities in a homogeneous, 

stationary medium in equilibrium with local medium approximation 

 ⟨𝑗𝛼(𝒓, 𝜔) 𝑗𝛽
∗(𝒓′, 𝜔′)⟩ = 4𝜋𝜔(ħ𝜔𝑛(𝜔, 𝑇))𝜀𝑜𝜀𝛼𝛽

′′ 𝛿(𝒓 − 𝒓′)𝛿(𝜔 − 𝜔′) (1.8) 



 

 

21 

Here, 𝒓 and 𝒓′ are position of the current fluctuations, and  shows Dirac-delta function. 𝜀𝛼𝛽
′′  

represents imaginary component of (𝛼, 𝛽) element of dielectric matrix (see Section 1.4). To 

evaluate Eq. 1.7, we need to express 𝑮⃡  , which is given for electric fields over a flat surface by [6] 

𝑮⃡   (𝒓, 𝒓′, 𝜔) =
𝑖

2
∫

𝑑𝜅  

2𝜋  

1

𝛾𝑜
[𝑠̂𝑡𝑠𝑠̂ + 𝑝̂1

 𝑡𝑝𝑝̂0
 ]𝑒𝑖𝜿.((𝒙−𝒙′)+(𝒚−𝒚′))𝑒𝑖𝛾0𝑧−𝑖𝛾1𝑧′

 (1.9) 

where 𝜅 and 𝛾𝑗 are in-plane (x,y,∥) and out-of-plane (z,⊥) component of wavevector in materials 

j=0, 1, and related with 𝛾𝑜
2 = 𝑘𝑜

2 − 𝜅2  in vacuum (j=0), and 𝛾𝑝,1
 (= √𝜀∥𝑘𝑜

2 − 𝜀∥/𝜀⊥𝜅2  ) and 

𝛾𝑠,1
 (= √𝜀∥𝑘𝑜

2 − 𝜅2) for p- and s- polarized waves inside the medium (j=1) with in-plane (𝜀∥) and 

out-of-plane (𝜀⊥) dielectric components. Planar geometry enables decomposition of wavevector 

into in- and out-of-plane directions. 𝑠̂  and 𝑝̂𝑗
  are polarization vectors of s-, and p-polarized 

waves in the materials, and 𝑠̂ = 𝜿 × 𝒛̂/|𝜅|, 𝑝̂𝑗
 = −[

𝛾𝑗𝜿

|𝜅|
∓ 𝜅𝒛̂]/(𝑛𝑗𝑘𝑜), where n is refractive index. 

In addition, ts and tp represent transmission coefficient of s- and p-polarized waves through 

interface, and are given by 𝑡𝑝 =
2√𝜀∥𝛾0

𝜀∥𝛾0+𝛾𝑝,1
  and 𝑡𝑠 =

2𝛾0

𝛾𝑠,1
 +𝛾0

. Plugging Eq. 1.9 and Eq. 1.8 into 1.7 

and integrating Eq. 1.7 over volume V enclosing 𝒓′′ and 𝒓′′ after mathematical manipulations 

yield spectral EM energy density [6], [12]  

 

𝑈(𝒓, 𝜔) = [
𝜔2

2𝜋2𝑐𝑜
3 ∑ (∫

𝜅

𝑘𝑜

𝑑𝜅

𝛾𝑜

(1 − |𝑟𝑗,1
 |

2
)

2

𝑘𝑜

0

 

𝑖=𝑠,𝑝

+ ∫
4𝜅3

𝑘𝑜
3

𝑑𝜅

𝛾𝑜

𝐼𝑚(𝑟𝑗,1
 ) 

2
𝑒−2𝐼𝑚𝛾𝑜𝑑

∞

𝑘𝑜

)] ħ𝜔𝑛(𝜔, 𝑇) 

(1.10) 

Note that magnetic energy density equals electric energy density in vacuum, and Eq. 1.10 

contains contribution of both fields. 𝑟  is the Fresnel reflection coefficient at the interface 

between the material of interest and vacuum, which can be expressed for s- and p-polarized 

waves as [20] 

 𝑟𝑝,𝑗
 =

𝜀∥,𝑗𝛾𝑜 − 𝛾𝑝,𝑗
 

𝜀∥,𝑗𝛾𝑜 + 𝛾𝑝,𝑗
  (1.11) 

 𝑟𝑠.𝑗
 =

𝛾𝑜 − 𝛾𝑠,𝑗
 

𝛾𝑜 + 𝛾𝑠,𝑗
  (1.12) 

Integration over 𝜅 in Eq. 1.9 is divided into two integrals in Eq. 1.10. Integration from 0 to 𝑘𝑜 

accounts for propagating waves. The second integral is for evanescent waves whose o is purely 

imaginary. Thus, the near-field contribution fades away exponentially, which is governed by the 
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𝑒−2𝐼𝑚𝛾𝑜𝑑 term. Thus, if Eq. 1.10 is evaluated for blackbody emission, it simplifies to Eq. 1.3 due 

to propagating modes in the first integral, yielding 8. Note that we used 2𝜅 d𝜅 =  𝑘𝑜
2 cos () 

d, where  is the angle between the emission direction and the normal of the surface, and 

performed the integral over a half-space. We draw attention to a similarity between Eq. 1.2 and 

1.10. In Eq. 1.10, the terms outside the square bracket on the right-hand side are same with the 

terms representing mean energy of an oscillator  ħ𝜔𝑛(𝜔, 𝑇) in Eq. 1.2 (we neglect zero-point 

energy). The expression in the square bracket of Eq. 1.10 corresponds to DOS in Eq. 1.2, and 

defined as LDOS, 𝜌(𝒓, 𝜔), for the near-field regime above the interface. From this similarity, we 

deduce that LDOS is  

 𝜌(𝒓, 𝜔) = 𝜌𝑜(𝜔) ∑ (∫
𝜅

𝑘𝑜

𝑑𝜅

𝛾𝑜

(1 − |𝑟𝑖,1
 |

2
)

2

𝑘𝑜

0

+ ∫
4𝜅3

𝑘𝑜
3

𝑑𝜅

𝛾𝑜

𝐼𝑚(𝑟𝑖,1
 ) 

2
𝑒−2𝐼𝑚𝛾𝑜𝑑

∞

𝑘𝑜

)

 

𝑖=𝑠,𝑝

 (1.13) 

Here, the first integral in parenthesis shapes material-dependent far-field DOS, whereas the 

second integral accounts for near-field contribution. As seen, the near-field part contains 

imaginary component of reflection and exponential terms, both arising from decaying feature of 

surface-induced phenomena, such as evanescent waves in all material types, hyperbolic phonon-

polaritons in hyperbolic materials, surface-phonon polaritons in dielectrics, and surface-plasmon 

polaritons in metals. This material dependency will be further discussed in next sections. 

 

We will here focus on how we can exploit surface-induced phenomena. As stated above, 

enhanced density of states in near-field increases local energy density. If one probes near-field of 

an object using a scattering tip, remote sensing of the field attenuating in far-field is made 

possible by collecting the scattered radiation with a detector. The output signal contains spectral 

and spatial information regarding material properties. This is called near-field spectroscopy and 

microscopy, respectively. Another way to make use of near-field enhancement is near-field 

radiative heat transfer that happens when a second object is brought to proximity of the first 

object. In such case, in addition to propagating energy carrying modes, energy transfer between 

two objects by thermal radiation occurs with tunneling evanescent waves and resonant surface 

waves. The next section gives brief overview of near-field radiative heat transfer and further 

introduces fundamental parameters governing the problem.  
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1.3 Near-Field Radiative Heat Transfer 

Blackbody radiation has been set as theoretical limit for thermal radiation. However, this is 

counterproved by recent advancements in measurement techniques that enable to experiment 

near-field thermal radiation exceeding blackbody radiation by several orders[21]–[27]. This 

discovery triggers a lot of discussions and research in micro/nanoscale thermal management. 

Below, we follow the derivation given in literature for general near-field radiative heat transfer 

expression using FDT and macroscopic Maxwell’s equations [6], [12], [28]–[30]. 

 

 

 Figure 1.3. Schematic of two media separated by vacuum of thickness d. The media 

are held at constant temperature T1 for medium 1 and T2 for medium 2. Energy flux 

emanating from medium 1 (2) and flowing in + (-) direction tunnels into medium 2 

(1). Net radiative heat transfer, 𝑞𝑁𝑒𝑡, is difference of the energy fluxes. 

Consider a thermally active medium occupying lower space at temperature T1, as shown in 

Figure 1.3. The medium is separated from vacuum by an interface. Thermally induced EM 

energy fading away from the interface can be transferred to another medium if the second 

medium is brought in near-field of the first medium. In this case, radiative heat exchange is 

calculated by difference of energy fluxes emitted separately from two objects. That is, 

 𝑞𝑁𝑒𝑡(𝜔) = ⟨𝑆𝑧,𝑁𝑒𝑡(𝑑, 𝜔, 𝑇)⟩ = ⟨𝑆𝑧,+(𝑑, 𝜔, 𝑇1)⟩ − ⟨𝑆𝑧,−(𝑑, 𝜔, 𝑇2)⟩ (1.14) 

Here, ⟨𝑆𝑧,𝑁𝑒𝑡(𝑑, 𝜔)⟩ is ensemble average of net Poynting vector (energy flux) in z-direction. It 

depends on separation gap, d, between two objects. 𝑆𝑧,+ and 𝑆𝑧,− represent energy flux carrying 

heat upward (+) from medium 1 and downward (-) from medium 2. Poynting vector in vacuum is 

given by: 

⟨𝑆𝑧,+(𝑑, 𝜔, 𝑇1)⟩ ⟨𝑆𝑧,−(𝑑, 𝜔, 𝑇2)⟩ 
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 ⟨𝑆𝑧(𝑑, 𝜔)⟩ = 𝑅𝑒[⟨𝐸𝑥(𝑑, 𝑡).  𝐻𝑦
∗(𝑑, 𝑡)⟩ − ⟨𝐸𝑦(𝑑, 𝑡).  𝐻𝑥

∗(𝑑, 𝑡)⟩] (1.15) 

Derivation of general form of radiative heat transfer between two flat plates is similar to 

derivation of the near-field EM energy density given in Eq. 1.10, and follows these steps: 

Integral form of Maxwell’s equations for electric field in Eq. 1.6 and magnetic field, given in [6], 

are inserted into the cross correlation of EM fields in Eq. 1.15. The resultant equation consists of 

the correlation function of the current fluctuations and dyadic Green’s functions. The current 

correlations and the Green’s functions are already given in Eq. 1.8 and 1.9 in the derivation of 

the energy density in Section 1.2. Evaluation of all intermittent steps leads us to the general form 

of radiative heat transfer [31]–[33]: 

 

𝑞𝑇𝑜𝑡(𝑑) = ∫
𝑑𝜔

2𝜋
ħ𝜔[𝑛(𝜔, 𝑇2) − 𝑛(𝜔, 𝑇1)]

∞

0

× ∑ [∫
𝑑𝜅

2𝜋  
𝜅 × 𝒯𝑖

𝑝𝑟𝑜𝑝(𝜔, 𝑑, 𝑇1, 𝑇2)
𝑘𝑜 

0𝑖=𝑠,𝑝

+ ∫
𝑑𝜅

2𝜋  
𝜅 × 𝒯𝑖

𝑒𝑣𝑎𝑛(𝜔, 𝑑, 𝑇1, 𝑇2)
∞

𝑘𝑜

] 

(1.16) 

This Landauer-type formalism is derived based on surface treatment discussed above, and 

includes transmission functions of propagating, 𝒯𝑖
𝑝𝑟𝑜𝑝

, and evanescent, 𝒯𝑖
𝑒𝑣𝑎𝑛, waves between 

two surfaces, respectively. Transmission functions account for transferred fraction of total 

energy emitted by a mode from source medium, and are given as:  

 𝒯𝑖
𝑝𝑟𝑜𝑝(𝜔, 𝑑, 𝑇1, 𝑇2) =

(1 − |𝑟𝑖,1
 (𝑇1)|

2
) (1 − |𝑟𝑖,2

 (𝑇2)|
2
)

|1 − 𝑟𝑖,1
 (𝑇1)𝑟𝑖,2

 (𝑇2)𝑒2𝑖𝛾𝑜𝑑|
2  (1.17) 

   

 𝒯𝑖
𝑒𝑣𝑎𝑛(𝜔, 𝑑, 𝑇1, 𝑇2) =

4𝐼𝑚(𝑟𝑖,1
 (𝑇1))𝐼𝑚(𝑟𝑖,2

 (𝑇2))𝑒−2𝐼𝑚(𝛾𝑜)𝑑

|1 − 𝑟𝑖,1
 (𝑇1)𝑟𝑖,2

 (𝑇2)𝑒−2𝐼𝑚(𝛾𝑜)𝑑|
2  (1.18) 

The numerator of Eq. 1.17 accounts for the portion of transmitted radiative energy by 

propagating waves through the material interface, and the denominator represents multiple 

reflections between material interfaces across vacuum gap. In Eq. 1.18, 𝐼𝑚(𝑟𝑖
 ) in the numerator 

can be interpreted as near-field emission [30] or a quantity proportional to local density of states 

(LDOS) [29]. Eq. 1.16 considers contribution of all modes, 𝜅, carrying energy of ħ𝜔. Implicit in 

transmission functions, dielectric properties are used to define the condition of contributing 

waves such as propagating, evanescent, SPhP, SPP or hyperbolic phonon-polaritons. Detailed 

information regarding dielectric properties is insightful to grasp the main mechanisms enhancing 

thermal radiation from materials in near-field. In what follows, we explain how to classify 
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materials based on their dielectric properties. Furthermore, the conditions of phenomena giving 

rise to near-field radiation in polar dielectrics and hyperbolic materials will be detailed. 

1.4 Role of Material Type in Near-Field Radiation 

1.4.1 Classification of materials based on dielectric properties 

Dielectric permittivity is simply the response of material to external EM field. It depends 

on crystal structure of the material and is described by a 3 × 3 matrix: 

 𝜀̿ = [

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧

𝜀𝑦𝑥 𝜀𝑦𝑦 𝜀𝑦𝑧

𝜀𝑧𝑥 𝜀𝑧𝑦 𝜀𝑧𝑧

] (1.19) 

Subscripts represent direction of dielectric response. If crystal structure of the material is 

symmetric, dielectric matrix can be expressed in diagonal form (off-diagonal terms are zero) 

based on orientation of coordinate axes. The coordinate axes leading to a diagonal permittivity 

are called principal axes. When 𝜀𝑥𝑥 ≠ 𝜀𝑦𝑦 ≠ 𝜀𝑧𝑧, the material is called biaxial. In case 𝜀𝑥𝑥 =

𝜀𝑦𝑦 ≠ 𝜀𝑧𝑧,  we deal with uniaxial material. Lastly, 𝜀𝑥𝑥 = 𝜀𝑦𝑦 = 𝜀𝑧𝑧 represents isotropic material. 

These materials are subject of this thesis. We will simplify notation of dielectric permittivity 

terms as 𝜀𝑥𝑥 = 𝜀𝑦𝑦 = 𝜀∥ (in-plane) due to symmetry in x- and y- axes, and 𝜀𝑧𝑧 = 𝜀⊥  (out-of-

plane) for uniaxial material. Dielectric permittivity of isotropic material is 𝜀𝑥𝑥 = 𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 𝜀. 

In this thesis, we only consider materials with principal axes lying along reference coordinates 

(cartesian coordinate). All variables derived using dielectric properties are defined with respect 

to the reference system.  

1.4.2 Polar dielectrics and hyperbolic materials 

Dielectric properties of materials are intrinsic properties and have direct impact on thermal 

radiation. First, they define conditions of wave propagations in the material. Supported under 

certain conditions, propagating waves in hyperbolic materials enhance EM interactions inside the 

material. Second, excitation of resonant waves at interfaces is only possible for certain materials 

with specific dielectric properties. Conventionally accepted theory states, for SPP,  should be 

<= −1, and for SPhP,  should be ~ −1. In addition, dielectric properties depend on temperature. 

As two objects at low temperatures exchange radiative heat with near-field enhancement, the 

ratio of near-field enhancement to far-field at higher temperatures may be lower due to 
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detrimental effect of temperature on dielectric properties. All these examples indicate that the 

choice of material type greatly influences thermal radiation. Thus, the next section is devoted to 

discussion of polar dielectrics and hyperbolic materials, and their significance in thermal 

radiation applications.  

 

One class of (natural) material that has been investigated extensively for near-field 

radiative transfer is polar dielectric materials, where the governing mechanism is the coupling of 

surface phonon polaritons (SPhP) excited by photons [34]–[37]. Being a surface phenomenon, 

these polaritons propagate along interface. In contrast to hyperbolic materials with directional 

dependency, these polar materials are usually isotropic (𝜀𝑥𝑥 = 𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 𝜀). Along the polar 

dielectric surface, surface waves originate from negative dielectric permittivity in the 

Reststrahlen band where 𝜀 ≤ 0, but fades away in the direction perpendicular to the interface, 

and hence needs to be coupled to another nearby surface for heat extraction [38]. SPhP resonance 

also leads to quasi-monochromatic thermal emission by means of structured surfaces [39]. 

Furthermore, studies showed that grating structures on the interface with spatial coherence 

enable directional thermal radiation [34]. Due to SPhP and low losses compared to metals, polar 

dielectrics are also preferred in building hybrid hyperbolic materials [40]. 

 

In this thesis, SiC and SiO2 are studied as polar dielectric materials in near-field thermal 

radiation. Excitation frequency of SPhP at SiC (SiO2) -vacuum interface corresponds to ~1.78 ×

1014  (~2.18 × 1014  and ~9.27 × 1013 ) rad/s within the Reststrahlen band(s) of SiC (SiO2). 

SPhPs are transverse surface waves propagating along the interface with large wavevectors that 

contribute to the enhancement of near-field radiation by increasing the number of coupled 

resonant modes. Due to transverse optical phonon oscillations in the direction normal to the 

interface, only p-polarized waves can excite SPhPs.  

 

No model exists to approximate dielectric properties of SiO2 in infrared range at room 

temperature. Thus, the properties of SiO2 in this thesis are reproduced from Ref. [41] and plotted 

in Figure 1.4a.  
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In this thesis, we investigate SiC over a relatively large temperature range, temperature 

dependent optical properties of SiC are used, and expressed by means of Lorentz oscillator 

model with fitting parameters given in Table 1.1 [42]: 

 
(𝜔) = 𝜀∞ (1 +

𝜔𝐿,𝑖
2 − 𝜔𝑇,𝑖

2

𝜔𝑇,𝑖
2 − 𝜔2 − 𝑖Γω

) 

 

(1.20) 

Here, 𝜔𝑇
 (𝜔𝐿

 ) is the transverse (longitudinal) phonon frequency and Γ  accounts for losses. 

For SiC, one oscillator models dielectric function with good approximation. Considering the fact 

that variation in 𝜔𝑇
  and 𝜔𝐿

  of SiC is <2% and the change in Γ  is linear with respect to 

temperature [42], linear interpolation in resonant frequencies is used in calculations within the 

temperature range of interest (between 300 K and 700 K). Figures 1.4b and c show temperature-

dependent real and imaginary dielectric permittivity of SiC, respectively. 

 

 

Figure 1.4. Real and imaginary components of dielectric properties for SiO2 at room temperature 

(a). Real (b) and imaginary (c) component of dielectric properties for SiC at 300 K, 500 K, and 

700 K.  
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Table 1.1. Fitting parameters of SiC at various temperatures 

 
T 

  [K] 

𝛚T 

[1/cm] 

𝛚L 

[1/cm] 

Γ 

 

ε∞  

 

300 793 969 4.76 

6.7 

 

500 787.5 965 8.5  

700 781 960.5 12.2  

 

Another class of the most recent materials studied for near-field heat transfer enhancement 

is hyperbolic material [43]–[49], where the governing mechanism enabling near-field 

enhancement is the hyperbolic modes (high-κ modes or hyperbolic phonon polaritons(HPhPs)). 

Hyperbolic materials are so named because of their topology of isofrequency surface [50], and 

wavevector range supported inside the hyperbolic materials extends to infinity within hyperbolic 

bands, hence called high-κ modes. Due to variations in intramolecular or intermolecular bond 

strengths, the dielectric response of hyperbolic materials is relatively independent with respect to 

principal axes, and electromagnetic radiation propagating through hyperbolic material is subject 

to negative and positive dielectric responses simultaneously. The Reststrahlen dispersion relation 

in one of the principal components of permittivity tensor modifies the isofrequency surface, 

producing a hyperboloid that supports high-κ modes inside the material within certain frequency 

bands (Reststrahlen bands). These modes are the main source of near-field enhancement at the 

interfaces between the hyperbolic material/vacuum/hyperbolic material. Hyperbolic materials 

were first constructed using hybrid layered structures [51]–[53] or 3D structures [54], [55]. 

However, natural hyperbolic materials also exist including hBN, calcite, -MoO3 and Bi2Se3 [56]. 

Compared to the fabrication challenges of layered and 3D hybrid material structures, natural 

hyperbolic materials, especially van der Waals materials, are easier to implement for applications 

due to advanced fabrication techniques[57]–[59]. Field confinement enables the use of natural 

hyperbolic materials in sub-diffraction imaging and super-resolution focusing [60]. For radiative 

heat transfer, hBN [61], -MoO3 and calcite are promising due to their low losses (ε"~0.1) and 

thus suitable for long-distance transfer of radiative heat flux [44] within certain frequency bands 

that support the hyperbolic modes. 
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In this thesis, calcite, -MoO3 and hBN are studied as natural hyperbolic materials for 

thermal radiation. As calcite and hBN are uniaxial, -MoO3 is of biaxial dielectric properties. 

They have separate Reststrahlen bands in mid-IR. In these bands, materials possess negative 

dielectric permittivity in one of principal components.  

 

The uniaxial materials, calcite and hBN, have two Reststrahlen bands, and they are called 

lower and upper bands. The lower band spans a frequency range 1.64 × 1014 < 𝜔 <

1.69 × 1014 (1.47 × 1014 < 𝜔 < 1.56 × 1014) rad/s, and has a Type-I hyperbolic dispersion for 

calcite (hBN), i.e., a positive in-plane component, 𝜀∥ > 0 , and a negative out-of-plane 

component, 𝜀⊥<0 (see Figures 1.5 and 1.6). The upper band, 2.64 × 1014 < 𝜔 < 3.08 × 1014 

(2.58 × 1014 < 𝜔 < 3.03 × 1014) rad/s has a Type-II hyperbolic dispersion with a negative in-

plane component and a positive out-of-plane component. Also, calcite has a weak in-plane 

dielectric response due to molecular vibrations around 𝜔~1.33 × 1014 rad/s. These dielectric 

components shape the spectral radiation via allowable/forbidden propagating waves inside the 

hyperbolic material. From the wavevector expressions 𝛾𝑝
  (= √𝜀∥𝜔2/𝑐𝑜

2 − 𝜀∥/𝜀⊥𝜅2) and 𝛾𝑠
 (=

√𝜀∥𝜔2/𝑐𝑜
2 − 𝜅2), we can see that in the lower Type I band, propagation of s-polarized (also 

called ordinary) modes with 𝜅 < √𝜀∥𝜔/𝑐𝑜 and all p-polarized (extraordinary) modes are allowed, 

while in the upper Type-II band propagation is forbidden for all s-polarized mode, and is 

allowable only for waves with 𝜅 > √𝜀⊥𝜔/𝑐𝑜 for p-polarized modes. These evanescent modes 

can tunnel through vacuum to a material nearby, which give rise to enhanced near-field radiative 

transfer between two materials. Accordingly, in the Type I band, near-field enhancement occurs 

for 𝜅 ∈ [𝜔/𝑐𝑜 , √𝜀∥𝜔/𝑐𝑜] for s-polarized waves, and for 𝜅 ∈ [𝜔/𝑐𝑜 , ∞] for p-polarized waves; 

and in the Type II band, near-field enhancement occurs for 𝜅 ∈ [√𝜀∥𝜔/𝑐𝑜 , ∞] for p-polarized 

waves only. Since radiation enhancement occurs only in a narrow wavelength band for s-

polarized wave, contributions to radiation enhancement are mainly from p-polarized waves. 

 

-MoO3 has three separate Reststrahlen bands and possesses one negative dielectric 

component in each band. These bands range over the following frequency regions: RS1 over 545 

– 850 cm-1 where y<0; RS2 over 822 – 962 cm-1 where x<0; RS3 over 957 – 1010 cm-1 where 
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z<0. Dispersion of polaritons in these bands is of more complex form (biquadratic equation) 

compared to that in uniaxial materials [62]–[64]:  

 𝑘𝑧
4 + 𝐴𝑘𝑧

2 + 𝐵 = 0 (1.21) 

where coefficients A and B are defined as: 

 𝐴 =
1

𝜀𝑧
(𝜀𝑥𝑘𝑥

2 + 𝜀𝑦𝑘𝑦
2) + 𝑘𝑥

2 + 𝑘𝑦
2 − (𝜀𝑥 +𝜀𝑦)𝑘𝑜

2 (1.22) 

 

 𝐵 =
1

𝜀𝑧
(𝑘𝑥

2 + 𝑘𝑦
2 − 𝜀𝑧𝑘𝑜

2)[𝜀𝑥𝑘𝑥
2 + 𝜀𝑦𝑘𝑦

2 − 𝜀𝑥𝜀𝑦𝑘𝑜
2] (1.23) 

 

Eq. 1.21 has 4 roots and are expressed by: 

 𝑘𝑧 = ±√−
𝐴

2
±

√∆

2
 (1.24) 

Here, ∆(= 𝐴2 − 4𝐵) is discriminant. 4 roots (kz,1, kz,2, kz,3, kz,4) define 2 up-going (one pair) and 

2 down-going (another pair) waves in the system based on the reference system. We will discuss 

selection of proper solutions in Chapter 5 under Section 5.2. 

 

Dielectric properties of both calcite and hBN can be expressed by Lorentz model with two 

oscillators in out-of-plane and one oscillator in in-plane directions for calcite using Eq. 1.25 and 

one oscillator in both in- and out-of-plane directions for hBN using Eq. 1.26: 

 

 
𝜀(𝜔) = 𝜀∞ + ∑

𝐴𝑖

𝜔𝑖
2 − 𝜔2 − 𝑖Γiω

𝑖

 
(1.25) 

 𝜀(𝜔) = 𝜀∞ (1 +
𝜔𝐿

2 − 𝜔𝑇
2

𝜔𝑇
2 − 𝜔2 − 𝑖Γ ω

) (1.26) 

Here, 𝜔𝑖
  is the frequency of the ith Lorentz oscillator and Ai is a fitting parameter for calcite. 

𝜔𝑇
 (𝜔𝐿

 ) is the transverse (longitudinal) phonon frequency of Lorentz oscillator and Γ accounts 

for losses. Eq. 1.25 and 1.26 are applicable for both in- and out-of-plane dielectric properties. 

Also, 𝜀∞ is dielectric constant for 𝜔 → ∞. For calcite, fitting parameters for the corresponding 

directions are given in Table 1.2 at various temperatures. The fitting-parameters at room 

temperature were obtained from ellipsometry data [65], and those for higher temperatures are 

derived from dielectric properties reported in Ref [66]. Real and imaginary components of 

dielectric function at 300 K, 500 K and 700 K are plotted in Figure 1.5. The fitting parameters of 
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hBN in both directions are given in Table 1.3 and are obtained using Fourier Transform Infrared 

(FTIR) spectroscopy. Details are given in Chapter 4.  

 

 

 

Figure 1.5. a) Real and b) imaginary components of dielectric properties of calcite at 300 K, 500 

K and 700 K. 
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Figure 1.6. A) Real and B) imaginary components of dielectric properties for hBN at 300 K, 400 

K, 500 K and 600 K. 
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Table 1.2. Fitting Parameters of calcite for Lorentz oscillator model. 

 
T 

[K] 

Ai 

[meV]2 

𝝎𝑖 

[meV] 

Γi 

 

𝜀∞ 

Calcite/ 

asymmetric 

300 

18.4 

173.9 2.02 

1.698 500 178.7 2.93 

700 172.3 4.31 

Calcite/ 

in-plane 

300 

0.110 88.7 0.423 1.698 500 

700 

Calcite/ 

out-of-plane 

300 

1.272 

108.0 0.207 

1.647 500 107.9 0.317 

700 107.7 0.420 

Table 1.3. Fitting Parameters of hBN for Lorentz oscillator model. 

Principal T 𝜔𝑇 𝜔𝐿 𝛤 ε∞ 

Coordinates [K] [𝑚−1] × 10−4 [𝑚−1] × 10−4 [𝑚−1]  

In-plane, ∥ 

300 13.64 16.14 700 

4.90 
400 13.62 16.14 763 

(x,y) 500 13.61 16.15 910 

600 13.58 16.17 1153 

Out-of-plane, ⊥ 

300 7.60 8.25 200 

2.95 
400 7.605 8.247 220 

(z) 500 7.61 8.245 280 

600 7.61 8.233 340 

 

For dielectric properties of -MoO3, a different form of Lorentz model given in Eq. 1.25 is 

exploited.  

 𝜀𝛼(𝜔) = 𝜀∞,𝑗 (∏
𝜔𝐿,𝑖,𝑗

2 − 𝜔2 − 𝑖Γ𝑖,𝑗ω

𝜔𝑇,𝑖,𝑗
2 − 𝜔2 − 𝑖Γ𝑖,𝑗ω

𝑖

) (1.27) 

Here, 𝑗(= 𝑥, 𝑦, 𝑧) represents principal component of the dielectric property and i stands for ith 

Lorentz oscillator. Π is product notation. In this case, 3 oscillators in x-direction and 1 oscillator 

in y- and z-directions are sufficient. Fitting parameters for dielectric properties of -MoO3 is 

listed in Table 1.4[67]. Figure 1.7a-b shows the properties over the frequency region of interest. 
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Table 1.4. Fitting Parameters of MoO3 for Lorentz oscillator model at room temperature. 

Axis Oscillator  𝜔𝑇,𝑖,𝑗 𝜔𝐿,𝑖,𝑗 𝛤𝑖,𝑗 𝜀∞,𝑗 

j Index i [cm-1] [cm-1] [cm-1]  

 1 506.7 534.3 49.1  

x 2 821.4 963.0 6 5.78 

 3 998.7 999.2 0.35  

y 1 544.6 850.1 9.5 6.07 

z 1 956.7 1006.9 1.5 4.47 

 

 

 

Figure 1.7. A) Real and B) imaginary components of dielectric properties for hBN at 300 K, 400 

K, 500 K and 600 K. 
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1.5 Outline 

The aim of this study is to investigate heat transfer process due to thermal radiation both 

between two plates at uniform and nonuniform temperatures and through materials. This chapter 

briefly touched upon basics on near-field radiative heat transfer and discussed the existence 

conditions of phenomena enhancing thermal radiation inside and outside the emitting object.  

 

Chapter 2 includes comparison of polar dielectrics and hyperbolic materials in the basis of 

parameters inducing near-field enhancement.  

 

Chapter 3 describes an experimental technique to measure near-field radiative heat transfer 

between parallel plates. Applying the technique, we develop temperature and gap measurement 

systems. Also, performance analysis of the systems will be described. Lastly, our experimental 

results will be presented.  

 

Chapter 4 contains derivation of theoretical model to account for radiative heat transfer 

between hyperbolic materials under temperature gradient. Exploiting fluctuation-dissipation 

theorem and Green’s function, a many-body approach is derived to describe contribution of 

hyperbolic polaritons generated inside the material to energy transport across vacuum separation. 

We also analyze surface treatment and many-body approach in near-field radiative heat transfer.  

 

Chapter 5 investigates energy transport in hyperbolic materials with thermal radiation. 

Theoretical calculations of radiative thermal conductivity will be presented, and experimental 

total thermal conductivity of hBN will be discussed. The unusual thermal conductivity trend in 

out-of-plane direction over a temperature range from 300 K to 600 K will be answered. This 

chapter is also expanded for analysis of radiative thermal conductivity in all three principal 

directions for -MoO3.  

 

Chapter 6 outlines future work and some preliminary results on thermal near-field imaging 

and spectroscopic method, which exploits near-field scanning optical microscopy (NSOM), and 

Fourier-Transform Infrared (FTIR) Spectroscopy. Challenges associated with collecting 
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scattered light from a cantilever using an external thermal source will be discussed and a 

guideline for future work will be presented. 
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2. NEAR-FIELD RADIATIVE HEAT TRANSFER 

This chapter has been partially reproduced from a previous publication: Salihoglu, H.; Xu, X. 

Near-field radiative heat transfer enhancement using natural hyperbolic material. J. Quant. 

Spectrosc. Radiat. Transf. 2019, 222-223. 

 

Theoretical studies of near-field radiation began in the 1950s. Rytov’s seminal work 

employed the fluctuation dissipation theorem (FDT) to link thermal fluctuations in a material 

with the generated electromagnetic energy, which enables prediction of radiative emission from 

the material in equilibrium [8]. Bringing a semi-infinite object to the proximity of emitting semi-

infinite material was the subject of the study by Polder and Hove [28]. Considering two 

dispersive and absorptive materials with local temperature approximation, Polder’s study was 

extended by Agarwal for various geometries and concepts , such as local density of states, 

correlation functions, dispersive and nondispersive dielectric materials in a series of publications 

[18], [68]–[72]. In 1984, Eckhardt discussed and derived general expressions for a two-body 

system in global equilibrium (1st kind) and non-equilibrium (2nd kind) conditions using 1st and 

2nd kind FDTs [73]. Given in a cluttered form in the previous studies, near-field radiative heat 

transfer expression for two-body systems was expressed in a compact form by Pendry [29]. In 

addition, the limiting heat flux that a single radiation mode can sustain was also investigated. On 

top of it, Volokitin and Persson investigated various geometrical configurations, e.g. plate-sphere, 

plate-plate, sphere-sphere, for limiting conditions of local dielectric approximation and 

retardation effects [74]. In addition to evanescent (tunneling) and propagating wave contribution, 

resonant surface waves enhances near-field radiation. Dramatic contribution of resonance waves 

to near-field radiation between two plates was discussed for the first time by Mulet et. al. [30]. In 

another study, Biehs et. al. revisited conventional form of near-field expression, and compared 

with the formalism of transport in mesoscopic physics [31].Over the last decade, the range of 

theoretical studies on near-field thermal radiation spanned from consideration of spatial 

coherence of thermal near-fields [75] and phonon polariton in thin films [76]–[78] to heat 

transfer between spatially dispersive media [79], [80]. More recently, theoretical studies on 

transition region from radiation to conduction in near-field is of great interest [81]–[87]. 
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In this chapter, we will analyze the origin of near-field enhancement and temperature effect 

in radiative heat transfer between polar dielectrics, SiC, and hyperbolic material, calcite.  

2.1 Near-Field Radiative Heat Transfer between Calcite Plates 

We investigate the near-field enhancement in radiative heat transfer between hyperbolic 

materials using calcite. Figure 1.3 depicts the geometry, and dielectric properties of calcite are 

shown in Figure 1.4b. The enhancement arises from hyperbolic modes that exist over broadband 

and exhibit nonresonant characteristic. In polar dielectrics, thermal radiation enhances due to 

resonant surface phonon polaritons, and has been studied extensively. We use polar dielectrics 

for comparison in our study. To compute radiative heat transfer for both hyperbolic and polar 

dielectric materials, Eq. 1.16 is used. However, dispersion relation of hyperbolic phonon modes 

and surface phonon polaritons differs due to different dielectric properties in different directions 

and this is taken into account in Eq. 1.16 with z component of wavevector as discussed in 

Section 1.4.2 The comparison will be extended for higher temperature differences between plates 

in the basis of spectral and total radiative heat transfer characteristics.  

2.1.1 Transmission coefficients for calcite and comparison with SiC 

The transmission function, Eq. 1.18, plays a significant role in near-field radiative transfer, 

and also conveys insightful information. Here we first discuss parameters determining this 

transmission function. Figure 2.1 shows the frequency and wavevector dependency of the 

transmission function, for calcite (a) and SiC (b), for p-polarized waves. Due to the negligible 

contribution of s-polarized waves to total heat transfer in hyperbolic bands (~1% in Type-I), only 

p-polarization is shown. X-axis is plotted over 𝜅𝑑 to demonstrate the evanescent wave tunneling 

(contribution) of each mode, 𝜅, governed by ~𝑒−2𝜅𝑑 in Eq. 1.18. As can be seen, calcite has two 

regimes with large 𝜅𝑑 in which the transmission function has non-zero values. These high-𝜅 

modes propagate inside calcite within these regimes, and hyperbolic evanescent waves tunnel 

through vacuum. It is also seen that these regimes are bound by certain 𝜅𝑑 values, which is 

related with penetration depth, proportional to ~𝜅−1. Transmission of evanescent modes with 

small 𝜅 values occurs nearly without loss because the penetration depth of these modes is greater 
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than the separation distance, 𝑑. Across the same gap, the modes with higher 𝜅 values decay 

faster according to 𝑒−2𝐼𝑚(𝛾𝑜)𝑑 in the transmission expression. 

 

Figure 2.1. Transmission function of p-polarized waves between materials of calcite (a) and SiC 

(b) with a separation of 100 nm at 300 K. These plots show the contribution of non-propagating 

modes in vacuum. 

Figure 2.1b shows for SPhP there are also high-𝜅 modes contributing to the transmission 

function. Comparison of Figures 2.1a and b indicates there are larger 𝜅 values for SPhP that 

contribute to transmission. This difference of the two materials is shown in Figure 2.2, which 

illustrates the imaginary component of Fresnel reflection coefficients for nonradiative p-

polarized waves in Eq. 1.11. Figure 2.2, as a result of Eq. 1.11 and dielectric properties of 

hyperbolic material and polar material, indicates that  𝐼𝑚 𝑟𝑝 in hyperbolic bands cannot exceed 1 

for calcite whereas that of SiC has a value over 20 around the resonance frequency. With smaller 

𝐼𝑚 𝑟𝑝 in Eq. 1.18, 𝒯𝑝 
𝑒𝑣𝑎𝑛 approaches 0 at relatively smaller 𝜅 value for calcite compared to SiC. 

The largest wavevectors that enhance energy transfer in calcite is about ~3 times smaller than 

that in SiC. 

 

a) b) 
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Figure 2.2. Imaginary reflection coefficients of nonradiative p-polarized waves for calcite (a) and 

SiC (b) in Reststrahlen bands. Color bar is from 0 to 1 (for (b), color bar is saturated at 1). 

Figure 2.2 also reveals that for larger κ (≫ 𝜔/𝑐, electrostatic limit), the magnitude of 𝐼𝑚 𝑟𝑝 

within the Reststrahlen bands is a constant of ~0.9 for calcite and ~10 for SiC. Modes with 𝜅 ≫

𝜔/𝑐  can transfer energy at the near-field, 𝑑 < 100  nm. This implies that at the near-field, 

enhancement in near-field radiation at shorter distance is not due to the number of modes. Rather, 

the contribution for the enhancement solely arises from “accessible” larger κ values than that at 

longer separation as seen in the integral for near-field contribution in Eq. 1.16 along with 

constant 𝐼𝑚 𝑟𝑝 in Eq. 1.18. Thus, near-field enhancement at extreme near-field is dominated by 

the contribution of the modes with accessible κ values. 

2.1.2 Evaluation of total radiative heat transfer 

To analyze the contribution of high-𝜅 modes on radiative transfer in hyperbolic materials, 

we consider two semi-infinite plates at different temperatures separated by a gap. The 

temperature of one plate is fixed to 300 K, and the temperature difference (ΔT) between two 

plates is 1 K, 200 K, and 400 K. We validated the code for SiC by comparing our results to the 

results in [31] and [30]. Figure 2.3a illustrates the total radiative heat flux (𝑞𝑇𝑜𝑡) as a function of 

the separation distance between the plates at all temperature differences. At large separation 

distances (close to 10 m) when propagating waves in vacuum is the main contribution to 

radiative heat transfer, calcite transfers slightly more energy. This is a consequence of the term 

1 − |𝑟1
 |2 in Eq. 1.17, which represents emissivity of the material. Compared to SiC, calcite has a 

b) a) 
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real component of dielectric function closer to that of air and a lower dielectric loss, which lead 

to smaller reflectance and in turn, higher emitted radiation.   
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Figure 2.3. a) Total heat flux between two materials, b) Normalized heat transfer to the 

corresponding blackbody radiation. The inset zooms in extreme near field range for all cases and 

is also in log-scale. 

In the near field regime, 𝑞𝑇𝑜𝑡,𝐶𝑎𝑙𝑐𝑖𝑡𝑒 increases with the decreasing separation distance due 

to the tunneling of larger 𝜅-modes supported in the Type-I and -II bands. As discussed above, 

𝑒−2𝜅𝑑  in Eq. 1.18, which governs the transmission function, decays and approaches 0 when 

𝜅𝑑 ≫ 1 . A shorter separation distance allows larger 𝜅  to contribute to near-field radiation 

enhancement. The same reason explains the contribution of SPhP in SiC at shorter distance. 

 

Figure 2.3a demonstrates radiative heat transfer as a function of separation distance at 

various temperature differences. In general, 𝑞𝑇𝑜𝑡,𝑆𝑖𝐶 > 𝑞𝑇𝑜𝑡,𝑐𝑎𝑙𝑐𝑖𝑡𝑒 owing to the contribution of 

the modes with larger 𝜅 values (Figure 2.1) and larger number of modes than that in calcite at all 

temperature differences. Figure 2.3b shows radiation normalized  to blackbody radiation at the 

corresponding temperature difference. At 1 K and 200 K temperature differences, the magnitude 

of normalized radiative heat transfers for calcite (𝑞𝑁𝑜𝑟,𝐶𝑎𝑙𝑐𝑖𝑡𝑒), is nearly equal (see inset in Figure 

2.3b). This is because on one hand, increasing temperature shifts characteristic wavelength c 

towards the Type-II band. Consequently, more populated states, or high-𝜅  modes within the 

Type-II band enhance near-field radiation. On the other hand, increasing temperature results in 

broadened Type-II band and weaker dielectric response. This results in smaller 𝐼𝑚 𝑟𝑝, and hence, 
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smaller contribution of hyperbolic evanescent modes to near-field radiation. Increasing ΔT to 

400 K decreases the normalized near-field radiation due to even weaker dielectric response as 

well as c moving out of the Type-II band. For SiC, at 1 K difference, the maximum thermal 

energy excites states around the resonance frequency, 1.78 × 1014 rad/s (10.5 m), and moves 

out of this frequency when temperature increases. Thus, the normalized 𝑞𝑁𝑜𝑟,𝑆𝑖𝐶   reduces as 

temperature increases. Similar to calcite, the temperature dependent dielectric properties of SiC 

also contributes to the decrease of 𝑞𝑁𝑜𝑟,𝑆𝑖𝐶 at larger temperature differences. 

 

Figures 2.3a and 2.3b also show that the increases of both 𝑞𝑇𝑜𝑡,𝑆𝑖𝐶 and 𝑞𝑇𝑜𝑡,𝐶𝑎𝑙𝑐𝑖𝑡𝑒 from ΔT 

= 200 K to ΔT = 400 K are not as high as the increases from 1 K to 200 K and 𝑞𝑇𝑜𝑡,𝐶𝑎𝑙𝑐𝑖𝑡𝑒 and 

𝑞𝑇𝑜𝑡,𝑆𝑖𝐶 are almost the same at the extreme near field (less than ~ 20 nm). Inspection of 𝒯𝑝
𝑒𝑣𝑎𝑛 

for SiC reveals that at this temperature difference, the frequency of maximum 𝒯𝑝
𝑒𝑣𝑎𝑛 is  shifted 

towards a range where SPhPs have κ values smaller than maximum κ values in dispersion 

relation of supported polariton modes, which arises from the difference between the resonance 

frequencies at high temperature. Also, at the resonance frequency for 700 K, wavevectors of 

polariton modes are nearly half the κ values at the resonance frequency for 300 K due to 

temperature dependent dielectric properties. Therefore, only the polariton modes with about half 

the κ values can strongly couple between two surfaces.  In contrast, the high-κ modes in calcite 

within Type-I and -II bands can tunnel through vacuum because each band of the two interfaces 

for these temperatures still overlaps and supports all the high-κ modes. Thus, calcite has about 

the same near-field radiation enhancement as SiC at the extreme near-field for ΔT = 400 K. 

2.1.3 Spectral radiative heat transfer 

We now further examine the spectral near-field radiative transfer across calcite (𝑞𝜔,𝐶𝑎𝑙𝑐𝑖𝑡𝑒) 

and SiC ( 𝑞𝜔,𝑆𝑖𝐶 ) surfaces. Figure 2.4 shows spectral near-field radiative transfer (for all 

wavevectors)  along with near-field contribution of s-polarized evanescent wave (𝑞𝜔,𝑠) and p-

polarized evanescent wave (𝑞𝜔,𝑝) at a separation distance of 100 nm. A temperature difference 

ΔT = 1 K is used here. Calcite exhibits three characteristic peaks due to p-polarized waves, and 

the two of them with higher frequencies are related to the Type-I and Type-II bands. The peak at 

lower frequencies around 𝜔 = 1.35 × 1014 rad/s is due to a larger value of 𝐼𝑚 𝑟𝑝 (Figure 2.2a), 
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which originates from a larger imaginary part of the dielectric constant (𝜀∥
"~3). The peak of 

spectral heat transfer in the Type-I band is higher than that in the Type-II because of c falling 

onto the Type-I band at 300K. It is also seen that 𝑞𝜔,𝑝 dips near frequencies right to the Type-I 

band, because  𝜀⊥~1  at those frequencies, leading to small 𝛾𝑝
 (= √𝜀∥𝜔2/𝑐𝑜

2 − 𝜀∥/𝜀⊥𝜅2 )). 

Another observation is that 𝑞𝜔,𝑐𝑎𝑙𝑐𝑖𝑡𝑒  outside hyperbolic bands (and the peak around 𝜔 =

1.35 × 1014) is higher than the spectral blackbody radiation. Each component of the evanescent 

waves, 𝑞𝜔,𝑠  and 𝑞𝜔,𝑝 , mostly remain below blackbody radiation. However, contributions of 

radiation due to propagating waves (not shown here) are very close to the spectral blackbody 

radiation. Therefore, 𝑞𝜔,𝑐𝑎𝑙𝑐𝑖𝑡𝑒, is higher than 𝑞𝜔,𝐵𝐵. 

 

Contributions of s-polarized modes to 𝑞𝜔,𝑐𝑎𝑙𝑐𝑖𝑡𝑒  are minimal in the Type-I and Type-II 

regions, as discussed previously. (The peak to the left of the Type II band is due to bulk 

resonance. [88]) For frequencies beyond the Type-II band, there is a drastic reduction of the 

contribution of s-polarization evanescent waves since 0 < 𝜀∥ < 1 (see Figure 1.5), meaning that 

the s-polarized evanescent waves cannot be excited inside the material. 

 

 

Figure 2.4. Spectral heat transfer between calcites (a) and SiC (b) separated by 100 nm for ΔT = 

1 K. For completeness, contribution of s- and p-polarized propagating waves are included. BB: 

blackbody. 

For SiC, only p-polarized waves excite surface polaritons. From Figure 2.4b, it is seen 

within the Reststrahlen band of SiC, the contribution of s-polarized mode is also minimal. We 
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noticed that 𝑞𝜔,𝑠  and 𝑞𝜔,𝑝  for SiC exceeds the spectral blackbody radiation outside of the 

Reststrahlen band. This is due to high 𝜀𝑆𝑖𝐶 outside of the Reststrahlen band, hence SiC supports 

large evanescent waves, 𝜔/𝑐𝑜 < 𝜅 < √𝜀𝜔/𝑐𝑜 , contributing to near-field radiation for both 

polarizations. Figure 2.4b also shows that 𝑞𝜔,𝑆𝑖𝐶 at resonance frequency is higher than that due to 

the hyperbolic modes in calcite, because, as discussed above, modes with relatively larger 𝜅 

values in SiC can contribute near-field radiation. 

2.2 Summary 

We carried out analyses on radiative heat transfer of natural hyperbolic material, calcite, 

and compare to that of a polar material SiC. Our study reveals that, the high- 𝜅 modes within the 

hyperbolic bands are responsible for the largely enhanced near field radiation. Comparison of 

calcite with SiC illustrates the significance of the high-𝜅 modes in calcite vs. surface polariton 

modes in SiC in their contributions to near-field radiation enhancement, for temperature 

differences ranging from 1 K to 400 K. We also noticed that the contributions of high- 𝜅 modes 

in calcite to near-field radiation is comparable to that of surface polaritons in SiC. However, in 

general, the contribution of high- 𝜅 modes over the entire spectrum is not as high as the polariton 

modes in SiC due to contributions of wavevectors with a smaller range. On the other hand, at 

very near field, the enhancement from calcite is about the same as that from SiC at a large 

temperature difference of 400 K. This is because the resonance frequencies of SPhPs in SiC for 

these temperatures shift and polariton couplings take place only at smaller 𝜅 values. In contrast , 

despite of the shift with temperature in Type-I and -II bands in calcite, each band at these 

temperatures still mainly overlaps. The results of these analyses will be helpful in the search of 

hyperbolic materials that can enhance near field radiative transfer. 
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3. NEAR-FIELD RADIATIVE HEAT TRANSFER EXPERIMENT 

This chapter has been partially reproduced from a previous publication: Salihoglu, H.; Nam., 

W.; Traverso, L.; Segovia, M.; Venuthurumilli, P.; Liu, W.; Wei, Y.; Li, W.; Xu, X. Near-Field 

Thermal Radiation between Two Plates with Sub-10 nm Vacuum Separation. Nano Lett. 2020, 20 (8), 

6091-6096. 

 

The first observation of near-field radiation was made at room temperature between two 

metal plates separated with microscopic distances [21]. At cryogenic temperatures with longer 

characteristic wavelengths, observation of the near-field enhancement in radiative heat transfer 

was achieved even for larger separations [89]. Smaller separation gaps waited about more than 3 

decades for experimentation due to inability of carrying out sensitive experimental techniques. 

Conducted between tip-sample, a study [22] measured the near-field thermal radiation between a 

GaN substrate and a Pt covered tip at distances below 10 nm using Scanning Thermal 

Microscope(STM). Compared to sphere-plate case, plate-plate configuration was more 

challenging. The first study in the 2000s observed the near-field radiative heat transfer with a 

fixed separation between two glass plates using nanoparticles of 1 m as a separator [23]. In 

2009, two independent studies made use of Derjaguin approximation to anticipate near-field 

radiation at submicron separation distance of two plates with SiO2 [38], and SiC [90]. First plate-

plate measurement with dynamic gap control was described in [91]. However, requirement of 

sensitive gap measurement and flat surfaces constrained this study to separation gaps longer than 

2 m. The near-field enhancement with similar configuration, but at cryogenic temperatures, is 

repeated by another group in the same year [24]. The near-field enhancement for separations 

below 1 m was demonstrated using bulk materials with micron size separation by means of 

micro structures [25]. Recent experiments were able to detect near-field enhancement for two 

bulk plates separated below 1 m down to 150 nm [92]–[94]. Subwavelength measurements 

were carried out with micro structures [26], [95]. Even though near-field enhancement of sphere-

plate configuration is achieved at extreme near field, defined as the distance below 10 nm [96], 

[97], the current measurements for the plate-plate case is limited to 30 nm due to contamination 

and experimental technique[27]. Separation below 30 nm for plate-plate configuration requires 
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new experimental technique with high accuracy of gap reading, dynamic gap control, and 

smooth and contamination-free surfaces. 

 

This chapter starts with explanation of an experimental technique used to measure radiative 

heat transfer between parallel plates from contact to far-field. The successive part is devoted to 

measurement of experiment limits, such as noise equivalent temperature, vibration in gap 

measurement. Finally, our experimental results for near-field radiative heat transfer are presented.  

3.1 Experimental Technique to Measure Near-Field Radiative Heat Transfer 

To measure near-field radiative heat transfer between two flat plates, we propose an 

experiment technique explained in this section along with a computational model.  

3.1.1 Geometrical design of two plates 

Two objects (plates), a mask and a substrate, are bulk (macroscopic) and facing each other 

with flat surfaces. Figure 3.1 shows a schematic of the mask and the substrate. The entire surface 

of the mask is of a special design with a step-like microscopic island (protrusion). As a result of 

the design, two essential regions form between the mask and the substrate when the objects are 

brought in proximity. As the island and its counterpart on the substrate (near-field region) 

undergo near-field radiation, the rest of the mask and the substrate surfaces (far-field region) 

remains in far-field. Accordingly, surfaces exposed to near-field are called near-field surfaces 

(red shaded area), whereas those in far-field region are far-field surfaces (green shaded area). We 

will refer these surfaces as active surface.  

 

Figure 3.1. Geometry of the mask (top) and the substrate (bottom). The near-field surfaces on the 

island and the substrate are red colored. The far-field surfaces on both objects are in green. 
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The second reason of the design is to have a flat surface with minimum height deviation 

that may not constrain our experimental capability. Any flatness issue leads to misleading near-

field thermal radiation measurements.  

 

The third reason of fabricating smaller area is high chance of contamination on large area 

that disturbs gap measurement, parallelism and pure contact. Smaller area minimizes the chance 

and avoids stray heat conductance across the near-field surfaces that outweighs radiative heat 

transfer. 

3.1.2 Temperature measurement 

In our technique, we measure near-field enhancement based on change in temperature at 

the near-field surface of the substrate with respect to distance between the island and the 

substrate. The following sections explain details of temperature measurement method and 

computational temperature estimation. 

Heating objects and temperature difference 

We employ a heater to form a temperature difference between the mask and the substrate. 

Heater is placed underneath the substrate and heats up the substrate through a copper spreader. 

Supplied heat drives heat transfer between two objects. Since the experiment is conducted under 

vacuum, primary heat transfer between the physically separate samples is radiation. Initially, the 

mask and the substrate are located at far-field. At steady condition, as temperature of the 

substrate, TH,base, is above room temperature, that of the mask, TC,base, remains at room 

temperature. If the samples are brought close that the near-field surfaces are exposed to near-

field radiation, temperature of these surfaces alters as a function of separation, d, between the 

near-field surfaces. So, measuring temperature variation at the near-field surface on the mask or 

the substrate will allow us to observe direct near-field radiation effect in heat transfer form. 

 

Our method considers two locations, matching and sensing areas, on the substrate for 

temperature measurement. Figure 3.2 illustrates the position of the matching (green) and sensing 

areas (red). As the matching area occupies a location in far-field region, the sensing area is 
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exposed to near-field radiation. Tm and Ts are assigned to the matching and sensing areas to 

represent temperature of the locations. Being at room temperature, both Ts and Tm reaches TH,base 

with initial heating. When the island on the mask is brought to near-field of the sensing area, Ts 

drops due to enhanced radiative heat transfer with near-field effect. Meanwhile, Tm does not 

change. Thus, Tm(d) = Tm(d) − TH,base = 0, whereas Ts(d) = Ts(d) − TH,base ≠ 0. We define a 

relative difference between temperatures of the matching and the sensing areas as a function of 

gap, Trel(d) = Ts(d) − Tm(d). Any change in Trel reflects relative displacement of the mask and 

the substrate (gap change). If one positions temperature sensors to the sensing and matching 

areas, measured Trel directly shows near-field induced heat transfer. The measurement of Trel 

using differential temperature measurement scheme is detailed in the next subsection. 

 

 

Figure 3.2. Relative position of the sensing (red) and matching (green) areas. The matching and 

sensing sensors measure temperatures, Tm and Ts, of the corresponding areas. 

Temperature measurement circuit 

A differential measurement scheme [98] is implemented for our experiment. The method 

consists of two resistance-thermometry sensors, matching and sensing sensors. These sensors are 

positioned to the matching and sensing areas, as shown in Figure 3.2. In principle, resistance of 

the sensors depends on the temperature of locations the sensor rests. Two sensors are electrically 

connected in series, and a sensing current is applied to the end terminals of the series connection. 

Driving sensing current, Is, induces voltage drops, m and s, across the sensors. In ideal case, a 

two-level measurement circuit, as shown in Figure 3.3, outputs voltage difference, o =G × (s − 
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m ) = G × Is × (Rs − Rm), where Rm and Rs are resistance of the matching and sensing sensors, 

respectively. If Ts(d) = Tm(d), i.e. the condition after the initial heating of the substrate, 

o(d>>c) =  for the same sensors because Rm = Rs. In practice, Rm ≠ Rs due to imperfection in 

fabrication processes. Besides, after the initial heating, any temperature profile along the surface, 

in turn Ts(d) ≠ Tm(d), induces inequal voltage drops, s ≠ m, even for the same sensors with Rm = 

Rs. So, offsetwe modify voltage output to more general expression: 

 𝑣𝑜 = 𝐺1 × (𝑣𝑠(𝑑) − 𝑣𝑚(𝑑)) + 𝑣𝑜𝑓𝑓𝑠𝑒𝑡 (3.1) 

Here, 𝑣𝑜𝑓𝑓𝑠𝑒𝑡 accounts for imbalance in voltage values due to the imperfections, and voffset = G × 

(vs,base – vm,base + vnoise), where s,base and m,base are voltage readings after the initial reading (Ts ~ 

Tm = TH,base), and 𝑣𝑛𝑜𝑖𝑠𝑒  is for the noise voltage in the circuit. This general expression also 

contains variations, s and m, in the voltage drops, s and m, arising from the near-field 

effect, and s(d) = s(d) – s,base and m(d) = m(d) – m,base. As an example, Eq. 3.1 reduces to 

far-field voltage reading f-f = o = G × (s,base − m,base) when d  >>c.  

 

 

Figure 3.3. Schematic of differential measurement circuit. 

The variation in the voltage drops due to the near-field effect is essential part of the 

temperature measurement. Resistance of the sensors depends on temperature, and its change in 

the sensing, ∆𝑅𝑠, and matching, ∆𝑅𝑚, sensors is given by;  

 ∆𝑅𝑠 = 𝛼𝑠𝑅𝑠∆𝑇𝑠 (3.2) 

 ∆𝑅𝑚 = 𝛼𝑚𝑅𝑚∆𝑇𝑚 (3.3) 

where s and m are temperature coefficient of resistance [K-1]. Rs and Rm are absolute resistance 

value, and, for our consideration, measured at TH,base. Now, we can express the variations in Eq. 
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3.1 in terms of Rs and Rm when Is ≠ 0. Also, for identical sensors, 𝑅𝑠~𝑅𝑚 = 𝑅𝑜 and 𝛼𝑠~𝛼𝑚 =

𝛼. Then, Eq. 3.1 becomes 

 𝑣𝑜 = 𝐺1 × 𝐼𝑠  × 𝛼 × 𝑅𝑜 × (∆𝑇𝑠 − ∆𝑇𝑚) + 𝑣𝑜𝑓𝑓𝑠𝑒𝑡 (3.4) 

This expression requires TCR values of both sensors, and TCR is intrinsic material property. It is 

defined as 

 𝛼 =
1

𝑅

∆𝑅

∆𝑇
 (3.5) 

This characterization parameter will be evaluated in Section 3.2.2. Eq. 3.5 indicates that, for a 

sensor with higher R, resistance change induced by a temperature change is greater than that of 

the sensor with smaller R. That is, high R is necessity for better sensitivity. On the other hand, 

high resistance introduces higher Johnson noise proportionally. This aspect will be discussed in 

Section 3.2.3 as well.  

 

Electrical noise in a temperature measurement may constrain the measurement. To gauge 

artificial temperature fluctuations arising from the noise in voltage measurements, noise 

equivalent temperature (NET) is defined as 

 𝑁𝐸𝑇 = ∆𝑇𝑟𝑒𝑠 =
𝑣𝑛𝑜𝑖𝑠𝑒

𝛼𝐼𝑠𝑅(𝑇)
 (3.6) 

Here, ∆𝑇𝑟𝑒𝑠  indicates noise equivalent temperature. To measure the near-field induced 

temperature changes, ∆𝑇𝑟𝑒𝑠 should be less than ∆𝑇𝑟𝑒𝑙(𝑑). Then, signal-to-noise ratio (SNR) will 

have high. 𝑣𝑛𝑜𝑖𝑠𝑒 is already defined in Eq. 3.1 and depends on instrumentation. Even if we can 

estimate some noise types, such as Johnson noise and shot noise, the practical method of noise 

determination is to measure it after building the experimental setup.  

 

Next subsection describes computational model to estimate Trel changing with near-field 

radiative heat flux as a function of gap. Estimation of the temperature changes helps us 

determine voltage measurement ranges, signal-to-noise ratio, calculate sensor resistances, and 

relate temperature variation with near-field radiation, that is, the goal of the experiment. For 

technical aspect of the measurement technique, the reader is directed to the studies [98]–[100]. 

Details specific to our experiment, such as applied currents, reference current frequency, are 

provided in Section 3.2.3. 
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Computational method for estimation of temperature variations  

Our computational method makes use of commercially available package program, 

COMSOL. Heat transfer module provided by the package program has the required features to 

model the experiment. An important question arises as to how to simulate near-field radiative 

heat transfer with a commercial program that only has limited capability of solving common 

radiation problems. To deal with this, radiative heat transfer coefficient, hr, similar to convective 

heat transfer coefficient, hconv, is defined. In general, radiative heat flux between the near-field 

surfaces, as shown in Figure 3.1, at temperatures TH and TC is expressed as follows 

 𝑞′′ = 𝑞𝑁𝐹 = 𝜀𝜎(𝑇𝐻
4 − 𝑇𝐶

4) = ℎ𝑟(𝑇𝐻 − 𝑇𝐶) (3.7) 

where 

 ℎ𝑟 = 𝜀𝜎(𝑇𝐻
2 + 𝑇𝐶

2)(𝑇𝐻 + 𝑇𝐶) (3.8) 

Here,  and  are emissivity, and Stephan Boltzmann’s constant, respectively. Conventional 

radiative heat transfer expression and the corresponding variables in Eq. 3.7 are defined for far-

field radiation, in turn, independent of separation gap, d. For our purpose, we will expand 

definition of Eq. 3.7 to estimate near-field radiative heat transfer and, define radiative heat 

transfer coefficient as a function of separation gap, hr(d), and effective emissivity, eff, in place of 

hr and , respectively, in Eq. 3.7.  

 

Near-field radiation process removes heat, 𝑞𝐻
′′(𝑑) , from the near-field surface on the 

substrate, and transfers heat, 𝑞𝐶
′′(𝑑) , into the near-field surface on the mask based on our 

problem(hot substrate, cold mask) and 𝑞𝐻
′′(𝑑) = 𝑞𝐶

′′(𝑑) = 𝑞′′ = 𝑞𝑁𝐹.  

 

We can calculate radiative heat transfer coefficient as a function of gap from far-field, 

hr(d>c) , to near contact point, hr(d→0) using Eq. 1.16. In the software package, we employ 

convective heat transfer coefficient, hconv, to model near-field radiative heat transfer using hr(d) = 

hconv. Then, hconv is also known as a function of gap. To find TH and TC for a particular distance, 

we assign an initial hconv to the near-field surfaces and iterate until the condition, 𝑞𝐻
′′(𝑑) = 𝑞𝐶

′′(𝑑), 

is satisfied. Then, the final hconv yields TH, TC, and 𝑞𝑁𝐹
 for the given distance. Repeating this 

procedure for several separation distances between far-field to near contact allows to estimate 
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TH(d), TC(d) and 𝑞′′(𝑑) as a function of separation gap. We can also easily extract eff(d) using 

Eq. 3.8 for the separation distances the model is run for. 

 

We now establish the computational and experimental aspects of the near-field experiment 

technique. In our experiment, after initial heating, TH(d) = TH,base and TC(d)= TC,base at far-field. 

From far-field to near contact, TH(d) varies with TH + TH,base. Then,  

 ∆𝑇𝐻(𝑑) = 𝑇𝐻(𝑑) − 𝑇𝐻,𝑏𝑎𝑠𝑒 (3.9) 

We know that Ts(d) = TH(d) because the sensing sensor is located to the near-field surface on the 

substrate(hot object). From Section 3.1.1, Trel(d) = Ts(d) − Tm(d). So, Trel(d) = TH(d) − Tm(d). 

We also know that Tm is independent of d due to far-field exposure, and Tm = TH,base with the 

initial heating. Trel(d) casts into the form with Eq. 3.9 

 ∆𝑇𝑟𝑒𝑙(𝑑) = 𝑇𝑠(𝑑) − 𝑇𝑚 = 𝑇𝐻(𝑑) − 𝑇𝐻,𝑏𝑎𝑠𝑒 = ∆𝑇𝐻(𝑑) (3.10) 

Eq. 3.10 relates computational near-field radiative heat transfer results to the temperature 

measurement using differential measurement method. If the initial absolute temperature, 𝑇𝐻,𝑏𝑎𝑠𝑒, 

after the heating is known (or measured), one can measure temperature variation induced by 

manipulation of separation distance in near-field regime.  

 

This leads us to discussion of gap measurement method. 

3.1.3 Alignment and gap control 

Alignment and gap control are crucial parts of our experiment. The mask and substrate are 

relatively positioned, and their active surfaces face each other. Figure 3.4 shows the active 

surfaces. Alignment defines adjustment of relative angle between the active surfaces, and 

bringing the objects in near-field distances. Any tilt between the active surfaces or inaccuracy in 

alignment skews result of the near-field radiation measurement. Gap control consists of 

measurement of the relative distance between the active surfaces and maintaining the target gap 

at which near-field radiation measurement is carried out. Since near-field radiation varies 

exponentially at nano level, precision should be in subnanometer, and accuracy of measurement 

system needs to be in the same range as well for extreme near-field measurements. To achieve 

gap control with such quality, two-step measurement approach is engaged. We call them coarse 
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alignment, interferometric method, and fine alignment and gap measurement using an 

Interferometric-Spatial-Phase-Imaging (ISPI) system.  

 

Figure 3.4. Active surfaces on the mask and substrate. As the mask surface contains specialized 

grating textures, the substrate surface is free of any physical feature special for the alignment. 

Blue shaded areas correspond to gap reading locations on the substrate. 

In the coarse alignment (initial alignment), a He-Ne laser ( = 633 nm) beam shines on 

both the mask and substrate. If either the mask or the substrate is chosen transparent to , the 

light passes through it and reaches on a cavity remaining between the active surfaces. Reflected 

light from the active surfaces is back traced and collected using a CCD camera. Image shows 

fringes depending on the tilt between the active surfaces. The adjustment of the tilt is achieved 

by manual 3-point alignment that uses 3 screws with displacement of 100 m per thread holding 

the mask stage with a high-precision piezoelectric tilt stage. Actively viewed on a screen, the 

fringes are adjusted using the screws such that the number of the tilt-induced fringes minimizes. 

This method achieves a planar alignment in the order of 1 mrad [101], which translates to ~10 

m over 1× 1 cm2. Further tilt-adjustment with the piezo stage of 0.1 mrad resolution is 

accomplished by nulling the fringes. This ensures a planar parallelism of within 0.1 mrad, e.g. 

~10 nm deviation from the complete parallel over 100 × 100 m2. The 3-point alignment also 

adjusts the relative gap between the active surfaces by lowering the stage hold by the screws. 

Without deviating much from the set position with the least number of the fringes, the lowering 

of the mask continues until the relative gap between the active surfaces of the mask and the 
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substrate is in the measurement range of ISPI system. This range corresponds to ~150 m. By 

this, coarse alignment is accomplished.  

 

In the fine alignment, computer controlled ISPI system is exploited. The working principle 

of the system can be found in literature [102]–[104]. Here, we highlight the points most relevant 

to our experiment. The system consists of a fiber laser, specialized texture on the mask and ISPI 

scope. Light beam from the fiber falls with oblique angle on one of the gratings on the mask. 

Positions of the gratings are seen in Figure 3.4. Period of the grating in one direction (X) is 

constant (1 m), seen in Figure 3.5a. This allows back-diffraction of the incident light at a fixed 

angle, Littrow angle [104]. Rest of the beam diffracts and reflects from the substrate. However, 

the distance traversed by the diffracted-reflected beams varies due to varying period of the 

gratings in the transverse direction (Y). Consequently, the diffracted-reflected light beams 

interfere and form fringes after rediffracting from the mask with Littrow angle to the ISPI scope. 

Fringes lie along X axis, and the spatial frequency and position of fringes along Y axis depend 

on the gap. Displacing the mask or the substrate results in propagation of fringe positions in one 

direction along Y axis. Thus, the fringes from TCG with reverse chirping, as seen in Figure 3.5a, 

counterpropagate in the meantime. Relative phase of these fringe positions provides information 

to make use of. The spatial frequency of the fringes from two TCG is same for a gap distance 

and is not sensitive enough to gap change, causing ambiguity in gap reading. On the other hand, 

the relative phase within 2 range, which corresponds to 150 nm for our case due to fiber laser 

wavelength, allows precise gap measurement without ambiguity. The system can detect the 

phase changes around 1/1000 of one cycle. Consequently, the sensitivity of the gap reading is 

0.15 nm.  
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Figure 3.5. (a) Transverse chirped gratings (TCG) in reverse directions. (b) Interfering 

diffracted-reflected-diffracted beams.  

The ISPI system rests on a stage with micro controllers in X-Y axes, and the stage is 

controlled over a Labview VI. Placed at 8 different locations, the gratings are searched by the 

Labview VI, and the absolute gap value from 8 different locations at a particular gap distance 

can be read. This allows us to control tilt of the plates with high precision.  

 

Another important alignment parameter is the relative position of the island and the sensing 

sensor. Both should be positioned on the same axis vertically. To align both coarsely, a CCD 

camera with 12x zoom is located such that one can see the relative vertical position exploiting 

the camera view. Coarse alignment is realized after moving the substrate in X-Y directions in 

accordance with the view. The ISPI scope collects a reflection image of the island and the sensor. 

Those reflections can be seen with the Labview VI developed for the gap adjustment, as shown 

in Figure 3.6. Subsequently, two reflections are overlapped by adjusting X-Y positions of the 

sensor. In conclusion, one can ensure that the sensing sensor is directly under the tip and near-

field radiation effect can be measured. 

 

 

         

    

                

            

     

(b) (a) 
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Figure 3.6. Illustration of the relative position of the island(square on the lower half of the image) 

and the sensing sensor (line on upper half of the image) on Labview VI’s screen. 

The ISPI system has been exploited for several studies [103]–[106], and we will employ 

this system to measure the gap distances in our near-field radiative heat transfer experiment. 

3.2 Near-field Radiative Heat Transfer Experiment 

This section is devoted to application of the method explained in Section 3.1 to the near-

field radiative heat transfer experiment. 

3.2.1 Employing computational model for the experimental system 

To exploit the method explained in Section 3.1.2, we model our experiment setup 

consisting of 0.5" × 0.5" × 0.157" quartz and 1" × 1" × 1 mm quartz . The near-field surfaces are 

100-m-by-100-m square, and the island on the mask is ~10−m tall. First, we determine the 

heat flux from the heater that gives the experimental substrate temperature, TH,base (see the next 
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paragraph). For this simulation, a constant heat flux to the substrate is applied without the 

presence of the mask. All exposed surfaces of the substrate exchange radiation heat with ambient 

at TRoom. We iteratively vary the supplied heat flux until the experimental TH,base is reached. We 

then run the simulation for the case when the mask is positioned 20 m away from the substrate 

surface. Again, the other surfaces facing ambient are in radiative heat exchange with ambient. 

The surfaces on the mask and the substrate facing each other also exchange heat via far-field 

radiation. For this far-field heat exchange, we assign a far-field total emissivity values ( = 0.65) 

calculated by the ratio of the heat flux using Eq. 1.16 and the blackbody radiation at the 

corresponding temperatures. Then, we proceed to the second step of simulating near-field 

radiation at given separation distances. In the step, as a result of the near field radiation, the 

temperature of the hotter surface, TH, on the substrate decreases and the temperature of the colder 

surface, TC, on the island on the mask increases. As discussed in Section 3.1.2, additional 

boundary condition, qH = qC where qH (and qC) is near-field radiative heat flux from (to) the near-

field interaction area on the substrate (the mask) is therefore needed which is satisfied through 

iterative calculations. This calculation then yields Trel (the sensor temperature difference) at a 

given separation. This step is repeated for various separations. Trel results are reported in Figure 

3.14a-c for T = 4.8 K, 7.1 K and 9.8 K, and heat flux values are given in Figure 3.15a. 

 

In the model, thermal conductivity of plates has significant impact on estimated 

temperature values. Thus, thermal conductivity of the mask, kmask, and the substrate, ksubstrate, are 

measured using time-domain thermal reflectance (TDTR) technique by Mauricio Segovia. The 

measurements yield a thermal conductivity of 5.0 +0.75/−0.5 Wm-1K-1 for the mask, kmask, and 

1.5 +0.22/−0.15 Wm-1K-1 for the substrate, ksubstrate. 

 

It is noteworthy that we considered several T because we need to anticipate the 

measurable temperature differences with the sensors designed in the next section. In finding out 

Trel and 𝑞" for the results in Figure 3.14a-c and 3.15a, respectively, our main assumption is that 

hnfr does not vary with T. This holds true only if TH,base ~ TC,base. Therefore, while supplying 

heat, we need to consider this parameter, and aim the temperature range, TH,base ~ TC,base, for the 

initial heating. 
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With computational analysis associated with theoretical predictions, we obtained the 

temperature profiles expected in the near-field radiation experiment. So, we are able to design 

the sensors in the differential measurement circuit, and determine parameters such as resistance 

and positions of the sensors, amplitude and frequency of driving current, according to the 

estimated temperature variations at sensor locations. 

3.2.2 Temperature sensors 

This subsection is devoted to technical consideration of the sensor designs, their locations 

and characterization to determine TCR of the sensors. 

Location and resistance of the sensors 

For our experiment, we plan to locate the sensing sensor on the near-field surface of the 

substrate, and it will be embedded in a grooved area that should be as small as possible to better 

measure the near-field effect with minimum distraction. We choose the grooved area of 30 m 

by 40 m that corresponds to 1/8 of the near-field surface (100 m x 100 m). Meanwhile, 

resistance of the sensing sensor should be necessarily high to obtain the highest resolution and 

sensitivity. By considering our fabrication constraints, it is decided to build a sensor with 30 nm 

thickness at least. Paths forming the sensor have 360 nm widths, and the entire sensor fits in the 

grooved area well. The identical matching sensor is positioned about 2-mm away from the 

sensing sensor because the computational results suggest that Tm (d = ~20 nm) ~ Tm,base for 2-

mm-away area. Consequently, the assumption that Tm = Tm,base during the entire experiment 

duration holds true. The sensors are made of platinum due to linear temperature characteristics 

[107]. The sensors were fabricated by Woongsik Nam, one of our group members. Figure 3.7 

shows one of the fabricated sensors under optical microscope. The sensing and matching sensors 

are designed/fabricated with the same dimensions because we want to obtain identical thermal 

and electrical characteristics from the sensors. Otherwise, TCRs and voltage drops under same 

temperature variation differ, meaning that the experimental results skew from ideal conditions. 

As a result, the measured resistances of the fabricated sensors, using 4-probe method, is Rs = 

22.7 k for both sensors. 
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Figure 3.7. Microscope image of one of the sensors over the substrate. There are two sensors 

with the same size on the substrate. The sensing sensor is vertically aligned beneath the island on 

the mask to sense the temperature variation due to the near-field effect. 

Characterization of the sensors (TCR)  

Resistance of micro sensors, R, depends on sensor temperature, Ts. The measured voltage 

change across the sensor, V (=  × Ro × Trel × Is, where Is is the current and Ro is resistance at 

room temperature), can be converted into relative temperature variation, Trel, using Eq. 3.4 and 

Eq. 3.10 if temperature coefficient of resistance in Eq. 3.6 is known. This temperature coefficient 

is found by calibrating the sensor. Figure 3.10 illustrates calibration measurements of R with 

respect to Tsen using a hot plate ramped from room temperature to 35 K above the room 

temperature. Since Ro ~ 22.7 kΩ, the measured  is 1.94 × 10-3 K-1.  
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Figure 3.8. Sensor calibration. Resistance of platinum micro sensors depends linearly on 

temperature around room temperature.[107] 

3.2.3 Sensing Current, Noise Equivalent Temperature, and Heating Up Substrate 

To minimize adverse effects of the nature on the measurements, the following parameters 

should be optimized: amplitude and frequency of the sensing current, resistance of the sensors, 

settings of measuring instruments. In this section, we determine the variables in the differential 

measurement scheme to measure temperature variation due to the near-field radiative heat 

transfer. 

Amplitude and frequency of the sensing current 

Amplitude and frequency of the sensing current, Is, has impact on the differential 

measurement method. High amplitude may cause self-heating where the temperature is measured, 

whereas low amplitude may bury the signal into noise. Determining frequency, as well, has a 

trade-off. Frequency range close to DC appears as significant noise in voltage reading due to 1/f 

noise. Increasing reference frequency makes the circuit susceptible to capacitive and inductive 

coupling. Following the studies carried out in Ref [98], [107]–[109] and running a couple test 

measurements in the light of the descriptions above, we chose 1-A AC sensing current with 

frequency of 375 Hz through the differential circuit. The tests conducted and their results are 

given in my master thesis [33]. To drive the circuit with the sensing current, we use Keithley 

6221 as an AC current source. In addition to driving the current with a right amplitude and at 
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correct frequency, signal conditioning should be given great care. Regarding this point, lock-in 

amplifier, the subject of next subsection, needs to be set properly.  

Lock-in amplifier settings 

Voltage output, o, is measured using the lock-in amplifier, SR7265. Its settings are 

determined as follows: time constant is set to 5s to filter out the signal outside the pass band 

(bandwidth) depending on the time constant; filter slop is 18 dB/octave. Response time of the 

instrument is considered in determination of the time constant and the filter slope. Gain is 

adjusted automatically by the instrument, and so, input limit; full-scale sensitivity is set to the 

most suitable value that the least significant digit is below noise and the electrical measurement 

circuit only suffers from the noise in the circuit. Averaged over the entire duration of data 

collection, root mean squared (RMS) noise is noise = 0.02 V . The noise voltage is plugged in 

Eq. 3.6 to calculate NET shown in the next subsection. Even if this value is used in NET 

calculation, we repeat averaging over duration of each gap distance the near-field experiment is 

conducted, and the error in the temperature measurement will be the noise calculated for each 

gap distance separately.  

Noise equivalent temperature (NET) 

We quantify NET of the differential circuit using two methods: 1- Power spectral density 

measurements using FFT analyzer, and 2- averaging actual lock-in measurements over time. 

 

Figure 3.10 shows power spectral density of voltage signal fed into FFT analyzer when 

1A DC current is driven across the circuit. Around 500 Hz, we measure a power spectral 

density of 9 × 10-14 V2Hz-1. Within a bandwidth of 27.5 mHz (used setting in lock-in amplifier 

for the near-field experiment), we calculate 1.4 mK NET using Eq. 3.6. 
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Figure 3.9. Power spectral density measurements in a frequency span of 1.6 kHz. The peaks at 

various frequencies should be avoided because they are a consequence of equipment around the 

circuit or of unknown sources. All results are RMS averaging of 1000 data. 

We also check NET of the circuit output when connected to the lock-in amplifier (SR7265) 

used for the near-field experiments. Our voltage measurements reveal RMS NET is ~2 mK for 

an AC current of 1 A at a frequency of ~500 Hz driven by a current source (Keithley 6221). 

This confirms FFT analyzer results, and means our measurement circuit can resolve temperature 

variation greater than 2 mK.  

Heating up substrate 

To heat up the substrate, a kapton heater (HK5543R78.1L12A) compatible with vacuum 

conditions is used. To power the heater, we use a power source (TENMA 72-6908) and raise the 

substrate temperature (TH,base) above room temperature (TRoom) by Tbase (= TH,base − TC,base). A 

thermocouple (Omega 5TC-TT-K-40-36), calibrated using a dry block calibrator, is used to 

measure the surface of the substrate, TH. Figure 3.10 shows the calibration results for T as a 

function of voltage supplied to the heater, which closely follows the trend of V2. For the 

experiments, we supplied constant voltage of 4.5 V, 5.5 V and 6.5 V, and estimated T of 4.8 K, 

7.1 K and 9.8 K, respectively.  
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Figure 3.10. Calibration of the substrate temperature, TH,base = Tbase + TRoom. 

3.2.4 Gap Measurement and Measurable Minimum Gap Distance 

Measuring the gap distance is very critical for the near-field experiment. As discussed in 

Section 3.1.3, the ISPI system suffices to achieve the precise and accurate gap measurement. In 

addition, the ISPI system used in our lab proved its reliability with a drift < 1 nm over 30 

minutes under controlled temperature fluctuations of the environment if a feedback loop is 

exploited [103].  

 

Surface cleanliness plays an important role for our measurements. In addition to normal 

cleaning procedures using piranha, acetone/IPA/DI water, plasma cleaning is usually used in 

between steps as indicated in the procedures above and RF plasma pre-treating (cleaning) is 

always used before metal deposition. The cleaning procedures are found to be especially 

necessary during the fabrication of the ISPI mask (with the island) as discussed in the procedures 

above since the island is subject to a second round of e-beam fabrication of the ISPI marks. The 

cleanliness of the sensor and island area are also monitored against contamination at each step 

throughout the fabrication processes using SEM and microscopy. Before experiments, dark field 

optical microscope (DFOM) images are taken. DFOM is chosen over contact methods such as 

AFM because of its speed and less chance of contamination. DFOM is also capable of showing 

nm size particles.[95], [110] Figures 3.11a and b show regions around the near-field interaction 
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on the substrate and the mask, respectively. Samples are carried in vacuum sample holders, and 

are exposed to air only under ULPA filters. 

 

 

 

 

Figure 3.11. (a) Dark field optical microscope image of a region around near-field interaction on 

the substrate. Particles seen in red dashed circles are outside the interaction surface, and has no 

effect on gap separation. (b) Dark field optical microscope image of the island on the mask. A 

few bright spots are dead (or saturated) pixels which are confirmed by taking images at different 

locations. (c) AFM image over 10 m × 10 m area on the substrate. Color bar ranges from 2 nm 

to −2 nm. Scan results show that RMS roughness is <1 nm with a peak-to-peak value of about 4 

nm. These values confirm specification of the manufacturer (Quartz Scientific). The plot below 

the AFM image shows the height profile along the green line in the AFM image. One division of 

the x-axis is 1 m and of the y-axis is 1 nm. (d) AFM image over 10 m × 10 m area on the 

mask. Color bar ranges from 1.7 nm to −1.9 nm. Scan results demonstrate an RMS roughness of 

< 1 nm with a peak-to-peak value of < 4 nm. These values confirm specification of the 

manufacturer (Mark Optics). The plot below the AFM image shows height profile along the 

green line on the AFM scan. A division of the x-axis is 1 m and of the y-axis is 0.5 nm. (e) 

Flatness measurement of the substrate. The red curve shows the measured profile over the entire 

length of the bulk substrate, the green is the reference for a flat surface. Height variation over 20 

mm is 350 nm. (f) Flatness measurement of the mask. Height variation over 11 mm is 70 nm. 

The bumps in the image shows features fabricated on the surface. 
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To analyze the surface roughness of both the near-field interaction surfaces, AFM scans are 

performed on spare substrate and mask that are from the same batch of the samples used in the 

near-field experiment. Figure 3.11c and d show images of AFM scans. We evaluate RMS 

roughness of the substrate as < 1 nm and of the mask as < 1 nm. Also, the scans show that peak-

to-peak roughness is 4 nm for the substrate and < 4 nm for the mask. We also consider flatness in 

our measurements. The flatness is defined as the maximum deviation of a point on the surface 

from a flat surface, measured against the entire surface. Based on our measurements using a 

stylus profiler (KLA P17) and shown in Figure 3.11e and f, the flatness of the substrate is 350 

nm over 20 mm, and that of the mask is 70 nm over 11 mm. These values correspond to a 

deviation of 2 nm in flatness for the substrate and of < 1 nm for the mask over interaction area 

with a side length of 100 m.  

 

For the temperature sensors, our goal is to embed Pt wires in the recessed area without any 

extension above the substrate surface. Height profile of Pt trace over a line is measured. Figure 

3.12a shows schematic design of a sensor and line over which height profile is measured. The 

measurement results, seen in Figure 3.12b, reveals that height of the sensor is about 2 nm below 

the substrate surface. Figure 3.12b also shows that depth of the recessed area around the sensor is 

30 nm.  

 

Figure 3.12. (a) Location of height profile scanning on outer Pt trace (Green line). (b) Height 

profile over the green line in (a). The horizontal axis is the position over the green line in (a), the 

vertical axis represents height. A division in horizontal (vertical) axis is 10 m (2 nm). Green 

colored area shows Pt trace below the surface level. Red line shows depth of the recessed area. 

        

b) a) 
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3.2.5 Experiment Procedure 

Step by step, we list the procedure, which will be followed to accomplish the data 

collection of the near-field radiation experiment. 

1. Remove substrate holder, and fix the substrate on the holder. Replace the holder. 

2. Align the substrate using tip/tilt adjustment until the reflected beam from the substrate 

forms image on the screen used for coarse alignment. 

3. Remove mask holder, and fix the mask on the holder. Replace the holder.  

4. Align the mask using the 3-point adjustment holder until the reflected beam from the 

mask interferes with that from the substrate. Roughly, minimize the fringes to parallelize 

the samples. 

5. With small deviations from the minimum number of fringes, approach the mask towards 

the substrate using the 3-point screws. 

6. Position the ISPI scope on one of the gratings to observe reflection of the TCG.  

7. Repeat the approach until the gap between the mask and the substrate is < 150 nm, which 

is the translation range of the piezo stage controlling the substrate position with 5-axis (x, 

y, z, x, y).  

8. Close the chamber door, and pump down the chamber. 

9. Turn on the heater to bring TH to TH,base.  

10. Using the 5-axis piezo stage, raise the substrate. Simultaneously, control gap readings 

from at least three TCGs to make sure that the parallelism is sustained. 

11. At near contact, confirm the parallelism between the two plates by observing the sensing 

temperature variation in response to tip-tilt adjustment (See Section 3.2.6).  

12. Retract the substrate for the desired gap value with an increment specific to the gap range.  

13. At each gap value recorded, wait the system to reach thermal equilibrium, and, collect the 

voltage signal for enough duration under equilibrium. 

3.2.6 Confirmation of Parallelism using Temperature Readings 

We further use temperature readings in the near-field distances to make sure the mask and 

the substrate are in parallel, as indicated in step 11 in Section 3.2.5. When the surfaces are 

parallel at a separation distance, the near-field radiative heat transfer is maximum; hence, the 
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temperature of the sensing sensor reaches its minimum. Any deviation from the parallelism leads 

to less heat transfer and a higher temperature reading. We rotate substrate around the two in-

plane axes, x and y, using a piezo nanopositioner (MCL Nano series). Figure 3.13 shows an 

example of the measured temperature variation in response to the rotation around one axis. The 

results show that temperature reading can be used to confidently indicate an angular deviation 

less than 0.02 mrad. This corresponds to 2 nm uncertainty in height across 100 m × 100-m 

area.  

 

 

Figure 3.13. Determination of parallelism between two near-field interaction surfaces on the 

mask and the substrate. Temperature reading varies in response to tilt adjustment. 

3.2.7 Near-field Radiative Heat Transfer Experiment Results 

Once the fine parallel alignment is done to the best of the system’s capability, the substrate 

is retracted and then the gap is gradually reduced to take the temperature readings. Figures 14a-c 

show Trel in the region of the gap d less than 80 nm, for T (the temperature difference between 

the substrate and the mask away from the island) of 4.8 K, 7.1 K and 9.8 K, respectively. The 

experimental measurements show a rapid increase in Trel with the decreasing gap separation. 

This is particularly notable when the gap is reduced to below ~ 25 nm. 
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Figure 3.14. Comparison of measured and computed temperature variation for T (the 

temperature difference between the substrate and the mask at locations far from the near-field 

interaction regions) of (a) 4.8 K, (b) 7.1 K and (c) 9.8 K. Experimental results agree with 

computations from near-field radiation theory. For the computational results in (a)-(c), the 

uncertainty ranges from ~ ±12% at d = 25 nm to ~ ±6% at d = 7 nm. (d) Real-time approaching 

data of stage manipulation (top, green), the corresponding ISPI gap reading (middle, blue) and 

the temperature reading (bottom, red) for T = 7.1 K. The stage reading (top, green) is not 

absolute. The red dashed vertical line indicates contact. Right before the contact, ISPI gap 

reading shows sudden drop. At the contact, temperature jumps as well. 

Figure 3.14d shows real-time data of gap manipulation (top), ISPI gap reading (middle), 

and temperature reading (bottom) vs. time for the case with T = 7.1 K. As the mask is 

approaching the substrate using the piezoelectric nanopositioner, the ISPI reading shows the 

corresponding decrease in the gap. The decrease in the gap results in temperature change due to 

near-field radiation (cooling of the surface underneath the island). There is a sudden jump in ISPI 
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reading and temperature reading at contact in Figure 3.14d, which lasts over a distance of 1−2 

nm. After that the readings do not change in the time window shown in Figure 3.14d. The 

contact point is assigned as 0 gap in ISPI reading as the ISPI reading is relative (see Supporting 

Information 1). The red dashed line indicates the time of the contact. We notice that when these 

sudden changes happen, they cannot be easily reversed even when we try to retract the distance 

as seen in the top green line in Figure 3.14d. Larger manipulation (using more than 10 nm input 

in the piezoelectric nano-manipulator) does break the contact (not shown in figure).  

 

The experimental data Trel in Figures 14a-c are plotted starting from the smallest gap of 

~7 nm, which match with the computational results (see below). The reasons for this 7 nm gap 

can be the combination of the peak-to-peak roughness of the sample surfaces (~ 2 nm above the 

surface level of substrate sensing area, and < 2 nm above that of the island, the RMS roughness 

is about 1 nm, see Section 3.2.4), the flatness of the samples (< 1 nm for the mask and 2 nm for 

the substrate, see Section 3.2.4), the parallelism achieved between the substrate and the mask 

(0.02 mrad or 2 nm, as discussed previously) and possibly a jump due to attractive forces at 1−2 

nm separation distance (Figure 3.14d). The last point is also consistent with experimental 

observation of strong attraction between the mask and the substrate. The collect effects of all the 

above contribute to a smallest distance of about 7 nm that we can measure the near-field 

radiation.  

 

The computed Trel in Figures 14a-c are obtained based on the theoretical heat flux of near 

field radiation (see Section 3.2.1 the computation model). We also show this theoretical near-

field heat flux, qNF, computed using fluctuational electrothermodynamics,[31] in Figure 3.15a. 

The experimental heat flux is the heat flux that produces the measured temperature variations 

shown in Figures 14a-c. The drastic increase in the near-field heat flux is well documented,[6], 

[30], [88] due to enhancement in energy transport by surface phonon polaritons excited at near 

resonance frequencies (see Section 1.3 for the theoretical calculation). 
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Figure 3.15. (a) Experimental vs theoretical near-field heat flux vs. separation gap for T = 7.1 K. 

Uncertainty in qNF is ~ ±2% at d = 25 nm, increases with decreasing gap up to ~ ±9% at d = 7 nm. 

(b) Experimental qNorm, the normalized heat flux with respect to blackbody, for all T used. (c) 

Temperature change over the distance between the two surfaces. TH and TC represent the 

temperature of the surface around the sensor on the substrate (hot surface) and the temperature of 

the island (cold surface), respectively. (d) Near-field radiative heat flux with respect to the 

temperature difference of the hot and cold surfaces when T = 7.1 K. 

To further analyze near-field radiation enhancement, we define a normalized radiative heat 

flux, qNorm, expressed as ratio of qNF to the far-field radiative heat transfer, qFF, for the same 

temperature difference. Figure 3.15b shows qNorm for T = 4.8, 7.1 K and 9.8 K. We find that the 

normalized radiative heat flux overlaps for the three T, indicating the reliability of the 

experimental results. We calculate a standard deviation of ~ 460, ~ 700, and ~ 90 for a mean of ~ 

14500, ~ 5400, and ~ 1530 at 7 nm, 10 nm, and 20 nm gap separations, respectively. The 
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experimental results also agree with theoretical computations down to 7 nm, showing a more 

than 4 orders enhancement in near-field thermal radiation (qNorm~18,000).  

 

Figure 3.15c shows the change in temperatures of the hot and cold surfaces exposed to 

near-field thermal radiation over the distance between the surfaces. The temperature of the hot 

surface, TH, cools down with the decreasing gap, and the temperature of the cold surface, TC, 

heats up with the decreasing gap due to near-field heat transfer. We note that, similar to the 

observation of the notable variation in Trel in Figure 3.14b, TH and TC also change significantly 

below 25 nm. We also notice that the rate of temperature change for the hot surface over the 

distance is less than that for the cold surface. This arises from the difference in thermal 

conductivity, that the thermal conductivity of the substrate of the hot surface is greater than that 

of the mask of the cold surface (See Section 3.2.1 for thermal conductivity). We also show the 

near-field heat flux as a function of the temperature difference between the hot and cold surfaces 

(TH − TC) in Figure 3.15d when T = 7.1 K. Despite of decrease in the temperature difference, 

heat flux, qNF, grows approximately linearly with the temperature difference. 

 

Lastly, we anticipate that the experimental technique presented in this work can be used to 

probe near-field heat transfer between two surfaces at even closer distances. The experiments can 

be further optimized, for example, by reducing the roughness of the surfaces from processing and 

using substrates with better flatness. The method can also be extended to study radiative heat 

transfer between other types of materials such as metasurfaces.  

3.3 Summary 

In this chapter, we proposed an experimental technique to measure near-field radiative heat 

transfer. Special geometry of the two objects undergone near-field radiation was explained. The 

regions formed by the geometry were detailed, and temperature profiles over the regions were 

discussed. A differential measurement circuit based on resistive thermometry to measure the 

defined temperatures was outlined. To predict the defined temperatures, a computational method 

was employed. The method exploits a commercially available package program and relies on 

convective heat transfer coefficient to mimic near-field radiative heat transfer. Results of the 

method helped design the temperature measurement circuit and calculate near-field radiative heat 
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transfer as a function of gap distance for the calculated temperature profiles. This section was 

concluded with alignment and gap control technique. The next section presented a gap 

measurement technique with high precision for gap measurement, dynamic gap control, and 

reliable sensitivity for extreme near-field measurements. We implemented the technique 

explained in Section 3.1 to our experiment. Temperatures on the active surfaces of quartz 

samples were predicted. By means of the estimated temperature profiles, the temperature sensors, 

made of platinum, were designed, and their characterizations were reported. In addition, the 

variables of the differential measurement circuit, such as the amplitude and reference frequency 

of the sensing current, were determined. Additional variables limiting our experiment were 

discussed, and the noise equivalent temperature arising from the noise in the circuit and the 

minimum achievable gap reading due to surface roughness, flatness, the vibration of the setup 

and the possible contamination were assessed. Finally, a procedure including the experiment 

steps to collect the near-field radiation data was listed. We reported experimental results and 

observed 18,000 times enhancement in thermal radiation at the smallest gap achieved. Our study 

validates theoretical framework (fluctuation-dissipation theorem) down to separation region 

below 10 nm.  
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4. NEAR-FIELD THERMAL RADIATION BY BULK POLARITONS IN 

HYPERBOLIC MATERIALS 

This chapter has been partially reproduced from a previous publication: Salihoglu, H.; Xu, X. 

Near-field radiative transfer by bulk hyperbolic polaritons across vacuum gap. Int. J. Heat Mass 

Transf. 2021, 170, 120984. 

 

Until this chapter, radiation has been investigated for the condition that thermal emission is 

from an object at uniform temperature. However, thermal radiation can also be emitted from a 

surface that has a temperature gradient into the surface. Our study, presented in Chapter 5, has 

shown, in a hyperbolic material, a temperature gradient can drive radiation inside the hyperbolic 

material due to the large number of the propagating bulk hyperbolic phonon polaritons (HPhP) 

modes in Reststrahlen bands. So far, contribution of HPhP modes to near-field radiative heat 

transfer has been analyzed as surface modes using the two body formalism as explained in 

Chapter 1 and 2. Importantly, our work in Chapter 5 has shown that the radiation heat flux in 

hBN can be comparable to phonon conduction. In this chapter, our aim is to understand the 

physical process of near-field radiation arising from HPhPs, driven by a temperature gradient 

inside hyperbolic materials. Developed in this chapter, many-body approach considers radiation 

between planar objects with non-uniform temperature and across a vacuum gap. Several studies 

have implemented this method to study radiation, for example, to take into account carrier 

concentration gradient [111] or layered material structures [112], [113]. Findings in this chapter 

will help compare many-body and two-body approaches. This chapter also elucidates the 

detailed processes of propagation of HPhPs across a vacuum gap and their contribution to near-

field radiative transfer in the presence of temperature gradients in the material.   

4.1 Theoretical Framework 

In this section, first, the two-body approach is summarized with important details. Then, 

many-body approach derived for radiative heat transfer calculations from planar objects with 

nonuniform temperature is presented. 
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4.1.1 Formalism of near-field radiative transfer for two-body system with uniform 

temperature 

To describe two-body system, two planar continuous media, each at a uniform temperature 

and separated by a vacuum gap, d, along the 𝑧 axis (⊥) are considered and are in contact with hot 

and cold reservoirs at TH and TC, respectively, in the x-y plane (∥). Hot (1) and cold (2) media 

are at reservoir temperatures, T1 = TH and T2 = TC. Heat flux (the net radiative heat transfer) from 

medium 1 to 2 reads: [31] 

 𝑞 
2 = −𝑞 

1 = ∫
𝑑𝜔

2𝜋
[𝛩(𝜔, 𝑇1) − 𝛩(𝜔, 𝑇2)] ∫

𝑑𝜅

2𝜋
𝜅

𝜅𝑚𝑎𝑥

𝜔/𝑐

∑ 𝒯𝑞
1,2

 

𝑖=𝑠,𝑝

 (4.1) 

This equation is in the same form of Eq. 1.16 with different notations. For sake of completeness, 

Eq. 4.1 is given. Here, Θ(𝜔, 𝑇)  is mean energy of Planck oscillators with frequency 𝜔  at 

temperature T, and is given by ℏ𝜔/(𝑒ℏ𝜔/𝑘𝐵𝑇 − 1) , where ℏ  and 𝑘𝐵  are the reduced Planck 

constant and Boltzmann constant, respectively. 𝜅 denotes the wave vector component parallel to 

planar surface (𝑘 = 𝜿 + 𝑘𝑧𝑧̂ = 𝑘𝑥𝑥̂ + 𝑘𝑦𝑦̂ + 𝑘𝑧𝑧̂, where 𝑥̂ is unit vector in x direction). Since 

the contribution from propagating waves in vacuum (𝜅 < 𝜔/𝑐 ) is negligible for near-field 

regime of interest, we only consider the contribution of evanescent waves in vacuum (𝜅 > 𝜔/𝑐). 

Each mode represented by 𝜅 corresponds to a channel that energy can flow through. Energy 

transmission across the vacuum gap by a mode is expressed by an energy exchange function, 

𝒯𝑞
1,2

, as (same with Eq. 1.18): [31] 

 𝒯𝑞
1,2 =

4𝐼𝑚(𝑟1
𝑞)𝐼𝑚(𝑟2

𝑞)𝑒−2𝐼𝑚(𝑘𝑧,𝑜
 )𝑑

|1 − 𝑟1
𝑞𝑟2

𝑞𝑒2𝑖𝑘𝑧,𝑜𝑑|
2  (4.2) 

𝒯𝑞
1,2

 represents the fraction of energy across the vacuum gap and is equal to or smaller than 1. 

The exponential term cuts off contributions from modes with wave vectors 𝐼𝑚(𝑘𝑧,𝑜
 ) ≫ 𝑑−1. For 

waves supported at resonant frequencies, |1 − 𝑟1
𝑞𝑟2

𝑞𝑒2𝑖𝑘𝑧,𝑜𝑑|
2

 becomes very small and 

compensates for the exponential decay of waves. In this case, 𝒯𝑞
1,2

 approaches unity.  

 

Derivation of Eq. 4.1 starts from the expression of thermal radiation, the ensemble 

averaged Poynting vector 〈𝑺(𝑧, 𝜔, 𝑇)〉𝑧 from medium 1 at temperature T to an observation point 

𝑧 in medium 2: [6] 

〈𝑆𝑧(𝑧, 𝜔, 𝑇)〉 =
𝜔2

𝑐2

Θ(𝜔, 𝑇)

𝜋2
𝑅𝑒 {𝑖 ∫ 𝑑𝑧′

 

𝑧′

∫ 𝑑𝜅 𝜅(𝑔𝐸𝑥𝛼
 𝜀𝛼𝛼

′′ 𝑔𝐻𝑦𝛼
∗ − 𝑔𝐻𝑥𝛼

∗ 𝜀𝛼𝛼
′′ 𝑔𝐸𝑦𝛼

 )} (4.3) 
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Repeating indices are summed, and index 𝛼  represents an orthogonal component (x, y, z). 

Subscript 𝑧 indicates the 𝑧 component of Poynting vector, c is speed of light in vacuum and 𝜀𝛼𝛼
′′  

is the imaginary part of diagonal component of dielectric tensor. 𝑧′ represents the coordinate, and 

integration over 𝑧′  is performed for medium 1. 𝑔𝐸𝑥𝛼
  and 𝑔𝐻𝑦𝛼

  are the Weyl components of 

dyadic Green tensor of electric and magnetic fields, respectively [6]. The Weyl tensor for the 

electric field is given as 

 ℊ⃡ 𝐸(𝜅, 𝑧, 𝑧′, 𝜔) =
𝑖

2

1

𝑘𝑧,1
𝑞 ∑ 𝜏1→2

𝑞

 

𝑞=𝑝,𝑠

𝑬𝑞
 (𝑧, 𝜅)⨂𝑬𝑞

 (𝑧′, 𝜅) (4.4) 

𝜏1→2
𝑞

 is transmission function for the vacuum gap and 𝜏1→2
𝑞 =

𝑡1+
𝑞

𝑡2−
𝑞

𝑒2𝑖𝑘𝑧,𝑜
 𝑑

1−𝑟1
𝑞
𝑟2

𝑞
𝑒2𝑖𝑘𝑧,𝑜

 𝑑 where 𝑟1 and 𝑟2 are 

Fresnel reflection coefficients for interfaces between hot-side and vacuum (1) and cold-side and 

vacuum (2), and are given as 𝑟𝑖
𝑝 =

𝜀∥𝑘𝑧,𝑜−𝑘𝑧
𝑝 

𝜀∥𝑘𝑧,𝑜+𝑘𝑧
𝑝  for p-polarization and 𝑟𝑖

𝑠 =
𝑘𝑧,𝑜−𝑘𝑧

𝑠

𝑘𝑧,𝑜+𝑘𝑧
𝑠 for s-polarization 

at interface i (= 1, 2), where 𝑘𝑧,𝑜 (= [𝜔2/𝑐2 − 𝜅2]1/2) is the out-of-plane component of wave 

vector in vacuum. 𝑡𝑖−
𝑞

 is the Fresnel transmission coefficient from vacuum to material (−) at 

interface i for polarization q and is given as 𝑡𝑖−
𝑝 =

2√𝜀∥𝑘𝑧,𝑜

𝜀∥𝑘𝑧,𝑜+𝑘
𝑧,𝑖
𝑝  for p-polarization, and  𝑡𝑖−

𝑠 =
2𝑘𝑧,𝑜

𝑘𝑧,𝑜+𝑘𝑧,𝑖
𝑠  

for s-polarization. The Weyl components of the tensor given in Eq. 4.4 relate a source point in 

medium 1 with an observation point in medium 2 via the transmission from medium 1 to 2 

across the vacuum gap, 𝜏1→2
𝑞

. 𝑬𝑞
 (𝑧′, 𝜅) is right going wave at 𝑧 = 0 (the interface of the hot 

medium) originated from unit strength wave at 𝑧′  in medium 1, and 𝑬𝑞
 (𝑧, 𝜅) is wave at 𝑧 in 

medium 2 originated from unit strength wave at d (the interface of the cold medium):  

 𝑬𝑞
 (𝑧′, 𝜅) = 𝒆𝑞+

 𝑒−𝑖𝑘𝑧,1
𝑞

𝑧′
 (4.5) 

 

 𝑬𝑞
 (𝑧, 𝜅) = 𝒆𝑞+

 𝑒𝑖𝑘𝑧,2
𝑞

(𝑧−𝑑) (4.6) 

𝒆𝑞+
  is the polarization vector for waves propagating to the right direction (+) and for s-

polarization 𝒆𝑠+
𝑗

=
1

𝜅
(𝑘𝑦𝑥̂ − 𝑘𝑥𝑦̂) , and for p-polarization, 𝒆𝑝+

 =
1

𝑘 
(−𝑘𝑧

𝑞 𝜿

𝜅
+

𝜀∥

𝜀⊥
𝜅𝑧̂) .  

𝑘𝑧,1
𝑞

 is the out-of-plane component of wave vector in medium 1. 𝑘𝑧
𝑠 = [𝜀∥𝜔

2/𝑐2 − 𝜅2]1/2 for s-

polarization and 𝑘𝑧
𝑝 = [𝜀∥𝜔

2/𝑐2 − 𝜀∥/𝜀⊥𝜅2]1/2 for p-polarization.  The expressions of the Weyl 

components for a source point at 𝑧′ in medium 1 and an observation point at 𝑧 in medium 2 for 

the two-body system are found to be: 
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 𝑔𝐸𝑥𝑥
𝑗𝛾

=
𝑖

2

1

𝑘𝑧,1
𝑝

𝑘𝑧,2
𝑝

𝑘2

𝑘𝑧,1
𝑝

𝑘1
𝜏1→2

𝑝 {𝑒𝑖𝑘𝑧,2
𝑝

(𝑧−𝑑)} 𝑒−𝑖𝑘𝑧,1
𝑝

𝑧′
 (4.7) 

 

 𝑔𝐸𝑥𝑧
𝑗𝛾

= −
𝑖

2

1

𝑘𝑧,1
𝑝

𝜀∥

𝜀⊥

𝑘𝑧,𝛾
𝑝

𝑘𝛾

𝜅

𝑘𝑗
𝜏1→2

𝑝 {𝑒𝑖𝑘𝑧,2
𝑝

(𝑧−𝑑)} 𝑒−𝑖𝑘𝑧,1
𝑝

𝑧′
 (4.8) 

 

 𝑔𝐸𝑦𝑦
𝑗𝛾

=
𝑖

2

1

𝑘𝑧,1
𝑠 𝜏1→2

𝑠 {𝑒𝑖𝑘𝑧,2
𝑠 (𝑧−𝑑)}𝑒−𝑖𝑘𝑧,1

𝑠 𝑧′
 (4.9) 

 

 𝑔𝐸𝑧𝑥
𝑗𝛾

= −
𝑖

2

1

𝑘𝑧,1
𝑝

𝜀∥

𝜀⊥

𝜅

𝑘2

𝑘𝑧,1
𝑝

𝑘1
𝜏1→2

𝑝 {𝑒𝑖𝑘𝑧,2
𝑝

(𝑧−𝑑)} 𝑒−𝑖𝑘𝑧,1
𝑝

𝑧′
 (4.10) 

 

 𝑔𝐸𝑧𝑧
𝑗𝛾

=
𝑖

2

1

𝑘𝑧,1
𝑝

𝜀∥
2

𝜀⊥
2

𝜅2

𝑘2𝑘1
𝜏1→2

𝑝 {𝑒𝑖𝑘𝑧,2
𝑝

(𝑧−𝑑)} 𝑒−𝑖𝑘𝑧,1
𝑝

𝑧′
 (4.11) 

Here, 𝑘𝑖(= √𝜀∥
𝜔

𝑐
) is the magnitude of wave vector in medium i (=1,2). 

 

We are able to express the Weyl components apart from the dyadic Green’s function because the 

dyadic Green’s function for electric field can be expanded in the following form for planar 

structures owing to symmetry in x-y plane [6], [15] 

 𝑮⃡  𝐸(𝒓, 𝒓′, 𝜔) = ∫
𝑑2𝜅 

(2𝜋)2
ℊ⃡ 𝐸(𝜅, 𝑧, 𝑧′, 𝜔)𝑒𝑖𝜿.(𝑹−𝑹′) (4.12) 

Here, 𝒓 = 𝑹 + 𝑧𝑧̂ = (𝑥𝑥̂ + 𝑦𝑦̂ + 𝑧𝑧̂), and ℊ⃡ 𝐸  is given in Eq. 4.4. Note that 𝑮⃡  𝐻  has the same 

form of 4.12 with ℊ⃡ 𝐻 in place of ℊ⃡ 𝐸. For components of ℊ⃡ 𝐻 used in Eq. 4.3, we evaluate 𝑮⃡  𝐻 =

∇𝑟 × 𝑮⃡  𝐸 , and extract ℊ⃡ 𝐻 out of the equality. Consequently, the Weyl components for magnetic 

field are:  

 𝑔𝐻𝑥𝑦
𝑗𝛾

=
1

2

1

𝑘𝑧,1
𝑠 𝑘𝑧,2

𝑠 𝜏1→2
𝑠 {𝑒𝑖𝑘𝑧,2

𝑠 (𝑧−𝑑)}𝑒−𝑖𝑘𝑧,1
𝑠 𝑧′

 (4.13) 

 

 𝑔𝐻𝑧𝑦
𝑗𝛾

= −
1

2

1

𝑘𝑧,1
𝑠 𝜅𝜏1→2

𝑠 {𝑒𝑖𝑘𝑧,2
𝑠 (𝑧−𝑑)}𝑒−𝑖𝑘𝑧,1

𝑠 𝑧′
 (4.14) 

 

 𝑔𝐻𝑦𝑥
𝑗𝛾

= −
1

2

1

𝑘𝑧,1
𝑝

𝑘𝑧,1
𝑝

𝑘2𝑘1
[(𝑘𝑧,𝛾

𝑝 )
2

+
𝜀∥

𝜀⊥
𝜅2] 𝜏1→2

𝑝 {𝑒𝑖𝑘𝑧,2
𝑝

(𝑧−𝑑)} 𝑒−𝑖𝑘𝑧,1
𝑝

𝑧′
 (4.15) 
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 𝑔𝐻𝑦𝑧
𝑗𝛾

=
1

2

1

𝑘𝑧,1
𝑝

𝜅

𝑘2𝑘1

𝜀∥

𝜀⊥
[(𝑘𝑧,𝛾

𝑝 )
2

+
𝜀∥

𝜀⊥
𝜅2] 𝜏1→2

𝑝 {𝑒𝑖𝑘𝑧,2
𝑝

(𝑧−𝑑)} 𝑒−𝑖𝑘𝑧,1
𝑝

𝑧′
 (4.16) 

We derived the Weyl components for magnetic and electric fields and now evaluate Poynting 

vector in Eq. 4.3. To find the total radiative energy from medium 1 to 2, the Poynting vector is 

evaluated at the surface of medium 2 (𝑧 = 𝑑) and infinity. The difference of these Poynting 

vectors yield the total radiative energy from medium 1 to 2. The procedure is repeated for that 

from medium 2 to 1, and the difference of the two is the net radiative heat flux expressed in Eq. 

4.1. 

4.1.2 Formalism of near-field radiative transfer for many-body system with nonuniform 

temperature 

To account for the temperature gradient in the media, a many-body scattering method is 

used and  shown in Figure 4.1. The global system consists of N bodies or slabs (slabs 1 and N are 

hot and cold reservoirs, respectively), and each slab, labelled with j,  or m in Figure. 4.1 is at a 

local equilibrium temperature. We consider a uniaxial material with out-of-plane component (⊥) 

lying along the 𝑧 axis, and in-plane components (∥) within the invariant x-y plane. 

 

 

Figure 4.1. Many-body system of two semi-infinite media with temperature gradient. Slabs 

extend to infinity in the in-plane ǁ direction (x, y plane). The global system consists of N-bodies 

or slabs, and slabs 1 and N correspond to hot and cold reservoirs at constant temperatures TH and 

TC, respectively. Undergoing radiative heat exchange, intermediate slabs reach their local 

equilibrium temperature, Tj. The region between two media is the vacuum gap with separation d. 

Position of slabs j and  represented here corresponds to the second scenario. 
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Derivation of radiative heat transfer from an emitting slab labelled as j to a point 𝑧 in a 

receiving slab , starts from Eq. 4.3. Based on relative positions of the slabs, the Weyl 

components in Eq. 3 need to be derived, which here relate the source point originated at 𝑧′ in 

slab j with an observation point 𝑧 in slab . Three scenarios can occur: 1, both slabs are in the left 

(hot) medium; 2, the two slabs are in separate medium; and 3, both are in the right (cold) 

medium. In all scenarios, we analyze the case that the emitter is located to the left of the receiver, 

and the reversed situation can be obtained from reciprocity. For derivation, the Green’s function 

method [15] is used, and the Weyl tensor of electric field for slabs j and 𝛾, ℊ⃡ 𝐸
𝑗𝛾

, can be expressed 

as:  

 ℊ⃡ 𝐸
𝑗𝛾(𝜅, 𝑧, 𝑧′, 𝜔) =

𝑖

2

1

𝑘𝑧,𝑗
𝑞 ∑ 𝜏𝑗+1→𝛾−1

𝑞

 

𝑞=𝑝,𝑠

𝑬𝑞
𝛾(𝑧, 𝜅)⨂𝑬𝑞

𝑗 (𝑧′, 𝜅) (4.17) 

Here, the second scenario is mostly referred, where 𝜏𝑗+1→𝛾−1
𝑞

 represents the transmission of 

waves emanating from the surface of slab j, transmitting in medium 1 towards the vacuum gap 

( 𝜏𝑗+1→𝑚
𝑞

), across the vacuum gap ( 𝑇 
𝑞 ), and in medium 2 reaching the surface of slab 

𝛾 (𝜏𝑚+1→𝛾−1
𝑞 ) , and is expressed as 𝜏𝑗+1→𝑚

𝑞 𝑇 
𝑞𝜏𝑚+1→𝛾−1

𝑞
. 𝑇 

𝑞  has the same expression as the 

transmission function in the two-body formalism, 𝜏1→2
𝑞

. m and m+1 are the slabs adjacent to the 

vacuum gap as shown in Figure 4.1. 𝑘𝑧,𝑗
𝑞

 is normal component of wave vector in slab j. 𝑬𝑞
𝑗
 and 

𝑬𝑞
𝛾
 are expressed as:  

 𝑬𝑞
𝑗 (𝑧′, 𝜅) = 𝒆𝑞+

𝑗
𝑒

𝑖𝑘𝑧,𝑗
𝑞

(𝑧𝑗−𝑧′)
 (4.18) 

 

 𝑬𝑞
𝛾(𝑧, 𝜅) = 𝒆𝑞+

𝛾
𝑒𝑖𝑘𝑧,𝛾

𝑞
(𝑧−𝑧𝛾−1) (4.19) 

Eq. 4.18 represents right going wave originated from unit strength wave at 𝑧′and emerging from 

the boundary of the emitting slab (𝑧𝑗, see Fig. 1). 𝑬𝑞
𝛾
 in Eq. 4.19 is the field of the right going 

wave originated from unit strength wave at 𝑧𝛾−1 (the left boundary of slab ) to 𝑧. Substituting 

Eqs. 4.18 and 4.19 into Eq. 4.17 results in the detailed expressions of the Weyl components, 

which are used to find the Poynting vector at an observation point 𝑧 due to radiation from the 

emitting slab by integrating 𝑧′ from 𝑧𝑗−1 to 𝑧𝑗  in Eq. 4.3. As an example, we list the detailed 

Weyl components for the electric and magnetic fields of the second scenario derived using Eq. 

4.18 and 4.19.  
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 𝑔𝐸𝑥𝑥
𝑗𝛾

=
𝑖

2

1

𝑘𝑧,𝑗
𝑝

𝑘𝑧,𝛾
𝑝

𝑘𝛾

𝑘𝑧,𝑗
𝑝

𝑘𝑗
𝜏𝑗+1→𝑚

𝑝 𝑇 
𝑝𝜏𝑚+1→𝛾−1

𝑝 {𝑒𝑖𝑘𝑧,𝛾
𝑝

(𝑧−𝑧𝛾−1)} 𝑒
𝑖𝑘𝑧,𝑗

𝑝
(𝑧𝑗−𝑧′)

 (4.20) 

 

 𝑔𝐸𝑥𝑧
𝑗𝛾

= −
𝑖

2

1

𝑘𝑧,𝑗
𝑝

𝜀∥

𝜀⊥

𝑘𝑧,𝛾
𝑝

𝑘𝛾

𝜅

𝑘𝑗
𝜏𝑗+1→𝑚

𝑝 𝑇 
𝑝𝜏𝑚+1→𝛾−1

𝑝 {𝑒𝑖𝑘𝑧,𝛾
𝑝

(𝑧−𝑧𝛾−1)} 𝑒
𝑖𝑘𝑧,𝑗

𝑝
(𝑧𝑗−𝑧′)

 (4.21) 

 

 𝑔𝐸𝑦𝑦
𝑗𝛾

=
𝑖

2

1

𝑘𝑧,𝑗
𝑠 𝜏𝑗+1→𝑚

𝑠 𝑇 
𝑠𝜏𝑚+1→𝛾−1

𝑠 {𝑒𝑖𝑘𝑧,𝛾
𝑠 (𝑧−𝑧𝛾−1)}𝑒𝑖𝑘𝑧,𝑗

𝑠 (𝑧𝑗−𝑧′) (4.22) 

 

 𝑔𝐸𝑧𝑥
𝑗𝛾

= −
𝑖

2

1

𝑘𝑧,𝑗
𝑝

𝜀∥

𝜀⊥

𝜅

𝑘𝛾

𝑘𝑧,𝑗
𝑝

𝑘𝑗
𝜏𝑗+1→𝑚

𝑝 𝑇 
𝑝𝜏𝑚+1→𝛾−1

𝑝 {𝑒𝑖𝑘𝑧,𝛾
𝑝

(𝑧−𝑧𝛾−1)} 𝑒
𝑖𝑘𝑧,𝑗

𝑝
(𝑧𝑗−𝑧′)

 (4.23) 

 

 𝑔𝐸𝑧𝑧
𝑗𝛾

=
𝑖

2

1

𝑘𝑧,𝑗
𝑝

𝜀∥
2

𝜀⊥
2

𝜅2

𝑘𝛾𝑘𝑗
𝜏𝑗+1→𝑚

𝑝 𝑇 
𝑝𝜏𝑚+1→𝛾−1

𝑝 {𝑒𝑖𝑘𝑧,𝛾
𝑝

(𝑧−𝑧𝛾−1)} 𝑒
𝑖𝑘𝑧,𝑗

𝑝
(𝑧𝑗−𝑧′)

 (4.24) 

Here, 𝑘𝑧,𝑗
𝑞

 is out-of-plane component of wave vector in slab j for polarization q, and 𝑘𝑗(= √𝜀∥
𝜔

𝑐
) 

is magnitude of wave vector in slab j. After evaluating ∇𝑟 × 𝑮⃡  𝐸 , we find magnetic field 

components from 𝑮⃡  𝐻 in the same form as Eq. S3: 

 𝑔𝐻𝑥𝑦
𝑗𝛾

=
1

2

1

𝑘𝑧,𝑗
𝑠 𝑘𝑧,𝛾

𝑠 𝜏𝑗+1→𝑚
𝑠 𝑇 

𝑠𝜏𝑚+1→𝛾−1
𝑠 {𝑒𝑖𝑘𝑧,𝛾

𝑠 (𝑧−𝑧𝛾−1)}𝑒𝑖𝑘𝑧,𝑗
𝑠 (𝑧𝑗−𝑧′) (4.25) 

 

 𝑔𝐻𝑧𝑦
𝑗𝛾

= −
1

2

1

𝑘𝑧,𝑗
𝑠 𝜅𝜏𝑗+1→𝑚

𝑠 𝑇 
𝑠𝜏𝑚+1→𝛾−1

𝑠 {𝑒𝑖𝑘𝑧,𝛾
𝑠 (𝑧−𝑧𝛾−1)}𝑒𝑖𝑘𝑧,𝑗

𝑠 (𝑧𝑗−𝑧′) (4.26) 

 

 

𝑔𝐻𝑦𝑥
𝑗𝛾

= −
1

2

1

𝑘𝑧,𝑗
𝑝

𝑘𝑧,𝑗
𝑝

𝑘𝛾𝑘𝑗
[(𝑘𝑧,𝛾

𝑝 )
2

+
𝜀∥

𝜀⊥
𝜅2] 𝜏𝑗+1→𝑚

𝑝 𝑇 
𝑝𝜏𝑚+1→𝛾−1

𝑝 {𝑒𝑖𝑘𝑧,𝛾
𝑝

(𝑧−𝑧𝛾−1)} 𝑒
𝑖𝑘𝑧,𝑗

𝑝
(𝑧𝑗−𝑧′)

 

(4.27) 

 

 

𝑔𝐻𝑦𝑧
𝑗𝛾

=
1

2

1

𝑘𝑧,𝑗
𝑝

𝜅

𝑘𝛾𝑘𝑗

𝜀∥

𝜀⊥
[(𝑘𝑧,𝛾

𝑝 )
2

+
𝜀∥

𝜀⊥
𝜅2] 𝜏𝑗+1→𝑚

𝑝 𝑇 
𝑝𝜏𝑚+1→𝛾−1

𝑝 {𝑒𝑖𝑘𝑧,𝛾
𝑝

(𝑧−𝑧𝛾−1)} 𝑒
𝑖𝑘𝑧,𝑗

𝑝
(𝑧𝑗−𝑧′)

 

(4.28) 
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To find the radiative heat flux from the emitter j to the receiver , we evaluate the 

difference in the Poynting vectors at the boundaries of slab , 𝑧𝛾−1  and 𝑧𝛾  which can be 

expressed in a compact form as:  

𝑞𝑗→𝛾 = ∫
𝑑𝜔

2𝜋
(⟨𝑆𝑧(𝑧𝛾−1, 𝜔)⟩ − ⟨𝑆𝑧(𝑧𝛾, 𝜔)⟩) = ∫

𝑑𝜔

2𝜋
𝛩(𝜔, 𝑇𝑗) ∫

𝑑𝜅

2𝜋
𝜅

𝜅𝑚𝑎𝑥

𝜔/𝑐

∑ 𝒯𝑞
𝑗,𝛾

 

𝑖=𝑠,𝑝

 (4.29) 

Similar to 𝒯𝑞
1,2

 in Eq. 4.1, we call 𝒯𝑞
𝑗,𝛾

 energy exchange function. The final expression of 𝒯𝑞
𝑗,𝛾

 

for the second scenario is derived as:  

𝒯𝑞
𝑗,𝛾

= 𝛽𝑞
𝑗
(1 − 𝑒

−2𝐼𝑚(𝑘𝑧,𝑗
𝑞

)𝛿𝑗) {|𝜏𝑗+1→𝑚
𝑞 |

2
|𝑇𝑞|2|𝜏𝑚+1→𝛾−1

𝑞 |
2
} (1 − 𝑒−2𝐼𝑚(𝑘𝑧,𝛾

𝑞
)𝛿𝛾) 𝛽𝑞

𝛾
 (4.30) 

The expressions for the first and third scenarios are given as, respectively,: 

𝒯𝑗,𝛾 = 𝛽𝑞
𝑗
(1 − 𝑒−2𝐼𝑚(𝑘𝑧,𝑗

 )𝛿𝑗) {|𝜏𝑗+1→𝛾−1
𝑞 |

2
+ |𝜏𝑗+1→𝑚

𝑞 |
2
(1 − |𝑇 

𝑞|2)|𝜏𝑚→𝛾+1
𝑞 |

2
} (1

− 𝑒−2𝐼𝑚(𝑘𝑧,𝛾
𝑞

)𝛿𝛾) 𝛽𝑞
𝛾
 

(4.31) 

 

𝒯𝑗,𝛾 = 𝛽𝑞
𝑗
(1 − 𝑒

−2𝐼𝑚(𝑘𝑧,𝑗
𝑞

)𝛿𝑗) {|𝜏𝑗+1→𝛾−1
𝑞 |

2
+ |𝜏𝑗−1→𝑚+1

𝑞 |
2
(1 − |𝑇𝑞|2)|𝜏𝑚+1→𝛾−1

𝑞 |
2
} (1

− 𝑒−2𝐼𝑚(𝑘𝑧,𝛾
𝑞

)𝛿𝛾) 𝛽𝑞
𝛾
 

(4.32) 

 

Eq. 4.30, 4.31 and 4.32 are the central result of the derived many-body formalism. The energy 

exchange function, 𝒯𝑞
𝑗,𝛾

, represents the interaction of the emitter and the receiver for a given 

mode. Similar to 𝒯 in the two-body formalism, 𝒯𝑞
𝑗,𝛾

≤ 1. Emission of waves from slab j with 

thickness 𝛿𝑗 is given by 𝛽𝑞
𝑗
(1 − 𝑒−2𝐼𝑚(𝑘𝑧,𝑗

 )𝛿𝑗). 𝛽𝑞
𝑗
 is related to the out-of-plane wave vector 𝑘𝑧

𝑞
 

and is a constant in either medium 1 or 2 owing to continuous media. For p-polarized wave, For 

p-polarization, 𝛽𝑝
𝑗

= 𝑅𝑒(𝜀∥
 𝑘𝑧,𝑗

𝑝,∗)/|𝜀∥
 ||𝑘𝑧,𝑗

𝑝 | , and for s-polarization 𝛽𝑝
𝑗

= 𝑅𝑒(𝑘𝑧,𝑗
𝑝 )/|𝑘𝑧,𝑗

𝑝 | . The 

emitted waves interact with the receiver after transmitting through the slabs in medium 1, 

represented by |𝜏𝑗+1→𝑚
𝑝 |

2
 in Eq. 4.11, tunneling across the vacuum gap |𝑇𝑞|2, traversing through 

the slabs in medium 2 |𝜏𝑚+1→𝛾−1
𝑞 |

2
 and reaching the receiver. During the interaction with the 

receiver, waves are absorbed as (1 − 𝑒−2𝐼𝑚(𝑘𝑧,𝛾
𝑞

)𝛿𝛾) 𝛽𝑞
𝛾

. |𝑇 
𝑞|2  represents the fraction of 

transmitted energy across the vacuum gap. It can be shown that 𝛽𝑞
 |𝑇 

𝑞|2𝛽𝑞
  has exactly the same 

expression as Eq. 4.2 for evanescent waves. We find |𝑇𝑞|2  from definition of 𝑇𝑞 

as |
𝑡𝑚+

𝑞
𝑡𝑚+1−

𝑞
𝑒𝑖𝑘𝑧,𝑜𝑑

1−𝑟𝑚
𝑞

𝑟𝑚+1
𝑞

𝑒2𝑖𝑘𝑧,𝑜𝑑|
2

. Using Fresnel identities, it can be shown  
𝑅𝑒(𝜀∥

 𝑘𝑧.𝑗
𝑝,∗

)

|𝜀∥
 |

|𝑡𝑚+
𝑝 |

2
=
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|𝑘𝑧,𝑗
𝑝

|
2

|𝑘𝑧,𝑜
 |

2 [𝑅𝑒(𝑘𝑧,𝑜) (1 − |𝑟𝑚
𝑝|

2
) − 2𝐼𝑚(𝑘𝑧,𝑜

 )𝐼𝑚(𝑟𝑚
𝑝)]  and 

𝑅𝑒(𝜀∥
 𝑘𝑧.𝑗

𝑝,∗
)

|𝜀∥
 |

|𝑡𝑚−
𝑝 |

2
= 𝑅𝑒(𝑘𝑧,𝑜) (1 −

|𝑟𝑚+1
𝑝 |

2
) + 2𝐼𝑚(𝑘𝑧,𝑜

 )𝐼𝑚(𝑟𝑚+1
𝑝 ) . Then, 𝛽𝑞

 |𝑇𝑞|2𝛽𝑞
  becomes 

1

|𝑘𝑧,𝑗|
2

{|𝑘𝑧,𝑗
𝑝

|
2
/|𝑘𝑧,𝑜

 |
2
[𝑅𝑒(𝑘𝑧,𝑜)(1−|𝑟𝑚

𝑝
|
2
)−2𝐼𝑚(𝑘𝑧,𝑜

 )𝐼𝑚(𝑟𝑚
𝑝

)]}{𝑅𝑒(𝑘𝑧,𝑜)(1−|𝑟𝑚+1
𝑝

|
2
)−2𝐼𝑚(𝑘𝑧,𝑜

 )𝐼𝑚(𝑟𝑚+1
𝑝

)}𝑒−2𝐼𝑚(𝑘𝑧,𝑜
 )𝑑

|1−𝑟𝑚
𝑝

𝑟𝑚+1
𝑝

𝑒2𝑖𝑘𝑧,𝑜𝑑|
2 . 

𝑘𝑧,𝑜  takes the form either 𝐼𝑚(𝑘𝑧,𝑜
 )  or 𝑅𝑒(𝑘𝑧,𝑜)  depending on if the wave in vacuum is 

evanescent or propagating. In our case, evanescent waves are the main contributor to energy 

transport across the vacuum gap. Thus, 𝑅𝑒(𝑘𝑧,𝑜) = 0 and |𝑘𝑧,𝑜|
2

= 𝐼𝑚(𝑘𝑧,𝑜)
2
 . This leads to 

𝛽𝑞
 |𝑇𝑞|2𝛽𝑞

 =
{4𝐼𝑚(𝑟𝑚

𝑝
)𝐼𝑚(𝑟𝑚+1

𝑝
)}𝑒−2𝐼𝑚(𝑘𝑧,𝑜

 )𝑑

|1−𝑟𝑚
𝑝

𝑟𝑚+1
𝑝

𝑒2𝑖𝑘𝑧,𝑜𝑑|
2 .  Since 𝑟𝑚

𝑝 = 𝑟1
𝑝
 and 𝑟𝑚+1

𝑝 = 𝑟2
𝑝
, the final expression of 

𝛽𝑞
 |𝑇𝑞|2𝛽𝑞

  becomes Eq. 2. The same procedure for s-polarization also returns Eq. 2, although its 

contribution is small. Lastly, it can be shown that the energy exchange function obeys reciprocity, 

i.e. 𝒯𝑗,𝛾 = 𝒯𝛾,𝑗. Therefore, the expressions are valid when the emitter is located to the right of 

the receiver.   

 

Now, net radiative heat exchange between two slabs, j and 𝛾 can be expressed as 

𝑞𝑗,𝛾 = 𝑞𝑗→𝛾 − 𝑞𝛾→𝑗 = ∫
𝑑𝜔

2𝜋
[𝛩(𝜔, 𝑇𝑗) − 𝛩(𝜔, 𝑇𝛾)] ∫

𝑑𝜅

2𝜋
𝜅

𝜅𝑚𝑎𝑥

𝜔
𝑐

𝒯𝑞
𝑗,𝛾

 (4.33) 

and the net radiative heat transfer into slab j, 𝑞 
𝑗
, by summation over all slabs as  

𝑞 
𝑗

= − ∑ 𝑞𝑗,𝑙

𝑁

𝑙≠𝑗

= ∑ 𝑞𝑙,𝑗

𝑁

𝑙≠𝑗

= ∫
𝑑𝜔

2𝜋
∑[𝛩(𝜔, 𝑇𝑙) − 𝛩(𝜔, 𝑇𝑗)]

𝑁

𝑙≠𝑗

∫
𝑑𝜅

2𝜋
𝜅

𝜅𝑚𝑎𝑥

𝜔
𝑐

𝒯𝑞
𝑙,𝑗

 (4.34) 

Equation 4.34 has a similar form as Eq. 4.1. To solve for the radiative heat transfer for given 

reservoir temperatures, we find the set of net radiative heat transfer (𝑞 
1, 𝑞 

2, … , 𝑞 
𝑁)  and a 

temperature profile that yields 𝑞𝑗 = 0 for the entire set except reservoirs (which can be done 

using an iterative procedure), then the global system reaches global equilibrium. The 

corresponding temperature profile in the media is unique to the state and is the global 

equilibrium temperature profile. In the computed set, 𝑞 
1(= −𝑞𝑁) represents the net radiative 

heat transfer between the hot and cold media, which is also the near-field radiative transfer 

between the two media.   
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4.2 Many-body vs. Two-body Formalism 

Derived above to the situation when the medium on each side of the gap has a uniform 

temperature, the many-body formalism is applied. All slabs in hot and cold media are at their 

reservoir temperatures, TH and TC.  From Eq. 4.33, it is seen that for slabs in the same medium, 

𝑞𝑗,𝛾
 = 0. Thus, the net radiation is only transferred between slabs in separate media. To find net 

heat transfer from slab j in medium 1 to the entire medium 2, ∑ 𝑞𝑗,𝛾
 𝑁

𝛾=𝑚+1 = 𝑞𝑗,𝑐𝑜𝑙𝑑
  is calculated. 

The net heat transfer from medium 1 to 2 is obtained by summing the net heat transfers, 𝑞𝑗,𝑐𝑜𝑙𝑑
 , 

for all slabs in medium 1,  𝑞1,2
 = ∑ 𝑞𝑗,𝑐𝑜𝑙𝑑

 𝑚
𝑗=1 = ∑ ∑ 𝑞𝑗,𝛾

 𝑁
𝛾=𝑚+1

𝑚
𝑗=1 . Owing to the uniform 

temperatures, the summation only needs to be applied to 𝒯𝑞
𝑗,𝛾

, i.e., ∑ ∑ 𝒯𝑞
𝑗,𝛾𝑁

𝛾=𝑚+1
𝑚
𝑗=1 . Here, 𝒯𝑞

𝑗,𝛾
 

is expressed as Eq. 4.30 for the scenario that the two slabs are on different sides of the vacuum 

separation. The inner summation over  for multiplication of |𝜏𝑚+1→𝛾
𝑞 |

2
 with (1 − 𝑒−2𝐼𝑚(𝑘𝑧,𝛾

𝑞
)𝛿𝛾) 

in Eq. 4.30 yields 1.  Similarly, the outer summation over j for multiplication of |𝜏𝑗+1→𝑚
𝑞 |

2
with 

(1 − 𝑒
−2𝐼𝑚(𝑘𝑧,𝑗

𝑞
)𝛿𝑗) also results in 1. Hence, the summations reduce 𝒯𝑞

𝑗,𝛾
to 𝛽𝑞

 |𝑇 
𝑞|2𝛽𝑞

 , which is 

the same expression as the energy exchange function between two slabs with uniform 

temperature and is the same expression as Eq. 4.2 as indicated in Section 4.1. Therefore, the final 

result is the exact result of the two-body formalism. This shows the two-body formalism with 

uniform temperatures is simply a special case of the many-body formalism.  

 

The many-body model reducing to the two-body model under uniform temperature 

condition indicates that the two formalisms consider phonon polaritons with the same origin for 

near-field radiative transfer, which depends on the probability of phonon polaritons tunneling 

across the vacuum gap. Although the two-body formalism is sometimes equivalated using a 

surface treatment[29], it in fact does not distinguish the origin of radiation. At uniform 

temperature, radiation is also generated from the bulk, but a wave removes a net amount of heat 

only when crossing the surface, whereas there is no net radiation exchange within each body 

with a uniform temperature. On the other hand, the many-body formalism accounts for the net 

radiation exchange via phonon polaritons within the same medium, as well as their contribution 

to the near-field radiative transfer across the gap.   
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4.3 Near-field Radiation Driven by Temperature Gradient 

Here, the results of near-field radiative heat flux using the many-body approach is 

presented. To generate results, a global system of 250-nm thick hexagonal boron nitride (hBN) 

films in contact with reservoirs at TH = 330 K and TC = 300 K is selected. Figure 4.2a shows the 

net radiative heat transfer, 𝑞𝑁𝐹 , from the hot to the cold medium with respect to d. The net 

radiative heat transfer increases with the decrease in d that allows HPhPs with larger wave 

vectors tunneling across the vacuum gap as seen from 𝑒−2𝐼𝑚(𝑘𝑧,𝑜
 )𝑑 in Eq. 4.2.  Figure 4.2a also 

shows the net radiative heat transfer, 𝑞𝑁𝐹, calculated using the two-body formalism when hot and 

cold media are set at reservoir temperatures, 330 K and 300 K. 𝑞𝑁𝐹 for two-body and many-body 

approaches almost overlap for separations greater than 5 nm. This is because the temperatures 

are nearly uniform for the many-body formalism when the separation is large. Figure 4.2b shows 

the temperature distributions in the hot medium for d = 10 nm, 5 nm, 2 nm, and 1 nm. The 

temperature profile or gradient is similar in the cold medium. For d = 5 nm and above, where 

𝑞𝑁𝐹s overlap in Figure 4.2a, the temperature is nearly uniform. Note that the near-field radiation 

heat transfer is much greater than that of blackbody, which is ~210 Wm-2 between two surfaces 

at the same temperatures. Figure 2a also shows 𝑞𝑁𝐹 from the many-body approach is less than 

that obtained using the two-body approach. This is because HPhP modes tunneling across the 

vacuum gap remove heat from the bulk, which leads to the temperature gradient and lower 

temperatures near the interface in the hot medium and higher temperature in the cold medium, 

resulting in a less amount of heat exchange. 
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Figure 4.2. a) Radiative heat transfer from the hot to cold medium with respect to vacuum 

separation for uniform and nonuniform temperature conditions. Results overlap for separation 

gaps greater than 5 nm. b) The temperature profile across hot medium for d = 10 nm, 5 nm, 2 nm, 

and 1 nm. Slab thickness throught this study is 0.5 nm. 

Now, discussion in details on propagations of phonon polaritons driven by the temperature 

gradient across the vacuum gap takes place. For this purpose, consider a pair of slabs, with one in 

the hot medium and the other in the cold medium, each is positioned 5 nm away from the 

vacuum-material interface. Figure 4.3a shows the heat transfer coefficient or the coupling 

strength between the pair of slabs, defined as ℎ𝑗,𝛾 =
𝑞𝑗,𝛾

𝑇𝑗−𝑇𝛾
 , for different vacuum separations. The 

coupling between the slabs increases when the two media are brought closer. This is explained 

by the wave vector dependent coupling strength shown in Figure 4.3b. When the separation is 

decreased, the range of 𝜅 for tunneling polaritons increases. However, there is also a limit or 

cutoff for 𝜅 for each separation distance which is governed by the exponential decay in Eq. 4.2. 

This cutoff corresponds to 𝜅~(2𝑑)−1, which is equivalent to total internal reflection. In addition 

to the increasing in range, the strength of coupling also increases when the gap is reduced due to 

the less attenuation of energy carried by a given wave vector across the gap as seen in Figure 

4.3b. When we compare coupling strengths for a given wave vector at different vacuum gaps, we 

also see the coupling strength enhances at shorter gap distances, which arises from less 

attenuation across the vacuum gap. Summation of ℎ𝑗,𝛾 over j and 𝛾, ∑ ∑ ℎ𝑗,𝛾
𝑁
𝛾=𝑚+1

𝑚
𝑗=1 , results in 

total heat transfer coefficient, ℎℎ𝑜𝑡,𝑐𝑜𝑙𝑑, between hot and cold media and is shown as a function 

of gap size in Figure 3c. Comparison of Figure 4.3a and 4.3c reveals similar trends of ℎ𝑗,𝛾 and 
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ℎℎ𝑜𝑡,𝑐𝑜𝑙𝑑 for the corresponding gap sizes. It is also shown the wave vector dependent total heat 

transfer coefficient, ℎℎ𝑜𝑡,𝑐𝑜𝑙𝑑,𝜅, in Figure 4.3d. The trend of ℎℎ𝑜𝑡,𝑐𝑜𝑙𝑑,𝜅 is similar to that of ℎ𝑗,𝛾,𝜅 

in Figure 4.3b for the corresponding gaps size due to cutoff of wave vectors corresponding to the 

gap size. 

 

  

 

Figure 4.3. a) Heat transfer coefficient, as a measure of coupling strength, between two slabs 

located 5 nm away from the vacuum-material interface at opposite sides of the vacuum 

separation as a function of gap size. The slab thickness used for the calculations is 0.5 nm. b) 

Wave vector dependent heat transfer coefficient for the corresponding gap sizes. c) Total heat 

transfer coefficient between hot and cold media as a function of gap size. d) Wave vector 

dependent total heat transfer coefficient between two media for the corresponding gap sizes. 

Slabs near the interface have a stronger interaction with the medium across the vacuum gap 

than those farther away from the interface. To account for interaction, the following expression is 

calculated: ℎ𝑗,𝑐𝑜𝑙𝑑 = ∑ ℎ𝑗,𝛾
𝑁
𝛾=𝑚+1  where ℎ𝑗,𝑐𝑜𝑙𝑑represents the coupling strength of slab j in the hot 
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medium with the entire cold medium. Figure 4 shows ℎ𝑗,𝑐𝑜𝑙𝑑 for all the slabs in the hot medium 

as a function of position of the slabs from the reservoir (𝑧 = 0 nm) for d = 10 nm, 5 nm, 2 nm and 

1 nm. It is seen each individual slab contributes to the net radiative heat transfer from the hot to 

the cold medium. This is another indication that the origin of near-field heat transfer between hot 

and cold media is HPhPs generated within the bulk, even though the contribution by a slab 

decreases with distance away from the interface by orders of magnitude due to the short 

propagation lengths of the highly confined modes that contribute most to the near-field radiation 

transfer. Figure 4 also shows that ℎ𝑗,𝑐𝑜𝑙𝑑 increases with the decrease in the vacuum gap for all 

slabs due to less attenuation of the modes across the vacuum gap with shorter separation. 

 

 

Figure 4.4. Heat transfer coefficient of individual slabs with a thickness of 0.5 nm in the hot 

medium arising from interaction of the slab with the entire cold medium at vacuum separation of 

1 nm, 5 nm, and 10 nm. 

Lastly, it is noted that this study considers only radiative transport as the heat transfer 

mechanism. Conduction also transports energy within a material. The many-body model can 

incorporate conduction during the temperature calculation and solve for local thermal 

equilibrium temperature by applying energy balance to each slab [114]. Additionally, conductive 

heat transfer across the vacuum gap can take place for sub-nm separations through phonon 

tunneling [84], [86], [115], [116]. Even we have computed the near-field radiation effect with a 

separation below 1 nm (Figure. 4.2a), at that small gap phonon tunneling will likely need to be 

considered which will be the subject of another study. 
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4.4 Summary 

With the study in this chapter, it is found that HPhPs responsible for energy transport 

across the vacuum gap between hyperbolic materials are bulk-originated polaritons. At uniform 

temperatures, the many-body approach that accounts for bulk-originated polaritons reduces to the 

two-body formalism, indicating the near-field radiative transfer described by the two-body 

formalism is just a special case of the many-body approach. When a temperature gradient exists 

in the media, HPhPs transfer net heat through the material as well as across the vacuum gap. 

Energy transfer across the vacuum gap is largely due to HPhPs with large wave vectors, which 

contribute even more to the enhanced near-field radiative transfer when the gap is reduced.   
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5. ENERGY TRANSPORT BY RADIATION IN HYPERBOLIC 

MATERIALS 

This chapter has been partially reproduced from a previous publication: Salihoglu, H.; Iyer, V.; 

Taniguchi, T.; Watanabe, K.; Ye, P.; Xu, X. Energy Transport by Radiation in Hyperbolic Material 

Comparable to Conduction. Adv. Funct. Mat. 2020, 30(6), 6-11. 

 

In solids, it has been understood that the primary energy carriers are phonons and electrons. 

Another energy carrier, photons, has been treated as a surface phenomenon, and as such, its 

contribution to energy transfer inside a material is negligible. However, the role of photons in 

thermal transport is also originated from the bulk. Rytov’s seminal work employed the 

fluctuation dissipation theorem (FDT) to link thermal fluctuations in a material with the 

generated electromagnetic energy, which enables prediction of radiative emission from the 

material in equilibrium [8]. Recently, the extent of FDT was mainly expanded for near-field 

radiation arising from evanescent waves or resonant surface waves [6], [25], [27], [28], [38], [76], 

[117]. The much enhanced thermal radiation in extreme near-field implies strong 

electromagnetic interactions in the bulk, and is predicted by FDT well [97].  

 

In nonequilibrium condition, temperature gradient in hBN drives energy transport by 

thermal radiation. Derived for equilibrium condition, FDT in this study is employed to estimate 

radiative heat transfer in hBN. With this aim, a many-body method is developed and exploited. 

We also explain the far-field reflection measurement of hBN at 300 K, 400 K, 500 K and 600 K. 

It is conducted to derive the fitting parameters given in Table 1.3. 

 

Under temperature gradient, polaritons transport energy in ─MoO3, biaxial material, too. 

To account for radiative heat transfer by polaritons in all three axes, the many-body approach 

applied to the global system with vacuum separation given in Chapter 4 is modified and 

implemented. Our analysis explains temperature dependent thermal conductivity with unusual 

trend. 
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5.1 Radiative Transfer inside hBN  

In this section, we explain many-body model derived to account for radiative transfer in 

hBN and interpret theoretical and experimental results.   

5.1.1 Reflection spectra of hBN over a temperature range of 300 K to 600 K 

Since no data for dielectric properties of hBN over a temperature range of 300 K to 600 K 

is available in literature, we measure far-field reflection spectrum of hBN thin film to extract 

dielectric properties of hBN at various temperatures. We followed the procedure: Nexus 670 

FTIR Bench with a Continuum Microscope is used to collect reflection spectra of ~ 1 m thick 

hBN on bulk CaF2. Sample was placed on a Linkam THMS720 heating stage to control its 

temperature. After temperature stabilization, reflected light collected by a 15x objective lens was 

averaged over 64 scans. Figure 5.1A shows the experimental reflectance spectrum. The 

calculated reflectance results using temperature dependent dielectric constants are shown in 

Figure 5.1B. Measurement is repeated to ensure the repeatability of data. The Lorentz model 

with one oscillator for both components of dielectric permittivity agrees with the temperature 

dependent reflection data. We use least-square fitting to extract parameters. Γ  is the most 

sensitive parameter to fitting in Reststrahlen bands. This parameter also governs the calculated 

krad . There is up to 20% of uncertainty in fitting of Γ, giving rise to an uncertainty in the 

calculated krad  of about 10% - 20% for temperatures from 300 K to 600 K. Figure 5.1C 

demonstrates the fitting results with ±20% uncertainty in Γ at 500 K. For precise value of Γ, the 

best fitting is applied to experimental results of the Type-II Reststrahlen band (2.58×1014 < w < 

3.03×1014 rad/s). Figure 5.1D also shows the best fit. It is noteworthy that even though FTIR 

bench was purged, the sample was exposed to the ambient air. Thus, C-O absorption 

corresponding to the frequency range over majority of the Type-II Reststrahlen band skews the 

results, and leads to the mentioned uncertainty. Note that with increasing temperature, C-O 

absorption becomes more prominent. The fitting parameters of 300 K are in good agreement 

with literature [118], and all parameters are listed in Table 1.3. In addition, for CaF2, 

wavelength-independent dielectric properties (2, i0.02) are used.  



 

 

91 

 

Figure 5.1. Experimental vs. fitted reflection. A) Temperature dependent experimental reflection 

spectra from hBN thin film. B) Calculated reflection spectra. C) Effect of the fitting values on 

the calculated reflection spectrum at 500 K. As blue dashed line represents the calculated 

reflection spectra when Γ∥ = Γ∥,𝐵𝑒𝑠𝑡 + 0.2Γ∥,𝐵𝑒𝑠𝑡, green dashed line is for the calculated reflection 

spectra when Γ∥ = Γ∥,𝐵𝑒𝑠𝑡 − 0.2Γ∥,𝐵𝑒𝑠𝑡, where Γ∥,𝐵𝑒𝑠𝑡 is the best fitting value for losses in in-plane 

direction at 500 K given in Table 1.3. D) Best-fitting result is shown. 

5.1.2 Many-body model to calculate radiative heat transfer in hBN 

For a system under out-of-equilibrium condition, we develop a model. Our microscopic 

many-body model consists of a continuous medium, under investigation, sandwiched by two heat 

baths (Figure 5.2A). The medium is divided into many bodies (slabs) in the z-direction (out-of-

plane) and extending to infinity in x- and y- directions. Each slab is assumed in local thermal 

equilibrium at a local temperature, hence correlation of the generated fields at an interface, let’s 

say  as in Figure 5.2B, generated by each slab, let’s say l as in Figure 5.2B, due to thermal 

radiation is calculated by plugging Eq. 1.8 and Green’s functions into Eq. 1.7. The generated 
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field interacts with all slabs along the path from the slab l to the interface , and this interaction is 

accounted by Green’s functions. As given in Eq. 1.9 for a flat interface, Green’s function from a 

source to generated field at an interface is derived for the many-body system by tracing the 

generated field from its source, and the tracing is repeated for all the generated fields at the 

interface from all sources in the system separately. The derivation is cumbersome, but can be 

found in [119]. Contribution of all slabs to the generated fields at the interface is summed up and 

plugged into energy flux: 

 〈𝑆〉 = 𝑅𝑒(𝑬 × 𝑯) (5.1) 

 Note that the summation of the contributions from all slabs is possible with the help of the 

continuous energy flux owing to the continuity of tangential components of E and H throughout 

the system.  The contribution from all slabs yields the radiative heat flux at interface 𝛾, 𝛷𝛾, given 

as [119]: 

 𝛷𝛾 = ∫
𝑑𝜔

2𝜋

∞

0

∫
𝑑𝜅

2𝜋
𝜅

𝜅𝑚𝑎𝑥

0

∑ ∑ 𝒩𝑙

𝑁

𝑙

𝒯̂𝛾
𝑙

𝑠,𝑝

 (5.2) 

where 𝒩  and 𝒯̂  are mean thermal energy of an oscillator, ℏ𝜔𝑛(𝜔, 𝑇 as used in Eq. 1.2. and 

transmission function to interface 𝛾 from the source in slab l, respectively. Eq. 5.2 computes 

contributions of all slabs in the system to the radiative heat flux at interface 𝛾. The transmission 

function (𝑇̂𝛾
𝑙) accounts for the radiation emitted by slab l and reaching out the interface  after 

interacting all slabs between the slab and the interface. The general form of the transmission 

function is derived using the scattering-matrix method and is expressed as [119]: 

 

𝒯̂𝛾
𝑗

= ∏𝑝𝑤 [
|𝜏𝑗+1→𝛾|

2
(1 − |𝜌+

−1→𝑗
|
2
)

|1 − 𝜌+
0→𝑗

𝜌−
𝑗+1→𝛾

|
2

−
|𝜏𝑗→𝛾|

2
(1 − |𝜌+

−1→𝑗−1
|
2
)

|1 − 𝜌+
−1→𝑗−1

𝜌−
𝑗→𝛾

|
2 ]

1 − |𝜌+
−1→𝑗−1

|
2

|1 − 𝜌+
0→𝛾

𝜌−
𝛾+1→𝑁+1

|
2 

        +∏𝑒𝑤 [
|𝜏𝑗+1→𝛾|

2
Im(𝜌+

−1→𝑗
)

|1 − 𝜌+
0→𝑗

𝜌−
𝑗+1→𝛾

|
2

−
|𝜏𝑗→𝛾|

2
Im(𝜌+

−1→𝑗−1
)

|1 − 𝜌+
−1→𝑗−1

𝜌−
𝑗→𝛾

|
2]

4Im(𝜌−
𝛾+1→𝑁+1)

|1 − 𝜌+
0→𝛾

𝜌−
𝛾+1→𝑁+1

|
2 

(5.3) 

Here, 𝜏𝑗→𝛾 is the transmission coefficient through slabs from j to  and the explicit expression is 

given in the next paragraph.  ∏𝑝𝑤 and ∏𝑒𝑤 are propagating and evanescent waves defined using 
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the Heaviside step function ℋ(𝜔 − 𝑐𝜅)  and ℋ(𝑐𝜅 − 𝜔) , respectively. 𝜌+/−
𝑗→𝛾

 is the reflection 

coefficient of a block consisting of slabs from j to  (left −, right +). In our case, the evanescent 

field contribution can be neglected since only the propagating waves contribute to radiation. We 

set all reflection coefficients to zero because of continuous medium. Eq. 5.3 then simplifies to:  

 𝒯̂𝛾
𝑗

= (1 − |𝜏𝑗|
2
)|𝜏𝑗+1→𝛾|

2
 (5.4) 

This is the simplified transmission function used in our study. 

 

          

Figure 5.2. Microscale many-body model. A) Schematic of the radiative heat transfer problem 

under investigation. Combination of slabs forms continuous medium. The medium is in contact 

with two heat baths of prescribed temperatures, TH and TC. B) Control volume around single slab 

j and energy transfer. Φ𝛾−1 and Φ𝛾 are evaluated at interfaces 𝛾 − 1 and 𝛾, respectively. Φ𝛾−1 =

Φ𝛾 represents local thermal equilibrium condition for the single slab. Slab l contains the source 

contributing to the thermal radiation at interface where Φ is evaluated. Summation over l in Eq. 

4.5 ensures the contribution of all slabs in the system. 

To compute the net radiative heat transfer into slab j, 𝛷 
𝑗
, we apply energy balance equation 

to the slab. Figure 5.2B illustrates that 𝛷𝛾−1  and 𝛷𝛾  represent the heat flux received by and 

removed from the slab j, respectively. Then, we can write 𝛷 
𝑗

= 𝛷𝛾−1 − 𝛷𝛾. Evaluating Eq. 5.2 

for the interfaces  – 1 and  enables to calculate 𝛷 
𝑗
. The final form as a result of algebraic 

manipulations casts into the formula expressed in a Landauer-like form as [119]:   

 𝛷 
𝑗

= 𝛷𝛾−1 − 𝛷𝛾 = ∫
𝑑𝜔

2𝜋

∞

0

∫
𝑑𝜅

2𝜋
𝜅

𝜅𝑚𝑎𝑥

0

∑ ∑ Θ𝑙,𝑗𝒯
𝑙,𝑗

𝑁

𝑙=0𝑠,𝑝

 (5.5) 

where 𝜔, κ, s, and p are frequency, wavenumber, and TE and TM polarizations, respectively. Θ𝑙,𝑗 

represents the difference in mean energy of oscillators generated in slabs l and j (Θ𝑙,𝑗 = 𝒩𝑙 −

𝒩𝑗). The energy exchange function, 𝒯𝑙,𝑗, accounts for energy exchange between slabs l and j. 

B A 
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Using Eq. 5.4 for 𝒯̂𝑗−1
𝑙  and 𝒯̂𝑗

𝑙,the energy exchange function (𝒯𝑙,𝑗) between slabs l and j can be 

written as: 

 𝒯𝑙,𝑗 = 𝒯̂𝑗−1
𝑙 − 𝒯̂𝑗

𝑙 = (1 − |𝜏𝑙|
2)|𝜏𝑙+1→𝑗−1|

2
(1 − |𝜏𝑗|

2
) (5.6) 

The transmission coefficient, 𝜏𝑗, describing transmission through single slab j, is given in general 

form as [20]: 

 𝜏𝑗 =
(1 − 𝑟𝑗

2)𝑒𝑖𝑘𝑧,𝑗𝛿𝑗

1 − 𝑟𝑗
2𝑒2𝑖𝑘𝑧,𝑗𝛿𝑗

 (5.7) 

where 𝛿𝑗 is thickness of slab j and 𝑘𝑧,𝑖 is out-of-plane component of wavevector expressed as 

√𝜀∥𝜔
2/𝑐2 − 𝜀∥ 𝜀⊥⁄ 𝜅2 (√𝜀∥𝜔

2/𝑐2 − 𝜅2) for p(s)-polarized waves. 𝑟𝑗
  is the Fresnel’s reflection 

coefficient for interface between vacuum and slab and is zero in continuous medium. Then, Eq. 

4.7 reads 𝜏𝑗 = 𝑒𝑖𝑘𝑧,𝑗𝛿𝑗 by setting 𝑟𝑗
 =0. 𝜏𝑙+1→𝑗−1 in Eq. 5.6 is the transmission coefficient through 

slabs from 𝑙 + 1  to 𝑗 − 1 , which is  𝜏𝑙+1→𝑗−1 = 𝜏𝑙+1 … 𝜏𝑗−1 . Inserting 𝜏𝑗  into 𝜏𝑙+1→𝑗−1  yields 

𝜏𝑙+1→𝑗−1 = 𝑒
𝑖 ∑ 𝑘𝑧,𝑚𝛿𝑚

𝑗−1
𝑚=𝑗−1 . The sum over l in Eq. 5.5 guarantees to account the energy 

exchange between the slab j and all the remaining slabs in the system arising from the energy 

difference, Θ𝑙,𝑗, between the slabs, l and j. 

 

To explain Eq. 5.6, the term 1 − |𝜏𝑙|
2  on the right hand side can be considered as an 

emission coefficient of slab l, and the term 1 − |𝜏𝑗|
2
  is an absorption coefficient. This satisfies 

the Kirchoff’s Law because emission (1 − |𝜏𝑙|
2) by slab l equals absorption(1 − |𝜏𝑗|

2
) by slab j 

in the same medium. The transmission coefficient of heat baths (𝜏0 and 𝜏𝑁) is zero as boundary 

conditions, hence semi-infinite heat baths generate and absorb all modes. 

 

To obtain temperature profile of the medium with temperature gradient, we should solve 

Eq. 5.5. It is solved to obtain an energy balance condition for each slab: 𝛷𝛾−1 = 𝛷𝛾. Hence, the 

total radiative heat transfer is simply 𝛷𝛾. An initial temperature distribution is first assumed, and 

𝛷 
𝑗
 are computed. Calculations are iterated until 𝛷 

𝑗
= 0 (𝛷𝛾−1 = 𝛷𝛾) is satisfied for each slab, 

and then a temperature distribution in the medium is also obtained. The obtained temperature 

profile corresponds to the temperatures of the slabs at local equilibrium. Local equilibrium of the 

slabs in the system also guarantees energy balance (steady-state) condition. This means the 
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energy removed from the hot bath is equal to the energy received by the cold bath due to energy 

balance of the system at global equilibrium. Besides, the number of iterations depends on two 

factors: the number of slabs and temperature range. The number of slabs increases the number of 

the iterations necessary for equilibrium condition because, physically, the system reaches the 

equilibrium condition slower due to higher internal energy requirement. As for the second 

criteria, increase in temperature results in the larger number of iterations. At higher temperatures, 

loss increases. Consequently, the transported energy along the system decreases, and the 

propagation of energy slows down, meaning that solution of the equilibrium temperature profile 

needs a larger number of iterations. Total energy of the system, in turn transported energy, 

enhances with temperature as well. This also increases the number of the iterations to find the 

equilibrium condition. By considering these two factors and the energy balance conditions, we 

determine the total number of iterations at several temperatures and distances.  

 

We compute spectral radiative heat transfer using the method developed and compare the 

result with the conventional blackbody theory. We consider a problem consisting of two 

blackbodies at 300 K with a temperature difference of 1 K (𝑇𝐻 = 301 K and 𝑇𝐶 = 300 K) and 

separated by vacuum. Note that we only calculate contribution of propagating modes to radiative 

heat transfer in our model. Figure 5.3 demonstrates both results of our model and the blackbody 

theory. For the problem under consideration, the blackbody theory over the frequency range in 

Figure 5.3 indicates a total radiative heat transfer as 5.673 W/m2 whereas our calculation results 

in 5.677 W/m2.  

 

Figure 5.3. Validation of the calculation method against blackbody radiation. The result 

computed with our method is in good agreement with the results calculated using the blackbody 

theory. 
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The equations derived in this work, Eq. 5.2 and 5.5, can also be reduced to the blackbody 

expression in hyperbolic materials given by [120]: 

 𝛷 = ∫
𝑑𝜔

2𝜋
[𝛩(𝜔, 𝑇𝐻) − 𝛩(𝜔, 𝑇𝐶)]

∞

0

∑ ∫
𝑑𝜅

2𝜋
𝜅

𝜅 

 

𝑠,𝑝

 (5.8) 

This blackbody expression considers dispersive and non-dissipative hyperbolic materials and is 

derived for two hyperbolic blackbodies at temperatures 𝑇𝐻  and 𝑇𝐶  separated by a lossless 

hyperbolic medium. To compare Eq. 5.5 with Eq. 5.8, we apply the same dispersive and non-

dissipative conditions. In this case, only the energy exchange function between the hot and cold 

baths, 𝒯0,𝑁, survives,  and 𝒯𝑙,𝑗 for intermediate slabs is zero because of 𝜏𝑙 = 𝜏𝑗 = 1 (since 𝜅" =

0 in the transmission coefficients). Consequently, Eq. 5.5 takes the exact form of Eq. 5.8. Thus, 

Eq. 5.5 expresses a general form of blackbody radiation in a material with losses. 

5.1.3 Thickness and temperature dependent transmission functions 

We first look at the transmission coefficient 𝜏. Figure 5.4A, B and C illustrate transmission 

coefficients with respect to frequency and wave vector for p-polarized waves (phonon-

polaritons) traveling a distance d = 10 nm, 100 nm, and 10 m, respectively. The majority of 

phonon-polaritons with very high wave vectors (here defined as κ > 108 m-1, thus <10 nm) carry 

energy over a distance of about 10 nm without significant loss (Figure 5.4A); however, these 

carriers lose over 80% of their energies over a distance of 100 nm because of the exponential 

decay 𝑒−2𝜅"𝑑 (Figure 5.4B). For phonon-polaritons with wave vectors in the range 107 < κ < ~108 

m-1 (defined as high-κ phonon-polaritons here, corresponding to 100 >  > 10 nm), travelling a 

distance greater than 1 m nulls their contribution (Figure 5.4B).  For phonon-polaritons with 

even smaller 𝜅 values (κ ~ 106 m-1, thus  ~1 m), its decay distance is about of 10 m (Figure 

5.4C).  
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Figure 5.4. Transmission coefficients of p-polarized waves traveling A) 10 nm, B) 100 nm, and 

C) 10 um. Scales and ranges of the y-axis for (A) to (C) are the same. Both high-κ ( 107 < κ < 108 

m-1) and very high-κ (κ ~ π/a > 108 m-1) modes transfer energy in 10 nm, whereas very high-κ 

modes mostly attenuate over a thickness of about 100 nm. Red dashed line in (C) corresponds to 

the modes with κ ~ n/c. 

Using the temperature dependent dielectric properties derived using  the fitting parameters 

given in Table 1.3, the transmission coefficient 𝜏𝑙→𝑗  at elevated temperatures is calculated. 

Figure 5.5A shows the transmission coefficient through a 200 nm-thick hBN at room 

temperature. Increasing temperature to 400 K (Figure 5.5B) and 500 K (Figure 4.5C) reduced the 

propagation length because of increasing loss at higher temperatures. Despite the temperature 

dependency of dielectric properties, phonon polaritons at elevated temperatures transport energy 

approximately over the similar distance as those at room temperature (Figure 5.5).   

 

Figure 5.5. Transmission coefficient of traversing 200 nm in hBN at A) 300 K, B) 400 K, and C) 

500 K. Despite higher losses in the material with temperature increase, the range of modes 

contributing energy transfer over the distance remains almost the same.  
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5.1.4 Spectral and total radiative heat transfer 

We next examine spectral radiative heat transfer across the medium at room temperature 

(300 K). A 1 K temperature difference between the heat baths is imposed to drive radiative heat 

transfer in hBN. Figure 5.6A shows the spectral radiative heat transfer which has two 

characteristic peaks in the Reststrahlen bands, arising from the available large number of modes 

and resulting in super-Planckian emission. Phonon-polaritons transport energy via all transport 

channels (modes) at frequencies inside Reststrahlen bands, producing six orders of magnitude 

higher radiative transport compared to that outside Reststrahlen bands. The reason that the 

spectral radiation outside Reststrahlen bands exceeds that of blackbody in vacuum (Figure 5.6A) 

is due to the higher index of refraction of hBN than vacuum (n > 1). 

 

 

Figure 5.6. Spectral and total radiative heat transfer with respect to thickness. A) Spectral 

radiation transfer in hBN with 1 K temperature difference between heat baths. The enhancement 

within the Reststrahlen bands clearly demonstrates contributions of phonon polariton modes. B) 

Total radiation and radiative thermal conductivity at various thicknesses. The contribution of 

very high-κ modes to radiative transport decreases with thickness due to losses in thicker films. 

We further analyze contributions of all modes over the entire frequency range, the total 

radiative heat transfer. The total radiative heat transfer depends on the material’s thickness, as 

suggested by the previous analysis on the dependence of transmission coefficient of phonon 

polariton modes on thickness. Figure 5.6B shows that the total radiative heat transfer decreases 

with thickness. Here, the density of modes as a function of wave vector plays the key role. The 

greatest contribution to total radiative heat transfer in short distances comes from very high-κ 

phonon-polaritons as the high density of energy channels (modes) for very high-κ phonon-
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polaritons enables energy transport with a large number of energy carriers. However, the energy 

carried by these modes dissipates rapidly over short distances as seen in the spectral analysis. As 

the distance increases, less carriers contribute to transferring energy, leading to a decrease in 

total heat transfer. 

5.1.5 Radiative thermal conductivity 

We can also define a radiative thermal conductivity based on the Fourier’s Law, i.e., 

𝑘𝑟𝑎𝑑 = 𝑞𝑟
′′𝑡/∆𝑇, where 𝑞𝑟

′′ is the total radiative heat transfer, t is the thickness, and T is the 

temperature difference of the two heat baths. Figure 5.6B indicates that 𝑘𝑟𝑎𝑑 increases with t and 

approaches a constant value ~ 500 nm. In thin hBN, 𝑘𝑟𝑎𝑑  increases with thickness since the 

number of energy carrier that vanishes due to dissipation is less than that excited by adding more 

materials to the medium as the thickness increases. The conductivity reaches a constant value at 

the thickness ~500 nm as the number of disappeared carrier and that of the added carrier reaches 

a balance.  

 

We calculated the temperature-dependent radiative thermal conductivity by raising the 

temperatures of the thermal baths, but maintained the temperature difference at 1 K. Figure 5.7A 

shows radiative thermal conductivity increases with temperature. Raising the temperature excites 

a larger number of energy states and also shifts thermal energy peak (hyperbolic blackbody 

radiation) towards higher frequencies according to the Wien’s displacement law.  
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Figure 5.7. Radiative thermal conductivity. A)  Radiative thermal conductivity krad and measured 

total thermal conductivity (kTot,exp) with respect to temperature. The total thermal conductivity 

consists of both photonic and phononic contributions, and does not follow the normal 1/T 

dependence of phonon conductivity (red dashed line). B) Experimental phonon thermal 

conductivity kPhonon,exp obtained by subtracting krad from kTot,exp and comparison to the 1/T 

dependence of phonon conductivity. 

Experiment to measure out-of-plane thermal conductivity 

The out-of-plane (in the direction perpendicular to the thin film) total thermal conductivity 

in hBN thin films is measured in the temperature range from 300 K to 600 K . Sample used in 

the experiment is prepared in the following way: Ultrapure h-BN films were exfoliated a few 

times with Nitto dicing tape and subsequently transferred onto a thermal release tape (Nitto), 

which was adhered to the silicon substrate. The tape was release by heating the substrate to 120 

˚C to obtain clean and high yield transfer of h-BN films with various thicknesses. Within a few 

hours of exfoliation, 110 nm gold was deposited on the entire sample using e-beam evaporation 

for thermal conductivity measurement. The sample was cleaned with toluene, acetone and IPA 

just before the gold deposition. AFM (NIST-NT) scans were performed after gold deposition to 

precisely determine the film thicknesses. 

 

Thermal conductivity was measured with a home-built nanosecond thermoreflectance setup 

[121] and performed by Vasudevan Iyer. The sample is pumped to higher temperature (Texcess< 

~10 K ) with a 6.4 ns, 5 kHz pulsed laser (Spectra Physics) operating at 532 nm wavelength. The 

change in surface temperature is measured with a CW He-Ne probe laser beam coupled to a 

balanced fast photodiode (Thorlabs PDB130A), and directly recorded on a high speed 
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oscilloscope (Tektronix TDS744A) set to AC coupling mode averaging 10,000 acquisitions. The 

pump beam is expanded to a 164 μm 1/e2 diameter to minimize in-plane heat diffusion. The 

probe spot is 20 μm in diameter. The sample is mounted on a heating stage (Linkam THMS 720) 

and annealed at 600 K for one hour before performing temperature dependent measurements. 

The measurements were repeated several times to ensure reproducibility.  

 

To extract the out-of-plane (total) thermal conductivity, a 2D axi-symmetric simulation was 

performed using COMSOL to solve the heat diffusion equation, taking into account the contact 

resistance between gold and h-BN and between h-BN and silicon. The literature value of in-

plane thermal conductivity was used [122] and a parametric sweep was performed to obtain best 

fit for out-of-plane thermal conductivity. Fitting for 1,030 nm thick film at 300 K is shown in 

Figure 5.8, which yielded an out-of-plane thermal conductivity of 5.4 W/m∙K. The uncertainty is 

about 0.5 W/m∙K, obtained from 25% higher than the best fit R2 value. The large in-plane 

thermal conductivity of hBN warrants the use of a large pump spot to ensure minimum 

contribution from lateral heat spreading. A laser spot size of 164 μm diameter was used to ensure 

this, and the effect of small pump spot of 20 m diameter (simulated) shows the effect of in-pane 

heat diffusion as seen in Figure 5.8. 
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Figure 5.8. Fitting of 1030 nm film data at 300 K with COMSOL simulation to extract out-of-

plane thermal conductivity. For a small simulated pump spot size of 20 μm diameter, the effect 

of in-plane heat diffusion is clearly visible by the faster decay. The fitting is less sensitive to spot 

size for large spot sizes. The experimental laser spot size is 164 μm diameter, for which the in-

plane thermal conductivity contribution is minimal.  
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The data for several films in the 700 to 1200 nm range (shown in Figure 5.9) was collected 

at each temperature, i.e. 300 K to 600 K.  The COMSOL fitting was performed on these films 

and the obtained out-of-plane thermal conductivities were within a 0.2 W/m∙K range of variation, 

less than the measurement uncertainty. This is consistent with our calculation that radiation 

thermal conductivity reaches a constant value when the thickness is greater than ~ 500 nm. From 

the fitting, the contact resistances between gold and hBN are in the 3 × 10-8 to 6x10-8 m2 K W-1 

range for different films and temperatures, slightly decreasing with increasing temperature. The 

fitting is rather insensitive to contact resistance between hBN and silicon substrate and a value of 

3 × 10-8 was used. Unfortunately, it was not able to determine thermal conductivity of thinner 

films accurately, as the data fitting is much influenced by the contact resistance between the gold 

and the hBN film and the contact resistance between hBN film and the substrate. Figure 5.10 

shows the large uncertainties of the fitted thermal conductivity data for thinner films. The upper 

bound of the thermal conductivity goes higher for thinner films (no upper bound for the two 

thinnest films) since the contact resistances become comparable with or greater than the 

resistance of thinner films with larger thermal conductivity. 
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Figure 5.9. Transient reflectivity measured at 400 K on five films of 680, 780, 1030, 1080 and 

1200 nm thickness. 
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Figure 5.10. Fitting of 300 K data for thin flakes. The uncertainty becomes larger as the film 

thickness is reduced due to contact resistances dominating the heat flow. 

The procedure explained above is used to measure out-of-plane thermal conductivity. The 

measured thermal conductivity, 𝑘𝑇𝑜𝑡,𝑒𝑥𝑝, contains both photonic (phonon polariton modes) and 

phononic contributions, and is shown in Figure 5.7A for a 1030 nm thick hBN film. We can see 

that there is a decrease of the measured total thermal conductivity from 300 K to 600 K. 

However, this decrease is much slower than the 1/T dependence for phonon transport alone, 

which suggests a temperature dependent phonon-polariton radiative contribution. We calculate 

the difference between the calculated radiation thermal conductivity 𝑘𝑟𝑎𝑑 and the experimentally 

determined 𝑘𝑇𝑜𝑡,𝑒𝑥𝑝, which yields the experimental phonon conductivity, 𝑘𝑃ℎ𝑜𝑛𝑜𝑛,𝑒𝑥𝑝, as shown 

in Figure 5.7B. The resulting 𝑘𝑃ℎ𝑜𝑛𝑜𝑛,𝑒𝑥𝑝   follows a much closer 1/T trend of phonon 

conductivity, which will be further discussed below.  

 

We notice a large contribution of radiative thermal transport as the temperature increases, 

from ~ 5% at 300 K to ~ 27% at 600 K. The increase of radiative thermal conductivity with 

temperature originates from the increased contribution of thermally excited phonon-polaritons in 

the Reststrahlen band. The peak radiation at 300 K is at a frequency around ~10 m (~1.9 × 1014 

rad s-1), which is below the lower bound of the Reststrahlen band (2.5 × 1014 rad s-1). Increasing 

temperature increases populated photon states with thermal energy inside the Reststrahlen band. 

At 400 K, the peak radiation moves into the Reststrahlen band, and at higher temperatures, it 

moves toward the upper bound of the Reststrahlen band (3 × 1014 rad s-1). Moreover, the 
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radiative thermal conductivity increases due to higher energy carried by the phonon-polariton at 

higher temperature.  

 

We now discuss the small deviation of the extracted 𝑘𝑃ℎ𝑜𝑛𝑜𝑛,𝑒𝑥𝑝  vs. the expected 1/T 

phonon conductivity. This can be a result of experimental uncertainties, as indicated in the error 

bars of the measured total thermal conductivity which is about +/-0.5 W m-1 K-1. Computation of 

radiative thermal conductivity uses dielectric constants, which were also measured 

experimentally using FTIR). We estimate that the uncertainty in dielectric constant measurement 

can contribute up to 20% of uncertainty in the calculated radiative thermal conductivity (Section 

4.1). Given these considerations, the extracted 𝑘𝑃ℎ𝑜𝑛𝑜𝑛,𝑒𝑥𝑝  is in a reasonable agreement with the 

expected 1/T trend. On the other hand, we also notice a recent study on the out-of-plane thermal 

conductivity of hBN which showed that thermal conductivity does not follow 1/T in a 

temperature range between over 100 K to 400 K [122]. This deviation was attributed to the 

contribution of high frequency acoustic phonons which do not follow the 1/T trend at 

temperatures below 400 K. At temperatures above 400 K, however, contribute of high frequency 

phonons also decreases with temperature, resulting in ~ 1/T trend in phonon thermal conductivity.  

 

Lastly, we emphasize the contribution of high-κ phonon-polariton modes to radiative 

thermal transport. Phonon polaritons and phonons in hyperbolic material coexist and both 

contribute to energy transport. In a normal material, the spherical or ellipsoidal κ-space contour 

limits the wave vector, and the modes with wave vectors greater than that of the light cone do not 

propagate, i.e. Planckian emission. On the other hand, in the Reststrahlen bands of HMs, the 

hyperboloidal κ-space which is a result of opposite signs of the dielectric constants along the 

principal directions, allows propagations of phonon-polaritons with wave vectors larger than the 

light cone, resulting in super-Planckian emission, as large as κ ~ 1/a, where a is the characteristic 

length of the material. The number of modes with wave vectors larger than the light cone is very 

large in the Reststrahlen bands. Various studies [81], [123], [124] also suggested that integration 

of wave vector should be cut off at κ ~ 1/a. Hence, high-κ phonon-polariton modes in bulk are 

responsible for the rise of the notable radiative contribution.   
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5.2 Radiative Transfer inside MoO3 

Here, we discuss our theoretical results for radiative thermal conductivity in MoO3 in three 

principal axis. As different from the model derived for hBN in Section 5.1, the many body-

formalism used for MoO3 is extended from the many-body approach explained in Chapter 4. 

5.2.1 Radiative heat transfer equation and Dispersion relation for MoO3 

To account for radiative heat transfer in ─MoO3, we exploit the macroscopic many-body 

approach using the fluctuation-dissipation theorem and the green’s function method, as discussed 

in derived in Chapter 4. Figure 1 shows a continuous biaxial medium between hot and cold baths 

at temperature TH and TC, respectively. The z-axis shows the out-of-plane direction, and x and y 

are in-plane directions. The medium expands to infinity in in-plane directions and experiences 

temperature variation along the z-axis. Each slab, j, is assumed at a local equilibrium temperature, 

Tj. The radiative heat transfer into slab j, 𝛷𝑗 , as a result of interaction with all slabs in a system 

with two uniaxial materials has been derived [114]. Here, we extend its use to biaxial material by 

rearranging the integration over in-plane components (kx, ky) of wavevector as (see 

Supplementary Document for details): 

 𝛷𝑗 = 𝛷𝑗−1 − 𝛷𝑗 = ∫
𝑑𝜔

2𝜋

∞

0

∫ ∫
𝑑𝑘𝑥

𝜋

𝑑𝑘𝑦

𝜋  

𝑘𝑦,𝑚

0

𝑘𝑥,𝑚

0

∑ ℏ𝜔𝑛𝑙,𝑗𝒯
𝑙,𝑗

𝑁

𝑙≠𝑗

 (5.9) 

Here,  is frequency of a mode, ℏ is reduced Planck’s constant. Inner double integration is over 

x-, kx, and y-, ky, component of wavevector. 𝛷𝑗(𝛷𝑗−1) is radiative thermal energy flux at the 

boundary between slabs j and j+1 (j−1 and j). 𝑛𝑙,𝑗 is the difference of finding a state occupied by 

a mode generated at temperature of slab l, Tl, and slab j, Tj. Summation over l adds up radiative 

contribution arising from interaction of slab j with all other slabs in the N-body system. The 

energy exchange function, 𝒯𝑙,𝑗, defines interaction strength of slabs l and j and plays key role in 

heat transfer analysis. Derived for many-body system with a vacuum separation [125], the 

function simplifies to the following expression in our case: 

 𝒯 
𝑙,𝑗 = 𝜒 

𝑗(1 − 𝑒−2𝐼𝑚(𝑘𝑧
 )𝛿𝑗)|𝜏𝑗+1→𝑙−1

 |
2
(1 − 𝑒−2𝐼𝑚(𝑘𝑧

 )𝛿𝑙)𝜒 
𝑙 (5.10) 

To simplify the expression in Eq. 4.30 to Eq. 5.10, we set 𝑇𝑞 = 1 in Eq. 4.30. In Eq. 5.10, 

𝜒 
𝑗determines propagation condition of modes, in turn energy carrying modes. With regards the 

simplification of the expression in Eq. 4.30, we assume 𝜒 
𝑗 = 𝑘𝑧

′ /|𝑘𝑧|  for both s- and p-
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polarizations. 𝜏𝑗+1→𝑙−1
  is transmission function through slabs j+1 to l−1 and given as 

𝑒𝑖2𝑘𝑧
 (𝛿𝑗+1+⋯+𝛿𝑙−1) where i represents thickness of slab i. 𝒯 

𝑙,𝑗 is valid for waves generated by the 

source slab j located to the left of the receiver slab l. We note that the exchange function satisfies 

reciprocity, 𝒯𝑙,𝑗 = 𝒯𝑗,𝑙, and can be explained in the following way: polariton emitted by slab j 

with a probability of 𝛽 
𝑗(1 − 𝑒−2𝑘𝑧

′′𝛿𝑗), traverses through intermediate slabs, |𝜏𝑗+1→𝑙−1
 |

2
, and is 

absorbed by slab l with a probability of (1 − 𝑒−2𝑘𝑧
′′𝛿𝑙)𝛽 

𝑙 . We note the Kirchhoff’s law is 

applicable because the emission probability is equal to absorption probability. Here, 𝑘𝑧
′′  is 

imaginary part of wavevector component along the z-axis, 𝑘𝑧(= 𝑘𝑧
′ + 𝑖𝑘𝑧

′′). In a bulk biaxial 

material with diagonal dielectric tensor in the given coordinates, 𝑘𝑧  is obtained by solving a 

biquadratic equation [64]. The discussion of the solutions for 𝑘𝑧 is given in Section 5.2.2. In Eq. 

5.9, the upper limit of integral over kx and ky determines the maximum wavevector, 𝑘𝑥,𝑚~𝜋/𝑎 

and 𝑘𝑦,𝑚~𝜋/𝑏 , of the mode excited by thermal radiation with minimum spatial correlation 

length [83] defined by lattice constants of a = 0.396 nm and b = 0.370 nm [126] at x- and y-axes, 

respectively. To find radiative heat flowing through the system, we solve Eq. 5.8 iteratively for 

all intermediate slabs until 𝛷𝑗−1 = 𝛷𝑗 which indicates the local thermal equilibrium condition of 

any slab j. The temperature distribution obtained is the solution, and 𝛷𝑗 yields total radiative heat 

flux, 𝑞𝑧
′′. 

 

By applying temperature gradient in the x- (y-) axis and assuming uniform temperature in 

the z-axis, we also compute radiative heat transfer in the x- (y-) axis, 𝑞𝑟,𝑥
′′  (𝑞𝑟,𝑦

′′ ). To find complex 

wavevector in the direction temperature gradient, quadratic dispersion equation is solved for 𝑘𝑥 

( 𝑘𝑦 ) after replacing 𝑘𝑧  and 𝜀𝑧 with 𝑘𝑥  ( 𝑘𝑦 ) and 𝜀𝑥  ( 𝜀𝑦 ) for 𝑞𝑥
′′  ( 𝑞𝑦

′′ ) calculation (See 

Supplementary Document for details). In addition, integration limit over 𝑘𝑥 (𝑘𝑦) becomes over 

𝑘𝑧, and 𝒯𝑙,𝑗 in Eq. 1 is calculated using 𝑘𝑥 (𝑘𝑦). Finally, the iterative calculation explained above 

is repeated to solve for the temperature profile in x- (y-) axis.  
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5.2.2 Proper solutions of propagating waves in MoO3 

For discussion of solutions of the equation, we recall Eq. 1.21-1.24. Eq. 1.21 yields four 

complex solutions of 𝑘𝑧 (kz,1, kz,2, kz,3, kz,4), corresponding to two extraordinary waves going to 

the +z direction (right) and two extraordinary waves going to the −z direction (left). In Eq. 1.24, 

the discriminant ∆= 𝐴2 − 4𝐵.≠ 0 and is complex. We present it using its modulus, R, and its 

principal argument, . Then, ∆= 𝑅𝑒𝑖𝑣  where 𝑅 = |𝐴2 − 4𝐵|  and −𝜋 < 𝑣 ≤ 𝜋 . To avoid 

ambiguity in solutions, we use the principal value to produce solutions. Then, from Eq. 1.24, 𝑘𝑧,1
2  

and 𝑘𝑧,2
2  become: 

 𝑘𝑧,1
2 = −

𝐴

2
+

𝑅1/2𝑒𝑖𝑣/2

2
 

 

(5.11) 

 

 𝑘𝑧,2
2 = −

𝐴

2
−

𝑅1/2𝑒𝑖𝑣/2

2
 (5.12) 

Hence, the four solutions of Eq. 1.5 for biaxial material take the following forms: 

 𝑘𝑧,1 = √−
𝐴

2
+

𝑅1/2𝑒𝑖𝑣/2

2
= −𝑘𝑧,3 

 

(5.13) 

 

 𝑘𝑧,2 = √−
𝐴

2
−

𝑅1/2𝑒𝑖𝑣/2

2
= −𝑘𝑧,4 (5.14) 

One pair, kz,1 and kz,3, represents one type of waves, the other pair, kz,2 and kz,4, represents 

second type of waves, called a and b waves, or fast and slow waves. Both fast and slow waves 

are extraordinary waves because their Poynting’s vector points to a direction different from 

phase propagation direction. These two forms of waves exist over entire frequency region. 

Outside RS bands, we call them ordinary waves in the main text. Inside RS bands, one 

component of the dielectric property has negative value, and dispersion relation supports 

existence of high-k modes, polaritons. We note that polaritons exist in the slow wave form. For 

right going waves, solutions with 𝑘𝑧
′′ > 0 are selected because, with definition (𝑒𝑖𝑘𝑧𝑧) of the 

electric field, waves with 𝑘𝑧
′′ > 0 vanishes when z→+∞.  
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5.2.3 Modes propagating and contributing to energy transport in MoO3 

𝜒 in the energy exchange function determines propagation condition of a mode in a given 

wavevector region. In Figure 5.11, we plot absolute value of 𝜒  for three frequencies from 

separate RS bands as a function of 𝑘𝑥 and 𝑘𝑦. We observe in Figure 5.11a and b that 𝜒 ~1 within 

a conic region (bright yellow region). In these regions, dispersion relation dictates that 𝑘𝑧
′  >> 𝑘𝑧

′′, 

and this indicates that, when excited, these modes propagate over a distance longer than its 

wavelength ( 𝜆~1/𝑘𝑧
′ ) with relatively weak attenuation in the material (attenuation distance or 

penetration depth ~ 1/ 𝑘𝑧
′′). These modes are hyperbolic phonon polaritons. In Figure 5.11c, 𝜒~1 

over entire 𝑘𝑥 and 𝑘𝑦 range. Thus, hyperbolic polariton modes exist and are supported. On the 

other hand, in Figure 5.11a and b, 𝜒 < 0.1 outside the conic region in which modes are highly 

damped and vanish in distances shorter than its wavelength. Thus, these modes are not supported 

in the material (no electromagnetic wave form, i.e. polaritons).  

 

 

Figure 5.11. Absolute value of  𝜒 as a function of kx and ky at A)  = 1.12 × 1014 (x = 7.55, y = 

−38.3, z = 5.25) B)  = 1.70 × 1014 (x = −4.15, y = 1.11, z = 9.02) and C)  = 1.84 × 1014 (x = 

0.52, y = 2.13, z = −7.20). Absolute values are plotted because Re(kz) in A and B are negative. 
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To understand energy transport of the supported and unsupported modes, we analyze 

energy exchange function, 𝒯, in Eq. 5.9. We select the frequency ( = 1.70 × 1014 rad/s) used for 

Figure 5.11b and plot 𝒯𝑙,𝑗 for two baths (l=1 and j=N) sandwiching the intermediate medium 

with a thickness of t = 15 nm, 25 nm and 50 nm in Figure 5.12a-c. At a glance, we see that 

wavevector region of modes with 𝒯 greater than 0.1 coincides with that of the hyperbolic phonon 

polariton modes shown in Figure 5.11b, indicating that polaritons transport energy. We also 

recognize for all three cases that 𝒯 of the polaritons increases with smaller kx-ky values. The 

reason lies in that, for high-k modes, kz value of polaritons has about the same order with their 

kx-ky values and decreases/increases proportional to the kx-ky values. Thus, polaritons with 

smaller kx-ky dissipate less along a given distance due to smaller 𝑘𝑧
′′ (longer penetration depth) 

and carry more energy (greater 𝒯). In addition, Figure 3a-c show that wavevector region of the 

polaritons carrying considerable energy (𝒯 > 0.1) is bounded. Outer boundary of the wavevector 

region depends on penetration depth, in turn 𝑘𝑧
′′, of the energy carrying polaritons. For instance, 

polaritons with wavevector beyond the outer bound dissipate its total energy in t = 15 nm (Figure 

5.12a) because penetration depth of these polaritons is shorter than t. Inside the wavevector 

region, polaritons have penetration depth longer than t and carry considerable energy, resulting 

in 𝒯 > 0.1. Furthermore, from comparison of Figure 5.12a-c, we deduce that the wavevector 

region shrinks with increase in thickness t. Polaritons with relatively higher wavevectors (shorter 

penetration depth) in the wavevector region of a thinner material attenuates in thicker material 

without carrying energy across the baths and their 𝒯 gets < 0.1. Consequently, their contribution 

to energy transport disappears in thicker material, and the wavevector region gets smaller.  
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Figure 5.12. Energy exchange function as a function of kx and ky between two heat baths on 

opposite sides of intermediate material with a thickness of a) t = 15 nm, b) t = 25 nm, and c) t = 

50 nm. 

5.2.4 Calculation results for radiative heat flux 

To understand contribution of polaritons to heat transfer, we plot spectral radiative heat 

flux, 𝑞𝜔,𝑧
′′ , for various thicknesses at T = 1 K for TC = 300 K in Figure 5.13a. Spectral radiative 

heat flux in RS bands is about 6 orders greater than that outside RS bands. Compared to ordinary 

radiation waves outside RS bands, polaritons have access to greatly enhanced number of 

radiative states in RS bands, enabling energy transport through higher number of channels. Thus, 

contribution of the polaritons considerably increases spectral radiative heat transfer. We also plot 

𝑞𝜔,𝑧
′′  for various thicknesses and see that 𝑞𝜔,𝑧

′′  in RS bands decreases with increase in thickness. 

Polaritons with a given penetration depth transport less energy across thicker material, resulting 

in smaller energy exchange function, 𝒯, and 𝑞𝜔,𝑧
′′  decreases for thicker materials. In addition, we 

observe 3 separate peaks in 𝑞𝜔,𝑧
′′ . Frequency of these peaks correspond to frequency regions 

where material loss, imaginary dielectric component, is minimal over the region. 
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Figure 5.13. a) Spectral radiative heat transfer in RS bands for 𝑞𝜔,𝑧
′′ . b) Thickness-dependent heat 

flux and thermal conductivity for all three axes. In Figure 3a and 3b, T = 1K and TC = 300 K. 

Radiative contribution to energy transport by modes outside RS bands is negligible. Due to this 

reason and high computational demand, we omit 𝑞𝜔,𝑧
′′ . outside RS bands for the cases with 

thicknesses except that of 100 nm in a). 

We also analyze total radiative heat flux, and Figure 5.13b shows total heat flux, 𝑞′′, in 

three axes as a function of thickness. We see that 𝑞′′ decreases with thickness in all three axes. 

As explained in discussion of thickness-dependence for 𝑞𝜔,𝑧
′′ , the decrease happens due to higher 

dissipation along thicker material. On the other hand, the rate of change decreases. We realize 

that the relationship between 𝑞′′ and t can be cast in the form of 𝑞′′ = 𝐴𝑡−𝐵 for all three axes and 

interpret that as coefficient A indicates maximum limit of radiative heat flux under the given 

temperature difference, B represents losses in the given direction. In Figure 5.13b, A (B) is found 

as 6.69 × 108, 3.778 × 108, and 8.036 × 108 Wm-2 (0.9323, 0.9553, and 0.9748) for x-, y-, and z- 

axis, respectively. The reason of the decrease in the rate is that radiative heat generated by 

fluctuations in added material increases and supplies the heat dissipated by added material more. 

Furthermore, our results show that 𝑞𝑥
′′~𝑞𝑧

′′, and 𝑞𝑦
′′ is about half of them over entire thickness 

range. Our analysis on spectral radiative heat flux in x- and y-axes (not shown here) reveals that 

𝑞𝜔,𝑦
′′  over RS3 (RS2) band is one order less than 𝑞𝜔,𝑧

′′  (𝑞𝜔,𝑥
′′  and 𝑞𝜔,𝑧

′′ ) over the same band, and, 

hence; 2𝑞𝑦
′′~𝑞𝑥

′′~𝑞𝑧
′′.  

 

We calculate an equivalent radiative thermal conductivity, ki, in i-axis using Fourier’s 

equation, 𝑞𝑖
′′ = 𝑘𝑖Δ𝑇/𝑡 , in Figure 5.13b. 𝑘𝑦  and 𝑘𝑧  remains relatively constant at a value of 

~0.49 and ~0.95 Wm-1K-1, respectively, over entire thickness range whereas 𝑘𝑥 slightly increases 
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with thickness and approaches a constant value of 1.05 Wm-1K-1 at greater thicknesses (bulk 

material limit). This relatively constant 𝑘𝑦  and 𝑘𝑧  values and slightly changing 𝑘𝑥  arise from 

losses represented by coefficient B. In thinner material, temperature profile tends to be nonlinear 

that violates Fourier’s equation relying on diffusive transport; hence, linear temperature growth. 

In materials with higher loss, linear temperature gradient grows even in thin materials. Therefore, 

slightly higher optical loss in y and z direction (B values are greater) leads in linear temperature 

gradient in thinner material. In contrast, linear temperature growth in x-axis happens in thicker 

material due to less loss (lower B).  

 

 

Figure 5.14. Temperature dependent thermal conductivity and radiative heat flux for all three 

axes. 

Thermal conductivity increases with increasing temperature. Figure 5.14 shows 

temperature dependent radiative heat flux and thermal conductivity for t = 250 nm for all three 

axes. Both radiative flux and thermal conductivity increase with respect to temperature because 

increasing thermal energy populates more states in RS bands; therefore, excites more polaritons 

carrying energy. Inspection of trends in 𝑘 and 𝑞′′ reveals that the rate of change increases from 

low temperatures to over 300 K and decreases with higher temperatures. With increase in 

temperature at lower temperatures, characteristic wavelength around which thermal energy 

maximizes shifts toward RS bands, and maximum thermal energy excites more hyperbolic 

polaritons around room temperature. Further increase in temperature results in the characteristic 

wavelength shifting away from the RS bands to higher energies. Excitation of polaritons 

minimally increases with higher temperature as a result of mismatch in characteristic wavelength 
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and RS bands and maximum thermal energy populates ordinary waves more. In addition, at 

higher temperatures, optical losses increase and lead to further decrease in the rate of change.  

5.3 Summary 

In summary, we studied radiative heat transfer in HM hBN and showed a major 

contribution to energy transport arising from phonon polaritons supported in Reststrahlen bands. 

This contribution increases spectral radiative transfer by six orders of magnitude inside 

Reststrahlen bands compared to that outside Reststrahlen bands. The equivalent radiative thermal 

conductivity increases with temperature increase, and the radiative thermal conductivity can be 

of the same order of the phonon thermal conductivity. Experimental measurements support our 

finding. The measured temperature dependent total thermal conductivity does not follow the 

usual 1/T phonon conductivity, which is attributed to the increase in radiative thermal 

conductivity with temperature. We showed the radiative contribution can account for as much as 

27% of the total thermal transport at 600 K. Hence, in hBN the radiative thermal transport can be 

comparable to thermal conduction by phonons. 

 

We also studied radiative heat transfer in HM MoO3. Our analysis revealed that polaritons 

in RS bands contribute to energy transport in all three principal axes. At room temperature, 

radiative heat flux in y-axis is half of that in x- and z- axes for a thickness. The reason is that the 

spectral flux in y-axis over RS3 (RS2) band is one order less than that in z- (x- and z-) axis over 

the same band. Radiative energy transport decreases with thickness due to higher losses in 

thicker materials, and we found out that thickness dependence of the heat flux can be expressed 

in the form: 𝑞′′ = 𝐴𝑡−𝐵. On the other hand, the equivalent radiative thermal conductivity in all 

three axes remain relatively still over the thickness range. The radiative thermal conductivity 

increases with temperature because higher thermal energy excites more polaritons carrying 

energy. We also pointed out that, compared to the literature results, the equivalent radiative 

thermal conductivity is in the same order of phonon thermal conductivity around room 

temperature and even exceeds at higher temperatures. 
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6. SUMMARY AND FUTURE WORK 

This dissertation focuses on radiative heat transfer in micro and nanoscales. The studies 

presented will form a bridge across the knowledge gap between macro and nanoscale radiative 

heat transfer fields. Contribution of surface phonon polaritons and hyperbolic phonon polaritons 

to radiative heat transfer between two plates positioned in the near-field was compared using SiC 

and calcite. Contribution of high-𝜅 modes in calcite to near-field radiation is comparable to that 

of surface polaritons in SiC. The enhancement in calcite is about the same as that in SiC at a 

large temperature difference of 400 K.  

 

To observe the near-field radiative heat transfer between two SiO2 plates, an experimental 

technique has been developed and built. The setup enabled measuring temperature change 

induced by near-field radiation between the plates with a separation range from tens of 

nanometers to sub-10 nm. Results of the performed experiments agreed well with theoretical 

model, fluctuation-dissipation theorem. We showed 18000 times enhancement in radiative heat 

transfer compared to far-field radiation between two SiO2 plates. 

 

The fluctuation-dissipation theorem is not applicable for systems under thermal 

nonequilibrium. Partitioning the system (many-body model) exposed to temperature gradient 

extends use of the theory. Analysis conducted with the developed model showed that hyperbolic 

polaritons in hBN carry energy. The representative thermal conductivity increases with 

temperature increase and can be of the same order of the phonon thermal conductivity. 

Conducted experiments of total thermal conductivity agree well with our model. In MoO3, 

polaritons in RS bands contribute to energy transport in all three principal axes. the equivalent 

radiative thermal conductivity is in the same order of phonon thermal conductivity around room 

temperature and even exceeds at higher temperatures. 

 

Many-body approach was extended to account for radiative heat transfer across a vacuum 

separation. It was shown that two-body model derived for radiative heat transfer arising from 

surface excitations is a special case of the many-body approach. The many-body approach 

revealed that hyperbolic phonon polaritons are bulk generated and contribute to energy transport 
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across the vacuum gap. Driven temperature gradient inside the material saturates the radiative 

heat transfer and the temperature induced saturation was observed near contact regions where 

temperature profile inside the materials diverges from uniformity. 

 

Exploration of spectral features of phenomena giving rise to near-field thermal radiation 

remains short. Research in this path will help better understanding of phenomena; hence, their 

contribution to radiative heat transfer. In the next section, we explain our effort to build an 

experimental setup that help exploration of spectral features of resonant near-field phenomena. 

6.1 Preliminary Results 

Analyzing spectral response of a material to incident radiation in infrared (IR) range 

provides insightful information about molecular structure of the material and help understand 

fundamentals of phenomena active in the range. Fourier-Transform Infrared (FTIR) spectroscopy 

is a well-established technique to analyze far-field reflection and transmission spectra of 

materials over a frequency range from far- to near-infrared with compatible equipment. As 

discussed in Chapter 1, resonant surface features enhance radiation in the near-field but are 

evanescent away from the surface. To analyze their spectral properties, in addition to the FTIR 

technique, use of an advanced technique that extracts near-field information and couple it to the 

far-field is required. One of these techniques is called Near-field Scanning Optical Microscopy 

(NSOM). Illuminated by a light at a given frequency, a cantilever tip on Atomic Force 

Microscope (AFM) confines far-field radiation in form of surface plasmons at apex of the tip and 

enables probing of near-field enhancement arising from the resonant features by enhancing the 

back scattered light. Then, the scattered light can be fed into FTIR. Coupling NSOM and FTIR 

techniques opens up a new path to examine spectral and spatial material response in the near-

field. Below, we will explain our effort to couple NSOM and FTIR techniques and utilizes an 

external light source. Our method is different from the techniques in literature in that external, 

weak, and mid-IR light source is used to illuminate the tip. We will discuss challenges 

encountered during implementation of the method along with preliminary experimental results. 

Then, we will present solutions to overcome the challenges. 
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To perform near-field spectroscopy, we design a setup consisting of an FTIR system, an 

AFM system, and an external thermal source. Figure 6.1 shows schematic of the design under 

development. In what follows, we explain optical equipment used to couple FTIR and NSOM. 

 

Optical system can be divided into two parts: 1- Illumination optics, 2- Collection optics. 

Orange dashed line in Figure 6.1 denotes pathway of the illuminating light, and green dashed 

line shows pathway of the collected light backscattered from the tip.  

 

 

Figure 6.1. Schematic of near-field nanospectroscopy technique using an external thermal source. 

The system has 5 off-axis parabolic (OAP) mirrors with various diameter (d) and focal lengths (f) 

to collect, shrink and expand the beam. In addition, as flat mirrors (M) guides the beam, lens (L) 

focus and collect the light. 

Main objective of the illumination optics, shown by orange dashed lines in Figure 6.1, is to 

collect radiation out of thermal source (housing, emitting ceramic element and elliptical focusing 

mirror) and to shine the light with the highest intensity on the tip. In terms of collecting, thermal 

source is highly divergent due to its diffuse emission nature along with finite emitting element. 

Active size of the ceramic element (Newport, 6575) in the source is 3 × 10 mm. The emitted 

light is focused to a spot via an elliptical mirror in the source housing. With an aperture at the 

spot, we can adjust numerical aperture (NA) and output power of irradiation coming out of the 

housing. To collect the thermal radiation from the housing, an off-axis parabolic mirror (OAP1) 

is used. Because of two reasons, OAP mirror is preferred over a collimating lens. First, OAP 
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mirrors are highly reflective over broad frequency range. In contrast, lenses in mid-IR range 

generally have narrower working spectrum, and lossy transmission. Second, multiple OAP use 

enables transporting light over long distances without losing significant amount of the light. Over 

the distance from the housing to the cantilever, we could not achieve focusing the light on the tip 

using a collecting lens in front of the housing without significant power loss. Shown in Figure 

6.1, OAP2 and OAP3 are used to shrink the beam to 1” collimated beam. Here, we can see that 

NA of OAP2 and OAP3 does not match. The reason is many-fold. First, we would like to carry 

the light from thermal source to the tip over the shortest distance because divergence is a 

significant concern in use of thermal sources. Second, limited physical space impacts selection of 

optics. Third, economical aspects should be considered as well. Based on these considerations, 

the chosen optics are optimum in terms of carrying the maximum light over the shortest distance 

in the given physical space. Consequently, OAP3 prepares the beam before striking on 

beamsplitter (BS), flat mirrors with 1” diameter and objective holder with an aperture size of 

0.5’’. In theory, the holder blocks ¾ of the light collimated by OAP3. However, the loss is higher 

because the beam is not perfectly collimated due to finite aperture size, in turn, divergence. The 

loss at the holder can be minimized with the given system by tuning the position of OAP3. We 

consider the holder as aperture stop of the illumination optics because it mostly determines the 

power in the illumination system. The light passing through the holder is focused on the tip using 

a 1” ZnSe lens with a focal length of 1.5” (LX-1015-Z-ET3.0, Laser Research Optics). 

 

Main objective of the collection optics, shown by green dashed lines in Figure 6.1, is to 

collect the light backscattered from the tip and to fall it onto detector sensing area in FTIR with 

maximum intensity. We note that in the collection path, divergence is not a concern because the 

source here is the tip. Typical size of tips used with weak sources in mid-IR is tens of nanometer 

and the tip acts as a point source. The backscattered light from the tip traces the illumination 

pathway up to the beamsplitter. Beamsplitter is potassium bromide (KBr), and its working range 

spans from 11,000 (~1 m) to 375 (~26 m) cm-1. The beamsplitter can be considered as another 

optics that reduces the power. To eliminate the beamsplitter, in another design, the illumination 

and the collection of the light can be at different paths with different radial angles with respect to 

the tip. This also provides an advantage of uncoupled illumination and collection optical paths, in 

turn, additional freedom in optical design. In the design shown here, the backscattered light 
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passes the beamsplitter and is shrunk by OAP4 to expand the beam size to 2” using OAP5. The 

purpose of the expansion is to minimize the inevitable loss arising from openings with < ∅ 0.5” 

on one of the mirrors and on another beamsplitter located in FTIR bench.  

 

To test the design given in Figure 6.1, we carry out an experiment after slightly modifying 

the setup. Between L1 and the tip, we place a flat mirror at focal point of the lens. This does not 

exactly replace conditions of the tip (i.e. invalid point source assumption); however, it gives 

good output to analyze the system output. We use the following settings on power meter and 

OMNIC software: Source powering the thermal source is set to 8V. Aperture on the exit of the 

housing is fully open. Detector gain is 8, as seen in Figure 6.2. Optical velocity is 1.8988. With 

the test settings, we are able to observe the centerburst on the interferogram in Figure 6.2 that 

corresponds to a max generated voltage of 1.57 V at near zero optical path difference in 

interferogram (Later, this value has been increased to ~1.7 V with further optical alignment). 

Figure 6.3 shows spectrum of the light falling on sensing area of the detector. This output is 

weak for an actual experiment because intensity of the backscattered light from the tip will be a 

couple order less. Therefore, this signal needs to be improved. 

 

 

Figure 6.2. Interferogram of the test. The interferogram is taken from OMNIC software. The test 

is performed based on the settings seen on the right. 
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Figure 6.3. Spectrum of the test data.  

To improve the signal, we use a chopper and a lock-in amplifier. The chopper is positioned 

between M5 and OAP5, and its frequency is set to ~1 kHz that is used as a reference frequency 

for the lock-in amplifier. The signal from the detector is fed to the lock-in amplifier. Then, the 

amplifier improves the signal at the reference frequency by filtering the signal outside the 

reference frequency band and outputs the improved signal to FTIR software for recording 

interferogram. The chopping frequency coincides with modulation frequency of a wavelength in 

Michelson interferometer, and continuous scan yields spectral response dominated at the 

chopping frequency. To overcome, step-scan feature of FTIR bench is used. Figure 6.4 shows 

interferogram obtained using step-scan feature. To acquire the interferogram, the following 

settings are selected: TC of the lock-in = 500 s, lock-in gain = 2, average timing = 1 ms, 

ZPD=512, resolution=32 cm-1, mirror velocity = 0.94 cm/s. Figure 6.5 shows spectrum of the 

chopped radiation. Comparison of Figure 6.3 and 6.5 reveals that we indeed improve the signal 

using the lock-in amplifier. To draw this conclusion, we check the maximum obtained signal in 

the spectra, and see that the maximum signal increases from 7 to 10 arbitrary unit with the given 

settings. Gain of the lock-in amplifier can be to thousands. However, while adjusting the gain, 

we should pay attention to the voltage input range of FTIR bench (the voltage of the signal from 

the lock-in to FTIR bench). This indicates a signal with a magnitude few orders less than the 

measured signal with the current setup can be extracted using the lock-in technique. 
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Figure 6.4. Interferogram acquired with step-scan feature. 

 

 

Figure 6.5. Spectrum of the chopped radiation. 

6.2 Future Work 

Based on studies covered in this thesis, there are several directions for future work. First, 

validation of fluctuation-dissipation theorem for two parallel plates still lacks for separation gaps 

below the gaps measured in our study. Second, the experimental near-field radiation study can be 

extended for hyperbolic materials such as hexagonal boron nitride. Third, the many-body model 

derived using macroscopic dielectric properties may be derived using microscopic properties. 

Forth, energy transport by polaritons in material is still in infancy, and better understanding its 

role may provide us more freedom to engineer devices with better thermal performance in small 

scale.     
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