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ABSTRACT

An important challenge in predicting fatigue and creep crack growth is describing crack

growth rates under transient conditions. Transient conditions occur when similitude is vio-

lated at the crack tip due to the applied loads or material behavior. Crack growth models

like the Paris law, valid for homogeneous materials under constant-amplitude cyclic loading

or sustained loading, no longer apply. Transient crack growth rates are strongly influenced

by changes in plastic deformation at the crack tip. Activation of time-dependent damage

and viscoplastic deformation at high temperatures further complicates the problem.

This thesis advances knowledge and predictive capabilities for transient creep and fatigue

crack growth in metals, with specific applications to two technologically-relevant nickel-

base superalloys. Finite element computations of crack growth following overloads and in

multilayered materials are conducted. Crack extension is an outcome of the boundary value

problem through an irreversible cohesive zone model and its interaction with plasticity and

viscoplasticity in the bulk material.

First, fatigue crack growth in rate-independent materials is analyzed. The plasticity for-

mulation considers both plastic strain and gradients of plastic strain, which produce hard-

ening beyond that predicted by classical plasticity models. The computations demonstrate

that hardening due to plastic strain gradients plays a significant role in transient fatigue

crack growth following overloads. Fatigue crack growth transients associated with material

inhomogeneity are studied through the case of a crack growing toward interfaces between

plastically dissimilar materials. Interactions between the interface strength and the yield

strength mismatch are found to govern crack growth rates near the interface. Hardening

due to plastic strain gradients is important for finding the critical conditions associated with

crack bifurcation at an interface and penetration through an interlayer.

Subsequently, crack growth in rate-dependent materials is analyzed. For materials char-

acterized by power-law viscoplasticity, fatigue crack growth rates following overloads are

found to depend strongly on the material rate sensitivity. The computations predict a

transition from acceleration- to retardation-dominated post-overload crack growth as the

rate sensitivity decreases. The predicted post-overload crack growth rates show good agree-
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ment with high-temperature experimentally-measured trends for Alloy 617, a solid solu-

tion strengthened nickel-base superalloy proposed for use in next-generation nuclear power

plants. The results demonstrate why Alloy 617 behaves in a relatively brittle manner fol-

lowing overloads despite being characterized as a creep-ductile material. Crack growth is

also studied in materials where rate dependence is captured through time-dependent dam-

age and dislocation storage and dynamic recovery processes. This approach is relevant for

high-strength creep-brittle materials, in which the viscoplastic zone grows with the advanc-

ing crack. The computations predict crack growth retardation for several loading waveforms

containing overloads. The amount of retardation depends strongly on the overload ratio and

subsequent unloading ahead of the crack tip. The predicted post-overload crack extension

shows good agreement with high-temperature experimentally-measured trends for Alloy 718,

a precipitation-hardened nickel-base superalloy used in turbine engines and power generation

applications. The results demonstrate why Alloy 718 behaves in a ductile manner following

overloads, despite being characterized as a creep-brittle material.
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1. INTRODUCTION

1.1 Motivation

Fatigue crack growth is a critical failure mechanism for metallic components that must

be considered in any application involving cyclic loading. One approach to designing against

fatigue is a damage-tolerant design philosophy. Damage-tolerant design is based on predict-

ing the remaining fatigue life of a component given an initial flaw size [1 ], [2 ]. The flaw size is

typically inferred from a nondestructive evaluation procedure, and fracture mechanics con-

cepts are used to calculate the number of cycles required for the flaw to grow to a critical size

[1 ]. This approach can also be used to set inspection intervals given the detection threshold

of the testing procedure. Despite advances in both fracture mechanics and nondestructive

evaluation, a majority of in-service failures occur due to fatigue [2 ], [3 ]. High temperatures

on the order of half the melting point of a material exacerbate the problem by activating

various time-dependent mechanisms during crack growth [4 ]. This includes both viscoplastic

deformation and damage mechanisms such as creep void growth, dynamic embrittlement,

and grain boundary oxidation [5 ]. Time-dependent damage mechanisms can cause crack

growth during constant, sustained loading as well as cyclic loading.

An important concern in damage-tolerant design is that crack growth rates in response to

realistic load spectra must be considered in order to accurately predict the life of engineering

components [2 ]. This requires consideration of various load transients, such as overloads

(OLs) and hold times at multiple load levels. Studies of variable-amplitude loading in rate-

independent materials indicate that crack growth in these situations is closely associated

with crack-tip plasticity [6 ], [7 ]. Changes in the plastic zone during variable-amplitude load-

ing induce residual stresses that affect subsequent crack growth under constant-amplitude

loading [1 ]. Fatigue crack growth transients also occur in inhomogeneous material systems

subjected to constant-amplitude loading [8 ]. Here, the plastic zone and the crack-tip fields

are disturbed due to interactions with interfaces and materials with differing properties.

Predicting crack growth rates under transient conditions requires cycle-by-cycle analysis of

crack-tip plasticity and the active damage mechanisms ahead of the crack tip.
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This thesis is specifically motivated by experiments involving each of these crack growth

transients on two technologically-relevant nickel-base superalloys, Alloy 617 and Alloy 718.

Alloy 617 is the leading candidate material for use in the intermediate heat exchanger (IHX)

of the very high temperature reactor (VHTR) [9 ]. This material was also recently approved

for high-temperature nuclear applications under Section III of the ASME Boiler and Pressure

Vessel code [10 ]. The VHTR design is a Generation IV nuclear reactor concept that envisions

IHX outlet temperatures in excess of 800◦C [9 ], [11 ]. This exceeds the solvus temperature

of γ′ precipitates, so Alloy 617 is exclusively solid solution strengthened at temperatures of

interest [12 ]. An important requirement for next-generation reactor designs is load-following

capabilities [13 ]. Load-following requirements arise from increasing use of renewable energy

sources like wind and solar, which typically provide intermittent power [14 ]. Reactor compo-

nents are therefore subjected to cyclic and time-dependent loads associated with daily power

variations. As a result, these components cannot be designed to provide only base-load

power, and crack growth under transient loads must be understood for safe operation [15 ].

Experiments demonstrate that Alloy 617 behaves in a ductile manner during crack growth

under constant sustained loads and constant-amplitude cyclic loading. Time-dependent crack

growth rates under sustained loading have been successfully correlated with the C∗ parameter

[15 ], [16 ]. This indicates that widespread viscoplastic deformation occurs during creep crack

growth, and Alloy 617 can be described as a creep-ductile material [5 ], [15 ], [17 ]. Similarly,

during constant-amplitude cyclic loading, crack growth occurs by a cyclic viscoplasticity

mechanism [15 ]. Evidence for this mechanism includes the transgranular crack path (Fig-

ure 1.1  a) and fatigue striations on the fracture surface (Figure 1.1  b) [18 ]. Time-dependent

creep void growth only contributes to crack extension at high loads and low loading frequen-

cies, Figure 1.1  c [15 ]. However, experiments with transient loads produce unexpected results

for what is perceived as a ductile material. A single OL does not affect crack growth rates,

within the noise of the experimental measurements. Blocks of multiple OLs result in net

retardation at low loads and net acceleration at high loads, [18 ], [19 ]. Cases where OLs do

not produce crack growth retardation are more typical of brittle materials [20 ]. Therefore,

there is a contradiction: Alloy 617 behaves like a ductile material under sustained loading
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Figure 1.1. Crack morphology and crack growth rates for Alloy 617 fatigue
crack growth specimens tested at 800◦C. (a) Optical micrograph of the etched
crack profile and (b) SEM micrograph of the fracture surface of a specimen
subjected to cyclic loading with a frequency of 0.33 Hz, showing a transgranular
crack path and fatigue striations. Used with permission from [18 ]. (c) Steady
state fatigue crack growth rates for different load frequencies and a hold-time
waveform, showing that crack growth rates are nearly frequency independent
up to ∆K ≈ 11.5 MPa

√
m. Used with permission from [15 ].

20



Figure 1.2. Crack morphology for Alloy 718 crack growth specimen subjected
to sustained loading at 650◦C. (a) Optical micrograph and (b) SEM micrograph
of a segment of the crack profile, showing an intergranular crack path. (c)
EDS line scan along the arrow in (b), demonstrating oxidation on the grain
boundary. Crack growth experiment conducted by H. E. Ostergaard; original
images generated for this thesis.

and constant-amplitude cyclic loading, but it behaves like a brittle material under transient

loads.

Alloy 718 and its derivatives are used in a variety of applications at temperatures up

to 650◦C due to a good combination of creep resistance, strength, and toughness [21 ], [22 ].

Below this temperature, strengthening in Alloy 718 derives primarily from precipitation

hardening with the coherent γ′′ and γ′ phases that can be sheared by dislocations [23 ], [24 ].

Common applications of Alloy 718 include nuclear reactor components and both land-based

and aircraft gas turbine engines [21 ], [23 ], [25 ]. In addition to the load-following require-

ments associated with future operation of nuclear power plants, load transients also must be

considered in turbine engine applications [26 ]. In the case of aircraft, load transients may

arise from hold times at multiple load levels during a takeoff-cruise-landing cycle, thermal

transients during engine start-up, and load excursions due to hard landings or turbulence

[25 ]–[27 ].

Alloy 718 is classified as a creep-brittle material based on its crack growth behavior

under sustained loads at 650◦C [5 ], [28 ]. Creep-brittle behavior is associated with a small

viscoplastic zone that grows together with the advancing crack and higher crack growth rates

than in creep-ductile materials [5 ]. In polycrystalline Alloy 718 and similar materials, high

crack growth rates are driven by environmental attack on grain boundaries ahead of the crack
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tip [29 ]. Due to its high strength and creep resistance, Alloy 718 can sustain high stresses

ahead of the crack tip that activate a stress-assisted oxygen diffusion or oxidation mechanism

[30 ], [31 ]. The environmentally-driven damage leads to brittle intergranular crack growth

under sustained loading and low-frequency cyclic loading [29 ], [32 ]. Figure 1.2  demonstrates

brittle intergranular crack growth and grain boundary oxidation for a polycrystalline Alloy

718 crack growth specimen subjected to sustained loading at 650◦C. However, experiments

demonstrate that OLs during both cyclic and sustained loading at 650◦C cause crack growth

retardation for all load cases that have been investigated [30 ], [33 ], [34 ]. Post-OL retardation

is characteristic of ductile materials [20 ]. These results create the opposite contradiction as

with Alloy 617: Alloy 718 is described as brittle during steady-state crack growth, but it

behaves in a more ductile way under transient loads.

Alloy 718 is also being studied for use with additive manufacturing processes to ac-

celerate production of complex components and circumvent machining challenges [21 ]. In

experiments investigating crack extension in additive manufactured Alloy 718 at 650◦C, crack

growth transients have been observed even under constant-amplitude cyclic loading. In this

case, transients are associated with the microstructure and material properties ahead of the

crack tip. Figure 1.3 shows an example of the crack path in a compact tension specimen

where the initial mode I crack growth direction was perpendicular to the build direction. As

shown in Figure 1.3 b, the crack path consists of different segments: a mainly transgranular

path in the initial mode I crack growth direction, and an intergranular path along oxidized

grain boundaries nearly perpendicular to this direction. Similar to the case of OLs, crack

extension depends on a cycle-by-cycle evolution of the crack-tip fields. Here, competition

between transgranular fatigue crack growth and crack deflection along the weakened grain

boundaries determines both the crack path and crack growth rates. The overall result is de-

flection of the crack downward from the initial mode I direction, seen in Figure 1.3 a. These

characteristics of crack extension are similar to both fatigue crack growth and monotonic

fracture in inhomogeneous and highly-textured elastic-plastic materials containing weak in-

terfaces [8 ], [35 ]–[37 ].

These motivating experiments all relate back to two fundamental problems in fatigue

crack growth: crack growth following an OL and crack growth in the vicinity of an interface
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Figure 1.3. Crack path in an additive manufactured Alloy 718 specimen
subjected to cyclic loading at 650◦C. (a) SEM micrograph of the crack path
in an additive manufactured Alloy 718 specimen showing significant deviation
from the mode I crack growth direction. (b) Inverse pole figure, generated
using EBSD, of a segment of the crack path, demonstrating transgranular crack
growth in the initial mode I direction and crack deflection along oxidized grain
boundaries nearly perpendicular to this direction. Crack growth experiment
conducted by H. E. Ostergaard; original images generated for this thesis.
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between dissimilar materials. As noted previously, experiments in rate-independent materials

demonstrate how disturbances of crack-tip plastic deformation are critical for understanding

and predicting crack growth rates in these scenarios. The overarching objective of this thesis

is then to provide new understanding of how crack-tip plastic and viscoplastic deformation

interacts with the damage process to determine transient crack growth rates in these funda-

mental problems and in the specific experiments on Alloy 617 and Alloy 718. This objective

is first addressed through consideration of plastic strain gradients in fatigue crack growth.

In regions of highly inhomogeneous plastic deformation, such as the crack-tip plastic zone,

plastic strain gradients lead to the development of geometrically-necessary dislocations [38 ]–

[40 ]. Hardening due to geometrically-necessary dislocations cannot be predicted by classical

plasticity models [41 ], and its influence on transient fatigue crack growth has not been in-

vestigated in detail. The objective is also addressed through consideration of rate-dependent

viscoplastic deformation and time-dependent damage. Each of these mechanisms contributes

to time-dependent crack growth observed in experiments at high temperatures. As indicated

by the contradictions in the motivating experiments, the characteristics of material behavior

that govern crack growth following load transients in rate-dependent materials are not well

understood.

The remainder of this chapter provides an overview of the scientific background, research

contribution, and organization of this thesis. A brief literature review of rate-independent

and rate-dependent fatigue and creep crack growth is included. Gaps in understanding are

identified for crack extension under transient loads and in inhomogeneous materials. Specific

research questions are then proposed, together with a description of the general modeling

approach to address these questions. Detailed introductions to each topic can be found at

the beginning of subsequent chapters.
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1.2 Fatigue crack growth in rate-independent materials

Most descriptions of rate-independent fatigue crack growth follow from the pioneering

work of Paris and Erdogan [42 ]. The Paris law relates the cyclic fatigue crack growth rate

da/dN to the stress intensity factor range ∆K through a power law:

da

dN
= Ap (∆K)Mp , (1.1)

where the prefactor Ap and exponent Mp are determined through experiments. The Paris

law equation is applicable for crack growth under constant-amplitude loading and small-scale

yielding. Under these conditions, the concept of similitude applies: the crack-tip plastic zone

is embedded inside a region where the elastic stress and strain fields are determined by the

stress intensity factor. As a result, crack-tip conditions are uniquely related to the remote

loading parameter ∆K [1 ].

Modifications are necessary when crack growth transients occur. The reason is that

transients are associated with a local violation of similitude near the crack tip. The steady-

state crack-tip fields are disturbed due to changes in the plastic zone. The crack-tip fields

thereby change as the crack grows and can no longer be described by a remote loading

parameter alone. Overloads, for example, are the most well-studied source of load transients.

Overloads have consistently been found to cause subsequent crack growth retardation in rate-

independent ductile metals [6 ]. Explanations for post-OL retardation are based on crack

growth through the OL plastic zone, Figure 1.4  , which induces compressive residual stresses

near the crack tip.

Widely-used analytical models for retardation that describe crack growth through the

OL plastic zone include those of Wheeler [43 ] and Willenborg [44 ]. The Wheeler model uses

an empirical retardation parameter to correct the crack growth rates while the crack and

the plastic zone during subsequent cycles are within the OL plastic zone. The retardation

parameter is based on the OL plastic zone size and a shaping exponent fit to OL experiments

[2 ]. The Willenborg model proposes a residual stress intensity factor KR calculated based on
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Figure 1.4. (a) Schematic of typical crack growth rates (da/dN) following an
OL in rate-independent materials. (b) Schematic of crack extension through
the OL plastic zone. Adapted from [1 ], [43 ].

an assumed relationship with crack growth through the OL plastic zone [1 ], [44 ], [45 ]. The

residual stress intensity factor is typically calculated using the equation

KR = KOL

√
1 − ∆a

rOL
− Kmax, (1.2)

where KOL is the maximum stress intensity factor during the OL cycle, ∆a is the crack

extension after the OL, rOL is the OL plastic zone size, and Kmax is the maximum stress

intensity factor during cyclic after the OL [45 ]. The value of KR is in turn used to determine

an effective load ratio or stress intensity factor range. To achieve a better fit with exper-

imental data, modifications to this approach often introduce a scaling factor to Eq. (1.2 )

or use a fitting exponent in the relationship between KR and the effective load ratio [26 ],

[46 ]–[48 ]. Modifications to the Willenborg and Wheeler models are also necessary to account

for the acceleration that occurs immediately after an OL, as well as the crack growth rates

resulting from more complex load sequences [46 ], [49 ], [50 ].

Another explanation for post-OL behavior is based on the concept of plasticity-induced

crack closure. Following the pioneering work of Elber [51 ], a large number of studies have

investigated this phenomenon from both an experimental and modeling perspective [52 ].
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The crack closure approach postulates that, after an OL, the crack remains closed behind

the current crack tip during a larger portion of each load cycle due to the compressive

residual stresses in the OL plastic zone. Crack closure in turn reduces the effective stress

intensity range at the crack tip by increasing the effective minimum stress intensity factor

from the applied Kmin to Kop, the stress intensity when the crack opens [1 ]. Experiments

have generally confirmed that significant plasticity-induced crack closure occurs following

OLs and that this is associated with crack growth retardation [7 ], [53 ]–[55 ]. Numerical

studies have used strip-yield models or finite element computations to quantify crack closure

and investigate the influence of loading parameters and the plasticity formulation [52 ], [56 ]–

[60 ]. These studies indicate that the crack opening loads depend strongly on the details of

crack-tip plastic deformation.

Crack-tip plasticity is also highly relevant to fatigue crack growth near interfaces in

inhomogeneous materials. Two configurations in which a fatigue crack grows perpendicularly

towards one or more interfaces are of particular interest in this work. The first is a bi-

material, in which plastically-dissimilar materials are bonded at an interface. The second is

a multilayered material consisting of a high-yield-strength matrix and a low-yield-strength

interlayer. In these cases, similitude is violated when the plastic zone interacts with an

interface and the material on the other side. A yield strength mismatch between material

on either side of the interface changes the shape and size of the plastic zone as the crack

approaches the interface [8 ]. Material separation along the interface itself can also lead to

crack deflection or arrest [8 ], [35 ], [61 ].

Similar to OLs, changes in crack growth rates near the interface(s) are typically explained

through modifications to the effective crack driving force. The modifications are based on

the changes in plastic deformation and subsequent stress redistribution that occur across

the interface [8 ], [62 ]–[64 ]. This approach has successfully described crack growth rates in

cases where the crack penetrates one or more interfaces with minimal debonding along the

interfaces themselves [8 ], [36 ]. However, these models are more challenging to apply when

multiple cracks may be actively growing: the original crack and cracks along the interface(s)

[65 ]. Models based only on calculating the effective crack driving force also cannot identify
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the critical conditions for crack deflection into the interface. Here, interactions occur between

the growth of each crack and the inhomogeneous plastic deformation across the interface.

These observations indicate that advances in plasticity modeling can help to understand

crack extension following OLs and near interfaces in inhomogeneous materials. These ad-

vances can in turn enhance both fatigue life predictions under complex load spectra and

design of fracture-resistant materials. To this end, this thesis addresses two gaps associated

with transient fatigue crack growth in rate-independent materials. First, the role of plastic

strain gradients in transient fatigue crack growth and associated phenomena like crack clo-

sure is unknown. Second, interactions between a yield strength mismatch and weak interfaces

for fatigue crack growth in multilayer materials have not been investigated in detail.

1.3 Creep-fatigue crack growth in rate-dependent materials

Over the last several decades, the field of time-dependent fracture mechanics has devel-

oped to characterize subcritical crack extension at high temperatures [5 ]. Initial research

focused on identifying crack-tip parameters for rate-dependent materials analogous to the

stress intensity factor K and the J integral for rate-independent elastic-plastic materials [66 ].

The goal of this approach is to extend the concept of similitude to rate-dependent material

behavior, such that crack-tip conditions can be described by a single parameter [67 ]. The

appropriate parameter is generally calculated using a path-independent integral around the

crack tip and, in some cases, using experimentally-measured load-displacement records [5 ].

For materials undergoing widespread viscoplastic or creep deformation, the C∗ parameter,

defined by Landes and Begley [68 ], characterizes the crack-tip fields for both stationary and

growing cracks [67 ]. The C∗ parameter can be calculated based on load-displacement data

in an experiment and has been successfully used to correlate crack growth rates in cases of

widespread creep [5 ]. In this case, the time-dependent crack growth rates da/dt are related

to C∗ through a power law:
da

dt
= Ac (C∗)Mc , (1.3)

where Ac and Mc are determined from experiments, similar to the Paris law for rate-

independent fatigue crack growth. The C(t) parameter, calculated using an integral on
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a contour within the creep zone, generalizes C∗ to situations without widespread creep and

serves as the time-dependent analogue of the J integral [69 ]. The C(t) integral is path-

independent if the contour is within a region where the creep strain rate is much greater

than the elastic strain rate. It is path independent everywhere under extensive creep con-

ditions, where C(t) = C∗. The C(t) parameter characterizes the stress and strain fields

at the crack tip as the creep zone grows from a small-scale creep regime to a widespread

creep regime. The crack-tip fields have the form of Hutchinson-Rice-Rosengren (HRR) fields

defined for plastically-deforming materials [70 ], [71 ], but with amplitude given by C(t) in-

stead of J [72 ]. Since C(t) cannot be measured experimentally, Saxena [73 ] introduced the

Ct parameter, calculated based on the energy rate (or power) input to a specimen. The Ct

parameter is proportional to the rate of expansion of the creep zone for a stationary crack

and is equivalent to C∗ for extensive creep conditions, but it is not equal to C(t) in the

small-scale and transition creep regime. [74 ].

Experimental studies of time-dependent crack growth rates led to two general classifica-

tions for metals at high temperatures based on material behavior and crack extension during

sustained loading. Creep-ductile materials are characterized by widespread viscoplastic de-

formation that accompanies crack extension [5 ]. During steady-state crack growth, changes

in the crack-tip fields due to crack extension are minimal, and the crack can be treated as

stationary (i.e., the HRR-type fields calculated using the C∗ parameter are valid for both

stationary and growing cracks) [75 ]. During constant-amplitude cyclic loading of creep-

ductile materials, the stress intensity factor range ∆K is still applicable, as long as the

loading frequency meets conditions prescribed in ASTM E2760 [76 ]. Creep-brittle materials

are characterized by confined viscoplastic deformation in a region near the crack tip [5 ].

The viscoplastic zone, in turn, advances with crack extension. Many studies have success-

fully correlated K and ∆K with crack growth under sustained loads and constant-amplitude

cyclic loads, respectively [4 ], [32 ], [77 ], [78 ]. However, caution is required when the creep

zone changes in size and shape during sustained loading, which can lead to a non-unique

correlation with K and other parameters like Ct [79 ], [80 ]. Based on sustained-loading crack

growth experiments at high temperatures, Alloy 617 meets the conditions for creep-ductile

materials [15 ], [17 ], while Alloy 718 meets the conditions for creep-brittle materials [5 ], [28 ].
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More work is needed to extend these ideas to cases with transient loading. For example,

finite element computations by Yoon et al. [81 ] predicted a reduction in the effective Ct

parameter during hold times following OLs. However, high-temperature experiments on a

Cr-Mo steel using the same waveform led to increased crack growth rates after OLs, which

was attributed to enhanced void nucleation and growth [81 ]. Some numerical studies us-

ing strip-yield [82 ], [83 ] and finite element [84 ] methods have investigated crack closure in

rate-dependent materials but primarily under steady-state conditions. Overall, it is unknown

how the concepts of creep-ductile and creep-brittle materials can be applied for crack growth

under transient loads. A gap exists in predicting whether crack growth acceleration, retar-

dation, or a close competition between the two will occur following OLs in rate-dependent

materials. The contradictions observed in the experiments on Alloy 617 and Alloy 718 dis-

cussed in Section 1.1 provide compelling evidence that this gap is important to fill. The

possibility of net acceleration following OLs in Alloy 617 is especially concerning because

the retardation-based models developed for rate-independent ductile metals do not predict

this behavior.

1.4 Research questions

This thesis first considers fatigue crack growth in rate-independent materials. This ad-

dresses the knowledge gap related to the role of plastic strain gradients in fatigue crack

growth. This also addresses the gap related to interactions between a yield strength mis-

match and weak interfaces in inhomogeneous materials.

The research questions addressed in this thesis for rate-independent fatigue crack growth

are as follows:

1. What role do plastic strain gradients play in predictions of fatigue crack growth under

constant-amplitude and transient loading?

2. How do the interface strength, yield strength mismatch, and plastic strain gradients

control fatigue crack growth behavior in bi-materials?
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3. In a multilayered material, how does the size of a layer relative to the crack-tip plastic

zone influence crack extension?

Creep-fatigue crack growth in rate-dependent materials is considered next. This addresses

the knowledge gap regarding situations where crack growth acceleration and retardation

occur following OLs in rate-dependent materials. The specific cases of crack growth in Alloy

617 and Alloy 718 are investigated.

The research questions addressed in this thesis for rate-dependent creep-fatigue crack

growth are as follows:

1. What is the influence of the material rate sensitivity on post-overload fatigue crack

growth rates in creep-ductile materials like Alloy 617?

2. What damage, hardening, and recovery mechanisms are relevant to steady-state and

transient crack growth in creep-brittle materials like Alloy 718?

3. What insights do the computations provide into experimental results for crack growth

following OLs in Alloy 617 and Alloy 718?

4. For both Alloy 617 and Alloy 718, what role do plastic strain gradients play in steady-

state and transient crack growth?

These questions were addressed using finite element computations. The computational

model combined elastic-plastic or elastic-viscoplastic constitutive laws in the bulk material

with an incremental cohesive zone formulation to describe material degradation and crack

extension. The plasticity and viscoplasticity formulations accounted for hardening due to

plastic strain gradients [38 ], [41 ], [85 ]. Damage evolution equations phenomenologically

accounted for dissipative mechanisms associated with subcritical crack growth under cyclic

and hold-time loading [86 ]–[89 ]. Crack extension was thereby an outcome of the model.

This enabled the model to predict the evolution of the crack-tip fields and the transient

crack growth rates associated with OLs and inhomogeneous materials. This approach also

made it possible to identify how different aspects of crack-tip plasticity, particularly plastic

strain gradients and rate dependence, influence crack extension and the crack-tip fields.
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1.5 Structure of this thesis

Chapter 2  presents an overview of the constitutive models used in the finite element

computations. This includes each of the model components: (i) strain gradient plasticity

and viscoplasticity models used to describe irreversible deformation in the bulk material and

(ii) the cohesive zone model, together with fatigue and time-dependent damage evolution

equations, used to describe subcritical material degradation and crack extension.

Chapter 3 presents a numerical study of crack growth following OLs in rate-independent

materials. Particular emphasis is placed on the evolution of the crack-tip fields and crack

growth rates after an OL. It is demonstrated that hardening due to plastic strain gradients

is significant in the OL plastic zone. This hardening plays an important role in the residual

stresses at the crack tip and the subsequent crack growth rates predicted by the model.

Chapter 4  presents a numerical study of crack growth in inhomogeneous multilayered ma-

terials with weak interfaces. Configurations investigated in the model include a bi-material,

with each constituent having a different yield strength, and a high-yield-strength material

containing a low-yield-strength interlayer. Hardening due to plastic strain gradients is shown

to influence crack growth rates when the crack-tip plastic zone begins interacting with the

interfaces.

Chapter 5 presents computations of crack growth in rate-dependent materials subjected

to cyclic loading. Here, the bulk material was characterized by a power-law viscoplastic-

ity formulation, which is typical of Alloy 617. The computations investigated fatigue crack

growth rates following a single OL and a block of multiple OLs. Results from a parametric

study demonstrate the crucial role of the material rate sensitivity, or creep exponent, in de-

termining whether retardation occurs following OLs. The model was subsequently calibrated

to experimentally-measured steady-state fatigue crack growth rates for Alloy 617 at 800◦C

from [15 ]. Predictions of crack extension following OLs agree with trends in experiments on

Alloy 617 [18 ].

Chapter 6 presents computations of crack growth using a more complex viscoplasticity

model that accounts for hardening and dynamic recovery based on dislocation storage and

annihilation mechanisms. Time- and stress-dependent damage was considered as the main
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crack growth mechanism. This approach is relevant for creep-brittle materials like Alloy

718. The model was calibrated using experimentally-measured crack growth rates under

constant-amplitude and sustained loading on Alloy 718 at 650◦C from [90 ]. The computations

predicted crack growth retardation for three loading waveforms containing OLs, with a strong

dependence on the OL ratio. Predictions of crack extension following OLs agree with trends

in experiments on Alloy 718 [30 ], [33 ], [47 ].

Finally, Chapter 7  summarizes the main contributions of this thesis. The research ques-

tions identified in Section 1.4  are addressed based on the results presented in Chapters 3 –6 .

General conclusions are also discussed.
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2. PROBLEM FORMULATION AND CONSTITUTIVE

MODELS

The boundary value problems analyzed in this thesis considered a solid containing internal

cohesive interfaces. Problem solutions were obtained using two-dimensional plane strain

finite element computations. For quasi-static deformation with body forces neglected, the

principle of virtual work for a model containing internal cohesive surfaces is

∫
V

s : δF dV −
∫

Sint
TCZ · δ∆dS =

∫
Sext

Te · δudS, (2.1)

where s is the nominal stress tensor, F is the deformation gradient, V is the volume of

the solid, TCZ is the traction vector on the cohesive surfaces, ∆ is the separation vector

(or displacement jump) across the cohesive surfaces, Te is the traction vector on external

surfaces, u is the displacement vector, and Sint and Sext are the interfacial and external

surfaces, respectively. The traction and separation vectors TCZ and ∆ are decomposed into

normal and tangential components with respect to the cohesive surface: TCZ = Tnn̂ + Ttt̂

and ∆ = ∆nn̂ + ∆tt̂. The first and second terms in Eq. (2.1 ) capture deformation in the

solid and material separation on the cohesive surfaces, respectively. Separate constitutive

relations characterize each of these mechanisms. In this thesis, strain gradient plasticity and

viscoplasticity formulations were used for the solid material. An irreversible cohesive zone

formulation was used for material separation. The remainder of this chapter describes each

constitutive relation and provides background on their development and prior use.

2.1 Strain gradient plasticity and viscoplasticity

It is now well known that classical plasticity models provide an incomplete description of

plastic deformation. These models typically consider hardening as a function of the plastic

strain, which is associated with the development of statistically-stored dislocations (SSDs)

[41 ]. Experiments have shown that plastic strain gradients, associated with geometrically

necessary dislocations (GNDs), are important in the hardening response when there is sig-

nificant nonuniform plastic deformation over a sufficiently small lengthscale, usually on the
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Figure 2.1. Depiction of inhomogeneous plastic deformation and development
of geometrically necessary edge dislocations in order to maintain compatibility.
Used with permission from [92 ].

order of microns [41 ], [91 ]. In these situations, GNDs arise to maintain deformation com-

patibility, as shown schematically in Figure 2.1  for a crystal undergoing single slip [91 ], [92 ].

The GNDs in turn serve as obstacles to mobile dislocations, leading to enhanced hardening

beyond what is predicted by classical plasticity theories. Strain gradient plasticity models

account for the hardening contribution from GNDs by introducing the plastic strain gradient

and one or more intrinsic material lengthscales to the constitutive law [41 ]. These formula-

tions generally fall into two classes. Higher-order theories (e.g. [93 ]) include the higher-order

stress as the work conjugate to the plastic strain gradients. Lower-order theories (e.g., [85 ])

use an effective measure of the plastic strain gradient to alter the tangent modulus during

plastic deformation, without including the higher-order stress.

Initial experiments demonstrated the importance of plastic strain gradients in nanoin-

dentation [94 ] and torsion of thin wires [91 ]. These experiments demonstrated the trend that

“smaller is harder” or “smaller is stronger”: in situations where there is significant nonuni-

form deformation, a smaller specimen size or a smaller indentation depth leads to a higher

flow stress or hardness due to the influence of GNDs. Plastic strain gradients have been

shown to be relevant to crack-tip fields and crack growth under monotonic loading [38 ], [40 ],

[95 ], [96 ]. The reason is the development of large plastic strain gradients in the crack-tip

plastic zone. This leads to restricted plastic deformation relative to predictions from classical

plasticity models.

In this thesis, the influence of plastic strain gradients and rate-dependent deformation

on creep-fatigue crack growth rates and crack tip fields was evaluated using two strain gra-

dient viscoplasticity formulations. The first is the conventional theory of mechanism-based
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strain gradient viscoplasticity (CMSG-vp) of Huang et al. [85 ]. The rate-independent limit

of this formulation, referred to as the CMSG model in [85 ], was also used in studies of

rate-independent materials in this thesis. The second is the strain gradient Kocks-Mecking

(SGKM) model developed by Nguyen et al. [97 ]. The SGKM model combines calculations

of the GND density with a formulation based on the physical mechanisms of storage and

dynamic recovery of SSDs. These models are described in the next two sections.

2.1.1 Conventional theory of mechanism-based strain gradient viscoplasticity

The CMSG-vp model is based on Taylor’s dislocation theory [98 ]. This defines the flow

stress in terms of the dislocation density ρ:

σflow = Mαµb
√

ρ, (2.2)

where M is the Taylor factor, α is an empirical prefactor, µ is the shear modulus, and b

is the Burgers vector magnitude. The total dislocation density is taken as the sum of the

SSD and GND densities (ρS and ρG, respectively), such that ρ = ρS + ρG [99 ]. The GND

density is related to the effective viscoplastic strain gradient ηvp, a measure of the curvature

of plastic deformation [100 ], by

ρG = r̄
ηvp

b
, (2.3)

where r̄ is the Nye factor, equal to about 1.9 for face-centered cubic polycrystals [92 ]. An

equation for ρS can be found by considering the case of uniaxial tension, in which ηp = 0

[85 ]. In this case, Eq. (2.2 ) can be rearranged to give

ρS =
[

σflow

Mαµb

]2

, (2.4)

where the flow stress can be written in terms of the viscoplastic strain through a strain

hardening function f (εvp), with σflow = σ0f (εvp). Substituting Eq. (2.4 ) back into Eq. (2.2 )
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gives a general expression for the flow stress in terms of both the viscoplastic strain εvp and

the effective viscoplastic strain gradient ηvp:

σflow =
√

σ2
0f 2 (εvp) + M2r̄α2µ2bηvp = σ0

√
f 2 (εvp) + lηvp, (2.5)

where l is an intrinsic material length that scales the influence of viscoplastic strain gra-

dients. The intrinsic length is typically on the order of microns, which corresponds to the

experimental lengthscale where size effects are observed [85 ]. As in [85 ] and other studies

based on this approach [40 ], [101 ], a power-law hardening equation is used for f :

f (εvp) =
(

1 + Eεvp

σ0

)n

, (2.6)

where n is the strain hardening exponent and E is Young’s modulus. Using analytical

calculations based on models of GNDs for bending, torsion, and void growth, Fleck and

Hutchinson [41 ] and Gao et al. [93 ] determined the effective viscoplastic strain gradient ηvp

to be given by

ηvp =
√

1
4ηvp

ijkηvp
ijk, (2.7)

where

ηvp
ijk = εvp

ik,j + εvp
jk,i − εvp

ij,k. (2.8)

These equations use the standard index notation, with derivatives denoted by a comma. The

accumulated viscoplastic strain εvp
ij is the integral of the viscoplastic strain rate, i.e.

εvp
ij =

∫
ε̇vp

ij dt, εvp =
∫

ε̇vpdt, (2.9)

and ε̇vp is the von Mises effective viscoplastic strain rate.

A power law viscoplasticity equation relates the effective viscoplastic strain rate to the

effective stress:

ε̇vp = ε̇0

(
σ̄

σflow

)m

, (2.10)
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where ε̇0 is a reference strain rate, σ̄ is the von Mises effective stress, and m is the creep

exponent. This type of model is also often expressed in terms of the strain rate sensitivity,

1/m, such that the model is highly rate sensitive for small m. The model reduces to a Norton

secondary creep law for strain hardening exponent n = 0.

A rate-independent plasticity formulation is approximated by setting m to a large value

and replacing the reference strain rate ε̇0 with the von Mises effective strain rate, ˙̄ε. This

recovers the original rate-independent CMSG model of Huang et al. [85 ], where the effective

plastic strain rate ε̇p is given by

ε̇p = ˙̄ε
(

σ̄

σflow

)m

. (2.11)

Approximating rate independence using Eq. (2.11 ) provides an advantage over models that

incorporate plastic strain gradients into conventional rate-independent plasticity models: by

relating the strain rate to the stress instead of the stress rate, hardening due to plastic strain

gradients can be incorporated with minimal changes to the model framework [85 ]. Strain

gradient plasticity formulations based on standard rate-independent plasticity require calcu-

lation of the higher-order stress and the subsequent use of higher-order boundary conditions

[41 ], [93 ]. For the rate-independent fatigue crack growth computations in this thesis, a value

of m = 75.0 was found to provide sufficiently rate-independent behavior without introducing

numerical difficulties.

The CMSG-vp model was implemented using a UMAT subroutine in Abaqus [102 ], based

on the original CMSG implementation of [85 ], [103 ], which was used for the rate-independent

computations in this thesis. The implementation used a standard predictor-corrector algo-

rithm, and the viscoplastic strain increment was found using Newton-Raphson iterations in

each time step. Details of the numerical implementation are given in Appendix A.

2.1.2 Strain gradient Kocks-Mecking viscoplasticity formulation

The SGKM formulation is based on the work of Kocks, Mecking, and Estrin [104 ]–[107 ].

This approach describes viscoplastic deformation using the dislocation density as an internal

variable capturing the current microstructural state. The evolution of the SSD density is

described using physically-based laws for dislocation accumulation and annihilation [106 ],
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[108 ]. Nguyen et al. [97 ] developed the SGKM model by extending the Kocks-Mecking

approach to account for GNDs. The SGKM model uses the viscoplastic constitutive law

in Eq. (2.10 ), with the flow stress σflow determined as a function of the dislocation density.

Equation (2.10 ) is typically referred to as the kinetic equation in this context, as it relates

the rate of plastic strain to the stress and the current material state [106 ].

The flow stress in the SGKM formulation is given by

σflow = σ0 + Mαµb
√

ρS + ρG. (2.12)

Here, σ0 is the initial yield stress accounting for pre-existing strengthening mechanisms,

particularly second-phase particles (mainly γ′′ in the case of Alloy 718) [106 ]. The second

term accounts for strengthening associated with dislocations. As before, the evolution of the

GND density is given by Eq. (2.3 ), with the effective viscoplastic strain gradient calculated

from Eqs. (2.8 ) and (2.7 ).

Strain hardening is associated with an increase in the SSD density. Changes in the SSD

density result from the competition between dislocation storage and dynamic recovery [108 ].

Mathematically, the evolution of the SSD density with respect to the viscoplastic strain is

dρS

dεvp
= dρ+

S
dεvp

− dρ−
S

dεvp
. (2.13)

The first term on the right-hand side of Eq. (2.13 ) represents SSD storage, associated with

dislocations becoming immobilized at obstacles, described by the following equation:

dρ+
S

dεvp
= M

bΛ , (2.14)

where Λ is the mean free path of mobile dislocations. When mobile dislocations are immobi-

lized by forest dislocations, Λ is proportional to 1/
√

ρ [108 ]. The storage term is then given

by
dρ+

S
dεvp

= Mk1
√

ρ, (2.15)
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where k1 is a constant. Since both SSDs and GNDs can serve as obstacles to mobile dislo-

cations, the total dislocation density is used in Eq. (2.15 ) (i.e., ρ = ρS + ρG) [109 ].

The second term on the right-hand side of Eq. (2.13 ) describes SSD annihilation due to

dynamic recovery, a thermally-activated process associated with dislocation climb at high

temperatures [106 ]. This term is given by

dρ−
S

dεvp
= Mk2ρS (2.16)

where k2 is a parameter describing the rate sensitivity of the dynamic recovery process [106 ].

Estrin and Mecking [110 ] suggest that k2 is given by

k2 = k20

(
ε̇vp

ε̇0

)−1/n

, (2.17)

where k20 is a constant, ε̇0 is the reference strain rate from the kinetic equation, and n is a

rate sensitivity exponent. The form of Eq. (2.17 ) is based on observations that the flow stress

increases up to a saturation stress during the hardening process [110 ]. The SSD density alone

is used in Eq. (2.16 ) since GNDs are fully described by Eq. (2.3 ) and do not participate in

the annihilation process [109 ]. Also, dynamic recovery is the main source of rate dependence

in this formulation, as typically m � n [106 ], [107 ], [110 ]. Using Eqs. (2.15 ) and (2.16 ), the

expression for the evolution of the SSD density (Eq. (2.13 )) becomes

dρS

dεvp
= M (k1

√
ρ − k2ρS) . (2.18)

The SGKM model was implemented using a UMAT subroutine in Abaqus [102 ], based

in part on the original implementation of Nguyen et al. [97 ]. Here, two state variables

must be updated in each time step: the viscoplastic strain increment ∆εvp and the SSD

density increment ∆ρS. To achieve this, the SSD density increment was written in terms

of the viscoplastic strain increment, and the viscoplastic strain increment was found using

Newton-Raphson iteration. Details of the numerical implementation are given in Appendix

B.
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2.2 Material separation

The computations in this thesis captured material separation using an irreversible co-

hesive zone model (CZM). The CZM approach follows from the work of Barenblatt and

Dugdale [111 ], [112 ], who developed what is typically referred to as a process-zone or strip-

yield model to describe the stress distribution ahead of a crack tip [1 ]. Needleman [113 ],

[114 ] implemented a cohesive constitutive law within a finite element model. The cohesive

constitutive law relates material separation to cohesive tractions resisting separation on the

crack surfaces. As separation proceeds, the traction increases until it reaches a peak and then

smoothly falls, reaching zero when complete separation occurs [113 ]. The traction-separation

law describes the material separation process using two parameters: the cohesive strength

(i.e., the maximum traction) and the work of fracture or cohesive energy per unit area. The

traction-separation law was embedded in zero-thickness cohesive elements placed along an

interface between two materials or ahead of a crack tip. This eliminates the singularity at

the crack tip, while also enabling computations to predict fracture as an outcome of the

model even when there is not an initial crack.

Tvergaard and Hutchinson applied this concept to ductile fracture [115 ], [116 ]. Here,

the traction-separation law is intended to model the void growth and coalescence process,

which occurs together with plastic deformation in the bulk material. Subsequently, CZMs

have been used in numerous finite element computations involving fracture and interface

separation, with a variety of constitutive laws describing the bulk material and fracture

mechanisms embedded within the CZM description [117 ].

The CZM approach has been extended to fatigue crack growth by introducing either

unloading-reloading hysteresis or an evolving damage variable into the traction-separation

law [118 ]. Either of these approaches adds irreversibility to the CZM. For example, Nguyen

et al. [119 ] developed a model that used different unloading and reloading stiffnesses for the

CZM under cyclic loading. The reloading stiffness was assumed to gradually decay as a

function of the crack opening displacement rate. The more common approach has been to

introduce a damage variable, which degrades the traction-separation law until load-carrying

capacity is lost at a critical value of the damage [118 ]. The damage evolution equation is
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typically a function of the separation increment and the current traction at a point in the

cohesive zone, based on the concepts of damage mechanics [86 ], [88 ], [89 ], [120 ]–[123 ].

Multiple damage mechanisms can be considered in the development of damage evolution

equations for an irreversible CZM. For example, Bouvard et al. [88 ] combined fatigue and

creep damage evolution equations to describe subcritical crack growth in a single crystal

nickel-base superalloy. A simple summation of the creep and fatigue damage was found

to adequately fit experimental crack growth rate data in load regimes where both damage

mechanisms were active. Sun el al. [89 ] followed a similar approach, with the addition of an

environmental damage term associated with oxidation. Failure was assumed to occur when

either the combined creep-fatigue damage or the environmental damage reached a critical

value. The model was successfully fit to crack growth experiments on IN100. This approach

has also been extended to address crack growth due to oxygen-enhanced gain boundary

sliding [124 ].

The CZM approach with damage evolution was chosen in this thesis based on two key

advantages it provides. First, using a CZM formulation within an incremental finite element

model enables the computations to predict crack growth for arbitrary loading waveforms.

This enables a detailed analysis of the crack growth rates and the crack-tip fields following

various types of transient loading. Second, the CZM can be combined with any choice of

problem geometry and constitutive law for the bulk material. The computations can thereby

quantify how different characteristics of viscoplastic deformation and material inhomogeneity

influence the crack growth rates.

2.2.1 Irreversible cohesive zone model

The traction-separation relationship is based on the potential function proposed by Xu

and Needleman [125 ]. The normal and tangential traction-separation laws are given by

Tn = σmax,0 (1 − D) e exp
(

−∆n

δ0

)
∆n

δ0

{
1 − q

[
1 − exp

(
−∆2

t

δ2
0

)]}
(2.19)

Tt = 2σmax,0 (1 − D) eq
∆t

δ0

(
1 + ∆n

δ0

)
exp

(
−∆n

δ0

)
exp

(
−∆2

t

δ2
0

)
, (2.20)
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where σmax,0 is the cohesive strength, δ0 is a characteristic separation, D is a damage variable,

e = exp(1), q = φn,0/φt,0, and φn,0 and φt,0 are the cohesive energies for pure normal and

pure tangential separation, respectively. The cohesive strengths in normal and shear are

related by τmax,0 = σmax,0q
√

2e. The normal and shear cohesive energies are given by

φn,0 = σmax,0δ0e (2.21)

φt,0 = qσmax,0δ0e. (2.22)

Here, the parameter q was chosen as q = 1/
√

2e such that τmax,0 = σmax,0 [125 ]. In the

context of crack extension, the normal components are associated with mode I fracture, and

the tangential components are associated with mode II (shear) fracture.

For normal separation, unloading occurs toward the origin [126 ]. For tangential sepa-

ration, unloading occurs with the current stiffness of the tangential traction-separation law

[126 ]. When contact occurs between the cohesive surfaces, the normal traction is nega-

tive, and no damage accumulation occurs. In this situation, the traction-separation law is

modified with a penalty stiffness A = 30 [87 ] such that the normal traction is given by

Tn (∆n) = Aσmax,0 exp
(

1 − ∆n

δ0

)(
∆n

δ0

)
. (2.23)

Subcritical crack growth is captured through the evolution of the damage variable D.

A cohesive element is considered to have failed when D = 1.0. Damage is defined on an

averaged-per-element basis [86 ]. For materials where rate-independent fatigue damage is

relevant, the damage evolution equation introduced by Roe and Siegmund [86 ] was used:

Ḋ = | ˙̄∆|
δΣ

〈
T̄ / (1 − D) − σf

σmax,0

〉
H
(
∆̄acc − δ0

)
, ∆̄acc =

∫
| ˙̄∆|dt (2.24)

where ∆̄acc is the accumulated separation, 〈〉 are Macauley brackets, and H is the Heaviside

function. The characteristic fatigue separation δΣ scales the increment in effective separa-

tion while the cohesive zone endurance limit σf sets the traction below which no damage

accumulation occurs [86 ]. Damage does not set in until the accumulated separation exceeds
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a threshold, chosen as δ0 [86 ], [87 ]. During an increment in a finite element computation,

the fatigue damage increment is proportional to the separation increment and weighted by

the current traction. In Chapter 5 , a modified version of this equation was used:

Ḋ = | ˙̄∆|
Cf

〈
T̄ − σf

〉
, (2.25)

where Cf is a reference damage energy with units of stress-length or energy per unit area

and, as before, σf is a threshold below which damage does not accumulate. This removes the

explicit coupling between the cohesive strength and the damage evolution equation, leaving

a single parameter Cf in the denominator of this equation. The parameter Cf is similar to

reference energy release rate terms that serve as scaling parameters in damage laws coupled

with elasticity and plasticity in the bulk material [127 ]. The parameters Cf and σf are used

to calibrate the model to experimentally-measured crack growth rates.

For rate-dependent materials where time-dependent damage is relevant, a Kachanov-

Rabotnov-type damage evolution equation was used [88 ], [128 ]. Here, the damage evolution

is given by

Ḋ =
〈

T̄ / (1 − D) − Tc

Cc

〉r

, (2.26)

where Tc is a threshold traction below which damage does not accumulate and r is a dam-

age exponent. The parameter Cc is similar to the reference damage energy in Eq. (2.25 ),

but it has units of [stress]·[time]1/r. These parameters are used to calibrate the model to

experimentally-measured crack growth rates. The time-dependent damage is proportional

to the current traction, such that damage accumulation increases with long hold times at

high stresses.

The effective traction and separation, T̄ and ∆̄, used in the damage evolution equations

are given by

T̄ =
√

T 2
n + T 2

t (2.27)

∆̄ =
√

∆2
n + ∆2

t (2.28)
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such that the normal and tangential components are given equal weight for the current choice

of q = 1/
√

2e.

Under pure mode I conditions, the tangential traction and separation are zero. Therefore,

the traction-separation law simplifies to

Tn = σmax,0 (1 − D) exp
(

1 − ∆n

δ0

)(
∆n

δ0

)
. (2.29)

The effective traction and separation used in the damage evolution equations are also equiv-

alent to the normal traction and separation. This is the case for all studies presented here

except for crack growth along interfaces in Chapter 4 .

The UEL subroutine [102 ] implementation of the irreversible CZM by Roe and Siegmund

[86 ] was used throughout this thesis. The subroutine was modified to incorporate the time-

dependent damage evolution equation, Eq. (2.26 ).
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3. PLASTIC STRAIN GRADIENTS AND TRANSIENT

FATIGUE CRACK GROWTH

A version of this chapter has been previously published in International Journal of Fatigue

[129 ]: J.D. Pribe, T. Siegmund, V. Tomar, J.J. Kruzic, “Plastic strain gradients and transient

fatigue crack growth: A computational study,” Int J Fatigue, vol. 120, pp. 283-293, 2019.

DOI:10.1016/j.ijfatigue.2018.11.020.

3.1 Introduction

A key question in fatigue failure is how crack growth rates change in response to variable

amplitude loads, where no steady state solutions exist for the fatigue crack growth problem.

As a result, transients in fatigue crack growth require a detailed, often cycle-by-cycle analysis

of the problem [6 ], [54 ]. The use of cohesive zone models for fatigue crack growth has been

shown to be highly relevant in such studies and has provided detailed insight into transient

crack growth problems [87 ], [118 ], [119 ], [130 ]–[132 ]. As noted in Chapter 1  , the description of

plastic deformation during crack growth transients is also extremely important for predicting

the crack growth rates. To this end, this study investigates the influence of hardening due

to plastic strain gradients on crack extension following OLs.

Strong plastic strain gradients can develop in the plastic zone ahead of a crack tip, par-

ticularly under plane strain conditions [133 ]. Numerical studies of cracked bodies subjected

to monotonic loading have shown that GNDs associated with plastic strain gradients reduce

crack-tip blunting and produce a region ahead of the crack tip with significantly higher stress

than that predicted by either the classical HRR fields or computations with classical plas-

ticity models [95 ], [134 ]. As a result, strain gradient plasticity models predict lower fracture

toughness for both sharp and initially blunted cracks [135 ].

In the context of fatigue, Sevillano [136 ] derived an analytical model for the intrinsic

stress intensity threshold for fatigue crack growth based on the strain gradient in the crack-

tip plastic zone. An overview of experimental results indicated that plastic strain gradients

explained the existence of this intrinsic threshold, on which crack closure effects are superim-
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posed in experimentally measured thresholds. Brinckmann and Siegmund [137 ] found that

plastic strain gradients reduce crack closure in constant amplitude loading, which led to a

slightly increased steady-state growth rate in a numerical study using strain gradient plastic-

ity model based on dislocation densities. Computations using a cohesive zone model coupled

to the GND density predicted the delayed retardation phenomenon following an OL [138 ],

well-known from numerous fatigue crack growth experiments [51 ], [54 ], [139 ]. Regions of

enhanced and reduced GND densities in the computations corresponded to the OL-induced

acceleration and retardation, respectively. Results in [138 ] were limited, however, due in

part to numerical difficulties that arose outside of a small range of applied loads.

Experiments also provide evidence for the relevance of plastic strain gradients in fatigue

crack growth. Electron backscatter diffraction measurements have been used by several

researchers to infer grain misorientations and GND densities ahead of a fatigue crack [140 ]–

[142 ]. These studies have generally observed GNDs at distances ahead of the crack close

to classical estimates of the plastic zone size. Using X-ray microdiffraction, the authors in

[143 ] observed large GND densities, along with small voids and cracks, near the surface of

a fatigue crack subjected to an OL. However, the relative role of GNDs in comparison to

SSDs remains an open question for both steady-state and transient fatigue crack growth.

Further investigation is thus warranted to quantify the changes in crack tip fields and cyclic

deformation predicted by strain gradient plasticity models relative to classical plasticity. This

will in turn determine whether plastic strain gradients must be accounted for in practical

fatigue assessments.

This study addresses the hypothesis that lengthscale effects in plasticity would not affect

predicted steady-state fatigue crack growth rates but would alter predicted crack growth

rates when the crack is subjected to load transients, such as an OL. This hypothesis is

motivated by the fact that steady-state fatigue crack growth is known to be essentially

microstructure insensitive and can be described by linear elastic fracture mechanics under

small-scale yielding conditions. On the other hand, the extent of retardation due to an OL

depends on the well-known mechanisms of plasticity-induced crack closure and compressive

residual stress ahead of the crack tip, both of which are closely tied to the crack-tip plastic

zone size and plastic strain magnitudes [44 ], [51 ], [144 ]. These quantities will be influenced by
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plastic strain gradient hardening in the large monotonic plastic zone resulting from the OL.

Furthermore, it has been argued that post-OL crack growth is governed by near-threshold

micromechanisms [139 ], which, as noted previously, have been connected to GNDs at the

crack tip and in the plastic zone.

The computational model used in this study combined a first-order strain gradient plas-

ticity formulation [85 ] with an irreversible cohesive zone model [86 ]. Crack growth rates, the

evolution of cohesive zone tractions and separations, and plasticity in terms of strains and

strain gradients in the bulk material are considered for both constant-amplitude loading and

the transient period following a single OL. The effects of plastic strain gradients are then

elucidated by analyzing the crack-tip stress, strain, and strain gradient fields.

3.2 Model description

Mode I cyclic loading under plane strain conditions was applied via a boundary layer

model [57 ], modified by the introduction of cohesive elements. In this approach, an initially

sharp crack and the domain of crack extension are enclosed in a circular domain. Displace-

ments corresponding to the asymptotic crack-tip solution were imposed on the boundary,

which remains elastic and surrounds the crack-tip plastic zone. This assumes that the con-

dition of small-scale yielding is fulfilled. Given a prescribed mode I stress intensity factor

KI , the boundary displacements u(t) are determined from the Williams expansion [145 ] as

ux(t, r, θ) = KI(t)1 + ν

E

√
r

2π
cos

(
θ

2

)
(3 − 4ν − cos θ) , (3.1)

uy(t, r, θ) = KI(t)1 + ν

E

√
r

2π
sin

(
θ

2

)
(3 − 4ν − cos θ) , (3.2)

where E is Young’s modulus, ν is Poisson’s ratio, and r and θ are the radial and angular

coordinates, with the initial crack tip as the origin. A triangular waveform was prescribed

for the mode I stress intensity factor in order to simulate cyclic loading.

The finite element mesh used in this study is shown in Figure 3.1  . The displacement

boundary conditions were applied on the outer nodes, as shown in Figure 3.1  a. Due to
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Figure 3.1. (a) Global and (b) crack-tip mesh in the modified boundary layer model.

symmetry in mode I loading, a half-model was considered. The continuum consisted of 3892

linear plane strain elements and 123 cohesive zone elements along the symmetry line. The

cohesive elements shared their top nodes with the adjacent solid elements. The bottom

nodes were along the symmetry line, so their vertical displacements were fixed at zero. Due

to symmetry, the horizontal displacements of the top and bottom nodes were tied pairwise,

such that pure mode I conditions were present and the tangential traction and separation

in the cohesive zone were zero. A structured quadrilateral mesh was used near the crack

tip, extending in the crack growth direction. The MBL model radius (RMBL) is 10,000 times

larger than the minimum element size.

The rate-independent CMSG model described in Section 2.1.1  , with m = 75.0 in Eq.

(2.11 ) was used to describe the bulk material. The irreversible CZM with fatigue damage

given by Eq. (2.24 ) in Section 2.2.1  was used to describe material separation ahead of the

initial crack tip. Since pure mode I conditions were active, the traction-separation law was

given by Eq. (2.29 ).

3.2.1 Model parameters

A model material was considered in order to provide general understanding of the role

of plastic strain gradients in fatigue crack growth. The material properties are based on the

work of Wang and Siegmund [87 ], [126 ]. For all computations, Young’s modulus and Poisson’s

ratio were E = 100 GPa and ν = 0.34, respectively. The reference stress σ0 was taken as the
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initial yield strength σY and set to σY = 0.0025E = 250 MPa, with an isotropic hardening

exponent of n = 0.1. Two intrinsic material length values were considered: l = 0 (predicts

strain hardening only) and l = 10 µm (strain hardening and strain gradient hardening). This

is an approximate upper bound on the value of l based on previous CMSG-based studies

[39 ], [85 ].

Previous studies of fatigue crack growth have linked the ratio of the cohesive strength

to the yield strength, σmax,0/σY , with the plastic dissipation in the bulk material during

crack extension [126 ], [131 ], [132 ], [137 ], [146 ]. Two values of this ratio were considered:

σmax,0/σY = 4.0 and σmax,0/σY = 4.5. These correspond to cohesive energies of φ0 = 20.0

J/m2 and φ0 = 25.0 J/m2 for constant characteristic separation δ0 = 7.36 nm. These two

cases were used to investigate the effect of plastic strain gradients relative to the amount of

crack-tip plasticity. The cohesive zone endurance limit and characteristic fatigue separation

were chosen as σf/σmax,0 = 0.25 and δΣ/δ0 = 4.0, following previous studies of fatigue crack

growth in the Paris regime [87 ], [137 ]. The implications of these parameter choices are

considered further in the Discussion.

A reference stress intensity factor K0 is defined from the linear elastic fracture mechanics

relation between the energy release rate and mode I stress intensity:

K0 =
√

Eφ0

1 − ν2 . (3.3)

For φ0 = 20.0 J/m2 and 25.0 J/m2, K0 = 1.50 MPa
√

m and 1.68 MPa
√

m, respectively. The

maximum applied stress intensity factor Kmax and stress intensity range ∆K are related to

the plane strain monotonic and cyclic plastic zone sizes Rp and Rc, respectively [147 ]:

Rp = 1
3π

(
Kmax

σY

)2
(3.4)

Rc = 1
3π

(
∆K

2σY

)2

. (3.5)

All computations presented here were completed under small-scale yielding conditions, with

RMBL on the order of 100Rp or greater. The smallest element size in the structured quadri-
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lateral mesh, equal to the minimum incremental crack advance, was 2.5δ0, while crack exten-

sion was restricted to the structured mesh region, resulting in a maximum crack extension

of ∆amax = 275δ0. Results are depicted for crack extension up to only ∆a = 250δ0 since this

ensures the crack-tip plastic zone also remains contained in the refined mesh region.

3.3 Results

First, steady-state crack growth is considered. Figure 3.2  shows the dependence of the

predicted normalized crack growth rate d(a/δ0)/dN on the normalized applied stress inten-

sity factor range ∆K/K0 for combinations of the intrinsic material length l, load ratio R,

and initial cohesive strength σmax,0. In all cases, a Paris Law-type response emerges from

the model, i.e., the predicted response can be described by the equation d (a/δ0) /dN =

A (∆K/K0)Mp .

The exponent Mp characterizes the slope of the lines in Figure 3.2  . Table 3.1  summarizes

the predicted Mp values for each combination of σmax,0/σY , R, and l. The exponent is quite

insensitive to the value of l, with small changes in the predicted steady-state crack growth

rate only becoming apparent for high values of ∆K with σmax,0/σY = 4.5. This produces

differences in the predicted value of Mp on the order of 10−2. Changing the load ratio R

shifts the data with respect to ∆K/K0 and slightly reduces the exponent Mp as well. This

behavior is seen in experiments [2 ] and in other numerical studies with cohesive zone models

[122 ].

Constant-amplitude loading interrupted by a single OL is now considered. Each compu-

tation was conducted with load ratio R = 0.1 and consisted of the following steps. First,

constant-amplitude loading was applied with ∆K/K0 = 0.28, 0.35, or 0.40. The OL was

applied in the cycle after the crack extension exceeded ∆a/δ0 = 75, such that steady-state

conditions developed prior to the OL. The OL ratio was Kmax,OL/Kmax = 1.73, where Kmax,OL

is the maximum applied stress intensity factor during the OL. This corresponds to applied

energy release rate ratio Gmax,OL/Gmax = 3.0.

Figure 3.3 shows the predicted crack extension for the computations with a single OL

and different steady-state ∆K/K0 values. Predictions for both l = 0 and l = 10 µm are
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(a) (b)

Figure 3.2. Dependence of the normalized crack growth rate on the normal-
ized stress intensity range for (a) σmax,0/σY = 4.0 and (b) σmax,0/σY = 4.5.

Table 3.1. Paris law exponents.
σmax,0/σY R l (µm) Mp

4.0

0.1
0 3.23
10 3.27

0.5
0 3.19
10 3.23

4.5

0.1
0 3.03
10 3.09

0.5
0 3.03
10 3.08
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Figure 3.3. Crack extension with a single OL for l = 0 (solid lines) and
l = 10 µm (dashed lines) with cohesive strength (a) σmax,0/σY = 4.0 and (b)
σmax,0/σY = 4.5. The load ratio is R = 0.1, with several cases of steady-state
∆K/K0.
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Figure 3.4. (a) Sample calculation of number of delay cycles. (b) Number of
delay cycles for l = 0 (solid lines) and l = 10 µm (dashed lines).

shown. All computations predict a brief transient period while crack growth begins from

the initial crack tip, followed by steady-state crack growth where the crack growth rate is

insensitive to the value of l. During the OL, the computations predict a brief acceleration

followed by crack growth retardation in the following cycles. For large crack extensions, the

crack growth rate is predicted to nearly return to the original steady-state value. The slightly

lower crack growth rate for longer crack lengths is a known feature of the modified boundary

layer model [87 ], as the assumptions behind Eq. (3.1 ) and (3.2 ), i.e. that the displacements

correspond to a constant ∆K, begin to be violated. In the present computations, the crack

grows through the entire OL plastic zone, allowing for analysis of the region where the OL

most significantly affects crack growth rates.

The importance of plastic strain gradients becomes clear in the post-OL crack growth

transients, where the computations predict less severe retardation for l = 10 µm than for

l = 0. The retardation was measured using the number of delay cycles Ndelay, defined as

the number of cycles required to traverse the OL-affected region relative to a crack under

only constant-amplitude loading [53 ], [54 ]. The value of Ndelay was calculated by applying

a linear fit to the region of crack extension far beyond the OL and extrapolating back to

the crack length when the OL was applied, as depicted in Figure 3.4a  . The number of delay
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cycles for computations with l = 0 and l = 10 µm for each σmax,0/σY and several values of

∆K/K0 is shown in Figure 3.4b  . The predicted Ndelay is always smaller for l = 10 µm, with

the effect becoming stronger for higher cohesive strength. Although Ndelay becomes smaller

at higher values of ∆K/K0, the difference between the predicted values for l = 0 and l = 10

µm remains very nearly constant.

The severity of retardation can be further examined through the crack growth rates,

shown in Figure 3.5  for ∆K/K0 = 0.35, relative to the number of cycles and the crack

extension. Figure 3.5a shows that, for l = 10 µm, the model predicts a higher minimum

fatigue crack growth rate than for l = 0 for both values of cohesive strength. Figure 3.5b  

provides information about the spatial extent of crack retardation after the OL. Following

the peak, the model predicts that the crack growth rate almost immediately falls to the

minimum value for l = 0 while the crack growth rate for l = 10 µm remains elevated for the

first few elements after the OL is applied. However, the maximum extent of the OL-affected

region is not significantly affected by the value of l. The OL-affected region ends at about

∆a/δ0 = 175 for all cases, with the higher cohesive strength (σmax,0/σY = 4.5) leading to

a small increase. Thus, for l = 10 µm, the model predicts a higher minimum crack growth

rate and a lower number of delay cycles, but a similar maximum extent of the OL-affected

region, relative to l = 0.

The transient processes in the cohesive zone and in the bulk plastic deformation give

insight into the role of plastic strain gradients in post-OL crack growth. In the following

results, these processes are analyzed using the computations with ∆K/K0 = 0.35 as a

representative case. Figures 3.6 and 3.7 show a comparison between the steady-state and

post-OL traction distributions for σmax,0/σY = 4.0 and σmax,0/σY = 4.5, respectively. In each

case, the steady-state traction distributions are nearly independent of the value of l, with

the main difference being a small amount of crack closure—indicated by negative traction—

for l = 0 and σmax,0/σY = 4.5. This occurs only at the minimum applied load, meaning

that the crack remains open for nearly the entire cycle. During and after the OL cycle,

the model predicts higher tractions and therefore more damage accumulation, along with

a lower magnitude of crack closure for l = 10 µm. This is most pronounced in the region
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Figure 3.5. Dependence of normalized crack growth rates for l = 0 (solid
lines) and l = 10 µm (dashed lines) on (a) cycles after the OL cycle and (b)
normalized crack extension. The load ratio is R = 0.1, with ∆K/K0 = 0.35.
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Figure 3.6. Traction distribution in the cohesive zone for l = 0 (solid lines)
and l = 10 µm (dashed lines) during (a) steady-state crack growth and (b) the
OL cycle. The load ratio is R = 0.1, with ∆K/K0 = 0.35 and σmax,0/σY = 4.0.
The insets depict the points at which the traction distribution is shown. x = 0
corresponds to D = 1.0 for point “a”.
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Figure 3.7. Traction distribution in the cohesive zone for l = 0 (solid lines)
and l = 10 µm (dashed lines) during (a) steady-state crack growth and (b) the
OL cycle. The load ratio is R = 0.1, with ∆K/K0 = 0.35 and σmax,0/σY = 4.5.
The insets depict the points at which the traction distribution is shown. x = 0
corresponds to D = 1.0 for point “a”.
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Figure 3.8. Maximum and minimum traction in the cohesive zone for each
cycle relative to the OL with (a) σmax,0/σY = 4.0 and (b) σmax,0/σY = 4.5.
The load ratio is R = 0.1, with ∆K/K0 = 0.35.

where compressive tractions occur at minimum load, which corresponds to the OL-affected

region where crack growth rates are significantly reduced.

The evolution of cohesive zone tractions in the OL-affected region is summarized using the

values of the maximum and minimum traction in the cohesive zone in each cycle, Figure 3.8  .

For a given cycle, this corresponds to the maximum traction at point “a” and the minimum

traction at point “c” as depicted in Figures 3.6 and 3.7 . The region of interest is restricted

to the cohesive zone ahead of D = 1.0 in order to gain insight into the material separation

process. The maximum traction provides a measure of Ktip, the effective maximum stress

intensity at the crack tip, suggested by Willenborg et al. [44 ] as the controlling parameter for

retardation following an OL. The minimum traction is a measure for the magnitude of crack

closure, which is associated with Kop, the stress intensity factor required to open the crack

[51 ], [131 ]. After the OL, for l = 10 µm, the model predicts higher maximum and minimum

traction in each cycle. The predicted level of crack closure is therefore reduced when plastic

strain gradients are accounted for, while the crack-tip stress intensity is increased. This effect

persists for a larger number of cycles for the higher cohesive strength value due to the lower

crack growth rates. The increased tractions are associated with a reduction in compressive
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Figure 3.9. Normalized separation distribution in the cohesive zone for l =
0 (solid lines) and l = 10 µm (dashed lines) at (a) maximum applied load and
(b) minimum applied load. The load ratio is R = 0.1, with ∆K/K0 = 0.35
and σmax,0/σY = 4.0. The inset in (b) shows a zoom of the region where the
cohesive surfaces are in contact, and x = 0 corresponds to D = 1.0.

residual stresses induced by the OL and correspond to the higher minimum crack growth

rate seen for l = 10 µm.

Figure 3.9  shows representative separation distributions for steady-state crack growth and

the OL cycle. Plastic strain gradients have virtually no effect on the separation during steady-

state crack growth. At maximum load in the OL cycle for l = 10 µm, the model predicts

elevated separation in the cohesive zone compared to l = 0, which leads to additional damage

accumulation. At minimum load, the crack faces are in contact ahead of the location where

D = 1.0. The length of the region where closure occurs is quite independent of the value of

l, while the magnitude of closure is reduced for l = 10 µm. The predicted separation behind

the crack tip is also lower for l = 10 µm at both maximum and minimum load in the OL

cycle. This is consistent with previously reported computations with cracks in monotonically

loaded structures where strain gradient plasticity models predict less blunting than classical

plasticity models [134 ], [148 ].

Figures 3.10 a and 3.10 b show the spatial distribution of the accumulated plastic strain

in the structured-mesh region for each value of l. The outer contour, at εp = 0.001, marks
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the edge of the plastic zone. Initially, a steady-state plastic zone forms as the crack grows

at a constant rate. The OL then induces an increase in the plastic zone size and maximum

plastic strain magnitude, which is mostly ahead of the location where D = 1.0 at the start of

the OL cycle. No further crack-tip plasticity is generated for 40 cycles and 36 cycles after the

OL for l = 0 and l = 10 µm, respectively, as the most significant crack growth retardation

occurs. At the crack extension shown in Figure 3.10  , ∆a/δ0 = 245, the steady-state plastic

zone has re-formed. This occurs at 66 cycles and 59 cycles after the OL for l = 0 and l = 10

µm, respectively. While the plastic zone sizes in the steady state and at the OL for each

value of l are quite similar, the maximum plastic strain magnitude in the OL plastic zone is

reduced by a factor of about 1.6 for l = 10 µm relative to l = 0. This reduced plastic strain

magnitude in the bulk means that more separation occurs in the cohesive zone following the

OL, leading to enhanced damage accumulation. This is responsible for the higher minimum

crack growth rate and the reduced number of cycles required for the steady-state plastic

zone to re-develop for l = 10 µm.

Figure 3.10 c shows the spatial distribution of plastic strain gradients for l = 10 µm.

Similar to the plastic strain, the plastic strain gradients reach a steady-state distribution

until the OL induces an instantaneous increase in the plastic strain gradient magnitude.

The regions where plastic strain gradients are highest correspond to regions of restricted

plastic deformation in Figure 3.10 b relative to Figure 3.10 a. In the OL-affected region, the

maximum value of ηp is 82 mm−1, while the maximum value of ηp during steady-state crack

growth is 24 mm−1. A more quantitative description of the role of plastic strain gradients

in the hardening response is based on Eq. (2.5 ). If isotropic hardening is neglected (i.e.

the strain hardening exponent n is set to 0), the flow stress associated with strain gradient

hardening alone, σSG
flow, is

σSG
flow
σY

=
√

1 + lηp. (3.6)

The outer contour in Figure 3.10  c corresponds to σSG
flow/σY = 1.05. During steady-state crack

growth, the largest value of σSG
flow/σY is about 1.11. However, in the OL-affected region, the

largest value of σSG
flow/σY is about 1.35.
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Figure 3.10. (a) Accumulated plastic strain (εp) contours for l = 0; (b)
Accumulated plastic strain (εp) contours for l = 10 µm; and (c) Plastic strain
gradient (ηp) contours for l = 10 µm. The superimposed solid lines mark the
current crack extension (∆a/δ0 = 245) while the dashed lines mark the crack
extension at the start of the OL cycle (∆a/δ0 = 75). The load ratio is R = 0.1,
with ∆K/K0 = 0.35 and σmax,0/σY = 4.0.
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Figure 3.11. Maximum accumulated plastic strain in the steady-state and OL
plastic zones for computations with (a) σmax,0/σY = 4.0 and (b) σmax,0/σY =
4.5. Solid lines are for l = 0; dashed lines are for l = 10 µm.

Two measures that allow for comparisons across values of l, σmax,0/σY , and steady-state

∆K/K0 are now defined. Figure 3.11 shows the maximum plastic strain magnitude in the

steady-state and OL plastic zones for each computation. For l = 10 µm, the model predicts

significantly reduced plastic strains in the OL plastic zone for all cases, with the effect

becoming more significant for the higher cohesive strength. This leads to more deformation

in the cohesive zone and corresponds to the higher separation, traction, and crack growth

rates seen previously for l = 10 µm. While the absolute magnitude of the plastic strain

increases with increasing ∆K/K0, the relative effect of increasing l does not significantly

change. The plastic strain in the steady-state plastic zone is also fairly insensitive to l.

Figure 3.12  shows the length of the cohesive zone that is closed at minimum load in

the cycles following the OL for each computation, denoted by Lclosure. While this quantity

increases with increasing cohesive strength and stress intensity range, it shows only a small

dependence on the value of l. In fact, Lclosure differs between each value of l by a maximum of

one element length. This is consistent with evidence from the crack growth rate, traction and

separation distributions, and plastic zone size that the maximum extent of the OL-affected

region does not depend on l.
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OL. Solid lines are for l = 0; dashed lines are for l = 10 µm.
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3.4 Discussion

The computations presented here show that hardening due to plastic strain gradients

significantly affects numerical predictions of fatigue crack growth following an OL. Due to

restricted plastic deformation in the OL plastic zone, there is increased dissipation in the

cohesive zone. This is seen in the elevated values of traction and separation predicted

for l = 10 µm that persist throughout the OL-affected region and lead to higher crack

growth rates relative to l = 0. The relative increase in crack growth rates is amplified

for computations with a higher cohesive strength, which is associated with more crack-tip

plasticity. Changing the applied load does not significantly alter the model predictions for

l = 10 µm relative to l = 0. The computations thus support the hypothesis that plastic

strain gradient hardening is important in transient fatigue crack growth situations but does

not significantly affect steady-state fatigue crack growth.

The irreversible cohesive zone model implemented in this study assumes that fatigue crack

growth is a stress- and deformation-dependent process. The damage evolution law depends

on scaled measures of both traction and separation, which is seen in discrete dislocation

models of fatigue crack growth [149 ], other studies using cohesive zone models [118 ], and

analytical models that include both ∆K and Kmax in the crack growth law [150 ]. The

Kmax dependence is associated with ductile damage in metals, such as micro- and nano-

voids ahead of the crack tip, which have produced dimpled damage zones corresponding to

the region where acceleration occurs after an OL [20 ], [151 ]. The current study indicates

that plastic strain gradients aid in understanding this process, as they promote the higher

stresses required to activate ductile damage mechanisms during the OL cycle. This leads

to elevated crack growth rates over a larger region relative to computations with l = 0, as

observed in Figure 3.5b  . This is similar to arguments for strain gradient hardening as the

mechanism by which the stress ahead of cracks in monotonic loading situations can reach the

high values required for cleavage cracking, even in ductile materials undergoing significant

plastic deformation [38 ], [40 ], [134 ], [152 ].

A key finding is that plastic strain gradients do not alter the OL plastic zone size, but

are critical in predicting the plastic strain magnitude and distribution in the OL plastic
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zone. Along with the predicted tractions shown in Figure 3.8 , this indicates that plastic

strain gradients should be considered in predictions of Ktip and Kop. These parameters

are associated with experimental observations of crack retardation [44 ], [51 ], [54 ] and finite

element studies of crack extension [133 ], [153 ], [154 ]. To determine Kop, the time step at

which the cohesive zone separation became positive (i.e. the crack opened) at all points

ahead of D = 1.0 was recorded for each cycle after the OL. The applied stress intensity

factor at this time step was then determined, which corresponds to an estimate of Kop.

Although the precise value of Kop determined through this process is dependent on the time

incrementation, trends with respect to the plastic strain gradient effects can still be observed.

For each loading case in this study, the model predicts Kop for l = 10 µm is 20% to 30%

less than for l = 0 in the region of maximum crack growth retardation. For example, with

∆K/K0 = 0.35 and σmax,0/σY = 4.5, Kop/Kmax = 0.5 for l = 0 while Kop/Kmax = 0.4 for

l = 10 µm at the minimum post-OL crack growth rate. This indicates that plastic strain

gradient hardening has a meaningful effect on post-OL crack closure through its role in the

plastic strain distribution.

As a consequence of this analysis, a useful conceptual question emerges: can the effect of

plastic strain gradients following the OL be replicated by increasing the bulk yield strength

relative to the cohesive strength? The predicted crack growth rates in Figure 3.13 indicate

that the answer to this question is no—that is, the effect of plastic strain gradients is unique.

Here, two additional computations were conducted with higher bulk yield strengths (σY =

260 MPa and σY = 270 MPa) and no strain gradient hardening. The cohesive strength

was fixed at 1125 MPa. While increasing the initial yield strength can capture either the

minimum crack growth rate or the number of cycles in the OL-affected region predicted

by the strain gradient plasticity model, it cannot capture both. This is because hardening

due to plastic strain gradients is highly localized at the crack tip, where the most extreme

gradients appear as seen in Figure 3.10 c. The role of this localized hardening in predicted

crack growth rates cannot be captured by simply recalibrating the parameters of the classical

plasticity model or the cohesive zone.

It should be noted that the magnitude of the predicted steady-state crack growth rates

in this study is on the order of 10−8 to 10−7 m/cycle, which corresponds to the lower end
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Figure 3.13. Predictions of the crack growth rate for l = 10 µm compared
with predictions for l = 0 with varied initial yield strength. The load ratio is
R = 0.1, with ∆K/K0 = 0.28.
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of the Paris law regime. The applied ∆K values necessary to achieve these crack growth

rates for the model material considered here are similar to those found in discrete dislocation

studies but are an order of magnitude below those of typical alloys [2 ], [155 ], [156 ]. This is

due to the choice of cohesive zone damage parameters (σf , σmax,0, and δΣ), which allow for

computations of the Paris law regime and of the response to load transients with reasonable

computational expense. Extensions of the current study could involve calibrating these

parameters to a specific fatigue threshold and crack growth rates. Such computations would

face significantly increased cost: the finite element mesh must be small enough—on the

order of the size used here and in strain gradient plasticity-based studies of fracture [39 ],

[152 ], [157 ]—to resolve plastic strain gradients and the active cohesive zone, while the crack

extension and number of cycles required to achieve a stabilized plastic wake scales with the

increasing plastic zone size [154 ]. Possible roadmaps for this type of study are discussed for

cohesive zone models in [122 ] and in the context of discrete dislocation models of fatigue

crack growth in [155 ].

Further extensions of this study could consider large-scale plasticity or small cracks, in

which plastic strain gradients may indeed be important even in constant-amplitude loading.

In addition, the isotropic hardening law used here is expected to give acceptable results for

growing cracks, but the model could be extended to kinematic hardening, which would be

necessary for considering crack initiation.

3.5 Conclusions

This study investigated steady-state fatigue crack growth and transient crack growth after

an OL using an irreversible cohesive zone model. The computations compared predictions of

crack extension and the crack-tip fields for a strain gradient plasticity model and a classical

plasticity model. This made it possible to identify situations where hardening due to plastic

strain gradients plays an important role in fatigue crack growth. Key conclusions include

the following:
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• The Paris law response for steady-state fatigue crack growth predicted by the strain

gradient plasticity model is virtually the same as that predicted by the classical plas-

ticity model.

• Hardening due to plastic strain gradients significantly restricts plastic deformation

in the OL plastic zone. This is associated with less compressive residual stress and

reduced crack closure compared with the classical plasticity model.

• The strain gradient plasticity model predicts a higher minimum crack growth rate

following the OL and less overall retardation. However, the extent of the OL-affected

region in terms of crack extension is nearly the same as in the classical plasticity model.

• Classical plasticity alone is sufficient for analyzing steady-state fatigue crack growth

in the small-scale yielding problem considered here. However, the computations with

strain gradient plasticity indicate that classical plasticity models underpredict tran-

sient crack growth rates following OLs.
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4. FATIGUE CRACK GROWTH ACROSS INTERFACES

A version of this chapter has been previously published in Engineering Fracture Mechanics

[158 ]: J.D. Pribe, T. Siegmund, J.J. Kruzic, “The roles of yield strength mismatch, interface

strength, and plastic strain gradients in fatigue crack growth across interfaces,” Eng Fract

Mech, vol. 235, pp. 107072, 2020. DOI:10.1016/j.engfracmech.2020.107072.

4.1 Introduction

An important question in predicting fatigue crack growth is how cracks behave in the

vicinity of heterogeneities. Introducing inhomogeneities by design holds promise for increas-

ing the toughness of materials. An example is the use of laminates, in which sheets of the

same or different materials are bonded together, and the design of metals with preferential

grain orientations or morphologies [159 ], [160 ]. Increased toughness is achieved in these ma-

terials by deflecting cracks at or near the interfaces, or by sufficiently reducing the crack

driving force such that it arrests at the interface. Advances in predicting crack behavior

near interfaces can therefore contribute greatly to the design and analysis of fracture- and

fatigue-resistant materials. However, from an analysis perspective, predicting the crack path

and growth rate becomes challenging as the steady state crack-tip process zone is disturbed

by elastic or plastic property mismatches near the interfaces.

In elastic materials, the main factors that govern whether a crack will penetrate or

deflect into an interface are the properties of the interface itself and the degree of mismatch

in the elastic properties on either side of the interface. Based on an energy release rate

analysis, He and Hutchinson [161 ] showed that, for identical elastic materials on either

side of the interface, the toughness of the matrix material must be at least four times the

interface toughness to cause crack deflection at a perpendicular interface. An elastic modulus

mismatch or the presence of residual stresses can significantly relax this requirement [162 ]–

[164 ]. Mixed mode effects also need to be considered on the interface, where combined mode

I and mode II loading are present [163 ].

In elastic-plastic materials, a yield strength mismatch can also affect the crack path when

the plastic zone interacts with the interface and the adjacent bulk material [35 ], [165 ]. Fur-
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thermore, the transient crack growth rates as the crack approaches the interface, in addition

to the penetration versus deflection behavior, are of interest in fatigue crack growth. The

situation in the current study involves a crack growing perpendicularly toward an interface

between a plastically soft (i.e. low yield strength) material and a plastically hard (i.e. high

yield strength) material. When the plastic zone approaches the interface, small-scale yield-

ing is locally violated since the plastic zone size and the distance from the crack to the

interface are on the same order of magnitude. As a result, self-similarity is no longer valid.

Concepts like Paris’ law therefore cannot be directly applied even when the overall specimen

dimensions are sufficient to satisfy the global small-scale yielding assumption. Extensive

experiments investigating this situation [8 ], [35 ], [36 ], [61 ], [166 ], [167 ] have produced the

following key observations: (1) crack growth rate retardation occurs near the interface for

a crack growing from a soft material to a hard material; (2) acceleration occurs near the

interface for a crack growing from a hard material to a soft material; and (3) the crack can

arrest and deflect into the interface if the interface is sufficiently weak.

These results can be conceptually understood based on shielding and anti-shielding mech-

anisms as the crack interacts with the interface. As explained by Sugimura et al. [168 ], stress

redistribution across the interface is key. For a crack growing from a soft material to a hard

material, load transfer to the hard material reduces the stress near the crack tip, thereby

reducing the effective driving force (a shielding effect). For a crack growing from a hard

material to a soft material, load shedding due to plastic deformation in the soft material

increases the stress near the crack tip, thereby increasing the effective driving force (an anti-

shielding effect). These effects may be superimposed with damage and material separation

along the interface itself, which will also shield the crack [61 ].

Modeling efforts for fatigue cracks in plastically mismatched materials have focused ex-

tensively on quantifying the shielding or anti-shielding due to the difference in yield strength.

This is typically accomplished by calculating the J integral on a contour near the crack tip

that does not cross the interface. This local crack-tip driving force is then compared with

the global applied J to determine the extent of shielding or anti-shielding, while each value

can be converted to a stress intensity range based on standard linear elastic fracture me-

chanics [168 ]. Riemelmoser and Pippan [63 ] showed that the local J is proportional to the
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crack-tip opening displacement and therefore describes the crack-tip plastic strains, as in

homogeneous materials.

The near-tip J can also be understood as the superposition of the applied J and a

“material inhomogeneity term” found by calculating J on a contour around the interface

itself [63 ], [64 ]. This idea has been extended by Kolednik and co-workers based on the concept

of configurational or material forces [64 ], [65 ], [169 ], [170 ]. Here, the material inhomogeneity

term is interpreted as an additional driving force on the crack that can be positive or negative,

thereby producing an anti-shielding or shielding effect, respectively. In the context of fatigue

crack growth, the main objective of this approach is to determine the conditions under

which the computed crack-tip driving force falls below the fatigue crack growth threshold.

This would occur near a soft-to-hard interface, where the shielding effect due to the yield

strength mismatch is strong [36 ], [65 ]. However, these models based on the J integral and its

extensions have difficulty in cases where the crack may deflect into the interface, or where the

interface sustains damage and provides additional shielding to the crack [65 ]. Furthermore,

these models cannot capture the transient evolution of crack tip fields as the crack approaches

the interface without also using a node release criterion to advance the crack tip [171 ].

To capture transient crack growth and possible deflection of the crack at an interface, a

model framework is needed where deformation in the bulk material and degradation ahead

of the crack tip determine fatigue crack growth as an outcome of the model. To this end,

the CZM approach is used to describe material degradation for both the main crack and

the interface crack. This approach allows for analysis of the competition between cracks

penetrating through the interface and deflecting at the interface, as crack advance is an

outcome of the boundary value problem. CZMs have successfully been used in conjunction

with various constitutive constitutive laws in the bulk material, including elastic [163 ], [172 ],

elastic-plastic [126 ], [165 ], and discrete dislocation [173 ] formulations, to investigate crack

extension near material interfaces under both monotonic and cyclic loading.

This study uses a strain gradient plasticity model to describe the bulk material. In the

context of cracks interacting with interfaces, significant plastic strain gradients can arise due

to constraint of the plastic zone by the interface. Such constraint can have a significant effect

on the fatigue crack growth behavior in these cases [174 ]. This effect has been investigated
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in monotonic fracture by Messner et al. [37 ]. These authors used a gradient-enhanced crystal

plasticity model to analyze crack-tip fields near grain boundaries in an Al-Li alloy. Their

results showed large GND densities near a grain boundary between a compliant grain (con-

taining the crack front) and a stiff grain. This outcome indicated that the stress enhancement

from GNDs could help drive delamination along the grain boundary [37 ].

The current study addresses two situations involving fatigue cracks in plastically in-

homogeneous materials: a crack growing toward a single perpendicular interface between

plastically mismatched materials, and a crack in a multilayer material where a plastically

soft interlayer is surrounded by a plastically hard matrix. There are three key research ques-

tions. (1) What regimes of behavior arise in terms of crack acceleration, retardation, and

deflection as a function of interface strength and yield strength mismatch between the two

materials? (2) For the interlayer configuration, how does the size of the interlayer relative

to the crack-tip plastic zone and cohesive zone influence crack extension? (3) For all cases,

how are the crack extension predictions enhanced by accounting for plastic strain gradients?

These questions are addressed through a detailed parametric study.

4.2 Model description

The computations in this study used a symmetric, plane strain boundary layer model

modified by the introduction of cohesive zone elements, similar to Chapter 3  . The global

and near-tip finite element meshes are shown in Figure 4.1  for the case of fatigue crack

growth toward a bi-material interface. The model domains on either side of the bi-material

interface were prescribed to have different yield strengths, shown schematically as “Material

1” and “Material 2” in Figure 4.1 . A half model was considered, and symmetry was employed

about the crack plane. As a result, an interface implicitly exists in the bottom half of the

model as well. This is physically reasonable based on experimental observations of cracks

bifurcating at bi-material interfaces [8 ]. Global small-scale yielding conditions are assumed

in this approach, but, as noted previously, small-scale yielding is violated locally when the

crack-tip plastic zone interacts with the interface.
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Figure 4.1. Finite element mesh for the bi-material computations. Different
yield strengths were assigned for Materials 1 and 2, and cohesive zone elements
were placed along the symmetry line and the interface. (a) Global mesh with
displacement boundary conditions. (b) Refined mesh at the crack tip. The
scale r̃soft

p is defined in Section 4.2.1 .
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The finite element model consisted of 3892 linear plane strain elements, 123 cohesive

elements along the symmetry line (representing the main crack), and 44 cohesive elements

along the bi-material interface. The cohesive elements on the main crack shared their top

nodes with the adjacent row of solid elements. The bottom nodes coincided with the sym-

metry line, so their vertical displacements were fixed at zero. Symmetry also required that

the horizontal displacements of the top and bottom nodes of the cohesive elements were

pairwise tied to each other, preventing tangential separation on the main crack. Pure mode

I conditions were therefore present on the main crack. Cohesive elements on the interface

shared one row of nodes with the adjacent elements in Material 1 and one row of nodes with

the adjacent elements in Material 2. Mixed mode conditions were present on the interface,

so both normal and tangential separation were relevant. Modifications to the geometry in

order to simulate fatigue crack growth in multilayer materials are described in Section 4.4 .

Crack face contact conditions were operational between newly formed crack faces. No contact

conditions were present along the initial crack faces. Numerical experiments indicate that

accounting for contact along the initial crack faces has negligible effect on the computational

results.

The rate-independent CMSG model described in Section 2.1.1  , with m = 75.0 in Eq.

(2.11 ) was used to describe the bulk material. The irreversible CZM with fatigue damage

given by Eq. (2.24 ) in Section 2.2.1  was used to describe material separation ahead of the

initial crack tip and along the interface. Both the normal and tangential traction and sepa-

ration were nonzero along the interface due to the mixed-mode conditions. Only the normal

traction was nonzero for the main crack, which was under pure mode I conditions.

4.2.1 Model parameters

The material properties are based on the work of Wang and Siegmund [126 ], who con-

sidered a property set relevant to aluminum multilayer structures. As in Chapter 3 , the

reference stress σ0 was taken as the initial yield strength σY in each material. The bulk

material properties of each material were taken as constant, with the exception of the yield

strength σY and the intrinsic length scale l. The elastic properties were E = 100 GPa and
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ν = 0.34, and the strain hardening exponent was n = 0.1. In the soft material, the yield

strength was fixed at σsoft
Y = 250 MPa, while the yield strength of the hard material was

varied in the range 1.0 ≤ σhard
Y /σsoft

Y ≤ 2.0.

Setting the intrinsic length lsoft = 0 reproduces a classical plasticity model. Results for

this case are compared with computations using lsoft = 10 µm, which represents a typical

upper bound on values of this parameter [85 ]. Since the hard and soft materials have iden-

tical properties, except for the yield strength, the intrinsic length of the hard material was

calculated from

lhard = lsoft
(
σsoft

Y /σhard
Y

)2
. (4.1)

In the cohesive zone, σmax,0/σY = 4.0 for both the soft and the hard materials, with

cohesive energies of φsoft
n,0 = 20.0 J/m2 and 20.0 J/m2 ≤ φhard

n,0 ≤ 40.0 J/m2 for constant

characteristic separation δ0 = 7.36 nm [126 ]. The interface cohesive strength was varied in

the range 0.7 ≤ σint
max,0/σsoft

max,0 ≤ 1.0. These bounds represent a relatively weak interface,

where the crack tends to deflect, and a relatively strong interface, where the crack tends to

penetrate through to the second material. Similar to previous studies with irreversible CZMs,

the damage evolution parameters were held constant at δΣ = 4.0δ0 and σf = 0.25σmax,0 [126 ],

[175 ].

In all cases, the load ratio was R = 0.0, and the applied energy release rate range was

∆G/φsoft
0 = 0.2. As a result, the maximum applied energy release rate in a cycle was also

Gmax/φ0 = 0.2. Converged results were obtained with 20 load steps per half cycle.

For comparison purposes, fatigue crack growth computations were performed with a

homogeneous material. In each computation, the yield strength was increased from the

reference value σY = σsoft
Y = 250 MPa. The magnitude of the applied load was the same for

all the computations. Figure 4.2  shows the predicted crack extension for each case. For yield

strengths higher than the reference value, the model predicts that the steady-state crack

growth rate decreases. This is representative of an idealized material where a relationship

exists between the crack extension ∆a and the cyclic crack-tip opening displacement ∆CTOD

[176 ]. Also, plastic strain gradients do not significantly affect the predicted steady-state crack

growth.
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the yield strength with l = 0 (solid lines) and l = 10 µm (dashed lines).
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Figure 4.3  shows the typical evolution of the normal traction-separation response in

a cohesive element during steady-state crack growth with σY = σsoft
Y = 250 MPa. The

monotonic cohesive envelope, with ∆t = 0, is included for reference. The maximum traction

never reaches the initial cohesive strength. As damage evolution occurs, the highest traction

reached in each cycle reduces until the element loses all load-carrying capacity. Since the

predicted ∆n remains below δ0 throughout the computation, the portion of the monotonic

cohesive envelope for separations beyond δ0 does not significantly affect the response in the

fatigue damage model.

Finally, a reference plastic zone size is introduced. A classical estimate for the plastic zone

size for global small-scale yielding and plane strain conditions is rp = EGmax/ [3π (1 − ν2) σ2
Y ]

[176 ]. During steady-state fatigue crack growth, the degradation of the cohesive strength

limits the stresses that can be attained ahead of the crack tip in the model. This in turn

limits the size of the forward plastic zone to a fraction of rp. An initial estimate for this

reduced plastic zone size is 0.5rp [87 ]. Consequently, a modified plastic zone size estimate is

introduced as

r̃p = 1
6π

E

(1 − ν2)
Gmax

σ2
Y

. (4.2)
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Since the soft material has yield strength σsoft
Y = 250 MPa for all computations, r̃soft

p is used

as a reference plastic zone size. Since Gmax = 0.2φsoft
0 for all computations, the reference

plastic zone size is r̃soft
p ≈ 52.2δ0. For the bi-material configuration, the distance from the

initial crack tip to the interface was 110δ0 or about 2.1r̃soft
p , which was sufficient for the

steady-state plastic zone to develop before interacting with the interface.

4.3 Results for fatigue crack growth across and into a bi-material interface

The interface strength and the yield strength mismatch between each material are the

key variables considered here for a crack growing toward a single interface. The interaction

of the crack-tip fields with the interface can lead to acceleration or retardation of the crack,

while the crack may also deflect into the interface. Furthermore, computations accounting

for and neglecting plastic strain gradients are compared to determine their influence on the

crack path and crack growth rates. Variations of the interface strength are considered first,

followed by variations of the yield strength mismatch.

Several figures in this section depict the crack extension ∆a. Since there may be multiple

cracks in the model, a definition for this parameter is required. For the main crack, ∆a is

the location of the crack tip relative to the initial crack tip. For the interface crack, ∆aint is

the location of the crack tip relative to the center line of the model.

4.3.1 Role of interface strength

The following computations consider the highest yield strength mismatch σhard
Y /σsoft

Y =

2.0, with varied values of the interface strength σint
max,0/σsoft

max,0. The case of a crack initially in

the soft material and growing toward the hard material is considered first. Figure 4.4  shows

two bounding cases and an intermediate case for the interface strength.

For a weak interface (σint
max,0/σsoft

max,0 = 0.7), the crack growth rate falls as the crack ap-

proaches the interface from the soft material, Figure 4.4a . This occurs when the cohesive

zone and plastic zone begin to interact with the interface and the material on the opposing

side. The crack then deflects into the interface, Figure 4.4b . In this case, accounting for
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Figure 4.4. Crack extension for the soft-to-hard case with σhard
Y /σsoft

Y = 2.0
and varied values of the interface strength σint

max,0/σsoft
max,0 for lsoft = 0 (solid

lines) and lsoft = 10 µm (dashed lines). (a) Main crack. (b) Interface crack.
There is no interface crack growth for σint

max,0/σsoft
max,0 = 1.0.

plastic strain gradients (i.e. setting lsoft = 10 µm) does not significantly affect the model

predictions after crack growth initiates.

For a strong interface (σint
max,0/σsoft

max,0 = 1.0), the crack growth rate similarly falls as the

crack approaches the interface, indicating that this initial retardation is mainly controlled by

the yield strength mismatch rather than the interface strength. Then, the crack penetrates

into the hard material and returns to a steady-state crack growth regime. No crack extension

along the interface occurs, Figure 4.4b . Here, accounting for plastic strain gradients mainly

influences the number of cycles required for crack extension to begin in the hard material

once the crack reaches the interface.

Finally, for the intermediate case σint
max,0/σsoft

max,0 = 0.8, the main crack again penetrates

the interface. Compared to the strong interface, a small amount of additional shielding is

provided by energy dissipation along the interface, thereby increasing the number of cycles

required to penetrate into the hard material. This is more significant for lsoft = 10 µm, where

the model predicts some crack branching, while the classical plasticity model predicts that

only the first element along the interface fails, Figure 4.4b  . The equivalent plastic strain

distribution shown in Figure 4.5  provides more insight into these results. When accounting
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Figure 4.5. Equivalent plastic strain (εp) contours for the soft-to-hard case
with σhard

Y /σsoft
Y = 2.0 and σint

max,0/σsoft
max,0 = 0.8. Both plots have the same

amount of main crack extension (∆a/δ0 = 155). (a) lsoft = 0, at N = 125
cycles. (b) lsoft = 10 µm, at N = 121 cycles. Open circles mark the main
crack tip, and open triangles mark the interface crack tip.

for plastic strain gradients, the model predicts restricted plastic strains near the interface.

This leads to reduced shielding of the interface crack compared to the classical plasticity

model. As a result, enough damage accumulates for the interface crack to initiate and grow

before the main crack has significantly penetrated into the hard material. On the other

hand, the plastic zone size does not change, and there is not sufficient plastic deformation

in the hard material for plastic strain gradients to have a significant effect.

Two measures are now defined to summarize and compare results for different interface

strengths. First, the maximum normalized crack extension along the interface, aint
max/δ0, indi-

cates the extent of crack deflection and the role of the interface in shielding the main crack.

This quantity is reported for computations where some interface crack growth occurs, but

the main crack penetrates into the hard material and continues to grow. Second, Figure 4.6 

defines the normalized delay cycles. This quantity, equal to (N1 + ∆N) /N1 with N1 and ∆N

defined in Figure 4.6 , compares the model predictions described in this section to a simple
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Figure 4.6. Definition of the quantities N1 and ∆N used to calculate the
normalized delay cycles.

superposition of the steady-state crack growth rates in each material. This superposition of

crack growth rates ignores interactions between the crack-tip plastic zone and cohesive zone

and the interface. The normalized delay cycles therefore quantifies how much crack growth

life is gained or lost due to shielding or anti-shielding as the crack approaches the interface.

If the normalized delay cycles exceeds 1.0, then the interface provides a net shielding effect.

Figure 4.7  shows aint
max/δ0 and the normalized delay cycles as a function of interface

strength. Above σint
max,0/σsoft

max,0 = 0.800, accounting for plastic strain gradients decreases

the predicted normalized delay cycles. This is due to the increased separation and damage

accumulation in the cohesive zone along the main crack near the interface, while no interface

crack growth is triggered. Between σint
max,0/σsoft

max,0 = 0.765 and 0.800, there is a transition

where interface crack growth occurs (aint
max/δ0 > 0), but the main crack penetrates into

the hard material and the interface crack arrests. For lsoft = 10 µm, the model predicts this

transition region begins at a slightly higher interface strength, due to the reduced shielding of

the interface crack. The transition also corresponds to the normalized delay cycles predictions

for lsoft = 10 µm increasing over those for lsoft = 0. Here, the additional interface crack growth

decreases the driving force on the main crack.
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Figure 4.7. (a) Interface crack growth and (b) normalized delay cycles for
crack growth from the soft to the hard material, in dependence of the interface
strength. At interface strengths below the open red symbols, the main crack
deflects into the interface and does not enter the hard material. Between
the open and filled red symbols, the main crack and interface crack both are
actively growing at the end of the computations.

82



0 50 100 150

Number of cycles, N

0

50

100

150

200

250
∆
a
/δ

0

Hard

Soft

0.7

0.8

1.0

σ
int
max,0/σ

soft
max,0

(a)

0 25 50 75 100 125 150

Number of cycles, N

0

10

20

30

40

50

60

70

∆
a
in
t /
δ
0

0.7

0.8

σ
int
max,0/σ

soft
max,0

(b)

Figure 4.8. Crack extension for the hard-to-soft case with σhard
Y /σsoft

Y = 2.0
and varied values of the interface strength σint

max,0/σsoft
max,0 for lsoft = 0 (solid

lines) and lsoft = 10 µm (dashed lines). (a) Main crack. (b) Interface crack.
There is no interface crack growth for σint

max,0/σsoft
max,0 = 1.0.

Between σint
max,0/σsoft

max,0 = 0.765 and 0.787 for lsoft = 0 and between σint
max,0/σsoft

max,0 = 0.765

and 0.789 for lsoft = 10 µm, there is a regime where the crack penetrates through the interface

and begins to grow in the hard material, but the interface crack reaches the end of the fine-

meshed region before it is clear which crack will be dominant. This regime is bounded by the

open and filled red symbols in Figure 4.7  . Fully resolving this situation would require further

computations using a full fracture mechanics specimen, as the mode I displacement boundary

conditions on the boundary layer model become invalid for large amounts of interface crack

growth. At interface strengths below σint
max,0/σsoft

max,0 = 0.765, there is no crack growth in the

hard material. The estimated bounds between these regimes are obtained by incrementally

approaching each bound with discrete computations at each interface strength.

For crack growth from the hard to soft material, Figure 4.8  shows two bounding cases

and an intermediate case of interface strength. For the highest interface strength, the crack

accelerates when the plastic zone and cohesive zone begin to interact with the interface and

the adjacent soft material. The crack penetrates into the soft material and quickly returns to

a steady-state regime. Plastic strain gradients do not play a significant role, and no interface

crack growth occurs.
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For the lowest interface strength, the main crack arrests and deflects along the interface.

Unlike the soft-to-hard case, the interface crack begins to grow while the main crack is still

some distance away. This produces a shielding effect, causing significant retardation of the

main crack. The beginning of this retardation coincides with the beginning of crack extension

along the interface. The model predicts less retardation for lsoft = 10 µm, while interface

crack growth predictions are not affected, and the main crack still ultimately arrests.

For the intermediate strength (σint
max,0/σsoft

max,0 = 0.8), the main crack and the interface

crack compete. Interface crack growth begins while the main crack is still in the hard

material, causing retardation similar to the lowest interface strength. However, the main

crack continues to grow and accelerates close to the interface, similar to the highest interface

strength. At the same time, plastic deformation occurs in the soft material, and a secondary

crack initiates near ∆a/δ0 = 150. There are now two active cracks along the main crack line:

the crack in the hard material, which continues to grow toward the interface; and the crack

in the soft material, which simultaneously grows back toward the interface and further in

the soft material. Plastic strain gradients have the strongest effect when the crack reinitiates

in the soft material. This is due to the suppressed plastic deformation in the soft material

compared with the classical plasticity model, which reduces shielding of the main crack.

Values of ∆aint
max/δ0 and the normalized delay cycles are used to summarize the data

in Figure 4.9  . For the highest interface strengths, the normalized delay cycles is less than

1. This indicates that the anti-shielding from the yield strength mismatch dominates over

shielding from the weak interface. The transition region where the crack partially deflects

but still penetrates through the interface occurs between σint
max,0/σsoft

max,0 = 0.900 and 0.738.

This region is significantly larger than for the soft-to-hard case—some interface crack growth

occurs for all but the strongest interface. Plastic strain gradients do not play a significant

role in the interface crack growth, but do lead to a lower predicted normalized delay cycles

when the crack penetrates to the soft material. The interface crack and main crack both

actively grow between 0.738 and 0.730, while the crack fully deflects into the interface below

σint
max,0/σsoft

max,0 = 0.730 for both lsoft = 0 and lsoft = 10 µm.

84



0.7 0.75 0.8 0.85 0.9 0.95 1

σint
max,0/σ

soft
max,0

0

10

20

30

40

50

60

70

a
in
t

m
a
x
/δ

0

lsoft = 0

lsoft = 10 µm

Hard Soft

σhard

Y /σsoft

Y = 2.0

(a)

0.7 0.75 0.8 0.85 0.9 0.95 1

σ
int
max,0/σ

soft
max,0

0.8

0.9

1

1.1

1.2

1.3

1.4

N
o
rm

a
li
ze
d
d
el
a
y
cy
cl
es

lsoft = 0

lsoft = 10 µm

Hard Soft

σ
hard
Y /σsoft

Y = 2.0

(b)

Figure 4.9. (a) Interface crack growth and (b) normalized delay cycles for
crack growth from the hard to the soft material, in dependence of the interface
strength. At interface strengths below the open red symbols, the crack deflects
into the interface and does not enter the soft material. Between the open and
filled red symbols, the main crack and interface crack both are both actively
growing at the end of the computations.
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Figure 4.10. Crack extension for the soft-to-hard case with σint
max,0/σsoft

max,0 =
0.7 and varied values of the yield strength mismatch σhard

Y /σsoft
Y for lsoft = 0

(solid lines) and lsoft = 10 µm (dashed lines). (a) Main crack. (b) Interface
crack. There is no interface crack growth for σhard

Y /σsoft
Y = 1.0.

4.3.2 Role of yield strength mismatch

This section investigates whether deflection still occurs for smaller yield strength mis-

matches. In the following computations, 1.0 < σhard
Y /σsoft

Y < 2.0 while the interface strength

was fixed at σint
max,0/σsoft

max,0 = 0.7. Based on the previous results, this represents a relatively

weak interface and causes crack deflection at σhard
Y /σsoft

Y = 2.0. The soft-to-hard case is

analyzed first.

Figure 4.10 shows crack extension for three values of the yield strength mismatch. When

the materials have equal yield strength (σhard
Y /σsoft

Y = 1.0), there is no interface crack growth,

and the weak interface has virtually no effect on the main crack. For σhard
Y /σsoft

Y = 2.0, the

crack deflects into the interface. This shows that the property mismatch plays an important

role in amplifying the effects of the interface. As before, in these bounding cases, accounting

for plastic strain gradients does not significantly affect the predictions.

The transition regime and the role of plastic strain gradients are demonstrated in the

results for the intermediate case of σhard
Y /σsoft

Y = 1.6. For lsoft = 0, the model predicts that

the interface crack and the main crack are in competition, as both continue to grow until
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Figure 4.11. Equivalent plastic strain contours for the soft-to-hard case with
σint

max,0/σsoft
max,0 = 0.7 and σhard

Y /σsoft
Y = 1.6. Both plots have the same amount

of main crack extension (∆a/δ0 = 155). (a) lsoft = 0, at N = 118 cycles. (b)
lsoft = 10 µm, at N = 88 cycles. Open circles mark the main crack tip, and
open triangles mark the interface crack tip.

the interface crack reaches the maximum allowable extension. However, for lsoft = 10 µm,

the model predicts that the main crack dominates despite some branching into the interface.

The equivalent plastic strain contours in Figure 4.11  provide further insight on this behavior.

In contrast to Figure 4.5 , there is sufficient plastic deformation in the hard material for

plastic strain gradients to become significant. This mitigates shielding of the main crack,

promoting penetration through the interface and leading to the behavior seen in Figure 4.10  .

The plastic zone size is somewhat smaller in the region where the main crack reinitiates in

the hard material when accounting for plastic strain gradients.

The results are summarized in Figure 4.12  . No interface crack growth occurs below

σhard
Y /σsoft

Y = 1.40, although the yield strength mismatch does provide some shielding,

demonstrated through the higher normalized delay cycles. The transition where the main

crack penetrates through the hard material despite some interface crack growth is between

σhard
Y /σsoft

Y = 1.40 and 1.58 for lsoft = 0 and between σhard
Y /σsoft

Y = 1.48 and 1.61 for

lsoft = 10 µm. In contrast to the predictions for varied interface strengths, the model
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Figure 4.12. (a) Interface crack growth and (b) normalized delay cycles for
crack growth from the soft to the hard material, in dependence of the yield
strength mismatch. At yield strength mismatches above the red open symbols,
the main crack deflects into the interface and does not enter the soft material.
Between the open and filled red symbols, the main crack and interface crack
both are actively growing at the end of the computations.
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Figure 4.13. Crack extension for the hard-to-soft case with σint
max,0/σsoft

max,0 =
0.7 and varied values of the yield strength mismatch σhard

Y /σsoft
Y for lsoft = 0

(solid lines) and lsoft = 10 µm (dashed lines). (a) Main crack. (b) Interface
crack. There is no interface crack growth for σhard

Y /σsoft
Y = 1.0.

predicts less interface crack growth for lsoft = 10 µm in this transition region. This is due to

the reduced shielding in the hard material discussed previously and shown in Figure 4.11  .

Similarly, accounting for plastic strain gradients leads to a reduced normalized delay cycles

in the transition region, as indicated in Figure 4.12b . Both the interface and main cracks

are actively growing at the end of the computations between σhard
Y /σsoft

Y = 1.58 and 1.62 for

lsoft = 0 and between σhard
Y /σsoft

Y = 1.61 and 1.67 for lsoft = 10 µm.

Finally, Figure 4.13  shows crack extension for varied yield strength mismatch in the hard-

to-soft case. As before, for the largest yield strength mismatches, the crack deflects into the

interface, and retardation of the main crack coincides with the start of interface crack growth.

For σhard
Y /σsoft

Y = 1.6 and other intermediate cases, some interface crack growth occurs, while

the main crack re-initiates remote from the interface in the soft material. Accounting for

plastic strain gradients tends to accelerate this reinitiation process.

A new trend appears for the normalized delay cycles in Figure 4.14b  . Increasing σhard
Y /σsoft

Y

above 1.0 initially reduces the normalized delay cycles. Here, the anti-shielding associated

with the hard-to-soft transition tends to accelerate the main crack when the active plas-

tic zone and cohesive zone cross the interface. This effect becomes stronger as the yield
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Figure 4.14. Interface crack growth and normalized delay cycles for crack
growth from the hard to the soft material, in dependence of the yield strength
mismatch. At yield strength mismatches above the red open symbols, the main
crack deflects into the interface and does not enter the soft material. Between
the open and filled red symbols, the main crack and interface crack both are
actively growing at the end of the computations.
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strength mismatch increases, up to σhard
Y /σsoft

Y = 1.20 for lsoft = 0 and σhard
Y /σsoft

Y = 1.25 for

lsoft = 10 µm. Accounting for plastic strain gradients extends the region where anti-shielding

dominates due to restricted plastic deformation in the soft material promoting penetration

through the interface. Beyond this point, the yield strength mismatch amplifies the shielding

effect of the weak interface, as discussed for the soft-to-hard case. The regime where both

the interface and main cracks actively grow is small, between σhard
Y /σsoft

Y = 1.78 and 1.80,

while the crack fully deflects into the interface beyond σhard
Y /σsoft

Y = 1.80 for both lsoft = 0

and lsoft = 10 µm.

4.4 Results for fatigue crack growth across multilayers

The model is now applied to a material system consisting of a plastically hard matrix

surrounding a plastically soft interlayer. In this scenario, the crack may interact with both

a hard-to-soft and a soft-to-hard interface, potentially producing a complex superposition of

shielding and anti-shielding effects from each interface should the crack-tip fields span the

interlayer [177 ], [178 ]. The maximum crack growth rate reduction is expected to occur near

the soft-to-hard interface due to the combined shielding from the yield strength mismatch

and the weak interface. However, the question remains of whether interaction effects due to

the presence of two interfaces alter the crack extension predictions.

The global boundary layer geometry with mode I displacements applied to the boundary

as described in Section 4.2 was again used in the computations. The near-crack-tip mesh is

shown in Figure 4.15 for two interlayer thicknesses (120δ0 and 40δ0) that lead to different

predictions of crack growth rates and crack paths. Cohesive elements were placed along the

main crack front and along both interfaces.

Here, the yield strength mismatch was fixed at σhard
Y /σsoft

Y = 2.0, which produced the most

significant effects on crack growth for the case of a bi-material interface. As in the bi-material

computations, σsoft
Y was fixed at 250 MPa. Therefore, σhard

Y = 500 MPa for all computations in

this section. Both interfaces had the same cohesive strength, allowing the crack to penetrate

through or deflect into either interface. The same load conditions (∆G/φsoft
0 = 0.2 and
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Figure 4.15. Finite element mesh for the interlayer computations. The
matrix was taken as the hard material (σhard

Y = 500 MPa), and the interlayer
was taken as the soft material (σsoft

Y = 250 MPa). The computations considered
two different interlayer thicknesses: (a) 120δ0 and (b) 40δ0.

92



0 50 100 150 200 250

Number of cycles, N

0

50

100

150

200

250
∆
a
/δ

0

Hard

Soft

Hard

0.6

0.7

0.8

σ
int
max,0/σ

soft
max,0

(a)

0 50 100 150 200 250

Number of cycles, N

0

10

20

30

40

50

60

70

∆
a
in
t /
δ
0

1st interface

2nd interface

0.6

0.7

0.8

σ
int
max,0/σ

soft
max,0

(b)

Figure 4.16. Crack extension predictions for fatigue crack growth through a
soft interlayer with thickness 120δ0. Solid lines are lsoft = 0; dashed lines are
lsoft = 10 µm. (a) Main crack. (b) Interface cracks.

R = 0.0) as in the previous section were applied. The role of plastic strain gradients was

again investigated through computations with lsoft = 0 and with lsoft = 10 µm.

The reference plastic zone size in the soft material is the same as the previous section,

r̃p
soft ≈ 52.2δ0. With σhard

Y /σsoft
Y = 2.0, the reference plastic zone size in the hard material is

r̃hard
p = 0.25r̃soft

p ≈ 13.0δ0. The distance from the initial crack tip to the first interface was

70δ0, or about 5.3r̃hard
p and 1.3r̃soft

p . This was sufficient for the steady-state plastic zone to

develop in the hard material before interacting with the interface.

Figure 4.16  shows three representative crack extension predictions for the larger interlayer

thickness, both accounting for and neglecting plastic strain gradients. For σint
max,0/σsoft

max,0 =

0.8, the response at each interface can be directly related with the bi-material computations.

At the hard-to-soft interface, the yield strength mismatch causes anti-shielding, while a small

amount of interface crack growth shields the crack. The crack reinitiates some distance into

the soft material and continues to grow. As in the bi-material computations, hardening

due to plastic strain gradients triggers some crack growth along the soft-to-hard interface,

although the main crack still penetrates the interface.

For σint
max,0/σsoft

max,0 = 0.7, the main crack penetrates through the hard-to-soft interface, un-

like the bi-material computations. This appears to be related to constraint of the active cohe-
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Figure 4.17. Crack extension predictions for fatigue crack growth through a
soft interlayer with thickness 40δ0. Solid lines are lsoft = 0; dashed lines are
lsoft = 10 µm. (a) Main crack. (b) Interface crack. In all cases, the model
predicts crack growth along the first interface but not the second.

sive zone in the interlayer as the secondary crack initiates. Otherwise, the response from the

bi-material computations is recovered at the soft-to-hard interface, where the crack deflects.

Plastic strain gradients mainly influence the model predictions as the crack re-initiates and

begins growing in the soft material. At lower interface strengths (e.g. σint
max,0/σsoft

max,0 = 0.6),

deflection occurs at the first interface, with plastic strain gradients playing a minimal role

in the predictions.

Figure 4.17  shows the crack extension predictions for the smaller interlayer thickness.

Shielding and anti-shielding due to the yield strength mismatch at the first and second

interfaces, respectively, is again evident for σint
max,0/σsoft

max,0 = 0.8. For the weakest interfaces,

such as σint
max,0/σsoft

max,0 = 0.6, the response is also comparable to the thick interlayer, as the

crack deflects into the hard-to-soft interface.

For σint
max,0/σsoft

max,0 = 0.7, the model predicts that the main crack arrests at the first

interface when plastic strain gradients are neglected. However, when accounting for plastic

strain gradients, the model predicts a competition between the main crack and the first

interface crack. The main crack penetrates the first interface, causing a clear retardation in

the growth of the interface crack around N = 100 cycles. The main crack penetrates through
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Figure 4.18. Equivalent plastic strain (εp) contours for fatigue crack growth
through a soft interlayer with lsoft = 0 and σint

max,0/σsoft
max,0 = 0.7. (a) Thick

interlayer, where plastic zone can fully develop after the crack penetrates the
first interface, at ∆a/δ0 = 137.5 and N = 95 cycles. (b) Thin interlayer, where
plastic zone spreads across the interlayer while the crack is still in the hard
matrix, at ∆a/δ0 = 57.5 and N = 101 cycles. Open circles mark the main
crack tip, and open triangles mark the first interface crack tip.

the second interface as well just before the first interface crack reaches the end of the fine-

meshed region. Interestingly, there is no crack extension at the second interface—crack

deflection only occurs into the first interface.

These predictions at σint
max,0/σsoft

max,0 = 0.7 can be associated with constraint of the plastic

zone in the interlayer. Figures 4.18 and 4.19 show equivalent plastic strain contours with

lsoft = 0 and lsoft = 10 µm, respectively, for each interlayer thickness. For the larger thickness,

the plastic zone can fully develop after the crack has penetrated through the first interface.

The soft-to-hard interface then behaves quite similarly to the case of a bi-material, with the

arrest of the main crack. For the smaller thickness, the plastic zone has already spread across

the entire interlayer before the crack crosses the first interface. Here, plastic strain gradients

develop throughout the interlayer, reducing shielding of the main crack and causing it to

penetrate through the interlayer when hardening due to plastic strain gradients is accounted

for.

4.5 Discussion

The key outcomes for the bi-material computations are the maximum interface crack

growth and the normalized delay cycles, in Figures 4.7 , 4.9 , 4.12 , and 4.14 . The maximum
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Figure 4.19. Equivalent plastic strain (εp) contours for fatigue crack growth
through a soft interlayer with lsoft = 10 µm and σint

max,0/σsoft
max,0 = 0.7. (a) Thick

interlayer, where plastic zone can fully develop after the crack penetrates the
first interface, at ∆a/δ0 = 137.5δ0 and N = 91 cycles. (b) Thin interlayer,
where plastic zone spreads across the interlayer while the crack is still in the
hard matrix, at ∆a/δ0 = 65 and N = 101 cycles. Open circles mark the main
crack tip, and open triangles mark the first interface crack tip.
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interface crack growth essentially measures the contribution of the interface to shielding the

main crack. More interface crack growth leads to a reduced driving force on the main crack

as it interacts with the interface. The normalized delay cycles then represent this interface

shielding combined with the shielding or antishielding due to the yield strength mismatch.

The yield strength mismatch alters the crack-tip fields near the interface, regardless of the

interface strength. This leads to transient evolution of the crack growth rates that cannot be

captured by considering each material in isolation. Furthermore, the results indicate that the

strength mismatch is key in causing crack deflection—a weak interface alone is not sufficient.

The yield strength mismatch and interface strength both can be varied to produce three

regimes of behavior: penetration without any interface crack growth, deflection into the

interface, and competing crack growth between the main crack and the interface. Hardening

due to plastic strain gradients is key to understanding the transition between these regimes.

In most cases, the classical plasticity model overestimates shielding of the main crack relative

to the strain gradient plasticity model. However, there are distinct differences depending

on both the properties and the direction of crack growth (i.e. hard-to-soft or soft-to-hard).

Key examples are in Figure 4.7  and Figure 4.14  , which show results for the soft-to-hard

case in dependence of the interface strength and hard-to-soft case in dependence of the yield

strength mismatch, respectively.

Figure 4.7 shows that plastic strain gradients influence the transition between bifurcation

and penetration at the interface when there is a large strength mismatch. Due to the

lower yield strength, there is more plastic deformation in the soft material than in the

hard material, and this plastic deformation is constrained due to the interface, introducing

significant plastic strain gradients. For large interface strengths, hardening due to these

gradients is not as important, as the interface crack does not grow. However, when the

interface is sufficiently weak, this hardening triggers interface crack growth, which inhibits

growth of the main crack. This is reflected in the sudden increase in the normalized delay

cycles for lsoft = 10 µm relative to lsoft = 0 around σint
max,0/σsoft

max,0 = 0.8. The transition regime

where this occurs is quite small, however, and may be manifested experimentally as a sudden

transition from penetration to bifurcation at a critical interface strength.
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Meanwhile, Figure 4.14  shows the competition between interface shielding and anti-

shielding due to the hard-to-soft material mismatch. When there is no yield strength mis-

match, the weak interface provides a small shielding effect, leading to normalized delay cycles

greater than 1.0 but without any interface crack growth. A small yield strength mismatch

(e.g. σhard
Y /σsoft

Y = 1.2) induces anti-shielding, which reduces the normalized delay cycles.

Plastic strain gradients again become important in the soft material, this time in the process

of reinitiation remote from the interface, as shown in Figure 4.13a  . This leads to a further

reduction in the normalized delay cycles and slightly inhibits interface crack growth since

the main crack leaves the vicinity of the interface sooner. As the yield strength mismatch is

further increased, however, interface shielding becomes dominant, and the crack bifurcates.

These findings are similar to the results obtained by Parmigiani and Thouless [163 ] for a

purely elastic bi-material with a weak interface and an elastic modulus mismatch. Using

cohesive zones for both the main crack and the interface crack, they found a clear preference

for penetration through the interface when both materials had the same stiffness. How-

ever, subjecting the crack to a stiff-to-compliant or compliant-to-stiff transition across the

interface tended to cause deflection.

Further computations with different applied loads have been conducted. These compu-

tations predict the same regimes of behavior as for ∆G/φ0 = 0.2. The influence of plastic

strain gradients becomes less significant at lower load magnitudes and more significant at

higher load magnitudes.

Applying the model to the case of a plastically soft interlayer showed that, for high

interface strengths and large interlayers where the crack tip plastic zone can fully develop

Figure 4.19  , crack extension can essentially be predicted by separately analyzing the soft-

to-hard and hard-to-soft cases studied previously. However, this is not the case for weak

interfaces and small interlayers, where the plastic zone is constrained. Here, the crack

interacts with both interfaces. Plastic strain gradients become important, as they develop

at both interfaces and promote penetration into the soft interlayer.

For the current study, the cohesive zone parameters were set to values that allowed

for the computations to be completed with reasonable computational expense. The ratio

σmax,0/σY = 4.0 for both hard and soft materials was chosen based on previous work show-
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ing that this ratio introduced a relevant plastic zone size [87 ], [126 ], [179 ]. For lower ratios,

plasticity essentially vanishes, and for higher ratios, plasticity is amplified. We have investi-

gated this influence in the context of overloads in our previous work [129 ]. Meanwhile, the

crack growth resistance of the interface was defined relative to the reference soft material

through the ratio σint
max,0/σsoft

max,0. The choice of cohesive zone parameters allowed for the de-

tailed parametric study and identification of regimes of behavior as the crack approached

the interface. Therefore, while this study could be enhanced by calibrating the parameters

to provide quantitative predictions for material systems of interest, the current results pro-

vide a roadmap for interpreting results in terms of crack penetration, bifurcation, and the

competition between the two.

Challenges remain to identify correct fatigue cohesive zone parameters for metallic ma-

terials. The damage-based formulation used in this study captures salient aspects of fatigue,

including Paris-law type behavior for constant-amplitude loading and R-ratio dependence

[86 ], [88 ], [129 ]. While we interpret the cohesive strength σmax,0 as scaling the amount of plas-

tic deformation that accompanies crack growth in the fatigue cohesive zone model, alternate

approaches are possible. For example, one could attempt to infer the values of σmax,0 and

the other fatigue cohesive zone parameters from a particular physical mechanism of interest.

This idea has been investigated using discrete dislocation computations together with a CZM

based on the cleavage mechanism [149 ], [180 ]. Further, for the situations investigated in this

study, the mixed-mode behavior of the interface and its failure mechanisms would also need

to be considered. The current model assumed that τ int
max,0 = σint

max,0, which helped maintain

a reasonable parameter space. The relationship between these parameters would need to

be investigated in more detail for applying the model to a particular material system. The

appropriate definition and parameterization of mixed-mode cohesive laws is also the subject

of active research (see e.g., [181 ]).

This study could also be enhanced by considering residual stresses in either or both

constituents. Experiments have shown that a small thermal expansion mismatch can signif-

icantly affect crack growth rates, which is supported by energy-based modeling approaches

[8 ], [162 ], [169 ]. This would be especially important for additive-manufactured materials,

where significant residual stresses arise due to thermal gradients.
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Extensions of this approach to small cracks or the near-threshold regime are also possible.

The results here are qualitatively similar to the observed retardation of a crack approaching

a grain boundary followed by reinitiation of the crack in a subsequent grain, possibly at

a location remote from the grain boundary and the initial crack [62 ], [182 ], [183 ]. Other

extensions include applying the fatigue cohesive zone formulation within the extended finite

element method or other approaches that allow for arbitrary crack paths [184 ]–[186 ]. This

would allow the model to capture the behavior seen in some experiments where the crack

path changes in the soft material as the crack approaches the interface [8 ], [166 ], [167 ].

The strain gradient plasticity theory used in this study (CMSG) is a lower-order theory,

which has been shown to match the results of higher-order theories outside of a thin boundary

layer of the solid [85 ]. However, use of a higher-order theory would allow the model to capture

dislocation pileups at the interface between the two materials [187 ]. In some situations, such

as crack growth across a grain boundary between two misoriented grains, dislocation pileups

may be key to understanding the crack growth response [37 ]. The model could also be

extended to incorporate a kinematic hardening law, which would be important in studies

of crack initiation. This includes further analysis of cases where the main crack reinitiates

beyond the interface, as observed here in some of the hard-to-soft bi-material cases. The

isotropic hardening law used here is expected to give acceptable results for growing cracks,

when each material point sees a limited cyclic load due to crack advance.

4.6 Conclusions

Using an irreversible cohesive zone model and a strain gradient plasticity formulation, this

numerical study addressed the competition between shielding and anti-shielding mechanisms

for a fatigue crack approaching an interface between materials with different yield strengths.

Applying the model to the case of a crack growing through a soft interlayer surrounded by

a hard matrix showed the conditions under which interaction effects between interfaces are

important. The key conclusions are as follows:

• The model predicts that a soft-to-hard transition and a hard-to-soft transition provide

shielding and anti-shielding, respectively, as the crack approaches the interface.
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• A weak interface always shields the crack and can cause the crack to bifurcate. This

shielding is enhanced by increasing the yield strength mismatch.

• Hardening due to plastic strain gradients is important for finding the critical values

of the yield strength mismatch and interface strength that cause a crack to transition

from penetration to bifurcation at an interface.

• When a soft interlayer is used to toughen a material, interaction effects must be con-

sidered when the interfaces are weak and the crack-tip plastic zone spreads across the

interlayer. Plastic strain gradients are important in promoting penetration through

the interlayer in this configuration.

• While steady-state fatigue crack growth in elastic-plastic materials can accurately be

predicted using classical plasticity models, plastic strain gradients become important

for understanding crack growth transients.
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5. HIGH-TEMPERATURE FATIGUE CRACK GROWTH

UNDER TRANSIENT OVERLOADING: APPLICATION TO

ALLOY 617

A version of this chapter is under minor revisions for publication in International Journal

of Fracture [19 ]: J.D. Pribe, D.A. Addison, T. Siegmund, J.J. Kruzic, “High-temperature

fatigue crack growth under transient overloading: Application to Alloy 617,” Int J Fract,

Under minor revisions.

5.1 Introduction

Structural components in power generation applications are required to maintain their

strength and toughness at high temperatures. To qualify materials for these applications,

their behavior under both constant and time-varying loads must be understood. This is a

particular concern for the very high temperature reactor (VHTR) design, where the interme-

diate heat exchanger is expected to sustain significantly higher temperatures than in current

reactors [9 ], [11 ]. The need for load-following capabilities introduces fatigue concerns due to

cyclic loading and the possibility of load transients, such as overloads and waveforms with

hold times at multiple load levels [13 ]. Therefore, understanding the behavior of VHTR

candidate materials under high-temperature transient loads is important for predicting their

service lifetime.

Numerous experimental studies have assessed crack growth under constant loads and

constant-amplitude cyclic loading in structural metals at high temperatures. These studies

have generally focused on correlating crack growth rates with a loading parameter, such as

KI , C∗, or Ct (typically ∆K or (Ct)avg for fatigue), and establishing conditions under which

each parameter is valid [16 ], [79 ], [188 ]–[190 ]. Analytical and numerical models initially

connected these parameters to the crack-tip fields associated with both stationary [69 ], [72 ],

[74 ], [191 ], [192 ] and growing cracks [193 ]–[195 ].

Models were subsequently developed to predict crack extension based on the influence

of fatigue, creep, the environment, and their interactions. Several phenomenological models
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posit damage accumulation laws for cycle-dependent fatigue damage and time-dependent

creep damage based on concepts from damage mechanics [120 ], [196 ], [197 ]. Interactions

are modeled through linear or nonlinear summation of each damage source [198 ]. These

approaches have been incorporated into finite element computations through three main

approaches: cohesive zone models [88 ], [89 ], coupled elastic-viscoplastic-damage laws for the

continuum stress-strain behavior [196 ], [199 ], [200 ], or crack growth criteria based on a critical

condition being attained ahead of the crack tip [201 ], [202 ]. Mechanistic models, based on

the relevant crack extension mechanism(s) in particular alloys, have also been incorporated

into finite element models. Examples include grain boundary cavitation [203 ], [204 ] and

oxidation [124 ], [205 ], [206 ].

Numerical models have also been applied to investigate issues specific to cyclic loading,

particularly crack closure. For example, using finite element computations, Sehitoglu and

Sun [84 ] found that the crack opening stress during cyclic loading depends strongly on hold

time and the creep constitutive parameters. Longer hold times and higher rate sensitivity

produced lower crack opening loads, indicating a reduction in crack closure. Potirniche [82 ]

recently found similar results using a strip-yield model. In particular, creep deformation

induced by longer hold times during cyclic loading was found to reduce plasticity-induced

crack closure. This led to increased crack growth rates during the cyclic part of the load

waveform.

Crack growth due to waveforms containing load transients has been investigated in de-

tail at temperatures where rate dependence is negligible. Rate-independent ductile metals

almost uniformly demonstrate crack growth retardation following overloads (OLs), the most

common type of load transient. Retardation is associated with crack growth through the

OL plastic zone, which shields the crack and reduces the effective crack-tip stress intensity

factor range [7 ]. However, debate continues over the relative importance of mechanisms like

crack closure behind the crack tip and compressive residual stresses ahead of the crack tip

[51 ], [144 ], [207 ].

A review of experiments on high-temperature transient OLs shows a range of response

characteristics depending on the material and the applied loads. For example, several exper-

iments have focused on OLs in Alloy 718 and its variants, a family of precipitation-hardened
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nickel-base superalloys typically used in applications up to 650oC. These experiments have

generally shown post-OL retardation for cyclic loading similar to the low-temperature, rate-

independent case. [25 ], [34 ], [47 ]. Overloads applied prior to hold times have been shown

to attenuate and in some cases completely eliminate the detrimental effect of the hold time

on crack extension [27 ], [30 ], [33 ]. Overloads during cyclic loading also caused crack growth

retardation in the similar precipitation-hardened alloy IN100 [208 ], [209 ]. On the other hand,

in a recent study of crack growth at two different temperatures in IN100 under cyclic loading,

Adair et al. [210 ] found that the presence or absence of retardation depends on the OL ratio.

High OL ratios (2.0× and 1.6×) always caused crack growth retardation. However, a lower

OL ratio (1.3×) caused acceleration for tests at 649oC and retardation for tests at 316oC.

The authors argued that increased oxidation embrittlement at 649oC caused the crack to

quickly grow through the smaller plastic zone from the 1.3× OL without a significant retar-

dation effect. Yoon et al. [81 ] performed high-temperature creep-fatigue crack growth tests

on 1.25Cr-0.5Mo steel with waveforms containing a hold time at maximum load. These au-

thors investigated the effect of applying an OL prior to each hold time. The results showed

that time-dependent crack growth rates were higher in the experiments with OLs compared

to experiments without OLs. Based on microscopic observations, this was attributed to

microcavity nucleation triggered by higher crack-tip stresses during the OL.

In general, these results indicate that more study is needed to predict how crack growth

rates are affected by load transients at high temperatures. Furthermore, nearly all studies of

OLs in nickel-base superalloys have considered precipitation-hardened alloys used in turbine

engines. The candidate materials for the intermediate heat exchanger in the VHTR design,

including Alloy 617, are solid solution strengthened at temperatures of interest [9 ], [211 ].

Knowledge about the response of these materials to load transients is therefore particularly

limited. The current study addresses this gap by analyzing fatigue crack growth following

OLs in such materials by applying numerical modeling to experiments on Alloy 617.

The OL experiments on Alloy 617 that inspired this work showed several key characteris-

tics that contrast with its characterization as a creep-ductile material [18 ], [19 ]. First, when

a single OL with an OL ratio of 1.25 was applied, the crack growth rate was indistinguishable

from the baseline Paris Law growth rate within the noise of electrical potential difference
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measurements. Second, experiments with blocks of 20 OLs included three main observa-

tions: (1) a small amount of overall crack growth retardation occurs at low applied loads;

(2) this transitions towards an acceleration-dominated response at higher loads; and (3) the

retardation is more pronounced for experiments with a higher OL ratio. The experimentally

measured crack extension is illustrated in Figure 5.1 and Figure 5.2 for OL ratios of 1.25

and 1.5, respectively. To help assess the post-OL acceleration and retardation, constant-

amplitude crack growth predictions are also included. These were found by integrating the

Paris Law relationship from [15 ] for the constant-amplitude data over the range of crack

extension shown in each figure. The figures show crack extension from 25 µm before the OL

block to 175 µm after the OL block. The range of cycles begins 200 cycles before the OL

block.

The model approach used in this study to investigate OLs in Alloy 617 and similar mate-

rials consists of separate constitutive laws describing viscoplastic deformation and material

degradation ahead of the crack tip. Crack extension was thereby an outcome of the model,

which allows for analysis of transient crack growth rates during and after the OLs [119 ],

[129 ]. A power law viscoplasticity model was used for deformation in the bulk material,

while a cohesive zone model (CZM) was used to describe subcritical material degradation.

A phenomenological damage evolution equation coupled with the CZM captured damage due

to fatigue. The model approach was based on characteristics observed in experiments on

Alloy 617 at 800◦: it exhibits power law creep behavior at this temperature [12 ], and crack

extension under cyclic loading is fully transgranular and shows fatigue striations on the frac-

ture surface [15 ]. The overall approach is similar to that of Bouvard et al. [88 ], who studied

high-temperature creep-fatigue crack growth in a single-crystal nickel-base superalloy.

The computations in this study are used to address three research questions:

• What is the influence of the material rate sensitivity (or creep exponent) on post-OL

fatigue crack growth rates, for both a single OL and a block of multiple OLs?

• How do the CZM parameters governing damage evolution affect the crack growth

trends with respect to the material rate sensitivity?
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Figure 5.1. Crack extension from experiments with blocks of 20 OLs at OL
ratio 1.25. The dashed line indicates the cycle where the OL block begins.
The predicted crack extension based on the constant-amplitude loading ex-
periments is included for comparison. Results are shown for three different
baseline stress intensity factors prior to the OLs: (a) ∆K = 10.2 MPa
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Figure 5.2. Crack extension from experiments with blocks of 20 OLs at
overload ratio 1.5. The dashed line indicates the cycle where the OL block
begins. The predicted crack extension based on the constant-amplitude loading
experiments is included for comparison. Results are shown for three different
baseline stress intensity factors prior to the OLs: (a) ∆K = 8.7 MPa
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• How can the experimental results for Alloy 617 be understood in light of the model

predictions?

To answer the first two questions, a parametric study was conducted using a finite element

model of a creep-fatigue crack growth specimen. The predicted crack growth response and

crack-tip fields are analyzed in detail for a typical range of material parameters for solid

solution strengthened alloys. The model was then calibrated to the measured crack growth

rates from constant-amplitude cyclic loading experiments on Alloy 617 at 800◦C from [15 ] and

applied to the experiments with OLs from [18 ]. The third research question was subsequently

addressed through comparisons of the numerical and experimental results and interpretation

of the results based on observations from the parametric study.

5.2 Model description

The computations used a compact tension (C(T)) specimen geometry, shown in Fig-

ure 5.3  . This approach was used due to the possibility of widespread viscoplastic deforma-

tion ahead of the crack tip for materials with high rate sensitivity. Widespread viscoplastic

deformation can preclude the use of simplified, boundary layer-type models. Symmetry was

employed about the crack plane, allowing a half model to be used. A custom mesh generation

tool written in Python was used to create the mesh for the C(T) specimen. The mesh genera-

tion tool first created the highly-structured mesh near the crack tip, with gradual coarsening

of the mesh away from the crack tip. The tool then connected this crack-tip mesh with the

mesh surrounding the hole in the C(T) specimen, which was created in Abaqus/CAE [102 ].

The refined crack-tip mesh was moved to the desired crack length, and the remainder of the

C(T) specimen was uniformly filled in with elements out to the desired dimensions.

The finite element model consisted of 13759 linear plane strain elements in the bulk

material and 224 cohesive elements along the crack line ahead of the initial crack tip. The

cohesive elements shared their top nodes with the adjacent solid elements. The bottom

nodes were along the symmetry line, so their vertical displacements were fixed at zero. Due

to symmetry, the horizontal displacements of the top and bottom nodes were tied pairwise,

such that pure mode I conditions were present. The refined mesh in the vicinity of the

108



Figure 5.3. Finite element mesh for the compact tension specimen. (a)
Global mesh including the load pin. (b) Refined mesh near the crack tip.
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crack tip, shown in Figure 5.3  b, had a minimum element size of 1.0 µm. This mesh size

adequately resolved the active cohesive zone, and the predicted crack extension agreed with

computations using an element size of 0.5 µm. To ensure details of post-OL crack extension

and crack growth rates could be resolved and analyzed for all cases, larger element sizes were

not considered for the refined-mesh region. Computations were terminated when the crack

reached the end of the refined mesh region.

The load pin was modeled as a rigid cylinder, with frictionless surface-to-surface contact

between the pin and the specimen. To replicate experimental conditions, loading was applied

by imposing a force on the pin. The applied force is related to the stress intensity factor

from the standard equation [76 ]

K(t) = P (t)
(BBN)1/2 W 1/2

f (a/W ) (5.1)

where P (t) is the applied load as a function of time t, B is the specimen thickness, BN is the

net thickness for side-grooved specimens, a is the crack length, and W is the specimen width

(measured from the force line to the rear surface of the specimen). For a C(T) specimen,

the function f (a/W ) is given by

f (a/W ) =
[

2 + a/W

(1 − a/W )3/2

]
[
0.886 + 4.64 (a/W ) − 13.32 (a/W )2 + 14.72 (a/W )3 − 5.60 (a/W )4

]
.

(5.2)

The CMSG-vp model described in Section 2.1.1  was used for the bulk material, and the

irreversible CZM described in Section 2.2.1  was used for the cohesive elements. The material

surrounding the load pin was treated as elastic. Motivated by the experiments showing cycle-

dependent transgranular crack growth with fatigue striations at the loads of interest, only

fatigue damage was considered. The modified fatigue damage evolution equation given in

Eq. (2.25 ) was used here, such that the fatigue damage under pure normal separation is

given by

Ḋ = |∆̇n|
Cf

〈Tn − σf〉 . (5.3)
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The parameters Cf and σf were used to calibrate the model to experimentally-measured

fatigue crack growth rates for Alloy 617 at 800◦C. Modifications to this approach to apply

the model across different loading frequencies are investigated in Section 5.3.3 .

5.2.1 Model parameters

The elastic and viscoplastic parameters were chosen based on the properties of Alloy

617 [9 ], [12 ], [212 ]. Young’s modulus and Poisson’s ratio were E = 158600 MPa and ν =

0.3. The viscoplastic reference stress and reference strain rate were σ0 = 284 MPa and

ε̇0 = 3.0 × 10−4 s−1. Two values of the strain hardening exponent were considered: n = 0.0,

reducing the model to a Norton creep law, and n = 0.1, which would be relevant for materials

with substantial primary creep [101 ]. Three values of the creep exponent were considered to

assess its influence on the fatigue crack growth rates: m = 3.0, 5.0, and 7.0. These represent

a typical range of values for solid solution strengthened materials [213 ]; this range of values

was also considered by Reboul et al. [214 ] in a study of void growth in single crystals. To

calibrate the model to crack growth data for Alloy 617, computations were conducted with

m = 5.6 and n = 0.0. These values are based on creep tests [12 ], strain rate jump tests [9 ],

and nanoindentation [212 ].

Similar to the CZMs developed for fatigue crack growth in Ni-base superalloys in [88 ],

[89 ], the parameters σmax,0 and δ0 were interpreted as setting the stiffness of the CZM in the

context of fatigue crack growth. The values were set to σmax,0 = 104 MPa and δ0 = 0.002

mm. These values ensured that the compliance in the CZM did not substantially affect the

response in the bulk material before damage set in while allowing the model to resolve the

active cohesive zone during crack extension.

The two parameters in the fatigue damage evolution law, Eq. (2.25 ), were varied para-

metrically to assess how the damage evolution interacted with rate sensitivity in the bulk

material. Two values of each parameter were considered: Cf = 3.0 and 6.0 MPa · mm,

and σf = σ0 and 1.5σ0 (σf = 284.0 and 426.0 MPa). These parameters were subsequently

calibrated to the fatigue crack growth test results for Alloy 617.
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Figure 5.4. Schematic of the loading waveform for cyclic loading with OLs.
The same loading frequency f was maintained during constant-amplitude load-
ing and the OL(s).

The initial crack length for all computations was a/W = 0.560. A triangular waveform

was used for all computations. Most of the computations used a load frequency of f =

103ε̇0 = 0.3 Hz, which is on the same order of magnitude as the load frequency in the

experiments. To investigate the effect of load frequency on the results, f = 102ε̇0 = 0.03

Hz was also considered. The maximum applied load was Pmax = 1500 N. With load ratio

R = 0.5, this corresponds to a stress intensity factor range of ∆K = 11.75 MPa
√

m. For

computations with OL(s) in the parametric study, the OL ratio was Pmax,OL/Pmax = 1.5. The

same load ratio was maintained during the OL cycles as well, such that the stress intensity

factor range during the OLs was 1.5 times the baseline stress intensity factor range. The OL

was always applied during the cycle after the crack extension reached a value of ∆a = 25 µm.

Computations with constant-amplitude loading (0 OLs), 1 OL, and a block of 10 OLs were

considered in the parametric study. Different baseline stress intensity factor ranges and OL

ratios were compared in connection with the experimental results for Alloy 617. Figure 5.4  

shows the waveform used for the OLs in both the parametric study and the experiments.

The same loading frequency f and load ratio R were maintained for all cycles.
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5.3 Results

Results are first reported for the parametric study. The key outcome is the dependence

of post-OL crack growth rates on the material rate sensitivity. The dependence of these

results on the underlying CZM damage parameters is also investigated. Then, results are

presented for the application to Alloy 617. Model predictions for post-OL crack growth

rates are compared to the experiments, and the results are interpreted in light of the insights

gained from the parametric study.

5.3.1 Parametric study

The first set of computations considered CZM damage parameters Cf = 3.0 MPa·m

and σf = σ0. Computations were conducted with constant-amplitude loading, a single OL,

and a block of 10 OLs for each value of the creep exponent under consideration (m = 3.0,

5.0, and 7.0). Figure 5.5 shows the predicted crack extension for each case. For m = 7.0,

crack growth following OLs is similar to the typical behavior of ductile metals in the rate-

independent regime. For a single OL, there is a small amount of acceleration during the OL

cycle, followed by substantial retardation. The result is an overall delay effect: the cycles

required for the crack to grow through the fine-meshed region is larger for the single OL

than for constant-amplitude loading. The 10-OL block causes more acceleration during the

OLs as well as additional retardation in the subsequent cycles. The increased retardation is

much more substantial: the total number of cycles required for the crack to grow through

the fine-meshed region increases more for the OL block than for the single OL. For m = 3.0,

the OLs accelerate crack extension, with the acceleration becoming more pronounced for the

10-OL block than a single OL. After the OL cycle(s), there is virtually no retardation. This

response is more characteristic of relatively brittle materials. For m = 5.0, the acceleration

and retardation are in close competition for both a single OL and the 10-OL block. The

computations predicts that the number of cycles required for the crack to grow through the

fine-meshed region in the model is nearly the same for zero, one, and 10 OLs. These results

indicate a transition from retardation-dominated behavior at m = 7.0 (low rate sensitivity)

to acceleration-dominated behavior at m = 3.0 (high rate sensitivity).
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Figure 5.5. Predicted crack extension for computations with three different
values of the creep exponent m, with constant-amplitude loading (solid lines),
1 OL (dashed lines), and 10 OLs (dash-dot lines). Retardation dominates after
OLs for m = 7.0, while only acceleration occurs for m = 3.0.
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Figure 5.6. Predicted crack growth rates (log scale) for three values of the
creep exponent m for constant-amplitude loading (zero OLs), 1 OL, and 10
OLs. (a) m = 3.0 (b) m = 5.0 (c) m = 7.0
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Figure 5.6 shows the crack growth rates for each value of m and number of OLs. The

evolution of the crack growth rates helps to quantify the size of the OL-affected region, where

crack growth retardation occurs. Figure 5.6c shows a substantial reduction in crack growth

rates after the OL cycle(s) for m = 7.0, again similar to ductile metals in the rate-independent

regime. For one OL, the end of the OL-affected region approximately corresponds with the

end of the fine-meshed region. Increasing the number of OLs slightly reduces the minimum

post-OL crack growth rate, but the main effect is increasing the size of the OL-affected

region. Crack growth rates are still significantly suppressed at the end of the fine-meshed

region with the 10-OL block. Figure 5.6a  indicates that a very small amount of retardation

occurs for m = 3.0, but crack growth rates quickly return to steady state after the OL

cycle(s). The crack growth rates for m = 5.0 again show the close competition between

acceleration and retardation. There is a brief but significant acceleration during the OL

cycle(s), followed by a region where crack growth rates are clearly reduced. As observed in

Figure 5.5  , the acceleration and retardation essentially cancel each other out for one OL,

as there is only a small delay effect in the number of cycles. The 10-OL block widens the

extent of the OL-affected region. Figure 5.6b  shows that crack growth rates are still slightly

suppressed at the end of the fine-meshed region for the OL block. Thus, the retardation

would likely persist beyond the end of the computation, resulting in a larger delay effect

than for a single OL. Overall, the OL-affected region is larger, and the minimum post-OL

crack growth rate is lower for higher m.

The next question of interest is why the trends observed in the post-OL crack growth

rates occur, particularly the transition from acceleration-dominated behavior for m = 3.0 to

retardation-dominated behavior for m = 7.0. To this end, outputs from the model in both

the cohesive zone and the bulk material are now analyzed.

Figure 5.7 shows the traction distribution in the cohesive zone at the maximum load

for several cycles during the computations with 1 OL. To enable comparisons between each

case, the traction is normalized by the peak value during the cycle immediately before the

OL. For all cases, the peak traction increases during the OL cycle, while the peak traction

decreases during the cycle after the OL. The decreased peak traction is associated with

increased damage during the OL cycle. However, key differences arise in the shape of the
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Figure 5.7. Predicted traction distributions for computations with 1 OL and
for three values of the creep exponent: (a) m = 3.0 (b) m = 5.0 (c) m = 7.0.
The traction distribution is shown at maximum load for six different cycles:
constant-amplitude loading before the OL; the OL cycle; and 1, 10, 25, and
50 cycles after the OL. In each case, the traction is normalized by the peak
traction during constant-amplitude loading prior the OL cycle.
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traction distribution ahead of the crack tip during subsequent cycles. These differences are

associated with the crack extension and crack growth rate trends observed in Figure 5.5  and

Figure 5.6  . For m = 7.0 (Figure 5.7c  ), the shape of the traction distribution after the OL

deviates from the distribution during constant-amplitude loading. There is a region ahead

of the crack tip where the traction is clearly suppressed, most clearly pronounced in the first

cycle after the OL. The minimum traction is higher in subsequent cycles, but it remains

suppressed ahead of the crack tip compared with the constant-amplitude distribution. This

corresponds to reduced damage accumulation and subsequent crack growth retardation.

For m = 3.0 (Figure 5.7a ), the only change in the traction distribution following the

OL is the lower peak traction. There is no region ahead of the crack tip where the traction

is clearly suppressed. The traction distribution immediately returns to the shape from

constant-amplitude loading before the OL cycle. This corresponds to the minimal amount

of crack growth retardation for m = 3.0. For m = 5.0 (Figure 5.7b ), the response falls in

between the other two cases. Unlike m = 3.0, there is a clear dip in the traction distribution

following the OL, but it is less extensive than for m = 7.0. By the 50th cycle after the OL,

the traction ahead of the crack tip returns to the shape observed during constant-amplitude

loading. This corresponds to the smaller OL-affected region and lower number of cycles

required to return to the steady-state crack growth rates compared to m = 7.0. Also, the

length of the region with suppressed traction in the first cycle after the OL agrees closely

with the length of the OL-affected region observed in Figure 5.6b  . The crack growth rate

returns to the steady-state value at a location of about 150 µm beyond the initial crack

tip. This is close to the location where the traction in the “OL+1” cycle returns to the

steady-state distribution from before the OL.

Figure 5.8  shows contours of the accumulated viscoplastic strain for each case in the 50th

cycle after the OL. The key result is that a higher value of the creep exponent m correlates

with higher local viscoplastic strains near the location of the crack tip when the OL was

applied. For example, for m = 7.0, there is a region of clearly increased viscoplastic strain

near the OL location. There is a modest increase in viscoplastic strain for m = 5.0 and

virtually no evidence of the OL for m = 3.0. Together with Figure 5.7  , this indicates that

the traction distributions for m = 7.0 and m = 5.0 are disturbed by residual stress due to
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Figure 5.8. Contours of the accumulated viscoplastic strain εvp in the 50th
cycle after the OL for computations with 1 OL and three values of the creep
exponent: (a) m = 3.0 (b) m = 5.0 (c) m = 7.0. In all cases, contours are
shown on the undeformed configuration. The solid white line marks the initial
crack tip location. The dashed white line marks the location of the crack tip
when the OL was applied. The dash-dot white line marks the current crack-tip
location.
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the increased crack-tip viscoplastic deformation during the OL. As a result, crack growth

retardation occurs after the OL. This phenomenon is similar to what has been observed in

rate-independent elastic-plastic materials in computations of fatigue crack growth including

OLs [119 ], [129 ].

Next, the traction threshold σf and the reference damage energy Cf are varied to deter-

mine if these parameters influence the observed trends with respect to the creep exponent

m. Figure 5.9  shows crack extension predictions for three parameter sets. The results from

Figure 5.5 are repeated in Figure 5.9a to aid in comparisons between each case. Higher

values of the reference damage energy Cf reduce the damage accumulation by the same

factor at all locations in the CZM. Comparing Figure 5.9a  (Cf = 3.0 MPa·mm) and Fig-

ure 5.9b (Cf = 6.0 MPa·mm) shows that doubling the value of Cf increases the number

of cycles required for the crack to grow through the fine-meshed region for all values of m.

In quasi-brittle materials, doubling Cf would increase this number of cycles and reduce the

crack growth rates by exactly a factor of two. In that case, damage evolution is the only

dissipative process [130 ]. Here, there is additional crack-tip viscoplastic deformation for the

slower-growing cracks that reduces crack growth rates beyond a factor of two. Comparing

Figure 5.9a  and Figure 5.9b  shows this is more significant for higher values of m, where

there is also more crack-tip viscoplasticity as seen in Figure 5.8 . In computations with OLs,

the acceleration and retardation are both suppressed for all cases with Cf = 6.0 MPa·mm

compared to the predictions for Cf = 3.0 MPa·mm. However, the trends with respect to m

remain the same. The response is dominated by acceleration for m = 3.0, with a transition

to retardation for m = 7.0.

Similarly, increasing the threshold σf reduces the crack growth rates for all cases. In

this case, the length of the active cohesive zone is also reduced, as the region where damage

evolution occurs extends a shorter distance ahead of the crack tip [88 ], [130 ]. As a result,

the shape of the crack extension curves changes somewhat in Figure 5.9c  (σf = 1.5σ0)

compared with Figure 5.9a  (σf = σ0). The computations with σf = 1.5σ0 predict that a

smaller amount of crack extension is required to reach a steady-state crack growth rate for

constant-amplitude loading. As with the Cf parameter, however, the post-overload trends

with respect to m are not affected.
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Figure 5.9. Predicted crack extension for computations with different com-
binations of CZM damage parameters: (a) Cf = 3.0 MPa·mm and σf = σ0
(repeated from Figure 5.5 ) (b) Cf = 6.0 MPa·mm and σf = σ0 (c) Cf =
3.0 MPa·mm and σf = 1.5σ0. The figures include constant-amplitude load-
ing (solid lines), 1 OL (dashed lines), and 10 OLs (dash-dot lines) with three
different values of the creep exponent m.
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Figure 5.10. Predicted crack extension for computations with different values
of the strain hardening exponent N : (a) N = 0.0 (repeated from Figure 5.9b  )
(b) N = 0.1. The figures include constant-amplitude loading (solid lines), 1
OL (dashed lines), and 10 OLs (dash-dot lines) with three different values of
the creep exponent m.
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Figure 5.11. Predicted crack extension for computations with different load-
ing frequencies: (a) f = 103ε̇0 = 0.3 Hz (repeated from Figure 5.5 ) (b)
f = 102ε̇0 = 0.03 Hz. The figures include constant-amplitude loading (solid
lines), 1 OL (dashed lines), and 10 OLs (dash-dot lines) with three different
values of the creep exponent m.

Figure 5.10 shows the effect of including strain hardening in the material definition, which

is relevant for materials that exhibit substantial primary creep. Crack extension predictions

are compared for strain hardening exponents n = 0.0 and n = 0.1 with damage parameters

Cf = 6.0 MPa·mm and σf = σ0. Crack growth rates are higher overall for n = 0.1 due to a

reduction of crack-tip shielding from viscoplastic deformation in the bulk material. However,

this does not affect the trend of the post-overload crack growth rates either. The dominance

of acceleration or retardation depends only on the creep exponent m.

Finally, Figure 5.11 shows the influence of the load frequency on crack extension. Unlike

the other parameters that have been considered, decreasing the load frequency alters the

creep exponent value at which the transition between acceleration and retardation-dominant

behavior occurs. Although the trend towards retardation at higher m remains the same, net

acceleration clearly occurs for m = 5.0 at the lower load frequency of f = 0.03 Hz. Aside

from the damage parameters and the load frequency, the magnitude of the applied load is

the other main factor governing the crack growth rates. The influence of the load magnitude

is investigated in the next section through comparisons to the experiments.
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5.3.2 Application to Alloy 617

The model was calibrated to the experimentally-measured crack growth rates for Alloy

617 under constant-amplitude loading at 800◦C and a loading frequency of f = 0.33 Hz

reported in [15 ]. Figure 5.12  shows the cyclic crack growth rates da/dN as a function of

stress intensity factor range ∆K for the constant-amplitude loading experiments. The results

follow the typical Paris law relationship [42 ]:

da

dN
= Ap (∆K)Mp , (5.4)

with exponent Mp = 1.85. Computations at stress intensity factor ranges of ∆K = 9.20,

11.75, and 14.10 MPa
√

m were used to calibrate the model. The traction threshold σf

was chosen such that the predicted slope of the da/dN versus ∆K curve agreed with the

experiments. The reference damage energy Cf was chosen such that the numerical values of

the crack growth rates aligned with the experiments. This procedure resulted in values of

σf = 100 MPa and Cf = 20.0 MPa·m. Values of the bulk material parameters are given in

Section 5.2.1 . Predicted crack growth rates for the calibrated model are shown in Figure 5.12 

together with the experimentally-measured crack growth rates.

Computations with a single OL and a block of 20 OLs were conducted using the calibrated

model. Baseline stress intensity factor ranges of ∆K = 9.20, 11.75, and 14.10 MPa
√

m were

used in the computations. Both OL ratios from the experiments were considered. Recall that

a single OL did not produce any measureable effects. Overload blocks produced retardation

at low loads and acceleration at high loads, with the retardation being more pronounced at

a higher OL ratio.

Figure 5.13  and Figure 5.14  show the predicted crack extension and cyclic crack growth

rates for each OL ratio and baseline ∆K. Particularly for an OL ratio of 1.25 the predicted

crack extension for a single OL is nearly the same as for constant-amplitude loading. Acceler-

ation and retardation are both virtually absent. This agrees with the single-OL experiment.

For the blocks of 20 OLs the crack extension predictions show net retardation for ∆K = 9.20

MPa
√

m, particularly for OL ratio 1.5. The retardation becomes less significant for higher
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Figure 5.12. Cyclic crack growth rates as a function of stress intensity factor
range (double-log scale) for a triangular loading waveform with load frequency
f = 0.33 Hz. Results are shown for crack growth experiments and for the
calibrated model.
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Figure 5.13. Predicted crack extension for computations with the calibrated
model for OL ratios of (a) 1.25 and (b) 1.5. The figures include constant-
amplitude loading (solid lines), 1 OL (dashed lines), and 20 OLs (dash-dot
lines) at three different baseline stress intensity factor ranges.
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Figure 5.14. Predicted crack growth rates for computations with the cal-
ibrated model for OL ratios of (a) 1.25 and (b) 1.5. The figures include
constant-amplitude loading (solid lines), 1 OL (dashed lines), and 20 OLs
(dash-dot lines) at three different baseline stress intensity factor ranges.

baseline loads and essentially disappears at ∆K = 14.10 MPa
√

m, with the acceleration

and retardation cancelling each other out. The same trend was observed in the experiments

with OL blocks shown in Figure 5.1  and Figure 5.2  . However, the predicted retardation

immediately after the OLs is less severe than in the experiments, while the model appears to

overpredict the length of the OL-affected region in terms of both cycles and crack extension.

5.3.3 Plastic strain gradients and cyclic loading at different frequencies

The role of plastic strain gradients was investigated for the calibrated model by setting the

intrinsic material length to l = 4.5 µm, the value inferred from nanoindentation experiments

at 800◦C on Alloy 617 [212 ]. Computations were conducted with constant-amplitude loading

and a block of 20 OLs at each OL ratio of interest (i.e., 1.25 and 1.5) using the calibrated

CZM. Results are shown in Figure 5.15  comparing the computations incorporating plastic

strain gradients to the original computations without strain gradient hardening shown in

Figure 5.13  . These results demonstrate that hardening due to plastic strain gradients does

not significantly affect steady-state or post-OL crack growth. Essentially, for this material,

the OL effect is already insignificant enough that accounting for the increased hardening
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Figure 5.15. Predicted crack extension with the calibrated model for ∆K =
11.75 MPa

√
m and OL ratio 1.5. Solid lines are for l = 0 (shown previously

in Figure 5.13 b). Dashed lines are for l = 4.5 µm.

close to the crack tip due to plastic strain gradients does not affect the model predictions.

This contrasts with the results in Chapter 3 for the rate-independent material.

Another interesting observation is that, as shown in Figure 5.11  , the model predicts much

lower constant-amplitude crack growth rates for the same applied load when the frequency

is reduced. However, the experiments by [15 ] show that the relationship between constant-

amplitude crack growth rates and the stress intensity factor range is nearly independent

of load frequency up to about ∆K ≈ 11.5 MPa
√

m or Kmax ≈ 23.0 MPa
√

m. It was

therefore hypothesized that incorporating the same rate-dependence from the viscoplasticity

formulation into the damage evolution equation could account for this discrepancy. This

is based on the idea that crack growth at loads of interest below Kmax ≈ 23.0 MPa
√

m is

associated with the cyclic viscoplasticity.

To demonstrate the concept, this was done in an approximate manner using the following

approach. First, the maximum effective stress ahead of the crack tip during crack growth

was extracted from computations at ∆K = 11.75 MPa
√

m and each frequency of interest:

f = 0.33, 0.05, and 5.0 Hz. The stresses are denoted as σ̄0.33, σ̄0.05, and σ̄5.0, respectively.
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The stress from computations with f = 0.33 Hz was used as a reference case to calculate a

ratio for each frequency:

R0.05 =
(

σ̄0.05

σ̄0.33

)5.6
, R5.0 =

(
σ̄5.0

σ̄0.33

)5.6
. (5.5)

These ratios represent the influence of the material rate sensitivity on the computations at

each frequency. The ratios were found to be R0.05 ≈ 0.75 and R5.0 ≈ 1.6. To incorporate this

rate dependence into the CZM, the reference damage energy was scaled by this parameter.

With the calibrated model for f = 0.33 Hz using Cf = 20.0 MPa·mm, the reference damage

energies for the other two frequencies were

Cf,0.05 = R0.05Cf = 15.0 MPa · mm, Cf,5.0 = R5.0Cf = 32.0 MPa · mm. (5.6)

Figure 5.16 shows the predicted crack growth rates from the revised model, together

with the experimental data from [15 ]. The predicted crack growth rates no longer depend

strongly on the load frequency. The model therefore still overpredicts the crack growth

rates for f = 5.0 Hz somewhat, but it does support the hypothesis that incorporating rate

dependence into the CZM can remove the frequency dependence of the model predictions.

For the f = 0.05 Hz results, two further observations are relevant. First, the experiments

observed significant void growth and coalescence above ∆K ≈ 11.5 MPa
√

m for f = 0.05

Hz and loading waveforms containing a hold time [15 ]. The highest stress intensity factor

considered in the computations clearly exceeds this level (∆K = 14.10 MPa
√

m). The

modified model does predict a slightly higher crack growth rate for f = 0.05 Hz at this

load level, but void growth should be also be considered at this point. Second, based on

the conditions laid out in ASTM E2760 [76 ], the stress intensity factor becomes ineffective

for characterizing fatigue crack growth below f ≈ 0.125 Hz for this material [15 ]. This

calls into question the correlation with ∆K for f = 0.05 Hz. To investigate this further,

additional computations were conducted at a different crack length but the same applied

∆K. Figure 5.17 shows the predicted crack growth rates for the original calibrated model

with Cf = 20 MPa·mm, ∆K = 9.2 MPa
√

m, a/W = 0.560 and 0.485, and f = 0.33 Hz and
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Figure 5.16. Cyclic crack growth rates as a function of stress intensity factor
range (double-log scale) for a triangular loading waveform with load frequencies
f = 0.33, 0.05, and 5.0 Hz. Experimental results are in grey, and predictions
from the modified model are in red.
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Figure 5.17. Predicted crack growth rates for computations with Cf = 20
MPa·mm and ∆K = 9.2 MPa

√
m at two different initial crack lengths. (a)

f = 0.33 Hz. (b) f = 0.05 Hz.

0.05 Hz. The predicted crack growth rates are indeed somewhat dependent on the initial

a/W value for f = 0.05 Hz, while the dependence is reduced for f = 0.33 Hz.

An alternate way to introduce rate dependence into the cohesive zone is through the

monotonic traction separation law. This can be done by scaling the cohesive strength pa-

rameter σmax,0 instead of the reference damage energy by the ratios R0.05 and R5.0. Based

on the interpretation of σmax,0 as setting the stiffness of the CZM, this creates a situation

where the effective stiffness of the bulk material and the stiffness of the CZM share the same

rate dependence. Using this approach, the computations predict essentially the same crack

growth rates as shown in Figure 5.16 . This is investigated further in Appendix C.

5.4 Discussion

The key outcome of this study is the transition from acceleration-dominated behavior

at high rate sensitivities (low creep exponents) to retardation-dominated behavior at low

rate-sensitivities (high creep exponents). Higher creep exponents are associated with larger

accumulated viscoplastic strains near the crack tip, seen in Figure 5.8  . The resulting com-

pressive residual stresses disturb the traction distribution ahead of the crack tip, as indicated
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by Figure 5.7 . This in turn leads to suppressed damage accumulation and crack growth re-

tardation. The value of the creep exponent corresponding to the transition between net

acceleration and retardation is on the order of m = 5.0 to m = 7.0 for the load frequencies

considered here.

The numerical predictions indicate that the rate sensitivity is the main material param-

eter influencing whether post-OL retardation occurs. The CZM parameters, which would in

general need to be calibrated to the constant-amplitude crack growth rates for a particular

material, did not affect the trends in the post-OL crack growth rates. The main effect of

altering these parameters was suppressing the magnitude of both the acceleration and re-

tardation at higher values of the threshold σf and the reference damage energy Cf . Higher

values of these parameters correspond to lower constant-amplitude crack growth rates. These

trends were similarly independent of strain hardening, although only isotropic hardening was

considered in this study.

The computations provide insight into experimentally-measured crack extension following

OLs in Alloy 617. The creep exponent for Alloy 617 of m = 5.6 is in the range of values

where a close competition between post-OL acceleration and retardation was observed in

the parametric study. This close competition does indeed occur in the fatigue crack growth

experiments. The trend toward more acceleration following OL blocks at higher baseline

∆K is also present in both the computations and experiments.

The computations with OLs also help to explain an apparent contradiction in the ex-

perimental crack growth data for Alloy 617. Based on crack extension experiments under

constant load, Alloy 617 has been described as creep-ductile [17 ], meaning that substantial

viscoplastic deformation accompanies crack extension [5 ]. On the other hand, the fatigue

crack growth experiments with OLs reported here demonstrate behavior more characteristic

of brittle materials [20 ]: the possibility of acceleration-dominated behavior for OL blocks,

as well as the lack of retardation after a single OL seen in the computations. As a result,

classical OL models that assume retardation occurs as the crack grows through the OL-

induced plastic zone [7 ], [44 ], [51 ] cannot be applied to this material. The parameters in

such a model could be fit to a case where retardation does occur (e.g., Figure 5.1a  ), but the

prediction would fail at a different applied load (e.g., Figure 5.1c ). Most of these models
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also do not account for the acceleration that occurs immediately after the OL(s), which is

significant in the experiments with OL blocks. On the other hand, the model predictions

in this study do reflect the trends in the experiments, without performing any calibration

beyond the constant-amplitude crack growth results.

This observation is relevant to structural materials beyond Alloy 617. Many solid so-

lution strengthened alloys, as well as pure metals, have a creep exponent in the range of

m = 5.0 to m = 7.0, particularly at temperatures and stresses where dislocation climb is

a dominant deformation mechanism [213 ]. These materials are therefore expected to show

a close competition between acceleration and retardation after OLs, similar to Alloy 617.

More experimental studies on high-temperature fatigue crack growth under transient loads

would help to further understand this phenomenon.

Although the trends in the computations are similar to the experiments, the shape of the

predicted crack extension curves differs from those observed experimentally. In particular,

both the acceleration and retardation are more pronounced in the experiments. There are

several possible reasons for this. A known difficulty with power law viscoplasticity mod-

els is that they can overestimate the stress and underestimate the viscoplastic deformation

close to the crack tip [81 ], [215 ]. Accounting for this phenomenon using a double power law

[88 ] or hyperbolic sine [215 ] creep model may remedy this issue. With increased crack-tip

viscoplastic strain, the model would likely predict more pronounced retardation. It is also

possible that some cavitation damage is induced during the OLs, which could enhance the

crack growth acceleration [81 ]. Some cavitation has been observed at higher loads at the

frequency of interest (f = 0.33 Hz) [15 ]. This is not accounted for in the model. Using a

more complex fatigue damage model could also improve predictions. One common approach

is to use a power law damage evolution equation rather than the linear relationship in Eq.

(2.25 ) [88 ], [118 ]. This adds one additional fitting parameter to the CZM formulation. A

formal calibration procedure involving, for example, an optimization algorithm and sensi-

tivity analysis with the CZM parameters could further enhance this study. Here, the values

for the CZM parameters were estimated by comparison with the emperimentally-measured

crack growth rates. Overall, however, the qualitative agreement between model and exper-
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iment regarding the trends in acceleration and retardation across different load magnitudes

is encouraging.

A further limitation related to the OL computations is that the OLs were applied be-

fore the crack growth rates reached fully steady-state conditions. This ensured reasonable

computational expense while computing a sufficient amount of crack extension to capture

the post-OL acceleration and retardation. One possible solution to this limitation could in-

volve using a numerical scheme where the model state after constant-amplitude loading just

prior to OL application is stored and used as input to subsequent computations. Adaptive

remeshing may also aid in computing larger amounts of crack extension with reasonable

computational expense [119 ].

The results pertaining to constant-amplitude crack growth at different frequencies indi-

cate that incorporating rate dependence into the CZM damage formulation based on the

rate dependence in the bulk material brings the predicted crack growth rates at all load fre-

quencies into closer agreement. This supports the idea that crack growth at all frequencies

is closely associated with cyclic viscoplasticity at the loads of interest. Also, instead of the

ad hoc adjustments to the CZM parameters based on the effective stress in the bulk mate-

rial, a rate dependent CZM formulation could be used. An example of this approach is the

work of Landis et al. [216 ], who used a rate-dependent CZM to model monotonic fracture

of elastic-viscoplastic materials. Abraham et al. [123 ] used a similar rate-dependent CZM

formulation to study thermomechanical fatigue in superalloys.

This study is also restricted to cases where crack growth is dominated by cyclic (fa-

tigue) mechanisms, motivated by the experiments for Alloy 617 showing cycle-by-cycle crack

growth at the load ranges and frequencies of interest [15 ]. The experimental and numerical

results showed that it is possible for acceleration-dominated post-OL crack growth to occur in

ductile materials, without the presence of time-dependent damage mechanisms. However, it

would be important to extend the model to account for time-dependent processes like cavita-

tion and oxidation, which contribute to high-temperature crack extension in many materials.

Using a more detailed viscoplasticity model may also enable better agreement between com-

putations and experiments. One improvement particularly relevant for fatigue crack growth

is considering kinematic hardening, which can also introduce further rate dependence [217 ].
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The results of this study indicate that using less rate-sensitive materials could enhance

damage tolerance in applications where load transients are expected to be significant. How-

ever, there are additional complications that must be considered. Most importantly, highly

creep-resistant alloys, such as Alloy 718, can often sustain higher crack-tip stresses over a

longer period of time. As a result, time- and stress-dependent damage mechanisms, par-

ticularly grain boundary oxidation, are activated [29 ], [218 ]. In these cases, a potentially

complex interplay between viscoplastic deformation, stress relaxation, grain boundary cavi-

tation, dynamic embrittlement due to oxygen diffusion, stress-assisted grain boundary oxi-

dation, and other time-dependent mechanisms may need to be considered [5 ]. Extending the

current study by using one of these physically-based damage models in the CZM could help

elucidate situations that may enhance enhance particular aspects of the OL response. Espe-

cially when these time-dependent damage mechanisms are activated, more complex loading

waveforms containing hold times or multi-level block loading, should also be investigated.

Oxide-induced crack closure and its influence on crack growth rates can also be an important

consideration [66 ].

Although it was not the focus of this study, an interesting observation is that the com-

puted steady-state crack growth rates depend non-monotonically on the material rate sensi-

tivity. For example, in Figure 5.6  , for the same applied load, the steady-state crack growth

rate is highest for m = 7.0 and the lowest for m = 5.0. This contrasts with the trend for

crack growth rates following OLs, with retardation becoming more significant with increasing

creep exponent. This is conceptually similar to numerical results from Nielsen et al. [219 ],

who used a steady-state numerical scheme to investigate the macroscopic fracture toughness

for slow- and fast-growing cracks in rate-sensitive materials. The results showed a similar

non-monotonic relationship: increased rate sensitivity increased the macroscopic toughness

for slow cracks but decreased the macroscopic toughness for fast-growing cracks.

Finally, in general, the current study supports evidence that the material rate sensitivity

is relevant to a variety of damage processes, including crack growth under monotonic loading

[219 ], [220 ] and void growth and coalescence [214 ], [221 ], [222 ]. For example, Reboul et al.

[214 ] found that the maximum accumulated plastic strain in a unit cell model containing a

void increased with decreasing rate sensitivity. Similarly, in the current study, the accumu-
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lated viscoplastic strain ahead of the crack tip increased for higher creep exponents (lower

rate sensitivity). In the context of void growth, the increased plastic strain decreased the

critical void volume fraction at which localization occurred. The authors in [214 ] also found

that including isotropic strain hardening in the material response did not affect the trends

of localization and void coalescence with respect to the rate sensitivity. This is again similar

to the post-OL crack growth rates in the current study.

5.5 Conclusions

This study combined computations and experiments to investigate high-temperature fa-

tigue crack growth following OLs. The finite element computations used a power-law vis-

coplasticity model for deformation in the bulk material and an irreversible cohesive zone

model for material degradation ahead of the crack tip. A parametric study was first con-

ducted to assess the influence of the material parameters on post-OL fatigue crack growth.

The following conclusions are drawn from the parametric study:

• Post-OL crack growth rates depend strongly on the creep exponent m. Materials with

low creep exponents (high rate sensitivity) show net acceleration. Materials with high

creep exponent (low rate sensitivity) show net retardation.

• A transition between acceleration and retardation-dominated behavior occurs at creep

exponent values characteristic of many solid solution strengthened alloys, including

Alloy 617.

• Crack growth retardation is associated with higher local viscoplastic strain near the

crack tip relative to the rest of the viscoplastic zone. This enhances compressive

residual stress ahead of the crack tip, which disturbs the traction distribution.

• Strain hardening and the CZM damage parameters influence the magnitude of post-

overload acceleration and retardation but not the trends with respect to the rate

sensitivity.

The model was then applied to fatigue crack growth experiments on Alloy 617 at 800oC.

The model was first calibrated to the crack growth rates from constant-amplitude loading
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experiments at f = 0.33 Hz and applied to the experiments with OLs. The following

conclusions are drawn from the experiments and the calibrated model:

• A single OL does not measurably affect crack growth rates.

• Blocks of 20 OLs can cause an acceleration-dominated or retardation-dominated re-

sponse, depending on the baseline stress intensity factor range.

• Based on the parametric study, the creep exponent for Alloy 617 at 800oC is close to the

transition between net acceleration and net retardation. This is in agreement with the

close competition between acceleration and retardation observed in the experiments.

• The calibrated finite element model shows good agreement with the trends observed in

the experiments, although the model predicts less severe acceleration and retardation

than observed in the experiments.

• For Alloy 617 and similar materials, conventional overload models that assume crack

growth retardation may be non-conservative.
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6. TRANSIENT CREEP-FATIGUE CRACK GROWTH IN

CREEP-BRITTLE MATERIALS: APPLICATION TO ALLOY

718

A version of this chapter is in preparation for submission to Journal of Applied Mechanics

[223 ]: J.D. Pribe, H.E. Ostergaard, T. Siegmund, J.J. Kruzic, “Transient creep-fatigue crack

growth in creep-brittle materials: Application to Alloy 718,” J Appl Mech, In preparation.

6.1 Introduction

Alloy 718 is a precipitation-hardened alloy used in applications that require temperatures

up to 650◦C due to its good combination of toughness, strength, and creep resistance [21 ],

[22 ]. Applications include gas turbine engines and nuclear power plants as well as other

aerospace and nuclear applications frequently involving aggressive environments [21 ], [22 ],

[25 ], [27 ]. In such applications, components are typically subjected to a combination of

cyclic and sustained loads [29 ]. These loading waveforms also include load transients like

OLs and hold times at multiple load levels. These transients arise due to both design

loads (e.g., aircraft takeoff-cruise-landing cycles and load following requirements in power

generation) and load excursions (e.g., turbulence) [13 ], [25 ], [34 ], [224 ]. Understanding crack

growth following load transients is therefore important for predicting component lifetimes

and determining inspection intervals in a damage-tolerant design approach [26 ], [34 ].

A large number of experimental studies have investigated steady-state crack extension

in polycrystalline Alloy 718 under various mechanical and environmental conditions [22 ],

[32 ], [225 ]. In general, these studies have successfully correlated crack growth rates with

the stress intensity factor K for sustained loading and constant-amplitude cyclic loading [4 ],

[22 ], [23 ], [77 ], [226 ]. This indicates that crack-tip conditions are uniquely described by K

under these loading conditions. In the context of time-dependent fracture mechanics, Alloy

718 can be classified as a creep-brittle material: crack growth rates are sufficiently high, and

the material is sufficiently resistant to creep deformation, that the viscoplastic zone grows

with the advancing crack tip [5 ].
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The specifics of the crack growth mechanism depend strongly on characteristics of the

applied loading and the environment. The current study considers crack extension in poly-

crystalline Alloy 718 at 650◦C in an air environment. Here, environmental damage due to

preferential oxygen intrusion along grain boundaries ahead of the crack tip is significant [29 ],

[32 ], [224 ], [227 ], [228 ]. The importance of environmental damage is demonstrated by signif-

icantly lower crack growth rates for tests in a vacuum environment compared with tests in

air, particularly under sustained loading [29 ], [32 ], [224 ]. During cyclic loading in air, envi-

ronmental damage causes crack growth behavior to depend strongly on the loading frequency

[23 ]. Below a loading frequency of about f = 0.01 to 0.1 Hz, time-dependent environmental

damage is dominant, indicated by a fully intergranular crack path [4 ], [22 ], [29 ]. Cyclic crack

growth rates have been correlated with the maximum cyclic stress intensity factor Kmax in

this situation [77 ], [229 ]. At frequencies above f ≈ 1.0 Hz, cycle-dependent fatigue damage

is dominant, and the crack path is transgranular [4 ], [22 ]. In this case, cyclic crack growth

rates have been correlated with the cyclic stress intensity factor range [225 ], [229 ]. Crack

growth rates tend to increase with decreasing frequency, as the environmental damage mech-

anism becomes more dominant [225 ]. The high crack growth rates under sustained loads and

low-frequency cyclic loading in air are due to oxygen-induced grain boundary embrittlement,

but the precise mechanism is disputed [218 ], [230 ]. Some studies suggest that oxides form on

the grain boundaries and subsequently crack, typically referred to as a stress-assisted grain

boundary oxidation [31 ], [231 ]. Others suggest that elemental oxygen ingress lowers grain

boundary cohesion through a dynamic embrittlement mechanism, leading to brittle failure

before oxides can form [231 ]–[233 ]. Regardless of the active mechanism, a tensile stress on

the grain boundary enhances the damage process [31 ], [230 ].

Several experimental studies have also investigated crack growth following OLs in poly-

crystalline Alloy 718 at 650◦C. The loading waveforms have generally been inspired by air-

craft turbine engine load spectra [26 ]. This includes sustained loads interrupted by an OL

with a hold time at higher load [34 ] and trapezoidal waveforms with an OL prior to the hold-

time portion of the cycle [25 ], [30 ], [33 ]. In each case, crack growth retardation occurred in

the experiments. For sustained loads, a delay effect was observed following unloading from

the OL back to the initial sustained load for both of the OL ratios that were considered
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(1.2 and 1.5) [34 ]. The OL ratio was found to be the main factor influencing the amount

of retardation, with longer delay times and the possibility of crack arrest being observed for

OL ratio 1.5. For a trapezoidal waveform, the OL eliminated the detrimental effect of the

hold time, so long as OL ratios above approximately 1.2 were considered [30 ], [33 ]. Similar

results have been observed for other precipitation-hardened, creep-brittle alloys [26 ], [208 ],

[210 ].

Explanations and phenomenological models for post-OL retardation have followed well-

known approaches for rate-independent materials, especially the Willenborg model for crack

growth following OLs [44 ]. This involves defining an effective stress intensity factor or load

ratio during crack extension through the OL viscoplastic zone, based on compressive residual

stress generated by the OL. Adding one or more fitting parameters to this basic framework

of the Willenborg model has provided reasonable agreement with experiments [26 ], [33 ],

[34 ], [48 ]. This approach has the advantage of being straightforward to apply in design

situations, without requiring computationally-expensive simulations [26 ]. However, a key

challenge is that a variety of different waveforms containing OLs may be relevant for realistic

load spectra. Recalibrating the model or adding more fitting parameters may be necessary to

capture the specific characteristics of crack growth retardation associated with each waveform

[48 ]. Finite element and strip yield models are two approaches that enable consideration of

arbitrary waveforms. Several studies have used these methods to analyze crack-tip fields in

bodies with stationary cracks subjected to trapezoidal waveforms containing OLs. These

have demonstrated reduced stresses ahead of the crack tip during the hold time after the

OL [25 ], [30 ], [83 ]. Bouvard et al. [88 ] considered OLs during 5-Hz cyclic loading of a single-

crystal Ni-based superalloy. These authors used finite element computations with a cohesive

zone model that accounted for both cyclic and time-dependent damage. The computations

predicted crack growth retardation that became more significant with increasing number of

OLs. However, these results were not compared with specific experiments, and trends with

respect to different waveforms and OL ratios were not investigated. This approach has also

been applied to describe damage due to dynamic embrittlement, grain boundary sliding, and

thermomechanical fatigue [89 ], [123 ], [124 ].
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In the current study, finite element computations were conducted that combined a vis-

coplasticity model for the bulk material and a CZM to describe material degradation and

crack extension. The computations could thereby predict crack extension and the crack-tip

fields for various waveforms containing OLs. The viscoplasticity model is based on the Kocks-

Mecking formalism [105 ], [106 ], [110 ]. Using this formulation, the computations account for

dislocation storage and dynamic recovery in the evolving crack-tip viscoplastic zone. These

processes are considered to be relevant since the viscoplastic zone is contained near the

crack tip in creep-brittle materials like Alloy 718. In this situation, details of the hardening

process when viscoplastic deformation is activated are expected to influence the crack-tip

fields as the crack extends. Formulations based on the Kocks-Mecking approach have also

been previously applied to precipitation-hardened materials like Alloy 718 [97 ], [106 ], [234 ],

[235 ]. The model included the influence of hardening due to plastic strain gradients through

the inclusion of GNDs [85 ], [93 ], [97 ]. The CZM captured subcritical material degradation

through the use of a phenomenological stress- and time-dependent damage evolution equa-

tion [88 ], [89 ]. This was chosen based on the observed stress and time dependence of the

environmentally-enhanced intergranular damage and crack extension in Alloy 718 [31 ], [32 ],

[224 ].

The following research questions are addressed in this study:

• How do OLs affect crack extension when time-dependent damage is significant?

• How can these results help interpret experiments on Alloy 718 and similar creep-brittle

materials?

• What is the role of dynamic recovery and hardening due to GNDs on these outcomes?

To address these questions, the model was first calibrated to experimentally-determined

steady-state crack growth rates for polycrystalline Alloy 718 at 650◦C in laboratory air.

Subsequent computations considered three different waveforms containing OLs: cyclic load-

ing with OLs, sustained loading interrupted by an OL, and a trapezoidal waveform with an

OL prior to the hold time in each cycle. The last two waveforms allow comparisons with the

experiments of Nicholas et al. [47 ], Weerasooriya and Nicholas [33 ], and Ponnelle et al. [30 ].
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To investigate the role of dynamic recovery and GNDs, separate computations neglecting

each mechanism were conducted for both steady-state and post-OL crack extension. These

were compared with the predictions from computations with the full SGKM model.

6.2 Model description

The model geometry consisted of a symmetric modified boundary layer model similar to

Chapter 3 and shown in Figure 6.1  . This approach is justified for Alloy 718 since viscoplastic

strains are confined to a region closely surrounding the crack tip, and small-scale creep

conditions are applicable [203 ]. Displacements corresponding to the mode I stress intensity

factor were applied to the outer nodes of the model [145 ]. Symmetry was enforced about

the crack plane along the bottom of the model. The point x = 0 corresponds to the initial

crack tip. The boundary layer model consisted of 9244 linear plane strain elements in the

bulk material and 246 cohesive elements along the crack line ahead of the initial crack tip.

The radius of the modified boundary layer model was RMBL = 20.0 mm; the maximum

crack extension was ∆amax = 222 µm; and the element size in the fine-meshed region was

1.0 µm. The predicted crack extension agreed with computations using a smaller element

size of 0.5 µm, and this element size resolved the active cohesive zone. To ensure post-OL

crack extension and crack-tip fields could be analyzed in detail, larger element sizes were not

considered. Computations were terminated when the crack reached the end of the refined

mesh region.

This study used the SGKM model described in Section 2.1.2  for deformation in the

bulk material. The irreversible CZM described in Section 2.2.1 was used for the cohesive

elements. Stress- and time-dependent damage in the CZM was described by the Rabotnov-

Kachanov-type damage formulation in Eq. (2.26 ). Rate-independent fatigue damage was not

considered.

6.2.1 Model parameters

The viscoplasticity parameters of the SGKM model are given in Table 6.1 and approxi-

mate the behavior of Alloy 718 at 650◦C, following [97 ]. The elastic properties were E = 165
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Figure 6.1. (a) Global mesh with displacement boundary conditions. (b)
Refined crack-tip mesh.
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Table 6.1. Property values for SGKM model.
σ0 (MPa) m n k1 (mm−1) k20 M α b (nm) ε̇0 (s−1) ρ0 (mm−2)

779 25 5 8 × 105 28.29 1.73 0.3 0.25 0.001 105

GPa and ν = 0.3. In [97 ], the elastic-viscoplastic properties were chosen based on the work

of Iyer and Lissendon [236 ]. Strengthening associated with precipitation hardening from the

γ′′ and γ′ phases is accounted for within σ0 [106 ]. The parameters associated with dislocation

evolution, as well as an initial dislocation density ρ0, were chosen within a reasonable range

from references [105 ]–[107 ], [110 ].

In the cohesive zone, the parameters σmax,0 and δ0 were interpreted as setting the stiffness

of the CZM. These were set to σmax,0 = 104 MPa and δ0 = 0.002 mm, as in Chapter 5  . In

the time-dependent damage formulation, the traction threshold was set to Tc = 1200 MPa

(or approximately 1.54σ0) based on the analysis in [31 ] of stresses where stress-assisted

intergranular oxidation becomes significant for nickel oxides. The remaining time-dependent

damage parameters (Cc and r) were calibrated using experimentally-measured steady-state

crack growth rates. Waveforms containing OLs were studied using the calibrated model.

Specific characteristics of these waveforms are presented in subsequent sections.

6.3 Results

The model was first calibrated using the results of crack growth experiments on polycrys-

talline Alloy 718 compact tension specimens specimens at 650◦C in laboratory air. The exper-

iments used sustained loading and constant-amplitude cyclic loading waveforms. The cyclic

loading was conducted at a frequency of f = 0.1 Hz and a load ratio of R = Kmax/Kmin = 0.5.

More information on the experimental procedure can be found in [90 ]. Figure 6.2  shows the

measured time-dependent crack growth rates da/dt together with the predicted values from

the calibrated model. Crack growth rates are shown as a function of the stress intensity fac-

tor K for sustained loading and the maximum stress intensity factor Kmax for cyclic loading.

To calibrate the model, the damage exponent r was chosen such that the predicted slope

of the da/dt versus K curve agreed with the experiments. The parameter C was chosen
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Figure 6.2. Time-dependent crack growth rates da/dt as a function of the
stress intensity factor K for sustained loading and the maximum stress in-
tensity factor Kmax for constant-amplitude cyclic loading (double log scale).
Results are shown for experiments and the calibrated model. Experiments
conducted by H.E. Ostergaard.
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Figure 6.3. Damaged grain boundary in an Alloy 718 specimen subjected to
cyclic loading. (a) Optical micrograph of the crack profile, with an enlarged
SEM micrograph shown in the inset. (b) EDS line scan along the arrow in the
inset in (a), demonstrating oxidation damage.

such that the numerical values of the crack growth rates aligned with the experiments. This

process resulted in estimates of r = 4.5 and Cc = 3500 MPa·s1/r, with Tc = 1200 MPa as

noted in Section 6.2.1  . The calibrated model shows good agreement with the experimentally-

measured crack growth rates for both sustained loading and cyclic loading. This indicates

that, in all cases considered here, time-dependent damage is dominant. Further evidence

for time-dependent oxygen-drive crack growth is found in observations of fully-intergranular

crack paths in the experimental samples. For example, Figure 6.3  shows a grain bound-

ary demonstrating oxidation damage in a specimen subjected to cyclic loading. Next, the

calibrated model was used to investigate several different waveforms containing OLs.

6.3.1 Overloads during cyclic loading

The model was next applied to the case of OLs during cyclic loading, with the loading

waveform shown in Figure 6.4 . The loading frequency f = 0.1 Hz and load ratio R = 0.5

were maintained during constant-amplitude loading and the OL cycles. A range of OL

ratios between ROL = KOL/Kmax = 1.1 and 1.5 were considered, with Kmax = 35.0 MPa
√

m.

Figure 6.5  shows the predicted crack extension for computations considering 1 and 3 OLs

at five different OL ratios. The model predicts crack growth retardation occurs in all cases.

The OL-induced retardation persists over a larger number of cycles for higher OL ratios.
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Figure 6.4. Schematic of the loading waveform for cyclic loading with OLs.
The cyclic frequency f and load ratio R were constant for all cycles, including
the OLs.
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Figure 6.5. Predicted crack crack extension for cyclic loading with OLs at
several OL ratios. (a) 1 OL and (b) 3 OLs. For both cases, the crack arrests
in the computation with ROL = 1.5.
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Figure 6.6. Predicted traction distributions in the cohesive zone normalized
by the reference stress σ0 for computations with 1 OL. (a) ROL = 1.3, (b)
ROL = 1.5. Distributions are shown at maximum load during six different
cycles: constant-amplitude loading before the OL; the OL cycle; and 1, 20, 50,
and 80 cycles after the OL.

Retardation becomes especially significant above an OL ratio of about ROL = 1.2. In all

cases, applying multiple OLs causes stronger retardation compared to a single OL. For

ROL = 1.5, the crack arrests after a small amount of crack growth following the OL(s).

Arrest occurs at a total crack extension of 67 µm for 1 OL and 80 µm for 3 OLs.

Figure 6.6  shows the computed traction distributions ahead of the crack tip at maximum

load during several different cycles for computations with a single OL and OL ratios of 1.3

and 1.5. During crack growth before the OL, the traction distribution follows the form

typically observed for elastic-plastic and elastic-viscoplastic solids. Following the OL, the

traction magnitude is lower near the crack tip, and the shape of the distribution significantly

changes. Most prominently, there is a clear local minimum in the traction beyond the crack

tip. Crack growth retardation occurs as the crack extends through the region surrounding

this local minimum. For ROL = 1.3, the local minimum is seen during the first cycle after

the OL. The traction distribution gradually returns toward the shape of the steady-state

distribution in subsequent cycles, and the steady-state crack growth rate is recovered. For

ROL = 1.5, the overall magnitude of the traction is reduced over a larger region compared
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Figure 6.7. Equivalent plastic strain contours for cyclic loading at Kmax =
35.0 MPa

√
m with 1 OL and ROL = 1.3. Contours are shown on the unde-

formed mesh at maximum load in the 70th cycle after the OL. The solid line
marks the location of the crack tip at the beginning of the OL cycle. The
dashed line marks the current location of the crack tip.

to the case of ROL = 1.3. The local minimum in the traction is also more pronounced, and

it persists over a larger number of cycles. Crack extension only continues through the region

that was damaged during the OL. The traction beyond this damaged region is not sufficient

to cause further damage evolution. This ultimately results in crack arrest.

Figure 6.7  shows accumulated viscoplastic strain contours at maximum load 70 cycles

after the OL for ROL = 1.3. During steady-state crack growth, the viscoplastic zone advances

with the growing crack and is contained near the crack tip, consistent with creep-brittle

behavior. There is a clear increase in the viscoplastic strain near the crack tip when the OL

was applied. The higher viscoplastic strain magnitude persists over the increment in crack

extension during the OL. More significant viscoplastic deformation near the crack tip during

the OL substantially alters the crack-tip fields in subsequent cycles. The highly-deformed

region near the crack tip undergoes significant unloading, as seen in the suppressed post-OL

tractions in Figure 6.6  . These changes in the crack-tip fields cause the post-OL retardation

observed in Figure 6.5  . As crack extension continues, the steady-state viscoplastic zone

gradually reforms.
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Figure 6.8. Waveform used for sustained loading computations with OLs. In
all cases, Khold = 30.0 MPa

√
m. The labeled points are used for subsequent

figures with traction distributions.

6.3.2 Overloads during sustained loading

Sustained loading interrupted by an OL is now considered. The waveform used in these

computations is shown in Figure 6.8  . All computations began with a 10-second hold time at

Khold to minimize interactions between the OL viscoplastic zone and the viscoplastic zone

associated with crack growth initiation. Regardless of the OL ratio, the ramp time while

applying and removing the OL was 5 s. The OL load level was sustained for a hold time

tOL = 0 or 5 s. The load then returned to Khold at the same loading rate for the remainder

of the computation. A range of overload ratios between ROL = 1.1 and 1.5 was considered.

Figure 6.9 shows crack extension for several OL ratios, with OL hold times of tOL = 0 and

5 s. Crack extension for sustained loading with K = Khold is included for comparison. Crack

growth retardation occurs in all cases. Adding a hold time at the OL load level of tOL = 5 s

enhances the crack growth retardation, especially for high OL ratios. For both tOL = 0 and

tOL = 5 s, the retardation drastically increases at OL ratios above approximately 1.2. At

high OL ratios, there is a substantial period of time following the OL where almost no crack

growth occurs. The shape of the post-OL crack extension curves also changes for ROL = 1.4

with tOL = 0 and for both ROL = 1.35 and 1.4 with tOL = 5 s. Upon the resumption
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Figure 6.9. Predicted crack crack extension for sustained loading with OLs
and several OL ratios. (a) tOL = 0 and (b) tOL = 5 s. For both cases, the
computations with ROL = 1.5 do not predict further crack extension after the
OL. (c) and (d) are widened versions of (a) and (b), respectively, to show
continued crack extension for ROL = 1.4.
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of crack extension after the OL, several elements fail nearly simultaneously as shown by

a sudden jump in the predicted crack extension for these cases in Figure 6.9  c and d. For

ROL = 1.5, no further crack extension occurs after the OL during computations extending to

20000 seconds with both tOL = 0 and tOL = 5 s. However, the model predicts that post-OL

damage accumulation does continue in the elements ahead of the crack tip, albeit very slowly

(Ḋ < 10−4 1/s). The continued damage accumulation suggests that the crack may not fully

arrest.

Figure 6.10 shows the traction distributions at various time points for three cases: tOL = 0

and ROL = 1.3, tOL = 0 and ROL = 1.5, and tOL = 5 s and ROL = 1.3. Similar to the case of

cyclic loading, the traction distribution before the OL is typical of elastic-plastic and elastic-

viscoplastic materials. An important feature of the traction distribution is the suppressed

crack-tip stress concentration. Here, unloading after the OL reduces the traction ahead of

the crack tip, but the pronounced local minimum seen following OLs during cyclic loading

is not present. For higher OL ratios, the traction peak ahead of the crack tip is nearly

eliminated, Figure 6.10 b. The nearly flat traction distribution for high OL ratios helps to

explain the sudden resumption of crack growth for ROL = 1.4 observed in Figure 6.9  c and d.

As the post-OL traction distribution becomes flatter, the damage evolution becomes nearly

uniform over a region ahead of the crack tip. As a result, failure occurs nearly simultaneously

in several elements when crack growth resumes. After crack growth resumes, the traction

distribution returns toward the steady-state shape. For ROL = 1.5, the traction distribution

is virtually unchanged during the subsequent hold at constant load due to the slow damage

accumulation. The stress is also sufficiently low in the bulk material due to unloading

following the OL to preclude further viscoplastic deformation.

6.3.3 Overloads with a trapezoidal waveform

A trapezoidal waveform with an OL applied before each hold time, as shown in Fig-

ure 6.11  , is now considered. At the beginning of each cycle, the load was increased to

KOL = ROLKhold. The load was then decreased to Khold, held constant for a time of thold,

and finally decreased to RKOL. As indicated in Figure 6.11 , the loading rates in the un-
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Figure 6.10. Predicted traction distributions in the cohesive zone normalized
by the reference stress σ0 for computations with sustained loading interrupted
by an OL. (a) tOL = 0 and ROL = 1.3. (b) tOL = 0 and ROL = 1.5. (c) tOL = 5
s and ROL = 1.3 Distributions are shown at time points indicated in Figure 6.8  ,
as well as additional time points following the return to steady-state loading
at Khold (i.e., after the point SS2).
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Figure 6.11. Waveform used for trapezoidal loading simulations with OLs.
In all cases, the loading frequency was f = 0.1 Hz, the load ratio was R = 0.5,
and Khold = 30.0 MPa

√
m.

loading/reloading portions of each cycle matched the constant-amplitude cyclic loading with

frequency f = 0.1 Hz. The computations used Khold = 30 MPa
√

m and a range of OL ratios

between ROL = 1.1 and 1.5.

To investigate the influence of the OLs, two comparisons are relevant. The first is the

cyclic crack growth rate da/dN for computations using constant-amplitude cyclic loading

with Kmax = KOL. This represents the waveform shown in Figure 6.11  with the hold time

removed. The second is a linear summation of this cyclic crack growth rate and the contri-

bution of the hold time. The hold-time contribution was calculated as [33 ]

(
da

dN

)
hold

= da

dt
thold (6.1)

with da/dt = 2.44 × 10−6 m/s for Khold = 30 MPa
√

m. This summation represents an upper

bound on crack growth rates. It assumes there are no interaction effects between the OL

and the subsequent hold time.

Figure 6.12  shows the predicted cyclic crack growth rates for this waveform with hold

times of thold = 10 s and 20 s and several OL ratios. The two comparisons described previ-
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Figure 6.12. Predicted crack growth rates for the trapezoidal waveform as
a function of the OL ratio with (a) thold = 10 s and (b) thold = 20 s. The
linear summation and constant-amplitude crack growth rates are included for
comparison. For higher OL ratios, the hold time contributes less to the crack
growth rate.
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Figure 6.13. Predicted time-dependent crack growth rates da/dt) as a func-
tion of the stress intensity factor using the full SGKM model (shown before
in Figure 6.2  ); neglecting GNDs (r̄ = 0.0); and neglecting dynamic recovery
(k20 = 0.0). Square symbols are for sustained loading; round symbols are for
constant-amplitude cyclic loading with f = 0.1 Hz.

ously are also included in the figures as “Cycles only” and “Linear summation”, respectively.

For low OL ratios, the model predicts that the OLs only slightly reduce crack growth rates

below the upper bound given by the linear summation. Increasing the OL ratio beyond ap-

proximately ROL = 1.15 begins to significantly reduce the crack growth rates. For ROL = 1.3,

crack growth during the hold time is nearly eliminated for thold = 10 s, but there is a greater

increase in crack growth rates for thold = 20 s. For ROL ≥ 1.3, the predicted crack growth

rates are nearly equal to the purely cyclic crack growth rates for both hold times. This

indicates that the detrimental effect of the hold time is completely eliminated for high OL

ratios.

6.3.4 Dynamic recovery and GNDs

Computations were conducted to separately investigate the roles of dynamic recovery

and GNDs on steady-state and post-OL crack growth. Figure 6.13  shows the predicted

steady-state crack growth rates for three cases: the original SGKM model, a modified model
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Figure 6.14. Predicted crack crack extension for sustained loading with OLs
and several OL ratios investigating the influence of GNDs and dynamic recov-
ery. Solid lines are predictions from the full SGKM model (shown before in
Figure 6.9  ). Dashed lines are (a) r̄ = 0.0 (neglecting GNDs) and (b) k20 = 0.0
(neglecting dynamic recovery).

neglecting GNDs (r̄ = 0.0) but retaining dynamic recovery, and a modified model neglecting

dynamic recovery (k20 = 0.0) but retaining GNDs. For each case, the computations con-

sidered sustained loading and constant-amplitude cyclic loading. The calibrated parameters

were used in the CZM for all computations. The crack growth rates for the full SGKM

model are the same as those shown in Figure 6.2  . Neglecting GNDs leads to slightly lower

predicted crack growth rates. Neglecting dynamic recovery leads to slightly higher predicted

crack growth rates.

The role of GNDs and dynamic recovery in post-OL crack growth was investigated using

the waveform described in Section 6.3.2  . The crack extension predictions are shown in Fig-

ure 6.14  for OL ratios up to ROL = 1.35 Both mechanisms significantly affect post-OL crack

growth, especially for high OL ratios. Neglecting GNDs enhances the predicted retardation.

The model predicts stronger crack-tip viscoplastic deformation and therefore lower tractions

after the OL, leading to stronger retardation without hardening due to GNDs. Neglecting

dynamic recovery has the opposite effect, as the predicted retardation is less significant.

Dynamic recovery serves as a stress relaxation mechanism, enhancing the development of
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Table 6.2. Delay time in seconds for sustained loading interrupted by an
OL with several OL ratios, thold = 0, and Khold = 30 MPa

√
m. Delay times

are compared for the full SGKM model, the model neglecting GNDs, and the
model neglecting dynamic recovery.

ROL 1.1 1.2 1.3 1.35 1.4 1.45 1.5

r̄ = 1.9, k20 = 28.29 1.9 15.4 88.7 356.2 2166 8801 > 20000
r̄ = 0.0, k20 = 28.29 2.3 18.6 117.5 578.5 3003 12059 > 20000
r̄ = 1.9, k20 = 0.0 0.83 8.7 38.6 91.8 338.9 2021 9236

viscoplastic strain during the OL in the highly-stressed material near the crack tip. Neglect-

ing dynamic recovery therefore allows higher stresses to develop at the crack tip, with less

significant unloading after the OL.

To compare across all OL ratios, one useful metric is the delay time. The delay time is

the difference in the time required for the crack to grow by a fixed amount for an OL case

compared with sustained loading at Khold [47 ]. The amount of crack extension was chosen

as ∆a = 200.0 µm since steady state crack growth had resumed by this point in all cases.

Table 6.2  shows the predicted delay times for computations with a range of OL ratios. The

delay time is recorded as > 20000 s for cases where no post-OL crack extension occurred

in computations up to 20000 s, but the rate of damage evolution in the elements ahead

of the crack tip was nonzero. The delay time is higher at all OL ratios for computations

neglecting GNDs and lower at all OL ratios for computations neglecting dynamic recovery,

consistent with the observations in Figure 6.14  . As suggested by comparing across OL ratios

in Figure 6.14 , the differences in the predicted delay time become larger with increasing OL

ratio. This further reinforces the roles of GNDs and dynamic recovery in post-OL crack

extension, especially when there is substantial retardation.

6.4 Discussion

Crack extension predictions under three different types of waveforms containing OLs

form the backbone of results generated in this study. The model predicts that, in general,

OLs cause crack growth retardation in Alloy 718 and similar creep-brittle materials. In all
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cases, the retardation depends strongly on the OL ratio. The delay effect rapidly increases

above ROL ≈ 1.2 for all waveforms. The highest OL ratio considered, ROL = 1.5, produces

crack arrest for cyclic loading and long delay times (beyond 20000 s) for sustained loading.

However, the shape of the post-OL crack extension curves differs for the cases of cyclic

loading and sustained loading at OL ratios above ROL = 1.2. For cyclic loading, the model

predicts that crack growth continues during the cycles immediately after the OL, and the

crack growth rate gradually returns toward steady state. For sustained loading, the model

predicts that there is a period of time after the OL where almost no crack growth occurs.

For the trapezoidal waveform, OL ratios above approximately 1.3 eliminate the effect of the

hold time on subsequent crack growth.

The predicted traction distributions (Figures 6.6 and 6.10 ) and accumulated plastic strain

contours (Figure 6.7 ) during steady-state and post-OL crack growth provide further insight

into the effects of OLs. Most importantly, these results demonstrate why Alloy 718 can be

described as a creep-brittle material during steady-state crack growth but behaves like a

ductile material following OLs. During steady-state crack growth, viscoplastic strains are

small, and the viscoplastic zone is confined near the crack tip, consistent with the creep-

brittle characterization. Overloads enhance the crack-tip viscoplastic strain. Significant

unloading then occurs in the viscoplastically deformed material near the crack tip following

OLs as shown in the traction distributions. The unloading is amplified by increasing the OL

ratio. This leads to ductile post-OL behavior, with significant crack growth retardation.

The model predicts that GNDs and dynamic recovery both play a significant role in post-

OL crack growth. Neglecting GNDs could render the model non-conservative for predicting

crack growth following OLs. This is because, without GNDs, the model predicts only slightly

reduced steady-state crack growth rates but significantly more retardation following OLs.

This is similar to previous studies on OLs as well as crack growth transients due to material

inhomogeneities in rate-independent materials characterized by a strain gradient plasticity

model [129 ], [158 ]. On the other hand, the computations indicate that dynamic recovery is

beneficial. Neglecting dynamic recovery has a somewhat larger effect than neglecting GNDs

on the predicted steady-state crack growth rates, but this effect is again amplified in the case

of OLs. Especially for high OL ratios (above ROL ≈ 1.2), crack growth resumes substantially
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sooner when dynamic recovery is neglected. Nonetheless, the overall trends remain the same,

with the delay time increasing rapidly as the OL ratio increases. This further reinforces the

strong influence of the OL ratio.

The observation that crack growth under cyclic loading at f = 0.1 Hz is due to a time-

and stress-dependent mechanism associated with intergranular crack growth consistent with

previous work [32 ]. At higher frequencies, crack growth due to fatigue can play a larger role

and is typically indicated by transgranular crack growth [4 ], which was not observed here.

The specific values of the damage evolution parameters were estimated by comparing the

experimentally-measured crack growth rates with the values predicted from the model. A

formal calibration procedure was not carried out. A least squares optimization procedure,

for example, could enhance the parameter calibration, together with a detailed sensitivity

analysis.

For crack growth following OLs, the model predictions overall show good qualitative

agreement experimental studies. For example, Nicholas et al. [34 ], [47 ] considered sustained

loading interrupted by OLs, similar to the waveform considered in Section 6.3.2  . These

authors observed crack arrest or delay times exceeding several hours in tests using an OL

ratio of 1.5 and significant crack growth retardation, with delay times on the order of an

hour before the resumption of crack growth, using an OL ratio of 1.2. The model similarly

predicts lengthy delay times for ROL = 1.5. However, the model predicts these long delay

times do not set in until OL ratios around 1.4. In addition, Nicholas et al. [34 ] did not

observe a significant influence of the OL hold time on retardation. However, that study used

much longer hold times than considered here, on the order of tens of minutes to hours, and

it is possible that the influence of OL hold time predicted by the model would saturate for

longer hold times. A larger domain would need to be used in the computations to study crack

growth during and after long OL hold times. Due to the large amount of crack extension, such

computations may need to use a full model of a fracture mechanics specimen. Otherwise, the

stages in the crack extension predicted by the model for cases with substantial retardation

are also similar to these experiments: there is a brief acceleration during the OL, followed

by a period of time where virtually no crack extension occurs, followed by a rapid return to

the steady-state crack growth rates when crack extension resumes. This contrasts with the
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more gradual return to steady-state crack growth rates predicted for cyclic loading with OLs

in cases where the crack did not arrest.

Weerasooriya and Nicholas [33 ] considered trapezoidal waveforms containing an OL, sim-

ilar to the waveform considered in Section 6.3.3  but with a loading frequency of 1.0 Hz. These

authors observed an increase in cyclic crack growth rates below OL ratios of about 1.1 due

to increased damage during the hold time. For OL ratios above about 1.25, no crack ad-

vance occurred during the hold time. Ponnelle et al. [30 ] observed similar results with this

waveform. Experiments with OL ratio 1.2 very nearly eliminated crack growth during the

hold time. Experiments with OL ratio 1.5 fully eliminated crack growth during the hold

time and, in some cases, produced crack growth rates slightly below the constant-amplitude

loading experiments. These trends agree very well with the predictions for this waveform in

the current study shown in Figure 6.12  . Similar to the case of OLs during sustained loading,

however, the model underpredicts the value of the threshold OL ratio where crack growth

during the hold time is completely eliminated.

Crack branching induced by the OLs may provide an additional shielding mechanism

beyond the increased viscoplastic strains, which was not considered in this study. This

branching would reduce the effective driving force on the main crack as it grows through

the OL-affected region. This mechanism is likely partially responsible for the more extensive

retardation observed in the experiments at lower OL ratios in [30 ], [33 ], [34 ]. In experiments

with a trapezoidal waveform at 550◦C, Saarimaki et al. [27 ] observed crack branching for

any OL ratio that was applied. The branching becoming more significant for higher OL

ratios. A model that explicitly resolves the grain morphology, with cohesive elements placed

along all grain boundaries, could account for intergranular crack branching. Advances in

this direction include finite element computations with specialized grain elements [237 ] and

crystal plasticity finite element models incorporating time-dependent grain boundary dam-

age evolution [238 ]. A related phenomenon that may also be relevant is through-thickness

curvature of the crack front [25 ].

On the other hand, the minimal retardation predicted at low OL ratios is qualitatively

similar to the experimental results of Adair et al. [210 ]. In a study on IN100, another

precipitation-hardened nickel-base superalloy, these authors observed crack growth acceler-
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ation for cyclic OLs with ROL = 1.3 at a temperature of 650◦C in laboratory air. This

behavior was attributed to the crack rapidly growing through a damaged region, charac-

terized by more widespread oxidation induced by the OL, before the viscoplastic strain

could cause significant retardation [210 ]. The enhanced damage can be thought of as an

anti-shielding mechanism that counteracts the shielding associated with viscoplasticity and

crack branching. The exact balance between these shielding and anti-shielding effects likely

depends strongly on the material, microstructure, environment, and applied loads [230 ].

The traction distributions following OLs during hold-time loading, Figure 6.10  , are sim-

ilar to the crack-opening stress distributions observed in numerical studies of stationary

cracks in Alloy 718. Ponnelle et al. [30 ] and Newman and Sullivan [83 ] showed substantially

reduced crack-opening stress following OLs in a trapezoidal waveform. As in the current

study, the stress distribution ahead of the crack tip became increasingly flat as the OL ratio

increased [30 ]. These authors also observed a small region of compression that developed

ahead of a stationary crack tip after the OL for OL ratio 1.5.

Another relevant situation involving transient crack growth rates is the period of time

before steady-state crack growth rates set in for a given applied stress intensity factor. If

this period of transient crack growth is significant, experiments beginning at different crack

lengths but the same applied K would produce different crack growth rates [5 ]. Despite many

analytical and numerical modeling efforts (e.g., [67 ], [72 ], [80 ], [203 ], [239 ]), the appropriate

characterizing parameter for this situation is still unclear [5 ]. A detailed physical model of

the relevant damage mechanisms could help in predicting the transient crack growth rates

in this situation. Such a model could quantify the incubation time before the onset of crack

growth, as well as the time period during which the kinetics of the relevant crack growth

mechanism reach a steady state. Since the crack growth rates correlated with the stress

intensity factor in this study, consistent with previous work on Alloy 718 [4 ], [23 ], [77 ], this

stage of crack growth was not judged to be significant.

In the present study, a phenomenological approach was used to describe the stress- and

time-dependent material separation and crack extension. Damage models based directly

on the kinetics of relevant damage mechanisms at the crack tip could significantly enhance

the work in this study [5 ], [24 ]. Particularly important mechanisms for Ni-base superalloys
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at high temperatures in air environments include dynamic embrittlement due to elemental

oxygen diffusion and stress-assisted grain boundary oxidation (SAGBO) [31 ], [205 ], [206 ],

[230 ], [240 ]. Accurate models for stress-assisted oxygen diffusion and oxidation kinetics

could, together with a crystal plasticity formulation, enable predictions of crack extension

as a function of microstructure, alloy composition, loading waveform, and characteristics of

deformation near the crack tip [231 ]. Using these models to investigate how OL-induced

changes to the crack-tip stress state influence the dominant crack growth mechanisms could

extend the results of the current study. For example, some observations of crack growth

following OLs with a trapezoidal waveform have shown a mixed transgranular-intergranular

crack path even for low-frequency loading [30 ]. In addition, the long delay times without any

crack extension predicted for ROL = 1.5 may provide sufficient time for a protective oxide

like chromia to form at the crack tip [29 ]. This could prevent further oxygen intrusion, lead-

ing to full crack arrest. One additional mechanism that may be important is compressive

residual stresses that develop due to large transformation strains associated with the for-

mation of oxides, particularly chromia [218 ], [241 ]. Ideally, numerical studies incorporating

these physics-based damage and deformation models would be done in concert with specific

experiments designed to probe the particular mechanisms of interest [5 ].

6.5 Conclusions

In this study, finite element computations were used to investigate post-OL crack growth

in Alloy 718. The model described deformation in the bulk material using a strain gradient

viscoplasticity model based on the Kocks-Mecking formalism. The formulation accounted for

dislocation storage and dynamic recovery processes and the accumulation of GNDs. Material

separation was described using an irreversible CZM with a phenomenological stress- and

time-dependent damage evolution equation. The model was calibrated using steady-state

crack growth rates from sustained loading and cyclic loading experiments on Alloy 718 at

650◦ C. Three different waveforms containing OLs were then considered: cyclic loading with

1 or 3 OLs, sustained loading interrupted by an OL, and a trapezoidal waveform with an
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OL prior to the hold time. The observations related to OLs are likely relevant to other

creep-brittle materials, where the viscoplastic zone grows with the advancing crack.

Key conclusions include the following:

• Steady-state crack growth rates for Alloy 718 under sustained loading and constant-

amplitude cyclic loading at f = 0.1 Hz are both successfully captured using stress-

and time-dependent damage and the SGKM viscoplasticity formulation.

• Overloads during cyclic loading and sustained loading cause crack growth retarda-

tion. This is associated with enhanced crack-tip viscoplastic strain during the OL and

subsequent unloading and reduced traction ahead of the crack tip.

• The magnitude of the retardation depends strongly on the OL ratio, with crack arrest

or delay times on the order of several hours occurring for OL ratios close to 1.5. This

trend is in agreement with existing experimental evidence.

• Overloads applied in a trapezoidal waveform can suppress or eliminate the detrimental

effect of hold times on crack growth. This depends on both the length of the hold time

and the OL ratio. This trend also agrees with experiments.

• Neglecting GNDs that develop due to plastic strain gradients could lead to non-

conservative predictions for crack growth following OLs, due to the higher predicted

delay times in this case.

• Dynamic recovery is an important stress relaxation mechanism that enhances crack

growth retardation following OLs.
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7. SUMMARY AND CONCLUSIONS

This thesis advances knowledge of transient fatigue and creep crack growth in rate-independent

and rate-dependent materials. Incremental finite element computations combined elastic-

plastic or elastic-viscoplastic constitutive laws in the bulk material with an irreversible cohe-

sive zone formulation to describe crack extension. The plasticity and viscoplasticity formu-

lations accounted for hardening due to plastic strain gradients. Damage evolution equations

accounted for material degradation due to rate-independent fatigue and time-dependent

grain boundary embrittlement. The influence of plastic strain gradients and rate-dependent

deformation on the predicted crack extension was investigated for cases where similitude is

violated at the crack tip due to the applied loads or material inhomogeneity.

In Chapter 3  [129 ], computations investigated the role of hardening due to plastic strain

gradients on fatigue crack growth in rate-independent materials. Crack extension was driven

by fatigue damage evolution in the CZM. Accounting for plastic strain gradients did not

influence the predicted steady-state crack growth rates under constant-amplitude loading.

For the case of OLs, it was found that hardening due to plastic strain gradients significantly

restricted plastic deformation near the crack tip in the OL plastic zone. Analysis of the crack-

tip fields showed that the restricted plastic deformation led to higher maximum traction and

reduced crack closure in subsequent cycles. As a result, computations accounting for plastic

strain gradients predicted less significant post-OL retardation than computations with a

classical plasticity model. However, the size of the OL-affected region was not influenced by

hardening due to plastic strain gradients.

In Chapter 4  [158 ], rate-independent fatigue crack growth toward interfaces in bi-materials

and multi-layered materials was investigated. The CZM with fatigue damage evolution de-

scribed growth of the main crack perpendicular to the interface and separation along the

interface itself. For bi-materials, computations identified the shielding or anti-shielding ef-

fects associated with the yield strength mismatch and weak interfaces. When the crack-tip

plastic zone interacted with the interfaces, hardening due to plastic strain gradients was

found to influence extension of both the main crack and the interface crack. Plastic strain

gradients were also found to be significant when the plastic zone spread across a plastically-
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soft interlayer within a plastically-hard matrix. Computations accounting for plastic strain

gradients predicted crack penetration through the interlayer for a case where computations

using a classical plasticity model predicted crack deflection into one of the interfaces.

In Chapter 5  [19 ], crack growth in power-law viscoplastic materials was investigated. Mo-

tivated by experiments on Alloy 617 at 800◦C showing cycle-dependent transgranular crack

growth at the loads of interest, material degradation was described based on fatigue damage

evolution in the CZM. A parametric study demonstrated the important role of the material

rate sensitivity in post-OL fatigue crack growth. The trends with respect to rate sensitiv-

ity (more acceleration for high rate sensitivity; more retardation for low rate sensitivity)

were robust to changes in the underlying fatigue damage parameters. The fatigue damage

parameters were subsequently calibrated using experimentally-measured steady-state crack

growth rates for Alloy 617 at 800◦C and a load frequency of 0.33 Hz. The crack extension

predicted by the model showed good agreement with the trends observed in experiments on

Alloy 617 including a single OL and a block of 20 OLs at different load magnitudes. Harden-

ing due to plastic strain gradients was not found to influence steady-state or post-OL crack

growth. Incorporating the viscoplastic rate dependence into the fatigue damage formulation

for the calibrated model brings the predicted crack growth rates into closer agreement across

different load frequencies.

In Chapter 6  [223 ], crack growth was investigated in viscoplastic materials described by

a formulation based on the Kocks-Mecking approach. The viscoplasticity formulation ac-

counted for dislocation storage and recovery processes in the evolving plastic zone ahead

of the crack tip. Since experiments on Alloy 718 at 650◦C demonstrated environmentally-

enhanced grain boundary embrittlement, material degradation was described using a time-

and stress-dependent damage formulation. The damage parameters were calibrated using

experimentally-measured crack growth rates under sustained loading and constant-amplitude

cyclic loading at a frequency of 0.1 Hz. Computations predicted crack growth retardation

following OLs during cyclic loading, sustained loading, and trapezoidal loading waveforms.

The retardation increased strongly with the OL ratio. The predicted crack extension for OLs

in the sustained loading and trapezoidal loading waveforms showed good agreement with

the trends observed in experiments on Alloy 718 at 650◦C. Geometrically-necessary dislo-
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cations induced by viscoplastic strain gradients influenced post-OL crack extension through

restricted viscoplastic deformation near the crack tip. An important outcome of the applica-

tions to Alloy 617 and Alloy 718 is that, in each case, the model parameters were determined

using only steady-state crack growth data. The correct trends in the post-OL behavior, based

on experiments by collaborators (for Alloy 617) and experiments in the literature (for Alloy

718), were predicted without further modification to the model.

The results presented in Chapters 3 –6 make it possible to address the research questions

posed at the beginning of this thesis:

• What role do plastic strain gradients play in predictions of fatigue crack growth under

constant-amplitude and transient loading? Hardening due to plastic strain gradients

does not have a significant role in the constant-amplitude loading case. In the OL

plastic zone, large plastic strain gradients develop near the crack tip. The restricted

crack-tip plastic deformation leads to less post-OL crack growth retardation, compared

to computations with a classical plasticity model.

• How do the interface strength, yield strength mismatch, and plastic strain gradients

control fatigue crack growth behavior in bimaterials? The yield strength mismatch

alone can have a shielding effect (for a plastically-soft-to-plastically-hard transition) or

an anti-shielding effect (for a plastically-hard-to-plastically-soft transition). However,

increasing the yield strength mismatch always enhances the shielding effect of a weak

interface. Hardening due to plastic strain gradients restricts plastic deformation near

the interface. Plastic strain gradients thereby influence crack growth rates for the main

crack and interface crack and influence the critical conditions for crack bifurcation at

the interface.

• In a multilayered material, how does the size of a layer relative to the crack-tip plastic

zone influence crack extension? Interaction effects must be considered when the plastic

zone spreads across an interlayer. Hardening due to plastic strain gradients becomes

more significant due to constraint of the plastic zone in this situation, promoting crack

penetration through the interlayer.
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• What is the influence of the material rate sensitivity on post-overload fatigue crack

growth in creep-ductile materials like Alloy 617? The computations indicate that the

rate sensitivity (or creep exponent) strongly influences whether acceleration or re-

tardation occurs following OLs. Low rate sensitivity is associated with higher local

viscoplastic strain near the crack tip. Higher viscoplastic strains in turn disturb the

steady-state crack tip fields and induce crack growth retardation. The transition be-

tween acceleration- and retardation-dominated behavior occurs over a range of rate

sensitivity values characteristic of solid solution strengthened materials. The results

are therefore relevant for Alloy 617 and similar materials undergoing crack growth by

a cyclic fatigue mechanism.

• What damage, hardening, and recovery mechanisms are relevant to steady-state and

transient crack growth in creep-brittle materials like Alloy 718? Crack growth under

sustained loading and cyclic loading at f = 0.1 Hz is driven by stress- and time-

dependent damage for Alloy 718. Damage is associated with environmental attack on

the grain boundaries and is successfully captured in the CZM. Dynamic recovery is

an important stress relaxation mechanism and reduces the traction ahead of the crack

tip, especially following OLs. Computations accounting for only predict significantly

less post-OL retardation

• What insights do the computations provide into experimental results for crack growth

following OLs in Alloy 617 and Alloy 718? For Alloy 617, the numerical results demon-

strate why OLs produce little to no crack growth retardation. The creep exponent for

Alloy 617 lies very close to the transition value between acceleration- and retardation-

dominated behavior predicted by the parametric study. In agreement with experi-

ments, the computations subsequently predict a close competition between post-OL

acceleration and retardation in Alloy 617. For Alloy 718, the computations demon-

strate why steady-state crack growth is described as creep-brittle, but substantial crack

growth retardation occurs following OLs. During OLs, the viscoplastic zone remains

contained, but a strong viscoplastic strain concentration develops locally near the crack
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tip. In agreement with experiments, the post-OL retardation depends strongly on the

OL ratio through the unloading that occurs in the highly-deformed crack tip region.

• For both Alloy 617 and Alloy 718, what role do plastic strain gradients play in steady-

state and transient crack growth? Hardening due to plastic strain gradients does not

significantly influence either steady-state or post-OL fatigue crack growth in Alloy

617. For Alloy 718, plastic strain gradients play a similar role as in rate-independent

materials. Specifically, development of GNDs in the viscoplastic zone during OLs leads

to less crack growth retardation, compared with computations neglecting GNDs.

Put together, these results demonstrate the importance of material behavior deep inside

the crack-tip plastic zone and its influence on the relevant material separation mechanisms in

predicting transient crack growth rates. In the context of classical models for post-OL crack

growth (e.g., Willenborg and Elber), this behavior determines the effective driving force on

the crack as it grows through the OL plastic zone. Evolution of the effective driving force

in turn determines the magnitude of crack growth retardation. Plastic strain gradients in

rate-independent materials and the rate sensitivity in power-law viscoplastic materials were

both found to significantly influence the plastic or viscoplastic strain magnitude close to the

crack tip following OLs. Larger plastic or viscoplastic strain magnitudes produced larger

changes in the crack-tip fields during subsequent cycles and led to more retardation. In

the case of crack growth through a stress- and time-dependent mechanism, unloading in the

highly-deformed material near the crack tip following an OL suppresses subsequent damage

and crack extension.

The computations for rate-dependent materials in particular reinforce some of the chal-

lenges inherent in materials selection for high-temperature applications. An advantage of

creep-ductile materials is that they typically cannot sustain high stresses for sufficiently long

times to activate environmentally-enhanced damage mechanisms. However, the results of

Chapter 5  indicate that the relatively high rate sensitivity characteristic of these materials

can suppress or possibly eliminate the beneficial crack growth retardation that occurs follow-

ing OLs in fatigue. On the other hand, creep-brittle materials generally experience higher

steady-state crack growth rates under sustained loads and low-frequency cyclic loads due to
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environmentally-enhanced damage. The trade-off here, based on the results of Chapter 6  , is

that OLs can cause significant crack growth retardation and even crack arrest, depending on

the OL ratio. The results in this thesis can thereby aid in the design and materials selection

for high-temperature components where transient loads are a significant concern.
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A. INTEGRATION OF CMSG-VP CONSTITUTIVE MODEL

The UMAT implementation of the CMSG-vp constitutive model follows standard approaches

for integrating viscoplastic models using a predictor-corrector algorithm [102 ], [242 ]. It is

based in part on the original CMSG implementation of [85 ] and the viscoplasticity algorithm

of [243 ]. The main improvement of the new implementation is to ensure the quadratic

convergence rate of the Newton-Raphson iterations. The original implementation did not

fully account for strain hardening when calculating the correction term during each iteration.

The algorithm consists of five steps:

1. Calculate the viscoplastic strain gradient increment.

2. Calculate the elastic predictor stress.

3. Calculate the viscoplastic strain increment

4. Update the stress using the calculated viscoplastic strain increment.

5. Calculate the material Jacobian.

First, the variables used in the subroutine are defined. Values of any variable at the start

of the current increment are denoted with subscript n. Values at the end of the current

increment are denoted with subscript n + 1. The stress and strain tensors (σ = σij and

ε = εij) are stored as vectors using Voigt notation. In 3 dimensions, the representations are:

σ =



σ11

σ22

σ33

σ23

σ13

σ12



, ε =



ε11

ε22

ε33

2ε23

2ε13

2ε12



(A.1)
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For plane strain problems, these are:

σ =



σ11

σ22

σ33

σ12


, ε =



ε11

ε22

ε33 = 0

2ε12


(A.2)

Elastic strains are denoted with a superscript e, and viscoplastic strains are denoted with a

superscript vp. The deviatoric stress is given by S = σ − tr σ/3. The deviatoric strain is

given by e = ε − tr ε/3. Also, two fourth-order tensors require definitions as matrices: the

(symmetric) fourth-order identity tensor I and the outer product of the second-order identity

tensor with itself I ⊗ I = δijδkl. In 3 dimensions, these are:

I =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5


, I ⊗ I =



1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(A.3)

For plane strain problems, these are:

I =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0.5


, I ⊗ I =



1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0


(A.4)

Finally, several useful relations are obtained from elasticity. The linear elastic stiffness

tensor is De = 2G
(
I − 1

3I ⊗ I
)

+ KI ⊗ I. The stress-strain relationship, expressed in terms

of the deviatoric and volumetric elastic strain components, is σ = 2Gee + 3K tr εeI. This

can be separated into the deviatoric stress, S = 2Gee, and the trace of the stress tensor,
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tr σ = 3K tr εe. The von Mises effective stress and strain are σ̄ =
√

3
2S : S and ε̄ =

√
2
3e : e.

The effective stress and effective elastic strain are related by σ̄ = 3Gε̄e

A.1 Viscoplastic strain gradient increment

The effective viscoplastic strain gradient increment is calculated from the viscoplastic

strain increment in the previous time step. This is because the viscoplastic strain incre-

ment at all integration points is required, which is not available for the current time step.

Following Huang et al. [85 ], [103 ], a sub-element is constructed from the four integration

points of a quadrilateral element. The components of the viscoplastic strain gradient are

then determined using the shape function derivatives in the sub-element. Standard bilinear

shape functions are used in the sub-element. In local coordinates, these are given by

N1 (ξ, η) = 1
4 (1 − ξ) (1 − η) (A.5)

N2 (ξ, η) = 1
4 (1 + ξ) (1 − η) (A.6)

N3 (ξ, η) = 1
4 (1 − ξ) (1 + η) (A.7)

N4 (ξ, η) = 1
4 (1 + ξ) (1 + η) . (A.8)

The coordinate mapping and viscoplastic strain increment interpolation are given by

x =
4∑

i=1
Ni (ξ, η) xi, y =

4∑
i=1

Ni (ξ, η) yi (A.9)

∆εvp =
4∑

i=1
Ni (ξ, η) ∆εvp

i (A.10)

The derivatives of the shape functions with respect to the global coordinates are given by


∂Ni

∂x

∂Ni

∂y

 = J−1


∂Ni

∂ξ

∂Ni

∂η

 , (A.11)
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where the Jacobian matrix J is

J =


∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

 (A.12)

In plane strain, the nonzero components of the viscoplastic strain gradient increment are

given in terms of the shape function derivatives by [103 ]

∆ηvp
111 =

4∑
i=1

∂Ni

∂x
(∆εvp

11)i (A.13)

∆ηvp
112 = 2

4∑
i=1

∂Ni

∂x
(∆εvp

12)i −
4∑

i=1

∂Ni

∂y
(∆εvp

11)i (A.14)

∆ηvp
121 =

4∑
i=1

∂Ni

∂y
(∆εvp

11)i (A.15)

∆ηvp
122 =

4∑
i=1

∂Ni

∂x
(∆εvp

22)i (A.16)

∆ηvp
133 = −

4∑
i=1

∂Ni

∂x
(∆εvp

11 + ∆εvp
22)i (A.17)

∆ηvp
211 =

4∑
i=1

∂Ni

∂y
(∆εvp

11)i (A.18)

∆ηvp
212 =

4∑
i=1

∂Ni

∂x
(∆εvp

22)i (A.19)

∆ηvp
221 = 2

4∑
i=1

∂Ni

∂y
(∆εvp

12)i −
4∑

i=1

∂Ni

∂x
(∆εvp

22)i (A.20)

∆ηvp
222 =

4∑
i=1

∂Ni

∂y
(∆εvp

22)i (A.21)

∆ηvp
233 = −

4∑
i=1

∂Ni

∂y
(∆εvp

11 + ∆εvp
22)i (A.22)

∆ηvp
313 = −

4∑
i=1

∂Ni

∂x
(∆εvp

11 + ∆εvp
22)i (A.23)

∆ηvp
323 = −

4∑
i=1

∂Ni

∂y
(∆εvp

11 + ∆εvp
22)i (A.24)

∆ηvp
331 =

4∑
i=1

∂Ni

∂x
(∆εvp

11 + ∆εvp
22)i (A.25)

∆ηvp
332 =

4∑
i=1

∂Ni

∂y
(∆εvp

11 + ∆εvp
22)i (A.26)
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A.2 Elastic predictor stress and strain

The predictor stress and strain are computed based on the assumption that the strain in-

crement is entirely elastic (i.e., the viscoplastic strain increment is zero). Predictor quantities

are denoted using a superscript ∗. The predictor elastic strain is

εe∗ = εe
n + ∆ε. (A.27)

From the stress-strain relationship, the volumetric predictor stress is

tr σ∗

3 = K tr εe∗ (A.28)

Similarly, the deviatoric predictor stress is

S∗ = Sn + 2G∆e. (A.29)

Calculating S∗ requires the deviatoric stress at the start of the increment and the deviatoric

strain increment, which are given by

Sn = σn − tr σn

3 I, ∆e = ∆ε − tr ∆ε

3 I. (A.30)

In the numerical implementation, the factor of 2 is removed from the engineering shear strain

components when calculating the deviatoric strain. For later use, it is also helpful to write

down the deviatoric predictor stress in terms of only the elastic predictor strain:

S∗ = 2Gee∗ = 2G
(

εe∗ − tr εe∗

3 I
)

. (A.31)

The effective predictor stress σ̄∗ is then calculated from the deviatoric predictor stress:

σ̄∗ =
√

3
2S∗ : S∗. (A.32)
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For the rate-independent CMSG model, the effective strain increment is also needed:

∆ε̄ =
√

2
3∆e : ∆e. (A.33)

A.3 Viscoplastic strain increment

The backward Euler method is used to solve the constitutive law for the viscoplastic

strain increment. Here, all quantities are expressed as their values at the end of the increment

(besides the viscoplastic strain gradient, which is only available at the start of the increment):

∆εvp = ∆ε0

(
σ̄n+1

σflow (εvp
n+1, ηvp)

)m

, (A.34)

where ∆ε0 = ε̇0∆t. For the rate-independent CMSG, ∆ε0 is replaced by ∆ε̄. Next, all

quantities in Eq. (A.34 ) are expressed in terms of ∆εvp. First, the flow stress is

σflow (εvp
n+1, ηvp) = σY

√√√√(1 + E (εvp
n + ∆εvp)

σY

)2N

+ lηvp (A.35)

Expressing the updated effective stress σ̄n+1 in terms of the viscoplastic strain increment re-

quires an equation for the updated deviatoric stress Sn+1. This is found from the relationship

between the deviatoric stress and the deviatoric elastic strain increment:

Sn+1 =Sn + 2G∆ee

=Sn + 2G∆e − 2G∆evp

=S∗ − 2G∆evp

=S∗ − 2G

(
3Sn+1

2σ̄n+1
∆εvp

)
.

(A.36)

The last step follows from the standard associativity rule and the incompressibility of plastic

deformation (i.e., tr εvp = 0):

∆εvp = ∆evp = 3Sn+1

2σ̄n+1
∆εvp (A.37)
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Taking the dot product of Eq. (A.36 ) with itself and simplifying the result gives

σ̄n+1 = σ̄∗ − 3G∆εvp, (A.38)

which expresses σ̄n+1 in terms of known quantities and ∆εvp. Equation (A.36 ) can also be

used to show that the S∗ and the Sn+1 are co-linear [242 ]:

Sn+1

σ̄n+1
= S∗

σ̄∗ . (A.39)

Substituting Eq. (A.38 ) into Eq. (A.34 ) gives

σ̄∗ − 3G∆εvp −
(

∆εvp

∆ε0

)1/m

σflow (εvp
n+1, ηvp) = 0. (A.40)

For large m, this equation approaches the corresponding one for rate-independent plasticity.

To simplify notation, the arguments are dropped from σflow in the subsequent derivations.

Equation (A.40 ) is solved for ∆εvp using Newton’s method:

∆εvp
new = ∆εvp

old − f (∆εvp
old)

f ′ (∆εvp
old) , (A.41)

where the function f (∆εvp) is given by Eq. (A.40 ), and “old” and “new” refer to successive

approximations of ∆εvp. Differentiating Eq. (A.40 ) gives:

f ′ (∆εvp) = −3G −
(

∆εvp

∆ε0

)1/m (
σflow

m∆εvp
+ dσflow

d∆εvp

)
(A.42)

where

dσflow

d∆εvp
=

NEσY

(
1 + E

(
εvp

n +∆εvp
)

σY

)2N−1

σflow
. (A.43)
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For later use, it is convenient to define

H = d
d∆εvp

(∆εvp

∆ε0

)1/m

σflow


=
(

∆εvp

∆ε0

)1/m (
σflow

m∆εvp
+ dσflow

d∆εvp

) (A.44)

allowing Eq. (A.42 ) to be written as

f ′ (∆εvp) = −3G − H. (A.45)

For large m, this simplifies to H ≈ dσflow/d∆εvp, which is simply the slope of the rate-

independent strain hardening curve.

A.4 Stress update

With the viscoplastic strain increment in hand, the updated stress σn+1 can be computed.

From Eq. (A.36 ), the updated deviatoric stress is

Sn+1 =
(

1 − 3G∆εvp

σ̄∗

)
S∗ (A.46)

Since the viscoplastic strain is purely deviatoric, the updated trace of the stress is tr σn+1 =

tr σ∗. The updated stress tensor is then

σn+1 = Sn+1 + tr σn+1

3 I. (A.47)

A.5 Material Jacobian

The material Jacobian is required since the UMAT is implemented within an implicit

finite element algorithm. The approach here follows Ch. 7 of [242 ]. Abaqus requires the

material Jacobian D in the form

D = ∂∆σ

∂∆ε
. (A.48)
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For the current model, ∂∆σ/∂∆ε = ∂σn+1/∂εn+1. Also, the elastic predictor strain can be

expressed as εe∗ = εe
n + ∆ε = εn+1 − εvp

n . The updated stress σn+1 can therefore be written

as a function of the elastic predictor strain εe∗, and the material Jacobian becomes

D = ∂σn+1

∂εe∗ . (A.49)

The updated stress must now be written in terms of the elastic predictor strain. To this end,

Eqs. (A.46 ) and (A.31 ) are combined to express the updated deviatoric stress as

Sn+1 =
(

1 − 3G∆εvp

σ̄∗

)
S∗

=2G

(
1 − 3G∆εvp

σ̄∗

)
ee∗

(A.50)

The updated stress from Eq. (A.47 ) then becomes

σn+1 =2G

(
1 − 3G∆εvp

σ̄∗

)
ee∗ + K tr εe∗

=2Gee∗ + K tr εe∗ −
(

1 − 3G∆εvp

σ̄∗

)
ee∗

(A.51)

The first two terms are simply the stress-strain relationship in terms of the strain predictor,

so the updated stress can be written as

σn+1 =
[
De − 6G2∆εvp

σ̄∗ Id

]
: εe∗, (A.52)

where the deviatoric identity tensor Id = I − 1
3I ⊗ I was defined to simplify the notation.

Differentiating this equation using the chain and product rules gives

∂σn+1

∂εe∗ = De − 6G2∆εvp

σ̄∗ Id − 6G2

σ̄∗ ee∗ ⊗ ∂∆εvp

∂εe∗ + 6G2∆εvp

σ̄∗2 ee∗ ⊗ ∂σ̄∗

∂εe∗ (A.53)
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The two derivatives with respect to the elastic predictor strain are unknown. The quantity
∂∆εvp

∂εe∗ is found by differentiating the implicit function in Eq. (A.40 ):

0 = ∂σ̄∗

∂εe∗ − 3G
∂∆εvp

∂εe∗ − ∂

∂εe∗

(∆εvp

∆ε0

)1/m

σflow


= 3G

S∗

σ̄∗ − 3G
∂∆εvp

∂εe∗ − H
∂∆εvp

∂εe∗

=⇒ ∂∆εvp

∂εe∗ = 3G

3G + H

S∗

σ̄∗ .

(A.54)

The quantity ∂σ̄∗

∂εe∗ is found by using the chain rule and differentiating Eqs. (A.32 ) and (A.31 ):

∂σ̄∗

∂εe∗ = ∂σ̄∗

∂S∗ : ∂S∗

∂εe∗

=
 1

2
√

3
2S∗ : S∗

3
2 (I : S∗ + S∗ : I)

 : [2GId : I] (A.55)

=
[

3S∗

2σ̄∗

]
: [2GId]

=3G
S∗

σ̄∗

Substituting these results into the material Jacobian gives

D = 2G
(

1 − 3G

σ̄∗ ∆εvp
)
Id − 9G2

σ̄∗2

(
∆εvp

σ̄∗ − 1
3G + H

)
S∗ ⊗ S∗ + KI ⊗ I. (A.56)

This is equivalent to the approach from the Abaqus Analysis User Guide [102 ], which results

in the equation

D = QI − RSn+1 ⊗ Sn+1 +
(

K − 1
3Q

)
I ⊗ I, (A.57)

where

Q = 2G
σ̄n+1

σ̄∗ , R = 9G2

σ̄2
n+1

[
σ̄n+1 − H∆εvp

σ̄∗ (3G + H)

]
. (A.58)

The equivalence of Eqs. (A.56 ) and (A.57 ) can be verified using the identity Sn+1
σ̄n+1

= S∗

σ̄∗ and

the definition of the deviatoric identity tensor Id = I − 1
3I ⊗ I.
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B. INTEGRATION OF SGKM CONSTITUTIVE MODEL

The SGKM constitutive model is integrated within the same framework as the CMSG-vp

model. The key differences involve determining the viscoplastic strain increment and the

material Jacobian. These parts of the algorithm are described here. The UMAT implemen-

tation is based in part on the original implementation of [97 ]. As in the new implementation

of the CMSG model, the quadratic rate of convergence of the Newton-Raphson iterations is

recovered.

B.1 Viscoplastic strain increment

For the SGKM model, there are two internal state variables that must be calculated in

this step: the viscoplastic strain and the SSD density. To avoid solving a system of equations,

the increment in SSD density ∆ρS is expressed in terms of the viscoplastic strain increment

∆εvp. The resulting equation is then solved for the viscoplastic strain increment using the

backward Euler method.

The equations for ∆εvp and ∆ρS are the following, with all other parameters expressed

using their values at the end of the increment:

∆εvp = ∆ε0

(
σ̄n+1

σflow (εvp
n+1, ρS,n+1, ρG)

)m

= ∆ε0

(
σ̄n+1

σ0 + MαGb
√

ρS,n+1 + ρG

)m

∆ρS = M

k1
√

ρS,n+1 + ρG − k20

(
∆εvp

∆ε0

)−1/n

ρS,n+1

∆εvp

(B.1)

From Appendix A, the updated effective stress is given by

σ̄n+1 = σ̄∗ − 3G∆εvp. (B.2)
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Substituting Eq. (B.2 ) into the first part of Eq. (B.1 ) gives

(
∆ε0

∆εvp

)1/m

(σ̄∗ − 3G∆εvp) − σflow (εvp
n+1, ρS,n+1, ρG) = 0

=⇒
(

∆ε0

∆εvp

)1/m

(σ̄∗ − 3G∆εvp) − σ0 − MαGb
√

ρS,n + ∆ρS + ρG = 0

=⇒ ∆ρS =
(∆ε0/∆εp)1/m (σ̄∗ − 3G∆εp) − σ0

MαGb

2

− ρS,n − ρG

(B.3)

This gives an equation for the SSD increment in terms of the viscoplastic strain increment

and known quantities. Now the only unknown in the second part of Eq. (B.1 ) is ∆εvp. This

equation can be rearranged slightly to allow for a solution with Newton’s method:

f (∆εvp) = ∆ρS − M

k1

√
ρS,n + ∆ρS + ρG − k20

(
∆εp

∆ε0

)−1/n

(ρS,n + ∆ρS)
∆εp = 0, (B.4)

where ∆ρS is given by Eq. (B.3 ). The derivative is also needed; this is given by

f ′ (∆εvp) = − Mk1

√
ρS,n + ∆ρS + ρG + 1

n

Mk20

(
∆εvp

∆ε0

)−1/n

(ρS,n + ∆ρS) (n − 1)
+

d∆ρS

d∆εvp

1 + Mk20

(
∆εvp

∆ε0

)−1/n

∆εvp − Mk1∆εvp

2
√

ρS,n + ∆ρS + ρG


(B.5)

where

d∆ρS

d∆εvp
= 1

M2α2G2b2m

2
(

∆ε0

∆εvp

)1/m

(∆εvp)−1−1/m (3G (m − 1) ∆εvp + σ̄∗)


[
3G∆ε

1/m
0 ∆εvp + (∆εvp)1/m σ0 − ∆ε

1/m
0 σ̄∗

] (B.6)

This can be simplified by defining

ρ+ = Mk1

√
ρS,n + ∆ρS + ρG, ρ− = Mk20

(
∆εvp

∆ε0

)−1/n

(ρS,n + ∆ρS) , (B.7)
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so the Newton’s method equations are now

f (∆εvp) = ∆ρs − ρ+∆εvp + ρ−∆εvp (B.8)

and

f ′ (∆εvp) = −ρ+ + ρ− (n − 1)
n

+ d∆ρS

d∆εvp

[
1 + ρ−∆εvp

ρS,n + ∆ρS

− ρ+∆εvp

2 (ρS,n + ∆ρS + ρG)

]
. (B.9)

After solving for ∆εvp, the SSD increment is calculated from Eq. (B.3 ), and the stress update

proceeds as in Appendix A.

Convergence is fastest if the initial guess for the viscoplastic strain increment is chosen

as ε̇vp
n ∆t. However, due to the rate dependence in the dynamic recovery term, there may

be two local minima for the objective function, Eq. (B.8 ) (essentially, the total change in

dislocation density can be achieved by a small or large viscoplastic strain increment in some

cases). Therefore, after convergence is achieved, the code checks that

∆εvp = ∆ε0

(
σ̄n+1

σflow,n+1

)m

. (B.10)

If this equation is not satisfied, the iteration is restarted with an initial guess of

∆ε0

(
σ̄∗

σflow,n

)m

. (B.11)

If the algorithm still does not converge, the increment is restarted with a smaller time

increment.

B.2 Material Jacobian

The approach to calculating the material Jacobian is the same as in Appendix A. First,

the material Jacobian is written in terms of the updated stress and the elastic predictor

strain:
∂∆σ

∂∆ε
= ∂σn+1

∂εe∗ . (B.12)
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As before, the updated stress as a function of the elastic predictor strain is

σn+1 =
[
De − 6G2∆εvp

σ̄∗ Id

]
: εe∗. (B.13)

Differentiating this equation and using the relationship S∗ = 2Gee∗ gives

∂σn+1

∂εe∗ = De − 6G2∆εvp

σ̄∗ Id − 3G

σ̄∗ S∗ ⊗ ∂∆εvp

∂εe∗ + 3G∆εvp

σ̄∗2 S∗ ⊗ ∂σ̄∗

∂εe∗ . (B.14)

As before, the quantity ∂σ̄∗

∂εe∗ is given by

∂σ̄∗

∂εe∗ = 3G
S∗

σ̄∗ . (B.15)

The quantity ∂∆εvp

∂εe∗ is found by differentiating the implicit function in Eq. (B.8 ):

0 = ∂

∂εe∗

(
∆ρS − ρ+∆εvp + ρ−∆ε9

)
= ∂∆ρS

∂εe∗ − ∆εvp ∂ρ+

∂εe∗ − ρ+ ∂∆εvp

∂εe∗ + ∆εvp ∂ρ−

∂εe∗ + ρ− ∂∆εvp

∂εe∗ ,

(B.16)

where

∂ρ+

∂εe∗ = Mk1

2
√

ρS,n + ∆ρS + ρG

∂∆ρS

∂εe∗

= ρ+

2 (ρS,n + ∆ρS + ρG)
∂∆ρS

∂εe∗

(B.17)

and

∂ρ−

∂εe∗ = − 1
n

Mk20

(
∆εvp

∆ε0

)−1/n

∆εvp−1 (ρS,n + ∆ρS)
 ∂∆εvp

∂εe∗ + Mk20

(
∆εvp

∆ε0

)−1/n
∂∆ρS

∂εe∗

= −ρ−

n∆εvp

∂∆εvp

∂εe∗ + ρ−

ρS,n + ∆ρS

∂∆ρS

∂εe∗ .

(B.18)
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Combining this with Eq. (B.16 ) gives

0 = ∂∆ρS

∂εe∗

(
1 − ρ+∆εvp

2 (ρS,n + ∆ρS + ρG) + ρ−∆εvp

ρS,n + ∆ρS

)
+ ∂∆εvp

∂εe∗

(
ρ− − ρ−

n
− ρ+

)

= C1
∂∆ρS

∂εe∗ + C2
∂∆εvp

∂εe∗

(B.19)

where the notation has been simplified by defining two constants:

C1 = 1 − ρ+∆εvp

2 (ρS,n + ∆ρS + ρG) + ρ−∆εvp

ρS,n + ∆ρS

C2 = ρ− − ρ−

n
− ρ+.

(B.20)

The remaining unknown is ∂∆ρS/∂εe∗, which comes from differentiating Eq. (B.3 ):

∂∆ρS

∂εe∗ = C3

[
σ̄∗ ∂∆εvp

∂εe∗ + 3G∆εvp (m − 1) ∂∆εvp

∂εe∗ − 3Gm∆εvp S∗

σ̄∗

]
. (B.21)

This required use of Eq. (B.15 ) to differentiate σ̄∗. Another constant was also defined to

simplify the equation further:

C3 =
2
(

∆ε0
∆εvp

)1/m
∆εvp−1−1/m

M2α2G2b2m

[
3G∆ε

1/m
0 ∆εvp + ∆εvp1/m

σ0 − ∆ε
1/m
0 σ̄∗

]
. (B.22)

Substituting this into Eq. (B.19 ) gives

0 = C1C3

[
σ̄∗ ∂∆εvp

∂εe∗ + 3G∆εvp (m − 1) ∂∆εvp

∂εe∗ − 3Gm∆εvp S∗

σ̄∗

]
+ C2

∂∆εvp

∂εe∗

=⇒ ∂∆εvp

∂εe∗ = 3C1C3Gm∆εvp

(C1C3σ̄∗ + 3C1C3∆εvp (m − 1) + C2)
S∗

σ̄∗ .

(B.23)

After substituting Eqs. (B.15 ) and (B.23 ) into Eq. (B.14 ), the material Jacobian becomes

∂σn+1

∂εe∗ = De−6G2∆εvp

σ̄∗ Id − 9G2C1C3m∆εvp

(C1C3σ̄∗ + 3C1C3∆εvp (m − 1) + C2) σ̄∗2 S∗ ⊗ S∗

+9G2∆εvp

σ̄∗3 S∗ ⊗ S∗.

(B.24)
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This can also be written in the form from the Abaqus Analysis User Guide [102 ]:

D = QI − RSn+1 ⊗ Sn+1 +
(

K − 1
3Q

)
I ⊗ I, (B.25)

where

Q = 2G
σ̄n+1

σ̄∗ (B.26)

and the last two terms in Eq. (B.24 ) combine to give

R = 9G2∆εvp

σ̄2
n+1

[
C1C3m

C1C3σ̄∗ + 3C1C3∆εvp (m − 1) + C2
− 1

σ̄∗

]
. (B.27)
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C. FURTHER ANALYSIS OF THE COHESIVE ZONE

PARAMETERS IN COMPUTATIONS AT MULTIPLE LOAD

FREQUENCIES FOR ALLOY 617

In Section 5.3.3  , the reference damage energy Cf was scaled based on the rate dependence of

the bulk material in order to fit the steady-state crack growth rates at different frequencies.

This is not the only parameter in the CZM formulation that could be scaled in this way.

Another option is to scale the stiffness of the CZM through the cohesive strength σmax,0 based

on the argument that the relationship between the effective stiffness in the bulk material and

the CZM should be the same for each loading frequency. The predicted crack growth rates

were found to be virtually identical to those in Figure 5.16 .

This can be interpreted as follows. The bulk material and the CZM are essentially two

springs in series, each of which will experience the same normal stress [117 ]. Unlike a mono-

tonic CZM, the stress is not limited by the initial cohesive strength, which is interpreted as

setting the stiffness of the CZM as in [88 ], [89 ]. Instead, the stress is mainly controlled by the

viscoplastic response of the bulk material to the applied loading. This leads to a situation

where the stress distribution does not depend on the initial cohesive strength parameter,

except very close to the crack tip. This is illustrated in Figure C.1  a through traction dis-

tributions during steady-state crack growth for f = 0.05 Hz. The traction distributions are

nearly identical, regardless of whether the scaling factor R0.05 is applied to Cf or σmax,0. In

the context of damage evolution, it is important to note that the separation ∆n corresponding

to a particular traction is decreased when the stiffness of the CZM is increased. Therefore,

increasing σmax,0 by a particular scaling factor reduces ∆̇n by the same scaling factor due to

the stiffer CZM. This in turn reduces the fatigue damage increment in an equivalent way to

scaling the Cf parameter directly.

This idea is further supported by additional computations at f = 0.33 Hz with scaled

values of Cf and σmax,0. Based on the previous observations, this should not alter the crack

growth rates. Figure C.1 b shows that this is indeed the case. The predicted crack extension

for constant-amplitude loading and blocks of 20 OLs are nearly identical across each property

set as long as the product of σmax,0 and Cf is constant.

208



60 80 100 120 140 160 180

x-location (µm)

0

1

2

3

4
T
n
/σ

0

σmax,0 = 10000 MPa, Cf = 15.0 MPa-mm
σmax,0 = 7500 MPa, Cf = 20.0 MPa-mm

(a)

0 200 400 600 800 1000

Cycles

0

50

100

150

200

C
ra
ck

ex
te
n
si
on

(µ
m
)

10000 MPa, 20.0 MPa-mm
15000 MPa, 13.3 MPa-mm
7500 MPa, 26.7 MPa-mm

σmax,0, Cf

(b)

Figure C.1. (a) Predicted traction distributions for f = 0.05 Hz with two sets
of CZM parameters that produce the same crack growth rates. (b) Predicted
crack extension for f = 0.33 Hz with the original calibrated model and two
other sets of CZM parameters with constant Cfσmax,0.

These results seem to indicate that the calibration approach is reasonable. In particular,

similar results are attained as long as the value of the cohesive strength (and, in turn, the

stiffness of the CZM) is set within an acceptable range: it should be high enough that the

compliance of the cohesive zone does not restrict plasticity in the bulk material, but also

low enough that it allows the traction and damage distributions to become fully-developed.

The damage parameters can then be calibrated given this choice of the CZM stiffness. As

noted in Section 5.4  , these ideas could be investigated in more detail by using an explicitly

rate dependent CZM [216 ].

There are two caveats that could require further investigation. First, the calibrated

threshold σf = 100 MPa was relatively small compared to the actual tractions observed

ahead of the crack tip in this case. The appropriate scaling of Cf and σmax,0 may be affected

by higher values of this parameter, as well as by using a more complex damage evolution

law like in [88 ]. Second, in rate-independent materials, the higher traction near the crack tip

observed at higher cohesive strengths will likely trigger more plastic deformation. This could

be especially pronounced during OLs. In the model for Alloy 617, this effect was mitigated

by the relatively high rate sensitivity.
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