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ABSTRACT

Clinical trials are the gold standard for inferring the causal effects of treatments or inter-
ventions. This thesis is concerned with the development of methodologies for two problems
in modern clinical trials. First is analyzing binary repeated measures in clinical trials using
models that reflect the complicated autocorrelation patterns in the data, so as to obtain high
power when inferring treatment effects. Second is simulating realistic outcomes and subject
nonadherence in Phase III pharmaceutical clinical trials under the Tripartite Framework.
Bayesian Models for Binary Repeated Data: The Bayesian General Logistic Au-
toregressive Model and the Polya-Gamma Logistic Autoregressive Model

Autoregressive processes in generalized linear mixed effects regression models are con-
venient for the analysis of clinical trials that have a moderate to large number of binary
repeated measurements, collected across a fixed set of structured time points, for each sub-
ject. However, much of the existing literature and methods for autoregressive processes on
repeated binary measurements permit only one order and only one autoregressive process
in the model. This limits the flexibility of the resulting generalized linear mixed effects
regression model to fully capture the dynamics in the data, which can result in decreased
power for testing treatment effects. Nested autoregressive structures enable more holistic
modeling of clinical trials that can lead to increased power for testing effects. We introduce
the Bayesian General Logistic Autoregressive Model (BGLAM) for the analysis of repeated
binary measures in clinical trials. This model extends previous Bayesian models for bi-
nary repeated measures by accommodating flexible and nested autoregressive processes with
non-informative priors. We describe methods for selecting the order of the autoregressive
process in BGLAM based on the Deviance Information Criterion (DIC) and marginal log-
likelihood, and develop an importance sampling-weighted posterior predictive p-value to test
for treatment effects in BGLAM. The frequentist properties of BGLAM compared to existing
likelihood- and non-likelihood-based statistical models are evaluated by means of extensive
simulation studies involving different data generation mechanisms. We apply our model
for data collected from a clinical trial on the effects of Service Dogs for reducing PTSD

symptoms of United States Veterans. Ultimately, on the basis of simulation studies and the
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real-life case study, we conclude that BGLAM provides a more effective and comprehensive
approach for testing treatment effects in clinical trials with repeated binary measures and
complex autoregressive patterns.

Two features of BGLAM that can limit its practical application are the computational
effort involved in executing it and the inability to integrate added heterogeneity across time
in its autoregressive processes. We develop the Polya-Gamma Logistic Autoregressive Model
(PGLAM) for addressing these limiting features. This new model enables the integration
of additional layers of variability through random effects and heterogeneity across time in
nested autoregressive processes. Furthermore, PGLAM is computationally more efficient
than BGLAM because it eliminates the need to use the complex types of samplers for
truncated latent variables that is involved in the Markov Chain Monte Carlo algorithm for
BGLAM. We exhibit via additional, extensive simulation studies that the new features intro-
duced by PGLAM do not adversely affect its frequentist properties in a significant manner.
Furthermore, we demonstrate that PGLAM better captures complex layers of variability
compared to existing likelihood-based models, both in terms of yielding better power for
testing treatment effects and higher coverage for the confidence intervals for the treatment
effects

CITIES: Clinical Trials with Intercurrent Events Simulator

Clinical trials are the gold standard for evaluating the efficacy of new pharmaceutical
interventions. Although clinical trials are designed with strict controls, inevitably compli-
cations will arise during the course of the trials. One significant type of complication is
missing subject outcomes due to subject drop-out or nonadherence during the trial, which
are referred to in general as intercurrent events. This complication can arise from, among
other causes, adverse reactions, lack of efficacy of the assigned treatment, administrative rea-
sons, and excess efficacy from the assigned treatment. Intercurrent events typically confound
causal inferences on the effects of the treatments under investigation because the resulting
missingness that occurs corresponds to a Missing Not at Random missing data mechanism.
The missingness is driven based on latent strata of patients characterized by their adher-
ence behaviors under the different possible assigned treatments. These latent strata must

be taken into account in order to obtain valid causal inferences on the causal effects of the
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receipt of treatment, and not merely the assignment of treatment. The latter type of effect is
typically considered in standard intention-to-treat (ITT) analyses, and has several flaws that
are described in the International Council for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use (ICH) E9(R1) amendment to the original ICH E9 guidelines
for clinical trials. As a consequence of the amendment to ICH E9, the pharmaceutical in-
dustry is increasingly focused on developing methods for obtaining valid causal inferences on
the receipt of treatment in clinical trials with intercurrent events. However, it is extremely
difficult to compare the frequentist properties and performance of these competing methods,
as real-life clinical trial data cannot be easily accessed or shared, and as the different methods
consider distinct assumptions for the underlying data generating mechanism in the clinical
trial. We develop a novel simulation model for clinical trials with intercurrent events. Our
simulator operates under the Rubin Causal Model. We implement the simulator by means of
an R Shiny application. This app enables users to control patient compliance through differ-
ent sources of discontinuity with varying functional trends, and understand the frequentist
properties of treatment effect estimators obtained by different models for various estimands.
Under our simulation, the treatment effect accounts for intercurrent events in clinical trials
with multiple endpoints. Based on the application of our simulator to capture data from two
real-life clinical trials, we conclude that our new data generating mechanism is a convenient
tool for practitioners in the pharmaceutical industry to compare the methods they develop

for analyzing clinical trials on the same, comprehensive setting.
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1. BGLAM: A BAYESIAN GENERAL LOGISTIC
AUTOREGRESSIVE MODEL FOR CORRELATED BINARY
OUTCOMES

1.1 Introduction

Binary repeated measures studies are experiments or observational studies in which each
subject has several binary values for an outcome variable observed across time. These studies
are prevalent across a wide variety of domains, ranging from medicine and biology to the
social sciences [1]. One significant challenge in modeling binary repeated measures is the
incorporation of an appropriate correlation structure for the outcomes. Failure to account
for correlation in the repeated measure outcomes generally results in incorrect standard
errors, which can yield incorrect Type I error rates and low power when performing sta-
tistical inferences [2]. In practice, this challenge is addressed by incorporating correlation
structures into a logistic regression model. This is due to the advantage of these models pro-
viding interpretable regression coefficients, which is recognized among statisticians as well
as subject-matter specialists [3], [4].

Several frequentist statistical methods for binary repeated measures studies exist that
yield marginal interpretations similar to logistic regression while accounting for the corre-
lations between the binary outcomes. Chief among them are the methods of generalized
estimating equations [GEE; 5|-[8] and generalized linear mixed models [GLMM; 9]. GEE
methods can enable direct inferences on marginal logistic models for binary repeated mea-
sures, and are robust to potential misspecifications of the correlation structure. However, a
disadvantage of GEE methods is that a large number of observations are generally neces-
sary for the application of their asymptotics-based inferences, with small data sets yielding
inaccurate inferences [2], [10, p. 170]. In contrast to GEE methods, GLMM methods typi-
cally involve conditional models that utilize estimates and inferences based on a likelihood
function, which yields several practical advantages. Examples of such advantages are that
likelihood-based tests are well-defined, valid assessments of model fit can be performed, and

model selection techniques based on the likelihood can be implemented [2, p. 144]. A poten-
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tial disadvantage of existing GLMM methods is their reliance on likelihood approximations
[11], [12], e.g., Gauss-Hermite quadrature [13]. In addition, GLMM methods that involve
marginal models utilize pseudolikelihood functions, and these functions do not correspond to
a true likelihood function. The corresponding disadvantage is that these methods can yield
biased covariance estimators, especially for binary data [14, p. 2219]. Finally, a common
disadvantage for the popular implementations GLMM methods in popular programming en-
vironments such as SAS® PROC GLIMMIX, respectively, is that they are limited to modeling
only Autoregressive(1) or AR(1) structures.

One statistical method that addresses all of the limitations associated with existing GEE
and GLMM methods is the Bayesian Multivariate Logistic Regression [BMLR; 4] model.
This model uses a latent multivariate distribution for the repeated binary outcomes that
captures the correlation structure of interest, with the underlying parameters being inter-
pretable on the log odds scale (formal details on the implementation are in Section 1.3).
Large samples of data are not necessary to justify the Bayesian inferences obtained from the
BMLR model. Instead, direct and straightforward uncertainty assessments for inferences
based on the posterior distributions of its model parameters are obtained without the need
to appeal to asymptotic covariance matrices. Also, as the standard specification of the prior
distribution for this model given by O’Brien and Dunson [4] enables the computation via
Markov Chain Monte Carlo (MCMC) methods of a corresponding proper posterior distri-
bution. A distinct advantage of the Bayesian paradigm for the BMLR model compared to
existing frequentist methods is that it enables practitioners to integrate substantive prior
information from domain experts into the analysis of repeated measures studies.

Despite its advantages, the standard BMLR model typically fails to recover AR correla-
tion structures for a large number of repeated measures (Figure 1.1). The consequence of this
issue is that standard errors and Type I error rates for inferences on logistic regression coef-
ficients will be incorrect. To illustrate this failure, we consider a simulated data set with 100
subjects generated according to an AR(1) process via the t-copula inherent in BMLR, with
autocorrelation parameter p = 0.5 (formal details on this data generating mechanism are in
Section 1.3). The standard BMLR model accurately infers the autocorrelation structure for

five repeated measures. However, in the cases of 15 or 30 repeated measures the recovered
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autocorrelation matrix does not correspond to the true AR(1) autocorrelation structure. In-
deed, for the case of 15 repeated measures, the inferred correlations lose any semblance to
the underlying structure of the specified autoregressive structure. Such striking discrepancies
are especially concerning for the validity of the analyses of the growing number of studies
that involve a large number of repeated measures, such as those frequently conducted in
the fields of aging research [15], labor market surveys [16], geographical surveys [17], and

metabolomics [18].

Inferred Correlation Measures from O'Brien, Dunson (2004)

Inferred Correlation Inferred Correlation Inferred Correlation

[ =
08
[ 1
. )

-08

L} -08
. H - =l

(A) (B) ©)

True Correlation

Figure 1.1. Comparisons of the true and inferred correlation structures for
data generated using the data generating mechanism inherent in the BMLR
model via t-copulas. In each sub-figure, the cells below the diagonal are the
true correlation values between two time points, and those above the diagonal
are the inferred correlation values based on the fitted BMLR model. The empty
diagonal is meant to separate the true and inferred correlation values. Each
data set consists of 100 subjects, with the number of repeated time points set
5 for Figure 1.1(a), 15 for Figure 1.1(b), and 30 for Figure 1.1(c). The fitted
BMLR model fails to recover the true correlation structure as the number of
repeated measures increases.

Prior work has been done on extending the original BMLR model. Nooraee, Abegaz,
Ormel, et al. [19] expanded on the BMLR model and demonstrated that their expanded
model outperformed the method of GEE on ordinal data. However, their results were only
demonstrated for data with up to three time points, and they did not demonstrate that they
would be able to recover the true autoregressive structure for a large number of repeated

measurements without additional restrictions or assumptions. Hirk, Hornik, Vana, et al. [20]
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extended the different classes of autoregressive structures beyond those that were considered
in [4], but only up to an AR(1) setting. Paul, Maity, and Maiti [21] fitted the BMLR model
on time series data with varying autoregressive settings, but the parameterization of the
correlation and effects in this particular model differ from those that are involved in the
analyses of repeated measures data. Furthermore, the rigidity of such time series models
permits only one autoregressive structure for a given series or subject.

We directly address the issues inherent with the standard BMLR model by specifying a
distinct prior distribution for the autoregressive temporal structures of the binary outcomes.
Specifically, we place a prior on the covariance matrix that is sufficiently flexible for ac-
commodating a wide range of autoregressive process. An advantage of our extension of the
standard BMLR model is that we are better able to model correlated binary outcomes with
a large number of repeated measurements that may have nested autoregressive structures
of arbitrary order, and account for correlations between the nested autoregressive structures
as well. We refer to our new model as the Bayesian General Logistic Autoregressive Model
(BGLAM).

We commence in Section 1.2 by providing the formal notation and assumptions we con-
sider for binary repeated measures studies, and a detailed review of existing GEE and GLMM
models. Our BGLAM model is formally described in Section 1.3. Simulation studies that
compare the performance of the BGLAM model to those of GEE, GLMM, and the standard
BMLR methods for AR(1) and AR(2) processes are described in Section 1.4. An real-life
application of the BGLAM model is provided in Section 1.5. In this case study, the BGLAM
model is fitted to data from a National Institutes of Health (NIH)-sponsored study on the
effects of service dogs on the daily lives of post-9/11 military veterans diagnosed with post-
traumatic stress disorder (PTSD). Concluding remarks on binary repeated measures studies,
the BGLAM model, and potential extensions for future investigation are provided in Section

1.6.
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1.2 Background

1.2.1 Notation

Let y; = (Yity---»Yin;), 1 = 1,..., N where y;,, is the n;-th observation for subject i.
There are n; repeat measurements for subject i and a total of .Y, n; measurements with
the associated matrix of baseline covariates @; = (@, ..., @i,). This is motivated by the
clinical trial data to which we apply this model in Section 1.5, as covariates were collected at
baseline and we are more interested in their average effect across time throughout the study.

For an individual i with n; repeat measures, the (j,j + k)th element of the correlation
matrix R; is defined as the marginal correlation rj;, = Cor(y;, yi+x), j;k=1,...,n — L.
Alternaichijfglly, R; can also be parameterized using partial autocorrelations, defined as p; 1, =
Cor(y;, Y+r) |y, ] <1 <j+k), j,k=1,...,n;—1. In other words, the partial autocorrelation
between time points j and j + k is the pure and unconfounded correlation between these
two points after removing for the effects of all intermediate time points while the marginal

correlation is the final realized correlation between j and k, including those from intermediate

time points. A brief exposition on partial autocorrelations will be provided in Section 1.3.1.

1.2.2 Literature Review

A prominent method for modelling binary repeat measurements uses the Generalized
Linear Mixed Model [9] using the GLIMMIX procedure in SAS®. There are two ways to
model repeated measures in GLIMMIX: the G-side and the R-side [2]. A G-side or condi-
tional model would yield g(]E[Yh/]) = X B + Z~, where g is a differentiable monotonic
link function chosen based on the assumed distribution of the response Y, 3 is the vector of
fixed effects for its associated design matrix X and - is the vector of random effects for its
associated design matrix Z that contains the the different levels for the random factor time.
We assume v ~ N(0,G), where G would be the user-specified covariance structure for the
repeat measures such as autoregressive(1).

In contrast, the R-side or marginal model is the same as the G-side, just that there is

no longer the random effect . In addition, we assume the following about the marginal
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variance Var [Y]| = A%RA%, where R, also known as the working correlation matrix, would
be the user-specified covariance structure for the repeat measures and A is a diagonal matrix
containing the variance function, defined as the variance of a random variable as a function
of its mean [22]. We can see that the G-side models the conditional expectation E[Y |]
while the R-side models the marginal expectation E[Y]. Hence, the G-side is oft called the
conditional model while the R-side is called the marginal model [14].

A lucrative feature of conditional models is that their estimates are based on the true
likelihood via Integral Approximations [11], [12] such as Laplace Approximation [23] and
Gauss-Hermite Quadrature [13] while those of the marginal models are based on pseudo
likelihoods [14]. As a direct consequence, this also means that marginal models are more
robust to model misspecifications than conditional models.

The GEE of Liang and Zeger [5] used to estimate the regression parameters /3 for corre-
lated data is given by solving the score function S(8) = XY, DIV (y, — g~ (x:8)) =0,
where D; = %g’l(miﬁ), V; is the covariance matrix of y;, x; is the design matrix across all
time points for subject i and ¢ is a differentiable monotonic link function chosen based on the
assumed distribution of the response y,. GEE estimates the 8 parameters by maximizing
the log likelihood function over all subjects L with respect to the regression parameters using
a ridge-stabilized Newton-Raphson algorithm [24].

The working correlation matrix R; here is user specified, yielding the following covariance
matrix V; = l/Ai% w, %RiWi_ %Ai%, where v is the overdispersion parameter, A; is the
variance function and W is a user-specified weight matrix that defaults to an identity matrix
I. GEEs integrate out the random effects, thus they are often used to model population
averaged effects. Note that the marginal variance of y; in GEEs is very similar to that of
the R-side, assuming ¢ = 1 and W; = I. Thus, results for R-side models in GLMM should

be similar, if not the same, to GEE results.
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Alternatively, the multivariate logistic distribution [4] uses a multivariate T' to account

for the correlation while still maintaining logistic marginals. For a given individual i, the

probability distribution function is given by

gv(zil - /m) g( ’ )
Zit | it
L (zilpy R) =T, O,R| x 1.1
7 ( |u ’ ) 7 H Tl v(gv(zlt ,Uit)loa 1) ( )
g (Zlnl lj'lnl)
where
v+ng
v+n. 1 T2
Ty o (i py, 3 ( by 7 1) X (1 + =t — ) ST - Hi))
5 2 |2 v
v = F
v 1 + eﬂc)

F;!: Tnverse CDF of standard univariate T

for some location parameter ;.

The motivation for choosing the T distribution stems from work done by Albert and Chib
[25] in that by using the degrees of freedom v = 7.3 and 52 = w, the standard T dis-
tribution greatly approximates the logistic distribution, i.e. T ,(.|z;3, %) Z(|z:ip, 1).

appro
In following this approximation, exact inferences on m(8, R) can then be obtained via Im-

portance Sampling [26].

The objective is to sample from the posterior (8, R, ¢, z|y). We assume the following
priors and latent configuration from Albert and Chib [25] and O’Brien and Dunson [4]

B~ Np<5|ﬂ0’2ﬁ>
R ~ n(R)
¢i|B, R ~ F(dﬂg, g), where v = 7.3

5.2

x; 3, ERi ), where 6% =

n(y;|B, R, ¢, z) : truncation of z; based on the value of observed y;

(v — 2)

TC(ZJ,B, R, ¢) ~ Nni (zi 30
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Here m(R) is any distribution with support on the space of correlation matrices. Further,
we assume a diffuse normal prior for A [4]. This translates to 251 being a matrix with all 0
elements, i.e. a precision matrix full of zeroes.

To sample from the joint posterior n(B, R, ¢, z|y), we use the Gibbs sampler from
O’Brien and Dunson [4] such that at iteration ()

1. Fori=1,..., N, sample from the posterior of z;

0_2

: (t—1) 0 (t-1)
n;zxil( )’yiaﬂa R, ¢, @i ~ N, (mi p ’ ¢(t—1) B )

i
where z;; is truncated above zero if y;; = 1 and below zero if ; = 0.

2. Fori=1,... N, sample from the posterior of scalar gbi(t)

ﬁbi(t)|zi,yiaﬂa R;, x;

1 1 1 T _
~T (2(21 + i), B (U + &2) <Zi(t) — QJiIB(t_l)) (Ri(t 1))_1<(zi(t) — miﬂ(t_1)>)

3. Sample from the posterior of A%

B(t)|zv Y, R, ¢, ~ Np(ﬂﬁa 25)
1
. B 12 1y
35 = (zﬁl + (}2;¢§t)mi(R(t D) 1:ci)

. = _ [ )\
5 = s (Ealﬂo i 2@%(1%“ V) 1Zi(t))

4. Sample from the posterior of R
n(R|z,y, B, ¢, )

The BMLR procedure is summarized in Figure 1.2.
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Figure 1.2. Summary of BMLR procedure

To sample from n(R|z,y, B, ¢, x), we use the following protocol from O’Brien and Dun-

son [4]

1. Sample each nf = % from

unique R ~ N, (unique RV Q)

where €2 is a tuning parameter chosen via experimentation.
2. If this new R is positive definite, then set R®) = R with probability

TE(R) i=1 Na, (Zi(t) wi,@(t)a &5) R)
ming 1, %
m(

RO, N, (2@, 25RO

Otherwise, set R® = Rt~
3. If this new R is not positive definite, then set R® = RV,

As shown in Figure 1.1, with larger number of repeated measures, this protocol becomes far
too restrictive, resulting in a sampler that does not explore the correlation space effectively.

Before we propose our prior to circumvent this, we first look at Partial Autocorrelations.
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1.3 Methodology

1.3.1 Partial Autocorrelation

Partial autocorrelations of an AR(k) process is 0 at lag k + 1 and greater [27]. Thus
we only need the first k& partial autocorrelations to describe an AR(k) process [28]. We
then use the recursive algorithm to calculate the marginal autocorrelations from the partial
autocorrelations [29]. Following the notation in Joe [30], forj=1,...,n—k, k=1,..., K —
1,K < miin{ni}, once we have the partial autocorrelation p;j;x, we can recursively populate

the marginal correlation matrix as follows:

Tijrk = 110, k) Ra (k) ' r3(s k) + Dikpyjan (1.2)
where
7“/1 (L k‘) = (Tj,j—&-ka cee »Tj,j+k—1)
53, k) = (Pjtkjt1s - - > Vik jrk—1)

Dy = [1 = 71G k) R (G, k)11 (i, B))Z[1 — 745G k) Ry k) ~Ara (G, K))2

Thus, we simply need to model the partial autocorrelations p, and we can recover the
correlation matrix R.

The partial autocorrelations are constrained on (—1, 1), making posterior sampling some-
what confining. To circumvent this, we do a Fisher transformation (or atanh()) on the par-
tial autocorrelations [31]. Now if we assume for person i with repeat measures n; that p

is the vector of partial autocorrelations of length k¥ = 1,..., K — 1, K < min{n;}. Then

i = atanh(pk) ;;l logistic (M =0,s = ;)
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1.3.2 BGLAM
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Figure 1.3. Summary of the BGLAM procedure

Our proposed model BGLAM is different from the original BMLR in that we have a
prior for R that can better accommodate an autoregressive structure. Sampling from the
posterior T(R|z,y, B, ¢, x) is equivalent to sampling from the posterior of n(p|z,y, B, ®, x).
Define the function r(.) to be the recursive process to go from the partial to marginal

autocorrelations [32]. Then the posterior of p decomposes to

N 6.2
m(plB, b, 2y, @) x [HNm (=18, (ﬁr(tanh(pz)))}
i=1 1

K 1
11 Logistic<p2|0, 2) (1.3)

k=1

We will use the Metropolis Hastings algorithm with a Normal proposal distribution to sample
from w(p|B, ¢, z,y,x). By experimentation, we set the tuning parameter for the proposal

distribution as ag = 0.001.

1.3.3 Weighted Posterior Predictive P-Values

We construct posterior predictive p-values (PPP) to draw inference from our Bayesian
model on the parameters of interest. Following Gelman [33, p. 145], let TS(.) be some test
statistic function, y"?) be the replicated data and 6 = (3, p, z). Specifically, we define TS(.)

29



as the difference in proportion of success of 1’s of each subject between the treatment and
control group. By definition, PPP = [ I{TS(y"").0) > TS(y, 8)}n(y"P), 0|y)dy°r)do.
Since we are using Importance Sampling to get exact inferences, we need to adjust our
PPP using the importance weights. By defining ©*(6]y), ®(f|y) and n(y"?)|0) as the ap-
proximate likelihood, true likelihood and simulated outcomes based on the true model, the

weighted PPP is now simply

PPPinpt = Eyeren) g1y I{TS(y"P) > TS(y)} {;((ﬂﬁy))” (1.4)

As m(fly) and *(0|y) are close approximates of each other, their ratio is quite stable for

moderate to large number of repeated measurements.

1.3.4 Marginal Likelihood

A typical goodness of fit measure used is the marginal likelihood [21], [34], since it
captures the probability of observing the data across the input parameter space. However,
there is no closed form for calculating the log likelihood of our BGLAM model. Specifically,

we want to calculate the following:

Pr(Y; =y;|lx:, B, R) = /OO /Oo { T{z; > 0} [{z; < 0} }Znhv(zﬂmiﬂ, R)dz;
—00 —oo | =1

(1.5)
To resolve this, we reparameterize the integrals above as follows:
Pr(Y, = y,|z;, B, R) = /Q . /Q L o(zi]a:B, R)dz; (1.6)
where

(—OO, 0), lf yij = 0
ij —

(O, OO)7 lf le =1
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With the above likelihood, we can approximate the marginal likelihood by averaging across

the input parameter space.

1.3.5 Deviance Information Criterion

The DIC [35]-[37] is a widely applicable Bayesian measure used for model comparison.
Deviance is defined as D(Y |8, R, X) = —2log (Pr(Y |38, R, X)). The posterior mean de-
viance is D(Y'|8, R, X) = Eg,ry,xD(Y|B, R, X). The effective number of parameters is
then calculated via pp = D(Y|8, R, X) — D(Y|B, R, X). Finally, the DIC is calculated
by the expression DIC = D(Y|8, R, X) — pp. DIC is similar to the Akaike Information
Criterion (AIC) in that AIC is based on the maximum likelihood estimate of the parameters
while DIC is based on the posterior summary. Compared to other Bayesian measures of fit,

the DIC can be computed with relative ease and is numerically stable [38].

1.4 Simulation Studies

1.4.1 AR(1) Simulation

A total of 1000 data replicates were generated for 100 subjects, each with 30 measure-
ments. Each simulated subject would have a continuous covariate sampled from a stan-
dardized normal distribution. We have three estimable parameters: (5, i, 51) where 5y
is the intercept and f; is the coefficient associated with the generated continuous covariate,
and the partial autocorrelations p. Based on an Intention-To-Treat(ITT) analysis on our
preliminary data, we set (5o, 31) = (=2, 1.5). The By parameter combinations are chosen
from (0,0.25,0.5) with the AR(1) parameter from (—0.7, —0.5,—0.3,0.3,0.5,0.7). We assess
model performances based on Type-1 error rates, power and coverage probabilities. We
simulate our data from three different processes: T-copulas, Normal-copulas and GLMM.
Normal-copulas were chosen based on [19]. Data were also generated via GLMM since we are
comparing our BGLAM procedure to GLMM and GEE. We compare our BGLAM model to
the GLIMMIX procedure on both the G-side and R-side as well as GEE via the gee package
[39] in R. Simulation settings for AR(1) are summarized in Table 1.1. The proposed model
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BGLAM is depicted by the black solid line in all AR(1) simulation results. SAS scripts the
GLIMMIX-G and GLIMMIX-R are provided in Appendix A A.

Table 1.1. Input parameters for AR(1) simulations with 150 subjects and 30
repeated measurements each.

beta_trt | AR(1) | Data Generator method
0.7
0.5 BGLAM
0 GLMM

0.3 GLIMMIX-G

0.25 N-Copula
-0.3 GLIMMIX-R

0.5 T-Copula
-0.5 GEE
-0.7

The power of the BGLAM is better, if not just as good as GEE, GLIMMIX (both G and R
sides) using Kenward Rogers adjustment. This behavior is more apparent for positive AR(1)
values or when there is more separation in the data (Figure A.1). Although it may seem that
GLIMMIX may have higher power at times, this comes at the cost of elevated Type I error
rates (around 0.9 at o = 0.05). This is especially apparent in Figure A.12 when AR(1)=0.7.
In addition, the figure also shows how BGLAM outperforms GEE and GLIMMIX in terms
of power, even when the data were generated via GLMM. Further, BGLAM captures the
correct AR(1) estimates under the T-copula process for all AR(1) settings (Figures A.7-
A12). The AR(1) estimates from GLIMMIX-G are consistently biased, even when the data
were generated via GLMM. A limitation of GEE models in repeated measures designs is that
they do not have standard error estimates for the AR(1) parameters. Bootstrapping is not
feasible as well since this would result in duplicate subjects across time, yielding estimation
errors due to perfect autocorrelations. Thus, GEE coverage for the partial autocorrelation
estimates will be absent.

When data were generated via GLMM, there is a mismatch between the generated data
and our proposed BGLAM, resulting in undercoverage A.1-A.6, leftmost column. The GLIM-

MIX procedure still suffers from treatment undercoverage even when the data were generated
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via GLMM (Figures A.7-A.12, leftmost column). This is because the AR(1) estimates tend
to swing from extreme positive to extreme negative AR(1) estimates. Specifically, the treat-
ment coverage when AR(1)=0.7 (Figure A.1) and AR(1)=-0.7(Figure A.6) is not as bad as
the intermediate AR(1) settings in (Figures A.2-A.5). Simulation results for the remaining
AR(1) settings are available in the Supplementary Materials in Section A.

1.4.2 AR(2) Simulation

Table 1.2. Setup for AR(2) simulations.

betag, AR(2) Data Generator Method
(-0.7, -0.5)
(0.7, 0.5)
.| 07.09) BGLAM-AR(1)
1oy | (O7:05) T Copula BGLAM-AR(2)
b | (05.:03) BGLAM-AR(3)
(-0.5, 0.3) GEE-AR(2)
(0.5, -0.3)
(0.5, 0.3)

As before, simulations are set for 100 subjects, each with 30 measurements. However
we now have three estimable parameters: (8o, But, 51) and a vector of PARs whose length
depends on the k in the AR(k). The /3 parameter settings are similar as before, just that now
AR(2) = {(-0.7,-0.5), (—0.7,0.5), (0.7, —-0.5), (0.7,0.5), (—0.5, —0.3), (—0.5,0.3), (0.5, —0.3),
(0.5,0.3)}. Simulation settings for AR(2) are summarized in Table 1.2. We compared the
correctly specified BGLAM-AR(2) model against the incorrectly specified BGLAM-AR(1),
BGLAM-AR(3) and GEE-AR(2), or GEE with an AR(2) specification, using [39]. We assess
model performances based on power, bias, coverage probabilities and standard errors of the
estimates over the 1000 data replicates. Further, we assess model fit using the Deviance
Information Criterion (DIC) and the Marginal Likelihood. The model fits are supplemented
with the 95% credible intervals for the PAR(k) estimates.
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Simulation results show that a correctly specified BGLAM-AR(k) has better, if not com-
parable power. The BGLAM with the correctly specified AR(2) structure has better power
(Figure A.13) in most settings. Even with the correct AR(2) structure, BGLAM outpow-
ers GEE (Figure A.13). This is not always true when the autocorrelation is positive and
sticky or does not decay as quickly. For example, when the true AR(2)=(0.5, 0.3), the
power for BGLAM-AR(2) is slightly lower than that of BGLAM-AR(1). This is because the
binary outcomes are not only highly positively correlated, the strength of the correlation
lingers longer and decays more slowly as compared to an AR(1)=0.5 setting, yielding binary
outcomes that are mostly 1’s or 0’s. The power disparity is even more prominent when
AR(2)=(0.7, 0.5). At this positive correlation strength however, all different AR(k) settings
for BGLAM and GEE with an AR(2) setting suffer lower power.

Further, a correctly specified BGLAM-AR(k) has better coverage with lower bias and
standard error. Although the correct BGLAM-AR(2) has low bias, all BGLAM settings
suffer from lower than favorable bias when the true AR(2)=(-0.7, 0.5) and (0.7, 0.5). This
goes in tandem with the coverage of the corresponding posterior PARs in Figure A.14, where
the PAR posterior means are consistently higher than the true PARs. Similarly, treatment
coverage hovers around the 0.95 threshold. We do see that coverage for BGLAM-AR(1) is
sometimes lower and even dips to as low as 0.7. This is not true for BGLAM-AR(3), since
the last PAR is often close to 0, yielding an induced marginal correlation that follows the
correct AR(2) (Figure A.14). GEE-AR(2) does have the lowest bias and consistent coverage
of 0.95 throughout all settings. This is expected since GEEs are robust and not sensitive
to model misspecification. Finally, the standard errors are fairly similar across the different
simulation settings, with GEE being consistently higher than the rest.

The correct model is selected using a combination of DIC, marginal log likelihood and
the CI of the last PAR of the corresponding model. The differences between the fit measures
for a given simulation setting are quite small, often to one decimal place. This is because
differences induced by the varying AR(k) structures are fairly subtle. For example, the DIC
and marginal log likelihood select the correct AR(2) model when the true AR(2)=(-0.7, 0.5)
in Table 1.4. However, when AR(2)=(0.7, -0.5), the AR(3) model has the lowest DIC and
Marginal LL. Note that the differences of these fit measures with that of AR(2) is to one or
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second decimal places. The zero coverage probability for the last PAR of the AR(3) models
are around 0.7. Favoring parsimony, we would opt for the AR(2) model. The converse is
also true. For instance, although the AR(1) models have the lowest DIC and Marginal LL
in some settings, the differences between these fit measures with that of AR(2) is to one or
second decimal places. Similarly, the zero coverage probability for the last PAR of the AR(1)
and AR(2) models are 0 while that of AR(3) is around 0.9, indicating that an AR(2) would
be the ideal model given how close these fit measures are. Note that BGLAM-AR(1) has
markedly better DIC and marginal LL measures than BGLAM-AR(2) when AR(2)=(0.7,
0.5). As before, this correlation setting would yield data that are mostly either 1’s pr 0’s,
compelling our model to favor parsimony in parameterizing the AR (k) structure with limited

information to work on.
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PAR

Marginal
Log Likelihood

DIC

Last PAR
Zero-CP

(-0.7,0.5)

~33.191 (3.685)

-30.669 (2.88)

67.314 (7.508)

61.798 (5.822)

(-0.5,0.3)

-29.13 (2.491)

-29.173 (2.496)

58.463 (4.983)

58.583 (4.986)

(-0.7,-0.5)

29176 (2.477)

-29.329 (2.502)

60.683 (4.818)

61.014 (4.848)

(-0.5,-0.3)

-29.153 (2.46)

60.613 (4.784)

(0.7,-0.5)

-30.023 (2.958)

-20.855 (2.99)

60.353 (5.912)

59.969 (5.967)

(0.5,-0.3)

29475 (2.633)

59.233 (5.267)

(0.7,0.5)

29.851 (3.33)

-31.539 (3.347)

66.528 (6.863)

74.538 (7.395)

(0.5,0.3)

-29.103 (2.751)

-29.354 (2.751

62.152 (5.417)

Figure 1.4. Fit measures and standard errors for the AR(2) simulation study
for 1000 data replicates generated via T-copula. Highlighted grey rows are the
correct models. The difference between the fit measures between the all AR(k)
settings are to one decimal place. The exception to this is when the true PAR
= (-0.7, 0.5), where the difference between the fit measures between AR(1)
and AR(2) are much prominent. Model selection is further supplemented by
the high zero coverage probability for the last PAR of AR(3).
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1.5 Application: PTSD Clinical Trial

1.5.1 Description Of Study

We demonstrate the application of our BGLAM methodology by considering an NIH-
funded clinical trial (#NCT03245814) conducted by Dr. Marguerite O’Haire on the effec-
tiveness of service dogs for United States military Veterans diagnosed with post traumatic
stress disorder (PTSD). This study consists of two treatment groups: Veterans assigned a
service dog (the active treatment of interest), and Veterans who were on a waitlist to receive
a service dog (control group). The organization that provided service dogs to Veterans in

this study is K9’s For Warriors.

Demographics Survey

= WAITLIST . Baseline I Waitlist ﬁ Follow-up

Group (n=66)

2 weeks 3 months 2 weeks

h re 4\

SERVICE DOG Baseline J| Service Dog Program ﬁ Follow-up
Group (n=76) :

2 weeks 3 weeks 2 months + 1 week 2 weeks

2x Daily EMA 2x Daily EMA

Figure 1.5. The design protocol for Veterans in the Service Dog (bottom
with 76 Veterans) and waitlist group (top with 66 Veterans). Veterans fill out
the demographics survey at the beginning of their study period. They then
receive pings to complete short EMA questionnaires on their mobile devices
twice daily at baseline and follow-up for two weeks. Specifically, Veterans are
asked to indicate where they are at that present moment. Between baseline
and follow-up, Veterans assigned to the Service Dog group undergo a training
course with their assigned service dogs, followed by a live-in period with the
dogs in their respective homes for a total of 3 months. Veterans assigned to the
waitlist group will undergo the same procedure after the end of their respective
study periods.

Three phases are involved in this study: (1) a period of two weeks in which baseline data

on the participants are collected, (2) a subsequent period of three months in which only the
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treatment group engages in a training course with their assigned service dogs followed by
a live-in period with the dogs in their own homes (Figure 1.5), and (3) a final period of
two weeks in which follow-up data are collected. Data were collected following Ecological
Momentary Assessment (EMA) protocols, which involve repeated sampling of participants’
current experiences and behaviours in real time in their innate environment [40]. Further,
timing of the sampling was randomized to prevent anticipatory responses and capture a
breadth of daily experiences. In an EMA procedure, participants receive notifications to
complete short questionnaires on their mobile phones twice daily during the baseline and
follow-up periods. Each questionnaire asks participants to indicate where they are at the
present moment. In the analysis, the binary repeated measures of interest consist of the
indicators for whether or not a participant is at home during particular points in time
during the follow-up period. The data consists of 142 Veterans, each with approximately 28
repeated measurements during follow-up.

The objective in analyzing this repeated measures study is to determine the effect of
a service dog on the probability that a Veteran will be out of their home, accounting for
baseline covariates and time dependencies. Previous literature suggests that pairing of a
Veteran with a service dog for PTSD enables the Veteran to be more involved in their
communities and go out in public more often [41], [42]. However, the majority of evidence to
support this is qualitative in nature. Thus, the present study adds to the current literature
by quantitatively analyzing the odds of a Veteran being out of their home with the addition
of a service dog in comparison to a waitlist control group. Results of this analysis may assist
service dog providers and mental health practitioners by providing additional insight into
the service dog intervention.

A reasonable autocorrelation structure in this context is the autoregressive (AR) process,
which has the correlation in the outcomes between any two points in time diminishing as a
function of their separation in time. To specify the order of the AR process we note that as
data are collected twice daily, a subject may be less likely to leave home with their service
dog if they have done so at the time point immediately before the current time point, and
that they are more likely to do so during the time point immediately after the current time

point.
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1.5.2 Model

The outcome is a binary 0-1 variable: the outcome is 1 if the participant indicated that
they were at home at the time of the questionnaire notification and 0 otherwise. Specifically,
the outcome is 0 if the participant indicated that they were at work or school, in transit,
at a doctor or therapy, in an indoor public space, in an outdoor public space, at a friend or
family’s house, or if they selected “Other” in their questionnaire response. We are modelling
the odds of the participants being home. Three predictors are used in our model: treatment
assignment (service dog vs waitlist group), age and proportion of time Veterans were home
at baseline. Here age was included as a demographic variable that may be related to leaving
their homes.

There are four separate components that go into the correlation structure for our model:
Preckday; & Vector of partial autocorrelations that defines an AR (k) structure for weekday, de-
fined as Monday through Thursday, pyeekend; @ vector of partial autocorrelations that defines
an AR(k) structure for weekend, defined as Friday through Sunday, pruu-ri; a correlation
term that captures correlation between Thursday evening and Friday morning, and psun-Mon;
a correlation term that captures correlation between Sunday evening and Monday morn-
ing. The motivation behind this correlation structure stems from the weekend effect, which
states that human behavior adheres to a cyclic rhythm that fluctuates between weekdays
and weekends [43]. Weekend effects are consistent with other daily diary studies of mood
[44]—-[46].

Thus our model should be able to accommodate for this intricacy. We follow the definition
of weekends from Ryan, Bernstein, and Brown [47] which clusters Friday through Sunday
as weekends and Monday through Thursday as Weekdays. However, these weekday and
weekend unique AR(k) structures are not stand-alone units and should be able to transition
from one to the other interchangeably. Therein, we introduce the two scalar correlation
inputs priue-rri and Psun-Mon, Where the former captures the correlation between weekday
and weekend and latter captures the correlation between each week. We ran our specified

model on 4 different AR(k) settings for 10250 iterations and a burn-in of 1250: AR(1) for
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both weekday and weekend, AR(2) for both weekday and weekend, AR(3) for both weekday
and weekend, and a custom AR(2) for weekday and AR(1) for weekend.

1.5.3 Results

Table A.1 summarizes the DIC and marginal loglikelihood. We see that the custom
AR(k) setting has the best measure on all fit measures, albeit marginal. Table 1.3 provides
the posterior summaries for the treatment and covariates. Posterior means for the different
PARs for all the AR(k) settings are summarized in Table A.1.

Further, we ran a sensitivity analysis to see how the treatment effect changes over the
varying AR(k) settings. Table A.l summarises this information and shows that the inference
on the treatment effect remains insignificant. Table A.1 lists the posterior summaries for
the four different partial autocorrelation components for the selected model: the weekday
correlations are governed by an AR(2)=(0.21, 0.40) process while the weekend correlation is
modelled via an AR(1)=0.14 process. The correlation estimates for weekday and weekend
partitions are both 0.1.

We conclude that the treatment assignment (service dog vs waitlist group) has no signifi-
cant impact on the odds of a participant being inside their homes. However, it is noteworthy
that the 95% credible interval does not cover the zero value for the baseline mean covariate.
This implies that participant behavior at baseline may have an association with their be-
havior at followup, i.e. the proportion of time participants spend being inside their homes

at baseline is associated with the odds being of being home at followup.

Table 1.3. Posterior Summaries of parameters for the custom 2 weekday and
1 weekend AR(k) setting.

Variable Posterior Mean | SD | 95% Lower CI | 95% Upper CI
Intercept 0.77 0.09 0.58 0.95
Treatment 0.08 0.14 -0.2 0.36
Age 0.10 0.05 -0.01 0.2
Baseline Mean -0.26 0.05 -0.37 -0.16
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1.6 Discussion

In applying the BGLAM model to the NIH service dog study, we conclude that there
is no significant association between being assigned a service dog and being outside of the
house at 3-months followup. Instead, there is a larger relationship between baseline and
follow-up at the individual level, such that participants who were more likely to be at home
at baseline were still more less to be at home at 3-months follow-up. Thus, there may be
robust individual differences in daily structures, routines, and propensity to leave the house
that are stronger than the measured treatment effect in this study.

However, these findings do not paint a holistic picture of how service dogs can affect
Veterans with PTSD. Despite prior literature suggesting that service dogs may aid Veterans
in leaving their homes [48]-[51], this may not be represented consistently enough in the
intervention for patterns to be detected. For example, this qualitatively reported effect
could be tied to significant confounders not included in the present quantitative analyses.
Additionally, the outcome survey is asking whether the Veteran was at home at only the
specific time of notification. Thus, it could be that the participants were out of the house
most of the time with the service dogs, but were home during the times they responded to
the survey question. Further, being outside of the home is but one of the many measures
clinicians use to assess the efficacy of a service dog in helping Veterans with PTSD.

Although an unstructured covariance assumption would be the most general one, this
study is limited in the number of subjects relative to the number of repeat measures. For
example, running GLIMMIX in SAS on a simulated AR(1) data with 28 repeat measures
and 100 subjects took around 15 hours that resulted in no convergence. Running GENMOD
procedure in SAS or the gee in R in would often return working correlation matrices that
were not positive definite.

We would like to note that this is a marginal model that is unable to capture other sources
of random variability, much like the GEE. A possible extension would be to augment the
current GLMM model on STAN and supply a custom prior. Alternatively, one could explore
the Polya-Gamma Random Variable [52] and include the priors for partial autocorrelations

introduced in this paper.
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One key feature of this BGLAM model is that it is a Bayesian model that can be used di-
rectly in causal models such as Principal Stratification [53] in longitudinal studies. Although
these causal models have been implemented as such in [54] and [55], a flexible autoregressive
model has never been used as of the submission of this paper. This would be especially useful
in assessing causality of drug interventions with non-compliance in longitudinal studies [56].

Further, we note that the BGLAM model is not limited to an AR(k) process. For
instance, a Toeplitz structure for the correlation matrix with varying bandwidths can be
used in place of the AR(k) structure. Users simply need to swap out the prior configuration
from an AR(k) process to sample from the posteriors of the Toeplitz entries of interest and
populate the correlation matrix R from Figure 1.3.

Another possible extension is to set a prior on the order k in the AR(k) structure and infer
it using a reversible-jump MCMC process [57]. This added feature would add significantly
to the already intricate BGLAM sampler and warrants a separate work on its own. This
possible extension is something we hope to investigate in the future.

In conclusion, the BGLAM is a Bayesian model that allows users to have varying nested
AR(k) structures in the same model with effects and correlations interpretable on the log

odds scale equipped with high power in longitudinal binary data.
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2. GLAMRE: A GENERAL LOGISTIC AUTOREGRESSIVE
MODEL WITH RANDOM EFFECTS FOR HETEROGENEOUS
CORRELATED BINARY OUTCOMES

2.1 Introduction

Prior to modelling clustered binary data or those with hierarchical groupings, researchers
will have to choose between a marginal or conditional model. Intuitively, marginal models
can be seen as drawing inference on the macro or population level while conditional models
do this on the micro level by incorporating local sources of variability. Marginal models in-
clude Generalized Estimating Equations [GEE; 5]-[8] and the Bayesian Multivariate Logistic
Regression [4]. On the other hand, conditional models comprise Generalized Linear Mixed
Models [GLMM; 9] and Bayesian Hierarchical Generalized Linear Models [33]. Having to
choose one over the other, however, is still an open discussion [58]-[61].

A key advantage of marginal models is that parameter estimation in these models are
less computationally demanding and more robust to model misspecifications relative to con-
ditional models [5], [59], [62]. In the case of GEE, should the within-cluster correlation
structure be misspecified, the marginal regression parameters will still be consistent, i.e.
the sampling distribution of the estimator becomes increasingly emphasized around the true
value [5], [63]. Unlike conditional models such as GLMMs, marginal models do not require
distributional assumptions about random effects. As such, a common critique of GLMMs is
their reliance on the normality of the random effects, rendering them more susceptible to vi-
olations of model assumptions. Although GLMMs are afforded more flexibility in modelling
heterogeneous sources of variability, fitting these models run the risk of being computation-
ally expensive. For instance, fitting a conditional model that incorporates spatial and/or
temporal associations [12], [61] can be computationally consuming and would likely require
a lot more data to be able to separately estimate these correlation structures. Further, users
will have to choose from a gamut of methods to fit the GLMM such as penalized quasilike-
lihood [PQL; 64], adaptive Gauss-Hermite quadrature [GHQ; 13], Laplace Approximation
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[23] or Bayesian approaches using Markov Chain Monte Carlo (MCMC) sampling procedures
[65].

Unlike the marginal approach, conditional models can offer more insight into the layered
sources of variability. In addition to being able to model complex layers of variability, a
key advantage of conditional models concerns model selection. Specifically, the existence
of a tractable true likelihood function. Although the Quasi-likelihood Information Criterion
[QIC; 66] was proposed as a model selection tool in GEE models, applications show that QIC
does not consistently select the correct model [67]. One could get MCMC approximates of
other fit statistics such as the Deviance Information Criterion [DIC; 35] in Bayesian marginal
models [4]. However, these can be computationally expensive. In addition, one can simulate
the population model to get marginal inferences from a conditional model, assuming the
distributions of the covariates are provided.

In this chapter, we will use the conditional approach to model the NITH Service Dog study
from Section 1.5.1 for the following reasons: firstly, treatment assignment in this study was
assigned by cohorts due to limited time and space. Therein lies a layer of random variability
from cohort. It would be unwise to ignore this source of variability at the risk of having an
inflated Type I error rates and biased parameter estimates. Secondly, since there are around
30 repeated measurements per subject in the collected data, using a marginal model that
can only facilitate a correlation matrix [4] might be too restrictive. To that end, we will
model the possible heterogeneity in the data over time by including a scale parameter for
the time covariance matrix.

Despite the utilities of a conditional approach, existing frequentist-based statistical pro-
grams are not as computationally efficient and lack flexibility in modelling nested AR(k)
processes. The GLIMMIX procedure in SAS®, which adopts a frequentist approach to mod-
elling GLMM, takes around 15 hours to finish running a Binary Repeated Measures Model on
a single simulated data set with 150 subjects and 2 predictors, each with 30 repeat measure-
ments that follow an AR(1) structure alongside a random intercept for 25 levels for cohort
using the Kenward-Roger adjustment. Its Bayesian analog, the BGLIMM procedure, can
run this model and converge under in 5 minutes on the same machine. This is still unsat-

isfactory since both GLIMMIX and BGLIMM only allow for a single AR(1) process in any
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single model, foregoing the capacity to uncover layers of layered autocorrelation, potentially
biasing estimates and inflating Type I error rates due to misspecifications. This is especially
relevant in studies with many repeat measurements where nested correlations are more likely
to manifest by virtue of having more data to glean autocorrelations from.

Further, it is not straightforward to sample from conjugate posteriors for binary data,
relative to normal data since the likelihood is not in a malleable form [68]. As such, pro-
cedures such as the Hamiltonian Monte Carlo [HMC; 69] or the Gammerman algorithm
[70] are used to derive the relevant posteriors in non-normal data. Both HMC and the
Gammerman algorithm are unique instances of the Metropolis algorithm [71]. The former
integrates Hamiltonian dynamics with gradient information and auxiliary mass functions to
sample from the joint posteriors, whereas the latter derives the proposal distribution from
one iteration of the Iterative Weighted Least Squares algorithm [IWL; 72| and generates
pseudo-responses using the transformation [73, p. 116] and proceeds iteratively from there
on. Although these procedures work in practice, they do not directly capitalize on the
conjugacy of the parameters as one would with conducive likelihoods.

The Polya-Gamma latent configuration [68] addresses the above concerns. This missing
data augmentation is trivial to construct and can accommodate fairly complicated models,
resulting in feasible computational run time. Integrating different hierarchical and nested
priors into a logistic conditional model is mathematically more convenient and direct. This
is because the Polya-Gamma scheme provides an exact alternative form to the binomial like-
lihoods that is more tractable and separable, allowing for easy derivation of joint posteriors
and making the most of potential conjugate structures. Although there are other missing-
data strategies for the logistic model [74]-[76], these involve data augmentation procedures
that are either approximate or fairly complicated as they involve multiple layers of latent
variables.

Some work has been done in extending the Polya-Gamma data augmentation to models
with an autoregressive structure. Pillow and Scott [77] used the Polya-Gamma in factor
analysis for negative-binomial spiking with a vector autoregressive structure for the latent
factors. Kook, Vaughn, DeMaster, et al. [78] who combined a Polya-Gamma latent con-

figuration with an autoregressive structure and Variational Inference. Although this model
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does have an autoregressive latent structure, it does not integrate random effects as per con-
ventional GLMM protocols. Further, the model does not allow for partial autocorrelations
(Section 1.3.1). Koki, Meligkotsidou, and Vrontos [79] modeled a time series data set using a
Polya-Gamma data-augmentation for an AR(k) process. This model is not applicable to our
data since the autoregressive structure in [79] manifests itself through the linear predictors,
whereas a repeated measures model uses a covariance structure to directly model this, while
controlling for predictors. Krisztin and Piribauer [80] extended the Polya-Gamma data aug-
mentation to a spatial AR(1) model. However, this model is lacking for our purposes in that
it does not allow for an AR(k) structure.

This work extends the Polya-Gamma latent configuration for modelling AR(k) temporal
structures of binary outcomes. This is done by placing an uninformative prior on the co-
variance structure that can specifically accommodate a flexible AR(k) process with added
heterogeneity and other random effects. As a result, we can model correlated binary out-
comes with large number of repeat measurements that may have nested AR(k) structures.
We refer to this new model as the General Logistic Autoregressive Model With Random
Effects (GLAMRE).

This chapter is organized as follows: Section 2.2 will provide formal notation and as-
sumptions on a GLMM for a binary repeat measurements model with random effects, a
review on the BGLIMM procedure in SAS® and the Polya-Gamma random variable. Section
2.3 will introduce our GLAMRE model, detailing the derivation of the Gibbs sampler and
Metropolis-Hastings algorithm for our procedure. Section 2.4 will compare our GLAMRE
model with PROC BGLIMM and PROC GLIMMIX for varying AR(k) settings. Section
2.5 will demonstrate the GLAMRE model on the National Institute of Health (NIH) study
from Section 1.5 that measures the effects of service dogs on the daily lives of post-9/11 mil-
itary Veterans diagnosed with post-traumatic stress disorder (PTSD). Finally, Section 2.6
will include concluding remarks on the GLAMRE model and possible extensions for future

research opportunities.
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2.2 Background

2.2.1 Notation

For subject i =1,...,I with j = 1,...n; repeat measurements and ¢ = 1,...C different
cohorts, the GLMM for a binary repeated measurements model with time and cohort random

effects is defined as

n =X, B+ Z ~; , where v; ~ N(0,G) (2.1)
nix1l  MXp pxl  nix(ni+C) (n+C)x1
with the accompanying link function ]E[Yi| B,'y] =p, =g (n) = ﬁ An alternative
representation of this would be
N = Xi B + ZiimeVtime,i T ZLcohort 17cohort (2.2)

nix1 niXp px1 nlxnlnm nixC

Here X is the design matrix for the fixed effects for subject i, where each column represents
a predictor, beginning with a column of 1’s for the intercept term. Z; is the design matrix for
the random effects for subject i. Specifically, Z . is an identity matrix of size n;, i.e. 1y, xn,
while Z onorti i @ n; X C' matrix that has a column of 1’s in the c-th column and 0 everywhere
else if subject i is from cohort ¢. The 8 matrix contains the fixed effects while the v matrix
contains the random effects. In a GLMM paradigm, the random effects -« is assumed to be
normally distributed with mean 0 and some covariance matrix G. For a comprehensive list
of possible covariance structures for G, readers can refer to the SAS® manual [14]. Finally,
the link function is the continuous ¢(.) function that connects our observed response to the

data.

2.2.2 Literature Review

PROC BGLIMM in SAS® is a simulation-based procedure that draws inference based
on the joint posterior distribution of parameters in a GLMM model. More informally, it
is the Bayesian version of PROC GLIMMIX. PROC BGLIMM uses the Gibbs sampler by

default to update conditional draws in which the fixed parameters are sampled jointly at
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each iteration. Contingent upon the user’s request, the random effects can be updated either
jointly or by clusters.

This procedure is equipped with the Hamiltonian Monte Carlo (HMC) sampler to draw
from the joint posteriors of the parameters. HMC is a specialized version of the Metropolis al-
gorithm that uses Hamiltonian dynamics supplemented with gradient information and auxil-
iary momentum variables to sample from the target distribution [69]. Specifically, HMC com-
bines the target distribution or posterior of the model parameters ©(0) with the auxiliary mo-
mentum variable r into the following potential energy function (@, r) x m(0) exp {—%rTr}.

The HMC then samples from the joint space of (8, r) by first sampling = from a standard
normal, then discarding the r draws and retaining the sampled € as samples from w(@). This
is achieved by moving along the gradient trajectory, typically using the leapfrog method with

tuning parameters step size € and L steps. This is repeated for L times. Finally, the proposed

values (6™, 7*) are accepted with probability min {1, n;?;::;) }

PROC BGLIMM has a built-in adaptive HMC which uses the No U-Turn Sampler [NUTS;
81] to automatically tune for € and L based on some supplied target acceptance probability
0. The NUTS algorithm does this by building a binary tree around leaf nodes that represent
the states of (6, 7). At each state, the tree branches left or right and takes 2 leapfrog steps
of size €, where j is the current height of the binary tree. This binary expansion continues
until a sampling particle makes a U-Turn and revisits a state it has once explored. This
is process is repeated until the € is tuned such that the acceptance rate in this branching

process is close to the supplied value 9.

A Polya-Gamma random variable X with parameters b > 0 and ¢ € R is defined as

p 1 & Ik iid
=53 Z T where g ~ Ga(b,1) (2.3)
S (k-3) i
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The advantage of the Polya-Gamma random variable is that the binomial likelihoods used
in logistic models can now be represented as mixtures of Gaussians with respect to a Polya-

Gamma distribution [68], i.e.

e?)® —wp?
(1(+()3¢)b _ 2—bek¢/eTp(w)dw (2.4)

where k = a — g and w ~ PG(b,0). Note that when ¢ = 273, the integrand on the right
is the kernel of a Gaussian likelihood in 8. This result yields a simple Gibbs strategy to
sampling the posteriors from binomial likelihoods: Gaussian draws for B alternated with

Polya-Gamma draws for the single layer of latent variables.

2.3 Methodology

2.3.1 Priors

We assume a normal prior for the fixed effects B such that 8 ~ N,(B8, Xp). Specifically,
we assume a flat prior for the fixed effects 8 using a Normal distribution with mean and
precision 0 [4].

For the k-partial autocorrelations p = (p1, ..., px) (Section 1.3.1), we assign a flat prior
over the k-cuboid parameter space: p ~ Uniformg(—1,1). Although this flat prior is conve-
nient, the parameter space is constrained on the (-1,1) space. This makes sampling from the
posterior of p inconvenient since the target distribution would have to be truncated based
on the prior boundary space. To circumvent this, we apply the Fisher transformation (or

atanh()) on the partial autocorrelations p [31]. As a result, we now have the following prior

pi = atanh(py) ~ logistic <u =0,5s= ;)

We assign an inverse gamma prior to both the variance from time and cohort with vy

for both the shape and scale parameters, i.e. o2 . ~ IG(vg,v9) and o2, . ~ IG(vg,vp).

We set vg = 1 to reflect a non-informative prior with conditional conjugacy [82]. The au-
toregressive structure manifests itself through the random effect ¥y, 1-€. Yiime: Pk Otime ~
Ny, (0,02,.G), where G = r(tanh(pj)). Here r(.) is the recurrence function that deploys the

i

partial autocorrelations into the correlation matrix from [30]. Similarly, the random effect

49



from cohort manifests itself through the variable Yeonort|03por ~ N (0,02 ,.). Finally, we
have the latent configuration from the Polya-Gamma random variable w;; ~ PG(n; = 1,0),
for binary outcomes.

To summarize, our sampler would be drawing from the posteriors of the parameters
0 at each iteration with p predictors (including intercept), k partial autocorrelations, 2

independent sources of variability from both time and cohort, /.J random effects from time,

C' cohort random effects as well as I.J Polya-Gamma latent variable.

2.3.2 Posterior

We will exploit the notation @ to conveniently represent the remaining parameters in a
joint posterior distribution. Following the prior configuration with the Polya-Gamma latent

setup, the posterior of the fixed effect is given by

B0,y ~ N, (1s. ) (2:5)

where 35 = (3, + £, XiTQiXi)_l and gy = 35 (3,70 + 2N, XTQil;). Additionally,

kig
? wig

li = (% - (ztime,lﬁ)’time,i + zCOhOYt,i’Ycohort)’ SR - (Ztime,nivtime,i + zCOhOYt,i’Ycohort))T and
Q; = diag(wiy, . . ., wiy).
Similarly, the posterior random effects from the random factor time that manifest from

2 . .
Ofime 1S given by

7time,i|97 yi ~ Nni (l‘l"ytime,iv E’Ytime,i) (26)

2 1 T -1 T 3
where E%ime,i = ((UtimeG) + Ztime,iQiZtimevo and I‘l”ycime,i = ZJ%ime,iZtime,iQili' Subse-
quently, I; = (o’% — (@118 + Zcohort.iYeohort) s - - - » ij — (@178 + ZeohortiVeonort)) - - The posterior

random effects from the random factor cohort that manifest from o2, is similarly given

by

7cohort|0’ Yy~ NC (ll’cohort’ 2COhOlft) (27)
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-1
_ 1 1 T _ I T y
where Z)cohort - ( 2 ILCXC + Zi:l Zcohort7jQiZcohort,i> and I'L’Ycohort - Ecohort Zi:l Zcohormgili'

9 cohort

) T
Additionally, & = (A — (@18 + ZumesVumes) - -+ 5 — (@B + Zumeas Vimes))

? wig

. . . 2 2 .
The posteriors for the variance from time o, . and the cohort o, .. are given by

IJ 200 + 2 VE G Y i

o2, 10,y ~ IG ((2 + UO) 2ot 2 e e ) (2.8)
C 2U + g; or conor

'ZYCO};ort 0’ Yy~ 1G <(2 -+ UO) ) el 2h Yeoh t) (29)

Based on Polson, Scott, and Windle [68], the posterior of the Polya-Gamma random

variable is
wij|9, Yy ~ PG(TLij = 17 3311;,8 + Z?;’Yl) (210)

The posterior of p* is given by

1 K o 1
Tc(/)Zle? y) X [H Nni (’Ytime,i'O’ O—tQimeG)‘| [H lOgIStIC <pk’:u - 07 §= 2)] (211)
i=1 k=1

G = r(tanh(p})),r(.) = recurrence relation from [30]

We will employ Metropolis-Hastings to sample from the posteriors of the p*, which are the

transformed partial autocorrelations, using the symmetric proposal Ny (pz(t) | pz(t_l), agropI K) :

2

Srop = 0.01 was selected since it

Through simulations and experiments, a proposal value of o
explored the partial autocorrelation space most effectively. The above Polya-Gamma sampler

is summarized in Figure 2.1. All derivations are provided in Section B.B.
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Figure 2.1. Summary of the GLAMRE procedure.

2.4 Simulation

2.4.1 AR(1) Simulation

In the AR(1) simulation study, we generated a total of 1000 data replicates for 150
subjects, each with 30 repeat measurements. There are 25 levels for cohort, with each cohort
having 6 subjects. Each simulated subject would have a continuous covariate sampled from
a standardized normal distribution. There are three estimable fixed effects (5o, Bict, £1),

where (3, is the intercept and f; is the fixed effect associated with the generated continuous

2

2 nort) and a scalar partial autocorrelation

covariate, two sources of random variability (o2, o
p. In applying an intention-to-treat analysis on the preliminary data, we fix (5o, 51) = (-2,
1.5), and the i parameter setting is chosen from (0,0.25,0.5). In addition, the random

sources of variability were set to o2, = (2, 20) and o2 = (0.5, 5) respectively. Finally, the

cohort —
partial autocorrelation for the AR(1) setting was set to (—0.7, —0.5,—0.3,0.3,0.5,0.7). We
compared the performance of our model against BGLIMM procedure in SAS® using HMC
with the NUTs configuration. The AR(1) simulation settings are summarized in Table 2.1.

We assess model performance using power through posterior predictive p-values [33] from
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Section 1.3.3, bias, coverage and standard error over the 1000 data replicates. Code for the

BGLIMM procedure is provided in Appendix B.C.

Table 2.1. Input parameters for AR(1) simulations with 150 subjects and 30
repeated measurements each.

ﬂtrt AR( 1) 0_t2ime Ugohort Method
0.7
0.5
0
0.3 2 0.5 | GLAMRE
0.25
-0.3 20 ) BGLIMM
0.5
-0.5
-0.7

GLAMRE has generally higher power and better treatment coverage than BGLIMM
(Figures B.1-B.4). Although BGLIMM does exhibit higher power in Figure B.2, this differ-
ence is somewhat small. Whereas we can see fairly clearly that GLAMRE has a distinctly
higher power in Figure B.3. The coverage for GLAMRE and BGLIMM hover around 0.95,
with the exception of when there is high variability in time and cohort (Figure B.4) wherein
we see the treatment coverage for BGLIMM dipping lower than 0.9. GLAMRE has lower
bias when variability due to time is higher but higher bias when variability due to both time
and cohort are lower (Figure B.1).

GLAMRE has generally better coverage and lower bias than BGLIMM for the PARs (Fig-
ures B.5-B.8). Although GLAMRE has a larger bias and standard error in recovering o2 .
and o2, ., these inflated values compensate for its high coverage. In comparison, BGLIMM
has much lower coverage for both sources of variability when o2 . = 20 and o2, ,, = 5 (Fig-

ures B.9-B.16). Since GLAMRE captures the variability better, this translates to a higher

standard error in the treatment posteriors.
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2.4.2 AR(2) Simulation

The AR(2) study has similar settings in the AR(1) study, just that now the AR(2) pa-
rameters are set to 8 different settings: (—0.7,—0.5), (—0.7,0.5), (0.7, —0.5), (0.7,0.5),
(—0.5,-0.3), (—0.5,0.3), (0.5, —0.3), (0.5,0.3). As before, model performances are evalu-
ated based on power, bias, coverage and standard error. We compare the performances
of GLAMRE with AR(1), AR(2), and AR(3) settings with BGLIMM which is limited to an
AR(1) setting. Model fit will be assessed using the Deviance Information Criterion (DIC)
and further supplemented by the 95% credible intervals for the PAR posteriors. Simulation
settings for the AR(2) study is summarized in Table 2.2.

Table 2.2. Input parameters for AR(2) simulations with 150 subjects and 30
repeated measurements each.

Bur | AR(2) | Ofme | Tionort Method
(-0.7, -0.5)
(-0.7, 0.5)
(0.7, -0.5) GLAMRE AR(1)
025 0.7,05) | 2 | 05 | GLAMRE AR(2)
(-0.5,-0.3) | 20 5 | GLAMRE AR(3)
0 (-0.5, 0.3) BGLIMM
(0.5, -0.3)
(0.5, 0.3)

Similar to the results from the AR(1) study, the correctly specified GLAMRE-AR(2)
has better, if not similar power than the rest (Figures B.17-B.20). As we expect, treatment
estimates from the incorrectly specified GLAMRE-AR(1) is overly biased and suffers from
undercoverage. This is especially prominent when time and cohort have high values of
variability (Figure B.20). Similarly, BGLIMM has coverage that dips lower than 0.9 when
there is higher variability associated with time (Figures B.19 and B.20).

For the random effects, we can see that the GLAMRE-AR(2) does a good job of recover-
ing the true PARs (Figure B.21-B.24). In addition, we note that although GLAMRE-AR(3)
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is a misspecified model, the last PAR posterior is often close to zero, yielding a marginal
correlation that is effectively an AR(2) structure. Similarly, GLAMRE-AR(2) has consis-
tently low bias and better coverage than all the rest, albeit a slightly higher SE relative to
the misspecified GLAMRE-AR(1).

The most appropriate model is selected using the a combination of the DIC fit measure
and the CI of the last PAR of the relevant model. From Figure 2.2, we can see that the
GLAMRE-AR(2) model is selected correctly when AR(2) = {(-0.7, 0.5), (0.7, 0.7), (-0.5, -
.3), (0.5, 0.3)}, while GLAMRE-AR(1) has the lowest DIC measure for the remaining AR(2)
settings. One reason for this incorrect model selection is that the corresponding standard
errors for (B, OZne Tonore) are consistently inflated over all simulation settings relative to
the other models (Figure B.17-B.32). In addition, we have the Cls for the last PARs of
the corresponding AR(k) setting in our toolkit to supplement model selection. In all AR(2)
simulation settings, 0 is consistently not in the 95% CI of the PAR (Figure B.21-B.24, top
row). Subsequently, 95% CI for the last PAR of AR(3) would often cover 0 (Figure B.21-
B.24, bottom row). Favoring parsimony, the AR(2) would be selected. Further, we have
seen that choosing between AR(2) and AR(3) is less detrimental to model performance than
having to choose between AR(1) and AR(2).
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Figure 2.2. Plots of DIC measures with their accompanying standard errors
over 1000 data replicates when By, = 0 with varying o2, and o .. Results
are the same for other Sy values. While the DIC does select the correct model
at times (solid black), it occasionally favors the simple AR(1) model. This
can be attributed to inflated standard errors in the estimation of the other
parameters in the corresponding model.

PAR=(-0.7,-0.5) | | PAR=(~0.7,0.5) PAR=(0.7,-0.5) PAR=(0.7,0.5) PAR=(-0.5,-0.3) | | PAR=(-0.5,0.3) PAR=(0.5,-0.3) PAR=(0.5,0.3)
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2.5 Application: PTSD Clinical Trial

2.5.1 Description Of Study

We demonstrate an application of the GLAMRE methodology on an NIH-funded clin-
ical trial (#NCT03245814) conducted by Dr. Marguerite O’Haire on the effectiveness of
service dogs for United States military Veterans diagnosed with post traumatic stress disor-
der (PTSD) (Section 1.5.1). The data comprises 142 Veterans, each with approximately 28
repeated measurements during the follow-up period.

The goal in analyzing this repeated measures study is to determine the effects of a service
dog on the probability that a Veteran is around other people, while accounting for baseline
covariates and time dependencies. Vincent, Auger, Lavoie, et al. [41] and Crowe, Sanchez,
Howard, et al. [42] have suggested that pairing a Veteran with a service dog for PTSD
would encourage and enable the Veteran to be more involved in their communities and more
prone to engage with others. However, the bulk of these results are qualitative in nature.
This present NIH study and GLAMRE model add to the current literature by quantitatively
analyzing the odds of a Veteran being around other people with the service dog in comparison
to a waitlist control group. Results from this analysis can help mental health practitioners
and service dog providers by providing additional insight into interventions involving service
dogs.

A reasonable covariance structure in this context would use the AR(k) process scaled
by some constant o2 ., which has the correlation in the outcomes between any two points
diminishing as a function of their difference in discrete time. In specifying the AR process,
we note as the data are collected twice daily, a subject may be less likely to be surrounded by
other people with their service dog had they done so the preceding the current time point,

but more likely to do so immediately after the current time point.

2.5.2 Model

The outcome is a dichotomous 0-1 variable: the outcome is 1 if the Veteran responded yes

to being with children, other family members, friends, acquaintances, coworkers, strangers,
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spouse or significant other and 0 otherwise. We are modelling the odds of the Veteran being
around other people. Three predictors are used in our model: treatment assignment (service
dog versus waitlist group), age of Veterans and the proportion of time the Veterans were
with other people at baseline. Age was included as a demographic variable that may related
to Veterans being around other people.

There are two separate components that go into the correlation structure of our model:
the vector of partial autocorrelations peexday that govern the AR(k) structure for weekday,
defined as Monday through Thursday, and the vector of partial autocorrelations pceend
that govern the AR(k) structure for weekend, defined as Friday through Sunday. This
specification is motivated by the weekend effect, which suggests that human behavior is
rhythmic and cycles between weekdays and weekends [43]-[46]. To supplement this, we
follow the partition of weekends and weekends from Ryan, Bernstein, and Brown [47] that
clusters Friday evening through Sunday morning as weekends and Monday through Thursday
as Weekdays. We extend this definition of weekend to include Friday morning and Sunday
evening since the original weekend partition definition would greatly limit the number of
observations to compute the AR(k) structures.

We run the GLAMRE model on three different AR(k) settings for 10000 iterations with
a burn-in of 5000: (1) AR(1) for both weekday and weekend, (2) AR(2) for both weekday
and weekend and (3) AR(3) for both weekday and weekend.

2.5.3 Results

Table 2.3 summarizes the DIC as well as the treatment posterior summaries for the
different AR(k) settings for GLAMRE and AR(1) BGLIMM. GLAMRE with an AR(2)
setting for the weekday and weekend partitions were selected using DIC as a the measure.
The sensitivity analysis shows the PPP and treatment posterior mean stays stable across the
varying AR(k) settings for GLAMRE and BGLIMM. Table B.1 contains a comprehensive
list of all random and fixed effects for all the models.

Table 2.4 summarizes the posterior summaries of all the fixed effects in the AR(2) model

that was selected. We conclude that although treatment assignment has a positive impact
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on the odds of a Veteran being around other people, it is not significant at a = 0.05. It
is noteworthy that the 95% credible interval for the baseline mean predictor does not cover
the zero value. This implies that subject behavior at baseline may have an association with
their behavior at followup, i.e. the proportion of time Veterans are around other people at

baseline is associated with the odds of them being around people at followup.

Table 2.3. Posterior summaries of treatment effect with varying AR(k) set-
tings for GLAMRE and AR(1) for BGLIMM, with standard deviations within
the parentheses. The AR(k) setting for GLAMRE was chosen based on DIC.
Treatment effect remains insignificant throughout all settings at a=0.05.

Treatment
Method | AR(k) | DIC 95% Lower CI | 95% Upper CI | PPP
Posterior Mean
1 4048 0.19 (0.19) -0.17 0.57 0.8
GLAMRE 2 3755 0.13 (0.28) -0.43 0.64 0.81
3 4058 0.14 (0.20) -0.22 0.55 0.75
BGLIMM 1 4003 0.09 (0.24) -0.33 0.61 0.81

Table 2.4. Posterior Summaries of parameters for the AR(2) setting for both
weekdays and weekends.

Variable Posterior Mean | 95% Lower CI | 95% Upper CI
Intercept 0.62 (0.24) 0.19 1.13
Treatment 0.13 (0.28) -0.43 0.64
Age 0.001 (0.09) -0.17 0.16
Baseline Mean 1.54 (0.28) 1.14 2.24

2.6 Discussion

In applying the GLAMRE model to the NIH study, we conclude that although there is
a positive association between being assigned a service dog and being around other people
at the 3-months followup period, this effect is not significant. Rather, there is a larger

association between behavior at baseline and follow-up on the participant level, such that
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Veterans who were more likely to be around people were more likely to do so at 3-months
follow-up. This suggests that there may be robust individual differences in daily routines
and propensity to be around other people that are stronger than otherwise measured in this
study.

Regardless, these findings do not paint a comprehensive picture of how service dogs can
affect Veterans with PTSD. Although prior studies suggest that service dogs may assist
Veterans in being more involved with their communities and being more comfortable being
in public settings with other people [48]-[51], this may not have been represented consis-
tently enough in this NIH study for the signal to be detected. Specifically, this qualitatively
reported effect could be entangled with significant confounders not recorded in this quan-
titative analysis. Further, the outcome survey is inquiring whether the Veteran was with
other people at the specific time. It could be that the Veteran was with other people during
other times of the day, but was alone during the times they responded to the questionnaire.
In addition, being with other people is not the end all be all measure that fully defines the
efficacy of a service dog in helping Veterans with PTSD.

Although assuming a unstructured covariance matrix would have been a more general
assumption than an AR(k) process, the number of repeat measures in this study warrants a
longer than average computational power. For example, running the GLIMMIX procedure
in SAS® on a single simulated data from Section 2.4 did not converge even after 15 hours of
runtime.

A key feature of the GLAMRE model is that it is a Bayesian Model that can used
directly in causal models such as Principal Stratification [53] to infer conditional causal
effects in longitudinal studies. Although Frangakis, Brookmeyer, Varadhan, et al. [54] and
Wang, Jo, and Hendricks Brown [55] have implemented these causal models for longitudinal
studies, a flexible and nested autoregressive structure has never been used with random
effects and heterogeneity in the correlation matrix, as of the submission of this paper. This
would be fairly useful in disentangling causality in drug interventions with non-compliance
in longitudinal studies [56].

In conclusion, the GLAMRE is a Bayesian Model that allows users to have varying and

heterogeneous nested AR(k) structures in the same model with random effects, all inter-
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pretable on the log odds scale equipped with high power for binary outcomes in longitudinal

studies.
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3. CITIES: CLINICAL TRIALS WITH INTERCURRENT EVENTS
SIMULATOR

3.1 Introduction

Randomized controlled clinical trials (RCTs) begin their lives as designed experiments that
control for baseline covariates to assess the effect of a treatment or intervention [83]. Throughout
the course of the trial, patients may inevitably discontinue their randomized assigned treatment
due to lack of efficacy (LOE), excess efficacy (EE), adverse effects (AE) or administrative reasons
[84]. These disruptions to the planned clinical trial protocol can muddle or confound the true
treatment response of both experimental and control treatments being studied [85]. In the lan-
guage of the recent International Council of Harmonization (ICH) Guidelines on this matter [86],
such disruptions are labelled intercurrent events (ICEs). The focus of this work is on modelling
and simulating clinical trials that incorporate realistic scenarios for the discontinuation of study
treatments in randomized, controlled clinical trials. This is a very pervasive and important prob-
lem in pharmaceutical drug development and indeed in academic and governmental funded clinical
trials as well.

More formally, ICEs are “events that occur after treatment initiation that affect either the in-
terpretation or the existence of the measurements associated with the clinical question of interest”.
For instance, terminal events such as death can be seen as an extreme AE [87] that would affect
the existence rather than missingness of a measurement. Clinical events can also be attributed
to ICEs: subjects who experience excessive reduction in their Haemoglobin Alc (HblAc) levels
from a diabetes medication may form a sub-population that is distinct from the target popula-
tion of interest, i.e. those who experience hypoglycemia versus those who were able to adhere
to their treatment protocol. These effects are especially amplified in clinical trials with repeat
measurements, since there are more chances of ICEs to happen. Simulated clinical trials should
also capture this reality to reflect a more holistic setting.

Discontinuation in clinical trials and other ICEs bring into question the validity and utility of
traditional methods such as intent-to-treat (ITT) into question, where analysis is carried out based
on the planned treatment regimen. Consider a trial with two treatment arms. As is common in
clinical trials, some patients may discontinue treatment due to adverse reactions to the assigned

treatment, some may have lost interest in participation and others may have simply moved to
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a new location and are no longer accessible. A conventional model such as I'TT would proceed
with analysis based on their treatment assignment, disregarding their adherence. This effect is
misleading since it does not incorporate how safe the treatment is. Methods that use causal
inference have been suggested as a viable path forward to asses the direct treatment effect, without
being confounded by the ICEs [88].

Simulators function by generating some reality of ICEs based on the supplied input parameters
from the users without users having to know the inner workings of the algorithm. As a conse-
quence, simulators are often viewed as black boxes. Although there are comprehensive softwares
such as Facts®, Certara® and Cytel® to simulate clinical trials, these industry products are fairly
expensive. Those in academic institutions with limited funding will have to either depend on statis-
tical packages that are free or code the simulators from the ground up. Regardless, these software
packages contribute to the perception of a black box simulator, which are not helpful in facilitating
meaningful statistical discussions between statisticians, clinicians and medical providers.

Although there are many clinical trials simulators, they do not incorporate ICEs in a causal
setting and often warrant prior programming literacy. Sofrygin, Laan, and Neugebauer [89] de-
veloped the simcausal R package for specification and simulation of complex longitudinal data
structures using Non-Parametric Structural Equations Model (NPSEM) that can be represented
using Directed Acyclic Graphs (DAG) [90]. This package allows for correlation that can be inte-
grated using copulas with provided example with syntax that is systematically clean and causal
graphs are outputted directly. Unfortunately, the package does not allow users to directly in-
corporate functions of discontinuation form varying sources of ICEs. Paux and Dmitrieniko [91]
developed the mediana R package is a framework for simulating, modelling and evaluating clinical
trials with multiple endpoints based on the Clinical Scenario Evaluation (CSE) approach from
Benda, Branson, Maurer, et al. [92] and further refined in Friede, Nicholas, Stallard, et al. [93].
This software package allows users to simulate data from a wealth of distributions such as negative
binomial and truncated distributions. However, as before, this package does not provide the flex-
ibility to integrate different functions of discontinuation form varying sources. Further, required
programming literacy in using these softwares impedes usage from non-programmers such as med-
ical professional and providers who interact directly with patients, further wedging the disconnect

between statisticians and clinicians.
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Due to the nature of the pharmaceutical industry, clinical trials data are not easily shareable.
This means that novel causal models that have been developed by different companies on their own
clinical trials may not be as readily testable on other clinical trials from different companies. This
will impede the development of causal models in the pharmaceutical industry, since publications
will include only summary information and performance metrics of their models on their own
clinical trials that cannot be easily shared with others.

We address the issues highlighted using the Clinical Trials with Intercurrent Events Simulator
(CITIES): an Rshiny app written in R for simulating clinical trials with multiple endpoints using
the potential outcomes [94]. Although there are several Rshiny apps available for simulating
clinical trials [95]-[98], none have been used in simulating potential outcomes and summarizing
causal effects in presence of ICEs. The CITIES can incorporate varying sources of discontinuation
with varying functional behavior cleanly and directly with graphical representation, demystifying
the notion of a black box simulator. Further, users can interact dynamically with the simulator
without having to know how to code in R, which makes for a convenient tool for discussing causality
in clinical trials. In addition, by having a transparent and intuitive simulator using potential
outcomes, researchers are now afforded a simulator that can be used to compare performances of
different causal models. Users can also mimic and get quick causal assessments of real clinical
trials from publications without having access to the raw data.

CITIES can be seen as a direct application of potential outcomes using the tripartite framework
[88], which forms the genesis of this work. In trying to disentangle the pure causal effects of a
treatment intervention in presence of ICEs, [88] proposed the tripartite approach - three estimands
("what is to be estimated’) that are relevant and meaningful not only to patients, prescribers
and payers, but also sponsors and regulators. These tripartite estimands are: (1) probability of
discontinuation due to AE, (2) probability of discontinuation due to LOE, and (3) treatment effect
in patients who can adhere to the investigational treatment.

We begin by outlining how the potential outcomes are generated, how the varying sources of
discontinuation are integrated, and how the causal effects are calculated with the accompanying
percentage discontinuation summary in Section 3.2. This is followed by a demonstration of an
application of CITIES on two clinical trials in Section 3.3. Finally, concluding remarks on clinical

trials simulators with ICE and potential extensions will be provided in Section 3.4.
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3.2 Implementation

CITIES is a web application written in Rshiny that can be run from any web browser. The
application requires a few manual inputs that are visualized in adjacent panels. CITIES allows for
simulation input parameters to be bookmarked and saved for online exploration and sharing. All
visuals are updated synchronously and can be interacted with dynamically by hovering the mouse
over the visuals. There are four tabs to CITIES that users will navigate through: The Mean
Settings tab, the LOE & EE tab, the AE tab and the causal effects tab. To save generated data

sets, users will run the Rscript which will save the simulated clinical trials on the local machine.

3.2.1 Mean Settings

Define y;;; to be the potential outcome for subject i =1,...,I at time j = 1,...J on treatment
arm t = 0 for control and 1 for test. Assume 7;0; to be the baseline measurement taken at time
t = 0 that has the same response distribution across all treatment arms before the treatment is
assigned. The potential outcomes have a joint Multivariate Normal distribution with mean p and

variance 3, where X follows an autoregressive(k) structure scaled by parameter o2.

Yiot ~ N |p= Hiot Cn= X1 Y12 (3‘1>
Uit fbs Y1 Yoo
T T
where y,, = (yilt yth> My = (Milt Mth) and ¥ = 02 x AR(k), k=1,...,J —1.

Conditional on the baseline measurement y;p;, CITIES will generate the potential outcomes for

each subject across both treatment arms

(Qit|y10t = y> ~ N [ﬂqt SED DI VITTED VSIS D I BT

CITIES will then generate trials based on the requested number of data sets, number of subjects
per arm, the means for the corresponding treatment arms, the associated scale parameter for the
covariance structure and the AR(k) value. We populate the correlation matrix from a vector of
partial autocorrelations using the recursive relation from [30]. The adjacent panel on the tab will

visualize the mean plots with their accompanying standard errors for both treatment arms. For
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dichotomous outcomes, users can specify the threshold value such that values greater than the
threshold will be 1 and 0 otherwise, corresponding to a ”clinical failure” or a "clinical success”.

Figure 3.1 shows the mean settings tab for CITIES.

Data Generating Model Mean Settings LOE&EE  Admin & AE Causal Effects

Mean Plots
Number of Datasets treatment
50 S 4-
I control
Subjects per Arm test
400 3-
Test-Arm Mean (comma delimited) §
S
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«
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delimited) 1-
0,0.5,1,1.5
Threshold (leave empty if not 0-
binary) 0 1 2 3

Time

Stdev

2

AR(k) value (comma delimited)

0.5

Figure 3.1. Mean Settings Tab for CITIES

3.2.2 LOE & EE: Lack Of Efficacy & Excess Efficacy Curves

Probability of discontinuing due to LOE & EE are defined as piecewise linear functions that
plateau beyond some specified thresholds. Define Pr(DC | LOE) to be the probability of discontin-
uing due to LOE, pioe max to be the ceiling value of discontinuing due to LOE, d to be the difference
between the potential outcome and the corresponding baseline measurement, 1,1, to be the lower

threshold and yu 0e to be the upper threshold. Then

Ploe,max d S YL, loe
PI‘(DC | LOE) = floe(d) = mloed + bloe YL, loe <d S YU loe (32)
0 d > YU loe
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where Dloe,max < [0’ 1]7m106 = yg_lpl% and bloe =0- MioeYU loe- Slmllarl}I7 define PI‘(DC | EE)
to be the probability of discontinuing due to EE, peemax to be the ceiling value of discontinuing
due to EE, d to be the difference between the potential outcome and the corresponding baseline

measurement, yr, .. to be the lower threshold and yy e to be the upper threshold. Then

0 d S YL ,ce
PI‘(DC | EE) - fee(d> = Y Meed + bee YLee < d < YU jee (33>
pee,max d > yU,ee

where pee max € [0, 1], Mee = % and bee = 0 — Meeyr, ee. On the LOE & EE tab, users
will first specify if higher values are better or not. In diabetes, lower blood glucose is a desirable
outcome and is often measured by reductions in glycated hemoglobin or HbAlc [99]. Conversely,
in Alzheimer’s Disease trials, there are cognition rating scales used to measure the patient’s disease
status, and higher cognition scores are of interest [100]. Contingent on that, the LOE and EE will
reflect this dynamically, since Pr(DC | LOE) will be a decreasing function while and Pr(DC | EE)

will be an increasing function when higher values are better and vice-versa. Figure 3.2 shows the

LOE & EE tab for CITIES.
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Figure 3.2. LOE & EE Tab for CITIES simulator
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3.2.3 AE & Admin: Adverse Events & Administrative Curves

The discontinuation due to AE behavior is modelled as an increasing linear function which starts
at the origin and extends to the Cartesian point of the maximum probability of an AE occurring
on treatment arm ¢ at the final time point J: (J, Pae, max.¢). The probability of experiencing an AE
on each study treatment is often summarized in some way when reporting the results of a clinical
trial.

Not all patients who experience an AE discontinue their randomized study treatment. Thus,
the model should incorporate not only the probability of experiencing an adverse event, but the
conditional probability of discontinuing study treatment given that the patient experiences an AE.
Since patient behavior and responses may differ across the treatment arms, the simulator allows
for different different discontinuation probability given an AE for test and control. The joint
probability of discontinuing and occurrence of an AE on the treatment arm ¢ is the product of the
probability of discontinuing due to an AE on arm ¢ and the probability of an occurrence of an AE
on the corresponding treatment arm, i.e. Pr(DC, AE | t) = Pr(DC | AE, t) x Pr(AE | t).

Patients may also discontinue due to administrative reasons. These are reason not related to
study treatment such as (a) personal events that preclude further participation in a clinical trial
(e.g. moving to a new location, pregnancy, change in marital status) or (b) patients voluntary
unwillingness to continue to participate in frequent doctor visits or other burdens related to onerous
clinical evaluations of the patient. As such the probability of discontinuation generally increases
with the duration of the trial — at the beginning of the study or for shorter duration trials,
few such administrative discontinuations occurs, but with studies lasting years in some cases,
such discontinuations become more frequent with time. The probability of discontinuing due to
administrative reasons is described using a linear function of time from the origin to the maximum
probability of discontinuing due to administrative reasons at the final time point.

On the Admin & AE tab, users will specify the maximum probabilities of an AE occurring as
well as the probability of discontinuing if an adverse event occur on both arms. In addition, users
will also have to specify the maximum probability of discontinuing due to administrative reasons.

Figure 3.3 shows the AE tab for CITIES.
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Figure 3.3. AE Tab for CITIES

Incorporating all individual components, CITIES proceeds by first generating all potential
outcomes y;;; based on user specifications on both the test and control arms, conditional on the
baseline measurement. Subsequently, probability of discontinuations are generated due to ICEs
(AE, LOE, EE, Admin). Discontinuations are then induced in the generated potential outcomes,
yielding the true data. Finally, each subject is randomized to either the test or control arm to get

realized outcomes or what one would actually observe in a clinical trial.

3.2.4 Causal Effect

We follow the definition of an estimand on the treatment effect from E9(R1) Statistical Prin-
ciples for Clinical Trials: Addendum: Estimands and Sensitivity Analysis in Clinical Trials [86],
which is “estimated by comparing the outcomes in a group of subjects on the treatment to those
in a similar group of subjects on the control”. The natural causal estimand here would be com-
paring outcomes across treatment arms for those who are able to adhere to their treatment as-
signment, i.e. adhere average causal effect (AdACE). Following the notation of Qu, Luo, and

Ruberg [87], define A(t) = I{adhered to treatment ¢}, where /{.} is an indicator function. Then
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Syt = {A(0) = A(1) = 1} or ’Adhere_both’ is the stratum comprising those who were able to
adhere completely to their treatment assignments on both treatment arms and S or 'No.dc’ is
the hypothetical stratum where all subjects adhered to their treatment assignments and never
discontinued on both arms. With Y being the potential outcome, the corresponding AdACE for

these two strata at time j are defined as follows:

ACE(S++); = Bi[Y[t = 1,54 ] - E[Y[|t = 0,5+] (3.4)
ACE(S)j =E[Y|t = 1,5 —E[Y|t =0, 9] (3.5)

On the causal effects tab, the ACEs are visualized at each time point for the two different strata
with their corresponding standard errors averaged over the data replicates. Users can also book-
mark the simulation input parameters to be used in a later time. Once the Submit action button
is clicked, a progress bar on the bottom right of the window will show at what iteration is the

simulator at. Figure 3.4 shows the ACEs on the causal effects tab for CITIES.

Data Generating Model = Mean Settings ~ LOE&EE ~ Admin & AE | Causal Effects

& Bookmark... Submit Clear

Average Causal Effect
status

2.5-
mem Adhere_both

No_DC
2.0-

Response
-
in

-
o
T

0.5-

1.0 1.5 2.0 2.5 3.0
Time

Figure 3.4. Average causal effect for CITIES

The final visual in CITIES summarizes the percentage discontinuation at each time point and
their corresponding reasons, reflected in figure 3.5. This is especially useful when trying to mimic

real clinical trials without having access to the real data.
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Figure 3.5. Percentage missing of data for CITIES
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3.3 Real Data Example

3.3.1 Canagliflozin

We will demonstrate CITIES on a canagliflozin monotherapy clinical trial [101]. Canagliflozin
is a sodium glucose co-transporter 2-inhibitor that was developed for type 2 diabetes mellitus
(T2DM). In this 26-week randomized, double-blinded, placebo-controlled phase 3 trial, each of the
584 subjects received either canaglifiozin 100 mg, 300 mg or placebo once daily. In this simulation,
we compared the 100mg dose and placebo. The primary endpoint was the change from baseline
in haemoglobin Alc (HbAlc) at week 26. Input parameters for mean settings tab in CITIES in
Figure 3.6 were chosen based on the raw means and standard errors of the response from Graph
B in Figure 2 of the study. Both the LOE & EE (Figure 3.7) and Admin & AE (Figure 3.8) tabs
were populated based on the study flow diagram or Figure 1 from Stenlof, Cefalu, Kim, et al. [101].
Further, we checked the percentage discontinuation from our simulated data (Figure 3.10) against
Figure 1 from the same study to validate how reasonable our input parameter settings were.

The estimated primary endpoint ACE using CITIES for the canagliflozin 100mg relative to
the placebo is -0.703 for the S, stratum (Table 3.1). This is slightly less in magnitude then the
estimated treatment effect from the study of -0.77 in Graph A from Figure 2 , where analysis was
focused on the modified intent-to-treat (mITT) population comprising all randomized subjects
who had received at least 1 dose of the study and The Last Observation Carried Forward (LOCF)

procedure was used to impute missing data. The trends of the secondary endpoints in Figure
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3.9 runs in tandem with the mITT population from the original study. The estimated treatment
effect is quite close to the primary endpoint ACE for the S stratum that assumed no participant
discontinued. We can see that the CITTES mimics the real data easily and can be used to simulate
clinical trials to test estimands and estimators more effectively since we know the true AdACE in

the presence of ICEs.
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Figure 3.6. CITIES mean settings tab for canagliflozin
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Figure 3.7. CITIES LOE & EE tab for canagliflozin
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Figure 3.8. CITIES Admin & AE tab for canagliflozin
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Figure 3.9. Average causal effect for canagliflozin
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Figure 3.10. Percentage missing simulated data for canagliflozin study
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Table 3.1. Average Causal Effect for canagliflozin for each time point using CITIES.
The highlighted rows are the ACEs for the primary endpoints.

Stratum | Time ACE
Sty 4 1 -0.703 (0.076)
S 4 | -0.777 (0.056)
Sty 3 1-0.685 (0.074)
S 3 | -0.767 (0.055)
Siy 2 -0.647 (0.071)
S 2 -0.725 (0.053)
Sty 1 -0.501 (0.062)
S 1 -0.55 (0.045)

3.3.2 Donanemab

Another application of CITIES is on the donanemab trial in early Alzheimer’s diseases [102].
Donanemab is an antibody that targets a modified form of AS deposits, a peptide that has been
suggested to grow in correlation to the progression of Alzheimer’s disease. In this phase 2 trial, 257
patients were enrolled with 131 assigned to receive the active treatment and the remaining 126 were
assigned to the placebo group. Donanemab was administered intravenously according to a carefully
designed titration scheme: 700 mg for the first three doses and 1400 mg beyond that. All patients
had early symptomatic Alzheimer’s disease who had amyloid and tau deposits on their Positron-
Emission Tomography (PET). The primary endpoint was the change in Integrated Alzheimer’s
Disease Rating Scale (1IADRS; score that ranges from 0 to 144 with lower scores indicating greater
functional and cognitive impairment) from baseline. The mean settings tab for CITIES (Figure
3.11) was populated based on Graph A in Figure and that the baseline measurement for all
patients on both arms was 106. The LOE & EE and Admin & AE tabs in Figures 3.12 and 3.13
respectively were populated based on Table 2 from the original publication. As before, we checked
the percentage discontinuation from our simulated data (Figure 3.15) against Table 2 from the
same study to see how well our proportions of missingness match up with the original study.

The estimated primary endpoint ACE using CITIES for donanemab relative to the placebo is
3.859 for the S, stratum (Table 3.2). This is larger in magnitude then the estimated treatment
effect of 3.2 from the study in Graph A from Figure 2, where analysis was focused on the mITT
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population comprising all randomized subjects who had received at least 1 dose of the study and
a Mixed Model for Repeated Measures (MMRM) was used to estimate the Least-Square Means,
while controlling for fixed effects listed in the study. Time was treated as a discrete variable and
incorporated into the random effects of the MMRM using an unstructured covariance structure.
Here we see that CITIES provides an interactive and transparent platform where users can simulate

clinical trials to test estimands and estimators based on real clinical trials.
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Figure 3.11. CITIES mean settings tab for donanomeb
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Figure 3.12. CITIES LOE & EE tab for donanomeb
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Figure 3.13. CITIES Admin & AE tab for donanomeb
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Figure 3.14. Average causal effect for donanomeb
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Figure 3.15. Percentage missing simulated data for donanomeb study
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Table 3.2. Average Causal Effect for donanomeb for each time point using CITIES.
The highlighted rows are the ACEs for the primary endpoints.

Stratum | Time ACE
Sty 6 3.859 (1.277)
S 6 3.949 (0.876)
Sty 5 3.86 (1.265)
S 5 4.035 (0.87)
Sy 4 | 3.82(1.268)
S 4 3.875 (0.875)
Siy 3 1.886 (1.263)
S 3 1.952 (0.87)
Siy 2 1.046 (0.848)
S 2 | 1.065 (1.236)
S.y 1 | 0.991 (1.106)
S 1 1.01 (0.756)

3.4 Discussion

We have created CITIES that has three major advantages over any existing clinical trial simu-
lation engines: (1) it generates efficacy data in the potential outcomes framework consistent with
the ICH E9(R1) definition of a treatment effect; (2) it also generates potential outcomes for adverse
events; and (3) it incorporates a set of realistic study treatment discontinuation models for the
primary reasons for treatment discontinuation seen in real clinical trials. It is the combination of
the three unique elements that we believe can better serve to generate simulated clinical trial data
sets for the purpose of developing, implementing and comparing different statistical estimation
methods for different estimands of interest. We are continuing to work on this model and refine it
with the intent to capture additional complexity of clinical trials while maintaining a parsimonious
model with a modest number of parameter inputs for the user.

A possible extension to the current simulator would be to include covariates in the means of
the distributions and in inducing discontinuation in the data. For example, older patients may
have a higher probability of discontinuing, or patients with worse baseline severity might have a

lower probability of discontinuing (i.e., more severe patients might be more keen to get relief and
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therefore stay in the trial longer). This facet was not included in the current simulator since unlike
ICEs, there are infinite ways in which baseline covariates affect patient behaviour as well as the
number of such baseline covariates could be involved (e.g., is there any influence of being both old
and very sick?). Such added complexity to the model must be balanced with keeping CITIES easy
to use.

The CITIES simulator is a convenient web application that can generate data using potential
outcomes in the tripartite framework and provide causal estimates while providing an intuitive
mechanism to generate discontinuation using ICEs. As is true with all fields of science, communi-
cating ideas and sharing information embodied in a model can be challenging. The CITIES allows

users to share and present information dynamically with ease and transparency.
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4. CONCLUDING REMARKS

Current clinical trials involve novel measures of disease progression that are complicated and often
not continuous in nature, such as the ones we have considered in this study where the outcomes are
binary. The task of modelling these outcomes are further burdened with intricate serial correlations
that can take form with a growing wealth of repeated measurements. Formulating the correlation
structure when analyzing the data requires careful thought in what we can parameterize while
maintaining an acceptable degree of model parsimony. In this study, the structured binary repeat
measurements compel us to use a general autoregressive process that capitalizes on the discrete
and systematic nature of the study while affording flexibility.

We developed two methodologies for addressing these challenges. The BGLAM allows users
to incorporate nested autoregressive processes using non-informative priors while maintaining
marginal interpretations of the coefficients. Through extensive simulations, we have demonstrated
that BGLAM is more capable in testing for treatment effects in clinical trials with repeated bi-
nary measurements and systemic autoregressive processes. Although the coefficients in BGLAM
have favorable marginal interpretations, the model lacks the feature to incorporate heterogeneity
across time and in the autoregressive process and is computationally consuming. To overcome
this, we introduced the PGLAM model that is both more computationally efficient and can inte-
grate additional layers of variability via random effects and heterogeneity across time. We showed
through simulations that our model better recovers these layers of variability which translates to
better power and coverage when testing or treatment effects for studies with small to moderate
sample sizes and large number of repeat measurements. A natural implementation of BGLAM and
PGLAM are in causal models with binary repeat measurements such as Principal Stratification
where latent structures are imputed at each iteration which would warrant a correlation structure
that may be different across the different latent strata. With smaller number of repeat measure-
ments, users can revert to the original BMLR implementation in [4] and have an unstructured
corrrelation structure where each correlation input uniformly varies in the [-1,1] space.

An added layer of complication to clinical trials with repeat measurements or multiple time-
points is treatment nonadherence. Inevitably, when some patients discontinue the treatment inter-
vention due to intercurrent events such as administrative reasons, excess efficacy, lack of efficacy
or adverse events, these discontinuations which occur as an implicit function of unobserved out-

comes will potentially mar inferred treatment effects from models that do not account for these
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discontinuations. As such, the pharmaceutical industry has invested and developed a myriad of
models that address these discontinuations due to intercurrent events. However, it is consequently
very difficult to compare model performances of these competing models as real-life clinical trial
data cannot be so easily shared publicly.

To address these challenges, we developed the DGM, an R shiny app, that allows users to dic-
tate patient compliance via varying sources of discontinuity with different functional behaviors and
generate data to get a more holistic understanding of the operating characteristics of the investi-
gational treatment obtained by different models for requested estimands with multiple endpoints.
The DGM is a convenient app that updates interactively and provides results synchronously, allow-
ing users to share their results and data input settings to generate the data without actually having
to share their clinical trials data. This convenience is met with some limitations. For instance,
although covariate information can be readily integrated into the DGM, this would undermine the
simplicity and directness of our simulator since there would be infinite ways for different covariates
to be integrated into the simulation process. Users are more than welcome to use the code that is

readily available upon request and amend as they see fit to meet their respective needs.
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A. SUPPLEMENTARY MATERIAL FOR CHAPTER 1
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Treatment Effect When True AR(1) = 0.7
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Plots of power, bias, coverage and standard errors of S when

AR(1)=0.7 for 1000 simulated datasets, with the BGLAM being the solid black
line. BGLAM has high power, low bias, good coverage and low standard error, ex-
cept when the data were generated via GLMM at S = 0.5. This is expected, since
there is a mismatch between the model and the data generated.
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Treatment Effect When True AR(1) = 0.5
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Figure A.2. Plots of power, bias, coverage and standard errors of [y when
AR(1)=0.5 for 1000 simulated datasets, with the BGLAM being the solid black
line. BGLAM has high power, low bias, good coverage and low standard error, ex-
cept when the data were generated via GLMM at (3, = 0.5. This is expected, since
there is a mismatch between the model and the data generated.
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Treatment Effect When True AR(1) = 0.3
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Figure A.3. Plots of power, bias, coverage and standard errors of [y when
AR(1)=0.3 for 1000 simulated datasets, with the BGLAM being the solid black
line. BGLAM has high power, low bias, good coverage and low standard error, ex-
cept when the data were generated via GLMM at (3, = 0.5. This is expected, since
there is a mismatch between the model and the data generated.
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Treatment Effect When True AR(1) = -0.3
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Figure A.4. Plots of power, bias, coverage and standard errors of 3,y when AR(1)=-
0.3 for 1000 simulated datasets, with the BGLAM being the solid black line. BGLAM
has high power, low bias, good coverage and low standard error, except when the
data were generated via GLMM at [y = 0.5. This is expected, since there is a
mismatch between the model and the data generated.
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Treatment Effect When True AR(1) = -0.5
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Figure A.5. Plots of power, bias, coverage and standard errors of 3,y when AR(1)=-
0.5 for 1000 simulated datasets, with the BGLAM being the solid black line. BGLAM
has high power, low bias, good coverage and low standard error, except when the
data were generated via GLMM at [y = 0.5. This is expected, since there is a
mismatch between the model and the data generated. Although GLIMMIX-G and
GLIMMIX-R have high power, the elevate Type I error rates average around 0.9 at
a = 0.05.
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Treatment Effect When True AR(1) = -0.7
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Figure A.6. Plots of power, bias, coverage and standard errors of 3,y when AR(1)=-
0.7 for 1000 simulated datasets, with the BGLAM being the solid black line. BGLAM
has high power, low bias, good coverage and low standard error, except when the
data were generated via GLMM at [y = 0.5. This is expected, since there is a
mismatch between the model and the data generated. Although GLIMMIX-G and
GLIMMIX-R have high power, the elevate Type I error rates average around 0.9 at
a = 0.05.
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AR Estimate When True AR(1) = 0.7
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Figure A.7. Plots of bias, coverage and standard errors of the AR(1) estimate when
the true AR(1)=0.7 for 1000 simulated datasets, with the BGLAM being the solid
black line. BGLAM has low bias and standard errors with good coverage, with the
exception when data were generated via GLMM. This is expected, since there is a
mismatch between the model and the data generated.
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AR Estimate When True AR(1) = 0.5
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Figure A.8. Plots of bias, coverage and standard errors of the AR(1) estimate when
the true AR(1)=0.5 for 1000 simulated datasets, with the BGLAM being the solid
black line. BGLAM has low bias and standard errors with good coverage, with the
exception when data were generated via GLMM. This is expected, since there is a
mismatch between the model and the data generated.
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Figure A.9. Plots of bias, coverage and standard errors of the AR(1) estimate when
the true AR(1)=0.3 for 1000 simulated datasets, with the BGLAM being the solid
black line. BGLAM has low bias and standard errors with good coverage, with the
exception when data were generated via GLMM. This is expected, since there is a
mismatch between the model and the data generated.
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Figure A.10. Plots of bias, coverage and standard errors of the AR(1) estimate
when the true AR(1)=-0.3 for 1000 simulated datasets, with the BGLAM being the
solid black line. BGLAM has low bias and standard errors with good coverage, with
the exception when data were generated via GLMM. This is expected, since there is
a mismatch between the model and the data generated.
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Figure A.11. Plots of bias, coverage and standard errors of the AR(1) estimate
when the true AR(1)=-0.5 for 1000 simulated datasets, with the BGLAM being the
solid black line. BGLAM has low bias and standard errors with good coverage, with
the exception when data were generated via GLMM. This is expected, since there is
a mismatch between the model and the data generated.
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Figure A.12. Plots of bias, coverage and standard errors of the AR(1) estimate
when the true AR(1)=-0.7 for 1000 simulated datasets, with the BGLAM being the
solid black line. BGLAM has low bias and standard errors with good coverage, with
the exception when data were generated via GLMM. This is expected, since there is
a mismatch between the model and the data generated.
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A.A  SAS Script

proc glimmix data= final;

class y treatment(ref="0") subject time;

model y(event = "1") = treatment x O / ddfm=kr dist=binary link=logit solution;
random time / type=ar(l) subject=subject;

by seed_val;

run;

proc glimmix data= final;

class y treatment(ref="0") subject time;

model y(event = "1") = treatment x O / ddfm=kr dist=binary link=logit solution;
random time / type=ar(l) subject=subject residual;

by seed_val;

run;
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B. SUPPLEMENTARY MATERIAL FOR CHAPTER 2
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B.B Derivations

B.B.1 Joint Posteriors

Following the prior configuration, we move to flesh out the joint Posterior. The posterior

contribution for a given subject i with n; repeat measurements is as follows:

n(01|yi) (8 L(,B, W, pz7 O-tQime? Uzohor‘m ’Ytime,i’ 7c0h0rt|yi)n(w)

2

X E(B)n(agime)n(acohort)n(pz)Tc<7time,i :

)TC (PYCohort | O-gohort)

1
- [H exp { (B + 2i7) — 5@ + 2479 | PGyl ]

K 1
x N, (18|b Eb)[G(O—tlme’U()?UO)IG( cohort’vo?vo <H Ongth <pk‘|:u - 2))

k=1

2 2
X Nni <7time,i|07 UtimeG) N(’ycohorhim’ gcohort)

with the following matrix and vector definitions:

kij = vy — ?”, ni; = 1 for binary outcomes

Zij7Yi = Ztime,jVtime,i + Zcohort,i Y cohort
xi; = j-th row of matrix X;
Ztime,j = j-th row of matrix Zijme

Zcohort,i = 1st or any row of matrix Z ono,i

The joint posterior across all I subjects is given by the following

I n 1
n(fly) = [H II eXP{ i(xyB + 2ziy;) — 2wij(931j5 + zij7i>2}PG(wij|nij? 0)]

i=Ij=1

< N (Blby ) IG(0[09, 00) IGO0, ) (

s 1
I logistic (pk]u =0,s= 2))

k=1

X [ﬁ Nni (7time,i|07 O-tQimeG)‘| NC (7cohort |07 O-gohortﬂCXC>

i=1
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B.B.2 Fixed Effects Posteriors

The posterior of the fixed effects 8 is given by

N,(B|b, B)

1
Swij (@8 + zij7i>2}

(7
n(B10,y) o< (T[] 11 exp qki(xyB + ziv:) — 5
i=1]

i=1j=1

N,(B|b, B)

=1i=1

3
ﬁ exp {ku(l‘uﬂ +2yv) — ;Wij ((B)* + 2(%'5)(%’%))}
{

m 1
exp { ~ 5%y (x8)" + (x;8) (k?ij—wij(zij%))} Ny (B|b, B)

I
i
I

Li= 1
ni
[[ exp

li=1j=1

)+
{_;W(m 2 - z’wj(zﬂ%ﬂﬂ))}] N,(B1b, B)

wij
QLM ki — wijzijv; ’
X HHexp wl_] lwuﬁ - <1>‘| Np(ﬁ|b’B)

Li=1j=1 Wij

Inspired by equation (5) from [103] and page 742 from [4], we will show that for individual

i with n; repeat measurements that:

exp{_;(zi—ximTﬂi(li } Hexp{ wu(<wuﬂ> oFs = @ilZi ) o1 ))}

wij
ki1
wlll — Zi17i
where [; = :
kg
| wis z1J71
Wil 0
Q, = = diag(wi1, - - - , Win;)
O winl
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We begin with the left hand side of the expression:

exp {3 (b - XiB) 0l - X:8))

r T

ki ki
or — 2z — @B wip o 0| —zay; — zaB
1
=expq —=
2
BL_zivi—xuB| |0 . wig| [BL -z — 2B
_WiJ 1 1 1 1 wiJg 1 1 1
- T
kil ki1
Wit \ 5y — i1V T Ty B oy Rl T zi1 B
1
=expy —=
2
kig kig
Wig \ o, — #Yi zi; B wy RV T zi; 3
. 2
1y ks
— ]
=€eXpy—5 Zwij — =z — Xy
2 =1 Wij

' 2
= I I exp § —-wij | T8 — iy T Wi
j=1 2 wij

From above, we have just shown the equivalence of the LHS expression and RHS expression.

Formally, in matrix notation, we have the following:

11
R8I0, ) o exp | — L S0~ X,B) L — X8) | Ny (81b, )
i=1
U’% — Zi1Yi
where l; = :
kig _ .
wii Zij%i

Q; = diag(wiy, . . ., wiy)
Based on page (4) of [104], we should have

Bl6.y ~ N, (5. 25)

N
Y= (Eb‘l +Y X ?wq)

-1

i=1

N
s (s i)

i=1
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B.B.3 Time Random Effect Posteriors

For convenience, we define the following

Zij7i = Ztime,jVtime,i
wijIB = wij/B + zcohort,i7cohort

= mijIB + Ztime,j Y time,i + Zcohort,iY cohort — <ij i + mij,B

To derive the posterior of the random effects 7, ;, we proceed similarly as we had when

deriving the posterior of 3:

ﬂ:(’Ytime,iyev yl)

ni L o~ 1 o _ 2
X [H exXp {kij (Ziﬂi + wijﬁ) - iwij (ziﬂ’i + wijﬁ) }] Ny, ('Ytime,i‘()» JtZimeG)

j=1

X exp {—; (zl - Ztime,i’Ytime,i)T Q (zl - Ztime,i’Ytime,i)} Ny, (’7time,i‘07 O-t?imeG)

ki _ 5o f

wi1 i1 B
where l; =

kini ~ e

Win, le/B

Q; = diag(wiy, - . . ,wiy)

1
kij = yi5 — =nsj, where nj; = 1 for bernoulli trials
2

And as before, we have

7time,i|07 y; ~ Ny, (“mmc,w Z%ime,i)
E’Ytime,i = ((U‘?imeG)il + Zz;me,iQiZtime,i)
“”Ytime,i = E'Ytime,i ((UtQimeG)_lO + Zame,iQiiJ
ul;)

-1

time,i

= E%imc,i (ZT
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B.B.4 Cohort Random Effect Posteriors

For convenience, we define the following

Zij7i = Ztime,jVtime,i
wijIB = wij/B + zcohort,i7cohort

= mijIB + Ztime,j Y time,i + Zcohort,iY cohort — <ij i + mij,B

To derive the posterior of the random effects .., We proceed similarly as we had when

deriving the posterior of 3:

n(vcohort ‘ 0 ) y)

o {ﬁ ﬁexp {kij (%ﬂ’i + i‘ij,é) — ;Wij (21{% + iijB)Q}] N¢ (*ycohort\O, Ufohort]lch)

i=1j=1

I
X exXp {_; Z (Zl - ZCOhOFt71700hort>T Qi (Zl - Zcohort,iﬁycohort> } NC (ﬁ)/cohort |07 O-gohort:H-CXC)

i=1
kn s [
Wil mll/B
where l; =
kig _ . 2
Wi le/B

Qi = diag(wil, Ce ,wiJ)

1
kij = yiy — inij’ where n;; = 1 for bernoulli trials

And as before, we have

700h0rt|07 Yy~ NC (u’cohorta ECohort)

1 I
Ecohort - (2]10><C + Z Zz;hort,iQiZCOhort7i>

cohort i=1

-1

1 ! v
””Ycohort = Zcohort (2 ]]-CxCO + Z Zz:)hort,igili>

cohort i=1

I
T v
== 2COhOI‘t (Z Zcohort7191l1>
i=1
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B.B.5 Polya-Gamma Latent Posteriors

The posterior of w is given by

_I ni

1
n(wl0,y) = |TT1I eXP{ ij (8 + zij7v;) — Qwij(wijﬁ + Ziﬂi)Z} PG (wj|ny;, 0)]

li=1j=1

_] ni

1
X H H €xp { Wu wl]/g + z1J71) }PG(wij‘niﬁ 0)]

[i=1j=1

Based on [68], we get the conjugate posterior
wij|@,y ~ PG(ny =1, :1:5,8 + zgvi)

B.B.6 Partial Autocorrelation Posteriors

The posterior of p* is given by

K 1
I logistic (pkm =0,5= 2)]

k=1

(p°|0,y) [HNn, (Yeimel0, Fme )H

i=1

G = r(tanh(p;)),r(.) = recurrence relation from [30]

We will sample from p*|0,y via Metropolis Hastings using the configuration below:

Target: T(p*|0,y)
Proposal: Nk (pz(t)]pz(t Y, prOpIK)
Acceptance prob:

(t)
L(t=1) 2(t) TC(pZ |0,y)
alp™ P )= e
( ) n(p*"6,y)

121 Ny (Ve 10, 03,,.G®) | [T logistic (pz’(t)lu = 0,5 = 3]

= [ L N, (’Ytime,i|0, ggimeg(tfl))} [H loglstlc( |u =0,s = 7)}
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B.B.7 Variance From Time Posterior

With conjugate priors, we have the following posterior for o2

(O-tlme’9 y [H an (’Ytlme 1’0 Utlme 1 IG Otlme|U07 UO)

i=1

M\»—‘

I
1
x lH(det(ofime OXp{ ~5— %ime’ig—l%ime,i}] (02, )~ (ot exp{_go}
i=1

Otim time

1 (v Vo
X ( 9 )% exp{ 20t‘ — 7t1me 1G Ytime 1} (UtQime) (vo+1) CeXp {_2}

of
Otime time

I AT -1
_ (Jame)—(%ﬂo)—l exp {_ 21 200 + Xicy 7t;me,iG ’Ytime,i}

time

[J 21} + iI— I;meiG_1 ime,i
:>Ut1me’0 yN[G<(2_|_UO>7 0+ 2ic1 s , Vtime,

2

B.B.8 Variance From Cohort Posterior

Similar to ¢, we have the following posterior for o2, .

n(gzcohort 0 y) X NC (’Ycohort|0 Ucohort]lC'XC'> IG( Cohort|v07 UO)
_1 _ —(v Vo
X (det<0-020h0rt10><0)) 2 exp { 252 ’Ycohort]lCiC’YCohort} (aczohort) (wo+1) exp {_ 2 }
O cohort O cohort
1 2v L ort Lo
— (O-zohort)—(%-l-vo)—l exp {_ 5 0 + Yeohort Lo x &Y cohort }
O cohort 2
C 2UO + 'Yz; or 1_1 Y cohor

B.C SAS Script

proc bglimm data=final nmc=3000 seed=901214 Statistics=sum Stats=int;
class y treatment subject cohort time;

model y(event = "1") = treatment x_0O / dist=binary link=logit;

random time/ type=ar(l) subject=subject nuts;

random intercept/ subject=cohort nuts;

run;
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