
MACHINE LEARNING METHODS FOR SPECTRAL
ANALYSIS

by

Youlin Liu

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Chemistry

West Lafayette, Indiana

August 2021



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Garth Simpson, Chair

Department of Chemistry

Dr. Hilkka Kenttämaa
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ABSTRACT

Measurement science has seen fast growth of data in both volume and complexity in

recent years, new algorithms and methodologies have been developed to aid the decision

making in measurement sciences, and this process is automated for the liberation of la-

bor. In light of the adversarial approaches shown in digital image processing, Chapter  2 

demonstrate how the same attack is possible with spectroscopic data. Chapter  3 takes the

question presented in Chapter  2 and optimized the classifier through an iterative approach.

The optimized LDA was cross-validated and compared with other standard chemometrics

methods, the application was extended to bi-distribution mineral Raman data. Chapter  4 

focused on a novel Artificial Neural Network structure design with diffusion measurements;

the architecture was tested both with simulated dataset and experimental dataset. Chapter

 5 presents the construction of a novel infrared hyperspectral microscope for complex chemi-

cal compound classification, with detailed discussion in the segmentation of the images and

choice of a classifier to choose.

15



1. INTRODUCTION

This dissertation contains four chapters of different projects, while the application space for

each of these vary slightly, they cover the same overarching theme of using ML and algorithms

to better understand, interpret and make use of the analytical chemistry data. Hence this

introduction chapter will start by introducing the major advances in the community of

computer sciences.

1.1 Recent Advances in Machine Learning and the Relevancy to Chemistry

Big data, machine learning, artificial intelligence, experienced an explosive amount of

attention since the beginning of this century, While these terms are overly used to the extent

of abuse, it’s useful to step back and look at the practical definitions of each of these. AI

focuses on using a non-human system to make optimal decisions, while ML is a subcategory

of AI, covering the specific area of using algorithms that are computer-centered. Big data, is

the application space, simply put it means “large volume of data”‘, the implied context, that

differentiate “big data” from “not big data”, is not only the volume, but also the complexity,

including the collection sources, data structure and the velocity. The combination of these

– aiming at eliminating humans – has done its magic in digital imaging processing, natural

language processing, autonomous driving etc.

An example of major relevancy to this thesis (Chapter  3 ) is the advent of GANs (gener-

ative adversarial neural networks). The basic concept of GAN – training two classifiers to

compete against each other – was brought around by Goodfellow et al. at the year of 2014,

in other words, very recent. In the short 6 years followed, multiple models and variants have

become widely adapted structures in applications concerning digital image processing, in-

cluding adversarial autocoder[ 2 ], couple GANs[ 3 ], CycleGAN[ 4 ] deep convolutional GANs[  5 ],

to list just a few. The primary application for all of these is in digital image processing.

Image data fits perfectly in the context of “big data” in the recent digital world, on the

other hand, data generated in chemistry, specifically analytical chemistry, remained rela-

tively simple, the major limiting factor has long been instrumentation. From the readout of

a simple balance or burette, to the more modern and developed mass spectrometer, optical
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spectrometer, and chromatography instruments, the analysis of such data was never compli-

cated, more or less empirical, at most calls for statistical significance analysis. Needless to

say, the data interpretation method development has gone stale in the recent years in the

relevant communities: academic researchers, industries (The latter had a perfect reason to,

due to limitations installed by FDA).

The most convenient adaptation, for application ML methods in chemistry, is to code

the chemical information into vectors and matrices, then establish models attempting to

predict how they would behave. Examples are chemical graph theory (correlation of chem-

ical structures to biological activities [ 6 ]); chemical descriptors (similar to chemical graph

conceptually, but via extracting numerical features from chemical structures [ 7 ]); chemical

fingerprints (constructing high-dimensional vectors for virtual drug screening [  8 ], or similar-

ity analysis with exiting drug [ 9 ]); and there are more sporadic instances of using ML tools

as is, for problems that can be described as “regression analysis” or “classification tasks”

[ 10 ].

To this end, ML methods have been mainly been used in the science exploration space. In

the meantime, downstream in the industry, a separate practice was to develop and implement

innovative methods to pharmaceutical manufacturing processes, the FDA published guidance

for the specifics, PAT (process analytical technology), to help regulate the development

and implementation. Still, there exists a huge gap between the front-end computer science

(that are actively being applied to digital companies such as Google Inc.) and how the

pharmaceutical industry analyzes data, where the methods are data-driven and evaluated

rigorously before final applications. The motivation of this thesis, is to explore the spaces in

between.

1.2 Spectroscopic Data Analysis

Chapter  2 and  3 take a data-driven approach, and explored the analysis method with

Raman spectra acquired for a drug with multiple crystal polymorphs. Therefore it’s useful to

step back at how spectroscopic data are generally handled, Raman of IR alike, The traditional

process of spectroscopic data analysis, is to obtain a sample of interest, acquire three to five
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spectrum, then taking the average spectrum and identify main peaks of importance, and

compare that of spectra of known compounds in numerous databases. Stepping into recent

years, the broadening of applications of Raman and IR spectroscopy to various types of

samples, sometimes heterogeneous in distributions, calls for a more systematic and reliable

data handling approach. To gain deep insights into the critical information Raman and

IR has to offer, the state-of-the-art tools included in multivariate analysis are principal

component analysis (PCA), linear discriminant analysis (LDA), cluster analysis (CA) and

partial least squares regression (PLS), to list just a few. These methods can alternatively be

categorized as unsupervised methods and supervised methods, depending on whether label

information is available or not. The central task when using these methods, was to extract

the main features that is of interest, and representative of the sample of interest.

The observed spectral data is comprised of signal and noise, PCA is frequently used

to extract main features, i.e. signals. Sometimes, the signal can be considered to have

a correlation between features, it would be useful to capture the underlying correlation.

Therefore, PCA can also be viewed as a dimension reduction method, in which it searches

for representing the original data with fewer variables. To translate the original data into

fewer variables, PCA produces principal components (PCs) and the translation can be done

by matrix production. The way PCA produces the PCs are through eigendecomposition.

Alternatively, LDA can be used to perform the same task, i.e. translate original data into

fewer variables. LDA differs from PCA in the way that the PCs (in LDA it’s termed “loading

vector”) are calculated: in LDA, the ratio of the between-class variance and the within-class

variance is maximized, The use of (or lack of) class information divides these two algorithms

into supervised and unsupervised. Detailed mathematical dissection of the two algorithms

can be found in Section  2.2.1 , thorough comparison of the methods has also been conducted

Martinez and Kak[ 11 ].

As entailed LDA is one the simplest to implement supervised methods for dimension

reduction and classification. Albeit a “slight” problem (curse of dimension, actually it’s not

a slight problem, but Chapter  3 addresses this problem as well) but is it always reliable,

though? Chapter  2 demonstrate how LDA can be fooled, and Chapter  3 proposes a method

to improve LDA so that the trick described in Chapter  2 attack doesn’t work anymore. At
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this point, LDA is no longer LDA, the process of producing the loading vectors has been

optimized via a generative approach, hence it was named GALDA (generative adversarial

linear discriminant analysis).

1.3 Protein Diffusion Measurements

Proteins have emerged as a major class of therapeutics in recent years, and the subcu-

taneous (SC) injection of proteins is an appealing future as it’s envisioning patients doing

at-home treatments, making it much cheaper than doctor visits. However, it’s the process

after SC until the protein reaches the bloodstream crucially affects the bioavailability of the

drug. Therefore it’s useful for modeling the diffusion process, in a protein-matrix context.

In vitro assessments of such interaction would provide information for the in vivo protein

diffusion process as well.

The subcutaneous environment is complicated in chemical composition for the in vitro

experiments to precisely simulate[ 12 ]. The potential issues and factors include PH, tem-

perature, isoelectric point shifts of the protein, etc. It’s unlikely the in vitro assays would

adequately capture the inherent complexity, not to mention, the heterogeneity of substance

distributions. Nevertheless, it’s possible to simplify and parameterize the system with analyt-

ical methods. Chapter  4 is an attempt to characterize the protein/matrix cross interactions

using protein diffusion measurements. While there are many instruments for accessing this

property, FRAP (fluorescence recovery after photobleaching) stands out as one that incor-

porates into a high-throughput streamline afforded by the 96-well plate, which is compatible

with the robotics structure already in use in the industry. Chapter  4 correlates diffusion

constant with experimental variables in a novel structure of an artificial neural network.

1.4 Hyperspectral IR Imaging

Hyperspectral IR imaging (synonymous of IR spectroscopic imaging) as a technique,

appeared to have matured and commercialized long before the “big data” time materialize.

And rightfully so, given the simplicity promised by Beer’s law, the ease of access of IR

illuminating sources, and the range of information provided by molecular absorption. Since
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the arrival of the information age, there has been a recent renaissance of this technology,

both in hardware development afforded by the advent of QCLs (quantum cascade lasers)

and in data interpretation as the spectral data qualifies as high-dimensional data – a term

that intimidates the average statistician.

Now complex methodology has been derived for a general high dimensional data, for

example, the health data recorded including many attributes (patient age, gender, genetic

background, drug consumption, etc), which in turn pushed forward the development of ma-

chine learning methods, as these applications (public health, biologics, etc) serves as a solid

motivation to drive the methodology development forward. In light of those developments,

Chapter  5 investigated into using multiple ML methods for both better optimization and

classification of the spectral data.
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2. ADVERSARIAL SPECTROSCOPY

2.1 Introduction

Modern instrumentation can produce ever-increasing volumes of measurements, the col-

lective analysis of which is routinely used to inform chemical decision-making[  1 ]–[ 3 ] As the

dimensionality of the data increases, the greater it becomes our collective reliance on algo-

rithmic data analysis approaches for quantification, classification, and basic interpretation[ 4 ].

With this exponentially increasing access to and reliance on large-data measurements, assur-

ance in the outcomes impacts the legal and regulatory decisions made based on dimension

reduction approaches such as deep neural networks[ 5 ], including drug testing[ 6 ], DNA match-

ing[ 7 ], [ 8 ], regulation of pharmaceutical manufacturing[ 9 ], voice/facial recognition[ 10 ], etc.

Given the societal importance of the outcomes in such instances, the motivation is high for

ensuring reliable classification in data-intensive decisions[ 11 ], [  12 ].

Artificial neural networks (ANNs) are known to exhibit potential susceptibilities to adver-

sarial manipulations. Examples of successful attacks on ANNs trained for image recognition

include subtle image perturbations, single pixel attacks, and adversarial stickers, among oth-

ers. Subtle image perturbations that are visually difficult to identify visually because the

magnitude of the attack at each pixel is 0.7% the magnitude of the original pixel value, yet

the sum of these small perturbations cause an image to be misclassified. Single pixel attacks

drastically change the value of a single pixel, such a change is obvious upon inspection of

the image[  13 ]. However, it has been shown that a single pixel is enough to unequivocally

mis-classify an image[ 14 ]. Another method of attack has a user place a specially designed

sticker into the field of view. The addition of this patch to the image has proven successful in

misclassifying images. These are just a few examples of adversarial manipulations on ANNs

among a rich body of manuscripts.

In this context, it is interesting to consider whether analogous attacks could be performed

on standard dimension reduction methods such as linear discriminant analysis (LDA) and

principal component analysis (PCA) as relatively simple and mathematically tractable surro-

gates for attacks in ANNs. For example, potential vulnerabilities may arise as a consequence

of “over-fitting”, in which the size of the training data set is small relative to the intrinsic
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dimensionality of the underlying data set and/or the number of spectral channels. In such

instances, the statistical assessments derived from classification can be biased from numer-

ical interpretation of noise as features for discrimination between classes. In addition to

over-fitting, errors can arise when classes of testing spectra are not adequately represented

within the training data set. Furthermore, spurious effects such as cosmic rays or calibra-

tion artifacts can also produce mis-classifications for reasons that are not trivially obvious

within the reduced dimensional space. In all these instances, scientific decisions based on

data-mining may be subject to additional uncertainties not necessarily reflected fully by the

statistics evaluated within the reduced dimensional space.

In addition to linear methods serving as simple models for understanding adversarial

attacks, their development also has the potential to share some of the benefits derived from

applications of adversarial attacks in ANNs. In this work, we explored the potential applica-

tions of adversarial attacks in simple, linear dimension reduction methods for spectroscopic

analysis, and we demonstrated a method for launching a digital adversarial spectroscopic

attack and the statistical implications of such attacks. In designing the attacks, additive

perturbations affected classification in a reduced-dimensional space defined by LDA.

2.2 Methods

2.2.1 Linear Discriminant Analysis

LDA was performed by solving the equation Jw = WTSBW
WTSW W

, where J is the Fisher linear

discriminant function (directly related to the resolution between classes), W is a matrix of

the optimal projection vectors to maximize resolution (i.e., the eigenvectors, S−1
W SB), SW

is the within-class variance matrix, and SB is the between-class variance matrix. Briefly,

let Xiii = {x1, x2, . . ., xn} represents ni training samples of class i, with the total number

of classes given by c. Given µi as the centroid of Xiii then the within-class scatter matrix

SW and between-class scatter matrix SB are defined as SW = ∑c
i=1
∑
x∈Xiii (x− µi) (x− µi)T

and SB = n−1
tot
∑c

i=1 ni (µi − µtot) (µi − µtot)T , in which µtot is the weighted mean spectrum

of the entire data set containing ntot spectra. The computational stability of the matrix
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inversion operation was performed using Gaussian elimination of the product, S−1
W SB with

the MATLAB operation ”A/B” (rather than through explicit evaluation of S−1
W SB.

2.2.2 Launching an Attack to Generated Decoy Spectra

The central objective of the adversarial attack is to identify the perturbation, δ, that op-

timally alters the classification of an initial spectrum (e.g., random seed) to a target group,

subject to constraints imposed by a cost function. For an initial spectrum, xs, the perturbed

spectrum, x ′, is given by x ′ = xs + δ . The general strategy in the optimization of the

attack perturbation δ is illustrated in Figure  2.1 , which is intended to serve as a graphical

depiction of an attack depicted in the reduced-dimensional space. In this work, these re-

duced dimensions represent the principal axes produced by linear discriminant or principal

component analyses. Each wavelength channel in the original spectral space resulted in a

“nudge” to collectively contribute to the position of the spectrum in the reduced dimensional

space. While the primary spectral features (indicated by the thin black arrows) combined

to dictate the general position within the reduced dimensional space, randomness within the

noise (indicated by the short red arrows in  2.1 A and B produced a spread about that mean

position.

Additional “nudges” by perturbation to each wavelength channel of the original spectrum

can relocate the position of the initial spectrum in the reduced dimensional space to one

significantly closer to the target, as illustrated in Figure  2.1 C. The vector of deviations d

from the initial sample spectrum, xs, to the “target”, xt, in the reduced dimensional space

is given by the following expression.

d = D · [(xs + δ)− xt] (2.1)

The matrix D is comprised of the set of eigenvectors that project the high-dimensional

data to a lower-dimensional space (such as PCA or LDA). In the absence of other consid-

erations, the optimal perturbation, δ̂, will be one that maximizes the probability that the

perturbed spectrum will be classified as the target. The reduction in dimension associated

with D is an under determined problem, with, in general, an infinite number of selections for
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Figure 2.1. Conceptual illustration of spectroscopic adversarial attack. Major
spectral peaks drive the position of spectra in lower-dimensional projections,
demonstrated by the set of thin, long black arrows for Classes A and B, respec-
tively. In C) the addition of patterned perturbations in the vector δ optimally
relocates the position from the source Class A to Class B in this reduced di-
mensional space.
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δ̂ producing comparable values for d. Therefore, D ∈ Rn×p, with n being the dimensionality

following dimension reduction.

The selection of one among the innumerable possible perturbations was performed by

also considering an additional term in the cost function in Eq.  2.1 to minimize the squared

magnitude of the perturbation. The total cost function for the reduced dimensional analysis

was given by the sum of the two terms, which collectively minimized the sum of squared

deviations to the target in the reduced dimensional space while simultaneously minimizing

the overall squared magnitude of the perturbation, d, in spectral space, both evaluated as

the squared L2 norms.

δ̂ = arg min
δ

[
‖D · (xs + δ − xt)‖2

2 + β ‖δ‖2
2

]
(2.2)

The scalar parameter β in Eq.  2.2 allows for empirical adjustment of the relative cost

given to proximity to the target relative to minimizing perturbation of the major spectral

features. The first term in the cost-function is designed to “fool the classifier” by minimizing

the distance to the target in the reduced dimensional space, while the second term is targeted

to “fool the human” by minimizing the perturbation in spectral space. In the present study,

a value of β =1 was used throughout for simplicity.

The optimal perturbation was determined analytically by rewriting the cost function in

terms of the perturbation.

F (δ) = ‖D · (xs + δ − xt)‖2
2 + β ‖δ‖2

2 (2.3)

To solve for the optimal perturbation, the minimum of F (δ) was found by setting the

gradient to zero ( ∇F = 0). Let C = DTD and v = xs − xt :

F (δ) = ‖C· (v + δ)‖2
2 + β ‖δ‖2

2

= vTCv + 2vTCδ + δT (C + βI)δ
(2.4)
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The following general gradient vector operations can be used to simplify Eq.  2.4 :

f (x) = CTx⇒ ∇f (x) = C (2.5)

f (x) = xTAx ⇒ ∇f (x) =
(
AT + A

)
x (2.6)

Using the relations in Eq.  2.5 and Eq.  2.6 noting that CT = C, ∇F can be written in

the following form.

∇F (δ) = 2 (C + βI) δ + 2Cv (2.7)

Setting ∇F = 0 and solving for δ yields the following expression for the optimized

perturbation, bearing in mind CT = C.

δ = − (C + βI)−1C(xs − xt) (2.8)

2.2.3 Probability

A two-class univariate problem, assuming normally, identically, and independently dis-

tributed measurements, is illustrated in Figure  2.2 .

Probability is conveniently assessed using the z-statistic based on the normalized dis-

tances between the test value x0 and the means µ of and standard deviations σ for each of

the two distributions, defined as z1 = x0−µ1
σ1

and z2 = x0−µ2
σ2

. The ratio r of probabilities P

for a given scalar value of x1 is given by:

r12 ≡
P1

P2
= f(z1)
f(z2) = e

−z1
2

2

e
−z22

2

= e− 1
2 (z12−z22) (2.9)

Given that P1 + P2 = 1 and P1
P2

= r12, the probability for the test value x1 corresponding

to class 1 is given by P1 = r12
(1+r12) , with P2 = 1 − P1. The same argument can be made at

every value in the reduced-dimensional spectrum x0. Using the mean and standard deviation
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Figure 2.2. Illustration of the approach used for determination of the prob-
ability of a perturbed spectrum in the reduced dimensional space xo to be
classified as class 1 or class 2 (illustrated for a one-dimensional, two class sys-
tem for illustrative purposes).
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for each class in the reduced dimensional space, the z-statistic for a particular class n can be

evaluated as a vector.

zn = x0 − µn
σn

(2.10)

The probability ratio r12 for the vector description is straightforward to evaluate.

r12 = e− 1
2 (z1T ·1−z2T ·2) (2.11)

For an N-class system, Pn is given by the following.

Pn = 1
1
rn1

+ 1
rn2

+ 1
rn3

+ 1
rnN

= 1
r1n + r2n + r3n + ...+ rNn

= 1∑N
i=1 rin

(2.12)

2.2.4 Raman Measurements

Pure clopidogrel bisulfate Form I and Form II were produced in-house at Dr. Reddy’s

Laboratories and were used as received. Both the Form I and Form II particles were spherical

with similar particle size distributions (diameter: ∼ 25 µm). Raman spectra were acquired

using a custom Raman microscope, built in-house and described in detail previously[ 15 ]. In

brief, a continuous wave diode laser (Toptica, 785 nm wavelength) coupled into a Raman

probe (InPhotonics, RPS785/24) was collimated by a fused silica lens, and directed through

an X-Y scan head composed of two galvanometer scanning mirrors. Two additional fused

silica lenses formed a 4f configuration to deliver a collimated beam on the back of a 10x

objective (Nikon). The Raman signal from the sample was collected through the same

objective and de-scanned back through the same beam path into the Raman probe. A

notch filter was built in the Raman probe to reject the laser signal. Raman spectra were

acquired using an Acton SP-300i spectrometer with a 100× 1340 CCD array, and controlled

by a computer running WinSpec32 software. The laser power measured at the sample was

around 30 mW. The exposure time was 0.5 s per spectral frame. To achieve higher signal

to noise ratio for high quality training data for classification, 30 consecutive frames were

averaged for each spectrum acquired over a spot size of ∼ 2-3 µm diameter within the field
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of view. A Savitzky-Golay filter was applied to smooth the spectra, and a rolling ball filter

was used to remove the fluorescence background. Finally, the spectra were normalized to

their integrated intensities, i.e., the area under the curves. A subset of 252 Raman spectra

were collected from the clopidogrel samples and separated into three classes (84 spectra per

class) – Form I, Form II, and background (glass slide). The ground truth identity of these

samples was known a priori.

2.3 Results and Discussion

2.3.1 Raman Spectra

The mean spectra, average of 84 measurements, for three classes are shown in Figure

 2.3 B. The spectra corresponding to the background were assigned as Class 3 (top spectra,

black). The spectra belonging to the two polymorphs of clopidogrel bisulfate were classified

as Classes 1 and 2 (red, middle and blue, bottom trace respectively). Class 3 shared one

major feature of note, that being a large rolling peak around 1280 cm−1. Spectra collected

for Classes 1 and 2 showed clearly notable differences distinguishable by the relative peak

intensities of the major features at ∼ 1019 and 1030 cm−1, along with numerous minor peaks

present in one or the other of the two sets of spectra.

LDA was performed on the data set of Raman spectra, as shown in  2.3 A. Linear discrimi-

nant analysis provided clear separation between the different spectral classes upon dimension

reduction. In order to solve for the optimal projections on LDA space, the inverse of the

within-class variance matrix was matrix-multiplied by the between-class variance matrix.

Additional spectra were generated to enable direct matrix inversion via knowledge of the

mean and standard deviation of each wavelength for each class. These additional spectra

allowed for the eigenvectors to be calculated to project the Raman spectra onto the lower

dimensional LDA space.

2.3.2 Loading Vectors

The loading vectors from LDA to project Raman spectra onto the lower-dimensional

space are shown in Figure  2.4 . Inspection of the loading vectors shows that some of the
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Figure 2.3. Projection of clopidogrel Raman spectra in LDA-space (on the
left), with the corresponding mean spectrum for each class (on the right), offset
for clarity. The mean spectrum for each class is an average of 84 repeated
measurements.
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spectral features of the Class 1 and 2 are present. Of particular note, however, is the high

frequency content present in both eigenvectors. It will be shown later that the high frequency

content is the main handle that the adversarial attack uses to induce mis-classifications. The

underlying spectral features are present and support reliable classification in validation data

sets, but are largely obscured by noise from the use of finite training data.

Figure 2.4. The loading vectors recovered from LDA to project Raman spec-
tra onto the lower-dimensional LDA space.

2.3.3 Spectroscopic Adversarial Attack

The illustration of adversarial attack was first introduced by Goodfellow et al.[ 5 ] to sup-

port their hypothesis that neural networks are too linear to resit linear adversarial pertur-

bations. Briefly, given an image, the classification of which by GoogLeNet can be purposely

changed by adding an imperceptibly small vector (the perturbation), as shown in Figure  2.5 .

The concept of spectroscopic adversarial attack is to translate the system from digital

images to spectroscopic systems. As is shown in Figure  2.6 . Upon visual inspection of the
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Figure 2.5. Demonstration of adversarial example by Goodfellow et al. in
digital imaging processing. The perturbation was calculated by taking the
elements of the gradient of the cost function with respect to the input. The
classifier tested here is GoogLeNet[  16 ].
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perturbed spectrum (blue, middle) in comparison with the initial spectrum (red, bottom)

in Figure  2.6a , no major spectral features can be identified as altered. The reason for which

is that the calculated perturbation is of low amplitude as shown in  2.6b . It’s interesting to

note that the applied perturbation that optimally produce changes in classification are not

due to changes in the major spectral features, as one might initially anticipate.

(a) (b)

Figure 2.6. Spectroscopic adversarial attack illustration.  2.6a Comparison of
the initial spectrum (red, bottom) from Class 1 with the attacked spectrum
(blue, middle) classified as Class 2, and the mean target spectrum (black, top)
of Class 2.  2.6b Comparison of the initial spectrum (red, top) and the applied
perturbation (black, bottom). No offset applied.

Visualization of a representative spectroscopic adversarial attack in the reduced-dimensional

LDA space is shown in Figure  2.7 . Each perturbation was designed to displace the initial

spectrum toward the target class within the reduced dimensional space. Because of the

reduction in dimension, the direction of perturbation δ is under-determined, such that the

optimal perturbation was calculated based on the cost function given by Eq.  2.1 . The attack

in Figure  2.7a was designed to move a spectrum from Class 1 (middle right, red) to Class 2

(bottom left, blue). The green x’s represent the optimized perturbation, along the path from

initial to target classification represented by |∆|, where |∆| = 0 corresponds to the initial,

unperturbed spectrum and |∆| = 1 corresponds to the perturbed spectrum positioned at
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the mean of the target class in LDA-space. The purple x’s represent the region of greatest

uncertainty in classification, which is defined as the classification transitions from 95% con-

fidence as the initial class to 95% confidence as the target class. This region of interest is

highlighted in  2.7a . The full details for probability determination can be found in Section

 2.2.3 .

(a) (b)

Figure 2.7. Adversarial attack in the LDA space.  2.7a : Demonstration of
an incremental attack from Class 1 (red) to Class 2 (blue). Shown by the x’s
progressively moving towards the mean of Class 2, indicated by hollow blue
circle. The probability of the at-tack belonging to each class was calculated at
each point, x. The probability of the purple x’s in the box belonging to each
class is shown in Figure  2.7b . The purple x’s denote the region of greatest
uncertainty.  2.7b : Zoom in of the probability of the perturbation belonging to
each class in the region of greatest uncertainty, as shown by the boxed, purple
x’s in Figure  2.7a . |∆| represents the degree of displacement toward the mean
of the target class.

2.3.4 Generalizability of the Spectroscopic Adversarial Attack

To confirmed the generalizability of performing spectroscopic adversarial attacks, an

additional demonstration is performed in which the class assignments of the initial and

attacked were changed. Previous results have been successfully replicated as shown in Figure
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 2.8 . It is worth noting that, among the classes (clopidogrel bisulfate Form I, Form II, and

background (glass slide) corresponding to class 1, 2 and 3), class 1 and 2 bear similar spectral

features as they represent the polymorphs of the same chemical; class 3 being the background

therefore bears no significant similar spectral feature to class 1 and 2. In this demonstration,

class 3 was selected as the initial spectrum, it was successfully attacked regardless of features

in the spectral space. This result is significant in that it confirms the theory that it was the

high frequency contents that was driving the mis-classification across the decision boundary.

To assess the degree to which the adversarial results shown previously may be biased

by random sampling, the process was repeated many times while only altering the initial

and targeted spectrum class assignments. The general results shown in  2.9 suggest that

the attacking strategy is robust in misclassifying any selected initial spectrum into desired

targeted spectrum.

The relative magnitudes of the perturbations required to confidently induce misclassifi-

cation are surprisingly small. The dominance of high frequency content in the perturbation

highlights the significance of the variance of the signal in both the initial and target spec-

tra, which appears to drive much of the spectral power in inducing misclassification. This

outcome is somewhat surprising, as no constraints other than proximity to target and min-

imization of magnitude were imposed on the cost function given in Eq.  2.2 . Analysis of

the median magnitudes of the initial spectrum and the applied perturbation corresponding

to > 95% confidence in misclassification show that the applied perturbation was ∼12% the

magnitude of the initial spectrum, and it is sufficient to unequivocally alter the spectral

classification. The graphical depiction in Figure  2.1 may provide some insights regarding the

absence of similarity between the perturbation with either the initial or target spectra. From

inspection of the figure, the most direct path from the initial to the target in the reduced

dimensional space will generally not pass through the origin. As such, reductions of the

major peaks in the initial spectrum and growth of the major peaks for the target spectrum

will not generally correspond to the optimal perturbation.

These results highlight the growing challenges in ensuring statistical validity in regula-

tory, business, and legal decisions derived from data-intensive measurements that may be

subject to incidental or intentional perturbation. As demonstrated herein, adversarial at-
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Figure 2.8. An additional demonstration of an “attack” on an initial spec-
trum from Class 3 to induce a misclassification as Class 2. A) The direction of
the perturbation and the final position in LDA space are shown in the reduced
dimensional space. B) The region of greatest uncertainty in classification is
highlighted by the boxed, purple x’s in panel A. |δ| = 0 is the initial unper-
turbed spectrum, and |δ| = 1 is the mean of class 2 in LDA space. At |δ| = 0.38
there is a > 95% probability that the attacked spectrum belongs to Class 2
based on the position in LDA-space. C) Comparison of the initial spectrum
(bottom, red) with the attacked spectrum at |δ| = 0.38, which bears clear vi-
sual similarity to the initial unperturbed spectrum. D) Optimized perturbation
used to induce misclassification.
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Figure 2.9. Attack strategies similar to those detailed in Figures  2.6 and  2.7 

were performed for an additional 10 initial spectra, selected at random, for
randomly selected target classification and spectra. All produced results were
qualitatively similar to those detailed previously.
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tacks on spectral information can profoundly influence decision outcomes, even when the

perturbations are challenging to visually identify upon manual inspection. These results

demonstrate that subtle digital alteration of files used in the otherwise benign operation

of background subtraction can result in dramatically different outcomes in decision-making

based on spectral analysis. Such relatively subtle changes spread over the entire spectrum

would generally be challenging to discriminate from random noise. These results also demon-

strate the vulnerability of dimension reduction techniques to instrument drift and cosmic rays

among other common detector noise sources. As the volume of data integrated for decision-

making increases along with the corresponding degree of pre-processing required for data

mining, chemical decision-making is only poised to be increasingly susceptible to manipu-

lation through adversarial perturbations. Attacks such as those demonstrated herein may

also lead to future studies for improving chemical classifiers through generative adversarial

strategies analogous. By identification of vulnerabilities, generative adversarial strategies

may enable improvements in reliability and stability in conventional linear spectral analysis

pipelines.

2.4 Conclusions

An optimized perturbation has been demonstrated to induce misclassification of an initial

spectrum to a target class in a reduced-dimensional space. Interestingly, optimized perturba-

tions did not contain obvious spectral features associated with either the initial or target class

spectra, but rather appeared as noisy, featureless traces. Analysis of the median magnitudes

of the initial spectrum and the applied perturbation corresponding to > 95% confidence in

misclassification show that the applied perturbation was ∼ 12% the magnitude of the initial

spectrum. These results highlight the hidden importance of residual high frequency content

in defining the selection of principal coordinates for dimension reduction. Most significantly,

awareness of this implicit sensitivity to unexpected high frequency spectral features in dic-

tating classification may provide routes for improving robustness of dimension reduction

methods and spectral classifiers to both noisy data and intentional alternations.
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3. GENERATIVE ADVERSARIAL LINEAR DISCRIMINANT

ANALYSIS

3.1 Introduction

The increasing volume and complexity of information from modern chemical instrumen-

tation places growing importance on methods to aid in data-intensive visualization and

analysis[ 1 ], [ 2 ]. Dimension reduction is a key arrow in the analysis quiver, in which raw

measurements in a high dimensional space (e.g., spectral space) are reduced to a handful

of manageable feature-dimensions[ 3 ]–[ 5 ]. Transformation to feature-space provides several

key advantages: i) ease of visualization of inherent clustering veiled at high dimension, ii)

signal to noise enhancement through suppression of directions in measurement space that

contribute predominantly to noise, and iii) improved simplicity for statistical hypothesis test-

ing at low dimension. The number of methods available for dimension reduction is many,

ranging from classic linear methods such as principal component analysis (PCA) and linear

discriminant analysis (LDA) through complex neural network architectures for navigating

highly nonlinear interrelationships in the data[ 6 ], [ 7 ]. However, even in these nonlinear cases,

complementary analysis using linear methods can provide useful benchmarking and enable

estimates for quantitative analysis using well-developed statistical methods for hypothesis

testing[ 8 ].

When class information is available, LDA identifies the dimensions that maximize the

resolution between the projected data through maximization of the Fisher linear discriminant

function J [ 9 ]. Based on these metrics, one might initially expect LDA to be always preferred

over PCA when classification information is available (i.e., with supervised data), as PCA

neglects the additional classification information in the analysis. However, in practice, LDA

is often ill-posed and prone to computational instabilities[ 10 ]. Such cases arise when either

the number of training spectra is small, the number of classes is small, or both[ 11 ], [ 12 ].

The reason for the failure of LDA in these limits is tied to a matrix inversion step in its

evaluation[  13 ]. The Fisher linear discriminant function J maximized in LDA is given by the

ratio of the between-class variance divided by the within-class variance, evaluated following

projection of the input spectra onto a given test vector w in spectral-space or matrix of test
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vectors W [ 14 ]. The linear algebra manipulations to determine the optimal projections w∗ to

maximize J involve identification of the eigenvectors of the product of two matrices: one given

by the inverse of a matrix describing the within-class variance SW and the other describing

the between-class variance SB. Because of the matrix inversion operation, the eigenvectors,

and eigenvalues of S−1
W SB may be incalculable or exhibit large uncertainties. Such numerical

instabilities are most likely to arise when the dimensionality of the measurements p greatly

exceeds the number of replicates n in each class (i.e., p > n)[ 15 ], which is often the case in

both spectral and image analyses.

A number of regularization strategies has been proposed for addressing computational

instabilities associated with the matrix inversion step with p > n, and the corresponding

propensities for overfitting that arise as a consequence. Arguably, the simplest regularization

approach is the “shrunken centroids” method proposed by Guo, Hastie, and Tibshirani[ 16 ]

in which scaled addition of an identity matrix to SW results in a mathematically stable

matrix inversion operation. Friedman also proposed a regularized discriminant analysis

integrating linear and quadratic discriminant analysis, combined with a weighted identity

matrix[ 17 ]. While generally very successful in enabling full-dimension LDA of spectral data,

regularization can be quite sensitive to both the method and the degree of regularization[ 18 ].

Beyond regularization, a host of alternative approaches are available for feature extraction

to reduce the spectral dimensionality as a means of overcoming the limitations of direct

LDA at full spectral dimension. The simplest method is to first perform PCA as an initial

dimension reduction step, then performed form LDA within the lower-dimensional PCA-

space. While generally quite successful, the information lost by dimension reduction prior

to LDA cannot be recovered by subsequent operations, such that the method adopted for

feature extraction can significantly impact the quality of the final outcomes. Partial least-

squared discriminant analysis (PLSDA) is also widely used for spectral classification[ 19 ], as

well as dimension reduction[ 20 ]. Fourier transforms and discrete wavelet transforms have

also been implemented for reducing dimensionality in spectral space prior to LDA[ 21 ].

On tackling overfitting arisen from the instability of linear algorithms, a plethora of ma-

chine learning (ML) methods have been demonstrated for this purpose. The most direct

way would be to regularize the matrix inversion process, therefore regularizing the subse-
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quent overfitting consequence. A simple way of introducing regularizing was proposed by

Guo, Hastie, and Tibshirani, in which a scaled identity matrix is added to SW to make it

mathematical stable for matrix inversion[ 22 ]. There are many other approaches for doing

the regularization[ 23 ], [  24 ], still, this approach can be quite sensitive during implementation.

Transfer learning strategies, broadly defined, have also been implements with considerable

success for spectral analysis in the p > n regime. Calibration transfer methods have a long

and successful history of leveraging large volumes of well-characterized measurements to

inform on spectral analyses when few case-specific spectra are available[ 25 ]–[ 27 ]. In work

using artificial neural networks for spectral analysis, Li et al. developed a deep transfer

learning based approach for near infrared spectroscopy multi-manufacturer drug identifica-

tion[ 28 ]. This method achieved higher classification accuracy and scalability in multi-variety

and multi-manufacturer NIR spectroscopy compared with current popular methods, such as

support vector machines (SVM), back propagation (BP), the use of auto-encoders (AEs) and

extreme learning machines (ELM). Zhang et al.[ 29 ] proposed an approach using a transfer-

learning model pre-trained on a standard Raman spectral database for the identification

of Raman spectra of organic compounds that were not included in the database and with

limited data. Zhu et al.[ 30 ] first demonstrated usefulness and effectiveness of GANs for

classification of hyper-spectral images (HSIs), using training samples to fine-tune a discrim-

inative CNN for image classification. However, the application of the paper was limited

to remote sensing with a focus on classification rather than dimension reduction, with no

chemical spectral analysis. Later, Yu et al.[ 31 ] demonstrated classification of pathogens by

Raman spectroscopy combined with generative adversarial networks to analyze the most

salient identification regions in the real spectrum. Much of this collective body of work

centers on classification, with fewer options centered around dimension reduction to aid in

visualization of high dimensional spectral data.

This numerical instability in full-dimensional LDA with small training size has some

qualitative similarities to ”over-fitting” effects arising in machine learning tools, such as

artificial neural networks[  32 ]. Neural networks also generally possess a substantially greater

number of adjustable parameters relative to the number of inputs used in their training[ 33 ]–

[ 35 ]. In the limit of a small number of training spectra, repeated optimization of an ANN
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during training can result in increasing reliance on noise in driving classification/regression

in addition to the signal. As a consequence, overfitting results in an increasing disparity

between the accuracy of ANNs when evaluated with training versus testing datasets. In

the case of ANNs, several strategies to address the consequences of overfitting in data-

limited settings have found widespread adoption. The most common are arguably transfer

learning (TL)[ 36 ] and the use of generative adversarial networks (GANs)[  37 ]. By analogy

with calibration transfer in chemometrics introduced in the preceding paragraph, TL in

neural network applications leverages a pre-trained network to serve as a foundation for the

extension to new systems[ 38 ]. In applications involving neural networks, TL requires access

to a pre-trained network, which may not be available in many instances. One implementation

of TL is through physics-informed simulations for data augmentation approaches introduced

in the discussion of spectral data are also widely used in neural networks[ 39 ], in which neural

networks are trained taking into consideration partial differential equations that represent

physics-informed constrains. Another common approach is the use of generative adversarial

networks (GANs), in which a second competing neural network or algorithm is introduced to

improve the statistical reliability of an ANN. In brief, the generator is most often designed to

convert a random initial seed to an input registered as being genuine and of a particular target

class. A re-optimized ANN is produced to reject the generated “decoy” data as false, which

is then targeted again by an updated GAN. Iteration between attack and defense improves

the broader utility of the ANN in data-limited applications[ 40 ]. Between TL networks and

GANs, GANs have the broader utility of the two approaches, as they can operate wholly

independently for a given new problem without prior knowledge of related systems or pre-

training.

In the previous chapter, we successfully demonstrated adversarial attacks on Raman

spectral data, in which the perturbations were imperceivable upon manual inspection, but

altered the classification of the given spectrum in the reduced space. This demonstration

highlighted the vulnerability of dimension reduction techniques, which are common practices

in the decision-making processes routinely done in the spectral analysis. In light of the suc-

cesses of generative adversarial approaches to minimize over-fitting artifacts in ANNs[ 41 ],

we hypothesize that analogous benefits may be realized to address the numerical instabil-
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ities complicating the use of LDA at full dimension in data-limited applications. To test

this hypothesis, we developed an analog of the nonlinear processes intrinsic in GANs, but

built around linear transformations inherent in LDA. Specifically, we developed a linear

mathematical framework for optimally perturbing a random input seed to generate decoy

spectra and used full dimension LDA to optimally separate genuine and generated training

data, iteratively optimized to compete against each other. This proposed GALDA approach

was compared with other common linear methods for dimension reduction using simulated

spectra generated from an archived spectral database. Following these proof-of-concept stud-

ies, GALDA was used for dimension reduction of a set of spectra from Raman microscopy

of clopidogrel bisulfate micro spheroids. Figures of merit for comparison across different

methods for dimension reduction included: i) the resolution between classes in the reduced

dimensional-space, ii) the degree of over-fitting assessed by the resolution difference between

testing and training data, and iii) the smoothness/roughness of the corresponding “loading

plots” onto which the raw spectra were projected for dimension reduction. These metrics

were performed using the closely related methods of PCA, PLS-DA, PCA-LDA, and reg-

ularized LDA as comparators for GALDA. The strengths and limitations of GALDA were

then critically evaluated in spectro-chemical analysis test cases for dimension reduction of

classified data.

3.2 Methods

3.2.1 The Architecture of the GALDA Algorithm

In a typical GAN structure, two neural networks are set up such that they are com-

peting against one another (thus “adversarial”). The two competing neural networks are

a) a generative component and b) a discriminative component. In GALDA, the “genera-

tive” component is the generation of decoy spectra, which are the combination of “generate

random noise” and “adversarially attack noise to become decoy spectra”, the discriminative

component is the (n + 1) class LDA. Figure  3.1 displays the pseudo code illustrating the

logic of the GALDA algorithm. Briefly, the algorithm takes input structured as excel sheets,

each of the sheet contains repeated measurements of the same class by the column; the data
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would then split into a training set and a validation set. Using the loading vectors produced

via n-class LDA, randomly generated noisy spectra are perturbed into desired classes, also

randomly selected. The combined process of n-class LDA and perturbation is the “genera-

tor”. Afterwards, a n + 1-class LDA serves as the “discriminator”, separating the genuine

data and the generated data, and updating the loading vectors. This process is iterated.

The updated loading vectors at the end of each loop are used to calculate resolution for both

the training and the validation data set. The iteration exits the loop when the resolution

disparity between the two is less than a preset desired value.

Figure 3.1. Pseudo code illustrating the logic of the GALDA algorithm. “res-
olution disparity” refers to the disparity between the training and validation
dataset.

Figure  3.2 provides an overview of the work-flow for GALDA, in which LDA is used

for dimension reduction. Classified initial input data in a) are projected into a reduced

dimensional space defined by LDA, indicated in b). Next, a generative adversarial iteration

(c through e) is performed. The panel in c) shows the projection of randomly generated

inputs serving as initial decoy data projected into LDA-space. In d), the decoy data are then
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modified by the linear addition of a perturbation in spectral space to induce classification as

one of the input classes within LDA-space. In e), LDA is performed again, but now with an

additional class for the decoy data. The generation of decoy data, perturbations, and LDA

is performed iteratively until convergence is achieved (c through e).

Figure 3.2. Work-flow of the generative adversarial linear analysis algorithm.
Initial data that fall into three classes are projected onto a reduced dimen-
sional space. Random inputs serve as initial decoy data projected onto this
LDA-space, depicted here in 2D. The decoy data are then ”attacked” to induce
classification as one of the original input classes in LDA-space while minimizing
the magnitude of the perturbation in spectral space. LDA is then performed
again, but now with an additional class and corresponding dimension for iso-
lating the decoy data. The processes c-e are iterated until convergence is
achieved.
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The script to perform gradient calculations is available at  GALDA Public Repository 

along with the other scripts for performing adversarial and GALDA iterations.

3.2.2 Stopping Criteria

In this initial demonstration of GALDA, many key parameters were selected empirically

and could be subject to further improvements in future implementations. As one example,

the stopping criterion was based on empirical inspection of the trends in Jtot on a case-

by-case basis rather than a formal mathematical assessment. Future implementations with

automated stopping criteria are currently under consideration. The derivative of Jtot evalu-

ated for the training data may serve as a viable metric, provided the assessment is performed

over sufficient numbers of iterations to remove uncertainties in the slope from the “zig-zag”

features in the low training-set limit. Alternatively, generalized assessments could be evalu-

ated based on the size of each input (e.g., spectrum) and the number of inputs within each

class. In addition to the stopping criterion, the number of spectra within each iteration of the

generative loop has also not been optimized in this initial implementation. Optimization of

these and other meta-parameters associated with the GALDA implementation may provide

further improvements in achieved resolution and utility.

3.2.3 Resolution Definition

The eigenvalues J produced by LDA correspond directly to metrics of resolution between

the different classes when projected along the corresponding LDA eigenvectors, serving as

a convenient quantity for assessing the merits of different dimension reduction strategies.

We introduce an algorithm to recover analogous values of J analytically that are applicable

for any projection vector w irrespective of whether it is an eigenvector (e.g., for testing

data, or for testing/training data using other dimension reduction methods). As expected,

the analytical result described below recovers the eigenvalues from LDA when used with

the corresponding eigenvectors. For a given selection of w, the dot product of w with a

given spectrum x results in a scalar projection x. For a two-class (A,B) system with the

populations projected onto a single coordinate, a unit-less form of the resolution R between
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the two classes of scalar-valued projections is given by R = |x̄A−x̄B |√
s2
A+s2

B

, where x̄i is the scalar

mean of class i and si is the experimental standard deviation about the measured mean x̄i

for class i. This definition of resolution holds for any particular selection of vectors w on

which the data are projected, with some projections yielding higher or lower values for the

resolution between the classes. In this two-class system, the Fisher discriminant J recovered

by solving the equation Jw = WTSBW
WTSW W

from the eigenvectors/eigenvalues of S
(−1)
W SB yields

the eigenvector w that maximizes J . Less obviously, the recovered value of J in a two-

class system is identically equal to the squared resolution J = R2 = |x̄A−x̄B |2
s2
A+s2

B
, given by the

between-class scalar variance divided by the combined within-class scalar variance following

projection along w. As such, maximizing J through solving the eigenvector/eigenvalue

problem also corresponds to maximizing the resolution R. Generalization of the resolution

to c-classes of scalar valued projections yields the following expression, calculable for any

selection of w using the scalar projected values xi = xTw.

R2 = Jtot = n−1
tot
∑

i
ni (xi − xtot)2 /

(∑
i
s2

i

)
(3.1)

In this equation, x̄i = x̄Tw is the experimental mean spectrum of class i, x̄tot = x̄Ttotw is

the weighted mean spectrum of all c classes , σ2
i is the variance about x̄i for the projections

of class i, ni is the number of spectra within class i, ntot is the total number of spectra in

the training set, and the summations span i = {1 : c}. When w is an eigenvector of S−1
W SB,

the value of J calculated analytically from projection and summation using Equation  3.1 is

identically equal to the eigenvalue recovered for the Fisher linear discriminant J by LDA.

However, Equation  3.1 has the advantage of also allowing the calculation of analogous res-

olution values when w is not an eigenvector, including evaluation of testing data. A value

of J can be calculated for each selection of w if the reduced dimensional space has greater

than one dimension, with Jtot = ∑c−1
j Jj . This algorithm for evaluating J for 2-class data

and Jtot for c-class data has the distinct advantage of enabling direct comparisons between

the resolutions produced within the training data (which also correspond to the eigenvalues)

and independent testing data not used in the training and therefore not amenable eigenvec-
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tor/eigenvalue analyses. Further, this definition enables ”apples to apples” comparison of

resolution metrics for other dimension reduction approaches.

3.2.4 Matrix Inversion

We elaborate here on the discussion of the ill-posed problem of matrix inversion inherent

in LDA when the number of measurements n is less than the dimensionality in the spectrum

p, and the corresponding impact on the iterative GALDA solution. Several computational

approaches are available for approximating or evaluating the inverse, two of which were

considered in the present study. First, it was noted that the matrix inversion step is one part

of a matrix product, with the eigenvectors of S−1
W SB corresponding to the reduced dimensions

in LDA-space. Solving the combined product in Matlab via Gaussian elimination still results

in an ill-posed problem for dimension LDA, with an infinite number of solutions to the

under-determined problem. Consistent with this expectation, evaluation of full-dimension

LDA produced a resolution within the training data approaching infinity and a resolution in

the testing data approaching zero, as shown in the first few iterations of GALDA in Figure

 3.5 A with p > n. With 100 generated spectra per iteration, the combined number of real

and generates spectra after 12 iterations was 1367 (1300 generated spectra combined with

67 genuine spectra). This is the first iteration for which the matrix inversion operation is no

longer ill-posed for this dataset with spectra containing 1340 dimensions. From that point

onward, the matrix inversion operation is equivalent by both Gaussian elimination and the

Moore-Penrose pseudo-inverse. Consistent with these expectations, curves of testing and

training resolution that deviated significantly when p > n converge to similar outcomes in

this asymptotic limit of p << n with n evaluated using both genuine and decoy data.

3.2.5 Raman Simulations

Simulations were performed to assess the merits of the GALDA algorithm for a dataset

with known ground-truth results. Six Raman spectra selected from the Romanian Database

of Raman Spectroscopy[ 42 ] (magnetite, galena, molybdenite, goethite, stibnite, pyrolusite)

recorded with 1024 wavelength channels served as ground truth source spectra. Following
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Figure 3.3. Evaluation of testing and training resolution for full-dimension
LDA evaluated using Gaussian elimination to perform matrix inversion (A)
verses via Moore-Penrose pseudo-inverse (B) in the iterative GALDA algo-
rithm.
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normalization, 100 simulated spectra for each of the six were generated by addition of Gaus-

sian distributed noise with a mean of 0 and a standard deviation of 0.02. The spectra were

grouped pairwise into three classes, resulting in a nontrivial, bimodal distribution within

each class. This pairwise grouping (analogous to a single beach with two kinds of pebbles)

was designed as a simple model for classes with nontrivial probability distributions, routinely

encountered in practical spectral decomposition analyses.

Figure 3.4. LDA and PCA dimension on simulated Raman spectra, with each
class containing a binary mixture of mineral spectra with additive normally
distributed noise: A) LDA, and B) PCA. The total number of spectra used in
the analysis was 100 per class, split here into an 80/20 training versus testing
dataset. Training data are indicated by open dots, testing data by filled dots.

A simple dimension reduction of the simulated data of bimodal distribution is visualized

here using LDA and PCA for comparison. The simulations were designed to exemplify

that PCA — as an unsupervised method — under-performs when data is of nontrivial

distribution. Details of the simulations can be found in the Methods section in the main

manuscript. Briefly, three classes of Raman spectra were simulated with 100 spectra per

class. LDA and PCA were performed respectively as shown in Figure  3.4 A (LDA) and

B (PCA). To make SW and SB square matrices (and invertible), additional spectra were

generated via knowledge of the mean and standard deviation of each wavelength for each

class.
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Several key trends are apparent from inspection of the simulated spectra projected onto

two-dimensional PCA and LDA-spaces. From Figure  3.4 , differences in the variance about

the centroid are clearly evident for the training data (open) and testing data (filled), con-

sistent with significant overfitting. More strikingly, the PCA results illustrate the origin of

the overall poor resolution between the three classes of data in PCA-space. Because each

class consisted of a combination of spectra from two distinct populations, maximization of

the total variance neglecting class information spread data from a single class across mul-

tiple regions within PCA-space. These results illustrate the susceptibility of PCA to poor

resolution in analyses of data with nontrivial probability distributions within spectral space.

However, PCA nevertheless produces good agreement between the distributions recovered

for the testing and training datasets.

3.2.6 Raman Measurements

In addition to Raman simulations as mentioned above, experimental Raman data were

also employed to test the GALDA algorithm. Details of the dataset can be found in the

previous chapter (see  2.2.4 ).

3.3 Results and Discussion

3.3.1 Visualization of the Overfitting Problem

Before considering GALDA, it is useful to illustrate the impact of overfitting artifacts

in the application of full dimension LDA in under-determined systems. Complications from

overfitting in full dimension LDA are illustrated in Figure  3.5 , using PCA as a comparator.

Briefly, Raman spectra with 1340 wavelength channels were subject to dimension reduction

by LDA (Figure  3.5 A) and PCA (Figure  3.5 B). To make SW and SB square matrices (and

invertible), additional spectra were generated via knowledge of the mean and standard de-

viation of each wavelength for each class. A total of 84 Raman spectra were divided into

training and testing data with an 80:20 split, respectively (67 spectra for training and 17

spectra for testing). Evidence for overfitting by LDA is shown in Figure  3.5 A, in which a

substantial disparity arises between the distributions of the testing and training data. Specif-
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ically, the training data were tightly distributed and not representative of the corresponding

distribution in the testing data.

This result is an archetypal example of overfitting, as routinely arises with LDA and

numerous other machine learning feature extractors in cases of low replicate numbers of

high dimensional data[ 43 ]. In contrast, PCA is significantly less susceptible to overfitting

under these same sample-limited conditions, as the distributions of both training and testing

data for this data set are qualitatively similar. However, PCA is an unsupervised method,

such that all the additional information associated with class label is not integrated into the

dimension reduction. Consequently, the recovered eigenvectors from PCA are not generally

optimized for class resolution. As a result, general qualitative guidance for selecting between

LDA and PCA in supervised datasets recommends the use of PCA for small numbers of

high dimensional data and LDA for low-dimensional data and/or with large numbers of

classes[ 43 ]. The conditions corresponding to the tipping point between the two effects (loss

in resolution from overfitting for LDA and from neglect of class information in PCA) are

rarely immediately obvious and are highly data dependent.

Figure 3.5. Illustration of overfitting in dimension reduction using LDA in
(A) and PCA in (B). Classes 1, 2, and 3 correspond to clopidogrel bisulfate
forms I and II, and background, respectively. The total number of spectra used
in the analysis was 84 per class, split here into an 80/20 training versus testing
dataset. Training data are indicated by open dots, testing data by filled dots.
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3.3.2 The Iterations in GALDA Before Convergence

Figure  3.6 provides an overview of the “migration of location” in the reduced dimension

during the GALDA iterative process for the Raman spectroscopy of clopidogrel bisulfate.

Initially, a 3-class LDA of the training data (67 spectra from each class), resulted in a

clear separation between the three classes (Form I, Form II, background), indicated by

the red, blue, and black projected data points, respectively. Next, uniformly distributed

random spectra (seed data) were generated and projected onto this initializing 2D LDA-

space, resulting in a broad distribution indicated by the magenta data points in Figure  3.6 A.

Perturbation through adversarial attack in spectral space transformed the seed data to decoy

data, which subsequently projected close to targets randomly assigned from the training set,

as demonstrated in B. Then, performing a 4-class LDA forced the decoy data to separate

from the training data by assigning the decoy data as an additional class.

Upon projection in 3D space, the LDA coordinate with the greatest eigenvalue (LD1)

distinctly separates the training and decoy data. The remaining two coordinates (LD2 and

LD3) serve as the updated reduced dimensional LDA-space for the training data. Using

this “attack and defend” strategy, randomly generated seed data were perturbed to produce

decoy data, which were separable along an additional dimension in LDA-space. The 2D

projection after 20 iterations of adversarial generation followed by 4-class LDA is shown in

Figure  3.6 C, with the magenta decoy data clustering around the center of the 2D LDA-space.

Adversarially generated decoy spectra were accumulated in each iteration. Results from 80

iterative loops are shown in Figure  3.6 D with the magenta corresponding to early iterations

and yellow to subsequent iterations. The separation between genuine and decoy data along

the LD1 coordinate is most evident in the training data.

3.3.3 Resolution Convergence

Using resolution defined earlier in Equation  3.1 , an inspection of how this metric evolves

during the iterative process is plotted in Figure  3.7 A representative comparison of the multi-

class resolution Jtot achieved by PCA and GALDA is shown in Figure  3.7 A. The trend in

the GALDA curves demonstrates a smooth convergence between the testing and the training
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Figure 3.6. An overview of the GALDA process. (A) 3 class LDA results
together with random initial seed spectra (magenta). (B) Seed spectra follow-
ing perturbation to produce decoy data (magenta) projected using the same
reduction vectors in (A), C) 4-class LDA with the same data in (B), with the
decoy data (magenta) separated along a third LDA coordinate into the page.
(D) 3D rendering of a 4-class LDA (3 genuine + 1 decoy) after 80 iterations,
illustrating the separation of genuine and decoy spectra by GALDA.
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data. In the early iterations of GALDA, the large gap in the multi-class resolution between

the training and testing data is indicative of strong overfitting, in which both signal and

spurious noise contribute to the resolution within the training data. For comparison, PCA

reduction to 2D PCA-space using the training data is displayed as dashed lines for both

training and testing data. This trend is consistent when performing five-fold cross validation.

This study with just three training spectra as shown in Figure  3.7 B suggests that mathe-

matical instabilities preventing the use of LDA at full dimension no longer serve as a barrier

for analysis via GALDA. In practice, the use of three training spectra is highly inadvisable,

as such a small sampling size is generally unlikely to represent a sufficient population of

spectra for reliable classification. Nevertheless, the successful mathematical implementation

of GALDA in this extreme limit supports the assertion that non-representative sampling,

rather than instabilities in the algorithm, serves as the practical bottleneck dictating the

reliability of GALDA in the limit of small training size.

Figure 3.7. Representative trends in resolution Jtot evaluated with increas-
ing iterations of GALDA, with PCA results shown as comparators; (A) 80%
training, 20% testing (B) 3% training, 97% testing.
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3.3.4 Cross-Validated Comparison With Other Methods

The performance of GALDA was compared with other common dimension reduction

methods of spectral data, the results of which are summarized in Figure  3.8 . Specifically,

alternative methods included PCA, PLS-DA, PCA+LDA, and regularized LDA using a

shrunken centroids regularizer[ 44 ]. These methods were selected based on their simplicity

and ubiquity and are not meant to represent an exhaustive set of comparators for dimension

reduction. With the exception of PCA, the others are also supervised methods that retain

the label information when performing dimension reduction, analogous to GALDA. Two

key metrics were considered for assessing the merits of the different dimension reduction

approaches: resolution (or more properly, the squared resolution given by J) and overfitting.

Resolution in terms of Jtot is defined in detail in Eq.  3.1 . Overfitting is simply given by

the difference in Jtot between the testing and training data. Five-fold cross-validation was

performed, with the means and standard deviations given in Figure  3.8 . Two datasets with

different sample distribution were used to evaluate the different models mentioned above.

The first row correspond to results from Raman simulations derived from a database of

mineral spectra and designed with bimodal distributions within each class. The second row

correspond to experimentally measured Raman data of clopidogrel bisulfate.

The differences in testing set resolutions indicated in Figure  3.8 reveal interesting, but

not entirely unexpected trends. For the clopidogrel bisulfate data, all methods considered

yielded only minor differences in the recovered resolution following five-fold cross-validation.

For the simulated dataset with a non-monotonic probability distribution, the resolution for

PCA was well below that of all the supervised methods. This result is entirely consistent

with differences expected for supervised versus unsupervised dimension reduction; unsuper-

vised methods neglect to incorporate class information in the dimension reduction process.

As such, PCA and other unsupervised methods are well-established to be prone to under-

perform using supervised datasets. A representation of the simulated spectra in a 2D reduced

dimensional PCA-space was shown in Figure  3.4 , providing a clear visual indication of the

mechanism for resolution failure when maximizing the total variance in the data in PCA

irrespective of class status. Noteworthy in the simulated dataset, PCA+LDA and RLDA
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Figure 3.8. Cross-validated comparison results of GALDA with other stan-
dard methods, tested with two datasets. The first row is for a simulated
dataset, while the second row is calculated for experimental Raman spectra of
clopidogrel micro spheroids. Metrics are resolution (first column) and the de-
gree of overfitting (second column). Unit-less resolution is defined by Fisher’s
discriminant Jtot using Eq.  3.1 . The degree of overfitting is given by the
difference in Jtot between the training and testing data.
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yielded resolutions for the testing data that were statistically higher than GALDA and PLS-

DA. Initially, one might be be drawn by this outcome to conclude that PCA+LDA and

RLDA should be preferred as dimension reduction methods relative to GALDA. However,

resolution alone is a potentially hazardous metric without also considering overfitting.

The overfitting trends shown in Figure  3.8 are particularly noteworthy. First and fore-

most, GALDA and PCA consistently produced the smallest degrees of overfitting relative

to all other methods considered for both simulated and genuine spectra, with PCA clearly

outperforming GALDA. Second, the gains in testing resolution from PCA+LDA and RLDA

discussed in the preceding paragraph are generally offset by corresponding increases in over-

fitting. As discussed in the Introduction, high overfitting susceptibility increases the like-

lihood of low resolution and/or misclassification for data outside the testing and training

datasets. Both PCA+LDA and RLDA yielded overfitting substantially greater than the res-

olution for the clopidogrel bisulfate dataset and on par with the resolution for the simulations.

Consistent with this propensity, PCA+LDA and RLDA yielded high roughness coefficients

in the corresponding loading plots, with the potential to integrate residual noise contribu-

tions in the dimension reduction operation. In the converse extreme, the reduced overfitting

by PCA relative to GALDA is also offset by the potential for major reductions in resolution,

as illustrated in the simulated dataset. As such, GALDA and PLS-DA strike an attractive

balance between maximizing resolution while minimizing overfitting, with GALDA provid-

ing comparable resolution and lower overfitting than PLS-DA in the test cases considered

herein.

The improved performance of GALDA relative to PCA+LDA is particularly noteworthy,

since both algorithms conclude with an LDA operation. For GALDA, LDA is performed

at full dimension of p including both genuine and generated data, while for PCA+LDA,

LDA is performed at the full dimension n of PCA, which is lower than p. The improved

performance of GALDA may arise from the retention of information that is is necessarily lost

in the initial dimension reduction to PCA-space in PCA+LDA. Alternatively, improvements

by GALDA may arise from iterative suppression of residual overfitting still present within the

PCA+LDA operation and not removed by the initial transformation to PCA-space. Since
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PCA+LDA and GALDA yielded similar resolutions but substantial differences in overfitting,

we attribute the improvement to the latter of the two explanations.

3.3.5 Mechanism Discussion

Hints on the mechanism of action for achieving this suppression of overfitting by GALDA

can be gleaned from inspection of the 3D projection shown in Figure  3.6 D, which includes

both genuine and decoy data. Interestingly, decoy data in the initial iterations were centrally

located consistent with an entirely random distribution, with subsequent iterations gravi-

tating towards the central regions of each of the three classes in all three LDA dimensions.

This trend is apparent from the gradient color of the decoy dataset, changing from magenta

to yellow, with the color bar representing the number of seed/decoy data accumulated. Con-

sideration of the collective data set resulted in an inverted “three-legged stool” shape for the

generated decoy data. Qualitatively, we interpret this trend to indicate that initial iterations

resulted in general suppression of noise within the loading plots, subsequently transitioning

to the production of generated decoy data increasingly similar in form to the genuine data.

In this implementation of GALDA, the first LDA axis (LD1) always spontaneously cor-

responded to the direction of greatest separation for distinguishing genuine vs. generated

spectra. It is worthwhile considering the generality of this assignment; it is conceivable that

an axis within the genuine data set may potentially exhibit a greater eigenvalue for the

Fisher linear discriminant than that arising from the disparity between genuine and decoy

data, leading to mis-assignment of the generative adversarial discriminatory axis. Fortu-

nately, several safeguards can be built into the GALDA algorithm to ensure that LD1 is

universally selected as the generative adversarial discriminatory coordinate. In the simplest,

the weighting of the adversarial data can be rescaled within the LDA assessment to place a

greater discriminatory weight on the generated decoy data. This rescaling can be performed

either by multiplication of the class variance (both within and between) of the generated

decoy data by a scalar greater than 1, or by removal of normalizations for the number of

spectra in each class. In the latter case, the larger accumulated number of generated data

alone are sufficient to ensure assignment to LD1.
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3.3.6 Visualization of the Loading Vectors

A comparison of the loading vectors for dimension reduction to 2D by PCA and GALDA

for the clopidogrel bisulfate data is shown in Figure  3.9 , indicating close agreement between

the two methods. In general, one would not expect GALDA and PCA to produce similar

loading plots. The PCA axes optimally maximize the total variance within the data set,

while LDA axes are generated to optimize the resolution between the classes. The slight but

statistically significant improvement in resolution from GALDA relative to PCA within the

testing data is likely a consequence of the different objective functions between LDA and

PCA, as LDA explicitly optimizes resolution. The convergence of GALDA to a result close

to PCA is reassuring, as PCA is anticipated to perform reliably in the limits of small class

numbers and small training set size of monotonically distributed data. Also consistent with

expectations, the loading vectors for full dimension LDA prior to iterative optimization were

dominated by noise, suggestive of high over-fitting. Inspection of the mean spectra for each

class in Figure  3.9 B provides context for interpreting the features recovered by GALDA.

For example, in Figure  3.9 A loading vector 2, both PCA and GALDA recover two peaks

shouldering each other at 380 cm−1 and a single peak at 1230 cm−1, with a sharp peak at

380 cm-1 in loading vector 3. Not surprisingly, these same peaks differ notably in the mean

spectra for the three different classes, displayed in Figure  3.9 B.

3.3.7 Loading Vectors Roughness Evaluation

If it is reasonably assumed that the key spectral features supporting discrimination be-

tween the different Raman data sets generally consist of peaks spanning multiple pixels, then

one would expect optimal loading plots to reflect this trend, with minimal high-frequency

content. While not as robust as metrics based on resolution and overfitting, smoothness has

the distinct advantage of not being a property explicitly optimized by any of the algorithms

considered. As such, it offers the prospect of a low-bias assessment of the quality in the

recovered loading plots. To quantify this property such that the smoothness of the loading

vector produced by different models can be compared against one another, the contrary of

smoothness – roughness – is computed, as it is mathematically easier to define. Given a
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Figure 3.9. (A) Before and after GALDA loading vectors comparison. The
PC loadings are plotted as well for reference. (B) Mean spectrum of the original
data.
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vector v, roughness can be defined as the root-sum-of-squares (RSS) of the second derivative

of v, evaluated at the highest accessible frequency (i.e., by convolution with a 3-element

derivative digital filter) and normalized by the RSS of v:

roughness =

∥∥∥−→v′′∥∥∥
2∥∥∥−→v ∥∥∥
2

(3.2)

Quantitative evaluation of the roughness is shown in Figure  3.10 for the suite of dimension

reduction methods considered herein. The roughness generally follows the overfitting trends

summarized in Figure  3.8 , consistent with residual high-frequency noise in the loading plots

coinciding with a higher overfitting propensity.

3.3.8 Optimization: PLS-DA and Regularization

As a complement to the core focus on the simplest and most common dimension reduc-

tion methods (LDA and PCA), studies were also performed to assess GALDA relative to

dimension reduction by partial least squares discriminant analysis (PLS-DA). PLS-DA has

greater computational stability than LDA, and unlike PCA, retains classification informa-

tion for supervised learning. In addition, PLS-DA is readily available within many widely

available data analysis packages. In the present study, PLS-DA was performed using an

open source MATLAB GUI tool described by Zontov et al.[ 45 ]. Two separate evaluations for

PLS-DA were performed and are shown in Figure  3.12 . In the first plot (Figure  3.12 A), PLS-

DA was performed with the recommended default 12 PLS components for a 12-dimensional

PLS-DA space, the first two of which producing the greatest resolution in the training data

are displayed in the figure. As a complement, PLS-DA was also performed with just two

PLS components to match the 2D dimensionality in which the data are displayed in Figure

 3.12 B.

The trends depicted share qualitative similarities to those in Figure  3.5 . When evaluated

with many components, PLS-DA produces large disparities in the resolution produced in

the training data relative to the testing data, consistent with the over-fitting observed in

conventional LDA. In contrast, the PLS-DA performed with just two components resulted
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Figure 3.10. Evaluation of the roughness of the loading vectors with different
dimension reduction algorithms.
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in good agreement between the testing and training data, but with a total resolution Jtot

lower than both PCA and GALDA under identical conditions (former resulted in a Jtot of

around 6.0 while the latter around 6.8).

Both of these trends can be easily rationalized by consideration of the limiting behaviors

of PLS-DA evaluated in the extremes of high and low dimension as detailed nicely in a 2014

tutorial review by Brereton and Lloyd[ 19 ]. In the extreme of full dimension (in this case,

a total of 1340 PLS-DA components), PLS-DA becomes mathematically identical to the

full-dimension LDA employed in the present study. While 12 is certainly much less than

1340, the general principle still applies. When evaluated with a sufficiently large number of

components, PLS-DA becomes prone to the same over-fitting instabilities inherent within

LDA. In this limit, it is therefore not surprising to observe large disparities between the

resolutions achievable in the testing and training data and correspondingly low resolution

within the training data set. Indeed, these trends strongly suggest that generative adversarial

approaches may greatly improve the general reliability of PLS-DA through reduction of over-

fitting contributions by analogy with GALDA. The lower resolution of PLS-DA relative to

LDA and PCA when evaluated with two components can also be rationalized by the extreme

limits of a single PLS-DA component. As demonstrated by Brereton and Lloyd[  19 ], PLS-

DA converges to a projection of the data along a vector paralleling the simple Euclidean

distance to centroids (EDC) in a two-class system. Dimension reduction based on the EDC

incorporates no information on the variance about the centroid, which plays a major role in

optimizing the resolution. As such, the total resolution is anticipated to be less than that

recovered by LDA.

Regularization based on the shrunken centroids regularized discriminant analysis (RDA)

was implemented by scaled addition of an identity matrix to SW , and the scaling was adjusted

within the range between 0 and 1, following Guo, Hastie, and Tibshirani[  16 ]. Depending on

the scaling constant, the rate of the convergence was affected, as illustrated in Figure  3.11 .

From the trends shown, regularization clearly has a major effect in the early iterations of

GALDA but exerts little influence on the final outcome following convergence, after which

LDA is no longer ill-posed. It should be noted that the shrunken centroids approach to

RDA is just one relatively simple example of a larger class of regularization architectures.
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The integration of RLDA with GALDA resulted in significant improvements in the rate of

convergence in GALDA with similar outcomes in resolution and overfitting. The reduction

in overfitting afforded by GALDA to enable full-dimension LDA with p > n suggests that

generative adversarial data augmentation strategies may help suppress overfitting in broader

classes of classified dimension reduction and discrimination algorithms.

Figure 3.11. Regularized LDA with different scaling constants, evaluated
for the clopidogrel bisulfate Raman data split between 80% training and 20%
testing.

3.3.9 Significance of GALDA

Given the conceptual origin of GALDA emerging from the success of GANs in artifi-

cial neural networks, it is interesting to compare and contrast the two data-mining tools.

The established utility of GANs for data augmentation to minimize over-fitting in ANNs

is directly analogous to the reductions in over-fitting realized in GALDA relative to naive

LDA[ 46 ]–[ 48 ]. In addition, back-propagation algorithms for optimization of attacks in GANs

have direct analogies to the analytical expression derived in this work for the optimized per-

turbations in GALDA, both of which are based on gradient approaches. However, despite

these high-level similarities, the implementation and output of GANs and GALDA are no-

tably distinct. Perhaps most strikingly, GALDA has the distinct advantage of linearity in

design; the final product of GALDA is a relatively simple linear transformation of the data
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Figure 3.12. Dimension reduction by PLS-DA for the same Raman data
set for reference. Selecting a default number of 12 PLS components with
65 training spectra as shown in A) leads to large differences in resolution
between the testing (RGB circles) and training (black circles) data. Reducing
the components to two recovers trends qualitatively similar to those produced
by PCA.
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to produce continuous distributions of transformed data. Uncertainties can be propagated

straightforwardly through linear transformations associated with dimension reduction by the

methods considered herein, with common statistical methods for analysis and testing still

firmly holding. The assumption of linearity serves as an additional constraint in GALDA

and the other dimension reduction methods considered, enabling reliable implementation

with much smaller training set sizes relative to analogous neural network architectures. Of

course, these strengths only hold when data are linearly connected; nonlinear relationships

(e.g., image magnification, rotation, translation, etc.) are difficult to capture by any of the

methods considered, in which case transitioning to ANN architectures may improve clas-

sification accuracy. Additionally, most GAN-assisted ANN platforms produce discretized

decisions as outputs (e.g., class determination of a given input) rather than used for dimen-

sion reduction/data visualization. As such, the machine learning engine driving GALDA can

be viewed as highly complementary to GAN platforms, implementing generative adversarial

strategies in ways inaccessible to existing neural network architectures.

3.4 Conclusions

This chapter described an iterative generative adversarial approach to address overfitting

propensities inherent in linear discriminant analysis at full dimension and assess key figures

of merit in comparison with PCA, PLS-DA, PCA+LDA, and RDA methods using both sim-

ulated and experimentally measured Raman spectral data sets. Relative to other supervised

dimension reduction approaches considered, GALDA yielded substantial reductions in over-

fitting and comparable resolution. Overfitting using GALDA was generally comparable to

or higher than PCA, but with substantial gains in resolution by GALDA in simulations with

multi-polar distributions, consistent with expectations for unsupervised classifiers. These

results suggest potential broad utility of GALDA to minimize overfitting in full-dimension

LDA of supervised spectral datasets. The substantial reductions in overfitting arising in

GALDA relative to other supervised methods considered herein for dimension reduction

methods are tentatively attributed to the targeted suppression of only the subset of noise

features that overlap with genuine spectra in the reduced dimensional space. Despite the
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successes of GALDA in this preliminary study, readers should be cautioned that the com-

parators and GALDA were all performed using default parameters to minimize introduction

of complicating meta-parameters; as such, further optimization of the comparator methods

could reduce potential benefits by GALDA suggested by the current study.
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4. PHYSICS ENCODED NEURAL NETWORK (PENN) FOR

FLUORESCENCE RECOVERY AFTER PHOTOBLEACHING

DATA ANALYSIS

4.1 Introduction

Diffusion measurements of protein in solutions or matrices bear great importance concern-

ing drug release/deliver [ 1 ], even rational drug design[ 2 ]. Given the importance and urgency,

multi-dimensional research has been conducted for measuring, modeling and probing the

diffusion process[ 3 ], [ 4 ]. On the experimental side, new methodologies are being proposed

to aid the measurements of diffusion coefficient, which in turn contribute to screening drugs

and modified drug conjugates[ 5 ], [ 6 ]. On the theory side, models have been created to simu-

late the process of drug-releasing[  7 ]. With the advances of artificial intelligence and machine

learning methods, it’s attempting to explore whether these methods apply to the area of

protein diffusion measurement, as artificial neural networks (ANNs) have a proven record of

predicting outcomes with high precision albeit being a black box[ 8 ]–[ 10 ].

For the success of ANNs to translate into protein interactions, it would be negligent to

treat data as they are in digital image processing or natural language processing, which is

the primary area ML methods demonstrated success. The architecture is hardly a naive

translation, i.e. treating feature space as randomly pointing vectors. Protein interactions

entail mathematical equations regulated by the fundamental law of forces that connect fea-

tures. However, a “black-box” neural networks obfuscate the underlying physics driving the

outcome prediction. Furthermore, the data requirements for implementation substantially

increase the expense and complexity in acquiring protein-related training data. This chapter

proposes the integration of physics-based constraints with tunable generalizability directly

into the fabric of an ANN as an intermediate layer, thereby reducing data volumes needed

for training and providing access to physical insights into the driving mechanisms in the

diffusion model for proteins.

Of the research involving machine learning and protein interaction, the focus has been

primarily on optimizing the set of hyper-parameters such that existing ML methods can
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produce high-quality results[ 11 ]. The integration of physics-based parameters into ML is

less extensive and quite new in comparison. The basic idea is to incorporate physical laws

to restrict/inform neural networks with the need for less data for reliable model training.

Raissi, Perdikaris, and Karniadakis[ 12 ] first introduced the concept of using neural networks

as universal function approximators, as an alternative to substitute the classical numerical

method for solving partial differential equations (PDEs). Physics informed neural networks

(PINNs) are the then employed to fluid dynamics[ 13 ]–[ 15 ] and blood pressure prediction[ 16 ],

which were usually achieved by driving the neural network to minimize the residual of physics

questions governing the physical process; Baldi et al.[ 17 ] proposed a new strategy named

parameterized neural network in which the approach is slightly different, the list of input

features were extended to include more parameters for describing connected physics.

The work in this chapter is an extension to that of Baldi et al. A physics parameter that

is the dependent variable of the rest of the inputs variable is included in the input features;

the output of the ANN is a set of physical parameters that can be used to mathematically

calculate the dependent variable. The structure is validated first using simulated diffusion

data, then experimental FRAP data. The motivation for the design of a custom ANN is

two-fold: i) it can be purpose-built for our specific physics-based models for intermolecular

interactions, and ii) the additional constraints imposed by physics will reduce the size of the

required training data.

4.2 Methods

4.2.1 DLVO Theory

Starting from a DLVO framework to extend the perturbations to diffusion coefficients

from protein-protein self-interactions to protein-matrix interactions[ 18 ], [  19 ]:

D = D0 (1 + kD22c2 + kD23c3) (4.1)

In this model, the protein/matrix interaction based on their concentrations (c2, c3) de-

viates the diffusion coefficient D from the asymptotic diffusion coefficient D0, characterized

by respective factors (kD22 for self interactions, kD23forprotein −matrixinteractions). For
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the present purposes, the concentration of matrix is anticipated to greatly exceed that of

the protein, such that the corrections from protein-matrix interactions are anticipated to

exceed those of the corrections from variation in protein concentration. This assumption is

further justified by the absence of a protein concentration gradient in FRAP measurements,

in which the composition of the droplets is generally spatially uniform prior to analysis. In

all instances presented herein, the protein concentration was identical in each experiment to

isolate changes due just to perturbations from kD23 . In the absence of intermolecular inter-

actions, the asymptotic diffusion coefficient D0 can be described using the Stokes-Einstein

equation based on the hydrodynamic radius of the protein Ra
h and the viscosity η.

D0 = kBT

6πηRa
h

(4.2)

In Eq.  4.2 , kB is the Boltzmann constant and T is the temperature.

The matrix concentration-dependent perturbation to the diffusion coefficient kD23 can

be written in terms of two main contributions from excluded volume kex
D23 and short-range

interactions ksrD23 .

kD23 = kex
D23 + ksrD23 (4.3)

The excluded volume contribution kex
D23 is directly proportional to the corresponding

second virial cross-coefficient contribution from excluded volume bex
23. Consistent with the

notation of Roberts et al.[ 20 ], the virial coefficient expressed in units of volume (inverse

number density) will be indicated with lowercase notation. Conversion to the virial coefficient

in terms of concentration normalized to molecular weight in units of mL g−2 indicated by Bex
23

can be done by the following relation connecting the two different common units conventions.

B23 = b23NA

MaM b
(4.4)

In the preceding expression, NA is Avogadro’s number, M is the molecular weight of

either the protein (superscript a) or the polymer (superscript b). The expression for bex
23
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can be calculated analytically based on a hard-sphere model, where Rh is the hydrodynamic

radius for either the protein (superscript a) or the polymer (superscript b).

bex
23 =

4π

(
Ra
h +Rb

h

)3

3 (4.5)

The expression for the excluded volume contribution to the diffusion constant bex
23 is

derived from the sum of virial coefficients that are evaluated over the integration bounds of

r = 0 to r = 2Rh[ 20 ], [  21 ].

kex
D23 = 0.39Bex

23M
b (4.6)

The expression for the short-range contribution to the diffusion constant ksrD23 is derived

from the sum of virial coefficients that are evaluated over the integration bounds of r = 2Rh

to r =∞.

ksrD23 = −1.024(Bex
23 −B23)M b (4.7)

The virial coefficient, B23, can be defined as the sum of excluded volume, electrostatic,

and short-range contributions.

B23 = Bex
23 +Bel

23 +Bsr
23 (4.8)

The relationship between the excluded volume and short-range contributions to B23 is

determined by τ23, as shown in Eq.  4.9 , where τ23 corresponds to the strength of the adhesive

force between the protein and the matrix.

Bsr
23 = −B

ex
23

4τ23
(4.9)
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The electrostatic contribution to B23 is defined by the integral of the electrostatic poten-

tial between the protein and the matrix evaluated over the integration bounds of r = Ra
h+Rb

h

to r =∞ to avoid integrating over the region of excluded volume between the two particles.

Bel
23 = 4πNA

MaM b

∫ ∞
Ra
h

+Rb
h

(
1− e−βU(r)

)
r2dr (4.10)

The βU(r) function, which describes the strength of electrostatic interaction between

particles as a function of r, is described in Eq.  4.11 :

βU (r) = ZaZbλB
e−κ(r−Rah−Rbh)

r (1 + κRa
h)
(
1 + κRb

h

) (4.11)

The inverse Debye-Hückel length, κ is a measure of the distance that the electrostatic

effect of a charge persists in a solution as a function of ionic strength, I.

κ2 = 4πλBNAI (4.12)

The Bjerrum length, λB is the distance between two elementary charges at which the

electrostatic interaction is equal to kBT .

λB = e2

4πε0εkBT
∼= 0.7nm (4.13)

In this model, we approximate the charge on each particle as a locally linear function of

pH with parameters a1 and a2 as the slope and the intercept, respectively.

Za ∼= a1pH + a2 (4.14)

A diagram of the equation relationships in this diffusion model is shown in Figure  4.1 .

 4.1 adapted a tree structure to illustrate how variables are passed on by equations explained

above to calculate the diffusion coefficients D. The calculation process starts from the

bottom layer of the tree (β,Za,Zb,λB,κ ), and works upwards by using equations represented

by shaded equation numbers(e.g. represents B23 = Bex
23 +Bel

23 +Bsr
23). The calculation process
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finishes when diffusion coefficients D is calculated , which folds in all values and relationships

contained in the tree structure diagram, as illustrated in Figure  4.1 .

4.2.2 Encoding Physics Level Parameters Into an ANN

Figure  4.2 is one simple example of an artificial neural network. It consists of an input

layer, that matches the dimension of features of the experimental data; an intermediate layer,

in which there are ten neurons; and lastly, an output layer that consists of just one neuron,

which is also the dimension of the desired prediction space. Note that, if an ANN consists

of more than one intermediate layer, then it is typically referred to as a deep neural network

(DNN[ 22 ]). In the context of this chapter, the term DNN and ANN are loosely interchanged;

as the structure of the ANN is not the key assignment to be solved, and the complexity of the

ANN is far from “deep”, i.e. instead of dozens of hidden layers, this chapter only explored

into 2 ∼ 3 intermediate layers.

To incorporate the DVLO theory elucidated in section  DLVO Theory with the classical

ANN structure as shown in Figure  4.2 , the full structure of the algorithm is shown in Figure

 4.3 . A first ANN is used for nonlinear regression between inputs (experimental conditions,

diffusion constant recovered from the FRAP measurements detailed in section  FRAP Theory

and Experimental ) and outputs (physics level parameters such as τ).

Input neurons are denoted temperature, pH, normality, which are color coded blue in

Figure  4.3 , meaning that they are either directly identifiable by looking up specs in databases,

or they are independent variables that are directly quantifiable. The greed coded neuron,

captioned relaxation timescales, is the independent variable from FRAP measurements.

The output layer consists of physics level parameters in the DLVO theory, in the simu-

lations, we choose them to be hydrodynamic radius, tau, charge respectively. Additionally,

charge is a secondary variable that is linked to a slope and intercept term in relation to pH,

thus the notation of pHA and pHB. This output layer from the ANN is denominated as

Physics-Encoded Parameter Space. The task of the ANN is to predict the designated physics

parameters.
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Figure 4.1. A graphical representation of the tree structure diagram. The
diagram visualizes the tree structure relationship of variables and equations
shown in theoretical framework. From the bottom layer (β,Za,Zb,λB,κ ) to
the top layer (D), the tree diagram shows how equations connect variables to
ultimately describe the measured diffusion coefficients D
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Figure 4.2. A simple example of Artificial Neural Network (ANN)

Figure 4.3. General structure of the algorithm. A first artificial neural net-
work is used for nonlinear regression between inputs (experimental conditions,
diffusion constant) and targets (latent space physical parameters). The diffu-
sion constant in association with unmeasured experimental conditions are then
calculated with the analytical model.
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The second half of the algorithm is to use the analytical model described in  DLVO Theory ,

to calculate the “relaxation timescales”. There is where this work and traditional ANN tasks

differ. In a traditional setting, the task would be to train an ANN, such that the relaxation

timescales can be predicted given the experimental design, i.e. this variable should locate

at the output layer of the ANN. Instead, in this structure, relaxation time, even though it

is a dependent variable, resides along with the other independent variables, together they

serve as the input layer. The rationale behind this design is that, to train a traditional ANN

to reach high accuracy prediction requires a lot of data. Furthermore, the ANN would still

operate as a black box without offering any insight into the physical process.

4.2.3 FRAP Theory and Experimental

The experimental data were acquired using fluorescence recovery after photobleaching

(FRAP). FRAP determines the kinetics of diffusion by bleaching a region of interest in the

sample, and measuring how quickly fluorescent molecules move into the bleached area, thus

providing information about the kinetics to the sample of interest[ 23 ].

Modelling the FRAP process and recovery a diffusion coefficient starting from Fick’s law

of diffusion:

∂

∂t
C(ρ, t) = ∇D∇C(ρ, t) (4.15)

Fick’s law of diffusion describes describes diffusive flux to the gradient of the concentra-

tion. The depth of field for the photobleaching laser is comparable to the overall thickness

of ∼ 50 µm for the 700 nl droplets sandwiched between the slide and cover slip, such that

the system can be reasonably assumed to be uniform in the z axis (i.e., for photobleaching

with a pencil-beam). In this limit and for isotropic, normal diffusion, the general diffusion

equation in Eq.  4.15 can be simplified to the following form:

C(r, t) = C(r, 0)⊗
[
(4πDt)−1 e− r2

4Dt

]
(4.16)

85



In Eq.  4.16 , D is the diffusion coefficient (now a scalar), t is time, r(x, y)2 = (x− x0)2 +

(y− y0)2 is the position vector within the lateral plane relative to the photobleaching origin,

C(r, t) is the time-dependent concentration profile, C(r, 0) is the initial concentration profile

immediately following photobleaching, and the ⊗ symbol denotes convolution. According

to Eq.  4.16 , the concentration profile at t > 0 is given by the convolution of the initial

concentration profile following photobleaching and a time-varying 2D Gaussian function.

If the initial photo bleached pattern is also reasonably described by a 2D Gaussian func-

tion imposed on a constant average concentration background of Cave, the convolution of two

2D Gaussian functions has a relatively simple closed-form analytical solution (i.e., another

2D Gaussian function).

C(r, t) = Cave

[
1− A

(
2πσ2

b

)−1
e
− r2

2σ2
b

]
⊗ (4πDt)−1 e− r2

4Dt

= Cave − A
(
2πσ2

b + 4πDt
)−1

e
− r2

2σ2
b

+4Dt

(4.17)

Leveraging radial symmetry, the position vector r has been replaced by a scalar value r of

the displacement magnitude from the photo bleach origin. In addition, A is the relative depth

of the photobleached spot (A < 1), and σb is the root mean squared deviation of the initial

2D Gaussian photobleach profile. This analysis implicitly assumes that the photobleach step

arises over a timescale significantly faster than the subsequent recovery and can be modeled

as instantaneous.

In the high-throughput FRAP analysis, a series of fluorescence images was acquired

following photobleaching with a Gaussian excitation beam. The first post-bleach image

was fit to a Gaussian, G(x, y) of the functional form shown in Eq.  4.18 , using a nonlinear

least-squares fit with A, σ, x0, and y0 as adjustable parameters in the fit.

G(x, y) = Ibkd − Ae−
(x−x0)2+(y−y0)2

2σ2 (4.18)

Ibkd is the background fluorescence intensity from which the Gaussian bleach spot is

subtracted. After x0 and y0 were obtained from the initial fit, each subsequent post-bleach
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image was fit to the same equation with a different nonlinear least-squares fit with only A and

σ as adjustable parameters. After values for A and σ were obtained for the photobleached

spot in each frame, the time dependent values of A were fit with Eq.  4.19 to recover the

diffusion coefficient D and the recoverable fraction R.

A(t) = (A0 −R)σ2
0

σ2
0 + 2Dt +R (4.19)

A0 and σ0 are the best-fit values from the initial post-bleach frame (t = 0). Diffusion

coefficient values were obtained for samples of varying protein and matrix composition,

protein and matrix concentrations, ionic strength, and pH. The experimental conditions

(pH, temperature T , ionic strength I, concentrations c), properties of the protein/matrix

(hydrodynamic radius Rh, molecular weight M , charge behavior a1 & a2), and experimental

results (diffusion coefficient D) were fit with the diffusion model described in the DLVO

theory section to recover the adhesive force parameter, τ23 for each protein-matrix pair

under investigation.

The traditional FRAP instrument comprises a typical microscope set-up, for which the

experiments can laboratories and tedious, not to mention time-consuming when the images

need to be analyzed frame by frame. We are using a high-throughput FRAP instrument

from Formulatrix. Figure  4.4 is a schematic illustration of high-throughput FRAP instru-

mentation and data analysis. The FRAP instrument is capable of automatic analysis of 96

well plates prepared by robotic liquid handling. In a reasonably short amount of time ( ∼

4 hours), temperature, pH, salt concentration, composition, and concentration. The experi-

mental conditions can be varied to obtain 96 measurements per plate of diffusion constants

under highly reproducible conditions. The proteins are three different monoclonal antibodies

(mAb) drug conjugates and BSA.

4.2.4 Data Simulation and Processing

First, we simulated FRAP data to validate the PENN architecture. Given the equation

set described in  DLVO Theory  , random values following a uniform distributions were gener-
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Figure 4.4. Schematic illustration of high-throughput FRAP instrumentation
and data analysis overview. DCM: dichroic mirror. Protein samples were
placed on 96 wells plate and FRAP image stack was collected in real-time.
Region of interest was crossed out to do least square. The convolution of
time dependent 2D Gaussian with initial concentration gave time-dependent
concentration, followed by FRAP analysis to recover diffusion coefficients.
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ated for each of the variables involved in the equations. The data simulation is summarized

in Table  4.1 .

Table 4.1.
Data Simulations

physics definition range low range high unit
pH pH 5 9
T temperature 293.15 305.15 K
N normality 0.01 0.05 M
M molar mass 125e3 175e3 Dalton
Ph hydrodynamic radius 4.5 6.5 nm
a1 offset, Z versus pH plot 50 100
a2 slope, Z versus pH plot -25 25
tau “stickiness“ 0.1 2

And the involved constants are listed in Table  4.2 

To generate simulated data, two additional parameters are also defined: p and e, rep-

resenting types of proteins and the repetitive experiment for per protein respectively. Note

that, for the simulated data, only protein-protein interaction is considered. Additionally, a

standard scalar is applied to all data such that the ANN is considering numbers on the same

scale. Everything is evaluated upon a reverse transformation.

Table 4.2.
Constants in DLVO

symbol physics definision value unit
kB Boltzmann constant 1.3807e-16 g cm2 s−2 K−1

NA Avogadro’s number 6.0221409e23 K
λB Bjerrum length 0.7 nm
A viscosity constant A (water) 2.414e-4 g cm−1 s−1

B viscosity constant B (water) 247.8 K
C viscosity constant C (water) 140 K
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For the experimental data that were acquired using the FRAP instrument as described

in section  FRAP Theory and Experimental , the model was extended to a protein-matrix

interaction, which involves a B23 term instead of B22. For the simulated data set, T, pH,

N, D were stacked together as the ANN input, a1, a2, M, Rh, tau were stacked together as

the ANN output, i.e. to be predicted by the ANN. For the FRAP experimental data, only

tau were considered output and everything else were considered input. The rationale will be

discussed in the Results and Discussion section. The ANN model was built using Keras[  24 ],

Adam optimizer was used for the training optimization, loss function was chosen to be mean

squared error, and the metrics used during the training was accuracy.

4.3 Results and Discussion

4.3.1 PENN With Simulated Data

PENN combined a simple black-box ANN and an analytical model, instead of a straight-

forward traditional ANN. The rational for this design is that, the analytical model offers

physics constraints such that ANN can be trained with less data. As is known, experimental

data are expensive to acquire, even more so if desiring to reach the amount for “big data

analysis”. Therefore, in consideration of the limited data size part of the uncertainty is

reduced by imposing mathematical connections within the variable.

Consequently, the variables produced at the output layer of the ANN exhibit high covari-

ance because of the mathematical connections within. It is hypothesized that they reside on

a hyper-surface. The task of recovering these variables would be analogous to fitting a curve

to a high-order polynomial. The quality of the fit can be improved by adding more terms in

the polynomial expansion, but at the expense of higher covariance and lower statistical con-

fidence in the recovered parameters. In other words, the result of the regression analysis will

not be a unique set of parameters, but rather a “feature” (hyper-surface) within parameter

space defined by multiple combinations of parameters of comparable probability.

Using an initial 1000 types of protein, per protein-protein simulated data was repeated

100 times, with 100 epochs and a batch size of 20, The training of the model reports accuracy

and loss as shown in Figure  4.5 . Note that, the train-validation split is separate from the
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testing dataset to be used later for the analytical model, i.e. the train-test split shown in

Figure  4.5 is a subset of the training data that was allocated for ANN. To reiterate, the

dataset is first split into train and test, when trainwas fed into the ANN, upon fitting the

model, train was further split into train and val; and test was reserved for testing independent

of the ANN training process. In other words, train is the sub-dataset used for training the

ANN; val is the sub-dataset used to determine whether the ANN over-fits or under-fits; and

test is the sub-dataset used to determine the accuracy of the entire model, ANN included.

The nomenclature for train val and test here slightly differs from when they are used in

cross-validation.

Figure 4.5. Plot of model accuracy and loss during the training process

Upon inspection of Figure  4.5 , the line indicating the training data reaches relative stable

accuracy at about 60 epochs, when the loss for training data is low. Yet the accuracy for the

training is not ideal, at ∼ 0.6. And this model doesn’t generalize well to the testing data, as

the orange curve doesn’t comply with the blue curve. The trends indicate that, this model

is not well-trained to be applied to reliably predict the data, which is confirmed with test

dataset as displayed in Figure  4.6 .

Traditionally, this is where the design of the ANN be improved such that higher accuracy

can be achieved. Numerous actions can be taken to achieve this goal. For example, increasing

the number of the hidden layer, altering the number of neurons per layer, try different batch
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Figure 4.6. ANN prediction of the physics parameters
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sizes, try different activation functions, etc. Essentially, there is an unlimited number of

hyper-parameters can be tuned even though with diminishing result.

Figure 4.7. Diffusion coefficient recovered by PENN using simulated data.

However, when we took the output of the ANN, to calculate diffusion coefficient using

the analytical model, a nice agreement between the ground-truth and the recovered diffusion

coefficient was achieved, the result is shown in Figure  4.7 . This agreement supports the

hypothesis that, when using an ANN as a tool for regression analysis, the uncertainty shared

by the physics layer variables, cancels each other out after combining using the analytical

model, i.e. uncertainty for the physics layer variables reside on a hyper-surface.

4.3.2 Least Squares Fit Recovered Ground Truth for Experimental Data

The concept of PENN has been successfully demonstrated to recover the diffusion con-

stant as shown in the previous Section( 4.3.1 ) to practically meaningful FRAP data, it is

first important to have the ground truth. In the simulations, ground truth of most variables

are randomly generated, assuming a known range (except for diffusion constant for a given

protein-protein pair, which was calculated using the DLVO model).
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However, getting the ground truth of the experimental data required an additional step,

as the tau (τ) parameter is not an experimental measurable.

Given the known variables summarized from databases as shown in Table  4.3 (In the

charge behavior column, a is the slope and b is the y-intercept of the Z vs. pH linear fit), and

D (diffusion constant) is an output from the FRAP image analysis, therefore, known. The

equations in section  DLVO Theory combined serves as an implicit function of τ , which can

be solved via a least-square fit, assuming τ is a constant given a protein-matrix combination

pair.

Table 4.3.
Protein/matrix variables in the DLVO model.

Parameter Molecular weight Hydrodynamic radius Charge behavior

Method SEC SEC
Matrix - zeta potential

Protein - amino acid pKa
HA 1500 kDa 81 nm a = -194 e/pH; b = 100 e
Collagen 280 kDa 50 nm a = -34 e/pH; b = 249 e
BSA 66.5 kDa 2.68 nm a = -15 e/pH; b = 93 e
mAb 1 149 kDa 3.51 nm a = -19 e/pH; b = 163 e
mAb 2 146 kDa 3.48 nm a = -19 e/pH; b = 163 e
mAb 3 150 kDa 3.51 nm a = -19 e/pH; b = 163 e

Setting the fitting parameters as:

1 tau_ini = 10 * rand (2, 4);

2 options = optimoptions (’lsqnonlin ’, ’StepTolerance ’,1e-20, ’

FunctionTolerance ’, 1e -20);

3 options . Algorithm = ’levenberg - marquardt ’;

Recovered τ values as shown in Table  4.4 .

Before setting the τ values listed in Table  4.4 as the ground truth for ANN, it’s useful

to estimate the uncertainties in those values. The major sources of uncertainties come

from i) the physics constants in Table  4.3 , as they represent the average of the selected

analyte, not necessarily the actual experimental values (summarized in Table  4.5 ); ii) the
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uncertainties in experimental variables, when the intended deviated from the actual, such

as the concentration of the matrices, which is hard to be accurate, to begin with; iii) the

uncertainty from the least-squares fit.

Table 4.4.
τ recovered from least squares fit

mAb1 mAb2 mAb3 BSA
HA 1.31 1.40 8.89 2.41
Collagen 0.87 0.69 1.37 1.16

Table 4.5.
Uncertainty values for parameters in the DLVO model.

Parameter Measure of uncertainty RSD
Protein/matrix concentration, c Liquid handler specs 3.50%
Matrix molecular weight, Mb SEC 1%
Matrix hydrodynamic radius, Ma SEC 1%
Protein hydrodynamic radius, Rha SEC 0.50%
Temperature, T Temperature logger 0.01%
Charge behavior, Z Zeta potential/amino acid charge Error from fit

To account for all of the uncertainties mentioned above, the error propagation equation

based on Taylor linearization is used to estimate the uncertainties in τ .

As τ is implicitly given by ψ (xiii, D) = τ , with xiii ∈ {experimentalvariables}. Therefore,

uncertainty in τ can be calculated as shown is Eq.  4.20 :

σ2
τ = σ2

f it +
∑
xi

[
∂ψ (ui)
∂xi

∣∣∣∣∣
ui

]2

σ2
xi (4.20)
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Uncertainty from the fit was obtained from the covariance matrix, X which was calculated

from the Jacobian, J and the variance in the residuals, vR, as shown in Eq.  4.21 . The variance

in each fitting parameter, σ2
f it is found along the diagonal of the covariance matrix, X[ 25 ].

X = vR
(
JT × J

)−1
(4.21)

As such, the uncertainties associated with τ is compiled in Table  4.6 :

From Table  4.6 , we conclude that the τ value is relatively accurate, in which the general

uncertainty is about 10 percent. Bearing in mind that, uncertainty becomes less relevant

once data was put into the ANN. Therefore Table  4.6 serves more purpose when discussing

ways to improve later on in the chapter.

Table 4.6.
Uncertainties in prediction of τ calculated via error propagation.

mAb1 mAb2 mAb3 BSA
mean SD mean SD mean SD mean SD

HA 1.31 0.11 1.39 0.11 8.89 9.04 2.41 0.32
Collagen 0.87 0.11 0.69 0.06 1.37 0.60 1.16 0.11

4.3.3 PENN With Experimental Data

In the previous section ( 4.3.2  Least Squares Fit Recovered Ground Truth for Experimental

Data ), the ground-truth was calculated using the physics parameter τ . The PENN used in

section  PENN With Simulated Data was then modified, such that only τ was the Output of

the ANN, and the rest of the variables were stacked up as the Input. With the same ANN

parameters as in the simulation, experimental data produced results as shown in Figure  4.8 .

Comparing Figure  4.8a with  4.6 (the ANN output for simulated data), given that the

y = x line is what the ANN model is trying to regress to, all of them have low correlation

coefficient R2. From Figure  4.8a to Figure  4.8b , R2 improved significantly. This phenomenon

is expected as explained before: the physical parameters are correlated to one another.

96



(a) ANN prediction of the physics parameter
τ .

(b) Diffusion coefficient recovered by PENN.

Figure 4.8. Applicate PENN to FRAP experimental data.
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Figure  4.8b illustrates the final result produced by PENN using the experimental FRAP

dataset. The regression coefficient R2 was calculated to be 0.377, which is not as optimal

as the simulated dataset as shown in Figure  4.7 , Nevertheless, a clear trend where the

data-points gravitate towards the y = x line is observed, suggesting that the concept of

incorporating physics parameters into ANN improves the predicting accuracy compared to

that from the raw ANN output.

4.3.4 Uncertainty Evaluation and Future Developments

A detailed breakdown of uncertainties tabulated in Table  4.6 is visualized in Figure

 4.9 . As shown in  4.9a , the most uncertainty comes from the least-squares fit. During

the fitting process, the tolerance had been set to a minimum of 1.0 × 10−20. Because the

least-squares method minimizes the sum of the offsets/residuals of data points, most likely,

the uncertainties from the fit arise from instrumentation systematic error. For example,

from Table  4.5 , the reported RSD of the liquid handler is 3.5% from the manufacturer’s

website; realistically we observe variances from drop to drop in the 96 well-plate to be

visually noticeable thus the protein/matrix concentration might not be accurate.

Upon close inspection of Eq.  4.1 , the concentrations are on the first order of the expansion

series, therefore its’ accuracy carries greater impact of the result’s accuracy, i.e. if the factor

in the expansion/additional deviations, as whatever calculated with the diffusion coefficient

k is multiplied by the concentration.

Alternatively, the concentration could be considered an unknown variable be recovered

through least-squares fit. In which case it would be a two-parameter (τ plus concentration)

fit instead of one-parameter (τ only). However, the equations in  4.2.1 involve integration,

therefore, nonlinear, it would need many repeated trials of the same condition for the recov-

ery, which would be experimentally expensive, and against the design of PENN, i.e. using

mathematical relations to account for the lack of training data.

Future development can also consider exchanging the contents of what are currently

in Inputs and Outputs in the ANN, as long as Diffusion Constant remains in the Inputs,

the design of the PENN is conserved. As much as this is opening up the possibilities of
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(a) Uncertainties from the least squares fit recovered using Eq.  4.20 .

(b) Uncertainties from selective experimental variables, the variables were selected because they
account for the majority (> 95%) of the experimental variance.

Figure 4.9. Uncertainties contributions from different factors
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the architecture, it is also increasing the number of hyper-parameters to be tuned, which

increases the complexity of the architecture.

Finally, currently, the ANN contains a simple one hidden layer of ten neurons, previously

it has been rationalized that, with the lack of complexity of the feature space of the FRAP

data, there’s diminishing returns trying the increase either the number of hidden layers or

the number of neurons for increasing the accuracy of the ANN. However, should we choose

to reorder what are stacked in Inputs and Outputs respectively, it will be worth looking into

increase the complexity of the ANN.

4.4 Conclusions

This chapter described the concept of incorporating physics level parameters into artificial

neural networks. The physics level parameters residing at the Outputs layer are mathemati-

cally related, such that the individual prediction of each is not necessarily accurate, but the

final prediction of PENN is of much higher accuracy than that of the intermediate layer.

The architecture was proven successful with a simulated dataset, and validated by actual

dataset acquired using FRAP. The bottleneck to improve the predicting accuracy further lies

in eliminating systematic error from the instrumentation, which could potentially be difficult

to eliminate, alternative algorithmic improvement was discussed as well. PENN is a promis-

ing algorithm to greatly reduce the effort to gain access to the diffusion constant avoiding

the bench-top measurement. It could potentially offer insight into the protein interactions

theory.
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5. HYPERSPECTRAL INFRARED IMAGING

5.1 Introduction

In accelerated stability testing of active pharmaceutical ingredients (APIs), a critical step

in the formulation development pipeline, APIs are exposed to elevated humidity and tem-

perature ranges for extended periods of time to mimic the storage conditions, such that the

stability of the API can be determined. If crystalline APIs transition from one polymorph

to another under these conditions and the polymorphs exhibit varying degrees of solubility,

and consequently, bioavailability medication may lose its potency or have unanticipated side-

effects, endangering patients. Even slight changes in the overall composition of the API can

dramatically affect patient outcomes. The standard assay techniques to test for API crys-

tallization include titration, capillary electrophoresis, chromatography, spectroscopy, and

electroanalytical methods[ 1 ]. Of these methods, optical spectroscopic methods carry the

advantages of non-invasive, therefore suitable for fast screening processes. Vibrational mi-

croscopy, especially infrared (IR) imaging, yields a complete IR spectrum at each pixel,

provides chemical sensitivity, allows identification of target moieties across heterogeneous

systems, and enables label-free characterization of active pharmaceutical ingredients. Due

to the varied applications, IR imaging is one of the most widely adopted analytical methods

to date. Infrared spectroscopy has a rich history in molecular characterization, leading to

well-established libraries for various molecules and different conformations, as well as wide

applications in pharmaceutical[ 2 ], biomedical[ 3 ] and metrology applications[ 4 ], thus serv-

ing as a potential candidate for real-time monitoring of stability monitoring of the APIs of

interest.

To achieve real-time monitoring, the drug production pipeline calls for flexible, versatile

imaging modalities, especially for the drugs existing in the form of crystals capable of pre-

senting multiple polymorphs[ 5 ]. As such, when analyzing these samples, it is advantages to

evaluate structure on a per-particle basis, preferably through a real-time and non-invasive

technique. IR imaging with quantum cascade lasers (QCLs) is an option for an imaging

modality that can provide advantages over current benchtop techniques. Unlike common

light sources (low-brightness broadband thermal or synchrotron sources) fast widely tunable
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QCLs afford potential real-time IR imaging, on top of being more portable. Due to a focus

on spectral ranges and packaged QCL sources (i.e., the usability for QCLs[ 6 ]), since the ini-

tial demonstration of QCLs[ 7 ], efforts have mainly been made in combining IR microscopy

and QCLs.

A parallel effort of integrating QCLs into microscopes is in the exploration of classifiers

for hyperspectral classification upon acquiring the information-rich IR spectra. Kuepper

et al. took advantage of the tunability of QCLs to achieve short acquisition time for high-

quality diagnostic images[ 8 ], in which they also used a simple random forest (RF) classifier

for fast classification of the stained brain tumor tissue sections, this is the first demonstration

of clinical incorporation, which proved QCLs to be a reliable substitution for FTIR-based

microscopes in the clinical environment. Similarly, Yeh et al. optimized the configuration

such that the signal-to-noise ratio is comparable to the fastest available HS FT-IT imaging

system[ 9 ]. Other similar systems have been constructed with minor variations in the design,

with occasional integration of ML methods.

In this chapter, a design to enhance spatial resolution of IR microscopy is introduced,

leveraging both the tunability of QCLs and the integration of machine learning tools. IR

transmittance images were acquired at 1190–1340 nm−1 and visible images of 640 nm laser

transmittance of spherical particles were acquired simultaneously. IR and visible images were

registered via cross-correlation USAF-1951 test grid images collected for both wavelength

regimes. Following image registration, chemical classification was conducted via a single-

layer neural network on each pixel within the IR images. Image segmentation conducted via

image morphological analysis enabled the selection of individual particles within the visible

image. A consensus chemical classification for pixels within each particle was then utilized

to determine particle chemical identity, which was then visualized by color mapping the

original visible-intensity image. In this manner, chemical sensitivity from IR spectroscopy

was encoded into the visual images with resolution on the order of the visible wavelength,

increasing an order of magnitude gain in theoretical resolution over direct imaging with IR

wavelengths. This process was first applied to a test system of glass beads and poly-methyl-

methacrylate beads on the order of 50 µm in diameter, and second applied to distinguish

the Form I and Form II polymorphs of clopidogrel bisulfate, an inhibitor of blood platelet
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aggregation. The molecular formation of polymorph form I is known to be chemically active

for its intended treatment, while form II is inactive, as it exhibits slower dissolution, kinetics

and corresponding reductions in bioavailability. The detection between the two species is

synonymous with that of a polymorph transition for the drug real-time monitoring pipeline.

5.2 Methods

5.2.1 Microscope Apparatus

The microscope is constructed as shown in Figure  5.1 . A 640 nm diode laser producing the

visible beam was combined with an IR beam, emitted by the QCL. Prior to the combination,

the 640 diode laser beam was 4f coupled to allow for fine adjustment of the collimation to

match that of the IR beam at the germanium window. The two co-propagating beams

were expanded twice with two sets of 4f lenses and scanned across the sample using a pair

of galvanometer mirrors, then after beam expansion, they were focused with a Cassegrain

objective onto the sample plane. Light from the sample plane was re-collimated using a

collection lens, and a germanium window was used to separate the 640 nm beam from the

IR beam. The 640 nm light was detected using a photo-multiplier tube (Hamamatsu). IR

light was detected using an IR-sensitive photodiode (Vigo Systems).

Responses of the detectors were digitized synchronously with a 10 MHz clock using a

digital oscilloscope card (ATS9350, AlazarTech). Custom software (MATLAB) was used to

down-sample raw data to coincide with IR laser pulses and remap the down-sampled data

onto a set of 256 pixel × 256 pixel IR images (one for each QCL channel) and one 256 pixel

× 256 pixel 640 nm bright-field image.

5.2.2 Sample Preparation

Dichloromethane (DCM) was purchased from Sigma-Aldrich. To prepare the mixture

of DCM and water, they were mixed in a sealed tube, upon vigorous shaking, the mixture

were pipetted onto a CaF2 slide. Polymethyl methacrylate (PMMA) and silica beads were

purchased from Cospheric. Clopidogrel bisulfate form I and form II were produced in-house

at Dr. Reddy’s Laboratories and were used as received. For these solid beads samples,
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Figure 5.1. Instrument schematic of the hyperspectral microscope.

107



training data for particle classification were acquired from images of pure components; testing

data were acquired from images with equally mixed beads.

5.2.3 Digital Data Processing

Digitization was initialized by a function generator that triggers both the Alazar digital

acquisition card and the QCL. A custom MATLAB script was used to acquire 6240 digiti-

zation events at a rate of 160 MHz, corresponding to an acquisition duration of 40 µs. Prior

to any experiments, a blank image was acquired then taken the first derivative to determine

the rise and edges of each pulse, resulting in an integration matrix, i.e., a mask to apply

to each sample to obtain signal only where the laser is firing. The integration matrix has a

conditionality of n × 6240, n being the active channels per given time.

A separate image was created for each of the individual channels by reshaping the vector

into a 256 pixels × 256 pixels image. The IR images were then subsequently circularly shifted

to match the FOV of the visible image.

The general scheme was to segment the FOV utilizing the image of high resolution (the

visible image), and use the stack of IR images to classify the chemical composition of each of

the 256 × 256 pixels. Different classification methods were analyzed: K-means clustering and

artificial neural network (ANN) classification was performed in Matlab, all the other machine

learning methods were conducted employing sklearn [ 10 ] python packages. For some of the

samples, segmentation was performed first, and then classification was pooled from the group

of pixels belonging to the same segment, thus increasing SNR. The segmentation method

determined for the respective samples is dependent on the morphological properties of the

samples: for spherical samples such as beads, a circular shape was assumed. Therefore,

for the PMMA and silica samples, a Matlab script was used to find circles first then the

center and the radius of the circles within the FOV were calculated. For samples with

irregular shapes, the watershed algorithm in OpenCV [  11 ] was utilized to establish the

different domains first.
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5.3 Results and Discussion

5.3.1 Aligning Visible Beam and the IR beam

To compensate for the FOV offset caused by misalignment and systematic instrumenta-

tion drifts over time, post-processing of aligning the visible FOV and IR FOV was performed

regularly. To do so, the two FOVs were superimposed and inspected when imaging a USAF

(U.S. Air Force) test grid, and a horizontal and a vertical shift by the pixels was deter-

mined. Figure  5.2 illustrates how these shifts are reflected in realistic images. For this

specific dataset, The IR images were circularly shifted 20 pixels horizontally and 25 pixels

vertically, as determined by the USAF test grid. It is worth noting that the IR image has a

considerably lower resolution because IR imaging was diffraction-limited. Therefore there is

no optimal number of pixels to shift circularly.

Figure 5.2. Before and after circularly shifting the IR images to overlay with
the visible image
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5.3.2 Spectroscopic Analysis of Dichloromethane

First, we confirmed the IR microscope’s capability of acquiring an effective IR absorbance

spectrum. The QCL channels have a wavelength range between 1190 nm−1 and 1340 nm−1

residing within the fingerprint region, making this technique holding potential for identifying

numerous chemicals. Of the many IR absorbances within this region, the C-H oscillation

exhibits high absorbance. The acquired spectra of DCM results are presented in Figure

 5.3a (spectra of a single-cycle) and Figure  5.3b (averaged spectra from 50 cycles). A single

spectrum was acquired from this microscope in as few as 9.6 µs, taking advantage of the

QCL array firing 32 channels with a pulse width of down to 300 ns. The acquisition time

constraint for the 50 times averaged spectrum was the duty cycle of QCL cannot be above

2% per channel, 20% overall. Accordingly it was configured to fire 200 ns pulses followed by

800 ns before the next channel. Thus the overall firing frequency was 1 MHz, resulting in a

1.6 ms acquisition time for 50 cycles.

(a) (b)

Figure 5.3. Absorbance spectra for DCM. (a) Absorbance spectra for DCM
acquired with a single-cycle. (b) DCM spectra averaged with 50 cycles.

As shown in Figure  5.3 both spectra captured the absorption at 1255 cm−1, albeit the

single-cycle spectra displayed a large noise ratio, (the noisy areas in the non-peak area), but

the high noise level disappeared after taking an average of 50 cycles.
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5.3.3 Segmentation Based on Sample Morphology

For simplicity reasons, images of beads of spherical shape were first segmented assuming

perfect spherical shape, i.e., per segment can be described using a single parameter r (radius).

Even though the actual beads may not be perfectly spherical, the deviation from the spherical

shape is negligible. To segment this kind of sample, we first generate a dynamic threshold

map using the function adaptthresh; the the image was then binarized and filled with holes

using imbinarize and imfill respectively; finally, all of the circular shapes within the field

of view were identified using imfindcircles. The segmentation effect of this method can be

viewed in Figure  5.8 . The key steps and functions are listed below:

4 T = adaptthresh (img_red , sensitivity );

5 img_bw = imbinarize (img_red ,T* scale_factor );

6 img_bw = imfill (img_bw ,’holes ’);

7 [centers ,radii] = imfindcircles (img_bw , radiusRange );

For samples with more complicated morphology, such as the clopidogrel bisulfate crys-

tals, the segmentation task becomes a more complex one. There are numerous sophisticated

methods to create an optimal mask, many of which are complicated algorithms involving

separate training and validation processes. Dilpreet et al. listed various image segmentation

methods to be categorized into seven divisions: threshold-based, edge-based, region-based,

clustering-based, watershed-based, PDE-based and ANN-based[ 12 ]. The recent research fo-

cus has been on ANN, with various applications in biomedical imaging. The multi-functional

ANN algorithms can solve problems that call for separating similar objects that are contact-

ing each other. However, ANNs are multi-processed and tedious to train. The watershed

method was adopted and tailored for the clopidogrel samples for its generalizability and sim-

plicity. It also offers several parameters for optimization, while no separate training process

was needed.

The watershed algorithm considers the grayscale image as a topographic surface. Briefly,

it establishes the low-intensity pixel areas as “valleys”, and fills the isolated “valleys” with

“water”.[ 13 ] The watershed algorithm is a multi-step process, as shown in Figure  5.4 . Prior to

feeding the images into the algorithm, the images were inverted as signals collected by PMT
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had inverted intensity. To create a boundary between two contacting objects, figure  5.4a was

hard-thresholded to generate a binary image, then taken distance transform (Figure  5.4b ) –

foreground pixels are replaced with distance calculations of the nearest background pixels –

therefore locating the object centers of the foreground. Then these centers are inverted as

“valleys” to be passed on to the watershed algorithm to “fill” – i.e. detecting the boundaries

of the contacting objects (Figure  5.4c ). The watershed approach generally works irregular

domains, specifically for the clopidogrel bisulfate poly-crystalline; the particle domains are

similar to spheres, with frequent cases of particles contacting one another.

(a) Raw image, after inverting
and scaling the intensity.

(b) Distance transform of Fig-
ure  5.4a .

(c) Final segmentation results

Figure 5.4. Segmentation of clopidogrel sample using opencv

To obtain the finest segmentation results, looking at our samples, the types of parameters

that can be fine-tuned are the cutoff values for thresholding to generate the initial mask,

types of distance transform (L1, L2, etc.). For the majority of the clopidogrel samples,

the default parameters offered respective functions mentioned previously in the dissertation,

making this process an automatic fast approach.

Alternatively, a superpixel approach can be adopted. Briefly, the superpixel approach

groups pixels similar in intensities[ 14 ], In other words, the images would be split into a

user-defined number of discretization. However, the disadvantage of this method, is that the

segmented image does not immediately resemble prominent shapes in the original image.
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Therefore, the superpixel approach is not suitable for the analysis reported in this chap-

ter. However, if the samples in question were not well-shaped crystals, but rather domains

without clear boundaries, the superpixel approach might be an approach to utilize.

5.3.4 Classification of the Segmented Images

It has been demonstrated that DCM presents a clear spectral feature at 1255 cm−1 due

to the C-H scissors mode (see Figure  5.3 ). Towards the goal of high-resolution IR images,

for proof of concept, a stack of hyper-images was acquired as shown in Figure  5.5a . After

applying K-means clustering, the interface between DCM and water was determined as

illustrated in Figure  5.5b .

(a) (b)

Figure 5.5. Classification of DCM using k-Means. (a) When imaging, simul-
taneously acquired images at each wavelength from the array. (b) K-means
clustering to distinguish DCM from H2O

Next, beads of different compositions (PMMA and silica) were imaged. Classifying based

on IR transmittance of this sample is a more complicated case than DCM, which consisted of

only even film surface. The IR transmittance will consist of partially scattered light because
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of the curvature of the beads. Nevertheless, the transmitted IR should still be specific to

respective components.

Figure 5.6. Spectrum of the beads

First, the beads were imaged separately with pure components – the images indicated

that the averaged PMMA and silica spectra resemble each other in most spectral features

(Figure  5.6 ). In addition, the small number of channels (32) limited the resolution of the

spectra, making it harder to classify. However, the inherent distribution of the spectrum

was not to be fully represented by the averaged spectra as shown in Figure  5.6 , but rather,

the inherent distribution of the total that the ANN would still capture. Therefore, a simple

ANN was trained from the GUI of MATLAB for this classification task. This ANN contains

just one hidden layer of ten neurons. Around ten particles of each class (PMMA, silica,

or background) were cropped and reshaped into matrices as Input, with rows representing

features and columns representing sample number. The ANN reported the receiver operating

characteristic (ROC) plot as shown in Figure  5.7 . ROC plot is a way of determining the

quality of the ANN classifier (or any classifier). The more each curve hugs the left and top
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edges of the plot, the better the classification. According to Figure  5.7 , the ANN was able

to discriminate between the classes PMMA, silica, and background.

Using the trained ANN, a mixture image of PMMA and silica was fed into the ANN for a

pixel-based classification, the results are shown in Figure  5.8 . In this figure,  5.8a represents

the visible image, and  5.8b one of the IR images. The visible image clearly displays the

feature of the spheres, The IR image is diffraction-limited, which only displays blocks of

shades, instead of clear features of either the silica or the PMMA. Note that the two lines

(one horizontal and one vertical close to the edges) means that the IR images had been

circularly shifted to match the FOV of the visible image.

The IR stack of images was then fed into the trained neural network, which in turn per-

formed pixel-based classification, as shown in Figure  5.8c . The colors are manually assigned

to correspond to different classes. Green is designated to represent glass, red to PMMA,

and blue to background. Despite some individual pixels being mis-classified within the two

spheres (green and red), the consensus is correct as corroborated by particle size. When

merging the information obtained by the visible and the IR images, the visible image was

segmented assuming spherical particles (see Section  5.3.3 ), then the consensus class from

each of the individual segments was pooled, the final result of the classification as shown in

Figure  5.8d .

Since the preliminary results with glass and PMMA beads are promising, the more in-

teresting clopidogrel bisulfate sample was analyzed. Clopidogrel bisulfate is regularly used

in conjunction with aspirin for various cardiovascular disease treatment[ 15 ]. Clopidogrel

bisulfate has two polymorphs, Form I and Form II, corresponding two different molecular

structures, with one of the forms (Form I) being the active drug ingredient. The same imag-

ing process for silica and PMMA samples was repeated for clopidogrel mixtures, results are

shown in Figure  5.9 .

The clopidogrel sample is majorly spherical, yet as an actual crystal, there are not strictly

spherical. Therefore, the previous segmentation methods based on that assumption do not

hold, even though they worked for the beads. This segmentation task is a more compli-

cated one. The detailed process to ideally segment this image without excessive assumption

of trivial details, the detailed process is described in Figure  5.3.3 . Note that, even with
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Figure 5.7. ROC plot reported by ANN
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(a) (b)

(c) (d)

Figure 5.8. Images acquired via hyperspectral microscopy, unprocessed and
classification results. (a) Visible image at 640 nm. (b) IR image at 8038 nm.
(c) Pixel based ANN classification. (d) Processed classification result.
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fine-tuning, the segmented image still wrongly labeled some impurity as part of the particle

(bottom center particle). After fine-tuning the watershed algorithm, the result of segmenta-

tion is presented in Figure  5.9c . Pooling the classification results from a classifier produced

the final result in Figure  5.9c , in which the original visible image is overlayed with false color

as classification designation.

5.3.5 Classifiers Comparison

Apart from the complication induced by the non-trivial morphology of clopidogrel crys-

tals, the decision of which classifier to use is equally, if not more complicated. Theoretically,

the classifier can be any classifier; even non-supervised methods such as K-means can some-

times yield decent results, as is the case with DCM. However, the complication lies in the

fact that the QCL laser beam, albeit portable, fast and tunable, has a limited wavelength

range and limited channels, thus, limited spectral resolution. Therefore, the spectra acquired

by the QCL microscope were of non-trivial distribution that would be challenging for the

classifier to capture. Figure  5.10 is multiple selective visible images (arranged in a matrix),

along with pixel based classification results produced by various off-the-shelf classifiers us-

ing scikit[ 10 ]. The types of classifiers demonstrated here are k-nearest neighbors[  16 ], linear

SVM[ 17 ], Gaussian process[ 18 ], decision tree[ 19 ], and random forest[ 20 ],

Classification performance is highly dependent on the characteristics of the input data.

There are numerous source guides to which one to use depending on the property and quan-

tity of the data[ 21 ], and new algorithms are constantly being developed (even though just

as variations of existing algorithms), Furthermore, most guidances are empirically based[ 22 ].

For the hyperspectral dataset produced by the QCL microscope, the problem is unique in

that the spectral data is not high dimensional per se, with the number of active channels

being 22 in the clopidogrel bisulfate dataset, which is fewer than general spectroscopic data

ranging from hundreds to thousands of features (even the majority of those features are

redundant, this topic warrants another separate discussion) Therefore, it is useful to do an

exhaustive search of the common algorithms. Figure  5.10 displayed just a subset of dozens

of algorithms available off-the-shelf.
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(a) (b)

(c) (d)

Figure 5.9. clopidogrel results (a) Visible image at 634 nm. (b) IR image at
8038 nm. (c) Segmented results based on Figure  5.9a . (d) Processed classifi-
cation result.
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(a)

(b)

(c)

(d)
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(e)

(f)

Figure 5.10. Visible images (a) and the pixel based classification results using
various classifiers. (b) K-nearest neighbors, (c) linear SVM, (d) radial basis
function kernel SVM, (e) decision tree, (f) random forest.

Upon close examination, all the algorithms agree on the classifications between the back-

ground and the sample, but disagree on the class assignment between the two polymorphs.

For example, Figure  5.10e displays grooves of pattern that suggests the the classification was

more intensity-based rather than spectral feature-based; Figure  5.10d seems to favor one

class over the other (teal versus indigo), suggesting systematic error within the algorithm

Each classifier reports a score (depending on specific classifier’s definition of a “score”, mostly

score will be accuracy, number of correctly predicted data points out of all the data points) of

between 0.85 to 0.99, meaning the classifier is confident of its prediction, yet the final results

vary hugely, making it a tough choice for selecting one algorithm over the other. Generally

speaking, the diagnostics for choosing an estimator is time-consuming. The practice often

is to build a quick-and-dirty prototype; then, the focus is shifted to diagnose and fix the
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problem based on error analyses and ablative analyses. For the case with this clopidogrel

bisulfate, the decision tree was the classifier that produced the results in Figure  5.9 (d).

Alternatively, for future development in the research area of hyperspectral classification

for IR images, a deep neural network can be constructed, as shown in the previous chapter

(Section  4.2.2 ), the number of hidden layers, number of neurons per layer, choice of activation

function and the remaining of the hyper-parameters can be optimized via Tensorboard[ 23 ]

iterative testing, in which performance can be visualized with regard to each set of hyper-

parameters.

5.4 Conclusion

A hyperspectral microscope was constructed to provide multiple imaging modalities. 32

IR channels with a spectral range of 1190–1340 cm−1 produce 256 pixel × 256 pixel ×

32 channel hyperspectral image stack. Initial efforts demonstrated spectroscopy capable

of distinguishing DCM and water, as well as a corresponding hyperspectral image. Image

intensity encoded by the laser transmittance image fused results from visible and infrared

images. Segmentation methods regarding sample morphology were discussed in detail and

different recommendations were made based on the choice of sample. Merging IR images

with 634 nm bright-field images fused spectral information with visible-wavelength resolution.

Different classifiers were evaluated for this spectral dataset and the choice of the classifier

was discussed in detail.
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[5] S. L. Morissette, Ö. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V.
Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner, “High-throughput crystallization:
Polymorphs, salts, co-crystals and solvates of pharmaceutical solids,” Advanced drug
delivery reviews, vol. 56, no. 3, pp. 275–300, 2004.

[6] R. Bhargava, “Infrared spectroscopic imaging: The next generation,” Applied spec-
troscopy, vol. 66, no. 10, pp. 1091–1120, 2012.

[7] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum
cascade laser,” Science, vol. 264, no. 5158, pp. 553–556, 1994.

[8] C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp,
and K. Gerwert, “Quantum cascade laser-based infrared microscopy for label-free and
automated cancer classification in tissue sections,” Scientific reports, vol. 8, no. 1, pp. 1–
10, 2018.

[9] K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a
quantum cascade laser,” Analytical chemistry, vol. 87, no. 1, pp. 485–493, 2015.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in {P}ython,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[11] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[12] K. Dilpreet, K. Yadwinder, D. Kaur, and Y. Kaur, “Various Image Segmentation Tech-
niques: A Review,” International Journal of Computer Science and Mobile Computing,
vol. 3, no. 5, pp. 809–814, 2014.

[13] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on
immersion simulations,” IEEE Computer Architecture Letters, vol. 13, no. 06, pp. 583–
598, 1991.

[14] D. Stutz, A. Hermans, and B. Leibe, “Superpixels: An Evaluation of the State-of-the-
Art,” Tech. Rep. arXiv:  1612.01601v3 .

[15] G. Patti, G. Micieli, C. Cimminiello, and L. Bolognese, “The Role of Clopidogrel in
2020: A Reappraisal,” Cardiovascular Therapeutics, vol. 2020, 2020, issn: 17555922.
doi:  10.1155/2020/8703627 .

123

https://arxiv.org/abs/1612.01601v3
https://doi.org/10.1155/2020/8703627


[16] J. M. Keller and J. A. Givens, “A fuzzy k-nearest neighbor algorithm,” IEEE Transac-
tions on Systems, Man and Cybernetics, vol. SMC-15, no. 4, pp. 580–585, 1985, Cited
By :1567. [Online]. Available:  www.scopus.com  .

[17] J. Platt, Probabilistic outputs for svms and comparisons to regularized likehood methods,
advances in large margin classifiers, 1999.

[18] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer school on ma-
chine learning, Springer, 2003, pp. 63–71.

[19] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and regression
trees. belmont, ca: Wadsworth,” International Group, vol. 432, pp. 151–166, 1984.

[20] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[21] D. Sarkar, R. Bali, and T. Sharma, “Practical machine learning with python,” A Problem-
Solvers Guide To Building Real-World Intelligent Systems. Berkely: Apress, 2018.

[22] D. Chicco, “Ten quick tips for machine learning in computational biology,” BioData
mining, vol. 10, no. 1, pp. 1–17, 2017.

[23] Martıén Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
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