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ABSTRACT

Anonymous communication networks (ACNs) are critical to communication privacy over

the internet as they enable individuals to maintain their privacy from untrusted intermedi-

aries and endpoints. Typically, ACNs involve messages traveling through some intermedi-

aries before arriving at their destinations, and therefore they introduce network latency and

bandwidth overheads.

The goal of this work is to investigate the fundamental constraints of anonymous commu-

nication (AC) protocols. We analyze the relationship between bandwidth overhead, latency

overhead, and sender anonymity or recipient anonymity against a global passive (network-

level) adversary. We confirm the widely believed trilemma that an AC protocol can only

achieve two out of the following three properties: strong anonymity (i.e., anonymity up to a

negligible chance), low bandwidth overhead, and low latency overhead.

We further study anonymity against a stronger global passive adversary that can ad-

ditionally passively compromise some of the AC protocol nodes. For a given number of

compromised nodes, we derive as a necessary constraint a relationship between bandwidth

and latency overhead whose violation make it impossible for an AC protocol to achieve

strong anonymity. We analyze prominent AC protocols from the literature and depict to

which extent those satisfy our necessary constraints. Our fundamental necessary constraints

offer a guideline not only for improving existing AC systems but also for designing novel AC

protocols with non-traditional bandwidth and latency overhead choices.

Using the guidelines indicated by our fundamental necessary constraints we provide two

efficient protocol constructions. First, we design a mixnet-based AC protocol Streams that

provides provable mixing guarantees with the expense of latency overhead. Streams realizes a

trusted third party stop-and-go mix as long as each message stays in the system for ω(log η)

rounds. Second, we offer a DC-net based design OrgAn that can provide strong sender

anonymity with constant latency at the expense of bandwidth overhead. OrgAn solves the

problem of regular requirements of key and slot agreement present in typical DC-net based

protocols, by utilizing a client/relay/server architecture.
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1. INTRODUCTION

Anonymous communication networks (ACNs) [1–15] are critical to communication privacy

over the Internet as they enable individuals to maintain their privacy from untrusted inter-

mediaries and endpoints. Typically, ACNs involve messages traveling through some inter-

mediaries before arriving at their destinations, and therefore they introduce network latency

and bandwidth overheads. Even after almost four decades of work, the search for an op-

timal overhead ACN design is still unfinished: Anonymity requires the company of others

interested in anonymity, which indeed makes it a hard problem to solve.

In the present day, millions of users from all over the world employ anonymous commu-

nication networks, such as Tor [16], to protect their privacy over the Internet. The design

choice made by the Tor network to keep the latency and bandwidth overheads small has

made it highly attractive to its geographically diverse user-base. However, over the last

decade, the academic literature [17–25] has demonstrated Tor’s vulnerability to a variety of

traffic correlation attacks. In fact, Tor also has been successfully attacked in practice [26]. It

is widely accepted that low-latency low-bandwidth overhead of anonymous communication

(AC) protocols, such as Tor [13], can only provide a weak form of anonymity [27].

In the anonymity literature, several AC protocols were able to overcome this security

barrier to provide a stronger anonymity guarantee (cryptographic indistinguishability-based

anonymity [28, 29]) by either increasing the latency overhead or the bandwidth overhead.

For example, high-latency approaches (such as mixnet-based systems [2, 3, 30–34]) can en-

sure strong anonymity by introducing significant communication delays for users messages.

Protocols such as dining Cryptographers network [12] and its extensions [5, 11, 15, 35, 36])

are academically interesting because they can provide robustness against compromisation

using some pre-established coordination among users. However, even with such user coor-

dination techniques, they can provide strong anonymity by adding copious amount of noise

(or dummy) messages.

There have been a few efforts to propose approaches [1, 2, 5, 8, 37,38] that try to provide

anonymity by simultaneously introducing latency and bandwidth overhead. However, it is
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not clear how to balance such system parameters to ensure strong anonymity while preserving

practical performance.

In general, in the last 35 years a significant amount of research efforts have been put

towards constructing novel AC protocols, deploying them, and attacking real-world AC net-

works. However, unlike other security fields such as cryptography, our understanding regard-

ing the fundamental limits and requirements of AC protocols remains limited. This work

takes some important steps towards answering fundamental question associated with anony-

mous communication. “Can we prove that strong anonymity cannot be achieved without

introducing large latency or bandwidth overhead? When we wish to introduce the latency

and bandwidth overheads simultaneously, do we know the overhead range values that still

fall short at providing stronger anonymity?”

This dissertation answers the above questions by deriving necessary constraints in terms

of latency and bandwidth overhead that are absolutely necessary to achieve strong sender

or recipient anonymity against global network level adversaries. Further, it evaluates the

trade-off between latency and bandwidth overhead to achieve strong anonymity. In short,

this thesis focuses on demonstrating the following statement:

There exists a fundamental necessary constraint (in terms of latency and band-

width overhead) for anonymous communication protocols to achieve strong ano-

nymity against global network level adversaries.

1.1 Contributions

As a main contribution, this work confirms a previously conjectured [1, 7] relationship

between bandwidth overhead, latency overhead and anonymity. We find that there are

fundamental bounds on sender and recipient anonymity properties [28, 29, 39] of a protocol

that directly depend on the introduced bandwidth and latency overheads.

In this work, we present a generic model of AC protocols using Petri nets [40, 41] such

that different instantiations of this model will represent different AC protocols, covering

most practical AC systems in the literature. We derive upper bounds on anonymity as func-

tions of bandwidth overhead and latency overhead, against two prominent adversary classes:
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global passive network-level adversaries and strictly stronger adversaries that additionally

(passively) compromise some protocol parties (e.g., relays in case of Tor). These bounds

constitute necessary constraints for anonymity. Naturally, the constraints are valid against

any stronger adversary class as well.

For both adversary classes, we analyze two different user distributions (i.e., distribu-

tions that determine at which time or rate users of the AC protocol send messages): (i)

synchronized user distributions, where users globally synchronize their messages, and (ii)

unsynchronized user distributions, where each user locally decides when to send his mes-

sages independent of other users.

We further identify a general class of techniques from the line of works [4–6,9,10] that can

provide better anonymity than classical mix-nets, which we call user coordination: assuming

some form of (free) coordination among a set of N users, h+1 ≤ N users send a packet each

for some single (actual) message such that (i) the receiver can retrieve the actual message

only after receiving all the h + 1 packets, and that (ii) the receiver of the message cannot

distinguish who among the h+1 users actually sent the message. The goal here is not to keep

user coordination practical; rather, we define the notion in this way to capture all efficient

instantiations of similar techniques. One prominent example is given by DC-nets. DC-nets

use shared keys/coins to produce dummy messages (corresponding to our shares) that allow

the receiver to reconstruct the actual message.

In this work, we differentiate between protocols with user coordination and protocols

without in our analysis. We show that even protocols with user coordination must either

use an excessive bandwidth overhead (every user sends a share for every real message by

any other user) or adhere to our anonymity trilemma. We provide a comparative analysis

between the two class of protocols.

Formal lower bounds. We first analyze the trade-off between latency overhead and band-

width overhead required to achieve strong anonymity, i.e., anonymity up to a negligible (in

a security parameter η) chance of failure. For any AC protocol where only a fraction of

β ∈ [0, 1] users send noise messages per communication round, and where messages can

only remain in the network for ` ≥ 0 communication rounds, we find that against a global
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network-level adversary no protocol can achieve strong anonymity if 2β` < 1 − 1/poly(η)

even when all the protocol parties are honest. For c > 0, we show that strong anonymity is

impossible for constant latency (` ∈ Θ(1)).

In the case where a strictly stronger adversary additionally passively compromises c

(out of K) protocol parties, we show that strong anonymity is impossible if 2(` − c)β <

1− 1/poly(η) (for c < `), or 2β` < 1− 1/poly(η) and ` ∈ O(1) (for c ≥ `), when protocols

do not use user coordination.

Even when protocols use user coordination, if half of all K nodes are compromised (c =

K/2), ACNs with strong anonymity cannot have a latency that is logarithmic (` ≤ log(K))

in the number K of protocol nodes. For the Anytrust setting [5] where all but a constant

amount of protocol nodes are compromised, strong anonymity requires a minimal latency in

the order of
√

K.

Proof formalism. Our proof technique provide several key insights that might be of inde-

pendent interest: novel necessary constraints for anonymity as well as novel design goals for

an ideal AC protocol. Moreover, we provide intuitive readings of our formal theorems that

summarize their key insights. The proof technique used in this work can be used to derive

bounds against other adversary classes (weaker than global passive adversaries) as well.

Lessons learned. We show the correctness of our results and assess their practical impact

by analyzing prominent AC protocols. Our impossibility results naturally only offer necessary

constraints for anonymity, but not sufficient conditions for the AC protocol. However, these

necessary constraints for sender and recipient anonymity are crucial for understanding bi-

directional anonymous communication. In fact, we find that several AC protocols in the

literature are asymptotically close to the suggested constraints. Moreover, designers of new

AC protocols can use our necessary constraints as guidelines for avoiding bad combinations

of latency and bandwidth-overhead.

Our exercise in formally analyzing both protocols with user coordination and protocols

without presents us with several tangible lessons: first, as our novel necessary constraints

inherently are more lenient (they allow more anonymity with the same latency overhead and

bandwidth overhead) our results thereby point future research on designing ACNs with re-
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duced overhead in the direction of ACNs with user coordination, in particular with dynamic

user coordination that relaxes the strict turn-by-turn scheduling of DC-nets and its several

extensions. Second, we further contribute to the quest for optimal ACNs by clearly identify-

ing the limits of our novel necessary constraints. Effectively, our necessary constraints raise

open problems whose solutions would escape our results and could lead to ACNs that are

very close to the universal necessary constraint.

Applications: optimal constructions of AC protocols. We use our derived neces-

sary constraints as guidelines to construct optimal AC protocols. We try to construct AC

protocols with overhead as close as possible to our derived lower bound on overhead to

achieve strong anonymity. On the side, we also try to identify the building blocks that are

fundamental towards achieving provable anonymity properties.

First, we construct a mixnet-based AC protocol Streams that tries to achieve anonymity

as the cost of latency overhead. It offers provable anonymity to the users among all honest

users of the system, while still offering horizontal scaling such that a node needs to cryp-

tographically process only a tiny fraction of the total messages routed through the Streams

network. Towards offering horizontal scaling we develop a novel super-node structure, which

can be of independent interest to most mixing network systems.

Second, we construct a DC-net based AC protocol OrgAn that efficiently utilizes the

user coordination technique to achieve strong anonymity against global passive adversaries

with constant latency overhead. Utilizing a client/relay/server network topology, OrgAn

uses key-homomorphic pseudorandom function and Netwon’s power sums to effectively im-

plement user coordination. OrgAn’s cryptographic design allows it to overcome a significant

problem with existing DC-net designs: unlike other DC-net designs OrgAn avoids frequent,

interactive, slots and key agreement protocol.

Construction of a protocol that can effectively utilize both mixnet and user coordination

techniques towards achieving anonymity still remains elusive.
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1.2 Dissertation Outline

The dissertation is organized as follows: Chapters 3 and 4 presents the fundamental

requirements (in terms of latency and bandwidth overhead) for anonymity, Chapters 5 and 6

presents constructions of AC protocols guided by the constraints derived in Chapters 3

and 4. In particular, Chapter 3 presents the first set of bounds for AC protocols that do not

employ any kind of user coordination techniques. Then Chapter 4 presents the advantages

of user coordination techniques, and derives the necessary constraints for anonymity when

they are employed. In Chapter 5 we construct a mixnet-based protocol Streams guided

by the restrictions provided by Chapter 3. Further, in Chapter 6 we construct a DC-net

type protocol OrgAn that effectively utilizes user coordination. Finally, we summarize the

dissertation in Chapter 7.
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2. BACKGROUND

This chapter formally defines the indistinguishability-based anonymity notion for which we

prove our necessary constraints, the notion of time, and the user behavior that we consider

to prove our results. It also provides a brief overview of the proof technique that we use to

prove our impossibility results.

2.1 Anonymity Definition

2.1.1 AnoA-Style Anonymity Definition

We define our anonymity notions with a challenge-response game following the AnoA defi-

nition [39], where the challenger simulates the protocol and the adversary tries to deanonymize

users. The challenger Ch(Π, α, b) (formally defined in Fig. 2.1) allows the adversary to con-

trol user communication in the network, up to an uncertainty of one bit for challenges, and

is parametric in the following parts: (i) the AC protocol Π to be analyzed, (ii) the so called

anonymity function α, that describes the specific variant of anonymity such as sender ano-

nymity, recipient anonymity and relationship anonymity, (iii) and the challenge bit b which

determines the decision the challenger takes in challenge inputs from the adversary.

Given a security parameter η, we quantify the anonymity provided by the protocol Π

simulated by Ch(Π, α, b) in terms of the advantage the probabilistic polynomial time (PPT)

adversary A has in correctly guessing Ch’s challenge bit b. We measure this advantage in

terms of indistinguishability of random variables additively, where the random variables in

question represent the output of the interactions 〈A|Ch(Π, α, 0)〉 and 〈A|Ch(Π, α, 1)〉.

Definition 2.1.1 ((α, δ)-IND-ANO). A protocol Π is (α, δ)-IND-ANO 1 for the security param-

eter η, an adversary class C, an anonymity function α and a distinguishing factor δ(· ) ≥ 0,

if for all PPT machines A ∈ C,

Pr [0 = 〈A|Ch(Π, α, 0)〉] ≤ Pr [0 = 〈A|Ch(Π, α, 1)〉] + δ(η).
1↑AnoA also allows a multiplicative factor ε; we use the simplified version with ε = 0, such that δ directly
corresponds to the adversarial advantage.
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For an anonymity function α, we say that a protocol Π provides strong anonymity [28,29]

if it is (α, δ) − IND-ANO with δ ≤ neg(η) for some negligible function neg. If δ is instead

non-negligible in η, then we say that Π provides weak anonymity.

Note that η does not measure the size of the anonymity set, but the computational

limitation of the adversary.

Strong anonymity is relative to a strength η, which is bound to system parameters or

analysis parameters such as the number of users or protocol parties, the latency overhead and

the bandwidth overhead. These parameters typically increase as η increases, which improves

the protocol’s anonymity.2 Anonymity in relation to η unifies a wide variety of possible

analyses on how the anonymity bound changes with changing system parameters, and user

numbers and behaviors. In particular, all our system and analysis parameters, such as the

bandwidth overhead β, the latency `, or the number of compromised parties c are actually

functions in η. Each inequality on such parameters, e.g., 2`β < 1, is an abbreviation for

2`(η)β(η) < 1 for sufficiently large η.

Sender Anonymity. Sender anonymity characterizes the anonymity of users against a

malicious server through the inability of the server (or some intermediary) to decide which

of two self-chosen users have been communicating with the server. We borrow the sender

anonymity αSA definition from the AnoA framework [39], where αSA selects one of two

possible challenge users and makes sure that the users cannot be distinguished based on the

chosen recipient(s) or message(s).

Definition 2.1.2 (Sender anonymity). A protocol Π provides δ-sender anonymity if it is

(αSA, δ)-IND-ANO for αSA as defined in Figure 2.1.

Recipient Anonymity. Recipient anonymity characterizes that the recipient of a commu-

nication remains anonymous, even to observers that have knowledge about the sender in

question. Similar to sender anonymity, we borrow the recipient anonymity αRA definition

from the AnoA framework, where αRA selects one of two possible recipients for a message
2↑In some analyses, individual parameters may reduce with increasing η, such as the bandwidth overhead
per user, as the other parameters, such as the number of users, increase.
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and makes sure that the recipients cannot be distinguished based on the chosen sender(s) or

message(s).

Definition 2.1.3 (Recipient anonymity). A protocol Π provides δ-recipient anonymity if it

is (αRA, δ)-IND-ANO for αRA as defined in Figure 2.1.

We omit the detailed technical notation of the anonymity functions in the following

sections, and write Pr [0 = A | b = i] instead of Pr [0 = 〈A|Ch(Π, αSA, i)〉].

Adaptive AnoA Challenger Ch(Π, α, b)

Upon message (Input, u,R,m): RunProtocol(u,R,m)

Upon message (Chall, u0, u1, R0, R1,m):

Compute (u∗, R∗)← α(u0, u1, R0, R1, b)
RunProtocol(u∗, R∗,m)

RunProtocol(u,R,m):

Run Π on r = (u,R,m) and forward all messages that are sent by Π to the adversary A and
send all messages by the adversary to Π.

αSA(u0, u1, R0, R1, b) = (ub, R0)

αRA(u0, u1, R0, R1, b) = (u0, Rb)

Figure 2.1. Adaptive AnoA Challenger

2.1.2 On the meaning of η

In our analyses we tie η to system parameters such as the number of parties K, the number

of compromised parties c, the latency overhead `, the bandwidth overhead B, the number

of users N, etc.; we explicitly describe the relationship between η and these parameters for

the cases we consider. The system parameters don’t have to increase with η necessarily. In

some cases, parameters may decrease as η increases, for example, the bandwidth overhead B
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might decrease as the latency overhead increases, or the ratio of compromised (or honest!)

parties might decrease.

Note that if an AC protocol has strong anonymity, it is secure under continual observation

(e.g., for streams of messages or usage over a longer time period) and formally, η limits the

number of observations.

On anonymity sets and strong anonymity. Strong sender anonymity lets the adversary

freely choose the pair of challenge senders and requires that the AC protocol’s behavior is

indistinguishable to the adversary. Hence, strong sender anonymity corresponds to the full

anonymity set (see [39, Lemma 7]) that encompasses all users. Sender anonymity for (non-

full) anonymity sets would result in restricting the adversary in Definition 2.1.1 to choose

the pair of challenger senders from the same anonymity set.

2.1.3 Game Setup

Let S be the set of all senders, R be the set of all recipients, and P be the set of protocol

parties that participate in the execution of the protocol (like relays/mix-nodes in Tor/mix-

nets, for DC-net or P2P mixing users and protocol parties are the same). We consider a

system of total |S| = N senders. For sender anonymity, we need only a single element in

R, while for recipient anonymity we only need one in the set S. We allow the adversary

(for sender anonymity) to set the same entity (say R) as the recipient of all messages, and

expect R to be compromised by the adversary. The adversary uses a challenge (as defined in

Figure 2.1) of the form (u0, u1, R, ,m0), where u0, u1 ∈ S, for our sender anonymity game.

We consider a completely connected topology, which means any party can send a message

directly to any other party. We assume a standard (bounded) synchronous communication

model as in [15,35,42,43], where a protocol operates in a sequence of communication rounds.3

In each round, a party performs some local computation and then sends messages (if any) to

other parties through an authenticated link. By the end of the round, every party receives

all messages sent by other parties to her in the same round. With our focus on computing
3↑While a time-sensitive model [44] would be more accurate, e.g., for low-latency protocols like Tor [13],
such a model would only strengthen the attacker. As we present necessary constraints, our results also hold
for the more accurate setting.
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lower bounds, our model abstracts from the time the computations at the node take and also

the length of the messages. Nevertheless, as we are interested in quantifying the communica-

tion/bandwidth overhead, unlike [15,35,43], we do not assume that the parties have access to

ready-made broadcast communication channels; Parties are expected to communicate with

each other to implement broadcast features [42, 45]. We stress that using an asynchronous

communication model offers more capabilities to the attacker, and thus, our impossibility

results for this synchronous model naturally apply to an asynchronous model as well.

We define the latency overhead ` as the number of rounds that a message can be delayed

by the protocol before being delivered. We define the bandwidth overhead β as the number of

noise messages per user that the protocol can create in every round (i.e., the dummy message

rate) and we do not restrict the time these noise messages reside within the protocol.

We consider two types of global passive adversaries: Our non-compromising adversaries

(which model network-level eavesdroppers) can observe all communication between all proto-

col parties, but do not compromise any party of the AC protocol except the recipient R. We

say that the AC protocol is non-compromised. Our strictly stronger partially compromising

adversaries (which model hacking and infiltration capabilities) can additionally compromise

some of the AC parties in the setup phase of the game to obtain these parties’ mapping

between the input messages and output messages during the protocol’s runtime. In the case

of partially compromising adversaries, we say that the AC protocol is partially compromised.

2.2 User Message Distributions, Communication Rounds, Bandwidth Over-
head, and Latency

2.2.1 Time

We use a round-based definition of time in which we assume that all protocol parties

work in synchronized rounds. In each round, a party can send packets to other parties that

will receive the packets at the end of the round (and can then send them on in the next

round). We allow, but abstract away from any cryptographic operations locally performed

on these packets and we don’t consider the computation time required for such operations:
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independently of the cryptographic operations performed, a packet is always ready for being

sent in the round after it arrived.

2.2.2 Latency and Bandwidth Overhead

We define the latency overhead ` of a protocol as the number of rounds that pass between

the round in which a message is scheduled for being (originally) sent by a user u and the

round it is received (and potentially reconstructed) by a recipient R. We define the bandwidth

overhead B as the number of noise messages that the protocol can create for every real

message. We additionally define β as the number of noise messages per user that the protocol

can create in every round, i.e., the dummy message rate.

2.2.3 User Message Distributions

The user message distribution describes how we select which user sends messages at which

point in time. This is crucial for anonymity as it defines which users are active and how

often they participate in the protocol.

We consider two kinds of user message distributions in our anonymity games and both

of them assume an N sized set S of users that want to send messages. In both cases, the

adversary can choose any two senders u0, u1 ∈ S. However, the time and method by which

they actually send messages differs:

• In the synchronized user message distribution UB, the users globally synchronize who

should send a message at which point in time. We assume that each user wants to

send exactly one message. Consequently, we choose a random permutation of the set

of users S and the users send messages in their respective round. In every single round

out of a total of N rounds exactly one user sends a message. Since the users globally

synchronize their sending of messages, we allow the protocol to also globally decide on

the bandwidth overhead it introduces. Note that here the requirements are identical

to those of the Bulk protocol in [35].
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• In the unsynchronized user message distribution UP , each of the N users wants to send

messages eventually and we assume that each user locally flips a (biased) coin every

round to decide whether or not to send a message. In this case we define the bandwidth

overhead as an increased chance of users sending messages. Since the protocol does

not globally synchronize the input messages, for noise messages also we allow the users

to decide it locally and send noise messages with a certain probability.

The synchronized user message distribution can be seen as a control group that is pre-

dictable and thus fairly protocol friendly. Protocols following DC-nets tend to use such a

synchronization (to ensure that messages from a sender can actually be reconstructed). Our

results show that many interesting cases are the same for this predictable user distribution

UB and for the unsynchronized UP .

2.3 Brief Overview of the Proof Technique

To show that there is not (and, in fact, cannot be) a protocol that provides strong

anonymity without a significant bandwidth overhead and/or latency overhead, we need to

capture all possible protocols and show that each of them is vulnerable to attacks. In general,

we derive our results in five main steps.

First, we formally define a protocol model that serves the purpose of formally specifying

which protocols are considered. The (impossibility) results are valid for protocols that can

be expressed in the given protocol model.

Second, we define a concrete adversary Apaths, that uses a well established strategy:

upon recognizing the challenge message (as soon as it reaches a receiver) Apaths constructs

the possible paths this message could have taken through the network, and tries to identify

the user who has sent the message.

Next, given the concrete adversary Apaths, we identify a necessary invariant that any

protocol has to fulfill in order to provide anonymity. Intuitively: both challenge users chosen

by the adversary must be active (i.e., send at least one message) before the challenge message

reaches the recipient, and it must be possible for these messages to meet in at least one honest

party along the way.
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Next, we propose an ideal protocol Πideal that is optimal in terms of satisfying the invari-

ant: The probability that Πideal fulfills the necessary invariant is at least as high as for any

protocol within our model (limited by the same constraints for β and `). Thus, no protocol

can be better at winning against Apaths than Πideal is in satisfying the necessary invariant.

Finally, we calculate a bound δ on the probability of Πideal to satisfy the necessary

invariant. By calculating δ, we obtain a lower bound (of δ) on the adversarial advantage

against all protocols within our model.4

These steps let us conclude that any protocol (which cannot be better than the idealized

one) is vulnerable to this specific adversary. Our specific adversary is fairly simple and pos-

sibilistic. There are more sophisticated adversaries that, e.g., take the expected distribution

for each sender into account. To such adversaries the protocols are potentially even more

vulnerable; hence, our results might be untight.

As non-compromising adversaries are a subset of partially compromising adversaries, our

proof technique for the former is a simplified case of the latter.

4↑Apaths is a possible adversary against all protocols within our model. If Apaths wins whenever the invariant
is not satisfied and our ideal protocol Πideal (bounded by β and `) is the best protocol for satisfying the
invariant, then Apaths will also have an advantage of at least δ against any protocol within our model (that
is also bounded by β and `). Thus, our bound for δ describes a lower bound on the adversarial advantage
against any protocol within the model, while against particular protocols there can be other adversaries (in
the same adversary class) with an even higher advantage.
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3. FIRST ANONYMITY TRILEMMA

In this chapter we present our first set of impossibility results for all possible AC protocols

except protocols that employ user coordination techniques. These results demonstrate that

AC protocols without user coordination have a fundamental necessary constraint (in terms of

latency and bandwidth overhead) to achieve strong anonymity against global network level

adversaries. We start with the formal protocol model that captures all the AC protocols in

the considered protocol class.

` Latency overhead for every message

β number of noise packets for every user per round

B number of noise packets per real message

p Probability to send a message per user per round

p Probability to send a real message per user per round

K Number of (internal) protocol parties

c Number of compromised protocol parties

N Number of online users (that may send messages)

δ Adversarial advantage in the anonymity game

Π A protocol. Π ∈M : Π is within our model

η The security parameter

ε A (very small, but non-negligible) function

Figure 3.1. Notation

3.1 A Protocol Model for AC Protocols

An AC protocol allows any user in the set of users S to send messages to any user in

R, via a set of anonymizing parties P. We define protocols that are under observation of an

eavesdropping adversary A that may have compromised a set of c parties Pc ⊆ P and that

furthermore observes the communication links between any two parties, including users.

Technically, whenever a party P1 ∈ P ∪ S sends a message to another party P2 ∈ P ∪R,

the adversary is able to observe this fact together with the current round number. However,

we assume the protocol applies sufficient cryptography, s.t., the adversary can not read
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Protocol

S TS

$1
P1 TP1

P2 TP2

P3 TP3

R

Figure 3.2. Petri net of an AC protocol with K = 3 parties.

the content of any message except the messages sent to the malicious recipient. Thus, the

adversary can only recognize the challenge message when it reaches the recipient.

For an actual protocol, the sets S, R, and P might not be mutually exclusive [11,12,15].

Since we have only one malicious party in R, and the content of a message can only be read

when it reaches its final recipient, we consider R to be mutually exclusive from S ∪P for the

purpose of simplicity.

With the above preliminaries in mind, we shall now formally define our generic AC

protocol using a Petri net model.

3.1.1 Protocol Model

We model any AC protocol with K parties by a timed colored Petri net [40, 41, 46] M ,

consisting of places S for the users, P1, . . . , PK symbolizing the protocol parties, $1 for

randomness and R for recipients of messages, and colored tokens m symbolizing the messages

(real or noise) sent by clients or protocol parties, and transitions TS for inserting messages
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into the network and TP1 , . . . , TPK as functions for sending the messages from one party

to another. The structure of the Petri net with its places, tokens and transitions remains

the same for every AC protocol. However, the implementation of the guards within the

transitions is different for different protocols: protocols can choose to which party messages

are to be sent next and whether they should be delayed. Protocols in M are oblivious to the

challenge message or the challenge users – and so is the implementation of the guards within

the transitions. We refer to Figure 3.2 for a graphical depiction of Petri net model M .

Definition 3.1.1 (Colored token).

A colored token is represented by the tuple m = 〈msg, meta, tr, IDt, prev, next, ts〉,

where,

- msg is the content of the message,

- meta is the internal protocol meta-data for this message,

- tr is the time the message can remain in the network,

- IDt is a new unique ID generated by each transition for each token by honest parties;

dishonest parties instead keep IDt untouched to allow the adversary to link incoming and

outgoing messages,

- prev is party/user that sent the token and next is the user/party that receives the token.

- Finally, ts is the time remaining for the token to be eligible for a firing event (a feature

of timed Petri net). Here, ts either describes when new messages are introduced into the

Petri net or is set to the next round, such that messages can be processed in every round

as soon as they enter the network.

The four fields IDt, prev, next, ts are public, and are visible to the adversary. The remaining

three fields msg, meta and tr in a token are private and can not be observed by the adversary,

with the exception that msg can be observed when a message reaches its destination, i.e, is

received by a recipient. 1

1↑For sender anonymity we only consider one recipient and thus, for simplicity, do not need to specify the
recipient in the token. For recipient anonymity, the colored token additionally has a private field for the
recipient.
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Formally, we introduce a set Tokens, that is initially empty and in which we collect the

pair (t, r), where t is a copy of a token and r the round number in which the token was

observed.

Places. Any AC protocol with K parties P = {P1, . . . , PK} consists of the following places:

• S: A token in S denotes a user message (real or noise) which is scheduled to enter the

network after ts rounds.

• $1: This place is responsible for providing randomness. Whenever a transition picks a

token from this place, the transition basically picks a random value.

• Pi with Pi ∈ P: A token in Pi denotes a message which is currently held by the party

Pi ∈ P.

• R: A token in R denotes a message which has already been delivered to a recipient.

Transitions in the Petri net model M

TS on tokens q = 〈msg, , , , u, , ts〉 from S and $ from $1:

(Pi,meta) = fΠ(q, $); IDt = a fresh randomly generated ID
r = current round; t = 〈msg,meta, `, IDt, u, Pi, 1〉
if Pi = R then Tokens = Tokens ∪ (〈msg, , , IDt, u, Pi, 1〉, r)
else Tokens = Tokens ∪ (〈 , , , IDt, u, Pi, 1〉, r)

Output: token t at Pi

TPi on tokens q = 〈msg, , tr, IDt, , Pi, ts〉 from Pi, $ from $1:

(P,meta) = fΠ(q, $) ; r = current round
if tr − 1 = 0 then P = R
if Pi is honest then IDt = a fresh randomly generated ID
else if Pi is compromised then IDt = IDt
t = 〈msg,meta, tr − 1, IDt, Pi, P, 1〉
if Pi = R then Tokens = Tokens ∪ (〈msg, , , IDt, Pi, P, 1〉, r)
else Tokens = Tokens ∪ (〈 , , , IDt, Pi, P, 1〉, r)

Output: token t at P

fΠ: The code for this function is provided by protocol Π. It decides to which party the message is
sent next, as well as the content of the meta field in the token.

Figure 3.3. Transitions in the Petri net model M

Transitions. As part of the initial configuration, the challenger populates S on behalf of

the protocol. All other places are initially empty. The transitions then consumes token from
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one place and generate tokens in other places, to modify the configuration of the Petri net.

The event of consumption of a token from one place by a transition and generation of a

new token represents the movement of a message from one party to another. We define the

following transitions (we refer to Figure 4.1 for the pseudocodes of the transitions):

• TS : takes a token 〈msg, , , , u, , ts〉 from S and a token from $1 to write t =

〈msg,meta, `, IDt, u, Pi, ts = 1〉 to Pi; the values of i and meta are decided by the AC

protocol.

• TPi : takes a token 〈msg,meta, tr, IDt, , Pi, ts〉 from Pi and a token from $1 to write

t = 〈msg,meta, tr − 1, IDt, Pi, P, 1〉 to P . If Pi is an honest party IDt is freshly generated,

but if Pi is a compromised party IDt = IDt. The place P ∈ {P1, . . . , PK} ∪ {R} and

meta are decided by the AC protocol, with the exception that if tr = 0, P always is R.

In either case, the transition also adds an element (t, r) to the set Tokens, where r is the

current round number and t is a copy of the respective (new) token t, with the fields meta

and tr are removed. If the place where t was written to is not R, then additionally the field

msg is removed.

3.1.2 Game Setting

We use the sender anonymity notion from the AnoA framework [39] as mentioned in

Chapter 2. To increase readability, we summarize the AnoA definition and explicitly write

down how the sender anonymity notion αSA works and how the wrapper around the protocol

is executed. We consider the following game between a PPT adversary A and an honest

challenger Ch(Π, αSA, b):

• A compromises up to c parties from P.

• A chooses two distinct users u0 and u1 as challenge users. A sends a challenge message

(Chall, u0, u1, R,R,m
∗) for those chosen users.

• Ch then runs protocol Π on (ub, R,m∗). Π is executed in two parts, Πwrapper and Πcore,

as described below. (We refer to Figure 4.2 for the pseudocode of Π.)

• First, Πwrapper generates tokens following the user distribution and embeds the chal-

lenge message (ub, R,m∗) in the tokens. Πwrapper adds all the tokens to the place
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S. However, Πwrapper does not pass any information about the challenge user or the

challenge message to Πcore.

• We then allow Πcore to add noise tokens to S, limited by the protocol’s restrictions

on bandwidth overhead. After that, Πcore runs the petri net with protocol specific

implementation of the transitions.

• For each element in Tokens, A can see the round number as well as the public parts of

the token (IDt, prev, next, ts), but the private parts (msg,meta, tr) are not communicated

to the adversary (c.f. Figure 4.1). However, when the field next is the recipient, the

msg field is not obfuscated.

• The goal of the adversary is to deanonymize the sender of the challenge message, i.e., to

learn whether the challenge message was sent by u0 or by u1. The interaction between

Ch and A ends as soon as A makes a guess.

Run protocol Π on r = (u∗, R∗,m∗)

Π on r = (u∗, R∗,m∗) and user distribution U :

IU ← Πwrapper(r, U),
where IU is a set and each element in IU is a tuple (u,R,m, ts).
Run Πcore(IU , U, β).

Πwrapper on r = (u∗, R∗,m∗) and user distribution U :

generate a set IU following U ,
where IU is a set and each element in IU is a tuple (u,R,m, ts).
e = (u,R,m, ts) $← IU such that u = u∗ ∧R = R∗.
if e exists then
IU ← {(u∗, R∗,m∗, ts)} ∪ IU \ {e}

for each element e = (u,R,m, ts) in IU do
Add a token t = 〈m, , , , u, , ts〉 in the place S.

Output: IU

Πcore on IU , U , β:

Add tokens in the place S within the limit of β noise messages per user per round.
Run the petri net with the protocol specific implementation of fΠ.

Figure 3.4. Description of protocol Π
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Validity of the Protocol Model. Protocols in the above protocol model behave as ex-

pected (more details in Lemma 1 in Section 3.A). We show in Lemma 1 that the protocols

indeed have a bandwidth overhead of β and a latency overhead of `. For every message

that is sent from one party in S ∪ P to another party in P ∪ R, the adversary learns the

time, the sender, and the receiver. When a message leaves the network, the attacker learns

whether it was the target (i.e., the challenge) message. The attacker also learns the mapping

between the input and output messages of compromised parties. For recipient anonymity,

the attacker instead learns whether a message is the target (i.e., challenge) message after it

leaves the sender.

3.1.3 Expressing Protocols

Our protocol model M allows the expression of any AC protocol with very few, esoteric

exceptions. Here we explain how our model can capture different techniques that are used

in different AC protocols.

Mix networks can be naturally embedded into our model, in particular any stop-and-

go mix [34] that uses discrete distribution and even AC protocols with specialized path

selection algorithms [47,48]. For the sake of our necessary constraints, low-latency protocols

(with time-bounded channels) that are not round-based (e.g., Tor [49]) can be expressed in

a round-based variant, since it only strengthens the protocols anonymity properties. This

section illustrates embedding techniques into our model for some other kinds of protocols,

but a much larger variety of protocols can be expressed in our model.

Users as protocol parties. In peer-to-peer protocols where the users act as type of relays.

any noise sent by users counts into the bandwidth overhead of the protocol (we will see in

Claim 2 that noise sent by nodes that are not users can be treated differently). Whenever a

user wants to send a message it should use the transition TS , but when it acts as a relay it

should use the transition TPi .

Splitting and Recombining Messages. We model protocols that split and later re-

combine messages by declaring one of the parts as the main message and the other parts as

noise, which may count into the bandwidth overhead. This declaration is mainly required for
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the analysis, i.e., for evaluating the success of the adversary and for quantifying the amount

of noise messages introduced by the protocol. We do not restrict the strategy by which

the protocol decides which message is “the main share” (i.e., the message that is sent on)

and which is “an additional share” (i.e., a fresh noise message). A more complex scenario

involves threshold schemes in which a smaller number of shares suffices for reconstructing

the message and in which some shares are dropped randomly. In such cases we consider the

protocol to decide beforehand which of the constructed shares will be dropped later and to

declare one of the remaining shares the “main share”.

Broadcasting Messages. If the protocol chooses to copy or broadcast messages to several

receivers, we consider the copy sent to the challenge receiver to be the main message and

copies sent to other receivers to be noise (which, if the copies are created by nodes that are

not users, will not count into the bandwidth overhead).2

Private Information Retrieval. In schemes based on private information retrieval we

require that the receiver retrieves the information sufficiently fast (within the latency limit).

Otherwise, our method is similar to the broadcasting of messages: the receiver of interest

will retrieve the main message, whereas other receivers will retrieve copies that are modeled

as noise.

Excluded Protocols. For this work we exclude protocols that cannot guarantee the de-

livery of a message within the given latency bound (except if this occurs with a negligible

probability). Moreover, we cannot easily express the exploitation of side channels to trans-

fer information, e.g., sending information about one message in the meta-data of another

message, or sending bits of information by not sending a message.

In this chapter, we do not consider protocols with user coordination, which we consider

in the next chapter.
2↑We note that in some cases, where users act as nodes and broadcast messages to other users, our quantifi-
cation of the bandwidth overhead might be a bit harsh. If the group of users to which the broadcast will be
sent is known in advance (i.e., if messages are broadcast to all users or to pre-existing groups of users), we
can allow the protocol to use a single receiver for these messages instead.
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3.1.4 Construction of a Concrete Adversary

Given two challenge users u0 and u1 and the set of observed tokens (t, r) ∈ Tokens,

where t is the token and r the round in which the token was observed, an adversary can

construct the sets Sj (for j ∈ {0, 1}). Assume the challenge message arrives at the receiver

R in a round r. We construct possible paths of varying length k, s.t., each element p ∈ Sj
represents a possible path of the challenge message starting from uj (j ∈ {0, 1}) and the

challenge message then arrives at the recipient R in round rk = r. With challenge bit b, Sb
cannot be empty, as the actual path taken by the challenge message to reach R has to be

one element in Sb.
Sj = {p = (t1.prev, . . . , tk.prev, tk.next) :

((t1, r1), . . . , (tk, rk)) ∈ Tokens s.t.

t1.prev = uj ∧ tk.next = R ∧ tk.msg = Chall ∧ k ≤ `

∧ ∀i∈{1,...,k−1}(ti.next = ti+1.prev ∧ ri+1 = ri + 1

∧ ( ∃ti+1 : (ti+1, ri+1) ∈ Tokens ∧ ti+1.prev = ti.next

∧ ti+1.IDt = ti.IDt)⇒ ti+1 = ti+1)}

Definition 3.1.2 (Adversary Apaths). Given a set of users S, a set of protocol parties P

of size K, and a number of possibly compromised nodes c, the adversary Apaths proceeds as

follows: 1. Apaths selects and compromises c different parties from P uniformly at random.

2. Apaths chooses two challenge users u0, u1 ∈ S uniformly at random. 3. Apaths makes

observations and, based upon those, constructs the sets S0 and S1. For any i ∈ {0, 1}, if

Si = ∅, then Apaths returns 1− i. Otherwise, it returns 0 or 1 uniformly at random.

Apaths thus checks whether both challenge users could have sent the challenge message.

We explicitly ignore differences in probabilities of the challenge users having sent the chal-

lenge message, as those probabilities can be protocol specific. Naturally, when c = 0, Apaths
represents a non-compromising adversary; but when c 6= 0, Apaths is partially compromising.
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3.1.5 Protocol Invariants

We now investigate the robustness of protocols against our adversary. We define an

invariant that, if not satisfied, allows Apaths to win against any protocol. Moreover, we

present a protocol that maximizes the probability of fulfilling the invariant.

Necessary invariant for protocol anonymity. It is necessary that at least both chal-

lenge users send messages in one of the ` rounds before the challenge message reaches the

recipient, as otherwise there is no way both of them could have sent the challenge message.

Moreover, on the path of the actual challenge message, there needs to be at least one honest

(uncompromised) party, as otherwise the adversary can track the challenge message from the

sender to the recipient ( Sb will have exactly one element and S1−b will be empty). Those

two conditions together form our necessary protocol invariant.

Invariant 1. Let u0 and u1 be the challenge users; let b be the challenge bit; and let t0 be the

time when ub sends the challenge message. Assume that the challenge message reaches the

recipient at r. Assume furthermore that u1−b sends her messages (including noise messages)

at V = {t1, t2, t3, . . . , tk}. Now, let T = {t : t ∈ V ∧ (r − `) ≤ t < r}. Then,

(i) the set T is not empty, and

(ii) the challenge message passes through at least one honest node at some time t such that,

t ∈ {min(T ), . . . , r − 1}.

Claim 1 (Invariant 1 is necessary for anonymity). Let Π be any protocol ∈ M with latency

overhead ` and bandwidth overhead β. Let u0, u1, b and T be defined as in Invariant 1. If

Invariant 1 is not satisfied by Π, then our adversary Apaths as in Definition 4.3.1 wins.

Proof. We distinguish two cases, depending on T : either T is empty, or T is non-empty.

If the set T is empty, then S1−b is empty as well. However, by construction of our protocol

model, the set Sb is always non-empty. Consequently, the adversary Apaths will output b and

thus win with probability 1. If T is not empty, the following cases can occur:

1. The challenge message never passes through an honest node: In this case, the field IDt

of the message never changes for the tokens. By definition of the sets Sj, the tokens

37



can only be combined if either there is no corresponding token with the same value for

IDt, or by extending the path by exactly this token. Thus, Sb will have exactly one

element, and S1−b will be an empty set, and consequently Apaths wins.

2. The challenge message passes through one or more honest nodes at times t, such that

t < min(T ), but not afterwards. Following the same reasoning as above, we see that

paths before min(T ) can be ambiguous, but none of them leads to u1−b. Hence, Sb can

have multiple elements, but S1−b will still be an empty set. Thus, Apaths wins.

3. The challenge message passes through an honest node at time t with t ≥ min(T ). In

this case, the invariant is true.

In all of the above mentioned cases either the invariant is true, or the adversary wins with

probability 1.

We next claim that it suffices to consider noise messages sent by users that also remain

within the system for at most ` rounds, i.e., noise messages that follow the same rules as

real messages. Note that we consider every new message originating from any user’s client

as a fresh noise message.

Claim 2 (Internal noise does not influence Invariant 1). Any message not originating from

an end user u ∈ S does not influence the probability for Invariant 1 being true. Moreover,

noise messages do not contribute to the probability for Invariant 1 being true after they stayed

in the network for ` rounds.

Proof. Let u0, u1 be the challenge users and let b be the challenge bit and let r be the round

in which the challenge message is delivered to the recipient. We discuss both parts of the

invariant separately:

(i) The set T is not empty. Since by definition, T is the set of messages sent by u1−b,

messages originating in any party not in S do not influence T . Moreover, any message sent

by u1−b in a round previous to r − ` does not influence T either. Thus, noise messages

staying in the protocol for more than ` rounds, does not improve the probability of T being

not empty.
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(ii) The challenge message passes through at least one honest node at some time t such

that, t ∈ {min(T ), . . . , r − 1}. Obviously this second part of the invariant does not depend

on any noise message.

Consequently, noise introduced by u in P but not in S do not modify the probability to

fulfill Invariant 1. We henceforth consider noise messages as a protocol input.

3.1.6 Ideal Protocol

We construct a protocol Πideal that maximizes the probability of fulfilling Invariant 1.

Claim 1 shows that for any protocol in our model Apaths wins whenever Invariant 1 does

not hold. Thus, an upper bound on the probability that Πideal satisfies Invariant 1 yields an

upper bound for all these protocols.

Given the set of all protocol parties P = {P0, . . . , PK−1} of size K, the strategy of Πideal is

as follows: in a round r, Πideal delivers all messages scheduled for delivery to a recipient. All

other messages (including the messages that enter Πideal in round r) are sent to the protocol

party Pi with i = r mod K. For every message that enters the protocol, Πideal queries an

oracle O for the number of rounds the message should remain in the protocol. We define the

following events:

• u.sent(x, y) : user u has sent at least one message within rounds from x to y. For a

single round we use u.sent(x).

• Cmpr(x) : Apaths has compromised the next x consecutive parties on the path.

• ¬H : NOT of event H.

Given a message sent at t0 by sender x, and delivered to the recipient at (t0 + t), we define

Pt for sender v ∈ S \ {x}:

Pt =
∑t0

j=r−` Pr [v.sent(j) ∧ ¬v.sent(j + 1, t0)] · Pr [¬Cmpr(t)]

+
∑r

j=t0+1 Pr [v.sent(j) ∧ ¬v.sent(r − `, j − 1)] · Pr [¬Cmpr(r − j)]

When v = u1−b, and the message is the challenge message, Pt is the probability of fulfilling

Invariant 1, for the strategy above. For each message, oracle O chooses an optimal t that
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maximizes the expectation of Pt over all users. Due to the over-approximation with this (not

realizable) oracle, the resulting protocol is optimal w.r.t. Invariant 1 (refer to Claim 3).

Claim 3 (Ideal protocol is ideal for the invariant). Against the given adversary Apaths, Πideal

satisfies Invariant 1 with probability at least as high as any other protocol in M .

Proof. We want to prove our claim by contradiction. Suppose, Πideal is not the best protocol.

That means, there exists a protocol Πnew, which satisfies Invariant 1 with a higher probability

than Πideal, against the adversary Apaths.

Now we construct a new protocol Πhybrid, which exactly follows the strategy of Πideal with

one exception: for a given message Πhybrid selects the time delay t same as Πnew, instead

of querying it from oracle O. Suppose, the challenge message is delivered to the recipient

at round r. Given the set {min(T ), . . . , r − 1}, the ideal strategy for ensuring that at least

one honest party is on the path of the challenge message is to ensure that as many distinct

parties as possible are on this path. Also, given the time delay t, the value of min(T ) is

independent of the protocol, since protocols in M are oblivious to the challenge users and

the challenge message. Hence, Πhybrid has a probability of satisfying Invariant 1 at least as

high as Πnew.

Now, if we compare Πhybrid and Πideal: they follow the same strategy. But Πideal picks

the time delay t for any message from oracle O such that t is optimal. The time delay t

can be picked for each message independent of the time delays of other messages. Hence,

the value of t received from oracle O for the challenge message is optimal. Hence, Πideal

satisfies Invariant 1 with probability at least as high as Πhybrid. Thus, Πnew does not satisfy

Invariant 1 with a higher probability than Πideal.

Note that Pr [i = Apaths | b = i] ≥ 1
2 is always true, since our adversary always guesses

unless it is sure to win. So, if exactly one of S0 and S1 is non-empty, Apaths certainly wins,

otherwise it wins with probability 1
2 . The above fact, along with Claim 1 and Claim 3,

helps us conclude that the best chance for any protocol against Apaths is bounded by the

probability of Πideal satisfying Invariant 1.
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3.2 Synchronized Users with Non-compromising Adversaries

Our first scenario is a protocol-friendly user distribution UB, where inputs from all users

are globally synchronized: over the course of N rounds, exactly one user per round sends a

message, following a random permutation that assigns one round to each user. Analogously,

the protocol globally instructs the users to send up to β ∈ [0, 1] noise messages per user

per round, or B = βN noise messages per round in total.

In real life, the user distribution is independent of the protocol. However, to make the

user distribution protocol-friendly in our modeling we consider a globally controlled user

distribution. For this scenario, we consider non-compromising passive adversaries that can

observe all network traffic.

3.2.1 Lower Bound on Adversarial Advantage

Theorem 3.2.1. For user distribution UB, no protocol Π ∈M can provide δ-sender anony-

mity, for any δ < 1− fβ(`), where fβ(x) = min(1, ((x+ βNx)/(N− 1))).

Proof. By Claim 3, we know that Πideal is an optimal protocol for satisfying Invariant 1

and by Claim 1 we know that satisfying Invariant 1 is necessary for anonymity, as otherwise

our adversary Apaths can win against the protocol. Thus, the probability that Πideal satisfies

Invariant 1 directly provides a lower bound of the adversary’s advantage against any protocol.

Let, u0 and u1 be the users chosen by the adversary and let b be the challenge bit. Let

t0 be the round in which ub sends the challenge message and let r be the round in which the

challenge message reaches the recipient.

Recall that Invariant 1 is necessary for the protocol to provide anonymity; u1−b sends her

messages (can be a noise message) at V = {t1, t2, t3, . . . , tk}, then T = {t : t ∈ V ∧ (r− `) ≤

t < r}. Since we are considering a non-compromising adversary, Pr [Invariant 1 is true] =

Pr [T is not empty] . With the above in mind, let us define the following events:

H1: In ` rounds u1−b sends at least one noise message.

H2: u1−b sends his own message within the chosen ` rounds.
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H3: there is at least one message from u1−b within the chosen ` rounds ≡ T is not empty

≡ Invariant 1 is true.

Consider any slice of ` rounds around the challenge message, there are exactly (` − 1) user

messages other than the challenge message. Hence, any slice of ` rounds yields the same

probability of containing a user message from u1−b, except when r < ` OR r > N where the

probability is smaller. Thus, no matter what value of t is returned by O, Pr [H2] ≤ `−1
N−1 .

Given any values `, β ≥ 0 , Apaths has the least chance of winning, if for a given interval

of ` rounds, βN` unique users are picked to send the noise messages in such a way that they

are not scheduled to send their own messages in that interval. Since, Πideal needs only one

message from u1−b in the interval of ` rounds for Invariant 1 to hold, it tries to maximize

the number of users that send messages in that interval. Hence, Pr [H1] ≤ βN`
N−1 . Therefore,

Pr [¬H3] = Pr [¬H1,¬H2] ≥ max(0, (N− `− βN`)/(N− 1)).

Pr [H3] = 1− Pr [¬H3] ≤ min(1, ((`+ βN`)/(N− 1))).

Thus, we can bound the probability for the adversary as

Pr[0 = Apaths|b = 1] = Pr[1 = Apaths|b = 0] ≤ 1
2Pr [H3];

and Pr[0 = Apaths|b = 0] ≥ 1− 1
2Pr [H3].

And therefore, since δ ≥ Pr[0 = Apaths|b = 0]− Pr[0 = Apaths|b = 1],

δ ≥ 1− Pr [H3] ≥ 1− fβ(`).

3.2.2 Impossibility for Strong Anonymity

We now investigate under which constraints for ` and β Theorem 3.2.1 rules out strong

anonymity.

Theorem 3.2.2. For user distribution UB with ` < N and βN ≥ 1, no protocol Π ∈M can

achieve strong anonymity if 2`β < 1− ε(η), where ε(η) = 1
ηd

for a positive constant d.

42



Proof. For strong anonymity, we require: δ(η) = neg(η), and we know that for Πideal we

have: δ(η) ≥ 1− fβ(`) =
(

N−`−βN`
N−1

)
≥
(

N−`−βN`
N

)
≥ 1− `

N − β`.

We assume for contradiction that there is a protocol limited by ` and β such that 2`β <

1− ε(η) that still achieves strong anonymity. Since δ(η) = neg(η), we know that ε(η) > δ(η).

ε(η) > δ(η) =⇒ ε(η) > 1− `

N − β`

=⇒ ε(η) > 1− `

N −
1
2 (1− ε(η))

⇐⇒ 2` > N (1− ε(η)) Nβ≥1=⇒ 2`β > 1− ε(η)

The above contradicts the assumption that 2`β < 1− ε(η).

Note: In case βN < 1, no noise messages are allowed per round (i.e., β = 0) and thus

δ(η) ≥ 1− `/N, which is not negligible unless ` = N, since N = poly(η).

Note that this is a necessary constraint for anonymity, but not a sufficient condition.

There can exist ` and β such that 2`β > 1 − neg(η), but Πideal can not achieve strong

anonymity, and hence no protocol can achieve strong anonymity. We have discussed few

such examples later in the following part of this section.

Interesting Cases. For illustration, we now discuss a few examples for different values of

`, β, and N.

1. If ` = N, we can have δ = 0 even for β = 0. Anonymity can be achieved trivially by

accumulating all messages from all N users and delivering them together at round (N + 1).

In this case 2`β = 0 < 1− ε(η), but also βN = 0 < 1.

2. β = 1
η

, ` = η: We have δ ≥ N−η−N
N ≥ −η

N . In ` rounds the protocol can send `βN = N

noise messages and achieve strong anonymity (all N users send a noise message each).

3. β = 1
2η , ` = η: Here we have, δ ≥ N−η−N

2
N = 1

2 −
η
N . In this case, strong anonymity is

possible if η
N ≥

1
2 − neg(η). Even though 2`β = 1 > 1 − neg(η), anonymity depends on the

relation between η and N.

4. β = 1
2 , ` = 1: We have δ ≥ N−1−N

2
N u 1

2 . In a best scenario, only half of the users

send messages in ` rounds. Therefore, protocols cannot achieve strong anonymity here even

though 2`β > 1− neg(η).
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5. β = 1
9 , ` = 3: For η > 3 and N > 4, which is a very natural assumption, we have

2`β = 2
3 < 1 − neg(η). Then, δ ≥ N−3−N3

N > neg(η). Then, δ ≥ N−3−N3
N = 1 − 3

N −
1
3 . Here,

δ can not be neg(η). If we consider our Πideal, in ` rounds it receives only (N
3 + 3) messages

(noise + user messages). So a maximum of (N
3 + 2) users can send messages other than the

challenge user, and there is a high probability that u1−b has not sent a message. Hence Πideal

cannot achieve strong anonymity, and analogously no other protocol in M can achieve that.

3.3 Synchronized Users with Partially Compromising Adversaries

We now extend our analysis of the previous section by having compromised protocol

parties. Given the set of protocol parties P, now our adversary Apaths can compromise a

set of c parties Pc ⊂ P. If Apaths can compromise all the parties in P, anonymity is broken

trivially - that’s why we do not analyze that case separately. Recall from Section 3.1.4

that Apaths picks the c parties from P uniformly at random. We consider the same user

distribution UB as in Section 3.2.

3.3.1 Lower Bound on Adversarial Advantage

In our protocol Πideal the oracle O decides on the time t to deliver each message, which is

within [1, `], s.t. t maximizes the probability that Invariant 1 is true. Similar to Section 3.2,

we now calculate a bound on the probability that Πideal satisfies Invariant 1.

Theorem 3.3.1. For user distribution UB, no protocol Π ∈M can provide δ-sender anony-

mity, for any

δ <


1− [1−

(
c
`

)
/
(

K
`

)
]fβ(`) c ≥ `

1− [1− 1/
(

K
c

)
]fβ(c)− fβ(`− c) c < `

where fβ(x) = min(1, ((x+ βNx)/(N− 1))).

Proof. Let u0, u1 be the challenge users and let b be the challenge bit. Moreover, let t0 be

the time the challenge message is sent by ub and let r = t0 + t be the time it is received by

the recipient, where t is the delivery time decided by the oracle O.
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Case c ≥ `:

r − c r − ` t0 r
t

`

c Case c < t < `:

r − ` t0 r − c r
t

c
`

Case t < c < `:

r − ` r − c t0 r
t

c
`

Arriving messages satisfy Invariant 1.
Arriving messages satisfy Invariant 1 depending on Pc.
Arriving messages don’t satisfy Invariant 1.

Figure 3.5. Satisfying Invariant 1 depending on the arrival time of messages
from u1−b in the cases of the proof for Theorem 3.3.1.

We distinguish two cases, depending on ` and c: 1. First, where the number of compro-

mised parties c is at least as large as the maximal latency `. In this case, all parties on the

path of the challenge message could be compromised. 2. Second, where not all parties on the

path of the challenge message can be compromised. And hence, the analysis focuses on the

arrival times of messages from u1−b. For a graphical depiction of the relationship between

the rounds a message from u1−b arrives and it satisfying Invariant 1 we refer to Figure 3.5.

1) Case c ≥ `. We know, ` ≥ t holds by definition. The invariant is true only if u1−b

sends at least one message in one of the rounds between (r − `) and (r − 1). Additionally,

if u1−b sends at least one message in {r − `, . . . , t0}, the invariant holds only if there is at

least one non-compromised party on the path between t0 and (r − 1). Whereas, if u1−b

does not send any message in {r− `, . . . , t0}, and the first message from u1−b in the interval

{t0 + 1, r− 1} arrives at t1, the invariant holds only if there is at least one non-compromised

party on the path between t1 and (r − 1).

Note that K > c ≥ `. Also recall from Section 3.1 that Apaths picks the c parties uniformly

at random from K parties.
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Pr [Invariant 1 is true]

≤
∑t0

j=r−` Pr [u1−b.sent(j) ∧ ¬u1−b.sent(j + 1, t0)] · Pr [¬Cmpr(t)]

+
∑r

j=t0+1 Pr [u1−b.sent(j) ∧ ¬u1−b.sent(r − `, j − 1)] · Pr [¬Cmpr(r − j)]

≤ Pr [¬Cmpr(`)] · Pr [u1−b.sent(r − `, r − 1)]

≤ [1−
(

c
`

)
/

(
K
`

)
] ·min(1, ((`+ βN`)/(N− 1))).

By Claim 1 the adversary wins whenever Invariant 1 is not true. Hence, we know that

the probability that the adversary guesses incorrectly is bounded by:

Pr [0 = Apaths|b = 1] = Pr [1 = Apaths|b = 0] ≤ 1
2Pr [Invariant 1 is true]

≤ 1
2 [1−

(
c
`

)
/
(

K
`

)
] ·min(1, ( `+βN`

N−1 )).

Thus, δ ≥ 1− [1−
(

c
`

)
/
(

K
`

)
] ·min(1, ( `+βN`

N−1 )).

2) Case c ≤ `: The probability that all parties on the mutual path of the challenge

message and a message from the alternative sender u1−b are compromised now mainly de-

pends on the arrival time of the messages from u1−b. We find two sub-cases depending on

the oracle’s choice for t.

2a) Case c ≤ t:

Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − `, r − c)] + Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c, r)] · Pr [¬Cmpr(c)]

≤ min(1, ( (`−c)+βN(`−c)
N−1 )) + min(1, (N−(`−c)−βN(`−c)

N−1 )( c+βNc
N−(`−c)−βN(`−c)))[1−

1
(K

c)
]

≤ fβ(`− c) + fβ(c)[1− 1/
(

K
c

)
].

Note that the probability that there are no messages from u1−b in [(r − `), (r − c)] and

that there is at least one message from u1−b in [(r − c), r] are not independent from each

other. The best thing a protocol can do with the noise messages is to have Nβ` unique users,

different from the ` users who send their actual message, send the noise messages. Thus, if a

user sends a message in [(r− `), (r− c)], he can not send a message in [(r− c), r]. The above

calculations are done considering that best scenario. Also note that the value of K may be
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larger or smaller than ` and t, but as long as c ≤ K, the bound given above holds. Hence,

δ ≥ 1 − fβ(`− c) − [1 − 1/
(K

c

)
] · fβ(c).

2b) Case t < c :

Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − `, r − c)] · Pr [¬Cmpr(t)]

+ Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c), r)] · Pr [¬Cmpr(t)]

≤ Pr [u1−b.sent(r − `, r − c)] + Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c, r)] · Pr [¬Cmpr(t)]

The event expression above is the same as in the previous case (t > c). The bound on δ thus

follows analogously.

3.3.2 Impossibility for Strong Anonymity

Theorem 3.3.2. For user distribution UB with K ∈ poly(η), K > c ≥ ` , ` < N and

βN ≥ 1 , no protocol Π ∈M can achieve strong anonymity if 2`β < 1− ε(η) or ` ∈ O(1),

where ε(η) = 1/ηd for a positive constant d.

Proof. When c ≥ `: δ ≥ 1−
[
1− (c

`)
(K
`)

]
fβ(`).

For δ to become neg(η), we need both [1−
(

c
`

)
/
(

K
`

)
] and fβ(`) to become overwhelming.

From Theorem 3.2.2 and Theorem 3.2.1, we know that 2`β > 1 − neg(η) is a necessary

condition for fβ(`) to become overwhelming. Now, we are left with the factor [1−
(

c
`

)
/
(

K
`

)
].
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This can become overwhelming iff [
(

c
`

)
/
(

K
`

)
] becomes negligible. We know that K > c ≥ `

and K ∈ poly(η). Hence, for some constant x,

c− `
K− ` >

1
ηx
⇐⇒

(
c− `
K− `

)`
>

(
1
ηx

)`

=⇒ c(c− 1) . . . (c− `)
K(K− 1) . . . (K− `) >

(
c− `
K− `

)`
>

(
1
ηx

)`

⇐⇒

(
c
`

)
(

K
`

) > (
1
ηx

)`
.

For any ` ∈ O(1), (1/ηx)` is non-negligible.

To achieve strong anonymity againstApaths, we need ` ∈ ω(1), additional to the constraint

of 2`β > 1− neg(η). We now focus on the constraint ` ∈ ω(1) and refer to Section 3.2.2 for

a comprehensive case study on the other constraint.

Interesting Cases. Now we are going to discuss a few interesting cases for different values

of ` < c, and K.

1. ` = η and K/c = constant: In this case we have, (c
`

)
/
(K
`

)
= c(c−1)...(c−`+1)

K(K−1)...(K−`+1)< (c/K)` = (c/K)η.

Hence, (c
`

)
/
(K
`

) becomes negligible and strong anonymity is possible. Even though c has a

high value, because of the high value of ` there is a significant possibility that the challenge

message will meet a message from u1−b at some honest node, given a high value of β such

that 2`β > 1− neg(η).

2. ` = O(1), c = O(1): Now we have, (c
`

)
/
(K
`

)
= c(c−1)...(c−`+1)

K(K−1)...(K−`+1) > ((c − `)/(K − `))`. But K ∈

poly(η), and c and ` can only have integer values. Hence ((c − `)/(K − `))` is non-negligible,

and hence (c
`

)
/
(K
`

) is also non-negligible. Even though c has a small value, ` is also small.

Hence, it is unlikely that the challenge message will mix with a message from u1−b at some

honest node. Thus, strong anonymity cannot be achieved.

3. ` = c = K − 1: Now we have, (c
`

)
/
(K
`

)
= 1

K . But K ∈ poly(η). Hence ((c − `)/(K − `))` is

non-negligible. Therefore, (c
`

)
/
(K
`

) is non-negligible, no matter what value of β we pick. Even

though ` might have a high value (depending on the value of K), c is equally high. Hence,

it is unlikely that the challenge message will mix with a message from u1−b at some honest

node. Thus, strong anonymity cannot be achieved, despite the necessary constraints being
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satisfied. This reflects the fact that the constraints are necessary for anonymity, but not

sufficient conditions for anonymity.

Theorem 3.3.3. For user distribution UB with K ∈ poly(η), c ∈ O(1), K > ` > c, ` < N

and βN ≥ 1, no protocol Π ∈M can achieve strong anonymity if 2(`−c)β < 1− ε(η), where

ε(η) = 1
ηd

for a positive constant d.

Proof. When c < `: δ ≥ 1−
[
1− 1/

(
K
c

)]
fβ(c)− fβ(`− c).

First consider the factor [1 − 1/
(

K
c

)
]. Since K = poly(η) and c = constant, [1/

(
K
c

)
] can

never be negligible. And thus, [1− 1/
(

K
c

)
] can never be overwhelming. So, [1− 1/

(
K
c

)
]fβ(c)

can never be overwhelming as well, since fβ(c) ≤ 1.

Now, let’s consider fβ(` − c) and fβ(c) . Note that, these two factors represent the

probabilities of two dependent but mutually exclusive events, and hence fβ(c)+fβ(`−c) ≤ 1.

And we already know that [1−1/
(

K
c

)
] can never be overwhelming. Thus, the only way δ can

become negligible is if fβ(` − c) becomes overwhelming. Note that, if a + b ≤ 1 and c < 1,

the only way ac+ b = 1 is possible if b = 1.

Now we can follow exactly the same procedure as in the proof of Theorem 3.2.2 to say:

fβ(`− c) can not become overwhelming if 2(`− c)β < 1− ε(η).

The analysis in this case is exactly same as Section 3.2.2, except that here we need to

consider the slice of (`− c) rounds instead of ` rounds.

It is worth repeating here, all the constraints we have derived in Section 3.2 and Sec-

tion 3.3 are necessary for anonymity, but they are not sufficient conditions for anonymity.

3.4 Unsynchronized Users with Non-compromising Adversaries

In this and the subsequent section we use an unsynchronised user distribution UP : In

each round, independent of other users and other rounds, each client tosses a biased coin

with success probability p ∈ (0, 1]. On a success the client sends a message in that round,

otherwise it does not send a message. Consequently, the number of messages per round

follows Binomial distribution Binom(N, p) if the number of users N is large and p sufficiently

small, the resulting binomial distribution reduces to a Poisson distribution, which is a close

approximation of real-life traffic patterns.
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For a protocol with bandwidth overhead β, we distinguish between the actual probability

that users want to send messages p and the value for p that we use in our analysis, i.e., we set

p = p + β. In this unsynchronised scenario the bandwidth of genuine messages contributes

to the anonymity bound.

As in Section 3.2, in this section we consider a non-compromising adversary.

3.4.1 Lower Bound on Adversarial Advantage

Theorem 3.4.1. For user distribution UP , no protocol Π ∈ M can provide δ-sender ano-

nymity, for any δ < 1 −
(

1
2 + fp(`)

)
, where fp(x) = min(1/2, 1 − (1 − p)x) for a positive integer

x.

Proof. Similar to Section 3.2, we calculate a bound on the probability that Πideal satisfies

Invariant 1, and that bound is valid against any other protocol in our model. Since we con-

sider a non-compromising adversary, Pr [Invariant 1 is True] = Pr [T is not empty] , where

T is defined as in Invariant 1.

Let us consider the random variables X(1), X(2), . . . , X(N), where X(i) denotes the event of

the ith user sending her own message within a given interval of ` rounds [a, b], with (b−a) = `.

All X(i)s are mutually independent and we have,

X(i) =


0 with probability (1− p)`

1 with probability (1− (1− p)`).
Next, let X = ∑N

i=1X
(i) be a random variable representing the number of users that send

messages in an interval of ` rounds. We calculate for the expected value E[X] of X,

E[X] = E[∑N
i=1X

(i)] = ∑N
i=1 E[X(i)]

= N(1− (1− p)`) = µ.

Using the Chernoff Bound on the random variable X we derive Pr [X − µ ≥ Na] ≤

exp(−2a2N), which for a = µ
N lets us estimate, Pr [X ≥ 2µ] ≤ exp (−2(µ2/N2)N). For brevity

in the following calculation we denote, Pr [X ≥ 2µ] by E and the event that T is non-empty

by Y and since all users are acting independently from each other we get for j ∈ {0, . . . ,N},

Pr [Y |X = j] = 1− Pr [¬Y |X = j] = j
N .
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For 2µ ≤ N, we have the following,

Pr [Y ]

=Pr [X ≥ 2µ] · Pr [Y |X ≥ 2µ] + Pr [X < 2µ] · Pr [Y |X < 2µ]

≤Pr [X ≥ 2µ] · Pr [Y |X = N] + Pr [X < 2µ] · Pr [Y |X = 2µ]

=E · Pr [Y |X = N] + (1− E) · Pr [Y |X = 2µ]

=E · NN + (1− E) · 2µ
N = 1− (1− E) (1− 2fp(`)) .

If 2µ > N, we get with f(`) = min
(

1
2 , 1− (1− p)`

)
, Pr [Y ] ≤ E + (1− E) 1 ≤ 1 ≤

1− (1− E) (1− 2fp(`)).

Thus, δ ≥ 1− Pr [Y ] ≥ (1−E) (1− 2fp(`)) . We now use Markov’s Inequality on X and

derive E = Pr [X ≥ 2µ] ≤ 1
2 , which means, δ ≥ 1

2 (1− 2fp(`)) ≥ 1
2 − fp(`).

Note that in the proof of Theorem 3.4.1, in case p is a constant and N is a very high value, then

E goes towards zero and instead of using Markov’s inequality, we can derive δ ≥ 1− 2fp(`).

3.4.2 Impossibility for Strong Anonymity

Theorem 3.4.2. For user distribution UP and p > 0, no protocol Π ∈M can achieve strong

anonymity if 2`p < 1− ε(η), where ε(η) = 1/ηd for a positive constant d.

Proof. We know 0 ≤ E ≤ 1/2. When 2µ ≤ N,

δ ≥(1− E) (1− 2fp(`)) ≥ 1/2
(
2 (1− p)` − 1

)
≥1/2 (2 (1− `p)− 1) = 1/2 (1− 2`p) .

Thus, if 2`p < 1− ε(η),

2`p < 1− ε(η) ⇐⇒ 1− 2`p > ε(η)

=⇒ δ > 1/2 · ε(η) = non-negligible.

Thus, when 2µ ≤ N, a necessary condition for δ to become negligible is 2`p > 1− neg(η).
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When 2µ > N, using µ = N(1− (1− p)` ) we get:

2N(1− (1− p)`) > N =⇒ (1− p)` < 1/2

=⇒ 1− p` < 1/2 ⇐⇒ 2p` > 1.

Similar to the constraints in Section 3.2 and Section 3.3, this is also a necessary constraint

for anonymity, not a sufficient condition. There can exist ` and p such that 2`p > 1−neg(η),

but still no protocol can achieve strong anonymity.

Interesting Cases. Now we are going to discuss a few interesting cases for different values

of `, p, and N.

1. p = 1
η
, ` = η : Here, fp(`) = 1 − (1− p)` > 1 − 1/e > 1

2 . Hence, δ ≥ 1
2 − fp(`) = 0.

Since p` = 1, in ` rounds the protocol has 1 message per user on an average. So, the

protocol has a high chance of winning, but depending on the specific instance of the user

distribution. Whereas in Section 3.2.2, we saw that, for a similar bandwidth and latency

overhead, protocols could win with all instances of the synchronized user distribution.

2. p = 1
2η , ` = η: even for η > 2, fp(`) = 1 − (1− p)` < 0.45. Hence, δ ≥ 1

2 − fp(`) > 0.05.

Even though 2`p = 1, strong anonymity can not be achieved in this case. In an expected

scenario, in a slice of ` rounds only p` = 1
2 portion of the total users send messages, and

hence there is a significant chance that u1−b is in the other half. Note that this is different

from the scenario with synchronized users where protocols could achieve strong anonymity

in this case (c.f. Section 3.2.2).

3. p = 1
2 , ` = 1: We have, fp(`) = 1 − (1− p)` = 1

2 . Hence, δ ≥ 0. Although we have

2`p = 1, because of low `(= 1), u1−b does not send a message with high probability(= 1
2).

This case again highlights that the requirement 2`p ≥ 1− ε(η) is not necessarily sufficient:

As in Section 3.2.2, protocols can not achieve strong anonymity in such a situation.

4. p = 1
9 , ` = 3: Here, fp(`) = 1− (1− p)` = 1−

( 8
9
)3
< 0.29, and δ ≥ 1

2 − fp(`) > 0.21; because

of low values of both p and ` only a few users send messages within the interval of ` rounds,

and hence the protocol has a small chance to win. As in Section 3.2.2, protocols can not

achieve strong anonymity in this case, since the necessary constraints are not satisfied.
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3.5 Unsynchronized Users with Partially Compromising Adversaries

Finally, we consider partially compromising adversaries that can compromise a set of c

parties Pc ⊂ P for the user distribution UP defined in Section 3.4.

3.5.1 Lower Bound on Adversarial Advantage

Theorem 3.5.1. For user distribution UP , no protocol Π ∈M can provide δ-sender anony-

mity, for any

δ <



1− [1−
(

c
`

)
/
(

K
`

)
][1

2 + fp(`)] c ≥ `(
1− [1− 1/

(
K
c

)
][1

2 + fp(c)]
)

·
(
1− [1/2 + fp(`− c)]

)
c < `

where fp(x) = min(1/2, 1− (1− p)x) for a positive integer x.

We derive the bound in Section 3.B by combining the techniques presented in Section 3.3

and Section 3.4. Since the proof does not introduce novel techniques, we omit it and instead

refer the interested reader to Section 3.B for the proof.

3.5.2 Impossibility for Strong Anonymity

To analyze the negligibility condition of δ in this scenario, we heavily borrow the analyses

that we already have conducted in Section 3.4.2 and Section 3.3.2. We are going to analyze

this scenario in two parts:

Case c ≥ `: We have, δ ≥ 1− [1−
(

c
`

)
/
(

K
`

)
]
[

1
2 + fp(`)

]
.

To make δ negligible, both the factors [1 −
(

c
`

)
/
(

K
`

)
] and [1/2 + fp(`)] have to become

overwhelming. From Theorem 3.3.2, we know that we need ` ∈ ω(1) to make [1−
(

c
`

)
/
(

K
`

)
]

overwhelming. This is a necessary condition, but not sufficient. For a detailed discussion,

we refer to Section 3.3.2. From Section 3.4.2 we know that the necessary condition for

[1/2 + fp(`)] to be overwhelming is 2`p > 1 − neg(η). Hence, both conditions are necessary

to achieve strong anonymity.

Case c < `: We have,

δ ≥ (1− [1/2 + fp(`− c)])(1− [1− 1/
(

K
c

)
][1/2 + fp(c)]).
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In the above expression, we can see two factors:

(i) F1 = (1− [1
2 + fp(`− c)]), (ii) F2 = (1− [1− 1/

(
K
c

)
][1

2 + fp(c)]).

To make δ negligible, it suffices that F1 or F2 become negligible. Unlike Section 3.3, here

fp(` − c) and fp(c) are independent, which allows us to analyze F1 and F2 independently.

First, F1 is similar to the δ-bound in Section 3.4, except that we consider fp(`− c) instead of

fp(`). Hence, the analysis of F1 is analogous to Section 3.4.2. Second, F2 is negligible if both

[1− 1/
(

K
c

)
] and [1/2 + fp(c)] are overwhelming. From Section 3.3.2 we know that [1− 1/

(
K
c

)
]

can not be overwhelming for a constant c. Moreover, fp(c) can be analyzed exactly as fp(`)

in Section 3.4.2.

3.6 Recipient Anonymity

The protocol model remains unchanged for recipient anonymity with the exception that

the colored token now additionally has a private field for the recipient. We also require noise

messages to adhere to the latency bound `. Now we assume that there are N recipients in

R. Since, we are not concerned about distinguishing senders, we can assume that there is

only one sender in S.

The anonymity game also remains almost same as Section 3.1.2, with only one change:

now the game uses αRA [39] instead of αSA as the anonymity notion. Naturally, the adversary

is not informed about the delivery of the challenge message by a recipient, but of the sending

of the challenge message by a sender.

The adversarial strategy Apaths also remains similar to that of sender anonymity scenario.

But here, the adversary can identify the challenge message when it is sent by the sender, not

when received by a recipient. After observing the tokens, Apaths tries to construct possible

paths for the challenge message to the challenge recipients.

More formally, Given two challenge recipients R0 and R1 and the set of observed tokens

(t, r) ∈ Tokens, where t is the token and r the round in which the token was observed, an

adversary can construct the sets Sj (for j ∈ {0, 1}). Assume the challenge message is sent

by the sender u in a round s. We construct possible paths of varying length k, s.t., each

element p ∈ Sj represents a possible path of the challenge message starting from the sender
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u in round r1 = s and the challenge message then arrives at Rj (j ∈ {0, 1}) in round rk.

With challenge bit b, Sb cannot be empty, as the actual path taken by the challenge message

has to be one element in Sb.

Sj = {p = (t1.prev, . . . , tk.prev, tk.next) :

((t1, r1), . . . , (tk, rk)) ∈ Tokens s.t.

t1.prev = u ∧ tk.next = Rj

∧ t1.msg = Chall ∧ k ≤ `

∧ ∀i∈{1,...,k−1}(ti.next = ti+1.prev ∧ ri+1 = ri + 1

∧ ( ∃ti+1 : (ti+1, ri+1) ∈ Tokens ∧ ti+1.prev = ti.next

∧ ti+1.IDt = ti.IDt)⇒ ti+1 = ti+1)}

Necessary invariant for recipient anonymity. For recipient anonymity it is necessary

that at least both challenge recipients receive messages in the ` rounds after the challenge

message was sent. Moreover, on the path of the actual challenge message, there needs to

be at least one honest (non-compromised) party, as otherwise the adversary can track the

challenge message from the sender to the recipient ( Sb will have exactly one element and

S1−b will be empty). Those two conditions together form our necessary protocol invariant.

Invariant 2. Let R0 and R1 be the challenge recipients; let b be the challenge bit; and let s be

the time when the sender u sends the challenge message towards Rb. Assume that messages

for R1−b (including noise messages) are received by R1−b at times VRA = {t1, t2, t3, . . . , tk}.

Now, let TRA = {t : t ∈ VRA ∧ s < t ≤ (s+ `)}. Then,

(i) the set TRA is not empty, and

(ii) the challenge message passes through at least one honest node at some time t such that

s ≤ t ≤ max(TRA).

The invariant is very similar to Invariant 1 with the only difference that we consider

messages sent towards recipients (instead of messages sent by users). In contrast, for sender

anonymity, where sending messages was the main criteria, for recipient anonymity analo-
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gously receiving messages is the main criteria and the times at which messages are received

can be (partially) controlled by the protocol.

Claim 4 (Invariant 2 is necessary for anonymity). Let Π be any protocol ∈ M with latency

overhead ` and bandwidth overhead β. Let u,R0, R1, b and TRA be defined as in Invariant 2.

If Invariant 2 is not satisfied, then our adversary Apaths as in Definition 4.3.1 wins (against

recipient anonymity).

Proof. We distinguish two cases, depending on TRA: either TRA is empty, or TRA is non-

empty.

If the set TRA is empty, then S1−b is empty as well. However, by construction of our

protocol model, the set Sb is always non-empty. Consequently, the adversary Apaths will

output b and thus win with probability 1. If TRA is not empty, the following cases can occur:

1. The challenge message never passes through an honest node: In this case, the field IDt

of the message never changes for the tokens. Thus, Sb will have exactly one element, and

S1−b will be an empty set, and consequently Apaths wins.

2. The challenge message passes through one or more honest nodes at times t, such that

t > max(TRA), but not before: Following the same reasoning as above, we see that paths

before max(TRA) can be ambiguous, but none of them leads to R1−b. Hence, Sb can have

multiple elements, but S1−b will still be an empty set. Thus, Apaths wins.

3. The challenge message passes through an honest node at time t with t ≤ max(TRA):

In this case, the invariant is true.

In all of the above mentioned cases either the invariant is true, or the adversary wins

with probability 1.

Claim 5 (Internally terminated noise does not influence Invariant 2). Any message that is

not delivered to a recipient R ∈ R does not influence the probability for Invariant 2 being

true.

The proof for this claim is analogous to the proof for Claim 2, where instead of considering

the sending of messages, we are concerned with receiving messages.

Ideal Protocol. Now we construct our ideal protocol Πideal, which is very similar to that

of the sender anonymity scenario. The routing strategy is exactly the same as the sender

56



anonymity scenario. Even for deciding the optimal delivery time t for each message, the

protocol queries oracle O. The oracle O returns the values in such way that it maximizes

the probability of satisfying Invariant 2 for the given routing strategy. The only difference

here is that, in sender anonymity scenario the optimal delivery time t for each message is

independent of the optimal delivery times for other messages, but here they are dependent.

Claim 6 (Ideal protocol is ideal for the invariant). Πideal satisfies Invariant 2 with a proba-

bility at least as high as any other protocol in M , against the given adversary Apaths.

Proof. We want to prove our claim by contradiction. For contradiction, we assume that Πideal

is not the best protocol. That means, there exist a protocol Πnew which satisfy Invariant 2

with a higher probability than Πideal.

We construct a protocol Πhybrid which exactly follows the routing strategy of protocol

Πideal, but for each message Πhybrid selects the time delay same as Πnew instead of querying

from oracle O.

Let’s compare the protocols Πhybrid and Πnew. Since both the protocol select the same

time delays for every message, the set TRA is exactly same for both of them. Consequently,

the path length for the challenge message till max(TRA) is same for both the protocols. But,

Πhybrid maximizes the number of distinct parties on the path, hence maximizes the probability

of having at least one honest party on the path. Therefore, Πhybrid has a probability of

satisfying Invariant 2 at least as high as Πnew.

Next, let’s compare Πhybrid and Πideal: They both employ the same routing strategy.

But Πideal selects the time delays for all messages by querying oracle O. By definition of

the oracle, it selects the time delays in such a way that it maximizes the probability of

satisfying Invariant 2, for the given routing strategy. Hence, Πideal satisfies Invariant 2 with

a probability at least as high as Πhybrid. Thus, Πnew does not satisfy Invariant 2 with a

probability higher than Πideal - which contradicts our initial assumption that Πideal is not

the best protocol.
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3.6.1 Recipient Anonymity of Synchronized Users with Non-compromising Ad-
versaries

As for our first scenario for sender anonymity, we investigate an ideal user distribution

where inputs from all users are globally synchronized.

We assume that all the input messages come within N rounds, exactly one message per

round, following a random permutation that assigns one round to each recipient. Formally

we group together all users into one sender that sends all the messages. In a given round, the

sender should send a message for the assigned recipient. Then, the protocol decides when to

deliver the message to the recipient, but not delaying more than ` rounds.

We denote this user distribution with UB. Since, we are considering a globally controlled

user distribution, we are considering a globally controlled noise as well. The protocol can

add a maximum of B = βN noise messages per round, or β noise messages per recipient

per round, where 0 ≤ β ≤ 1. We consider a non-compromising passive adversary that can

observe all network traffic.

Theorem 3.6.1. For user distribution UB, no protocol Π ∈ M can provide δ-recipient

anonymity for any δ < 1− fRA
β (`), where fRA

β (d) = min
(
1,
(

(`+d)+(`+d)βN
N

))
.

Proof. By Claim 6, we know that Πideal has the highest probability to satisfy Invariant 2

against Apaths. Thus, by Claim 4 it suffices to calculate the probability for Πideal to satisfy

the invariant as a lower bound of the adversary’s advantage against any protocol.

Let, R0 and R1 be the recipients chosen by the adversary and let b be the challenge bit.

Let s be the round in which the sender sends the challenge message.

Recall that Invariant 2 is necessary for the protocol to provide anonymity. Since we are

considering a non-compromising adversary, Pr [Invariant 2 is true] = Pr [T is not empty]. If

a message is sent for the recipient R1−b (enters the protocol) in [s − `, s + ` − 1], it has a

possibility to populate an element in TRA. Now let us define the following events:

H1: Within 2` rounds a noise message is sent to R1−b.

H2: Within 2` rounds a user sends a real message to R1−b.

H3: Invariant 2 is true.
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We proceed analogously to the proof for Theorem 3.2.1 and get:

Pr [H2] ≤ 2`
N .

Similarly, in each round noise messages are sent to βN unique users in such a way that

no real message is scheduled for them. Thus, Pr [H1] ≤ 2`βN
N . We combine these insights to

yield a bound.
Pr [H3] = Pr [H1 ∨H2]

= min (1,Pr [H1 ∨H2])

≤ min (1,Pr [H1] + Pr [H2])

≤ min
(

1, 2`+ 2`βN
N

)
.

Thus, we can bound the probability for the adversary as:

Pr[0 = Apaths|b = 1] = Pr[1 = Apaths|b = 0] ≤ 1
2Pr [H3];

and Pr[0 = Apaths|b = 0] ≥ 1− 1
2Pr [H3].

And therefore, since δ ≥ Pr[0 = Apaths|b = 0] − Pr[0 = Apaths|b = 1], we can say

δ ≥ 1− Pr [H3] ≥ 1− fRA
β (`).

Impossibility for Strong Recipient Anonymity. We now investigate under which con-

straints for ` and β Theorem 3.6.1 rules out strong recipient anonymity.

Theorem 3.6.2. For user distribution UB with ` < N and βN ≥ 1, no protocol in M can

achieve strong recipient anonymity if 4`β < 1− ε(η), where ε(η) = 1
ηd

for a positive constant

d and the security parameter η.

The proof follows analogously to the proof of Theorem 3.2.2.

3.6.2 Recipient Anonymity of Synchronized Users with Partially Compromising
Adversaries

Now we extend our analysis for recipient anonymity against partially compromising ad-

versaries, with the same user distribution as the previous section.

Theorem 3.6.3. No protocol Π ∈M can provide δ-recipient anonymity for the user distri-

bution UB, where
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δ <


1−

[
1− (c

`)
(K
`)

]
fRA
β (`) c ≥ `

1−
[
1− 1

(K
c)

]
fRA
β (c)− fRA

β (`− c) c < `

where fRA
β (d) = min

(
1,
(

(`+d)+(`+d)βN
N

))
.

Proof. Let R0, R1 be the challenge users and let b be the challenge bit. Moreover, let s0 be

the time the challenge message is sent for Rb and let r = s0 + t be the time it is received by

the recipient, where t is the delivery time decided by the oracle O for the challenge message.

We distinguish two cases, depending on ` and c: 1. First, where the number of compro-

mised parties c is at least as large as the maximal latency `. In this case, all parties on the

path of the challenge message could be compromised. 2. Second, where all parties on the

path of the challenge message can not be compromised. And hence, the analysis focuses on

the delivery times of messages for R1−b.

1) Case c ≥ `. We know, ` ≥ t holds by definition. The invariant is true if and only if

R1−b receives at least one message in one of the rounds between (s0 + 1) and (s0 + `) and

for the last of those messages, delivered at time tlast, there is at least one non-compromised

party on the path between t0 and tlast. Hence,

Pr [Invariant 2 is true]

= Pr [R1−b receives at least one message in [s0, s0 + `]]

· Pr [NOT all the c parties are compromised]

≤ fRA
β (`)

1−

(
c
`

)
(

K
`

)
 .

Hence, δ ≥ 1−
[
1− (c

`)
(K
`)

]
fRA
β (`)

2) Case c ≤ `:

The probability that all parties on the mutual path of the challenge message and a

message for the alternative recipient R1−b are compromised now mainly depends on the

delivery time of the messages for R1−b. We distinguish two sub-cases depending on the

oracle’s choice for t:
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2a) Case c ≤ t:

Pr [Invariant 2 is true]

≤ Pr [R1−b receives at least one message in [s0 + c, s0 + `]]

+ Pr [R1−b does NOT receive a message in [s0 + c, s0 + `]]

· Pr [R1−b receives at least one message in [s0, s0 + c]]

· Pr [NOT all the c parties are compromised]

≤ fRA
β (`− c) + fRA

β (c)
1− 1(

K
c

)
 .

Hence, δ ≥ 1−
[
1− 1

(K
c)

]
fRA
β (c)− fRA

β (`− c).

2b) Case t < c :

Pr [Invariant 2 is true]

≤ Pr [R1−b receives at least one message in [s0 + c, s0 + `]]

· Pr [NOT all the t parties are compromised]

+ Pr [R1−b does NOT receive any message in [s0, s0 + `]]

· Pr [R1−b receives at least one message in [s0, s0 + c]]

· Pr [NOT all the t parties are compromised]

≤ Pr [R1−b receives at least one message in [s0 + c, s0 + `]]

+ Pr [R1−b does NOT receive any message in [s0, s0 + `]]

· Pr [R1−b receives at least one message in [s0, s0 + c]]

· Pr [NOT all the t parties are compromised]

The above event expression is exactly the same as the expression we had in the previous case

(t > c). The bound on δ thus follows analogously.

Impossibility for Strong Recipient Anonymity. We now investigate under which con-

straints for c, ` and β Theorem 3.6.1 rules out strong recipient anonymity.
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Theorem 3.6.4. For user distribution UB with K ∈ poly(η), K > c ≥ ` , ` < N AND

βN ≥ 1 , no protocol can achieve strong anonymity if 4`β < 1− ε(η) OR ` ∈ O(1), where

ε(η) = 1/ηd for a positive constant d.

The proof follows analogously to the proof of Theorem 3.3.2.

Theorem 3.6.5. For user distribution UB with K ∈ poly(η), constant c, K > ` > c, ` < N

AND βN ≥ 1, no protocol can achieve strong anonymity if 4(` − c)β < 1 − ε(η), where

ε(η) = 1
ηd

for a positive constant d.

The proof follows analogously to the proof of Theorem 3.3.3.

3.6.3 Constraints on Recipient Anonymity for Unsynchronized Users with Non-
compromising Adversaries

Now we shall consider unsynchronized user distribution, which is similar to the unsyn-

chronized user distribution for sender anonymity, but with a few changes. Our unified sender

has a biased coin corresponding to each recipient with success probability p. In each round,

he decides to send a message for a recipient by tossing the biased coin, independent of other

recipients as well as other rounds. We denote this user distribution with UP . We consider a

non-compromising passive adversary similar to Section 3.6.1.

Theorem 3.6.6. For user distribution UP , no protocol Π ∈ M can provide δ-recipient

anonymity for any δ < 1−
(

1
2 + fRA

p (`)
)
, where fRA

p (d) = min
(

1
2 , 1− (1− p)`+d

)
and d is

an integer ≥ 1.

Proof. By Claim 6, we know that Πideal is the optimal protoco for satisfying Invariant 2

and by Claim 4 we know that the invariant is necessary for anonymity. Thus, it suffices to

calculate the probability that Πideal satisfies Invariant 2 as a lower bound of the adversary’s

advantage against any protocol.

Let, R0 and R1 be the recipients chosen by the adversary and let b be the challenge bit.

Let s be the round in which the sender sends the challenge message. Since we are considering

a non-compromising adversary, the following is true:
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Pr [Invariant 2 is true] = Pr [TRA is not empty] .

Note that, If a message is sent for the recipient R1−b (enters the protocol) in [s− `, s+ `−1],

it has a possibility to populate an element in TRA.

We follow the same calculations as in the proof of Theorem 3.4.1, and derive:

Pr [Y (d)] = 1− (1− E(d)) (1− 2fp(d)),

Where fp(d) is defined as in Theorem 3.4.1, And Y (d) denotes the event that at least one

message is sent for a given recipient within an interval of d rounds.

Pr [TRA is not empty]

≤Y (2`)

≤1− (1− E(2`)) (1− 2fp(2`))

≤1− 1
2 (1− 2fp(2`))

=1− 1
2
(
1− 2fRA

p (`)
)

= 1
2 + fRA

p (`).

Hence, δ ≥ 1− Pr [TRA is not empty] ≥ 1−
[

1
2 + fRA

p (`)
]
.

Impossibility for Strong Recipient Anonymity. We now investigate under which con-

straints for ` and β Theorem 3.6.1 rules out strong recipient anonymity.

Theorem 3.6.7. For user distribution UP and p > 0, no protocol can achieve strong ano-

nymity recipient if 2`p < 1− ε(η), where ε(η) = 1/ηd for a positive constant d.

The proof follows analogously to the proof of Theorem 3.4.2.

3.6.4 Recipient Anonymity for Unsynchronized Users with Partially Compro-
mising Adversaries

Now we extend our analysis for recipient anonymity against partially compromising ad-

versaries, with the same user distribution as the previous section.

Theorem 3.6.8. No protocol Π ∈M can provide δ-recipient anonymity for the user distri-

bution UP , when
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δ <



[
1− (c

`)
(K

`)

] [ 1
2 + fRA

p (`)
]

c ≥ `

(
1−

[ 1
2 + fRA

p (`− c)
])(

1−
[ 1

2 + fRA
p (c)

] [
1− 1

(K
c)

])
c < `

where fRA
p (d) = min

(
1
2 , 1− (1− p)`+d

)
for integer d ≥ 1.

Proof. Let R0, R1 be the challenge users and let b be the challenge bit. Moreover, let s0 be

the time the challenge message is sent for Rb and let r = s0 + t be the time it is received by

the recipient, where t is the delivery time decided by the oracle O for the challenge message.

As in proofs for Theorems 3.5.1 and 3.6.6, we define Y (d) as the event that at least one

message is sent for a given recipient within an interval of d rounds; and we derive:

Pr [Y (d)] ≤ 1− 1
2 (1− 2fp(d)) = 1

2 + fRA
p (d2).

We distinguish two cases, depending on ` and c: 1. First, where the number of compro-

mised parties c is at least as large as the maximal latency `. In this case, all parties on the

path of the challenge message could be compromised. 2. Second, where all parties on the

path of the challenge message can not be compromised. And hence, the analysis focuses on

the delivery times of messages for R1−b.

1) Case c ≥ `. We know, ` ≥ t holds by definition. The invariant is true if and only if

R1−b receives at least one message in one of the rounds between (s0 + 1) and (s0 + `) and

for the last of those messages, delivered at time tlast, there is at least one non-compromised

party on the path between t0 and tlast. Hence,

Pr [Invariant 2 is true]

≤ Pr [R1−b receives at least one message in [s0, s0 + `]]

· Pr [NOT all the c parties are compromised]

≤ Pr [Y (2`)] ·
1−

(
c
`

)
(

K
`

)
 =

[1
2 + fRA

p (`)
] 1−

(
c
`

)
(

K
`

)
 .

Therefore, δ ≥ 1−
[
1− (c

`)
(K
`)

] [
1
2 + fRA

p (`)
]
.

2) Case c ≤ `. The probability that all parties on the mutual path of the challenge mes-

sage and a message for the alternative recipient R1−b are compromised now mainly depends
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on the delivery time of the messages for R1−b. We distinguish two sub-cases depending on

the oracle’s choice for t:

2a) Case c ≤ t:

Pr [Invariant 2 is true]

≤ Pr [R1−b receives at least one message in [s0 + c, s0 + `]]

+ Pr [R1−b does NOT receive a message in [s0 + c, s0 + `]]

· Pr [R1−b receives at least one message in [s0, s0 + c]]

· Pr [NOT all the c parties are compromised]

≤ Pr [Y (2`− c)] + (1− Pr [Y (2`− c)])

· Pr [Y (`+ c)]
1− 1(

K
c

)


Therefore, since δ ≥ 1− Pr [Invariant 2 is true], we have:

δ ≥
(
1− Pr [Y (2`− c)]

)1− Pr [Y (`+ c)]
1− 1(

K
c

)


≥
(

1−
[1
2 + fp(2`− c)

])1−
[1
2 + fp(`+ c)

] 1− 1(
K
c

)


≥
(

1−
[1
2 + fRA

p (`− c)
])1−

[1
2 + fRA

p (c)
] 1− 1(

K
c

)
 .

2b) Case t < c :
Pr [Invariant 2 is true]

≤ Pr [R1−b receives at least one message in [s0 + c, s0 + `]]

· Pr [NOT all the t parties are compromised]

+ Pr [R1−b does NOT receive any message in [s0, s0 + `]]

· Pr [R1−b receives at least one message in [s0, s0 + c]]

· Pr [NOT all the t parties are compromised]
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≤ Pr [R1−b receives at least one message in [s0 + c, s0 + `]]

+ Pr [R1−b does NOT receive any message in [s0, s0 + `]]

· Pr [R1−b receives at least one message in [s0, s0 + c]]

· Pr [NOT all the t parties are compromised]
The above event expression is exactly the same as the expression we had in the previous case

(t > c). The bound on δ thus follows analogously.

3.6.5 Impossibility for Strong Anonymity

The bound for δ is in this scenario is exactly similar to the counterpart of sender anony-

mity results (Section 3.5). Hence, the analysis follows analogously.

3.7 Implications

To put our result into perspective, we discuss whether our trilemma excludes strong ano-

nymity for a few AC protocols from the literature. More precisely, this section exemplarily

applies the results from Theorem 3.2.2 and Theorem 3.4.2, i.e., with synchronized and un-

synchronized user distributions and a global network-level, non-compromising adversary. As

the latency of some AC protocols depends on system parameters, we carefully choose system

parameters and make a few simplifying assumptions, which are subsequently described.

This section is solely intended to put our impossibility result into perspectiveby discussing

how we estimated the bandwidth β and latency ` bounds in the sense of this work. It is

not meant and not qualified to be a performance and scalability comparison of the discussed

AC protocols, which would have to take many other dimensions into account, e.g., the com-

munication and computation complexity of the servers and the receivers, the computation

complexity of the senders and the different kinds of functionalities that are offered by the

different AC protocols (e.g., group communication vs. internet-like visitor-webpage commu-

nication). Table 3.1 summarizes bounds on the bandwidth β and latency overhead ` (in the

sense of this work).

Technically, this section considers translations of AC protocols into our protocol model

and estimates the latency and bandwidth overhead of these translations. As these transla-
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Table 3.1. Latency vs. bandwidth vs. strong anonymity of AC protocols, with
the number of protocol-nodes K, number of clients N, and message-threshold
T , expected latency ` per node, dummy-message rate β.

Protocol Latency Bandwidth Strong Anonymity

Tor [13] θ(1) θ(1/N) impossible
Hornet [14] θ(1) θ(1/N) impossible
Herd [7] θ(1) θ(N/N) possible
Riposte [6] θ(N) θ(N/N) possible
Vuvuzula [2] θ(K) θ(N/N) possible
Riffle [8] θ(K) θ(N/N) possible
Threshold mix [30] θ(TK) θ(1/N) impossible∗
Loopix [1] θ(

√
K`) θ(β) possible

∗ if T in o(poly(η))

tions do not provide any additional insights, we do not present the full translated protocols

but only the abstraction steps. We abstract away the cryptographic instantiation of messages

including the bandwidth overhead they introduce over the plaintext. We assume an upper

bound on the latency of the protocol and are oblivious to server-side noise (see Claim 2).

Moreover, recall that we are only interested in the question whether our trilemma excludes

strong anonymity for the ten AC protocols from the literature; hence, we consider the upper

bound on the latency and bandwidth overhead for deterministic latency. For randomized

latency, such as Loopix [1], we list for simplicity the expected delay as the latency bound.

Low-latency protocols such as Tor [13], Hornet [14], and Herd [7] are low-latency

AC protocols, i.e., they immediately forward messages. While Tor and Hornet do not pro-

duce asymptotically more than a constant amount of both bandwidth overhead and latency

overhead and thus cannot provide strong anonymity, Herd produces dummy traffic linearly

proportional to the number of users (bandwidth overhead β ∈ θ(N/N)), thus the trilemma

does not exclude strong anonymity for Herd.

Riposte [6] uses secure multiparty computation and a variant of PIR to implement an

anonymous bulletin board. Riposte operates in epochs and for each epoch the set of users is

public. Hence, Riposte is expected to be run with long epochs to maximize the number of

users that participate in an epoch, which leads us to estimating the latency overhead to be
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` ∈ θ(N). To counter traffic analysis attacks, Riposte clients send constant dummy traffic,

resulting in a bandwidth overhead of β ∈ θ(N/N). Thus, the trilemma does not exclude

strong anonymity for Riposte.

Vuvuzela [2] is a mix-net that is tailored towards messengers. Clients communicate by

deposing their encrypted messages in one of the mix net nodes. To achieve strong resistance

against compromised servers, Vuvuzela takes a path through all servers, resulting in a latency

overhead of ` ∈ θ(K) (for K servers). Additionally, Vuvuzela utilizes constant traffic, leading

to a bandwidth overhead of β ∈ θ(N/N), and has the potential for strong anonymity.

Riffle [8] uses a verifiable mix-net, however not only for messenger communication but

also for normal client-server web traffic. Just as Vuvuzela, Riffle also chooses paths that

traverse all K servers, leading to ` ∈ θ(K) and if we assume K ∈ θ(log(η)), we get ` ∈

θ(log(η)). We assume that the clients send dummy traffic up to a constant rate (depending

on the user’s sending rate p), so we have β ∈ θ(N/N) and the potential for strong anonymity.

In a threshold mix net, each of the K mix servers waits until it received up to a

threshold T many messages before relaying the messages to the next mix, resulting in ` ∈

θ(T · K). Threshold mixes [30] do not provide strong anonymity unless their threshold T

is of the order of the number of users N . As such a large threshold are impractical for

a large number of users, we judge it impossible to achieve strong anonymity for practical

deployments of Threshold mixes.

Loopix [1] is a mix net that combines exponentially distributed delays at each mix-node

and dummy messages from each user. Ignoring so-called loop messages (meant to counter

active attacks), Loopix naturally enforces our unsynchronised user distribution: the rate at

which Loopix clients send messages is the sum of a dummy-message rate (β) and a payload

message rate (p), which are system parameters. We assume that the path lengths in Loopix’

stratified topology is
√
K with the number of nodes K ∈ θ(log(η)). If β + p ≥ 1/√η,

and if every hop introduces an expected delay of ` ≥
√
η√
K

, the expected latency overhead is

` =
√
K · `, in particular ` ∈ θ(

√
(η)). We get (p+ β)` = 1√

η
· √η = 1 and the trilemma does

not exclude strong anonymity for Loopix.

68



3.A Protocol Model Revisited

3.A.1 Validity of the Protocol Model (Contd.)

Lemma 1. Let Π be a protocol ∈M with K parties with parameters β and `. Then: 1. Mes-

sages are delivered within ` steps. 2. The protocol adds (for the unsynchronised case on

average) a maximum of β noise messages per user per round. 3. Whenever a party in S ∪P

sends a message to another party in P∪R, the adversary learns that and in which round this

happens. 4. For every message that leaves the network (received by R), the adversary addi-

tionally learns whether the message is the target message. 5. For every compromised party,

the adversary learns the mapping between the input messages and the output messages.

Proof. Let Π be a protocol ∈ M with K parties with parameters β and `. We analyze the

lemma part by part.

1. Messages are delivered within ` steps.

2. The protocol adds (for the unsynchronized case on average) a maximum of β noise

messages per user per round.

3. The adversary learns that and in which round a party in S ∪ P sends a message to

another party in P ∪R.

4. For every message that leaves the network (received by R), the adversary additionally

learns whether this message is the target message.

5. For every compromised party, the adversary learns the mapping between the input

messages and the output messages.

Part (2) of the Lemma holds, since we restrict the user distributions accordingly and

since the none of the transitions in the Petri net can create more tokens within the network

than it consumes from its input place.

We show the part (1) of the lemma via structural induction over fired transitions of the

Petri net. We additionally add to the induction invariant that all tokens that are not in S

have a timestamp for their next transition of ts = 1 and a remaining time of tr > 0 and there

are at least tr rounds left in which the token can be delivered.

Induction base: The protocol is initialized and no transitions have happened. Thus, no

messages have been sent so far, i.e., there is no message that has not been delivered within
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` steps. The only transition that can fire is TS and for ` > 0, the message introduced into

the network in this way does not need to be delivered already (0 < tr = `). Moreover, TS
sets the timestamp of this message token to ts = 1

Induction step: Let tr be any execution trace s.t. the induction invariant is satisfied

and let t be an arbitrary possible transition that extends tr to tr :: t.

We distinguish two cases for t: In case t is TS , it consumes a token from PS and puts this

token into a place Pi and, by definition we have tr > 0 and ts = 1. Otherwise, the transition

is TPi for some i and consumes a token from Pi accordingly. By the induction invariant,

the token has tr > 0. If this token has tr − 1 = 0, the transition delivers the token to R.

Otherwise, t decreases tr by one (thus fulfilling the condition that there are at least tr rounds

left in which the token can be delivered) and sets ts = 1. Since every token in any place Pi
needs to be consumed in every round, the protocol delivers every message in at most ` steps.

Other parts of the lemma: By definition of our Petri net, whenever a transition fires,

an element (t, r) is placed into Tokens, containing the public fields of t, such as t.prev and

t.next, as well as the current round number r, which fulfills part (3). Moreover, whenever

the transition places the token in R, the adversary can additionally see the field t.msg

and no transition can change the field msg, which allows the adversary to effectively tag

and recognize the challenge message and thus fulfills part (4). Finally, if any party Pi is

compromised, Pi does not modify the unique (and otherwise freshly sampled) field t.IDt,

which allows the adversary to map incoming and outgoing messages.

Since the transitions discussed here are the only way for messages to be sent to a recipient,

the model correctly enforces the conditions from the lemma.

3.A.2 Polynomial Boundedness of the adversary Apaths

Lemma 2. If number of messages per user per round is polynomially bounded and the

anonymity game stops in polynomial time, our adversary Apaths is also polynomially bounded.

Proof Sketch. Suppose, the number of messages per user per round is bounded by G, and

the game stops in Q rounds. Then, total number of messages in the system is bounded
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by (G × N × Q). Consequently, total number of elements in the set Tokens is bounded by

(G×N×Q×Q). In the worst scenario, Apaths will have to scan (G×N×Q×Q) tokens.

As long as the user distribution ensures that the number of messages per user per round

is polynomially bounded, our adversary is polynomially bounded - which is true for both the

user distributions that we use. For the synchronized user distribution, number of messages

per user per round is N+1
N ; and for the unsynchronized user distribution that is p ≤ 1.

3.B Unsynchronized Users with Partially Compromising Adversaries: Lower
Bound on Adversarial Advantage (contd.)

Proof of Theorem 3.5.1. As in the proofs for Theorems 3.2.1, 3.3.1 and 3.4.1 we calculate

the advantage of Apaths against Πideal to derive a bound against any protocol in our model.

As in the proof for Theorem 3.4.1 we define the random variablesX(1)(x), X(2)(x), . . . , X(N)(x),

where X(i)(x) denotes the event of the ith user sending her own message in an interval of x

rounds [a, b], with (b − a) = x. All X(i)(x) are mutually independent. Note that we here

consider intervals x that are not necessarily of size `.

X(i)(x) =


0 with (1− p)x

1 with (1− (1− p)x)

As before, we make use of the sum X(x) = ∑N
i=1X

(i)(x) over all users and calculate the

expected value of X(x) as

E[X(x)] = E
[ N∑
i=1

X(i)(x)
]

=
N∑
i=1

E
[
X(i)(x)

]
= N (1− (1− p)x) = µ(x)

Using the Chernoff Bound on the random variable X(x) calculate Pr [X(x)− µ(x) ≥ Na] ≤

exp(−2a2N), and for a = µ(x)
N , we define E(x) as :

E(x) = Pr [X(x) ≥ 2µ(x)] ≤ exp (−2µ(x)2/N2 · N)

≤ exp
(
−2(1− (1− p)x)2N

)
.
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Note that, similar to X(i)(x) and X(x), µ(x) is also defined as in the proof for Theo-

rem 3.4.1, but for a slice of variable length x. We denote the event that sender u1−b sends at

least one message in an interval of size x by Y (x) and since all users are acting independently

from each other we get for j ∈ {0, . . . ,N}, Pr [Y (x)|X(x) = j] = 1− Pr [¬Y |X(x) = j] = j
N .

Moreover, for any value of x with 2µ(x) ≤ N,

Pr [Y (x)] = Pr [X(x) ≥ 2µ(x)] · Pr [Y (x)|X(x) ≥ 2µ(x)]

+ Pr [X(x) < 2µ(x)] · Pr [Y (x)|X(x) < 2µ(x)]

≤ Pr [X(x) ≥ 2µ(x)] · Pr [Y (x)|X(x) = N]

+ Pr [X(x) < 2µ(x)] · Pr [Y (x)|X(x) = 2µ(x)]

= E(x)Pr [Y |X(x) = N]

+ (1− E(x)) Pr [Y |X(x) = 2µ(x)]

= E(x) (N/N) + (1− E(x)) (2µ(x)/N)

= 1− (1− E(x)) (1− 2 (1− (1− p)x)) .

If 2µ(x) > N, we get with f(x) = min
(

1
2 , 1− (1− p)x

)
:

Pr [Y (x)] ≤ E(x) + (1− E(x)) · 1 ≤ 1

≤ 1− (1− E(x)) (1− 2f(x)) .

Now, we calculate the probability of Invariant 1 being true, under our protocol Πideal and as

in the proof for Theorem 3.3.1. We distinguish two cases depending on c and `:

Case 1): c > `

Pr [Invariant 1 is true]

≤ Pr [¬Cmpr(`)] · Pr [u1−b.sent(r − `, r − 1)]

= Pr [¬Cmpr(`)] · Pr [Y (`)]

≤
[
1−

(c
`

)
/
(K
`

)] [
1−

(
1− E(`)

)(
1− 2fp(`)

)]
.
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By applying Markov’s inequality on the random variableX(x), we getE(x) = Pr [X(x) ≥ 2µ(x)] ≤
1
2 . Thus, we derive for δ: δ ≥ 1−

[
1−

(c
`

)
/
(K
`

)] [
1
2 + fp(`)

]
.

Case 2): c < `. As for the proof of Theorem 3.3.1 we split this case into two sub-cases,

depending on t and c.

Case 2a): c < t

Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − `, r − c)] + Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c, r)] · Pr [¬Cmpr(c)]

= Pr [Y (`− c)] + [1− Pr [Y (`− c)]] Pr [Y (c)] Pr [¬Cmpr(c)]

≤ [1− (1− E(`− c)) (1− 2fp(`− c))]

+ [(1− E(`− c)) (1− 2fp(`− c))]

· [1− (1− E(c)) (1− 2fp(c))]
[
1− 1/

(K
c

)]
.

Thus, for the adversarial advantage δ we derive,

δ ≥ 1− Pr [Invariant 1 is true]

≥ 1− [1− (1− E(`− c)) (1− 2fp(`− c))]

− [(1− E(`− c)) (1− 2fp(`− c))]

· [1− (1− E(c)) (1− 2fp(c))]
[
1−

(
c
c

)
/

(
K
c

)]

= [(1− E(`− c)) (1− 2fp(`− c))]

·
(

1− [1− (1− E(c)) (1− 2fp(c))]
[
1− 1/

(
K
c

)])

≥
(

1−
[1
2 + fp(`− c)

])(
1−

[1
2 + fp(c)

] [
1− 1/

(
K
c

)])
.
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We again use Markov’s inequality to replace E(x) by 1/2.

Case 2b): t ≤ c

Pr [Invariant 1 is true]

≤ Pr [u1−b.sent(r − `, r − c)] · Pr [¬Cmpr(t)]

+ Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c, r)] · Pr [¬Cmpr(c)]

≤ Pr [u1−b.sent(r − `, r − c)] + Pr [¬u1−b.sent(r − `, r − c)]

· Pr [u1−b.sent(r − c, r)] Pr [¬Cmpr(c)]

The above event expression is exactly same as the expression we had in the previous case

(t > c). Thus, the rest of the calculations and bounds are exactly same as the previous

case.
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4. TRILEMMA FOR AC PROTOCOLS WITH USER

COORDINATION

In the last chapter we presented an impossibility result for sender and recipient anonymity

of ACNs that allow messages to be sent, to mix, and to confuse a potential adversary with

dummy messages. However, in this chapter we are going to identify a class of protocol that

can escape those impossibility results by using a technique, what we call out-of-band user

coordination. We start by showing, with an intuitive counter-example, why the anonymity

trilemma proven in the last chapter does not sufficiently capture this space of protocols.

Imagine a protocol in which users communicate out-of-band to initialize secret-sharing

for their messages, e.g., they use a technique leveraged by DC-nets [11] with pre-setup key

agreement, where each user only needs to publish their local messages. Whenever a recipient

receives a set of messages that belong together, the recipient has to combine all of them to

extract the real message. There is a certain chance that when Alice sends her message, Bob is

one of the users who provides a share. In this instance, no matter the level of compromisation

or the latency overhead of the protocol, the adversary won’t be able to know who out of

Alice or Bob actually initiated the message.

This property was not captured in the previous chapter; consequently, we may ask

whether such techniques give us hope for cheap strong anonymity. We now set out to

formally show that this hope is unfounded (or, at the very least, requires stronger techniques

than currently available). We use the term shares to refer to messages created to confuse

the adversary in such a way, and use the term user coordination to refer to the process. By

these terms we do not refer to specific techniques, but rather capture all sorts of techniques

that lead to this effect.

About Recipient Anonymity. We note that for recipient anonymity shares do not help,

since recipient anonymity is defined as a property of tracking individual packets. While shares

can obfuscate the real sender among several users, they do not prevent the tracking of any

individual packet to a recipient. Therefore, recipient anonymity bounds from Chapter 3 do

not change with user coordination, and in this chapter we focus on the scope of improvements

of sender anonymity.
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4.1 Assumptions on user coordination

We impose the following assumptions on user coordination:

1. If h + 1 shares are used to reconstruct a message, at least one of them is sent by the

original sender.

2. no share can take part in reconstructing two separate messages.

3. A compromised protocol party is always able to map its outgoing packets to its in-

coming packets.

Our assumptions are consistent with most ACNs from the literature. In Section 4.1.1,

we discuss how breaking these assumptions presents cryptographic challenges.

We do not restrict our protocols to any specific technique of UC; it can be any method

(e.g., secret sharing, multi-party computation etc.) that achieve the user coordination prop-

erty. However, for our impossibility analysis, we assume that user coordination can be

achieved via a pre-processing step or can be done efficiently, and hence, we ignore the cost

of user coordination.

Additionally, to be consistent with how we count the latency overhead for a real message,

we add the restriction that every packet (real or noise, created by a user or an internal

protocol party) is allowed to remain in the system for no more than ` rounds. Finally, if

a message is scheduled to be sent in round t0 by the user distribution, all shares of that

message (as well as the real packer) must reach the recipient before round t0 + `.

4.1.1 Discussion about user coordination assumptions

In Section 3.1, we make three assumptions regarding the protocol model. Most ACNs

from the literature are consistent with these assumptions.

The first assumption is that among the shares employed to reconstruct a message at least

one must be sent by the message sender. This follows from our assumption that the messages

are unavailable while User Coordination gets established; if senders were allowed to know

and transmit their messages during setup, the whole protocol could take place during the

setup phase.
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The second assumption is that no share can take part in reconstructing two separate

messages. Although concepts such as Ramp secret-sharing [50] from the cryptographic lit-

erature indeed offer the possibility to extract multiple shared messages from a given set of

shares, it requires messages to be known in advance. In general, reusing the same share

will introduce confidentiality issues similar to a two-times pad. Dicemix [15] uses such a

technique where shares of different messages are mixed and is thus outside our model. Nev-

ertheless, Dicemix utilizes n2 shares for reconstructing n messages; so, it does not break our

impossibility bounds. Recent mailbox-based schemes like Riposte [6] are within our protocols

model.

The third assumption is indeed interesting. It expects that a compromised party will

always be able to map its outgoing packets with its incoming packets. Although this is

trivially correct when there is one incoming packet, the assumption focuses on the question

when there are two or more incoming packets. It suggests that the party cannot permute

these multiple incoming packets such that it itself cannot determine the employed permuta-

tion. Performing non-interactive MPC using fully homomorphic encryption (FHE) [51] may

enable a node to permute message locally (i.e., without introducing bandwidth and latency

overheads) without determining the permutation. This is highly inefficient for current FHE

mechanisms as the evaluation circuit depth will be at least logarithmic in the number of

users. Nevertheless, it presents an interesting avenue for future ACN design.

4.2 Updated Protocol model for AC protocols

In this section we discuss the new protocol model that can capture protocols with user

coordination, along with all the protocols that we considered in Chapter 3.

The main purpose of an AC protocol is to let an AC-user (from the set of users S) send

information to a recipient (from the set of recipients R). Typically, an AC protocol utilizes

a set of nodes (anonymizing parties P) to improve performance and distribute trust. Similar

to Chapter 3, we consider a global eavesdropping (i.e., passive) adversary A that can observe

the link between any two parties S ∪ P (including anonymizing parties and users) and has

additionally compromised a set of c anonymizing parties Pc ⊆ P.
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We assume that the AC protocol uses cryptographic means (e.g., encryption or secret

sharing) to hide the actual message that a packet between two parties P1, P2 ∈ P∪S contains.

We abstract the leakage of each such packet as the current round number, the direct sender

P1, the direct recipient P2, and a random identifier for the packet. This leakage indicates

that a packet was sent but doesn’t leak any content. Consequently, the adversary only sees

the challenge message in plain text when it reaches the recipient.

We stress that we do not require the sets S, R, and P to be mutually disjoint. In some

protocols from the literature, these sets actually intersect [11, 12, 15]. As we concentrate on

sender anonymity, for simplicity we require the set R of recipients, to be disjoint from S ∪P.

Next, using a Petri net model, we formally define a generic AC protocol that captures a

large class of AC protocols. This section presents an extension of the protocol model from

Chapter 3 with User coordination. Hence, large parts of the protocol model coincide with

the protocol model from Chapter 3.

4.2.1 Protocol model

This section defines a generic timed colored Petri net [40,41,46] M that can be instanti-

ated with a large class of (abstractions of) AC protocols from the literature. We use K as set

of parties, S as the set of users, P1, . . . , PK as the anonymizing (protocol) parties, $1 as the

randomness, R as the recipient of messages, m as a message or packet (containing a real user

message, a noise, or being a share) sent by a client or a protocol parties, TS as transitions

for inserting messages into the Petri net (i.e., into the AC protocol), and TP1 , . . . , TPK as

transitions for sending messages from one party to another. We stress that for every AC

protocol, we use the same Petri net M , i.e., the same places, tokens, and transitions. The

guards within the transitions can, however, differ; hence, instantiating this generic Petri net

M for (the abstraction of) a concrete AC protocol amounts to specifying the guards within

the transitions, e.g., by specifying to which party messages are sent next or how much a

message should be delayed. As this specification of the generic Petri net M shows, all proto-

cols that can be instantiated by M , in particular these guards, are oblivious to the challenge

message or the challenge users.
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Next, we introduce the abstraction of packets in our Petri net model. Formally, packets

are colored tokens with eight components. Four public components that an adversary can

observe are a unique identifier IDt, the sender prev and the receiver next of a packet, and

the time ts at which the packet is activated. The four private components that an adversary

cannot observe are the message content msg, some internal protocol meta-data meta, the

message’s time-to-live tr, and the share-group tag to which this message belongs (see below).1

Definition 4.2.1 (Colored token).

A colored token is represented by the tuple m = 〈msg, tag,meta, tr, IDt, prev, next, ts〉,

where,

- msg is the content of the message,

- meta is the internal protocol meta-data for this message,

- tr is the time the message can remain in the network,

- IDt is a new unique ID generated by each transition for each token by honest parties;

dishonest parties instead keep IDt untouched to allow the adversary to link incoming and

outgoing messages,

- prev is the party/user that sent the token and next is the user/party that receives the token.

- Finally, ts is the time remaining for the token to be eligible for a firing event (a feature

of timed Petri nets). Here, ts either describes when new messages are introduced into the

Petri net or is set to the next round, such that messages can be processed in every round

as soon as they enter the network.

- For allowing user coordination, we introduce an additional field tag that allows a token to

be tagged and several such tokens to contribute to sending one single message. When user

coordination is used by the protocol, msg field of all the tokens contributing for a single

message are populated with ⊥, and the tag field of all those tokens are populated with a

same tag. We discuss below, how the recipient can retrieve the original message content

once he receives a sufficient number of such tokens.
1↑As sender anonymity solely considers one recipient, for simplicity we do not list the final recipient of the
message in the private part.
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IDt, prev, next, ts are public fields – which means they are always visible to the adversary.

However, the fields meta and tr are never visible to the adversary. The fields msg and tag

can not be observed by the adversary until a packet reaches the recipient.

In case user coordination is used, the field msg does not help to retrieve the message

content (because msg = ⊥). In this case we use a more complex reconstruction: the recipient

has access to a dictionary D (outside the petri-net); when a message reaches the recipient,

the recipient queries the dictionary D to retrieve the content of the message. The dictionary

has four fields 〈tag,msg, count, countNeeded〉. The field msg stores the actual content of

the message. The fields tag,msg, countNeeded are already populated (during initialization

of the system), whereas the value of count is set to 0 initially. Every time, the recipient

queries the dictionary with D[tag], the dictionary increments the value of count by 1; and

only when count reaches the value of countNeeded it returns msg. We want to specify here

that each token in our petri-net model can contain only one tag.

We define a set Tokens that that contains each pair (t, r), where t is a copy of a colored

token and r the round number in which the token was observed. Formally, we introduce a

set Tokens, that is initially empty and in which we collect the pair (t, r), where t is a copy

of a token and r the round number in which the token was observed.

Places. Any AC protocol with K parties P = {P1, . . . , PK} consists of the following places:

• S: A token in S denotes a user message (real or noise) which is scheduled to enter the

network after ts rounds.

• $1: This place is responsible for providing randomness. Whenever a transition picks a

token from this place, the transition basically picks a random value.

• Pi with Pi ∈ P: A token in Pi denotes a message which is currently held by the party

Pi ∈ P.

• R: A token in R denotes a message which has already been delivered to a recipient.

Transitions. At the beginning of the execution, the challenger specifying the set S on

behalf of the AC protocol. The other places are initialized as empty. Transferring a message

from one party to another party is formalized by executing a transition that modifies the

configuration of the Petri net by consuming a token from one place to producing a token in
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Transitions in the Petri net model M

TX on tokens q = 〈msg, tag, , tr, IDt, , prev, ts〉 from X ∈ S ∪ P, $ from $1:
(P,meta) = fΠ(q, $) ; r = current round
if tr = 0 then P = R
if X ∈ P and X is compromised then IDt = IDt
else IDt = a fresh randomly generated ID
t = 〈tag,meta, tr − 1, IDt, Pi, P, 1〉
if P 6= R then obs = 〈 , , , , IDt, prev, P, 1〉
else obs = 〈msg, tag, , , IDt, prev, P, 1〉
Tokens = Tokens ∪ {(obs, r)}

Output: token t at P

fΠ: The code for this function is provided by protocol Π. It decides to which party the message is
sent next, as well as the content of the meta field in the token.

Reconstruct(tag):
if tag = ⊥ or D[tag] does not exist then return ⊥
D[tag].count = D[tag].count + 1
if D[tag].count = count.countNeeded then return D[tag] else return

Figure 4.1. Transitions in the Petri net model M

another place. The Petri net M includes the following transitions, for which the Figure 4.1

presents the pseudocode.

• TS : takes a token 〈msg, tag , , , , u, ts〉 from S and a token from $1 to write t =

〈msg, tag,meta, `, IDt, u, Pi, ts = 1〉 to Pi; the values of i and meta are decided by the

AC protocol.

• TPi : takes a token 〈msg, tag,meta, tr, IDt, , Pi, ts〉 from Pi and a token from $1 to write

t = 〈msg, tag,meta, tr − 1, IDt, Pi, P, 1〉 to P . If Pi is an honest party IDt is freshly

generated, but if Pi is a compromised party IDt = IDt. The place P ∈ {P1, . . . , PK} ∪

{R} and meta are decided by the AC protocol, except when tr = 0, P always is R.

The execution of each transition is followed by adding a pair (t, r) to the set Tokens, with t

being a copy of the produced token t without the fields meta and tr and r being the current

round number. Moreover, if the place where t was produced is not in R also the field msg is

not contained in t.
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4.2.2 Game Setting

The game setting is similar to that of Chapter 3 with minor modifications. We consider

the following game between a PPT adversary A and an honest challenger Ch(Π, αSA, b):

• A compromises up to c parties from P.

• A chooses two distinct users u0 and u1 as challenge users. A sends a challenge message

(Chall, u0, u1, R,R,m
∗) for those chosen users.

• Ch then runs protocol Π on (ub, R,m∗). Π is executed in two parts, Πwrapper and Πcore,

as described below. (We refer to Figure 4.2 for the pseudocode of Π.)

• First, Πwrapper generates tokens following the user distribution and embeds the challenge

message (ub, R,m∗) in the tokens. Πwrapper adds all the tokens to the place S. Πwrapper

does not pass any information about the challenge user or the challenge message to

Πcore.

• We also allow Πcore to add noise tokens to S, limited by the protocol’s restrictions

on bandwidth overhead. After that, Πcore runs the petri net with protocol specific

implementation of the transitions.

• For each element in Tokens, A can see the round number as well as the public parts of

the token (IDt, prev, next, ts), but the private parts (msg,meta, tr) are not communicated

to the adversary (c.f. Figure 4.1). However, when the field next is the recipient, the

msg field is not obfuscated.

• The goal of the adversary is to deanonymize the sender of the challenge message, i.e., to

learn whether the challenge message was sent by u0 or by u1. The interaction between

Ch and A ends as soon as A makes a guess.

4.3 Towards a new trilemma

With the protocol model in place and anonymity defined, we can now investigate the

fundamental limitations of protocols. To this end, we define an abstract protocol within our
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Run protocol Π on r = (u∗, R∗,m∗)

Π on r = (u∗, R∗,m∗) and user distribution U :

IU ← Πwrapper(r, U),
where IU is a set and each element in IU is a tuple (u,R,m, ts).
Run Πcore(IU , U, β).

Πwrapper on r = (u∗, R∗,m∗) and user distribution U :

generate a set IU following U ,
where IU is a set and each element in IU is a tuple (u,R,m, ts).
e = (u,R,m, ts) $← IU such that u = u∗ ∧R = R∗.
if e exists then
IU ← {(u∗, R∗,m∗, ts)} ∪ IU \ {e}

for each element e = (u,R,m, ts) in IU do
Add a token t = 〈m, , , , u, , ts〉 in the place S.

Output: IU

Πcore on IU , U , β:

Add tokens in the place S within the limit of β noise messages per user per round.
Run the petri net with the protocol specific implementation of fΠ.

Figure 4.2. Description of protocol Π

model that leverages user coordination combined with mixing techniques. We then show

that this protocol can achieve a better degree of anonymity than the classical impossibility

results of that we proved in Chapter 3.

The intuitive reason for this effect is that such a protocol introduces an additional form

of uncertainty for the adversary that was not captured by the classical impossibility results.

Imagine an adversary that compromises every node in the path that a particular packet

traverses and then observes that the packet is being used to reconstruct a message. This ad-

versary might not always learn who actually sent the reconstructed message: all the packets

with shares that belong together have to be combined to learn the respective message sent

in that particular round; thus all potential senders of these packets could be the message’s

sender.
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We then show an anonymity trilemma that captures even protocols with user coordi-

nation: every protocol in our model can be defeated by a straight-forward path adversary

unless the protocol utilizes sufficient bandwidth and latency overhead that depends on the

degree of compromisation in the network.

4.3.1 AC leveraging user coordination:

We now describe a protocol that falls within our protocol model (Section 3.1) and that

leverages user coordination to provide more anonymity than postulated in the impossibility

results of Chapter 3 for some values of `, β, and c. While this doesn’t show that their result

is wrong (they didn’t consider user coordination), it emphasizes the importance of covering

such protocols in an impossibility result.

The main idea that allows this to work is that we use our bandwidth overhead for shares.

Each such share is associated with one real message (with content) within the system and

the recipient needs to collect all the shares of a message to decipher it. When all the shares of

a message reach a recipient, the adversary can thus only learn that the message has reached

and which packets were involved in reconstructing it, but not point to one specific packet it

was in.

We assume that the adversary can not break the sharing of message origin provided by

user coordination and hence can not decipher an individual message before it reaches the

recipient. Additionally, we assume that our user coordination happens out-of-band and is

efficient. (For instance, in DC-net [11] with pre-setup key agreement, the protocol parties

only need to publish their local messages.) The protocol works in the following way:

1. Users send messages based on a given user message distribution (c.f., Chapter 2).

2. All users participate in the out-of-band user coordination. Instead of sending a dummy

noise message, users send shares for other users’ messages.

3. All users together run an out-of-band consensus protocol to decide when their messages

(real message or share) will be delivered, such that in a given round the recipient

receives shares of the same message and all the shares of that message (comparable to

t-out-of-t secret sharing).
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4. In a given round, the recipient combines all the shares that he receives to extract the

real message.

5. The protocol utilizes a series of up to K relays; as long as messages (real or share)

are in the system, they are sent from one relay to the next. Note the attacker can

compromise up to c of these relays. To prevent the attacker from compromising a

consecutive series of relays, we permute the order in which relays are being used. Once

the protocol starts, the sequence of the relays is sent to all users.

Analysis of adversarial advantage for the above protocol. We know from Chapter 3

that for the synchronized user distribution, the adversarial advantage δ should be lower

bounded by

δ ≥ 1−
[
1−

(
c
`

)
/

(
K
`

)]
×min

(
1, `+B`N−1

)
.

Recall that according to the sender anonymity notion (c.f., Section 2.1), the adversary

has to distinguish between two potential senders of a message, u0 and u1. If, say, u0 sends the

challenge message and the adversary has compromised every entity on the path this message

takes from u0 to the recipient, then the classical trilemma insists that the adversary wins,

which is correct for protocols without user coordination. With user coordination, however, it

is possible that u1 sends a share of the challenge message. This occurs with probability B
N−1 .

If this happens, there is no way in which the adversary can know whether u0 or u1 has sent

the challenge message (even if the whole path was compromised) and hence δ ≤ 1− B
N−1 must

hold.2 We directly see a conflict between the anonymity achieved by our protocol and the

impossibility result. For an illustrative example consider the case where ` = 1,K = 2, c = 1.

We compare the upper bound on δ derived directly from user coordination with the lower

bound from Chapter 3 and yield:

1− B

N− 1 < 1−
[
1−

(
c
`

)
/

(
K
`

)]
×min

(
1, `+B`

N− 1

)

⇐= B

N− 1 >
1
2 ×

`+B`

N− 1 assuming `+B`

N− 1 < 1

⇐⇒ 2B > 1 +B ⇐⇒ B > 1.

2↑Note that the setup for the user coordination can happen out of band and thus doesn’t add any bandwidth
overhead here.
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Thus, with just one noise message per real message (B = 1), our protocol violates the

classical impossibility bounds. More generally, if a set of users sends shares for a given

message, the adversary can not distinguish the actual sender of the message from other

users in the set, unless the user coordination is broken. Note that this effect is similar to the

amount of uncertainty introduced by messages meeting (and mixing) in an honest relay.

4.3.2 The path possibility adversary

We use the same adversaryApaths as in Chapter 3 with minor modifications to incorporate

user coordination. As we consider sender anonymity, the adversary can start its analysis of

all observations from the challenge message that it observes at the recipient. The adversary

Apaths constructs all possible paths from which the challenge message could have originated.

Recall that in the sender anonymity game the adversary knows two candidate senders u0 and

u1. So, the adversary checks whether there is a possible path from the challenge message

to u0 and to u1. If there is no path to one of then, say ub, the adversary chooses the other

challenge sender u1−b. If there is a path to both of them, Apaths makes a random choice.

More precisely, let (t, r) ∈ Tokens be an adversary observation, with t being the colored

token that was observed in round r. Let r be the round at which the challenge message

arrives. Fix j ∈ {0, 1}, and let a possible path for uj be a path from a challenge user uj to

the recipient R such that the path is at most ` elements long. Observe that if the challenge

bit is b the there is at least one possible path for ub; there has to be a path from ub to the

recipient R.
Sj ={p = (t1.prev, . . . , tk.prev, tk.next) :

((t1, r1), . . . , (tk, rk)) ∈ Tokens s.t. k ≤ `

∧ t1.prev = uj ∧ tk.next = R

∧ (tk.msg = Chall ∨ D[tk.tag] = Chall)

∧ ∀i∈{1,...,k−1}(ti.next = ti+1.prev ∧ ri+1 = ri + 1

∧ ( ∃ti+1 : (ti+1, ri+1) ∈ Tokens ∧ ti+1.prev = ti.next

∧ ti+1.IDt = ti.IDt)⇒ ti+1 = ti+1)}
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Definition 4.3.1 (Adversary Apaths). Given a set of users S, a set of protocol parties P

of size K, and a number of possibly compromised nodes c, the adversary Apaths proceeds as

follows:

1. Apaths selects and compromises c different parties from P uniformly at random.

2. Apaths chooses two challenge users u0, u1 ∈ S uniformly at random.

3. Apaths makes observations and, based upon those, constructs the sets S0 and S1. For

any i ∈ {0, 1}, if Si = ∅, then Apaths returns 1 − i. Otherwise, it returns 0 or 1

uniformly at random.

We stress that Apaths does (per run) not take any probabilities into account. Even if

in a particular run it is overwhelmingly more likely that ub sent the message but there is

a negligible chance that u1−b sent the message, Apaths does not decide for either of them

and randomly picks one. Moreover, if c = 0, Apaths only constitutes a non-compromising

global network-level adversary, which compromises no protocol parties yet listens on all links

between nodes. If c > 0, Apaths is a partially compromising global network-level adversary.

4.3.3 New Necessary invariant for anonymity

Invariant 1 defined in Chapter 3 to prove the first trilemma is not suitable anymore.

Critically, this invariant is not necessary for protocols with user coordination (see our ex-

ample above in Section 4.3.1). We now derive a new invariant that remains necessary for

anonymity in the presence of protocols with user coordination.

Invariant 3 (New Invariant). Let u0 and u1 be the challenge users; let b be the challenge

bit. Assume that the challenge message reaches the recipient at time r. Assume furthermore

that u1−b sends her messages (including noise messages) at V = {t1, t2, t3, . . . }. If T = {t :

t ∈ V ∧ (r − `) ≤ t < r},

(i) the set T is not empty, AND

(ii) (a) at least one share of the challenge message is dispatched by u1−b within the rounds

{(r − `), . . . , (r − 1)}, OR
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(b) at least one share of the challenge message passes through an honest node at time

t such that t ∈ {min(T ), (r − 1)}, AND at least one of the messages (real message or

noise) from u1−b, sent at t ∈ {(r − `), . . . , (r − 1)}, passes through an honest node at

time t such that t < r.

Claim 7 (Invariant 3 is necessary for anonymity). Let Π be any protocol ∈ M with latency

overhead ` and bandwidth overhead B. Let u0, u1, b and T be defined as in Invariant 3. If

Invariant 3 is not satisfied by Π, then our adversary Apaths as in Section 4.3.2 wins.

Proof. To prove the above, we need to prove that anonymity is broken whenever either of

(i) or (ii) is false.

Whenever (i) is false, the set T is empty. Thus, the challenge message could not have

been sent by the u1−b.

For (ii) of the invariant to be false, both (ii.a) and (ii.b) have to be false. Note here,

(ii.a) directly implies anonymity, because if one of the shares of the challenge message is

dispatched by u1−b within rounds {(r − `), . . . , (r − 1)} there is no way for the adversary to

distinguish between the challenge users.

If (ii.a) is false, (ii.b) can be false in the following ways:

1. no share of the challenge message passes through an honest node: When the adversary

backtracks the paths of the shares of the challenge message starting from the recipient, the

path will never cross the paths of any message from u1−b at an honest node. So, Apaths can

see that none of the messages from u1−b is a share of the challenge message; u1−b could not

have sent the challenge message and hence Apaths wins.

2. At least one of the shares of the challenge message sent at t ∈ T passes through one or

more honest nodes at times t, but 6∃ t such that t ∈ {min(T ), (r − 1)}: Following the same

reasoning as above, we see that paths after round min(T ) can be ambiguous, but there is

no message from u1−b before min(T ). So, none of them will mix with any of the shares of

the challenge message. Thus, Apaths wins.

3. no message from u1−b sent at t ∈ T passes through an honest node: Similar to previous

cases, when the adversary backtracks the paths of the shares of the challenge message starting
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from the recipient, no path will cross the paths of the messages from u1−b at an honest node.

So, no message from u1−b could have been a share of the challenge message.

4. At least one of the messages from u1−b sent at t ∈ T passes through one or more honest

nodes at times t, but 6∃ t such that t < r: Following the same reasoning as above cases, we see

that paths after round r can be ambiguous, but the challenge message is already delivered

at round r. So, none of them will mix with any of the shares of the challenge message.

In all cases where (ii.b) is false, Apaths wins with probability 1, (assuming that (ii.a) is

also false).

Intuition about Invariant 3 and Claim 7. The invariant establishes minimal conditions

for anonymity to hold against a path possibility adversary. To this end, we look at which

cases would allow the adversary to defeat the protocol and in which cases the adversary can

be fooled. Note that the adversary knows the two potential challenge users and can observe

the traffic, but can only connect incoming and outgoing messages of a compromised party.

The adversary can also see when the challenge message reaches the recipient.

• If only one of the two challenge users sends a message in the ` rounds before the challenge

message reaches the recipient, then only that challenge user could have sent the message

without violating the latency constraint. This observation is captured in part (i).

• If both challenge users happen to collaborate on sending the challenge message (ub is

the actual sender of the challenge message, u1−b happens to send a share for this specific

message), then the adversary cannot decide which of the two users has sent the challenge

message. Even a more realistic adversary would, in most cases, lose this game. The only

way to still decipher which user sent the message is to exploit other information (say,

about other messages sent by the two users), but the path possibility adversary does not

attempt this. This observation is captured in part (ii a).

• In case (ii a) does not occur, there are two other cases in which the path possibility

adversary wins:

(1) if the adversary can track all the shares of the challenge message from sender to

recipient (since we assume (ii a) does not hold, these senders don’t include u1−b);
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(2) if the adversary can track all the packets sent by u1−b to their respective recipients

and thus be sure that u1−b has not sent the challenge message.

We see that in both of these cases the path possibility adversary wins. Thus, they have

to be necessary for anonymity. This observation is captured in part (ii b).

Overall, Invariant 3 describes the following logical formula: (i) AND (ii), where

• (ii) = (ii a) OR (ii b)

• (ii b) = (ii b 1) AND (ii b 2)

Lessons for an ideal protocol. Let us now look at the parts of Invariant 3 and discuss

what they mean for constructing an ideal protocol:

• (i) The set T must not empty. This depends solely on when users send (real or noise)

messages, which we capture with our definitions of the user message distribution. Thus, this

part is independent of the decisions of the actual protocol.

• (ii a) The user u1−b sends a share of the challenge message. To maximize this proba-

bility, which is independent of our other choices, we want the chance that any user is sending

shares for any other user to be as large as possible.

• (ii b 1) At least one share of the challenge message travels through an honest node.

To maximize the probability that this occurs, a protocol should maximize the number of

nodes collectively visited by shares.

• (ii b 2) At least one message from u1−b travels through an honest node. Since the

(ideal) protocol doesn’t know which users are the challenge users it needs to generalize: To

maximize the probability that this occurs, the ideal protocol should maximize the number

of nodes collectively visited by messages from each user.

These lessons, particularly (ii b), inspire our choices for an ideal protocol. Before we

explore them, we briefly discuss the role of internal noise messages and relate them to the

invariant.

4.3.4 Modeling internal noise

To make the accounting of bandwidth overhead easier we want to disallow the protocol

from using internal noise, i.e., noise packets generated by a protocol party 6∈ S. Recall the
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assumptions we place on all packets, including internal noise: 1. No packets can be dropped.

2. Packets can be tagged as a share of message m, but only with one tag and that tag can

never be changed. 3. Packets can remain in the system for at most ` rounds from their

generation. 4. Shares must not violate the latency bound of the message that the noise is

tagged with (c.f. Section 3.1); i.e., for a message m, all packets tagged with m must arrive

within ` rounds of the round in which the user wanted to send m.

Claim 8 (User noise can replace internal noise). For every protocol in which noise is gen-

erated by internal protocol parties (6∈ S) and latency overhead `, there exists a protocol that

uses only user-generated noise (noise packets originating from a user u ∈ S) and latency

overhead `+ 1 with at least equal probability of satisfying Invariant 3.

Proof. We prove this claim by construction. Given a protocol Π1 we want to construct a

protocol Π2 that satisfies the invariant with at least the same probability as Π1. Once, an

internal noise message is created, the content of the message can not be modified (although,

it can be re-encrypted with different keys or decrypted), the message has to be delivered to

the recipient. Additionally an internal noise message can remain in the system for min(`, z).

where z is the latency bound for the message tag the message wants to use. Thus, having a

user send a message ”costs” as much as having internal nodes create the message. (Any inter-

nal noise message created not as a share of a user message will not influence the probability

of the invariance being true.)

We can consider two different cases for an internal noise message:

1. A dishonest node creates the noise message: since, messages can not mix at a

dishonest node, this does not help. Instead, a message sent by a user could help the protocol.

2. An honest node creates the noise message: This can definitely help the protocol.

However, if a user creates the noise one round before and sends it to the given internal node

in the current round, that is at least as good as a noise message created by the node in the

current round.

Hence, for each internal noise message m (created at round r) in Π1 , we make Π2 send

a noise message from a user (picked uniformly at random) at round r − 1. And, because of

the reasons explained above, Π2 will have at least the same probability as Π1 in satisfying
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Invariant 3. However, Π2 now uses latency overhead `+ 1 for the messages corresponding to

the internal noises in Π2 that uses latency overhead `.

Following the above claim, if a noise message is generated by an internal party P we

randomly choose a user to generate it and then relay it to P .

4.3.5 Ideal protocol

We now construct a protocol Πideal that has a probability of satisfying Invariant 3 against

Apaths at least as high as any other protocol in our protocol model.

Following Claim 8, we allow our ideal protocol to have latency overhead of ˆ̀ = ` + 1,

and assume that every message is created by some user u ∈ S. Consequently the adversary

behaves as if he is dealing with a protocol that is allowed to have ˆ̀ latency overhead.

The protocol has a number of pre-defined paths. Those paths are constructed at the

beginning of the protocol and do not change throughout the protocol run. Πideal has access

to an oracle O (discussed later); Πideal calls O.QueryPaths() to decide the number of paths

and distribution of protocol parties in each path. Fig. 4.3 presents pseudocode for the ideal

protocol.

Since the protocol has control over the noise messages, it utilizes all the noise messages

as shares of some real message. Whenever a message (real or noise) is sent to a path Path

it is sent to the protocol party at position r mod |Path| in the path, if the current round

number is r. In the next round either the message is delivered to the recipient, or transferred

to the next protocol party (at position (r + 1) mod |Path|) in the same path. For every

message m, Πideal queries the oracle (by calling O.QueryForMessage(m)) to decide which

path the message should be sent to and the number of rounds the message should remain

in the protocol. If the message is a noise message, the oracle additionally returns the real

message that the noise should be a share of.

The oracle O is an overapproximation of different strategies that a protocol can use

to optimize paths and noise messages. Our oracle knows the user distribution, all past

and future messages, the number of compromised parties, and the protocol strategy. The

protocol is oblivious to the challenge message, the challenge bit, the challenge users, the
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identity of the protocol parties who are compromised; and so is the oracle. Thus, given the

user distribution, the past and future messages, and the number of compromised parties,

the oracle tries to maximize the probability of satisfying Invariant 3 for the protocol Πideal,

against our adversary Apaths.

The oracle O can achieve the above by trying out all possible configurations and cal-

culating for each configuration the probability of satisfying Invariant 3 assuming that the

two challenge users are chosen uniformly at random (refer to Fig. 4.4 for a possible instan-

tiation of the oracle.). This consideration is different from the protocol actually satisfying

the invariant, since the oracle does not actually run the protocol; is unaware of the actual

challenge users, the exact protocol parties that are compromised, or the actual challenge

message. Note that the oracle is not bounded polynomially anymore; however, since we are

proving impossibility, a stronger protocol still provides a valid impossibility result.

Oracle O;
Paths← O.QueryPaths();
MessageRoute〈m, path, delay, tag〉 ← empty set;

Upon Round r:
for each Path in Paths do
i← r mod |Path|
for each message m held by party Path[i− 1] do

(path, delay, tag)← MessageRoute.Get(m)
if delay is expired then send m to recipient
else send m to Path[i mod |Path|]

for each message m in the input queue do
(path, delay, tag)← O.QueryForMessage(m)
MessageRoute.Add(〈m, path, delay, tag〉)
Path← Paths[path]; send m to Path[r mod |Path|]

Figure 4.3. Definition of Ideal Protocol Πideal

Special case of Ideal Protocol when K > (B+ 1)ˆ̀. For a special case of parameters, we

can construct a fairly practical ideal protocol that does not require as much help from the

oracle. Consider the case where the number of protocol parties K is large enough so all shares

of a message can travel on distinct paths that do not overlap; also assume for simplicity that

we have a constant rate of input messages per round. In this case, we can use static looping
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Paths := set of paths; Delays〈message, delay〉;
MessagePaths〈message, path〉;
MessageTags〈message, tag〉;

Initialize(Parties P , users U , input messages IU , protocol definition Π, latency `):
PathsConfigs ← set of all possible path configuration (arrangements of parties in P )
DelaysConfigs ← Set of all possible delay (of messages) configuration of IU
Pglobal ← 0
for each (PathsConfig,DelaysConfig) in (PathsConfigs,DelaysConfigs) do

PathsMaps ← set of all possible mappings for messages to paths for the given DelaysConfig
and PathsConfig
TagsMaps ← all possible valid tags for messages mapping noise messages to real messages for
the purpose of user coordination
for each (PathsMap,TagsMap) ∈ (PathsMaps,TagsMaps) do
Plocal ← the probability of satisfying Invariant 3 by protocol Π
if Plocal > Pglobal then
Pglobal ← Plocal; Paths← PathsConfig
MessagePaths← PathsMaps
MessageTags← TagsMap
Delays← DelaysConfig

QueryPaths():
return Paths

QueryForMessage(message m):
delay← Delays.Get(m) ; tag← MessageTags.Get(m)
path← MessagePaths.Get(m)
return (path, delay, tag)

Figure 4.4. Instance of Oracle Functionality

paths, where each path is comparable to the ideal protocol from Das et al.: packets on each

path remain together and hop from one node to the next (on that path).

Technically, we define B + 1 paths with an approximately equal number (K/(B + 1))

of mutually exclusive protocol parties each. Whenever a user sends a packet, the protocol

queries the oracle for the latency and the path index, but the paths themselves remain the

same. Otherwise the ideal protocol remains unmodified.

The ideal protocol is ideal. We now show that the ideal protocol is indeed ideal for

Invariant 3.
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Claim 9 (Ideal protocol is ideal for Invariant 3). Against the given adversary Apaths, Πideal

with latency ˆ̀ satisfies Invariant 3 with probability at least as high as any other protocol in

M with latency `.

Proof. We want to prove our claim by contradiction. Suppose, there exists a protocol Π,

given a latency `, satisfies Invariant 3 with a higher probability than Πideal (that uses latency

` + 1), against the adversary Apaths. By Claim 8, we can construct a protocol Πnew where

every message is created by some user u ∈ S, and allow Πnew to use a latency of ˆ̀ = ` + 1;

and Πnew will have a probability at least as much as Πideal to satisfy the invariant.

Now we construct a new protocol Πhybrid, which exactly follows the strategy of Πideal with

one exception: for a given message Πhybrid selects the time delay t same as Πnew, instead of

querying it from oracle O of Πideal.

The ideal strategy for ensuring that at least one honest party is on at least one the path

of the messages from u1−b is to ensure that as many distinct parties as possible are on all

the paths combined. Similarly, the possibility of having an honest party of the paths of the

shares of the challenge message is also maximized by maximizing the number of distinct

parties on all those paths combined.

Similarly, the ideal strategy for obfuscating the challenge sender with user coordination

is by maximizing the number of users sending shares for the challenge message. Since the

user distribution is the same for both Πnew and Πhybrid, Πhybrid is at least as successful in

satisfying the invariant due to the oracle.

For both Πnew and Πhybrid, the times when messages are sent and the time delays are

same, and hence, for every message the path length is same for both Πnew and Πhybrid.

However, Πhybrid decides the number of paths, and distribution of the protocol parties on

those paths by querying the oracle. Hence, Πhybrid has a probability of satisfying Invariant 3

at least as high as Πnew.

Now, if we compare Πhybrid and Πideal : they follow the same strategy. But Πideal picks

the time delay t for any message from oracle O such that t is optimal. Hence, Πideal satisfies

Invariant 3 with probability at least as high as Πhybrid. Thus, Πnew does not satisfy Invariant 3

with a higher probability than Πideal.
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From here onwards, we assume that messages (real or noise) are generated only by users

∈ S, and whenever a latency of ` is allowed to the protocol, we allow the ideal protocol to

have a latency of ˆ̀= `+ 1 in our calculations.

4.4 Analyzing synchronized users

The first user distribution we analyze is the synchronized user message distribution UB

as defined in Section 6.2. Recall that in UB in every round exactly one user sends a message

and within N rounds each user sends a message only once. We allow the protocol to add up

to B noise packets per round and leave it up to the protocol to decide which users send those

B packets. If B is not a natural number, we allow the protocol to send bBc noise messages

per round and one more every few rounds such that the average bandwidth overhead remains

B while spacing them out as evenly as possible.

4.4.1 Lower bound on adversarial advantage

Theorem 4.4.1. For user distribution UB, no protocol Π ∈M can provide δ-sender anony-

mity, for any

δ <
(
1− B

N−1

) [
1− (τ+1)N−B ˆ̀−ˆ̀

N g(τ)− B ˆ̀+ˆ̀−τN
N g(τ + 1)

]
where τ = bB ˆ̀+ˆ̀

N c, ˆ̀= `+ 1

and g(x) =


1 c < xˆ̀

1−
(

c
xˆ̀

)/(K
xˆ̀

)
c ≥ xˆ̀.

Proof. Suppose u0 and u1 are the challenge users, and ub sends the challenge message which

reaches the recipient in some round r. We know from Claim 9 that Πideal is ideal; thus, we

focus on Πideal here. By definition of Πideal, the challenge message can have up to (B + 1)

shares, including the one sent by ub. Since the challenge users are not known to the oracle

O, the best strategy for O is to have B shares per real message.

For our invariant to be satisfied, it is necessary that u1−b sends at least one message within

[r − `, r − 1]. Such a message can be a share of the challenge message, or a real message. If

we denote by x the number of messages sent by u1−b in a given interval of ˆ̀ rounds, x can
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have only two possible values depending on the values of B, ˆ̀ and N. That is because the

protocol tries to maximize the total number of users that send messages in a given interval

of ` rounds. Hence, u1−b sends τ = bB ˆ̀+ˆ̀
N c messages with probability (τ+1)N−B ˆ̀−ˆ̀

N , and sends

(τ + 1) messages with probability B ˆ̀+ˆ̀−τN
N .

If none of them is a share of the challenge message, we require that at least one of those

messages passes through an honest node before round r. Hence,
Pr [Invariant 3 is true]

≤ Pr [u1−b sends a share of the challenge message]

+ Pr[u1−b sends no shares of the challenge message

∧ u1−b sends a message in the given span of ˆ̀ rounds]

× Pr [At least one of the messages visits an honest node]

≤ B

N− 1 +
(

1− B

N− 1

) (τ + 1)N−B ˆ̀− ˆ̀
N × g(τ)

+
(

1− B

N− 1

)
B ˆ̀+ ˆ̀− τN

N × g(τ + 1).

where τ = bB ˆ̀+ˆ̀
N c, and g(x) is a function that provides an upper bound on the probability

that at least one message from u1−b passes through at least one honest node in a given

interval of ˆ̀ rounds, when u1−b sends exactly x messages. Hence,
Pr[at least one message from u1−b passes through

an honest node |u1−b sends x messages]

≤ g(x) =


1 c < xˆ̀

1−
(

c
xˆ̀

)/(K
xˆ̀

)
c ≥ xˆ̀

By Claim 7 whenever Invariant 3 is not true the adversary wins. Whenever it is true, the

adversary still can flip a coin and thus the probability that the adversary loses is bounded

by the following:
Pr [0 = Apaths|b = 1] = Pr [1 = Apaths|b = 0]

≤ 1
2Pr [Invariant 3 is true] .
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Therefore,
δ ≥ 1− Pr [Invariant 3 is true]

≥
(

1− B

N− 1

) [
1− (τ + 1)N−B ˆ̀− ˆ̀

N g(τ)− B`+ `− τN
N g(τ + 1)

]
.

Although the above bound is a perfectly valid lower bound for δ over 0 ≤ c ≤ K, when

c < ˆ̀ and τ = 0, we can derive a more precise lower bound on δ:

δ ≥
(
1− B

N−1

)(
1− B(ˆ̀−c)+(ˆ̀−c)

N − Bc+c
N

[
1− 1

/(K
c
)])

.

The following section presents a derivation for this bound.

4.4.2 A tighter special case for c < ˆ̀

When τ = 0 and c < ˆ̀, we can derive a more precise bound than the one in Theorem 4.4.1.

Since τ = 0, there is at most one message sent by u1−b in a span of ˆ̀rounds. There is a chance

that u1−b does not send a message, the invariants are not satisfied (and the adversary wins)

in that case. When u1−b sends a message, the invariants are satisfied only if the whole path

of the message is not compromised. However, since c < ˆ̀, the adversary can not compromise

a whole path of length ˆ̀. Therefore, the adversary has a chance to break the invariants if

the message from u1−b is dispatched in {r − c, . . . , r − 1}. If the message is sent by u1−b in

{r− ˆ̀, r− c− 1}, the invariants can be satisfied. Therefore, we can derive a lower bound on

δ as follows:
δ ≥Pr[u1−b does not send a share of challenge message]

×
(
1− Pr[u1−b sends a message in {r − ˆ̀, r − c− 1}]

− Pr[u1−b sends a message in {r − c, r − 1}]

× Pr[At least one of the c parties is honest]
)

≥
(

1− B

N− 1

)1− B(ˆ̀− c) + (ˆ̀− c)
N − Bc + c

N ×
[
1− 1

/(K
c

)]
Bound on anonymity when B ˆ̀≤ N and c < ˆ̀. We can use a similar technique as above

to derive a precise bound on δ when B ˆ̀≤ 1 and c < ˆ̀. Since B ˆ̀≤ N, for ˆ̀< N the number
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of messages sent by bob is bounded by 2, and τ ≤ 1. Therefore, we can derive the following

lower bound on δ:
δ ≥ Pr[u1−b does not send a share of challenge message]

×
(
1− Pr[u1−b sends two messages in {r − ˆ̀, r − 1}]

− Pr[u1−b sends only one message in {r − ˆ̀, r − c− 1}]

− Pr[u1−b sends only one message in {r − c, r − 1}]

× Pr[At least one of the c parties is honest]
)

≥
(
1− B

N−1

)(
1−max

(
0, B ˆ̀+ˆ̀−N

N

)
− B(ˆ̀−c)+(ˆ̀−c)

N − Bc+c
N ×

[
1− 1

/(K
c

)])
Note that, Pr[At least one of the c parties is honest] can never be negligible. Because,

even for c = 1, 1
/(

K
c

)
is not negligible. The adversary can always choose to compromise less

number of parties if that gives the adversary more advantage. This untightness is because

of the approximations in our proof, tighter bounds are left for future work.

Therefore, a protocol can not achieve strong anonymity if max
(
0, B ˆ̀+ˆ̀−N

N

)
+ B(ˆ̀−c)+(ˆ̀−c)

N

is not overwhelmingly 1.

4.4.3 Impossibility for strong anonymity

Using Theorem 4.4.1, we can derive the following impossibility theorems for AC protocols

to achieve strong anonymity.

Theorem 4.4.2. For user distribution UB with K,N ∈ poly(η), K > c, ˆ̀ < N, N − 1 >

B ≥ 0, no protocol Π ∈M can achieve strong anonymity if

(i) ˆ̀(B + 1) < N− ε(η) where ε(η) = 1/ηd for a positive constant d, OR

(ii) c ≥ (B + 1)ˆ̀ and ˆ̀∈ O(1).

Theorem 4.4.2 in words. For our user distribution UB in which user behavior is syn-

chronized and somewhat predictable, a protocol has only three options to achieve strong

anonymity: (1) to use a massive amount of latency overhead ˆ̀≥ N (intuitively: “wait until

everyone has sent a message”); (2) to use a massive amount of bandwidth overhead B ≥ N−1
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(intuitively: “every user sends a packet in every round”); or (3) to have a trade-off between

the two: ˆ̀(B+ 1) ≥ N (intuitively: “make sure that messages wait long enough for everyone

to have sent a packet”). In case (3) we have an additional requirement: if the adversary is

allowed to compromise more than the number of parties that any message and its shares

can meet while they are within the protocol, then it is possible that the challenge message

and all its shares only travel through compromised nodes. If the length of the paths taken

by these messages is constant, this occurs with non-negligible probability and thus strong

anonymity is impossible.

Proof of Theorem 4.4.2. We know,

δ ≥
(
1− B

N−1

) [
1− (τ+1)N−B ˆ̀−ˆ̀

N g(τ)− B`+`−τN
N g(τ + 1)

]
.

First, we observe that, if B ˆ̀+ ˆ̀< N− 1
ηx

, τ is zero, and hence, g(τ) is zero. Moreover,
B ˆ̀−ˆ̀

N < 1− 1
Nηx = not overwhelming. Which means δ cannot be negligible. Now,

B ˆ̀+ ˆ̀< N− ε(η) ⇐= (B + 1)ˆ̀< N− ε(η).
We additionally need both g(τ) and g(τ + 1) to be overwhelming to achieve strong

anonymity. When c ≥ (B+1)ˆ̀, both τ(ˆ̀+1) and (τ+1)ˆ̀ have to be in ω(1) (i.e., not inO(1)),

in order for g(τ) and g(τ+1) to become overwhelming. We know that B < N−1 =⇒ B
N < 1.

If ˆ̀ is in O(1),

τ = bB ˆ̀+ˆ̀
N c = b

(
B
N

ˆ̀+ ˆ̀
N

)
c ≤ (`+ 1) ∈ O(1).

Hence, τ ˆ̀ is also in O(1). Therefore, g(τ) and g(τ + 1) are not overwhelming.

Theorem 4.4.3 (Anytrust Impossibility Theorem). For user distribution UB with K,N ∈

poly(η), K − c = γ ∈ O(1), K > c, no protocol Π ∈ M can achieve strong anonymity if
ˆ̀≤ N− 1 and B ≤ N− 2 and ˆ̀2 ≤ K− γ.

Theorem 4.4.3 in words. If all but a constant number of nodes are compromised, then

strong anonymity is only possible with a massive latency overhead or a massive bandwidth

overhead (cases (1) and (2) from Theorem 4.4.2 in words respectively) or if the latency

overhead ` allows each packet to traverse at least the square root of all compromised parties

(ˆ̀2 ≥ c).
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Proof of Theorem 4.4.3. We know, τ = bB ˆ̀+ˆ̀
N c < ˆ̀. When ˆ̀2 < K− γ,

(
c
τ ˆ̀
)

(
K
τ ˆ̀
) ≥

(
c
ˆ̀2

)
(

K
ˆ̀2

) ≥ c! (K− ˆ̀2)!
(c− ˆ̀2)! K!

≥ (K− γ)! γ!
K!

For γ ∈ O(1), the above quantity is always non-negligible. Hence, g(τ) is never overwhelming.

Therefore, δ cannot be negligible unless ˆ̀≥ N− negl(η) or B ≥ N− 1− negl(η).

4.5 Analyzing unsynchronized users

We now analyze the unsynchronized user message distribution UP as defined in Sec-

tion 6.2. Recall that in UP in every round each user tosses a biased coin with success

probability p ∈ (0, 1] to decide whether or not to send a message. This coin toss is inde-

pendent of coins tossed by other users or in other rounds. We assume that the bandwidth

overhead is part of p, i.e., we divide up p into the probability to send a real message p < p

and define our bandwidth overhead as B = p−p
p

noise messages per real message.

4.5.1 Lower bound on adversarial advantage

Theorem 4.5.1. For user distribution UP , no protocol Π ∈M can provide δ-sender anony-

mity, for any [1ex]
δ <

(
1− Beff

N− 1

) [
1− g(ˆ̀)× fSA

p (ˆ̀)
]

, where

Beff = min(B, ˆ̀pN− 1),

fSA
p (d) = min

(
1, 1

2 +
(
1− (1− p)d

))
, and

g(x) =


1−

(
c
xˆ̀

)
/

(
K
xˆ̀

)
xˆ̀≤ c ≤ K

1 otherwise.

Proof of Theorem 4.5.1. Suppose u0 and u1 are challenge users, and ub sends the challenge

message. The challenge reaches the recipient at round r. The challenge message can have

up to B = p−p
p

additional shares (excluding the share sent by ub). Ideally, we want u1−b to

send at least one of the p−p
p

shares. If not, we at least want u1−b to send at least one message

in [r − ˆ̀, r − 1], that passes through an honest node before round r.

101



By Invariant 3, only the shares sent in rounds {(r − ˆ̀), . . . , (r − 1)} can contribute

to anonymity. Therefore, the number of shares for the challenge message is bounded by

Beff = min(B, ˆ̀pN− 1).

The probability that u1−b sends at least one message within a span of ˆ̀ rounds is upper

bounded by fSA
p (`) as explained in Section A.1.1. Moreover, u1−b can not send more than ˆ̀

messages in ˆ̀ rounds. Thus, we can derive:

Pr [Invariant 3 is true]

≤ Pr [u1−b sends a share of the challenge message.]

+ Pr[u1−b does not send a share of the challenge message

∧ u1−b sends a message in the given span of round ˆ̀]

× Pr[Some share of the challenge message visits honest node

and some message from u1−b visits honest node]

= Beff

N− 1 +
(

1− Beff

N− 1

)

×
( Z∑
d=0

Pr
[
At least one node in d paths is honest

∣∣∣ X(u1−b) = d
]
× Pr

[
X(u1−b) = d

]
+ Pr [At least one node in Z paths is honest]× Pr

[
X(u1−b) > Z

] )
≤ Beff

N− 1 +
(

1− Beff

N− 1

)
× Pr [At least one node is honest in Z paths]

× Pr
[
u1−b sends at least one message in{(r − ˆ̀), . . . , (r − 1)}

]
≤ Beff

N− 1 +
(

1− Beff

N− 1

)
× g(Z)×

(
1− (1− p)ˆ̀

)
By Claim 7, whenever Invariant 3 is not satisfied the adversary wins, bounding the adver-

sary’s advantage by:

δ ≥ 1− Pr [Invariant 3 is true]

≥
(

1− Beff

N− 1

) [
1− g(ˆ̀)× fSA

p (ˆ̀)
]
.

Although the above bound is a valid bound for 0 ≤ c ≤ K, we can derive a more precise

bound when c < `:

δ ≥
(
1− Beff

N−1

)
×
(
1− fSA

p (ˆ̀− c)
)

×
[
1− fSA

p (c)
(
w2 + w1

[
1− 1/

(
K
c

)])]
,
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where w1 = cp (1− p)c−1 and w2 = 1 − w1 − (1− p)c. We refer to Section 4.5.3 for the

derivation of this bound.

4.5.2 Impossibility for strong anonymity

Using Theorem 4.5.1, we can derive the following impossibility theorems.

Theorem 4.5.2. For user distribution UP , with ˆ̀< N and B < (N− 1)− ε(η), no protocol

Π ∈M can achieve strong anonymity if pˆ̀< 1− ε(η). Moreover, strong anonymity can not

be achieved if ˆ̀∈ O(1).

Theorem 4.5.2 in words. We confirm that a protocol even with user coordination generally

can only provide strong anonymity if it (1) uses a massive amount of bandwidth overhead

B ≥ N − 1 (intuitively: “for every real message, every other user sends a share”); or (2)

satisfies the bound for UP without compromised nodes from Chapter 3. Thus, we confirm

that for B < N− 1 their basic trilemma condition (without compromised nodes) holds even

against protocols with user coordination. In other words, while user coordination with B < N

strengthens a protocol against compromised parties, it does not suffice for overcoming the

basic trilemma condition.

Proof of Theorem 4.5.2. If B < (N − 1) − ε(η), B
N−1 will be less than 1 − neg(η). Hence,

H =
(
1− g(ˆ̀)× fSA

p (ˆ̀)
)

has to be negligible to achieve strong anonymity. However, this is

a generic lower bound on δ, and from Section A.1.1 we know that it is sufficient to consider(
1− (1− p)ˆ̀

)
instead of fSA

p (ˆ̀). Hence, we require H =
(

1− g(ˆ̀)×
(

1− (1− p)ˆ̀
))

to be

negligible for the protocol to achieve strong anonymity. When pˆ̀< 1− ε(η) =⇒ (1− p)ˆ̀
<

1− ε(η), H can never be negligible, and consequently, δ can never be negligible.

Even when (1− p)ˆ̀ is negligible, g(ˆ̀) has to be overwhelming as well to achieve strong

anonymity in case c > `, which implies
[(

c
ˆ̀2

)/(K
ˆ̀2

)]
has to be negligible (since c ≥ ˆ̀2 =⇒

c ≥ ˆ̀2), to achieve strong anonymity. ( c
ˆ̀2

)
/
(K

ˆ̀2

) can never be negligible if ˆ̀2 ∈ O(1).

When c < ˆ̀, We need
[
1− 1/

(
K
c

)]
to be overwhelming to achieve strong anonymity. This

means, we need the term 1/
(

K
c

)
to be negligible and that never happens for a constant c. If
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ˆ̀∈ O(1), c is also O(1), since ˆ̀> c by our assumption. And, that shows that our theorem

holds for c < ˆ̀ as well.

Finally consider the case ˆ̀≤ c < ˆ̀2. For a constant `, if a constant c can provide adver-

sary better advantage, the adversary will choose to compromise fewer protocol parties even

though he can compromise more. Therefore, Whenever we have constant ˆ̀, it is impossible

to achieve strong anonymity, since it is impossible even for c being as small as 1.

Theorem 4.5.3. For user distribution UP , Given p < 1 − ε(η), B < (N − 1) − ε(η)
c
K = const, no protocol Π ∈M can achieve strong anonymity if c > ˆ̀2 and ˆ̀2 ∈ O(log(η)),

where ε(η) = 1/ηx for a positive constant x.

Theorem 4.5.3 in words. If a constant fraction c
K of protocol parties is compromised and

the protocol does not use a massive bandwidth overhead (see above), then the latency has

to grow significantly with the security parameter (ˆ̀ must grow superlogarithmic in η).

Proof of Theorem 4.5.3. We have δ ≥
(
1− Beff

N−1

) [
1− g(ˆ̀)× fSA

p (ˆ̀)
]
. If B < N − 1 − ε(η),(

1− Beff
N−1

)
cannot be negligible. In that case, both fSA

p (ˆ̀) and g(ˆ̀) = 1−
(

c
ˆ̀2

)
/

(
K
ˆ̀2

)
have to

be overwhelming to make δ negligible. For c > ˆ̀2 and c
K = const = 1

y
,

c− ˆ̀2

K− ˆ̀2
>

1
y
⇐⇒

 c− ˆ̀2

K− ˆ̀2

ˆ̀2

>

(
1
y

)ˆ̀2

=⇒ c . . . (c− ˆ̀2)
K . . . (K− ˆ̀2)

>

(
1
y

)ˆ̀2

(
1
y

)ˆ̀2

cannot be negligible for ˆ̀2 ∈ O(log(η)).

Theorem 4.5.4. For user distribution UP , given B < (N − 1) − ε(η), no protocol Π ∈ M

can achieve strong anonymity if p×max
{ˆ̀− c, ˆ̀

2

}
< 1− ε(η).

This shows that if the adversary compromises more protocol parties p has to grow ac-

cordingly to provide strong anonymity. Not only that, ˆ̀ needs to grow as c grows.

Theorem 4.5.4 in words. For UP , if the protocol does not use a massive bandwidth

overhead (see above), then compromised parties reduce the effective latency in terms of the

basic trilemma by a factor of up to two; the more parties can be compromised, the harder it

becomes for the protocol.
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Proof of Theorem 4.5.4. When B < (N− 1)− ε(η),
(
1− Beff

N−1

)
can never be negligible. Ad-

ditionally, because p(ˆ̀− c) < 1− ε(η), (1− p)ˆ̀−c can not be negligible. Therefore, to achieve

strong anonymity, (1− (1− p)c) and
[
1− 1/

(
K
c

)]
has to be overwhelming – that is not possi-

ble if pc < 1− ε(η). [Here we use the knowledge from Section A.1.1 to use (1− p)ˆ̀−c instead

of fSA
p (ˆ̀− c) and (1− (1− p)c) instead of fSA

p (c).]

Finally, note that the adversary can always choose to compromise less than c nodes and

thus would choose to compromise ˆ̀
2 at most to maximize the advantage.

Theorem 4.5.5 (Anytrust Impossibility Theorem). For user distribution UP with K,N ∈

poly(η), K − c = γ ∈ O(1), K > c, no protocol Π ∈ M can achieve strong anonymity if
ˆ̀≤ N− 1 or B ≤ N− 2 or ˆ̀2 ≤ K− γ.

This theorem is similar to Theorem 4.4.3 from Section 4.4. If there are only constant

number of honest nodes, strong anonymity is impossible without a large latency overhead

or a huge bandwidth overhead or if the latency overhead ˆ̀ allows each packet to traverse at

least
√

c parties. The proof is also similar to that of Theorem 4.4.3, therefore we skip the

proof here.

4.5.3 A tighter special case for c < `

Let us derive a tighter upper bound on δ, in case of unsynchronized user message distri-

bution, when 0 ≤ c < `. W is a random variable denoting the minimum number of paths

that the adversary needs to compromise to ensure no honest party on the paths of the shares

of the challenge messages as well as no honest party on the paths of the messages from u1−b.

When c < ˆ̀,
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Pr [Invariant 3 is true]

≤Pr [u1−b sends a share of the challenge message.]

+ Pr[u1−b does not send a share of the challenge message]

∧
(
Pr[u1−b sends a message in {r − ˆ̀, r − c− 1}]

+ Pr[u1−b does not send a message in {r − ˆ̀, r − c− 1}]

×
(
Pr[u1−b sends more than one message in {r − c, r − 1}]

+ Pr[u1−b sends only one message in {r − c, r − 1}]

× Pr[Some share of the challenge message visits honest node

and some message from u1−b visits honest node]
))

≤ Beff

N− 1 +
(

1− Beff

N− 1

) [(
1− (1− p)ˆ̀−c

)
+ (1− p)ˆ̀−c

×
(

Pr [W ≥ 1 ∧Xu1−b(c) ≥ 2]

+ Pr [W = 0 ∧Xu1−b(c) ≥ 1]×
[
1− 1/

(
K
c

)])]
≤ Beff

N− 1 +
(

1− Beff

N− 1

) [(
1− (1− p)ˆ̀−c

)
+ (1− p)ˆ̀−c

×
(

Pr [W ≥ 1 ∧Xu1−b(c) ≥ 1]

+ Pr [W = 0 ∧Xu1−b(c) ≥ 1]×
[
1− 1/

(
K
c

)])]
≤ Beff

N− 1 +
(

1− Beff

N− 1

) [(
1− (1− p)ˆ̀−c

)
+ (1− p)ˆ̀−c

×Pr [Xu1−b(c) ≥ 1]
(

Pr [W ≥ 1] + Pr [W = 0]
[
1− 1/

(
K
c

)])]
≤ Beff

N− 1 +
(

1− Beff

N− 1

) [(
1− (1− p)ˆ̀−c

)
+ (1− p)ˆ̀−c

× (1− (1− p)c)
(

Pr [W ≥ 1] + Pr [W = 0]
[
1− 1/

(
K
c

)])]
Note that W is a random variable, where W = min

(
(X−X)
X

+ 1, X
)
. Here X and X

follow Binom(c, p) and Binom(c, p) respectively. Therefore, We can say that Pr[W = 1]

is bounded by Pr[W = 1] ≤ w1 = Pr[X = 1] = cp (1− p)c−1. Consequently, Pr[W > 1] ≥

w2 = Pr[X > 1] = 1− w1 − (1− p)c. Therefore, we can write,
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Pr [Invariant 3 is true]

≤ Beff

N− 1 +
(

1− Beff

N− 1

) [
fSA
p (ˆ̀− c) +

(
1− fSA

p (ˆ̀− c)
)

× fSA
p (c)

(
w2 + w1

[
1− 1/

(
K
c

)])]
Thus,

δ ≥ 1− Pr [Invariant 3 is true]

≥ 1− Beff
N−1 −

(
1− Beff

N−1

) [
fSA
p

(ˆ̀− c
)

+
(
1− fSA

p (ˆ̀− c)
)

× fSA
p (c)

(
Pr [W ≥ 1] + Pr [W = 0]

[
1− 1/

(
K
c

)] )]
≥
(
1− Beff

N−1

)
×
[
1− fSA

p

(ˆ̀− c
)
−
(
1− fSA

p (ˆ̀− c)
)

× (1− (1− p)c)
(

Pr [W ≥ 1] + Pr [W = 0]
[
1− 1/

(
K
c

)] )]
≥
(
1− Beff

N−1

)
×
(
1fSA

p (ˆ̀− c)
) [

1− fSA
p (c)

×
(

Pr [W ≥ 1] + Pr [W = 0]
[
1− 1/

(
K
c

)] )]

4.6 Discussion of results

4.6.1 Impossibility results

From our impossibility theorems in Sections 4.4 and 4.5, we observe that strong anony-

mity requires a combination of latency overhead and bandwidth overhead – which is very

similar to our observations Chapter 3. The strong assumption of user coordination (U.C.)

appears to reduce the cost to achieve anonymity, but in most cases does not suffice. As an

exception, strong anonymity can always be achieved with user coordination for B ≥ N –

even in cases where it is provably impossible for protocols that do not use user coordination.

In Table 4.1 we compare the impossibility results for protocols with user coordination

with those for protocols without user coordination. We compare different cases for the

number of compromised nodes c in relation to the latency overhear ` and the bandwidth

overhead B. Each entry shows under which condition we can prove that strong anonymity

is impossible. Recall that the impossibility bounds cannot be tight, as we solely consider the

possible paths adversary Apaths. Tight bounds would have to also make requirements about
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the message distributions. However, the results are comparable to those of Chapter 3, since

we use the same adversary Apaths in both the cases.

Table 4.1. Impossibility Conditions for Anonymous Communication, with number of
protocol-nodes K, number of compromised protocol parties c, number of clients N, latency
overhead `. In all cases we assume that ` < N, 1 ≤ B < (N − 1) − ε(η), and ε(η) = 1/ηd
for a positive constant d. We compare different cases for the number of compromised nodes
c in relation to the latency overhead ` and the bandwidth overhead B. Each entry shows
under which condition we can prove that strong anonymity is impossible. Note that we allow
protocols with U.C. to utilize a latency of ˆ̀= `+ 1 (c.f., Footnote 3).
Cases UB without U.C. UB , with U.C. UP without U.C. UP , with U.C.
c ≥ 0 `(B + 1) < N− ε ˆ̀(B + 1) < N− ε `p < 1− ε ˆ̀p < 1− ε
0 < c ≤ ` (`−c)(B+1)

(N−ε) < 1 (ˆ̀−c)(B+1)
(N−ε) < 1 (`− c)p < 1− ε p(ˆ̀− c) < 1− ε

` < c ≤ B`+ ` ` ∈ O(1) ˆ̀(B + 1) < N− ε ` ∈ O(1) ˆ̀∈ O(1)
(B + 1)` < c ` ∈ O(1) ˆ̀∈ O(1) ` ∈ O(1) ˆ̀∈ O(1)
K/c ∈ O(1) ` ∈ log(η) ˆ̀∈

√
log(η) ` ∈ log(η) ˆ̀∈

√
log(η)

Unified impossibility bound for both user distributions. When comparing our im-

possibility results for both user distributions, we can represent them with a single unified

impossibility condition ˆ̀(p + β) < 1 − ε(η), where β is the number of noise messages per

user per round. For the unsynchronized user message distribution, β = pB = p− p. For the

synchronized user distribution, β = B
N = pB, since p by definition is 1

N .

Limitations of our results. In our derivations we do not consider a probabilistic adversary

which indeed has a higher chance of deanonymizing users. Additionally, we do not count

the cost of user coordination in our results. These factors make our results untight, still

giving us a strict lower bound on the cost of anonymity in terms of latency and bandwidth

overhead.

We also assume that no user ever goes offline, which means that any restrictions we

prove in our protocol model directly translate to both protocols that have an always online

representation of users and protocols that are more vulnerable. In other words: strong

anonymity might be even harder to achieve in practice. This makes our analysis slightly

more untight for protocols that don’t provide solutions for coping with offline users and set

intersection attacks.

Conversely, notions weaker than “strong anonymity”, e.g., a partial but robust anonymity

set, can be easier to achieve. However, if the cardinality of such a partial set is known in
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advance our analysis can be easily adapted by reducing the “set of all users” to the partial

set and then following our methodology to compute bounds: If NW is the cardinality of an

anonymity set W , our bounds will hold for parameter NW instead of N.

Table 4.2. Interesting cases for AC, with number of protocol-nodes K, number of com-
promised protocol parties c, number of clients N, latency overhead `. The table assumes for
all rows N ∈ Θ(η2), K ∈ Θ(η), ` < K < N and B ≤ (N − 2). Here, 7 denotes that strong
anonymity is provably impossible and (3) denotes that we could not show this impossibil-
ity, i.e., strong anonymity could be possible. In some cases the impossibility proofs rely on
additional requirements, i.e., we can only show 7 if these requirements are met. Note that
we allow protocols with U.C. to utilize a latency of ˆ̀= `+ 1 (c.f., Footnote 3).

UB without U.C. UB with U.C. UP without U.C. UP with U.C.
Interesting cases Ano. Add.req. Ano. Add.req. Ano. Add.req. Ano. Add.req.
β` = 1, ` < K, 7 7 7 p < 1

` 7 p < 1
`

c ∈ Θ(log(K))
β = 1

` , ` ∈ O(1), 7 7 7 7
K− c ∈ Θ(η)
β = 1

` , ` < c < `2, 7 7 7 (3)
K− c ∈ Θ(1)
β = 1

` , `
2 ≤ c, 7 7 7 7

K− c ∈ Θ(1)
β = 1√

`
, `2 ≤ c, 7 7 7 7

K− c ∈ Θ(1)
β` ∈ O(1), c = K

2 , 7 7 7 p < 1
2 7 p < 1

2
` ≤ log(K)
β > 1

log(η) , c = K
4 , 7 (3) 7 (3)

` ≥ log(K)
` < log(η)

2 , 7 7 7 7
c = K− 1

4.6.2 Interesting cases & corner cases

This section discusses some boundary cases and some interesting cases to breathe life

into our necessary constraints. We discuss combinations of bandwidth overhead B, latency

overhead `, and number c of compromised nodes with respect to the impact of utilizing user

coordination (U.C.) in an ACN. In Table 4.1 we compare the impossibility results for those

cases for protocols with user coordination with those cases. Here, 7 denotes that strong

anonymity is provably impossible and (3) denotes that we could not show this impossibility,

i.e., strong anonymity could be possible. In some cases the impossibility proofs rely on

additional requirements, i.e., we can only show 7 if these requirements are met.
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Our results are dominated by the universal necessary constraints without any compromi-

sation, i.e., ˆ̀(p+β) < 1− ε(η). Hence, the focus of Table 4.2 is to show which combinations

of parameters along the lines ˆ̀(p + β) = 1 are impossible for which scenario. We illustrate

that, while U.C. might lead to strongly anonymous ACNs in some cases, there are interest-

ing cases along the lines of the universal necessary constraints where even ACNs with U.C.

cannot achieve strong anonymity.

When we compare the results for protocols without user coordination vs. protocols with

user coordination, we compare ` = x vs. ˆ̀= x to induce fairness3. For deciding the verdicts,

we directly use the lower bounds on δ from our results.

Constant latency, full bandwidth overhead. Let us consider ACNs that send for every

real message N shares (B = N), which we call full bandwidth overhead. In this case, from

our lower bounds on δ we can observe that U.C. has an impact, as no internal node is

needed to achieve strong anonymity, as is done in DC-nets [12]. As a consequence, even if

there are internal parties but all internal parties are compromised U.C. leaves the possibility

of achieving strong anonymity (e.g., along the lines of DC-nets). Without U.C., strong

anonymity is impossible if the latency is short (` ∈ O(1)). However, when a protocol does

not have full bandwidth overhead, U.C. can not provide strong anonymity without the help

of latency overhead and honest intermediate parties.

Almost very high latency, high bandwidth overhead. For high latency bounds ` ≤

K − 1 that are just shy of visiting every node in the ACN (` = K), strong anonymity is

impossible for synchronized users, even if a high amount of bandwidth overhead B = N/` or

β = 1/` is tolerated. (In Table 4.2 we use β to unify the impossibility bounds for synchronized

and unsynchronized user message distribution, where β = pB; for synchronized users, always

p = 1/N.) In Section 4.4.2 we provide additional calculations relevant for these corner cases.

For the unsynchronized user distribution, strong anonymity is impossible if the rate p at

which real messages are sent per round is low, roughly p < 1/`.4

3↑When we allow latency to be ` + 1 for protocols with user coordination to approximate noise generated
by internal parties with user noise, we also allow protocols with only user noise to have latency ` + 1. It
is unfair to compare them with protocols without user coordination with latency `. Moreover, when ` = 0,
there is no intermediate party, so there is no internal noise.
4↑Recall that we here assume that N ∈ θ(η2) and K ∈ θ(η).
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Moderate latency, minimal bandwidth overhead. Next, we consider interesting cases

where we fix the latency ` and consider a bandwidth overhead in such a way that β is along

the lines of β` = 1. For the synchronized user distribution, if the latency ` ≈ √η ≈
√

K and

B = N/`, our results leave the possibility for strong anonymity only if the total number of

compromised parties is less than `, i.e., ` > c. For the unsynchronized user distribution, for

similar latency (` ≈
√

K) and compromisation up to c ≤ `2, strong anonymity is possible and

the bandwidth overhead can be as low as B = β/p = O(1) for a high rate of real messages (p

is a constant fraction). If all nodes but one are compromised (c = K−1), strong anonymity is

impossible for both user distributions when ` <
√

K, independent of the bandwidth overhead

— which confirms our Anytrust impossibility theorem (Theorems 4.4.3 and 4.5.5).

Log latency, with nearly full bandwidth overhead. Along the line β` = 1, another

interesting case is ` = log(K)/2. In this case, the latency overhead is so low that there is no

chance to evade a pervasive adversary that compromises a lot of nodes (c ≥ K/2). In a more

specific case, strong anonymity is impossible in a strong compromisation scenario where all

nodes but one are compromised (c = K− 1), regardless of the bandwidth overhead, i.e., for

any β < 1 − ε(η) and B ≤ (N − 2). For a slightly higher latency ` ≥ 2 log(K) and a weak

adversary with c ≤ K/4, we cannot exclude the possibility for strong anonymity as long as

the universal necessary constraints are satisfied (ˆ̀(p+ β) ≥ 1).

4.7 Implications and scope

Our novel necessary constraints for the core of ACNs with user coordination describe a

large set of lower bounds for combinations of bandwidth overhead, latency overhead, resis-

tance to compromised parties, and the degree of anonymity. The rich literature on ACNs

contains a few proposals that come close to these novel necessary constraints. This section

discusses some of these ACNs, in particular, their usage of user coordination to achieve

stronger anonymity and the user coordination online overhead against passive adversaries,

i.e., without the overhead of DoS countermeasures.

In this chapter, to keep the presentation concise, we mainly discuss protocols that uti-

lize user coordination. For protocols that do nor utilize user coordination, we refer to the
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Table 4.3. Latency vs. bandwidth vs. strong anonymity of AC protocols, with
the number of protocol-nodes K, number of clients N, and message-threshold
T , expected latency ` per node, dummy-message rate β.

Protocol Latency Bandwidth Strong Anonymity

Tor [13] θ(1) θ(1/N) impossible
Hornet [14] θ(1) θ(1/N) impossible
Herd [7] θ(1) θ(N/N) possible
Riposte [6] θ(N) θ(N/N) possible
Vuvuzula [2] θ(K) θ(N/N) possible
Riffle [8] θ(K) θ(N/N) possible
Threshold mix [30] θ(TK) θ(1/N) impossible∗
Loopix [1] θ(

√
K`) θ(β) possible

DC-Net [11,12] θ(1) θ(N/N) possible
Dissent-AT [5] θ(1) θ(N/N) possible
DiceMix [15] θ(1) θ(N/N) possible

∗ if T in o(poly(η))

discussion in Chapter 3. However, to provide a totalistic perception of our results, we plot

both types (one that utilizes user coordination and one that does not) of protocols on a 2D

graph (see Figure 4.5); our constraints mark an area on the graph where strong anonymity

is impossible with latency overhead (x-axis) versus bandwidth overhead (y-axis). Addition-

ally, in Table 4.3 we summarize the bounds on the bandwidth β and latency overhead ` of

different protocols (with and without user coordination).

Chaum started a line of work on so-called DC-nets [5,10–12] that implements anonymous

broadcast channels assuming users have agreed on some cryptographic keys with each other

or with the protocols parties and have decided on a schedule to ensure that only one real

message is sent in each round. As we model the single-recipient setting and assume a

passive adversary, for communication overhead analyses we assume variants where broadcast

implementations are replaced by directed messages from protocol parties to the dedicated

recipient. In particular, for [11, 12], in every round, we assume that each party sends either

a real message or a noise message (a share in our model) to the recipient. As a protocol

in our model, each client would in each round send packets with the same tag and one of

these packets would contain the real message, leading to a bandwidth overhead of N . With
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Figure 4.5. Asymptotic latency overhead (`) and bandwidth overhead (β)
together with the “area of impossibility” where 2`β ≤ 1 − ε(η). We portray
protocols as dots depending on their choices for ` and β. Technically, if we use
Theorem 3.4.2, we β is replaced by p = β + p, where p is the rate at which
users send messages. This graph assumes N is ca. poly(η), the number of nodes
K is ca. log η. The threshold for Threshold Mix T = 1 and for Threshold
Mixsec T = N = poly(η). In the graph, both the axes are approximately
in logarithmic scale. (For a more accurate visual representation we refer the
readers to Chapter A.3 and the trilemma website [52].)
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B = N and ` = 0, DC-nets satisfy our novel necessary constraints for ACNs with user

coordination from Theorem 4.5.3, thereby showing tightness of our bounds for this border

case. Concerning the complexity of the user coordinations, Chaum proposed [12] a solution

where two messages sent at the same time over the broadcast channel would collide. To avoid

collisions, he proposed to divide the broadcast into N2 blocks and to constantly maintain

a separate reservation array of size N2 in the broadcast that is sent in each round. Even if

only 1-bit messages are sent, this protocol results in an additional bandwidth overhead of

2N2 and one additional round. This bandwidth overhead can also be spread over the latency

by spreading the reservation array of the blocks over several rounds.

Herbivore [10] partitions the set of clients into several subsets of size N/q (for some integer

q > 1) and solely implements DC-nets within a partition, effectively reducing the bandwidth

B to the size N/q of a partition. With B = N/q and ` = 1, our results prove that Herbivore

cannot achieve the employed AnoA-styled notion of strong sender anonymity, which is easy

to see: if the two challenge senders u0, u1 are from different partitions, an adversary can

easily win. Herbivore also uses the concept of reservations for avoiding collisions, yet also

provides several bandwidth-latency sweet spots.

Dissent-AT [5] also reduces DC-nets communication overhead. It relies on K computation

servers (the K protocol parties in our model). Assuming that every client has a shared secret

with each of the K servers, each client only has to send her real message or share to one

of the K servers. Afterwards, in our model, these K servers send their combined shares

to the dedicated recipient. Hence, the bandwidth overhead is N messages for each real

message, except that these N messages are not sent to N parties as in DC-nets (leading to a

communication overhead of N2) but only to one of the K servers (leading to a communication

overhead of N). As we assume a single recipient, in our comparison the bandwidth overhead

is B = N just as for DC-nets. Hence, Dissent-AT satisfies our necessary constraints for ACNs

with user coordination from Theorem 4.5.3; so, our results do not exclude strong anonymity

for Dissent-AT. DISSENT-AT uses a verifiable shuffle among the K servers and results in a

periodic latency overhead of K.

Dicemix [15] is outside the scope of our model (see Section 4.1.1), as it can mix shares with

different tags, yet it nevertheless obeys our bounds. Dicemix aims at removing the scheduling
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requirements of other DC-nets. Dicemix assumes that each party sends a message, and in

our synchronized user distribution, it has to wait for N rounds until real messages arrive.

The protocol requires 4 communication rounds5 leading to a latency of N + 4 in our model,

which includes the user coordination’s collision-avoidance subprotocol. Every party sends N

packets whenever all messages have been collected (in every Nth round); so, the bandwidth

overhead (per client) in our model is B = N . If we average the overhead (B = B/N = 1)

over N rounds, however, Dicemix is close to our universal bound N = B` ≥ N , hence our

results do not rule out strong anonymity, even if almost all other parties are compromised.

All of the above protocols only deal with a boundary condition from our results and their

bandwidth overheads are tremendous. To the best of our knowledge, none of the ACNs with

user coordination utilize the combination of multi-hop layered encryption feature (as used

in mix-nets) with user coordination features that render the real sender’s packet indistin-

guishable from a noise message, even for the recipients. Indeed, there is significant scope

for improvement here specially if we need to reduce the bandwidth overhead by introducing

some latency overhead.

ACNs with global static synchronization (i.e., UB with U.C.) effectively introduce large

overhead (e.g., N rounds for DC-nets), since each user has to wait for its turn to send a

message. Hence, such ACNs are difficult to use with low-latency applications. Moreover,

current designs with user coordination (e.g., DC-nets or Dissent-AT) can only then provide

a full anonymity6 set (encompassing all clients) in the Anytrust setting (c = K− 1) if almost

all clients send a dummy message (i.e., B = N − 1). For dynamic user coordination (UP
with U.C.), our results, however, do not exclude strong anonymity for B < N if sufficient

latency is added, as in the third row of Table 4.2: B = β/p = 1/(`p) = q/
√

K (for p = 1/q

and a constant q), ` =
√

K, c = K− 1,K = η,N = K2. Such overhead combinations might be

interesting for future exploration of ACN designs.
5↑While Dicemix includes integrity protection and self-healing mechanism that leads to 4+2f communication
rounds for one message if f peers are deviating from the protocol, these mechanisms do not kick in if all peers
follow the protocol (as even the compromised parties do in our analysis), leading to only 4 communication
rounds.
6↑Satisfying strong anonymity implies achieving a full anonymity set.
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One possible direction is to reconsider the recent mix-net protocol designs [1, 2, 7, 53] in

light of user coordination. In particular, our lower bounds indicate that these designs could

benefit from incorporating user coordination techniques, which could increase their resistance

against compromisation (by increasing the bandwidth overhead B) while reducing latency

overhead `. Another possibility, for employing the user coordination, is to consider Riposte

design [6], which uses the private information storage primitive. In Riposte, to enable the

recipient to point to the exact incoming packet a sender input needs to include a number

of elements proportional to the square root of the size of the whole stored database. Using

user coordination can allow the Riposte-like design to reduce this bandwidth overhead by

sending a smaller number of elements.
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5. IMPLICATIONS OF TRILEMMA RESULTS:

CONSTRUCTING AC PROTOCOL AT THE COST OF

LATENCY OVERHEAD

In the last two chapters we analyzed the fundamental constraints of AC protocols. In this

chapter and the next we are going to use those results and construct efficient AC protocols.

In the process we aim the identify the fundamental building blocks that are required to

achieve anonymity.

Starting with Chaum [4], over the last thirty years, numerous anonymous communication

(AC) protocols have been designed and some implemented. Among those, million of users

today employ the Tor network for their privacy over the Internet. However, while aiming for

low communication and latency overhead, the Tor network [49] employs onion routing [54]

and it demonstrated to be significantly vulnerable to traffic analysis empirically [17, 20, 55]

as well as conceptually [24].

Many other older and newer AC protocols offer improved anonymity against traffic anal-

ysis by introducing delays and incorporating dummy messages. With a growing demand

for better network anonymity, especially in the blockchain world, a few of them are getting

actively developed for real-world use.1 While many AC protocol offers improved protection

against traffic analysis w.r.t. Tor and several of those demonstrate their practicality with

performance analysis, the offered anonymity guarantees are often not formally well-defined,

restricted to a particular application and pre-processing, or out-rightly broken.

Dining cryptographers’ networks (DC-nets) [12] and its successors [11,15,35] offer easily

provable sender anonymity, low latency and can be scaled up to a certain extent via the any-

trust kind of assumption on the servers; however, these protocols inherently demand to fix the

users participating in a protocol-round in advance, and expect those users to agree on pair-

wise symmetric keys and cannot manage any churn. Mixing network (mixnet) type protocols

like Yodel [56], Karaoke [31], Stadium [33], and Vuvuzela [2] can manage the user churn while

offering a differential-privacy kind of guarantee. They also can scale to thousands of users,

which maintaining the on-path latency delay to be less than a minute; however, the users need
1↑e.g.: nymproject, https://xx.network/
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to send messages with those at the beginning of every instance.2 Moreover, these protocols

come with a special requirement of pre-agreement between clients about who is communicates

with whom using some kind of dialing protocol. Finally, differential privacy kind of security

degrades very fast with the compositions, and even sightly improving the privacy guarantee

(by increasing ε value) can introduce significant communication overhead. Atom [32] offers

an indistinguishability kind of anonymity guarantee instead while maintaining similar user

support via horizontal scaling; however, in the process, it does introduce a significant latency

delay and results in the delay of around 28 minutes.

Recently, an interesting line of research has emerging that leverages (interactive or

non-interactive) two-party or multi-party computation as a service towards offering ano-

nymity [6, 53, 57–59]. These protocols are inherently compute-bound and cannot scale well

as the number of MPC-parties and the number of users increase [58, 59]. Moreover, several

of those come with rather rigid system architecture, communication flow and adversarial

assumptions [53]. While recent MPC-based protocols have improved in terms of scalabil-

ity [6,57], they are only scalable when deployed with a very low number (e.g., two or three)

nodes (i.e., computation servers), resulting in a semi-centralized trust model. In particular,

relying on very few nodes does not enable a truly decentralized ACN where the trust is

widely distributed, as in MixNets.

The recent Loopix [1] system comes up with a mixnet design offering a tunable knob

between latency overhead and the required traffic volume to offering protection against traf-

fic analysis. Here, the users keep on sending messages at intervals following a probability

distribution independent of all other users. Loopix tries to offer anonymity using random-

ized/probabilistic delay for messages at each routing node. However, Loopix does not provide

end-to-end provable anonymity guarantees.

Therefore, in the quest for a good AC protocol the following question remains: Can

we avoid the restricted communication flows of Karaoke, Stadium, and Atom or the rigid

architectural requirements of anonymity via MPC-as-a-service or ad-hoc delays of Loopix,

while still offering provable anonymity in a scalable fashion?
2↑In the layman terms, once missed your (ferry) boat, you cannot join in between; you have to wait for the
boat to return to the starting position.
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We answer those important questions in this chapter by presenting a mixnet-type pro-

tocol that does not require the users to follow a restricted communication pattern, does not

introduce ad-hoc delays on the routing nodes, and solely relies on the mixing on messages

in the nodes to achieve anonymity.

In this chapter we are going to present a mixnet-type protocol Streams that realizes

similar security properties as a trusted third party stop-and-go mix while allowing a fraction

of mixnodes to be compromised by the adversary, with a latency overhead of several seconds

(depending on the proportion of compromised nodes). As long as each message stays in the

system for at least the given amount of time before being delivered, our protocol provides

the same security guarantees comparable to that of a trusted third party.

An important feature of this protocol is that it can scale for a hundred thousand clients

using a novel construction that we call supernodes, while realizing the above security property

and keeping the latency overhead under several seconds (for a fraction of 20% compromised

nodes, the end-to-end latency remains under 8 seconds).

5.1 System Goals and Protocol Overview

We consider a typical mix network based architecture [1, 32] allowing users to broad-

cast messages anonymously using an infrastructure of mix nodes. Our main objective is to

design a scalable anonymous communication protocol that provides pairwise unlinkability,

a generalization of tail indistinguishability [60] and unlinkabilty [61]. We relate pairwise

unlinkability to sender anonymity and relationship anonymity in Section 5.6.3.

In this section, we offer an overview of the system model, the protocol idea and the desired

properties of the protocol, and then show that the protocol provides pairwise unlinkability

against global passive adversaries with full access to network traffic.

5.1.1 System Model and Security Goals

Similar to provable-secure mix-net systems such as [32], we assume that protocols parties

works in time epoch and protocol rounds. All clients and nodes synchronize their rounds

such that there will be a designated entry (protocol) node for every round and the previous
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designated node and the clients are suppose to send their packets to this nodes before the

round starts.

Being consistent with the protocol model used in the previous chapters, we consider a

global passive adversary with full access to network traffic. Additionally, the adversary can

passively compromise some users as well as some non-user protocol parties. Those passively

compromised protocol parties are considered honest-but-curious: they still follow the protocol

description but attempt to extract information.

As a basic measure for anonymity, we focus on pairwise unlinkability in the context of

this protocol, i.e., the (in-) ability of a third party to figure out which among two messages

entering a system corresponds to which of the two same messages leaving the system at a later

point. This notion of unlinkability is closely related to other prominent anonymity notions,

such as sender anonymity (which of two potential senders has sent a specific message?) and

relationship anonymity (which people are in communication with each other?).

Definition 5.1.1 (Pairwise unlinkability). A protocol provides pairwise unlinkability of mes-

sages over time t up to probability δ for 0 ≤ δ < 1 if any pair of messages (u0,m0, ts,0, tf,0, R0)

and (u1,m1, ts,1, tf,1, R1), where u is the sender of the message, m the content, ts the time

the message enters the system, tf the time the message leaves the system, and R the receiver

of the message, with min tf,0, tf,1 − max ts,0, ts,1 ≥ t cannot be distinguished from the pair

(u1,m0, ts,1, tf,0, R0) and (u0,m1, ts,0, tf,1, R1) with an advantage greater than δ.

Informally, we say that the two messages are shuffled from the adversary’s point of view.

We refer to Section 5.6.3 for a discussion on how pairwise unlinkability relates to sender

anonymity and relationship anonymity.

Even though the provable anonymity analysis focuses on the global passive adversaries,

the system already incorporates integrity protection using the standard cryptographic meth-

ods [62]. Moreover, following Loopix [1], we present updates for our protocol to defend

against active attackers in Section 5.6.1.

Non-goals. Finally, in this work we focus on an application independent protocol and do

not consider side-channel attacks — the detailed analyses of fingerprinting of web-browsing
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and other side-channel that might arise in specific application scenarios are out of scope for

this work.

5.1.2 Protocol Idea

Our protocol Streams is inspired by the ideal protocol in the recent anonymity lower-

bound analysis [24], a hypothetical protocol shown to be ideal at confusing a simplified

adversary.

This ideal protocol, used to show limitations of anonymous communication, makes use

of an oracle to determine many of the important decisions. In Streams, we approximate

the oracle to achieve a slightly weaker version of anonymity — we only achieve pairwise

mixing instead of sender anonymity. In Section 5.6.3 we discuss more about the leakage our

protocol has, and we conjecture that the leakage cannot be avoided by any real protocol

(even a trusted third party stop-and-go mix) unless a large amount of bandwidth overhead

is introduced; however, we do not yet have a proof for that impossibility.

We now describe below the key ideas behind the protocol and its inherent limitations.

Assumptions. Our anonymity proofs assume that users are online and actively participate

in the protocol. We leverage the Sphinx packet format that provides end-to-end encryption

for all messages, and a node does not learn the path length and the relay position of the

node on the path of a packet.

Protocol strategy. Influenced by the ideal protocol presented in Chapter 3, we design

Streams that tries to keep all messages in the system together across different rounds, which

allow us offers end-to-end provable anonymity efficiently (as compared to the state of the

art). In particular, in a given round, all clients and all other nodes funnel all their messages

(except the messages that need to be delivered in that round) to a single designated node.

While the system may very-well create a circular list of all node and keep following that, we

prefer to change it using randomness beacons (refer to Fig. 5.1) so that the adversary cannot

strategically compromise nodes towards increasing its advantage.

Our aim is also make the system scale to millions of messages. Using one designated

node for a round can become bottleneck there: for million users, it will have to perform a
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Figure 5.1. Routing Strategy in Streams

millions of public key cryptographic operations; this can significantly slow down the system

as the round duration will be at least a few second if not minutes.

We overcome this problem using a novel supernode structure. A supernode consist of a

set of compute nodes that perform cryptographic operations and a funnel node that collects

and shuffles all decrypted messages. Streams routes messages through a series of supernodes,

so that each message in the system alternates between compute nodes and funnel nodes.

Funnel nodes present a common path shared by all messages; leaving a funnel node, the

stream of messages fans out, spanning potentially many different compute nodes, before

merging again in the next funnel node, thus allowing us to scale up the system considerably

while providing strong pairwise unlinkability. Pairwise unlinkability is achieved if messages

are jointly kept in the system for long enough to meet and mix.

Randomness Beacons and Path synchronization. We assume randomness beacons [63,

64] available to all the protocol parties. A randomness beacon [65] emits a new random value

at intermittent intervals such that the emitted values are bias-resistant, i.e., no entity can

influence a future beacon value, and unpredictable, i.e., no entity can predict future beacon

value. NIST’s Randomness Beacons project [63] and the emerging Drand Organization [64]

are two prominent ready to use Internet-based instantiations of randomness beacon, while

several other protocols [66–70] and implementations [71–73] are also available. In Streams,

at any given round, every protocol party can use the messages from the beacons to derive

the next ` nodes of the common path.
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5.1.3 Desired Properties of the Protocol

Below we summarize the key considerations behind the design of the protocol Streams:

1. Streams provides strong pairwise unlinkability of messages, only requiring a modest

latency overhead: if the latency is in ω(log η), the probability that two messages are

pairwise unlinkable is overwhelming in η. We formally prove our claims about Streams’s

pairwise unlinkability in Section 5.4.

2. Streams is designed for scalability and can manage up to a million messages in the

system at any given time.

3. The flexibility to choose the parameter ` that is appropriate for a given application

scenario.

4. Streams can be hardened against active attacks; we provide guidance towards that in

Section 5.6.1.

5.2 Protocol Description

Here we present the system setup, the protocol design of Streams, and how our supernode

design helps the protocol scale for a large number of users.

5.2.1 System Setup

We consider a set S of users communicating to a set R of recipients through a set I of

intermediate nodes (or just ‘nodes’). In real life, the same user can act as sender as well

as recipient, however, we consider the sender role and recipient role as two separate logical

entities. Each sender is denoted by ui where i ∈ {1, . . . ,N} and |S| = N. Similarly, each

recipient is denoted by Ri where i ∈ {1, . . . ,N} and |R| = N.

We consider global passive adversaries that can statically compromise up to c nodes out

of a total of K = |I| nodes. In this section, we only consider passive compromisation, which

means that the compromised protocol parties still follow the protocol specifications, however

the adversary has access to all the internal states of a compromised party. In Section 5.6.1 we

discuss the necessary adaptations for the protocol against an active and adaptive adversary.
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Our protocol uses a round-based communication model and synchronized clocks. In

Section 5.6.2, we discuss how our results can be extended to loosely synchronized clocks.

We consider the availability of a public key infrastructure (PKI) to all the users and nodes.

For each party (client or node) P there exist a private public key pair (skP , pkP ). For a party

P to send a message to a party Q, P needs to know the public key pkQ of Q. We assume

such a PKI system can be instantiated using a one time setup similar to [1, 14, 49, 54, 74]

— the exact procedure is out of scope for this work. The PKI is only used by the onion

subprotocol Πsub that we use from the work of Kuhn et al. [60]. We summarize all the system

parameters in Figure 3.1.

5.2.2 Model

We use a hybrid world UC model [75] to represent our protocol – where the protocol has

access to some additional ideal (hybrid) functionalities that is available to the protocol as

well as the adversary. A protocol party (an honest user or node) or the adversary can access

such a functionality through an incorruptible ITI F that provides certain ideal guarantees,

e.g., clock time, common reference string (CRF), key registration etc. More specifically, our

formalization uses four functionalities: a round-based communication functionality Fround,

a globally available randomness beacon FCRF , a key registration functionality FRKR, and

a secure communications sessions functionality FSCS. The environment E can access those

ideal functionalities either through the protocol parties or through the adversary.

We consider static compromisation by the adversary A, which means the adversary can

corrupt protocol parties before the environment starts the protocol run. Whenever a cor-

rupted party is activated, A is run instead of the protocol code. We discuss how to defend

against slow dynamic corruption in Section 5.6.1.

Round Functionality Fround. Streams is a round-based protocol. To model that all mes-

sages are sent in rounds, we introduce a hybrid functionality Fround (see Figure 5.2) to

enforce rounds on the protocol parties. We ensure that the environment E activates the hon-

est parties in every round. Fround ensure, though, that the environment E cannot activate a

protocol party multiple times in the same round by keeping track of the Rounds[i] flag for
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each party i (including both clients and nodes). Additionally, it ensures that all the network

packets intended to send for a given round is not send before or after that round to an honest

protocol party. As a consequence, the environment can stop the entire protocol at anytime.

As then no messages would be delivered anymore, stopping the entire execution does not

leak any information to the environment.

Array Rounds := {false, . . . , false} // An array of length K + N + N
Round := 0
PartiesIncremented := 0
QUEUE = a queue where the incoming messages are stored

QueryRound() from A or FCRF or party i:

return {Round,Rounds}

RequestRound() from party i:

return Rounds[i]

NextRound() from party i:

if Rounds[i] = true then
return “invalid action”

else
Rounds[i]← true; PartiesIncremented += 1

if PartiesIncremented = K + N + N then
Round += 1; PartiesIncremented← 0
Reset Rounds[j] := false ∀j : 0 ≤ j < n+m
Forward all elements of QUEUE to A; empty QUEUE

Upon receiving msg (P, Pnext, O, round) from Streams

if round = Round then
ADD (P, Pnext, O,Round) to QUEUE

Figure 5.2. Round Functionality Fround

Randomness Beacon Functionality FCRF . We assume that each protocol party (includ-

ing the adversary) has access to an incorruptible randomness beacon. In particular, future

values of this randomness beacon are not known to the adversary. There are many public

yet unpredictable randomness beacons are available in practice [63, 64]. To focus on the
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building blocks that we provide, we abstract away from the cryptographic details of those

constructions and assume such an ideal randomness beacon. We model this beacon with an

ideal functionality FCRF (see Fig. 5.3) that outputs each time a `-long substring of an infinite

random string beacon. Using that `-length string a protocol party can derive the common

path for the next ` rounds. Formally, we require the randomness beacon to be unpredictable

before the protocol starts, as our adversary can only statically compromise parties; the bea-

con, however, can also be leveraged for resistance against slow dynamic compromisation as

we discuss in Section 5.6.1.

crf = an infinitely long random string.

GetFunnels(`):

round,← QueryRound()
return {crf[round]%K, . . . , crf[round + `− 1]%K}

Figure 5.3. Randomness Beacon Functionality FCRF

Key registration functionality FRKR. The key registration functionality FRKR is solely

used by the subprotocol Πsub from [60], which handles all cryptographic operations. Πsub

is treated in a black-box manner throughout this section. For completeness, we provide a

description of Πsub and FRKR in Section 5.B.

Secure Channel Functionality FSCS. We also use the secure communications sessions

functionality FSCS from the work of Gajek et al. [76, Figure 4]. They show that FSCS
abstracts the TLS [77] protocol. It is crucial to note here that all the protocol parties in

our model work in rounds, and therefore, FSCS as well forwards all the messages to the

Fround functionality instead of the environment; the Fround functionality in turn forwards

those messages to the environment when the round ends.

5.2.3 The Core Protocol

First we present the core protocol that does not scale well with the number of users. Then

in Section 5.2.4 we describe our complete protocol with horizontal scaling. Our protocol has
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two kinds of parties — clients and nodes. So we define our protocol in two parts as well —

clients and nodes. Additionally, the protocol parties as well as the adversary have access to

the hybrid functionalities as described above (in Section 5.2.2).

Packet format. We use the Sphinx packet design [62,78] to ensure that all messages are end-

to-end encrypted; we call them “onion packets”. The Sphinx packet design also guarantees

that an intermediate node, just by looking at a packet, does not learn any information

beyond the routing information needed to forward the message to the next node — it hides

the path length and the relay position of the node on the path, and the node does not learn

anything other than the next nodes on the path.

Clients. Whenever a client wants to send a message m, she decides the delay d for every

real message by picking a number from [ `2 , ` − 1] following a distribution D. In general D

can be any discrete probability distribution; however, in a typical setting we assume D to

be a uniform distribution in [ `2 , `− 1]. In Section 5.4 we provide other different instances of

D for different settings.

The client derives the path of a packet based on the string returned by the randomness

beacon. For a given round r if FCRF returns the string {xr, xr+1, . . . , xr+`}, any onion packet

constructed at round r will be constructed for the path of nodes {xr, . . . , xr+d, R} for a delay

d and intended recipient R. The client will send the onion packet to node xr at round r.

All other clients as well sends their packets to the node xr at round r, since FCRF returns

the same node {xr, xr+1, . . . , xr+`} to all the parties (clients, nodes, and the adversary) at

round r.

Nodes. The nodes act similar to onion routers [49,54] except a node in our protocol accepts

packets only in the rounds indicated by the randomness beacon. More formally, when a node

receives a packet in round r, it checks if xr matches its own id for a string {xr, xr+1, . . . , xr+`}

returned by FCRF — if not, it rejects the packet. If xr matches its id, the node with onion

packets peels a layer of onion for each packet and forwards them to the next destination.
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Compromised node Honest nodeTLS connection

Supernode A Supernode B Supernode C

Figure 5.4. Supernode structures

5.2.4 Horizontal Scaling With Supernodes

One major bottleneck in the above protocol is the processing power of the nodes — the

total number of clients the system can serve is restricted by the processing power of the

weakest node. We introduce the concept of supernode where, instead of one node processing

all the onion packets in a round, many nodes come together to share the processing load. A

supernode consists of one funnel node that collects and mixes messages and many compute

nodes that perform onion decryptions to prohibit linking. Figure 5.4 shows how a supernode

is structured.

The supernode structures are not permanent, but conceptual: the same node can act as

a funnel node or a compute node in different rounds. The funnel nodes are picked using the

string {xr, xr+1, . . . , xr+`} emitted by the randomness beacon FCRF . Each client picks the

compute nodes uniformly at random (with replacement) from all available nodes for each

hop of an onion packet independent of any other packet or any other hop of the same packet.

All the packets in every odd round go to the designated funnel node. The funnel node

immediately shuffles all the received packets and forwards them (without any cryptographic

operation) to the compute nodes based on the next node information in the Sphinx packet
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QUEUE = a FIFO queue.

SendMessage(msg, R) from party i

r ← QueryRound()
if round 6= r then

reject packet and exit
ADD (msg, R) to QUEUE

Upon new round from E:

boolean flag := RequestRound() // defined in Fround
if flag 6= true then

return “invalid action”
if round mod 2 = 0 // compute round then

while QUEUE is not empty do
(msg,R)← dequeue QUEUE; d← DelayDistribution

(
`
2 , `− 1

)
{x1, . . . , xd}

$←− Id; p := {x1, . . . , xd, R}
call Process new onion(self,msg, d+ 1, p) from wrapper ΠT

NextRound()

Upon receiving a message msg from Πsub:

Output “Message msg received” to E

Figure 5.5. Client Protocol Design Πclient

header. Then the compute node removes one layer of the onion packet, and forwards the

packet immediately to the next designated funnel node.

Funnel nodes act as mix nodes for the messages. All messages will meet in the same funnel

nodes as their paths are coordinated by the randomness beacon. Specifically, a node only

acts as a funnel node if the randomness beacon determines that it is the funnel node for the

current round.

Compute nodes act similar to onion routers [49, 54] — in every even round a node with

onion packets peels a layer of onion for each packet and forwards them to the next designated

funnel node.

The packets are onion encrypted only for the compute nodes, not for the funnel nodes.

Additionally, we assume authenticated and encrypted channel between each pair of nodes

which is realized by the FSCS functionality. We assume that all the nodes are optimized
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ΠT :Process new onion(self,msg, d+ 1, p)

Call Process new onion(self,msg, d+ 1, p) in the subprotocol Πsub.
Intercept the network packet packet and send it to Πrer.

ΠT : Forward Onion(O)

Call Forward Onion(O) in the subprotocol Πsub.
Intercept the network packet packet and send it to Πrer.

Πrer: Upon a packet packet

, funnel← GetFunnels(2) // Select next funnel node
Send packet over FSCS to funnel.

Figure 5.6. ΠTand Πrer

for communication, since we can increase the number of compute nodes if we need more

processing.

The protocol run by each honest client is defined in Fig. 5.6; and the protocol run by

each honest node is defined in Fig. 5.7. In Section 5.6.2 we discuss the challenges when the

clocks are not properly synchronized, and present how to handle such loose synchronization.

It is important to observe that the following scenario is equivalent to two messages going

through an honest mixnode in the core protocol: two messages are processed by some honest

nodes (not necessarily same) in round r, and then both of them goes through the same

honest funnel node in round r + 1. In the case mentioned above, the two messages achieve

“mixing” even if the whole network before and after that is compromised. In Figure 5.8, we

pictorially show the possible cases when two messages can mix (or not).

5.3 Security Proof

5.3.1 Universal Composability

For proving security, we first prove an intermediary representation of Streams that does

not rely on cryptographic operations but on shared memory. This abstraction FStreams (called

an ideal functionality) is carefully crafted such that all attacks on Streams can be mounted
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INPUT QUEUE = a queue where the node stores incoming messages.
OUTPUT QUEUE = a queue where the node stores outgoing messages.
nodeID := a unique ID in [0,K− 1]

Upon input message (onion packet O):

ADD O to INPUT QUEUE

Upon new round from E:

boolean flag := RequestRound() // defined in Fround
if flag 6= true then

return “invalid action”
funnel := GetFunnels(1)
if round mod 2 = 1 AND nodeID = funnel then

Πfunnel
else if round mod 2 = 0 then

Πworker
swap INPUT QUEUE and OUTPUT QUEUE.
NextRound()

Πfunnel :

Shuffle OUTPUT QUEUE
while OUTPUT QUEUE is not empty do
O ← dequeue the first element from OUTPUT QUEUE
Forward O to FSCS

Πworker :

while OUTPUT QUEUE is not empty do
O ← dequeue the first element from OUTPUT QUEUE
call Forward Onion(O) from the subprotocol wrapper ΠT

Figure 5.7. Node Protocol Design

on FStreams as well. More generally, we say that the ideal functionality F is realized by a

protocol Π if all attacks (within the execution model) that can be mounted on Π can be

translated to attacks on Π. An ideal functionalities, like FStreams, can abstract away from

cryptographic details while faithfully modeling all weaknesses of a protocol. In turn, the

absence of attack vectors in the ideal functionality implies the absence of attack vectors in

the protocol that realizes that ideal functionality. Hence, an ideal functionality can be an

accurate characterization of a protocol’s security properties.

We use the universal composability framework [75] to formulate our ideal functionality, as

it enables us to re-use a cryptographic analysis by Kuhn et al. [60] of a variant of the Sphinx
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Supernode

Message from Alice
Message from Bob     

(a) Message from Alice and Bob
do not mix with each other at
the supernode because the ma-
licious compute nodes know the
recipient of a message.

Supernode

(b) Messages from Alice and
Bob mix with each other when
they pass through honest com-
pute nodes and then an honest
funnel in the supernode.

Supernode

(c) Messages from Alice and
Bob do not mix with each other
if both of them do not pass
through honest compute nodes
in the same round.

Figure 5.8. Cases when two messages mix (or not) in supernode structures

protocol. Hence, we do not need to argue about details of the underlying cryptographic

algorithms.

In order to achieve a composable notion of realization, the UC-framework additionally

requires black-box simulatability in the following sense: a protocol Π UC-realizes an ideal

functionality F iff there is a black-box simulator S such that any interactive distinguisher

(called the environment) that has access to the API of the protocol and that controls (or

eavesdrops on) the network cannot distinguishing the interaction with Π from the interaction

with F and the black-box simulator S.3 To achieve universal composability, the simulator S

is not allowed to alter the API called but only to simulating network messages.

The composability result of the UC framework makes a statement about ideal function-

alities F that are UC-realized by protocols Π. The composability states that any parent

Π protocol, that uses Π over its API as a subprotocol UC realizes the abstracted protocol

where Π uses F over its API.
3↑For the experts, we are simplifying the presentation here, as the completeness of the dummy attacker
implies that the network attacker is irrelevant.
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5.3.2 An Ideal Functionality for AC Protocols

The ideal functionality FStreams basically acts as as trusted third party to whom users tell

that they would like to anonymously send a message. This trusted third party leaks as much

information as Streams would leak. Due to the regular meeting points at funnel nodes and

TLS protection, FStreams does not need to leak which onion is sent from which compute node

to which compute node, as long as the party that sends the onion and the next subsequent

funnel node are honest (see Figure 5.4).

Removing this very leakage of which onion is sent to whom enables us to prove a strong

shuffling property for Theorem 5.3.1, pairwise unlinkability with overwhelming probability

(see Definition 5.1.1).

inputBuffer [] an array of queues to store messages for nodes
crf = an infinitely long random string
dlvrCM , dlvrHM , queue, DB are hashmaps.
round := 0, newRound[] := {false, false, . . . }, partyCount := 0

Upon new round from E for party P :

if newRound(P ) = true then return “invalid action”
set newRound(P ) := true ; partyCount+ = 1
if round is odd (funnel round) AND P is a client then

(m,R, t)← dequeue inputBuffer [P ]
d← DelayDistribution( `2 , `− 1); {x1, . . . , xd}

$←− Id
if !∃x ∈ {x1, . . . , xd} such that xa ∈ Ih then

Send (m,x1, . . . , xd) to S
else

let xa := the first honest party on the path {P, x1, . . . , xd}
Send (q, x1, . . . , xa) to S where q $←−M
store (q, xa,m, xa+1, . . . , xd, R) in queue(round + a)

if round is even (compute round) AND partyCount = N + K then
SendInformation()

NextRound(P )

Upon input message (m, R, t) from E for party P :

inputBuffer(P )+ = 1
if round 6= t then reject packet and exit
Add (m,R, t) in inputBuffer [P ]

Upon receiving a message m for party P :

Output “Message m received” to E

Figure 5.9. Ideal functionality FStreams
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SendInformation()

y := crf[round + 1]%K
for each (q, xa,m, xa+1, . . . , xd, R) ∈ queue(round) do

Remove (q, xa,m, xa+1, . . . , xd, R) from queue(round); link := q
if y ∈ Ih then link := ⊥
let xγ be the next honest node on the path {xa+1, . . . , xd}
if the is no such xγ then

Add (link,m, xa+1, . . . , xd, R) in a temporary queue Q
else

Add (link, q, xa+1, . . . , xγ) in Q for q $←−M
Add (q, xγ ,m, xγ+1, . . . , xd, R) to queue(round + γ − a)

Shuffle the elements of Q and send them to S

Figure 5.10. Leakage From Ideal functionality FStreams

Formally, the ideal functionality FStreams provides API calls for when clients want to

send a message and they react to network messages. Moreover, as we consider a round-

based protocol and the UC-framework is a sequential activation framework (to simplify the

analysis), we formally need a “new round” API call.

The ideal functionality expects input messages of the form (msg,R, t). As the protocol

works in rounds, FStreams stores the input messages in an input queue. Upon the “new

round”-command, an element from the input queue is processed. When processing an input,

the ideal functionality FStreams checks which message only has compromised parties xi 6∈ Ih

on its path. For those cases, the ideal functionality leaks the message to the simulator S.

Otherwise, FStreams provides a temporary identifier (in the form of a random integer) to S

in place of a message, along with the segment of the path until the next honest compute

node. When the round corresponding to that compute node comes, FStreams again provides

a new temporary identifier along with the next segment of path. When FStreams switches the

temporary identifiers, if there are not honest funnel before or after the honest compute node,

it provides the mapping between the old and the new identifiers to allow S to link between

packets. Here we slightly over-approximate the leakage by not distinguishing between honest

and compromised recipients, because in some protocol setting (anonymous broadcast) or

anonymity notion (sender anonymity) the adversary can anyway see the message in plaintext

once it comes out of the protocol. We formally present the ideal functionality in Fig. 5.9.
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Even though we all FStreams an ideal functionality, we still keep the round functionality

Fround as a hybrid functionality to reflect the desired properties of AC protocols.

5.3.3 Ideal Functionality FStreams as Trusted Third Party Stop-and-go Mix

Next we show that, at the expense of latency, our ideal functionality behaves as a trusted

third party (TTP) anonymizer. If two messages stay together in FStreams for a sufficiently

long time (poly-logarithmic in the security parameter), they get shuffled — as if they stayed

in a TTP for several rounds and then get delivered to the recipient. However, if the delay

distribution for the messages is predictable, the adversary can still break anonymity, and even

a TTP anonymizer cannot defend against that. Later in this section, we provide analysis

about how to pick the delay distribution to achieve strong sender or relationship anonymity.

Formally, Theorem 5.4.1 shows that this ideal functionality FStreams is UC-realized by

Streams. As a reminder, FStreams captures all attacks and all leakage of the protocol Streams

while abstracting away from all cryptographic operations and directly leaks the information

that the protocol leaks. FStreams shows that Streams essentially solely leaks information in

three cases by characterizing the leakage in FStreams: FStreams leaks when parties send their

messages (be it dummy or real messages); FStreams leaks the message if a message is sent to

a compromised recipient; FStreams leaks that a message is sent from an inner node (a router)

to a client.

Theorem 5.3.1 (Pairwise unlinkability of FStreams). If the amount of compromised nodes is

a constant fraction c
K < 1, FStreams provides pairwise unlinkability of messages over L rounds

up to probability δ as in Definition 5.1.1, where δ < γL with γ = 1−
(
K−c
K

)3
.

For conciseness of presentation, we postpone the proofs in Section 5.A. The key idea is

that two messages get shuffled if they go through an honest funnel node right after going

through honest compute nodes. It is not necessary that they pass through the same honest

compute node, however, they need to pass through some honest compute nodes in the same

round. If L is the above theorem is polylogarithmic δ becomes negligible, which gives us the

following corollary.
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Corollary 1. Given a constant fraction c
K , in the presence of any adversary S, if two

arbitrary messages stay together in the protocol FStreams for L ∈ ω(log η) rounds they are

shuffled with an overwhelming probability.

5.4 Security Analysis

In this section we formally analyze the security of our protocol Streams against a global

passive adversary that can passively compromising (the compromised parties still follow the

protocol) some portion of the nodes. We discuss the required integrity measures for our

protocol against active adversaries in Section 5.6.1.

5.4.1 Abstraction Proof for Streams

Recall that formally Streams runs in the FCRF ,FRKR,FSCS,Fround hybrid model. Our

ideal functionality FStreams absorbs the hybrid functionalities FCRF , FRKR and FSCS com-

pletely. However, we keep the Fround functionality untouched.

Kuhn et al. [60] show that under standard cryptographic assumptions there is a protocol

Πsub in the FRKR-hybrid model that UC realizes Fsub.

Theorem 5.4.1. For any subprotocol Πsub in the FRKR-hybrid model that UC realizes Fsub,

the anonymity protocol Streams from Section 5.2 using the subprotocol Πsub in the FCRF ,

FRKR, FSCS, Fround-hybrid model UC-realizes FStreams in the Fround-hybrid model.

The key idea is to utilize (in a black-box reduction) the UC-realization proof of Πsub

such that in the proof the subprotocol’s ideal functionality Fsub can be considered. This

ideal functionality Fsub is used to abstract away from any cryptographic operations. The

second key insight is that the attacker (and the simulator) can perfectly predict how many

onions are in the protocol and when each party sends a message. So, only if the recipient is

compromised or a message is sent to a client (or the input buffer is full) information is leaked

from the protocol. In those cases, the ideal functionality FStreams indeed leaks information

such that the simulator can faithfully (and indistinguishably) simulate the network traffic.

The full proof is postponed to Section 5.A.1.
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5.4.2 Pairwise Unlinkability of Streams

Since FStreams provides pairwise unlinkability of messages for δ < βL over L rounds, as a

corollary to Theorem 5.4.1 and Theorem 5.3.1 we can state the following security theorem

for our protocol Streams.

Theorem 5.4.2 (Security of Streams). For any subprotocol Πsub in the FRKR-hybrid model

that UC realizes Fsub, given a constant fraction c
K < 1, Streams (using Πsub) provides pairwise

unlinkability of messages over L rounds up to probability δ as in Definition 5.1.1, where

δ < γL where γ = 1−
(

K−c
K

)3
.

For any L ∈ ω(log η) with a security parameter η, δ is negligible, and all pair of messages

that stays together in the protocol for at least L rounds, get shuffled with overwhelming

probability.

Note that, in our formal description of Streams, we have separate funnel rounds and com-

pute node rounds and users can send messages only in the compute node rounds. However,

the compute nodes do not really need to wait for the whole round to forward the packets,

they can forward those packets as and when they process them. Splitting funnel round and

compute round is completely UC-artifact to conform with the communication model there.

Therefore, in real world we can merge funnel round and compute node round into a single

round. Suppose, the overall round duration is T milliseconds. Every party (clients and other

nodes) will forward all the packets to that chosen funnel node in that round. The funnel

node will shuffle all the packets received in that round, and forward them to compute nodes

immediately after the round is over. During the next round, the compute nodes processes

and forwards the processed packets to the next funnel node. Henceforth, by “delay of `

rounds” we mean the overall delay of ` merged-rounds which is actually 2` rounds in UC

communication model.

We show that γ = 1 −
(

K−c
K

)3
(refer to Section 5.A), γ is conceptually the proportion

of supernodes where the two messages cannot mix. In Figure 5.11a we plot the relationship

between γ and c
K .

If we want to have the same level of concrete security as without supernode, we need

to increase `, or with similar ` the protocol can only be resilient against lesser fraction of
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Figure 5.11. Effective security of supernodes

compromised nodes. However, one advantage of this construction is that the cost or overhead

does not increase linearly with or depend on the number of clients. In Fig. 5.11b, we compare

the latency overhead needed for for our protocol (with supernodes) to achieve one in a trillion

security with that of our core protocol without supernodes (refer to Theorem 5.4.3). For
c
K ≤ 0.2 the latency only doubles with supernodes to achieve the same level of security. Even

though, supernodes provide scalability at the cost of security, the δ value still decreases

exponentially with latency. We show the relationship between δ and ` in Fig. 5.12.

5.4.3 Pairwise Unlinkability for the Core Protocol

We also want to consider the scenario where we do not need to scale horizontally (e.g.,

the nodes are as powerful as network routers or the total number of users is less than few

thousands) — in that case we do not need the supernode construction and the core protocol

described in Section 5.2.3 is sufficient. The following result gives us an important insight

about how much security is degraded to achieve scalability.
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Figure 5.12. latency vs. log δ for different values of c
K . The linear decrease

in log δ means exponential decrease in δ value.

Theorem 5.4.3 (Pairwise unlinkability of the Core protocol). For any subprotocol Πsub in

the FRKR-hybrid model that UC realizes Fsub, given a constant fraction c
K < 1, the core

protocol (using Πsub) described in Section 5.2.3 provides pairwise unlinkability of messages

over L rounds up to probability δ as in Definition 5.1.1, where δ <
(

c
K

)L
.

Similar to other proofs, we postpone this proof to Section 5.A.2.

5.5 Performance Evaluation

In this section we provide an instantiation of Streams with using a prototype implementa-

tion and evaluate the performance. We first describe the implementation details and system

considerations, then we present our experimental results.
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5.5.1 Prototype Implementation And System Considerations

To evaluate Streams we have developed a proof-of-concept implementation in approxi-

mately 5000 lines of Go code (v1.15). Our implementation4 builds upon the existing Loopix

implementation [79] for the crypto and sphinx packet implementations; then we add our own

implementation for funnel and compute nodes.

Synchronization. For the prototype implementation we consider a global clock that every

protocol party (clients and nodes) follows. However for real deployments, the global clock

can be replaced with local clocks in combination with the idea of loose synchronization

technique described in Section 5.6.2. In Section 5.6, we also discuss about how to make use

of the randomness beacon as the synchronizer.

About Rounds. We decide the round duration based on the load on the system, or more

specifically, how many onion packets are there in the system at any given point of time. We

are going to demonstrate later in this section that the amount of time it takes to process

onion packets is proportional to the number of packets in our system.

Random Shuffle. We implement the Fisher-Yates shuffle [80] to achieve in-memory shuffle

of n elements with Θ(n) computational complexity. This algorithm requires a continual

source of randomness, and for that purpose each funnel node can use a locally stored random

number table.

5.5.2 Processing Capacity of Funnel Nodes

We first evaluate how easily a funnel node can process different numbers (10K, 20K, 50K,

100K etc) of onion packets — because that (plus the communication latency between funnel

and compute nodes) will dictate the round duration if we want the protocol to handle those

many packets in every round. To evaluate the processing capacity of a funnel node, we run a

standalone funnel node and send varying number of onion packets to that funnel node. On

the funnel node we measure how much time is takes by the TLS layer to process all of those

packets, as well as how much time is taken to run the the shuffle algorithm.
4↑The implementation is available at the following anonymized Google drive link
https://drive.google.com/drive/folders/10EjJGqo0ZzHrLm5V78dSRDdOhR1FQHd0
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To measure our benchmarks, we run the funnel node pragram on a machine which has

48 Intel Xeon Silver 4116 processors (3 GHz) with 128 GB RAM. We plot our findings in

Figure 5.13. All the measurements are average of 10 runs approximated to the nearest integer.

Since we achieve in-memory shuffle using Fisher-Yates algorithm, the observed shuffle time

remains less than 15 milliseconds even for 1 million packets, even though the whole shuffle

protocol needs to run in a single thread.

On the other hand, processing 150K onion packets over TLS takes more than 150 mil-

liseconds. The overhead involves AES encryption/decryption for TLS, and handling multiple

TLS threads to ensure one thread does not overwrite a packet from another thread. For pro-

cessing packets received via TLS, we allow the server to spawn up to 20 threads. This

experiment shows that the dominant factor in deciding the round duration is TLS process-

ing. This overhead can be further improved by having a more optimized implementation to

handle the TLS threads.
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(a) Number of packets (Tin) sent to a funnel
node vs. the amount of times in microseconds
taken to run Fisher Yates shuffle.
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(b) number of packets (Tin) sent to a funnel
node via TLS (x-axis) vs. the amount of times
taken to process those packets (y-axis).

Figure 5.13. Onion packets processing at funnel nodes
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5.5.3 Processing Capacity of Compute Nodes

Now we want to evaluate how many onion packets can be processed by a single compute

node in a given amount of time. Given a round duration (which is chosen based on the total

number of messages in the system), this measurement will give us an estimate of how many

compute nodes we need in the whole system to process all the onion packets. To that end,

we run a standalone compute node, then give the node different number of onion packets to

process, and measure the time spent to process those packets. For this experiment, we run

our compute node on a system with the same configuration as the system we used for the

experiment with funnel nodes (48 Intel Xeon Silver 4116 processors with 128 GB RAM).

In Figure 5.14 we plot a graph between number of onion packets given to a compute node

vs. time taken in milliseconds to process those packets (y-axis). We take the measurements

by repeating the experiment 10 times and taking an average of those.
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Figure 5.14. number of packets (Tin) sent to a node per round (x-axis) vs.
time taken in milliseconds for the worker node to process those packets (y-axis)

If there are on average 500K packets in the system at any point in time, the funnel

node takes < 250 milliseconds to process them (refer to Fig. 5.13), so we can pick round

size as 400 milliseconds (adding 80 milliseconds for two communication hops, one funnel to
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compute node, and second hop compute node to funnel). In that case, each compute node

has around 300 milliseconds for processing the onion packets — therefore, we need around

1250 compute nodes in the system (each compute node processing around 400 packets, refer

to Figure 5.14).

5.5.4 End-to-end Latency Evaluation

We evaluate the end-to-end latency offered by our protocol in the following way: we

determine the round duration based on the total number of messages we want our system to

support; and from Fig. 5.11b we know the number of rounds required to achieve δ < 2−40.

If we consider that almost 20% of the total nodes are compromised, we need ` = 40. For

different number of messages, in Table 5.1 we summarize the round length (in milliseconds)

required for our protocol and the end-to-end latency offered.

We want our system to handle 1 million messages at any point in time. Therefore, we

pick a round duration of 500 milliseconds; with ` = 40 to achieve δ < 2−40, the estimated

end-to-end latency is about 20 seconds. If the system can process 1 million messages per

round, it can allow about 25K new messages on an average in every round (with ` = 40).

Which means our system can support 25K users even if every user sends a message in each

round. We want to emphasize that an optimized implementation deployed on servers with

high communication capability will improve the numbers significantly.

Table 5.1. End-to-end latency offered by Streams for different load on the
system. The leftmost column represents the total number of messages (T ) at
any given point of time, the second column round length (R) in milliseconds,
the third column (L) the end-to-end latency in seconds (assuming c

K = 0.2 or
` = 40), and the fourth column the number of users (N) that can be supported
by the protocol assuming each user sends a message in every round. We assume
a network latency of around 40 milliseconds for each hop.

Load(T ) round size (R) latency (L) N
200K 250 ms 10 sec. 5K
600K 350 ms 14 sec. 15K
1M 500 ms 20 sec. 25K
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5.6 Discussion

5.6.1 Against Active and Adaptive Attackers

Here we write the integrity measures that we employ to protect the protocol against

active attacks. We incorporate the exact same techniques as Loopix [1] for the protocol’s

overall integrity.

Packet Format. Since our protocol makes use of Sphinx [62] packet format that comes

with confidentiality (including padding), as well as message integrity.

Kill Alice Attack. Similar to Loopix, in our protocol users can detect such attacks by

sending messages to themselves (called “loop messages”). In case, the adversary decides to

drop all messages from a specific user Alice, Alice will not receive the loop messages and she

will know that she is under attack.

DoS Attacks. We do not consider DoS attacks unless anonymity can be broken using DoS

attacks. Although our security proof is mainly for passive adversary, the anonymity game

allows the adversary to stop the protocol at any point in time – which allows the security

proof to consider DoS attacks that can break anonymity.

Slow Dynamic Compromisation. Our core protocol uses a randomness beacon to make

the future route beyond the `-th successor unpredictable. Hence, attacker that can dynami-

cally compromise parties but takes more than ` rounds for each compromisation will not be

able to get in a specific message’s path with high certainty by compromising only one node.

However, this problem is not present in the version of the protocol with supernodes.

5.6.2 Resiliency Improvement For Loose Synchronization

In our protocol description in Section 5.2 we assumed that all the protocol parties are

perfectly synchronized. However, it is difficult to achieve such synchronization in practice.

Here we discuss how to relax that assumption by allowing each protocol party to follow their

own local clock.

We assume that the maximum difference between two local clocks of the nodes is bounded

by µ milliseconds. The clients do not need to keep track of rounds at all, and can send
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messages to the system whenever they want. A client sends an onion packet to the first

compute node on the onion path. The compute node based on its local clock can decide which

funnel node to forward the packets to. As long as µ is lower than a few hundred milliseconds,

we can add µ in the computation of round duration to handle the synchronization gap among

the nodes. We can still have a reference global clock which the nodes can synchronize their

local clocks with from time-to-time. We only need equivocation protection from that global

clock, the protocol does not depend on that clock for anonymity.

However, suppose nodes (at most 10% for example) in the system have a difference of

more than few hundred milliseconds with the reference global clock. Such unsynchronized

compute nodes can send packets to wrong funnel nodes. If a node receives an onion packet

that it is not supposed to receive (probably a dishonest or badly synchronized compute node

has sent the packet to a wrong funnel node), the node just forwards the packet to the correct

compute node (according to the onion packet header) at the end of the round. Therefore,

the protocol still functions properly, although the latency needs to be increased based on the

amount of such unsynchronized nodes (and compromised nodes) to maintain the same level

of anonymity.

With the above modified approach, A node does not have to derive at which round it

should act as a funnel node or compute node. For all the onion packets (according to the

onion headers) if it is the intended compute node, it acts as a compute node; for all the rest

of the packets it acts as a funnel node and forwards them to the next corresponding compute

nodes at the end of the round.

5.6.3 Pairwise Unlinkability and Anonymity

We have shown that Streams provides pairwise unlinkability of messages as in Defini-

tion 5.1.1. In this section we compare the notion with similar notions in the literature and

relate it to anonymity notions, such as sender anonymity and relationship anonymity.

Our notion of pairwise unlinkability is conceptually closely related to tail indistinguisha-

bility by Kuhn et al. [60]. The main difference is that in their definition packets are required

to meet in a node that processes them cryptographically. Since our supernode structure
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splits “nodes” into compute nodes and funnel nodes, our notion of pairwise unlinkability

is not tied to packets that are assumed to meet, but covers all packets. In this sense it

follows the older notion of unlinkability of Kate et al. [61], but extends it with explicit times

messages enter and leave the system.

Sender anonymity. One common anonymity notion, sender anonymity, states that the

recipient of a message cannot distinguish whether the message originated in one sender over

another sender, even for a pair of potential senders of the adversary’s choice. This notion

closely resembles pairwise unlinkability with one key difference: sender anonymity typically

talks about a single challenge message, not about a pair of messages; this can be overcome by

requiring a degree of bandwidth overhead, such as ensuring all senders communicate regularly

and can send dummy messages to confuse the adversary. However, even requiring dummy

messages to be sent, an adversary might still deduce the challenge sender from timings alone.

If, say, the adversary observes Alice sending a message in round t and Bob sending a

message in round t+2, the arrival time of the challenge message together with the distribution

of the latency might tell the adversary who of them is more likely to have sent the challenge

message. In the simplest example, for a constant latency, the adversary could immediately

exclude one of them from being the challenge sender.

Note that this apparent attack is independent of how the protocol in question achieves

anonymity; it even applies if the messages are kept in a trusted third party for the same

amount of time.

Relationship anonymity. A similar notion states that if two senders send one message

each to two receivers, a third party is unable to decide which sender talks to which receiver

significantly better than purely guessing. Loopix calls this property Sender-Receiver Third-

party Unlinkability. Given that the two messages in question are sent in the same round and

that both senders choose a sufficiently large latency from the same distribution, pairwise

unlinkability immediately implies this anonymity property.

If the challenge senders send their messages in different rounds we achieve a weaker, quan-

titative form of this property (akin to differential privacy), where the degree of anonymity

depends directly on the difference in rounds and the latency distribution.
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5.6.4 Anonymity vs. Latency Trade-off in Parallel Mixnets

One common bottleneck in traditional mixnet based systems is the processing power of

the nodes — the total number of users the system can serve is restricted by the processing

power of the weakest node. To avoid this issue, many systems [1, 2, 31, 33, 56] employ some

form of parallel mixnets. However that approach does not always provide provable security.

Actually, it is theoretically demonstrated [81] in literature that achieving provable guarantees

with such a strategy can be really expensive in terms of latency and bandwidth overhead. In

practice, protocols such as Yodel [56], Karaoke [31], Stadium [33], Vuvuzela [2] only achieves

anonymity in the differential privacy sense at the expense of latency overhead. Atom [32]

can achieve provably strong anonymity while scaling for millions of users with a really high

end-to-end latency (2̃8 minutes). Typically the latency needs to grow for those protocols

with number of users to maintain the same level of anonymity.

With supernode construction in Streams the latency increases more gracefully with the

number of users — up to a few millions users, the latency does not need to increase even

though the anonymity level remains the same. That demonstrates that our protocol with su-

pernodes is much better suited to scale with number of users. Other protocol like Loopix [1],

Tor [49], Hornet [14] can employ this supernode structures with minor modifications, inde-

pendent of their original routing strategy, to achieve better anonymity guarantees.

5.6.5 Application Scenarios

Overall, our performance analysis clearly demonstrates that Streams can scale well with

a large number of users. Beyond the traditional mixnet applications such as anonymous

e-mailing, we find it useful to applications such as network-level anonymity for publishing

blockchain transaction [82]: as the consensus process already takes up to a few minutes in

these environments, a latency delay of a few seconds for provable network anonymity can be

acceptable.
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5.A Postponed proofs

5.A.1 Streams UC-realizes Ideal Functionality FStreams

We stress that it makes our result stronger that we cast our ideal functionality in the

Fround-hybrid model. It is straightforward to let FStreams additionally absorb Fround.

Theorem 5.4.1. For any subprotocol Πsub in the FRKR-hybrid model that UC realizes

Fsub, the anonymity protocol Streams from Section 5.2 using the subprotocol Πsub in the

FCRF , FRKR, FSCS, Fround-hybrid model UC-realizes FStreams in the Fround-hybrid model.

Proof. We show the theorem via a series of game hops, starting with the protocol Pi and an

arbitrary network adversary A. With delta changes in each game, in the final game we end

up with the ideal functionality FStreams and a simulator S. As FCRF does not send messages

to the environment and is not accessible to the environment, it can be easily absorbed by

the ideal functionalities. For brevity, we hence neglect it in the subsequent argumentation.

Game 1. In this game, we consider the original protocol Streams execution with the network

attacker A and the environment E. The protocol follows the code in Figure 5.6 and Fig. 5.7.

Now, we design a game and a protocol where the subprotocols associated with onion

processing are replaced with ideal functionality from [60].

Game 2. Instead of calling the protocol subroutines from Πsub, our protocol Streams now

calls the ideal functionality Fsub from Kuhn et al. [60] (for completeness also in the appendix

Figure 5.16). Moreover, the attacker is replaced by a variant of the simulator Ssub from Kuhn

et al.

• The simulator S∗sub behaves like the simulator Ssub from the work of Kuhn et al. [60]

except that acts on one kind of message differently to Ssub: if an FSCS instance sends

a message p := ("sent", Pi,Map, size), where "sent" is a string, Pi is the sender of

a packet, Map is the next funnel in the protocol, size is the size of a packet. In that

case, S∗sub sends the message p directly to Ad, which is running inside Ssub. As Ad is

stateless, these extra messages do not change Ad’s behaviour.
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The protocol Streams still follows the code in Figure 5.6 and Fig. 5.7, except that it called

Fsub instead of Πsub.

Claim 10. There is a simulator Ssub such that Game 1 is indistinguishable from Game 2.

Proof of Claim A. nalogously to UC’s completeness theorem, it suffices to consider the

dummy attacker Ad that forwards all messages to the environment and only acts on the

environment’s orders.5 We replace Ad with a simulator S∗sub that almost behaves like the

simulator Ssub in the work of Kuhn et al. [60], which internally runs Ad. S∗sub, however, has

to also present an indistinguishable view for E ; hence, it has to forward all FSCS notifications

to the environment, just as Ad would do.

Next, we show that Game 1 (running Πsub, FRKR, and Ad) and Game 2 (running Fsub
and S∗sub) are indistinguishable. We show that, if Game 1 is distinguishable from Game 2,

then Πsub does not UC realize Fsub, which contradicts [60]. FRKR is faithfully simulated

within Ssub; hence, it behaves exactly the same in these two interactions.

Towards contradiction, assume that Game 1 is distinguishable from Game 2. Given an

environment E that can distinguish Game 1 from Game 2, we construct an environment

Esub that can distinguish Πsub and FRKR interacting with the dummy attacker Ad from Fsub
interacting with Ssub. Esub internally runs E . Esub has to ensure that E believes that it is in

Game 1 or Game 2, respectively. Hence, Esub has to ensure that E gets the same messages

as in Game 1 and Game 2, respectively. So, we have to make sure that E sees the same

the funnel-protocol communication and the notification messages from FSCS for each packet

that are handed through from Ad in Game 1. The funnel-protocol communication can be

achieved by Esub running the funnel-protocol instances. In Game 1 and Game 2, the FSCS
notification messages are sent whenever a funnel or a compute node instance communicates

with Fround. Hence, Esub has to ensure that E gets these notification messages at the correct

time, which can do as it internally runs FSCS.

• The environment Esub internally runs FSCS, Fround, and E . Let Int1,sub be the

interaction between Πsub and FRKR from [60] and the dummy attacker Ad with an
5↑For any other attacker A and each environment E , there is an environment E that internally emulates the
interaction between E and A. E interacts with the dummy attacker Ad and produces the same view.
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environment (in our case Esub), and let Int2,sub be the interaction between Fsub and the

simulator Ssub from [60]. As Esub does not know whether it is interacting with Int1,sub

or Int2,sub, we describe its behavior agnostic to b = 1 or b = 2 with Intb,sub.

– Upon receiving a message a party from Intb,sub (i.e., from a Πsub instance or Fsub),

run Πclient and forward the response to E .

– Upon receiving a message over the network from Intb,sub (i.e., from Ad or Ssub),

forward the message to FSCS and faithfully (as in Game 1) compute the interaction

between Fround, the funnel instances, and E .

– Upon receiving a message from E for the network attacker, directly forward this

message to the network attacker in Intb,sub (i.e., to Ad or Ssub).

∗ Upon receiving a notification message from the internally emulated FSCS,

forward it to E . (We stress that S∗sub is split into this interaction and the part

that is run in Intsub.)

For each b ∈ {1, 2}, we have to show that for E the interaction within Esub, which in turn

interacts with Intb,sub, is indistinguishable from the interaction with Game b. For b = 1, the

interaction within Esub solely differs in the order in which the notification message from FSCS
arrives. As these messages first reach Esub before reaching E , Esub can successfully reverse

the order again (see above) and constructs a perfect view for E .

For b = 2, Esub internally emulates Game 1 (except for Πsub). We show that for b = 2

nevertheless the view of E when being emulated within Esub is indistinguishable from the view

when interacting in Game 2. Recall that the only difference between Game 1 and Game 2

is that Πsub is replaced by Fsub, and Ad is replaced by Ssub. As Fsub is changed by Esub, it

suffices to analyze whether the message transcript to Ssub is indistinguishable for Ssub and

whether the transcript from Ssub (through Esub) is indistinguishable for E .

Whenever by Int2,sub a message is sent by Ssub to Esub, this messages first goes through the

internally emulated instances of the FSCS,Fround, and Πfunnel protocols. These protocols

solely forward messages, and of these only FSCS sends a notification to the network attacker

Ad. In this case, as defined above, Esub directly forwards the notification to E ; this is exactly
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the same that would happen in Game 2. All other messages are forwarded and, as in Game

2, potentially sent to E . Hence, whenever in Game 2 a message is sent to E also in Esub’s

internal emulation (if b = 2) a message is sent to E .

Next, we consider the case where for b = 2 a message is sent by E (while it is being

internally emulated by Esub) to the network attacker, which would in Game 2 be S∗sub. As

defined above, in this case, Esub sends the message directly to the network attacker in Intb,sub.

As b = 2, the network attacker is Ssub. Hence, the message transcript (from Ssub’s point of

view) is exactly the same as in Game 2.

If Intsub is the interaction with Πsub, FRKR, and Ad, Esub ensures that E has exactly the

same view as in Game 1. If Intsub is the interaction with Fsub and Ssub, Esub ensures that

E has exactly the same view as in Game 2. Hence, by assumption, with the translation of

Esub the submachine E can distinguish the interaction with Πsub, FRKR, and Ad from the

interaction with Fsub and Ssub.

For any poly-bounded E , Esub acts as a poly-bounded environment in the UC game. Yet,

Kuhn et al. [60] proved that there is no poly-bounded environment that can distinguish these

two interactions, which is a contradiction. Hence, Game 1 and Game 2 are indistinguishable.

�

Game 3. We replace Πworker , Πclient , FSCS, Fsub with the ideal functionality FStreams.

The simulator S∗sub is replaced by a simulator Sf . The simulator Sf internally runs S∗sub but

translates the format of the output of FStreams to the format output by Fsub. We stress that as

we are in the hybrid Fround-model, Fround remains in the ideal world as it was in the previous

games.

Claim 11. With the simulator Sf , Game 3 is indistinguishable from Game 2.

Proof of Claim F. or the analysis, we divide the execution in overlapping sub-sequences of

the form compute node, funnel, compute node (overlapping at the last funnel). For those

sub-sequences where the funnel is malicious or the first compute node is malicious, FStreams

has exactly the same leakage as Fsub, except that the format of the leakage is translated.

If one of the funnels is honest and the first compute nodes is honest, though, FStreams, in
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contrast to Fsub, does not leak which compute node sends (the ideal abstraction of) an onion

to which other compute node. Next, we argue that this leakage is also hidden in Game 2,

as FSCS and the funnels hide this information.

As the first compute node is honest, it does not leak to the network attacker to whom

the onion is sent. If the first funnel is honest, it does not leak the link between the two

compute nodes to the network attacker. As FSCS only notifies the network attacker that

some messages was sent and as the funnels shuffle the messages of each round, the network

attacker does not learn by whom an onion was sent. �

Therefore, for the simulator S our protocol Streams UC-realizes the ideal functionality

FStreams in the Fround-hybrid model.

5.A.2 Security Analysis Proofs

Theorem 5.3.1. If the amount of compromised nodes is a constant fraction c
K < 1, FStreams

provides pairwise unlinkability of messages over L rounds up to probability δ as in Defini-

tion 5.1.1, where δ < γL for some constant constant fraction 0 < γ < 1.

Proof. Recall that, we assume that each node in a round is chosen uniformly at random

(funnel nodes by randomness beacon and compute nodes by the clients) with replacement,

and independent of all other rounds. Conceptually, a careful strategy where nodes are chosen

by avoiding repetition as much as possible can provide better security guarantees. For the

ease of analysis, we make such weaker assumption.

If two messages remain in FStreams for L rounds, they are shuffled if both of those two

messages have honest compute nodes on their path in some round r, and then an honest

node is picked as the funnel node in round r + 1. If that happens, a shuffled list of newly

generated temporary identifiers are given to S on behalf of those messages. In Figure 5.8,

we pictorially show the possible cases when two messages can mix (or not).

Let a be the probability of a randomly picked node being honest; a = K−c
K Since the

funnel node is picked uniformly at random (with replacement, and independent of all other

nodes), the probability of the funnel node being compromised is c
K = (1 − a), and being

honest is a. Similarly, each compute node on the path of a message is selected uniformly at
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random (with replacement, and independent of all other nodes). Therefore, the probability

of an compute node being honest is also a.

Therefore, the probability that the two messages mix in for a given pair of compute node

in round r and funnel node in round (r+ 1) is a3. And, the probability that they don’t mix

in those pair of rounds is Y = 1 − a3. If two messages stay in the system together for L

rounds, they do not mix with probability at most

δ <
(
1− a3

)L
2

Y is conceptually the proportion of supernodes where the two messages cannot mix. In

Figure 5.11a we plot the relationship between Y and c
K . For a constant c

K , Y is constant;

and hence δ < γL where γ = (1− a3)1/2

Theorem 5.4.3. Given a constant fraction c
K , against any adversary S, if two messages

stay together for L ∈ ω(log η) rounds in the core protocol described in Section 5.2.3 they are

shuffled with a probability (1− δ), where δ <
(

c
K

)L
.

Proof Sketch. We skip the detailed proof as the proof methodology is very similar to the

proof with supernodes. The UC proof becomes much easier if we do not have to distinguish

between compute and funnel nodes. And for the combinatorial argument there is one key

difference: instead of the funnel node in the funnel round and the two compute nodes in the

immediate next compute round, there is only one node and just one round.

Therefore, instead of representing each pair of rounds with three coin tosses in the su-

pernode scenario, we have exactly one coin toss per round for the core protocol with success

probability a = c
K . And hence, we can define an ideal functionality Fcore as described in

Fig. 5.15, which shuffles the messages in the system whenever they encounter an honest node

on the path. To provide a simulator for Fcore we use the exact same simulator Ssub as the one

we use in the proof of Theorem 5.4.1, with only one minor modification that Ssub directly

forwards all the network messages to the round functionality.

From the ideal functionality it is simple to show that the probability of not finding an

honest node in a path of length L is upper bounded by δ ≤
(

c
K

)L
. Therefore, if two arbitrary
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messages stay in the protocol for at least L rounds, they are shuffled with probability at

least 1− δ.

5.B Existing functionalities

Ideal Functionality for Onion Routing. We borrow the ideal functionality For for onion

routing from the work of Kuhn et al. [60, Algorithm 1]. We present the ideal functionality in

Figure 5.16 for completeness. Kuhn et al. [60, Appendix E] also presents a modified version

of Sphinx [78] that realizes the ideal functionality For. We use the same modified version of

Sphinx as our Πor in the current work.

Secure Communications Sessions. We use the ideal functionality Fscs for secure com-

munications sessions from the work of Gajek et al. [76, Figure 4]. Their work shows that

TLS protocol [76, Figure 5] UC realizes the ideal functionality Fscs.
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inputBuffer [] an array of queues to store messages for nodes
crf = an infinitely long random string
dlvrCM , dlvrHM , queue, DB are hashmaps.
round := 0, newRound[] := {false, false, . . . }
partyCount := 0

Upon new round from E for party P :

if newRound(P ) = true then
return “invalid action”

set newRound(P ) := true ; partyCount+ = 1
if P is a client then

(m,R, t)← dequeue inputBuffer [P ]
d← DelayDistribution( `2 , `− 1);
{x1, . . . , xd}

$←− {crf[round]%K, . . . , crf[round + d]%K}d
if !∃x ∈ {x1, . . . , xd} such that xa ∈ Ih then

Send (m,x1, . . . , xd) to S
else

let xa := the first honest party on the path {P, x1, . . . , xd}
Send (q, x1, . . . , xa) to S where q $←−M
store (q, xa,m, xa+1, . . . , xd, R) in queue(round + a)

if partyCount = N + K then
SendInformation()

NextRound(P )

Upon input message (m, R, t) from E for party P :

inputBuffer(P )+ = 1
if round 6= t then

reject packet and exit
Add (m,R, t) in inputBuffer [P ]

Upon receiving a message m for party P :

Output “Message m received” to E

SendInformation()

for each (q, xa,m, xa+1, . . . , xd, R) ∈ queue(round) do
Remove (q, xa,m, xa+1, . . . , xd, R) from queue(round)
let xγ be the next honest node on the path {xa+1, . . . , xd}
if there is no such xγ then

Add (m,xa+1, . . . , xd, R) in a temporary queue Q
else

Add (q, xa+1, . . . , xγ) in Q for q $←−M
Add (q, xγ ,m, xγ+1, . . . , xd, R) to queue(round + γ − a)

Shuffle the elements of Q and send them to S

Figure 5.15. Ideal functionality Fcore for the Core Protocol
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Data structure:
Bad: Set of Corrupted Nodes
L: List of Onions processed by adversarial nodes
Bi: List of Onions held by node Pi
// Notation:
// S: Adversary (resp. Simulator)
// Z: Environment
// P = (Po1 , . . . , Pon): Onion path
// O = (sid, Ps, Pr,m, n,P, i): Onion = (session ID, sender, receiver, message, path length,

path, traveled distance)
// N: Maximal onion path length
On message Process New Onion(Pr,m, n,P) from Ps

// Ps creates and sends a new onion (either instructed by Z if honest or S if
corrupted)

if |P|> N ; // selected path too long
then

Reject
else

sid←R session ID ; // pick random session ID
O ← (sid, Ps, Pr,m, n,P, 0) ; // create new onion
Output Corrupt Sender(Ps, sid, Pr,m, n,P, start) Process Next Step(O)

Procedure Output Corrupt Sender(Ps, sid, Pr,m, n,P, temp)
// Give all information about onion to adversary if sender is corrupt
if Ps ∈ Bad then

Send “temp belongs to onion from Ps with sid, Pr,m, n,P” to S
Procedure Process Next Step(O = (sid, Ps, Pr,m, n,P, i))

// Router Poi
just processed O that is now passed to router Poi+1

if Poj ∈ Bad for all j > i then
Send “Onion from Poi

with message m for Pr routed through (Poi+1 , . . . , Pon
)” to S

Output Corrupt Sender(Ps, sid, Pr,m, n,P, end)
else

// there exists an honest successor Poj

Poj
← Pok

with smallest k such that Pok
6∈ Bad temp←R temporary ID Send “Onion temp from

Poi
routed through (Poi+1 , . . . , Poj−1) to Poj

” to S
Output Corrupt Sender(Ps, sid, Pr,m, n,P, temp) Add (temp,O, j) to L

On message Deliver Message(temp) from S
// Adversary S (controlling all links) delivers onion belonging to temp to next node
if (temp, , ) ∈ L then

Retrieve (temp,O = (sid, Ps, Pr,m, n,P, i), j) from L O ← (sid, Ps, Pr,m, n,P, j)if j < n+ 1
then
temp←R temporary ID Send “temp received” to Poj

Store (temp,O) in Boj

else
if m 6=⊥ then

Send “Message m received” to Pr

On message Forward Onion(temp) from Pi
// Pi is done processing onion with temp (either decided by Z if honest or S if

corrupted)
if (temp, ) ∈ Bi then

Retrieve (temp,O) from Bi Remove (temp,O) from Bi Process Next Step(O)

Figure 5.16. Ideal Functionality For from [60].
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6. IMPLICATIONS OF TRILEMMA RESULTS:

CONSTRUCTING AC PROTOCOL AT THE COST OF

BANDWIDTH OVERHEAD

In the last chapter we constructed a mixnet-based protocol Streams that provides provable

mixing property at the expense of latency overhead. However, Streams did not use any user

coordination technique. In this chapter we are going to design a DC-net based protocol

OrgAn that effectively utilizes user coordination to achieve anonymity. In this process we

provide a novel technique of user coordination that has significantly less overhead compared

to existing DC-net based protocols.

With our design we solve three key problems that exists in most standard DC-net designs:

(i) First, all the users need to run a key agreement protocol among themselves to agree on

shared secrets keys; such an agreement protocol is not scalable as it comes with high com-

munication overhead and has to be repeated often towards stopping linkability/co-relations

across multiple rounds. (ii)Second, it requires all the users to participate in a slot agreement

protocol before every round; otherwise two or more messages may collide as only one user

is supposed to send a message in any given round. (iii) Finally, the DC-net designs draws

their efficiency gains over mixnets through the fixed user setup and co-ordination between

them [83]: Unlike for mixnets, any user arrival, absentees and departure mandates re-running

the setup with the new group.

Solutions such as Dissent in Numbers [5], Verdict [37], MCMix [53] mitigate the first

scalability problem by shifting the key agreement to the second tier: here, a set of servers

perform DC-net like protocol on users’ behalf and privacy is maintained as long as any one

of the servers remains honest. (This is known as the anytrust assumption.) DiceMix [15]

avoids the second slot agreement problem employing Newton’s power sums formulation [84]

by allowing all the n users to send one message each in a single round of the protocol.

PowerMix [58] combines both ideas with the multi-party computation (MPC) as a service

towards overcoming the above three problems, and recently, Blinder [59] protocol made

the server-enabled design more efficient for a reduced adversarial threshold. To minimize

the risks of coercion and collusion, these servers should be typically spread across different
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geo-political jurisdictions, and these designs introduce significant latency overhead as the

underlying MPC still require significant interaction among the servers.

We solve the above problems in an organizational setting, utilizing a client/relay/server

architecture introduced by Barman et al. [36]. In this architecture, a set of few servers

help the clients in establishing shared secrets among themselves, but actual anonymous

communication happen through another relay node.

6.1 System Overview And Protocol Idea

In this section we provide an overview of system setup, security and system goals, and a

brief solution overview.

6.1.1 Setup and Communication Model

Consider an organizational network with N clients u1, . . . , uN. They wish to access intra-

organizational services as well as connect to services outside the organizational network

without revealing which client is actually communicating. For this, they use our protocol

OrgAn. Other than the clients, the infrastructure for OrgAn consists of a set of K setup

servers denoted as G1, . . . , GK, and one relay node R. Using the relay node and the setup

servers, the clients want to achieve anonymity while communicating with different services.

The relay R is a gateway server between the organizational network and the outside

world. It helps the clients of the OrgAn protocol to transmit messages outside as well as to

intra-organization services, but does not act as a trusted third party in the anonymization

process. All the messages from the clients of the system (outbound traffic) are transmitted

through the relay to the services (intra-oraganization or outside world). All the response

messages from the outside world (inbound traffic) are received by the relay and forwarded

to the clients. We assume that the relay has high availability and high computation power.

Additionally there is a small set of K servers G1, . . . , GK outside the organization, we call

them setup servers. These setup servers help the clients in the setup or key agreement process,

but do not take part in the anonymization process. These servers could be maintained by
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Figure 6.1. System overview of OrgAn

independent third parties outside the organization and are assumed to be scattered across

the globe.

We do not require the setup servers and the relay to communicate with each other during

the setup phase or protocol run — they do not even need to know each other. The clients

can mutually agree on the set of setup servers, ensuring that for each client there is at least

one setup server that they trust. We do not require the setup servers to be online except for

the setup phase.

In this work we only focus on the anonymity of outbound traffic (sender anonymity). We

consider the solution provided by PriFi for inbound traffic (recipient anonymity) adequate

and can be easily fit into our protocol; hence, we do not consider inbound traffic for the rest

of the chapter.

6.1.2 Threat Model

We consider a probabilistic polynomial time (PPT) adversary A who can observe all

network traffic. Additionally, the adversary can compromise some clients. However, we
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assume that at least two clients are honest. We assume that at least one of the setup servers

is honest.

Moreover, the relay can be under adversarial control, but we do not consider denial-of-

service (DoS) attacks from the relay, because the clients can easily identify if the availability

of the relay is compromised — and the organization does not want to openly show that they

are against privacy of their members/employees.

Since we focus on demonstrating the applicability of our trilemma results in the context

of provable security against global passive adversaries, we do not discuss here about active

attacks and the defenses against them, and leave those for future work.

6.1.3 Goals

Anonymity. We want our protocol to achieve sender anonymity for the outbound traffic,

i.e., the (in-)ability of any third party or the relay to figure out which user has sent a specific

message, even if all but two clients and all but one server (setup node) are compromised.

We want strong sender anonymity, which means, the adversarial advantage in guessing the

sender correctly is at most negligibly better than random guessing.

Low Latency. The system should operate with low latency overhead to support applications

like voice and video calls.

Reduced Bandwidth Overhead. We want to minimize (preferably eliminate completely)

any communication overhead because of the setup servers during the protocol run. We also

want to minimize the communication overhead among the clients and the relay node.

Scalability. We want OrgAn to support small to medium organizations (i.e., up to several

hundred clients). Inherently user coordination techniques cannot scale for hundreds of thou-

sands of users — it will be an interesting future work to come up with a user coordination

technique that scales gracefully with number of users.

6.1.4 Protocol Idea

Our protocol design is based on the idea that each client ui has an individual secret ri
— here ∑i ri is known to everyone, but the individual values of ri values with the honest
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clients are not known. The clients achieve that using a setup phase, with the help of a few

setup servers. If there is at least one honest setup node, this setup can be achieved by a

secret sharing scheme between the setup servers and the clients.

In our protocol design, we use a key-homomorphic PRF F that satisfies F(k, x) =

F(k1, x) + F(k2, x). In a round d, each client ui uses an element of F (ri, d)t as the mask

for their DC-net cipher that they send to the relay for a slot t. Since the relay knows ∑i ri
but not the individual ri values associated with the honest clients, it can decrypt the mes-

sage for slot t only after receiving the DC-net ciphers from all the clients for that slot by

computing F (∑i ri, d)t. We solve the slot agreement problem generally faced by DC-net

based protocols, by constructing powersums of messages similar to Dicemix [15]. However,

we do it in less number of rounds than Dicemix by exploiting the network model and the

key homomorphic property of F . We detail our protocol description in Section 6.3.

6.2 Building Blocks

Power-sum equations and solution [15,84]. Consider the following system of equations:

E(1) = x1 + x2 + · · ·+ xN

E(2) = x2
1 + x2

2 + · · ·+ x2
N

· · ·

E(N) = xN
1 + xN

2 + · · ·+ xN
N

with each xi ∈ Zp. where all the elements xi, their powers, and the sums of their powers are

elements in a finite field F. This equation system can be solved using Newton’s identities [15,

84]. Mathematically we denote the function as SolveEqn(E(1), . . . , E(N)) that takes such an

equation system as input, and outputs an unordered set of N elements {x1, x2, . . . , xN}, if the

equation system is solvable. In our protocol, each xi is the input of client ui; the equation

system is computed and solved by the relay R using the SolveEqn() function to find an

unordered set of client messages xi.
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Key-Homomorphic Pseudorandom Function. A key-homomorphic pseudo random

function family (PRF) [85] is a PRF which is homomorphic in the key-input of the function,

i.e., F(k, x) = F(k1, x) + F(k2, x).

Additionally, in our protocol we use a digital signature scheme [86] that is existentially

unforgeable under chosen-message attacks [87]. Let (S,V) be the signature scheme — given

a private-public key pair (p, P ), σ = Sp(x) denotes the signature of message x with the key

p, and using VP (x, σ) anyone can verify the signature.

6.3 Protocol Description

In this section we present the OrgAn protocol. As part of this work, since we are interested

in demonstrating an effective method of user coordination against global passive adversaries,

we do not consider any active attacks.

As mentioned earlier in Section 6.1.1, our system consists of the following set of parties:

• a set of N clients denoted as u1, . . . , uN that (or some of them) want to communicate

with the outside world;

• a set of K setup servers denoted as G1, . . . , GK the reside outside the organizational

network;

• one relay server R that acts as a gateway.

We assume that all the protocol parties in our system have access to a public key infrastruc-

ture (PKI), where each party X has a long term private-public key pair (pX , PX).

Our protocol first runs a one-time setup phase, where the clients receive random secret-

shares of a value known to relay from the setup servers, and then start running the protocol.

In our core protocol (without active attacks), the clients need to run the setup phase only

once, and never again.

6.3.1 Setup Phase

In the setup phase, each setup server Gj splits a publicly known value s into N secret

shares {r1j, . . . , rNj} and distributes the shares among the clients, where each client ui re-

ceives the share rij, such that ∑i rij = s. All the s, rij values and all the operations during
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the protocol are in a finite field F. Note here, all the setup servers use the same s value and

that is a global parameter of the protocol, however, the shares for the clients generated by

each honest setup server is independent of other servers, as well as unknown to other servers.

We assume that the setup servers communicate with the clients using some authenticated

and confidential channel (for example, using TLS [76,88]).

After receiving one share from each setup server, each client ui has the following secrets:

{ri1, . . . , ri,K}; rij. Each client ui computes the following.

ri =
m∑
j=1

rij (6.1)

We present the pseudo-code for the setup run by the setup servers and the clients in Fig-

ure 6.2.

Remark 1. The adversary always knows that ∑i rij = s. If there are two honest clients u1

and u2, the adversary can always compute r1j + r2j for any honest setup server j. That is

the only leakage after the setup phase — the adversary cannot guess the individual values of

r1j and r2j.

s ∈ F; a global system-parameter

ServerSetup (setup server Gj, set S = {u1, . . . , uN}) :

{r1j , . . . , rNj} = split s into N shares
Send rij to user ui over TLS for each i ∈ {1, . . . ,N}

ClientSetup (user ui, set I = {G1, . . . , GK}) :

ri1, . . . , riK = Wait for shares from each Gj ∈ I
ri =

∑K
j=1 rij

Send “Setup completed” to the relay R

RelaySetup() :

Initiate ServerSetup(Gj ,S) for each Gj ∈ I
Initiate ClientSetup(ui, I) for each ui ∈ S
Wait for ”Setup completed” from each ui ∈ S

Figure 6.2. Setup protocol in OrgAn
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6.3.2 Protocol Run

Our protocol can be divided into several rounds; in one round each client ui can send

one message xi. In every round, the relay R maintains N slots to receive N equations. The

relay retrieves the N messages from N clients by solving those equations. For each round d,

the protocol is run in the following steps:

Client Ciphertext generation. Each client ui with a message xi ∈ F computes the

following, for each slot t in the round d:

pi(t) = F (ri, d× N + t)

ci(t) = xti + pi(t)

Sender ui then sends the ordered set {ci(1), . . . , ci(N)} tagged with the round number d to

the relay.

Slot value reveal. For a slot t, the relay R collects the ciphertexts c1(t), . . . , cN(t) from all

the users and computes the following:

P (t) =c1(t) + · · ·+ cN(t)−F(K · s, d× N + t)

=xt1 + xt2 + · · ·+ xtN = E(t)

Once all the slot values from all the clients are received, the relay has E(1), . . . , E(N). The

relay can solve the above equation system to retrieve x1, x2, . . . , xN (without knowing which

message belongs to which client) using SolveEqn(E(1), . . . , E(N)). Once the individual values

x1, x2, . . . , xN are retrieved, the relay can forward them to the outside world. We present the

pseudocode for the protocol in Figure 6.3. The setup servers do not take part during the

protocol run at all.

Remark 2. E(1) = x1+x2+· · ·+xN can be seen by the adversary in plain text. If all but two

clients (without loss of generality let us assume u1 and u2) are compromised, the adversary

knows (x1+x2). However, this leakage does not provide any additional information. Because,

after solving the equation system the relay anyway knows the values.
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hs: a global system-parameter
T : number of slots to be used in the current round

RelayProtocol(round d):

P1, . . . , PT = −F(K · s, dN + t)
for i ∈ {1, . . . ,N} do

(di, ci(1), · · · , ci(T )) = Wait for message from ui
for t ∈ {1, . . . , T} do
Pt = Pt + ci(t)

x1 . . . , xN = SolveEqn(P1, . . . , PN)
Broadcast x1, . . . , xN

ClientProtocol(client ui, packet M , round d) :

xi be the message that the client wants to send
for each j ∈ {1, . . . ,N} do
ci(j) = F(ri, dN + j) + xji

Send (d, ci(1), · · · , ci(N)) to relay R

Figure 6.3. Protocol run in OrgAn

Multiple rounds. The value of F (ri, d× N + t) can be computed for arbitrarily large value

of d. Which means, the protocol can be run for a large number of rounds without the need

to rerun the setup. Additionally, the relay does not need to receive ciphertexts for different

rounds in the correct sequence, the relay can map them correctly using the round tag and

slot id associated with each ciphertext.

Although the round number d can be arbitrarily large in F (ri, d× N + t), for the purpose

of forward secrecy we recommend running the setup once in every few days. That procedure

at regular intervals can be invoked by the relay. If the relay does not run the setup regularly

as expected, the clients will suspect the relay’s malicious intentions.

6.4 Security Analysis

In this section, we prove the (sender) anonymity property of our protocol OrgAn in the

passive adversary setting. We start with presenting the security definition of PRF that we

use in our proofs — we borrow those definitions from existing literature [85,89]. We use the

sender anonymity definition defined in Section 2.1.
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6.4.1 Security Definition for PRFs

Let Rand(D,O) denotes the set of all functions with domain D and range O. We consider

a distinguisher A that tries to distinguish if a function g has been picked randomly from a

given function family F or from Rand(D,O), when A is given oracle access to g. We write

A (g) to denote that A is given oracle access to g. We define the following security game:

Definition 6.4.1. Let F : K × D → O be a family of efficient functions, and let A be an

algorithm the takes an oracle for a function and returns a bit b. We consider the following

two experiments:
ExptPRF (A)

K← K

b = A (FK)

Exptg(A)

g ← Rand(D,O)

b = A (g)

The adversarial advantage of A is defined as AdvF(A) = Pr [ExptPRF (A)]−Pr
[
Exptg(A)

]
.

If we use F in a protocol that requires that the security can be broken with at most

negligible probability for a security parameter η, we also want AdvF(A) to be negligible in

η. Therefore, we use the following security definition for pseudorandom functions:

Definition 6.4.2. F is a secure pseudorandom function family if, for all probabilistic poly-

nomial time algorithms A, the adversarial advantage AdvF(A) in the security game defined

in Definition 6.4.1 is bounded by a negligible quantity in the security parameter η.

6.4.2 Anonymity Analysis

Theorem 6.4.1 (Sender Anonymity for OrgAn). Assuming F() is a computationally secure

pseudorandom function, the OrgAn provides sender anonymity as defined in Definition 2.1.2

with negligible δ against any global passive adversary A, as long as at least two users and

one setup server are honest.

Proof. Without loss of generality let us assume that users u1 and u2 are honest and the

message associated sent by them in a given round are x1 and x2 respectively. Let us also

assume that only one setup server G1 is honest. Now we prove security in two part parts:
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1. First we use a modified version OrgAn∗ of the protocol OrgAn and show that the

adversary has a negligible advantage against OrgAn∗. In OrgAn∗, the user u1 uses a

random function Frand(·) instead of F (r1, ·) as the masks to compute the ciphertexts;

and the user u2 uses F (r1 + r2, ·)−Frand(·).

2. Next we show that, if an adversary Aanon wins the game against OrgAn in the anony-

mity game, we can construct an adversary APRF that can win the PRF game.

As our first step, we consider the anonymity game with the protocol OrgAn∗. In OrgAn∗,

all the protocol parties except u1, u2 and G1 behave exactly the same as OrgAn. However, in

the hypothetical protocol OrgAn∗ we assume that u1 and u2 collude in the following way: for

a given slot t the user u1 uses Frand(t) as the mask to compute ciphertext c1(t) = xt1+Frand(t),

and the user u2 compute ciphertext c2(t) = xt2 +F (r1 + r2, t)−Frand(t). For the time being,

let us consider only one round and we will extend the argument for multiple rounds shortly.

In this hypothetical protocol OrgAn∗, we can assume that the users u1 and u2 can

exchange information about r1, r2 and Frand() with each other.

Claim 12. The protocol OrgAn∗ provides sender anonymity with δ = 0 against any global

passive adversary A, for a one-round protocol run.

Proof of Claim S. ince Frand() is a random function, the value Frand(t) can be thought of as

being chosen at random. Let, f1 = Frand(1) and f2 = F (r1 + r2, 1) − Frand(1). Then the

adversary A has the following set of equations for slot 1 with x1, x2, f1, f2 as unknowns (we

skip the group notations for simplicity),

1. x1 + x2 = a1

2. x1 + f1 = a2

3. f2 + x2 = a3

4. f1 + f2 = a4

and the adversary knows 〈x1, x2〉 = 〈b1, b2〉 or 〈b2, b1〉, for some observed values of a1, a2, a3, a4,

b1, b2. Note that the above equation system has a rank of at most 3; both 〈b1, b2〉 or 〈b2, b1〉
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will yield valid values of f1 and f2. Therefore, slot 1 does not reveal anything about who

sent x1 or x2.

Since Frand is a random function, Frand(t) is unrelated from Frand(t) for any t 6= t. And

hence, a similar argument can be extended for any other slot t as well, independent of slot t.

Since the overall equation system to retrieve all the messages in a round is an identity, the

adversary has δ = 0 advantage in the sender anonymity game against the protocol OrgAn∗

for a one-round protocol run. �

Now let us consider the scenario when the protocol OrgAn∗ is run for many rounds.

For every round d and slot t, the user u1 can use (dN + t) as the input to the random

function Frand(). In that case, the input to Frand() is never repeated, and OrgAn∗ provides

sender anonymity with δ = 0 even for a multi-round protocol run. We skip the formal claim

statement and proof here, since they are similar to that of Claim 12.

Now that we have proved δ-sender anonymity for OrgAn∗ with δ = 0, we proceed to

the next step where we prove the anonymity of OrgAn. We show that, if there exist an

adversary Aanon that breaks sender anonymity for protocol OrgAn, we can construct an

adversary APRF that break the security assumption on pseudorandom function F .

Claim 13. If there exist a PPT adversary Aanon with an adversarial advantage δ against

the protocol OrgAn in the sender anonymity game defined in Definition 2.1.2, there exist an

adversary APRF that can distinguish between F and Frand with probability at least δ in the

PRF game defined in Definition 6.4.1.

Proof of Claim W. e start with the construction of APRF : our adversary APRF of the PRF

game will run the whole sender anonymity game as the challenger, except one setup server

G1 (as per our threat model at least one setup server is honest, and without loss of generality

we assume that to be G1).

The key K for the PRF game is decided based on the random number r11 picked by G1.

We pick, K = ∑
j r1j = r1 such that r1 = K. Since G1 as an independent honest party that

does not collude with APRF or Aanon1, APRF does not know r11 or K.
1↑More formally G1 can modeled similar to hybrid functionalities in UC framework, and then the security
game can be defined in that hybrid functionality setting. We skip the rigorous formalization here.
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APRF runs each round of the sender anonymity game in the following way: for each slot

value t APRF queries the PRF game with input value t and receives a value ft. APRF asks

the user u1 in the sender anonymity game to use ft to compute c1(t) = xti + ft. Similarly,

APRF asks u2 to use c2(t) = xti +F (r1 + r2, t)− ft. APRF runs the sender anonymity game

until Aanon halts. APRF returns 1 if and only if Aanon wins the sender anonymity game.

When ft is an output of Frand() the adversary APRF is effectively running OrgAn∗, however,

when ft = F(K, t) it is running OrgAn. If Aanon has an advantage of δ in the sender

anonymity game against OrgAn, there would be a difference of at least δ in the probability

APRF outputs 1 when ft is the output of Frand() vs when it is the output of F(). �

Following the above claim, if the adversarial advantage of Aanon is non-negligible against

OrgAn, so is the adversarial advantage of APRF in the PRF game — which contradicts the

assumption that F is a secure pseudorandom function.

The above theorem shows that the protocol OrgAn provides sender anonymity with

negligible adversarial advantage against a global passive adversary.
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7. SUMMARY

This dissertation can act as a guideline towards building secure AC protocols, since it pro-

vides the fundamental necessary constraints required to achieve anonymity. Further, it

presents two provably secure protocol constructions inspired by the proven guidelines.

Fundamental Constraints For Anonymous Communication Protocols:

This work derives necessary constraints for sender anonymity and recipient anonymity,

and thereby presents necessary constraints that are crucial for understanding bi-directional

anonymous communication: sender anonymity for hiding the sender and recipient anonymity

for hiding the recipient of a message. When analyzing our results we notice that there are

three distinct relevant invariants upon which the possibility for anonymity depends. These

are: the protocol respects its limitations, the user distribution allows for anonymity and in

case of partially compromised AC protocols, a user’s message needs to travel through at least

one honest protocol party.

We further identify a strong class of AC protocols that utilize what we call user coordina-

tion, an ability by which users work together to introduce uncertainty. Even this additional

power does not fundamentally change the requirements on latency overhead ` and bandwidth

overhead B – except that excessive bandwidth on its own is sufficient to provide strong ano-

nymity, independent of latency or even the level of compromisation. In the absence of this

extreme case, a combination of latency and bandwidth overhead is still necessary. In addi-

tion to confirming this crucial insight, our formal analysis yields additional requirements for

strong anonymity based on the number of compromised nodes c: if c > 0 then the latency

overhead must grow (` /∈ O(1)); if c/K ≥ 1/2 and ` ≤ log(η), then more and more messages

must be in the system, i.e., `p cannot be constrained by any constant; if K− c ∈ O(1), such

as in the Anytrust assumption, then either ` > η2 or `p > 4
√
η are required.

Future work on ACNs can directly build on our insights; our formulas indicate that user

coordination in the style of DC-nets (or Herbivore or Dissent-AT) can reduce the gap to the

universal necessary constraint (`p ≥ 1 − ε(η)) significantly. For closing the gap, however,

our results point to ACN designs outside of our wide class of ACNs (see Section 4.1.1 for
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a thorough discussion). Protocol designers thus face a choice: settle for a weaker notion of

anonymity, come up with novel techniques, sacrifice reliability or adhere to the latency and

bandwidth overheads described in this work.

Provably Secure Constructions:

This work presents two provably secure constructions of AC protocols: (1) a mixnet-

based protocol Streams that achieves strong pairwise unlinkability, (2) a DC-net inspired

protocol OrgAn that achieves strong sender anonymity.

Streams. Streams is a novel mixnet-type protocol that realizes similar security properties

as a trusted third party stop-and-go mix while allowing a fraction of mixnodes to be com-

promised by the adversary, with a latency overhead of several seconds (depending on the

proportion of compromised nodes). As long as each message stays in the system for at least

the given amount of time before being delivered, our protocol provides the same security

guarantees comparable to that of a trusted third party.

With our supernode construction, the latency required to maintain the same level of

anonymity does not grow with the number of users. That shows Streams with supernodes is

much better suited to scale with number of users. Other protocol like Loopix [1], Hornet [14],

Tor [49] can employ this supernode structures with minor modifications towards improving

their anonymity with better scalability.

OrgAn. OrgAn is a new DC-net inspired AC protocol using key-homomorphic pseudoran-

dom functions (PRF) and Newton’s power sums in the client/relay/server model. Similar

to other DC-net based protocols, it provides strong sender anonymity guarantees with re-

sistance against intersection attacks. Unlike existing DC-net based protocols, it avoids the

overhead of slot and key agreement per round, and thus, presents an efficient way of achieving

user coordination.

An AC protocol that combines the techniques of mixnets and user coordination to provide

a tunable trade-off between latency and bandwidth overhead still remains an interesting

future work.
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A. ADDITIONAL CONTENTS FOR INTERESTED READERS

A.1 Interesting calculations Related to Impossibility Results

A.1.1 Calculating the probability of a specific user sending a message in a span
of d rounds, for unsynchronized user message distribution

Here we derive an upper bound on the probability that a specific user (Bob) sends a

message in a given span of d rounds, given that the protocol knows the frequency distribution

of the messages over rounds. This approximates the cases where protocols can choose the

delay of a message depending on the density of messages at different times.

Consider the following indicator random variables: X(1), X(2), . . . , X(N), each X(i) denot-

ing if user i sends a message or not in a span of d rounds. Since every user acts independent

of all other users, X(i)s are mutually independent, and X(i) can be defined as,

X(i) =


0 with probability (1− p)d

1 with probability (1− (1− p)d).
We further denote X = ∑N

i=1X
(i). The expectation of X can be calculated as, E[X] =∑N

i=1 E[X(i)] = N(1− (1− p)d) = µ.

Using Markov’s Inequality we can say, Pr [X ≥ 2µ] ≤ 1
2 .

At least one message is sent by our chosen user Bob is denoted by the event Y . If the

total number of messages in the span of d rounds is x ∈ {0, . . . ,N}, Pr [Y |X = x] ≤ x
N .

For 2µ ≤ N, we can derive,

fSA
p (d) = Pr [Y ]

=Pr [X ≥ 2µ] · Pr [Y |X ≥ 2µ] + Pr [X < 2µ] · Pr [Y |X < 2µ]

≤Pr [X ≥ 2µ] · Pr [Y |X = N] + Pr [X < 2µ] · Pr [Y |X = 2µ]

≤1
2 ·

N
N +

(
1− 1

2

)
· 2µ

N = 1
2 +

(
1− (1− p)d

)
.

If 2µ > N, we get f(d) = Pr [Y ] = 1. Using Chernoff bound, we can derive derive a

tighter bound Pr [X ≥ 2µ] = σ(d) ≤ exp (−2(µ2/N2)N). However, since we are interested in

impossibility results, and the difference is a constant factor 1
2 , we utilize the result obtained
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by using Markov’s inequality. We formally define the probability of Bob sending a message

in the given d rounds as, fSA
p (d) = min

(
1, 1

2 +
(
1− (1− p)d

))
.

However, when we analyze the possibility of strong anonymity, if pd ≤ 1 we use fSA
p (d) =(

1− (1− p)d
)

instead. Because σ(d) becomes negligible in N, thus negligible in η.

Lemma 3. When pd ≤ 1, σ(d) ≤ exp (−2(µ2/N2)N) is negligible in N for µ = N(1− (1− p)d).

Proof. For pd ≤ 1 we can say,
pd ≤ 1⇒ (1− p)d < 1

e

⇒ 1− (1− p)d > 1
2

⇒ µ2

N2 >
1
4

Therefore, σ(d) ≤ exp (−2(µ2/N2)N) ≤ exp (−N/2) — always negligible in N.

A.1.2 Analyze average case of the user distribution, to derive impossibility
conditions for strong/quadratic anonymity

Lemma 4. Let R be the set of all possible sequences of execution of an AC protocol. Let

Runs ∈ R be a random variable denoting the sequence of execution. Suppose, for a set of

sequences of execution R ⊂ R, Pr[Runs ∈ R] is µ, and µ non-negligible. If the protocol can

not provide strong anonymity for any execution o ∈ R, the protocol can not provide strong

anonymity overall.

Proof. Suppose Y denotes the event that the adversary wins, and o∗ is the element in R for

which the probability that the adversary wins is maximum, i.e., Pr [Y | o∗] ≥ Pr [Y | o] for

all o ∈ R. Suppose, Pr [Y | o∗] = ν. Then we can say,
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Pr[Y ] =
∑
o∈R

Pr[Y | Runs = o] · Pr[Runs = o]

=
∑
o∈R

Pr[Y | Runs = o] · Pr[Runs = o]

+
∑

o∈R\R
Pr[Y | Runs = o] · Pr[Runs = o]

≤
∑
o∈R

Pr[Y ∧Runs = o∗] · Pr[Runs = o] + SR

= Pr[Y ∧Runs = o∗] · Pr[Runs ∈ R] + SR

=ν · µ+ SR
where SR = ∑

o∈R\R Pr[Y | Runs = o] · Pr[Runs = o]. We know µ and ν both are non-

negligible. Therefore, Pr[Y ] is non-negligible.

The above lemma provides us with a very helpful insight for unsynchronized user message

distribution. Suppose X denotes the total number of messages in a given slice of ˆ̀ rounds,

and R denotes the set of all sequences of execution where X < E[X]. For two values x1

and x2 drawn from X and x1 > x2, the protocol has a better chance for anonymity with

X = x1. Therefore, if we are analyzing the possibility of strong anonymity, it is enough

to analyze the average case scenario in most of the cases (e.g., pˆ̀ ∈ O(1) – in which case

we can replace fSA
p (d) with

(
1− (1− p)d

)
for a given slice of d rounds). Additionally, we

can use δ ≥
(
1− Beff

N−1

) [
1− g(Z)× fSA

p (ˆ̀)
]
, where Z = min

(ˆ̀, 2B + 1
)

to analyze strong

anonymity. Because, by Markov inequality, the number of additional shares for a message

will be bounded by 2B with probability at least 1
2 .

A.2 Expressing Protocols in the Petri net model

A.2.1 Modeling DC net

Here we show how to model an actual DC net type protocol using our Petri net model

when the users use user coordination. Specifically we pick up the short DC net protocol pro-

posed by Golle and Juels [11], and present MDC which models the aforementioned protocol.
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We model a DC net protocol with N participants, where S = P, |S| = |P| = N. We

denote the parties with P1, . . . , PN . The protocol can be denoted by ΠDC ={paramgen,

keydist, post, verify, extract}1 - as described below.

• paramgen: In ΠDC , paramgen is executed by a trusted entity and the output is pub-

lished. Since we are mainly interested in the anonymity game, we consider that param-

gen step is executed by our honest challenger and happens outside the protocol run,

and the output is globally known (to all the transitions TPi).

• keydist: using the output of paramgen, this step yields for each party Pi a private key

xi and a corresponding public key yi. In protDC , the above key generation part is done

by a trusted entity, and hence we consider that it is done by our honest challenger and

for each party Pi the private-public keypair xi, yi is already known to the corresponding

transition function TPi . As part of protocol each party Pi publishes its public key yi.

Additionally, each party Pj receives from Pi a share of private key xi,j and a share of

public key yi,j, where the keys are shared in a (k,N) threshold manner for a parameter

k ≤ N.

• post: Each player Pi generates a vector of random padsWi = {Wi(1),Wi(2), . . . ,Wi(N)}2

using xi. ΠDC does not handle collisions, instead assumes that the players decide their

positions by a consensus protocol. Similarly our model assumes that each party Pi

knows its position, and assume the position is qi (but not known to the adversary).

Then each player Pi computes the vector Vi such that Vi(w) = Wi(w) for all w 6= i and

Vi(w) = Wi(w) ⊕mi for w = qi, where mi is the message of Pi. Also, each player Pi
computes σi = {σi(1), σi(2), . . . , σi(N)}, where σi includes the identity of player Pi and

a proof of valid formatting of Vi. Then Pi publishes both the vectors Vi and σi. Our

model assumes the pair (Vi(w), σi(w)) for each position w as a single packet, where

Vi(w) is the packet content and σi(w) becomes a part of meta field — and the tag field
1↑Since we are mainly interested in the anonymity property, we don’t need to model the part of the protocol
where the protocol parties reconstructs the keys in case of a failure. But it is easy to extend MDC to include
that step by adding one more round to the current model.
2↑The anonymity game does not include multiple sessions. Also, in our model all the N players participate
in a protocol run.
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contains the value w. For each position w player Pi generates one such packet, and

publishes the packets to all other players.

• verify and extract are local computations after a party Pi receives packets from all

other parties.

Although the protocol model assumes that the adversary can not read the contents of

any packet, here we model ΠDC along with its cryptographic primitives to demonstrate the

expressiveness of our model. Alternatively, to get rid of all the cryptographic primitives, the

parties can send a dummy message (= 0) whenever Vi(w) = Wi(w), and the actual message

mi whenever Vi(w) 6= Wi(w).

As per our anonymity definition in Section 2.1, we assume that up to (N − 2) users

can be compromised, which necessarily makes up to (N− 2) protocol parties compromised.

The adversary chooses two challenge users, and one of them sends the challenge message

depending on the challenge bit b. All other (N − 1) users also participate in the user

coordination process and send shares for the challenge message.

In MDC we model ΠDC as a two round protocol. The challenger sets the initial configu-

ration of the Petri net with the messages to be sent by each party. In the first round, each

party Pi sends two kinds of packets: (1) publishes the public key yi and (2) sends share of

the public-private keypair (xi,j, yi,j) to Pj for all j 6= i. In the second round, each party

Pi publishes N packets: one packet for each position, only one of them contains his own

message. After second round, every party receives packets from every other party, and then

does local computations to verify and extract the original messages.

For ΠDC , we do not actually need a separate recipient R in ΠDC , if we make R = P.

But, to be consistent with M , in MDC we keep a separate recipient. In the second round

whenever a party Pi publishes a packet, Pi also sends a copy to R. This easily models the

fact that the adversary knows whenever a message is published, but avoids the complication

of modeling a subset of compromised recipients.

The meta fields of the tokens contains the following subfields: (1) stage, (2) sigma. The

subfield stage can have three possible values identifying three possible cases: (1) public key

distribution, (2) share of the public-private key pair, (3) message. Using the stage subfield,

any party in the protocol recognizes if the message is part of keydist messages, or part of
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post messages. When the value of stage is message, the user posts Vi(w) for the msg field,

and w for the tag field in the petri net token. The sigma subfield in the meta field includes

the identity of the sender and a proof of computation whenever necessary; sigma subfield

helps in the verify stage, we avoid the details here.

If we want to analyze the user distribution for ΠDC , we do not count the first round since

it is used only for the key exchange and no user message is sent. Note that, if we get rid of

the cryptographic primitives, we do not require the first round. If we assume that all the

users are ready with their messages at the beginning, the latency overhead of ΠDC is 1, and

the bandwidth overhead is ≥ (N − 1) per message.

A.2.2 Modeling Tor

This section demonstrates that onion routing protocols like Tor can be easily modeled

using our Petri net model M . We want to stress that we focus on sender anonymity game

against a global passive adversary, and hence, we do shall not model any sophisticated

features like hidden services, congestion control etc.

Since Tor does not operate in rounds, embedding it into our model is not straight forward.

Suppose, a Tor node takes at least x milliseconds to process a message when it receives a

message, and it takes at least y milliseconds for a message to travel from one node to the

next node over a network link. Then we define one round as x+ y milliseconds. We assume

a perfect condition where each node takes exactly equal computation time for one message,

and each link has exactly same delay. In the real world, delays and computation times are

less stable, but can be estimated by an adversary. Instead of analyzing this, we instead allow

the messages to remain within the node for the respective time. Tor nodes and recipients

are separate entities and hence, S, P and R are mutually exclusive.

Whenever a Tor node receives a message, the node immediately processes and forwards

that message to the next node or recipient. We can either model the latency overhead ` of

Tor by estimating the time messages spend within the network that exceeds the (minimal)

round length x+ y from above, or we set it to the number of hops, i.e., ` = 3. In either case,

we assume that ` does not increase with η and thus get a latency overhead ` ∈ O(1). For
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analyzing Tor with a variable number h of hops, we can instead set ` = h. When a party Pi
receives a message, TPi can retrieve the next hop from the meta field of the message. Since

Tor does not add any noise messages, the bandwidth overhead is β = 0.

A.3 Visual 3D representations of the results

In the work, we focus on lower-bound results for strong anonymity (or negligible δ val-

ues). However, our key Theorems 3.2.1, 3.3.1, 3.4.1 and 3.5.1 also offer lower bounds for

non-negligilable δ values, which can be of interest to several AC protocols. On our project

webpage [52], we visualize these lower bounds using interactive 3D surface plots. In partic-

ular, we plot the adversarial advantage δ ∈ [0, 1] as a function of β and `. We encourage

the readers to interact with these plots for an intuitive understanding of our results for

non-negligilbe δ values.

Here, in Figures A.1 to A.4, we present and analyze four snapshots of those lower bound

plots for the number of users N = 10000. The x-axis represents latency ` (ranging from 0 to

200), and the y-axis bandwidth overhead β (ranging from 0.0 to 0.04). But in Figure A.3 and

Figure A.4, the y-axis actually represents total bandwidth p = p + β as in Theorem 3.4.2.

For curves in Figure A.2 and Figure A.4 we chose K = 100 as the number of total parties

and c = 20 compromised parties. In each plot, the dark blue region indicates the possibility

of obtaining strong anonymity. For any point (x, y) outside those regions, strong anonymity

is not possible. For example, as shown in Figure A.1, for ` = 100 the bandwidth overhead β

has to be at least 0.01 to expect strong anonymity.

A derived δ lower bound for the non-compromising adversary is also a valid lower bound

for a (partially) compromising adversary. For some edge cases (e.g., when ` is close to N

and β is close to 0), due to some approximations employed in the compromising adversaries

scenario, the non-compromising adversary lower bound is actually tighter than the compro-

mising adversaries lower bound. Therefore, in Figure A.4, while plotting the 3D graph for a

partially compromising adversary scenario, we have used the maximum of the lower bounds

on δ for compromising adversary and non-compromising adversary.
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Figure A.1. Synchronized
User Distribution with Non-
compromising Adversaries.
z = 1 − fβ(`), where fβ(x) =
min(1, ((x+ βNx)/(N− 1))).

Figure A.2. Synchronized User
Distribution with Partially compro-
mising Adversaries. Total protocol
parties K = 100, number of com-
promised parties c = 20. z =
1 − [1 −

(c
`

)
/
(K
`

)
]fβ(`) for ` ≤ c,

z = 1− [1− 1/
(K

c
)
]fβ(c)− fβ(`− c)

otherwise.

Figure A.3. Unsynchro-
nized User Distribution with Non-
compromising Adversaries. z =
1 −

( 1
2 + fp(`)

)
, where fp(x) =

min(1/2, 1− (1− p)x).

Figure A.4. Unsynchronized
User Distribution with Partially
compromising Adversaries. Total
number of protocol parties K = 100,
number of compromised parties c =
20. z = 1 − [1 −

(c
`

)
/
(K
`

)
][ 1

2 + fp(`)]
for ` ≤ c, z = (1− [1− 1/

(K
c
)
][1/2 +

fp(c)]) · (1 − [1/2 + fp(` − c)]) oth-
erwise. We set z = max(z, 1 −
(1/2 + fp(`)))
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For the chosen c and K, the plots in Figures A.1 and A.2 are almost identical as the `

and β factors contribute more to anonymity than the compromised parties can affect it. If

we instead compare Figure A.3 with Figure A.4, the effect of compromisation is noticeable:

the dark blue region in Figure A.4 is much smaller than that in Figure A.3. Also, we can see

a steep wall in Figure A.4 for ` ≤ c = 20, demonstrating that providing anonymity becomes

difficult when ` < c; however, for ` > c, the effect of compromisation is less noticeable.
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